import os.path import numpy as np import pandas as pd import argparse from sklearn.metrics import roc_auc_score parser = argparse.ArgumentParser() parser.add_argument('--path', type=str, required=True) parser.add_argument('--name', type=str, required=True) parser.add_argument('--answer_file', type=str, required=True) parser.add_argument('--predict_file', type=str, required=True) parser.add_argument('--value', type=str, default="quality") args = parser.parse_args() actual = pd.read_csv(args.answer_file) submission = pd.read_csv(args.predict_file) actual.sort_values(by=['Id']) submission.sort_values(by=['Id']) def quadratic_weighted_kappa(actual, predicted, N): O = np.zeros((N, N), dtype=int) for a, p in zip(actual, predicted): O[a][p] += 1 w = np.zeros((N, N)) for i in range(N): for j in range(N): w[i][j] = ((i - j) ** 2) / ((N - 1) ** 2) actual_hist = np.zeros(N) for a in actual: actual_hist[a] += 1 pred_hist = np.zeros(N) for p in predicted: pred_hist[p] += 1 E = np.outer(actual_hist, pred_hist) E = E / E.sum() * O.sum() num = (w * O).sum() den = (w * E).sum() return 1 - num / den # 计算平均错误率 performance = quadratic_weighted_kappa(actual[args.value], submission[args.value], 10) with open(os.path.join(args.path, args.name, "result.txt"), "w") as f: f.write(str(performance))