import os.path import numpy as np import pandas as pd import argparse from sklearn.metrics import log_loss from sklearn.metrics import roc_auc_score from sklearn.metrics import cohen_kappa_score parser = argparse.ArgumentParser() parser.add_argument('--path', type=str, required=True) parser.add_argument('--name', type=str, required=True) parser.add_argument('--answer_file', type=str, required=True) parser.add_argument('--predict_file', type=str, required=True) parser.add_argument('--value', type=str, default="score") args = parser.parse_args() # Compute MAE def mean_absolute_error(y_true, y_pred): return np.mean(np.abs(y_pred - y_true)) actual = pd.read_csv( args.answer_file) submission = pd.read_csv(args.predict_file) # 提取实际值和预测值 actual_values = actual[['winner_model_a', 'winner_model_b', 'winner_tie']].values predicted_values = submission[['winner_model_a', 'winner_model_b', 'winner_tie']].values performance = log_loss(actual_values, predicted_values) with open(os.path.join(args.path, args.name, "result.txt"), "w") as f: f.write(str(performance))