--- license: cc-by-4.0 pretty_name: FQuAD for question generation language: fr multilinguality: monolingual size_categories: 10K 16 janvier 1377 en remontant le Tibre.", 'paragraph_answer': "Quant à Catherine, elle part par voie terrestre en passant par Saint-Tropez, Varazze, puis Gênes. C'est dans cette dernière ville que, selon la Legenda minore, elle aurait de nouveau rencontré Grégoire XI. Le pape poursuit son voyage jusqu'à Rome en passant par Corneto où il parvient le 6 décembre 1376, puis il arrive à Rome le 16 janvier 1377 en remontant le Tibre.", 'paragraph_sentence': "Quant à Catherine, elle part par voie terrestre en passant par Saint-Tropez, Varazze, puis Gênes. C'est dans cette dernière ville que, selon la Legenda minore, elle aurait de nouveau rencontré Grégoire XI. Le pape poursuit son voyage jusqu'à Rome en passant par Corneto où il parvient le 6 décembre 1376, puis il arrive à Rome le 16 janvier 1377 en remontant le Tibre. " } ``` The data fields are the same among all splits. - `question`: a `string` feature. - `paragraph`: a `string` feature. - `answer`: a `string` feature. - `sentence`: a `string` feature. - `paragraph_answer`: a `string` feature, which is same as the paragraph but the answer is highlighted by a special token ``. - `paragraph_sentence`: a `string` feature, which is same as the paragraph but a sentence containing the answer is highlighted by a special token ``. - `sentence_answer`: a `string` feature, which is same as the sentence but the answer is highlighted by a special token ``. Each of `paragraph_answer`, `paragraph_sentence`, and `sentence_answer` feature is assumed to be used to train a question generation model, but with different information. The `paragraph_answer` and `sentence_answer` features are for answer-aware question generation and `paragraph_sentence` feature is for sentence-aware question generation. ## Data Splits |train|validation|test | |----:|---------:|----:| |17543| 3188 |3188 | ## Citation Information ``` @inproceedings{ushio-etal-2022-generative, title = "{G}enerative {L}anguage {M}odels for {P}aragraph-{L}evel {Q}uestion {G}eneration: {A} {U}nified {B}enchmark and {E}valuation", author = "Ushio, Asahi and Alva-Manchego, Fernando and Camacho-Collados, Jose", booktitle = "Proceedings of the 2022 Conference on Empirical Methods in Natural Language Processing", month = dec, year = "2022", address = "Abu Dhabi, U.A.E.", publisher = "Association for Computational Linguistics", } ```