import os.path import numpy as np import pandas as pd import argparse from sklearn.metrics import mean_squared_error from sklearn.metrics import mean_squared_log_error from sklearn.metrics import mean_absolute_error from sklearn.metrics import roc_auc_score parser = argparse.ArgumentParser() parser.add_argument('--path', type=str, required=True) parser.add_argument('--name', type=str, required=True) parser.add_argument('--answer_file', type=str, required=True) parser.add_argument('--predict_file', type=str, required=True) parser.add_argument('--value', type=str, default="Machine failure") args = parser.parse_args() answers = pd.read_csv( args.answer_file) predictions = pd.read_csv( args.predict_file) # 提取预测值和实际标签 predicted_values = predictions['num_sold'].values actual_values = answers['num_sold'].values # 修改列名为answers smape = np.mean(2 * np.abs(predicted_values - actual_values) / (np.abs(actual_values) + np.abs(predicted_values))) performance = smape with open(os.path.join(args.path, args.name, "result.txt"), "w") as f: f.write(str(performance))