from sklearn.metrics import f1_score import os.path import numpy as np import pandas as pd import argparse from sklearn.metrics import roc_auc_score parser = argparse.ArgumentParser() parser.add_argument('--path', type=str, required=True) parser.add_argument('--name', type=str, required=True) parser.add_argument('--answer_file', type=str, required=True) parser.add_argument('--predict_file', type=str, required=True) parser.add_argument('--value', type=str, default="outcome") args = parser.parse_args() # Compute MAE def mean_absolute_error(y_true, y_pred): return np.mean(np.abs(y_pred - y_true)) answers = pd.read_csv(args.answer_file) predictions = pd.read_csv(args.predict_file) answers.sort_values(by=["id"]) predictions.sort_values(by=['id']) y_true = answers[args.value].values y_pred = predictions[args.value].values performance = f1_score(y_true, y_pred, average='micro') with open(os.path.join(args.path, args.name, "result.txt"), "w") as f: f.write(str(performance))