Datasets:
Tasks:
Question Answering
Modalities:
Text
Formats:
parquet
Languages:
French
Size:
10K - 100K
License:
Update README.md
Browse files
README.md
CHANGED
@@ -44,4 +44,241 @@ size_categories:
|
|
44 |
|
45 |
## Dataset Description
|
46 |
- **Repository:** https://huggingface.co/datasets/louisbrulenaudet/lemone-docs-embeded
|
47 |
-
- **Point of Contact:** [Louis Brulé Naudet](mailto:[email protected])
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
44 |
|
45 |
## Dataset Description
|
46 |
- **Repository:** https://huggingface.co/datasets/louisbrulenaudet/lemone-docs-embeded
|
47 |
+
- **Point of Contact:** [Louis Brulé Naudet](mailto:[email protected])
|
48 |
+
|
49 |
+
<img src="assets/thumbnail.webp">
|
50 |
+
|
51 |
+
# Lemone-embeded, pre-built embeddings dataset for French taxation.
|
52 |
+
|
53 |
+
<div class="not-prose bg-gradient-to-r from-gray-50-to-white text-gray-900 border" style="border-radius: 8px; padding: 0.5rem 1rem;">
|
54 |
+
<p>This database presents the embeddings generated by the Lemone-embed-pro model and aims at a large-scale distribution of the model even for the GPU-poor.</p>
|
55 |
+
</div>
|
56 |
+
|
57 |
+
This sentence transformers model, specifically designed for French taxation, has been fine-tuned on a dataset comprising 43 million tokens, integrating a blend of semi-synthetic and fully synthetic data generated by GPT-4 Turbo and Llama 3.1 70B, which have been further refined through evol-instruction tuning and manual curation.
|
58 |
+
|
59 |
+
The model is tailored to meet the specific demands of information retrieval across large-scale tax-related corpora, supporting the implementation of production-ready Retrieval-Augmented Generation (RAG) applications. Its primary purpose is to enhance the efficiency and accuracy of legal processes in the taxation domain, with an emphasis on delivering consistent performance in real-world settings, while also contributing to advancements in legal natural language processing research.
|
60 |
+
|
61 |
+
This is a sentence-transformers model finetuned from Alibaba-NLP/gte-multilingual-base. It maps sentences & paragraphs to a 768-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
|
62 |
+
|
63 |
+
## Usage with ChromaDB
|
64 |
+
|
65 |
+
We recommend integration via a vector-store to produce an optimal RAG pipeline. Here's a code extract for producing such a database with ChromaDB:
|
66 |
+
|
67 |
+
```python
|
68 |
+
import chromadb
|
69 |
+
import polars as pl
|
70 |
+
|
71 |
+
from chromadb.config import Settings
|
72 |
+
from chromadb.utils import embedding_functions
|
73 |
+
from torch.cuda import is_available
|
74 |
+
|
75 |
+
client = chromadb.PersistentClient(
|
76 |
+
path="./chroma.db",
|
77 |
+
settings=Settings(anonymized_telemetry=False)
|
78 |
+
)
|
79 |
+
|
80 |
+
sentence_transformer_ef = embedding_functions.SentenceTransformerEmbeddingFunction(
|
81 |
+
model_name="louisbrulenaudet/lemone-embed-pro",
|
82 |
+
device="cuda" if is_available() else "cpu",
|
83 |
+
trust_remote_code=True
|
84 |
+
)
