import csv from dataclasses import dataclass from typing import Any, Dict, List, Tuple import datasets logger = datasets.logging.get_logger(__name__) _DESCRIPTION = ( "日本語の感情分析データセット WRIME を、ポジティブ/ネガティブの二値分類のタスクに加工したデータセットです。" "GitHub リポジトリ ids-cv/wrime で公開されているデータセットを利用しています。" ) _URL = "https://raw.githubusercontent.com/ids-cv/wrime/master/wrime-ver2.tsv" @dataclass class WrimeSentimentConfig(datasets.BuilderConfig): remove_neutral: bool = True class WrimeSentiment(datasets.GeneratorBasedBuilder): BUILDER_CONFIG_CLASS = WrimeSentimentConfig def _info(self) -> datasets.DatasetInfo: labels = ["positive", "negative"] if not self.config.remove_neutral: labels += ["neutral"] return datasets.DatasetInfo( description=_DESCRIPTION, features=datasets.Features( { "sentence": datasets.Value("string"), "label": datasets.ClassLabel( num_classes=len(labels), names=labels ), "user_id": datasets.Value("int64"), "datetime": datasets.Value("string") } ), ) def _split_generators( self, dl_manager: datasets.DownloadManager ) -> List[datasets.SplitGenerator]: downloaded_file = dl_manager.download_and_extract(_URL) return [ datasets.SplitGenerator( name=datasets.Split.TRAIN, gen_kwargs={ "filepath": downloaded_file, "split": "train", }, ), datasets.SplitGenerator( name=datasets.Split.VALIDATION, gen_kwargs={ "filepath": downloaded_file, "split": "dev", }, ), datasets.SplitGenerator( name=datasets.Split.TEST, gen_kwargs={ "filepath": downloaded_file, "split": "test", }, ), ] def _generate_examples( self, filepath: str, split: str ) -> Tuple[str, Dict[str, Any]]: logger.info(f"generating examples from {filepath}") _key = 0 with open(filepath, "r", encoding="utf-8") as f: reader = csv.DictReader(f, delimiter="\t") for data in reader: if data["Train/Dev/Test"].lower() != split: continue sentiment_score = int(data["Avg. Readers_Sentiment"]) if sentiment_score > 0: label = "positive" elif sentiment_score < 0: label = "negative" else: label = "neutral" if self.config.remove_neutral and label == "neutral": continue yield _key, { "sentence": data["Sentence"], "label": label, "user_id": data["UserID"], "datetime": data["Datetime"].strip(), } _key += 1