# Copyright 2020 The HuggingFace Datasets Authors and the current dataset script contributor. | |
# | |
# Licensed under the Apache License, Version 2.0 (the "License"); | |
# you may not use this file except in compliance with the License. | |
# You may obtain a copy of the License at | |
# | |
# http://www.apache.org/licenses/LICENSE-2.0 | |
# | |
# Unless required by applicable law or agreed to in writing, software | |
# distributed under the License is distributed on an "AS IS" BASIS, | |
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
# See the License for the specific language governing permissions and | |
# limitations under the License. | |
# TODO: Address all TODOs and remove all explanatory comments | |
"""TODO: Add a description here.""" | |
import csv | |
import json | |
import os | |
import random | |
import datasets | |
# TODO: Add BibTeX citation | |
# Find for instance the citation on arxiv or on the dataset repo/website | |
_CITATION = """\ | |
@InProceedings{huggingface:dataset, | |
title = {A great new dataset}, | |
author={huggingface, Inc. | |
}, | |
year={2020} | |
} | |
""" | |
# TODO: Add description of the dataset here | |
# You can copy an official description | |
_DESCRIPTION = """\ | |
This new dataset is designed to solve this great NLP task and is crafted with a lot of care. | |
""" | |
# TODO: Add a link to an official homepage for the dataset here | |
_HOMEPAGE = "" | |
# TODO: Add the licence for the dataset here if you can find it | |
_LICENSE = "" | |
# TODO: Add link to the official dataset URLs here | |
# The HuggingFace Datasets library doesn't host the datasets but only points to the original files. | |
# This can be an arbitrary nested dict/list of URLs (see below in `_split_generators` method) | |
_URL = "https://raw.githubusercontent.com/stockmarkteam/ner-wikipedia-dataset/main/ner.json" | |
class NerWikipediaDatasetConfig(datasets.BuilderConfig): | |
"""BuilderConfig for MS MARCO.""" | |
def __init__(self, **kwargs): | |
"""BuilderConfig for MS MARCO | |
Args: | |
**kwargs: keyword arguments forwarded to super. | |
""" | |
super(NerWikipediaDatasetConfig, self).__init__(**kwargs) | |
# TODO: Name of the dataset usually matches the script name with CamelCase instead of snake_case | |
class NerWikipediaDataset(datasets.GeneratorBasedBuilder): | |
"""TODO: Short description of my dataset.""" | |
VERSION = datasets.Version("1.1.0") | |
# This is an example of a dataset with multiple configurations. | |
# If you don't want/need to define several sub-sets in your dataset, | |
# just remove the BUILDER_CONFIG_CLASS and the BUILDER_CONFIGS attributes. | |
# If you need to make complex sub-parts in the datasets with configurable options | |
# You can create your own builder configuration class to store attribute, inheriting from datasets.BuilderConfig | |
# BUILDER_CONFIG_CLASS = MyBuilderConfig | |
# You will be able to load one or the other configurations in the following list with | |
# data = datasets.load_dataset('my_dataset', 'first_domain') | |
# data = datasets.load_dataset('my_dataset', 'second_domain') | |
BUILDER_CONFIGS = [ | |
datasets.BuilderConfig( | |
name="all", | |
version=VERSION, | |
description="This part of my dataset covers a first domain", | |
), | |
] | |
DEFAULT_CONFIG_NAME = "all" # It's not mandatory to have a default configuration. Just use one if it make sense. | |
def _info(self): | |
# TODO: This method specifies the datasets.DatasetInfo object which contains informations and typings for the dataset | |
return datasets.DatasetInfo( | |
# This is the description that will appear on the datasets page. | |
description=_DESCRIPTION, | |
# This defines the different columns of the dataset and their types | |
features=datasets.Features( | |
{ | |
"curid": datasets.Value("int32"), | |
"text": datasets.Value("string"), | |
"entities": datasets.Sequence( | |
feature={ | |
"name": datasets.Value(dtype="string"), | |
"span": datasets.Sequence( | |
feature=datasets.Value(dtype="int32"), length=2 | |
), | |
"type": datasets.Value(dtype="string"), | |
}, | |
) | |
# These are the features of your dataset like images, labels ... | |
} | |
), # Here we define them above because they are different between the two configurations | |
# If there's a common (input, target) tuple from the features, uncomment supervised_keys line below and | |
# specify them. They'll be used if as_supervised=True in builder.as_dataset. | |
# supervised_keys=("sentence", "label"), | |
# Homepage of the dataset for documentation | |
homepage=_HOMEPAGE, | |
# License for the dataset if available | |
license=_LICENSE, | |
# Citation for the dataset | |
citation=_CITATION, | |
) | |
def _split_generators(self, dl_manager): | |
# TODO: This method is tasked with downloading/extracting the data and defining the splits depending on the configuration | |
# If several configurations are possible (listed in BUILDER_CONFIGS), the configuration selected by the user is in self.config.name | |
# dl_manager is a datasets.download.DownloadManager that can be used to download and extract URLS | |
# It can accept any type or nested list/dict and will give back the same structure with the url replaced with path to local files. | |
# By default the archives will be extracted and a path to a cached folder where they are extracted is returned instead of the archive | |
data_dir = dl_manager.download_and_extract(_URL) | |
# ダウンロードしたファイルを読み込み、全てのデータを取得 | |
with open(data_dir, "r", encoding="utf-8") as f: | |
data = json.load(f) | |
# データをランダムにシャッフルする | |
random.seed(42) | |
random.shuffle(data) | |
# 学習データ、開発データ、テストデータに分割する | |
train_ratio = 0.8 | |
validation_ratio = 0.1 | |
num_examples = len(data) | |
train_split = int(num_examples * train_ratio) | |
validation_split = int(num_examples * (train_ratio + validation_ratio)) | |
train_data = data[:train_split] | |
validation_data = data[train_split:validation_split] | |
test_data = data[validation_split:] | |
return [ | |
datasets.SplitGenerator( | |
name=datasets.Split.TRAIN, | |
gen_kwargs={"data": train_data, "split": "train"}, | |
), | |
datasets.SplitGenerator( | |
name=datasets.Split.VALIDATION, | |
gen_kwargs={"data": validation_data, "split": "validation"}, | |
), | |
datasets.SplitGenerator( | |
name=datasets.Split.TEST, | |
gen_kwargs={"data": test_data, "split": "test"}, | |
), | |
] | |
# method parameters are unpacked from `gen_kwargs` as given in `_split_generators` | |
def _generate_examples(self, data, split): | |
# TODO: This method handles input defined in _split_generators to yield (key, example) tuples from the dataset. | |
# The `key` is for legacy reasons (tfds) and is not important in itself, but must be unique for each example. | |
for key, data in enumerate(data): | |
yield key, { | |
"curid": data["curid"], | |
"text": data["text"], | |
"entities": data["entities"], | |
} | |