File size: 7,328 Bytes
1533878
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
{
  "nbformat": 4,
  "nbformat_minor": 0,
  "metadata": {
    "colab": {
      "provenance": []
    },
    "kernelspec": {
      "name": "python3",
      "display_name": "Python 3"
    },
    "language_info": {
      "name": "python"
    }
  },
  "cells": [
    {
      "cell_type": "code",
      "execution_count": null,
      "metadata": {
        "id": "9QLlZv6DlPC1"
      },
      "outputs": [],
      "source": [
        "from google.colab import drive\n",
        "drive.mount('/content/drive')\n",
        "%cd /content/drive/MyDrive/sta_663/soybean/"
      ]
    },
    {
      "cell_type": "code",
      "source": [
        "import pandas as pd\n",
        "\n",
        "# Function to read ids from a file and return them as a list with leading zeros\n",
        "def read_ids(file_path):\n",
        "    with open(file_path, 'r') as file:\n",
        "        # Read the IDs, ensuring they are 6 digits long with leading zeros\n",
        "        return [line.zfill(6) for line in file.read().splitlines()]\n",
        "\n",
        "# Function to read ids from a file and assign a set type\n",
        "def assign_set_type(file_path, set_type):\n",
        "    # Read the file content\n",
        "    with open(file_path, 'r') as file:\n",
        "        ids = file.read().splitlines()\n",
        "    # Update the 'sets' column based on the ids in the file\n",
        "    df.loc[df['unique_id'].isin(ids), 'sets'] = set_type\n",
        "\n"
      ],
      "metadata": {
        "id": "prkF3wVLld_k"
      },
      "execution_count": null,
      "outputs": []
    },
    {
      "cell_type": "code",
      "source": [
        "# Read unique_ids from all.txt\n",
        "all_file_path = '/content/drive/MyDrive/sta_663/soybean/ImageSets/Segmentation/all.txt'\n",
        "unique_ids = read_ids(all_file_path)\n",
        "\n",
        "# Initialize the DataFrame with unique_ids and default 'train' set\n",
        "df = pd.DataFrame(unique_ids, columns=['unique_id'])\n",
        "df['sets'] = 'train'\n",
        "\n",
        "# Assign 'test' to the sets column for IDs from test.txt\n",
        "test_file_path = '/content/drive/MyDrive/sta_663/soybean/ImageSets/Segmentation/test.txt'\n",
        "assign_set_type(test_file_path, 'test')\n",
        "\n",
        "# Assign 'valid' to the sets column for IDs from val.txt\n",
        "val_file_path = '/content/drive/MyDrive/sta_663/soybean/ImageSets/Segmentation/val.txt'\n",
        "assign_set_type(val_file_path, 'valid')\n",
        "\n"
      ],
      "metadata": {
        "id": "nsFdyvBzlgB_"
      },
      "execution_count": null,
      "outputs": []
    },
    {
      "cell_type": "code",
      "source": [
        "file_path = '/content/drive/MyDrive/sta_663/soybean/dataset.csv'\n",
        "df.to_csv(file_path, index=False)"
      ],
      "metadata": {
        "id": "KjRGHJivliym"
      },
      "execution_count": null,
      "outputs": []
    },
    {
      "cell_type": "markdown",
      "source": [
        "Download the dataset.csv file and put into the same directory as the downloaded zip file"
      ],
      "metadata": {
        "id": "qyyjofnUmXsh"
      }
    },
    {
      "cell_type": "code",
      "source": [
        "import os\n",
        "import pandas as pd\n",
        "import shutil"
      ],
      "metadata": {
        "id": "hm7ZaB5ImAeA"
      },
      "execution_count": null,
      "outputs": []
    },
    {
      "cell_type": "code",
      "source": [
        "# Replace with the path to your CSV file\n",
        "csv_file_path = 'D:\\STA 663\\project_1\\dataset.csv'\n",
        "# Replace with the directory where your images are currently stored\n",
        "images_directory = 'D:\\STA 663\\project_1\\soybean\\JPEGImages'\n",
        "# Replace with the directory where you want to create test/train/validate directories\n",
        "output_base_directory = 'D:\\STA 663\\project_1'\n",
        "\n",
        "# Read the dataset\n",
        "df = pd.read_csv(csv_file_path)\n",
        "df['unique_id'] = df['unique_id'].astype(str).str.zfill(6)"
      ],
      "metadata": {
        "id": "iTKsnTUdmI3N"
      },
      "execution_count": null,
      "outputs": []
    },
    {
      "cell_type": "code",
      "source": [
        "# Create directories for the sets if they don't exist\n",
        "for set_type in ['test', 'train', 'valid']:\n",
        "    set_directory = os.path.join(output_base_directory, set_type)\n",
        "    if not os.path.exists(set_directory):\n",
        "        os.makedirs(set_directory)\n",
        "\n",
        "# Function to move and rename files\n",
        "def move_and_rename_files(row):\n",
        "    file_name = f\"{row['unique_id']}.jpg\"  # Assuming the images are .jpg\n",
        "    original_path = os.path.join(images_directory, file_name)\n",
        "    if os.path.isfile(original_path):\n",
        "        set_type = row['sets']\n",
        "        new_name = f\"{row['unique_id']}_original.jpg\"\n",
        "        new_path = os.path.join(output_base_directory, set_type, new_name)\n",
        "        # Move and rename the file\n",
        "        shutil.copy(original_path, new_path)  # Use shutil.copy if you want to keep the originals\n",
        "\n",
        "# Apply the function to each row in the dataframe\n",
        "df.apply(move_and_rename_files, axis=1)"
      ],
      "metadata": {
        "id": "2dvMgZcOmLt2"
      },
      "execution_count": null,
      "outputs": []
    },
    {
      "cell_type": "code",
      "source": [
        "### Do the same thing for segmentation class"
      ],
      "metadata": {
        "id": "aZb9yoXumrrp"
      },
      "execution_count": null,
      "outputs": []
    },
    {
      "cell_type": "code",
      "source": [
        "# Replace with the path to your CSV file\n",
        "csv_file_path = 'D:\\STA 663\\project_1\\dataset.csv'\n",
        "# Replace with the directory where your images are currently stored\n",
        "images_directory = 'D:\\STA 663\\project_1\\soybean\\SegmentationClass'\n",
        "# Replace with the directory where you want to create test/train/validate directories\n",
        "output_base_directory = 'D:\\STA 663\\project_1'"
      ],
      "metadata": {
        "id": "Ud79pkDMmyA_"
      },
      "execution_count": null,
      "outputs": []
    },
    {
      "cell_type": "code",
      "source": [
        "# Function to move and rename files\n",
        "def move_and_rename_files(row):\n",
        "    file_name = f\"{row['unique_id']}.png\"  # Assuming the images are .jpg\n",
        "    original_path = os.path.join(images_directory, file_name)\n",
        "    if os.path.isfile(original_path):\n",
        "        set_type = row['sets']\n",
        "        new_name = f\"{row['unique_id']}_segmentation.jpg\"\n",
        "        new_path = os.path.join(output_base_directory, set_type, new_name)\n",
        "        # Move and rename the file\n",
        "        shutil.copy(original_path, new_path)  # Use shutil.copy if you want to keep the originals\n",
        "\n",
        "# Apply the function to each row in the dataframe\n",
        "df.apply(move_and_rename_files, axis=1)"
      ],
      "metadata": {
        "id": "UoJLs5-Dm2u5"
      },
      "execution_count": null,
      "outputs": []
    }
  ]
}