Datasets:
File size: 9,806 Bytes
2429dd8 6734ef8 2429dd8 6734ef8 2429dd8 6328b83 2429dd8 07fd10c 2429dd8 aae9cc7 e636722 911fa1c 37d3286 52ec3db 37d3286 52ec3db 37d3286 52ec3db 37d3286 6308c4c 37d3286 2429dd8 f365713 2429dd8 f365713 2429dd8 8039149 2429dd8 e636722 2429dd8 8039149 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 |
---
annotations_creators:
- expert-generated
language_creators:
- found
language:
- th
license:
- other
multilinguality:
- monolingual
size_categories:
- 10K<n<100K
source_datasets:
- original
task_categories:
- token-classification
task_ids:
- named-entity-recognition
- part-of-speech
pretty_name: LST20
tags:
- word-segmentation
- clause-segmentation
- sentence-segmentation
dataset_info:
features:
- name: id
dtype: string
- name: fname
dtype: string
- name: tokens
sequence: string
- name: pos_tags
sequence:
class_label:
names:
'0': NN
'1': VV
'2': PU
'3': CC
'4': PS
'5': AX
'6': AV
'7': FX
'8': NU
'9': AJ
'10': CL
'11': PR
'12': NG
'13': PA
'14': XX
'15': IJ
- name: ner_tags
sequence:
class_label:
names:
'0': O
'1': B_BRN
'2': B_DES
'3': B_DTM
'4': B_LOC
'5': B_MEA
'6': B_NUM
'7': B_ORG
'8': B_PER
'9': B_TRM
'10': B_TTL
'11': I_BRN
'12': I_DES
'13': I_DTM
'14': I_LOC
'15': I_MEA
'16': I_NUM
'17': I_ORG
'18': I_PER
'19': I_TRM
'20': I_TTL
'21': E_BRN
'22': E_DES
'23': E_DTM
'24': E_LOC
'25': E_MEA
'26': E_NUM
'27': E_ORG
'28': E_PER
'29': E_TRM
'30': E_TTL
- name: clause_tags
sequence:
class_label:
names:
'0': O
'1': B_CLS
'2': I_CLS
'3': E_CLS
config_name: lst20
splits:
- name: train
num_bytes: 107725145
num_examples: 63310
- name: validation
num_bytes: 9646167
num_examples: 5620
- name: test
num_bytes: 8217425
num_examples: 5250
download_size: 0
dataset_size: 125588737
---
# Dataset Card for LST20
## Table of Contents
- [Dataset Description](#dataset-description)
- [Dataset Summary](#dataset-summary)
- [Supported Tasks and Leaderboards](#supported-tasks-and-leaderboards)
- [Languages](#languages)
- [Dataset Structure](#dataset-structure)
- [Data Instances](#data-instances)
- [Data Fields](#data-fields)
- [Data Splits](#data-splits)
- [Dataset Creation](#dataset-creation)
- [Curation Rationale](#curation-rationale)
- [Source Data](#source-data)
- [Annotations](#annotations)
- [Personal and Sensitive Information](#personal-and-sensitive-information)
- [Considerations for Using the Data](#considerations-for-using-the-data)
- [Social Impact of Dataset](#social-impact-of-dataset)
- [Discussion of Biases](#discussion-of-biases)
- [Other Known Limitations](#other-known-limitations)
- [Additional Information](#additional-information)
- [Dataset Curators](#dataset-curators)
- [Licensing Information](#licensing-information)
- [Citation Information](#citation-information)
- [Contributions](#contributions)
## Dataset Description
- **Homepage:** https://aiforthai.in.th/
- **Repository:**
- **Paper:**
- **Leaderboard:**
- **Point of Contact:** [email]([email protected])
### Dataset Summary
LST20 Corpus is a dataset for Thai language processing developed by National Electronics and Computer Technology Center (NECTEC), Thailand.
It offers five layers of linguistic annotation: word boundaries, POS tagging, named entities, clause boundaries, and sentence boundaries.
At a large scale, it consists of 3,164,002 words, 288,020 named entities, 248,181 clauses, and 74,180 sentences, while it is annotated with
16 distinct POS tags. All 3,745 documents are also annotated with one of 15 news genres. Regarding its sheer size, this dataset is
considered large enough for developing joint neural models for NLP.
Manually download at https://aiforthai.in.th/corpus.php
See `LST20 Annotation Guideline.pdf` and `LST20 Brief Specification.pdf` within the downloaded `AIFORTHAI-LST20Corpus.tar.gz` for more details.
