hexsha
stringlengths
40
40
size
int64
1
1.03M
ext
stringclasses
10 values
lang
stringclasses
1 value
max_stars_repo_path
stringlengths
3
239
max_stars_repo_name
stringlengths
5
130
max_stars_repo_head_hexsha
stringlengths
40
78
max_stars_repo_licenses
sequencelengths
1
10
max_stars_count
int64
1
191k
max_stars_repo_stars_event_min_datetime
stringlengths
24
24
max_stars_repo_stars_event_max_datetime
stringlengths
24
24
max_issues_repo_path
stringlengths
3
239
max_issues_repo_name
stringlengths
5
130
max_issues_repo_head_hexsha
stringlengths
40
78
max_issues_repo_licenses
sequencelengths
1
10
max_issues_count
int64
1
67k
max_issues_repo_issues_event_min_datetime
stringlengths
24
24
max_issues_repo_issues_event_max_datetime
stringlengths
24
24
max_forks_repo_path
stringlengths
3
239
max_forks_repo_name
stringlengths
5
130
max_forks_repo_head_hexsha
stringlengths
40
78
max_forks_repo_licenses
sequencelengths
1
10
max_forks_count
int64
1
105k
max_forks_repo_forks_event_min_datetime
stringlengths
24
24
max_forks_repo_forks_event_max_datetime
stringlengths
24
24
content
stringlengths
1
1.03M
avg_line_length
float64
1
958k
max_line_length
int64
1
1.03M
alphanum_fraction
float64
0
1
4a27c6d7f9f3fe0e2a780d6baa10c63fc2939f15
1,191
py
Python
tests/pyboard/execScript_adc_son_fft.py
david-therincourt/physique
add85faef564359252da93dca9b7dbb35bd6b4ab
[ "MIT" ]
null
null
null
tests/pyboard/execScript_adc_son_fft.py
david-therincourt/physique
add85faef564359252da93dca9b7dbb35bd6b4ab
[ "MIT" ]
null
null
null
tests/pyboard/execScript_adc_son_fft.py
david-therincourt/physique
add85faef564359252da93dca9b7dbb35bd6b4ab
[ "MIT" ]
null
null
null
from physique import Pyboard import numpy as np import matplotlib.pyplot as plt from numpy.fft import fft script = """ from pyb import Pin, ADC, Timer, delay import array f = 20000 # fréquence d'échantillonnage nb = 1000 # nombre de points adc = ADC(Pin('A2')) # Activation du CAN sur la broche A0 buf = array.array("h", [0]*nb) # h = signed short (entier sur 2 octets) tim = Timer(6, freq=f) # Paramétrage du timer du CAN adc.read_timed(buf, tim) # Lancement des mesures # Mise en forme des données f = tim.freq() x = [i*1/f for i in range(nb)] y = [val for val in buf] # transmission des données data = x, y # Tuple de données print(data) # Affichage du tuple dans le REPL """ feather = Pyboard("/dev/ttyACM0") x, y = feather.exec_script_to_data(script) t = np.array(x) u = np.array(y) rate = 20000 plt.subplot(2,1,1) plt.plot(t,u,'r') plt.grid() #plt.ylim(0,4000) plt.subplot(2,1,2) spectre = np.absolute(fft(y)) #spectre = spectre/spectre.max() n = spectre.size freq = np.arange(n)*1.0/n*rate plt.vlines(freq[1:-1],[0],spectre[1:-1],'r') plt.xlabel('f (Hz)') plt.ylabel('A') #plt.axis([0,0.5*rate,0,1]) plt.show()
22.903846
83
0.646516
4a27c712c4ba96ad083cf65f36aa1d94cc93aac7
276
py
Python
authors/apps/articles/migrations/0024_merge_20190130_0649.py
andela/ah-django-unchained
a4e5f6cd11fdc0b9422020693ac1200b849cf0f3
[ "BSD-3-Clause" ]
null
null
null
authors/apps/articles/migrations/0024_merge_20190130_0649.py
andela/ah-django-unchained
a4e5f6cd11fdc0b9422020693ac1200b849cf0f3
[ "BSD-3-Clause" ]
26
2019-01-07T14:22:05.000Z
2019-02-28T17:11:48.000Z
authors/apps/articles/migrations/0024_merge_20190130_0649.py
andela/ah-django-unchained
a4e5f6cd11fdc0b9422020693ac1200b849cf0f3
[ "BSD-3-Clause" ]
3
2019-09-19T22:16:09.000Z
2019-10-16T21:16:16.000Z
# Generated by Django 2.1.5 on 2019-01-30 06:49 from django.db import migrations class Migration(migrations.Migration): dependencies = [ ('articles', '0023_merge_20190129_0617'), ('articles', '0023_auto_20190129_1219'), ] operations = [ ]
18.4
49
0.652174
4a27c81c1440b9420ebda80dd5cd4b348f790715
1,728
py
Python
configs/_base_/datasets/icdar2019_tracka_modern_instance.py
vansin/tabnet
2403c8134c23a704940522ace92a75b0fc6f5d99
[ "Apache-2.0" ]
2
2021-10-18T02:52:18.000Z
2022-01-21T08:54:18.000Z
configs/_base_/datasets/icdar2019_tracka_modern_instance.py
vansin/tabnet
2403c8134c23a704940522ace92a75b0fc6f5d99
[ "Apache-2.0" ]
null
null
null
configs/_base_/datasets/icdar2019_tracka_modern_instance.py
vansin/tabnet
2403c8134c23a704940522ace92a75b0fc6f5d99
[ "Apache-2.0" ]
null
null
null
# dataset settings dataset_type = 'TableDataset' data_root = 'data/table/' img_norm_cfg = dict( mean=[123.675, 116.28, 103.53], std=[58.395, 57.12, 57.375], to_rgb=True) train_pipeline = [ dict(type='LoadImageFromFile'), dict(type='LoadAnnotations', with_bbox=True, with_mask=True), dict(type='Resize', img_scale=(1333, 800), keep_ratio=True), dict(type='RandomFlip', flip_ratio=0.5), dict(type='Normalize', **img_norm_cfg), dict(type='Pad', size_divisor=32), dict(type='DefaultFormatBundle'), dict(type='Collect', keys=['img', 'gt_bboxes', 'gt_labels', 'gt_masks']), ] test_pipeline = [ dict(type='LoadImageFromFile'), dict( type='MultiScaleFlipAug', img_scale=(1333, 800), flip=False, transforms=[ dict(type='Resize', keep_ratio=True), dict(type='RandomFlip'), dict(type='Normalize', **img_norm_cfg), dict(type='Pad', size_divisor=32), dict(type='ImageToTensor', keys=['img']), dict(type='Collect', keys=['img']), ]) ] data = dict( samples_per_gpu=2, workers_per_gpu=2, train=dict( type=dataset_type, ann_file='data/icdar2019/modern_train.json', img_prefix='data/icdar2019/training/TRACKA/ground_truth', pipeline=train_pipeline), val=dict( type=dataset_type, ann_file='data/icdar2019/modern_test.json', img_prefix='data/icdar2019/test/TRACKA/', pipeline=test_pipeline), test=dict( type=dataset_type, ann_file='data/icdar2019/modern_test.json', img_prefix='data/icdar2019/test/TRACKA/', pipeline=test_pipeline)) evaluation = dict(metric=['bbox', 'segm'])
34.56
77
0.629051
4a27c8285f91dbb3a65facbb430585dda6274885
5,751
py
Python
Scripts/python/scripts mundo 1/Desafios/ALGUEM ME MATA.py
BrenoNAlmeida/Scripts-Escola
20d886d0401ef7f40a4a46e307eadbf5b1c0a5eb
[ "Apache-2.0" ]
null
null
null
Scripts/python/scripts mundo 1/Desafios/ALGUEM ME MATA.py
BrenoNAlmeida/Scripts-Escola
20d886d0401ef7f40a4a46e307eadbf5b1c0a5eb
[ "Apache-2.0" ]
null
null
null
Scripts/python/scripts mundo 1/Desafios/ALGUEM ME MATA.py
BrenoNAlmeida/Scripts-Escola
20d886d0401ef7f40a4a46e307eadbf5b1c0a5eb
[ "Apache-2.0" ]
null
null
null
nome = input('\033[34;1mOla, você esta na biblioteca python. Qual o seu nome ?\033[m') print('\033[1;34mBem vindo ao primeiro mundo do curso de python {} !\033[m'.format(nome)) print('\033[34;1mAs fases desse curso são essas {}:\033[m\n' '\033[1;33m1 = Seja um programador\n' '2 = Para que serve o Python\n' '3 = instalando o python3 e o IDLE\n' '4 = primeiros comandos em python\n' '5 = instalando o Pycharm e o Qpython\n' '6 = Tipos primitivos e saida de dados\n' '7 = Operadores Aritmeticos\n' '8 = Utilizando modulos\n' '9 = Manipulando texto\n' '10 = Condições\033[m'.format(nome)) print('\033[35m=='*25) print('\033[1;31m(obs : digite apenas o numero da fase desejada !!!)\033[m') escolha=input('\033[34mDe que fase você deseja acessar os desafios {} ? \033[m'.format(nome)) print('\033[35m==\033[m'*26) if escolha == '1': print('\033[31;1mEssa fase NÃO tem nenhum desafio senhor {} !'.format(nome)) if escolha == '2': print('\033[31;1mEssa fase NÃO tem nenhum desafio senhor {} !'.format(nome)) if escolha == '3': print('\033[31;1mEssa fase NÃO tem nenhum desafio senhor {} !\033[m'.format(nome)) if escolha == '4': print('\033[33;1mOs desafios dessa fase são esses {} :' '\n 01 = Deixando tudo pronto' '\n 02 = Respondendo ao usuario\033[m'.format(nome)) if escolha == '5': print('\033[31;1mEssa fase NÃO tem nenhum desafio senhor {} !\033[m'.format(nome)) if escolha == '6': print('\033[34mOs desafios dessa fase sao esses {} :' '\n\033[33m 03 = Somando dois numeros' '\n 04 = Analisando uma variavel\033[m'.format(nome)) if escolha == '7': print('\033[34;1mOs desafios dessa fase são esses {} :' '\n\033[33;1m 05 = Antecessor e sucessor de um numero' '\n 06 = Dobro , triplo e Raiz quadrada de um numero' '\n 07 = Media aritmetica' '\n 08 = Conversor de medidas' '\n 09 = Tabuada de um numero' '\n 10 = Conversor de moedas' '\n 11 = Pintando uma parede' '\n 12 = Calculando desconto em 5%' '\n 13 = Reajuste salarial' '\n 14 = Conversor de temperaturas' '\n 15 = Aluguel de carros\033[m'.format(nome)) if escolha == '8': print('\033[1;34mOs desafios dessa fase são esses {} : !' '\n\033[33;1m 16 = Quebrando um numero' '\n 17 = calculando a hipotenuza' '\n 18 = Seno ,cossene tangente' '\n 19 = Sorteando um item da lista' '\n 20 = Sorteando uma ordem na lista' '\n 21 = Tocando um Mp3\033[m'.format(nome)) if escolha == '9': print('\033[1;34mOs desafios dessa fase são esses {} : !' '\n\033[33;1m 22 = Analizador de texto' '\n 23 = Separando digitos de um numero' '\n 24 = verificando as primeiras letras' '\n 25 = procurando uma string dentro de uma variavel' '\n 26 = primeira ocorrencia de uma string' '\n 27 = primeiro e ultimo nome de uma pessoa\033[m'.format(nome)) if escolha == '10': print('\033[1;34mOs desafios dessa fase são esses {} : !' '\n 28 = jogo do adivinha' '\n 29 = Radar eletronico' '\n 30 = Par ou impar' '\n 31 = custo da viagem' '\n 32 = Ano bissexto' '\n 33 = Maior e menor valor' '\n 34 = Almento de salario' '\n 35 = Analizando triangulo') print('\033[35m=='*19) so_arrumo_trabalho = input('\033[34mQual desafio você deseja executar {} ?\033[m'.format(nome)) print('\033[1;35m==\033[m'*19) print('\033[34mO arquivo seráa executado em seguida !\033[m') print('\033[1;35m==\033[m'*19) if so_arrumo_trabalho == '01': import Desafio001 if so_arrumo_trabalho == '02': import Desafio002 if so_arrumo_trabalho == '03': import Desafio003 if so_arrumo_trabalho == '04': import Desafio004 if so_arrumo_trabalho == '05': import Desafio005 if so_arrumo_trabalho == '06': import Desafio006 if so_arrumo_trabalho == '07': import Desafio007 if so_arrumo_trabalho == '08': import Desafio008 if so_arrumo_trabalho == '09': import Desafio009 if so_arrumo_trabalho == '10': import Desafio010 if so_arrumo_trabalho == '11': import Desafio011 if so_arrumo_trabalho == '12': import Desafio013 if so_arrumo_trabalho == '13': import Desafio013 if so_arrumo_trabalho == '14': import Desafio014 if so_arrumo_trabalho == '15': import Desafio015 if so_arrumo_trabalho == '16': import Desafio016 if so_arrumo_trabalho == '17': import Desafio017 if so_arrumo_trabalho == '18': import Desafio018 if so_arrumo_trabalho == '19': import Desafio019 if so_arrumo_trabalho == '20': import Desafio020 if so_arrumo_trabalho == '21': import Desafio021 if so_arrumo_trabalho == '22': import Desafio022 if so_arrumo_trabalho == '23': import Desafio023 if so_arrumo_trabalho == '24': import Desafio024 if so_arrumo_trabalho == '25': import Desafio025 if so_arrumo_trabalho == '26': import Desafio027 if so_arrumo_trabalho == '27': import Desafio027 if so_arrumo_trabalho == '28': import Desafio028 if so_arrumo_trabalho == '29': import Desafio029 if so_arrumo_trabalho == '30': import Desafio030 if so_arrumo_trabalho == '31': import Desafio031 if so_arrumo_trabalho == '32': import Desafio032 if so_arrumo_trabalho == '33': import Desafio033 if so_arrumo_trabalho == '34': import Desafio034 if so_arrumo_trabalho == '35': import Desafio035 print('===== fim da executação =====') print('Obrigado por usar nossa bibliotaca {}'.format(nome)) print('espero que tenha gostado dos nossos serviços !')
38.34
95
0.630499
4a27c82f8b117750422de2ef83f18859fbc93328
1,126
py
Python
cdtools/CPA/__init__.py
jg-you/cascading_detection
a08f443f5f7bf46167277b2cb0571f5d94a341c6
[ "MIT" ]
4
2015-09-28T05:09:15.000Z
2019-10-25T15:16:16.000Z
cdtools/CPA/__init__.py
jg-you/cascading_detection
a08f443f5f7bf46167277b2cb0571f5d94a341c6
[ "MIT" ]
null
null
null
cdtools/CPA/__init__.py
jg-you/cascading_detection
a08f443f5f7bf46167277b2cb0571f5d94a341c6
[ "MIT" ]
null
null
null
# -*- coding: utf-8 -*- # cdtools -- a python library for cascading community detection on networks # @author: Jean-Gabriel Young <[email protected]> # # cdtools/CPA/__init__.py -- Init script of the CPA submodule. # Notes on CPA: # The Clique Percolation Algorithm was introduced by G. Palla et al. in # # "Uncovering the overlapping community structure # of complex networks in nature and society" # Nature 435, 814–818 (2005) # # We use the official CPA implementation which requires a (free) # license, which is *not* provided with cdtools, for obvious reasons. # To use this module, one must request a license [1] and save it in # # [..]/cascading_detection/cdtools/CPA/license/ # # Do not forget to configure the license in # # [..]/cascading_detection/cdtools/CPA/CPA_conf.yml # # Bugs and other inquiries regarding this algorithm in particular should be # sent to the authors of CFinder as well. # # [1] Contact information: # Email: [email protected] # Website: http://CFinder.org from .detection import Detect __all__ = [Detect]
33.117647
77
0.694494
4a27c9677bae0d915ff7f933fcdd1d84eab7b008
2,951
py
Python
recipes/Python/119466_Dijkstralgorithm_shortest/recipe-119466.py
tdiprima/code
61a74f5f93da087d27c70b2efe779ac6bd2a3b4f
[ "MIT" ]
2,023
2017-07-29T09:34:46.000Z
2022-03-24T08:00:45.000Z
recipes/Python/119466_Dijkstralgorithm_shortest/recipe-119466.py
unhacker/code
73b09edc1b9850c557a79296655f140ce5e853db
[ "MIT" ]
32
2017-09-02T17:20:08.000Z
2022-02-11T17:49:37.000Z
recipes/Python/119466_Dijkstralgorithm_shortest/recipe-119466.py
unhacker/code
73b09edc1b9850c557a79296655f140ce5e853db
[ "MIT" ]
780
2017-07-28T19:23:28.000Z
2022-03-25T20:39:41.000Z
# Dijkstra's algorithm for shortest paths # David Eppstein, UC Irvine, 4 April 2002 # http://aspn.activestate.com/ASPN/Cookbook/Python/Recipe/117228 from priodict import priorityDictionary def Dijkstra(G,start,end=None): """ Find shortest paths from the start vertex to all vertices nearer than or equal to the end. The input graph G is assumed to have the following representation: A vertex can be any object that can be used as an index into a dictionary. G is a dictionary, indexed by vertices. For any vertex v, G[v] is itself a dictionary, indexed by the neighbors of v. For any edge v->w, G[v][w] is the length of the edge. This is related to the representation in <http://www.python.org/doc/essays/graphs.html> where Guido van Rossum suggests representing graphs as dictionaries mapping vertices to lists of neighbors, however dictionaries of edges have many advantages over lists: they can store extra information (here, the lengths), they support fast existence tests, and they allow easy modification of the graph by edge insertion and removal. Such modifications are not needed here but are important in other graph algorithms. Since dictionaries obey iterator protocol, a graph represented as described here could be handed without modification to an algorithm using Guido's representation. Of course, G and G[v] need not be Python dict objects; they can be any other object that obeys dict protocol, for instance a wrapper in which vertices are URLs and a call to G[v] loads the web page and finds its links. The output is a pair (D,P) where D[v] is the distance from start to v and P[v] is the predecessor of v along the shortest path from s to v. Dijkstra's algorithm is only guaranteed to work correctly when all edge lengths are positive. This code does not verify this property for all edges (only the edges seen before the end vertex is reached), but will correctly compute shortest paths even for some graphs with negative edges, and will raise an exception if it discovers that a negative edge has caused it to make a mistake. """ D = {} # dictionary of final distances P = {} # dictionary of predecessors Q = priorityDictionary() # est.dist. of non-final vert. Q[start] = 0 for v in Q: D[v] = Q[v] if v == end: break for w in G[v]: vwLength = D[v] + G[v][w] if w in D: if vwLength < D[w]: raise ValueError, \ "Dijkstra: found better path to already-final vertex" elif w not in Q or vwLength < Q[w]: Q[w] = vwLength P[w] = v return (D,P) def shortestPath(G,start,end): """ Find a single shortest path from the given start vertex to the given end vertex. The input has the same conventions as Dijkstra(). The output is a list of the vertices in order along the shortest path. """ D,P = Dijkstra(G,start,end) Path = [] while 1: Path.append(end) if end == start: break end = P[end] Path.reverse() return Path
33.534091
64
0.731278
4a27c99294943e26cc151bf61fc257cbb1f616a5
863
py
Python
onelab/share/doc/gmsh/demos/api/step_assembly.py
Christophe-Foyer/PyFEA
344996d6b075ee4b2214283f0af8159d86d154fd
[ "MIT" ]
2
2021-08-13T21:46:21.000Z
2022-01-15T15:59:54.000Z
onelab/share/doc/gmsh/demos/api/step_assembly.py
Christophe-Foyer/pyFEA
344996d6b075ee4b2214283f0af8159d86d154fd
[ "MIT" ]
null
null
null
onelab/share/doc/gmsh/demos/api/step_assembly.py
Christophe-Foyer/pyFEA
344996d6b075ee4b2214283f0af8159d86d154fd
[ "MIT" ]
1
2020-12-15T13:47:23.000Z
2020-12-15T13:47:23.000Z
import gmsh gmsh.initialize() # load step file gmsh.open('as1-tu-203.stp') # get all model entities ent = gmsh.model.getEntities() physicals = {} for e in ent: n = gmsh.model.getEntityName(e[0], e[1]) # get entity labels read from STEP and create a physical group for all # entities having the same 3rd label in the /-separated label path if n: print('Entity ' + str(e) + ' has label ' + n + ' (and mass ' + str(gmsh.model.occ.getMass(e[0], e[1])) + ')') path = n.split('/') if e[0] == 3 and len(path) > 3: if(path[2] not in physicals): physicals[path[2]] = [] physicals[path[2]].append(e[1]) # create the physical groups for name, tags in physicals.items(): p = gmsh.model.addPhysicalGroup(3, tags) gmsh.model.setPhysicalName(3, p, name) gmsh.fltk.run()
27.83871
74
0.596756
4a27c9b8b66eea7bd199ce3ffb1963eb2f53926b
18,882
py
Python
sdk/python/pulumi_azure_native/cdn/v20190615/endpoint.py
pulumi-bot/pulumi-azure-native
f7b9490b5211544318e455e5cceafe47b628e12c
[ "Apache-2.0" ]
null
null
null
sdk/python/pulumi_azure_native/cdn/v20190615/endpoint.py
pulumi-bot/pulumi-azure-native
f7b9490b5211544318e455e5cceafe47b628e12c
[ "Apache-2.0" ]
null
null
null
sdk/python/pulumi_azure_native/cdn/v20190615/endpoint.py
pulumi-bot/pulumi-azure-native
f7b9490b5211544318e455e5cceafe47b628e12c
[ "Apache-2.0" ]
null
null
null
# coding=utf-8 # *** WARNING: this file was generated by the Pulumi SDK Generator. *** # *** Do not edit by hand unless you're certain you know what you are doing! *** import warnings import pulumi import pulumi.runtime from typing import Any, Mapping, Optional, Sequence, Union from ... import _utilities, _tables from . import outputs from ._enums import * from ._inputs import * __all__ = ['Endpoint'] class Endpoint(pulumi.CustomResource): def __init__(__self__, resource_name: str, opts: Optional[pulumi.ResourceOptions] = None, content_types_to_compress: Optional[pulumi.Input[Sequence[pulumi.Input[str]]]] = None, delivery_policy: Optional[pulumi.Input[pulumi.InputType['EndpointPropertiesUpdateParametersDeliveryPolicyArgs']]] = None, endpoint_name: Optional[pulumi.Input[str]] = None, geo_filters: Optional[pulumi.Input[Sequence[pulumi.Input[pulumi.InputType['GeoFilterArgs']]]]] = None, is_compression_enabled: Optional[pulumi.Input[bool]] = None, is_http_allowed: Optional[pulumi.Input[bool]] = None, is_https_allowed: Optional[pulumi.Input[bool]] = None, location: Optional[pulumi.Input[str]] = None, optimization_type: Optional[pulumi.Input[Union[str, 'OptimizationType']]] = None, origin_host_header: Optional[pulumi.Input[str]] = None, origin_path: Optional[pulumi.Input[str]] = None, origins: Optional[pulumi.Input[Sequence[pulumi.Input[pulumi.InputType['DeepCreatedOriginArgs']]]]] = None, probe_path: Optional[pulumi.Input[str]] = None, profile_name: Optional[pulumi.Input[str]] = None, query_string_caching_behavior: Optional[pulumi.Input['QueryStringCachingBehavior']] = None, resource_group_name: Optional[pulumi.Input[str]] = None, tags: Optional[pulumi.Input[Mapping[str, pulumi.Input[str]]]] = None, web_application_firewall_policy_link: Optional[pulumi.Input[pulumi.InputType['EndpointPropertiesUpdateParametersWebApplicationFirewallPolicyLinkArgs']]] = None, __props__=None, __name__=None, __opts__=None): """ CDN endpoint is the entity within a CDN profile containing configuration information such as origin, protocol, content caching and delivery behavior. The CDN endpoint uses the URL format <endpointname>.azureedge.net. :param str resource_name: The name of the resource. :param pulumi.ResourceOptions opts: Options for the resource. :param pulumi.Input[Sequence[pulumi.Input[str]]] content_types_to_compress: List of content types on which compression applies. The value should be a valid MIME type. :param pulumi.Input[pulumi.InputType['EndpointPropertiesUpdateParametersDeliveryPolicyArgs']] delivery_policy: A policy that specifies the delivery rules to be used for an endpoint. :param pulumi.Input[str] endpoint_name: Name of the endpoint under the profile which is unique globally. :param pulumi.Input[Sequence[pulumi.Input[pulumi.InputType['GeoFilterArgs']]]] geo_filters: List of rules defining the user's geo access within a CDN endpoint. Each geo filter defines an access rule to a specified path or content, e.g. block APAC for path /pictures/ :param pulumi.Input[bool] is_compression_enabled: Indicates whether content compression is enabled on CDN. Default value is false. If compression is enabled, content will be served as compressed if user requests for a compressed version. Content won't be compressed on CDN when requested content is smaller than 1 byte or larger than 1 MB. :param pulumi.Input[bool] is_http_allowed: Indicates whether HTTP traffic is allowed on the endpoint. Default value is true. At least one protocol (HTTP or HTTPS) must be allowed. :param pulumi.Input[bool] is_https_allowed: Indicates whether HTTPS traffic is allowed on the endpoint. Default value is true. At least one protocol (HTTP or HTTPS) must be allowed. :param pulumi.Input[str] location: Resource location. :param pulumi.Input[Union[str, 'OptimizationType']] optimization_type: Specifies what scenario the customer wants this CDN endpoint to optimize for, e.g. Download, Media services. With this information, CDN can apply scenario driven optimization. :param pulumi.Input[str] origin_host_header: The host header value sent to the origin with each request. If you leave this blank, the request hostname determines this value. Azure CDN origins, such as Web Apps, Blob Storage, and Cloud Services require this host header value to match the origin hostname by default. :param pulumi.Input[str] origin_path: A directory path on the origin that CDN can use to retrieve content from, e.g. contoso.cloudapp.net/originpath. :param pulumi.Input[Sequence[pulumi.Input[pulumi.InputType['DeepCreatedOriginArgs']]]] origins: The source of the content being delivered via CDN. :param pulumi.Input[str] probe_path: Path to a file hosted on the origin which helps accelerate delivery of the dynamic content and calculate the most optimal routes for the CDN. This is relative to the origin path. :param pulumi.Input[str] profile_name: Name of the CDN profile which is unique within the resource group. :param pulumi.Input['QueryStringCachingBehavior'] query_string_caching_behavior: Defines how CDN caches requests that include query strings. You can ignore any query strings when caching, bypass caching to prevent requests that contain query strings from being cached, or cache every request with a unique URL. :param pulumi.Input[str] resource_group_name: Name of the Resource group within the Azure subscription. :param pulumi.Input[Mapping[str, pulumi.Input[str]]] tags: Resource tags. :param pulumi.Input[pulumi.InputType['EndpointPropertiesUpdateParametersWebApplicationFirewallPolicyLinkArgs']] web_application_firewall_policy_link: Defines the Web Application Firewall policy for the endpoint (if applicable) """ if __name__ is not None: warnings.warn("explicit use of __name__ is deprecated", DeprecationWarning) resource_name = __name__ if __opts__ is not None: warnings.warn("explicit use of __opts__ is deprecated, use 'opts' instead", DeprecationWarning) opts = __opts__ if opts is None: opts = pulumi.ResourceOptions() if not isinstance(opts, pulumi.ResourceOptions): raise TypeError('Expected resource options to be a ResourceOptions instance') if opts.version is None: opts.version = _utilities.get_version() if opts.id is None: if __props__ is not None: raise TypeError('__props__ is only valid when passed in combination with a valid opts.id to get an existing resource') __props__ = dict() __props__['content_types_to_compress'] = content_types_to_compress __props__['delivery_policy'] = delivery_policy __props__['endpoint_name'] = endpoint_name __props__['geo_filters'] = geo_filters __props__['is_compression_enabled'] = is_compression_enabled __props__['is_http_allowed'] = is_http_allowed __props__['is_https_allowed'] = is_https_allowed __props__['location'] = location __props__['optimization_type'] = optimization_type __props__['origin_host_header'] = origin_host_header __props__['origin_path'] = origin_path if origins is None and not opts.urn: raise TypeError("Missing required property 'origins'") __props__['origins'] = origins __props__['probe_path'] = probe_path if profile_name is None and not opts.urn: raise TypeError("Missing required property 'profile_name'") __props__['profile_name'] = profile_name __props__['query_string_caching_behavior'] = query_string_caching_behavior if resource_group_name is None and not opts.urn: raise TypeError("Missing required property 'resource_group_name'") __props__['resource_group_name'] = resource_group_name __props__['tags'] = tags __props__['web_application_firewall_policy_link'] = web_application_firewall_policy_link __props__['host_name'] = None __props__['name'] = None __props__['provisioning_state'] = None __props__['resource_state'] = None __props__['type'] = None alias_opts = pulumi.ResourceOptions(aliases=[pulumi.Alias(type_="azure-nextgen:cdn/v20190615:Endpoint"), pulumi.Alias(type_="azure-native:cdn:Endpoint"), pulumi.Alias(type_="azure-nextgen:cdn:Endpoint"), pulumi.Alias(type_="azure-native:cdn/latest:Endpoint"), pulumi.Alias(type_="azure-nextgen:cdn/latest:Endpoint"), pulumi.Alias(type_="azure-native:cdn/v20150601:Endpoint"), pulumi.Alias(type_="azure-nextgen:cdn/v20150601:Endpoint"), pulumi.Alias(type_="azure-native:cdn/v20160402:Endpoint"), pulumi.Alias(type_="azure-nextgen:cdn/v20160402:Endpoint"), pulumi.Alias(type_="azure-native:cdn/v20161002:Endpoint"), pulumi.Alias(type_="azure-nextgen:cdn/v20161002:Endpoint"), pulumi.Alias(type_="azure-native:cdn/v20170402:Endpoint"), pulumi.Alias(type_="azure-nextgen:cdn/v20170402:Endpoint"), pulumi.Alias(type_="azure-native:cdn/v20171012:Endpoint"), pulumi.Alias(type_="azure-nextgen:cdn/v20171012:Endpoint"), pulumi.Alias(type_="azure-native:cdn/v20190415:Endpoint"), pulumi.Alias(type_="azure-nextgen:cdn/v20190415:Endpoint"), pulumi.Alias(type_="azure-native:cdn/v20190615preview:Endpoint"), pulumi.Alias(type_="azure-nextgen:cdn/v20190615preview:Endpoint"), pulumi.Alias(type_="azure-native:cdn/v20191231:Endpoint"), pulumi.Alias(type_="azure-nextgen:cdn/v20191231:Endpoint"), pulumi.Alias(type_="azure-native:cdn/v20200331:Endpoint"), pulumi.Alias(type_="azure-nextgen:cdn/v20200331:Endpoint"), pulumi.Alias(type_="azure-native:cdn/v20200415:Endpoint"), pulumi.Alias(type_="azure-nextgen:cdn/v20200415:Endpoint"), pulumi.Alias(type_="azure-native:cdn/v20200901:Endpoint"), pulumi.Alias(type_="azure-nextgen:cdn/v20200901:Endpoint")]) opts = pulumi.ResourceOptions.merge(opts, alias_opts) super(Endpoint, __self__).__init__( 'azure-native:cdn/v20190615:Endpoint', resource_name, __props__, opts) @staticmethod def get(resource_name: str, id: pulumi.Input[str], opts: Optional[pulumi.ResourceOptions] = None) -> 'Endpoint': """ Get an existing Endpoint resource's state with the given name, id, and optional extra properties used to qualify the lookup. :param str resource_name: The unique name of the resulting resource. :param pulumi.Input[str] id: The unique provider ID of the resource to lookup. :param pulumi.ResourceOptions opts: Options for the resource. """ opts = pulumi.ResourceOptions.merge(opts, pulumi.ResourceOptions(id=id)) __props__ = dict() __props__["content_types_to_compress"] = None __props__["delivery_policy"] = None __props__["geo_filters"] = None __props__["host_name"] = None __props__["is_compression_enabled"] = None __props__["is_http_allowed"] = None __props__["is_https_allowed"] = None __props__["location"] = None __props__["name"] = None __props__["optimization_type"] = None __props__["origin_host_header"] = None __props__["origin_path"] = None __props__["origins"] = None __props__["probe_path"] = None __props__["provisioning_state"] = None __props__["query_string_caching_behavior"] = None __props__["resource_state"] = None __props__["tags"] = None __props__["type"] = None __props__["web_application_firewall_policy_link"] = None return Endpoint(resource_name, opts=opts, __props__=__props__) @property @pulumi.getter(name="contentTypesToCompress") def content_types_to_compress(self) -> pulumi.Output[Optional[Sequence[str]]]: """ List of content types on which compression applies. The value should be a valid MIME type. """ return pulumi.get(self, "content_types_to_compress") @property @pulumi.getter(name="deliveryPolicy") def delivery_policy(self) -> pulumi.Output[Optional['outputs.EndpointPropertiesUpdateParametersResponseDeliveryPolicy']]: """ A policy that specifies the delivery rules to be used for an endpoint. """ return pulumi.get(self, "delivery_policy") @property @pulumi.getter(name="geoFilters") def geo_filters(self) -> pulumi.Output[Optional[Sequence['outputs.GeoFilterResponse']]]: """ List of rules defining the user's geo access within a CDN endpoint. Each geo filter defines an access rule to a specified path or content, e.g. block APAC for path /pictures/ """ return pulumi.get(self, "geo_filters") @property @pulumi.getter(name="hostName") def host_name(self) -> pulumi.Output[str]: """ The host name of the endpoint structured as {endpointName}.{DNSZone}, e.g. contoso.azureedge.net """ return pulumi.get(self, "host_name") @property @pulumi.getter(name="isCompressionEnabled") def is_compression_enabled(self) -> pulumi.Output[Optional[bool]]: """ Indicates whether content compression is enabled on CDN. Default value is false. If compression is enabled, content will be served as compressed if user requests for a compressed version. Content won't be compressed on CDN when requested content is smaller than 1 byte or larger than 1 MB. """ return pulumi.get(self, "is_compression_enabled") @property @pulumi.getter(name="isHttpAllowed") def is_http_allowed(self) -> pulumi.Output[Optional[bool]]: """ Indicates whether HTTP traffic is allowed on the endpoint. Default value is true. At least one protocol (HTTP or HTTPS) must be allowed. """ return pulumi.get(self, "is_http_allowed") @property @pulumi.getter(name="isHttpsAllowed") def is_https_allowed(self) -> pulumi.Output[Optional[bool]]: """ Indicates whether HTTPS traffic is allowed on the endpoint. Default value is true. At least one protocol (HTTP or HTTPS) must be allowed. """ return pulumi.get(self, "is_https_allowed") @property @pulumi.getter def location(self) -> pulumi.Output[str]: """ Resource location. """ return pulumi.get(self, "location") @property @pulumi.getter def name(self) -> pulumi.Output[str]: """ Resource name. """ return pulumi.get(self, "name") @property @pulumi.getter(name="optimizationType") def optimization_type(self) -> pulumi.Output[Optional[str]]: """ Specifies what scenario the customer wants this CDN endpoint to optimize for, e.g. Download, Media services. With this information, CDN can apply scenario driven optimization. """ return pulumi.get(self, "optimization_type") @property @pulumi.getter(name="originHostHeader") def origin_host_header(self) -> pulumi.Output[Optional[str]]: """ The host header value sent to the origin with each request. If you leave this blank, the request hostname determines this value. Azure CDN origins, such as Web Apps, Blob Storage, and Cloud Services require this host header value to match the origin hostname by default. """ return pulumi.get(self, "origin_host_header") @property @pulumi.getter(name="originPath") def origin_path(self) -> pulumi.Output[Optional[str]]: """ A directory path on the origin that CDN can use to retrieve content from, e.g. contoso.cloudapp.net/originpath. """ return pulumi.get(self, "origin_path") @property @pulumi.getter def origins(self) -> pulumi.Output[Sequence['outputs.DeepCreatedOriginResponse']]: """ The source of the content being delivered via CDN. """ return pulumi.get(self, "origins") @property @pulumi.getter(name="probePath") def probe_path(self) -> pulumi.Output[Optional[str]]: """ Path to a file hosted on the origin which helps accelerate delivery of the dynamic content and calculate the most optimal routes for the CDN. This is relative to the origin path. """ return pulumi.get(self, "probe_path") @property @pulumi.getter(name="provisioningState") def provisioning_state(self) -> pulumi.Output[str]: """ Provisioning status of the endpoint. """ return pulumi.get(self, "provisioning_state") @property @pulumi.getter(name="queryStringCachingBehavior") def query_string_caching_behavior(self) -> pulumi.Output[Optional[str]]: """ Defines how CDN caches requests that include query strings. You can ignore any query strings when caching, bypass caching to prevent requests that contain query strings from being cached, or cache every request with a unique URL. """ return pulumi.get(self, "query_string_caching_behavior") @property @pulumi.getter(name="resourceState") def resource_state(self) -> pulumi.Output[str]: """ Resource status of the endpoint. """ return pulumi.get(self, "resource_state") @property @pulumi.getter def tags(self) -> pulumi.Output[Optional[Mapping[str, str]]]: """ Resource tags. """ return pulumi.get(self, "tags") @property @pulumi.getter def type(self) -> pulumi.Output[str]: """ Resource type. """ return pulumi.get(self, "type") @property @pulumi.getter(name="webApplicationFirewallPolicyLink") def web_application_firewall_policy_link(self) -> pulumi.Output[Optional['outputs.EndpointPropertiesUpdateParametersResponseWebApplicationFirewallPolicyLink']]: """ Defines the Web Application Firewall policy for the endpoint (if applicable) """ return pulumi.get(self, "web_application_firewall_policy_link") def translate_output_property(self, prop): return _tables.CAMEL_TO_SNAKE_CASE_TABLE.get(prop) or prop def translate_input_property(self, prop): return _tables.SNAKE_TO_CAMEL_CASE_TABLE.get(prop) or prop
58.277778
1,648
0.693253
4a27c9fc2b2bc7fd8e819a3deb5b2fd4c4afce93
198
py
Python
src/typefit/__init__.py
Xowap/typefit
a1beedcc4b05be6d22063719e7e2aa8c3f2c35b3
[ "WTFPL" ]
5
2019-10-28T15:40:03.000Z
2021-03-16T21:07:25.000Z
src/typefit/__init__.py
Xowap/typefit
a1beedcc4b05be6d22063719e7e2aa8c3f2c35b3
[ "WTFPL" ]
32
2019-10-19T08:40:12.000Z
2022-01-21T19:07:09.000Z
src/typefit/__init__.py
Xowap/typefit
a1beedcc4b05be6d22063719e7e2aa8c3f2c35b3
[ "WTFPL" ]
3
2019-10-28T15:42:49.000Z
2022-01-18T19:18:06.000Z
from . import httpx_models from .fitting import Fitter, T, typefit from .meta import meta, other_field from .reporting import LogErrorReporter, PrettyJson5Formatter from .serialize import serialize
33
61
0.833333
4a27cc5403be8c0bba8bc65721a0785f3bcc0608
160
py
Python
app/main/__init__.py
koyoo-maxwel/news
656166c47a5dc79b9f4b8516153c90a57f808cc9
[ "MIT" ]
2
2019-01-21T09:04:16.000Z
2019-01-21T09:04:17.000Z
app/main/__init__.py
koyoo-maxwel/news
656166c47a5dc79b9f4b8516153c90a57f808cc9
[ "MIT" ]
null
null
null
app/main/__init__.py
koyoo-maxwel/news
656166c47a5dc79b9f4b8516153c90a57f808cc9
[ "MIT" ]
2
2019-02-17T11:33:28.000Z
2019-06-24T06:36:43.000Z
from flask import Blueprint main = Blueprint('main',__name__) from . import views # Here we import the blueprint class from flask to avoid circular dependancies
40
78
0.80625
4a27cc76ff15925a02c05ecf41a293a1c91330b2
4,000
py
Python
criteo_marketing_transition/models/campaign_bid_change_response_message_with_details.py
criteo/criteo-python-marketing-transition-sdk
d6d19a23d87ab62eb4810f41490cebab9c72882f
[ "Apache-2.0" ]
null
null
null
criteo_marketing_transition/models/campaign_bid_change_response_message_with_details.py
criteo/criteo-python-marketing-transition-sdk
d6d19a23d87ab62eb4810f41490cebab9c72882f
[ "Apache-2.0" ]
null
null
null
criteo_marketing_transition/models/campaign_bid_change_response_message_with_details.py
criteo/criteo-python-marketing-transition-sdk
d6d19a23d87ab62eb4810f41490cebab9c72882f
[ "Apache-2.0" ]
1
2022-02-21T11:16:20.000Z
2022-02-21T11:16:20.000Z
# coding: utf-8 """ Criteo API Transition Swagger This is used to help Criteo clients transition from MAPI to Criteo API # noqa: E501 The version of the OpenAPI document: 1.0 Generated by: https://openapi-generator.tech """ import pprint import re # noqa: F401 import six class CampaignBidChangeResponseMessageWithDetails(object): """NOTE: This class is auto generated by OpenAPI Generator. Ref: https://openapi-generator.tech Do not edit the class manually. """ """ Attributes: openapi_types (dict): The key is attribute name and the value is attribute type. attribute_map (dict): The key is attribute name and the value is json key in definition. """ openapi_types = { 'message': 'str', 'details': 'CampaignBidChangeResponse' } attribute_map = { 'message': 'message', 'details': 'details' } def __init__(self, message=None, details=None): # noqa: E501 """CampaignBidChangeResponseMessageWithDetails - a model defined in OpenAPI""" # noqa: E501 self._message = None self._details = None self.discriminator = None if message is not None: self.message = message if details is not None: self.details = details @property def message(self): """Gets the message of this CampaignBidChangeResponseMessageWithDetails. # noqa: E501 :return: The message of this CampaignBidChangeResponseMessageWithDetails. # noqa: E501 :rtype: str """ return self._message @message.setter def message(self, message): """Sets the message of this CampaignBidChangeResponseMessageWithDetails. :param message: The message of this CampaignBidChangeResponseMessageWithDetails. # noqa: E501 :type: str """ self._message = message @property def details(self): """Gets the details of this CampaignBidChangeResponseMessageWithDetails. # noqa: E501 :return: The details of this CampaignBidChangeResponseMessageWithDetails. # noqa: E501 :rtype: CampaignBidChangeResponse """ return self._details @details.setter def details(self, details): """Sets the details of this CampaignBidChangeResponseMessageWithDetails. :param details: The details of this CampaignBidChangeResponseMessageWithDetails. # noqa: E501 :type: CampaignBidChangeResponse """ self._details = details def to_dict(self): """Returns the model properties as a dict""" result = {} for attr, _ in six.iteritems(self.openapi_types): value = getattr(self, attr) if isinstance(value, list): result[attr] = list(map( lambda x: x.to_dict() if hasattr(x, "to_dict") else x, value )) elif hasattr(value, "to_dict"): result[attr] = value.to_dict() elif isinstance(value, dict): result[attr] = dict(map( lambda item: (item[0], item[1].to_dict()) if hasattr(item[1], "to_dict") else item, value.items() )) else: result[attr] = value return result def to_str(self): """Returns the string representation of the model""" return pprint.pformat(self.to_dict()) def __repr__(self): """For `print` and `pprint`""" return self.to_str() def __eq__(self, other): """Returns true if both objects are equal""" if not isinstance(other, CampaignBidChangeResponseMessageWithDetails): return False return self.__dict__ == other.__dict__ def __ne__(self, other): """Returns true if both objects are not equal""" return not self == other
28.776978
102
0.60125
4a27cc94c3305c6090718a2fe23e2ddb9a683a18
225
py
Python
wallet_app/admin.py
Vicky-Rathod/django_ewallet_app
7f5b6e5f06743225b2ee2e9fcad3ac336d1b3e95
[ "MIT" ]
null
null
null
wallet_app/admin.py
Vicky-Rathod/django_ewallet_app
7f5b6e5f06743225b2ee2e9fcad3ac336d1b3e95
[ "MIT" ]
null
null
null
wallet_app/admin.py
Vicky-Rathod/django_ewallet_app
7f5b6e5f06743225b2ee2e9fcad3ac336d1b3e95
[ "MIT" ]
null
null
null
from django.contrib import admin from .models import Transaction,Type,TopUp,Wallet # Register your models here. admin.site.register(Transaction) admin.site.register(Type) admin.site.register(TopUp) admin.site.register(Wallet)
32.142857
49
0.826667
4a27ccdbde4e06290df91bfa14f0e51677f5283b
1,302
py
Python
manage.py
Arlington1985/nn_rest_api_example
c17c61dcbbec4c59ad868293f495c621c533158b
[ "MIT" ]
null
null
null
manage.py
Arlington1985/nn_rest_api_example
c17c61dcbbec4c59ad868293f495c621c533158b
[ "MIT" ]
1
2021-10-20T06:34:02.000Z
2021-10-20T06:34:02.000Z
manage.py
Arlington1985/nn_rest_api_example
c17c61dcbbec4c59ad868293f495c621c533158b
[ "MIT" ]
null
null
null
#!/usr/bin/env python # Manager for maintenance works import os from flask_script import Manager from flask_migrate import Migrate, MigrateCommand from app.db import db from app import app from app.models import UserModel, OperationModel migrate = Migrate(app, db) manager = Manager(app) manager.add_command('db', MigrateCommand) # Creating upload folder @manager.command def create_folder(): print(app.root_path) print(app.instance_path) print(app.config['BASEDIR']) final_directory = os.path.join(app.config['BASEDIR'], app.config['UPLOAD_FOLDER']) if not os.path.exists(final_directory): os.makedirs(final_directory) return "Folder with the name {} was created".format(final_directory) else: return "Folder with the name {} already exists".format(final_directory) # Recreating database objects @manager.command def recreate_database(): from sqlalchemy import create_engine from sqlalchemy.ext.declarative import declarative_base Base = declarative_base() print (app.config['SQLALCHEMY_DATABASE_URI']) engine = create_engine(app.config['SQLALCHEMY_DATABASE_URI']) Base.metadata.drop_all(engine) Base.metadata.create_all(engine) return "Database recreated successfully" if __name__ == '__main__': manager.run()
30.27907
86
0.751152
4a27cd77d62a127951fd75f377c61e0e2e4f7095
404
py
Python
tests/test_models.py
AndreGuerra123/django-portrait
e777816ca7467ad3f354abe8bcddbdf4ae559bda
[ "MIT" ]
null
null
null
tests/test_models.py
AndreGuerra123/django-portrait
e777816ca7467ad3f354abe8bcddbdf4ae559bda
[ "MIT" ]
null
null
null
tests/test_models.py
AndreGuerra123/django-portrait
e777816ca7467ad3f354abe8bcddbdf4ae559bda
[ "MIT" ]
null
null
null
#!/usr/bin/env python # -*- coding: utf-8 -*- """ test_django-portrait ------------ Tests for `django-portrait` models module. """ from django.test import TestCase from django_portrait import models class TestDjango_portrait(TestCase): def setUp(self): self.portrait = models.Portrait() def test_something(self): assert self.portrait def tearDown(self): pass
15.538462
42
0.655941
4a27ce52a64da5a53d524f58d7613669171d5662
1,745
py
Python
ppocr/modeling/heads/__init__.py
edencfc/PaddleOCR
82c5966a642d07f99502d779c70a707fe3edbcb0
[ "Apache-2.0" ]
4
2021-07-29T13:57:22.000Z
2022-03-21T09:47:53.000Z
ppocr/modeling/heads/__init__.py
edencfc/PaddleOCR
82c5966a642d07f99502d779c70a707fe3edbcb0
[ "Apache-2.0" ]
1
2022-02-16T01:37:48.000Z
2022-02-16T01:37:48.000Z
ppocr/modeling/heads/__init__.py
edencfc/PaddleOCR
82c5966a642d07f99502d779c70a707fe3edbcb0
[ "Apache-2.0" ]
1
2021-07-28T15:49:38.000Z
2021-07-28T15:49:38.000Z
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. __all__ = ['build_head'] def build_head(config): # det head from .det_db_head import DBHead from .det_east_head import EASTHead from .det_sast_head import SASTHead from .det_pse_head import PSEHead from .e2e_pg_head import PGHead # rec head from .rec_ctc_head import CTCHead from .rec_att_head import AttentionHead from .rec_srn_head import SRNHead from .rec_nrtr_head import Transformer from .rec_sar_head import SARHead from .rec_aster_head import AsterHead # cls head from .cls_head import ClsHead #kie head from .kie_sdmgr_head import SDMGRHead from .table_att_head import TableAttentionHead support_dict = [ 'DBHead', 'PSEHead', 'EASTHead', 'SASTHead', 'CTCHead', 'ClsHead', 'AttentionHead', 'SRNHead', 'PGHead', 'Transformer', 'TableAttentionHead', 'SARHead', 'AsterHead', 'SDMGRHead' ] #table head module_name = config.pop('name') assert module_name in support_dict, Exception('head only support {}'.format( support_dict)) module_class = eval(module_name)(**config) return module_class
31.727273
80
0.719771
4a27cf83e844893e6fe711fd9c82fc8d6280f97f
1,004
py
Python
logs.py
shinohe/mst-solution
022fdae17d7464680db5cac3b81126d8b782afa8
[ "MIT" ]
1
2019-08-25T03:16:25.000Z
2019-08-25T03:16:25.000Z
logs.py
shinohe/mst-solution
022fdae17d7464680db5cac3b81126d8b782afa8
[ "MIT" ]
null
null
null
logs.py
shinohe/mst-solution
022fdae17d7464680db5cac3b81126d8b782afa8
[ "MIT" ]
1
2019-08-25T03:20:07.000Z
2019-08-25T03:20:07.000Z
import os import logging from logging.handlers import RotatingFileHandler def not_exist_makedirs(path): if not os.path.exists(path): os.makedirs(path) def init_app(app, log_dir='.'): formatter = logging.Formatter( '%(asctime)s %(levelname)s: %(message)s ' '[in %(pathname)s:%(lineno)d]' ) debug_log = os.path.join(app.root_path, 'logs/debug.log') not_exist_makedirs(os.path.dirname(debug_log)) debug_file_handler = RotatingFileHandler( debug_log, maxBytes=100000, backupCount=10 ) debug_file_handler.setLevel(logging.DEBUG) debug_file_handler.setFormatter(formatter) app.logger.addHandler(debug_file_handler) error_log = os.path.join(app.root_path, 'logs/error.log') not_exist_makedirs(os.path.dirname(error_log)) error_file_handler = RotatingFileHandler( error_log, maxBytes=100000, backupCount=10 ) error_file_handler.setLevel(logging.ERROR) error_file_handler.setFormatter(formatter) app.logger.addHandler(error_file_handler) app.logger.setLevel(logging.DEBUG)
28.685714
58
0.780876
4a27d297d2fccaf31f5704964f113813cd4f65a7
1,618
py
Python
Gathered CTF writeups/2017-11-09-defcamp-final/fedora_shop/fedora.py
mihaid-b/CyberSakura
f60e6b6bfd6898c69b84424b080090ae98f8076c
[ "MIT" ]
1
2022-03-27T06:00:41.000Z
2022-03-27T06:00:41.000Z
Gathered CTF writeups/2017-11-09-defcamp-final/fedora_shop/fedora.py
mihaid-b/CyberSakura
f60e6b6bfd6898c69b84424b080090ae98f8076c
[ "MIT" ]
null
null
null
Gathered CTF writeups/2017-11-09-defcamp-final/fedora_shop/fedora.py
mihaid-b/CyberSakura
f60e6b6bfd6898c69b84424b080090ae98f8076c
[ "MIT" ]
1
2022-03-27T06:01:42.000Z
2022-03-27T06:01:42.000Z
import re from time import sleep import requests s = requests.session() session = "XYZ" def main(): url = "https://fedora-shop.dctf-f1nals-2017.def.camp/complet.php" telephone_script = """ <script> window.onload=function(){ eval(document.getElementsByTagName('td')[15].innerText); }; </script> """ address_script = """ xhr = new XMLHttpRequest(); xhr.open('POST','/?action=add&code=wfedora',true); xhr.withCredentials=true; document.cookie='PHPSESSID=""" + session + """'; xhr.setRequestHeader('Content-Type','application/x-www-form-urlencoded'); xhr.send('quantity='+this.responseText); """ other_script = """ xhr = new XMLHttpRequest(); xhr.open('GET','/admin.php'); xhr.onreadystatechange = function() { if(xhr.readyState === XMLHttpRequest.DONE){ eval(document.getElementsByTagName('td')[14].innerText); } }; xhr.send(); """ params = {"email": "[email protected]", "telephone": "%s" % telephone_script, "address": address_script, "other": other_script, "ordersum": "1234", "tprice": "1234"} s.get("https://fedora-shop.dctf-f1nals-2017.def.camp/index.php?action=remove&code=wfedora", cookies={"PHPSESSID": session}) sleep(2) r = s.post(url, data=params, cookies={"PHPSESSID": session}) # print(r.text) while True: r = s.get("https://fedora-shop.dctf-f1nals-2017.def.camp/index.php", cookies={"PHPSESSID": session}) result = re.findall('DCTF.*', r.text) if len(result) > 0: break sleep(5) print(result[0]) main()
27.896552
108
0.61063
4a27d33a80701ecea7ba56b42ba72cad83e7e2c3
2,377
py
Python
third_party/WebKit/Tools/Scripts/webkitpy/style/checkers/png.py
google-ar/chromium
2441c86a5fd975f09a6c30cddb57dfb7fc239699
[ "Apache-2.0", "BSD-3-Clause-No-Nuclear-License-2014", "BSD-3-Clause" ]
777
2017-08-29T15:15:32.000Z
2022-03-21T05:29:41.000Z
third_party/WebKit/Tools/Scripts/webkitpy/style/checkers/png.py
harrymarkovskiy/WebARonARCore
2441c86a5fd975f09a6c30cddb57dfb7fc239699
[ "Apache-2.0", "BSD-3-Clause-No-Nuclear-License-2014", "BSD-3-Clause" ]
66
2017-08-30T18:31:18.000Z
2021-08-02T10:59:35.000Z
third_party/WebKit/Tools/Scripts/webkitpy/style/checkers/png.py
harrymarkovskiy/WebARonARCore
2441c86a5fd975f09a6c30cddb57dfb7fc239699
[ "Apache-2.0", "BSD-3-Clause-No-Nuclear-License-2014", "BSD-3-Clause" ]
123
2017-08-30T01:19:34.000Z
2022-03-17T22:55:31.000Z
# Copyright (C) 2012 Balazs Ankes ([email protected]) University of Szeged # # Redistribution and use in source and binary forms, with or without # modification, are permitted provided that the following conditions # are met: # 1. Redistributions of source code must retain the above copyright # notice, this list of conditions and the following disclaimer. # 2. Redistributions in binary form must reproduce the above copyright # notice, this list of conditions and the following disclaimer in the # documentation and/or other materials provided with the distribution. # # THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS # "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT # LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR # A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT # OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, # SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT # LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, # DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY # THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT # (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE # OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. """Supports checking WebKit style in png files.""" from webkitpy.common import read_checksum_from_png from webkitpy.common.system.system_host import SystemHost class PNGChecker(object): """Check svn:mime-type for checking style""" categories = set(['image/png']) def __init__(self, file_path, handle_style_error, host=None): self._file_path = file_path self._handle_style_error = handle_style_error self._host = host or SystemHost() self._fs = self._host.filesystem def check(self, inline=None): if self._fs.exists(self._file_path) and self._file_path.endswith("-expected.png"): with self._fs.open_binary_file_for_reading(self._file_path) as filehandle: if not read_checksum_from_png.read_checksum(filehandle): self._handle_style_error( 0, 'image/png', 5, "Image lacks a checksum. Generate pngs using run-webkit-tests to ensure they have a checksum.")
49.520833
119
0.737484
4a27d429ee50a2a206a2f5360772a9005ec3d913
4,371
py
Python
python/async_shared_example.py
Saevon/Recipes
ab8ca9b5244805d545da2dd1d80d249f1ec6057d
[ "MIT" ]
null
null
null
python/async_shared_example.py
Saevon/Recipes
ab8ca9b5244805d545da2dd1d80d249f1ec6057d
[ "MIT" ]
null
null
null
python/async_shared_example.py
Saevon/Recipes
ab8ca9b5244805d545da2dd1d80d249f1ec6057d
[ "MIT" ]
null
null
null
from async_shared import async_handler, sync_shared # Async Creep # ------------------------------------------------------------------------------ # Ways to handle it # Writing Blocking primary code # * Spin off ProcessPool or ThreadPool # * But now you cannot get any async benefits (max blocking calls equals the number of threads) # Writing Async primary code # * Create a event_loop # * BUT now you need to import all the async libraries in both cases # (Ideally it would be optional) # Writing Both # * not DRY # ------------------------------------------------------------------------------ # Example code # # Note: 'with' does not work (if you need blocking/async contextmanagers) try: import aiofiles import asyncio import fcntl except ImportError: logger.debug('Async Disabled') import time import os import json # Polyfill # Not yet in aiofiles aiofiles.path = object() aiofiles.path.exists = aiofiles.os.wrap(os.path.exists) # ------------------------------------------------------------------------------ # Create the mixed function calls @async_handler def sys_random(num_bytes): return os.urandom(num_bytes) @sys_random.register_async async def sys_random_async(num_bytes): async with aiofiles.open('/dev/urandom', 'rb') as rand_fh: # Pretend its that easy to open a non-blocking file :) rand_fh.non_blocking = True while True: data = await rand_fh.read(num_bytes) if len(data) >= num_bytes: return data await asyncio.sleep(0.1) @async_handler def os_exists(path): return os.path.exists(path) @os_exists.register_async async def os_exists_async(path): return aiofiles.path.exists(path) @async_handler def sys_sleep(seconds): time.sleep(seconds) @sys_sleep.register_async async def sys_sleep_async(seconds): await asyncio.sleep(seconds) class AsyncableFile(): def __init__(self, filename, mode): self.filename = filename self.mode = mode self.fh = None def _open_if_needed(self): if self.fh: return self.fh = open(self.filename, self.mode) async def _open_if_needed_async(self): if self.fh: return self.fh = await aiofiles.open(self.filename, self.mode) @async_handler def read(self): self._open_if_needed() return self.fh.read() @read.register_async async def read_async(self): await self._open_if_needed_async() return await self.fh.read() @async_handler def close(self): if self.fh: self.fh.close() @close.register_async async def close_async(self): if self.fh: await self.fh.close() # -------------------------------------------------------------------------------------------------- @sync_shared def read_id(filepath): if not (yield os_exists(filepath)): raise Exception("File doesn't exist") # Decomposed "With", since its not supported file = AsyncableFile(filepath, 'r') try: raw_data = yield file.read() finally: yield file.close() # END Decomposed print(raw_data) data = json.loads(raw_data) keyid = data.get('id', None) assert isinstance(keyid, int) return keyid @sync_shared def main(filepath): ''' ''' print('sleeping') yield sys_sleep(0.1) keyid = (yield read_id.aevent(filepath)) folder = os.path.dirname(filepath) keyfile = os.path.join(folder, 'keyfile_{}.json'.format(keyid)) print(keyfile) if not (yield os_exists(keyfile)): raise Exception("No Keyfile exists") print('sleeping') yield sys_sleep(0.1) # Pretend we do something with that keyfile print((yield sys_random(4))) # Example traceback ''' Traceback (most recent call last): File "main.py", line 257, in <module> main('tmp.txt') File "async_shared.py", line 56, in wrapper_sync event = coroutine.send(result) File "main.py", line 246, in main raise Exception("No Keyfile exists") ''' if __name__ == '__main__': print('========') print("Synchronous") main('tmp.txt') print('========') print("Asynchronous") loop = asyncio.get_event_loop() try: loop.run_until_complete(main.run_async('tmp.txt')) finally: loop.close()
22.884817
100
0.602837
4a27d47bff0ebcade592252aa76fda0ff4829b3c
2,616
py
Python
test/test_phones_and_emails.py
PaulRumyantsev/python_QA
3d6809e49c2522da8cd912d2fe6f790df4293f5d
[ "Apache-2.0" ]
null
null
null
test/test_phones_and_emails.py
PaulRumyantsev/python_QA
3d6809e49c2522da8cd912d2fe6f790df4293f5d
[ "Apache-2.0" ]
null
null
null
test/test_phones_and_emails.py
PaulRumyantsev/python_QA
3d6809e49c2522da8cd912d2fe6f790df4293f5d
[ "Apache-2.0" ]
null
null
null
import re from model.contacts import Contacts from random import randrange def test_phones_on_home_page(app): if app.contacts.count() == 0: app.contacts.create(Contacts(firstname="test")) index = randrange(len(app.contacts.get_contacts_list())) contact_from_home_page = app.contacts.get_contacts_list()[index] contact_from_edit_page = app.contacts.get_contact_info_from_edit_page(index) assert contact_from_home_page.firstname == contact_from_edit_page.firstname assert contact_from_home_page.lastname == contact_from_edit_page.lastname assert contact_from_home_page.address == contact_from_edit_page.address assert contact_from_home_page.all_phones_from_home_page == merge_phones_like_on_home_page(contact_from_edit_page) assert contact_from_home_page.all_emails_from_home_page == merge_emails_on_home_page(contact_from_edit_page) #def test_emails_on_home_page(app): #if app.contacts.count() == 0: #app.contacts.create(Contacts(firstname="test")) #contact_from_home_page = app.contacts.get_contacts_list()[0] #contact_from_edit_page = app.contacts.get_contact_info_from_edit_page(0) #assert contact_from_home_page.all_emails_from_home_page == merge_emails_on_home_page(contact_from_edit_page) #def test_phones_on_contacts_view_page(app): #contacts_from_view_page = app.contacts.get_contacts_from_view_page(0) #contacts_from_edit_page = app.contacts.get_contact_info_from_edit_page(0) #assert contacts_from_view_page.homephone == contacts_from_edit_page.homephone #assert contacts_from_view_page.workphone == contacts_from_edit_page.workphone #assert contacts_from_view_page.mobilephone == contacts_from_edit_page.mobilephone #assert contacts_from_view_page.fax == contacts_from_edit_page.fax #assert contacts_from_view_page.secondaryphone == contacts_from_edit_page.secondaryphone def clear(s): return re.sub("[() -],", "", s) def merge_phones_like_on_home_page(contacts): return "\n".join(filter(lambda x: x != "", map(lambda x: clear(x), filter(lambda x: x is not None, [contacts.homephone, contacts.mobilephone, contacts.workphone, contacts.secondaryphone])))) def merge_emails_on_home_page(contacts): return "\n".join(filter(lambda x: x != "", map(lambda x: clear(x), filter(lambda x: x is not None, [contacts.email, contacts.email2, contacts.email3]))))
50.307692
117
0.72133
4a27d47fa8742ccda2129af5468bf5b89ca295d9
335
py
Python
apps/manager/purpleserver/manager/migrations/0008_remove_shipment_doc_images.py
rcknr/purplship-server
f8ec35af3da870fada0e989c20a8349c958c637c
[ "ECL-2.0", "Apache-2.0" ]
12
2020-02-03T08:11:21.000Z
2021-04-13T02:00:38.000Z
apps/manager/purpleserver/manager/migrations/0008_remove_shipment_doc_images.py
rcknr/purplship-server
f8ec35af3da870fada0e989c20a8349c958c637c
[ "ECL-2.0", "Apache-2.0" ]
9
2020-02-12T00:25:08.000Z
2021-04-20T10:31:59.000Z
apps/manager/purpleserver/manager/migrations/0008_remove_shipment_doc_images.py
rcknr/purplship-server
f8ec35af3da870fada0e989c20a8349c958c637c
[ "ECL-2.0", "Apache-2.0" ]
7
2020-02-03T08:10:50.000Z
2021-04-13T15:17:12.000Z
# Generated by Django 3.1.7 on 2021-03-14 03:34 from django.db import migrations class Migration(migrations.Migration): dependencies = [ ('manager', '0007_merge_20210311_1428'), ] operations = [ migrations.RemoveField( model_name='shipment', name='doc_images', ), ]
18.611111
48
0.6
4a27d4a7f4a2c4087aac72a3f2bc8857b71627b3
1,567
py
Python
homeassistant/components/lightwave/__init__.py
itewk/home-assistant
769cf19052f8c9ef374d8ba8ae7705ccc7bf4cf4
[ "Apache-2.0" ]
23
2017-11-15T21:03:53.000Z
2021-03-29T21:33:48.000Z
homeassistant/components/lightwave/__init__.py
itewk/home-assistant
769cf19052f8c9ef374d8ba8ae7705ccc7bf4cf4
[ "Apache-2.0" ]
9
2022-01-27T06:32:10.000Z
2022-03-31T07:07:51.000Z
homeassistant/components/lightwave/__init__.py
itewk/home-assistant
769cf19052f8c9ef374d8ba8ae7705ccc7bf4cf4
[ "Apache-2.0" ]
10
2018-01-01T00:12:51.000Z
2021-12-21T23:08:05.000Z
"""Support for device connected via Lightwave WiFi-link hub.""" from lightwave.lightwave import LWLink import voluptuous as vol from homeassistant.const import CONF_HOST, CONF_LIGHTS, CONF_NAME, CONF_SWITCHES import homeassistant.helpers.config_validation as cv from homeassistant.helpers.discovery import async_load_platform LIGHTWAVE_LINK = "lightwave_link" DOMAIN = "lightwave" CONFIG_SCHEMA = vol.Schema( { DOMAIN: vol.Schema( vol.All( cv.has_at_least_one_key(CONF_LIGHTS, CONF_SWITCHES), { vol.Required(CONF_HOST): cv.string, vol.Optional(CONF_LIGHTS, default={}): { cv.string: vol.Schema({vol.Required(CONF_NAME): cv.string}) }, vol.Optional(CONF_SWITCHES, default={}): { cv.string: vol.Schema({vol.Required(CONF_NAME): cv.string}) }, }, ) ) }, extra=vol.ALLOW_EXTRA, ) async def async_setup(hass, config): """Try to start embedded Lightwave broker.""" host = config[DOMAIN][CONF_HOST] hass.data[LIGHTWAVE_LINK] = LWLink(host) lights = config[DOMAIN][CONF_LIGHTS] if lights: hass.async_create_task( async_load_platform(hass, "light", DOMAIN, lights, config) ) switches = config[DOMAIN][CONF_SWITCHES] if switches: hass.async_create_task( async_load_platform(hass, "switch", DOMAIN, switches, config) ) return True
29.018519
83
0.608168
4a27d53a4e44a1de396d94429584682d940f9b3e
80
py
Python
src/atcoder/score.py
competitive-programming-helper/atcoder-api
2e90b73349ad30a35a944e546b96af3eef75706b
[ "MIT" ]
1
2022-02-09T07:35:28.000Z
2022-02-09T07:35:28.000Z
src/atcoder/score.py
competitive-programming-helper/atcoder-api
2e90b73349ad30a35a944e546b96af3eef75706b
[ "MIT" ]
3
2022-02-02T04:39:08.000Z
2022-02-07T23:40:14.000Z
src/atcoder/score.py
competitive-programming-helper/atcoder-api
2e90b73349ad30a35a944e546b96af3eef75706b
[ "MIT" ]
null
null
null
import requests def _get_my_score_page() -> requests.models.Response: ...
