--- dataset_info: features: - name: question_id dtype: string - name: question dtype: string - name: image dtype: image - name: image_id dtype: string - name: image_classes sequence: string - name: flickr_original_url dtype: string - name: flickr_300k_url dtype: string - name: image_width dtype: int64 - name: image_height dtype: int64 - name: set_name dtype: string - name: image_name dtype: string - name: image_path dtype: string - name: caption_id sequence: int64 - name: caption_str sequence: string - name: reference_strs sequence: string splits: - name: train num_bytes: 6201208209.0 num_examples: 21953 - name: val num_bytes: 919878416.0 num_examples: 3166 - name: test num_bytes: 959971875.0 num_examples: 3289 download_size: 8064165124 dataset_size: 8081058500.0 configs: - config_name: default data_files: - split: train path: data/train-* - split: val path: data/val-* - split: test path: data/test-* ---
# Large-scale Multi-modality Models Evaluation Suite > Accelerating the development of large-scale multi-modality models (LMMs) with `lmms-eval` 🏠 [Homepage](https://lmms-lab.github.io/) | 📚 [Documentation](docs/README.md) | 🤗 [Huggingface Datasets](https://huggingface.co/lmms-lab) # This Dataset This is a formatted version of [TextCaps](https://textvqa.org/textcaps/). It is used in our `lmms-eval` pipeline to allow for one-click evaluations of large multi-modality models. ``` @inproceedings{sidorov2019textcaps, title={TextCaps: a Dataset for Image Captioningwith Reading Comprehension}, author={Sidorov, Oleksii and Hu, Ronghang and Rohrbach, Marcus and Singh, Amanpreet}, journal={European Conference on Computer Vision}, year={2020} } ```