File size: 11,499 Bytes
7f2ce96 f4ee313 13de6d0 f4ee313 13de6d0 92e2a57 13de6d0 7f2ce96 13de6d0 7f2ce96 13de6d0 7f2ce96 13de6d0 7f2ce96 13de6d0 7f2ce96 13de6d0 7f2ce96 13de6d0 92e2a57 e5ae10c 92e2a57 7f2ce96 13de6d0 7f2ce96 d6b51c5 7f2ce96 73c256d 7f2ce96 13de6d0 f4ee313 13de6d0 7f2ce96 13de6d0 f4ee313 7f2ce96 13de6d0 92e2a57 13de6d0 92e2a57 13de6d0 009b97c 92e2a57 13de6d0 009b97c 92e2a57 13de6d0 92e2a57 e5ae10c 009b97c 92e2a57 009b97c 92e2a57 009b97c 92e2a57 009b97c f4ee313 13de6d0 009b97c 13de6d0 f4ee313 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 |
# Copyright 2020 The HuggingFace Datasets Authors and the current dataset script contributor.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# TODO: Address all TODOs and remove all explanatory comments
"""TODO: Add a description here."""
import csv
import json
import os
from typing import List
import datasets
import logging
import csv
import numpy as np
from PIL import Image
import os
import io
import pandas as pd
import matplotlib.pyplot as plt
from numpy import asarray
import requests
from io import BytesIO
from numpy import asarray
# TODO: Add BibTeX citation
# Find for instance the citation on arxiv or on the dataset repo/website
_CITATION = """\
@article{chen2023dataset,
title={A dataset of the quality of soybean harvested by mechanization for deep-learning-based monitoring and analysis},
author={Chen, M and Jin, C and Ni, Y and Yang, T and Xu, J},
journal={Data in Brief},
volume={52},
pages={109833},
year={2023},
publisher={Elsevier},
doi={10.1016/j.dib.2023.109833}
}
"""
# TODO: Add description of the dataset here
# You can copy an official description
_DESCRIPTION = """\
This dataset contains images captured during the mechanized harvesting of soybeans, aimed at facilitating the development of machine vision and deep learning models for quality analysis. It contains information of original soybean pictures in different forms, labels of whether the soybean belongs to training, validation, or testing datasets, segmentation class of soybean pictures in one dataset.
"""
# TODO: Add a link to an official homepage for the dataset here
_HOMEPAGE = "https://huggingface.co/datasets/lisawen/soybean_dataset"
# TODO: Add the licence for the dataset here if you can find it
_LICENSE = "Under a Creative Commons license"
# TODO: Add link to the official dataset URLs here
# The HuggingFace Datasets library doesn't host the datasets but only points to the original files.
# This can be an arbitrary nested dict/list of URLs (see below in `_split_generators` method)
_URL = "/content/drive/MyDrive/sta_663/soybean/dataset.csv"
_URLs = {
"train" : "https://raw.githubusercontent.com/lisawen0707/soybean/main/train_dataset.csv",
"test": "https://raw.githubusercontent.com/lisawen0707/soybean/main/test_dataset.csv",
"valid": "https://raw.githubusercontent.com/lisawen0707/soybean/main/valid_dataset.csv"
}
# TODO: Name of the dataset usually matches the script name with CamelCase instead of snake_case
class SoybeanDataset(datasets.GeneratorBasedBuilder):
"""TODO: Short description of my dataset."""
_URLs = _URLs
VERSION = datasets.Version("1.1.0")
def _info(self):
# raise ValueError('woops!')
return datasets.DatasetInfo(
description=_DESCRIPTION,
features=datasets.Features(
{
"unique_id": datasets.Value("string"),
"sets": datasets.Value("string"),
"original_image": datasets.Image(),
"segmentation_image": datasets.Image(),
}
),
# No default supervised_keys (as we have to pass both question
# and context as input).
supervised_keys=("original_image","segmentation_image"),
homepage="https://github.com/lisawen0707/soybean/tree/main",
citation=_CITATION,
)
def _split_generators(self, dl_manager: datasets.DownloadManager) -> List[datasets.SplitGenerator]:
# dl_manager is a datasets.download.DownloadManager that can be used to download and extract URLs
# Since the dataset is on Google Drive, you need to implement a way to download it using the Google Drive API.
# The path to the dataset file in Google Drive
urls_to_download = self._URLs
downloaded_files = dl_manager.download_and_extract(urls_to_download)
# Since we're using a local file, we don't need to download it, so we just return the path.
return [
datasets.SplitGenerator(
name=datasets.Split.TRAIN, gen_kwargs={"filepath": downloaded_files["train"]}),
datasets.SplitGenerator(
name=datasets.Split.TEST, gen_kwargs={"filepath": downloaded_files["test"]}),
datasets.SplitGenerator(
name=datasets.Split.VALIDATION, gen_kwargs={"filepath": downloaded_files["valid"]}),
]
# Copyright 2020 The HuggingFace Datasets Authors and the current dataset script contributor.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# TODO: Address all TODOs and remove all explanatory comments
"""TODO: Add a description here."""
