import json from tqdm import tqdm import os from openai import OpenAI client = OpenAI(api_key="") samples = [] with open("./data.json", "r") as f: for line in f: samples.append(eval(line.strip())) def evaluate_prediction(client, question, answer, prediction): prompt = (f"Please judge whether the generated answer is right or wrong. We require that the correct answer " f"to the prediction gives a clear answer, not just a calculation process or a disassembly of ideas. " f"The question is {question}. The true answer is \n {answer}. \n The predicted answer is \n {prediction}.\n " f"If the predicted answer is right, please output True. Otherwise output Flase. " f"Don't output any other text content. You only can output True or False.") response = client.chat.completions.create( model="gpt-4o-2024-05-13", messages=[ { "role": "user", "content": [ { "type": "text", "text": prompt } ] } ], temperature=0, max_tokens=256, top_p=1, frequency_penalty=0, presence_penalty=0 ) # print(prompt) # print(response.choices[0].message.content) # exit() return response.choices[0].message.content def read_txt(path): with open(path, "r") as f: return f.read() save_path = "./save_process" model = "gpt-3.5-turbo-0125" # model = 'gpt-4o-2024-05-13' # model = 'llama-3-8b-instruct' # model = 'gpt-3.5-turbo-0125-autoagent' # model = 'gpt-4o-2024-05-13-autoagent' # model = 'llava-v1.5-13b' # model = 'llama3-autoagent' results = [] save_f = open(os.path.join(save_path, model, "results.json"), "w") save_process = open(os.path.join(save_path, model, "results_process.json"), "w") for sample in tqdm(samples): result = [] if len(sample["questions"]) > 0: # print(sample['id']) predicts = [] with open(os.path.join(save_path, model, sample['id']+".json"), "r") as f: for line in f: predicts.append(eval(line.strip())) questions = [] for id, question_name in enumerate(tqdm(sample["questions"])): question = read_txt(os.path.join("./data", sample["id"], question_name + ".txt")) pre = predicts[id] try: if not model.endswith('autoagent'): ans = evaluate_prediction(client, question, str(sample["answers"][id]), pre['response']) else: ans = evaluate_prediction(client, question, str(sample["answers"][id]), pre['summary']) except Exception as e: print(e) ans = "False" # print(result) if not model.endswith('autoagent'): process = [sample["id"], ans, str(sample["answers"][id]), pre['response'][:]] else: process = [sample["id"], ans, str(sample["answers"][id]), pre['summary'][:]] result.append(ans) json.dump(process, save_process) save_process.write("\n") save_process.flush() json.dump(result, save_f) save_f.write("\n") save_f.flush() results += result save_f.close() save_process.close() results_c = [] for i, result in enumerate(results): if "true" in result.lower(): results_c.append(True) else: results_c.append(False) idx = 0 score4cha = [] for sample in tqdm(samples): if len(sample["questions"]) > 0: score_ = sum(results_c[idx:idx+len(sample["questions"])]) / len(sample["questions"]) idx += len(sample["questions"]) score4cha.append(score_) print(f"Accuracy for each challenge is {score4cha}") acc = sum(results_c) / len(results_c) print(f"Accuracy for all the {len(results_c)} questions is {acc}")