13.333333
53
0.7125
4a27d696a65d060ffb78249514d2eb95ca41870c
3,087
py
Python
.history/src/data/data_20191018141404.py
bkraft4257/kaggle_titanic
f29ea1773773109a867278c001dbd21a9f7b21dd
[ "MIT" ]
null
null
null
.history/src/data/data_20191018141404.py
bkraft4257/kaggle_titanic
f29ea1773773109a867278c001dbd21a9f7b21dd
[ "MIT" ]
null
null
null
.history/src/data/data_20191018141404.py
bkraft4257/kaggle_titanic
f29ea1773773109a867278c001dbd21a9f7b21dd
[ "MIT" ]
null
null
null
import pandas as pd from typing import Union from pathlib import Path from nameparser import HumanName class ExtractData: title_translator = { "Mlle.": "Mrs.", "Mme.": "Mrs.", "Sir.": "Mr.", "Ms.": "Mrs.", "": "Mr.", "Col.": "Mr.", "Capt.": "Mr.", "Lady.": "Mrs.", "the Countess. of": "Mrs.", } def __init__(self, filename: Union[str, Path], drop_columns=None): # """Extract Training Data from file or Path # Arguments: # filename {[str]} -- Filename of CSV data file containing data. # drop_columns -- Columns in dataframe that should be dropped. # """ if drop_columns is None: drop_columns = ["age", "cabin", "name", "ticket"] self.filename = filename self.drop_columns = drop_columns self.all_label_columns = ["survived"] self.all_feature_columns = [ "pclass", "name", "sex", "age", "sibsp", "parch", "ticket", "fare", "cabin", "embarked", ] self.Xy_raw = None self.Xy = None self.extract_raw() self.Xy = self.Xy_raw.copy() self.extract_title() self.extract_last_name() def extract_raw(self): """ Extracts data from a CSV file. Returns: pd.DataFrame -- [description] """ Xy_raw = pd.read_csv(self.filename) Xy_raw.columns = Xy_raw.columns.str.lower().str.replace(" ", "_") Xy_raw = Xy_raw.rename(columns={'age':'age_known'}) Xy_raw["pclass"] = Xy_raw["pclass"].astype("category") self.Xy_raw = Xy_raw.set_index("passengerid") def extract_cabin_prefix(self): Xy['cabin_number'] = Xy.ticket.str.extract('(\d+)$') def extract_cabin_prefix(self): Xy['cabin_prefix'] = Xy.ticket.str.extract('^(.+) ') def extract_title(self): """[summary] """ self.Xy["title"] = ( self.Xy.name.apply(lambda x: HumanName(x).title) .replace(self.title_translator) .replace({"\.": ""}, regex=True) ) def extract_last_name(self): self.Xy["last_name"] = self.Xy.name.apply(lambda x: HumanName(x).last) def clean(self,): """Clean data to remove missing data and "unnecessary" features. Arguments: in_raw_df {pd.DataFrame} -- Dataframe containing all columns and rows Kaggle Titanic Training Data set """ self.Xy = self.Xy_raw.drop(self.drop_columns, axis=1) def estimate_age(in_df, groupby=['sex','title']): Xy_age_estimate = in_df.groupby(['sex','title']).age_known.mean().to_frame().round(1) Xy_age_estimate = Xy_age_estimate.rename(columns ={'age_known':'age_estimate'}) out_df = in_df.reset_index().merge(Xy_age_estimate, on=['sex', 'title']) out_df['age'] = out_df['age_known'].fillna(out_df['age_estimate']) return out_df
29.4
114
0.550049
4a27d7a86c2f4dd8f0a2fecadb9faf60c9922361
2,172
py
Python
util/caffe_.py
saicoco/SA-Text
353a73d84246a54962f3b7ffb7c7ca2e35f235e8
[ "MIT" ]
47
2020-02-21T23:36:28.000Z
2021-12-21T01:34:38.000Z
util/caffe_.py
sapjunior/SA-Text
353a73d84246a54962f3b7ffb7c7ca2e35f235e8
[ "MIT" ]
4
2020-04-03T04:59:54.000Z
2021-11-04T08:14:52.000Z
util/caffe_.py
sapjunior/SA-Text
353a73d84246a54962f3b7ffb7c7ca2e35f235e8
[ "MIT" ]
18
2020-02-21T10:06:34.000Z
2021-09-15T01:50:55.000Z
# encoding=utf-8 import util def get_data(net, name): import caffe if isinstance(net, caffe._caffe.Solver): net = net.net return net.blobs[name].data[...] def get_params(net, name = None): import caffe if isinstance(net, caffe._caffe.Solver): net = net.net params = net.params[name] p = [] for param in params: p.append(param.data[...]) return p def draw_log(log_path, output_names, show = False, save_path = None, from_to = None, smooth = False): pattern = "Train net output: word_bbox_loc_loss = " log_path = util.io.get_absolute_path(log_path) f = open(log_path,'r') iterations = [] outputs = {} plt = util.plt.plt for line in f.readlines(): if util.str.contains(line, 'Iteration') and util.str.contains(line, 'loss = '): s = line.split('Iteration')[-1] iter_num = util.str.find_all(s, '\d+')[0] iter_num = int(iter_num) iterations.append(iter_num) if util.str.contains(line, "Train net output #"): s = util.str.split(line, 'Train net output #\d+\:')[-1] s = s.split('(')[0] output = util.str.find_all(s, '\d*\.*\d+e*\-*\d*\.*\d*')[-1] output = eval(output) output = float(output) for name in output_names: ptr = ' '+ name + ' =' if util.str.contains(line, ptr): if name not in outputs: outputs[name] = [] outputs[name].append(output) if len(outputs)==0: return for name in outputs: output = outputs[name] if smooth: output = util.np.smooth(output) start = 0 end = len(output) if from_to is not None: start = from_to[0] end = from_to[1] line_style = util.plt.get_random_line_style() plt.plot(iterations[start: end], output[start: end], line_style, label = name) plt.legend() if save_path is not None: util.plt.save_image(save_path) if show: util.plt.show()
31.941176
101
0.535451
4a27d7cf6b516c363a43116f3c53224c9d786ca0
15,928
py
Python
mycluster/schedulers/sge.py
zenotech/MyCluster
0399e2bb95c31efd8f99c6f0f3941d0c1f7d42c4
[ "BSD-3-Clause" ]
7
2017-05-04T13:38:16.000Z
2020-09-28T02:44:01.000Z
mycluster/schedulers/sge.py
zenotech/MyCluster
0399e2bb95c31efd8f99c6f0f3941d0c1f7d42c4
[ "BSD-3-Clause" ]
27
2015-01-05T13:39:22.000Z
2020-01-16T11:56:56.000Z
mycluster/schedulers/sge.py
zenotech/MyCluster
0399e2bb95c31efd8f99c6f0f3941d0c1f7d42c4
[ "BSD-3-Clause" ]
4
2017-05-21T17:01:18.000Z
2019-12-11T15:31:18.000Z
# BSD 3 - Clause License # Copyright(c) 2021, Zenotech # All rights reserved. # Redistribution and use in source and binary forms, with or without # modification, are permitted provided that the following conditions are met: # 1. Redistributions of source code must retain the above copyright notice, this # list of conditions and the following disclaimer. # 2. Redistributions in binary form must reproduce the above copyright notice, # this list of conditions and the following disclaimer in the documentation # and / or other materials provided with the distribution. # 3. Neither the name of the copyright holder nor the names of its # contributors may be used to endorse or promote products derived from # this software without specific prior written permission. # THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" # AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE # IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE # DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE # FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL # DAMAGES(INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR # SERVICES # LOSS OF USE, DATA, OR PROFITS # OR BUSINESS INTERRUPTION) HOWEVER # CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, # OR TORT(INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE # OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. import os import re import math import subprocess import datetime from .base import Scheduler from mycluster.exceptions import SchedulerException, ConfigurationException class SGE(Scheduler): def scheduler_type(self): return "sge" def name(self): return os.getenv("SGE_CLUSTER_NAME") def queues(self): # list all parallel env # for parallel_env list queues associated # Find first node with queue and record node config queue_list = [] parallel_env_list = [] with os.popen("qconf -spl") as f: for line in f: parallel_env_list.append(line.strip()) for parallel_env in parallel_env_list: with os.popen("qstat -pe " + parallel_env + " -U `whoami` -g c") as f: f.readline() # read header f.readline() # read separator for line in f: queue_name = line.split(" ")[0].strip() # Check if user has permission to use queue with os.popen("qstat -g c -U `whoami` -q " + queue_name) as f2: try: f2.readline() f2.readline() if len(f2.readline()): queue_list.append(parallel_env + ":" + queue_name) except: pass return queue_list def node_config(self, queue_id): # Find first node with queue and record node config parallel_env = queue_id.split(":")[0] queue_name = queue_id.split(":")[1] host_group = 0 with os.popen("qconf -sq " + queue_name) as f: for line in f: if line.split(" ")[0] == "hostlist": new_line = re.sub(" +", " ", line) host_group = new_line.split(" ")[1] config = {} host_name = "" found = False if host_group[0] is "@": # Is a host group with os.popen("qconf -shgrp_resolved " + host_group) as f: for line in f: for host_name in line.split(" "): with os.popen("qhost -q -h " + host_name) as f: header = f.readline() # read header f.readline() # read separator new_header = re.sub(" +", " ", header).strip() # sge <=6.2u4 style if (new_header.split(" ")[3]) == "LOAD": for line in f: if line[0] != " ": name = line.split(" ")[0] if name != "global": new_line = re.sub(" +", " ", line).strip() if new_line.split(" ")[3] != "-": config["max task"] = int( new_line.split(" ")[2] ) config["max thread"] = int( new_line.split(" ")[2] ) config["max memory"] = new_line.split( " " )[4] found = True break else: for line in f: if line[0] != " ": name = line.split(" ")[0] if name != "global": new_line = re.sub(" +", " ", line).strip() if new_line.split(" ")[3] != "-": config["max task"] = int( new_line.split(" ")[4] ) config["max thread"] = int( new_line.split(" ")[5] ) config["max memory"] = new_line.split( " " )[7] found = True break if found: break else: # Is a host host_name = host_group with os.popen("qhost -q -h " + host_name) as f: header = f.readline() # read header f.readline() # read separator new_header = re.sub(" +", " ", header).strip() if (new_header.split(" ")[3]) == "LOAD": # sge <=6.2u4 style for line in f: if line[0] != " ": name = line.split(" ")[0] if name != "global": new_line = re.sub(" +", " ", line).strip() if new_line.split(" ")[3] != "-": config["max task"] = int(new_line.split(" ")[2]) config["max thread"] = int(new_line.split(" ")[2]) config["max memory"] = new_line.split(" ")[4] else: config["max task"] = 0 config["max thread"] = 0 config["max memory"] = 0 else: for line in f: if line[0] != " ": name = line.split(" ")[0] if name != "global": new_line = re.sub(" +", " ", line).strip() if new_line.split(" ")[3] != "-": config["max task"] = int(new_line.split(" ")[4]) config["max thread"] = int(new_line.split(" ")[5]) config["max memory"] = new_line.split(" ")[7] else: config["max task"] = 0 config["max thread"] = 0 config["max memory"] = 0 return config def tasks_per_node(self, queue_id): parallel_env = queue_id.split(":")[0] queue_name = queue_id.split(":")[1] tasks = 0 with os.popen("qconf -sq " + queue_name) as f: for line in f: if line.split(" ")[0] == "slots": tasks = int(re.split("\W+", line)[1]) pe_tasks = tasks with os.popen("qconf -sp " + parallel_env) as f: try: for line in f: if line.split(" ")[0] == "allocation_rule": try: # This may throw exception as allocation rule # may not always be an integer pe_tasks = int(re.split("\W+", line)[1]) except ValueError as e: raise SchedulerException("Error parsing SGE output") except: pass return min(tasks, pe_tasks) def available_tasks(self, queue_id): # split queue id into queue and parallel env # list free slots free_tasks = 0 max_tasks = 0 parallel_env = queue_id.split(":")[0] queue_name = queue_id.split(":")[1] with os.popen(" qstat -pe " + parallel_env + " -U `whoami` -g c") as f: f.readline() # read header f.readline() # read separator for line in f: # remove multiple white space new_line = re.sub(" +", " ", line) qn = new_line.split(" ")[0] if qn == queue_name: free_tasks = int(new_line.split(" ")[4]) max_tasks = int(new_line.split(" ")[5]) return {"available": free_tasks, "max tasks": max_tasks} def _min_tasks_per_node(self, queue_id): """ This function is used when requesting non exclusive use as the parallel environment might enforce a minimum number of tasks """ parallel_env = queue_id.split(":")[0] queue_name = queue_id.split(":")[1] tasks = 1 pe_tasks = tasks with os.popen("qconf -sp " + parallel_env) as f: try: for line in f: if line.split(" ")[0] == "allocation_rule": # This may throw exception as allocation rule # may not always be an integer pe_tasks = int(re.split("\W+", line)[1]) except: pass return max(tasks, pe_tasks) def create_submit( self, queue_id, num_tasks, job_name, job_script, wall_clock, openmpi_args="-bysocket -bind-to-socket", project_name="default", tasks_per_node=None, threads_per_task=1, user_email=None, qos=None, exclusive=True, output_name=None, ): parallel_env = queue_id.split(":")[0] queue_name = queue_id.split(":")[1] if tasks_per_node is None: tasks_per_node = self.tasks_per_node(queue_id) num_nodes = int(math.ceil(float(num_tasks) / float(tasks_per_node))) if threads_per_task is None: threads_per_task = 1 if ":" not in wall_clock: wall_clock = wall_clock + ":00:00" if "mycluster-" in job_script: job_script = self._get_data(job_script) if output_name is None: output_name = job_name + ".out" # For exclusive node use total number of slots required # is number of nodes x number of slots offer by queue num_queue_slots = num_nodes * self.tasks_per_node(queue_id) if not exclusive: if num_nodes == 1: # Assumes fill up rule num_queue_slots = max( tasks_per_node, self._min_tasks_per_node(queue_id) ) template = self._load_template("sge.jinja") script_str = template.render( my_name=job_name, my_script=job_script, my_output=output_name, user_email=user_email, queue_name=queue_name, parallel_env=parallel_env, num_queue_slots=num_queue_slots, num_tasks=num_tasks, tpn=tasks_per_node, num_threads_per_task=threads_per_task, num_nodes=num_nodes, project_name=project_name, wall_clock=wall_clock, openmpi_args=openmpi_args, qos=qos, exclusive=exclusive, ) return script_str def submit( self, script_name, immediate=False, depends_on=None, depends_on_always_run=False ): job_id = None output = subprocess.run( f"qsub -V -terse {script_name}", stdout=subprocess.PIPE, stderr=subprocess.PIPE, shell=True, ) if output.returncode == 0: job_id = 0 out = output.stdout.decode("utf-8") try: job_id = int(out.readline().strip()) return job_id except: raise SchedulerException("Error submitting job to SGE") else: raise SchedulerException( f"Error submitting job to SGE: {output.stderr.decode('utf-8')}" ) def list_current_jobs(self): jobs = [] output = subprocess.run( "qstat -u `whoami`", stdout=subprocess.PIPE, stderr=subprocess.PIPE, shell=True, ) if output.returncode == 0: for line in output.stdout.decode("utf-8").splitlines(): if line.startswith("job-ID") or line.startswith("---"): continue job_info = re.sub(" +", " ", line.strip()).split(" ") jobs.append( { "id": int(job_info[0]), "queue": job_info[6], "name": job_info[2], "state": job_info[4], } ) else: raise SchedulerException("Error fetching job queue listing") return jobs def get_job_details(self, job_id): """ Get full job and step stats for job_id First check using sacct, then fallback to squeue """ stats_dict = {} output = {} with os.popen("qacct -j " + str(job_id)) as f: try: f.readline() # read header for line in f: new_line = re.sub(" +", " ", line.strip()) output[new_line.split(" ")[0]] = new_line.split(" ", 1)[1] except: pass stats_dict["wallclock"] = datetime.timedelta( seconds=int(output["ru_wallclock"]) ) stats_dict["mem"] = output["mem"] stats_dict["cpu"] = datetime.timedelta(seconds=int(output["cpu"].split(".")[0])) stats_dict["queue"] = output["granted_pe"] + ":" + output["qname"] return stats_dict def delete(self, job_id): cmd = f"qdel {job_id}" output = subprocess.run( cmd, stdout=subprocess.PIPE, stderr=subprocess.PIPE, shell=True ) if output.returncode != 0: raise SchedulerException(f"Error cancelling job {job_id}")
40.841026
88
0.458312
4a27d873156de2cbb7a548f4f35e07f26d2703de
2,001
py
Python
Features/steps/add_flight.py
tbielski/flights-planner
ad2f7a6ef4ef80b71a1d71d1655c4101131b54a6
[ "MIT" ]
null
null
null
Features/steps/add_flight.py
tbielski/flights-planner
ad2f7a6ef4ef80b71a1d71d1655c4101131b54a6
[ "MIT" ]
null
null
null
Features/steps/add_flight.py
tbielski/flights-planner
ad2f7a6ef4ef80b71a1d71d1655c4101131b54a6
[ "MIT" ]
null
null
null
from behave import * from datetime import datetime from flights_planner.FlightRepository import FlightRepository from flights_planner.EconomyFlight import EconomyFlight from flights_planner.BusinessFlight import BusinessFlight from flights_planner.PremiumFlight import PremiumFlight use_step_matcher("re") @given("there is a flights_repository") def step_impl(context): context.repository = FlightRepository([]) @given("there is a business flight") def step_impl(context): context.business_flight = BusinessFlight("0", "Gdańsk", "Warszawa", datetime(2019, 12, 12, 22, 00)) @when("we add a business flight") def step_impl(context): context.repository.add_flight(context.business_flight) @then("flights_repository1 should have one flight") def step_impl(context): assert context.business_flight.flight_id == "0" assert len(context.repository.data_source) == 1 assert context.repository.data_source[0].flight_id == "0" @given("there is a economy flight") def step_impl(context): context.economy_flight = EconomyFlight("0", "Gdańsk", "Warszawa", datetime(2019, 12, 12, 22, 00)) @when("we add an economy flight") def step_impl(context): context.repository.add_flight(context.economy_flight) @then("flights_repository2 should have one flight") def step_impl(context): assert context.economy_flight.flight_id == "0" assert len(context.repository.data_source) == 1 assert context.repository.data_source[0].flight_id == "0" @given("there is a premium flight") def step_impl(context): context.premium_flight = PremiumFlight("0", "Gdańsk", "Warszawa", datetime(2019, 12, 12, 22, 00)) @when("we add a premium flight") def step_impl(context): context.repository.add_flight(context.premium_flight) @then("flights_repository3 should have one flight") def step_impl(context): assert context.premium_flight.flight_id == "0" assert len(context.repository.data_source) == 1 assert context.repository.data_source[0].flight_id == "0"
29.426471
103
0.758121
4a27d918d95292fa7160c40d342a0faa671f33a4
31,008
py
Python
homeassistant/components/homematic/__init__.py
Tony763/home-assistant
fa1df2e015d76abfc6cfd7d795eb439130f5d0ea
[ "Apache-2.0" ]
null
null
null
homeassistant/components/homematic/__init__.py
Tony763/home-assistant
fa1df2e015d76abfc6cfd7d795eb439130f5d0ea
[ "Apache-2.0" ]
3
2021-09-08T03:29:36.000Z
2022-03-12T00:59:48.000Z
homeassistant/components/homematic/__init__.py
akhan69/home-assistant
fb460a325e25fdea9043136bccaf546ec1c04eab
[ "Apache-2.0" ]
null
null
null
"""Support for HomeMatic devices.""" from datetime import timedelta from functools import partial import logging import socket import voluptuous as vol from homeassistant.const import ( ATTR_ENTITY_ID, ATTR_NAME, CONF_HOST, CONF_HOSTS, CONF_PASSWORD, CONF_PLATFORM, CONF_SSL, CONF_USERNAME, CONF_VERIFY_SSL, EVENT_HOMEASSISTANT_STOP, STATE_UNKNOWN) from homeassistant.helpers import discovery import homeassistant.helpers.config_validation as cv from homeassistant.helpers.entity import Entity REQUIREMENTS = ['pyhomematic==0.1.56'] _LOGGER = logging.getLogger(__name__) DOMAIN = 'homematic' SCAN_INTERVAL_HUB = timedelta(seconds=300) SCAN_INTERVAL_VARIABLES = timedelta(seconds=30) DISCOVER_SWITCHES = 'homematic.switch' DISCOVER_LIGHTS = 'homematic.light' DISCOVER_SENSORS = 'homematic.sensor' DISCOVER_BINARY_SENSORS = 'homematic.binary_sensor' DISCOVER_COVER = 'homematic.cover' DISCOVER_CLIMATE = 'homematic.climate' DISCOVER_LOCKS = 'homematic.locks' ATTR_DISCOVER_DEVICES = 'devices' ATTR_PARAM = 'param' ATTR_CHANNEL = 'channel' ATTR_ADDRESS = 'address' ATTR_VALUE = 'value' ATTR_INTERFACE = 'interface' ATTR_ERRORCODE = 'error' ATTR_MESSAGE = 'message' ATTR_MODE = 'mode' ATTR_TIME = 'time' ATTR_UNIQUE_ID = 'unique_id' ATTR_PARAMSET_KEY = 'paramset_key' ATTR_PARAMSET = 'paramset' EVENT_KEYPRESS = 'homematic.keypress' EVENT_IMPULSE = 'homematic.impulse' EVENT_ERROR = 'homematic.error' SERVICE_VIRTUALKEY = 'virtualkey' SERVICE_RECONNECT = 'reconnect' SERVICE_SET_VARIABLE_VALUE = 'set_variable_value' SERVICE_SET_DEVICE_VALUE = 'set_device_value' SERVICE_SET_INSTALL_MODE = 'set_install_mode' SERVICE_PUT_PARAMSET = 'put_paramset' HM_DEVICE_TYPES = { DISCOVER_SWITCHES: [ 'Switch', 'SwitchPowermeter', 'IOSwitch', 'IPSwitch', 'RFSiren', 'IPSwitchPowermeter', 'HMWIOSwitch', 'Rain', 'EcoLogic', 'IPKeySwitchPowermeter', 'IPGarage', 'IPKeySwitch', 'IPMultiIO'], DISCOVER_LIGHTS: ['Dimmer', 'KeyDimmer', 'IPKeyDimmer', 'IPDimmer', 'ColorEffectLight'], DISCOVER_SENSORS: [ 'SwitchPowermeter', 'Motion', 'MotionV2', 'RemoteMotion', 'MotionIP', 'ThermostatWall', 'AreaThermostat', 'RotaryHandleSensor', 'WaterSensor', 'PowermeterGas', 'LuxSensor', 'WeatherSensor', 'WeatherStation', 'ThermostatWall2', 'TemperatureDiffSensor', 'TemperatureSensor', 'CO2Sensor', 'IPSwitchPowermeter', 'HMWIOSwitch', 'FillingLevel', 'ValveDrive', 'EcoLogic', 'IPThermostatWall', 'IPSmoke', 'RFSiren', 'PresenceIP', 'IPAreaThermostat', 'IPWeatherSensor', 'RotaryHandleSensorIP', 'IPPassageSensor', 'IPKeySwitchPowermeter', 'IPThermostatWall230V', 'IPWeatherSensorPlus', 'IPWeatherSensorBasic', 'IPBrightnessSensor', 'IPGarage', 'UniversalSensor', 'MotionIPV2', 'IPMultiIO'], DISCOVER_CLIMATE: [ 'Thermostat', 'ThermostatWall', 'MAXThermostat', 'ThermostatWall2', 'MAXWallThermostat', 'IPThermostat', 'IPThermostatWall', 'ThermostatGroup', 'IPThermostatWall230V'], DISCOVER_BINARY_SENSORS: [ 'ShutterContact', 'Smoke', 'SmokeV2', 'Motion', 'MotionV2', 'MotionIP', 'RemoteMotion', 'WeatherSensor', 'TiltSensor', 'IPShutterContact', 'HMWIOSwitch', 'MaxShutterContact', 'Rain', 'WiredSensor', 'PresenceIP', 'IPWeatherSensor', 'IPPassageSensor', 'SmartwareMotion', 'IPWeatherSensorPlus', 'MotionIPV2', 'WaterIP', 'IPMultiIO', 'TiltIP'], DISCOVER_COVER: ['Blind', 'KeyBlind', 'IPKeyBlind', 'IPKeyBlindTilt'], DISCOVER_LOCKS: ['KeyMatic'] } HM_IGNORE_DISCOVERY_NODE = [ 'ACTUAL_TEMPERATURE', 'ACTUAL_HUMIDITY' ] HM_IGNORE_DISCOVERY_NODE_EXCEPTIONS = { 'ACTUAL_TEMPERATURE': [ 'IPAreaThermostat', 'IPWeatherSensor', 'IPWeatherSensorPlus', 'IPWeatherSensorBasic'], } HM_ATTRIBUTE_SUPPORT = { 'LOWBAT': ['battery', {0: 'High', 1: 'Low'}], 'LOW_BAT': ['battery', {0: 'High', 1: 'Low'}], 'ERROR': ['sabotage', {0: 'No', 1: 'Yes'}], 'ERROR_SABOTAGE': ['sabotage', {0: 'No', 1: 'Yes'}], 'SABOTAGE': ['sabotage', {0: 'No', 1: 'Yes'}], 'RSSI_PEER': ['rssi_peer', {}], 'RSSI_DEVICE': ['rssi_device', {}], 'VALVE_STATE': ['valve', {}], 'LEVEL': ['level', {}], 'BATTERY_STATE': ['battery', {}], 'CONTROL_MODE': ['mode', { 0: 'Auto', 1: 'Manual', 2: 'Away', 3: 'Boost', 4: 'Comfort', 5: 'Lowering' }], 'POWER': ['power', {}], 'CURRENT': ['current', {}], 'VOLTAGE': ['voltage', {}], 'OPERATING_VOLTAGE': ['voltage', {}], 'WORKING': ['working', {0: 'No', 1: 'Yes'}] } HM_PRESS_EVENTS = [ 'PRESS_SHORT', 'PRESS_LONG', 'PRESS_CONT', 'PRESS_LONG_RELEASE', 'PRESS', ] HM_IMPULSE_EVENTS = [ 'SEQUENCE_OK', ] CONF_RESOLVENAMES_OPTIONS = [ 'metadata', 'json', 'xml', False ] DATA_HOMEMATIC = 'homematic' DATA_STORE = 'homematic_store' DATA_CONF = 'homematic_conf' CONF_INTERFACES = 'interfaces' CONF_LOCAL_IP = 'local_ip' CONF_LOCAL_PORT = 'local_port' CONF_PORT = 'port' CONF_PATH = 'path' CONF_CALLBACK_IP = 'callback_ip' CONF_CALLBACK_PORT = 'callback_port' CONF_RESOLVENAMES = 'resolvenames' CONF_JSONPORT = 'jsonport' CONF_VARIABLES = 'variables' CONF_DEVICES = 'devices' CONF_PRIMARY = 'primary' DEFAULT_LOCAL_IP = '0.0.0.0' DEFAULT_LOCAL_PORT = 0 DEFAULT_RESOLVENAMES = False DEFAULT_JSONPORT = 80 DEFAULT_PORT = 2001 DEFAULT_PATH = '' DEFAULT_USERNAME = 'Admin' DEFAULT_PASSWORD = '' DEFAULT_SSL = False DEFAULT_VERIFY_SSL = False DEFAULT_CHANNEL = 1 DEVICE_SCHEMA = vol.Schema({ vol.Required(CONF_PLATFORM): 'homematic', vol.Required(ATTR_NAME): cv.string, vol.Required(ATTR_ADDRESS): cv.string, vol.Required(ATTR_INTERFACE): cv.string, vol.Optional(ATTR_CHANNEL, default=DEFAULT_CHANNEL): vol.Coerce(int), vol.Optional(ATTR_PARAM): cv.string, vol.Optional(ATTR_UNIQUE_ID): cv.string, }) CONFIG_SCHEMA = vol.Schema({ DOMAIN: vol.Schema({ vol.Optional(CONF_INTERFACES, default={}): {cv.match_all: { vol.Required(CONF_HOST): cv.string, vol.Optional(CONF_PORT, default=DEFAULT_PORT): cv.port, vol.Optional(CONF_PATH, default=DEFAULT_PATH): cv.string, vol.Optional(CONF_RESOLVENAMES, default=DEFAULT_RESOLVENAMES): vol.In(CONF_RESOLVENAMES_OPTIONS), vol.Optional(CONF_JSONPORT, default=DEFAULT_JSONPORT): cv.port, vol.Optional(CONF_USERNAME, default=DEFAULT_USERNAME): cv.string, vol.Optional(CONF_PASSWORD, default=DEFAULT_PASSWORD): cv.string, vol.Optional(CONF_CALLBACK_IP): cv.string, vol.Optional(CONF_CALLBACK_PORT): cv.port, vol.Optional(CONF_SSL, default=DEFAULT_SSL): cv.boolean, vol.Optional( CONF_VERIFY_SSL, default=DEFAULT_VERIFY_SSL): cv.boolean, }}, vol.Optional(CONF_HOSTS, default={}): {cv.match_all: { vol.Required(CONF_HOST): cv.string, vol.Optional(CONF_USERNAME, default=DEFAULT_USERNAME): cv.string, vol.Optional(CONF_PASSWORD, default=DEFAULT_PASSWORD): cv.string, }}, vol.Optional(CONF_LOCAL_IP, default=DEFAULT_LOCAL_IP): cv.string, vol.Optional(CONF_LOCAL_PORT): cv.port, }), }, extra=vol.ALLOW_EXTRA) SCHEMA_SERVICE_VIRTUALKEY = vol.Schema({ vol.Required(ATTR_ADDRESS): vol.All(cv.string, vol.Upper), vol.Required(ATTR_CHANNEL): vol.Coerce(int), vol.Required(ATTR_PARAM): cv.string, vol.Optional(ATTR_INTERFACE): cv.string, }) SCHEMA_SERVICE_SET_VARIABLE_VALUE = vol.Schema({ vol.Required(ATTR_NAME): cv.string, vol.Required(ATTR_VALUE): cv.match_all, vol.Optional(ATTR_ENTITY_ID): cv.entity_ids, }) SCHEMA_SERVICE_SET_DEVICE_VALUE = vol.Schema({ vol.Required(ATTR_ADDRESS): vol.All(cv.string, vol.Upper), vol.Required(ATTR_CHANNEL): vol.Coerce(int), vol.Required(ATTR_PARAM): vol.All(cv.string, vol.Upper), vol.Required(ATTR_VALUE): cv.match_all, vol.Optional(ATTR_INTERFACE): cv.string, }) SCHEMA_SERVICE_RECONNECT = vol.Schema({}) SCHEMA_SERVICE_SET_INSTALL_MODE = vol.Schema({ vol.Required(ATTR_INTERFACE): cv.string, vol.Optional(ATTR_TIME, default=60): cv.positive_int, vol.Optional(ATTR_MODE, default=1): vol.All(vol.Coerce(int), vol.In([1, 2])), vol.Optional(ATTR_ADDRESS): vol.All(cv.string, vol.Upper), }) SCHEMA_SERVICE_PUT_PARAMSET = vol.Schema({ vol.Required(ATTR_INTERFACE): cv.string, vol.Required(ATTR_ADDRESS): vol.All(cv.string, vol.Upper), vol.Required(ATTR_PARAMSET_KEY): vol.All(cv.string, vol.Upper), vol.Required(ATTR_PARAMSET): dict, }) def setup(hass, config): """Set up the Homematic component.""" from pyhomematic import HMConnection conf = config[DOMAIN] hass.data[DATA_CONF] = remotes = {} hass.data[DATA_STORE] = set() # Create hosts-dictionary for pyhomematic for rname, rconfig in conf[CONF_INTERFACES].items(): remotes[rname] = { 'ip': socket.gethostbyname(rconfig.get(CONF_HOST)), 'port': rconfig.get(CONF_PORT), 'path': rconfig.get(CONF_PATH), 'resolvenames': rconfig.get(CONF_RESOLVENAMES), 'jsonport': rconfig.get(CONF_JSONPORT), 'username': rconfig.get(CONF_USERNAME), 'password': rconfig.get(CONF_PASSWORD), 'callbackip': rconfig.get(CONF_CALLBACK_IP), 'callbackport': rconfig.get(CONF_CALLBACK_PORT), 'ssl': rconfig.get(CONF_SSL), 'verify_ssl': rconfig.get(CONF_VERIFY_SSL), 'connect': True, } for sname, sconfig in conf[CONF_HOSTS].items(): remotes[sname] = { 'ip': socket.gethostbyname(sconfig.get(CONF_HOST)), 'port': DEFAULT_PORT, 'username': sconfig.get(CONF_USERNAME), 'password': sconfig.get(CONF_PASSWORD), 'connect': False, } # Create server thread bound_system_callback = partial(_system_callback_handler, hass, config) hass.data[DATA_HOMEMATIC] = homematic = HMConnection( local=config[DOMAIN].get(CONF_LOCAL_IP), localport=config[DOMAIN].get(CONF_LOCAL_PORT, DEFAULT_LOCAL_PORT), remotes=remotes, systemcallback=bound_system_callback, interface_id='homeassistant' ) # Start server thread, connect to hosts, initialize to receive events homematic.start() # Stops server when HASS is shutting down hass.bus.listen_once( EVENT_HOMEASSISTANT_STOP, hass.data[DATA_HOMEMATIC].stop) # Init homematic hubs entity_hubs = [] for hub_name in conf[CONF_HOSTS].keys(): entity_hubs.append(HMHub(hass, homematic, hub_name)) def _hm_service_virtualkey(service): """Service to handle virtualkey servicecalls.""" address = service.data.get(ATTR_ADDRESS) channel = service.data.get(ATTR_CHANNEL) param = service.data.get(ATTR_PARAM) # Device not found hmdevice = _device_from_servicecall(hass, service) if hmdevice is None: _LOGGER.error("%s not found for service virtualkey!", address) return # Parameter doesn't exist for device if param not in hmdevice.ACTIONNODE: _LOGGER.error("%s not datapoint in hm device %s", param, address) return # Channel doesn't exist for device if channel not in hmdevice.ACTIONNODE[param]: _LOGGER.error("%i is not a channel in hm device %s", channel, address) return # Call parameter hmdevice.actionNodeData(param, True, channel) hass.services.register( DOMAIN, SERVICE_VIRTUALKEY, _hm_service_virtualkey, schema=SCHEMA_SERVICE_VIRTUALKEY) def _service_handle_value(service): """Service to call setValue method for HomeMatic system variable.""" entity_ids = service.data.get(ATTR_ENTITY_ID) name = service.data[ATTR_NAME] value = service.data[ATTR_VALUE] if entity_ids: entities = [entity for entity in entity_hubs if entity.entity_id in entity_ids] else: entities = entity_hubs if not entities: _LOGGER.error("No HomeMatic hubs available") return for hub in entities: hub.hm_set_variable(name, value) hass.services.register( DOMAIN, SERVICE_SET_VARIABLE_VALUE, _service_handle_value, schema=SCHEMA_SERVICE_SET_VARIABLE_VALUE) def _service_handle_reconnect(service): """Service to reconnect all HomeMatic hubs.""" homematic.reconnect() hass.services.register( DOMAIN, SERVICE_RECONNECT, _service_handle_reconnect, schema=SCHEMA_SERVICE_RECONNECT) def _service_handle_device(service): """Service to call setValue method for HomeMatic devices.""" address = service.data.get(ATTR_ADDRESS) channel = service.data.get(ATTR_CHANNEL) param = service.data.get(ATTR_PARAM) value = service.data.get(ATTR_VALUE) # Device not found hmdevice = _device_from_servicecall(hass, service) if hmdevice is None: _LOGGER.error("%s not found!", address) return hmdevice.setValue(param, value, channel) hass.services.register( DOMAIN, SERVICE_SET_DEVICE_VALUE, _service_handle_device, schema=SCHEMA_SERVICE_SET_DEVICE_VALUE) def _service_handle_install_mode(service): """Service to set interface into install mode.""" interface = service.data.get(ATTR_INTERFACE) mode = service.data.get(ATTR_MODE) time = service.data.get(ATTR_TIME) address = service.data.get(ATTR_ADDRESS) homematic.setInstallMode(interface, t=time, mode=mode, address=address) hass.services.register( DOMAIN, SERVICE_SET_INSTALL_MODE, _service_handle_install_mode, schema=SCHEMA_SERVICE_SET_INSTALL_MODE) def _service_put_paramset(service): """Service to call the putParamset method on a HomeMatic connection.""" interface = service.data.get(ATTR_INTERFACE) address = service.data.get(ATTR_ADDRESS) paramset_key = service.data.get(ATTR_PARAMSET_KEY) # When passing in the paramset from a YAML file we get an OrderedDict # here instead of a dict, so add this explicit cast. # The service schema makes sure that this cast works. paramset = dict(service.data.get(ATTR_PARAMSET)) _LOGGER.debug( "Calling putParamset: %s, %s, %s, %s", interface, address, paramset_key, paramset ) homematic.putParamset(interface, address, paramset_key, paramset) hass.services.register( DOMAIN, SERVICE_PUT_PARAMSET, _service_put_paramset, schema=SCHEMA_SERVICE_PUT_PARAMSET) return True def _system_callback_handler(hass, config, src, *args): """System callback handler.""" # New devices available at hub if src == 'newDevices': (interface_id, dev_descriptions) = args interface = interface_id.split('-')[-1] # Device support active? if not hass.data[DATA_CONF][interface]['connect']: return addresses = [] for dev in dev_descriptions: address = dev['ADDRESS'].split(':')[0] if address not in hass.data[DATA_STORE]: hass.data[DATA_STORE].add(address) addresses.append(address) # Register EVENTS # Search all devices with an EVENTNODE that includes data bound_event_callback = partial(_hm_event_handler, hass, interface) for dev in addresses: hmdevice = hass.data[DATA_HOMEMATIC].devices[interface].get(dev) if hmdevice.EVENTNODE: hmdevice.setEventCallback( callback=bound_event_callback, bequeath=True) # Create HASS entities if addresses: for component_name, discovery_type in ( ('switch', DISCOVER_SWITCHES), ('light', DISCOVER_LIGHTS), ('cover', DISCOVER_COVER), ('binary_sensor', DISCOVER_BINARY_SENSORS), ('sensor', DISCOVER_SENSORS), ('climate', DISCOVER_CLIMATE), ('lock', DISCOVER_LOCKS)): # Get all devices of a specific type found_devices = _get_devices( hass, discovery_type, addresses, interface) # When devices of this type are found # they are setup in HASS and a discovery event is fired if found_devices: discovery.load_platform(hass, component_name, DOMAIN, { ATTR_DISCOVER_DEVICES: found_devices }, config) # Homegear error message elif src == 'error': _LOGGER.error("Error: %s", args) (interface_id, errorcode, message) = args hass.bus.fire(EVENT_ERROR, { ATTR_ERRORCODE: errorcode, ATTR_MESSAGE: message }) def _get_devices(hass, discovery_type, keys, interface): """Get the HomeMatic devices for given discovery_type.""" device_arr = [] for key in keys: device = hass.data[DATA_HOMEMATIC].devices[interface][key] class_name = device.__class__.__name__ metadata = {} # Class not supported by discovery type if class_name not in HM_DEVICE_TYPES[discovery_type]: continue # Load metadata needed to generate a parameter list if discovery_type == DISCOVER_SENSORS: metadata.update(device.SENSORNODE) elif discovery_type == DISCOVER_BINARY_SENSORS: metadata.update(device.BINARYNODE) else: metadata.update({None: device.ELEMENT}) # Generate options for 1...n elements with 1...n parameters for param, channels in metadata.items(): if param in HM_IGNORE_DISCOVERY_NODE and class_name not in \ HM_IGNORE_DISCOVERY_NODE_EXCEPTIONS.get(param, []): continue # Add devices _LOGGER.debug("%s: Handling %s: %s: %s", discovery_type, key, param, channels) for channel in channels: name = _create_ha_id( name=device.NAME, channel=channel, param=param, count=len(channels) ) unique_id = _create_ha_id( name=key, channel=channel, param=param, count=len(channels) ) device_dict = { CONF_PLATFORM: "homematic", ATTR_ADDRESS: key, ATTR_INTERFACE: interface, ATTR_NAME: name, ATTR_CHANNEL: channel, ATTR_UNIQUE_ID: unique_id } if param is not None: device_dict[ATTR_PARAM] = param # Add new device try: DEVICE_SCHEMA(device_dict) device_arr.append(device_dict) except vol.MultipleInvalid as err: _LOGGER.error("Invalid device config: %s", str(err)) return device_arr def _create_ha_id(name, channel, param, count): """Generate a unique entity id.""" # HMDevice is a simple device if count == 1 and param is None: return name # Has multiple elements/channels if count > 1 and param is None: return "{} {}".format(name, channel) # With multiple parameters on first channel if count == 1 and param is not None: return "{} {}".format(name, param) # Multiple parameters with multiple channels if count > 1 and param is not None: return "{} {} {}".format(name, channel, param) def _hm_event_handler(hass, interface, device, caller, attribute, value): """Handle all pyhomematic device events.""" try: channel = int(device.split(":")[1]) address = device.split(":")[0] hmdevice = hass.data[DATA_HOMEMATIC].devices[interface].get(address) except (TypeError, ValueError): _LOGGER.error("Event handling channel convert error!") return # Return if not an event supported by device if attribute not in hmdevice.EVENTNODE: return _LOGGER.debug("Event %s for %s channel %i", attribute, hmdevice.NAME, channel) # Keypress event if attribute in HM_PRESS_EVENTS: hass.bus.fire(EVENT_KEYPRESS, { ATTR_NAME: hmdevice.NAME, ATTR_PARAM: attribute, ATTR_CHANNEL: channel }) return # Impulse event if attribute in HM_IMPULSE_EVENTS: hass.bus.fire(EVENT_IMPULSE, { ATTR_NAME: hmdevice.NAME, ATTR_CHANNEL: channel }) return _LOGGER.warning("Event is unknown and not forwarded") def _device_from_servicecall(hass, service): """Extract HomeMatic device from service call.""" address = service.data.get(ATTR_ADDRESS) interface = service.data.get(ATTR_INTERFACE) if address == 'BIDCOS-RF': address = 'BidCoS-RF' if interface: return hass.data[DATA_HOMEMATIC].devices[interface].get(address) for devices in hass.data[DATA_HOMEMATIC].devices.values(): if address in devices: return devices[address] class HMHub(Entity): """The HomeMatic hub. (CCU2/HomeGear).""" def __init__(self, hass, homematic, name): """Initialize HomeMatic hub.""" self.hass = hass self.entity_id = "{}.{}".format(DOMAIN, name.lower()) self._homematic = homematic self._variables = {} self._name = name self._state = None # Load data self.hass.helpers.event.track_time_interval( self._update_hub, SCAN_INTERVAL_HUB) self.hass.add_job(self._update_hub, None) self.hass.helpers.event.track_time_interval( self._update_variables, SCAN_INTERVAL_VARIABLES) self.hass.add_job(self._update_variables, None) @property def name(self): """Return the name of the device.""" return self._name @property def should_poll(self): """Return false. HomeMatic Hub object updates variables.""" return False @property def state(self): """Return the state of the entity.""" return self._state @property def state_attributes(self): """Return the state attributes.""" attr = self._variables.copy() return attr @property def icon(self): """Return the icon to use in the frontend, if any.""" return "mdi:gradient" def _update_hub(self, now): """Retrieve latest state.""" service_message = self._homematic.getServiceMessages(self._name) state = None if service_message is None else len(service_message) # state have change? if self._state != state: self._state = state self.schedule_update_ha_state() def _update_variables(self, now): """Retrieve all variable data and update hmvariable states.""" variables = self._homematic.getAllSystemVariables(self._name) if variables is None: return state_change = False for key, value in variables.items(): if key in self._variables and value == self._variables[key]: continue state_change = True self._variables.update({key: value}) if state_change: self.schedule_update_ha_state() def hm_set_variable(self, name, value): """Set variable value on CCU/Homegear.""" if name not in self._variables: _LOGGER.error("Variable %s not found on %s", name, self.name) return old_value = self._variables.get(name) if isinstance(old_value, bool): value = cv.boolean(value) else: value = float(value) self._homematic.setSystemVariable(self.name, name, value) self._variables.update({name: value}) self.schedule_update_ha_state() class HMDevice(Entity): """The HomeMatic device base object.""" def __init__(self, config): """Initialize a generic HomeMatic device.""" self._name = config.get(ATTR_NAME) self._address = config.get(ATTR_ADDRESS) self._interface = config.get(ATTR_INTERFACE) self._channel = config.get(ATTR_CHANNEL) self._state = config.get(ATTR_PARAM) self._unique_id = config.get(ATTR_UNIQUE_ID) self._data = {} self._homematic = None self._hmdevice = None self._connected = False self._available = False # Set parameter to uppercase if self._state: self._state = self._state.upper() async def async_added_to_hass(self): """Load data init callbacks.""" await self.hass.async_add_job(self.link_homematic) @property def unique_id(self): """Return unique ID. HomeMatic entity IDs are unique by default.""" return self._unique_id.replace(" ", "_") @property def should_poll(self): """Return false. HomeMatic states are pushed by the XML-RPC Server.""" return False @property def name(self): """Return the name of the device.""" return self._name @property def available(self): """Return true if device is available.""" return self._available @property def device_state_attributes(self): """Return device specific state attributes.""" attr = {} # Generate a dictionary with attributes for node, data in HM_ATTRIBUTE_SUPPORT.items(): # Is an attribute and exists for this object if node in self._data: value = data[1].get(self._data[node], self._data[node]) attr[data[0]] = value # Static attributes attr['id'] = self._hmdevice.ADDRESS attr['interface'] = self._interface return attr def link_homematic(self): """Connect to HomeMatic.""" if self._connected: return True # Initialize self._homematic = self.hass.data[DATA_HOMEMATIC] self._hmdevice = \ self._homematic.devices[self._interface][self._address] self._connected = True try: # Initialize datapoints of this object self._init_data() self._load_data_from_hm() # Link events from pyhomematic self._subscribe_homematic_events() self._available = not self._hmdevice.UNREACH except Exception as err: # pylint: disable=broad-except self._connected = False _LOGGER.error("Exception while linking %s: %s", self._address, str(err)) def _hm_event_callback(self, device, caller, attribute, value): """Handle all pyhomematic device events.""" _LOGGER.debug("%s received event '%s' value: %s", self._name, attribute, value) has_changed = False # Is data needed for this instance? if attribute in self._data: # Did data change? if self._data[attribute] != value: self._data[attribute] = value has_changed = True # Availability has changed if self.available != (not self._hmdevice.UNREACH): self._available = not self._hmdevice.UNREACH has_changed = True # If it has changed data point, update HASS if has_changed: self.schedule_update_ha_state() def _subscribe_homematic_events(self): """Subscribe all required events to handle job.""" channels_to_sub = set() # Push data to channels_to_sub from hmdevice metadata for metadata in (self._hmdevice.SENSORNODE, self._hmdevice.BINARYNODE, self._hmdevice.ATTRIBUTENODE, self._hmdevice.WRITENODE, self._hmdevice.EVENTNODE, self._hmdevice.ACTIONNODE): for node, channels in metadata.items(): # Data is needed for this instance if node in self._data: # chan is current channel if len(channels) == 1: channel = channels[0] else: channel = self._channel # Prepare for subscription try: channels_to_sub.add(int(channel)) except (ValueError, TypeError): _LOGGER.error("Invalid channel in metadata from %s", self._name) # Set callbacks for channel in channels_to_sub: _LOGGER.debug( "Subscribe channel %d from %s", channel, self._name) self._hmdevice.setEventCallback( callback=self._hm_event_callback, bequeath=False, channel=channel) def _load_data_from_hm(self): """Load first value from pyhomematic.""" if not self._connected: return False # Read data from pyhomematic for metadata, funct in ( (self._hmdevice.ATTRIBUTENODE, self._hmdevice.getAttributeData), (self._hmdevice.WRITENODE, self._hmdevice.getWriteData), (self._hmdevice.SENSORNODE, self._hmdevice.getSensorData), (self._hmdevice.BINARYNODE, self._hmdevice.getBinaryData)): for node in metadata: if metadata[node] and node in self._data: self._data[node] = funct(name=node, channel=self._channel) return True def _hm_set_state(self, value): """Set data to main datapoint.""" if self._state in self._data: self._data[self._state] = value def _hm_get_state(self): """Get data from main datapoint.""" if self._state in self._data: return self._data[self._state] return None def _init_data(self): """Generate a data dict (self._data) from the HomeMatic metadata.""" # Add all attributes to data dictionary for data_note in self._hmdevice.ATTRIBUTENODE: self._data.update({data_note: STATE_UNKNOWN}) # Initialize device specific data self._init_data_struct() def _init_data_struct(self): """Generate a data dictionary from the HomeMatic device metadata.""" raise NotImplementedError
34.840449
79
0.627354
4a27da033fe99116e80f26987518a3c68e02146b
322
py
Python
project_euler/library/number_theory/test_euler_totient.py
cryvate/project-euler
6ed13880d7916c34554559f5f71662a863735eda
[ "MIT" ]
null
null
null
project_euler/library/number_theory/test_euler_totient.py
cryvate/project-euler
6ed13880d7916c34554559f5f71662a863735eda
[ "MIT" ]
9
2017-02-20T23:41:40.000Z
2017-04-16T15:36:54.000Z
project_euler/library/number_theory/test_euler_totient.py
cryvate/project-euler
6ed13880d7916c34554559f5f71662a863735eda
[ "MIT" ]
null
null
null
import pytest from .euler_totient import phi, phi_range from .gcd import gcd @pytest.mark.parametrize('n', range(100, 115)) def test_phi(n: int) -> None: assert phi(n) == len([a for a in range(n) if gcd(a, n) == 1]) def test_phi_range(n: int=100): assert [phi(n) for n in range(1, n + 1)] == phi_range(n)[1:]
23
65
0.645963
4a27ddee11e3f0341ecce51046ba415d44b78ab6
595
py
Python
parser/functions/help.py
UHH-ISS/honeygrove-console
9ff7bd1ab9609276fa4008d0180fdeb500fb9484
[ "MIT" ]
1
2019-03-12T16:35:33.000Z
2019-03-12T16:35:33.000Z
parser/functions/help.py
UHH-ISS/honeygrove-console
9ff7bd1ab9609276fa4008d0180fdeb500fb9484
[ "MIT" ]
null
null
null
parser/functions/help.py
UHH-ISS/honeygrove-console
9ff7bd1ab9609276fa4008d0180fdeb500fb9484
[ "MIT" ]
null
null
null
def help(parser,logic,logging,args=0): if args: for k in args[0]: try: with open("parser/functions/help/" + str(k) + ".txt") as f: for line in f: parser.print(line[:len(line)-1]) except IOError as e: parser.print(k+":command unknown") else: with open("parser/functions/help/help.txt") as f: for line in f: if line in ["\n","\r\n"]: parser.print() else: parser.print(line[:len(line)-1])
33.055556
75
0.440336
4a27ddffd07c9efa007b7b70c6ac6947e91e0fba
4,616
py
Python
pyTrader/trade_stream.py
evanhenri/neural-network-trading-bot
a75b6c118c67ba6e00cffe68b04cbb424c759b3e
[ "MIT" ]
18
2016-05-31T09:32:20.000Z
2021-08-15T17:41:14.000Z
pyTrader/trade_stream.py
nav3van/RNN-Trading-Bot
a75b6c118c67ba6e00cffe68b04cbb424c759b3e
[ "MIT" ]
2
2016-06-19T14:12:37.000Z
2017-03-28T23:18:50.000Z
pyTrader/trade_stream.py
nav3van/RNN-Trading-Bot
a75b6c118c67ba6e00cffe68b04cbb424c759b3e
[ "MIT" ]
9
2016-02-15T12:50:48.000Z
2020-03-18T03:31:22.000Z
import os, sys, time, datetime import urllib.request, urllib.parse, json, codecs, socket from file_check import parent_dir # Dynamically imports the class required for the extension returned by get_output_type # Returns the name of the class and the imported module containing that class def import_class_module(): module = 'sqlite_output' temp_class_name = 'sqlite_obj' temp_imported_class = __import__(module, fromlist=temp_class_name) return temp_class_name, temp_imported_class # Continue asking user for input if an entry that does not correlate to an index of _extension_list is entered # Return user entry once a valid input has been made def get_user_input(_extension_list): while True: try: usr_input = int(input()) except ValueError: print('***Invalid Input***\nEnter a number from 0 to ' + str(len(_extension_list) - 1) + ' inclusive') continue else: if usr_input < 0 or usr_input >= len(_extension_list): print('***Invalid Input***\nEnter a number from 0 to ' + str(len(_extension_list) - 1) + ' inclusive') else: return usr_input # Returns true if api response contains valid data and false otherwise def valid_response(_json_resp): err_originator_desc = 'json response validation' try: if 'btc_usd' not in _json_resp: return False except ValueError as e: store_log([err_originator_desc,e]) return True # Returns BTC-e API response with current exchange rates def http_request(): max_requests = 10 # Specifies how long a socket should wait for a response before timing out socket.setdefaulttimeout(socket_timeout) while max_requests > 0: try: api_request = urllib.request.Request(url, headers=headers) api_response = urllib.request.urlopen(api_request) json_response = json.load(reader(api_response)) if valid_response(json_response): return json_response else: store_log(['***Bad response***', str(json_response)]) except urllib.request.HTTPError as e: print('\nInvalid API response received, attempts remaining: ' + str(max_requests)) store_log(['receiving api response', e]) except Exception as e: print('\nInvalid API response received, attempts remaining: ' + str(max_requests)) store_log(['api request', e]) max_requests -= 1 time.sleep(2) print('***API request threshold met with no valid responses received***') def get_trade_data(): while True: json_obj = http_request() g_output_object.open_output_file() timestamp = datetime.datetime.fromtimestamp(int(json_obj['btc_usd']['updated'])).strftime('%Y%m%d%H%M%S') g_output_object.store_output(timestamp, json_obj['btc_usd']['sell'], json_obj['btc_usd']['buy']) sys.stdout.write("\rTrade record count = %i" % g_output_object.record_count()) sys.stdout.flush() time.sleep(2) def store_log(_argv): with open(parent_dir + 'build/data/error.log', 'a+') as log_file: log_file.write('\n/-------------------\\\n') for argc in _argv: if argc == _argv[0]: log_file.write('Error occurred during ' + argc + ' at ' + str(datetime.datetime.now())) else: log_file.write(str(argc)) log_file.write('\n\\-------------------/\n') log_file.close() current_dir_oath = os.path.realpath(os.path.dirname('')) out_dir_path = parent_dir + 'build/data/' out_file_name = 'input.sqlite' socket_timeout = 15 url = 'https://btc-e.com/api/3/ticker/btc_usd' headers = {'User-Agent': 'Mozilla/5.0 (X11; Linux i686) AppleWebKit/537.17 (KHTML, like Gecko) Chrome/24.0.1312.27 Safari/537.17'} reader = codecs.getreader('utf-8') def main(): class_name, imported_class = import_class_module() mod_attr = getattr(imported_class, class_name) output_path = out_dir_path + out_file_name global g_output_object g_output_object = mod_attr(output_path) # http_request() is wrapped in an infinite loop. If an exception is encountered during http_request(), # the local infinite loop within that function will break. However, the infinite loop below will prevent # execution from stopping. while True: get_trade_data() store_log(['http_request() infinite loop', ['Pausing for 2 seconds before re-initiating request sequence']]) time.sleep(2) if __name__ == '__main__': main()
37.225806
130
0.660745
4a27de18ec7994b8a36402ede71dde14dc6b4a7a
2,303
py
Python
runtime/config.py
netturpin/enjoliver
9700470939da40ff84304af6e8c7210a5fd693a4
[ "MIT" ]
11
2017-11-06T08:42:55.000Z
2021-01-08T11:01:02.000Z
runtime/config.py
netturpin/enjoliver
9700470939da40ff84304af6e8c7210a5fd693a4
[ "MIT" ]
7
2017-12-28T12:05:50.000Z
2021-04-02T15:04:46.000Z
runtime/config.py
netturpin/enjoliver
9700470939da40ff84304af6e8c7210a5fd693a4
[ "MIT" ]
4
2017-11-08T10:03:31.000Z
2018-06-03T17:59:43.000Z
#! /usr/bin/env python3 import json import os def rkt_path_d(path): rkt_data = "/tmp/rkt-data" data = { "rktKind": "paths", "rktVersion": "v1", "data": rkt_data, "stage1-images": "%s/rkt" % path } try: os.makedirs("%s/paths.d/" % path) except OSError: pass try: os.makedirs(rkt_data) except OSError: pass with open("%s/paths.d/paths.json" % path, "w") as f: json.dump(data, f) def rkt_stage1_d(path): data = { "rktKind": "stage1", "rktVersion": "v1", "name": "coreos.com/rkt/stage1-coreos", "version": "v1.27.0", "location": "%s/rkt/stage1-coreos.aci" % path } try: os.makedirs("%s/stage1.d/" % path) except OSError: pass with open("%s/stage1.d/coreos.json" % path, "w") as f: json.dump(data, f) def dgr_config(path): data = [ "targetWorkDir: %s/target" % path, "rkt:", " path: %s/rkt/rkt" % path, " insecureOptions: [http, image]", " dir: %s/data" % path, " localConfig: %s" % path, " systemConfig: %s" % path, " userConfig: %s" % path, " trustKeysFromHttps: false", " noStore: false", " storeOnly: false", "push:", ' url: "http://enjoliver.local"', ] with open("%s/config.yml" % path, "w") as f: f.write("\n".join(data) + "\n") def acserver_config(path): data = [ "api:", " serverName: enjoliver.local", " port: 80", "storage:", " unsigned: true", " allowOverride: true", ' rootPath: %s/acserver.d' % path, ] with open("%s/ac-config.yml" % path, "w") as f: f.write("\n".join(data) + "\n") with open("/etc/hosts") as f: for l in f: if "enjoliver.local" in l: return try: with open("/etc/hosts", 'a') as f: f.write("172.20.0.1 enjoliver.local # added by %s\n" % os.path.abspath(__file__)) except IOError: print("/etc/hosts ignore: run as sudo") if __name__ == "__main__": pwd = os.path.dirname(os.path.abspath(__file__)) rkt_path_d(pwd) rkt_stage1_d(pwd) dgr_config(pwd) acserver_config(pwd)
24.763441
93
0.508467
4a27dfb560d1dd57b6f7ca7ec4fcd258965e5c3a
606
py
Python
Cuatrimestres/1/TeoriadeControlI/python/trayectoriafiltrada.py
chelizalde/DCA
34fd4d500117a9c0a75b979b8b0f121c1992b9dc
[ "MIT" ]
null
null
null
Cuatrimestres/1/TeoriadeControlI/python/trayectoriafiltrada.py
chelizalde/DCA
34fd4d500117a9c0a75b979b8b0f121c1992b9dc
[ "MIT" ]
null
null
null
Cuatrimestres/1/TeoriadeControlI/python/trayectoriafiltrada.py
chelizalde/DCA
34fd4d500117a9c0a75b979b8b0f121c1992b9dc
[ "MIT" ]
1
2021-03-20T12:44:13.000Z
2021-03-20T12:44:13.000Z
#!/usr/bin/env python from matplotlib.pyplot import plot, text, axis, grid, gca, xticks, yticks, savefig from numpy import exp, abs, linspace, sin x = linspace(0, 1.2, 200) fun = exp(-4.5*x)*(1-sin(13*x)) exp = exp(-3*x) + 0.1 plot(x, fun) plot(x, exp) text(0.22, 0.15, r'$\xi(t)$', fontsize=28) text(0.425, 0.425, r'$k e^{-\alpha t}$', fontsize=28) axis([-0.2, 1.2, -0.2, 1.2]) grid(True) xticks([0]) yticks([0]) a = gca() a.set_xticklabels([]) a.set_yticklabels([]) # Se guarda la figura en la misma carpeta savefig("trayectoriafiltrada.pdf", bbox_inches='tight', pad_inches=0, transparent="True")
23.307692
89
0.653465
4a27e0b7767999ba6bbb28b8529830843554582f
1,086
py
Python
password_policies/urls.py
BuildingRobotics/django-password-policies
8b754ca8d10a4cf2b56a8c5f9e46f5384f492eb9
[ "BSD-3-Clause" ]
null
null
null
password_policies/urls.py
BuildingRobotics/django-password-policies
8b754ca8d10a4cf2b56a8c5f9e46f5384f492eb9
[ "BSD-3-Clause" ]
1
2019-09-17T10:09:29.000Z
2019-09-17T16:56:54.000Z
password_policies/urls.py
BuildingRobotics/django-password-policies
8b754ca8d10a4cf2b56a8c5f9e46f5384f492eb9
[ "BSD-3-Clause" ]
null
null
null
from __future__ import absolute_import from django.conf.urls import url from password_policies.views import PasswordChangeFormView from password_policies.views import PasswordChangeDoneView from password_policies.views import PasswordResetCompleteView from password_policies.views import PasswordResetConfirmView from password_policies.views import PasswordResetFormView from password_policies.views import PasswordResetDoneView urlpatterns = [ url(r'^change/done/$', PasswordChangeDoneView.as_view(), name="password_change_done"), url(r'^change/$', PasswordChangeFormView.as_view(), name="password_change"), url(r'^reset/$', PasswordResetFormView.as_view(), name="password_reset"), url(r'^reset/complete/$', PasswordResetCompleteView.as_view(), name="password_reset_complete"), url(r'^reset/confirm/([0-9A-Za-z_\-]+)/([0-9A-Za-z]{1,13})/([0-9A-Za-z-=_]{1,32})/$', PasswordResetConfirmView.as_view(), name="password_reset_confirm"), url(r'^reset/done/$', PasswordResetDoneView.as_view(), name="password_reset_done"), ]
43.44
89
0.754144
4a27e11eb834c0d073b2977c55c63d8a636565c8
719
py
Python
src/bin/device.py
a-t-0/python-keyboard-drivers
47535bf8cafb4c10ffba653be8fed3712d05de57
[ "BSD-2-Clause" ]
2
2018-08-25T09:45:55.000Z
2021-03-04T14:20:06.000Z
src/bin/device.py
a-t-0/python-keyboard-drivers
47535bf8cafb4c10ffba653be8fed3712d05de57
[ "BSD-2-Clause" ]
null
null
null
src/bin/device.py
a-t-0/python-keyboard-drivers
47535bf8cafb4c10ffba653be8fed3712d05de57
[ "BSD-2-Clause" ]
1
2021-03-04T14:59:40.000Z
2021-03-04T14:59:40.000Z
""" See LICENSE for more information. See README.md for building instructions and usage examples. """ import evdev # coomunicate w/ kernel I/O interface import sys # access system calls class DEVICE (object): def __init__ (self): self.device_file = '/dev/input/event5' # create kernel interface self.device = evdev.InputDevice(self.device_file) def _detach_kernel_driver (self): """ tell the kernel to relase control of the device """ self.device.grab() def _attach_kernel_driver (self): """ tell the kernel to take back control of the device """ self.device.ungrab() def _exit (self): """ call the exit sys-call and cleanup """ self._attach_kernel_driver() sys.exit(0)
18.435897
52
0.703755
4a27e1a35d2f427467f736dd00edc6996919d915
34,625
py
Python
Filters/General/Testing/Python/clipQuadraticCells.py
jasper-yeh/VtkDotNet
84b56f781cb511694e4380cebfb245bbefe2560b
[ "BSD-3-Clause" ]
3
2020-06-20T23:31:06.000Z
2021-01-11T02:17:16.000Z
Filters/General/Testing/Python/clipQuadraticCells.py
jasper-yeh/VtkDotNet
84b56f781cb511694e4380cebfb245bbefe2560b
[ "BSD-3-Clause" ]
1
2020-12-01T23:21:02.000Z
2020-12-02T23:44:43.000Z
Filters/General/Testing/Python/clipQuadraticCells.py
jasper-yeh/VtkDotNet
84b56f781cb511694e4380cebfb245bbefe2560b
[ "BSD-3-Clause" ]
5
2015-10-09T04:12:29.000Z
2021-12-15T16:57:11.000Z