import csv
import json
import os
from typing import List
import datasets
import logging
import csv
import numpy as np
from PIL import Image
import os
import io
import pandas as pd
import matplotlib.pyplot as plt
from numpy import asarray
import requests
from io import BytesIO
from numpy import asarray
# TODO: Add BibTeX citation
# Find for instance the citation on arxiv or on the dataset repo/website
_CITATION = """\
@article{chen2023dataset,
title={A dataset of the quality of soybean harvested by mechanization for deep-learning-based monitoring and analysis},
author={Chen, M and Jin, C and Ni, Y and Yang, T and Xu, J},
journal={Data in Brief},
volume={52},
pages={109833},
year={2023},
publisher={Elsevier},
doi={10.1016/j.dib.2023.109833}
}
"""
# TODO: Add description of the dataset here
# You can copy an official description
_DESCRIPTION = """\
This dataset contains images captured during the mechanized harvesting of soybeans, aimed at facilitating the development of machine vision and deep learning models for quality analysis. It contains information of original soybean pictures in different forms, labels of whether the soybean belongs to training, validation, or testing datasets, segmentation class of soybean pictures in one dataset.
"""
# TODO: Add a link to an official homepage for the dataset here
_HOMEPAGE = "https://huggingface.co/datasets/lisawen/soybean_dataset"
# TODO: Add the licence for the dataset here if you can find it
_LICENSE = "Under a Creative Commons license"
# TODO: Add link to the official dataset URLs here
# The HuggingFace Datasets library doesn't host the datasets but only points to the original files.
# This can be an arbitrary nested dict/list of URLs (see below in `_split_generators` method)
_URL = "/content/drive/MyDrive/sta_663/soybean/dataset.csv"
_URLs = {
"train" : "https://raw.githubusercontent.com/lisawen0707/soybean/main/train_dataset.csv",
"test": "https://raw.githubusercontent.com/lisawen0707/soybean/main/test_dataset.csv",
"valid": "https://raw.githubusercontent.com/lisawen0707/soybean/main/valid_dataset.csv"
}
# TODO: Name of the dataset usually matches the script name with CamelCase instead of snake_case
class SoybeanDataset(datasets.GeneratorBasedBuilder):
"""TODO: Short description of my dataset."""
_URLs = _URLs
VERSION = datasets.Version("1.1.0")
def _info(self):
# raise ValueError('woops!')
return datasets.DatasetInfo(
description=_DESCRIPTION,
features=datasets.Features(
{
"unique_id": datasets.Value("string"),
"sets": datasets.Value("string"),
"original_image": datasets.Image(),
"segmentation_image": datasets.Image(),
}
),
# No default supervised_keys (as we have to pass both question
# and context as input).
supervised_keys=("original_image","segmentation_image"),
homepage="https://github.com/lisawen0707/soybean/tree/main",
citation=_CITATION,
)
def _split_generators(self, dl_manager: datasets.DownloadManager) -> List[datasets.SplitGenerator]:
# dl_manager is a datasets.download.DownloadManager that can be used to download and extract URLs
# Since the dataset is on Google Drive, you need to implement a way to download it using the Google Drive API.
# The path to the dataset file in Google Drive
urls_to_download = self._URLs
downloaded_files = dl_manager.download_and_extract(urls_to_download)
# Since we're using a local file, we don't need to download it, so we just return the path.
return [
datasets.SplitGenerator(
name=datasets.Split.TRAIN, gen_kwargs={"filepath": downloaded_files["train"]}),
datasets.SplitGenerator(
name=datasets.Split.TEST, gen_kwargs={"filepath": downloaded_files["test"]}),
datasets.SplitGenerator(
name=datasets.Split.VALIDATION, gen_kwargs={"filepath": downloaded_files["valid"]}),
]
def process_image(self,image_url):
response = requests.get(image_url)
response.raise_for_status() # This will raise an exception if there is a download error
# Open the image from the downloaded bytes and return the PIL Image
img = Image.open(BytesIO(response.content))
return img
def _generate_examples(self, filepath):
#"""Yields examples as (key, example) tuples."""
logging.info("generating examples from = %s", filepath)
with open(filepath, encoding="utf-8") as f:
data = csv.DictReader(f)
for row in data:
# Assuming the 'original_image' column has the full path to the image file
unique_id = row['unique_id']
original_image_path = row['original_image']
segmentation_image_path = row['segmentation_image']
sets = row['sets']
original_image = self.process_image(original_image_path)
segmentation_image = self.process_image(segmentation_image_path)
# Here you need to replace 'initial_radius', 'final_radius', 'initial_angle', 'final_angle', 'target'
# with actual columns from your CSV or additional processing you need to do
yield row['unique_id'], {
"unique_id": unique_id,
"sets": sets,
"original_image": original_image,
"segmentation_image": segmentation_image,
# ... add other features if necessary
}
|