|
85 |
+
|
86 |
+
collection = client.get_or_create_collection(
|
87 |
+
name="tax",
|
88 |
+
embedding_function=sentence_transformer_ef
|
89 |
+
)
|
90 |
+
|
91 |
+
dataframe = pl.scan_parquet('hf://datasets/louisbrulenaudet/lemone-docs-embeded/data/train-00000-of-00001.parquet').filter(
|
92 |
+
pl.col(
|
93 |
+
"text"
|
94 |
+
).is_not_null()
|
95 |
+
).collect()
|
96 |
+
|
97 |
+
collection.add(
|
98 |
+
embeddings=dataframe["lemone_pro_embeddings"].to_list(),
|
99 |
+
documents=dataframe["text"].to_list(),
|
100 |
+
metadatas=dataframe.drop(
|
101 |
+
[
|
102 |
+
"lemone_pro_embeddings",
|
103 |
+
"text"
|
104 |
+
]
|
105 |
+
).to_dicts(),
|
106 |
+
ids=[
|
107 |
+
str(i) for i in range(0, dataframe.shape[0])
|
108 |
+
]
|
109 |
+
)
|
110 |
+
```
|
111 |
+
|
112 |
+
Here is a code for reproduction of this dataset:
|
113 |
+
|
114 |
+
```python
|
115 |
+
import hashlib
|
116 |
+
|
117 |
+
from datetime import datetime
|
118 |
+
from typing import (
|
119 |
+
IO,
|
120 |
+
TYPE_CHECKING,
|
121 |
+
Any,
|
122 |
+
Dict,
|
123 |
+
List,
|
124 |
+
Type,
|
125 |
+
Tuple,
|
126 |
+
Union,
|
127 |
+
Mapping,
|
128 |
+
TypeVar,
|
129 |
+
Callable,
|
130 |
+
Optional,
|
131 |
+
Sequence,
|
132 |
+
)
|
133 |
+
|
134 |
+
import chromadb
|
135 |
+
import polars as pl
|
136 |
+
|
137 |
+
from chromadb.config import Settings
|
138 |
+
from chromadb.utils import embedding_functions
|
139 |
+
from torch.cuda import is_available
|
140 |
+
|
141 |
+
client = chromadb.Client(
|
142 |
+
settings=Settings(anonymized_telemetry=False)
|
143 |
+
)
|
144 |
+
|
145 |
+
sentence_transformer_ef = embedding_functions.SentenceTransformerEmbeddingFunction(
|
146 |
+
model_name="louisbrulenaudet/lemone-embed-pro",
|
147 |
+
device="cuda" if is_available() else "cpu",
|
148 |
+
trust_remote_code=True
|
149 |
+
)
|
150 |
+
|
151 |
+
collection = client.get_or_create_collection(
|
152 |
+
name="tax",
|
153 |
+
embedding_function=sentence_transformer_ef
|
154 |
+
)
|
155 |
+
|
156 |
+
bofip_dataframe = pl.scan_parquet(
|
157 |
+
"hf://datasets/louisbrulenaudet/bofip/data/train-00000-of-00001.parquet"
|
158 |
+
).with_columns(
|
159 |
+
[
|
160 |
+
(
|
161 |
+
pl.lit("Bulletin officiel des finances publiques - impôts").alias(
|
162 |
+
"title_main"
|
163 |
+
)
|
164 |
+
),
|
165 |
+
(
|
166 |
+
pl.col("debut_de_validite")
|
167 |
+
.str.strptime(pl.Date, format="%Y-%m-%d")
|
168 |
+
.dt.strftime("%Y-%m-%d 00:00:00")
|
169 |
+
).alias("date_publication"),
|
170 |
+
(
|
171 |
+
pl.col("contenu")
|
172 |
+
.map_elements(lambda x: hashlib.sha256(str(x).encode()).hexdigest(), return_dtype=pl.Utf8)
|
173 |
+
.alias("hash")
|
174 |
+
)
|
175 |
+
]
|
176 |
+
).rename(
|
177 |
+
{
|
178 |
+
"contenu": "text",
|
179 |
+
"permalien": "url_sourcepage",
|
180 |
+
"identifiant_juridique": "id_sub",
|
181 |
+
}
|
182 |
+
).select(
|
183 |
+
[
|
184 |
+
"text",
|
185 |
+
"title_main",
|
186 |
+
"id_sub",
|
187 |
+
"url_sourcepage",
|
188 |
+
"date_publication",
|
189 |
+
"hash"
|
190 |
+
]
|
191 |
+
)
|
192 |
+
|
193 |
+
books: List[str] = [
|
194 |