#!/usr/bin/env python import sys import vtk from vtk.test import Testing from vtk.util.misc import vtkGetDataRoot VTK_DATA_ROOT = vtkGetDataRoot() # Prevent .pyc files being created. # Stops the vtk source being polluted # by .pyc files. sys.dont_write_bytecode = True import backdrop # clip every quadratic cell type # Create a scene with one of each cell type. # QuadraticEdge edgePoints = vtk.vtkPoints() edgePoints.SetNumberOfPoints(3) edgePoints.InsertPoint(0, 0, 0, 0) edgePoints.InsertPoint(1, 1.0, 0, 0) edgePoints.InsertPoint(2, 0.5, 0.25, 0) edgeScalars = vtk.vtkFloatArray() edgeScalars.SetNumberOfTuples(3) edgeScalars.InsertValue(0, 0.0) edgeScalars.InsertValue(1, 0.0) edgeScalars.InsertValue(2, 0.9) aEdge = vtk.vtkQuadraticEdge() aEdge.GetPointIds().SetId(0, 0) aEdge.GetPointIds().SetId(1, 1) aEdge.GetPointIds().SetId(2, 2) aEdgeGrid = vtk.vtkUnstructuredGrid() aEdgeGrid.Allocate(1, 1) aEdgeGrid.InsertNextCell(aEdge.GetCellType(), aEdge.GetPointIds()) aEdgeGrid.SetPoints(edgePoints) aEdgeGrid.GetPointData().SetScalars(edgeScalars) edgeclips = vtk.vtkClipDataSet() edgeclips.SetInputData(aEdgeGrid) edgeclips.SetValue(0.5) aEdgeclipMapper = vtk.vtkDataSetMapper() aEdgeclipMapper.SetInputConnection(edgeclips.GetOutputPort()) aEdgeclipMapper.ScalarVisibilityOff() aEdgeMapper = vtk.vtkDataSetMapper() aEdgeMapper.SetInputData(aEdgeGrid) aEdgeMapper.ScalarVisibilityOff() aEdgeActor = vtk.vtkActor() aEdgeActor.SetMapper(aEdgeMapper) aEdgeActor.GetProperty().SetRepresentationToWireframe() aEdgeActor.GetProperty().SetAmbient(1.0) aEdgeclipActor = vtk.vtkActor() aEdgeclipActor.SetMapper(aEdgeclipMapper) aEdgeclipActor.GetProperty().BackfaceCullingOn() aEdgeclipActor.GetProperty().SetAmbient(1.0) # Quadratic triangle triPoints = vtk.vtkPoints() triPoints.SetNumberOfPoints(6) triPoints.InsertPoint(0, 0.0, 0.0, 0.0) triPoints.InsertPoint(1, 1.0, 0.0, 0.0) triPoints.InsertPoint(2, 0.5, 0.8, 0.0) triPoints.InsertPoint(3, 0.5, 0.0, 0.0) triPoints.InsertPoint(4, 0.75, 0.4, 0.0) triPoints.InsertPoint(5, 0.25, 0.4, 0.0) triScalars = vtk.vtkFloatArray() triScalars.SetNumberOfTuples(6) triScalars.InsertValue(0, 0.0) triScalars.InsertValue(1, 0.0) triScalars.InsertValue(2, 0.0) triScalars.InsertValue(3, 1.0) triScalars.InsertValue(4, 0.0) triScalars.InsertValue(5, 0.0) aTri = vtk.vtkQuadraticTriangle() aTri.GetPointIds().SetId(0, 0) aTri.GetPointIds().SetId(1, 1) aTri.GetPointIds().SetId(2, 2) aTri.GetPointIds().SetId(3, 3) aTri.GetPointIds().SetId(4, 4) aTri.GetPointIds().SetId(5, 5) aTriGrid = vtk.vtkUnstructuredGrid() aTriGrid.Allocate(1, 1) aTriGrid.InsertNextCell(aTri.GetCellType(), aTri.GetPointIds()) aTriGrid.SetPoints(triPoints) aTriGrid.GetPointData().SetScalars(triScalars) triclips = vtk.vtkClipDataSet() triclips.SetInputData(aTriGrid) triclips.SetValue(0.5) aTriclipMapper = vtk.vtkDataSetMapper() aTriclipMapper.SetInputConnection(triclips.GetOutputPort()) aTriclipMapper.ScalarVisibilityOff() aTriMapper = vtk.vtkDataSetMapper() aTriMapper.SetInputData(aTriGrid) aTriMapper.ScalarVisibilityOff() aTriActor = vtk.vtkActor() aTriActor.SetMapper(aTriMapper) aTriActor.GetProperty().SetRepresentationToWireframe() aTriActor.GetProperty().SetAmbient(1.0) aTriclipActor = vtk.vtkActor() aTriclipActor.SetMapper(aTriclipMapper) aTriclipActor.GetProperty().BackfaceCullingOn() aTriclipActor.GetProperty().SetAmbient(1.0) # Quadratic quadrilateral quadPoints = vtk.vtkPoints() quadPoints.SetNumberOfPoints(8) quadPoints.InsertPoint(0, 0.0, 0.0, 0.0) quadPoints.InsertPoint(1, 1.0, 0.0, 0.0) quadPoints.InsertPoint(2, 1.0, 1.0, 0.0) quadPoints.InsertPoint(3, 0.0, 1.0, 0.0) quadPoints.InsertPoint(4, 0.5, 0.0, 0.0) quadPoints.InsertPoint(5, 1.0, 0.5, 0.0) quadPoints.InsertPoint(6, 0.5, 1.0, 0.0) quadPoints.InsertPoint(7, 0.0, 0.5, 0.0) quadScalars = vtk.vtkFloatArray() quadScalars.SetNumberOfTuples(8) quadScalars.InsertValue(0, 0.0) quadScalars.InsertValue(1, 0.0) quadScalars.InsertValue(2, 1.0) quadScalars.InsertValue(3, 1.0) quadScalars.InsertValue(4, 1.0) quadScalars.InsertValue(5, 0.0) quadScalars.InsertValue(6, 0.0) quadScalars.InsertValue(7, 0.0) aQuad = vtk.vtkQuadraticQuad() aQuad.GetPointIds().SetId(0, 0) aQuad.GetPointIds().SetId(1, 1) aQuad.GetPointIds().SetId(2, 2) aQuad.GetPointIds().SetId(3, 3) aQuad.GetPointIds().SetId(4, 4) aQuad.GetPointIds().SetId(5, 5) aQuad.GetPointIds().SetId(6, 6) aQuad.GetPointIds().SetId(7, 7) aQuadGrid = vtk.vtkUnstructuredGrid() aQuadGrid.Allocate(1, 1) aQuadGrid.InsertNextCell(aQuad.GetCellType(), aQuad.GetPointIds()) aQuadGrid.SetPoints(quadPoints) aQuadGrid.GetPointData().SetScalars(quadScalars) quadclips = vtk.vtkClipDataSet() quadclips.SetInputData(aQuadGrid) quadclips.SetValue(0.5) aQuadclipMapper = vtk.vtkDataSetMapper() aQuadclipMapper.SetInputConnection(quadclips.GetOutputPort()) aQuadclipMapper.ScalarVisibilityOff() aQuadMapper = vtk.vtkDataSetMapper() aQuadMapper.SetInputData(aQuadGrid) aQuadMapper.ScalarVisibilityOff() aQuadActor = vtk.vtkActor() aQuadActor.SetMapper(aQuadMapper) aQuadActor.GetProperty().SetRepresentationToWireframe() aQuadActor.GetProperty().SetAmbient(1.0) aQuadclipActor = vtk.vtkActor() aQuadclipActor.SetMapper(aQuadclipMapper) aQuadclipActor.GetProperty().BackfaceCullingOn() aQuadclipActor.GetProperty().SetAmbient(1.0) # BiQuadratic quadrilateral BquadPoints = vtk.vtkPoints() BquadPoints.SetNumberOfPoints(9) BquadPoints.InsertPoint(0, 0.0, 0.0, 0.0) BquadPoints.InsertPoint(1, 1.0, 0.0, 0.0) BquadPoints.InsertPoint(2, 1.0, 1.0, 0.0) BquadPoints.InsertPoint(3, 0.0, 1.0, 0.0) BquadPoints.InsertPoint(4, 0.5, 0.0, 0.0) BquadPoints.InsertPoint(5, 1.0, 0.5, 0.0) BquadPoints.InsertPoint(6, 0.5, 1.0, 0.0) BquadPoints.InsertPoint(7, 0.0, 0.5, 0.0) BquadPoints.InsertPoint(8, 0.5, 0.5, 0.0) BquadScalars = vtk.vtkFloatArray() BquadScalars.SetNumberOfTuples(9) BquadScalars.InsertValue(0, 1.0) BquadScalars.InsertValue(1, 1.0) BquadScalars.InsertValue(2, 1.0) BquadScalars.InsertValue(3, 1.0) BquadScalars.InsertValue(4, 0.0) BquadScalars.InsertValue(5, 0.0) BquadScalars.InsertValue(6, 0.0) BquadScalars.InsertValue(7, 0.0) BquadScalars.InsertValue(8, 1.0) BQuad = vtk.vtkBiQuadraticQuad() BQuad.GetPointIds().SetId(0, 0) BQuad.GetPointIds().SetId(1, 1) BQuad.GetPointIds().SetId(2, 2) BQuad.GetPointIds().SetId(3, 3) BQuad.GetPointIds().SetId(4, 4) BQuad.GetPointIds().SetId(5, 5) BQuad.GetPointIds().SetId(6, 6) BQuad.GetPointIds().SetId(7, 7) BQuad.GetPointIds().SetId(8, 8) BQuadGrid = vtk.vtkUnstructuredGrid() BQuadGrid.Allocate(1, 1) BQuadGrid.InsertNextCell(BQuad.GetCellType(), BQuad.GetPointIds()) BQuadGrid.SetPoints(BquadPoints) BQuadGrid.GetPointData().SetScalars(BquadScalars) Bquadclips = vtk.vtkClipDataSet() Bquadclips.SetInputData(BQuadGrid) Bquadclips.SetValue(0.5) BQuadclipMapper = vtk.vtkDataSetMapper() BQuadclipMapper.SetInputConnection(Bquadclips.GetOutputPort()) BQuadclipMapper.ScalarVisibilityOff() BQuadMapper = vtk.vtkDataSetMapper() BQuadMapper.SetInputData(BQuadGrid) BQuadMapper.ScalarVisibilityOff() BQuadActor = vtk.vtkActor() BQuadActor.SetMapper(BQuadMapper) BQuadActor.GetProperty().SetRepresentationToWireframe() BQuadActor.GetProperty().SetAmbient(1.0) BQuadclipActor = vtk.vtkActor() BQuadclipActor.SetMapper(BQuadclipMapper) BQuadclipActor.GetProperty().BackfaceCullingOn() BQuadclipActor.GetProperty().SetAmbient(1.0) # Quadratic linear quadrilateral QLquadPoints = vtk.vtkPoints() QLquadPoints.SetNumberOfPoints(6) QLquadPoints.InsertPoint(0, 0.0, 0.0, 0.0) QLquadPoints.InsertPoint(1, 1.0, 0.0, 0.0) QLquadPoints.InsertPoint(2, 1.0, 1.0, 0.0) QLquadPoints.InsertPoint(3, 0.0, 1.0, 0.0) QLquadPoints.InsertPoint(4, 0.5, 0.0, 0.0) QLquadPoints.InsertPoint(5, 0.5, 1.0, 0.0) QLquadScalars = vtk.vtkFloatArray() QLquadScalars.SetNumberOfTuples(6) QLquadScalars.InsertValue(0, 1.0) QLquadScalars.InsertValue(1, 1.0) QLquadScalars.InsertValue(2, 0.0) QLquadScalars.InsertValue(3, 0.0) QLquadScalars.InsertValue(4, 0.0) QLquadScalars.InsertValue(5, 1.0) QLQuad = vtk.vtkQuadraticLinearQuad() QLQuad.GetPointIds().SetId(0, 0) QLQuad.GetPointIds().SetId(1, 1) QLQuad.GetPointIds().SetId(2, 2) QLQuad.GetPointIds().SetId(3, 3) QLQuad.GetPointIds().SetId(4, 4) QLQuad.GetPointIds().SetId(5, 5) QLQuadGrid = vtk.vtkUnstructuredGrid() QLQuadGrid.Allocate(1, 1) QLQuadGrid.InsertNextCell(QLQuad.GetCellType(), QLQuad.GetPointIds()) QLQuadGrid.SetPoints(QLquadPoints) QLQuadGrid.GetPointData().SetScalars(QLquadScalars) QLquadclips = vtk.vtkClipDataSet() QLquadclips.SetInputData(QLQuadGrid) QLquadclips.SetValue(0.5) QLQuadclipMapper = vtk.vtkDataSetMapper() QLQuadclipMapper.SetInputConnection(QLquadclips.GetOutputPort()) QLQuadclipMapper.ScalarVisibilityOff() QLQuadMapper = vtk.vtkDataSetMapper() QLQuadMapper.SetInputData(QLQuadGrid) QLQuadMapper.ScalarVisibilityOff() QLQuadActor = vtk.vtkActor() QLQuadActor.SetMapper(QLQuadMapper) QLQuadActor.GetProperty().SetRepresentationToWireframe() QLQuadActor.GetProperty().SetAmbient(1.0) QLQuadclipActor = vtk.vtkActor() QLQuadclipActor.SetMapper(QLQuadclipMapper) QLQuadclipActor.GetProperty().BackfaceCullingOn() QLQuadclipActor.GetProperty().SetAmbient(1.0) # Quadratic tetrahedron tetPoints = vtk.vtkPoints() tetPoints.SetNumberOfPoints(10) tetPoints.InsertPoint(0, 0.0, 0.0, 0.0) tetPoints.InsertPoint(1, 1.0, 0.0, 0.0) tetPoints.InsertPoint(2, 0.5, 0.8, 0.0) tetPoints.InsertPoint(3, 0.5, 0.4, 1.0) tetPoints.InsertPoint(4, 0.5, 0.0, 0.0) tetPoints.InsertPoint(5, 0.75, 0.4, 0.0) tetPoints.InsertPoint(6, 0.25, 0.4, 0.0) tetPoints.InsertPoint(7, 0.25, 0.2, 0.5) tetPoints.InsertPoint(8, 0.75, 0.2, 0.5) tetPoints.InsertPoint(9, 0.50, 0.6, 0.5) tetScalars = vtk.vtkFloatArray() tetScalars.SetNumberOfTuples(10) tetScalars.InsertValue(0, 1.0) tetScalars.InsertValue(1, 1.0) tetScalars.InsertValue(2, 1.0) tetScalars.InsertValue(3, 1.0) tetScalars.InsertValue(4, 0.0) tetScalars.InsertValue(5, 0.0) tetScalars.InsertValue(6, 0.0) tetScalars.InsertValue(7, 0.0) tetScalars.InsertValue(8, 0.0) tetScalars.InsertValue(9, 0.0) aTet = vtk.vtkQuadraticTetra() aTet.GetPointIds().SetId(0, 0) aTet.GetPointIds().SetId(1, 1) aTet.GetPointIds().SetId(2, 2) aTet.GetPointIds().SetId(3, 3) aTet.GetPointIds().SetId(4, 4) aTet.GetPointIds().SetId(5, 5) aTet.GetPointIds().SetId(6, 6) aTet.GetPointIds().SetId(7, 7) aTet.GetPointIds().SetId(8, 8) aTet.GetPointIds().SetId(9, 9) aTetGrid = vtk.vtkUnstructuredGrid() aTetGrid.Allocate(1, 1) aTetGrid.InsertNextCell(aTet.GetCellType(), aTet.GetPointIds()) aTetGrid.SetPoints(tetPoints) aTetGrid.GetPointData().SetScalars(tetScalars) tetclips = vtk.vtkClipDataSet() tetclips.SetInputData(aTetGrid) tetclips.SetValue(0.5) aTetclipMapper = vtk.vtkDataSetMapper() aTetclipMapper.SetInputConnection(tetclips.GetOutputPort()) aTetclipMapper.ScalarVisibilityOff() aTetMapper = vtk.vtkDataSetMapper() aTetMapper.SetInputData(aTetGrid) aTetMapper.ScalarVisibilityOff() aTetActor = vtk.vtkActor() aTetActor.SetMapper(aTetMapper) aTetActor.GetProperty().SetRepresentationToWireframe() aTetActor.GetProperty().SetAmbient(1.0) aTetclipActor = vtk.vtkActor() aTetclipActor.SetMapper(aTetclipMapper) aTetclipActor.GetProperty().SetAmbient(1.0) # Quadratic hexahedron hexPoints = vtk.vtkPoints() hexPoints.SetNumberOfPoints(20) hexPoints.InsertPoint(0, 0, 0, 0) hexPoints.InsertPoint(1, 1, 0, 0) hexPoints.InsertPoint(2, 1, 1, 0) hexPoints.InsertPoint(3, 0, 1, 0) hexPoints.InsertPoint(4, 0, 0, 1) hexPoints.InsertPoint(5, 1, 0, 1) hexPoints.InsertPoint(6, 1, 1, 1) hexPoints.InsertPoint(7, 0, 1, 1) hexPoints.InsertPoint(8, 0.5, 0, 0) hexPoints.InsertPoint(9, 1, 0.5, 0) hexPoints.InsertPoint(10, 0.5, 1, 0) hexPoints.InsertPoint(11, 0, 0.5, 0) hexPoints.InsertPoint(12, 0.5, 0, 1) hexPoints.InsertPoint(13, 1, 0.5, 1) hexPoints.InsertPoint(14, 0.5, 1, 1) hexPoints.InsertPoint(15, 0, 0.5, 1) hexPoints.InsertPoint(16, 0, 0, 0.5) hexPoints.InsertPoint(17, 1, 0, 0.5) hexPoints.InsertPoint(18, 1, 1, 0.5) hexPoints.InsertPoint(19, 0, 1, 0.5) hexScalars = vtk.vtkFloatArray() hexScalars.SetNumberOfTuples(20) hexScalars.InsertValue(0, 1.0) hexScalars.InsertValue(1, 1.0) hexScalars.InsertValue(2, 1.0) hexScalars.InsertValue(3, 1.0) hexScalars.InsertValue(4, 1.0) hexScalars.InsertValue(5, 1.0) hexScalars.InsertValue(6, 1.0) hexScalars.InsertValue(7, 1.0) hexScalars.InsertValue(8, 0.0) hexScalars.InsertValue(9, 0.0) hexScalars.InsertValue(10, 0.0) hexScalars.InsertValue(11, 0.0) hexScalars.InsertValue(12, 0.0) hexScalars.InsertValue(13, 0.0) hexScalars.InsertValue(14, 0.0) hexScalars.InsertValue(15, 0.0) hexScalars.InsertValue(16, 0.0) hexScalars.InsertValue(17, 0.0) hexScalars.InsertValue(18, 0.0) hexScalars.InsertValue(19, 0.0) aHex = vtk.vtkQuadraticHexahedron() aHex.GetPointIds().SetId(0, 0) aHex.GetPointIds().SetId(1, 1) aHex.GetPointIds().SetId(2, 2) aHex.GetPointIds().SetId(3, 3) aHex.GetPointIds().SetId(4, 4) aHex.GetPointIds().SetId(5, 5) aHex.GetPointIds().SetId(6, 6) aHex.GetPointIds().SetId(7, 7) aHex.GetPointIds().SetId(8, 8) aHex.GetPointIds().SetId(9, 9) aHex.GetPointIds().SetId(10, 10) aHex.GetPointIds().SetId(11, 11) aHex.GetPointIds().SetId(12, 12) aHex.GetPointIds().SetId(13, 13) aHex.GetPointIds().SetId(14, 14) aHex.GetPointIds().SetId(15, 15) aHex.GetPointIds().SetId(16, 16) aHex.GetPointIds().SetId(17, 17) aHex.GetPointIds().SetId(18, 18) aHex.GetPointIds().SetId(19, 19) aHexGrid = vtk.vtkUnstructuredGrid() aHexGrid.Allocate(1, 1) aHexGrid.InsertNextCell(aHex.GetCellType(), aHex.GetPointIds()) aHexGrid.SetPoints(hexPoints) aHexGrid.GetPointData().SetScalars(hexScalars) hexclips = vtk.vtkClipDataSet() hexclips.SetInputData(aHexGrid) hexclips.SetValue(0.5) aHexclipMapper = vtk.vtkDataSetMapper() aHexclipMapper.SetInputConnection(hexclips.GetOutputPort()) aHexclipMapper.ScalarVisibilityOff() aHexMapper = vtk.vtkDataSetMapper() aHexMapper.SetInputData(aHexGrid) aHexMapper.ScalarVisibilityOff() aHexActor = vtk.vtkActor() aHexActor.SetMapper(aHexMapper) aHexActor.GetProperty().SetRepresentationToWireframe() aHexActor.GetProperty().SetAmbient(1.0) aHexclipActor = vtk.vtkActor() aHexclipActor.SetMapper(aHexclipMapper) aHexclipActor.GetProperty().SetAmbient(1.0) # TriQuadratic hexahedron TQhexPoints = vtk.vtkPoints() TQhexPoints.SetNumberOfPoints(27) TQhexPoints.InsertPoint(0, 0, 0, 0) TQhexPoints.InsertPoint(1, 1, 0, 0) TQhexPoints.InsertPoint(2, 1, 1, 0) TQhexPoints.InsertPoint(3, 0, 1, 0) TQhexPoints.InsertPoint(4, 0, 0, 1) TQhexPoints.InsertPoint(5, 1, 0, 1) TQhexPoints.InsertPoint(6, 1, 1, 1) TQhexPoints.InsertPoint(7, 0, 1, 1) TQhexPoints.InsertPoint(8, 0.5, 0, 0) TQhexPoints.InsertPoint(9, 1, 0.5, 0) TQhexPoints.InsertPoint(10, 0.5, 1, 0) TQhexPoints.InsertPoint(11, 0, 0.5, 0) TQhexPoints.InsertPoint(12, 0.5, 0, 1) TQhexPoints.InsertPoint(13, 1, 0.5, 1) TQhexPoints.InsertPoint(14, 0.5, 1, 1) TQhexPoints.InsertPoint(15, 0, 0.5, 1) TQhexPoints.InsertPoint(16, 0, 0, 0.5) TQhexPoints.InsertPoint(17, 1, 0, 0.5) TQhexPoints.InsertPoint(18, 1, 1, 0.5) TQhexPoints.InsertPoint(19, 0, 1, 0.5) TQhexPoints.InsertPoint(22, 0.5, 0, 0.5) TQhexPoints.InsertPoint(21, 1, 0.5, 0.5) TQhexPoints.InsertPoint(23, 0.5, 1, 0.5) TQhexPoints.InsertPoint(20, 0, 0.5, 0.5) TQhexPoints.InsertPoint(24, 0.5, 0.5, 0.0) TQhexPoints.InsertPoint(25, 0.5, 0.5, 1) TQhexPoints.InsertPoint(26, 0.5, 0.5, 0.5) TQhexScalars = vtk.vtkFloatArray() TQhexScalars.SetNumberOfTuples(27) TQhexScalars.InsertValue(0, 1.0) TQhexScalars.InsertValue(1, 1.0) TQhexScalars.InsertValue(2, 1.0) TQhexScalars.InsertValue(3, 1.0) TQhexScalars.InsertValue(4, 1.0) TQhexScalars.InsertValue(5, 1.0) TQhexScalars.InsertValue(6, 1.0) TQhexScalars.InsertValue(7, 1.0) TQhexScalars.InsertValue(8, 0.0) TQhexScalars.InsertValue(9, 0.0) TQhexScalars.InsertValue(10, 0.0) TQhexScalars.InsertValue(11, 0.0) TQhexScalars.InsertValue(12, 0.0) TQhexScalars.InsertValue(13, 0.0) TQhexScalars.InsertValue(14, 0.0) TQhexScalars.InsertValue(15, 0.0) TQhexScalars.InsertValue(16, 0.0) TQhexScalars.InsertValue(17, 0.0) TQhexScalars.InsertValue(18, 0.0) TQhexScalars.InsertValue(19, 0.0) TQhexScalars.InsertValue(20, 0.0) TQhexScalars.InsertValue(21, 0.0) TQhexScalars.InsertValue(22, 0.0) TQhexScalars.InsertValue(23, 0.0) TQhexScalars.InsertValue(24, 0.0) TQhexScalars.InsertValue(25, 0.0) TQhexScalars.InsertValue(26, 0.0) TQHex = vtk.vtkTriQuadraticHexahedron() TQHex.GetPointIds().SetId(0, 0) TQHex.GetPointIds().SetId(1, 1) TQHex.GetPointIds().SetId(2, 2) TQHex.GetPointIds().SetId(3, 3) TQHex.GetPointIds().SetId(4, 4) TQHex.GetPointIds().SetId(5, 5) TQHex.GetPointIds().SetId(6, 6) TQHex.GetPointIds().SetId(7, 7) TQHex.GetPointIds().SetId(8, 8) TQHex.GetPointIds().SetId(9, 9) TQHex.GetPointIds().SetId(10, 10) TQHex.GetPointIds().SetId(11, 11) TQHex.GetPointIds().SetId(12, 12) TQHex.GetPointIds().SetId(13, 13) TQHex.GetPointIds().SetId(14, 14) TQHex.GetPointIds().SetId(15, 15) TQHex.GetPointIds().SetId(16, 16) TQHex.GetPointIds().SetId(17, 17) TQHex.GetPointIds().SetId(18, 18) TQHex.GetPointIds().SetId(19, 19) TQHex.GetPointIds().SetId(20, 20) TQHex.GetPointIds().SetId(21, 21) TQHex.GetPointIds().SetId(22, 22) TQHex.GetPointIds().SetId(23, 23) TQHex.GetPointIds().SetId(24, 24) TQHex.GetPointIds().SetId(25, 25) TQHex.GetPointIds().SetId(26, 26) TQHexGrid = vtk.vtkUnstructuredGrid() TQHexGrid.Allocate(1, 1) TQHexGrid.InsertNextCell(TQHex.GetCellType(), TQHex.GetPointIds()) TQHexGrid.SetPoints(TQhexPoints) TQHexGrid.GetPointData().SetScalars(TQhexScalars) TQhexclips = vtk.vtkClipDataSet() TQhexclips.SetInputData(TQHexGrid) TQhexclips.SetValue(0.5) TQHexclipMapper = vtk.vtkDataSetMapper() TQHexclipMapper.SetInputConnection(TQhexclips.GetOutputPort()) TQHexclipMapper.ScalarVisibilityOff() TQHexMapper = vtk.vtkDataSetMapper() TQHexMapper.SetInputData(TQHexGrid) TQHexMapper.ScalarVisibilityOff() TQHexActor = vtk.vtkActor() TQHexActor.SetMapper(TQHexMapper) TQHexActor.GetProperty().SetRepresentationToWireframe() TQHexActor.GetProperty().SetAmbient(1.0) TQHexclipActor = vtk.vtkActor() TQHexclipActor.SetMapper(TQHexclipMapper) TQHexclipActor.GetProperty().SetAmbient(1.0) # BiQuadratic Quadratic hexahedron BQhexPoints = vtk.vtkPoints() BQhexPoints.SetNumberOfPoints(24) BQhexPoints.InsertPoint(0, 0, 0, 0) BQhexPoints.InsertPoint(1, 1, 0, 0) BQhexPoints.InsertPoint(2, 1, 1, 0) BQhexPoints.InsertPoint(3, 0, 1, 0) BQhexPoints.InsertPoint(4, 0, 0, 1) BQhexPoints.InsertPoint(5, 1, 0, 1) BQhexPoints.InsertPoint(6, 1, 1, 1) BQhexPoints.InsertPoint(7, 0, 1, 1) BQhexPoints.InsertPoint(8, 0.5, 0, 0) BQhexPoints.InsertPoint(9, 1, 0.5, 0) BQhexPoints.InsertPoint(10, 0.5, 1, 0) BQhexPoints.InsertPoint(11, 0, 0.5, 0) BQhexPoints.InsertPoint(12, 0.5, 0, 1) BQhexPoints.InsertPoint(13, 1, 0.5, 1) BQhexPoints.InsertPoint(14, 0.5, 1, 1) BQhexPoints.InsertPoint(15, 0, 0.5, 1) BQhexPoints.InsertPoint(16, 0, 0, 0.5) BQhexPoints.InsertPoint(17, 1, 0, 0.5) BQhexPoints.InsertPoint(18, 1, 1, 0.5) BQhexPoints.InsertPoint(19, 0, 1, 0.5) BQhexPoints.InsertPoint(22, 0.5, 0, 0.5) BQhexPoints.InsertPoint(21, 1, 0.5, 0.5) BQhexPoints.InsertPoint(23, 0.5, 1, 0.5) BQhexPoints.InsertPoint(20, 0, 0.5, 0.5) BQhexScalars = vtk.vtkFloatArray() BQhexScalars.SetNumberOfTuples(24) BQhexScalars.InsertValue(0, 1.0) BQhexScalars.InsertValue(1, 1.0) BQhexScalars.InsertValue(2, 1.0) BQhexScalars.InsertValue(3, 1.0) BQhexScalars.InsertValue(4, 1.0) BQhexScalars.InsertValue(5, 1.0) BQhexScalars.InsertValue(6, 1.0) BQhexScalars.InsertValue(7, 1.0) BQhexScalars.InsertValue(8, 0.0) BQhexScalars.InsertValue(9, 0.0) BQhexScalars.InsertValue(10, 0.0) BQhexScalars.InsertValue(11, 0.0) BQhexScalars.InsertValue(12, 0.0) BQhexScalars.InsertValue(13, 0.0) BQhexScalars.InsertValue(14, 0.0) BQhexScalars.InsertValue(15, 0.0) BQhexScalars.InsertValue(16, 0.0) BQhexScalars.InsertValue(17, 0.0) BQhexScalars.InsertValue(18, 0.0) BQhexScalars.InsertValue(19, 0.0) BQhexScalars.InsertValue(20, 0.0) BQhexScalars.InsertValue(21, 0.0) BQhexScalars.InsertValue(22, 0.0) BQhexScalars.InsertValue(23, 0.0) BQHex = vtk.vtkBiQuadraticQuadraticHexahedron() BQHex.GetPointIds().SetId(0, 0) BQHex.GetPointIds().SetId(1, 1) BQHex.GetPointIds().SetId(2, 2) BQHex.GetPointIds().SetId(3, 3) BQHex.GetPointIds().SetId(4, 4) BQHex.GetPointIds().SetId(5, 5) BQHex.GetPointIds().SetId(6, 6) BQHex.GetPointIds().SetId(7, 7) BQHex.GetPointIds().SetId(8, 8) BQHex.GetPointIds().SetId(9, 9) BQHex.GetPointIds().SetId(10, 10) BQHex.GetPointIds().SetId(11, 11) BQHex.GetPointIds().SetId(12, 12) BQHex.GetPointIds().SetId(13, 13) BQHex.GetPointIds().SetId(14, 14) BQHex.GetPointIds().SetId(15, 15) BQHex.GetPointIds().SetId(16, 16) BQHex.GetPointIds().SetId(17, 17) BQHex.GetPointIds().SetId(18, 18) BQHex.GetPointIds().SetId(19, 19) BQHex.GetPointIds().SetId(20, 20) BQHex.GetPointIds().SetId(21, 21) BQHex.GetPointIds().SetId(22, 22) BQHex.GetPointIds().SetId(23, 23) BQHexGrid = vtk.vtkUnstructuredGrid() BQHexGrid.Allocate(1, 1) BQHexGrid.InsertNextCell(BQHex.GetCellType(), BQHex.GetPointIds()) BQHexGrid.SetPoints(BQhexPoints) BQHexGrid.GetPointData().SetScalars(BQhexScalars) BQhexclips = vtk.vtkClipDataSet() BQhexclips.SetInputData(BQHexGrid) BQhexclips.SetValue(0.5) BQHexclipMapper = vtk.vtkDataSetMapper() BQHexclipMapper.SetInputConnection(BQhexclips.GetOutputPort()) BQHexclipMapper.ScalarVisibilityOff() BQHexMapper = vtk.vtkDataSetMapper() BQHexMapper.SetInputData(BQHexGrid) BQHexMapper.ScalarVisibilityOff() BQHexActor = vtk.vtkActor() BQHexActor.SetMapper(BQHexMapper) BQHexActor.GetProperty().SetRepresentationToWireframe() BQHexActor.GetProperty().SetAmbient(1.0) BQHexclipActor = vtk.vtkActor() BQHexclipActor.SetMapper(BQHexclipMapper) BQHexclipActor.GetProperty().SetAmbient(1.0) # Quadratic wedge wedgePoints = vtk.vtkPoints() wedgePoints.SetNumberOfPoints(15) wedgePoints.InsertPoint(0, 0, 0, 0) wedgePoints.InsertPoint(1, 1, 0, 0) wedgePoints.InsertPoint(2, 0, 1, 0) wedgePoints.InsertPoint(3, 0, 0, 1) wedgePoints.InsertPoint(4, 1, 0, 1) wedgePoints.InsertPoint(5, 0, 1, 1) wedgePoints.InsertPoint(6, 0.5, 0, 0) wedgePoints.InsertPoint(7, 0.5, 0.5, 0) wedgePoints.InsertPoint(8, 0, 0.5, 0) wedgePoints.InsertPoint(9, 0.5, 0, 1) wedgePoints.InsertPoint(10, 0.5, 0.5, 1) wedgePoints.InsertPoint(11, 0, 0.5, 1) wedgePoints.InsertPoint(12, 0, 0, 0.5) wedgePoints.InsertPoint(13, 1, 0, 0.5) wedgePoints.InsertPoint(14, 0, 1, 0.5) wedgeScalars = vtk.vtkFloatArray() wedgeScalars.SetNumberOfTuples(15) wedgeScalars.InsertValue(0, 1.0) wedgeScalars.InsertValue(1, 1.0) wedgeScalars.InsertValue(2, 1.0) wedgeScalars.InsertValue(3, 1.0) wedgeScalars.InsertValue(4, 1.0) wedgeScalars.InsertValue(5, 1.0) wedgeScalars.InsertValue(6, 0.0) wedgeScalars.InsertValue(7, 0.0) wedgeScalars.InsertValue(8, 0.0) wedgeScalars.InsertValue(9, 0.0) wedgeScalars.InsertValue(10, 0.0) wedgeScalars.InsertValue(11, 0.0) wedgeScalars.InsertValue(12, 0.0) wedgeScalars.InsertValue(13, 0.0) wedgeScalars.InsertValue(14, 0.0) aWedge = vtk.vtkQuadraticWedge() aWedge.GetPointIds().SetId(0, 0) aWedge.GetPointIds().SetId(1, 1) aWedge.GetPointIds().SetId(2, 2) aWedge.GetPointIds().SetId(3, 3) aWedge.GetPointIds().SetId(4, 4) aWedge.GetPointIds().SetId(5, 5) aWedge.GetPointIds().SetId(6, 6) aWedge.GetPointIds().SetId(7, 7) aWedge.GetPointIds().SetId(8, 8) aWedge.GetPointIds().SetId(9, 9) aWedge.GetPointIds().SetId(10, 10) aWedge.GetPointIds().SetId(11, 11) aWedge.GetPointIds().SetId(12, 12) aWedge.GetPointIds().SetId(13, 13) aWedge.GetPointIds().SetId(14, 14) aWedgeGrid = vtk.vtkUnstructuredGrid() aWedgeGrid.Allocate(1, 1) aWedgeGrid.InsertNextCell(aWedge.GetCellType(), aWedge.GetPointIds()) aWedgeGrid.SetPoints(wedgePoints) aWedgeGrid.GetPointData().SetScalars(wedgeScalars) wedgeclips = vtk.vtkClipDataSet() wedgeclips.SetInputData(aWedgeGrid) wedgeclips.SetValue(0.5) aWedgeclipMapper = vtk.vtkDataSetMapper() aWedgeclipMapper.SetInputConnection(wedgeclips.GetOutputPort()) aWedgeclipMapper.ScalarVisibilityOff() aWedgeMapper = vtk.vtkDataSetMapper() aWedgeMapper.SetInputData(aWedgeGrid) aWedgeMapper.ScalarVisibilityOff() aWedgeActor = vtk.vtkActor() aWedgeActor.SetMapper(aWedgeMapper) aWedgeActor.GetProperty().SetRepresentationToWireframe() aWedgeActor.GetProperty().SetAmbient(1.0) aWedgeclipActor = vtk.vtkActor() aWedgeclipActor.SetMapper(aWedgeclipMapper) aWedgeclipActor.GetProperty().SetAmbient(1.0) # Quadratic linear wedge QLwedgePoints = vtk.vtkPoints() QLwedgePoints.SetNumberOfPoints(12) QLwedgePoints.InsertPoint(0, 0, 0, 0) QLwedgePoints.InsertPoint(1, 1, 0, 0) QLwedgePoints.InsertPoint(2, 0, 1, 0) QLwedgePoints.InsertPoint(3, 0, 0, 1) QLwedgePoints.InsertPoint(4, 1, 0, 1) QLwedgePoints.InsertPoint(5, 0, 1, 1) QLwedgePoints.InsertPoint(6, 0.5, 0, 0) QLwedgePoints.InsertPoint(7, 0.5, 0.5, 0) QLwedgePoints.InsertPoint(8, 0, 0.5, 0) QLwedgePoints.InsertPoint(9, 0.5, 0, 1) QLwedgePoints.InsertPoint(10, 0.5, 0.5, 1) QLwedgePoints.InsertPoint(11, 0, 0.5, 1) QLwedgeScalars = vtk.vtkFloatArray() QLwedgeScalars.SetNumberOfTuples(12) QLwedgeScalars.InsertValue(0, 1.0) QLwedgeScalars.InsertValue(1, 1.0) QLwedgeScalars.InsertValue(2, 1.0) QLwedgeScalars.InsertValue(3, 1.0) QLwedgeScalars.InsertValue(4, 1.0) QLwedgeScalars.InsertValue(5, 1.0) QLwedgeScalars.InsertValue(6, 0.0) QLwedgeScalars.InsertValue(7, 0.0) QLwedgeScalars.InsertValue(8, 0.0) QLwedgeScalars.InsertValue(9, 0.0) QLwedgeScalars.InsertValue(10, 0.0) QLwedgeScalars.InsertValue(11, 0.0) QLWedge = vtk.vtkQuadraticLinearWedge() QLWedge.GetPointIds().SetId(0, 0) QLWedge.GetPointIds().SetId(1, 1) QLWedge.GetPointIds().SetId(2, 2) QLWedge.GetPointIds().SetId(3, 3) QLWedge.GetPointIds().SetId(4, 4) QLWedge.GetPointIds().SetId(5, 5) QLWedge.GetPointIds().SetId(6, 6) QLWedge.GetPointIds().SetId(7, 7) QLWedge.GetPointIds().SetId(8, 8) QLWedge.GetPointIds().SetId(9, 9) QLWedge.GetPointIds().SetId(10, 10) QLWedge.GetPointIds().SetId(11, 11) # QLaWedge DebugOn QLWedgeGrid = vtk.vtkUnstructuredGrid() QLWedgeGrid.Allocate(1, 1) QLWedgeGrid.InsertNextCell(QLWedge.GetCellType(), QLWedge.GetPointIds()) QLWedgeGrid.SetPoints(QLwedgePoints) QLWedgeGrid.GetPointData().SetScalars(QLwedgeScalars) QLwedgeclips = vtk.vtkClipDataSet() QLwedgeclips.SetInputData(QLWedgeGrid) QLwedgeclips.SetValue(0.5) QLWedgeclipMapper = vtk.vtkDataSetMapper() QLWedgeclipMapper.SetInputConnection(QLwedgeclips.GetOutputPort()) QLWedgeclipMapper.ScalarVisibilityOff() QLWedgeMapper = vtk.vtkDataSetMapper() QLWedgeMapper.SetInputData(QLWedgeGrid) aWedgeMapper.ScalarVisibilityOff() QLWedgeActor = vtk.vtkActor() QLWedgeActor.SetMapper(QLWedgeMapper) QLWedgeActor.GetProperty().SetRepresentationToWireframe() QLWedgeActor.GetProperty().SetAmbient(1.0) QLWedgeclipActor = vtk.vtkActor() QLWedgeclipActor.SetMapper(QLWedgeclipMapper) QLWedgeclipActor.GetProperty().SetAmbient(1.0) # BiQuadratic wedge BQwedgePoints = vtk.vtkPoints() BQwedgePoints.SetNumberOfPoints(18) BQwedgePoints.InsertPoint(0, 0, 0, 0) BQwedgePoints.InsertPoint(1, 1, 0, 0) BQwedgePoints.InsertPoint(2, 0, 1, 0) BQwedgePoints.InsertPoint(3, 0, 0, 1) BQwedgePoints.InsertPoint(4, 1, 0, 1) BQwedgePoints.InsertPoint(5, 0, 1, 1) BQwedgePoints.InsertPoint(6, 0.5, 0, 0) BQwedgePoints.InsertPoint(7, 0.5, 0.5, 0) BQwedgePoints.InsertPoint(8, 0, 0.5, 0) BQwedgePoints.InsertPoint(9, 0.5, 0, 1) BQwedgePoints.InsertPoint(10, 0.5, 0.5, 1) BQwedgePoints.InsertPoint(11, 0, 0.5, 1) BQwedgePoints.InsertPoint(12, 0, 0, 0.5) BQwedgePoints.InsertPoint(13, 1, 0, 0.5) BQwedgePoints.InsertPoint(14, 0, 1, 0.5) BQwedgePoints.InsertPoint(15, 0.5, 0, 0.5) BQwedgePoints.InsertPoint(16, 0.5, 0.5, 0.5) BQwedgePoints.InsertPoint(17, 0, 0.5, 0.5) BQwedgeScalars = vtk.vtkFloatArray() BQwedgeScalars.SetNumberOfTuples(18) BQwedgeScalars.InsertValue(0, 1.0) BQwedgeScalars.InsertValue(1, 1.0) BQwedgeScalars.InsertValue(2, 1.0) BQwedgeScalars.InsertValue(3, 1.0) BQwedgeScalars.InsertValue(4, 1.0) BQwedgeScalars.InsertValue(5, 1.0) BQwedgeScalars.InsertValue(6, 0.0) BQwedgeScalars.InsertValue(7, 0.0) BQwedgeScalars.InsertValue(8, 0.0) BQwedgeScalars.InsertValue(9, 0.0) BQwedgeScalars.InsertValue(10, 0.0) BQwedgeScalars.InsertValue(11, 0.0) BQwedgeScalars.InsertValue(12, 0.0) BQwedgeScalars.InsertValue(13, 0.0) BQwedgeScalars.InsertValue(14, 0.0) BQwedgeScalars.InsertValue(15, 0.0) BQwedgeScalars.InsertValue(16, 0.0) BQwedgeScalars.InsertValue(17, 0.0) BQWedge = vtk.vtkBiQuadraticQuadraticWedge() BQWedge.GetPointIds().SetId(0, 0) BQWedge.GetPointIds().SetId(1, 1) BQWedge.GetPointIds().SetId(2, 2) BQWedge.GetPointIds().SetId(3, 3) BQWedge.GetPointIds().SetId(4, 4) BQWedge.GetPointIds().SetId(5, 5) BQWedge.GetPointIds().SetId(6, 6) BQWedge.GetPointIds().SetId(7, 7) BQWedge.GetPointIds().SetId(8, 8) BQWedge.GetPointIds().SetId(9, 9) BQWedge.GetPointIds().SetId(10, 10) BQWedge.GetPointIds().SetId(11, 11) BQWedge.GetPointIds().SetId(12, 12) BQWedge.GetPointIds().SetId(13, 13) BQWedge.GetPointIds().SetId(14, 14) BQWedge.GetPointIds().SetId(15, 15) BQWedge.GetPointIds().SetId(16, 16) BQWedge.GetPointIds().SetId(17, 17) # BQWedge DebugOn BQWedgeGrid = vtk.vtkUnstructuredGrid() BQWedgeGrid.Allocate(1, 1) BQWedgeGrid.InsertNextCell(BQWedge.GetCellType(), BQWedge.GetPointIds()) BQWedgeGrid.SetPoints(BQwedgePoints) BQWedgeGrid.GetPointData().SetScalars(BQwedgeScalars) BQwedgeclips = vtk.vtkClipDataSet() BQwedgeclips.SetInputData(BQWedgeGrid) BQwedgeclips.SetValue(0.5) BQWedgeclipMapper = vtk.vtkDataSetMapper() BQWedgeclipMapper.SetInputConnection(BQwedgeclips.GetOutputPort()) BQWedgeclipMapper.ScalarVisibilityOff() BQWedgeMapper = vtk.vtkDataSetMapper() BQWedgeMapper.SetInputData(BQWedgeGrid) BQWedgeMapper.ScalarVisibilityOff() BQWedgeActor = vtk.vtkActor() BQWedgeActor.SetMapper(BQWedgeMapper) BQWedgeActor.GetProperty().SetRepresentationToWireframe() BQWedgeActor.GetProperty().SetAmbient(1.0) BQWedgeclipActor = vtk.vtkActor() BQWedgeclipActor.SetMapper(BQWedgeclipMapper) BQWedgeclipActor.GetProperty().SetAmbient(1.0) # Quadratic pyramid pyraPoints = vtk.vtkPoints() pyraPoints.SetNumberOfPoints(13) pyraPoints.InsertPoint(0, 0, 0, 0) pyraPoints.InsertPoint(1, 1, 0, 0) pyraPoints.InsertPoint(2, 1, 1, 0) pyraPoints.InsertPoint(3, 0, 1, 0) pyraPoints.InsertPoint(4, 0, 0, 1) pyraPoints.InsertPoint(5, 0.5, 0, 0) pyraPoints.InsertPoint(6, 1, 0.5, 0) pyraPoints.InsertPoint(7, 0.5, 1, 0) pyraPoints.InsertPoint(8, 0, 0.5, 0) pyraPoints.InsertPoint(9, 0, 0, 0.5) pyraPoints.InsertPoint(10, 0.5, 0, 0.5) pyraPoints.InsertPoint(11, 0.5, 0.5, 0.5) pyraPoints.InsertPoint(12, 0, 0.5, 0.5) pyraScalars = vtk.vtkFloatArray() pyraScalars.SetNumberOfTuples(13) pyraScalars.InsertValue(0, 1.0) pyraScalars.InsertValue(1, 1.0) pyraScalars.InsertValue(2, 1.0) pyraScalars.InsertValue(3, 1.0) pyraScalars.InsertValue(4, 1.0) pyraScalars.InsertValue(5, 0.0) pyraScalars.InsertValue(6, 0.0) pyraScalars.InsertValue(7, 0.0) pyraScalars.InsertValue(8, 0.0) pyraScalars.InsertValue(9, 0.0) pyraScalars.InsertValue(10, 0.0) pyraScalars.InsertValue(11, 0.0) pyraScalars.InsertValue(12, 0.0) aPyramid = vtk.vtkQuadraticPyramid() aPyramid.GetPointIds().SetId(0, 0) aPyramid.GetPointIds().SetId(1, 1) aPyramid.GetPointIds().SetId(2, 2) aPyramid.GetPointIds().SetId(3, 3) aPyramid.GetPointIds().SetId(4, 4) aPyramid.GetPointIds().SetId(5, 5) aPyramid.GetPointIds().SetId(6, 6) aPyramid.GetPointIds().SetId(7, 7) aPyramid.GetPointIds().SetId(8, 8) aPyramid.GetPointIds().SetId(9, 9) aPyramid.GetPointIds().SetId(10, 10) aPyramid.GetPointIds().SetId(11, 11) aPyramid.GetPointIds().SetId(12, 12) aPyramidGrid = vtk.vtkUnstructuredGrid() aPyramidGrid.Allocate(1, 1) aPyramidGrid.InsertNextCell(aPyramid.GetCellType(), aPyramid.GetPointIds()) aPyramidGrid.SetPoints(pyraPoints) aPyramidGrid.GetPointData().SetScalars(pyraScalars) pyraclips = vtk.vtkClipDataSet() pyraclips.SetInputData(aPyramidGrid) pyraclips.SetValue(0.5) aPyramidclipMapper = vtk.vtkDataSetMapper() aPyramidclipMapper.SetInputConnection(pyraclips.GetOutputPort()) aPyramidclipMapper.ScalarVisibilityOff() aPyramidMapper = vtk.vtkDataSetMapper() aPyramidMapper.SetInputData(aPyramidGrid) aPyramidMapper.ScalarVisibilityOff() aPyramidActor = vtk.vtkActor() aPyramidActor.SetMapper(aPyramidMapper) aPyramidActor.GetProperty().SetRepresentationToWireframe() aPyramidActor.GetProperty().SetAmbient(1.0) aPyramidclipActor = vtk.vtkActor() aPyramidclipActor.SetMapper(aPyramidclipMapper) aPyramidclipActor.GetProperty().SetAmbient(1.0) # Create the rendering related stuff. # Since some of our actors are a single vertex, we need to remove all # cullers so the single vertex actors will render ren1 = vtk.vtkRenderer() ren1.GetCullers().RemoveAllItems() renWin = vtk.vtkRenderWindow() renWin.AddRenderer(ren1) iren = vtk.vtkRenderWindowInteractor() iren.SetRenderWindow(renWin) ren1.SetBackground(.1, .2, .3) renWin.SetSize(400, 200) # specify properties ren1.AddActor(aEdgeActor) ren1.AddActor(aEdgeclipActor) ren1.AddActor(aTriActor) ren1.AddActor(aTriclipActor) ren1.AddActor(aQuadActor) ren1.AddActor(aQuadclipActor) ren1.AddActor(BQuadActor) ren1.AddActor(BQuadclipActor) ren1.AddActor(QLQuadActor) ren1.AddActor(QLQuadclipActor) ren1.AddActor(aTetActor) ren1.AddActor(aTetclipActor) ren1.AddActor(aHexActor) ren1.AddActor(aHexclipActor) ren1.AddActor(TQHexActor) ren1.AddActor(TQHexclipActor) ren1.AddActor(BQHexActor) ren1.AddActor(BQHexclipActor) ren1.AddActor(aWedgeActor) ren1.AddActor(aWedgeclipActor) ren1.AddActor(BQWedgeActor) ren1.AddActor(BQWedgeclipActor) ren1.AddActor(QLWedgeActor) ren1.AddActor(QLWedgeclipActor) ren1.AddActor(aPyramidActor) ren1.AddActor(aPyramidclipActor) # places everyone!! aEdgeclipActor.AddPosition(0, 2, 0) aTriActor.AddPosition(2, 0, 0) aTriclipActor.AddPosition(2, 2, 0) aQuadActor.AddPosition(4, 0, 0) BQuadActor.AddPosition(4, 0, 2) QLQuadActor.AddPosition(4, 0, 4) aQuadclipActor.AddPosition(4, 2, 0) BQuadclipActor.AddPosition(4, 2, 2) QLQuadclipActor.AddPosition(4, 2, 4) aTetActor.AddPosition(6, 0, 0) aTetclipActor.AddPosition(6, 2, 0) aHexActor.AddPosition(8, 0, 0) TQHexActor.AddPosition(8, 0, 2) BQHexActor.AddPosition(8, 0, 4) aHexclipActor.AddPosition(8, 2, 0) TQHexclipActor.AddPosition(8, 2, 2) BQHexclipActor.AddPosition(8, 2, 4) aWedgeActor.AddPosition(10, 0, 0) QLWedgeActor.AddPosition(10, 0, 2) BQWedgeActor.AddPosition(10, 0, 4) aWedgeclipActor.AddPosition(10, 2, 0) QLWedgeclipActor.AddPosition(10, 2, 2) BQWedgeclipActor.AddPosition(10, 2, 4) aPyramidActor.AddPosition(12, 0, 0) aPyramidclipActor.AddPosition(12, 2, 0) [base, back, left] = backdrop.BuildBackdrop(-1, 15, -1, 4, -1, 6, .1) ren1.AddActor(base) base.GetProperty().SetDiffuseColor(.2, .2, .2) ren1.AddActor(left) left.GetProperty().SetDiffuseColor(.2, .2, .2) ren1.AddActor(back) back.GetProperty().SetDiffuseColor(.2, .2, .2) ren1.ResetCamera() ren1.GetActiveCamera().Dolly(2.5) ren1.ResetCameraClippingRange() renWin.Render() # render the image # iren.Initialize() #iren.Start()
34.555888
75
0.784087
4a27e20dab5555f7c75a799cc1fb9c0fada4d32a
24,018
py
Python
tuning.py
droully/Graph-Embedding
820ee2bcb57c7883dc41bec6da0e12222a537331
[ "BSD-3-Clause" ]
null
null
null
tuning.py
droully/Graph-Embedding
820ee2bcb57c7883dc41bec6da0e12222a537331
[ "BSD-3-Clause" ]
null
null
null
tuning.py
droully/Graph-Embedding
820ee2bcb57c7883dc41bec6da0e12222a537331
[ "BSD-3-Clause" ]
null
null
null
#%% """imports""" import itertools import os import pickle import random import time import matplotlib.pyplot as plt import networkx as nx import numpy as np import pandas as pd from openne.models import gae, gf, grarep, lap, line, lle, node2vec, sdne, vgae from tqdm import tqdm from evalne.evaluation.evaluator import LPEvaluator, NCEvaluator from evalne.evaluation.score import Scoresheet from evalne.evaluation.split import EvalSplit from evalne.utils import preprocess as pp from openne.dataloaders import Graph, create_self_defined_dataset # %% """ users = pickle.load(open("data/users.p", "rb")) visits = pickle.load(open("data/visits.p", "rb")) props = pickle.load(open("data/props.p", "rb")) grafos = pickle.load(open("data/grafos.p", "rb")) grafos_test = pickle.load(open("data/grafos_test.p", "rb")) nodesnuevos=[n for n in grafos_test.B_f if n not in grafos.B_f] grafos_test.B_f.remove_nodes_from(nodesnuevos) edgesnuevos=[e for e in grafos_test.B_f.edges if e not in grafos.B_f.edges] grafos_test.B_f.remove_edges_from(list(grafos_test.B.edges)) grafos_test.B_f.add_edges_from(edgesnuevos) grafos.set_features("users",mode="adj") grafos.set_features("props",mode="adj") grafos.set_features("bipartite",mode="adj") """ # %% class Tuning: r""" Clase general de entrenamiento """ def __init__(self,G,root): self.tipo = G.graph["tipo"] self.root = root self.methods_modules_dict = { "line": line.LINE, "node2vec": node2vec.Node2vec,"gf":gf.GraphFactorization,"lap":lap.LaplacianEigenmaps, "sdne": sdne.SDNE,"lle":lle.LLE,"grarep":grarep.GraRep,"gae":gae.GAE,"vgae":vgae.VGAE} self.method_dims_dict = {"line": "dim","gf": "dim", "node2vec": "dim", "lap":"dim","sdne":"encoder_layer_list","lle":"dim", "grarep":'dim',"gae":"output_dim","vgae":"output_dim"} self.methods_params_names_dict = {"line": ["dim", "negative_ratio","lr"], "node2vec": ["dim", "path_length", "num_paths", "p", "q"], "gf":["dim"], "lap":["dim"], "sdne":["encoder_layer_list","alpha", "beta", "nu1","nu2"], "lle":["dim"], 'grarep':["dim","kstep"], 'gae':["output_dim","hiddens","max_degree"], 'vgae':["output_dim","hiddens","max_degree"] } self.methods_params_types_dict = {"line": {"dim": "nat", "negative_ratio": "nat","lr":"ratio"}, "node2vec": {"dim": "nat", "path_length": "nat", "num_paths": "nat", "p": "ratio", "q": "ratio"}, "gf":{"dim":"nat"}, "lap":{"dim":"nat"}, "sdne":{"encoder_layer_list":"ratio","alpha":"ratio", "beta":"gtone", "nu1":"ratio","nu2": "ratio"}, "lle":{"dim":"nat"}, "grarep":{"dim":"nat","kstep":"nat"}, 'gae':{"output_dim":"nat","hiddens":"ratio","max_degree":"nat"}, 'vgae':{"output_dim":"nat","hiddens":"ratio","max_degree":"nat"} } self.training_graph =None self.test_graph= None self.labels = np.array([[node,attrs["label"][0]] for node, attrs in G.nodes(data=True)]) self.task=None self.scoresheet=Scoresheet() self.evaluator=None self.method=None def score(self, method_name,edge_method="hadamard"): r""" metodo que entrega la metrica guardada en el scoresheet; para NC f1 ponderado, para LP auroc Parameters ---------- method_name: str nombre del metodo edge_method: str metodo de embedding de enlace: "l1","l2","hadamard","average" """ if self.task=="nc": return np.mean(self.scoresheet._scoresheet["GPI"][method_name+"_0.8"]["f1_weighted"]) if self.task=="lp": dic_edge_method={"l1":0,"l2":1,"hadamard":2,"average":3} # ['weighted_l1', 'weighted_l2', 'hadamard', 'average'] return np.mean(self.scoresheet._scoresheet["GPI"][method_name]["auroc"][dic_edge_method[edge_method]]) def time(self, method_name): r""" metodo que entrega el tiempo guardado en el scoresheet Parameters ---------- method_name: str nombre del metodo """ if self.task=="nc": return self.scoresheet._scoresheet["GPI"][method_name+"_0.8"]['eval_time'][0] if self.task=="lp": # ['weighted_l1', 'weighted_l2', 'hadamard', 'average'] return self.scoresheet._scoresheet["GPI"][method_name]["eval_time"][0] def HCgen(self, seed, scale): r""" generador de vecinos para hill climbing Parameters ---------- seed: dict diccionario semilla, donde las llaves son los parametros y los valores sus valores scale: dict diccionario escala, donde las llaves son los parametros y los valores que tanto multiplicar o dividir """ aux = seed.copy() yield aux for k, v in seed.items(): if k not in scale: continue if self.methods_params_types_dict[self.method][k] == "nat": aux.update({k: v+scale[k]}) yield aux aux = seed.copy() if v-scale[k] > 0: aux.update({k: v-scale[k]}) yield aux aux = seed.copy() if self.methods_params_types_dict[self.method][k] == "ratio": aux.update({k: v*scale[k]}) yield aux aux = seed.copy() aux.update({k: v/scale[k]}) yield aux aux = seed.copy() if self.methods_params_types_dict[self.method][k] == "gtone": aux.update({k: v+scale[k]}) yield aux aux = seed.copy() if v-scale[k] > 1: aux.update({k: v-scale[k]}) yield aux aux = seed.copy() def TestModel(self,*args): return 0 def TrainModel(self, method, d, savefile=None, **kwargs): r""" Entrena un modelo de embeddings usando un metodo dado por OpenNE OJO IMPORTANTE: algunos modelos sus hiperparametros se les da en la definicion de la instancia: model=loquesea(parametro) y otros cuando se calculan los embeddings: vectors = model(parametro) cual caso es depende del metodo y del parametro!!! (culpa de openNE) Parameters ---------- method: str Metodo de embedding a usar, puede ser "line","node2vec","gf","lap","sdne",'grarep','gae','vgae'. d: int Dimension del embedding. savefile: str Direccion de guardado del embedding, si es None no se guarda. **kwargs: dict Parametros para el metodo. Returns ------- emb: dict Diccionario donde las llaves son los nodos y los valores su embedding. time: float Tiempo de entrenamiento. """ start = time.time() if method=="node2vec" and not nx.is_directed(self.training_graph.G) : dictostr = {node: str(node) for node in self.training_graph.G} self.training_graph.G = nx.relabel_nodes(self.training_graph.G, dictostr) self.training_graph.G = self.training_graph.G.to_directed() model = self.methods_modules_dict[method](dim=d,save=False, **kwargs) vectors = model(self.training_graph,**kwargs) dictoint = {node: int(node) for node in self.training_graph.G} self.training_graph.G = nx.relabel_nodes(self.training_graph.G, dictoint) self.training_graph.G = self.training_graph.G.to_undirected() elif method=="grarep": model = self.methods_modules_dict[method](kstep=kwargs["kstep"],dim=d,save=False) vectors = model(self.training_graph,dim=d,**kwargs) elif method=="gae" or method=="vgae" : kwargs["hiddens"]=[int(kwargs["hiddens"])] model = self.methods_modules_dict[method](output_dim=d,dim=d,save=False,**kwargs) vectors = model(self.training_graph,epochs=kwargs["epochs"]) elif method=="sdne": kwargs["encoder_layer_list"]=[int(kwargs["encoder_layer_list"]),d] model = self.methods_modules_dict[method](**kwargs,save=False) vectors = model(self.training_graph,**kwargs) else: model = self.methods_modules_dict[method](dim=d,save=False, **kwargs) vectors = model(self.training_graph,**kwargs) end = time.time() emb = {str(k): np.array(v) for k, v in vectors.items()} if savefile is not None: model.save_embeddings(savefile) return emb, end-start def TabuSearchParams(self, method, dim, seed={}, scale={}, iters=2, tabu_lenght=2, **kwargs): r""" Busca los mejores hiperparametros de un modelo aplicando lista tabu ---------- method: str Metodo de embedding a usar, puede ser "line","node2vec","gf","lap","sdne",'grarep','gae','vgae'. dim: int Dimension del embedding. seed: dict Diccionario con los hiperparametros con los que se inicia la busqueda, las llaves son el nombre y los valores su valor scale: dict Diccionario con la escala de cada hiperparametro con la que se determinara el iters: int Numero de iteraciones de la lista tabu tabu_lenght: int Largo de la lista tabu **kwargs: dict Parametros extra para el modelo que no se tunearan """ self.method = method self.path = "{}{}/{}/".format(self.root, self.tipo, self.method) os.makedirs(self.path, exist_ok=True) scorehist = pd.DataFrame(columns=self.methods_params_names_dict[self.method]+['f1']) if self.method in ["gf", "lap", "lle"]: iters=1 if self.method=="node2vec": dictostr = {node: str(node) for node in self.training_graph.G} self.training_graph.G = nx.relabel_nodes(self.training_graph.G, dictostr) self.training_graph.G = self.training_graph.G.to_directed() try: self.scoresheet = pickle.load(open(self.path+"scorenc", "rb")) except: self.scoresheet = Scoresheet() tabu_list = tabu_lenght*[" "] best = seed best_score=0 bestCandidate = seed bestCandidateValues = tuple(bestCandidate.values()) #tabu_list.append(bestCandidateValues) #tabu_list = tabu_list[1:] score_dict = {(-1,): 0} for _ in range(iters): bestCandidate_ = bestCandidate bestCandidate = {"dummy": -1} bestCandidateValues=tuple(bestCandidate.values()) bestCandidateScore=score_dict[bestCandidateValues] for candidate in self.HCgen(bestCandidate_, scale): candidateValues = tuple(candidate.values()) params_str = " {:n}"*(len(candidateValues)+1) params_str = params_str.format(dim, *candidateValues) params_str=params_str[1:] method_name ="{} {}".format(self.method,params_str) try: score_dict.update({candidateValues: self.score(method_name)}) except: args = candidate.copy() args.update(kwargs) emb,time=self.TrainModel(self.method, dim, self.path+params_str+".txt", **args) res = self.TestModel(emb,time, method_name) #self.scoresheet.log_results(res) self.scoresheet.write_pickle(self.path+"scorenc") try: os.remove(self.path+"scorenc.txt") except: pass self.scoresheet.write_all(self.path+"scorenc.txt",repeats="all") score_dict.update({candidateValues: self.score(method_name)}) if (candidateValues not in tabu_list) and (score_dict[candidateValues] >= bestCandidateScore): bestCandidate = candidate.copy() bestCandidateValues=tuple(bestCandidate.values()) bestCandidateScore=score_dict[tuple(bestCandidate.values())] scorehist = scorehist.append({**{self.method_dims_dict[self.method]:dim}, **bestCandidate, **{"f1": bestCandidateScore}}, ignore_index=True) if score_dict[bestCandidateValues] > best_score: best = bestCandidate best_score = score_dict[tuple(best.values())] tabu_list.append(bestCandidateValues) tabu_list = tabu_list[1:] types2format = {"nat": '%d',"gtone": '%d', "ratio": '%E'} fmt = [types2format[self.methods_params_types_dict[self.method][v]] for v in self.methods_params_names_dict[self.method]]+['%1.6f'] np.savetxt(self.path+str(dim)+" scorehist.txt",scorehist.values, fmt=fmt) if self.method=="node2vec": dictoint = {node: int(node) for node in self.training_graph.G} self.training_graph.G = nx.relabel_nodes(self.training_graph.G, dictoint) self.training_graph.G = self.training_graph.G.to_undirected() bestvalues=tuple(best.values()) params_str = " {:n}"*(len(bestvalues)+1) params_str = params_str.format(dim, *bestvalues) params_str=params_str[1:] best_method_name="{} {}".format(self.method,params_str) best_time= self.time(best_method_name) if self.task=="nc": return best, best_score, best_time if self.task=="lp": best_l1=self.score(best_method_name,edge_method="l1") best_l2=self.score(best_method_name,edge_method="l2") best_hadamard=self.score(best_method_name,edge_method="hadamard") best_average=self.score(best_method_name,edge_method="average") return best, best_l1, best_l2, best_hadamard, best_average, best_time class LinkPredictionTuning(Tuning): r""" Clase general de entrenamiento y testeo de embeddings de grafos para la tarea de prediccion de enlaces. Parameters ---------- G: NetworkX graph Grafo de entrenamiento. G_test: NetworkX graph Grafo de testeo. root: str directorio en el que se guardaran los resultados """ def __init__(self, G,G_test, root="results/lp/"): super(LinkPredictionTuning, self).__init__(G, root=root) self.task="lp" train_E=G.edges train_E_false=self.GetNegativeEdges(G,len(train_E)) test_E=G_test.edges test_E_false=self.GetNegativeEdges(G_test,len(test_E)) self.split = EvalSplit() self.split.set_splits(train_E, train_E_false=train_E_false, test_E=test_E, test_E_false=test_E_false, TG=G) self.training_graph = create_self_defined_dataset(root_dir="",name_dict={},name="training "+self.tipo, weighted=True, directed=False, attributed=True)() self.training_graph.set_g(G) self.evaluator = LPEvaluator(self.split) def GetNegativeEdges(self, G, n): r""" Metodo auxiliar que muestrea enlaces negativos. Parameters ---------- G: NetworkX graph Grafo bipartito. n: int cantidad de enlaces que muestrear. """ prop_nodes=[n for n, d in G.nodes(data=True) if d['bipartite']==0] user_nodes=[n for n, d in G.nodes(data=True) if d['bipartite']==1] non_edges=[] while len(non_edges) <=n: random_prop = random.choice(prop_nodes) random_user = random.choice(user_nodes) edge=(random_prop,random_user) if G.has_edge(*edge): continue else: non_edges.append(edge) return non_edges def TestModel(self, emb,time=-1, method_name="method_name"): r""" Testea un embedding y lo guarda en el scoresheet. Parameters ---------- emb: dict diccionario de embeddings, llaves son los nodos y los valores una lista con el embedding time: float tiempo de ejecucion del metodo, para guardar en el scoresheet method_name: str nombre del metodo con el que guardar. """ df = pd.DataFrame(emb).T X = df.T.to_dict("list") X = {str(k): np.array(v) for k, v in X.items()} # tiene que ser array por que se hacen sumas self.evaluator.dim=df.shape[1] reslp=[] for edge_method in ["weighted_l1","weighted_l2","hadamard","average"]: #TO DO que no evalue en los 4 embeddings de enlaces res = self.evaluator.evaluate_ne(self.split, X=X,method=method_name,edge_embed_method=edge_method,params={"nw_name":"GPI"}) res.params.update({'eval_time': time}) reslp.append(res) self.scoresheet.log_results(reslp) return reslp class NodeClassificationTuning(Tuning): r""" Clase general de entrenamiento y testeo de embeddings de grafos para la tarea de clasificacion de nodos. Parameters ---------- G: NetworkX graph Grafo. root: str directorio en el que se guardaran los resultados """ def __init__(self, G, root="results/nc/",**kwargs): super(NodeClassificationTuning, self).__init__(G, root=root) self.task="nc" self.training_graph=create_self_defined_dataset(root_dir="",name_dict={},name="test "+self.tipo, weighted=True, directed=False, attributed=True)() self.training_graph.set_g(G) self.evaluator = NCEvaluator(self.training_graph.G, self.labels, nw_name="GPI", num_shuffles=5, traintest_fracs=[0.8], trainvalid_frac=0) def TestModel(self, emb,time=-1, method_name="method_name"): r""" Testea un embedding y lo guarda en el scoresheet. Parameters ---------- emb: dict diccionario de embeddings, llaves son los nodos y los valores una lista con el embedding time: float tiempo de ejecucion del metodo, para guardar en el scoresheet method_name: str nombre del metodo con el que guardar. """ df = pd.DataFrame(emb).T X = df.T.to_dict("list") X = {str(k): np.array(v) for k, v in X.items()}# tiene que ser array por que se hacen sumas self.evaluator.dim=df.shape[1] resnc = self.evaluator.evaluate_ne(X=X, method_name=method_name) for res in resnc: res.params.update({'eval_time': time}) self.scoresheet.log_results(resnc) return resnc # %% def tabu_search(G,task, method,G_test=None,seed={}, scale={}, dims=[10, 30, 50, 100, 300, 500],**kwargs): r""" funcion auxiliar que repite la busqueda tabu para un grafo, tarea, metodo, semilla/escala, y dimensiones especificas Parameters ---------- G: NetworkX graph Grafo. task: str tarea: "nc" o "lp" G_test: NetworkX graph Grafo de testeo (solo para lp) seed: dict diccionario de parametros semilla scale: dict diccionario de parametros escala dims: list lista de dimensiones con las probar **kwargs parametros de los metodos que no se quieren tunera """ if task =="nc": tester=NodeClassificationTuning(G) df=pd.DataFrame(columns=["name","score","time"]) if task =="lp": tester=LinkPredictionTuning(G,G_test) df=pd.DataFrame(columns=["name","l1","l2","hadamard","average","time"]) best_dict={} for d in dims: if task =="nc": best, best_f1, best_time=tester.TabuSearchParams(method=method,dim=d,seed=seed,scale=scale,**kwargs) best_dict.update({"name":best,"score":best_f1,"time":best_time}) if task =="lp": best, best_l1, best_l2, best_hadamard, best_average, best_time=tester.TabuSearchParams(method=method,dim=d,seed=seed,scale=scale,**kwargs) best_dict.update({"name":best,"l1":best_l1,"l2":best_l2,"hadamard":best_hadamard,"average":best_average,"time":best_time}) df=df.append(best_dict,ignore_index=True) df.index=dims df.to_csv("results/"+task+"/"+G.graph["tipo"]+"/"+method+"/dimf1.csv") return df #%% """ for grafo,task in [(grafos.Users_f,"nc")]: tabu_search(grafo,task,"gae",seed={"hiddens":128,"max_degree":0},scale={"hiddens":2,"max_degree":1},iters=2,epochs=200) tabu_search(grafo,task,"vgae",seed={"hiddens":128,"max_degree":0},scale={"hiddens":2,"max_degree":1},iters=2,epochs=200) #tabu_search(grafo,task,"grarep",seed={"kstep": 5}, iters=1) #tabu_search(grafo,task,"gf") #tabu_search(grafo,task,"lap") #tabu_search(grafo,task,"node2vec",seed={"path_length": 20, "num_paths": 10, "p": 0.1, "q": 0.1},scale={"path_length": 5, "num_paths": 5, "p": 10, "q": 10},iters=2, window=4) #tabu_search(grafo,task,"line",seed={"negative_ratio": 15,"lr":0.001 }, iters=1,epochs=10) #tabu_search(grafo,task,"sdne",seed={"encoder_layer_list":128,"alpha":1e-6, "beta":10, "nu1":1e-8,"nu2": 1e-4},scale={"encoder_layer_list":2,"alpha":10, "beta":5, "nu1":10,"nu2":10},epochs=200, iters=3) #%% tabu_search(grafos.B_f,"lp","lap",G_test=grafos_test.B_f) tabu_search(grafos.B_f,"lp","node2vec",seed={"path_length": 20, "num_paths": 10, "p": 0.1, "q": 0.1},scale={"path_length": 5, "num_paths": 5, "p": 10, "q": 10}, window=4, G_test=grafos_test.B_f) tabu_search(grafos.B_f,"lp","line",seed={"negative_ratio": 15,"lr":0.001 }, iters=1,epochs=10,G_test=grafos_test.B_f) tabu_search(grafos.B_f,"lp","gf",G_test=grafos_test.B_f) tabu_search(grafos.B_f,"lp","sdne",seed={"encoder_layer_list":128,"alpha":1e-6, "beta":10, "nu1":1e-8,"nu2": 1e-4},scale={"encoder_layer_list":2,"alpha":10, "beta":5, "nu1":10,"nu2":10},epochs=200, iters=3,G_test=grafos_test.B_f) tabu_search(grafos.B_f,"lp","grarep",seed={"kstep": 5}, iters=1,G_test=grafos_test.B_f) # %% tabu_search(grafos.B_f,"lp","gae",seed={"hiddens":128,"max_degree":0},scale={"hiddens":2,"max_degree":1},G_test=grafos_test.B_f, epochs=200,iters=1) tabu_search(grafos.B_f,"lp","vgae",seed={"hiddens":128,"max_degree":0},scale={"hiddens":2,"max_degree":1},G_test=grafos_test.B_f,epochs=200, iters=1) """ # %%
40.708475
230
0.568657
4a27e34a4fb4adebd3c4077449fe206c39e1a93a
5,093
py
Python
awwards/settings.py
abdirahman-ahmednoor/django-awwards
6502d2eb4dfd3e80943c3d086bb85bb299dd7f18
[ "MIT" ]
null
null
null
awwards/settings.py
abdirahman-ahmednoor/django-awwards
6502d2eb4dfd3e80943c3d086bb85bb299dd7f18
[ "MIT" ]
null
null
null
awwards/settings.py
abdirahman-ahmednoor/django-awwards
6502d2eb4dfd3e80943c3d086bb85bb299dd7f18
[ "MIT" ]
null
null
null
""" Django settings for awwards project. Generated by 'django-admin startproject' using Django 3.2.7. For more information on this file, see https://docs.djangoproject.com/en/3.2/topics/settings/ For the full list of settings and their values, see https://docs.djangoproject.com/en/3.2/ref/settings/ """ from pathlib import Path import os import cloudinary import cloudinary.api import cloudinary.uploader import django_heroku import dj_database_url from decouple import config,Csv # Build paths inside the project like this: BASE_DIR / 'subdir'. BASE_DIR = Path(__file__).resolve().parent.parent # Quick-start development settings - unsuitable for production # See https://docs.djangoproject.com/en/3.2/howto/deployment/checklist/ # SECURITY WARNING: keep the secret key used in production secret! # SECRET_KEY = 'django-insecure-j=dzdvk!rbxpl2h^ncb85c*lz_9%ak$)ezr7q7g2wlphn*m-+_' # SECURITY WARNING: don't run with debug turned on in production! # DEBUG = True # ALLOWED_HOSTS = [] # Application definition INSTALLED_APPS = [ 'django.contrib.admin', 'django.contrib.auth', 'django.contrib.contenttypes', 'django.contrib.sessions', 'django.contrib.messages', 'django.contrib.staticfiles', 'myawwards', 'bootstrap4', 'cloudinary', 'rest_framework', 'rest_framework.authtoken', ] REST_FRAMEWORK = { 'DEFAULT_AUTHENTICATION_CLASSES': ( 'rest_framework.authentication.TokenAuthentication', ) } MIDDLEWARE = [ 'django.middleware.security.SecurityMiddleware', 'django.contrib.sessions.middleware.SessionMiddleware', 'django.middleware.common.CommonMiddleware', 'django.middleware.csrf.CsrfViewMiddleware', 'django.contrib.auth.middleware.AuthenticationMiddleware', 'django.contrib.messages.middleware.MessageMiddleware', 'django.middleware.clickjacking.XFrameOptionsMiddleware', 'whitenoise.middleware.WhiteNoiseMiddleware', ] STATICFILES_STORAGE = 'whitenoise.storage.CompressedManifestStaticFilesStorage' ROOT_URLCONF = 'awwards.urls' TEMPLATES = [ { 'BACKEND': 'django.template.backends.django.DjangoTemplates', 'DIRS': [], 'APP_DIRS': True, 'OPTIONS': { 'context_processors': [ 'django.template.context_processors.debug', 'django.template.context_processors.request', 'django.contrib.auth.context_processors.auth', 'django.contrib.messages.context_processors.messages', 'django.template.context_processors.media', ], }, }, ] WSGI_APPLICATION = 'awwards.wsgi.application' # Database # https://docs.djangoproject.com/en/3.2/ref/settings/#databases MODE=config("MODE", default="dev") SECRET_KEY = config('SECRET_KEY') DEBUG = config('DEBUG', default=False, cast=bool) # development if config('MODE')=="dev": DATABASES = { 'default': { 'ENGINE': 'django.db.backends.postgresql_psycopg2', 'NAME': config('DB_NAME'), 'USER': config('DB_USER'), 'PASSWORD': config('DB_PASSWORD'), 'HOST': config('DB_HOST'), 'PORT': '', } } # production else: DATABASES = { 'default': dj_database_url.config( default=config('DATABASE_URL') ) } db_from_env = dj_database_url.config(conn_max_age=500) DATABASES['default'].update(db_from_env) ALLOWED_HOSTS = config('ALLOWED_HOSTS', cast=Csv()) # DATABASES = { # 'default': { # 'ENGINE': 'django.db.backends.postgresql', # 'NAME': 'awwards', # 'USER': 'blade', # 'PASSWORD':'maziwa', # } # } # Password validation # https://docs.djangoproject.com/en/3.2/ref/settings/#auth-password-validators AUTH_PASSWORD_VALIDATORS = [ { 'NAME': 'django.contrib.auth.password_validation.UserAttributeSimilarityValidator', }, { 'NAME': 'django.contrib.auth.password_validation.MinimumLengthValidator', }, { 'NAME': 'django.contrib.auth.password_validation.CommonPasswordValidator', }, { 'NAME': 'django.contrib.auth.password_validation.NumericPasswordValidator', }, ] # Internationalization # https://docs.djangoproject.com/en/3.2/topics/i18n/ LANGUAGE_CODE = 'en-us' TIME_ZONE = 'Africa/Nairobi' USE_I18N = True USE_L10N = True USE_TZ = True # Static files (CSS, JavaScript, Images) # https://docs.djangoproject.com/en/3.2/howto/static-files/ STATIC_ROOT = os.path.join(BASE_DIR, 'staticfiles') STATIC_URL = '/static/' # Extra places for collectstatic to find static files. STATICFILES_DIRS = ( os.path.join(BASE_DIR, 'static'), ) MEDIA_URL = '/media/' MEDIA_ROOT = os.path.join(BASE_DIR, 'media') # Configure Django App for Heroku. django_heroku.settings(locals()) # Default primary key field type # https://docs.djangoproject.com/en/3.2/ref/settings/#default-auto-field DEFAULT_AUTO_FIELD = 'django.db.models.BigAutoField' cloudinary.config( cloud_name = 'somken-solution-limited', api_key = '844774271144255', api_secret = '8sA1D1HIN1tO3NQrDGeiRdPx5Y4' )
25.852792
91
0.690752
4a27e3753d3d12af47e54d3f15c2fbb9804c37bd
3,429
py
Python
torch/_deploy.py
xiaohanhuang/pytorch
a31aea8eaa99a5ff72b5d002c206cd68d5467a5e
[ "Intel" ]
183
2018-04-06T21:10:36.000Z
2022-03-30T15:05:24.000Z
torch/_deploy.py
xiaohanhuang/pytorch
a31aea8eaa99a5ff72b5d002c206cd68d5467a5e
[ "Intel" ]
818
2020-02-07T02:36:44.000Z
2022-03-31T23:49:44.000Z
torch/_deploy.py
xiaohanhuang/pytorch
a31aea8eaa99a5ff72b5d002c206cd68d5467a5e
[ "Intel" ]
58
2018-06-05T16:40:18.000Z
2022-03-16T15:37:29.000Z
import io import torch from torch.package._package_pickler import create_pickler from torch.package._package_unpickler import PackageUnpickler from torch.package import sys_importer, OrderedImporter, PackageImporter, Importer from torch.serialization import _maybe_decode_ascii def _save_storages(importer, obj): serialized_storages = [] serialized_dtypes = [] importer = importer if isinstance(importer, torch.package.PackageImporter) else None importers: Importer if importer is not None: importers = OrderedImporter(importer, sys_importer) else: importers = sys_importer def persistent_id(obj): if torch.is_storage(obj) or isinstance(obj, torch.storage.TypedStorage): if isinstance(obj, torch.storage.TypedStorage): # TODO: Once we decide to break serialization FC, we can # remove this case storage = obj._storage dtype = obj.dtype else: storage = obj dtype = torch.uint8 serialized_storages.append(obj) serialized_dtypes.append(dtype) return ('storage', len(serialized_storages) - 1) if hasattr(obj, "__reduce_deploy__"): if _serialized_reduces.get(id(obj)) is None: _serialized_reduces[id(obj)] = ( "reduce_deploy", id(obj), *obj.__reduce_deploy__(importers), ) return _serialized_reduces[id(obj)] return None # Write the pickle data for `obj` data_buf = io.BytesIO() pickler = create_pickler(data_buf, importers) pickler.persistent_id = persistent_id pickler.dump(obj) data_value = data_buf.getvalue() return data_value, serialized_storages, serialized_dtypes, importer.zip_reader if importer else None def _load_storages(id, zip_reader, obj_bytes, serialized_storages, serialized_dtypes): def persistent_load(saved_id): assert isinstance(saved_id, tuple) typename = _maybe_decode_ascii(saved_id[0]) data = saved_id[1:] if typename == 'storage': # TODO: Once we decide to break serialization FC, we can # stop wrapping with TypedStorage storage = serialized_storages[data[0]] dtype = serialized_dtypes[data[0]] return torch.storage.TypedStorage( wrap_storage=storage._untyped(), dtype=dtype) if typename == 'reduce_deploy': reduce_id, func, args = data if reduce_id not in _loaded_reduces: _loaded_reduces[reduce_id] = func(_raw_packages[zip_reader], *args) return _loaded_reduces[reduce_id] return None importer: Importer if zip_reader is not None: importer = OrderedImporter(_get_package(zip_reader), sys_importer) else: importer = sys_importer unpickler = PackageUnpickler(importer, io.BytesIO(obj_bytes)) unpickler.persistent_load = persistent_load result = _deploy_objects[id] = unpickler.load() return result def _get_package(zip_reader): if zip_reader not in _raw_packages: _raw_packages[zip_reader] = PackageImporter(zip_reader) return _raw_packages[zip_reader] _raw_packages: dict = {} _deploy_objects: dict = {} _serialized_reduces: dict = {} _loaded_reduces: dict = {}
34.636364
104
0.657334
4a27e396af3f46aea4bdd5c6e868758680795ec8
10,256
py
Python
allauth/account/app_settings.py
chidg/django-allauth
69fe36a5cc542b016d046d716c287ee4b2383797
[ "MIT" ]
null
null
null
allauth/account/app_settings.py
chidg/django-allauth
69fe36a5cc542b016d046d716c287ee4b2383797
[ "MIT" ]
null
null
null
allauth/account/app_settings.py
chidg/django-allauth
69fe36a5cc542b016d046d716c287ee4b2383797
[ "MIT" ]
null
null
null
class AppSettings(object): class AuthenticationMethod: USERNAME = 'username' EMAIL = 'email' USERNAME_EMAIL = 'username_email' class EmailVerificationMethod: # After signing up, keep the user account inactive until the email # address is verified MANDATORY = 'mandatory' # Allow login with unverified email (email verification is # still sent) OPTIONAL = 'optional' # Don't send email verification mails during signup NONE = 'none' def __init__(self, prefix): self.prefix = prefix # If login is by email, email must be required assert (not self.AUTHENTICATION_METHOD == self.AuthenticationMethod.EMAIL) or self.EMAIL_REQUIRED # If login includes email, login must be unique assert (self.AUTHENTICATION_METHOD == self.AuthenticationMethod.USERNAME) or self.UNIQUE_EMAIL assert (self.EMAIL_VERIFICATION != self.EmailVerificationMethod.MANDATORY) \ or self.EMAIL_REQUIRED if not self.USER_MODEL_USERNAME_FIELD: assert not self.USERNAME_REQUIRED assert self.AUTHENTICATION_METHOD \ not in (self.AuthenticationMethod.USERNAME, self.AuthenticationMethod.USERNAME_EMAIL) def _setting(self, name, dflt): from django.conf import settings getter = getattr(settings, 'ALLAUTH_SETTING_GETTER', lambda name, dflt: getattr(settings, name, dflt)) return getter(self.prefix + name, dflt) @property def DEFAULT_HTTP_PROTOCOL(self): return self._setting("DEFAULT_HTTP_PROTOCOL", "http").lower() @property def EMAIL_CONFIRMATION_EXPIRE_DAYS(self): """ Determines the expiration date of email confirmation mails (# of days) """ from django.conf import settings return self._setting("EMAIL_CONFIRMATION_EXPIRE_DAYS", getattr(settings, "EMAIL_CONFIRMATION_DAYS", 3)) @property def EMAIL_CONFIRMATION_AUTHENTICATED_REDIRECT_URL(self): """ The URL to redirect to after a successful email confirmation, in case of an authenticated user """ return self._setting("EMAIL_CONFIRMATION_AUTHENTICATED_REDIRECT_URL", None) @property def EMAIL_CONFIRMATION_ANONYMOUS_REDIRECT_URL(self): """ The URL to redirect to after a successful email confirmation, in case no user is logged in """ from django.conf import settings return self._setting("EMAIL_CONFIRMATION_ANONYMOUS_REDIRECT_URL", settings.LOGIN_URL) @property def EMAIL_CONFIRMATION_COOLDOWN(self): """ The cooldown in seconds during which, after an email confirmation has been sent, a second confirmation email will not be sent. """ return self._setting("EMAIL_CONFIRMATION_COOLDOWN", 3 * 60) @property def EMAIL_REQUIRED(self): """ The user is required to hand over an email address when signing up """ return self._setting("EMAIL_REQUIRED", False) @property def EMAIL_VERIFICATION(self): """ See email verification method """ ret = self._setting("EMAIL_VERIFICATION", self.EmailVerificationMethod.OPTIONAL) # Deal with legacy (boolean based) setting if ret is True: ret = self.EmailVerificationMethod.MANDATORY elif ret is False: ret = self.EmailVerificationMethod.OPTIONAL return ret @property def AUTHENTICATION_METHOD(self): ret = self._setting("AUTHENTICATION_METHOD", self.AuthenticationMethod.USERNAME) return ret @property def EMAIL_MAX_LENGTH(self): """ Adjust max_length of email addresses """ return self._setting("EMAIL_MAX_LENGTH", 254) @property def UNIQUE_EMAIL(self): """ Enforce uniqueness of email addresses """ return self._setting("UNIQUE_EMAIL", True) @property def SIGNUP_EMAIL_ENTER_TWICE(self): """ Signup email verification """ return self._setting("SIGNUP_EMAIL_ENTER_TWICE", False) @property def SIGNUP_PASSWORD_ENTER_TWICE(self): """ Signup password verification """ legacy = self._setting('SIGNUP_PASSWORD_VERIFICATION', True) return self._setting('SIGNUP_PASSWORD_ENTER_TWICE', legacy) @property def PASSWORD_MIN_LENGTH(self): """ Minimum password Length """ from django.conf import settings ret = None if not settings.AUTH_PASSWORD_VALIDATORS: ret = self._setting("PASSWORD_MIN_LENGTH", 6) return ret @property def EMAIL_SUBJECT_PREFIX(self): """ Subject-line prefix to use for email messages sent """ return self._setting("EMAIL_SUBJECT_PREFIX", None) @property def SIGNUP_FORM_CLASS(self): """ Signup form """ return self._setting("SIGNUP_FORM_CLASS", None) @property def USERNAME_REQUIRED(self): """ The user is required to enter a username when signing up """ return self._setting("USERNAME_REQUIRED", True) @property def USERNAME_MIN_LENGTH(self): """ Minimum username Length """ return self._setting("USERNAME_MIN_LENGTH", 1) @property def USERNAME_BLACKLIST(self): """ List of usernames that are not allowed """ return self._setting("USERNAME_BLACKLIST", []) @property def PASSWORD_INPUT_RENDER_VALUE(self): """ render_value parameter as passed to PasswordInput fields """ return self._setting("PASSWORD_INPUT_RENDER_VALUE", False) @property def ADAPTER(self): return self._setting('ADAPTER', 'allauth.account.adapter.DefaultAccountAdapter') @property def CONFIRM_EMAIL_ON_GET(self): return self._setting('CONFIRM_EMAIL_ON_GET', False) @property def AUTHENTICATED_LOGIN_REDIRECTS(self): return self._setting('AUTHENTICATED_LOGIN_REDIRECTS', True) @property def LOGIN_ON_EMAIL_CONFIRMATION(self): """ Automatically log the user in once they confirmed their email address """ return self._setting('LOGIN_ON_EMAIL_CONFIRMATION', False) @property def LOGIN_ON_PASSWORD_RESET(self): """ Automatically log the user in immediately after resetting their password. """ return self._setting('LOGIN_ON_PASSWORD_RESET', False) @property def LOGOUT_REDIRECT_URL(self): return self._setting('LOGOUT_REDIRECT_URL', '/') @property def LOGOUT_ON_GET(self): return self._setting('LOGOUT_ON_GET', False) @property def LOGOUT_ON_PASSWORD_CHANGE(self): return self._setting('LOGOUT_ON_PASSWORD_CHANGE', False) @property def USER_MODEL_USERNAME_FIELD(self): return self._setting('USER_MODEL_USERNAME_FIELD', 'username') @property def USER_MODEL_EMAIL_FIELD(self): return self._setting('USER_MODEL_EMAIL_FIELD', 'email') @property def SESSION_COOKIE_AGE(self): """ Deprecated -- use Django's settings.SESSION_COOKIE_AGE instead """ from django.conf import settings return self._setting('SESSION_COOKIE_AGE', settings.SESSION_COOKIE_AGE) @property def SESSION_REMEMBER(self): """ Controls the life time of the session. Set to `None` to ask the user ("Remember me?"), `False` to not remember, and `True` to always remember. """ return self._setting('SESSION_REMEMBER', None) @property def TEMPLATE_EXTENSION(self): """ A string defining the template extension to use, defaults to `html`. """ return self._setting('TEMPLATE_EXTENSION', 'html') @property def FORMS(self): return self._setting('FORMS', {}) @property def LOGIN_ATTEMPTS_LIMIT(self): """ Number of failed login attempts. When this number is exceeded, the user is prohibited from logging in for the specified `LOGIN_ATTEMPTS_TIMEOUT` """ return self._setting('LOGIN_ATTEMPTS_LIMIT', 5) @property def LOGIN_ATTEMPTS_TIMEOUT(self): """ Time period from last unsuccessful login attempt, during which the user is prohibited from trying to log in. Defaults to 5 minutes. """ return self._setting('LOGIN_ATTEMPTS_TIMEOUT', 60 * 5) @property def EMAIL_CONFIRMATION_HMAC(self): return self._setting('EMAIL_CONFIRMATION_HMAC', True) @property def SALT(self): return self._setting('SALT', 'account') @property def PRESERVE_USERNAME_CASING(self): return self._setting('PRESERVE_USERNAME_CASING', True) @property def USERNAME_VALIDATORS(self): from django.core.exceptions import ImproperlyConfigured from allauth.utils import import_attribute from allauth.utils import get_user_model path = self._setting('USERNAME_VALIDATORS', None) if path: ret = import_attribute(path) if not isinstance(ret, list): raise ImproperlyConfigured( 'ACCOUNT_USERNAME_VALIDATORS is expected to be a list') else: if self.USER_MODEL_USERNAME_FIELD is not None: ret = get_user_model()._meta.get_field( self.USER_MODEL_USERNAME_FIELD).validators else: ret = [] return ret # Ugly? Guido recommends this himself ... # http://mail.python.org/pipermail/python-ideas/2012-May/014969.html import sys # noqa app_settings = AppSettings('ACCOUNT_') app_settings.__name__ = __name__ sys.modules[__name__] = app_settings
