import os.path import numpy as np import pandas as pd import argparse from sklearn.metrics import roc_auc_score parser = argparse.ArgumentParser() parser.add_argument('--path', type=str, required=True) parser.add_argument('--name', type=str, required=True) parser.add_argument('--answer_file', type=str, required=True) parser.add_argument('--predict_file', type=str, required=True) parser.add_argument('--value', type=str, default="Strength") args = parser.parse_args() actual = pd.read_csv(args.answer_file) submission = pd.read_csv(args.predict_file) actual.sort_values(by=['id']) submission.sort_values(by=['id']) def calculate_rmse(actual, predicted): actual = np.array(actual) predicted = np.array(predicted) mse = np.mean((actual - predicted) ** 2) rmse = np.sqrt(mse) return rmse # 计算平均错误率 performance = calculate_rmse(actual[args.value], submission[args.value]) with open(os.path.join(args.path, args.name, "result.txt"), "w") as f: f.write(str(performance))