Datasets:

Languages:
Japanese
License:
ner-wikipedia-dataset / ner-wikipedia-dataset.py
Kosuke-Yamada
modify file
d163ff5
raw
history blame
4.15 kB
from __future__ import annotations
import json
import random
from typing import Generator
from datasets import (
BuilderConfig,
DatasetInfo,
DownloadManager,
Features,
GeneratorBasedBuilder,
Sequence,
Split,
SplitGenerator,
Value,
Version,
)
from datasets.data_files import DataFilesDict
_CITATION = """
@inproceedings{omi-2021-wikipedia,
title = "Wikipediaを用いた日本語の固有表現抽出のデータセットの構築",
author = "近江 崇宏",
booktitle = "言語処理学会第27回年次大会",
year = "2021",
url = "https://anlp.jp/proceedings/annual_meeting/2021/pdf_dir/P2-7.pdf",
}
"""
_DESCRIPTION = "This is a dataset of Wikipedia articles with named entity labels created by Stockmark Inc."
_HOMEPAGE = "https://github.com/stockmarkteam/ner-wikipedia-dataset"
_LICENSE = "CC-BY-SA 3.0"
_URL = "https://raw.githubusercontent.com/stockmarkteam/ner-wikipedia-dataset/main/ner.json"
class NerWikipediaDatasetConfig(BuilderConfig):
def __init__(
self,
name: str = "default",
version: Version | str | None = Version("0.0.0"),
data_dir: str | None = None,
data_files: DataFilesDict | None = None,
description: str | None = None,
shuffle: bool = True,
seed: int = 42,
train_ratio: float = 0.8,
validation_ratio: float = 0.1,
) -> None:
super().__init__(
name=name,
version=version,
data_dir=data_dir,
data_files=data_files,
description=description,
)
self.shuffle = shuffle
self.seed = seed
self.train_ratio = train_ratio
self.validation_ratio = validation_ratio
class NerWikipediaDataset(GeneratorBasedBuilder):
BUILDER_CONFIG_CLASS = NerWikipediaDatasetConfig
BUILDER_CONFIGS = [
NerWikipediaDatasetConfig(
name="ner-wikipedia-dataset",
version=Version("2.0.0"),
description=_DESCRIPTION,
),
]
def _info(self) -> DatasetInfo:
return DatasetInfo(
description=_DESCRIPTION,
features=Features(
{
"curid": Value("string"),
"text": Value("string"),
"entities": [
{
"name": Value("string"),
"span": Sequence(Value("int64"), length=2),
"type": Value("string"),
}
],
}
),
homepage=_HOMEPAGE,
license=_LICENSE,
citation=_CITATION,
)
def _split_generators(
self, dl_manager: DownloadManager
) -> list[SplitGenerator]:
dataset_dir = str(dl_manager.download_and_extract(_URL))
with open(dataset_dir, "r", encoding="utf-8") as f:
data = json.load(f)
if self.config.shuffle == True:
random.seed(self.config.seed)
random.shuffle(data)
num_data = len(data)
num_train_data = int(num_data * self.config.train_ratio)
num_validation_data = int(num_data * self.config.validation_ratio)
train_data = data[:num_train_data]
validation_data = data[
num_train_data : num_train_data + num_validation_data
]
test_data = data[num_train_data + num_validation_data :]
return [
SplitGenerator(
name=Split.TRAIN,
gen_kwargs={"data": train_data},
),
SplitGenerator(
name=Split.VALIDATION,
gen_kwargs={"data": validation_data},
),
SplitGenerator(
name=Split.TEST,
gen_kwargs={"data": test_data},
),
]
def _generate_examples(self, data: list[dict[str, str]]) -> Generator:
for i, d in enumerate(data):
yield i, {
"curid": d["curid"],
"text": d["text"],
"entities": d["entities"],
}