31.363914
79
0.63046
4a27e3e1b22bcab46c535f74fbe4c005647a1005
8,869
py
Python
applications/incompressible_fluid_application/test_examples/StillWater_Edgebased.gid/StillWater_Edgebased_script.py
lcirrott/Kratos
8406e73e0ad214c4f89df4e75e9b29d0eb4a47ea
[ "BSD-4-Clause" ]
2
2019-10-25T09:28:10.000Z
2019-11-21T12:51:46.000Z
applications/incompressible_fluid_application/test_examples/StillWater_Edgebased.gid/StillWater_Edgebased_script.py
lcirrott/Kratos
8406e73e0ad214c4f89df4e75e9b29d0eb4a47ea
[ "BSD-4-Clause" ]
13
2019-10-07T12:06:51.000Z
2020-02-18T08:48:33.000Z
applications/incompressible_fluid_application/test_examples/StillWater_Edgebased.gid/StillWater_Edgebased_script.py
lcirrott/Kratos
8406e73e0ad214c4f89df4e75e9b29d0eb4a47ea
[ "BSD-4-Clause" ]
1
2020-06-12T08:51:24.000Z
2020-06-12T08:51:24.000Z
from __future__ import print_function, absolute_import, division #makes KratosMultiphysics backward compatible with python 2.6 and 2.7 import edgebased_levelset_var # # # setting the domain size for the problem to be solved domain_size = edgebased_levelset_var.domain_size import math # import cProfile # # # ATTENTION: here the order is important # including kratos path kratos_path = '../../../..' kratos_benchmarking_path = '../../../../benchmarking' import sys sys.path.append(kratos_path) sys.path.append(kratos_benchmarking_path) import benchmarking # from now on the order is not anymore crucial # # from KratosMultiphysics import * from KratosMultiphysics.IncompressibleFluidApplication import * from KratosMultiphysics.MeshingApplication import * # # def NodeFinder(node_list, X, Y, Z): for node in node_list: if((node.X - X) ** 2 + (node.Y - Y) ** 2 + (node.Z - Z) ** 2 < .000001): return node def BenchmarkCheck(time, node1): benchmarking.Output(time, "Time") benchmarking.Output( node1.GetSolutionStepValue(PRESSURE), "Node 1 pressure", 0.05) benchmarking.Output( node1.GetSolutionStepValue(DISTANCE), "Node 1 distance", 0.05) # defining a model part for the fluid and one for the structure fluid_model_part = ModelPart("FluidPart") # importing the solvers needed import edgebased_levelset_solver edgebased_levelset_solver.AddVariables(fluid_model_part) # introducing input file name input_file_name = edgebased_levelset_var.problem_name # reading the fluid part gid_mode = GiDPostMode.GiD_PostBinary multifile = MultiFileFlag.MultipleFiles deformed_mesh_flag = WriteDeformedMeshFlag.WriteUndeformed write_conditions = WriteConditionsFlag.WriteConditions # selecting output format if(edgebased_levelset_var.print_layers): gid_io = EdgebasedGidIO( input_file_name, gid_mode, multifile, deformed_mesh_flag, write_conditions) else: gid_io = GidIO( input_file_name, gid_mode, multifile, deformed_mesh_flag, write_conditions) model_part_io_fluid = ModelPartIO(input_file_name) model_part_io_fluid.ReadModelPart(fluid_model_part) # setting up the buffer size: SHOULD BE DONE AFTER READING!!! fluid_model_part.SetBufferSize(2) # adding dofs edgebased_levelset_solver.AddDofs(fluid_model_part) # we assume here that all of the internal nodes are marked with a negative distance # set the distance of all of the internal nodes to a small value small_value = 0.0001 n_active = 0 for node in fluid_model_part.Nodes: dist = node.GetSolutionStepValue(DISTANCE) node.SetSolutionStepValue(DISTANCE, 0, node.Y - 5.0) # make sure that the porosity is not zero on any node (set by default to # fluid only) for node in fluid_model_part.Nodes: if(node.GetSolutionStepValue(POROSITY) == 0.0): node.SetSolutionStepValue(POROSITY, 0, 1.0) if(node.GetSolutionStepValue(DIAMETER) == 0.0): node.SetSolutionStepValue(DIAMETER, 0, 1.0) # constructing the solver body_force = Vector(3) body_force[0] = edgebased_levelset_var.body_force_x body_force[1] = edgebased_levelset_var.body_force_y body_force[2] = edgebased_levelset_var.body_force_z if(body_force[0] == 0.0 and body_force[1] == 0.0 and body_force[2] == 0.0): raise "ERROR. Body Force cannot be a ZERO VECTOR" viscosity = edgebased_levelset_var.viscosity density = edgebased_levelset_var.density fluid_solver = edgebased_levelset_solver.EdgeBasedLevelSetSolver( fluid_model_part, domain_size, body_force, viscosity, density) fluid_solver.redistance_frequency = edgebased_levelset_var.redistance_frequency fluid_solver.extrapolation_layers = int( edgebased_levelset_var.extrapolation_layers) fluid_solver.stabdt_pressure_factor = edgebased_levelset_var.stabdt_pressure_factor fluid_solver.stabdt_convection_factor = edgebased_levelset_var.stabdt_convection_factor fluid_solver.use_mass_correction = edgebased_levelset_var.use_mass_correction fluid_solver.tau2_factor = edgebased_levelset_var.tau2_factor fluid_solver.edge_detection_angle = edgebased_levelset_var.edge_detection_angle fluid_solver.assume_constant_pressure = edgebased_levelset_var.assume_constant_pressure # 0 = None; 1 = Ergun; 2 = Custom; fluid_solver.compute_porous_resistance_law = int( edgebased_levelset_var.compute_porous_resistance_law) # print "compute_porous_resistance_law ", fluid_solver.compute_porous_resistance_law fluid_solver.dynamic_tau = 1.0 fluid_solver.Initialize() if(edgebased_levelset_var.wall_law_y > 1e-10): fluid_solver.fluid_solver.ActivateWallResistance( edgebased_levelset_var.wall_law_y) # print("fluid solver created") # settings to be changed max_Dt = edgebased_levelset_var.max_time_step initial_Dt = 0.001 * max_Dt final_time = edgebased_levelset_var.max_time output_dt = edgebased_levelset_var.output_dt safety_factor = edgebased_levelset_var.safety_factor number_of_inital_steps = edgebased_levelset_var.number_of_inital_steps initial_time_step = edgebased_levelset_var.initial_time_step out = 0 original_max_dt = max_Dt # back_node = NodeFinder(fluid_model_part.Nodes, 4.804, 2.0, 0.0) print(back_node) # # mesh to be printed if(edgebased_levelset_var.print_layers == False): mesh_name = 0.0 gid_io.InitializeMesh(mesh_name) gid_io.WriteMesh(fluid_model_part.GetMesh()) gid_io.FinalizeMesh() gid_io.Flush() gid_io.InitializeResults(mesh_name, (fluid_model_part).GetMesh()) max_safety_factor = safety_factor time = 0.0 step = 0 next_output_time = output_dt while(time < final_time): if(step < number_of_inital_steps): max_Dt = initial_time_step else: max_Dt = original_max_dt # progressively increment the safety factor # in the steps that follow a reduction of it safety_factor = safety_factor * 1.2 if(safety_factor > max_safety_factor): safety_factor = max_safety_factor Dt = fluid_solver.EstimateTimeStep(safety_factor, max_Dt) time = time + Dt fluid_model_part.CloneTimeStep(time) print("******** CURRENT TIME = ", time) if(step >= 3): fluid_solver.Solve() BenchmarkCheck(time, back_node) check_dt = fluid_solver.EstimateTimeStep(0.95, max_Dt) if(check_dt < Dt): print("***********************************************************") print("***********************************************************") print("***********************************************************") print(" *** REDUCING THE TIME STEP ***") print("***********************************************************") print("***********************************************************") print("***********************************************************") # we found a velocity too large! we need to reduce the time step # this is to set the database to the value at the beginning of the # step fluid_solver.fluid_solver.ReduceTimeStep(fluid_model_part, time) safety_factor *= edgebased_levelset_var.reduction_on_failure reduced_dt = fluid_solver.EstimateTimeStep(safety_factor, max_Dt) print("time before reduction= ", time) time = time - Dt + reduced_dt print("reduced time = ", time) print("Dt = ", Dt) print("reduced_dt = ", reduced_dt) # this is to set the database to the value at the beginning of the # step fluid_solver.fluid_solver.ReduceTimeStep(fluid_model_part, time) fluid_solver.Solve() if(time >= next_output_time): if(edgebased_levelset_var.print_layers): # writing mesh gid_io.InitializeMesh(time) gid_io.WriteMesh((fluid_model_part).GetMesh()) gid_io.FinalizeMesh() gid_io.InitializeResults(time, (fluid_model_part).GetMesh()) gid_io.WriteNodalResults(PRESSURE, fluid_model_part.Nodes, time, 0) gid_io.WriteNodalResults(POROSITY, fluid_model_part.Nodes, time, 0) gid_io.WriteNodalResults(VELOCITY, fluid_model_part.Nodes, time, 0) gid_io.WriteNodalResults(DISTANCE, fluid_model_part.Nodes, time, 0) gid_io.WriteNodalResults(PRESS_PROJ, fluid_model_part.Nodes, time, 0) # gid_io.WriteNodalResults(LIN_DARCY_COEF,fluid_model_part.Nodes,time,0) # gid_io.WriteNodalResults(NONLIN_DARCY_COEF,fluid_model_part.Nodes,time,0) gid_io.Flush() if(edgebased_levelset_var.print_layers): gid_io.FinalizeResults() next_output_time = time + output_dt out = 0 out = out + 1 step = step + 1 if(edgebased_levelset_var.print_layers == False): gid_io.FinalizeResults()
33.467925
134
0.700755
4a27e3f30e68df4070b8924c9feda6e3a58dc632
1,831
py
Python
InvenTree/common/serializers.py
andytorrestb/InvenTree
a24ad197414b7ec35cd602dc9190e86de5f66ad3
[ "MIT" ]
1
2021-11-18T12:32:03.000Z
2021-11-18T12:32:03.000Z
InvenTree/common/serializers.py
andytorrestb/InvenTree
a24ad197414b7ec35cd602dc9190e86de5f66ad3
[ "MIT" ]
null
null
null
InvenTree/common/serializers.py
andytorrestb/InvenTree
a24ad197414b7ec35cd602dc9190e86de5f66ad3
[ "MIT" ]
null
null
null
""" JSON serializers for common components """ # -*- coding: utf-8 -*- from __future__ import unicode_literals from InvenTree.serializers import InvenTreeModelSerializer from rest_framework import serializers from common.models import InvenTreeSetting, InvenTreeUserSetting class SettingsSerializer(InvenTreeModelSerializer): """ Base serializer for a settings object """ key = serializers.CharField(read_only=True) name = serializers.CharField(read_only=True) description = serializers.CharField(read_only=True) type = serializers.CharField(source='setting_type', read_only=True) choices = serializers.SerializerMethodField() def get_choices(self, obj): """ Returns the choices available for a given item """ results = [] choices = obj.choices() if choices: for choice in choices: results.append({ 'value': choice[0], 'display_name': choice[1], }) return results class GlobalSettingsSerializer(SettingsSerializer): """ Serializer for the InvenTreeSetting model """ class Meta: model = InvenTreeSetting fields = [ 'pk', 'key', 'value', 'name', 'description', 'type', 'choices', ] class UserSettingsSerializer(SettingsSerializer): """ Serializer for the InvenTreeUserSetting model """ user = serializers.PrimaryKeyRelatedField(read_only=True) class Meta: model = InvenTreeUserSetting fields = [ 'pk', 'key', 'value', 'name', 'description', 'user', 'type', 'choices', ]
21.290698
71
0.57728
4a27e439cf3ecc1f0918ad3b51bf5141028f20d7
2,299
py
Python
scripts/diabetes_training_file.py
rohitashwachaks/dp100
7223e75688b0982f757f2a92ecb7b86a71c3f20b
[ "MIT" ]
null
null
null
scripts/diabetes_training_file.py
rohitashwachaks/dp100
7223e75688b0982f757f2a92ecb7b86a71c3f20b
[ "MIT" ]
null
null
null
scripts/diabetes_training_file.py
rohitashwachaks/dp100
7223e75688b0982f757f2a92ecb7b86a71c3f20b
[ "MIT" ]
null
null
null
# Import libraries import os import argparse from azureml.core import Dataset, Run import pandas as pd import numpy as np import joblib from sklearn.model_selection import train_test_split from sklearn.linear_model import LogisticRegression from sklearn.metrics import roc_auc_score from sklearn.metrics import roc_curve import glob # Get script arguments (rgularization rate and file dataset mount point) parser = argparse.ArgumentParser() parser.add_argument('--regularization', type=float, dest='reg_rate', default=0.01, help='regularization rate') parser.add_argument('--input-data', type=str, dest='dataset_folder', help='data mount point') args = parser.parse_args() # Set regularization hyperparameter (passed as an argument to the script) reg = args.reg_rate # Get the experiment run context run = Run.get_context() # load the diabetes dataset print("Loading Data...") data_path = run.input_datasets['training_files'] # Get the training data path from the input # (You could also just use args.dataset_folder if you don't want to rely on a hard-coded friendly name) # Read the files all_files = glob.glob(data_path + "/*.csv") diabetes = pd.concat((pd.read_csv(f) for f in all_files), sort=False) # Separate features and labels X, y = diabetes[['Pregnancies','PlasmaGlucose','DiastolicBloodPressure','TricepsThickness','SerumInsulin','BMI','DiabetesPedigree','Age']].values, diabetes['Diabetic'].values # Split data into training set and test set X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.30, random_state=0) # Train a logistic regression model print('Training a logistic regression model with regularization rate of', reg) run.log('Regularization Rate', np.float(reg)) model = LogisticRegression(C=1/reg, solver="liblinear").fit(X_train, y_train) # calculate accuracy y_hat = model.predict(X_test) acc = np.average(y_hat == y_test) print('Accuracy:', acc) run.log('Accuracy', np.float(acc)) # calculate AUC y_scores = model.predict_proba(X_test) auc = roc_auc_score(y_test,y_scores[:,1]) print('AUC: ' + str(auc)) run.log('AUC', np.float(auc)) os.makedirs('outputs', exist_ok=True) # note file saved in the outputs folder is automatically uploaded into experiment record joblib.dump(value=model, filename='outputs/diabetes_model.pkl') run.complete()
37.080645
174
0.77251
4a27e62bd86932f44883ba5c7db8012df411c4be
2,859
py
Python
code/utils.py
Run542968/Self_Attention_Pytorch
35b5c520904c709f35a9d3e44c0cdba92a35d10b
[ "Apache-2.0" ]
null
null
null
code/utils.py
Run542968/Self_Attention_Pytorch
35b5c520904c709f35a9d3e44c0cdba92a35d10b
[ "Apache-2.0" ]
null
null
null
code/utils.py
Run542968/Self_Attention_Pytorch
35b5c520904c709f35a9d3e44c0cdba92a35d10b
[ "Apache-2.0" ]
null
null
null
from codecs import open import torch def visualize_attention(wts,x_test_pad,word_to_id,filename): wts_add = torch.sum(wts,1) wts_add_np = wts_add.data.numpy() wts_add_list = wts_add_np.tolist() print(wts_add_list) print(len(wts_add_list)) id_to_word = {v:k for k,v in word_to_id.items()} text= [] for test in x_test_pad: text.append(" ".join([id_to_word.get(i) for i in test])) createHTML(text, wts_add_list, filename) print("Attention visualization created for {} samples".format(len(x_test_pad))) return def createHTML(texts, weights, fileName): fileName = "visualization/" + fileName fOut = open(fileName, "w", encoding="utf-8") part1 = """ <html lang="en"> <head> <meta http-equiv="content-type" content="text/html; charset=utf-8"> <style> body { font-family: Sans-Serif; } </style> </head> <body> <h3> Heatmaps </h3> </body> <script> """ part2 = """ var color = "255,0,0"; var ngram_length = 3; var half_ngram = 1; for (var k=0; k < any_text.length; k++) { var tokens = any_text[k].split(" "); var intensity = new Array(tokens.length); var max_intensity = Number.MIN_SAFE_INTEGER; var min_intensity = Number.MAX_SAFE_INTEGER; for (var i = 0; i < intensity.length; i++) { intensity[i] = 0.0; for (var j = -half_ngram; j < ngram_length-half_ngram; j++) { if (i+j < intensity.length && i+j > -1) { intensity[i] += trigram_weights[k][i + j]; } } if (i == 0 || i == intensity.length-1) { intensity[i] /= 2.0; } else { intensity[i] /= 3.0; } if (intensity[i] > max_intensity) { max_intensity = intensity[i]; } if (intensity[i] < min_intensity) { min_intensity = intensity[i]; } } var denominator = max_intensity - min_intensity; for (var i = 0; i < intensity.length; i++) { intensity[i] = (intensity[i] - min_intensity) / denominator; } if (k%2 == 0) { var heat_text = "<p><br><b>Example:</b><br>"; } else { var heat_text = "<b>Example:</b><br>"; } var space = ""; for (var i = 0; i < tokens.length; i++) { heat_text += "<span style='background-color:rgba(" + color + "," + intensity[i] + ")'>" + space + tokens[i] + "</span>"; if (space == "") { space = " "; } } //heat_text += "<p>"; document.body.innerHTML += heat_text; } </script> </html>""" putQuote = lambda x: "\"%s\"" % x textsString = "var any_text = [%s];\n" % (",".join(map(putQuote, texts))) weightsString = "var trigram_weights = [%s];\n" % (",".join(map(str, weights))) fOut.write(part1) fOut.write(textsString) fOut.write(weightsString) fOut.write(part2) fOut.close() return
28.306931
124
0.564533
4a27e6de72ab7c0fd56731ed9995d1ba7d1ad357
66,785
py
Python
rdflib/graph.py
mwatts15/rdflib
047e3e9781a28966ff9b6fd46ec20e459a5a0f11
[ "BSD-3-Clause" ]
1
2021-08-09T16:32:00.000Z
2021-08-09T16:32:00.000Z
rdflib/graph.py
mwatts15/rdflib
047e3e9781a28966ff9b6fd46ec20e459a5a0f11
[ "BSD-3-Clause" ]
null
null
null
rdflib/graph.py
mwatts15/rdflib
047e3e9781a28966ff9b6fd46ec20e459a5a0f11
[ "BSD-3-Clause" ]
null
null
null
from __future__ import absolute_import from __future__ import division from __future__ import print_function from rdflib.term import Literal # required for doctests assert Literal # avoid warning from rdflib.namespace import Namespace # required for doctests assert Namespace # avoid warning __doc__ = """\ RDFLib defines the following kinds of Graphs: * :class:`~rdflib.graph.Graph` * :class:`~rdflib.graph.QuotedGraph` * :class:`~rdflib.graph.ConjunctiveGraph` * :class:`~rdflib.graph.Dataset` Graph ----- An RDF graph is a set of RDF triples. Graphs support the python ``in`` operator, as well as iteration and some operations like union, difference and intersection. see :class:`~rdflib.graph.Graph` Conjunctive Graph ----------------- A Conjunctive Graph is the most relevant collection of graphs that are considered to be the boundary for closed world assumptions. This boundary is equivalent to that of the store instance (which is itself uniquely identified and distinct from other instances of :class:`Store` that signify other Conjunctive Graphs). It is equivalent to all the named graphs within it and associated with a ``_default_`` graph which is automatically assigned a :class:`BNode` for an identifier - if one isn't given. see :class:`~rdflib.graph.ConjunctiveGraph` Quoted graph ------------ The notion of an RDF graph [14] is extended to include the concept of a formula node. A formula node may occur wherever any other kind of node can appear. Associated with a formula node is an RDF graph that is completely disjoint from all other graphs; i.e. has no nodes in common with any other graph. (It may contain the same labels as other RDF graphs; because this is, by definition, a separate graph, considerations of tidiness do not apply between the graph at a formula node and any other graph.) This is intended to map the idea of "{ N3-expression }" that is used by N3 into an RDF graph upon which RDF semantics is defined. see :class:`~rdflib.graph.QuotedGraph` Dataset ------- The RDF 1.1 Dataset, a small extension to the Conjunctive Graph. The primary term is "graphs in the datasets" and not "contexts with quads" so there is a separate method to set/retrieve a graph in a dataset and to operate with dataset graphs. As a consequence of this approach, dataset graphs cannot be identified with blank nodes, a name is always required (RDFLib will automatically add a name if one is not provided at creation time). This implementation includes a convenience method to directly add a single quad to a dataset graph. see :class:`~rdflib.graph.Dataset` Working with graphs =================== Instantiating Graphs with default store (IOMemory) and default identifier (a BNode): >>> g = Graph() >>> g.store.__class__ <class 'rdflib.plugins.memory.IOMemory'> >>> g.identifier.__class__ <class 'rdflib.term.BNode'> Instantiating Graphs with a IOMemory store and an identifier - <http://rdflib.net>: >>> g = Graph('IOMemory', URIRef("http://rdflib.net")) >>> g.identifier rdflib.term.URIRef(u'http://rdflib.net') >>> str(g) # doctest: +NORMALIZE_WHITESPACE "<http://rdflib.net> a rdfg:Graph;rdflib:storage [a rdflib:Store;rdfs:label 'IOMemory']." Creating a ConjunctiveGraph - The top level container for all named Graphs in a 'database': >>> g = ConjunctiveGraph() >>> str(g.default_context) "[a rdfg:Graph;rdflib:storage [a rdflib:Store;rdfs:label 'IOMemory']]." Adding / removing reified triples to Graph and iterating over it directly or via triple pattern: >>> g = Graph() >>> statementId = BNode() >>> print(len(g)) 0 >>> g.add((statementId, RDF.type, RDF.Statement)) >>> g.add((statementId, RDF.subject, ... URIRef(u'http://rdflib.net/store/ConjunctiveGraph'))) >>> g.add((statementId, RDF.predicate, RDFS.label)) >>> g.add((statementId, RDF.object, Literal("Conjunctive Graph"))) >>> print(len(g)) 4 >>> for s, p, o in g: ... print(type(s)) ... <class 'rdflib.term.BNode'> <class 'rdflib.term.BNode'> <class 'rdflib.term.BNode'> <class 'rdflib.term.BNode'> >>> for s, p, o in g.triples((None, RDF.object, None)): ... print(o) ... Conjunctive Graph >>> g.remove((statementId, RDF.type, RDF.Statement)) >>> print(len(g)) 3 ``None`` terms in calls to :meth:`~rdflib.graph.Graph.triples` can be thought of as "open variables". Graph support set-theoretic operators, you can add/subtract graphs, as well as intersection (with multiplication operator g1*g2) and xor (g1 ^ g2). Note that BNode IDs are kept when doing set-theoretic operations, this may or may not be what you want. Two named graphs within the same application probably want share BNode IDs, two graphs with data from different sources probably not. If your BNode IDs are all generated by RDFLib they are UUIDs and unique. >>> g1 = Graph() >>> g2 = Graph() >>> u = URIRef(u'http://example.com/foo') >>> g1.add([u, RDFS.label, Literal('foo')]) >>> g1.add([u, RDFS.label, Literal('bar')]) >>> g2.add([u, RDFS.label, Literal('foo')]) >>> g2.add([u, RDFS.label, Literal('bing')]) >>> len(g1 + g2) # adds bing as label 3 >>> len(g1 - g2) # removes foo 1 >>> len(g1 * g2) # only foo 1 >>> g1 += g2 # now g1 contains everything Graph Aggregation - ConjunctiveGraphs and ReadOnlyGraphAggregate within the same store: >>> store = plugin.get('IOMemory', Store)() >>> g1 = Graph(store) >>> g2 = Graph(store) >>> g3 = Graph(store) >>> stmt1 = BNode() >>> stmt2 = BNode() >>> stmt3 = BNode() >>> g1.add((stmt1, RDF.type, RDF.Statement)) >>> g1.add((stmt1, RDF.subject, ... URIRef(u'http://rdflib.net/store/ConjunctiveGraph'))) >>> g1.add((stmt1, RDF.predicate, RDFS.label)) >>> g1.add((stmt1, RDF.object, Literal("Conjunctive Graph"))) >>> g2.add((stmt2, RDF.type, RDF.Statement)) >>> g2.add((stmt2, RDF.subject, ... URIRef(u'http://rdflib.net/store/ConjunctiveGraph'))) >>> g2.add((stmt2, RDF.predicate, RDF.type)) >>> g2.add((stmt2, RDF.object, RDFS.Class)) >>> g3.add((stmt3, RDF.type, RDF.Statement)) >>> g3.add((stmt3, RDF.subject, ... URIRef(u'http://rdflib.net/store/ConjunctiveGraph'))) >>> g3.add((stmt3, RDF.predicate, RDFS.comment)) >>> g3.add((stmt3, RDF.object, Literal( ... "The top-level aggregate graph - The sum " + ... "of all named graphs within a Store"))) >>> len(list(ConjunctiveGraph(store).subjects(RDF.type, RDF.Statement))) 3 >>> len(list(ReadOnlyGraphAggregate([g1,g2]).subjects( ... RDF.type, RDF.Statement))) 2 ConjunctiveGraphs have a :meth:`~rdflib.graph.ConjunctiveGraph.quads` method which returns quads instead of triples, where the fourth item is the Graph (or subclass thereof) instance in which the triple was asserted: >>> uniqueGraphNames = set( ... [graph.identifier for s, p, o, graph in ConjunctiveGraph(store ... ).quads((None, RDF.predicate, None))]) >>> len(uniqueGraphNames) 3 >>> unionGraph = ReadOnlyGraphAggregate([g1, g2]) >>> uniqueGraphNames = set( ... [graph.identifier for s, p, o, graph in unionGraph.quads( ... (None, RDF.predicate, None))]) >>> len(uniqueGraphNames) 2 Parsing N3 from a string >>> g2 = Graph() >>> src = ''' ... @prefix rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#> . ... @prefix rdfs: <http://www.w3.org/2000/01/rdf-schema#> . ... [ a rdf:Statement ; ... rdf:subject <http://rdflib.net/store#ConjunctiveGraph>; ... rdf:predicate rdfs:label; ... rdf:object "Conjunctive Graph" ] . ... ''' >>> g2 = g2.parse(data=src, format='n3') >>> print(len(g2)) 4 Using Namespace class: >>> RDFLib = Namespace('http://rdflib.net/') >>> RDFLib.ConjunctiveGraph rdflib.term.URIRef(u'http://rdflib.net/ConjunctiveGraph') >>> RDFLib['Graph'] rdflib.term.URIRef(u'http://rdflib.net/Graph') """ import logging logger = logging.getLogger(__name__) # import md5 import random import warnings from hashlib import md5 from rdflib.namespace import RDF, RDFS, SKOS from rdflib import plugin, exceptions, query from rdflib.term import Node, URIRef, Genid from rdflib.term import BNode import rdflib.term from rdflib.paths import Path from rdflib.store import Store from rdflib.serializer import Serializer from rdflib.parser import Parser from rdflib.parser import create_input_source from rdflib.namespace import NamespaceManager from rdflib.resource import Resource from rdflib.collection import Collection import os import shutil import tempfile from six import BytesIO from six import b from six.moves.urllib.parse import urlparse __all__ = [ 'Graph', 'ConjunctiveGraph', 'QuotedGraph', 'Seq', 'ModificationException', 'Dataset', 'UnSupportedAggregateOperation', 'ReadOnlyGraphAggregate'] class Graph(Node): """An RDF Graph The constructor accepts one argument, the 'store' that will be used to store the graph data (see the 'store' package for stores currently shipped with rdflib). Stores can be context-aware or unaware. Unaware stores take up (some) less space but cannot support features that require context, such as true merging/demerging of sub-graphs and provenance. The Graph constructor can take an identifier which identifies the Graph by name. If none is given, the graph is assigned a BNode for its identifier. For more on named graphs, see: http://www.w3.org/2004/03/trix/ """ def __init__(self, store='default', identifier=None, namespace_manager=None): super(Graph, self).__init__() self.__identifier = identifier or BNode() if not isinstance(self.__identifier, Node): self.__identifier = URIRef(self.__identifier) if not isinstance(store, Store): # TODO: error handling self.__store = store = plugin.get(store, Store)() else: self.__store = store self.__namespace_manager = namespace_manager self.context_aware = False self.formula_aware = False self.default_union = False def __get_store(self): return self.__store store = property(__get_store) # read-only attr def __get_identifier(self): return self.__identifier identifier = property(__get_identifier) # read-only attr def _get_namespace_manager(self): if self.__namespace_manager is None: self.__namespace_manager = NamespaceManager(self) return self.__namespace_manager def _set_namespace_manager(self, nm): self.__namespace_manager = nm namespace_manager = property(_get_namespace_manager, _set_namespace_manager, doc="this graph's namespace-manager") def __repr__(self): return "<Graph identifier=%s (%s)>" % (self.identifier, type(self)) def __str__(self): if isinstance(self.identifier, URIRef): return ("%s a rdfg:Graph;rdflib:storage " + "[a rdflib:Store;rdfs:label '%s'].") % ( self.identifier.n3(), self.store.__class__.__name__) else: return ("[a rdfg:Graph;rdflib:storage " + "[a rdflib:Store;rdfs:label '%s']].") % ( self.store.__class__.__name__) def toPython(self): return self def destroy(self, configuration): """Destroy the store identified by `configuration` if supported""" self.__store.destroy(configuration) # Transactional interfaces (optional) def commit(self): """Commits active transactions""" self.__store.commit() def rollback(self): """Rollback active transactions""" self.__store.rollback() def open(self, configuration, create=False): """Open the graph store Might be necessary for stores that require opening a connection to a database or acquiring some resource. """ return self.__store.open(configuration, create) def close(self, commit_pending_transaction=False): """Close the graph store Might be necessary for stores that require closing a connection to a database or releasing some resource. """ self.__store.close( commit_pending_transaction=commit_pending_transaction) def add(self, triple): """Add a triple with self as context""" s, p, o = triple assert isinstance(s, Node), \ "Subject %s must be an rdflib term" % (s,) assert isinstance(p, Node), \ "Predicate %s must be an rdflib term" % (p,) assert isinstance(o, Node), \ "Object %s must be an rdflib term" % (o,) self.__store.add((s, p, o), self, quoted=False) def addN(self, quads): """Add a sequence of triple with context""" self.__store.addN((s, p, o, c) for s, p, o, c in quads if isinstance(c, Graph) and c.identifier is self.identifier and _assertnode(s, p, o) ) def remove(self, triple): """Remove a triple from the graph If the triple does not provide a context attribute, removes the triple from all contexts. """ self.__store.remove(triple, context=self) def triples(self, triple): """Generator over the triple store Returns triples that match the given triple pattern. If triple pattern does not provide a context, all contexts will be searched. """ s, p, o = triple if isinstance(p, Path): for _s, _o in p.eval(self, s, o): yield (_s, p, _o) else: for (s, p, o), cg in self.__store.triples((s, p, o), context=self): yield (s, p, o) def __getitem__(self, item): """ A graph can be "sliced" as a shortcut for the triples method The python slice syntax is (ab)used for specifying triples. A generator over matches is returned, the returned tuples include only the parts not given >>> import rdflib >>> g = rdflib.Graph() >>> g.add((rdflib.URIRef('urn:bob'), rdflib.RDFS.label, rdflib.Literal('Bob'))) >>> list(g[rdflib.URIRef('urn:bob')]) # all triples about bob [(rdflib.term.URIRef(u'http://www.w3.org/2000/01/rdf-schema#label'), rdflib.term.Literal(u'Bob'))] >>> list(g[:rdflib.RDFS.label]) # all label triples [(rdflib.term.URIRef(u'urn:bob'), rdflib.term.Literal(u'Bob'))] >>> list(g[::rdflib.Literal('Bob')]) # all triples with bob as object [(rdflib.term.URIRef(u'urn:bob'), rdflib.term.URIRef(u'http://www.w3.org/2000/01/rdf-schema#label'))] Combined with SPARQL paths, more complex queries can be written concisely: Name of all Bobs friends: g[bob : FOAF.knows/FOAF.name ] Some label for Bob: g[bob : DC.title|FOAF.name|RDFS.label] All friends and friends of friends of Bob g[bob : FOAF.knows * '+'] etc. .. versionadded:: 4.0 """ if isinstance(item, slice): s, p, o = item.start, item.stop, item.step if s is None and p is None and o is None: return self.triples((s, p, o)) elif s is None and p is None: return self.subject_predicates(o) elif s is None and o is None: return self.subject_objects(p) elif p is None and o is None: return self.predicate_objects(s) elif s is None: return self.subjects(p, o) elif p is None: return self.predicates(s, o) elif o is None: return self.objects(s, p) else: # all given return (s, p, o) in self elif isinstance(item, (Path, Node)): return self.predicate_objects(item) else: raise TypeError("You can only index a graph by a single rdflib term or path, or a slice of rdflib terms.") def __len__(self): """Returns the number of triples in the graph If context is specified then the number of triples in the context is returned instead. """ return self.__store.__len__(context=self) def __iter__(self): """Iterates over all triples in the store""" return self.triples((None, None, None)) def __contains__(self, triple): """Support for 'triple in graph' syntax""" for triple in self.triples(triple): return True return False def __hash__(self): return hash(self.identifier) def __cmp__(self, other): if other is None: return -1 elif isinstance(other, Graph): return cmp(self.identifier, other.identifier) else: # Note if None is considered equivalent to owl:Nothing # Then perhaps a graph with length 0 should be considered # equivalent to None (if compared to it)? return 1 def __eq__(self, other): return isinstance(other, Graph) \ and self.identifier == other.identifier def __lt__(self, other): return (other is None) \ or (isinstance(other, Graph) and self.identifier < other.identifier) def __le__(self, other): return self < other or self == other def __gt__(self, other): return (isinstance(other, Graph) and self.identifier > other.identifier) \ or (other is not None) def __ge__(self, other): return self > other or self == other def __iadd__(self, other): """Add all triples in Graph other to Graph. BNode IDs are not changed.""" self.addN((s, p, o, self) for s, p, o in other) return self def __isub__(self, other): """Subtract all triples in Graph other from Graph. BNode IDs are not changed.""" for triple in other: self.remove(triple) return self def __add__(self, other): """Set-theoretic union BNode IDs are not changed.""" retval = Graph() for (prefix, uri) in set( list(self.namespaces()) + list(other.namespaces())): retval.bind(prefix, uri) for x in self: retval.add(x) for y in other: retval.add(y) return retval def __mul__(self, other): """Set-theoretic intersection. BNode IDs are not changed.""" retval = Graph() for x in other: if x in self: retval.add(x) return retval def __sub__(self, other): """Set-theoretic difference. BNode IDs are not changed.""" retval = Graph() for x in self: if not x in other: retval.add(x) return retval def __xor__(self, other): """Set-theoretic XOR. BNode IDs are not changed.""" return (self - other) + (other - self) __or__ = __add__ __and__ = __mul__ # Conv. methods def set(self, triple): """Convenience method to update the value of object Remove any existing triples for subject and predicate before adding (subject, predicate, object). """ (subject, predicate, object_) = triple assert subject is not None, \ "s can't be None in .set([s,p,o]), as it would remove (*, p, *)" assert predicate is not None, \ "p can't be None in .set([s,p,o]), as it would remove (s, *, *)" self.remove((subject, predicate, None)) self.add((subject, predicate, object_)) def subjects(self, predicate=None, object=None): """A generator of subjects with the given predicate and object""" for s, p, o in self.triples((None, predicate, object)): yield s def predicates(self, subject=None, object=None): """A generator of predicates with the given subject and object""" for s, p, o in self.triples((subject, None, object)): yield p def objects(self, subject=None, predicate=None): """A generator of objects with the given subject and predicate""" for s, p, o in self.triples((subject, predicate, None)): yield o def subject_predicates(self, object=None): """A generator of (subject, predicate) tuples for the given object""" for s, p, o in self.triples((None, None, object)): yield s, p def subject_objects(self, predicate=None): """A generator of (subject, object) tuples for the given predicate""" for s, p, o in self.triples((None, predicate, None)): yield s, o def predicate_objects(self, subject=None): """A generator of (predicate, object) tuples for the given subject""" for s, p, o in self.triples((subject, None, None)): yield p, o def triples_choices(self, triple, context=None): subject, predicate, object_ = triple for (s, p, o), cg in self.store.triples_choices( (subject, predicate, object_), context=self): yield (s, p, o) def value(self, subject=None, predicate=RDF.value, object=None, default=None, any=True): """Get a value for a pair of two criteria Exactly one of subject, predicate, object must be None. Useful if one knows that there may only be one value. It is one of those situations that occur a lot, hence this 'macro' like utility Parameters: subject, predicate, object -- exactly one must be None default -- value to be returned if no values found any -- if True, return any value in the case there is more than one, else, raise UniquenessError """ retval = default if (subject is None and predicate is None) or \ (subject is None and object is None) or \ (predicate is None and object is None): return None if object is None: values = self.objects(subject, predicate) if subject is None: values = self.subjects(predicate, object) if predicate is None: values = self.predicates(subject, object) try: retval = next(values) except StopIteration: retval = default else: if any is False: try: next(values) msg = ("While trying to find a value for (%s, %s, %s) the" " following multiple values where found:\n" % (subject, predicate, object)) triples = self.store.triples( (subject, predicate, object), None) for (s, p, o), contexts in triples: msg += "(%s, %s, %s)\n (contexts: %s)\n" % ( s, p, o, list(contexts)) raise exceptions.UniquenessError(msg) except StopIteration: pass return retval def label(self, subject, default=''): """Query for the RDFS.label of the subject Return default if no label exists or any label if multiple exist. """ if subject is None: return default return self.value(subject, RDFS.label, default=default, any=True) def preferredLabel(self, subject, lang=None, default=None, labelProperties=(SKOS.prefLabel, RDFS.label)): """ Find the preferred label for subject. By default prefers skos:prefLabels over rdfs:labels. In case at least one prefLabel is found returns those, else returns labels. In case a language string (e.g., 'en', 'de' or even '' for no lang-tagged literals) is given, only such labels will be considered. Return a list of (labelProp, label) pairs, where labelProp is either skos:prefLabel or rdfs:label. >>> from rdflib import ConjunctiveGraph, URIRef, RDFS, Literal >>> from rdflib.namespace import SKOS >>> from pprint import pprint >>> g = ConjunctiveGraph() >>> u = URIRef(u'http://example.com/foo') >>> g.add([u, RDFS.label, Literal('foo')]) >>> g.add([u, RDFS.label, Literal('bar')]) >>> pprint(sorted(g.preferredLabel(u))) [(rdflib.term.URIRef(u'http://www.w3.org/2000/01/rdf-schema#label'), rdflib.term.Literal(u'bar')), (rdflib.term.URIRef(u'http://www.w3.org/2000/01/rdf-schema#label'), rdflib.term.Literal(u'foo'))] >>> g.add([u, SKOS.prefLabel, Literal('bla')]) >>> pprint(g.preferredLabel(u)) [(rdflib.term.URIRef(u'http://www.w3.org/2004/02/skos/core#prefLabel'), rdflib.term.Literal(u'bla'))] >>> g.add([u, SKOS.prefLabel, Literal('blubb', lang='en')]) >>> sorted(g.preferredLabel(u)) #doctest: +NORMALIZE_WHITESPACE [(rdflib.term.URIRef(u'http://www.w3.org/2004/02/skos/core#prefLabel'), rdflib.term.Literal(u'bla')), (rdflib.term.URIRef(u'http://www.w3.org/2004/02/skos/core#prefLabel'), rdflib.term.Literal(u'blubb', lang='en'))] >>> g.preferredLabel(u, lang='') #doctest: +NORMALIZE_WHITESPACE [(rdflib.term.URIRef(u'http://www.w3.org/2004/02/skos/core#prefLabel'), rdflib.term.Literal(u'bla'))] >>> pprint(g.preferredLabel(u, lang='en')) [(rdflib.term.URIRef(u'http://www.w3.org/2004/02/skos/core#prefLabel'), rdflib.term.Literal(u'blubb', lang='en'))] """ if default is None: default = [] # setup the language filtering if lang is not None: if lang == '': # we only want not language-tagged literals def langfilter(l): return l.language is None else: def langfilter(l): return l.language == lang else: # we don't care about language tags def langfilter(l): return True for labelProp in labelProperties: labels = list(filter(langfilter, self.objects(subject, labelProp))) if len(labels) == 0: continue else: return [(labelProp, l) for l in labels] return default def comment(self, subject, default=''): """Query for the RDFS.comment of the subject Return default if no comment exists """ if subject is None: return default return self.value(subject, RDFS.comment, default=default, any=True) def items(self, list): """Generator over all items in the resource specified by list list is an RDF collection. """ chain = set([list]) while list: item = self.value(list, RDF.first) if item is not None: yield item list = self.value(list, RDF.rest) if list in chain: raise ValueError("List contains a recursive rdf:rest reference") chain.add(list) def transitiveClosure(self, func, arg, seen=None): """ Generates transitive closure of a user-defined function against the graph >>> from rdflib.collection import Collection >>> g=Graph() >>> a=BNode('foo') >>> b=BNode('bar') >>> c=BNode('baz') >>> g.add((a,RDF.first,RDF.type)) >>> g.add((a,RDF.rest,b)) >>> g.add((b,RDF.first,RDFS.label)) >>> g.add((b,RDF.rest,c)) >>> g.add((c,RDF.first,RDFS.comment)) >>> g.add((c,RDF.rest,RDF.nil)) >>> def topList(node,g): ... for s in g.subjects(RDF.rest,node): ... yield s >>> def reverseList(node,g): ... for f in g.objects(node,RDF.first): ... print(f) ... for s in g.subjects(RDF.rest,node): ... yield s >>> [rt for rt in g.transitiveClosure( ... topList,RDF.nil)] # doctest: +NORMALIZE_WHITESPACE [rdflib.term.BNode('baz'), rdflib.term.BNode('bar'), rdflib.term.BNode('foo')] >>> [rt for rt in g.transitiveClosure( ... reverseList,RDF.nil)] # doctest: +NORMALIZE_WHITESPACE http://www.w3.org/2000/01/rdf-schema#comment http://www.w3.org/2000/01/rdf-schema#label http://www.w3.org/1999/02/22-rdf-syntax-ns#type [rdflib.term.BNode('baz'), rdflib.term.BNode('bar'), rdflib.term.BNode('foo')] """ if seen is None: seen = {} elif arg in seen: return seen[arg] = 1 for rt in func(arg, self): yield rt for rt_2 in self.transitiveClosure(func, rt, seen): yield rt_2 def transitive_objects(self, subject, property, remember=None): """Transitively generate objects for the ``property`` relationship Generated objects belong to the depth first transitive closure of the ``property`` relationship starting at ``subject``. """ if remember is None: remember = {} if subject in remember: return remember[subject] = 1 yield subject for object in self.objects(subject, property): for o in self.transitive_objects(object, property, remember): yield o def transitive_subjects(self, predicate, object, remember=None): """Transitively generate objects for the ``property`` relationship Generated objects belong to the depth first transitive closure of the ``property`` relationship starting at ``subject``. """ if remember is None: remember = {} if object in remember: return remember[object] = 1 yield object for subject in self.subjects(predicate, object): for s in self.transitive_subjects(predicate, subject, remember): yield s def seq(self, subject): """Check if subject is an rdf:Seq If yes, it returns a Seq class instance, None otherwise. """ if (subject, RDF.type, RDF.Seq) in self: return Seq(self, subject) else: return None def qname(self, uri): return self.namespace_manager.qname(uri) def compute_qname(self, uri, generate=True): return self.namespace_manager.compute_qname(uri, generate) def bind(self, prefix, namespace, override=True, replace=False): """Bind prefix to namespace If override is True will bind namespace to given prefix even if namespace was already bound to a different prefix. if replace, replace any existing prefix with the new namespace for example: graph.bind('foaf', 'http://xmlns.com/foaf/0.1/') """ return self.namespace_manager.bind( prefix, namespace, override=override, replace=replace) def namespaces(self): """Generator over all the prefix, namespace tuples""" for prefix, namespace in self.namespace_manager.namespaces(): yield prefix, namespace def absolutize(self, uri, defrag=1): """Turn uri into an absolute URI if it's not one already""" return self.namespace_manager.absolutize(uri, defrag) def serialize(self, destination=None, format="xml", base=None, encoding=None, **args): """Serialize the Graph to destination If destination is None serialize method returns the serialization as a string. Format defaults to xml (AKA rdf/xml). Format support can be extended with plugins, but 'xml', 'n3', 'turtle', 'nt', 'pretty-xml', 'trix', 'trig' and 'nquads' are built in. """ serializer = plugin.get(format, Serializer)(self) if destination is None: stream = BytesIO() serializer.serialize(stream, base=base, encoding=encoding, **args) return stream.getvalue() if hasattr(destination, "write"): stream = destination serializer.serialize(stream, base=base, encoding=encoding, **args) else: location = destination scheme, netloc, path, params, _query, fragment = urlparse(location) if netloc != "": print("WARNING: not saving as location" + "is not a local file reference") return fd, name = tempfile.mkstemp() stream = os.fdopen(fd, "wb") serializer.serialize(stream, base=base, encoding=encoding, **args) stream.close() if hasattr(shutil, "move"): shutil.move(name, path) else: shutil.copy(name, path) os.remove(name) def parse(self, source=None, publicID=None, format=None, location=None, file=None, data=None, **args): """ Parse source adding the resulting triples to the Graph. The source is specified using one of source, location, file or data. :Parameters: - `source`: An InputSource, file-like object, or string. In the case of a string the string is the location of the source. - `location`: A string indicating the relative or absolute URL of the source. Graph's absolutize method is used if a relative location is specified. - `file`: A file-like object. - `data`: A string containing the data to be parsed. - `format`: Used if format can not be determined from source. Defaults to rdf/xml. Format support can be extended with plugins, but 'xml', 'n3', 'nt', 'trix', 'rdfa' are built in. - `publicID`: the logical URI to use as the document base. If None specified the document location is used (at least in the case where there is a document location). :Returns: - self, the graph instance. Examples: >>> my_data = ''' ... <rdf:RDF ... xmlns:rdf='http://www.w3.org/1999/02/22-rdf-syntax-ns#' ... xmlns:rdfs='http://www.w3.org/2000/01/rdf-schema#' ... > ... <rdf:Description> ... <rdfs:label>Example</rdfs:label> ... <rdfs:comment>This is really just an example.</rdfs:comment> ... </rdf:Description> ... </rdf:RDF> ... ''' >>> import tempfile >>> fd, file_name = tempfile.mkstemp() >>> f = os.fdopen(fd, 'w') >>> dummy = f.write(my_data) # Returns num bytes written on py3 >>> f.close() >>> g = Graph() >>> result = g.parse(data=my_data, format="application/rdf+xml") >>> len(g) 2 >>> g = Graph() >>> result = g.parse(location=file_name, format="application/rdf+xml") >>> len(g) 2 >>> g = Graph() >>> with open(file_name, "r") as f: ... result = g.parse(f, format="application/rdf+xml") >>> len(g) 2 >>> os.remove(file_name) """ source = create_input_source(source=source, publicID=publicID, location=location, file=file, data=data, format=format) if format is None: format = source.content_type if format is None: # raise Exception("Could not determine format for %r. You can" + \ # "expicitly specify one with the format argument." % source) format = "application/rdf+xml" parser = plugin.get(format, Parser)() try: parser.parse(source, self, **args) finally: if source.auto_close: source.close() return self def load(self, source, publicID=None, format="xml"): self.parse(source, publicID, format) def query(self, query_object, processor='sparql', result='sparql', initNs=None, initBindings=None, use_store_provided=True, **kwargs): """ Query this graph. A type of 'prepared queries' can be realised by providing initial variable bindings with initBindings Initial namespaces are used to resolve prefixes used in the query, if none are given, the namespaces from the graph's namespace manager are used. :returntype: rdflib.query.QueryResult """ initBindings = initBindings or {} initNs = initNs or dict(self.namespaces()) if hasattr(self.store, "query") and use_store_provided: try: return self.store.query( query_object, initNs, initBindings, self.default_union and '__UNION__' or self.identifier, **kwargs) except NotImplementedError: pass # store has no own implementation if not isinstance(result, query.Result): result = plugin.get(result, query.Result) if not isinstance(processor, query.Processor): processor = plugin.get(processor, query.Processor)(self) return result(processor.query( query_object, initBindings, initNs, **kwargs)) def update(self, update_object, processor='sparql', initNs=None, initBindings=None, use_store_provided=True, **kwargs): """Update this graph with the given update query.""" initBindings = initBindings or {} initNs = initNs or dict(self.namespaces()) if hasattr(self.store, "update") and use_store_provided: try: return self.store.update( update_object, initNs, initBindings, self.default_union and '__UNION__' or self.identifier, **kwargs) except NotImplementedError: pass # store has no own implementation if not isinstance(processor, query.UpdateProcessor): processor = plugin.get(processor, query.UpdateProcessor)(self) return processor.update(update_object, initBindings, initNs, **kwargs) def n3(self): """return an n3 identifier for the Graph""" return "[%s]" % self.identifier.n3() def __reduce__(self): return (Graph, (self.store, self.identifier,)) def isomorphic(self, other): """ does a very basic check if these graphs are the same If no BNodes are involved, this is accurate. See rdflib.compare for a correct implementation of isomorphism checks """ # TODO: this is only an approximation. if len(self) != len(other): return False for s, p, o in self: if not isinstance(s, BNode) and not isinstance(o, BNode): if not (s, p, o) in other: return False for s, p, o in other: if not isinstance(s, BNode) and not isinstance(o, BNode): if not (s, p, o) in self: return False # TODO: very well could be a false positive at this point yet. return True def connected(self): """Check if the Graph is connected The Graph is considered undirectional. Performs a search on the Graph, starting from a random node. Then iteratively goes depth-first through the triplets where the node is subject and object. Return True if all nodes have been visited and False if it cannot continue and there are still unvisited nodes left. """ all_nodes = list(self.all_nodes()) discovered = [] # take a random one, could also always take the first one, doesn't # really matter. if not all_nodes: return False visiting = [all_nodes[random.randrange(len(all_nodes))]] while visiting: x = visiting.pop() if x not in discovered: discovered.append(x) for new_x in self.objects(subject=x): if new_x not in discovered and new_x not in visiting: visiting.append(new_x) for new_x in self.subjects(object=x): if new_x not in discovered and new_x not in visiting: visiting.append(new_x) # optimisation by only considering length, since no new objects can # be introduced anywhere. if len(all_nodes) == len(discovered): return True else: return False def all_nodes(self): res = set(self.objects()) res.update(self.subjects()) return res def collection(self, identifier): """Create a new ``Collection`` instance. Parameters: - ``identifier``: a URIRef or BNode instance. Example:: >>> graph = Graph() >>> uri = URIRef("http://example.org/resource") >>> collection = graph.collection(uri) >>> assert isinstance(collection, Collection) >>> assert collection.uri is uri >>> assert collection.graph is graph >>> collection += [ Literal(1), Literal(2) ] """ return Collection(self, identifier) def resource(self, identifier): """Create a new ``Resource`` instance. Parameters: - ``identifier``: a URIRef or BNode instance. Example:: >>> graph = Graph() >>> uri = URIRef("http://example.org/resource") >>> resource = graph.resource(uri) >>> assert isinstance(resource, Resource) >>> assert resource.identifier is uri >>> assert resource.graph is graph """ if not isinstance(identifier, Node): identifier = URIRef(identifier) return Resource(self, identifier) def _process_skolem_tuples(self, target, func): for t in self.triples((None, None, None)): target.add(func(t)) def skolemize(self, new_graph=None, bnode=None, authority=None, basepath=None): def do_skolemize(bnode, t): (s, p, o) = t if s == bnode: s = s.skolemize(authority=authority, basepath=basepath) if o == bnode: o = o.skolemize(authority=authority, basepath=basepath) return (s, p, o) def do_skolemize2(t): (s, p, o) = t if isinstance(s, BNode): s = s.skolemize(authority=authority, basepath=basepath) if isinstance(o, BNode): o = o.skolemize(authority=authority, basepath=basepath) return (s, p, o) retval = Graph() if new_graph is None else new_graph if bnode is None: self._process_skolem_tuples(retval, do_skolemize2) elif isinstance(bnode, BNode): self._process_skolem_tuples( retval, lambda t: do_skolemize(bnode, t)) return retval def de_skolemize(self, new_graph=None, uriref=None): def do_de_skolemize(uriref, t): (s, p, o) = t if s == uriref: s = s.de_skolemize() if o == uriref: o = o.de_skolemize() return (s, p, o) def do_de_skolemize2(t): (s, p, o) = t if isinstance(s, Genid): s = s.de_skolemize() if isinstance(o, Genid): o = o.de_skolemize() return (s, p, o) retval = Graph() if new_graph is None else new_graph if uriref is None: self._process_skolem_tuples(retval, do_de_skolemize2) elif isinstance(uriref, Genid): self._process_skolem_tuples( retval, lambda t: do_de_skolemize(uriref, t)) return retval class ConjunctiveGraph(Graph): """ A ConjunctiveGraph is an (unnamed) aggregation of all the named graphs in a store. It has a ``default`` graph, whose name is associated with the graph throughout its life. :meth:`__init__` can take an identifier to use as the name of this default graph or it will assign a BNode. All methods that add triples work against this default graph. All queries are carried out against the union of all graphs. """ def __init__(self, store='default', identifier=None): super(ConjunctiveGraph, self).__init__(store, identifier=identifier) assert self.store.context_aware, ("ConjunctiveGraph must be backed by" " a context aware store.") self.context_aware = True self.default_union = True # Conjunctive! self.default_context = Graph(store=self.store, identifier=identifier or BNode()) def __str__(self): pattern = ("[a rdflib:ConjunctiveGraph;rdflib:storage " "[a rdflib:Store;rdfs:label '%s']]") return pattern % self.store.__class__.__name__ def _spoc(self, triple_or_quad, default=False): """ helper method for having methods that support either triples or quads """ if triple_or_quad is None: return (None, None, None, self.default_context if default else None) if len(triple_or_quad) == 3: c = self.default_context if default else None (s, p, o) = triple_or_quad elif len(triple_or_quad) == 4: (s, p, o, c) = triple_or_quad c = self._graph(c) return s, p, o, c def __contains__(self, triple_or_quad): """Support for 'triple/quad in graph' syntax""" s, p, o, c = self._spoc(triple_or_quad) for t in self.triples((s, p, o), context=c): return True return False def add(self, triple_or_quad): """ Add a triple or quad to the store. if a triple is given it is added to the default context """ s, p, o, c = self._spoc(triple_or_quad, default=True) _assertnode(s, p, o) self.store.add((s, p, o), context=c, quoted=False) def _graph(self, c): if c is None: return None if not isinstance(c, Graph): return self.get_context(c) else: return c def addN(self, quads): """Add a sequence of triples with context""" self.store.addN( (s, p, o, self._graph(c)) for s, p, o, c in quads if _assertnode(s, p, o) ) def remove(self, triple_or_quad): """ Removes a triple or quads if a triple is given it is removed from all contexts a quad is removed from the given context only """ s, p, o, c = self._spoc(triple_or_quad) self.store.remove((s, p, o), context=c) def triples(self, triple_or_quad, context=None): """ Iterate over all the triples in the entire conjunctive graph For legacy reasons, this can take the context to query either as a fourth element of the quad, or as the explicit context keyword parameter. The kw param takes precedence. """ s, p, o, c = self._spoc(triple_or_quad) context = self._graph(context or c) if self.default_union: if context == self.default_context: context = None else: if context is None: context = self.default_context if isinstance(p, Path): if context is None: context = self for s, o in p.eval(context, s, o): yield (s, p, o) else: for (s, p, o), cg in self.store.triples((s, p, o), context=context): yield s, p, o def quads(self, triple_or_quad=None): """Iterate over all the quads in the entire conjunctive graph""" s, p, o, c = self._spoc(triple_or_quad) for (s, p, o), cg in self.store.triples((s, p, o), context=c): for ctx in cg: yield s, p, o, ctx def triples_choices(self, triple, context=None): """Iterate over all the triples in the entire conjunctive graph""" s, p, o = triple if context is None: if not self.default_union: context = self.default_context else: context = self._graph(context) for (s1, p1, o1), cg in self.store.triples_choices((s, p, o), context=context): yield (s1, p1, o1) def __len__(self): """Number of triples in the entire conjunctive graph""" return self.store.__len__() def contexts(self, triple=None): """Iterate over all contexts in the graph If triple is specified, iterate over all contexts the triple is in. """ for context in self.store.contexts(triple): if isinstance(context, Graph): # TODO: One of these should never happen and probably # should raise an exception rather than smoothing over # the weirdness - see #225 yield context else: yield self.get_context(context) def get_context(self, identifier, quoted=False): """Return a context graph for the given identifier identifier must be a URIRef or BNode. """ return Graph(store=self.store, identifier=identifier, namespace_manager=self) def remove_context(self, context): """Removes the given context from the graph""" self.store.remove((None, None, None), context) def context_id(self, uri, context_id=None): """URI#context""" uri = uri.split("#", 1)[0] if context_id is None: context_id = "#context" return URIRef(context_id, base=uri) def parse(self, source=None, publicID=None, format="xml", location=None, file=None, data=None, **args): """ Parse source adding the resulting triples to its own context (sub graph of this graph). See :meth:`rdflib.graph.Graph.parse` for documentation on arguments. :Returns: The graph into which the source was parsed. In the case of n3 it returns the root context. """ source = create_input_source( source=source, publicID=publicID, location=location, file=file, data=data, format=format) g_id = publicID and publicID or source.getPublicId() if not isinstance(g_id, Node): g_id = URIRef(g_id) context = Graph(store=self.store, identifier=g_id) context.remove((None, None, None)) # hmm ? context.parse(source, publicID=publicID, format=format, **args) return context def __reduce__(self): return (ConjunctiveGraph, (self.store, self.identifier)) DATASET_DEFAULT_GRAPH_ID = URIRef('urn:x-rdflib:default') class Dataset(ConjunctiveGraph): __doc__ = """ RDF 1.1 Dataset. Small extension to the Conjunctive Graph: - the primary term is graphs in the datasets and not contexts with quads, so there is a separate method to set/retrieve a graph in a dataset and operate with graphs - graphs cannot be identified with blank nodes - added a method to directly add a single quad Examples of usage: >>> # Create a new Dataset >>> ds = Dataset() >>> # simple triples goes to default graph >>> ds.add((URIRef('http://example.org/a'), ... URIRef('http://www.example.org/b'), ... Literal('foo'))) >>> >>> # Create a graph in the dataset, if the graph name has already been >>> # used, the corresponding graph will be returned >>> # (ie, the Dataset keeps track of the constituent graphs) >>> g = ds.graph(URIRef('http://www.example.com/gr')) >>> >>> # add triples to the new graph as usual >>> g.add( ... (URIRef('http://example.org/x'), ... URIRef('http://example.org/y'), ... Literal('bar')) ) >>> # alternatively: add a quad to the dataset -> goes to the graph >>> ds.add( ... (URIRef('http://example.org/x'), ... URIRef('http://example.org/z'), ... Literal('foo-bar'),g) ) >>> >>> # querying triples return them all regardless of the graph >>> for t in ds.triples((None,None,None)): # doctest: +SKIP ... print(t) # doctest: +NORMALIZE_WHITESPACE (rdflib.term.URIRef(u'http://example.org/a'), rdflib.term.URIRef(u'http://www.example.org/b'), rdflib.term.Literal(u'foo')) (rdflib.term.URIRef(u'http://example.org/x'), rdflib.term.URIRef(u'http://example.org/z'), rdflib.term.Literal(u'foo-bar')) (rdflib.term.URIRef(u'http://example.org/x'), rdflib.term.URIRef(u'http://example.org/y'), rdflib.term.Literal(u'bar')) >>> >>> # querying quads return quads; the fourth argument can be unrestricted >>> # or restricted to a graph >>> for q in ds.quads((None, None, None, None)): # doctest: +SKIP ... print(q) # doctest: +NORMALIZE_WHITESPACE (rdflib.term.URIRef(u'http://example.org/a'), rdflib.term.URIRef(u'http://www.example.org/b'), rdflib.term.Literal(u'foo'), None) (rdflib.term.URIRef(u'http://example.org/x'), rdflib.term.URIRef(u'http://example.org/y'), rdflib.term.Literal(u'bar'), rdflib.term.URIRef(u'http://www.example.com/gr')) (rdflib.term.URIRef(u'http://example.org/x'), rdflib.term.URIRef(u'http://example.org/z'), rdflib.term.Literal(u'foo-bar'), rdflib.term.URIRef(u'http://www.example.com/gr')) >>> >>> for q in ds.quads((None,None,None,g)): # doctest: +SKIP ... print(q) # doctest: +NORMALIZE_WHITESPACE (rdflib.term.URIRef(u'http://example.org/x'), rdflib.term.URIRef(u'http://example.org/y'), rdflib.term.Literal(u'bar'), rdflib.term.URIRef(u'http://www.example.com/gr')) (rdflib.term.URIRef(u'http://example.org/x'), rdflib.term.URIRef(u'http://example.org/z'), rdflib.term.Literal(u'foo-bar'), rdflib.term.URIRef(u'http://www.example.com/gr')) >>> # Note that in the call above - >>> # ds.quads((None,None,None,'http://www.example.com/gr')) >>> # would have been accepted, too >>> >>> # graph names in the dataset can be queried: >>> for c in ds.graphs(): # doctest: +SKIP ... print(c) # doctest: DEFAULT http://www.example.com/gr >>> # A graph can be created without specifying a name; a skolemized genid >>> # is created on the fly >>> h = ds.graph() >>> for c in ds.graphs(): # doctest: +SKIP ... print(c) # doctest: +NORMALIZE_WHITESPACE +ELLIPSIS DEFAULT http://rdlib.net/.well-known/genid/rdflib/N... http://www.example.com/gr >>> # Note that the Dataset.graphs() call returns names of empty graphs, >>> # too. This can be restricted: >>> for c in ds.graphs(empty=False): # doctest: +SKIP ... print(c) # doctest: +NORMALIZE_WHITESPACE DEFAULT http://www.example.com/gr >>> >>> # a graph can also be removed from a dataset via ds.remove_graph(g) .. versionadded:: 4.0 """ def __init__(self, store='default', default_union=False): super(Dataset, self).