import os.path import numpy as np import pandas as pd import argparse from sklearn.metrics import mean_squared_error from sklearn.metrics import log_loss parser = argparse.ArgumentParser() parser.add_argument('--path', type=str, required=True) parser.add_argument('--name', type=str, required=True) parser.add_argument('--answer_file', type=str, required=True) parser.add_argument('--predict_file', type=str, required=True) parser.add_argument('--value', type=str, default="Class") args = parser.parse_args() answers = pd.read_csv( args.answer_file) predictions = pd.read_csv( args.predict_file) answers.sort_values(by=['id']) predictions.sort_values(by=['id']) if "Strength" in predictions: performance = log_loss(answers[args.value], predictions["Strength"]) else: performance = log_loss(answers[args.value], predictions[args.value]) with open(os.path.join(args.path, args.name, "result.txt"), "w") as f: f.write(str(performance))