import os.path import numpy as np import pandas as pd import argparse def rmsle(predictions, actuals): rmsle_confirmed = np.sqrt(np.mean((np.log1p(predictions['ConfirmedCases']) - np.log1p(actuals['ConfirmedCases'])) ** 2)) rmsle_fatalities = np.sqrt(np.mean((np.log1p(predictions['Fatalities']) - np.log1p(actuals['Fatalities'])) ** 2)) return (rmsle_confirmed + rmsle_fatalities) / 2 parser = argparse.ArgumentParser() parser.add_argument('--path', type=str, required=True) parser.add_argument('--name', type=str, required=True) parser.add_argument('--answer_file', type=str, required=True) parser.add_argument('--predict_file', type=str, required=True) parser.add_argument('--value', type=str, default="count") args = parser.parse_args() answers = pd.read_csv(os.path.join(args.path, args.name, args.answer_file)) predictions = pd.read_csv(os.path.join(args.path, args.name, args.predict_file)) performance = rmsle(predictions, answers) with open(os.path.join(args.path, args.name, "result.txt"), "w") as f: f.write(str(performance))