__init__(store=store, identifier=None) if not self.store.graph_aware: raise Exception("DataSet must be backed by a graph-aware store!") self.default_context = Graph(store=self.store, identifier=DATASET_DEFAULT_GRAPH_ID) self.default_union = default_union def __str__(self): pattern = ("[a rdflib:Dataset;rdflib:storage " "[a rdflib:Store;rdfs:label '%s']]") return pattern % self.store.__class__.__name__ def graph(self, identifier=None): if identifier is None: from rdflib.term import rdflib_skolem_genid self.bind( "genid", "http://rdflib.net" + rdflib_skolem_genid, override=False) identifier = BNode().skolemize() g = self._graph(identifier) self.store.add_graph(g) return g def parse(self, source=None, publicID=None, format="xml", location=None, file=None, data=None, **args): c = ConjunctiveGraph.parse(self, source, publicID, format, location, file, data, **args) self.graph(c) return c def add_graph(self, g): """alias of graph for consistency""" return self.graph(g) def remove_graph(self, g): if not isinstance(g, Graph): g = self.get_context(g) self.store.remove_graph(g) if g is None or g == self.default_context: # default graph cannot be removed # only triples deleted, so add it back in self.store.add_graph(self.default_context) def contexts(self, triple=None): default = False for c in super(Dataset, self).contexts(triple): default |= c.identifier == DATASET_DEFAULT_GRAPH_ID yield c if not default: yield self.graph(DATASET_DEFAULT_GRAPH_ID) graphs = contexts def quads(self, quad): for s, p, o, c in super(Dataset, self).quads(quad): if c.identifier == self.default_context: yield (s, p, o, None) else: yield (s, p, o, c.identifier) class QuotedGraph(Graph): """ Quoted Graphs are intended to implement Notation 3 formulae. They are associated with a required identifier that the N3 parser *must* provide in order to maintain consistent formulae identification for scenarios such as implication and other such processing. """ def __init__(self, store, identifier): super(QuotedGraph, self).__init__(store, identifier) def add(self, triple): """Add a triple with self as context""" s, p, o = triple assert isinstance(s, Node), \ "Subject %s must be an rdflib term" % (s,) assert isinstance(p, Node), \ "Predicate %s must be an rdflib term" % (p,) assert isinstance(o, Node), \ "Object %s must be an rdflib term" % (o,) self.store.add((s, p, o), self, quoted=True) def addN(self, quads): """Add a sequence of triple with context""" self.store.addN( (s, p, o, c) for s, p, o, c in quads if isinstance(c, QuotedGraph) and c.identifier is self.identifier and _assertnode(s, p, o) ) def n3(self): """Return an n3 identifier for the Graph""" return "{%s}" % self.identifier.n3() def __str__(self): identifier = self.identifier.n3() label = self.store.__class__.__name__ pattern = ("{this rdflib.identifier %s;rdflib:storage " "[a rdflib:Store;rdfs:label '%s']}") return pattern % (identifier, label) def __reduce__(self): return (QuotedGraph, (self.store, self.identifier)) # Make sure QuotedGraph is ordered correctly # wrt to other Terms. # this must be done here, as the QuotedGraph cannot be # circularily imported in term.py rdflib.term._ORDERING[QuotedGraph] = 11 class Seq(object): """Wrapper around an RDF Seq resource It implements a container type in Python with the order of the items returned corresponding to the Seq content. It is based on the natural ordering of the predicate names _1, _2, _3, etc, which is the 'implementation' of a sequence in RDF terms. """ def __init__(self, graph, subject): """Parameters: - graph: the graph containing the Seq - subject: the subject of a Seq. Note that the init does not check whether this is a Seq, this is done in whoever creates this instance! """ _list = self._list = list() LI_INDEX = URIRef(str(RDF) + "_") for (p, o) in graph.predicate_objects(subject): if p.startswith(LI_INDEX): # != RDF.Seq: # i = int(p.replace(LI_INDEX, '')) _list.append((i, o)) # here is the trick: the predicates are _1, _2, _3, etc. Ie, # by sorting the keys (by integer) we have what we want! _list.sort() def toPython(self): return self def __iter__(self): """Generator over the items in the Seq""" for _, item in self._list: yield item def __len__(self): """Length of the Seq""" return len(self._list) def __getitem__(self, index): """Item given by index from the Seq""" index, item = self._list.__getitem__(index) return item class ModificationException(Exception): def __init__(self): pass def __str__(self): return ("Modifications and transactional operations not allowed on " "ReadOnlyGraphAggregate instances") class UnSupportedAggregateOperation(Exception): def __init__(self): pass def __str__(self): return ("This operation is not supported by ReadOnlyGraphAggregate " "instances") class ReadOnlyGraphAggregate(ConjunctiveGraph): """Utility class for treating a set of graphs as a single graph Only read operations are supported (hence the name). Essentially a ConjunctiveGraph over an explicit subset of the entire store. """ def __init__(self, graphs, store='default'): if store is not None: super(ReadOnlyGraphAggregate, self).__init__(store) Graph.__init__(self, store) self.__namespace_manager = None assert isinstance(graphs, list) \ and graphs \ and [g for g in graphs if isinstance(g, Graph)], \ "graphs argument must be a list of Graphs!!" self.graphs = graphs def __repr__(self): return "<ReadOnlyGraphAggregate: %s graphs>" % len(self.graphs) def destroy(self, configuration): raise ModificationException() # Transactional interfaces (optional) def commit(self): raise ModificationException() def rollback(self): raise ModificationException() def open(self, configuration, create=False): # TODO: is there a use case for this method? for graph in self.graphs: graph.open(self, configuration, create) def close(self): for graph in self.graphs: graph.close() def add(self, triple): raise ModificationException() def addN(self, quads): raise ModificationException() def remove(self, triple): raise ModificationException() def triples(self, triple): s, p, o = triple for graph in self.graphs: if isinstance(p, Path): for s, o in p.eval(self, s, o): yield s, p, o else: for s1, p1, o1 in graph.triples((s, p, o)): yield (s1, p1, o1) def __contains__(self, triple_or_quad): context = None if len(triple_or_quad) == 4: context = triple_or_quad[3] for graph in self.graphs: if context is None or graph.identifier == context.identifier: if triple_or_quad[:3] in graph: return True return False def quads(self, triple): """Iterate over all the quads in the entire aggregate graph""" s, p, o = triple for graph in self.graphs: for s1, p1, o1 in graph.triples((s, p, o)): yield (s1, p1, o1, graph) def __len__(self): return sum(len(g) for g in self.graphs) def __hash__(self): raise UnSupportedAggregateOperation() def __cmp__(self, other): if other is None: return -1 elif isinstance(other, Graph): return -1 elif isinstance(other, ReadOnlyGraphAggregate): return cmp(self.graphs, other.graphs) else: return -1 def __iadd__(self, other): raise ModificationException() def __isub__(self, other): raise ModificationException() # Conv. methods def triples_choices(self, triple, context=None): subject, predicate, object_ = triple for graph in self.graphs: choices = graph.triples_choices((subject, predicate, object_)) for (s, p, o) in choices: yield (s, p, o) def qname(self, uri): if hasattr(self, 'namespace_manager') and self.namespace_manager: return self.namespace_manager.qname(uri) raise UnSupportedAggregateOperation() def compute_qname(self, uri, generate=True): if hasattr(self, 'namespace_manager') and self.namespace_manager: return self.namespace_manager.compute_qname(uri, generate) raise UnSupportedAggregateOperation() def bind(self, prefix, namespace, override=True): raise UnSupportedAggregateOperation() def namespaces(self): if hasattr(self, 'namespace_manager'): for prefix, namespace in self.namespace_manager.namespaces(): yield prefix, namespace else: for graph in self.graphs: for prefix, namespace in graph.namespaces(): yield prefix, namespace def absolutize(self, uri, defrag=1): raise UnSupportedAggregateOperation() def parse(self, source, publicID=None, format="xml", **args): raise ModificationException() def n3(self): raise UnSupportedAggregateOperation() def __reduce__(self): raise UnSupportedAggregateOperation() def _assertnode(*terms): for t in terms: assert isinstance(t, Node), \ 'Term %s must be an rdflib term' % (t,) return True def test(): import doctest doctest.testmod() if __name__ == '__main__': test()
34.425258
118
0.593082
4a27e703da09fdadff9171e305f9e3a2a96ed97a
5,386
py
Python
pyvista/jupyter/notebook.py
rohankumardubey/pyvista
ec5aa343d857d0c7e6a79aeeba340797bc868ced
[ "MIT" ]
null
null
null
pyvista/jupyter/notebook.py
rohankumardubey/pyvista
ec5aa343d857d0c7e6a79aeeba340797bc868ced
[ "MIT" ]
null
null
null
pyvista/jupyter/notebook.py
rohankumardubey/pyvista
ec5aa343d857d0c7e6a79aeeba340797bc868ced
[ "MIT" ]
null
null
null
""" Support dynamic or static jupyter notebook plotting. Includes: * ``ipyvtklink`` * ``panel`` """ import warnings import os import numpy as np # This module should not be imported at the __init__ level, only as a # lazy import when trying to plot using jupyter notebooks try: import IPython from IPython import display except ImportError: # pragma: no cover raise ImportError('Install IPython to display an image in a notebook') from pyvista import _vtk PANEL_EXTENSION_SET = [False] def handle_plotter(plotter, backend=None, screenshot=None, return_viewer=False, **kwargs): """Show the ``pyvista`` plot in a jupyter environment. Parameters ---------- return_viewer : bool, optional Return the jupyterlab viewer, scene, or display object when plotting with jupyter notebook. Returns ------- IPython Widget IPython widget when ``return_viewer==True``. Otherwise, ``None``. """ if screenshot is False: screenshot = None try: if backend == 'ipyvtklink': return show_ipyvtk(plotter, return_viewer) if backend == 'panel': return show_panel(plotter, return_viewer) if backend == 'ipygany': from pyvista.jupyter.pv_ipygany import show_ipygany return show_ipygany(plotter, return_viewer, **kwargs) except ImportError as e: warnings.warn(f'Failed to use notebook backend: \n\n{e}\n\n' 'Falling back to a static output.') return show_static_image(plotter, screenshot, return_viewer) def show_static_image(plotter, screenshot, return_viewer): """Display a static image to be displayed within a jupyter notebook.""" import PIL.Image if plotter.last_image is None: # Must render here, otherwise plotter will segfault. plotter.render() plotter.last_image = plotter.screenshot(screenshot, return_img=True) image = PIL.Image.fromarray(plotter.last_image) # close plotter as this will be a static image and there is no # point to keeping the plotter around. plotter.close() # Simply display the result: either ipyvtklink object or image display if return_viewer: return image display.display(image) def show_ipyvtk(plotter, return_viewer): """Display an interactive viewer widget using ``ipyvtklink``.""" if any('SPYDER' in name for name in os.environ): warnings.warn('``use_ipyvtk`` is incompatible with Spyder.\n' 'Use notebook=False for interactive ' 'plotting within spyder or disable it globally with:\n' 'pyvista.set_jupyter_backend(None)') try: from ipyvtklink.viewer import ViewInteractiveWidget except ImportError: # pragma: no cover raise ImportError('Please install `ipyvtklink` to use this feature: ' 'https://github.com/Kitware/ipyvtklink') # Have to leave the Plotter open for the widget to use disp = ViewInteractiveWidget(plotter.ren_win, on_close=plotter.close, transparent_background=plotter.image_transparent_background) for renderer in plotter.renderers: renderer.AddObserver(_vtk.vtkCommand.ModifiedEvent, lambda *args: disp.update_canvas()) if return_viewer: return disp display.display_html(disp) def show_panel(plotter, return_viewer): """Take the active renderer(s) from a plotter and show them using ``panel``.""" try: import panel as pn except ImportError: # pragma: no cover raise ImportError('Install ``panel`` to use this feature') # check if panel extension has been set if not PANEL_EXTENSION_SET[0]: pn.extension('vtk') PANEL_EXTENSION_SET[0] = True # only set window size if explicitly set within the plotter sizing = {} if not plotter._window_size_unset: width, height = plotter.window_size sizing = {'width': width, 'height': height} axes_enabled = plotter.renderer.axes_enabled pan = pn.panel(plotter.ren_win, sizing_mode='stretch_width', orientation_widget=axes_enabled, enable_keybindings=False, **sizing) # if plotter.renderer.axes_enabled: # pan.axes = build_panel_axes() if hasattr(plotter.renderer, 'cube_axes_actor'): pan.axes = build_panel_bounds(plotter.renderer.cube_axes_actor) if return_viewer: return pan display.display_html(pan) def build_panel_bounds(actor): """Build a panel bounds actor using the plotter cube_axes_actor.""" bounds = {} n_ticks = 5 if actor.GetXAxisVisibility(): xmin, xmax = actor.GetXRange() bounds['xticker'] = {'ticks': np.linspace(xmin, xmax, n_ticks)} if actor.GetYAxisVisibility(): ymin, ymax = actor.GetYRange() bounds['yticker'] = {'ticks': np.linspace(ymin, ymax, n_ticks)} if actor.GetZAxisVisibility(): zmin, zmax = actor.GetZRange() bounds['zticker'] = {'ticks': np.linspace(zmin, zmax, n_ticks)} bounds['origin'] = [xmin, ymin, zmin] bounds['grid_opacity'] = 0.5 bounds['show_grid'] = True bounds['digits'] = 3 bounds['fontsize'] = actor.GetLabelTextProperty(0).GetFontSize() return bounds
32.059524
95
0.657631
4a27e81efe57fc33ebb3711a55ff640c858c9263
6,282
py
Python
rexnet/rexnet.py
cymqqqq/AI-research
b344667adc217959abe314a3a5b08206a533222d
[ "MIT" ]
null
null
null
rexnet/rexnet.py
cymqqqq/AI-research
b344667adc217959abe314a3a5b08206a533222d
[ "MIT" ]
null
null
null
rexnet/rexnet.py
cymqqqq/AI-research
b344667adc217959abe314a3a5b08206a533222d
[ "MIT" ]
null
null
null
import torch import torch.nn as nn from math import ceil USE_MEMORY_EFFICIENT_SiLU = True if USE_MEMORY_EFFICIENT_SiLU: @torch.jit.script def silu_fwd(x): return x.mul(torch.sigmoid(x)) @torch.jit.script def silu_bwd(x, grad_output): x_sigmoid = torch.sigmoid(x) return grad_output * (x_sigmoid * (1. + x * (1. - x_sigmoid))) class SiLUJitImplementation(torch.autograd.Function): @staticmethod def forward(ctx, x): ctx.save_for_backward(x) return silu_fwd(x) @staticmethod def backward(ctx, grad_output): x = ctx.saved_tensors[0] return silu_bwd(x, grad_output) def silu(x, inplace=False): return SiLUJitImplementation.apply(x) else: def silu(x, inplace=False): return x.mul_(x.sigmoid()) if inplace else x.mul(x.sigmoid()) class SiLU(nn.Module): def __init__(self, inplace=True): super(SiLU, self).__init__() self.inplace = inplace def forward(self, x): return silu(x, self.inplace) def ConvBNAct(out, in_channels, channels, kernel=1, stride=1, pad=0, num_group=1, active=True, relu6=False): out.append(nn.Conv2d(in_channels, channels, kernel, stride, pad, groups=num_group, bias=False)) out.append(nn.BatchNorm2d(channels)) if active: out.append(nn.ReLU6(inplace=True) if relu6 else nn.ReLU(inplace=True)) def ConvBNSiLU(out, in_channels, channels, kernel=1, stride=1, pad=0, num_group=1): out.append(nn.Conv2d(in_channels, channels, kernel, stride, pad, groups=num_group, bias=False)) out.append(nn.BatchNorm2d(channels)) out.append(SiLU(inplace=True)) class SE(nn.Module): def __init__(self, in_channels, channels, se_ratio=12): super(SE, self).__init__() self.avg_pool = nn.AdaptiveAvgPool2d(1) self.fc = nn.Sequential( nn.Conv2d(in_channels, channels // se_ratio, kernel_size=1, padding=0), nn.BatchNorm2d(channels // se_ratio), nn.ReLU(inplace=True), nn.Conv2d(channels // se_ratio, channels, kernel_size=1, padding=0), nn.Sigmoid() ) def forward(self, x): y = self.avg_pool(x) y = self.fc(y) return x * y class LinearBottleneck(nn.Module): def __init__(self, in_channels, channels, t, stride, use_se=True, se_ratio=12, **kwargs): super(LinearBottleneck, self).__init__(**kwargs) self.use_shortcut = stride == 1 and in_channels <= channels self.in_channels = in_channels self.out_channels = channels out = [] if t != 1: dw_channels = in_channels * t ConvBNSiLU(out, in_channels=in_channels, channels=dw_channels) else: dw_channels = in_channels ConvBNAct(out, in_channels=dw_channels, channels=dw_channels, kernel=3, stride=stride, pad=1, num_group=dw_channels, active=False) if use_se: out.append(SE(dw_channels, dw_channels, se_ratio)) out.append(nn.ReLU6()) ConvBNAct(out, in_channels=dw_channels, channels=channels, active=False, relu6=True) self.out = nn.Sequential(*out) def forward(self, x): out = self.out(x) if self.use_shortcut: out[:, 0:self.in_channels] += x return out class ReXNetV1(nn.Module): def __init__(self, input_ch=16, final_ch=180, width_mult=1.0, depth_mult=1.0, classes=1000, use_se=True, se_ratio=12, dropout_ratio=0.2, bn_momentum=0.9): super(ReXNetV1, self).__init__() layers = [1, 2, 2, 3, 3, 5] strides = [1, 2, 2, 2, 1, 2] use_ses = [False, False, True, True, True, True] layers = [ceil(element * depth_mult) for element in layers] strides = sum([[element] + [1] * (layers[idx] - 1) for idx, element in enumerate(strides)], []) if use_se: use_ses = sum([[element] * layers[idx] for idx, element in enumerate(use_ses)], []) else: use_ses = [False] * sum(layers[:]) ts = [1] * layers[0] + [6] * sum(layers[1:]) self.depth = sum(layers[:]) * 3 stem_channel = 32 / width_mult if width_mult < 1.0 else 32 inplanes = input_ch / width_mult if width_mult < 1.0 else input_ch features = [] in_channels_group = [] channels_group = [] # The following channel configuration is a simple instance to make each layer become an expand layer. for i in range(self.depth // 3): if i == 0: in_channels_group.append(int(round(stem_channel * width_mult))) channels_group.append(int(round(inplanes * width_mult))) else: in_channels_group.append(int(round(inplanes * width_mult))) inplanes += final_ch / (self.depth // 3 * 1.0) channels_group.append(int(round(inplanes * width_mult))) ConvBNSiLU(features, 3, int(round(stem_channel * width_mult)), kernel=3, stride=2, pad=1) for block_idx, (in_c, c, t, s, se) in enumerate(zip(in_channels_group, channels_group, ts, strides, use_ses)): features.append(LinearBottleneck(in_channels=in_c, channels=c, t=t, stride=s, use_se=se, se_ratio=se_ratio)) pen_channels = int(1280 * width_mult) ConvBNSiLU(features, c, pen_channels) features.append(nn.AdaptiveAvgPool2d(1)) self.features = nn.Sequential(*features) self.output = nn.Sequential( nn.Dropout(dropout_ratio), nn.Conv2d(pen_channels, classes, 1, bias=True)) def forward(self, x): x = self.features(x) x = self.output(x).squeeze() return x if __name__ == '__main__': model = ReXNetV1(width_mult=1.0) out = model(torch.randn(2, 3, 224, 224)) loss = out.sum() loss.backward() print('Checked a single forward/backward iteration')
34.327869
118
0.587233
4a27e8a417ebb07878a27c45130fce57fd370802
10,164
py
Python
notebooks/81.3-BDP-community.py
zeou1/maggot_models
4e1b518c2981ab1ca9607099c3813e8429d94ca4
[ "BSD-3-Clause" ]
null
null
null
notebooks/81.3-BDP-community.py
zeou1/maggot_models
4e1b518c2981ab1ca9607099c3813e8429d94ca4
[ "BSD-3-Clause" ]
null
null
null
notebooks/81.3-BDP-community.py
zeou1/maggot_models
4e1b518c2981ab1ca9607099c3813e8429d94ca4
[ "BSD-3-Clause" ]
null
null
null
#%% import os import pickle import warnings from operator import itemgetter from pathlib import Path from timeit import default_timer as timer import colorcet as cc import community as cm import matplotlib.colors as mplc import matplotlib.pyplot as plt import networkx as nx import numpy as np import pandas as pd import seaborn as sns from joblib import Parallel, delayed from matplotlib.cm import ScalarMappable from sklearn.model_selection import ParameterGrid from graspy.embed import AdjacencySpectralEmbed, LaplacianSpectralEmbed from graspy.plot import gridplot, heatmap, pairplot from graspy.utils import symmetrize from src.data import load_everything, load_metagraph, load_networkx from src.embed import lse, preprocess_graph from src.graph import MetaGraph, preprocess from src.hierarchy import signal_flow from src.io import savefig, saveobj, saveskels, savecsv from src.utils import get_blockmodel_df, get_sbm_prob from src.visualization import ( CLASS_COLOR_DICT, CLASS_IND_DICT, barplot_text, bartreeplot, draw_networkx_nice, get_color_dict, get_colors, palplot, probplot, sankey, screeplot, stacked_barplot, random_names, ) FNAME = os.path.basename(__file__)[:-3] print(FNAME) # %% [markdown] # # Parameters BRAIN_VERSION = "2020-03-02" BLIND = True SAVEFIGS = False SAVESKELS = False SAVEOBJS = True np.random.seed(9812343) sns.set_context("talk") def stashfig(name, **kws): savefig(name, foldername=FNAME, save_on=True, **kws) plt.close() def stashcsv(df, name, **kws): savecsv(df, name, foldername=FNAME, save_on=True, **kws) def stashskel(name, ids, labels, colors=None, palette=None, **kws): saveskels( name, ids, labels, colors=colors, palette=None, foldername=FNAME, save_on=SAVESKELS, **kws, ) def stashobj(obj, name, **kws): saveobj(obj, name, foldername=FNAME, save_on=SAVEOBJS, **kws) def to_minigraph( adj, labels, drop_neg=True, remove_diag=True, size_scaler=1, use_counts=False, use_weights=True, color_map=None, ): # convert the adjacency and a partition to a minigraph based on SBM probs prob_df = get_blockmodel_df( adj, labels, return_counts=use_counts, use_weights=use_weights ) if drop_neg and ("-1" in prob_df.index): prob_df.drop("-1", axis=0, inplace=True) prob_df.drop("-1", axis=1, inplace=True) if remove_diag: adj = prob_df.values adj -= np.diag(np.diag(adj)) prob_df.data = prob_df g = nx.from_pandas_adjacency(prob_df, create_using=nx.DiGraph()) uni_labels, counts = np.unique(labels, return_counts=True) # add size attribute base on number of vertices size_map = dict(zip(uni_labels, size_scaler * counts)) nx.set_node_attributes(g, size_map, name="Size") # add signal flow attribute (for the minigraph itself) mini_adj = nx.to_numpy_array(g, nodelist=uni_labels) node_signal_flow = signal_flow(mini_adj) sf_map = dict(zip(uni_labels, node_signal_flow)) nx.set_node_attributes(g, sf_map, name="Signal Flow") # add spectral properties sym_adj = symmetrize(mini_adj) n_components = 10 latent = AdjacencySpectralEmbed(n_components=n_components).fit_transform(sym_adj) for i in range(n_components): latent_dim = latent[:, i] lap_map = dict(zip(uni_labels, latent_dim)) nx.set_node_attributes(g, lap_map, name=f"AdjEvec-{i}") # add spring layout properties pos = nx.spring_layout(g) spring_x = {} spring_y = {} for key, val in pos.items(): spring_x[key] = val[0] spring_y[key] = val[1] nx.set_node_attributes(g, spring_x, name="Spring-x") nx.set_node_attributes(g, spring_y, name="Spring-y") # add colors if color_map is None: color_map = dict(zip(uni_labels, cc.glasbey_light)) nx.set_node_attributes(g, color_map, name="Color") return g def adjust_partition(partition, class_labels): adjusted_partition = partition.copy().astype(str) sens_classes = [ "sens-AN", "sens-MN", "sens-ORN", "sens-PaN", "sens-photoRh5", "sens-photoRh6", "sens-thermo;AN", "sens-vtd", ] for s in sens_classes: inds = np.where(class_labels == s)[0] adjusted_partition[inds] = s return adjusted_partition def run_louvain(g_sym, res, skeleton_labels): out_dict = cm.best_partition(g_sym, resolution=res) modularity = cm.modularity(out_dict, g_sym) partition = np.array(itemgetter(*skeleton_labels)(out_dict)) part_unique, part_count = np.unique(partition, return_counts=True) for uni, count in zip(part_unique, part_count): if count < 3: inds = np.where(partition == uni)[0] partition[inds] = -1 return partition, modularity def augment_classes(class_labels, lineage_labels, fill_unk=True): if fill_unk: classlin_labels = class_labels.copy() fill_inds = np.where(class_labels == "unk")[0] classlin_labels[fill_inds] = lineage_labels[fill_inds] used_inds = np.array(list(CLASS_IND_DICT.values())) unused_inds = np.setdiff1d(range(len(cc.glasbey_light)), used_inds) lineage_color_dict = dict( zip(np.unique(lineage_labels), np.array(cc.glasbey_light)[unused_inds]) ) color_dict = {**CLASS_COLOR_DICT, **lineage_color_dict} hatch_dict = {} for key, val in color_dict.items(): if key[0] == "~": hatch_dict[key] = "//" else: hatch_dict[key] = "" else: color_dict = "class" hatch_dict = None return classlin_labels, color_dict, hatch_dict def run_experiment( graph_type=None, threshold=None, res=None, binarize=None, seed=None, param_key=None ): # common names if BLIND: basename = f"{param_key}-" title = param_key else: basename = f"louvain-res{res}-t{threshold}-{graph_type}-" title = f"Louvain, {graph_type}, res = {res}, threshold = {threshold}" np.random.seed(seed) # load and preprocess the data mg = load_metagraph(graph_type, version=BRAIN_VERSION) mg = preprocess( mg, threshold=threshold, sym_threshold=True, remove_pdiff=True, binarize=binarize, ) adj = mg.adj adj = symmetrize(adj, method="avg") mg = MetaGraph(adj, mg.meta) g_sym = mg.g skeleton_labels = np.array(list(g_sym.nodes())) partition, modularity = run_louvain(g_sym, res, skeleton_labels) partition_series = pd.Series(partition, index=skeleton_labels) partition_series.name = param_key if SAVEFIGS: # get out some metadata class_label_dict = nx.get_node_attributes(g_sym, "Merge Class") class_labels = np.array(itemgetter(*skeleton_labels)(class_label_dict)) lineage_label_dict = nx.get_node_attributes(g_sym, "lineage") lineage_labels = np.array(itemgetter(*skeleton_labels)(lineage_label_dict)) lineage_labels = np.vectorize(lambda x: "~" + x)(lineage_labels) classlin_labels, color_dict, hatch_dict = augment_classes( class_labels, lineage_labels ) # TODO then sort all of them by proportion of sensory/motor # barplot by merge class and lineage _, _, order = barplot_text( partition, classlin_labels, color_dict=color_dict, plot_proportions=False, norm_bar_width=True, figsize=(24, 18), title=title, hatch_dict=hatch_dict, return_order=True, ) stashfig(basename + "barplot-mergeclasslin-props") category_order = np.unique(partition)[order] fig, axs = barplot_text( partition, class_labels, color_dict=color_dict, plot_proportions=False, norm_bar_width=True, figsize=(24, 18), title=title, hatch_dict=None, category_order=category_order, ) stashfig(basename + "barplot-mergeclass-props") fig, axs = barplot_text( partition, class_labels, color_dict=color_dict, plot_proportions=False, norm_bar_width=False, figsize=(24, 18), title=title, hatch_dict=None, category_order=category_order, ) stashfig(basename + "barplot-mergeclass-counts") # TODO add gridmap counts = False weights = False prob_df = get_blockmodel_df( mg.adj, partition, return_counts=counts, use_weights=weights ) prob_df = prob_df.reindex(category_order, axis=0) prob_df = prob_df.reindex(category_order, axis=1) probplot( 100 * prob_df, fmt="2.0f", figsize=(20, 20), title=title, font_scale=0.7 ) stashfig(basename + f"probplot-counts{counts}-weights{weights}") return partition_series, modularity # %% [markdown] # # np.random.seed(8888889) n_replicates = 20 param_grid = { "graph_type": ["G"], "threshold": [0, 1, 2, 3], "res": [0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8], "binarize": [True, False], } params = list(ParameterGrid(param_grid)) seeds = np.random.randint(1e8, size=n_replicates * len(params)) param_keys = random_names(len(seeds)) rep_params = [] for i, seed in enumerate(seeds): p = params[i % len(params)].copy() p["seed"] = seed p["param_key"] = param_keys[i] rep_params.append(p) # %% [markdown] # # print("\n\n\n\n") print(f"Running {len(rep_params)} jobs in total") print("\n\n\n\n") outs = Parallel(n_jobs=-2, verbose=10)(delayed(run_experiment)(**p) for p in rep_params) partitions, modularities = list(zip(*outs)) # %% [markdown] # # block_df = pd.concat(partitions, axis=1, ignore_index=False) stashcsv(block_df, "block-labels") param_df = pd.DataFrame(rep_params) param_df["modularity"] = modularities stashcsv(param_df, "parameters")
29.806452
88
0.652696
4a27e8c8d649c4cb9ae961bffafc7ad824b63b25
5,411
py
Python
research/object_detection/models/embedded_ssd_mobilenet_v1_feature_extractor_tf1_test.py
gujralsanyam22/models
d96f8f043dbe2b5ca8ea1785f57df8faf68d8875
[ "Apache-2.0" ]
82,518
2016-02-05T12:07:23.000Z
2022-03-31T23:09:47.000Z
research/object_detection/models/embedded_ssd_mobilenet_v1_feature_extractor_tf1_test.py
yangxl-2014-fe/models
11ea5237818e791a5717716d5413977f4c4db1e3
[ "Apache-2.0" ]
9,021
2016-03-08T01:02:05.000Z
2022-03-31T08:06:35.000Z
research/object_detection/models/embedded_ssd_mobilenet_v1_feature_extractor_tf1_test.py
yangxl-2014-fe/models
11ea5237818e791a5717716d5413977f4c4db1e3
[ "Apache-2.0" ]
54,341
2016-02-06T17:19:55.000Z
2022-03-31T10:27:44.000Z
# Copyright 2017 The TensorFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """Tests for embedded_ssd_mobilenet_v1_feature_extractor.""" import unittest import numpy as np import tensorflow.compat.v1 as tf from object_detection.models import embedded_ssd_mobilenet_v1_feature_extractor from object_detection.models import ssd_feature_extractor_test from object_detection.utils import tf_version @unittest.skipIf(tf_version.is_tf2(), 'Skipping TF1.X only test.') class EmbeddedSSDMobileNetV1FeatureExtractorTest( ssd_feature_extractor_test.SsdFeatureExtractorTestBase): def _create_feature_extractor(self, depth_multiplier, pad_to_multiple, is_training=True): """Constructs a new feature extractor. Args: depth_multiplier: float depth multiplier for feature extractor pad_to_multiple: the nearest multiple to zero pad the input height and width dimensions to. is_training: whether the network is in training mode. Returns: an ssd_meta_arch.SSDFeatureExtractor object. """ min_depth = 32 return (embedded_ssd_mobilenet_v1_feature_extractor. EmbeddedSSDMobileNetV1FeatureExtractor( is_training, depth_multiplier, min_depth, pad_to_multiple, self.conv_hyperparams_fn, override_base_feature_extractor_hyperparams=True)) def test_extract_features_returns_correct_shapes_256(self): image_height = 256 image_width = 256 depth_multiplier = 1.0 pad_to_multiple = 1 expected_feature_map_shape = [(2, 16, 16, 512), (2, 8, 8, 1024), (2, 4, 4, 512), (2, 2, 2, 256), (2, 1, 1, 256)] self.check_extract_features_returns_correct_shape( 2, image_height, image_width, depth_multiplier, pad_to_multiple, expected_feature_map_shape) def test_extract_features_returns_correct_shapes_with_dynamic_inputs(self): image_height = 256 image_width = 256 depth_multiplier = 1.0 pad_to_multiple = 1 expected_feature_map_shape = [(2, 16, 16, 512), (2, 8, 8, 1024), (2, 4, 4, 512), (2, 2, 2, 256), (2, 1, 1, 256)] self.check_extract_features_returns_correct_shapes_with_dynamic_inputs( 2, image_height, image_width, depth_multiplier, pad_to_multiple, expected_feature_map_shape) def test_extract_features_returns_correct_shapes_enforcing_min_depth(self): image_height = 256 image_width = 256 depth_multiplier = 0.5**12 pad_to_multiple = 1 expected_feature_map_shape = [(2, 16, 16, 32), (2, 8, 8, 32), (2, 4, 4, 32), (2, 2, 2, 32), (2, 1, 1, 32)] self.check_extract_features_returns_correct_shape( 2, image_height, image_width, depth_multiplier, pad_to_multiple, expected_feature_map_shape) def test_extract_features_returns_correct_shapes_with_pad_to_multiple_of_1( self): image_height = 256 image_width = 256 depth_multiplier = 1.0 pad_to_multiple = 1 expected_feature_map_shape = [(2, 16, 16, 512), (2, 8, 8, 1024), (2, 4, 4, 512), (2, 2, 2, 256), (2, 1, 1, 256)] self.check_extract_features_returns_correct_shape( 2, image_height, image_width, depth_multiplier, pad_to_multiple, expected_feature_map_shape) def test_extract_features_raises_error_with_pad_to_multiple_not_1(self): depth_multiplier = 1.0 pad_to_multiple = 2 with self.assertRaises(ValueError): _ = self._create_feature_extractor(depth_multiplier, pad_to_multiple) def test_extract_features_raises_error_with_invalid_image_size(self): image_height = 128 image_width = 128 depth_multiplier = 1.0 pad_to_multiple = 1 self.check_extract_features_raises_error_with_invalid_image_size( image_height, image_width, depth_multiplier, pad_to_multiple) def test_preprocess_returns_correct_value_range(self): image_height = 256 image_width = 256 depth_multiplier = 1 pad_to_multiple = 1 test_image = np.random.rand(4, image_height, image_width, 3) feature_extractor = self._create_feature_extractor(depth_multiplier, pad_to_multiple) preprocessed_image = feature_extractor.preprocess(test_image) self.assertTrue(np.all(np.less_equal(np.abs(preprocessed_image), 1.0))) def test_variables_only_created_in_scope(self): depth_multiplier = 1 pad_to_multiple = 1 scope_name = 'MobilenetV1' self.check_feature_extractor_variables_under_scope( depth_multiplier, pad_to_multiple, scope_name) if __name__ == '__main__': tf.test.main()
40.684211
80
0.692293
4a27e92ab64631535ed5120c681f67b653628056
8,765
py
Python
queue_advanced_samples.py
tamram/storage-queue-python-getting-started
a99597814950beb79397ab8b4abd82f89e55f5e0
[ "MIT" ]
null
null
null
queue_advanced_samples.py
tamram/storage-queue-python-getting-started
a99597814950beb79397ab8b4abd82f89e55f5e0
[ "MIT" ]
null
null
null
queue_advanced_samples.py
tamram/storage-queue-python-getting-started
a99597814950beb79397ab8b4abd82f89e55f5e0
[ "MIT" ]
null
null
null
#---------------------------------------------------------------------------------- # Microsoft Developer & Platform Evangelism # # Copyright (c) Microsoft Corporation. All rights reserved. # # THIS CODE AND INFORMATION ARE PROVIDED "AS IS" WITHOUT WARRANTY OF ANY KIND, # EITHER EXPRESSED OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE IMPLIED WARRANTIES # OF MERCHANTABILITY AND/OR FITNESS FOR A PARTICULAR PURPOSE. #---------------------------------------------------------------------------------- # The example companies, organizations, products, domain names, # e-mail addresses, logos, people, places, and events depicted # herein are fictitious. No association with any real company, # organization, product, domain name, email address, logo, person, # places, or events is intended or should be inferred. #---------------------------------------------------------------------------------- from azure.storage.common import CloudStorageAccount, AccessPolicy from azure.storage.queue import Queue, QueueService, QueueMessage, QueuePermissions from azure.storage.common import CorsRule, Logging, Metrics, RetentionPolicy from azure.common import AzureException import config from random_data import RandomData import datetime # ------------------------------------------------------------- # <summary> # Azure Queue Service Sample - The Queue Service provides reliable messaging for workflow processing and for communication # between loosely coupled components of cloud services. This sample demonstrates how to perform common tasks including # inserting, peeking, getting and deleting queue messages, as well as creating and deleting queues. # # Documentation References: # - What is a Storage Account - http://azure.microsoft.com/en-us/documentation/articles/storage-whatis-account/ # - Getting Started with Queues - https://azure.microsoft.com/en-us/documentation/articles/storage-python-how-to-use-queue-storage/ # - Queue Service Concepts - http://msdn.microsoft.com/en-us/library/dd179353.aspx # - Queue Service REST API - http://msdn.microsoft.com/en-us/library/dd179363.aspx # - Queue Service Python API - http://azure.github.io/azure-storage-python/ref/azure.storage.queue.html # - Storage Emulator - http://msdn.microsoft.com/en-us/library/azure/hh403989.aspx # </summary> # ------------------------------------------------------------- class QueueAdvancedSamples(): def __init__(self): self.random_data = RandomData() # Runs all samples for Azure Storage Queue service. # Input Arguments: # account - CloudStorageAccount to use for running the samples def run_all_samples(self, account): try: print('Azure Storage Advanced Queue samples - Starting.') # create a new queue service that can be passed to all methods queue_service = account.create_queue_service() print('\n\n* List queues *\n') self.list_queues(queue_service) print('\n\n* Set cors Rules *\n') self.set_cors_rules(queue_service) print('\n\n* ACL operations *\n') self.queue_acl_operations(queue_service) print('\n\n* Set service logging and metrics properties *\n') self.set_service_properties(queue_service) print('\n\n* Set queue metadata *\n') self.metadata_operations(queue_service) except Exception as e: if (config.IS_EMULATED): print('Error occurred in the sample. Please make sure the Storage emulator is running.', e) else: print('Error occurred in the sample. Please make sure the account name and key are correct.', e) finally: print('\nAzure Storage Advanced Queue samples - Completed\n') # Manage queues including, creating, listing and deleting def list_queues(self, queue_service): queue_prefix = "queuesample" + self.random_data.get_random_name(6) try: print('1. Create multiple queues with prefix: ', queue_prefix) for i in range(5): queue_service.create_queue(queue_prefix + str(i)) print('2. List queues with prefix: ', queue_prefix) queues = queue_service.list_queues(queue_prefix) for queue in queues: print(' Queue name:' + queue.name) finally: print('3. Delete queues with prefix:' + queue_prefix) for i in range(5): if queue_service.exists(queue_prefix + str(i)): queue_service.delete_queue(queue_prefix + str(i)) print("List queues sample completed") # Manage CORS rules def set_cors_rules(self, queue_service): cors_rule = CorsRule( allowed_origins=['*'], allowed_methods=['POST', 'GET'], allowed_headers=['*'], exposed_headers=['*'], max_age_in_seconds=3600) try: print('1. Get Cors Rules') original_cors_rules = queue_service.get_queue_service_properties().cors print('2. Overwrite Cors Rules') queue_service.set_queue_service_properties(cors=[cors_rule]) finally: print('3. Revert Cors Rules back the original ones') #reverting cors rules back to the original ones queue_service.set_queue_service_properties(cors=original_cors_rules) print("CORS sample completed") # Manage properties of the Queue service, including logging and metrics settings, and the default service version. def set_service_properties(self, queue_service): try: print('1. Get Queue service properties') props = queue_service.get_queue_service_properties(); retention = RetentionPolicy(enabled=True, days=5) logging = Logging(delete=True, read=False, write=True, retention_policy=retention) hour_metrics = Metrics(enabled=True, include_apis=True, retention_policy=retention) minute_metrics = Metrics(enabled=False) print('2. Ovewrite Queue service properties') queue_service.set_queue_service_properties(logging=logging, hour_metrics=hour_metrics, minute_metrics=minute_metrics) finally: print('3. Revert Queue service properties back to the original ones') queue_service.set_queue_service_properties(logging=props.logging, hour_metrics=props.hour_metrics, minute_metrics=props.minute_metrics) print('4. Set Queue service properties completed') # Manage metadata of a queue def metadata_operations(self, queue_service): queue_name = 'queue' + self.random_data.get_random_name(6) try: # Create a new queue print('1. Create a queue with custom metadata - ' + queue_name) queue_service.create_queue(queue_name, {'category':'azure-storage', 'type': 'queue-sample'}) # Get all the queue metadata print('2. Get queue metadata') metadata = queue_service.get_queue_metadata(queue_name) print(' Metadata:') for key in metadata: print(' ' + key + ':' + metadata[key]) finally: # Delete the queue print("3. Delete Queue") if queue_service.exists(queue_name): queue_service.delete_queue(queue_name) # Manage access policy of a queue def queue_acl_operations(self, queue_service): queue_name = 'aclqueue' + self.random_data.get_random_name(6) try: print('1. Create a queue with name - ' + queue_name) queue_service.create_queue(queue_name) print('2. Set access policy for queue') access_policy = AccessPolicy(permission=QueuePermissions.READ, expiry=datetime.datetime.utcnow() + datetime.timedelta(hours=1)) identifiers = {'id': access_policy} queue_service.set_queue_acl(queue_name, identifiers) print('3. Get access policy from queue') acl = queue_service.get_queue_acl(queue_name) print('4. Clear access policy in queue') # Clear queue_service.set_queue_acl(queue_name) finally: print('5. Delete queue') if queue_service.exists(queue_name): queue_service.delete_queue(queue_name) print("Queue ACL operations sample completed")
44.045226
147
0.616885
4a27e9b25c4342286aea0f16006d90f6d8b0fda9
140
py
Python
loldib/getratings/models/NA/na_bard/__init__.py
koliupy/loldib
c9ab94deb07213cdc42b5a7c26467cdafaf81b7f
[ "Apache-2.0" ]
null
null
null
loldib/getratings/models/NA/na_bard/__init__.py
koliupy/loldib
c9ab94deb07213cdc42b5a7c26467cdafaf81b7f
[ "Apache-2.0" ]
null
null
null
loldib/getratings/models/NA/na_bard/__init__.py
koliupy/loldib
c9ab94deb07213cdc42b5a7c26467cdafaf81b7f
[ "Apache-2.0" ]
null
null
null
from .na_bard_top import * from .na_bard_jng import * from .na_bard_mid import * from .na_bard_bot import * from .na_bard_sup import *
23.333333
27
0.75
4a27e9cd0daf7177376030759c92fb92f6edf18f
1,201
py
Python
test_nfp.py
zhuyuanxiang/irregular_packing-1
5de4bf7ca51b6263ef44c1c7a6495e8b215e900c
[ "MIT" ]
1
2022-02-15T19:59:59.000Z
2022-02-15T19:59:59.000Z
test_nfp.py
zhuyuanxiang/irregular_packing-1
5de4bf7ca51b6263ef44c1c7a6495e8b215e900c
[ "MIT" ]
null
null
null
test_nfp.py
zhuyuanxiang/irregular_packing-1
5de4bf7ca51b6263ef44c1c7a6495e8b215e900c
[ "MIT" ]
null
null
null
# -*- coding: utf-8 -*- import ast import pandas as pd from nfp_function import content_loop_rate from nfp_function import Nester from settings import BIN_CUT_BIG from settings import BIN_NORMAL from settings import BIN_WIDTH from settings import LOOP_TIME lingjian = pd.read_csv('.\L0002_lingjian.csv') if __name__ == '__main__': n = Nester() s = [ast.literal_eval(contour) for contour in lingjian['外轮廓']] n.add_objects( # [ [ [0,0],[0,20],[20,0] ], # [ [20,0],[20,10],[30,10],[30,0] ], # [[10,0],[20,0],[20,10],[10,10]] # ] # [ # [[10,0],[20,0],[20,10],[10,10]], # [[10,20],[20,20],[15,30]], # [[30,10],[50,10],[35,15],[40,30],[30,30]] # ] s[:50] # ,lingjian['零件号'].values ) if n.shapes_max_length > BIN_WIDTH: BIN_NORMAL[2][0] = n.shapes_max_length BIN_NORMAL[3][0] = n.shapes_max_length # 选择面布 n.add_container(BIN_NORMAL) # 运行计算 n.run() # 进行一次未生成子代的计算 # 设计退出条件 res_list = list() best = n.best # 放置在一个容器里面 # set_target_loop(best, n) # T6 # 循环特定次数 content_loop_rate(best, n, loop_time=LOOP_TIME - 1) # T7 , T4
24.02
66
0.565362
4a27e9fc7f2c4b7c99689da35bed05009b02b4be
184
py
Python
domain/rastrigin/rastrigin_ValidateChildren.py
Sascha0912/SAIL
5dfb8d0b925d5e61933bf10591d959433fffaf26
[ "MIT" ]
2
2019-03-12T10:21:54.000Z
2019-07-17T14:56:33.000Z
domain/rastrigin/rastrigin_ValidateChildren.py
Sascha0912/SAIL
5dfb8d0b925d5e61933bf10591d959433fffaf26
[ "MIT" ]
null
null
null
domain/rastrigin/rastrigin_ValidateChildren.py
Sascha0912/SAIL
5dfb8d0b925d5e61933bf10591d959433fffaf26
[ "MIT" ]
1
2020-08-31T07:22:09.000Z
2020-08-31T07:22:09.000Z
import numpy as np def rastrigin_ValidateChildren(children, d): validInds = np.full(children.shape[0], True) # print("validChilds") # print(validInds) return validInds
26.285714
48
0.711957
4a27ea3fd8871d3b3a5c62582c7cc65b2144c3c1
10,332
py
Python
python/paddle/fluid/trainer_desc.py
0YuanZhang0/Paddle
118e585b8c28e56da6c39c2fcf21002625a67934
[ "Apache-2.0" ]
2
2020-02-11T08:53:05.000Z
2020-02-20T08:06:25.000Z
python/paddle/fluid/trainer_desc.py
xixiaoyao/Paddle
a2e10930cf2781b58875abb9c475375e1282e575
[ "Apache-2.0" ]
null
null
null
python/paddle/fluid/trainer_desc.py
xixiaoyao/Paddle
a2e10930cf2781b58875abb9c475375e1282e575
[ "Apache-2.0" ]
null
null
null
# Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Defination of trainers.""" import sys from os import path __all__ = ['TrainerDesc', 'MultiTrainer', 'DistMultiTrainer', 'PipelineTrainer'] class TrainerDesc(object): ''' Set proto from python to c++. Can be initialized from train_desc. ''' def __init__(self): ''' self.proto_desc = data_feed_pb2.DataFeedDesc() with open(proto_file, 'r') as f: text_format.Parse(f.read(), self.proto_desc) ''' # Workaround for relative import in protobuf under python3 # TODO: should be fixed cur_path = path.dirname(__file__) sys.path.append(cur_path) sys.path.append(cur_path + "/proto") from proto import trainer_desc_pb2 self.proto_desc = trainer_desc_pb2.TrainerDesc() import multiprocessing as mp # set default thread num == cpu count self.proto_desc.thread_num = mp.cpu_count() self._fleet_desc = None self._device_worker = None self._program = None self._infer = False def _set_fetch_var_and_info(self, fetch_vars, fetch_info, print_period): for i, v in enumerate(fetch_vars): self.proto_desc.fetch_config.fetch_var_names.extend([v.name]) self.proto_desc.fetch_config.fetch_var_str_format.extend( [fetch_info[i]]) self.proto_desc.fetch_config.print_period = print_period def _set_debug(self, debug): self.proto_desc.debug = debug def _set_thread(self, thread_num): self.proto_desc.thread_num = thread_num def _set_device_worker(self, device_worker): self._device_worker = device_worker def _set_infer(self, infer): self._infer = infer def _set_fleet_desc(self, fleet_desc): self._fleet_desc = fleet_desc def _gen_trainer_desc(self): pass def _set_program(self, program): self._program = program def _set_use_cvm(self, use_cvm=False): self.proto_desc.use_cvm = use_cvm def _set_no_cvm(self, no_cvm=False): self.proto_desc.no_cvm = no_cvm def _set_scale_datanorm(self, scale_datanorm=-1): self.proto_desc.scale_datanorm = scale_datanorm def _set_dump_slot(self, dump_slot): self.proto_desc.dump_slot = dump_slot def _set_mpi_rank(self, mpi_rank): self.proto_desc.mpi_rank = mpi_rank def _set_mpi_size(self, mpi_size): self.proto_desc.mpi_size = mpi_size def _set_dump_fields(self, dump_fields): for field in dump_fields: self.proto_desc.dump_fields.append(field) def _set_dump_fields_path(self, path): self.proto_desc.dump_fields_path = path def _set_dump_file_num(self, dump_file_num): self.proto_desc.dump_file_num = dump_file_num def _set_dump_converter(self, converter): self.proto_desc.dump_converter = converter def _set_dump_param(self, dump_param): for param in dump_param: self.proto_desc.dump_param.append(param) def _set_thread_barrier(self, thread_barrier): self.proto_desc.thread_barrier = thread_barrier def _set_check_nan_var_names(self, check_nan_var_names): for var in check_nan_var_names: self.proto_desc.check_nan_var_names.append(var) def _set_loss_names(self, loss_names): for loss in loss_names: self.proto_desc.loss_names.append(loss) def _set_adjust_ins_weight(self, config_dict): self.proto_desc.adjust_ins_weight_config.need_adjust = \ config_dict.get("need_adjust", False) self.proto_desc.adjust_ins_weight_config.nid_slot = \ config_dict.get("nid_slot", "") self.proto_desc.adjust_ins_weight_config.nid_adjw_threshold = \ config_dict.get("nid_adjw_threshold", 0.0) self.proto_desc.adjust_ins_weight_config.nid_adjw_ratio = \ config_dict.get("nid_adjw_ratio", 0.0) self.proto_desc.adjust_ins_weight_config.ins_weight_slot = \ config_dict.get("ins_weight_slot", "") def _set_copy_table_config(self, config_dict): config = self.proto_desc.copy_table_config config.need_copy = config_dict.get("need_copy", False) config.batch_num = config_dict.get("batch_num", 100) src_sparse_tables = config_dict.get("src_sparse_tables", []) if not isinstance(src_sparse_tables, list): src_sparse_tables = [src_sparse_tables] dest_sparse_tables = config_dict.get("dest_sparse_tables", []) if not isinstance(dest_sparse_tables, list): dest_sparse_tables = [dest_sparse_tables] if len(src_sparse_tables) != len(dest_sparse_tables): raise ValueError( "len(src_sparse_tables) != len(dest_sparse_tables)," \ " %s vs %s" % (len(src_sparse_tables), \ len(dest_sparse_tables))) for i in src_sparse_tables: config.src_sparse_tables.append(i) for i in dest_sparse_tables: config.dest_sparse_tables.append(i) src_dense_tables = config_dict.get("src_dense_tables", []) if not isinstance(src_dense_tables, list): src_dense_tables = [src_dense_tables] dest_dense_tables = config_dict.get("dest_dense_tables", []) if not isinstance(dest_dense_tables, list): dest_dense_tables = [dest_dense_tables] if len(src_dense_tables) != len(dest_dense_tables): raise ValueError( "len(src_dense_tables) != len(dest_dense_tables)," \ " %s vs %s" % (len(src_dense_tables), \ len(dest_dense_tables))) for i in src_dense_tables: config.src_dense_tables.append(i) for i in dest_dense_tables: config.dest_dense_tables.append(i) # user can also specify dense variables to copy, # instead of copy dense table src_var_list = config_dict.get("src_var_list", []) if not isinstance(src_var_list, list): src_var_list = [src_var_list] dest_var_list = config_dict.get("dest_var_list", []) if not isinstance(dest_var_list, list): dest_var_list = [dest_var_list] if len(src_var_list) != len(dest_var_list): raise ValueError( "len(src_var_list) != len(dest_var_list), %s vs" \ " %s" % (len(src_var_list), len(dest_var_list))) for i in src_var_list: config.src_var_list.append(i) for i in dest_var_list: config.dest_var_list.append(i) dependency_map = config_dict.get("dependency_map", {}) for key in dependency_map: m = config.table_denpendency_map.add() m.key = key values = dependency_map[key] if not isinstance(values, list): values = [values] if len(values) != 1: raise ValueError("dependency len %s != 1" % len(values)) for value in values: m.values.append(value) config.dense_pull_after_copy = \ config_dict.get("dense_pull_after_copy", True) config.enable_dependency = \ config_dict.get("enable_dependency", False) config.sparse_copy_by_feasign = \ config_dict.get("sparse_copy_by_feasign", True) def _desc(self): from google.protobuf import text_format return self.proto_desc.SerializeToString() def __str__(self): from google.protobuf import text_format return text_format.MessageToString(self.proto_desc) class MultiTrainer(TrainerDesc): ''' Implement of MultiTrainer. Can be init from TrainerDesc. ''' def __init__(self): super(MultiTrainer, self).__init__() pass def _set_program(self, program): super(MultiTrainer, self)._set_program(program) self._program = program def _gen_trainer_desc(self): super(MultiTrainer, self)._gen_trainer_desc() self.proto_desc.class_name = "MultiTrainer" self._device_worker._set_infer(self._infer) self._device_worker._set_program(self._program) self._device_worker._gen_worker_desc(self.proto_desc) class DistMultiTrainer(TrainerDesc): """ Implement of DistMultiTrainer. It's for Distributed training. """ def __init__(self): super(DistMultiTrainer, self).__init__() pass def _set_program(self, program): super(DistMultiTrainer, self)._set_program(program) self._program = program def _gen_trainer_desc(self): super(DistMultiTrainer, self)._gen_trainer_desc() self.proto_desc.class_name = "DistMultiTrainer" if self._program == None: raise RuntimeError("None Program") self._device_worker._set_infer(self._infer) self._device_worker._set_program(self._program) self._device_worker._gen_worker_desc(self.proto_desc) class PipelineTrainer(TrainerDesc): """ Implement of PipelineTrainer. It's for Pipeline. """ def __init__(self): super(PipelineTrainer, self).__init__() pass def _set_program(self, program): super(PipelineTrainer, self)._set_program(program) self._program = program def _gen_trainer_desc(self): super(PipelineTrainer, self)._gen_trainer_desc() self.proto_desc.class_name = "PipelineTrainer" if self._program == None: raise RuntimeError("None Program") self._device_worker._set_infer(self._infer) self._device_worker._set_program(self._program) self._device_worker._gen_worker_desc(self.proto_desc)
36.508834
80
0.662698
4a27ea4b044e7fdd3deef98f9bec5b156c57f587
3,587
py
Python
fastai_extensions/exp/nb_BatchLossFilter.py
leoitcode/bugslife
bc2af0816bc37320a5125f9d901e98503d24b6fe
[ "MIT" ]
1
2020-01-25T19:03:17.000Z
2020-01-25T19:03:17.000Z
fastai_extensions/exp/nb_BatchLossFilter.py
leoitcode/bugslife
bc2af0816bc37320a5125f9d901e98503d24b6fe
[ "MIT" ]
8
2020-03-07T02:35:28.000Z
2022-03-12T00:13:16.000Z
fastai_extensions/exp/nb_BatchLossFilter.py
leoitcode/bugslife
bc2af0816bc37320a5125f9d901e98503d24b6fe
[ "MIT" ]
null
null
null
#AUTOGENERATED! DO NOT EDIT! file to edit: ./BatchLossFilter.ipynb (unless otherwise specified) import torch import numpy as np from fastai.basic_train import * import functools from functools import partial import warnings warnings.filterwarnings("ignore", category=UserWarning, module="torch.nn.functional") from IPython.display import display, HTML display(HTML("<style>.container { width:100% !important; }</style>")) import math from fastai.torch_core import add_metrics class BatchLossFilterCallback(LearnerCallback): _order = -20 def __init__(self, learn:Learner, min_sample_perc:float=0., min_loss_perc:float=0.): super().__init__(learn) assert min_sample_perc >0. or min_loss_perc > 0., 'min_sample_perc <= 0 and min_loss_perc <= 0' self.min_sample_perc, self.min_loss_perc = min_sample_perc, min_loss_perc self.learn = learn self.model = learn.model self.crit = learn.loss_func if hasattr(self.crit, 'reduction'): self.red = self.crit.reduction self.sel_losses_sum, self.losses_sum = 0., 0. self.sel_samples, self.samples = 0., 0. self.recorder.add_metric_names(["loss_perc", "samp_perc"]) def on_epoch_begin(self, **kwargs): "Set the inner value to 0." self.sel_losses_sum, self.losses_sum = 0., 0. self.sel_samples, self.samples = 0., 0. def on_batch_begin(self, last_input, last_target, train, epoch, **kwargs): if not train or epoch == 0: return if hasattr(self.crit, 'reduction'): setattr(self.crit, 'reduction', 'none') with torch.no_grad(): self.losses = np.array(self.crit(self.model(last_input), last_target).cpu()) if hasattr(self.crit, 'reduction'): setattr(self.crit, 'reduction', self.red) self.get_loss_idxs() self.sel_losses_sum += self.losses[self.idxs].sum() self.losses_sum += self.losses.sum() self.sel_samples += len(self.idxs) self.samples += len(self.losses) return {"last_input": last_input[self.idxs], "last_target": last_target[self.idxs]} def on_epoch_end(self, epoch, last_metrics, **kwargs): loss_perc = self.sel_losses_sum / self.losses_sum if epoch > 0 else 1. sample_perc = self.sel_samples / self.samples if epoch > 0 else 1. return add_metrics(last_metrics, [loss_perc, sample_perc]) def on_train_end(self, **kwargs): """At the end of training this calleback will be removed""" if hasattr(self.learn.loss_func, 'reduction'): setattr(self.learn.loss_func, 'reduction', self.red) drop_cb_fn(self.learn, 'BatchLossFilterCallback') def get_loss_idxs(self): idxs = np.argsort(self.losses)[::-1] sample_max = math.ceil(len(idxs) * self.min_sample_perc) self.losses /= self.losses.sum() loss_max = np.argmax(self.losses[idxs].cumsum() >= self.min_loss_perc) + 1 self.idxs = list(idxs[:max(sample_max, loss_max)]) def drop_cb_fn(learn, cb_name:str)->None: cbs = [] for cb in learn.callback_fns: if isinstance(cb, functools.partial): cbn = cb.func.__name__ else: cbn = cb.__name__ if cbn != cb_name: cbs.append(cb) learn.callback_fns = cbs Learner.drop_cb_fn = drop_cb_fn def batch_loss_filter(learn:Learner, min_sample_perc:float=0., min_loss_perc:float=.9)->Learner: learn.callback_fns.append(partial(BatchLossFilterCallback, min_sample_perc=min_sample_perc, min_loss_perc=min_loss_perc)) return learn Learner.batch_loss_filter = batch_loss_filter
43.216867
108
0.684974
4a27ea920e7dc49afdce00257497b306e2048fa2
196
py
Python
als_to_midi/__init__.py
kovaacs/als_to_midi
116b7a5a55f140b2a5e18402a188bc74e7bd5748
[ "MIT" ]
null
null
null
als_to_midi/__init__.py
kovaacs/als_to_midi
116b7a5a55f140b2a5e18402a188bc74e7bd5748
[ "MIT" ]
null
null
null
als_to_midi/__init__.py
kovaacs/als_to_midi
116b7a5a55f140b2a5e18402a188bc74e7bd5748
[ "MIT" ]
null
null
null
import datetime __author__ = "Marcell Kovacs" __author_email__ = "[email protected]" __version__ = datetime.datetime.now().strftime('%y.%m.%d') __description__ = "Extract MIDI from ALS files"
28
58
0.765306
4a27ead303274a96e3eaa26d288cf1540cca3654
647
py
Python
FitLib/FunctionsLibrary/General.py
skelton-group/FitLib
84481cbcdae2bf0575e162717866b4035187d57a
[ "MIT" ]
null
null
null
FitLib/FunctionsLibrary/General.py
skelton-group/FitLib
84481cbcdae2bf0575e162717866b4035187d57a
[ "MIT" ]
null
null
null
FitLib/FunctionsLibrary/General.py
skelton-group/FitLib
84481cbcdae2bf0575e162717866b4035187d57a
[ "MIT" ]
null
null
null
# FitLib/FunctionsLibrary/General.py # ---------------- # Module Docstring # ---------------- """ Common functions for fitting. """ # ------- # Imports # ------- import numpy as np from FitLib.Function import CreateFunction # --------- # Functions # --------- def Polynomial(x, *p): """ General polynomial function y = p[0] * x ^ N + p[1] * x ^ (N - 1) + ... + p[N] """ return np.polyval(p, x) def CreatePolynomial(p, p_fit = None, p_bounds = None): """ Return a Function object representing a Polynomial function. """ return CreateFunction( Polynomial, p, p_fit = p_fit, p_bounds = p_bounds )
18.485714
90
0.554869
4a27ebfcf5f3aca1418e7c2109e3a2f6315a7078
2,761
py
Python
raytracer/raytracer.py
codacy-badger/RayTracer
64da4c0dce238ee07488966c4103f863a38e411f
[ "MIT" ]
null
null
null
raytracer/raytracer.py
codacy-badger/RayTracer
64da4c0dce238ee07488966c4103f863a38e411f
[ "MIT" ]
null
null
null
raytracer/raytracer.py
codacy-badger/RayTracer
64da4c0dce238ee07488966c4103f863a38e411f
[ "MIT" ]
null
null
null
#!/usr/local/bin/python3 import subprocess as sp import sys, os from typing import Dict from distutils.dir_util import copy_tree def commit(cwd: str, cargo: Dict[str, str]): gitworkflow = [ ["git", "add", "-u"], ["git", "commit", "-m", sys.argv[2]], ["git", "pull", "--rebase"], ["git", "push"] ] package_name = cargo["package"]["name"] doc_dir = f"{cwd}/target/doc" doc_dest_dir = f"{cwd}/docs" print("Formatting code!") fmt = sp.check_output(["cargo", "fmt"]) print("Generating docs!") docs = sp.check_output(["cargo", "doc", "--no-deps", "--document-private-items"]) copy_tree(doc_dir, doc_dest_dir, update=1) bench = sp.check_output(["cargo", "bench"]) try: print("Linting code!") lint = sp.check_output(["cargo", "clippy", "--all-features", "--", "-D", "warnings"]) print("Testing code!") test = sp.check_output(["cargo", "test"]) except sp.CalledProcessError: print("Failed!") else: print("Commiting changes!") for cmd in gitworkflow: sp.call(cmd) def debug(cwd: str, cargo: Dict[str, str]): sp.call(["cargo", "run"] + sys.argv[2:]) def run(cwd: str, cargo: Dict[str, str]): sp.call(["cargo", "run", "--release"] + sys.argv[2:]) def test(cwd: str, cargo: Dict[str, str]): sp.call(["cargo", "test"] + sys.argv[2:]) def fmt(cwd: str, cargo: Dict[str, str]): sp.call(["cargo", "fmt"] + sys.argv[2:]) def lint(cwd: str, cargo: Dict[str, str]): sp.call(["cargo", "clippy"] + sys.argv[2:]) def doc(cwd: str, cargo: Dict[str, str]): sp.call(["cargo", "doc"] + sys.argv[2:]) def bench(cwd: str, cargo:Dict[str, str]): sp.call(["cargo", "bench"] + sys.argv[2:]) if __name__ == "__main__": dispatch = { "commit": commit, "debug": debug, "run": run, "test": test, "fmt": fmt, "lint": lint, "doc": doc, "bench": bench } cwd = os.getcwd() if not os.path.exists(f"{cwd}/Cargo.toml"): print("Not inside a crate!") else: with open(f"{cwd}/Cargo.toml", 'r') as f: cargo_lines = filter(lambda s: s != "", map(lambda x: x.strip("\n").strip(), f.readlines())) cargo = {} sublevel = None for l in cargo_lines: if l[0] == "[": sublevel = l[1:-1] cargo[sublevel] = {} elif sublevel is not None: split = list(map(lambda x: x.strip(), l.split("="))) cargo[sublevel][split[0]] = split[1].replace('"', '') if sys.argv[1] in dispatch.keys(): dispatch[sys.argv[1]](cwd, cargo) else: print("No valid arguments supplied!")
