Datasets:

Modalities:
Text
Formats:
parquet
Languages:
Japanese
Size:
< 1K
Libraries:
Datasets
pandas
License:
Kosuke-Yamada commited on
Commit
6a26845
1 Parent(s): 88ec690

add the source code for dataset

Browse files
Files changed (1) hide show
  1. ja-vicuna-qa-benchmark.py +67 -0
ja-vicuna-qa-benchmark.py ADDED
@@ -0,0 +1,67 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ from __future__ import annotations
2
+
3
+ import json
4
+ from typing import Any, Generator
5
+
6
+ import datasets
7
+
8
+ _CITATION = ""
9
+ _DESCRIPTION = "These are datasets including the benchmark 'ja-vicuna-qa-benchmark.'"
10
+ _HOMEPAGE = "https://raw.githubusercontent.com/ku-nlp/ja-vicuna-qa-benchmark/main/data/jp_bench/question.jsonl"
11
+ _LICENSE = "This work is license under Apache-2.0 license"
12
+ _URL = "https://raw.githubusercontent.com/ku-nlp/ja-vicuna-qa-benchmark/main/data/jp_bench/question.jsonl"
13
+ _VERSION = "1.1.0"
14
+
15
+
16
+ class JaVicunaQaBenchmarkConfig(datasets.BuilderConfig):
17
+ def __init__(
18
+ self,
19
+ name: str = "default",
20
+ version: datasets.Version | str | None = datasets.Version(_VERSION),
21
+ data_dir: str | None = None,
22
+ data_files: datasets.data_files.DataFilesDict | None = None,
23
+ description: str | None = _DESCRIPTION,
24
+ ) -> None:
25
+ super().__init__(
26
+ name=name,
27
+ version=version,
28
+ data_dir=data_dir,
29
+ data_files=data_files,
30
+ description=description,
31
+ )
32
+
33
+
34
+ class JaVicunaQaBenchmark(datasets.GeneratorBasedBuilder):
35
+ BUILDER_CONFIG_CLASS = JaVicunaQaBenchmarkConfig
36
+
37
+ def _info(self) -> datasets.DatasetInfo:
38
+ return datasets.DatasetInfo(
39
+ description=_DESCRIPTION,
40
+ citation=_CITATION,
41
+ homepage=_HOMEPAGE,
42
+ license=_LICENSE,
43
+ features=datasets.Features(
44
+ {
45
+ "question_id": datasets.Value("int64"),
46
+ "category": datasets.Value("string"),
47
+ "turns": [datasets.Value("string")],
48
+ }
49
+ ),
50
+ )
51
+
52
+ def _split_generators(
53
+ self, dl_manager: datasets.DownloadManager
54
+ ) -> list[datasets.SplitGenerator]:
55
+ dataset_file = dl_manager.download_and_extract(_URL)
56
+ with open(dataset_file, "r", encoding="utf-8") as f:
57
+ data = [json.loads(line) for line in f]
58
+
59
+ return [
60
+ datasets.SplitGenerator(
61
+ name=datasets.Split.TEST, gen_kwargs={"data": data}
62
+ ),
63
+ ]
64
+
65
+ def _generate_examples(self, data: list[dict[str, Any]]) -> Generator:
66
+ for i, d in enumerate(data):
67
+ yield i, d