import os.path import numpy as np import pandas as pd import argparse from sklearn.metrics import roc_auc_score parser = argparse.ArgumentParser() parser.add_argument('--path', type=str, required=True) parser.add_argument('--name', type=str, required=True) parser.add_argument('--answer_file', type=str, required=True) parser.add_argument('--predict_file', type=str, required=True) parser.add_argument('--value', type=str, default="generated") args = parser.parse_args() actual = pd.read_csv( args.answer_file) submission = pd.read_csv(args.predict_file) # 移除id列,剩下的是矩阵的值 submission_values = submission.drop(columns=['id']).values actual_values = actual.drop(columns=['id']).values # 计算平均绝对误差 performance = np.mean(np.abs(submission_values - actual_values)) with open(os.path.join(args.path, args.name, "result.txt"), "w") as f: f.write(str(performance))