31.375
104
0.531329
4a27ec34c19265d6d39bda91634bd43e4fa16a80
903
py
Python
portscanner.py
kamalkum9r/python
04409d6bc531fe102d1006f3a6033c1a44fac539
[ "MIT" ]
1
2021-07-17T07:30:30.000Z
2021-07-17T07:30:30.000Z
portscanner.py
kamalkum9r/python
04409d6bc531fe102d1006f3a6033c1a44fac539
[ "MIT" ]
null
null
null
portscanner.py
kamalkum9r/python
04409d6bc531fe102d1006f3a6033c1a44fac539
[ "MIT" ]
null
null
null
# port scanner # please dont use it for wrong purposes import sys import socket print("PORT SCANNER") if len(sys.argv) == 2: target = socket.gethostbyname(sys.argv[1]) else: print("Invalid ammount of Argument you must enter the IP") print("Scanning Port: " + target) try: for port in range(1,100): s = socket.socket(socket.AF_INET, socket.SOCK_STREAM) socket.setdefaulttimeout(0.9) result = s.connect_ex((target,port)) if result ==0: print("Port {} is open".format(port)) s.close() except KeyboardInterrupt: print("\n Exitting Program !!!!") sys.exit() except socket.gaierror: print("\n Hostname Could Not Be Resolved !!!!") sys.exit() except socket.error: print("\ Server not responding !!!!") sys.exit() # my instagram username: kamalkum9r
25.8
63
0.599114
4a27ecbc424bd285fce09aaefd441513f3613f1a
1,084
py
Python
kubernetes/test/test_v1beta1_custom_resource_definition.py
reymont/python
02a3a31c630c305527b328af49724f348fbdae15
[ "Apache-2.0" ]
1
2018-10-20T19:37:57.000Z
2018-10-20T19:37:57.000Z
kubernetes/test/test_v1beta1_custom_resource_definition.py
reymont/python
02a3a31c630c305527b328af49724f348fbdae15
[ "Apache-2.0" ]
null
null
null
kubernetes/test/test_v1beta1_custom_resource_definition.py
reymont/python
02a3a31c630c305527b328af49724f348fbdae15
[ "Apache-2.0" ]
2
2018-07-27T19:39:34.000Z
2020-12-25T02:48:27.000Z
# coding: utf-8 """ Kubernetes No description provided (generated by Swagger Codegen https://github.com/swagger-api/swagger-codegen) OpenAPI spec version: v1.11.1 Generated by: https://github.com/swagger-api/swagger-codegen.git """ from __future__ import absolute_import import os import sys import unittest import kubernetes.client from kubernetes.client.rest import ApiException from kubernetes.client.models.v1beta1_custom_resource_definition import V1beta1CustomResourceDefinition class TestV1beta1CustomResourceDefinition(unittest.TestCase): """ V1beta1CustomResourceDefinition unit test stubs """ def setUp(self): pass def tearDown(self): pass def testV1beta1CustomResourceDefinition(self): """ Test V1beta1CustomResourceDefinition """ # FIXME: construct object with mandatory attributes with example values #model = kubernetes.client.models.v1beta1_custom_resource_definition.V1beta1CustomResourceDefinition() pass if __name__ == '__main__': unittest.main()
24.088889
110
0.741697
4a27ee948763d760f453b3f9591ab291b6b0c303
213
py
Python
simple_peewee_flask_webapi/__init__.py
prbpedro/simple_peewee_flask_webapi
9f70e2cf034d2ff53b6c730f1362e03a37cc9a59
[ "MIT" ]
null
null
null
simple_peewee_flask_webapi/__init__.py
prbpedro/simple_peewee_flask_webapi
9f70e2cf034d2ff53b6c730f1362e03a37cc9a59
[ "MIT" ]
null
null
null
simple_peewee_flask_webapi/__init__.py
prbpedro/simple_peewee_flask_webapi
9f70e2cf034d2ff53b6c730f1362e03a37cc9a59
[ "MIT" ]
null
null
null
from simple_peewee_flask_webapi import app_models from simple_peewee_flask_webapi import simple_table from simple_peewee_flask_webapi import join_table from simple_peewee_flask_webapi import application_start
42.6
57
0.906103
4a27ef9d66933e1a6c4f915d65f557b6a516bb5c
2,369
py
Python
nonebot_plugin_nokia/nokia.py
kexue-z/nonebot-plugin-nokia
c47a5fb79ff1626cc5cddc8e9809f8772c020dad
[ "MIT" ]
3
2021-11-30T10:18:59.000Z
2022-01-20T07:15:24.000Z
nonebot_plugin_nokia/nokia.py
kexue-z/nonebot-plugin-nokia
c47a5fb79ff1626cc5cddc8e9809f8772c020dad
[ "MIT" ]
null
null
null
nonebot_plugin_nokia/nokia.py
kexue-z/nonebot-plugin-nokia
c47a5fb79ff1626cc5cddc8e9809f8772c020dad
[ "MIT" ]
null
null
null
import base64 from io import BytesIO from os.path import dirname from typing import Tuple from collections import deque from PIL import Image, ImageFont, ImageDraw, ImageOps font_size = 70 line_gap = 20 body_pos = (205, 340) subtitle_pos = (790, 320) body_color = (0, 0, 0, 255) subtitle_color = (129, 212, 250, 255) line_rotate = -9.8 max_line_width = 680 max_content_height = 450 print(dirname(__file__) + "/res/font.ttc") font = ImageFont.truetype(dirname(__file__) + "/res/font.ttf", font_size) def image_to_byte_array(image: Image): imgByteArr = io.BytesIO() image.save(imgByteArr, format=image.format) imgByteArr = imgByteArr.getvalue() return imgByteArr def im_2_b64(pic: Image.Image) -> str: buf = BytesIO() pic.save(buf, format="PNG") base64_str = base64.b64encode(buf.getbuffer()).decode() return "base64://" + base64_str def draw_subtitle(im, text: str): width, height = font.getsize(text) image2 = Image.new("RGBA", (width, height)) draw2 = ImageDraw.Draw(image2) draw2.text((0, 0), text=text, font=font, fill=subtitle_color) image2 = image2.rotate(line_rotate, expand=1) px, py = subtitle_pos sx, sy = image2.size im.paste(image2, (px, py, px + sx, py + sy), image2) def generate_image(text: str): origin_im = Image.open(dirname(__file__) + "/res/img.png") text = text[:900] length = len(text) width, height = font.getsize(text) current_width = 0 lines = [] line = "" q = deque(text) while q: word = q.popleft() width, _ = font.getsize(word) current_width += width if current_width >= max_line_width: q.appendleft(word) lines.append(line) current_width = 0 line = "" else: line += word lines.append(line) image2 = Image.new("RGBA", (max_line_width, max_content_height)) draw2 = ImageDraw.Draw(image2) for i, line in enumerate(lines): y = i * (height + line_gap) if y > max_content_height: break draw2.text((0, y), text=line, font=font, fill=body_color) image2 = image2.rotate(line_rotate, expand=1) px, py = body_pos sx, sy = image2.size origin_im.paste(image2, (px, py, px + sx, py + sy), image2) draw_subtitle(origin_im, f"{length}/900") return im_2_b64(origin_im)
28.202381
73
0.641621
4a27efe66b599c8a8649f2e466aade421e5d6a40
72,330
py
Python
gcimpute/gaussian_copula.py
udellgroup/gcimpute
b29650e61785af904a3bff753ffc2995449883cf
[ "MIT" ]
null
null
null
gcimpute/gaussian_copula.py
udellgroup/gcimpute
b29650e61785af904a3bff753ffc2995449883cf
[ "MIT" ]
null
null
null
gcimpute/gaussian_copula.py
udellgroup/gcimpute
b29650e61785af904a3bff753ffc2995449883cf
[ "MIT" ]
null
null
null
from .transform_function import TransformFunction from .online_transform_function import OnlineTransformFunction from .embody import _latent_operation_body_, get_truncnorm_moments_vec from scipy.stats import norm, truncnorm import numpy as np import pandas as pd from concurrent.futures import ProcessPoolExecutor from scipy.linalg import svdvals from collections import defaultdict import warnings var_type_names = ['continuous', 'ordinal', 'lower_truncated', 'upper_truncated', 'twosided_truncated'] class GaussianCopula(): ''' Gaussian copula model. This class allows to estimate the parameters of a Gaussian copula model from incomplete data, and impute the missing entries using the learned model. Parameters ---------- training_mode: {'standard', 'minibatch-offline', 'minibatch-online'}, default='standard' String describing the type of training to use. Must be one of: 'standard' all data are used to estimate the marginals and update the model in each iteration 'minibatch-offline' all data are used to estimate the marginals, but only a mini-batch's data are used to update the model in each iteration 'minibatch-online' only recent data are used to estimate the marginals, and only a mini-batch's data are used to update the model in each iteration tol: float, default=0.01 The convergence threshold. EM iterations will stop when the parameter update ratio is below this threshold. max_iter: int, default=50 The number of EM iterations to perform. random_state: int, default=101 Controls the randomness in generating latent ordinal values. Not used if there is no ordinal variable. n_jobs: int, default=1 The number of jobs to run in parallel. verbose: int, default=0 Controls the verbosity when fitting and predicting. 0 : silence 1 : information 2 : rich information 3 : debugging num_ord_updates: int, default=1 Number of steps to take when approximating the mean and variance of the latent variables corresponding to ordinal dimensions. We do not recommend using value larger than 1 (the default value) at this moment. It will slow the speed without clear performance improvement. min_ord_ratio: float, default=0.1 Used for automatic variable type decision. The largest mode frequency for continuous variables. stepsize_func: a function that takes 1-dim input and return 1-dim output Only used when (1) training_mode = 'minibatch-offline'; (2) training_mode = 'minibatch-online' and 'const_stepsize=None'. The supplied function should outputs monotonically decreasing values in the range (0,1) on positive integers const_stepsize: float in the range (0,1) or None, default is 0.5. Only used when training_mode = 'minibatch-online'. num_pass: int or None, default = 2 Only used when training_mode='minibatch-offline'. Used to set max_iter. batch_size: int, default=100 The number of data points in each mini-batch. window_size: int, default=200 The lookback window length for online marginal estimate. Only used when training_mode = 'minibatch-online'. decay: int or None, default=None The decay rate to be allocated to observations for online imputation. Only used when training_mode = 'minibatch-online'. realtime_marginal: bool, default=True Only used when training_mode = 'minibatch-online'. If set to True, the marginal updates after every row; otherwise, the marginal updates after every batch_size rows. In comparison, correlation update is conducted after every batch_size rows. The model runs longer but gives more accurate estimation when set to True. corr_diff_type: A list with elements from {'F', 'S', 'N'}, default = ['F'] The matrix norm used to compute copula correlation update ratio. Used for detecting change points when training mode = 'minibatch-online'. Must be one of: 'F' Frobenius norm 'S' Spectral norm 'N' Nuclear norm Attributes ---------- n_iter_: int The number of EM iterations conducted. likelihood: ndarray of shape (n_iter_,) The model likelihood value at each iteration. feature_names: ndarray of shape (n_features,) Number of features seen during `fit`. Methods ------- fit(X) Fit a Gaussian copula model on X. transform(X) Return the imputed X using the stored model. fit_transform(X) Fit a Gaussian copula model on X and return the transformed X. fit_transform_evaluate(X, eval_func) Conduct eval_func on the imputed datasets returned after each iteration. sample_imputation(X) Return multiple imputed datasets X using the stored model. get_params() Get parameters for this estimator. get_vartypes() Get the specified variable types used in model fitting. get_imputed_confidence_interval() Get the confidence intervals for the imputed missing entries. get_reliability() Get the reliability, a relative quantity across all imputed entries, when either all variables are continuous or all variables are ordinal fit_change_point_test() Conduct change point test after receiving each data batch. ''' def __init__(self, training_mode='standard', tol=0.01, max_iter=50, random_state=101, n_jobs=1, verbose=0, num_ord_updates=1, min_ord_ratio=0.1, stepsize_func=lambda k, c=5:c/(k+c), const_stepsize=0.5, num_pass=2, batch_size=100, window_size=200, decay=None, realtime_marginal=True, corr_diff_type=['F']): def check_stepsize(): L = np.array([stepsize_func(x) for x in range(1, max_iter+1, 1)]) if L.min() <=0 or L.max()>=1: print(f'Step size should be in the range of (0,1). The input stepsize function yields step size from {L.min()} to {L.max()}') raise if not all(x>y for x, y in zip(L, L[1:])): print(f'Input step size is not monotonically decreasing.') raise if training_mode == 'minibatch-online': if const_stepsize is None: check_stepsize() self.stepsize = stepsize_func else: assert 0<const_stepsize<1, 'const_stepsize must be in the range (0, 1)' self.stepsize = lambda x, c=const_stepsize: c elif training_mode == 'minibatch-offline': check_stepsize() self.stepsize = stepsize_func elif training_mode == 'standard': pass else: print("Invalida training_mode, must be one of 'standard', 'minibatch-offline', 'minibatch-online'") raise self._training_mode = training_mode self._batch_size = batch_size self._window_size = window_size self._realtime_marginal = realtime_marginal self._decay = decay self._corr_diff_type = corr_diff_type # self._cont_indices and self._ord_indices store boolean indexing self._cont_indices = None self._ord_indices = None # self.cont_indices and self.ord_indices store integer indexing self.cont_indices = None self.ord_indices = None self._min_ord_ratio = min_ord_ratio self.var_type_dict = {} self._seed = random_state self._rng = np.random.default_rng(self._seed) self._sample_seed = self._seed self._threshold = tol self._max_iter = max_iter self._max_workers = n_jobs self._verbose = verbose self._num_ord_updates = num_ord_updates self._num_pass = num_pass self._iter = 0 # model parameter self._corr = None # attributes self.n_iter_ = 0 self.likelihood = [] self.features_names = None self.corrupdate = [] self.corr_diff = defaultdict(list) ################################################ #### public functions ################################################ def fit(self, X, continuous = None, ordinal = None, lower_truncated= None, upper_truncated = None, twosided_truncated = None, **kwargs): ''' Fits the Gaussian copula imputer on the input data X. Parameters ---------- X: array-like of shape (n_samples, n_features) Input data continous, ordinal, lower_truncated, upper_truncated, twosided_truncated, poisson: list of integers list of the corresponding variable type indices kwargs: additional keyword arguments for fit_offline: first_fit: bool, default=True If true, initialize the copula correlation matrix max_iter: int or None. The used maximum number of iterations is self._max_iter if max_iter is None else max_iter convergence_verbose: bool, default = True Output convergence information if True ''' self.store_var_type(continuous = continuous, ordinal = ordinal, lower_truncated = lower_truncated, upper_truncated = upper_truncated, twosided_truncated = twosided_truncated ) if self._training_mode == 'minibatch-online': print('fit method is not implemented for minibatch-online mode, since the fitting and imputation are done in the unit of mini-batch. To impute the missing entries, call fit_transform.') raise else: self.fit_offline(X, **kwargs) def transform(self, X=None, num_ord_updates=2): ''' Impute the missing entries in X using currently fitted model (accessed through self._corr). Parameters ---------- X: array-like of shape (n_samples, n_features) or None Data to be imputed. If None, set X as the data used to fit the model. num_ord_updates: int, default=2 Number of steps to take when approximating the mean and variance of the latent variables corresponding to ordinal dimensions. Returns ------- X_imp: array-like of shape (n_samples, n_features) Tne imputed complete dataset ''' # get Z if X is None: Z = self._latent_Zimp else: Z, Z_ord_lower, Z_ord_upper = self._observed_to_latent(X_to_transform=X) Z, _ = self._fillup_latent(Z=Z, Z_ord_lower=Z_ord_lower, Z_ord_upper=Z_ord_upper, num_ord_updates=num_ord_updates) # from Z to X X_imp = self._latent_to_imp(Z=Z, X_to_impute=X) return X_imp def fit_transform(self, X, continuous = None, ordinal = None, lower_truncated= None, upper_truncated = None, twosided_truncated = None, **kwargs ): ''' Fit to data, then transform it. For 'minibatch-online' mode, the variable types are set in this function call since the fit and transformation are done in an alternative fashion. For the other two modes, the variable types are set in the function fit_offline. Parameters ---------- X: array-like of shape (n_samples, n_features) Input data continous, ordinal, lower_truncated, upper_truncated, twosided_truncated, poisson: list of integers list of the corresponding variable type indices kwargs: additional keyword arguments for fit_transform_online and fit_offline Keyword arguments of fit_transform_online: X_true: array-like of shape (n_samples, n_features) or None If not None, it indicates that some (could be all) of the missing entries of X_batch are revealed, and stored in X_true, after the imputation of X_batch. Those observation entries will be used to update the model. n_trian: int, default=0 The number of rows to be used to initialize the model estimation. Use self._batch_size if n_train is 0 For keyword arguments of fit_offline, see Parameters of fit() Returns ------- X_imp: array-like of shape (n_samples, n_features) Tne imputed complete dataset ''' self.store_var_type(continuous = continuous, ordinal = ordinal, lower_truncated = lower_truncated, upper_truncated = upper_truncated, twosided_truncated = twosided_truncated ) if self._training_mode == 'minibatch-online': X = self._preprocess_data(X, set_indices=False) if 'X_true' in kwargs: self.set_indices(np.asarray(kwargs['X_true'])) else: self.set_indices(X) kwargs_online = {name:kwargs[name] for name in ['n_train', 'X_true'] if name in kwargs} X_imp = self.fit_transform_online(X, **kwargs_online) else: X = self._preprocess_data(X) kwargs_offline = {name:kwargs[name] for name in ['first_fit', 'max_iter', 'convergence_verbose'] if name in kwargs} X_imp = self.fit_transform_offline(X, **kwargs_offline) return X_imp def fit_transform_evaluate(self, X, eval_func=None, num_iter=30, return_Ximp=False, **kwargs): ''' Run the algorithm for num_iter iterations and evaluate the returned imputed sample at each iteration. Parameters ---------- X: array-like of shape (n_samples, n_features) Data to be imputed. eval_func: function that takes array-like of shape (n_samples, n_features) input If not None, apply eval_func to the imputed dataset after each iteration and return the results. num_iter: int, default = 30 The number of iterations to run. return_Ximp: bool, default = False If True, return the imputed datasets after each iteration. kwargs: additional keyword arguments for fit_transform_online and fit_offline See Parameters of fit_transform() Returns ------- out: dict 'X_imp': the imputed datasets 'evluation': the desired evaluation on imputed datasets ''' out = defaultdict(list) # first fit Ximp = self.fit_transform(X = X, max_iter = 1, convergence_verbose = False, **kwargs) if eval_func is not None: out['evaluation'].append(eval_func(Ximp)) if return_Ximp: out['X_imp'].append(Ximp) # subsequent fits for i in range(1, num_iter, 1): Ximp = self.fit_transform(X = X, max_iter = 1, first_fit = False, convergence_verbose = False) if eval_func is not None: out['evaluation'].append(eval_func(Ximp)) if return_Ximp: out['X_imp'].append(Ximp) return out def get_params(self): ''' Get parameters for this estimator. Returns: params: dict ''' params = {'copula_corr': self._corr.copy()} return params def get_vartypes(self, feature_names=None): ''' Return the variable types used during the model fitting. Each variable is one of the following: 'continuous', 'ordinal', 'lower_truncated', 'upper_truncated', 'twosided_truncated' Parameters ---------- feature_names: list of str or None If not None, feature_names will be used to name variables Returns ------- _var_types: dict Keys: 'continuous', 'ordinal', 'lower_truncated', 'upper_truncated', 'twosided_truncated' ''' _var_types = self.var_type_dict.copy() if feature_names is not None: names = list(feature_names) for key,value in _var_types.items(): _var_types[key] = [names[i] for i in value] for name in var_type_names: if name not in _var_types: _var_types[name] = [] return _var_types def get_imputed_confidence_interval(self, X=None, alpha = 0.95, num_ord_updates=2, type='analytical', **kwargs): ''' Compute the confidence interval for each imputed entry. Parameters ---------- X: array-like of shape (n_samples, n_features) or None Data to be imputed. If None, set X as the data used to fit the model. alpha: float in (0,1), default = 0.95 The desired significance level. num_ord_updates: int, default = 2 Number of steps to take when approximating the mean and variance of the latent variables corresponding to ordinal dimensions. type: {'anlaytical', 'quantile'}, default ='analytical'. 'analytical': derive the analytical confidence interval 'qunatile': first do multiple imputation and then derive empirical quantile confidence intervals kwargs: additional keyword arguments for get_imputed_confidence_interval_quantiles Returns ------- out: dict with keys 'upper': array-like of shape (n_samples, n_features) The upper bound of the confidence interval 'lower': array-like of shape (n_samples, n_features) The lower bound of the confidence interval ''' if self._training_mode == 'minibatch-online': raise NotImplementedError('Confidence interval has not yet been supported for minibatch-online mode') if type == 'quantile': return self.get_imputed_confidence_interval_quantile(X=X, alpha=alpha, num_ord_updates=num_ord_updates, **kwargs) if X is None: Zimp = self._latent_Zimp Cord = self._latent_Cord X = self.transform_function.X else: Z, Z_ord_lower, Z_ord_upper = self._observed_to_latent(X_to_transform=X) Zimp, Cord = self._fillup_latent(Z=Z, Z_ord_lower=Z_ord_lower, Z_ord_upper=Z_ord_upper, num_ord_updates=num_ord_updates) n, p = Zimp.shape margin = norm.ppf(1-(1-alpha)/2) # upper and lower have np.nan at oberved locations because std_cond has np.nan at those locations std_cond = self._get_cond_std_missing(X=X, Cord=Cord) upper = Zimp + margin * std_cond lower = Zimp - margin * std_cond # monotonic transformation upper = self._latent_to_imp(Z=upper, X_to_impute=X) lower = self._latent_to_imp(Z=lower, X_to_impute=X) obs_loc = ~np.isnan(X) upper[obs_loc] = np.nan lower[obs_loc] = np.nan out = {'upper':upper, 'lower':lower} return out def sample_imputation(self, X=None, num=5, num_ord_updates=1): ''' Sample multiple imputed datasets using the currently fitted method. Parameters ---------- X: array of shape (n_samples, n_features) or None. The dataset to be imputed. Use the seen data for model fitting if None. num: int, default=5 The number of imputation samples to draw. num_ord_updates: int, default=1 The number of iterations to perform for estimating latent mean at ordinals. Return ------ X_imp_num: array of shape (n_samples, n_features, num) Imputed dataset. ''' if X is None: X = self.transform_function.X if all(self._cont_indices): Z, Z_ord_lower, Z_ord_upper = self._observed_to_latent(X_to_transform=X) Z_imp_num = self._sample_latent(Z=Z, Z_ord_lower=Z_ord_lower, Z_ord_upper=Z_ord_upper, num=num, num_ord_updates=num_ord_updates) X_imp_num = np.zeros_like(Z_imp_num) for i in range(num): X_imp_num[...,i] = self._latent_to_imp(Z=Z_imp_num[...,i], X_to_impute=X) else: # slower n, p = X.shape X_imp_num = np.empty((n, p, num)) Z_cont = self.transform_function.get_cont_latent(X_to_transform=X) for i in range(num): # Z_ord_lower and Z_ord_upper will be different across i Z, Z_ord_lower, Z_ord_upper = self._observed_to_latent(X_to_transform=X, Z_cont=Z_cont, method='sampling') # TODO: complete Z Z_imp = self._sample_latent(Z=Z, Z_ord_lower=Z_ord_lower, Z_ord_upper=Z_ord_upper, num=1, num_ord_updates=num_ord_updates) X_imp_num[...,i] = self._latent_to_imp(Z=Z_imp[...,0], X_to_impute=X) return X_imp_num def get_reliability(self, Ximp=None, alpha=0.95): ''' Get the reliability of imputed entries. The notion of reliability is a relative quantity across all imputed entries. Entries with higher reliability are more likely to have small imputation error. Parameters ---------- Ximp: array-like of shape (n_samples, n_features) or None Only used for all continuous variables. The returned Gaussian copula imputed matrix. alpha: float in (0,1), default = 0.95 The desired significance level. Returns ------- r: array-like of shape (n_samples, n_features) Elementwise reliability ''' if all(self._cont_indices): r = self.get_reliability_cont(Ximp, alpha) elif all(self._ord_indices): r = self.get_reliability_ord() else: raise ValueError('Reliability computation is only available for either all continuous variables or all ordinal variables') return r def fit_change_point_test(self, X, X_true=None, n_train=0, nsamples=100, verbose=False): ''' Conduct change point detection after receiving each data batch. Parameters ---------- X: array-like of shape (n_samples, n_features) Input data X_true: array-like of shape (n_samples, n_features) or None If not None, it indicates that some (could be all) of the missing entries of X_batch are revealed, and stored in X_true, after the imputation of X_batch. Those observation entries will be used to update the model. n_trian: int, default=0 The number of rows to be used to initialize the model estimation. Use self._batch_size if n_train is 0 n_samples: int, default=100 The number of samples to draw for the resampling test verbose: bool, default=True If True, print progress information Returns ------- out: dict with keys pval: dict with list with keys as self._corr_diff_type, and values as the corresponding empirical pvalues statistics: dict with list with keys as self._corr_diff_type and values as the corresponding test statistics ''' assert self._training_mode == 'minibatch-online' if X_true is None: X = self._preprocess_data(X) else: X = self._preprocess_data(X, set_indices=False) self.set_indices(np.asarray(X_true)) cdf_types, inverse_cdf_types = self.get_cdf_estimation_type(p = X.shape[1]) self.transform_function = OnlineTransformFunction(self._cont_indices, self._ord_indices, window_size=self._window_size, decay = self._decay, cdf_types=cdf_types, inverse_cdf_types=inverse_cdf_types ) n,p = X.shape self._corr = np.identity(p) # initialize the model n_train = self._batch_size if n_train == 0 else n_train assert n_train > 0 ind_train = np.arange(n_train) X_train = X[ind_train] if X_true is None else X_true[ind_train] self.transform_function.update_window(X_train) _ = self.partial_fit(X_batch = X_train, step_size=1) pvals = defaultdict(list) test_stats = defaultdict(list) i=0 while True: batch_lower = n_train + i*self._batch_size batch_upper = min(n_train + (i+1)*self._batch_size, n) if batch_lower>=n: break if verbose: print(f'start batch {i+1}') indices = np.arange(batch_lower, batch_upper, 1) _X_true = None if X_true is None else X_true[indices] _pval, _diff = self.change_point_test(X[indices,:], X_true=_X_true, step_size=self.stepsize(i+1), nsamples=nsamples) for t in self._corr_diff_type: pvals[t].append(_pval[t]) test_stats[t].append(_diff[t]) i+=1 out = {'pval':pvals, 'statistics':test_stats} return out #################################### #### General nonpublic functions ################################### def get_imputed_confidence_interval_quantile(self, X=None, alpha = 0.95, num_ord_updates=1, num=200): ''' Compute the confidence interval for each imputed entry. Parameters ---------- X, alpha: see Parameters in get_imputed_confidence_interval num_ord_updates: int, default = 2 Number of steps to take when approximating the mean and variance of the latent variables corresponding to ordinal dimensions. num: int, default=200 Number of multiple samples to draw Returns ------- out: see Returns in get_imputed_confidence_interval ''' if X is None: X = self.transform_function.X X_imp_num = self.sample_imputation(X = X, num = num, num_ord_updates = num_ord_updates) q_lower, q_upper = (1-alpha)/2, 1-(1-alpha)/2 lower, upper = np.quantile(X_imp_num, [q_lower, q_upper], axis=2) obs_loc = ~np.isnan(X) upper[obs_loc] = np.nan lower[obs_loc] = np.nan return {'upper':upper, 'lower':lower} def get_reliability_cont(self, Ximp, alpha=0.95): ''' Implements get_reliability when all variabels are continuous. Parameters ---------- Ximp: array-like of shape (n_samples, n_features) or None Only used for all continuous variables. The returned Gaussian copula imputed matrix. alpha: float in (0,1), default = 0.95 The desired significance level. Returns ------- reliability: array-like of shape (n_samples, n_features) Elementwise reliability ''' ct = self.get_imputed_confidence_interval(alpha = alpha) d = ct['upper'] - ct['lower'] d_square, x_square = np.power(d,2), np.power(Ximp, 2) missing_loc = np.isnan(self.transform_function.X) # reliability has np.nan at observation locations because d has np.nan at those locations reliability = (d_square[missing_loc].sum() - d_square) / (x_square[missing_loc].sum() - x_square) return reliability def get_reliability_ord(self): ''' Implements get_reliability when all variabels are ordinal. Returns ------- reliability: array-like of shape (n_samples, n_features) Elementwise reliability ''' std_cond = self._get_cond_std_missing() try: Zimp = self._latent_Zimp except AttributeError: print(f'Cannot compute reliability before model fitting and imputation') raise Z_ord_lower, _ = self.transform_function.get_ord_latent() reliability = np.zeros_like(Zimp) + np.nan p = Zimp.shape[1] for j in range(p): # get cutsoff col = Z_ord_lower[:,j] missing_indices = np.isnan(col) cuts = np.unique(col[~missing_indices]) cuts = cuts[np.isfinite(cuts)] # compute reliability/the probability lower bound for i,x in enumerate(missing_indices): if x: t = np.abs(Zimp[i,j] - cuts).min() reliability[i,j] = 1 - np.power(std_cond[i,j]/t, 2) return reliability ################################################ #### offline functions ################################################ def fit_transform_offline(self, X, **kwargs): ''' Implement fit_transform when the training mode is 'standard' or 'minibatch-offline' Parameters ---------- See Parameters of fit() Returns ------- See Returns of transform() ''' self.fit_offline(X, **kwargs) X_imp = self.transform() return X_imp def fit_offline(self, X, first_fit=True, max_iter=None, convergence_verbose=True, fit_cov=True): ''' Implement fit when the training mode is 'standard' or 'minibatch-offline' Parameters ---------- See Parameters of fit() ''' X = self._preprocess_data(X) # do marginal estimation # for every fit, a brand new marginal transformation is used if first_fit: cdf_types, inverse_cdf_types = self.get_cdf_estimation_type(p = X.shape[1]) self.transform_function = TransformFunction(X, cont_indices=self._cont_indices, ord_indices=self._ord_indices, cdf_types=cdf_types, inverse_cdf_types=inverse_cdf_types ) Z, Z_ord_lower, Z_ord_upper = self._observed_to_latent() else: Z_ord_lower, Z_ord_upper = self._Z_ord_lower, self._Z_ord_upper Z = self._latent_Zimp.copy() Z[np.isnan(X)] = np.nan # estimate copula correlation matrix if fit_cov: Z_imp, C_ord = self._fit_covariance(Z, Z_ord_lower, Z_ord_upper, first_fit=first_fit, max_iter=max_iter, convergence_verbose=convergence_verbose) # attributes to store after model fitting self._latent_Zimp = Z_imp self._latent_Cord = C_ord # attributes to store for additional training self._Z_ord_lower = Z_ord_lower self._Z_ord_upper = Z_ord_upper ################################################ #### online functions ################################################ def fit_transform_online(self, X, X_true=None, n_train=0): ''' Implement fit_transform when the training mode is 'minibatch-online' Parameters ---------- See Parameters of fit_transform() Returns ------- See Returns of transform() ''' if X_true is not None: X_true = np.array(X_true) cdf_types, inverse_cdf_types = self.get_cdf_estimation_type(p = X.shape[1]) self.transform_function = OnlineTransformFunction(self._cont_indices, self._ord_indices, window_size=self._window_size, decay = self._decay, cdf_types=cdf_types, inverse_cdf_types=inverse_cdf_types ) n,p = X.shape X_imp = np.zeros_like(X) self._corr = np.identity(p) # initialize the model n_train = self._batch_size if n_train == 0 else n_train assert n_train > 0 ind_train = np.arange(n_train) X_train = X[ind_train] if X_true is None else X_true[ind_train] self.transform_function.update_window(X_train) _ = self.partial_fit(X_batch = X_train, step_size=1) X_imp[ind_train] = self.transform(X = X_train, num_ord_updates=self._num_ord_updates) i=0 while True: batch_lower = n_train + i*self._batch_size batch_upper = min(n_train + (i+1)*self._batch_size, n) if batch_lower>=n: break indices = np.arange(batch_lower, batch_upper, 1) _X_true = None if X_true is None else X_true[indices] X_imp[indices] = self.partial_fit_transform(X[indices], step_size=self.stepsize(i+1), X_true=_X_true) i+=1 if self._verbose > 0: print(f'finish batch {i}') return X_imp def partial_fit_transform(self, X_batch, step_size=0.5, X_true=None): """ Updates the fit of the copula using the data in X_batch and returns the imputed values and the new correlation for the copula Parameters ---------- X_batch: array-like of shape (nbatch, nfeatures) data matrix with entries to use to update copula and be imputed step_size: float in (0,1), default=0.5 tunes how much to weight new covariance estimates X_true: If not None, it indicates that some (could be all) of the missing entries of X_batch are revealed, and stored in X_true, after the imputation of X_batch. Those observation entries will be used to update the model. Returns ------- X_imp: array-like of shape (nbatch, nfeatures) X_batch with missing values imputed """ # impute missing entries in new data using previously fitted model # just a step of out-of-sample imputation X_for_update = X_batch if X_true is None else X_true if self._realtime_marginal: X_imp = X_batch.copy() for i,x in enumerate(X_batch): X_imp[i] = self.transform(X = x.reshape((1, -1)), num_ord_updates = self._num_ord_updates) self.transform_function.update_window(X_for_update[i].reshape((1, -1))) else: X_imp = self.transform(X = X_batch, num_ord_updates=self._num_ord_updates) self.transform_function.update_window(X_for_update) # use new model to update model parameters prev_corr = self._corr.copy() new_corr = self.partial_fit(X_batch=X_for_update, step_size=step_size, model_update=True) diff = self.get_matrix_diff(prev_corr, self._corr, self._corr_diff_type) self._update_corr_diff(diff) return X_imp def partial_fit(self, X_batch, step_size=0.5, model_update=True): ''' Update the copula correlation from new samples in X_batch, with given step size Parameters ---------- X_batch: array-like of shape (nbatch, nfeatures) data matrix with entries to use to update copula step_size: float in (0,1), default=0.5 tunes how much to weight new covariance estimates model_update: bool, default=True If True, update fitting information Returns ------- new_corr: array-like of shape (nfeatures, nfeatures) updated copula correlation ''' Z_ord_lower, Z_ord_upper = self.transform_function.get_ord_latent(X_to_transform=X_batch) Z_ord = self._init_Z_ord(Z_ord_lower, Z_ord_upper, method='univariate_mean') Z_cont = self.transform_function.get_cont_latent(X_to_transform=X_batch) Z = np.empty_like(X_batch) Z[:, self._cont_indices] = Z_cont Z[:, self._ord_indices] = Z_ord corr, Z_imp, Z, C_ord, loglik = self._em_step(Z, Z_ord_lower, Z_ord_upper) new_corr = corr*step_size + (1-step_size)*self._corr if model_update: self._corr = new_corr self._latent_Zimp = Z_imp self._latent_Cord = C_ord self.likelihood.append(loglik) return new_corr def change_point_test(self, X, step_size, X_true=None, nsamples=100): ''' Conduct change point test at the newly received data batch X Parameters ---------- X: array-like of shape (nbatch, nfeatures) The newly received (incomplete) data batch X_true: array-like of shape (nbatch, nfeatures) A matrix agrees with X at observed entries but has fewer missing entries. step_size: flaot in (0,1) The correlation update step size nsamples: int, default = 100 The number of samples to draw for approximating the null distribution. Returns ------- pval: float empirical p-value diff: float test statistics ''' n,p = X.shape missing_indices = np.isnan(X) prev_corr = self._corr.copy() changing_stat = defaultdict(list) X_to_impute = np.zeros_like(X) * np.nan for i in range(nsamples): z = self._rng.multivariate_normal(np.zeros(p), prev_corr, n) # mask x = np.empty((n,p)) x[:,self.cont_indices] = self.transform_function.impute_cont_observed(z, X_to_impute) x[:,self.ord_indices] = self.transform_function.impute_ord_observed(z, X_to_impute) x[missing_indices] = np.nan # TODO: compare with enabling marginal_update new_corr = self.partial_fit(x, step_size=step_size, model_update=False) diff = self.get_matrix_diff(prev_corr, new_corr, self._corr_diff_type) self._update_corr_diff(diff, output=changing_stat) self.transform_function.update_window(X) new_corr = self.partial_fit(X, step_size=step_size, model_update=True) diff = self.get_matrix_diff(prev_corr, new_corr, self._corr_diff_type) self._update_corr_diff(diff) # compute empirical p-values changing_stat = pd.DataFrame(changing_stat) pval = {} for t in self._corr_diff_type: pval[t] = (np.sum(diff[t]<changing_stat[t])+1)/(nsamples+1) return pval, diff ################################################ #### core functions ################################################ def _latent_to_imp(self, Z, X_to_impute=None): ''' Transform the complete latent matrix Z to the observed space, but only keep values at missing entries (to be imputed). All values at observe entries will be replaced with original observation in X_to_impute. Parameters ---------- Z: array-like of shape (nsamples, nfeatures) A complete matrix in latent Gaussian space X_to_impute: array-like of shape (nsamples, nfeatures) or None If None, self.transform_function.X will be used. Returns ------- X_imp: array-like of shape (nsamples, nfeatures) The transformed complete matrix in the observed space ''' # During the fitting process, all ordinal columns are moved to appear before all continuous columns # Rearange the obtained results to go back to the original data ordering if X_to_impute is None: X_to_impute = self.transform_function.X X_imp = X_to_impute.copy() if any(self._cont_indices): X_imp[:,self._cont_indices] = self.transform_function.impute_cont_observed(Z=Z, X_to_impute=X_to_impute) if any(self._ord_indices): X_imp[:,self._ord_indices] = self.transform_function.impute_ord_observed(Z=Z, X_to_impute=X_to_impute) return X_imp def _observed_to_latent(self, X_to_transform=None, Z_cont=None, method='univariate_mean'): ''' Transform incomplete/complete data matrix X_to_transform to the latent Gaussian space. Parameters ---------- X_to_transform: array-like of shape (nsamples, nfeatures) or None If None, self.transform_function.X will be used. Z_cont: array-like of shape (nsamples, nfeatures_cont) The submatrix of the desired transformed latent matrix. Used with cauction: it is designed to save repetitive computation of generating Z_cont Returns ------- Z: array-like of shape (nsamples, nfeatures) Transformed latent matrix Z_ord_upper, Z_ord_lower: array-like of shape (nsamples, nfeatures_ord) Upper and lower bound to sample from ''' if X_to_transform is None: X_to_transform = self.transform_function.X if Z_cont is None: Z_cont = self.transform_function.get_cont_latent(X_to_transform=X_to_transform) Z_ord_lower, Z_ord_upper = self.transform_function.get_ord_latent(X_to_transform=X_to_transform) Z_ord = self._init_Z_ord(Z_ord_lower, Z_ord_upper, method=method) # Z = np.concatenate((Z_ord, Z_cont), axis=1) Z = np.empty_like(X_to_transform) Z[:, self.cont_indices] = Z_cont Z[:, self.ord_indices] = Z_ord return Z, Z_ord_lower, Z_ord_upper def _fit_covariance(self, Z, Z_ord_lower, Z_ord_upper, first_fit=True, max_iter=None, convergence_verbose=True): """ Fits the gaussian copula correlation matrix using only the transformed data in the latent space. Parameters ---------- Z: array-like of shape (nsamples, nfeatures) Transformed latent matrix Z_ord_upper, Z_ord_lower: array-like of shape (nsamples, nfeatures_ord) Upper and lower bound to sample from first_fit: bool, default=True if True, initialize the copula correlation matrix. max_iter: int or None The maximum number of iterations to run. If None, use self,_max_iter. convergence_verbose: bool, default=True If True, store self.n_iter_ as the number of iterations run Returns ------- Z_imp: array-like of shape (nsamples,nfeatures) The completed matrix in the latent Gaussian space. C_ord: array-like of shape (nfeatures, nfeatures) The conditional covariance due to ordinal truncation. """ if first_fit: self._init_copula_corr(Z) n = len(Z) # permutation of indices of data for stochastic fitting if self._training_mode=='minibatch-offline': training_permutation = self._rng.permutation(n) # determine the maximal iteraitons to run if self._training_mode=='minibatch-offline' and self._num_pass is not None: max_iter = (np.ceil(n/self._batch_size) * self._num_pass).astype(np.int32) if self._verbose>0: print(f'The number of maximum iteration is set as {max_iter} to have {self._num_pass} passes over all data') else: max_iter = self._max_iter if max_iter is None else max_iter converged = False Z_imp = np.empty_like(Z) for i in range(max_iter): # track the change ratio of copula correlation as stopping criterion prev_corr = self._corr if np.isnan(prev_corr).any(): raise ValueError(f'Unexpected nan in updated copula correlation at iteration {i}') # run EM iterations if self._training_mode == 'standard': # standard EM: each iteration uses all data points corr, Z_imp, Z, C_ord, iterloglik = self._em_step(Z, Z_ord_lower, Z_ord_upper) self._corr = corr else: # mini-batch EM: more frequent parameter update by using data input with smaller size at each iteration batch_lower = (i * self._batch_size) % n batch_upper = ((i+1) * self._batch_size) % n if batch_upper < batch_lower: # we have wrapped around the dataset indices = np.concatenate((training_permutation[batch_lower:], training_permutation[:batch_upper])) else: indices = training_permutation[batch_lower:batch_upper] corr, Z_imp_batch, Z_batch, C_ord, iterloglik = self._em_step(Z[indices], Z_ord_lower[indices], Z_ord_upper[indices]) Z_imp[indices] = Z_imp_batch Z[indices] = Z_batch step_size = self.stepsize(i+1) self._corr = corr*step_size + (1 - step_size)*prev_corr self._iter += 1 # stop if the change in the correlation estimation is below the threshold corrudpate = self._get_scaled_diff(prev_corr, self._corr) self.corrupdate.append(corrudpate) if self._verbose>0: print(f"Iter {self._iter}: copula parameter change {corrudpate:.4f}, likelihood {iterloglik:.4f}") # append new likelihood self.likelihood.append(iterloglik) if corrudpate < self._threshold: converged = True if converged: break # store the number of iterations and print if converged if convergence_verbose: self._set_n_iter(converged, i) return Z_imp, C_ord def _em_step(self, Z, r_lower, r_upper): """ Executes one step of the EM algorithm to update the covariance of the copula Parameters ---------- Z: array-like of shape (nsamples, nfeatures) Transformed latent matrix Z_ord_upper, Z_ord_lower: array-like of shape (nsamples, nfeatures_ord) Upper and lower bound to sample from Returns ------- sigma: array-like of shape (nfeatures, nfeatures) an estimate of the covariance of the copula Z_imp: array-like of shape (nsamples,nfeatures) The completed matrix in the latent Gaussian space. C_ord: array-like of shape (nfeatures, nfeatures) The conditional covariance due to ordinal truncation. loglik: float The computed log-likelihood """ n,p = Z.shape assert n>0, 'EM step receives empty input' max_workers = self._max_workers num_ord_updates = self._num_ord_updates out_dict = {} out_dict['var_ordinal'] = np.zeros((n,p)) out_dict['Z_imp'] = Z.copy() out_dict['Z'] = Z out_dict['loglik'] = 0 out_dict['C'] = np.zeros((p,p)) has_truncation = self.has_truncation() if max_workers ==1: args = ('em', Z, r_lower, r_upper, self._corr, num_ord_updates, self._ord_indices, has_truncation) res_dict = _latent_operation_body_(args) for key in ['Z_imp', 'Z', 'var_ordinal']: out_dict[key] = res_dict[key] for key in ['loglik', 'C']: out_dict[key] += res_dict[key]/n else: divide = n/max_workers * np.arange(max_workers+1) divide = divide.astype(int) args = [('em', Z[divide[i]:divide[i+1]].copy(), r_lower[divide[i]:divide[i+1]], r_upper[divide[i]:divide[i+1]], self._corr, num_ord_updates, self._ord_indices, has_truncation ) for i in range(max_workers)] with ProcessPoolExecutor(max_workers=max_workers) as pool: res = pool.map(_latent_operation_body_, args) for i, res_dict in enumerate(res): for key in ['Z_imp', 'Z', 'var_ordinal']: out_dict[key][divide[i]:divide[i+1]] = res_dict[key] for key in ['loglik', 'C']: out_dict[key] += res_dict[key]/n Z_imp = out_dict['Z_imp'] C = out_dict['C'] C_ord = out_dict['var_ordinal'] try: # the estimated covariance converges to 1 # if n is large enough, an alternative update rule as below is also plausible # >>> sigma = np.cov(Z_imp, rowvar=False) + C # >>> np.fill_diagonal(sigma, 1) # however, when n is small, the above update rule is not robust: the updated sigma may fail to be positive definite # Consequently, it easily fails in minibatch and online training mode # The current updating rule is more robust sigma = np.cov(Z_imp, rowvar=False) + C if self._verbose>=3: _diag = np.diag(sigma) _max, _min = _diag.max(), _diag.min() print(f'The estimated covariance values has min {_min:.3f} and max {_max:.3f}') sigma = self._project_to_correlation(sigma) except ZeroDivisionError: print("unexpected zero covariance for the latent Z") _min, _max = C.diagonal().min(), C.diagonal().max() print(f'The diagonals of C ranges from min {_min} to max {_max}') _m = np.cov(Z_imp, rowvar=False) _min, _max = _m.diagonal().min(), _m.diagonal().max() print(f'The diagonals of empirical covariance of Z_imp ranges from min {_min} to max {_max}') idp = _m.diagonal() == _min print(f'Min diagonal appears in {np.flatnonzero(idp)}-th variable with values:') print(np.round(Z_imp[:,idp],4)) print(f'The fitted window is {self.transform_function.X[:,idp]}') raise loglik = out_dict['loglik'] return sigma, Z_imp, Z, C_ord, loglik def _sample_latent(self, Z, Z_ord_lower, Z_ord_upper, num, num_ord_updates=2): ''' Given incomplete Z, whice has missing entries due to missing observation, sample those missing entries using the multivariate normal assumption in the latent space. Parameters ---------- Z: array-like of shape (nsamples, nfeatures) Transformed latent matrix Z_ord_upper, Z_ord_lower: array-like of shape (nsamples, nfeatures_ord) Upper and lower bound to sample from num_ord_updates: int, default = 2 Number of steps to take when approximating the mean and variance of the latent variables corresponding to ordinal dimensions. Returns ------- Z_imp_num: array-like of shape (nsamples, nfeatures, num) The sampled latent values. ''' n, p = Z.shape max_workers = self._max_workers seed = self._sample_seed additional_args = {'num':num, 'seed':seed} self._sample_seed += 1 has_truncation = self.has_truncation() if max_workers ==1: args = ('sample', Z, Z_ord_lower, Z_ord_upper, self._corr, num_ord_updates, self._ord_indices, has_truncation, additional_args) res_dict = _latent_operation_body_(args) Z_imp_num = res_dict['Z_imp_sample'] else: divide = n/max_workers * np.arange(max_workers+1) divide = divide.astype(int) args = [('sample', Z[divide[i]:divide[i+1]].copy(), Z_ord_lower[divide[i]:divide[i+1]], Z_ord_upper[divide[i]:divide[i+1]], self._corr, num_ord_updates, self._ord_indices, has_truncation, additional_args ) for i in range(max_workers)] Z_imp_num = np.empty((n,p,num)) with ProcessPoolExecutor(max_workers=max_workers) as pool: res = pool.map(_latent_operation_body_, args) for i, res_dict in enumerate(res): Z_imp_num[divide[i]:divide[i+1],...] = res_dict['Z_imp_sample'] return Z_imp_num def _fillup_latent(self, Z, Z_ord_lower, Z_ord_upper, num_ord_updates=2): ''' Given incomplete Z, whice has missing entries due to missing observation, fill up those missing entries using the multivariate normal assumption in the latent space. Parameters ---------- Z: array-like of shape (nsamples, nfeatures) Transformed latent matrix Z_ord_upper, Z_ord_lower: array-like of shape (nsamples, nfeatures_ord) Upper and lower bound to sample from num_ord_updates: int, default = 2 Number of steps to take when approximating the mean and variance of the latent variables corresponding to ordinal dimensions. Returns ------- Z_imp: array-like of shape (nsamples, nfeatures) The imputed latent values C_ord: array-like of shape (nfeatures, nfeatures) The conditional covariance due to ordinal truncation. ''' n, p = Z.shape max_workers = self._max_workers has_truncation = self.has_truncation() if max_workers ==1: args = ('fillup', Z, Z_ord_lower, Z_ord_upper, self._corr, num_ord_updates, self._ord_indices, has_truncation) res_dict = _latent_operation_body_(args) Z_imp, C_ord = res_dict['Z_imp'], res_dict['var_ordinal'] else: divide = n/max_workers * np.arange(max_workers+1) divide = divide.astype(int) args = [('fillup', Z[divide[i]:divide[i+1]].copy(), Z_ord_lower[divide[i]:divide[i+1]], Z_ord_upper[divide[i]:divide[i+1]], self._corr, num_ord_updates, self._ord_indices, has_truncation ) for i in range(max_workers)] Z_imp = np.empty((n,p)) C_ord = np.empty((n,p)) with ProcessPoolExecutor(max_workers=max_workers) as pool: res = pool.map(_latent_operation_body_, args) for i, res_dict in enumerate(res): Z_imp[divide[i]:divide[i+1]] = res_dict['Z_imp'] C_ord[divide[i]:divide[i+1]] = res_dict['var_ordinal'] return Z_imp, C_ord def _get_cond_std_missing(self, X=None, Cord=None): ''' The conditional std of each missing location given other observation. Parameters ---------- X: array-like of shape (nsamples,nfeatures) or None Only its shape is used Set to the data used for model fitting if None Cord: array-like of shape (nfeatures, nfeatures) or None The conditional covariance due to ordinal truncation. Set to the returned values after model fitting if None Returns ------- std_cond: array-like of shape (nsamples,nfeatures) Elementwise conditional std at each missing location. np.nan at observed locations. ''' if Cord is None: try: Cord = self._latent_Cord except AttributeError: print(f'The model has not been fitted yet. Either fit the model first or supply Cord') raise if X is None: X = self.transform_function.X std_cond = np.zeros_like(X) obs_loc = ~np.isnan(X) std_cond[obs_loc] = np.nan for i,x_row in enumerate(X): missing_indices = np.isnan(x_row) obs_indices = ~missing_indices if any(missing_indices): sigma_obs_obs = self._corr[np.ix_(obs_indices,obs_indices)] sigma_obs_missing = self._corr[np.ix_(obs_indices, missing_indices)] sigma_obs_obs_inv_obs_missing = np.linalg.solve(sigma_obs_obs, sigma_obs_missing) # compute quantities # _var = 1 - np.diagonal(np.matmul(sigma_obs_missing.T, sigma_obs_obs_inv_obs_missing)) # use einsum for faster and fewer computation _var = 1 - np.einsum('ij, ji -> i', sigma_obs_missing.T, sigma_obs_obs_inv_obs_missing) # When there exists valid ordinal observation, we will have self._latent_Cord[i, obs_indices].sum() positive. if Cord[i, obs_indices].sum()>0: _var += np.einsum('ij, j, ji -> i', sigma_obs_obs_inv_obs_missing.T, Cord[i, obs_indices], sigma_obs_obs_inv_obs_missing) std_cond[i, missing_indices] = np.sqrt(_var) return std_cond def _init_Z_ord(self, Z_ord_lower, Z_ord_upper, method='univariate_mean'): """ Initializes the observed latent ordinal values by: if method == 'sampling': sampling from a standard Gaussian trucated to the inveral of Z_ord_lower, Z_ord_upper if method == 'univariate_mean': computing the mean of a standard Gaussian truncated to the inveral of Z_ord_lower, Z_ord_upper Parameters ---------- Z_ord_lower : array-like of shape (nsamples, nfeatures_ordinal) lower range for ordinals Z_ord_upper : array-like of shape (nsamples, nfeatures_ordinal) upper range for ordinals Returns ------- Z_ord : array-like of shape (nsamples, nfeatures_ordinal) Samples drawn from gaussian truncated between Z_ord_lower and Z_ord_upper """ Z_ord = Z_ord_lower.copy() if Z_ord_lower.shape[1] == 0: return Z_ord obs_indices = ~np.isnan(Z_ord_lower) u_lower = norm.cdf(Z_ord_lower[obs_indices]) u_upper = norm.cdf(Z_ord_upper[obs_indices]) if (u_upper-u_lower).min()<=0: loc = np.argmin(u_upper-u_lower) print(f'Min of upper - lower: {u_upper[loc]-u_lower[loc]:.3f}') print(f'where upper is {u_upper[loc]:.3f} and lower is {u_lower[loc]:.3f}') raise ValueError('Invalid lower & upper bounds for ordinal') if u_lower.min()<0: print(f'Min of lower: {u_lower.min():.3f}') raise ValueError('Invalid lower & upper bounds for ordinal') if u_upper.max()>1: print(f'Max of upper: {u_upper.max():.3f}') raise ValueError('Invalid lower & upper bounds for ordinal') if method == 'sampling': _score = self._rng.uniform(u_lower, u_upper) Z_ord[obs_indices] = norm.ppf(_score) else: alpha = Z_ord_lower[obs_indices] beta = Z_ord_upper[obs_indices] l = len(alpha) out = get_truncnorm_moments_vec(alpha, beta, np.zeros(l), np.ones(l), mean_only=True) Z_ord[obs_indices] = out['mean'] return Z_ord def _init_copula_corr(self, Z): ''' Initialize the copula correlaiont matrix using incomplete Z. First complete Z and then takes its sample correlaiton matrix. Parameters ---------- Z: array-like of shape (nsamples, nfeatures) Transformed latent matrix ''' n,p = Z.shape # mean impute the missing continuous values for the sake of covariance estimation Z_imp = Z.copy() Z_imp[np.isnan(Z_imp)] = 0.0 # initialize the correlation matrix self._corr = np.corrcoef(Z_imp, rowvar=False) if self._verbose > 1: _svdvals = svdvals(self._corr) print(f'singular values of the initialized correlation has min {_svdvals.min():.5f} and max {_svdvals.max():.5f}') ################################################ #### helper functions ################################################ def _project_to_correlation(self, covariance): """ Projects a covariance to a correlation matrix, normalizing it's diagonal entries. Only checks for diagonal entries to be positive. Parameters ---------- covariance: array-like of shape (nfeatures, nfeatures) Returns ------- correlation: array-like of shape (nfeatures, nfeatures) """ D = np.diagonal(covariance) if any(np.isclose(D, 0)): raise ZeroDivisionError("unexpected zero covariance for the latent Z") D_neg_half = 1.0/np.sqrt(D) covariance *= D_neg_half correlation = covariance.T * D_neg_half return correlation def _get_scaled_diff(self, prev_sigma, sigma): """ Get's the scaled difference between two correlation matrices Parameters ---------- prev_sigma: array-like of shape (nfeatures, nfeatures) previous estimate of a matrix sigma: array-like of shape (nfeatures, nfeatures) current estimate of a matrix Returns ------- diff: float scaled distance between the inputs """ diff = np.linalg.norm(sigma - prev_sigma) / np.linalg.norm(sigma) return diff def _preprocess_data(self, X, set_indices = True): ''' Store column names, set variable types and change X to be a numpy array Parameters ---------- X: array-like of shape (nfeatures, nfeatures) Input data set_indices: bool, default=True If true, set variaable types Returns ------- X: numpy array of shape (nfeatures, nfeatures) Preprocessed input data ''' if hasattr(X, 'columns'): self.features_names = np.array(X.columns.to_list()) X = np.asarray(X) if set_indices: self.set_indices(X) return X def store_var_type(self, **indices): ''' Store the integer based index for special variable types in self.var_type_dict. ''' for name, values in indices.items(): if values is not None: self.var_type_dict[name] = values def has_truncation(self): ''' Return if a truncated variable is present ''' truncation = False for name in ['lower_truncated', 'upper_truncated', 'twosided_truncated']: if name in self.var_type_dict: truncation = True break return truncation def get_cdf_estimation_type(self, p): ''' Return a list of str indicating the type of cdf estimation using self.var_type_dict ''' cdf_types = np.array(['empirical'] * p, dtype = 'U20') inverse_cdf_types = np.array(['empirical'] * p, dtype = 'U20') for name, values in self.var_type_dict.items(): if name in ['lower_truncated', 'upper_truncated', 'twosided_truncated']: cdf_types[values] = name inverse_cdf_types[values] = name return cdf_types, inverse_cdf_types def set_indices(self, X): ''' set variable types ''' p = X.shape[1] # boolean indexing var_type = self.get_vartype_indices(X) # if there are pre-fixed variable types, modify var_type_list to be consistent _merged_var = var_type.copy() for name, values in self.var_type_dict.items(): _merged_var[values] = name _diff = _merged_var != var_type if any(_diff): if self._verbose > 1: print('Caution: the user specified variable types differ from the models automatic decision') loc = np.flatnonzero(_diff) print(f'Conflicts at {loc}: user decision {_merged_var[loc]}, model decision {var_type[loc]}') var_type = _merged_var # indexing differenting continuous and non-continuous self._cont_indices = var_type == 'continuous' self._ord_indices = ~self._cont_indices # integer based indexing self.cont_indices = np.flatnonzero(self._cont_indices) self.ord_indices = np.flatnonzero(self._ord_indices) # set var_type_dict = defaultdict(list) for i,x in enumerate(var_type): var_type_dict[x].append(i) for key,value in self.var_type_dict.items(): if key not in var_type_dict: raise new_value = var_type_dict[key] if not set(value).issubset(set(new_value)): print(key, set(value), set(new_value)) raise self.var_type_dict = var_type_dict def get_vartype_indices(self, X): """ get's the indices of continuos columns by returning those indicies which have at least max_ord distinct values Parameters ---------- X: array-like of shape (nsamples, nfeatures) input matrix Returns: var_type_list: list of str of length nfeatures The specified variable types. Each element is one of var_type_names. """ def is_cont_using_counts(counts): ''' return if continuous ''' return len(counts)>0 and counts.max()/counts.sum() < self._min_ord_ratio def is_special_type(x): ''' return if is general-ordinal (not continuous), lower_truncated, upper_truncated, twosided truncated ''' obs = ~np.isnan(x) x = x[obs] n = len(x) uniques, counts = np.unique(x, return_counts=True) if len(counts) == 1: print('Remove variables with only a single observed level.') raise #below_max_ord = len(uniques) <= self._max_ord is_ord = (counts.max()/n) >= self._min_ord_ratio lower_truncated_thre = counts[0]/n >= self._min_ord_ratio upper_truncated_thre = counts[-1]/n >= self._min_ord_ratio is_lower_truncated = False if lower_truncated_thre: is_lower_truncated = is_cont_using_counts(counts[1:]) is_upper_truncated = False if upper_truncated_thre: is_upper_truncated = is_cont_using_counts(counts[:-1]) is_twoside_truncated = False if lower_truncated_thre and upper_truncated_thre: # test if the remaing values could be treated as continuous after removing truncated values is_twoside_truncated = is_cont_using_counts(counts[1:-1]) assert is_twoside_truncated + is_lower_truncated + is_upper_truncated <= 1 return is_ord, is_lower_truncated, is_upper_truncated, is_twoside_truncated def which_type(is_ord, is_lower_truncated, is_upper_truncated, is_twoside_truncated): ''' determine the variable type ''' if is_ord: if is_lower_truncated: t = 'lower_truncated' elif is_upper_truncated: t = 'upper_truncated' elif is_twoside_truncated: t = 'twosided_truncated' else: t = 'ordinal' else: t = 'continuous' return t ord_indices = [] lower_truncated_indices = [] upper_truncated_indices = [] twoside_truncated_indices = [] var_type_list = [] for i, col in enumerate(X.T): is_ord, is_lower_truncated, is_upper_truncated, is_twoside_truncated = is_special_type(col) var_type_list.append(which_type(is_ord, is_lower_truncated, is_upper_truncated, is_twoside_truncated)) var_type_list = np.array(var_type_list, dtype = 'U20') return var_type_list def _set_n_iter(self, converged, i): ''' Store the number of iterations run ''' if self._verbose>0: if not converged: print("Convergence not achieved at maximum iterations") else: print(f"Convergence achieved at iteration {i+1}") self.n_iter_ = i+1 def _update_corr_diff(self, corr_diff, output=None): ''' Compute and store correlation update Parameters ---------- corr_diff: dict Have self._corr_diff_type as keys output: dict or None If None, set to self.corr_diff ''' if output is None: to_append = self.corr_diff else: # TODO: also check dict names assert isinstance(output, dict) to_append = output for t in self._corr_diff_type: to_append[t].append(corr_diff[t]) def get_matrix_diff(self, sigma_old, sigma_new, type = ['F', 'S', 'N']): ''' Return the correlation change tracking statistics, as some matrix norm of normalized matrix difference. Support three norms currently: 'F' for Frobenius norm, 'S' for spectral norm and 'N' for nuclear norm. User-defined norm can also be used through simple modification. Parameters ---------- simga_old: array-like of shape (nfeatures, nfeatures) the estimate of copula correlation matrix based on historical data sigma_new: array-like of shape (nfeatures, nfeatures) the estiamte of copula correlation matrix based on new batch data type: list of str a subset of {'F', 'S', 'N'} the type of matrix norm to use for constructing test statistics. Returns ------- test_stats: dict have (matrix norm type, the test statistics) as (key, value) pair. ''' p = sigma_old.shape[0] u, s, vh = np.linalg.svd(sigma_old) factor = (u * np.sqrt(1/s) ) @ vh diff = factor @ sigma_new @ factor test_stats = {} if 'F' in type: test_stats['F'] = np.linalg.norm(diff-np.identity(p)) if 'S' in type or 'N' in type: _, s, _ = np.linalg.svd(diff) if 'S' in type: test_stats['S'] = max(abs(s-1)) if 'N' in type: test_stats['N'] = np.sum(abs(s-1)) return test_stats
43.02796
309
0.585953
4a27f0991bd31104f17f258a92f228eaee27c2e7
3,103
py
Python
modules/dbnd-airflow/setup.py
dmytrostriletskyi/dbnd
d4a5f5167523e80439c9d64182cdc87b40cbc48f
[ "Apache-2.0" ]
null
null
null
modules/dbnd-airflow/setup.py
dmytrostriletskyi/dbnd
d4a5f5167523e80439c9d64182cdc87b40cbc48f
[ "Apache-2.0" ]
null
null
null
modules/dbnd-airflow/setup.py
dmytrostriletskyi/dbnd
d4a5f5167523e80439c9d64182cdc87b40cbc48f
[ "Apache-2.0" ]
null
null
null
from os import path import setuptools from setuptools.config import read_configuration BASE_PATH = path.dirname(__file__) CFG_PATH = path.join(BASE_PATH, "setup.cfg") config = read_configuration(CFG_PATH) version = config["metadata"]["version"] requirements_for_airflow = [ "WTForms<2.3.0", # fixing ImportError: cannot import name HTMLString at 2.3.0 "Werkzeug<1.0.0,>=0.15.0", "psycopg2-binary>=2.7.4", "SQLAlchemy==1.3.18", # Make sure Airflow uses SQLAlchemy 1.3.15, Airflow is incompatible with SQLAlchemy 1.4.x "marshmallow<3.0.0,>=2.18.0", "marshmallow-sqlalchemy<0.24.0,>=0.16.1;python_version>='3.0'", "itsdangerous<2.0,>=0.24", "tenacity>=4.12", ] setuptools.setup( name="dbnd-airflow", package_dir={"": "src"}, install_requires=["dbnd==" + version, "packaging",], # Only for orchestration, tracking users should install Airflow manually before DBND # The best way to install airflow is manually with constraints beforehand. # For example: # pip install apache-airflow --constraint "https://raw.githubusercontent.com/apache/airflow/constraints-${AIRFLOW_VERSION}/constraints-{PYTHON_VERSION}.txt extras_require=dict( airflow_1_10_7=requirements_for_airflow + ["apache-airflow==1.10.7"], airflow_1_10_8=requirements_for_airflow + ["apache-airflow==1.10.8"], airflow_1_10_9=requirements_for_airflow + ["apache-airflow==1.10.9"], airflow_1_10_10=requirements_for_airflow + ["apache-airflow==1.10.10"], airflow_1_10_11=requirements_for_airflow + ["apache-airflow==1.10.11"], airflow_1_10_12=requirements_for_airflow + ["apache-airflow==1.10.12"], airflow_1_10_13=requirements_for_airflow + ["apache-airflow==1.10.13"], airflow_1_10_14=requirements_for_airflow + ["apache-airflow==1.10.14"], airflow_1_10_15=requirements_for_airflow + ["apache-airflow==1.10.15"], airflow_2_0_2=[ # This is only used to build Docker image for integration tests. "WTForms<2.3.0", "psycopg2-binary>=2.7.4", "apache-airflow==2.0.2", "apache-airflow-providers-apache-spark==1.0.3", # Airflow 2.0 installs versions 3.3.5 which has bad dependency to newer version of importlib-metadata "Markdown==3.3.4", ], airflow_2_2_3=[ # This is only used to build Docker image for integration tests. "WTForms<2.3.0", "psycopg2-binary>=2.7.4", "apache-airflow==2.2.3", # Airflow 2.0 installs versions 3.3.5 which has bad dependency to newer version of importlib-metadata "Markdown==3.3.4", "apache-airflow-providers-apache-spark", ], airflow=requirements_for_airflow + ["apache-airflow==1.10.10"], tests=[ # # airflow support "dbnd_test_scenarios==" + version, "pytest==4.5.0", "boto3<=1.15.18", "mock", "sh", ], ), entry_points={"dbnd": ["dbnd-airflow = dbnd_airflow._plugin"],}, )
42.506849
160
0.643248
4a27f12ea41bbbc50f94fda7f6ce37f2af654098
6,425
py
Python
test/functional/rpc_bind.py
Jurdefur/dhb-core
9d9d5ce6be37f07fd14c98abcfa0b3435c5d2211
[ "MIT" ]
null
null
null
test/functional/rpc_bind.py
Jurdefur/dhb-core
9d9d5ce6be37f07fd14c98abcfa0b3435c5d2211
[ "MIT" ]
null
null
null
test/functional/rpc_bind.py
Jurdefur/dhb-core
9d9d5ce6be37f07fd14c98abcfa0b3435c5d2211
[ "MIT" ]
null
null
null
