File size: 2,794 Bytes
5555021
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7da758d
5555021
 
 
 
 
 
 
 
 
1e07ff6
 
5555021
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1e07ff6
 
5555021
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
# coding=utf-8
# Copyright 2020 The HuggingFace Datasets Authors and the current dataset script contributor.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""TODO: Add a description here."""


import csv
import glob
import os

import datasets


# TODO: Add BibTeX citation
# Find for instance the citation on arxiv or on the dataset repo/website
_CITATION = """\

@InProceedings{huggingface:dataset,

title = {A great new dataset},

author={huggingface, Inc.

},

year={2020}

}

"""

_DESCRIPTION = """\

GEC Dataset Generated from C4

"""

_HOMEPAGE = "https://www.kaggle.com/a0155991rliwei/c4-200m"

_LICENSE = ""

_URL = "data.zip"


class C4200M(datasets.GeneratorBasedBuilder):
    VERSION = datasets.Version("1.0.0")
    DEFAULT_CONFIG_NAME = "train"
    
    def _info(self):
        features = datasets.Features(
                {
                    "input": datasets.Value("string"),
                    "output": datasets.Value("string"),
                }
            )
        return datasets.DatasetInfo(
            description=_DESCRIPTION,
            features=features,
            supervised_keys=None,
            homepage=_HOMEPAGE,
            license=_LICENSE,
            citation=_CITATION,
        )

    def _split_generators(self, dl_manager):
        """Returns SplitGenerators."""
        data_dir = dl_manager.download_and_extract(_URL)
        return [
            datasets.SplitGenerator(
                name=datasets.Split.TRAIN,
                gen_kwargs={
                    "filepath": data_dir,
                },
            ),
        ]

    def _generate_examples(

        self, filepath

    ):
        """ Yields examples as (key, example) tuples. """
        def fix_nulls(s):
            for line in s:
                yield line.replace('\0', ' ')

        path = filepath + "/*.tsv*"
        for filename in glob.glob(path):
            with open(filename, encoding="utf-8") as f:
                reader = csv.reader(fix_nulls(f), delimiter="\t", quoting=csv.QUOTE_NONE)
                for id_, row in enumerate(reader):
                    yield id_, {
                        "input": row[0],
                        "output": row[1],
                    }