+
"hf://datasets/louisbrulenaudet/code-douanes/data/train-00000-of-00001.parquet",
|
195 |
+
"hf://datasets/louisbrulenaudet/code-impots/data/train-00000-of-00001.parquet",
|
196 |
+
"hf://datasets/louisbrulenaudet/code-impots-annexe-i/data/train-00000-of-00001.parquet",
|
197 |
+
"hf://datasets/louisbrulenaudet/code-impots-annexe-ii/data/train-00000-of-00001.parquet",
|
198 |
+
"hf://datasets/louisbrulenaudet/code-impots-annexe-iii/data/train-00000-of-00001.parquet",
|
199 |
+
"hf://datasets/louisbrulenaudet/code-impots-annexe-iv/data/train-00000-of-00001.parquet",
|
200 |
+
"hf://datasets/louisbrulenaudet/code-impositions-biens-services/data/train-00000-of-00001.parquet",
|
201 |
+
"hf://datasets/louisbrulenaudet/livre-procedures-fiscales/data/train-00000-of-00001.parquet"
|
202 |
+
]
|
203 |
+
|
204 |
+
legi_dataframe = pl.concat(
|
205 |
+
[
|
206 |
+
pl.scan_parquet(
|
207 |
+
book
|
208 |
+
) for book in books
|
209 |
+
]
|
210 |
+
).with_columns(
|
211 |
+
[
|
212 |
+
(
|
213 |
+
pl.lit("https://www.legifrance.gouv.fr/codes/article_lc/")
|
214 |
+
.add(pl.col("id"))
|
215 |
+
.alias("url_sourcepage")
|
216 |
+
),
|
217 |
+
(
|
218 |
+
pl.col("dateDebut")
|
219 |
+
.cast(pl.Int64)
|
220 |
+
.map_elements(
|
221 |
+
lambda x: datetime.fromtimestamp(x / 1000).strftime("%Y-%m-%d %H:%M:%S"),
|
222 |
+
return_dtype=pl.Utf8
|
223 |
+
)
|
224 |
+
.alias("date_publication")
|
225 |
+
),
|
226 |
+
(
|
227 |
+
pl.col("texte")
|
228 |
+
.map_elements(lambda x: hashlib.sha256(str(x).encode()).hexdigest(), return_dtype=pl.Utf8)
|
229 |
+
.alias("hash")
|
230 |
+
)
|
231 |
+
]
|
232 |
+
).rename(
|
233 |
+
{
|
234 |
+
"texte": "text",
|
235 |
+
"num": "id_sub",
|
236 |
+
}
|
237 |
+
).select(
|
238 |
+
[
|
239 |
+
"text",
|
240 |
+
"title_main",
|
241 |
+
"id_sub",
|
242 |
+
"url_sourcepage",
|
243 |
+
"date_publication",
|
244 |
+
"hash"
|
245 |
+
]
|
246 |
+
)
|
247 |
+
|
248 |
+
print("Starting embeddings production...")
|
249 |
+
|
250 |
+
dataframe = pl.concat(
|
251 |
+
[
|
252 |
+
bofip_dataframe,
|
253 |
+
legi_dataframe
|
254 |
+
]
|
255 |
+
).filter(
|
256 |
+
pl.col(
|
257 |
+
"text"
|
258 |
+
).is_not_null()
|
259 |
+
).with_columns(
|
260 |
+
pl.col("text").map_elements(
|
261 |
+
lambda x: sentence_transformer_ef(
|
262 |
+
[x]
|
263 |
+
)[0].tolist(),
|
264 |
+
return_dtype=pl.List(pl.Float64)
|
265 |
+
).alias("lemone_pro_embeddings")
|
266 |
+
).collect()
|
267 |
+
```
|
268 |
+
|
269 |
+
## Citation
|
270 |
+
|
271 |
+
If you use this code in your research, please use the following BibTeX entry.
|
272 |
+
|
273 |
+
```BibTeX
|
274 |
+
@misc{louisbrulenaudet2024,
|
275 |
+
author = {Louis Brulé Naudet},
|
276 |
+
title = {Lemone-Embed: A Series of Fine-Tuned Embedding Models for French Taxation},
|
277 |
+
year = {2024}
|
278 |
+
howpublished = {\url{https://huggingface.co/datasets/louisbrulenaudet/lemone-embed-pro}},
|
279 |
+
}
|
280 |
+
```
|
281 |
+
|
282 |
+
## Feedback
|
283 |
+
|
284 |
+
If you have any feedback, please reach out at [[email protected]](mailto:[email protected]).
|