from tensorflow import keras import keras.layers import librosa import numpy as np import tensorflow as tf frame_length = 256 frame_step = 160 fft_length = 384 def CTCLoss(y_true, y_pred): batch_len = tf.cast(tf.shape(y_true)[0], dtype="int64") input_length = tf.cast(tf.shape(y_pred)[1], dtype="int64") label_length = tf.cast(tf.shape(y_true)[1], dtype="int64") input_length = input_length * tf.ones(shape=(batch_len, 1), dtype="int64") label_length = label_length * tf.ones(shape=(batch_len, 1), dtype="int64") loss = keras.backend.ctc_batch_cost(y_true, y_pred, input_length, label_length) return loss # Tải mô hình loaded_model = keras.models.load_model(r'D:\MyCode\Python\saved_model\my_model.h5', custom_objects={'CTCLoss': CTCLoss}) characters = [x for x in "abcdefghijklmnopqrstuvwxyzăâêôơưđ'?! "] char_to_num = keras.layers.StringLookup(vocabulary=characters, oov_token="") num_to_char = keras.layers.StringLookup(vocabulary=char_to_num.get_vocabulary(), oov_token="", invert=True) def decode_batch_predictions(pred): input_len = np.ones(pred.shape[0]) * pred.shape[1] results = keras.backend.ctc_decode(pred, input_len=input_len, greedy=True)[0][0] output_texts = [] for result in results: result = tf.strings.reduce_join(num_to_char(result)).numpy().decode('utf-8') output_texts.append(result) return output_texts # Hàm để xử lý và dự đoán cho một tệp âm thanh def predict_from_audio(file_name): # Tiền xử lý tệp âm thanh audio, _ = librosa.load(file_name, sr=None) # Đọc tệp âm thanh audio = tf.convert_to_tensor(audio, dtype=tf.float32) # Tính toán spectrogram spectrogram = tf.signal.stft(audio, frame_length=frame_length, frame_step=frame_step, fft_length=fft_length) spectrogram = tf.abs(spectrogram) spectrogram = tf.math.pow(spectrogram, 0.5) # Chuẩn hóa mean = tf.math.reduce_mean(spectrogram, axis=1, keepdims=True) stddevs = tf.math.reduce_std(spectrogram, axis=1, keepdims=True) spectrogram = (spectrogram - mean) / (stddevs + 1e-10) # Thêm chiều cho "channels" và "batch" spectrogram = tf.expand_dims(spectrogram, axis=-1) # Thêm chiều cho kênh spectrogram = tf.expand_dims(spectrogram, axis=0) # Thêm chiều batch # Dự đoán predictions = loaded_model.predict(spectrogram) decoded_predictions = decode_batch_predictions(predictions) return decoded_predictions # Dự đoán cho một tệp âm thanh result = predict_from_audio(r'D:\MyCode\Python\dataset\test_audio.wav') print("Dự đoán:", result)