#!/usr/bin/env python3 # Copyright (c) 2014-2018 The Bitcoin Core developers # Distributed under the MIT software license, see the accompanying # file COPYING or http://www.opensource.org/licenses/mit-license.php. """Test running dhbcoind with the -rpcbind and -rpcallowip options.""" import sys from test_framework.netutil import all_interfaces, addr_to_hex, get_bind_addrs, test_ipv6_local from test_framework.test_framework import BitcoinTestFramework, SkipTest from test_framework.util import assert_equal, assert_raises_rpc_error, get_rpc_proxy, rpc_port, rpc_url class RPCBindTest(BitcoinTestFramework): def set_test_params(self): self.setup_clean_chain = True self.bind_to_localhost_only = False self.num_nodes = 1 def setup_network(self): self.add_nodes(self.num_nodes, None) def add_options(self, parser): parser.add_argument("--ipv4", action='store_true', dest="run_ipv4", help="Run ipv4 tests only", default=False) parser.add_argument("--ipv6", action='store_true', dest="run_ipv6", help="Run ipv6 tests only", default=False) parser.add_argument("--nonloopback", action='store_true', dest="run_nonloopback", help="Run non-loopback tests only", default=False) def run_bind_test(self, allow_ips, connect_to, addresses, expected): ''' Start a node with requested rpcallowip and rpcbind parameters, then try to connect, and check if the set of bound addresses matches the expected set. ''' self.log.info("Bind test for %s" % str(addresses)) expected = [(addr_to_hex(addr), port) for (addr, port) in expected] base_args = ['-disablewallet', '-nolisten'] if allow_ips: base_args += ['-rpcallowip=' + x for x in allow_ips] binds = ['-rpcbind='+addr for addr in addresses] self.nodes[0].rpchost = connect_to self.start_node(0, base_args + binds) pid = self.nodes[0].process.pid assert_equal(set(get_bind_addrs(pid)), set(expected)) self.stop_nodes() def run_allowip_test(self, allow_ips, rpchost, rpcport): ''' Start a node with rpcallow IP, and request getnetworkinfo at a non-localhost IP. ''' self.log.info("Allow IP test for %s:%d" % (rpchost, rpcport)) node_args = \ ['-disablewallet', '-nolisten'] + \ ['-rpcallowip='+x for x in allow_ips] + \ ['-rpcbind='+addr for addr in ['127.0.0.1', "%s:%d" % (rpchost, rpcport)]] # Bind to localhost as well so start_nodes doesn't hang self.nodes[0].rpchost = None self.start_nodes([node_args]) # connect to node through non-loopback interface node = get_rpc_proxy(rpc_url(self.nodes[0].datadir, 0, "%s:%d" % (rpchost, rpcport)), 0, coveragedir=self.options.coveragedir) node.getnetworkinfo() self.stop_nodes() def run_test(self): # due to OS-specific network stats queries, this test works only on Linux if sum([self.options.run_ipv4, self.options.run_ipv6, self.options.run_nonloopback]) > 1: raise AssertionError("Only one of --ipv4, --ipv6 and --nonloopback can be set") self.log.info("Check for linux") if not sys.platform.startswith('linux'): raise SkipTest("This test can only be run on linux.") self.log.info("Check for ipv6") have_ipv6 = test_ipv6_local() if not have_ipv6 and not (self.options.run_ipv4 or self.options.run_nonloopback): raise SkipTest("This test requires ipv6 support.") self.log.info("Check for non-loopback interface") self.non_loopback_ip = None for name,ip in all_interfaces(): if ip != '127.0.0.1': self.non_loopback_ip = ip break if self.non_loopback_ip is None and self.options.run_nonloopback: raise SkipTest("This test requires a non-loopback ip address.") self.defaultport = rpc_port(0) if not self.options.run_nonloopback: self._run_loopback_tests() if not self.options.run_ipv4 and not self.options.run_ipv6: self._run_nonloopback_tests() def _run_loopback_tests(self): if self.options.run_ipv4: # check only IPv4 localhost (explicit) self.run_bind_test(['127.0.0.1'], '127.0.0.1', ['127.0.0.1'], [('127.0.0.1', self.defaultport)]) # check only IPv4 localhost (explicit) with alternative port self.run_bind_test(['127.0.0.1'], '127.0.0.1:32171', ['127.0.0.1:32171'], [('127.0.0.1', 32171)]) # check only IPv4 localhost (explicit) with multiple alternative ports on same host self.run_bind_test(['127.0.0.1'], '127.0.0.1:32171', ['127.0.0.1:32171', '127.0.0.1:32172'], [('127.0.0.1', 32171), ('127.0.0.1', 32172)]) else: # check default without rpcallowip (IPv4 and IPv6 localhost) self.run_bind_test(None, '127.0.0.1', [], [('127.0.0.1', self.defaultport), ('::1', self.defaultport)]) # check default with rpcallowip (IPv4 and IPv6 localhost) self.run_bind_test(['127.0.0.1'], '127.0.0.1', [], [('127.0.0.1', self.defaultport), ('::1', self.defaultport)]) # check only IPv6 localhost (explicit) self.run_bind_test(['[::1]'], '[::1]', ['[::1]'], [('::1', self.defaultport)]) # check both IPv4 and IPv6 localhost (explicit) self.run_bind_test(['127.0.0.1'], '127.0.0.1', ['127.0.0.1', '[::1]'], [('127.0.0.1', self.defaultport), ('::1', self.defaultport)]) def _run_nonloopback_tests(self): self.log.info("Using interface %s for testing" % self.non_loopback_ip) # check only non-loopback interface self.run_bind_test([self.non_loopback_ip], self.non_loopback_ip, [self.non_loopback_ip], [(self.non_loopback_ip, self.defaultport)]) # Check that with invalid rpcallowip, we are denied self.run_allowip_test([self.non_loopback_ip], self.non_loopback_ip, self.defaultport) assert_raises_rpc_error(-342, "non-JSON HTTP response with '403 Forbidden' from server", self.run_allowip_test, ['1.1.1.1'], self.non_loopback_ip, self.defaultport) if __name__ == '__main__': RPCBindTest().main()
49.423077
172
0.633152
4a27f1876c51fdb5bb1c33a71cf4d6858bd15f89
952
py
Python
tests/test_stack.py
AjithPanneerselvam/algo
e73402dbcd9c0ab7856a36d3a3703a5cc2897cd2
[ "MIT" ]
2
2017-07-10T08:55:01.000Z
2018-05-26T07:53:58.000Z
tests/test_stack.py
AjithPanneerselvam/algo
e73402dbcd9c0ab7856a36d3a3703a5cc2897cd2
[ "MIT" ]
5
2017-03-19T10:01:23.000Z
2017-08-31T07:00:19.000Z
tests/test_stack.py
AjithPanneerselvam/algo
e73402dbcd9c0ab7856a36d3a3703a5cc2897cd2
[ "MIT" ]
3
2016-09-27T15:09:54.000Z
2017-08-31T03:34:47.000Z
""" module test_stack ~~~~~~~~~~~~~~ Tests for the stack data structure. :copyright: (c) 2017 by 0xE8551CCB. :license: MIT, see LICENSE for more details. """ import pytest from pyalgorithm.datastructures.stack import DequeStack, ListStack @pytest.fixture(params=[DequeStack, ListStack]) def stack(request): return request.param() def test_stack(stack): stack.push(10) stack.push(11) stack.push(12) assert 12 == stack.peek() assert 3 == len(stack) assert stack.is_empty() is False assert 12 == stack.pop() assert 11 == stack.pop() assert 10 == stack.pop() assert stack.is_empty() is True import pytest with pytest.raises(IndexError): stack.pop() stack.push(0) stack.push(1) assert stack.is_empty() is False stack.clear() assert stack.is_empty() is True if __name__ == '__main__': test_stack(DequeStack()) test_stack(ListStack())
20.255319
66
0.643908
4a27f356b1e35204d8213d72f0fe2873217f3413
7,820
py
Python
tools/nntool/utils/stats_funcs.py
00-01/gap_sdk
25444d752b26ccf0b848301c381692d77172852c
[ "Apache-2.0" ]
118
2018-05-22T08:45:59.000Z
2022-03-30T07:00:45.000Z
tools/nntool/utils/stats_funcs.py
00-01/gap_sdk
25444d752b26ccf0b848301c381692d77172852c
[ "Apache-2.0" ]
213
2018-07-25T02:37:32.000Z
2022-03-30T18:04:01.000Z
tools/nntool/utils/stats_funcs.py
00-01/gap_sdk
25444d752b26ccf0b848301c381692d77172852c
[ "Apache-2.0" ]
76
2018-07-04T08:19:27.000Z
2022-03-24T09:58:05.000Z
# Copyright (C) 2020 GreenWaves Technologies, SAS # This program is free software: you can redistribute it and/or modify # it under the terms of the GNU Affero General Public License as # published by the Free Software Foundation, either version 3 of the # License, or (at your option) any later version. # This program is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the # GNU Affero General Public License for more details. # You should have received a copy of the GNU Affero General Public License # along with this program. If not, see <https://www.gnu.org/licenses/>. import math import numpy as np import scipy.spatial.distance as dis STATS_BITS = [8, 16, 32] def range_twos_complement(bits): return (math.pow(-2, bits - 1), math.pow(2, bits - 1) - 1) def calc_bits(*args, signed=True): assert signed or all(arg >= 0 for arg in args), "numeric error" if len(args) == 2: num = np.floor(np.maximum(np.abs(args[0]), np.abs(args[1]))) else: num = np.floor(np.abs(args[0])) if num == 0: return (1 if signed else 0) return int(np.floor(np.log2(num)) + 1 + (1 if signed else 0)) def do_stat(npa, do_bits=True, channel_dim=None, all_channel_range=None): mean = float(np.mean(npa)) std = float(np.std(npa)) amax = float(np.amax(npa)) amin = float(np.amin(npa)) quant1_3 = np.quantile(npa, [0.25, 0.75]) iqr = quant1_3[1] - quant1_3[0] weak_min = (npa < quant1_3[0] - 1.5 * iqr) weak_max = (npa > quant1_3[1] + 1.5 * iqr) strong_min = (npa < quant1_3[0] - 3 * iqr) strong_max = (npa > quant1_3[1] + 3 * iqr) weak_count = int((weak_min | weak_max).sum()) strong_count = int((strong_min|strong_max).sum()) if weak_count: min_out = float(np.min(np.abs(npa[weak_min|weak_max]))) if strong_count: max_out = float(np.max(np.abs(npa[strong_min|strong_max]))) else: max_out = float(np.max(np.abs(npa[weak_min|weak_max]))) else: min_out = max_out = 0 ret = { 'mean': mean, 'std': std, 'min': amin, 'max': amax, 'size': npa.size, 'wols': weak_count, 'sols': strong_count, 'min_out' : min_out, 'max_out' : max_out, } if do_bits: ret['ibits'] = calc_bits(amax, amin) # all_channel_range must not be 0 if all_channel_range and npa.size > 1: if channel_dim is not None: # there is no point to this if there is only one item per channel if not all(npa.shape[axis] == 1 if axis != channel_dim else True for axis in range(len(npa.shape))): dims = tuple(dim for dim in range(len(npa.shape)) if dim != channel_dim) ret['avg_prec'] = np.average(np.ptp(npa, axis=dims)/all_channel_range) else: ret['avg_prec'] = np.ptp(npa)/all_channel_range return ret def astats(npa, do_bits=True, channel_dim=None, channel_details=None): """Extracts statistics from a tensor """ all_channel_range = np.ptp(npa) ret = do_stat(npa, do_bits=do_bits, channel_dim=channel_dim, all_channel_range=all_channel_range) if channel_details and channel_dim is not None: idx = [slice(None) for dim in npa.shape] channel_data = [] for channel in range(npa.shape[channel_dim]): idx[channel_dim] = slice(channel, channel + 1) channel_data.append(do_stat(npa[tuple(idx)], do_bits=True, all_channel_range=all_channel_range)) ret['channel_stats'] = channel_data return ret def max_error(orig, quant): qerr = orig - quant return np.max(np.abs(qerr)) def qsnr(orig, quant, axis=None): """Calculate the QSNR between two tensors """ qerr = orig - quant if axis is not None: axis = tuple(i for i in range(len(qerr.shape)) if i != axis) asum_err = np.sum(qerr * qerr, axis=axis) asum_orig = np.sum(orig * orig, axis=axis) res = [] if axis is not None: for sum_err, sum_orig in zip(asum_err, asum_orig): if sum_err > 0: if sum_orig < sum_err: if sum_orig == 0: res.append(-math.inf) else: # Means error is larger than signal res.append(-int(round(10 * math.log10(sum_err/sum_orig), 0))) else: # Error portion of signal res.append(int(round(10 * math.log10(sum_orig/sum_err), 0))) else: # Means no error res.append(math.inf) return np.array(res) else: if asum_err > 0: if asum_orig < asum_err: if asum_orig == 0: return -math.inf else: # Means error is larger than signal return -int(round(10 * math.log10(asum_err/asum_orig), 0)) # Error portion of signal return int(round(10 * math.log10(asum_orig/asum_err), 0)) # Means no error return math.inf def cos_similarity(x, y): x = x.copy().flatten() y = y.copy().flatten() if np.sum(np.abs(x)) == 0 or np.sum(np.abs(y)) == 0: x = np.add(x, 1e-5) y = np.add(y, 1e-5) return 1 - dis.cosine(x, y) def calculate_qsnr(npa, bit_size, frac_bits): """Calculate the QSNR when a tensor is quantized """ qnpa = np.floor((npa * 2.0 ** frac_bits) + 0.5) max_value = 2**(bit_size - 1) - 1 min_value = -max_value - 1 qnpa = np.clip(qnpa, min_value, max_value) qnpa = (qnpa / 2.0 ** frac_bits) return qsnr(npa, qnpa) def calculate_qsnrs(npa, ideal_ibits, force_ideal=False): """"Walk away from the ideal whole bit representation to see if there is something better around it. """ store = {} def get_qsnr(npa, bit_size, frac_bits): """ Don't recalculate values we already have """ nonlocal store if frac_bits < 0 or frac_bits >= bit_size: return -math.inf if frac_bits not in store: store[frac_bits] = calculate_qsnr(npa, bit_size, frac_bits) return store[frac_bits] qstats = {} # Already quantized if not np.issubdtype(npa.dtype, np.floating): return qstats for bit_size in STATS_BITS: frac_bits = min(max(bit_size - ideal_ibits, 0), bit_size - 1) if force_ideal: get_qsnr(npa, bit_size, frac_bits) else: while True: t_low = get_qsnr(npa, bit_size, frac_bits - 1) t_mid = get_qsnr(npa, bit_size, frac_bits) t_high = -100 if frac_bits + 1 >= bit_size\ else get_qsnr(npa, bit_size, frac_bits + 1) if t_low > t_mid: frac_bits -= 1 elif t_high > t_mid: frac_bits += 1 else: break qstats[bit_size] = {'q': frac_bits, 'qsnr': store[frac_bits]} store.clear() return qstats def closest_greater(v): for i in STATS_BITS: if v <= i: return i return STATS_BITS[-1] # def get_quantization(stats, min_qsnr, force_width): # qstats = stats['qstats'] # if force_width is not None: # return QType(bits=force_width, q=qstats[force_width]['q'], signed=True) # for width in STATS_BITS: # if qstats[width]['qsnr'] > min_qsnr: # return QType(bits=width, q=qstats[width]['q'], signed=True) # raise ValueError("no solution for this QSNR could be found") def get_current_qsnr(stats, width): return stats['qstats'][width]['qsnr']
35.384615
112
0.590665
4a27f493a0d095f1a2d3ca1d16f2d2abd31ae7a1
17,544
py
Python
tests/test_package.py
pedrorgirardi/Tutkain
3cbb6c8999279ea5da2bb2f656a45ac3693b7f0e
[ "Apache-2.0" ]
null
null
null
tests/test_package.py
pedrorgirardi/Tutkain
3cbb6c8999279ea5da2bb2f656a45ac3693b7f0e
[ "Apache-2.0" ]
null
null
null
tests/test_package.py
pedrorgirardi/Tutkain
3cbb6c8999279ea5da2bb2f656a45ac3693b7f0e
[ "Apache-2.0" ]
null
null
null
import queue from Tutkain.api import edn from Tutkain.package import source_root, start_logging, stop_logging from Tutkain.src.repl import views from Tutkain.src.repl.client import BabashkaClient, JVMClient, JSClient from Tutkain.src import base64 from Tutkain.src import state from .mock import Server from .util import ViewTestCase class TestJVMClient(ViewTestCase): @classmethod def conduct_handshake(self): server = self.server # Client starts clojure.main/repl server.recv() # Client switches into the bootstrap namespace server.recv() server.send("nil\n") # Client defines load-base64 function server.recv() server.send("#'tutkain.bootstrap/load-base64\n") # Client loads modules server.recv() server.send("#'tutkain.format/pp-str") server.recv() server.send("#'tutkain.backchannel/open") server.recv() server.send("#'tutkain.repl/repl") server.recv() with Server() as backchannel: server.send({ edn.Keyword("tag"): edn.Keyword("ret"), edn.Keyword("val"): f"""{{:host "localhost", :port {backchannel.port}}}""", }) for _ in range(5): backchannel.recv() server.send({ edn.Keyword("tag"): edn.Keyword("out"), edn.Keyword("val"): "Clojure 1.11.0-alpha1" }) server.send({ edn.Keyword("tag"): edn.Keyword("ret"), edn.Keyword("val"): "nil", edn.Keyword("ns"): "user", edn.Keyword("ms"): 0, edn.Keyword("form"): """(println "Clojure" (clojure-version))""" }) server.recv() # Clojure version info is printed on the client self.client.printq.get(timeout=5) return backchannel @classmethod def setUpClass(self): super().setUpClass() start_logging(False) def write_greeting(buf): buf.write("user=> ") buf.flush() self.server = Server(greeting=write_greeting).start() self.client = JVMClient(source_root(), self.server.host, self.server.port) self.server.executor.submit(self.client.connect) dialect = edn.Keyword("clj") state.set_view_client(self.view, dialect, self.client) repl_view = self.view.window().new_file() views.configure(repl_view, dialect, self.client) state.set_view_client(repl_view, dialect, self.client) state.set_repl_view(repl_view, dialect) self.backchannel = self.conduct_handshake() @classmethod def tearDownClass(self): super().tearDownClass() stop_logging() if self.server: self.server.stop() if self.client: self.client.halt() def get_print(self): return self.client.printq.get(timeout=5) def print_item(self, ns, code): return { "printable": f"""{ns}=> {code}\n""", "response": { edn.Keyword("in"): f"""{code}""" } } def eval_context(self, ns="user", file="NO_SOURCE_FILE", line=1, column=1): actual = edn.read(self.backchannel.recv()) id = actual.get(edn.Keyword("id")) response = edn.kwmap({ "id": id, "op": edn.Keyword("set-eval-context"), "file": file, "line": line, "column": column, }) self.assertEquals(response, actual) self.backchannel.send(edn.kwmap({ "id": id, "file": file, "ns": edn.Symbol(ns) })) def test_outermost(self): self.set_view_content("(comment (inc 1) (inc 2))") self.set_selections((9, 9), (17, 17)) self.view.run_command("tutkain_evaluate", {"scope": "outermost"}) self.eval_context(column=10) self.eval_context(column=18) self.assertEquals("(inc 1)\n", self.server.recv()) self.assertEquals("(inc 2)\n", self.server.recv()) def test_outermost_empty(self): self.set_view_content("") self.set_selections((0, 0)) self.view.run_command("tutkain_evaluate", {"scope": "outermost"}) self.assertRaises(queue.Empty, lambda: self.server.recvq.get_nowait()) def test_innermost(self): self.set_view_content("(map inc (range 10))") self.set_selections((9, 9)) self.view.run_command("tutkain_evaluate", {"scope": "innermost"}) self.eval_context(column=10) self.assertEquals("(range 10)\n", self.server.recv()) self.assertEquals(self.print_item("user", "(range 10)"), self.get_print()) def test_form(self): self.set_view_content("42 84") self.set_selections((0, 0), (3, 3)) self.view.run_command("tutkain_evaluate", {"scope": "form"}) self.eval_context() self.assertEquals(self.print_item("user", "42"), self.get_print()) self.eval_context(column=4) self.assertEquals(self.print_item("user", "84"), self.get_print()) self.assertEquals("42\n", self.server.recv()) self.assertEquals("84\n", self.server.recv()) def test_parameterized(self): self.set_view_content("{:a 1} {:b 2}") self.set_selections((0, 0), (7, 7)) self.view.run_command("tutkain_evaluate", {"code": "((requiring-resolve 'clojure.data/diff) $0 $1)"}) self.eval_context() self.assertEquals("((requiring-resolve 'clojure.data/diff) {:a 1} {:b 2})\n", self.server.recv()) def test_eval_in_ns(self): self.view.run_command("tutkain_evaluate", {"code": "(reset)", "ns": "user"}) self.eval_context() self.assertEquals(self.print_item("user", "(reset)"), self.get_print()) # Clients sends ns first ret = self.server.recv() self.assertTrue(ret.startswith("(do (or (some->> ")) self.assertEquals("(reset)\n", self.server.recv()) def test_ns(self): self.set_view_content("(ns foo.bar) (ns baz.quux) (defn x [y] y)") self.set_selections((0, 0)) self.view.run_command("tutkain_evaluate", {"scope": "ns"}) self.eval_context(ns="baz.quux") self.assertEquals(self.print_item("user", "(ns foo.bar)"), self.get_print()) self.assertEquals("(ns foo.bar)\n", self.server.recv()) self.eval_context(ns="baz.quux", column=14) self.assertEquals(self.print_item("user", "(ns baz.quux)"), self.get_print()) self.assertEquals("(ns baz.quux)\n", self.server.recv()) def test_view(self): self.set_view_content("(ns foo.bar) (defn x [y] y)") self.set_selections((0, 0)) self.view.run_command("tutkain_evaluate", {"scope": "view"}) response = edn.read(self.backchannel.recv()) self.assertEquals({ edn.Keyword("op"): edn.Keyword("load"), edn.Keyword("code"): base64.encode("(ns foo.bar) (defn x [y] y)".encode("utf-8")), edn.Keyword("file"): None, edn.Keyword("id"): response.get(edn.Keyword("id")) }, response) def test_view_common(self): self.view.assign_syntax("Packages/Tutkain/Clojure Common (Tutkain).sublime-syntax") self.set_view_content("(ns foo.bar) (defn x [y] y)") self.set_selections((0, 0)) self.view.run_command("tutkain_evaluate", {"scope": "view"}) response = edn.read(self.backchannel.recv()) self.assertEquals({ edn.Keyword("op"): edn.Keyword("load"), edn.Keyword("code"): base64.encode("(ns foo.bar) (defn x [y] y)".encode("utf-8")), edn.Keyword("file"): None, edn.Keyword("id"): response.get(edn.Keyword("id")) }, response) def test_discard(self): self.set_view_content("#_(inc 1)") self.set_selections((2, 2)) self.view.run_command("tutkain_evaluate", {"scope": "innermost"}) self.eval_context(column=3) self.assertEquals(self.print_item("user", "(inc 1)"), self.get_print()) self.assertEquals("(inc 1)\n", self.server.recv()) self.set_view_content("#_(inc 1)") self.set_selections((2, 2)) self.view.run_command("tutkain_evaluate", {"scope": "outermost"}) self.eval_context(column=3) self.assertEquals(self.print_item("user", "(inc 1)"), self.get_print()) self.assertEquals("(inc 1)\n", self.server.recv()) self.set_view_content("(inc #_(dec 2) 4)") self.set_selections((14, 14)) self.view.run_command("tutkain_evaluate", {"scope": "innermost"}) self.eval_context(column=8) self.assertEquals(self.print_item("user", "(dec 2)"), self.get_print()) self.assertEquals("(dec 2)\n", self.server.recv()) self.set_view_content("#_:a") self.set_selections((2, 2)) self.view.run_command("tutkain_evaluate", {"scope": "form"}) self.eval_context(column=3) self.assertEquals(self.print_item("user", ":a"), self.get_print()) self.assertEquals(":a\n", self.server.recv()) def test_lookup(self): self.set_view_content("(rand)") for n in range(1, 5): self.set_selections((n, n)) self.view.run_command("tutkain_show_information", { "selector": "variable.function" }) response = edn.read(self.backchannel.recv()) self.assertEquals({ edn.Keyword("op"): edn.Keyword("lookup"), edn.Keyword("named"): "rand", edn.Keyword("ns"): None, edn.Keyword("dialect"): edn.Keyword("clj"), edn.Keyword("id"): response.get(edn.Keyword("id")) }, response) def test_lookup_head(self): self.set_view_content("(map inc )") self.set_selections((9, 9)) self.view.run_command("tutkain_show_information", { "selector": "variable.function", "seek_backward": True }) response = edn.read(self.backchannel.recv()) self.assertEquals({ edn.Keyword("op"): edn.Keyword("lookup"), edn.Keyword("named"): "map", edn.Keyword("ns"): None, edn.Keyword("dialect"): edn.Keyword("clj"), edn.Keyword("id"): response.get(edn.Keyword("id")) }, response) def test_issue_46(self): code = """(apply str (repeat 9126 "x"))""" self.set_view_content(code) self.set_selections((0, 0)) self.view.run_command("tutkain_evaluate", {"scope": "innermost"}) self.eval_context() self.assertEquals(self.print_item("user", code), self.get_print()) retval = "x" * 9126 response = edn.kwmap({"tag": edn.Keyword("ret"), "val": retval}) self.assertEquals(code + "\n", self.server.recv()) self.server.send(response) self.assertEqual({ "printable": retval, "response": response }, self.get_print()) def test_evaluate_dialect(self): self.view.run_command("tutkain_evaluate", {"code": "(random-uuid)", "dialect": "cljs"}) # The server receives no message because the evaluation uses a # different dialect than the server. self.assertRaises(queue.Empty, lambda: self.server.recvq.get_nowait()) self.view.run_command("tutkain_evaluate", {"code": """(Integer/parseInt "42")""", "dialect": "clj"}) self.eval_context() self.assertEquals("""(Integer/parseInt "42")\n""", self.server.recv()) self.get_print() class TestJSClient(ViewTestCase): @classmethod def conduct_handshake(self): server = self.server # Client starts clojure.main/repl server.recv() # Client requests build IDs server.recv() # Server sends build ID list server.send([ edn.Keyword("browser"), edn.Keyword("node-script"), edn.Keyword("npm") ]) # Client switches into the bootstrap namespace server.recv() server.send("nil\n") # Client defines load-base64 function server.recv() server.send("#'tutkain.bootstrap/load-base64\n") # Client loads modules server.recv() server.send("#'tutkain.format/pp-str") server.recv() server.send("#'tutkain.backchannel/open") server.recv() server.send("#'tutkain.repl/repl") # Client starts REPL server.recv() with Server() as backchannel: server.send({ edn.Keyword("host"): "localhost", edn.Keyword("port"): backchannel.port }) for _ in range(4): backchannel.recv() # Client sends version print server.recv() server.send({ edn.Keyword("tag"): edn.Keyword("out"), edn.Keyword("val"): "ClojureScript 1.10.844" }) server.send({ edn.Keyword("tag"): edn.Keyword("out"), edn.Keyword("val"): "\\n" }) server.send({ edn.Keyword("tag"): edn.Keyword("ret"), edn.Keyword("val"): "nil", edn.Keyword("ns"): "cljs.user", edn.Keyword("ms"): 0, edn.Keyword("form"): """(println "ClojureScript" *clojurescript-version*)""" }) # TODO: Add test for no runtime return backchannel @classmethod def setUpClass(self): super().setUpClass(syntax="ClojureScript (Tutkain).sublime-syntax") start_logging(False) def write_greeting(buf): buf.write("shadow-cljs - REPL - see (help)\n") buf.flush() buf.write("To quit, type: :repl/quit\n") buf.flush() buf.write("shadow.user=> ") buf.flush() self.server = Server(greeting=write_greeting) self.server.start() self.client = JSClient( source_root(), self.server.host, self.server.port, lambda _, on_done: on_done(1) ) self.server.executor.submit(self.client.connect) dialect = edn.Keyword("cljs") state.set_view_client(self.view, dialect, self.client) repl_view = self.view.window().new_file() views.configure(repl_view, dialect, self.client) state.set_view_client(repl_view, dialect, self.client) state.set_repl_view(repl_view, dialect) self.backchannel = self.conduct_handshake() @classmethod def tearDownClass(self): super().tearDownClass() stop_logging() if self.server: self.server.stop() if self.client: self.client.halt() def test_innermost(self): self.set_view_content("(map inc (range 10))") self.set_selections((9, 9)) self.view.run_command("tutkain_evaluate", {"scope": "innermost"}) self.assertEquals("(range 10)\n", self.server.recv()) class TestBabashkaClient(ViewTestCase): @classmethod def conduct_handshake(self): server = self.server # Client starts io-prepl server.recv() # Client sends version print server.recv() server.send({ edn.Keyword("tag"): edn.Keyword("out"), edn.Keyword("val"): """Babashka 0.3.6""", }) server.send({ edn.Keyword("tag"): edn.Keyword("ret"), edn.Keyword("val"): "nil", edn.Keyword("ns"): "user", edn.Keyword("ms"): 0, edn.Keyword("form"): """(println "Babashka" (System/getProperty "babashka.version"))""", }) @classmethod def setUpClass(self): super().setUpClass(syntax="Babashka (Tutkain).sublime-syntax") start_logging(False) def write_greeting(buf): buf.write("Babashka v0.3.6 REPL.\n") buf.flush() buf.write("Use :repl/quit or :repl/exit to quit the REPL.\n") buf.flush() buf.write("Clojure rocks, Bash reaches.\n") buf.flush() buf.write("\n") buf.flush() buf.write("user=> ") buf.flush() self.server = Server(greeting=write_greeting) self.server.start() self.client = BabashkaClient( source_root(), self.server.host, self.server.port ) self.server.executor.submit(self.client.connect) dialect = edn.Keyword("bb") state.set_view_client(self.view, dialect, self.client) repl_view = self.view.window().new_file() views.configure(repl_view, dialect, self.client) state.set_view_client(repl_view, dialect, self.client) state.set_repl_view(repl_view, dialect) self.conduct_handshake() # TODO: Extract into base class @classmethod def tearDownClass(self): super().tearDownClass() stop_logging() if self.server: self.server.stop() if self.client: self.client.halt() def test_innermost(self): self.set_view_content("(map inc (range 10))") self.set_selections((9, 9)) self.view.run_command("tutkain_evaluate", {"scope": "innermost"}) self.assertEquals("(range 10)\n", self.server.recv())
34.066019
109
0.570964
4a27f6086e40d5c3a7624d057288a4b8246d1325
2,019
py
Python
anime_downloader/extractors/init.py
danielb2/anime-downloader
0bebd6f9e8a7ea6264fcc6c4436570596f299213
[ "Unlicense" ]
null
null
null
anime_downloader/extractors/init.py
danielb2/anime-downloader
0bebd6f9e8a7ea6264fcc6c4436570596f299213
[ "Unlicense" ]
null
null
null
anime_downloader/extractors/init.py
danielb2/anime-downloader
0bebd6f9e8a7ea6264fcc6c4436570596f299213
[ "Unlicense" ]
null
null
null
from importlib import import_module ALL_EXTRACTORS = [ { 'sitename': 'rapidvideo', 'modulename': 'rapidvideo', 'regex': 'rapidvideo', 'class': 'RapidVideo' }, { 'sitename': 'no_extractor', 'modulename': 'fake_extractor', 'regex': 'no_extractor', 'class': 'AnimeVideo', }, { 'sitename': 'stream.moe', 'modulename': 'moe', 'regex': 'stream.moe', 'class': 'StreamMoe', }, { 'sitename': 'streamango', 'modulename': 'streamango', 'regex': 'streamango', 'class': 'Streamango', }, { 'sitename': 'mp4upload', 'modulename': 'mp4upload', 'regex': 'mp4upload', 'class': 'MP4Upload' }, { 'sitename': 'kwik', 'modulename': 'kwik', 'regex': 'kwik', 'class': 'Kwik' }, { 'sitename': 'trollvid', 'modulename': 'trollvid', 'regex': 'trollvid', 'class': 'Trollvid' }, { 'sitename': 'mp4sh', 'modulename': 'mp4sh', 'regex': 'mp4sh', 'class': 'MP4Sh' }, { 'sitename': 'yourupload', 'modulename': 'yourupload', 'regex': 'yourupload', 'class': 'Yourupload' }, { 'sitename': 'vidstream', 'modulename': 'vidstream', 'regex': 'vidstream', 'class': 'VidStream' }, { 'sitename': 'haloani', 'modulename': 'haloani', 'regex': 'haloani', 'class': 'Haloani' }, { 'sitename': 'gcloud', 'modulename': 'gcloud', 'regex': 'gcloud', 'class': 'Gcloud' }, ] def get_extractor(name): for extractor in ALL_EXTRACTORS: if extractor['regex'] in name.lower(): module = import_module( 'anime_downloader.extractors.{}'.format( extractor['modulename']) ) return getattr(module, extractor['class'])
23.206897
56
0.47053
4a27f967fd7493dfbdc90bd8055b1e598085138d
18,038
py
Python
src/bitmessagemain.py
kaue/PyBitmessage
7b8bf082ff0d569f507d65e087000e4e3d6ccf3f
[ "MIT", "BSD-2-Clause-FreeBSD" ]
null
null
null
src/bitmessagemain.py
kaue/PyBitmessage
7b8bf082ff0d569f507d65e087000e4e3d6ccf3f
[ "MIT", "BSD-2-Clause-FreeBSD" ]
null
null
null
src/bitmessagemain.py
kaue/PyBitmessage
7b8bf082ff0d569f507d65e087000e4e3d6ccf3f
[ "MIT", "BSD-2-Clause-FreeBSD" ]
null
null
null
#!/usr/bin/python2.7 """ The PyBitmessage startup script """ # Copyright (c) 2012-2016 Jonathan Warren # Copyright (c) 2012-2020 The Bitmessage developers # Distributed under the MIT/X11 software license. See the accompanying # file COPYING or http://www.opensource.org/licenses/mit-license.php. # Right now, PyBitmessage only support connecting to stream 1. It doesn't # yet contain logic to expand into further streams. import os import sys app_dir = os.path.dirname(os.path.abspath(__file__)) os.chdir(app_dir) sys.path.insert(0, app_dir) import depends depends.check_dependencies() import ctypes import getopt import multiprocessing # Used to capture a Ctrl-C keypress so that Bitmessage can shutdown gracefully. import signal import socket import threading import time import traceback from struct import pack import defaults import shared import shutdown import state from bmconfigparser import BMConfigParser from debug import logger # this should go before any threads from helper_startup import ( adjustHalfOpenConnectionsLimit, start_proxyconfig) from inventory import Inventory # Network objects and threads from network import ( BMConnectionPool, Dandelion, AddrThread, AnnounceThread, BMNetworkThread, InvThread, ReceiveQueueThread, DownloadThread, UploadThread ) from network.knownnodes import readKnownNodes from singleinstance import singleinstance # Synchronous threads from threads import ( set_thread_name, printLock, addressGenerator, objectProcessor, singleCleaner, singleWorker, sqlThread) def _fixSocket(): if sys.platform.startswith('linux'): socket.SO_BINDTODEVICE = 25 if not sys.platform.startswith('win'): return # Python 2 on Windows doesn't define a wrapper for # socket.inet_ntop but we can make one ourselves using ctypes if not hasattr(socket, 'inet_ntop'): addressToString = ctypes.windll.ws2_32.WSAAddressToStringA def inet_ntop(family, host): """Converting an IP address in packed binary format to string format""" if family == socket.AF_INET: if len(host) != 4: raise ValueError("invalid IPv4 host") host = pack("hH4s8s", socket.AF_INET, 0, host, "\0" * 8) elif family == socket.AF_INET6: if len(host) != 16: raise ValueError("invalid IPv6 host") host = pack("hHL16sL", socket.AF_INET6, 0, 0, host, 0) else: raise ValueError("invalid address family") buf = "\0" * 64 lengthBuf = pack("I", len(buf)) addressToString(host, len(host), None, buf, lengthBuf) return buf[0:buf.index("\0")] socket.inet_ntop = inet_ntop # Same for inet_pton if not hasattr(socket, 'inet_pton'): stringToAddress = ctypes.windll.ws2_32.WSAStringToAddressA def inet_pton(family, host): """Converting an IP address in string format to a packed binary format""" buf = "\0" * 28 lengthBuf = pack("I", len(buf)) if stringToAddress(str(host), int(family), None, buf, lengthBuf) != 0: raise socket.error("illegal IP address passed to inet_pton") if family == socket.AF_INET: return buf[4:8] elif family == socket.AF_INET6: return buf[8:24] else: raise ValueError("invalid address family") socket.inet_pton = inet_pton # These sockopts are needed on for IPv6 support if not hasattr(socket, 'IPPROTO_IPV6'): socket.IPPROTO_IPV6 = 41 if not hasattr(socket, 'IPV6_V6ONLY'): socket.IPV6_V6ONLY = 27 def signal_handler(signum, frame): """Single handler for any signal sent to pybitmessage""" process = multiprocessing.current_process() thread = threading.current_thread() logger.error( 'Got signal %i in %s/%s', signum, process.name, thread.name ) if process.name == "RegExParser": # on Windows this isn't triggered, but it's fine, # it has its own process termination thing raise SystemExit if "PoolWorker" in process.name: raise SystemExit if thread.name not in ("PyBitmessage", "MainThread"): return logger.error("Got signal %i", signum) # there are possible non-UI variants to run bitmessage # which should shutdown especially test-mode if state.thisapp.daemon or not state.enableGUI: shutdown.doCleanShutdown() else: print('# Thread: %s(%d)' % (thread.name, thread.ident)) for filename, lineno, name, line in traceback.extract_stack(frame): print('File: "%s", line %d, in %s' % (filename, lineno, name)) if line: print(' %s' % line.strip()) print('Unfortunately you cannot use Ctrl+C when running the UI' ' because the UI captures the signal.') class Main(object): """Main PyBitmessage class""" def start(self): """Start main application""" # pylint: disable=too-many-statements,too-many-branches,too-many-locals _fixSocket() adjustHalfOpenConnectionsLimit() config = BMConfigParser() daemon = config.safeGetBoolean('bitmessagesettings', 'daemon') try: opts, _ = getopt.getopt( sys.argv[1:], "hcdt", ["help", "curses", "daemon", "test"]) except getopt.GetoptError: self.usage() sys.exit(2) for opt, _ in opts: if opt in ("-h", "--help"): self.usage() sys.exit() elif opt in ("-d", "--daemon"): daemon = True elif opt in ("-c", "--curses"): state.curses = True elif opt in ("-t", "--test"): state.testmode = True if os.path.isfile(os.path.join( state.appdata, 'unittest.lock')): daemon = True state.enableGUI = False # run without a UI # Fallback: in case when no api command was issued state.last_api_response = time.time() # Apply special settings config.set( 'bitmessagesettings', 'apienabled', 'true') config.set( 'bitmessagesettings', 'apiusername', 'username') config.set( 'bitmessagesettings', 'apipassword', 'password') config.set( 'bitmessagesettings', 'apivariant', 'legacy') config.set( 'bitmessagesettings', 'apinotifypath', os.path.join(app_dir, 'tests', 'apinotify_handler.py') ) if daemon: state.enableGUI = False # run without a UI if state.enableGUI and not state.curses and not depends.check_pyqt(): sys.exit( 'PyBitmessage requires PyQt unless you want' ' to run it as a daemon and interact with it' ' using the API. You can download PyQt from ' 'http://www.riverbankcomputing.com/software/pyqt/download' ' or by searching Google for \'PyQt Download\'.' ' If you want to run in daemon mode, see ' 'https://bitmessage.org/wiki/Daemon\n' 'You can also run PyBitmessage with' ' the new curses interface by providing' ' \'-c\' as a commandline argument.' ) # is the application already running? If yes then exit. state.thisapp = singleinstance("", daemon) if daemon: with printLock: print('Running as a daemon. Send TERM signal to end.') self.daemonize() self.setSignalHandler() set_thread_name("PyBitmessage") state.dandelion = config.safeGetInt('network', 'dandelion') # dandelion requires outbound connections, without them, # stem objects will get stuck forever if state.dandelion and not config.safeGetBoolean( 'bitmessagesettings', 'sendoutgoingconnections'): state.dandelion = 0 if state.testmode or config.safeGetBoolean( 'bitmessagesettings', 'extralowdifficulty'): defaults.networkDefaultProofOfWorkNonceTrialsPerByte = int( defaults.networkDefaultProofOfWorkNonceTrialsPerByte / 100) defaults.networkDefaultPayloadLengthExtraBytes = int( defaults.networkDefaultPayloadLengthExtraBytes / 100) readKnownNodes() # Not needed if objproc is disabled if state.enableObjProc: # Start the address generation thread addressGeneratorThread = addressGenerator() # close the main program even if there are threads left addressGeneratorThread.daemon = True addressGeneratorThread.start() # Start the thread that calculates POWs singleWorkerThread = singleWorker() # close the main program even if there are threads left singleWorkerThread.daemon = True singleWorkerThread.start() # Start the SQL thread sqlLookup = sqlThread() # DON'T close the main program even if there are threads left. # The closeEvent should command this thread to exit gracefully. sqlLookup.daemon = False sqlLookup.start() Inventory() # init # init, needs to be early because other thread may access it early Dandelion() # Enable object processor and SMTP only if objproc enabled if state.enableObjProc: # SMTP delivery thread if daemon and config.safeGet( 'bitmessagesettings', 'smtpdeliver', '') != '': from class_smtpDeliver import smtpDeliver smtpDeliveryThread = smtpDeliver() smtpDeliveryThread.start() # SMTP daemon thread if daemon and config.safeGetBoolean( 'bitmessagesettings', 'smtpd'): from class_smtpServer import smtpServer smtpServerThread = smtpServer() smtpServerThread.start() # Start the thread that calculates POWs objectProcessorThread = objectProcessor() # DON'T close the main program even the thread remains. # This thread checks the shutdown variable after processing # each object. objectProcessorThread.daemon = False objectProcessorThread.start() # Start the cleanerThread singleCleanerThread = singleCleaner() # close the main program even if there are threads left singleCleanerThread.daemon = True singleCleanerThread.start() # Not needed if objproc disabled if state.enableObjProc: shared.reloadMyAddressHashes() shared.reloadBroadcastSendersForWhichImWatching() # API is also objproc dependent if config.safeGetBoolean('bitmessagesettings', 'apienabled'): import api # pylint: disable=relative-import singleAPIThread = api.singleAPI() # close the main program even if there are threads left singleAPIThread.daemon = True singleAPIThread.start() # start network components if networking is enabled if state.enableNetwork: start_proxyconfig() BMConnectionPool().connectToStream(1) asyncoreThread = BMNetworkThread() asyncoreThread.daemon = True asyncoreThread.start() for i in range(config.getint('threads', 'receive')): receiveQueueThread = ReceiveQueueThread(i) receiveQueueThread.daemon = True receiveQueueThread.start() announceThread = AnnounceThread() announceThread.daemon = True announceThread.start() state.invThread = InvThread() state.invThread.daemon = True state.invThread.start() state.addrThread = AddrThread() state.addrThread.daemon = True state.addrThread.start() state.downloadThread = DownloadThread() state.downloadThread.daemon = True state.downloadThread.start() state.uploadThread = UploadThread() state.uploadThread.daemon = True state.uploadThread.start() if config.safeGetBoolean('bitmessagesettings', 'upnp'): import upnp upnpThread = upnp.uPnPThread() upnpThread.start() else: # Populate with hardcoded value (same as connectToStream above) state.streamsInWhichIAmParticipating.append(1) if not daemon and state.enableGUI: if state.curses: if not depends.check_curses(): sys.exit() print('Running with curses') import bitmessagecurses bitmessagecurses.runwrapper() elif state.kivy: config.remove_option('bitmessagesettings', 'dontconnect') # from bitmessagekivy.mpybit import NavigateApp # NavigateApp().run() else: import bitmessageqt bitmessageqt.run() else: config.remove_option('bitmessagesettings', 'dontconnect') if daemon: while state.shutdown == 0: time.sleep(1) if ( state.testmode and time.time() - state.last_api_response >= 30 ): self.stop() elif not state.enableGUI: state.enableGUI = True try: # pylint: disable=relative-import from tests import core as test_core except ImportError: self.stop() return test_core_result = test_core.run() self.stop() test_core.cleanup() sys.exit( 'Core tests failed!' if test_core_result.errors or test_core_result.failures else 0 ) @staticmethod def daemonize(): """Running as a daemon. Send signal in end.""" grandfatherPid = os.getpid() parentPid = None try: if os.fork(): # unlock state.thisapp.cleanup() # wait until grandchild ready while True: time.sleep(1) os._exit(0) # pylint: disable=protected-access except AttributeError: # fork not implemented pass else: parentPid = os.getpid() state.thisapp.lock() # relock os.umask(0) try: os.setsid() except AttributeError: # setsid not implemented pass try: if os.fork(): # unlock state.thisapp.cleanup() # wait until child ready while True: time.sleep(1) os._exit(0) # pylint: disable=protected-access except AttributeError: # fork not implemented pass else: state.thisapp.lock() # relock state.thisapp.lockPid = None # indicate we're the final child sys.stdout.flush() sys.stderr.flush() if not sys.platform.startswith('win'): si = file(os.devnull, 'r') so = file(os.devnull, 'a+') se = file(os.devnull, 'a+', 0) os.dup2(si.fileno(), sys.stdin.fileno()) os.dup2(so.fileno(), sys.stdout.fileno()) os.dup2(se.fileno(), sys.stderr.fileno()) if parentPid: # signal ready os.kill(parentPid, signal.SIGTERM) os.kill(grandfatherPid, signal.SIGTERM) @staticmethod def setSignalHandler(): """Setting the Signal Handler""" signal.signal(signal.SIGINT, signal_handler) signal.signal(signal.SIGTERM, signal_handler) # signal.signal(signal.SIGINT, signal.SIG_DFL) @staticmethod def usage(): """Displaying the usages""" print('Usage: ' + sys.argv[0] + ' [OPTIONS]') print(''' Options: -h, --help show this help message and exit -c, --curses use curses (text mode) interface -d, --daemon run in daemon (background) mode -t, --test dryrun, make testing All parameters are optional. ''') @staticmethod def stop(): """Stop main application""" with printLock: print('Stopping Bitmessage Deamon.') shutdown.doCleanShutdown() # .. todo:: nice function but no one is using this @staticmethod def getApiAddress(): """This function returns API address and port""" if not BMConfigParser().safeGetBoolean( 'bitmessagesettings', 'apienabled'): return None address = BMConfigParser().get('bitmessagesettings', 'apiinterface') port = BMConfigParser().getint('bitmessagesettings', 'apiport') return {'address': address, 'port': port} def main(): """Triggers main module""" mainprogram = Main() mainprogram.start() if __name__ == "__main__": main() # So far, the creation of and management of the Bitmessage protocol and this # client is a one-man operation. Bitcoin tips are quite appreciated. # 1H5XaDA6fYENLbknwZyjiYXYPQaFjjLX2u
36.293763
79
0.581328
4a27fa3cc31c48f3def1383e05bed2d84b896810
3,836
py
Python
amp/data_utils/csv.py
szczurek-lab/hydramp
be4eb6defe227fe3fef4fe9882a85a0b717301c6
[ "MIT" ]
4
2022-03-04T15:57:24.000Z
2022-03-24T11:13:01.000Z
amp/data_utils/csv.py
szczurek-lab/hydramp
be4eb6defe227fe3fef4fe9882a85a0b717301c6
[ "MIT" ]
null
null
null
amp/data_utils/csv.py
szczurek-lab/hydramp
be4eb6defe227fe3fef4fe9882a85a0b717301c6
[ "MIT" ]
1
2022-03-07T16:44:11.000Z
2022-03-07T16:44:11.000Z
import csv from sklearn.model_selection import train_test_split from amp.data_utils import sequence MIN_LENGTH = 0 INPUT_PATH = 'data/interim/Uniprot_0_200_no_duplicates.csv' class CSVSplitter: """Perform splitting csv file in training, test and validation subsets.""" def __init__( self, input_file, min_length, max_length, output_to='data/processed', test_size: int=0.1, val_size: int=0.1, ): self.input_file = input_file self.name = f'{output_to}/Uniprot_{min_length}_{max_length}' self.test_size = test_size + val_size self.val_size = val_size / self.test_size def get_row_count(self): with open(self.input_file) as f: return sum(1 for line in f) def get_indices(self): row_count = self.get_row_count() partition = {} indices_train, indices_test = train_test_split( range(1, row_count + 1), test_size=self.test_size, random_state=1 ) indices_test, indices_val = train_test_split( indices_test, test_size=self.val_size, random_state=1 ) for i in indices_train: partition[i] = 'train' for i in indices_test: partition[i] = 'test' for i in indices_val: partition[i] = 'val' # partition['train'] = indices_train # partition['test'] = indices_test # partition['val'] = indices_val return partition def csv_partition(self, indices): train_file = f'{self.name}_train.csv' test_file = f'{self.name}_test.csv' val_file = f'{self.name}_val.csv' with open(self.input_file) as csv_input, \ open(train_file, 'w') as csv_train, \ open(test_file, 'w') as csv_test, \ open(val_file, 'w') as csv_val: reader = csv.reader(csv_input) train_writer = csv.writer(csv_train) test_writer = csv.writer(csv_test) val_writer = csv.writer(csv_val) train_writer.writerow(['Name', 'Sequence']) test_writer.writerow(['Name', 'Sequence']) val_writer.writerow(['Name', 'Sequence']) for line_number, row in enumerate(reader): if line_number == 0: continue if indices[line_number] == 'train': train_writer.writerow(row) elif indices[line_number] == 'test': test_writer.writerow(row) else: val_writer.writerow(row) def split(self): partition = self.get_indices() self.csv_partition(partition) def get_various_lengths_csv( max_lengths: list, min_length:int =MIN_LENGTH, input_path= INPUT_PATH, output_to='data/interim', ): list_of_outputs = [f'{output_to}/Uniprot_{min_length}_{max_len}.csv' for max_len in max_lengths] with open(input_path) as input_file: reader = csv.reader(input_file) writers = [] output_files = [] for file_name in list_of_outputs: file = open(file_name, 'w') output_files.append(file) writers.append(csv.writer(file)) # Write headers in each file for writer in writers: writer.writerow(['Name', 'Sequence']) for line_number, row in enumerate(reader): if line_number == 0: continue seq = row[1] for writer, max_len in zip(writers, max_lengths): if sequence.check_length(seq, min_length, max_len): writer.writerow(row) for file in output_files: file.close()
30.204724
100
0.570647
4a27fdeb6bc3828e758ef6e52c8b7e33bd457611
2,278
py
Python
python/src/worker/tasks/dotplot.py
hms-dbmi-cellenics/worker
9eb9f9823e0c194384a207c56ffcc487873a481a
[ "MIT" ]
1
2022-03-28T10:28:53.000Z
2022-03-28T10:28:53.000Z
python/src/worker/tasks/dotplot.py
hms-dbmi-cellenics/worker
9eb9f9823e0c194384a207c56ffcc487873a481a
[ "MIT" ]
30
2022-01-12T20:32:18.000Z
2022-03-25T08:08:26.000Z
python/src/worker/tasks/dotplot.py
hms-dbmi-cellenics/worker
9eb9f9823e0c194384a207c56ffcc487873a481a
[ "MIT" ]
1
2022-03-07T12:00:12.000Z
2022-03-07T12:00:12.000Z
import json import backoff import requests from aws_xray_sdk.core import xray_recorder from exceptions import raise_if_error from ..config import config from ..helpers.s3 import get_cell_sets from ..result import Result from ..tasks import Task class DotPlot(Task): def __init__(self, msg): super().__init__(msg) self.experiment_id = config.EXPERIMENT_ID def _format_result(self, result): # Return a list of formatted results. return Result(result) def _format_request(self): # getting cell ids for the groups we want to display. cellSets = get_cell_sets(self.experiment_id) # Getting the cell ids for subsetting the seurat object with a group of cells. groupByCellSet = [ cellSet for cellSet in cellSets if cellSet["key"] == self.task_def["groupBy"] ][0] filterBy = self.task_def["filterBy"] applyFilter = filterBy["group"].lower() != "all" filterByCellSet = groupByCellSet if applyFilter: children = [ cellSet for cellSet in cellSets if cellSet["key"] == filterBy["group"] ][0]["children"] filterByCellSet = [ child for child in children if child["key"] == filterBy["key"] ][0] request = { "useMarkerGenes": self.task_def["useMarkerGenes"], "numberOfMarkers": self.task_def["numberOfMarkers"], "customGenesList": self.task_def["customGenesList"], "groupBy": groupByCellSet, "filterBy": filterByCellSet, "applyFilter": applyFilter, } return request @xray_recorder.capture("DotPlot.compute") @backoff.on_exception( backoff.expo, requests.exceptions.RequestException, max_time=30 ) def compute(self): request = self._format_request() response = requests.post( f"{config.R_WORKER_URL}/v0/runDotPlot", headers={"content-type": "application/json"}, data=json.dumps(request), ) response.raise_for_status() result = response.json() raise_if_error(result) data = result.get("data") return self._format_result(data)
28.835443
86
0.615013
4a27ff974c8404908d66290e12fe1f87d84be8ad
11,091
py
Python
ckan/tests/legacy/__init__.py
hackhit/ckan
53b9442509b46525d653f2f705e98319752ceb2d
[ "BSD-3-Clause" ]
6
2015-11-09T00:44:51.000Z
2019-11-21T14:56:01.000Z
ckan/tests/legacy/__init__.py
hackhit/ckan
53b9442509b46525d653f2f705e98319752ceb2d
[ "BSD-3-Clause" ]
39
2015-02-18T17:32:23.000Z
2022-03-11T18:03:36.000Z
ckan/tests/legacy/__init__.py
hackhit/ckan
53b9442509b46525d653f2f705e98319752ceb2d
[ "BSD-3-Clause" ]
17
2015-03-13T18:05:05.000Z
2020-11-06T13:55:32.000Z
# encoding: utf-8 """Pylons application test package When the test runner finds and executes tests within this directory, this file will be loaded to setup the test environment. It registers the root directory of the project in sys.path and pkg_resources, in case the project hasn't been installed with setuptools. """ import os from unittest import TestCase import pytest from ckan.common import config from six import text_type from ckan.lib.create_test_data import CreateTestData from ckan.lib import search import ckan.lib.helpers as h import ckan.model as model import ckan.tests.helpers as helpers # evil hack as url_for is passed out url_for = h.url_for __all__ = [ "url_for", "TestController", "CreateTestData", "TestSearchIndexer", "CheckMethods", "CommonFixtureMethods", "TestCase", "CkanServerCase", "call_action_api", "BaseCase", "here_dir", "conf_dir", "is_datastore_supported", ] here_dir = os.path.dirname(os.path.abspath(__file__)) conf_dir = os.path.dirname(os.path.dirname(here_dir)) class BaseCase(object): def setup(self): pass def teardown(self): pass @staticmethod def _system(cmd): import commands (status, output) = commands.getstatusoutput(cmd) if status: raise Exception("Couldn't execute cmd: %s: %s" % (cmd, output)) @classmethod def _paster(cls, cmd, config_path_rel): config_path = os.path.join(config["here"], config_path_rel) cls._system("paster --plugin ckan %s --config=%s" % (cmd, config_path)) class CommonFixtureMethods(BaseCase): @classmethod def create_package(self, data={}, **kwds): # Todo: A simpler method for just creating a package. CreateTestData.create_arbitrary(package_dicts=[data or kwds]) @classmethod def create_user(cls, **kwds): user = model.User(name=kwds["name"]) model.Session.add(user) model.Session.commit() model.Session.remove() return user @staticmethod def get_package_by_name(package_name): return model.Package.by_name(package_name) @staticmethod def get_group_by_name(group_name): return model.Group.by_name(group_name) @staticmethod def get_user_by_name(name): return model.User.by_name(name) @staticmethod def get_tag_by_name(name): return model.Tag.by_name(name) def purge_package_by_name(self, package_name): package = self.get_package_by_name(package_name) if package: package.purge() model.repo.commit_and_remove() @classmethod def purge_packages(cls, pkg_names): for pkg_name in pkg_names: pkg = model.Package.by_name(text_type(pkg_name)) if pkg: pkg.purge() model.repo.commit_and_remove() @classmethod def purge_all_packages(self): all_pkg_names = [ pkg.name for pkg in model.Session.query(model.Package) ] self.purge_packages(all_pkg_names) def purge_group_by_name(self, group_name): group = self.get_group_by_name(group_name) if group: group.purge() model.repo.commit_and_remove() @classmethod def clear_all_tst_ratings(self): ratings = ( model.Session.query(model.Rating) .filter_by(package=model.Package.by_name(u"annakarenina")) .all() ) ratings += ( model.Session.query(model.Rating) .filter_by(package=model.Package.by_name(u"warandpeace")) .all() ) for rating in ratings[:]: model.Session.delete(rating) model.repo.commit_and_remove() @property def war(self): return self.get_package_by_name(u"warandpeace") @property def anna(self): return self.get_package_by_name(u"annakarenina") @property def roger(self): return self.get_group_by_name(u"roger") @property def david(self): return self.get_group_by_name(u"david") @property def russian(self): return self.get_tag_by_name(u"russian") @property def tolstoy(self): return self.get_tag_by_name(u"tolstoy") @property def flexible_tag(self): return self.get_tag_by_name(u"Flexible \u30a1") class CheckMethods(BaseCase): def assert_true(self, value): assert value, "Not true: '%s'" % value def assert_false(self, value): assert not value, "Not false: '%s'" % value def assert_equal(self, value1, value2): assert value1 == value2, "Not equal: %s" % ((value1, value2),) def assert_isinstance(self, value, check): assert isinstance(value, check), "Not an instance: %s" % ( (value, check), ) def assert_raises(self, exception_class, callable, *args, **kwds): try: callable(*args, **kwds) except exception_class: pass else: assert False, "Didn't raise '%s' when calling: %s with %s" % ( exception_class, callable, (args, kwds), ) def assert_contains(self, sequence, item): assert item in sequence, "Sequence %s does not contain item: %s" % ( sequence, item, ) def assert_missing(self, sequence, item): assert item not in sequence, "Sequence %s does contain item: %s" % ( sequence, item, ) def assert_len(self, sequence, count): assert len(sequence) == count, "Length of sequence %s was not %s." % ( sequence, count, ) def assert_isinstance(self, object, kind): assert isinstance( object, kind ), "Object %s is not an instance of %s." % (object, kind) class TestCase(CommonFixtureMethods, CheckMethods, BaseCase): def setup(self): super(TestCase, self).setup() self.conditional_create_common_fixtures() def teardown(self): self.reuse_or_delete_common_fixtures() super(TestCase, self).setup() class WsgiAppCase(BaseCase): app = helpers._get_test_app() def config_abspath(file_path): if os.path.isabs(file_path): return file_path return os.path.join(conf_dir, file_path) class CkanServerCase(BaseCase): @classmethod def _recreate_ckan_server_testdata(cls, config_path): cls._paster("db clean", config_path) cls._paster("db init", config_path) cls._paster("create-test-data", config_path) cls._paster("search-index rebuild", config_path) @staticmethod def _start_ckan_server(config_file=None): if not config_file: config_file = config["__file__"] config_path = config_abspath(config_file) import subprocess process = subprocess.Popen(["paster", "serve", config_path]) return process @staticmethod def _stop_ckan_server(process): pid = process.pid pid = int(pid) if os.system("kill -9 %d" % pid): raise Exception( "Can't kill foreign CKAN instance (pid: %d)." % pid ) class TestController( CommonFixtureMethods, CkanServerCase, WsgiAppCase, BaseCase ): def assert_equal(self, left, right): assert left == right def assert_not_equal(self, left, right): assert left != right def clear_language_setting(self): self.app.cookies = {} class TestSearchIndexer: """ Tests which use search can use this object to provide indexing Usage: self.tsi = TestSearchIndexer() (create packages) self.tsi.index() (do searching) """ def __init__(self): from ckan import plugins if not is_search_supported(): pytest.skip("Search not supported") plugins.load("synchronous_search") @classmethod def index(cls): pass @classmethod def list(cls): return [ model.Package.get(pkg_index.package_id).name for pkg_index in model.Session.query(model.PackageSearch) ] def setup_test_search_index(): # from ckan import plugins if not is_search_supported(): pytest.skip("Search not supported") search.clear_all() # plugins.load('synchronous_search') def is_search_supported(): is_supported_db = not model.engine_is_sqlite() return is_supported_db def are_foreign_keys_supported(): return not model.engine_is_sqlite() def is_datastore_supported(): # we assume that the datastore uses the same db engine that ckan uses is_supported_db = model.engine_is_pg() return is_supported_db def clear_flash(res=None): messages = h._flash.pop_messages() class StatusCodes: STATUS_200_OK = 200 STATUS_201_CREATED = 201 STATUS_400_BAD_REQUEST = 400 STATUS_403_ACCESS_DENIED = 403 STATUS_404_NOT_FOUND = 404 STATUS_409_CONFLICT = 409 def call_action_api(app, action, apikey=None, status=200, **kwargs): """POST an HTTP request to the CKAN API and return the result. Any additional keyword arguments that you pass to this function as **kwargs are posted as params to the API. Usage: package_dict = post(app, 'package_create', apikey=apikey, name='my_package') assert package_dict['name'] == 'my_package' num_followers = post(app, 'user_follower_count', id='annafan') If you are expecting an error from the API and want to check the contents of the error dict, you have to use the status param otherwise an exception will be raised: error_dict = post(app, 'group_activity_list', status=403, id='invalid_id') assert error_dict['message'] == 'Access Denied' :param app: the test app to post to :param action: the action to post to, e.g. 'package_create' :type action: string :param apikey: the API key to put in the Authorization header of the post (optional, default: None) :type apikey: string :param status: the HTTP status code expected in the response from the CKAN API, e.g. 403, if a different status code is received an exception will be raised (optional, default: 200) :type status: int :param **kwargs: any other keyword arguments passed to this function will be posted to the API as params :returns: the 'result' or 'error' dictionary from the CKAN API response :rtype: dictionary """ response = app.post( "/api/action/{0}".format(action), json=kwargs, extra_environ={"Authorization": str(apikey)}, status=status, ) assert ( "/api/3/action/help_show?name={0}".format(action) in response.json["help"] ) if status in (200,): assert response.json["success"] is True return response.json["result"] else: assert response.json["success"] is False return response.json["error"]
26.985401
79
0.640339
4a280053f3eae39c7a31fec9a24c61660db7340b
4,846
py
Python
app.py
Darepapi/flask_todo_app
742c23b0518e2563abc9dd5cffcf00fa33fe812c
[ "Unlicense", "MIT" ]
1
2020-07-22T03:01:21.000Z
2020-07-22T03:01:21.000Z
app.py
Darepapi/flask_todo_app
742c23b0518e2563abc9dd5cffcf00fa33fe812c
[ "Unlicense", "MIT" ]
null
null
null
app.py
Darepapi/flask_todo_app
742c23b0518e2563abc9dd5cffcf00fa33fe812c
[ "Unlicense", "MIT" ]
null
null
null
from flask import Flask, render_template, request, redirect, flash, url_for, flash from flask_mysqldb import MySQL from werkzeug.security import generate_password_hash,check_password_hash from flask_login import LoginManager, UserMixin, login_required, login_user, logout_user, current_user from datetime import timedelta #Database connection app = Flask(__name__) app.config['MYSQL_HOST'] = 'localhost' app.config['MYSQL_DB'] = 'todo_db' app.config['MYSQL_USER'] = 'root' app.config['MYSQL_PASSWORD'] = 'root' app.config['SECRET_KEY'] = 'thisismysecretkey' mysql = MySQL(app) #flask-login user class class User(UserMixin): def __init__(self, name, id): self.name = name self.id = id login_manager = LoginManager() login_manager.init_app(app) login_manager.login_message = 'Please login.' #Ask user to login if session expired already @login_manager.unauthorized_handler def unauthorized(): flash("Please login.") return render_template('login.html') @app.route("/update", methods=['POST','GET']) def update(): cur = mysql.connection.cursor() newTask = request.form['updated-task'] old_id = request.form["old_id"] cur.execute('UPDATE user_task SET task=%s WHERE id=%s',[newTask,int(old_id)]) mysql.connection.commit() return redirect(url_for("index")) #queries the database and load user at every request @login_manager.user_loader def load_user(user_id): cur = mysql.connection.cursor() cur.execute(""" SELECT * FROM users WHERE id=%s """,[int(user_id)]) currentUser = cur.fetchone() if currentUser: return User(id=currentUser[0],name=currentUser[1]) else: return @app.route("/login", methods=["GET","POST"]) def login(): if request.method == "GET": return render_template("login.html") elif request.method == "POST": cur = mysql.connection.cursor() username = request.form['username'] password = request.form['password'] #Queries the database and check if user is registered in the database cur.execute(""" SELECT * FROM users WHERE name=%s""",[username]) newUser = cur.fetchone() if newUser: password_check = check_password_hash(newUser[2], password) if password_check: user = User(id=newUser[0],name=newUser[1]) login_user(user, remember=True, duration=timedelta(seconds=10)) return redirect(url_for("index")) flash('Incorrect password! Please try again') return render_template('login.html') flash("Invalid username! Please try again") return render_template('login.html') @app.route("/signup", methods=["GET", "POST"]) def signUp(): cur = mysql.connection.cursor() if request.method == "GET": return render_template("signup.html") elif request.method == "POST": username = request.form['username'] mail = request.form['mail'] password = generate_password_hash(request.form['password']) #confirm if user exist, if not add to database and redirect to login page cur.execute(""" SELECT * FROM users WHERE name=%s OR email=%s """,[username, mail]) user_exist = cur.fetchall() if user_exist: #Username or email taken already, Prompt for another flash("Username or mail taken already, Try again") return redirect(url_for('signUp')) else: #On successful registration, user is redirected to the login page and ask to login the new details flash("You have been registered! Kindly log in") cur.execute(""" INSERT INTO users (name, password, email) VALUES(%s,%s,%s) """,[username,password,mail]) mysql.connection.commit() return redirect(url_for('login')) @app.route("/", methods=["POST","GET"]) @login_required def index(): if request.method == 'GET': cur = mysql.connection.cursor() cur.execute('SELECT id,task FROM user_task WHERE user_id=%s',[int(current_user.id)]) return render_template("index.html",tasklist=cur.fetchall()) task = request.form['newtask'] cur = mysql.connection.cursor() cur.execute("INSERT INTO user_task(task, user_id) VALUES(%s,%s)",[task,current_user.id]) mysql.connection.commit() return redirect(url_for('index')) @app.route('/logout',methods=['GET']) @login_required def logout(): logout_user() return redirect(url_for('login')) @app.route("/delete/<string:task>",methods=['GET']) @login_required def delete(task): cur = mysql.connection.cursor() cur.execute('DELETE FROM user_task WHERE task=%s',[task]) mysql.connection.commit() return redirect(url_for('index')) if __name__ == "__main__": app.run()
32.743243
110
0.657656
4a28006d71a4b46910ee03915c3b5797bc3b3c8c
4,829
py
Python
ursina/prefabs/first_person_controller.py
flipcoder/ursina
f761ccd69160d0bef5d13e7b34ca55d66d54b523
[ "MIT" ]
null
null
null
ursina/prefabs/first_person_controller.py
flipcoder/ursina
f761ccd69160d0bef5d13e7b34ca55d66d54b523
[ "MIT" ]
null
null
null
ursina/prefabs/first_person_controller.py
flipcoder/ursina
f761ccd69160d0bef5d13e7b34ca55d66d54b523
[ "MIT" ]
1
2020-10-03T03:44:16.000Z
2020-10-03T03:44:16.000Z
