Datasets:
Tasks:
Automatic Speech Recognition
Languages:
English
File size: 2,715 Bytes
c57306b |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 |
from tensorflow import keras
import keras.layers
import librosa
import numpy as np
import tensorflow as tf
frame_length = 256
frame_step = 160
fft_length = 384
def CTCLoss(y_true, y_pred):
batch_len = tf.cast(tf.shape(y_true)[0], dtype="int64")
input_length = tf.cast(tf.shape(y_pred)[1], dtype="int64")
label_length = tf.cast(tf.shape(y_true)[1], dtype="int64")
input_length = input_length * tf.ones(shape=(batch_len, 1), dtype="int64")
label_length = label_length * tf.ones(shape=(batch_len, 1), dtype="int64")
loss = keras.backend.ctc_batch_cost(y_true, y_pred, input_length, label_length)
return loss
# Tải mô hình
loaded_model = keras.models.load_model(r'D:\MyCode\Python\saved_model\my_model.h5', custom_objects={'CTCLoss': CTCLoss})
characters = [x for x in "abcdefghijklmnopqrstuvwxyzăâêôơưđ'?! "]
char_to_num = keras.layers.StringLookup(vocabulary=characters, oov_token="")
num_to_char = keras.layers.StringLookup(vocabulary=char_to_num.get_vocabulary(), oov_token="", invert=True)
def decode_batch_predictions(pred):
input_len = np.ones(pred.shape[0]) * pred.shape[1]
results = keras.backend.ctc_decode(pred, input_len=input_len, greedy=True)[0][0]
output_texts = []
for result in results:
result = tf.strings.reduce_join(num_to_char(result)).numpy().decode('utf-8')
output_texts.append(result)
return output_texts
# Hàm để xử lý và dự đoán cho một tệp âm thanh
def predict_from_audio(file_name):
# Tiền xử lý tệp âm thanh
audio, _ = librosa.load(file_name, sr=None) # Đọc tệp âm thanh
audio = tf.convert_to_tensor(audio, dtype=tf.float32)
# Tính toán spectrogram
spectrogram = tf.signal.stft(audio, frame_length=frame_length, frame_step=frame_step, fft_length=fft_length)
spectrogram = tf.abs(spectrogram)
spectrogram = tf.math.pow(spectrogram, 0.5)
# Chuẩn hóa
mean = tf.math.reduce_mean(spectrogram, axis=1, keepdims=True)
stddevs = tf.math.reduce_std(spectrogram, axis=1, keepdims=True)
spectrogram = (spectrogram - mean) / (stddevs + 1e-10)
# Thêm chiều cho "channels" và "batch"
spectrogram = tf.expand_dims(spectrogram, axis=-1) # Thêm chiều cho kênh
spectrogram = tf.expand_dims(spectrogram, axis=0) # Thêm chiều batch
# Dự đoán
predictions = loaded_model.predict(spectrogram)
decoded_predictions = decode_batch_predictions(predictions)
return decoded_predictions
# Dự đoán cho một tệp âm thanh
result = predict_from_audio(r'D:\MyCode\Python\dataset\test_audio.wav')
print("Dự đoán:", result)
|