longtc commited on
Commit
b0094bb
·
verified ·
1 Parent(s): ca83dc0

Upload speech2text.py

Browse files
Files changed (1) hide show
  1. speech2text.py +243 -0
speech2text.py ADDED
@@ -0,0 +1,243 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import os
2
+
3
+ import keras.layers
4
+ import librosa
5
+ import matplotlib.pyplot as plt
6
+ import numpy as np
7
+ import pandas as pd
8
+ from jiwer import wer
9
+ from keras.src.applications.densenet import layers
10
+ from scipy.io import wavfile
11
+ import tensorflow as tf
12
+
13
+ data_path = r"D:\MyCode\Python\dataset\LJSpeech-1.1"
14
+ wave_path = data_path + "/wavs/"
15
+ metadata_path = data_path + '/metadata.csv'
16
+
17
+ metadata_df = pd.read_csv(metadata_path, sep="|", header=None, quoting=3)
18
+ metadata_df.columns = ["file_name", "transcription", "normalized_transcription"]
19
+ metadata_df = metadata_df[["file_name", "transcription", "normalized_transcription"]]
20
+ metadata_df = metadata_df.sample(frac=1).reset_index(drop=True)
21
+ print(metadata_df.head(10))
22
+
23
+ split = int(len(metadata_df) * 0.90)
24
+ df_train = metadata_df[:split]
25
+ df_test = metadata_df[split:]
26
+
27
+ frame_length = 256
28
+ frame_step = 160
29
+ fft_length = 384
30
+
31
+ batch_size = 32
32
+ epochs = 10
33
+
34
+ # preprocessing
35
+ characters = [x for x in "abcdefghijklmnopqrstuvwxyzăâêôơưđ'?! "]
36
+ char_to_num = keras.layers.StringLookup(vocabulary=characters, oov_token="")
37
+ num_to_char = keras.layers.StringLookup(vocabulary=char_to_num.get_vocabulary(), oov_token="", invert=True)
38
+
39
+
40
+ # def encode_single_sample(wav_file, label):
41
+ # file = tf.io.read_file(wave_path, wav_file + ".wav")
42
+ # audio, _ = tf.audio.decode_wav(file)
43
+ # audio = tf.squeeze(audio, axis=-1)
44
+ # audio = tf.cast(audio, tf.float32)
45
+ #
46
+ # spectrogram = tf.signal.stft(audio, frame_length=frame_length, frame_step=frame_step, fft_length=fft_length)
47
+ # spectrogram = tf.abs(spectrogram)
48
+ # spectrogram = tf.math.pow(spectrogram, 0.5)
49
+ #
50
+ # mean = tf.math.reduce_mean(spectrogram, 1, keepdims=True)
51
+ # stddevs = tf.math.reduce_std(spectrogram, 1, keepdims=True)
52
+ # spectrogram = (spectrogram - mean) / (stddevs + 1e-10)
53
+ #
54
+ # label = tf.strings.lower(label)
55
+ # label = tf.strings.unicode_split(label, input_encoding='UTF-8')
56
+ # label = char_to_num(label)
57
+ # return spectrogram, label
58
+
59
+
60
+ def encode_single_sample(wav_file, label):
61
+ # Tạo đường dẫn file âm thanh
62
+ file_path = tf.strings.join([wave_path, wav_file, ".wav"], separator="")
63
+
64
+ # Đọc file âm thanh
65
+ file = tf.io.read_file(file_path)
66
+ audio, _ = tf.audio.decode_wav(file)
67
+ audio = tf.squeeze(audio, axis=-1)
68
+ audio = tf.cast(audio, tf.float32)
69
+
70
+ # Tính toán spectrogram
71
+ spectrogram = tf.signal.stft(audio, frame_length=frame_length, frame_step=frame_step, fft_length=fft_length)
72
+ spectrogram = tf.abs(spectrogram)
73
+ spectrogram = tf.math.pow(spectrogram, 0.5)
74
+
75
+ # Chuẩn hóa
76
+ mean = tf.math.reduce_mean(spectrogram, axis=1, keepdims=True)
