--- annotations_creators: - expert-generated language_creators: - expert-generated language: - en license: - mit multilinguality: - monolingual pretty_name: OpenAI HumanEval-Infilling source_datasets: - original task_categories: - text2text-generation task_ids: - text2text-generation-other-code-generation --- # HumanEval-Infilling ## Dataset Description - **Homepage:** https://github.com/openai/human-eval-infilling - **Repository:** https://github.com/openai/human-eval-infilling - **Paper:** https://arxiv.org/pdf/2207.14255 ## Dataset Summary [HumanEval-Infilling](https://github.com/openai/human-eval-infilling) is a benchmark for infilling tasks, derived from [HumanEval]() benchmark for the evaluation of code generation models. ## Dataset Structure To load the dataset you need to specify a subset among the 5 exiting languages `[python, cpp, go, java, js]`. By default `python` is loaded. ```python from datasets import load_dataset ds = load_dataset("humaneval_infilling", "HumanEval-RandomSpanInfilling") DatasetDict({ test: Dataset({ features: ['task_id', 'entry_point', 'prompt', 'suffix', 'canonical_solution', 'test'], num_rows: 1640 }) }) ``` By default `HumanEval-SingleLineInfilling` subset is loaded. ## Subsets This dataset has 4 subsets: HumanEval-MultiLineInfilling, HumanEval-SingleLineInfilling, HumanEval-RandomSpanInfilling, HumanEval-RandomSpanInfillingLight. The single-line, multi-line, random span infilling and its light version have 1033, 5815, 1640 and 164 tasks, respectively. ## Citation ```@article{bavarian2022efficient, title={Efficient Training of Language Models to Fill in the Middle}, author={Bavarian, Mohammad and Jun, Heewoo and Tezak, Nikolas and Schulman, John and McLeavey, Christine and Tworek, Jerry and Chen, Mark}, journal={arXiv preprint arXiv:2207.14255}, year={2022} } ```