Datasets:

Languages:
Japanese
License:
ner-wikipedia-dataset / ner-wikipedia-dataset.py
Kosuke-Yamada
modify features
49d75a9
raw
history blame
7.56 kB
# Copyright 2020 The HuggingFace Datasets Authors and the current dataset script contributor.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# TODO: Address all TODOs and remove all explanatory comments
"""TODO: Add a description here."""
import csv
import json
import os
import random
import datasets
# TODO: Add BibTeX citation
# Find for instance the citation on arxiv or on the dataset repo/website
_CITATION = """\
@InProceedings{huggingface:dataset,
title = {A great new dataset},
author={huggingface, Inc.
},
year={2020}
}
"""
# TODO: Add description of the dataset here
# You can copy an official description
_DESCRIPTION = """\
This new dataset is designed to solve this great NLP task and is crafted with a lot of care.
"""
# TODO: Add a link to an official homepage for the dataset here
_HOMEPAGE = ""
# TODO: Add the licence for the dataset here if you can find it
_LICENSE = ""
# TODO: Add link to the official dataset URLs here
# The HuggingFace Datasets library doesn't host the datasets but only points to the original files.
# This can be an arbitrary nested dict/list of URLs (see below in `_split_generators` method)
_URL = "https://raw.githubusercontent.com/stockmarkteam/ner-wikipedia-dataset/main/ner.json"
class NerWikipediaDatasetConfig(datasets.BuilderConfig):
"""BuilderConfig for NerWikipediaDataset."""
def __init__(self, **kwargs):
"""BuilderConfig for NerWikipediaDataset
Args:
**kwargs: keyword arguments forwarded to super.
"""
super(NerWikipediaDatasetConfig, self).__init__(**kwargs)
# TODO: Name of the dataset usually matches the script name with CamelCase instead of snake_case
class NerWikipediaDataset(datasets.GeneratorBasedBuilder):
"""TODO: Short description of my dataset."""
VERSION = datasets.Version("1.1.0")
# This is an example of a dataset with multiple configurations.
# If you don't want/need to define several sub-sets in your dataset,
# just remove the BUILDER_CONFIG_CLASS and the BUILDER_CONFIGS attributes.
# If you need to make complex sub-parts in the datasets with configurable options
# You can create your own builder configuration class to store attribute, inheriting from datasets.BuilderConfig
# BUILDER_CONFIG_CLASS = MyBuilderConfig
# You will be able to load one or the other configurations in the following list with
# data = datasets.load_dataset('my_dataset', 'first_domain')
# data = datasets.load_dataset('my_dataset', 'second_domain')
# BUILDER_CONFIGS = [
# datasets.BuilderConfig(
# name="all",
# version=VERSION,
# description="This part of my dataset covers a first domain",
# ),
# ]
# DEFAULT_CONFIG_NAME = "all" # It's not mandatory to have a default configuration. Just use one if it make sense.
def _info(self):
# TODO: This method specifies the datasets.DatasetInfo object which contains informations and typings for the dataset
return datasets.DatasetInfo(
# This is the description that will appear on the datasets page.
description=_DESCRIPTION,
# This defines the different columns of the dataset and their types
features=datasets.Features(
{
"curid": datasets.Value("string"),
"text": datasets.Value("string"),
"entities": [
{
"name": datasets.Value(dtype="string"),
"span": datasets.Sequence(
datasets.Value(dtype="int64"), length=2
),
"type": datasets.Value(dtype="string"),
}
],
# These are the features of your dataset like images, labels ...
}
), # Here we define them above because they are different between the two configurations
# If there's a common (input, target) tuple from the features, uncomment supervised_keys line below and
# specify them. They'll be used if as_supervised=True in builder.as_dataset.
# supervised_keys=("sentence", "label"),
# Homepage of the dataset for documentation
homepage=_HOMEPAGE,
# License for the dataset if available
license=_LICENSE,
# Citation for the dataset
citation=_CITATION,
)
def _split_generators(self, dl_manager):
# TODO: This method is tasked with downloading/extracting the data and defining the splits depending on the configuration
# If several configurations are possible (listed in BUILDER_CONFIGS), the configuration selected by the user is in self.config.name
# dl_manager is a datasets.download.DownloadManager that can be used to download and extract URLS
# It can accept any type or nested list/dict and will give back the same structure with the url replaced with path to local files.
# By default the archives will be extracted and a path to a cached folder where they are extracted is returned instead of the archive
data_dir = dl_manager.download_and_extract(_URL)
# ダウンロードしたファイルを読み込み、全てのデータを取得
with open(data_dir, "r", encoding="utf-8") as f:
data = json.load(f)
# データをランダムにシャッフルする
random.seed(42)
random.shuffle(data)
# 学習データ、開発データ、テストデータに分割する
train_ratio = 0.8
validation_ratio = 0.1
num_examples = len(data)
train_split = int(num_examples * train_ratio)
validation_split = int(num_examples * (train_ratio + validation_ratio))
train_data = data[:train_split]
validation_data = data[train_split:validation_split]
test_data = data[validation_split:]
return [
datasets.SplitGenerator(
name=datasets.Split.TRAIN,
gen_kwargs={"data": train_data},
),
datasets.SplitGenerator(
name=datasets.Split.VALIDATION,
gen_kwargs={"data": validation_data},
),
datasets.SplitGenerator(
name=datasets.Split.TEST,
gen_kwargs={"data": test_data},
),
]
# method parameters are unpacked from `gen_kwargs` as given in `_split_generators`
def _generate_examples(self, data):
# TODO: This method handles input defined in _split_generators to yield (key, example) tuples from the dataset.
# The `key` is for legacy reasons (tfds) and is not important in itself, but must be unique for each example.
for key, data in enumerate(data):
yield key, {
"curid": data["curid"],
"text": data["text"],
"entities": data["entities"],
}