77
+ stddevs = tf.math.reduce_std(spectrogram, axis=1, keepdims=True)
78
+ spectrogram = (spectrogram - mean) / (stddevs + 1e-10)
79
+
80
+ # Thêm chiều cho "channels"
81
+ spectrogram = tf.expand_dims(spectrogram, axis=-1) # Giữ nguyên
82
+ spectrogram = tf.expand_dims(spectrogram, axis=0) # Thêm chiều batch
83
+
84
+ # Xử lý nhãn
85
+ label = tf.strings.lower(label)
86
+ label = tf.strings.unicode_split(label, input_encoding='UTF-8')
87
+ label = char_to_num(label)
88
+ return spectrogram, label
89
+
90
+
91
+ train_dataset = tf.data.Dataset.from_tensor_slices((
92
+ list(df_train["file_name"]),
93
+ list(df_train["normalized_transcription"])
94
+ ))
95
+
96
+ train_dataset = (
97
+ train_dataset.map(encode_single_sample, num_parallel_calls=tf.data.AUTOTUNE)
98
+ .padded_batch(batch_size)
99
+ .prefetch(buffer_size=tf.data.AUTOTUNE)
100
+ )
101
+
102
+ # Tạo dataset cho validation
103
+ validation_dataset = tf.data.Dataset.from_tensor_slices((
104
+ list(df_test["file_name"]),
105
+ list(df_test["normalized_transcription"])
106
+ ))
107
+
108
+ validation_dataset = (
109
+ validation_dataset.map(encode_single_sample, num_parallel_calls=tf.data.AUTOTUNE)
110
+ .padded_batch(batch_size)
111
+ .prefetch(buffer_size=tf.data.AUTOTUNE)
112
+ )
113
+
114
+ for batch in train_dataset.take(1):
115
+ spectrogram = batch[0][0].numpy() # Lấy spectrogram từ batch
116
+
117
+ # Kiểm tra kích thước
118
+ if spectrogram.ndim == 4: # Nếu là mảng 4D, loại bỏ chiều batch
119
+ spectrogram = tf.squeeze(spectrogram, axis=0)
120
+
121
+ # Kiểm tra lại nếu là mảng 3D
122
+ if spectrogram.ndim == 3: # Nếu vẫn là mảng 3D, chuyển đổi về mảng 2D
123
+ spectrogram = np.squeeze(spectrogram, axis=-1) # Chuyển đổi về mảng 2D
124
+
125
+ # Áp dụng np.trim_zeros cho từng hàng
126
+ trimmed_spectrogram = [np.trim_zeros(x) for x in spectrogram.T] # Chuyển vị và trim
127
+
128
+ # Chuyển đổi về numpy array 2D nếu cần
129
+ max_length = max(len(x) for x in trimmed_spectrogram) # Tìm chiều dài tối đa
130
+ trimmed_spectrogram = np.array([np.pad(x, (0, max_length - len(x)), mode='constant') for x in trimmed_spectrogram])
131
+
132
+
133
+ def CTCLoss(y_true, y_pred):
134
+ batch_len = tf.cast(tf.shape(y_true)[0], dtype="int64")
135
+ input_length = tf.cast(tf.shape(y_pred)[1], dtype="int64")
136
+ label_length = tf.cast(tf.shape(y_true)[1], dtype="int64")
137
+
138
+ input_length = input_length * tf.ones(shape=(batch_len, 1), dtype="int64")
139
+ label_length = label_length * tf.ones(shape=(batch_len, 1), dtype="int64")
140
+
141
+ loss = keras.backend.ctc_batch_cost(y_true, y_pred, input_length, label_length)
142
+ return loss
143
+
144
+
145
+ def build_model(input_dim, output_dim, rnn_layer=5, rnn_units=128):
146
+ input_spectrogram = layers.Input(shape=(None, input_dim), name="input")
147
+
148
+ x = layers.Reshape((-1, input_dim, 1), name="expand_dim")(input_spectrogram)
149
+
150
+ # Lớp Convolutional 1
151
+ x = layers.Conv2D(filters=32, kernel_size=[11, 41], strides=[2, 2],
152
+ padding="same", use_bias=False, name="conv_1")(x)
