import os.path import numpy as np import pandas as pd import argparse from sklearn.metrics import accuracy_score from sklearn.metrics import roc_auc_score # 计算多类对数损失 def multiclass_logloss(actuals, predictions): epsilon = 1e-15 # 避免对数运算中的数值问题 predictions = np.clip(predictions, epsilon, 1 - epsilon) # 限制预测概率的范围,防止对数为无穷 predictions /= predictions.sum(axis=1)[:, np.newaxis] # 归一化确保总和为1 log_pred = np.log(predictions) loss = -np.sum(actuals * log_pred) / len(actuals) return loss parser = argparse.ArgumentParser() parser.add_argument('--path', type=str, required=True) parser.add_argument('--name', type=str, required=True) parser.add_argument('--answer_file', type=str, required=True) parser.add_argument('--predict_file', type=str, required=True) parser.add_argument('--value', type=str, default="NObeyesdad") args = parser.parse_args() actual = pd.read_csv(args.answer_file) submission = pd.read_csv( args.predict_file) # 定义要计算的类别 categories = ['Pastry', 'Z_Scratch', 'K_Scatch', 'Stains', 'Dirtiness', 'Bumps', 'Other_Faults'] # 提取数据并计算每个类别的 ROC AUC 分数 auc_scores = {} for category in categories: y_true = actual[category].values y_pred = submission[category].values auc_scores[category] = roc_auc_score(y_true, y_pred) # 计算平均 AUC 分数 performance = sum(auc_scores.values()) / len(auc_scores) with open(os.path.join(args.path, args.name, "result.txt"), "w") as f: f.write(str(performance))