import os.path import numpy as np import pandas as pd import argparse from sklearn.metrics import roc_auc_score parser = argparse.ArgumentParser() parser.add_argument('--path', type=str, required=True) parser.add_argument('--name', type=str, required=True) parser.add_argument('--answer_file', type=str, required=True) parser.add_argument('--predict_file', type=str, required=True) parser.add_argument('--value', type=str, default="ACTION") args = parser.parse_args() # 定义 RMSLE 计算函数 def rmsle(y_true, y_pred): return np.sqrt(np.mean((np.log1p(y_pred) - np.log1p(y_true)) ** 2)) actual = pd.read_csv(args.answer_file) submission = pd.read_csv(args.predict_file) performance = roc_auc_score(actual[args.value], submission[args.value]) with open(os.path.join(args.path, args.name, "result.txt"), "w") as f: f.write(str(performance))