153
+ x = layers.BatchNormalization(name="bn_conv_1")(x) # Đổi tên lớp này
154
+ x = layers.ReLU(name="relu_1")(x)
155
+
156
+ # Lớp Convolutional 2
157
+ x = layers.Conv2D(filters=32, kernel_size=[11, 21], strides=[1, 2],
158
+ padding="same", use_bias=False, name="conv_2")(x)
159
+ x = layers.BatchNormalization(name="bn_conv_2")(x) # Đổi tên lớp này
160
+
161
+ x = layers.ReLU(name="relu_2")(x)
162
+
163
+ # Reshape để sử dụng với RNN
164
+ x = layers.Reshape((-1, x.shape[-2] * x.shape[-1]))(x)
165
+
166
+ for i in range(1, rnn_layer + 1):
167
+ recurrent = layers.GRU(
168
+ units=rnn_units,
169
+ activation="tanh",
170
+ recurrent_activation="sigmoid",
171
+ use_bias=True,
172
+ return_sequences=True,
173
+ reset_after=True,
174
+ name=f"gru_{i}",
175
+ )
176
+ # Các lớp Recurrent
177
+ x = layers.Bidirectional(
178
+ recurrent, name=f"bidirectional_{i}", merge_mode="concat",
179
+ )(x)
180
+ if i < rnn_layer:
181
+ x = layers.Dropout(rate=0.5)(x)
182
+
183
+ x = layers.Dense(units=rnn_units * 2, name="dense_1")(x)
184
+ x = layers.ReLU(name="relu_3")(x)
185
+ x = layers.Dropout(rate=0.5)(x)
186
+
187
+ output = layers.Dense(units=output_dim + 1, activation="softmax")(x)
188
+ model = keras.Model(input_spectrogram, output, name="DeepSpeech_2")
189
+ otp = keras.optimizers.Adam(learning_rate=1e-4)
190
+ model.compile(optimizer=otp, loss=CTCLoss)
191
+
192
+ return model
193
+
194
+
195
+ model = build_model(
196
+ input_dim=fft_length // 2 + 1,
197
+ output_dim=char_to_num.vocab_size(),
198
+ rnn_units=512,
199
+ )
200
+ model.summary()
201
+
202
+
203
+ def decode_batch_predictions(pred):
204
+ input_len = np.ones(pred.shape[0]) * pred.shape[1]
205
+ results = keras.backend.ctc_decode(pred, input_len=input_len, greedy=True)[0][0]
206
+ output_texts = []
207
+ for result in results:
208
+ result = tf.strings.reduce_join(num_to_char(result)).numpy().decode('utf-8')
209
+ output_texts.append(result)
210
+ return output_texts
211
+
212
+
213
+ class CallbackEval(keras.callbacks.Callback):
214
+ def __init__(self, dataset):
215
+ super().__init__()
216
+ self.dataset = dataset
217
+
218
+ def on_epoch_end(self, epoch, logs=None):
219
+ prediction = []
220
+ targets = []
221
+ for batch in self.dataset:
222
+ X, y = batch
223
+ batch_predictions = model.predict(X)
224
+ batch_predictions = decode_batch_predictions(batch_predictions)
225
+ prediction.extend(batch_predictions)
226
+ for label in y:
227
+ label = (tf.strings.reduce_join(num_to_char(label)).numpy().decode("utf-8"))
228
+ targets.append(label)
229
+ wer_score = wer(targets, prediction)
230
+ print(f"WER: {wer_score:.4f}")
231
+ for i in np.random.randint(0, len(prediction), 2):
232
+ print(f"Target: {targets[i]}")
233
+ print(f"Prediction: {prediction[i]}")
234
+
235
+
236
+ validation_callback = CallbackEval(validation_dataset)
237
+ history = model.fit(
238
+ train_dataset,
239
+ validation_data=validation_dataset,
240
+ epochs=epochs,
241
+ callbacks=[validation_callback],
242
+ )
243
+ model.save(r'D:\MyCode\Python\pythonProject\SavedModed\model_stt.h5')