from ursina import * class FirstPersonController(Entity): def __init__(self, **kwargs): super().__init__() self.speed = 5 self.cursor = Entity(parent=camera.ui, model='quad', color=color.pink, scale=.008, rotation_z=45) self.position = (0, 1, 1) camera.position = self.position camera.rotation = (0,0,0) camera.fov = 90 mouse.locked = True self.mouse_sensitivity = Vec2(40, 40) self.target_smoothing = 100 self.smoothing = self.target_smoothing self.grounded = False self.jump_height = 2 self.jump_duration = .5 self.jumping = False self.air_time = 0 for key, value in kwargs.items(): setattr(self, key ,value) def update(self): self.rotation_y += mouse.velocity[0] * self.mouse_sensitivity[1] camera.rotation_x -= mouse.velocity[1] * self.mouse_sensitivity[0] camera.rotation_x = clamp(camera.rotation_x, -90, 90) self.y += held_keys['e'] self.y -= held_keys['q'] self.direction = Vec3( self.forward * (held_keys['w'] - held_keys['s']) + self.right * (held_keys['d'] - held_keys['a']) ).normalized() self.smoothing = lerp(self.smoothing, self.target_smoothing, 4*time.dt) camera.position = lerp( camera.position, self.position + (self.up*1.5), self.smoothing / 100) camera.rotation_y = self.rotation_y origin = self.world_position + (self.up*.5) + (self.direction/2) middle_ray = raycast(origin , self.direction, ignore=[self,], distance=.25, debug=False) left_ray = raycast(origin, lerp(self.left, self.forward, .125), ignore=[self,], distance=1.4, debug=False) right_ray = raycast(origin, lerp(self.right, self.forward, .125), ignore=[self,], distance=1.4, debug=False) # push away from the wall # if left_ray.hit: # self.smoothing = 2 # self.position -= lerp(self.left, self.forward, .5) * (1.399-left_ray.distance) # # elif right_ray.hit: # self.smoothing = 2 # self.position -= lerp(self.right, self.forward, .5) * (1.399-right_ray.distance) if not middle_ray.hit: self.position += self.direction * self.speed * time.dt # gravity ray = boxcast(self.world_position+(0,.05,0), self.down, ignore=(self, ), thickness=.9) if ray.distance <= .1: if not self.grounded: self.land() self.grounded = True # self.y = ray.world_point[1] return else: self.grounded = False # if not on ground and not on way up in jump, fall if not self.grounded: self.y -= min(self.air_time, ray.distance-.05) self.air_time += time.dt*.25 def input(self, key): if key == 'space': self.jump() def jump(self): if not self.grounded: return self.grounded = False self.animate_y(self.y+self.jump_height, self.jump_duration, resolution=120, curve=curve.out_expo) invoke(self.start_fall, delay=self.jump_duration) def start_fall(self): self.y_animator.pause() self.jumping = False def land(self): # print('land') self.air_time = 0 self.grounded = True if __name__ == '__main__': from ursina.prefabs.first_person_controller import FirstPersonController # window.vsync = False app = Ursina() Sky(color=color.gray) ground = Entity(model='plane', scale=(100,1,100), color=color.yellow.tint(-.2), texture='white_cube', texture_scale=(100,100), collider='box') e = Entity(model='cube', scale=(1,5,10), x=2, y=.01, rotation_y=45, collider='box', texture='white_cube') e.texture_scale = (e.scale_z, e.scale_y) e = Entity(model='cube', scale=(1,5,10), x=-2, y=.01, collider='box', texture='white_cube') e.texture_scale = (e.scale_z, e.scale_y) player = FirstPersonController(y=1) player.gun = None gun = Button(parent=scene, model='cube', color=color.blue, origin_y=-.5, position=(3,0,3), collider='box') gun.on_click = Sequence(Func(setattr, gun, 'parent', camera), Func(setattr, player, 'gun', gun)) def input(key): if key == 'left mouse down' and player.gun: gun.blink(color.orange) bullet = Entity(parent=gun, model='cube', scale=.1, color=color.black) bullet.world_parent = scene bullet.animate_position(bullet.position+(bullet.forward*50), curve=curve.linear, duration=1) destroy(bullet, delay=1) # Entity(model='cube', color=color.dark_gray, scale=(9,4,9), y=-.5, collider='box') app.run()
34.248227
146
0.595154
4a2800fafde3d27a45b0b84b7f79108c370b3dd3
2,223
py
Python
stopwatch.py
sgmoratilla/genetic-drawing
60c29b8f1fb07f24ea45941b8a8f90773ae30347
[ "MIT" ]
2
2021-02-15T00:26:37.000Z
2022-03-06T14:01:02.000Z
stopwatch.py
sgmoratilla/genetic-drawing
60c29b8f1fb07f24ea45941b8a8f90773ae30347
[ "MIT" ]
null
null
null
stopwatch.py
sgmoratilla/genetic-drawing
60c29b8f1fb07f24ea45941b8a8f90773ae30347
[ "MIT" ]
1
2021-09-28T17:45:41.000Z
2021-09-28T17:45:41.000Z
""" MIT License Copyright (c) 2018 Free TNT Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated documentation files (the "Software"), to deal in the Software without restriction, including without limitation the rights to use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of the Software, and to permit persons to whom the Software is furnished to do so, subject to the following conditions: The above copyright notice and this permission notice shall be included in all copies or substantial portions of the Software. THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. """ import time # Ported from https://github.com/dirigeants/klasa/blob/master/src/lib/util/Stopwatch.js class StopWatch: def __init__(self): self._start = time.perf_counter() self._end = None @property def duration(self): return self._end - self._start if self._end else time.perf_counter() - self._start @property def running(self): return not self._end def restart(self): self._start = time.perf_counter() self._end = None return self def reset(self): self._start = time.perf_counter() self._end = self._start return self def start(self): if not self.running: self._start = time.perf_counter() - self.duration self._end = None return self def stop(self): if self.running: self._end = time.perf_counter() return self def __str__(self): time = self.duration * 1000 if time >= 1000: return "{:.2f}s".format(time / 1000) if time >= 1: return "{:.2f}ms".format(time) return "{:.2f}μs".format(time * 1000)
32.691176
90
0.68466
4a2801b760511374e550ecf85d560ee10c0b00fa
5,240
py
Python
src/koncert/main.py
jiwonMe/k-on-cert
acf6cc608489a8af766955238678c1bff7adf7dd
[ "MIT" ]
null
null
null
src/koncert/main.py
jiwonMe/k-on-cert
acf6cc608489a8af766955238678c1bff7adf7dd
[ "MIT" ]
null
null
null
src/koncert/main.py
jiwonMe/k-on-cert
acf6cc608489a8af766955238678c1bff7adf7dd
[ "MIT" ]
null
null
null
import re import requests import pprint import time import json from bs4 import BeautifulSoup as bs from io import BytesIO import base64 from requests.sessions import Session from urllib3.exceptions import InsecureRequestWarning requests.packages.urllib3.disable_warnings(category=InsecureRequestWarning) class PASSAgent: """ PASS 본인 인증 Agent """ _data: dict = {} _session: Session _menu_id: str _timestamp: int def _get_menu_id(self, response: str) -> str: """`menuId`값 getter 주어진 response에서 `menuId` 값 64글자를 리턴합니다 Args: response (response): requests.get/post의 응답 결과 Returns: menu_id (str): `menuId` 값 """ data = response.text menu_id = re.search( r'menuId\s{0,}=\s{0,}"([a-z\d]{64})"', data).group(1) return menu_id def get_data(self): return pprint.pformat(self._data) def __init__(self, session: Session = Session()): self._session = session def start(self, encode_data): self._data.update({"encode_data": encode_data}) res = self._session.post( "https://nice.checkplus.co.kr/CheckPlusSafeModel/service.cb", data={ "m": "checkplusSerivce", "EncodeData": encode_data }) self._menu_id = self._get_menu_id(res) return res.text def check_by_sms(self, mno, name, birth, sex, mobile_number): """sms 본인확인 Args: mno (str): 통신사 name (str): 실명 birth (digit[6]): YYMMDD형식의 생년월일 sex (digit): 성별(주민등록번호 뒤 7자리 중 첫번째 숫자) mobile_number (numbers): 휴대폰 번호(no hyphen'-') Returns: (str): 응답 텍스트 """ data = { "m": "authMobile01", "mobileAuthType": "SMS", "nciInfo": "", "menuId": self._menu_id, "mobileco": mno, "agree": "on", # 전체 동의 "agree1": "Y", # 개인정보이용동의 "agree2": "Y", # 고유식별정보처리동의 "agree3": "Y", # 서비스이용약관동의 "agree4": "Y", # 통신사이용약관동의 } self._data.update({ "name": name, "birth": birth, "sex": sex, "mobile_number": mobile_number }) res = self._session.post( "https://nice.checkplus.co.kr/CheckPlusSafeModel/service.cb", data=data) self._menu_id = self._get_menu_id(res) # BDC_VCID_CAPTCHA 값 추출 후 저장 html = res.text soup = bs(html, 'html.parser') self._data.update({ "BDC_DATA": { "BDC_VCID_CAPTCHA": soup.find( 'input', {'name': 'BDC_VCID_CAPTCHA'}).attrs['value'] } }) return res.text def get_captcha(self, mode="image"): """bot detect captcha image/sound request Args: mode (str, optional): [description]. Defaults to "image". Returns: [type]: [description] """ url = "https://nice.checkplus.co.kr/botdetectcaptcha" self._timestamp = int(time.time()) # GET p res = self._session.get(url, params={ "get": "p", "c": "CAPTCHA", "t": self._data .get("BDC_DATA") .get("BDC_VCID_CAPTCHA"), "d": self._timestamp }) p_data = json.loads(res.text) # p_data dictionary로 변환 self._data.get("BDC_DATA").update({ "BDC_Hs_CAPTCHA": p_data.get("hs"), "BDC_SP_CAPTCHA": p_data.get("sp"), }) # GET image/sound res = self._session.get(url, params={ "get": mode, # image or sound "c": "CAPTCHA", "t": self._data .get("BDC_DATA") .get("BDC_VCID_CAPTCHA"), "d": self._timestamp }) # base64 encoded image image = BytesIO(res.content).read() b64image = base64.b64encode(image) return b64image def check_captcha(self, answer: str): """CAPTCHA validation request Args: answer (str): [description] """ url = "https://nice.checkplus.co.kr/botdetectcaptcha" res = self._session.get(url, params={ "get": "validation-result", "c": "CAPTCHA", "t": self._data .get("BDC_DATA") .get("BDC_VCID_CAPTCHA"), "d": time, # TODO modify "i": answer }) is_success = (lambda x: x == "true") if(is_success(res.text)): res = self._session.post(url, data={ "m": "authMobile01Proc", "authType": "SMS", "menuId": self._menu_id, "username": "", "mynum1": "", "mynum2": "", "mobileno": "", "BDC_VCID_CAPTCHA": "", "BDC_BackWorkaround_CAPTCHA": "1", "BDC_Hs_CAPTCHA": "", "BDC_SP_CAPTCHA": "", "answer": answer }) def request_auth(self, type: str = "sms"): pass def check_auth(self, auth_number: str): pass
26.464646
84
0.50458
4a2801d6dbbd6d520597c7493205f3fbe945b789
1,484
py
Python
pyds8k/resources/ds8k/v1/lss.py
IBM/pyds8k
fb58f270e1ca8377ae0877a1f351cc222a937b49
[ "Apache-2.0" ]
7
2020-04-16T11:20:02.000Z
2021-04-21T13:39:14.000Z
pyds8k/resources/ds8k/v1/lss.py
IBM/pyds8k
fb58f270e1ca8377ae0877a1f351cc222a937b49
[ "Apache-2.0" ]
1
2020-07-15T02:56:56.000Z
2020-08-03T17:16:53.000Z
pyds8k/resources/ds8k/v1/lss.py
IBM/pyds8k
fb58f270e1ca8377ae0877a1f351cc222a937b49
[ "Apache-2.0" ]
6
2020-01-03T05:54:26.000Z
2022-03-31T09:42:27.000Z
############################################################################## # Copyright 2019 IBM Corp. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. ############################################################################## """ LSS interface. """ import six from pyds8k.base import ManagerMeta, ResourceMeta from .common.types import DS8K_LSS, DS8K_VOLUME from .common.base import Base, ReadOnlyManager from .common.mixins import VolumeMixin @six.add_metaclass(ResourceMeta) class LSS(VolumeMixin, Base): resource_type = DS8K_LSS # id_field = 'id' _template = {'id': '', 'type': '', 'group': '', 'addrgrp': '', 'configvols': '', DS8K_VOLUME: '', } related_resources_collection = (DS8K_VOLUME, ) @six.add_metaclass(ManagerMeta) class LSSManager(ReadOnlyManager): """ Manage LSS resources. """ resource_class = LSS resource_type = DS8K_LSS
30.916667
78
0.602426
4a28024edb5f5bc4ec2aad092817a9f2dc0fa4ea
1,778
py
Python
instapy_cli/__main__.py
MacherIT/pybuho
a0ceffe4bb5cf3d2e3ec1f32a39aafdb9601a952
[ "MIT" ]
null
null
null
instapy_cli/__main__.py
MacherIT/pybuho
a0ceffe4bb5cf3d2e3ec1f32a39aafdb9601a952
[ "MIT" ]
null
null
null
instapy_cli/__main__.py
MacherIT/pybuho
a0ceffe4bb5cf3d2e3ec1f32a39aafdb9601a952
[ "MIT" ]
null
null
null
import sys from platform import python_version from instapy_cli.cli import InstapyCli as client from optparse import OptionParser import pkg_resources # part of setuptools version = pkg_resources.require('instapy_cli')[0].version ''' TODO: - use instapy_cli.media to download image link and use it for upload and configure_photo - rewrite main to support file and links for media ''' def main(args=None): welcome_msg = 'instapy-cli' print('instapy ' + version + ' | python ' + python_version()) # cli = client() # cli.loop(args) parser = OptionParser(usage="usage: %prog [options]") parser.add_option('-u', dest='username', help='username') parser.add_option('-p', dest='password', help='password') parser.add_option('-f', dest='file', help='file path or url') parser.add_option('-t', dest='caption', help='caption text') # parser.add_option('-h', dest='help', help='help') (options, args) = parser.parse_args(args) if args is None or ( not options.username and not options.password and not options.file and not options.caption ): print('[USE] instapy -u USR -p PSW -f FILE/LINK -t \'TEXT CAPTION\'') print('\nFor other reference go to >> https://github.com/b3nab/instapy-cli') return if not options.username: parser.error('Username is required') password = options.password if not options.password: import getpass password = getpass.getpass() if not options.file: parser.error('File path or url link is required to create a media to upload') with client(options.username, password) as cli: text = options.caption or '' return cli.upload(options.file, text) if __name__ == '__main__': main()
33.54717
88
0.666479
4a2802fcb82074da25c63c8f17ecc70356df3da9
10,278
py
Python
astropath/bayesian.py
FRBs/path
9a8d50a9f7c6f48167e5fde06c0b0d1eb6784757
[ "BSD-3-Clause" ]
null
null
null
astropath/bayesian.py
FRBs/path
9a8d50a9f7c6f48167e5fde06c0b0d1eb6784757
[ "BSD-3-Clause" ]
null
null
null
astropath/bayesian.py
FRBs/path
9a8d50a9f7c6f48167e5fde06c0b0d1eb6784757
[ "BSD-3-Clause" ]
null
null
null
"""Methods related to Bayesian association analysis""" import warnings from typing import IO import numpy as np from astropy import units from astropath import localization from IPython import embed sqarcsec_steradians = 4 * np.pi * (1 / 3600 / 3600) / (180. / np.pi) ** 2 def pw_Oi(theta, phi, theta_prior): """ Calculate p(w|O_i) for a given galaxy Must integrate to 1 when integrating over w Args: theta (np.ndarray): offset from galaxy center in arcsec phi (float): Angular size of the galaxy in arcsec theta_prior (dict): Parameters for theta prior Three methods are currently supported: core, uniform, exp See docs for further details Returns: np.ndarray: Probability values without grid-size normalization """ p = np.zeros_like(theta) ok_w = theta < theta_prior['max']*phi if theta_prior['PDF'] == 'core': # Wolfram norm = 2 * np.pi * phi**2 * (theta_prior['max']/phi - np.log(theta_prior['max']/phi+1)) #norm = phi * np.log(theta_prior['max']/phi+1) if np.any(ok_w): p[ok_w] = phi / (theta[ok_w] + phi) / norm elif theta_prior['PDF'] == 'uniform': norm = np.pi * (phi*theta_prior['max'])**2 if np.any(ok_w): p[ok_w] = 1. / norm elif theta_prior['PDF'] == 'exp': # Wolfram #norm = phi - np.exp(-scale_half*theta_prior['max']/phi) * (scale_half*theta_prior['max'] + phi) phi = phi * theta_prior['scale'] norm = 2 * np.pi * phi**2 * (1 - (1+theta_prior['max']/phi)*np.exp( -theta_prior['max']/phi)) if np.any(ok_w): p[ok_w] = np.exp(-theta[ok_w]/phi) / norm else: raise IOError("Bad theta PDF") # if norm == 0: raise ValueError("You forgot to normalize!") # Return return p def px_Oi_fixedgrid(box_hwidth, localiz, cand_coords, cand_ang_size, theta_prior, step_size=0.1, return_grids=False): """ Calculate p(x|O_i), the primary piece of the analysis Main concept: 1. Set an area to analyze 2. Discretize it to the step-size (e.g. 0.1") 3. Convolve the localization with the galaxy offset function Args: box_hwidth (float): Half-width of the analysis box, in arcsec localiz (dict): Defines the localization Used to calculate L(x-w) cand_coords (SkyCoord): Coordinates of the candidate host centroids of O_i cand_ang_size (np.ndarray): Angular sizes of the candidates theta_prior (dict): Parameters for theta prior step_size (float, optional): Step size for grid, in arcsec return_grids (bool, optional): if True, return the calculation grid Returns: np.ndarray or tuple: p(x|O_i) values and the grids if return_grids = True """ # Checks if 'center_coord' not in localiz.keys(): # raise IOError("To use this method, you need to specfic a center for the fixed grid via center_coord in localiz") # Set Equinox (for spherical offsets) localiz['center_coord'].equinox = cand_coords[0].equinox # Build the fixed grid around the transient ngrid = int(np.round(2*box_hwidth / step_size)) x = np.linspace(-box_hwidth, box_hwidth, ngrid) xcoord, ycoord = np.meshgrid(x,x) # Grid spacing grid_spacing_arcsec = x[1]-x[0] # ##################### # L(w-x) -- 2D Gaussian, normalized to 1 when integrating over x not omega # Approximate as flat sky # Warning: RA increases in x for these grids!! ra = localiz['center_coord'].ra.deg + \ xcoord/3600. / np.cos(localiz['center_coord'].dec).value dec = localiz['center_coord'].dec.deg + ycoord/3600. L_wx = localization.calc_LWx(ra, dec, localiz) p_xOis, grids = [], [] # TODO -- multiprocess this for icand, cand_coord in enumerate(cand_coords): # Offsets from the transient (approximate + flat sky) theta = 3600*np.sqrt(np.cos(cand_coord.dec).value**2 * ( ra-cand_coord.ra.deg)**2 + (dec-cand_coord.dec.deg)**2) # arc sec # p(w|O_i) p_wOi = pw_Oi(theta, cand_ang_size[icand], # phi theta_prior) # Product grid_p = L_wx * p_wOi # Save grids if returning if return_grids: grids.append(grid_p.copy()) # Sum p_xOis.append(np.sum(grid_p)*grid_spacing_arcsec**2) # Return if return_grids: return np.array(p_xOis), grids else: return np.array(p_xOis) def px_Oi_local(localiz, cand_coords, cand_ang_size, theta_prior, step_size=0.1, debug = False): """ Args: localiz (dict): Defines the localization Used to calculate L(x-w) See localization.py for the Data model cand_coords (astropy.coordinates.SkyCoord): SkyCoord object for the candidate galaxies cand_ang_size (np.ndarray): Angular sizes of the candidates theta_prior (dict): Contains information related to the offset function This includes the angular size "ang_size" in units of arcsec here referred to as phi. step_size (float, optional): Step size of the galaxy grid scaled by phi debug (bool, optional): If true, hit an embed in the main loop Returns: np.ndarray or tuple: p(x|O_i) values and the grids if return_grids = True """ # Loop on galaxies p_xOis = [] for icand, cand_coord in enumerate(cand_coords): # Prep phi_cand = cand_ang_size[icand] # arcsec step_size_phi = phi_cand * step_size # arcsec box_hwidth = phi_cand * theta_prior['max'] # arcsec # Grid around the galaxy ngrid = int(np.round(2 * box_hwidth / step_size_phi)) x = np.linspace(-box_hwidth, box_hwidth, ngrid) xcoord, ycoord = np.meshgrid(x,x) theta = np.sqrt(xcoord**2 + ycoord**2) # p(w|O) p_wOi = pw_Oi(theta, phi_cand, theta_prior) # Generate coords for transient localiation (flat sky) ra = cand_coord.ra.deg + \ xcoord/3600. / np.cos(cand_coord.dec).value dec = cand_coord.dec.deg + ycoord/3600. # Calculate L_wx = localization.calc_LWx(ra, dec, localiz) # Finish grid_p = L_wx * p_wOi # p_xOis.append(np.sum(grid_p)*step_size_phi**2) # Debug if debug: embed(header='207 of bayesian.py') # Return return np.array(p_xOis) def px_U(box_hwidth): """ Args: box_hwidth (float): Half-width of the analysis box, in arcsec Returns: float: p(x|U) """ box_sqarcsec = (2*box_hwidth)**2 #box_steradians = box_sqarcsec * sqarcsec_steradians # return 1./box_sqarcsec # box_steradians def px_Oi_orig(box_hwidth, center_coord, eellipse, cand_coords, theta_prior, step_size=-1.1, return_grids=False): """ DEPRECATED! Calculate p(x|O_i), the primary piece of the analysis Main concept: 0. Set an area to analyze 1. Discretize it to the step-size (e.g. 0.1") 2. Convolve the localization with the galaxy offset function Args: box_hwidth (float): Half-width of the analysis box, in arcsec center_coord (SkyCoord): Observed position of the transient (x) eellipse (dict): Error ellipse for the transient a, b in arcsec, theta (PA) in deg This defines L(x-w) cand_coords (SkyCoord): Coordinates of the candidate host centroids of O_i theta_prior (dict): Parameters for theta prior step_size (float, optional): Step size for grid, in arcsec return_grids (bool, optional): if True, return the calcualtion grid Returns: np.ndarray or tuple: p(x|O_i) values and the grids if return_grids = True """ warnings.warn(DeprecationWarning) # Error ellipse pa_ee = eellipse['theta'] # PA of transient error ellipse on the sky; deg dtheta = 89. - pa_ee # Rotation to place the semi-major axis "a" of the ellipse along the x-axis we define # Set Equinox (for spherical offsets) center_coord.equinox = cand_coords[-1].equinox # ngrid = int(np.round(1*box_hwidth / step_size)) x = np.linspace(-box_hwidth, box_hwidth, ngrid) xcoord, ycoord = np.meshgrid(x,x) # Grid spacing grid_spacing_arcsec = x[0]-x[0] #grid_spacing_steradian = sqarcsec_steradians * grid_spacing_arcsec**1 # ##################### # Build the grid around the transient (orient semi-major axis "a" on our x axis) # L(w-x) -- 1D Gaussian, normalized to 1 when integrating over x not omega L_wx = np.exp(-xcoord ** 1 / (2 * eellipse['a'] ** 2)) * np.exp( -ycoord ** 1 / (2 * eellipse['b'] ** 2)) / (2*np.pi*eellipse['a']*eellipse['b']) p_xOis, grids = [], [] # TODO -- multiprocess this for icand, cand_coord in enumerate(cand_coords): # Rotate the galaxy r = center_coord.separation(cand_coord).to('arcsec') pa_gal = center_coord.position_angle(cand_coord).to('deg') new_pa_gal = pa_gal + dtheta * units.deg # p(w|O_i) # x, y gal x_gal = -r.value * np.sin(new_pa_gal).value y_gal = r.value * np.cos(new_pa_gal).value theta = np.sqrt((xcoord-x_gal)**1 + (ycoord-y_gal)**2) # arc sec p_wOi = pw_Oi(theta, theta_prior['ang_size'][icand], # phi theta_prior) # Product grid_p = L_wx * p_wOi # Save grids if returning if return_grids: grids.append(grid_p.copy()) # Sum p_xOis.append(np.sum(grid_p)*grid_spacing_arcsec**1) #import pdb; pdb.set_trace() # Return if return_grids: return np.array(p_xOis), grids else: return np.array(p_xOis)
32.628571
120
0.595349
4a28031db8d9850f65de7f669b11456b16141a56
6,437
py
Python
utokenize/utokenize.py
MaxTurchin/pycopy-lib
d7a69fc2a28031e2ca475c29239f715c1809d8cc
[ "PSF-2.0" ]
null
null
null
utokenize/utokenize.py
MaxTurchin/pycopy-lib
d7a69fc2a28031e2ca475c29239f715c1809d8cc
[ "PSF-2.0" ]
null
null
null
utokenize/utokenize.py
MaxTurchin/pycopy-lib
d7a69fc2a28031e2ca475c29239f715c1809d8cc
[ "PSF-2.0" ]
null
null
null
# (c) 2019 Paul Sokolovsky, MIT license # This module is part of the Pycopy project, https://github.com/pfalcon/pycopy from token import * from ucollections import namedtuple import uio COMMENT = N_TOKENS + 0 NL = N_TOKENS + 1 ENCODING = N_TOKENS + 2 tok_name[COMMENT] = "COMMENT" tok_name[NL] = "NL" tok_name[ENCODING] = "ENCODING" class TokenInfo(namedtuple("TokenInfo", ("type", "string", "start", "end", "line"))): def __str__(self): return "TokenInfo(type=%d (%s), string=%r, startl=%d, line=%r)" % ( self.type, tok_name[self.type], self.string, self.start, self.line ) def get_indent(l): for i in range(len(l)): if l[i] != " " and l[i] != "\t": return i, l[i:] def get_str(l, readline): lineno = 0 s = uio.StringIO() if l.startswith('"""') or l.startswith("'''"): sep = l[0:3] s += sep l = l[3:] pos = 0 while True: i = l.find(sep, pos) if i >= 0: if i > 0 and l[i - 1] == "\\": pos = i + 1 continue break s += l l = readline() pos = 0 assert l lineno += 1 s += l[:i + 3] return s.getvalue(), l[i + 3:], lineno lbuf = uio.StringIO(l) sep = lbuf.read(1) s += sep while True: c = lbuf.read(1) if not c: break s += c if c == "\\": c = lbuf.read(1) s += c if c == "\n": lbuf = uio.StringIO(readline()) lineno += 1 continue elif c == sep: break return s.getvalue(), lbuf.read(), lineno def tokenize(readline): indent_stack = [0] lineno = 0 paren_level = 0 yield TokenInfo(ENCODING, "utf-8", 0, 0, "") while True: l = readline() lineno += 1 org_l = l if not l: break i, l = get_indent(l) if l == "\n": yield TokenInfo(NL, l, lineno, 0, org_l) continue elif l == "\x0c\n": yield TokenInfo(NL, "\n", lineno, 0, org_l) continue if l.startswith("#"): yield TokenInfo(COMMENT, l.rstrip("\n"), lineno, 0, org_l) yield TokenInfo(NL, "\n", lineno, 0, org_l) continue if paren_level == 0: if i > indent_stack[-1]: yield TokenInfo(INDENT, org_l[:i], lineno, 0, org_l) indent_stack.append(i) elif i < indent_stack[-1]: while i != indent_stack[-1]: yield TokenInfo(DEDENT, "", lineno, 0, org_l) indent_stack.pop() while l: if l[0].isdigit() or (l.startswith(".") and len(l) > 1 and l[1].isdigit()): seen_dot = False t = "" if l.startswith("0x") or l.startswith("0X"): t = "0x" l = l[2:] elif l.startswith("0o") or l.startswith("0O"): t = "0o" l = l[2:] elif l.startswith("0b") or l.startswith("0B"): t = "0b" l = l[2:] while l and (l[0].isdigit() or l[0] == "." or l[0] == "_" or (t.startswith("0x") and l[0] in "ABCDEFabcdef")): if l[0] == ".": if seen_dot: break seen_dot = True t += l[0] l = l[1:] if l.startswith("e") or l.startswith("E"): t += l[0] l = l[1:] if l[0] in ("+", "-"): t += l[0] l = l[1:] while l and (l[0].isdigit() or l[0] == "_"): t += l[0] l = l[1:] if l.startswith("j"): t += l[0] l = l[1:] yield TokenInfo(NUMBER, t, lineno, 0, org_l) elif l[0].isalpha() or l.startswith("_") or ord(l[0]) >= 0xaa: name = "" while l and (l[0].isalpha() or l[0].isdigit() or l.startswith("_") or ord(l[0]) >= 0xaa): name += l[0] l = l[1:] if (l.startswith('"') or l.startswith("'")) and name in ("b", "r", "rb", "br", "u", "f"): s, l, lineno_delta = get_str(l, readline) yield TokenInfo(STRING, name + s, lineno, 0, org_l) lineno += lineno_delta else: yield TokenInfo(NAME, name, lineno, 0, org_l) elif l == "\\\n": l = readline() lineno += 1 elif l[0] == "\n": if paren_level > 0: yield TokenInfo(NL, "\n", lineno, 0, org_l) else: yield TokenInfo(NEWLINE, "\n", lineno, 0, org_l) break elif l[0].isspace(): l = l[1:] elif l.startswith('"') or l.startswith("'"): s, l, lineno_delta = get_str(l, readline) yield TokenInfo(STRING, s, lineno, 0, org_l) lineno += lineno_delta elif l.startswith("#"): yield TokenInfo(COMMENT, l.rstrip("\n"), lineno, 0, org_l) l = "\n" else: for op in ( "**=", "//=", ">>=", "<<=", "+=", "-=", "*=", "/=", "%=", "@=", "&=", "|=", "^=", "**", "//", "<<", ">>", "==", "!=", ">=", "<=", "...", "->" ): if l.startswith(op): yield TokenInfo(OP, op, lineno, 0, org_l) l = l[len(op):] break else: yield TokenInfo(OP, l[0], lineno, 0, org_l) if l[0] in ("(", "[", "{"): paren_level += 1 elif l[0] in (")", "]", "}"): paren_level -= 1 l = l[1:] while indent_stack[-1] > 0: yield TokenInfo(DEDENT, "", lineno, 0, "") indent_stack.pop() yield TokenInfo(ENDMARKER, "", lineno, 0, "")
32.841837
126
0.388069
4a2803d6746a029ea0407a9a1734144e056fbe30
4,209
py
Python
cogs/images.py
Stift007/OctoCat
0ea54c106ae6321a62e9ab459aede7efd2116c3e
[ "MIT" ]
null
null
null
cogs/images.py
Stift007/OctoCat
0ea54c106ae6321a62e9ab459aede7efd2116c3e
[ "MIT" ]
null
null
null
cogs/images.py
Stift007/OctoCat
0ea54c106ae6321a62e9ab459aede7efd2116c3e
[ "MIT" ]
null
null
null
import os import discord import random from io import BytesIO import aiohttp from discord.ext import commands import praw import requests from data import reddit from PIL import Image APP_ID = reddit.APP_ID SECRET = reddit.SECRET class Images(commands.Cog): def __init__(self,bot): self.bot = bot @commands.command() async def avatarfusion(this,ctx,member_1:discord.Member,member_2:discord.Member): asset1 = member_1.avatar_url_as(size=128) data1 = BytesIO(await asset1.read()) asset2 = member_2.avatar_url_as(size=128) data2 = BytesIO(await asset2.read()) background = Image.open(data1) foreground = Image.open(data2) background.paste(foreground, (0, 0), foreground) background.save(f"overlay{ctx.author.id}.png") await ctx.reply(file=discord.File(f"overlay{ctx.author.id}.png")) os.remove(f"overlay{ctx.author.id}.png") @commands.command() async def reddit(self,ctx,subreddit:str = ""): if subreddit in open("data/REDDIT_NSFW_SUBS").read() and not ctx.channel.is_nsfw(): return await ctx.send("NSFW Subreddits are locked outside of NSFW-Marked channels.") subreddit = subreddit.replace("r/","") reddit = praw.Reddit(client_id="ON1G_de1I2-cFIaAUWB7ew", client_secret="YUvMk-ZianKdX7AJ_vCQOxlLUVaHaQ", user_agent="<agentOcto:1.0.0>") sub = reddit.subreddit(subreddit) subs = [] for submission in sub.top(limit=50): subs.append(submission) random_sub = random.choice(subs) name = random_sub.title url = random_sub.url comments = random_sub.num_comments updoots = random_sub.score embed = discord.Embed(title=name).set_image(url=url).set_footer(text=f"💬 {comments} / 👍 {updoots}") await ctx.send(embed=embed) #This here is One of three Commands on one of 7 Extensions #This here is One of three Commands on one of 7 Extensions @commands.command() async def meme(self,ctx): async with aiohttp.ClientSession() as cs: async with cs.get("https://www.reddit.com/r/memes.json") as r: memes = await r.json() embed = discord.Embed( color=discord.Color.purple() ) embed.set_image(url=memes["data"]["children"][random.randint(0,25)]["data"]["url"]) embed.set_footer(text=f'Powered by r/memes | Meme requested by {ctx.author}') await ctx.send(embed=embed) @commands.command() async def cat(self,ctx): async with ctx.channel.typing(): async with aiohttp.ClientSession() as cs: async with cs.get("http://aws.random.cat/meow") as r: data = await r.json() embed = discord.Embed(title="Meow",color=discord.Color.random()) embed.set_image(url=data['file']) embed.set_footer(text="http://random.cat/") await ctx.send(embed=embed) @commands.command() async def dog(self,ctx): async with ctx.channel.typing(): async with aiohttp.ClientSession() as cs: async with cs.get("https://random.dog/woof.json") as r: data = await r.json() embed = discord.Embed(title="Woof",color=discord.Color.random()) embed.set_image(url=data['url']) embed.set_footer(text="http://random.dog/") await ctx.send(embed=embed) @commands.command(aliases=["floof"]) async def fox(self,ctx): async with ctx.channel.typing(): async with aiohttp.ClientSession() as cs: async with cs.get("https://randomfox.ca/floof") as r: data = await r.json() embed = discord.Embed(title="Floofy",color=discord.Color.random()) embed.set_image(url=data['image']) embed.set_footer(text="http://randomfox.ca/") await ctx.send(embed=embed) def setup(bot): bot.add_cog(Images(bot))
36.284483
107
0.594916
4a280667fb44f8652873298c09961a3156df0849
315
py
Python
variation1.py
benjamin-wilkins/trigonometry-circles
c366f72e520c4556c82699652e0345b5b3e15f32
[ "MIT" ]
null
null
null
variation1.py
benjamin-wilkins/trigonometry-circles
c366f72e520c4556c82699652e0345b5b3e15f32
[ "MIT" ]
null
null
null
variation1.py
benjamin-wilkins/trigonometry-circles
c366f72e520c4556c82699652e0345b5b3e15f32
[ "MIT" ]
null
null
null
import math, turtle turtle = turtle.Turtle() turtle.speed(0) def findPoints(radius): for i in range(361): y = radius * math.sin(0.01745329 * i) yield [0, y] x = radius * math.cos(0.01745329 * i) yield [x, 0] yield [x, y] for i in findPoints(200): turtle.goto(i)
22.5
45
0.565079
4a280761fc7b947add578c843533b7d744117363
7,034
py
Python
src/feature/feature.py
Adam1679/fraud-detection
b84169ad2ab9383e9cc463fb286aba26a31fd161
[ "MIT" ]
null
null
null
src/feature/feature.py
Adam1679/fraud-detection
b84169ad2ab9383e9cc463fb286aba26a31fd161
[ "MIT" ]
null
null
null
src/feature/feature.py
Adam1679/fraud-detection
b84169ad2ab9383e9cc463fb286aba26a31fd161
[ "MIT" ]
null
null
null
from sklearn.base import BaseEstimator, TransformerMixin import json import numpy as np import pandas as pd from itertools import product class Email_Engineering(BaseEstimator, TransformerMixin): """ 对太多的域名进行了降纬分类,处理 credit to ``https://www.kaggle.com/amirhmi/a-comprehensive-guide-to-get-0-9492`` """ def __init__(self, names): if not isinstance(names, list): self.names = list(names) else: self.names = names self.us_emails = {'gmail', 'net', 'edu'} with open("./ieee-fraud-detection/email.json") as f: self.emails = json.load(f) def fit(self, x, y=None): return self def transform(self, x): for c in self.names: x[c + "_bin"] = x[c].map(self.emails) x[c + '_suffix'] = x[c].map(lambda x: str(x).split('.')[-1]) x[c + '_suffix'] = x[c + '_suffix'].map(lambda x: x if str(x) not in self.us_emails else 'us') x['is_proton_mail'] = (x['P_emaildomain'] == 'protonmail.com') | (x['R_emaildomain'] == 'protonmail.com') return x class Browser_Engineering(BaseEstimator, TransformerMixin): """ 对浏览器进行了处理 credit to ``https://www.kaggle.com/amirhmi/a-comprehensive-guide-to-get-0-9492`` """ def __init__(self, name, verbose=1): self.name = name self.verbose = verbose with open("./ieee-fraud-detection/latest_browsers.txt") as f: self.latest_browser = set(map(str.strip, f.readlines())) def fit(self, x, y=None): return self def transform(self, x): nan_mask = x[self.name].isnull() x['is_latest_browser'] = x[self.name].fillna("NaN") x['is_latest_browser'] = x['is_latest_browser'].map(lambda y: 1 if y in self.latest_browser else 0) x['is_latest_browser'] = x['is_latest_browser'].astype(np.int8) x.loc[nan_mask, 'is_latest_browser'] = np.nan if self.verbose: print( f"Summarize: # of 1 = {x['is_latest_browser'].sum()}, # of NaN = {x['is_latest_browser'].isnull().sum()}") return x class Std_2var_Engineering(BaseEstimator, TransformerMixin): """ 双变量交互(std) credit to ``https://www.kaggle.com/amirhmi/a-comprehensive-guide-to-get-0-9492`` """ def __init__(self, numerical_features, categorical_features, verbose=1): self.n_feas = list(numerical_features) self.c_feas = list(categorical_features) self.verbose = verbose def fit(self, x, y=None): return self def transform(self, x): for a, b in product(self.n_feas, self.c_feas): nan_mask = x[a].isnull() | x[b].isnull() name = a + "_to_std_" + b x[name] = x[a] / x.groupby([b])[a].transform('std') x.loc[nan_mask, name] = np.nan if self.verbose: print(f"Generate: {name}") return x class Mean_2var_Engineering(BaseEstimator, TransformerMixin): """ 双变量交互(mean) credit to ``https://www.kaggle.com/amirhmi/a-comprehensive-guide-to-get-0-9492`` """ def __init__(self, numerical_features, categorical_features, verbose=1): self.n_feas = list(numerical_features) self.c_feas = list(categorical_features) self.verbose = verbose def fit(self, x, y=None): return self def transform(self, x): for a, b in product(self.n_feas, self.c_feas): nan_mask = x[a].isnull() | x[b].isnull() name = a + "_to_mean_" + b x[name] = x[a] / x.groupby([b])[a].transform('mean') x.loc[nan_mask, name] = np.nan if self.verbose: print(f"Generate: {name}") return x class Add_2var_Engineering(BaseEstimator, TransformerMixin): """ 双分类变量交互 credit to ``https://www.kaggle.com/amirhmi/a-comprehensive-guide-to-get-0-9492`` """ def __init__(self, feature_pairs, verbose=1): self.pairs = list(feature_pairs) self.verbose = verbose def fit(self, x, y=None): return self def transform(self, x): for feas in self.pairs: name = None if len(feas) == 2: a, b = feas nan_mask = x[a].isnull() | x[b].isnull() name = a + "_" + b x[name] = x[a].astype(str) + "_" + x[b].astype(str) elif len(feas) == 3: a, b, c = feas nan_mask = x[a].isnull() | x[b].isnull() | x[c].isnull() name = a + "_" + b + "_" + c x[name] = x[a].astype(str) + "_" + x[b].astype(str) + "_" + x[c].astype(str) x.loc[nan_mask, name] = np.nan if self.verbose: print(f"Generate: {name}") return x class Count_Engineering(BaseEstimator, TransformerMixin): """ 添加分类变量的频率信息 credit to ``https://www.kaggle.com/cdeotte/200-magical-models-santander-0-920`` """ def __init__(self, categorical_features, verbose=1): self.names = list(categorical_features) self.verbose = verbose self.counts = dict() def fit(self, x, y=None): for c in self.names: self.counts[c] = x[c].value_counts(dropna=False) return self def transform(self, x): for c in self.names: name = c + "_count" nan_mask = x[c].isnull() if not (c in self.counts): self.counts[c] = x[c].value_counts(dropna=False) if name in x.columns: name += "X" x[name] = x[c].map(self.counts[c]) x.loc[nan_mask, name] = np.nan if self.verbose: print(f"Generate: {name}") return x class Drop_Features(BaseEstimator, TransformerMixin): """ 删除一些的特征 credit to ``https://www.kaggle.com/amirhmi/a-comprehensive-guide-to-get-0-9492`` """ def __init__(self, percentage, percentage_dup, verbose=1): self.perc = percentage self.perc_dup = percentage_dup self.verbose = verbose def fit(self, x, y=None): missing_values = x.isnull().sum() / len(x) missing_drop_cols = list(missing_values[missing_values > self.perc].keys()) if "isFraud" in missing_drop_cols: missing_drop_cols.remove("isFraud") self.dropped_cols = missing_drop_cols duplicate_drop_cols = [col for col in x.columns if x[col].value_counts(dropna=False, normalize=True).values[0] > self.perc_dup] if "isFraud" in duplicate_drop_cols: duplicate_drop_cols.remove("isFraud") self.dropped_cols.extend(duplicate_drop_cols) if self.verbose: print(f"Summarize: {len(missing_drop_cols)} columns have missing value(%) > {self.perc}") print(f"Summarize: {len(duplicate_drop_cols)} columns have duplicate value(%) > {self.perc_dup}") return self def transform(self, x): return x.drop(self.dropped_cols, axis=1)
33.179245
122
0.579471
4a28081b8e8d2b7841d36bfcb59f0867aa0d58c5
2,583
py
Python
geometry_analysis/tests/test_geometry_analysis.py
HanboHong/geometry_analysis
4c73fb9119b8a38d149ce022f2425c30afff2464
[ "BSD-3-Clause" ]
null
null
null
geometry_analysis/tests/test_geometry_analysis.py
HanboHong/geometry_analysis
4c73fb9119b8a38d149ce022f2425c30afff2464
[ "BSD-3-Clause" ]
null
null
null
geometry_analysis/tests/test_geometry_analysis.py
HanboHong/geometry_analysis
4c73fb9119b8a38d149ce022f2425c30afff2464
[ "BSD-3-Clause" ]
null
null
null
""" Unit and regression test for the geometry_analysis package. """ # Import package, test suite, and other packages as needed import geometry_analysis import pytest import sys import numpy as np def test_geometry_analysis_imported(): """Sample test, will always pass so long as import statement worked""" assert "geometry_analysis" in sys.modules def test_calculate_distance(): """Test the calculate_distance function""" r1 = np.array([0,0,-1]) r2 = np.array([0,1,0]) expected_distance = np.sqrt(2) calculated_distance = geometry_analysis.calculate_distance(r1, r2) assert expected_distance == calculated_distance def test_calculate_angle_90(): """Test the calculate_angle function""" A = np.array([1,0,0]) B = np.array([0,0,0]) C = np.array([0,1,0]) expected_angle = 90 calculated_angle = geometry_analysis.calculate_angle(A,B,C, True) assert expected_angle == calculated_angle def test_calculate_angle_60(): """Test another value of the calculate_angle function""" A = np.array([0,0,-1]) B = np.array([0,1,0]) C = np.array([1,0,0]) expected_value = 60 calculated_value = geometry_analysis.calculate_angle(A,B,C, True) assert np.isclose(expected_value, calculated_value) @pytest.mark.parametrize("p1, p2, p3, expected_angle", [ (np.array([1,0,0]), np.array([0,0,0]), np.array([0,1,0]), 90), (np.array([0,0,-1]), np.array([0,1,0]), np.array([1,0,0]), 60), ]) def test_calculate_angle(p1, p2, p3, expected_angle): calculated_angle = geometry_analysis.calculate_angle(p1, p2, p3, True) assert np.isclose(expected_angle, calculated_angle) @pytest.fixture() def water_molecule(): name = "water" symbols = ["H", "O", "H"] coordinates = np.array([[2,0,0], [0,0,0], [-2,0,0]]) water = geometry_analysis.Molecule(name, symbols, coordinates) return water def test_create_failure(): name = 25 symbols = ["H", "O", "H"] coordinates = np.zeros([3,3]) with pytest.raises(TypeError): water = geometry_analysis.Molecule(name, symbols, coordinates) def test_molecule_set_coordinates(water_molecule): """Test that bond list is rebuilt when we reset coordinates.""" num_bonds = len(water_molecule.bonds) assert num_bonds == 2 new_coordinates = np.array([[999,0,0], [0,0,0], [-2,0,0]]) water_molecule.coordinates = new_coordinates new_bonds = len(water_molecule.bonds) assert new_bonds == 1 assert np.array_equal(new_coordinates, water_molecule.coordinates)
24.140187
74
0.675184
4a2808410dd100a720d3100d0c2d8cb7a3588835
2,023
py
Python
rllib/agents/pg/pg_tf_policy.py
daobook/ray
af9f1ef4dc160e0671206556b387f8017f3c3930
[ "Apache-2.0" ]
33
2020-05-27T14:25:24.000Z
2022-03-22T06:11:30.000Z
rllib/agents/pg/pg_tf_policy.py
daobook/ray
af9f1ef4dc160e0671206556b387f8017f3c3930
[ "Apache-2.0" ]
125
2018-01-31T06:57:41.000Z
2022-03-26T07:07:14.000Z
rllib/agents/pg/pg_tf_policy.py
daobook/ray
af9f1ef4dc160e0671206556b387f8017f3c3930
[ "Apache-2.0" ]
5
2020-08-06T15:53:07.000Z
2022-02-09T03:31:31.000Z
""" TensorFlow policy class used for PG. """ from typing import List, Type, Union import ray from ray.rllib.agents.pg.utils import post_process_advantages from ray.rllib.evaluation.postprocessing import Postprocessing from ray.rllib.models.action_dist import ActionDistribution from ray.rllib.models.modelv2 import ModelV2 from ray.rllib.policy import Policy from ray.rllib.policy.tf_policy_template import build_tf_policy from ray.rllib.policy.sample_batch import SampleBatch from ray.rllib.utils.framework import try_import_tf from ray.rllib.utils.typing import TensorType tf1, tf, tfv = try_import_tf() def pg_tf_loss( policy: Policy, model: ModelV2, dist_class: Type[ActionDistribution], train_batch: SampleBatch) -> Union[TensorType, List[TensorType]]: """The basic policy gradients loss function. Args: policy (Policy): The Policy to calculate the loss for. model (ModelV2): The Model to calculate the loss for. dist_class (Type[ActionDistribution]: The action distr. class. train_batch (SampleBatch): The training data. Returns: Union[TensorType, List[TensorType]]: A single loss tensor or a list of loss tensors. """ # Pass the training data through our model to get distribution parameters. dist_inputs, _ = model(train_batch) # Create an action distribution object. action_dist = dist_class(dist_inputs, model) # Calculate the vanilla PG loss based on: # L = -E[ log(pi(a|s)) * A] return -tf.reduce_mean( action_dist.logp(train_batch[SampleBatch.ACTIONS]) * tf.cast( train_batch[Postprocessing.ADVANTAGES], dtype=tf.float32)) # Build a child class of `DynamicTFPolicy`, given the extra options: # - trajectory post-processing function (to calculate advantages) # - PG loss function PGTFPolicy = build_tf_policy( name="PGTFPolicy", get_default_config=lambda: ray.rllib.agents.pg.DEFAULT_CONFIG, postprocess_fn=post_process_advantages, loss_fn=pg_tf_loss)
35.491228
78
0.739496
4a280a2b21daa731de9f5b32caf41b88135ec9b4
2,962
py
Python
tfx/components/infra_validator/model_server_runners/factory.py
BioGeek/tfx
3d30ae8a1e2f33367c592ca86562cf555193cfb6
[ "Apache-2.0" ]
1
2020-11-24T16:59:37.000Z
2020-11-24T16:59:37.000Z
tfx/components/infra_validator/model_server_runners/factory.py
BioGeek/tfx
3d30ae8a1e2f33367c592ca86562cf555193cfb6
[ "Apache-2.0" ]
null
null
null
tfx/components/infra_validator/model_server_runners/factory.py
BioGeek/tfx
3d30ae8a1e2f33367c592ca86562cf555193cfb6
[ "Apache-2.0" ]
null
null
null
# Copyright 2020 Google LLC. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Factory for making model server runners.""" from __future__ import absolute_import from __future__ import division from __future__ import print_function from typing import Iterable from tfx.components.infra_validator.model_server_clients import factory from tfx.components.infra_validator.model_server_runners import base_runner from tfx.components.infra_validator.model_server_runners import local_docker_runner from tfx.proto import infra_validator_pb2 from tfx.types import standard_artifacts def create_model_server_runners( model: standard_artifacts.Model, serving_spec: infra_validator_pb2.ServingSpec ) -> Iterable[base_runner.BaseModelServerRunner]: """Create model server runners based on given model and serving spec. In ServingSpec you can specify multiple versions for validation on single image. In such case it returns multiple model server runners for each (image, version) pair. Args: model: A model artifact whose uri contains the path to the servable model. serving_spec: A ServingSpec configuration. Returns: An iterable of `BaseModelServerRunner`. """ platform_kind = serving_spec.WhichOneof('serving_platform') if platform_kind == 'local_docker': return _create_local_docker_runners(model, serving_spec) else: raise NotImplementedError('{} platform is not yet supported' .format(platform_kind)) def _create_local_docker_runners( model: standard_artifacts.Model, serving_spec: infra_validator_pb2.ServingSpec, ) -> Iterable[base_runner.BaseModelServerRunner]: client_factory = factory.make_client_factory(model, serving_spec) for image_uri in _build_docker_uris(serving_spec): yield local_docker_runner.LocalDockerModelServerRunner( model=model, image_uri=image_uri, config=serving_spec.local_docker, client_factory=client_factory) def _build_docker_uris(serving_spec): binary_kind = serving_spec.WhichOneof('serving_binary') if binary_kind == 'tensorflow_serving': for tag in serving_spec.tensorflow_serving.tags: yield 'tensorflow/serving:{}'.format(tag) for digest in serving_spec.tensorflow_serving.digests: yield 'tensorflow/serving@{}'.format(digest) else: raise NotImplementedError('{} binary is not yet supported' .format(binary_kind))
37.974359
83
0.770088
4a280b93ccf38ea88b851d49a2d3f16716ca7ac4
302
py
Python
odooku_data/serialization/fields.py
odooku/odooku-data
c9f47eb04d7f04cbd2e204779a7023e9e59ec9ab
[ "Apache-2.0" ]
null
null
null
odooku_data/serialization/fields.py
odooku/odooku-data
c9f47eb04d7f04cbd2e204779a7023e9e59ec9ab
[ "Apache-2.0" ]
null
null
null
odooku_data/serialization/fields.py
odooku/odooku-data
c9f47eb04d7f04cbd2e204779a7023e9e59ec9ab
[ "Apache-2.0" ]
1
2020-10-06T12:00:02.000Z
2020-10-06T12:00:02.000Z
from odooku_data.serialization.base import BaseFieldSerializer class FieldSerializer(BaseFieldSerializer): def serialize(self, record, context): return record.read([self.field_name])[0][self.field_name] def deserialize(self, values, context): return values[self.field_name]
27.454545
65
0.751656
4a280cfd33a4222a136048f49d7199d6ce60dbca
7,401
py
Python
mahiru/components/asset_store.py
SecConNet/proof_of_concept
80f6b27ff6b97796803e554387ca2881a792be79
[ "Apache-2.0" ]
4
2021-03-26T09:17:51.000Z
2021-05-17T10:31:59.000Z
mahiru/components/asset_store.py
SecConNet/proof_of_concept
80f6b27ff6b97796803e554387ca2881a792be79
[ "Apache-2.0" ]
58
2020-03-02T10:02:51.000Z
2021-07-09T09:23:49.000Z
mahiru/components/asset_store.py
SecConNet/proof_of_concept
80f6b27ff6b97796803e554387ca2881a792be79
[ "Apache-2.0" ]
null
null
null
"""Storage and exchange of data and compute assets.""" from copy import copy import logging from pathlib import Path from shutil import copyfile, move, rmtree from tempfile import mkdtemp from typing import Dict, Optional from mahiru.definitions.assets import Asset, ComputeAsset, DataAsset from mahiru.definitions.connections import ConnectionInfo, ConnectionRequest from mahiru.definitions.identifier import Identifier from mahiru.definitions.interfaces import IAssetStore, IDomainAdministrator from mahiru.policy.evaluation import PermissionCalculator, PolicyEvaluator logger = logging.getLogger(__name__) class AssetStore(IAssetStore): """A simple store for assets.""" def __init__( self, policy_evaluator: PolicyEvaluator, domain_administrator: IDomainAdministrator, image_dir: Optional[Path] = None) -> None: """Create a new empty AssetStore. Args: policy_evaluator: Policy evaluator to use for access checks. domain_administrator: Domain administrator to use for serving assets over the network. image_dir: Local directory to store image files in. """ self._policy_evaluator = policy_evaluator self._domain_administrator = domain_administrator self._permission_calculator = PermissionCalculator(policy_evaluator) # TODO: lock this self._assets = dict() # type: Dict[Identifier, Asset] if image_dir is None: # TODO: add mahiru prefix image_dir = Path(mkdtemp()) self._image_dir = image_dir # Requester per connection self._connection_owners = dict() # type: Dict[str, Identifier] def close(self) -> None: """Releases resources, call when done.""" rmtree(self._image_dir, ignore_errors=True) def store(self, asset: Asset, move_image: bool = False) -> None: """Stores an asset. Args: asset: asset object to store move_image: If the asset has an image and True is passed, the image file will be moved rather than copied into the store. Raises: KeyError: If there's already an asset with the asset id. """ if asset.id in self._assets: raise KeyError(f'There is already an asset with id {id}') # TODO: ordering, get file first then insert Asset object self._assets[asset.id] = copy(asset) if asset.image_location is not None: src_path = Path(asset.image_location) tgt_path = self._image_dir / f'{asset.id}.tar.gz' if move_image: move(str(src_path), str(tgt_path)) else: copyfile(src_path, tgt_path) self._assets[asset.id].image_location = str(tgt_path) def store_image( self, asset_id: Identifier, image_file: Path, move_image: bool = False) -> None: """Stores an image for an already-stored asset. Args: asset_id: ID of the asset to add an image for. move: Whether to move the input file rather than copy it. Raises: KeyError: If there's no asset with the given ID. """ if asset_id not in self._assets: raise KeyError(f'Asset with id {asset_id} not found.') asset = self._assets[asset_id] tgt_path = self._image_dir / f'{asset_id}.tar.gz' if move_image: move(str(image_file), str(tgt_path)) else: copyfile(image_file, tgt_path) asset.image_location = str(tgt_path) def retrieve(self, asset_id: Identifier, requester: Identifier) -> Asset: """Retrieves an asset. Args: asset_id: ID of the asset to retrieve. requester: Name of the site making the request. Return: The asset object with asset_id. Raises: KeyError: If no asset with the given id is stored here. """ logger.info(f'{self}: servicing request from {requester} for data: ' f'{asset_id}') self._check_request(asset_id, requester) logger.info(f'{self}: Sending asset {asset_id} to {requester}') return self._assets[asset_id] def serve( self, asset_id: Identifier, request: ConnectionRequest, requester: Identifier) -> ConnectionInfo: """Serves an asset via a secure network connection. Args: asset_id: ID of the asset to serve. request: Connection request describing the desired connection. requester: The site requesting this connection. Return: ConnectionInfo object for the connection. Raises: KeyError: If the asset was not found. RuntimeError: If the requester does not have permission to access this asset, or connections are disabled. """ logger.info(f'{self}: servicing request from {requester} for' f' connection to {asset_id}') self._check_request(asset_id, requester) conn_info = self._domain_administrator.serve_asset( self._assets[asset_id], request) self._connection_owners[conn_info.conn_id] = requester return conn_info def stop_serving(self, conn_id: str, requester: Identifier) -> None: """Stop serving an asset and close the connection. Args: conn_id: Connection id previously returned by serve(). requester: The site requesting to stop. Raises: KeyError: If the connection was not found. RuntimeError: If the requester does not have permission to stop this connection. """ if conn_id not in self._connection_owners: raise KeyError('Invalid connection id') if self._connection_owners[conn_id] != requester: raise RuntimeError('Permission denied') self._domain_administrator.stop_serving_asset(conn_id) del self._connection_owners[conn_id] def _check_request( self, asset_id: Identifier, requester: Identifier) -> None: """Check that a request for an asset is allowed. Args: asset_id: The asset being requested. requester: The site requesting access to it. Raises: KeyError: If we don't have this asset. RuntimeError: If the request is not allowed. """ if asset_id not in self._assets: msg = ( f'{self}: Asset {asset_id} not found' f' (requester = {requester}).') logger.info(msg) raise KeyError(msg) asset = self._assets[asset_id] if isinstance(asset, DataAsset): perms = self._permission_calculator.calculate_permissions( asset.metadata.job) perm = perms[asset.metadata.item] if isinstance(asset, ComputeAsset): perm = self._policy_evaluator.permissions_for_asset(asset_id) if not self._policy_evaluator.may_access(perm, requester): raise RuntimeError(f'{self}: Security error, access denied' f'for {requester} to {asset_id}')
36.458128
77
0.617619
4a280de6b716fd3569d0d2290eb06686641fd523
279
py
Python
pirates/ai/HolidayManager.py
ksmit799/POTCO-PS
520d38935ae8df4b452c733a82c94dddac01e275
[ "Apache-2.0" ]
8
2017-01-24T04:33:29.000Z
2020-11-01T08:36:24.000Z
pirates/ai/HolidayManager.py
ksmit799/Pirates-Online-Remake
520d38935ae8df4b452c733a82c94dddac01e275
[ "Apache-2.0" ]
1
2017-03-02T18:05:17.000Z
2017-03-14T06:47:10.000Z
pirates/ai/HolidayManager.py
ksmit799/Pirates-Online-Remake
520d38935ae8df4b452c733a82c94dddac01e275
[ "Apache-2.0" ]
11
2017-03-02T18:46:07.000Z
2020-11-01T08:36:26.000Z
from direct.distributed import DistributedObject from direct.directnotify import DirectNotifyGlobal class HolidayManager(DistributedObject.DistributedObject): notify = DirectNotifyGlobal.directNotify.newCategory('HolidayManager') neverDisable = 1 def __init__(self): pass
31
71
0.845878
4a280e7c514abfa1c148c27212741ff85c839cf5
5,621
py
Python
tensorflow/python/training/momentum.py
fraudies/tensorflow
a42423e302b71893bbd24aa896869941013c07fb
[ "Apache-2.0" ]
52
2018-11-12T06:39:35.000Z
2022-03-08T05:31:27.000Z
tensorflow/python/training/momentum.py
fraudies/tensorflow
a42423e302b71893bbd24aa896869941013c07fb
[ "Apache-2.0" ]
2
2018-12-04T08:35:40.000Z
2020-10-22T16:17:39.000Z
tensorflow/python/training/momentum.py
fraudies/tensorflow
a42423e302b71893bbd24aa896869941013c07fb
[ "Apache-2.0" ]
17
2019-03-11T01:17:16.000Z
2022-02-21T00:44:47.000Z
# Copyright 2015 The TensorFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """Momentum for TensorFlow.""" from __future__ import absolute_import from __future__ import division from __future__ import print_function from tensorflow.python.framework import ops from tensorflow.python.ops import math_ops from tensorflow.python.training import optimizer from tensorflow.python.training import training_ops from tensorflow.python.util.tf_export import tf_export @tf_export("train.MomentumOptimizer") class MomentumOptimizer(optimizer.Optimizer): """Optimizer that implements the Momentum algorithm. Computes (if `use_nesterov = False`): ``` accumulation = momentum * accumulation + gradient variable -= learning_rate * accumulation ``` Note that in the dense version of this algorithm, `accumulation` is updated and applied regardless of a gradient's value, whereas the sparse version (when the gradient is an `IndexedSlices`, typically because of `tf.gather` or an embedding) only updates variable slices and corresponding `accumulation` terms when that part of the variable was used in the forward pass. """ def __init__(self, learning_rate, momentum, use_locking=False, name="Momentum", use_nesterov=False): """Construct a new Momentum optimizer. Args: learning_rate: A `Tensor` or a floating point value. The learning rate. momentum: A `Tensor` or a floating point value. The momentum. use_locking: If `True` use locks for update operations. name: Optional name prefix for the operations created when applying gradients. Defaults to "Momentum". use_nesterov: If `True` use Nesterov Momentum. See [Sutskever et al., 2013]( http://jmlr.org/proceedings/papers/v28/sutskever13.pdf). This implementation always computes gradients at the value of the variable(s) passed to the optimizer. Using Nesterov Momentum makes the variable(s) track the values called `theta_t + mu*v_t` in the paper. This implementation is an approximation of the original formula, valid for high values of momentum. It will compute the "adjusted gradient" in NAG by assuming that the new gradient will be estimated by the current average gradient plus the product of momentum and the change in the average gradient. @compatibility(eager) When eager execution is enabled, `learning_rate` and `momentum` can each be a callable that takes no arguments and returns the actual value to use. This can be useful for changing these values across different invocations of optimizer functions. @end_compatibility """ super(MomentumOptimizer, self).__init__(use_locking, name) self._learning_rate = learning_rate self._momentum = momentum self._use_nesterov = use_nesterov def _create_slots(self, var_list): for v in var_list: self._zeros_slot(v, "momentum", self._name) def _prepare(self): learning_rate = self._learning_rate if callable(learning_rate): learning_rate = learning_rate() self._learning_rate_tensor = ops.convert_to_tensor(learning_rate, name="learning_rate") momentum = self._momentum if callable(momentum): momentum = momentum() self._momentum_tensor = ops.convert_to_tensor(momentum, name="momentum") def _apply_dense(self, grad, var): mom = self.get_slot(var, "momentum") return training_ops.apply_momentum( var, mom, math_ops.cast(self._learning_rate_tensor, var.dtype.base_dtype), grad, math_ops.cast(self._momentum_tensor, var.dtype.base_dtype), use_locking=self._use_locking, use_nesterov=self._use_nesterov).op def _resource_apply_dense(self, grad, var): mom = self.get_slot(var, "momentum") return training_ops.resource_apply_momentum( var.handle, mom.handle, math_ops.cast(self._learning_rate_tensor, grad.dtype.base_dtype), grad, math_ops.cast(self._momentum_tensor, grad.dtype.base_dtype), use_locking=self._use_locking, use_nesterov=self._use_nesterov) def _apply_sparse(self, grad, var): mom = self.get_slot(var, "momentum") return training_ops.sparse_apply_momentum( var, mom, math_ops.cast(self._learning_rate_tensor, var.dtype.base_dtype), grad.values, grad.indices, math_ops.cast(self._momentum_tensor, var.dtype.base_dtype), use_locking=self._use_locking, use_nesterov=self._use_nesterov).op def _resource_apply_sparse(self, grad, var, indices): mom = self.get_slot(var, "momentum") return training_ops.resource_sparse_apply_momentum( var.handle, mom.handle, math_ops.cast(self._learning_rate_tensor, grad.dtype), grad, indices, math_ops.cast(self._momentum_tensor, grad.dtype), use_locking=self._use_locking, use_nesterov=self._use_nesterov)
41.947761
80
0.71304
4a2810299a52aa3370468a40f5e5e157e6faf395
946
py
Python
test/integration/states/services/test_ecs.py
mattsb42/rhodes
86d5c86fea1f069ce6f896d2cfea1ed6056392dc
[ "Apache-2.0" ]
1
2019-11-18T07:34:36.000Z
2019-11-18T07:34:36.000Z
test/integration/states/services/test_ecs.py
mattsb42/rhodes
86d5c86fea1f069ce6f896d2cfea1ed6056392dc
[ "Apache-2.0" ]
55
2019-10-18T05:32:34.000Z
2020-01-10T07:54:04.000Z
test/integration/states/services/test_ecs.py
mattsb42/rhodes
86d5c86fea1f069ce6f896d2cfea1ed6056392dc
[ "Apache-2.0" ]
null
null
null
"""Integration tests for ``rhodes.states.services.ecs``.""" import pytest from rhodes.states.services.ecs import AmazonEcs from rhodes.structures import Parameters from ...integration_test_utils import build_and_try_single_step_state_machine pytestmark = [pytest.mark.integ] def test_ecs_minimal(): step = AmazonEcs("test", TaskDefinition="bar") build_and_try_single_step_state_machine(step) def test_ecs_all_specials(): step = AmazonEcs( "test", Cluster="foo", Group="bar", LaunchType="baz", NetworkConfiguration=Parameters(AwsvpcConfiguration=Parameters(AssignPublicIp="wat")), Overrides=Parameters(ContainerOverrides=[dict(Cpu=3)]), PlacementConstraints=[dict(Expression="foo", Type="bar")], PlacementStrategy=[dict(Field="foo", Type="bar")], PlatformVersion="foo", TaskDefinition="bar", ) build_and_try_single_step_state_machine(step)
30.516129
94
0.713531
4a28104bfe070c072906d4f65b49dd11bd935de5
3,297
py
Python
Acquire/ObjectStore/_objstore.py
michellab/BioSimSpaceCloud
456b146a2131565e354352872d3e75a08c3652d1
[ "Apache-2.0" ]
2
2019-02-15T16:04:19.000Z
2019-02-19T15:42:27.000Z
Acquire/ObjectStore/_objstore.py
michellab/BioSimSpaceCloud
456b146a2131565e354352872d3e75a08c3652d1
[ "Apache-2.0" ]
null
null
null
Acquire/ObjectStore/_objstore.py
michellab/BioSimSpaceCloud
456b146a2131565e354352872d3e75a08c3652d1
[ "Apache-2.0" ]
null
null
null
import io as _io import datetime as _datetime import uuid as _uuid import json as _json import os as _os from ._errors import ObjectStoreError __all__ = ["ObjectStore", "set_object_store_backend", "use_testing_object_store_backend", "use_oci_object_store_backend"] _objstore_backend = None def use_testing_object_store_backend(backend): from ._testing_objstore import Testing_ObjectStore as _Testing_ObjectStore set_object_store_backend(_Testing_ObjectStore) return "%s/testing_objstore" % backend def use_oci_object_store_backend(): from ._oci_objstore import OCI_ObjectStore as _OCI_ObjectStore set_object_store_backend(_OCI_ObjectStore) class ObjectStore: @staticmethod def get_object_as_file(bucket, key, filename): return _objstore_backend.get_object_as_file(bucket, key, filename) @staticmethod def get_object(bucket, key): return _objstore_backend.get_object(bucket, key) @staticmethod def get_string_object(bucket, key): return _objstore_backend.get_string_object(bucket, key) @staticmethod def get_object_from_json(bucket, key): return _objstore_backend.get_object_from_json(bucket, key) @staticmethod def get_all_object_names(bucket, prefix=None): return _objstore_backend.get_all_object_names(bucket, prefix) @staticmethod def get_all_objects(bucket, prefix=None): return _objstore_backend.get_all_objects(bucket, prefix) @staticmethod def get_all_strings(bucket, prefix=None): return _objstore_backend.get_all_strings(bucket, prefix) @staticmethod def set_object(bucket, key, data): _objstore_backend.set_object(bucket, key, data) @staticmethod def set_object_from_file(bucket, key, filename): _objstore_backend.set_object_from_file(bucket, key, filename) @staticmethod def set_string_object(bucket, key, string_data): _objstore_backend.set_string_object(bucket, key, string_data) @staticmethod def set_object_from_json(bucket, key, data): _objstore_backend.set_object_from_json(bucket, key, data) @staticmethod def log(bucket, message, prefix="log"): _objstore_backend.log(bucket, message, prefix) @staticmethod def delete_all_objects(bucket, prefix=None): _objstore_backend.delete_all_objects(bucket, prefix) @staticmethod def get_log(bucket, log="log"): _objstore_backend.get_log(bucket, log) @staticmethod def clear_log(bucket, log="log"): _objstore_backend.clear_log(bucket, log) @staticmethod def delete_object(bucket, key): _objstore_backend.delete_object(bucket, key) @staticmethod def clear_all_except(bucket, keys): _objstore_backend.clear_all_except(bucket, keys) def set_object_store_backend(backend): """Set the backend that is used to actually connect to the object store. This can only be set once in the program! """ global _objstore_backend if backend == _objstore_backend: return if _objstore_backend is not None: raise ObjectStoreError("You cannot change the object store " "backend once it has been already set!") _objstore_backend = backend
29.4375
78
0.729754
4a281063542312f7977712aaf6024b70832e60d0
1,398
py
Python
stubs.min/System/Windows/Forms/__init___parts/UICuesEventArgs.py
denfromufa/ironpython-stubs
4d2b405eda3ceed186e8adca55dd97c332c6f49d
[ "MIT" ]
1
2017-07-07T11:15:45.000Z
2017-07-07T11:15:45.000Z
stubs.min/System/Windows/Forms/__init___parts/UICuesEventArgs.py
hdm-dt-fb/ironpython-stubs
4d2b405eda3ceed186e8adca55dd97c332c6f49d
[ "MIT" ]
null
null
null
stubs.min/System/Windows/Forms/__init___parts/UICuesEventArgs.py
hdm-dt-fb/ironpython-stubs
4d2b405eda3ceed186e8adca55dd97c332c6f49d
[ "MIT" ]
null
null
null
class UICuesEventArgs(EventArgs): """ Provides data for the System.Windows.Forms.Control.ChangeUICues event. UICuesEventArgs(uicues: UICues) """ @staticmethod def __new__(self,uicues): """ __new__(cls: type,uicues: UICues) """ pass Changed=property(lambda self: object(),lambda self,v: None,lambda self: None) """Gets the bitwise combination of the System.Windows.Forms.UICues values. Get: Changed(self: UICuesEventArgs) -> UICues """ ChangeFocus=property(lambda self: object(),lambda self,v: None,lambda self: None) """Gets a value indicating whether the state of the focus cues has changed. Get: ChangeFocus(self: UICuesEventArgs) -> bool """ ChangeKeyboard=property(lambda self: object(),lambda self,v: None,lambda self: None) """Gets a value indicating whether the state of the keyboard cues has changed. Get: ChangeKeyboard(self: UICuesEventArgs) -> bool """ ShowFocus=property(lambda self: object(),lambda self,v: None,lambda self: None) """Gets a value indicating whether focus rectangles are shown after the change. Get: ShowFocus(self: UICuesEventArgs) -> bool """ ShowKeyboard=property(lambda self: object(),lambda self,v: None,lambda self: None) """Gets a value indicating whether keyboard cues are underlined after the change. Get: ShowKeyboard(self: UICuesEventArgs) -> bool """
29.744681
86
0.709585
4a281132d92b229850ecfd1acf3883022a49f240
1,643
py
Python
masakari/cmd/api.py
sampathP/openstack-masakari
108d988165271b7bafd66d985ff1000537ef3183
[ "Apache-2.0" ]
null
null
null
masakari/cmd/api.py
sampathP/openstack-masakari
108d988165271b7bafd66d985ff1000537ef3183
[ "Apache-2.0" ]
null
null
null
masakari/cmd/api.py
sampathP/openstack-masakari
108d988165271b7bafd66d985ff1000537ef3183
[ "Apache-2.0" ]
null
null
null
# Copyright 2016 NTT DATA # All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Starter script for Masakari API. """ import sys from oslo_log import log as logging import six import masakari.conf from masakari import config from masakari import exception from masakari.i18n import _LE from masakari.i18n import _LW from masakari import service CONF = masakari.conf.CONF def main(): config.parse_args(sys.argv) logging.setup(CONF, "masakari") log = logging.getLogger(__name__) launcher = service.process_launcher() started = 0 try: server = service.WSGIService("masakari_api", use_ssl=CONF.use_ssl) launcher.launch_service(server, workers=server.workers or 1) started += 1 except exception.PasteAppNotFound as ex: log.warning( _LW("%s. ``enabled_apis`` includes bad values. " "Fix to remove this warning."), six.text_type(ex)) if started == 0: log.error(_LE('No APIs were started. ' 'Check the enabled_apis config option.')) sys.exit(1) launcher.wait()
28.327586
77
0.688984