import os.path import numpy as np import pandas as pd import argparse from sklearn.metrics import mean_squared_error from sklearn.metrics import mean_squared_log_error from sklearn.metrics import mean_absolute_error from sklearn.metrics import roc_auc_score parser = argparse.ArgumentParser() parser.add_argument('--path', type=str, required=True) parser.add_argument('--name', type=str, required=True) parser.add_argument('--answer_file', type=str, required=True) parser.add_argument('--predict_file', type=str, required=True) parser.add_argument('--value', type=str, default="Machine failure") args = parser.parse_args() answers = pd.read_csv( args.answer_file) predictions = pd.read_csv(args.predict_file) performance = (roc_auc_score(answers['EC1'], predictions['EC1']) + roc_auc_score(answers['EC2'], predictions['EC2'])) / 2 with open(os.path.join(args.path, args.name, "result.txt"), "w") as f: f.write(str(performance))