import os.path import numpy as np import pandas as pd import argparse # 计算RMSLE def rmsle(predicted, actual): sum_log_diff = np.sum((np.log(predicted + 1) - np.log(actual + 1)) ** 2) mean_log_diff = sum_log_diff / len(predicted) return np.sqrt(mean_log_diff) parser = argparse.ArgumentParser() parser.add_argument('--path', type=str, required=True) parser.add_argument('--name', type=str, required=True) parser.add_argument('--answer_file', type=str, required=True) parser.add_argument('--predict_file', type=str, required=True) parser.add_argument('--value', type=str, default="count") args = parser.parse_args() answers = pd.read_csv( args.answer_file) predictions = pd.read_csv(args.predict_file) performance = rmsle(predictions[args.value], answers[args.value]) with open(os.path.join(args.path, args.name, "result.txt"), "w") as f: f.write(str(performance))