### Supported Tasks and Leaderboards
- POS tagging
- NER tagging
- clause segmentation
- sentence segmentation
- word tokenization
### Languages
Thai
## Dataset Structure
### Data Instances
```
{'clause_tags': [1, 2, 2, 2, 2, 2, 2, 2, 3], 'fname': 'T11964.txt', 'id': '0', 'ner_tags': [8, 0, 0, 0, 0, 0, 0, 0, 25], 'pos_tags': [0, 0, 0, 1, 0, 8, 8, 8, 0], 'tokens': ['ธรรมนูญ', 'แชมป์', 'สิงห์คลาสสิก', 'กวาด', 'รางวัล', 'แสน', 'สี่', 'หมื่น', 'บาท']}
{'clause_tags': [1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 3], 'fname': 'T11964.txt', 'id': '1', 'ner_tags': [8, 18, 28, 0, 0, 0, 0, 6, 0, 0, 0, 6, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 5, 15, 25, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 6, 0, 0, 0, 6], 'pos_tags': [0, 2, 0, 2, 1, 1, 2, 8, 2, 10, 2, 8, 2, 1, 0, 1, 0, 4, 7, 1, 0, 2, 8, 2, 10, 1, 10, 4, 2, 8, 2, 4, 0, 4, 0, 2, 8, 2, 10, 2, 8], 'tokens': ['ธรรมนูญ', '_', 'ศรีโรจน์', '_', 'เก็บ', 'เพิ่ม', '_', '4', '_', 'อันเดอร์พาร์', '_', '68', '_', 'เข้า', 'ป้าย', 'รับ', 'แชมป์', 'ใน', 'การ', 'เล่น', 'อาชีพ', '_', '19', '_', 'ปี', 'เป็น', 'ครั้ง', 'ที่', '_', '8', '_', 'ใน', 'ชีวิต', 'ด้วย', 'สกอร์', '_', '18', '_', 'อันเดอร์พาร์', '_', '270']}
```
### Data Fields
- `id`: nth sentence in each set, starting at 0
- `fname`: text file from which the sentence comes from
- `tokens`: word tokens
- `pos_tags`: POS tags
- `ner_tags`: NER tags
- `clause_tags`: clause tags
### Data Splits
| | train | eval | test | all |
|----------------------|-----------|-------------|-------------|-----------|
| words | 2,714,848 | 240,891 | 207,295 | 3,163,034 |
| named entities | 246,529 | 23,176 | 18,315 | 288,020 |
| clauses | 214,645 | 17,486 | 16,050 | 246,181 |
| sentences | 63,310 | 5,620 | 5,250 | 74,180 |
| distinct words | 42,091 | (oov) 2,595 | (oov) 2,006 | 46,692 |
| breaking spaces※ | 63,310 | 5,620 | 5,250 | 74,180 |
| non-breaking spaces※※| 402,380 | 39,920 | 32,204 | 475,504 |
※ Breaking space = space that is used as a sentence boundary marker
※※ Non-breaking space = space that is not used as a sentence boundary marker
## Dataset Creation
### Curation Rationale
[More Information Needed]
### Source Data
#### Initial Data Collection and Normalization
[More Information Needed]
#### Who are the source language producers?
Respective authors of the news articles
### Annotations
#### Annotation process
Detailed annotation guideline can be found in `LST20 Annotation Guideline.pdf`.
#### Who are the annotators?
[More Information Needed]
### Personal and Sensitive Information
All texts are from public news. No personal and sensitive information is expected to be included.
## Considerations for Using the Data
### Social Impact of Dataset
- Large-scale Thai NER & POS tagging, clause & sentence segmentatation, word tokenization
### Discussion of Biases
- All 3,745 texts are from news domain:
- politics: 841
- crime and accident: 592
- economics: 512
- entertainment: 472
- sports: 402
- international: 279
- science, technology and education: 216
- health: 92
- general: 75
- royal: 54
- disaster: 52
- development: 45
- environment: 40
- culture: 40
- weather forecast: 33
- Word tokenization is done accoding to InterBEST 2009 Guideline.
### Other Known Limitations
- Some NER tags do not correspond with given labels (`B`, `I`, and so on)
## Additional Information
### Dataset Curators
[NECTEC](https://www.nectec.or.th/en/)
### Licensing Information
1. Non-commercial use, research, and open source
Any non-commercial use of the dataset for research and open-sourced projects is encouraged and free of charge. Please cite our technical report for reference.
If you want to perpetuate your models trained on our dataset and share them to the research community in Thailand, please send your models, code, and APIs to the AI for Thai Project. Please contact Dr. Thepchai Supnithi via [email protected] for more information.
Note that modification and redistribution of the dataset by any means are strictly prohibited unless authorized by the corpus authors.
2. Commercial use
In any commercial use of the dataset, there are two options.
- Option 1 (in kind): Contributing a dataset of 50,000 words completely annotated with our annotation scheme within 1 year. Your data will also be shared and recognized as a dataset co-creator in the research community in Thailand.
- Option 2 (in cash): Purchasing a lifetime license for the entire dataset is required. The purchased rights of use cover only this dataset.
In both options, please contact Dr. Thepchai Supnithi via [email protected] for more information.
### Citation Information
```
@article{boonkwan2020annotation,
title={The Annotation Guideline of LST20 Corpus},
author={Boonkwan, Prachya and Luantangsrisuk, Vorapon and Phaholphinyo, Sitthaa and Kriengket, Kanyanat and Leenoi, Dhanon and Phrombut, Charun and Boriboon, Monthika and Kosawat, Krit and Supnithi, Thepchai},
journal={arXiv preprint arXiv:2008.05055},
year={2020}
}
```
### Contributions
Thanks to [@cstorm125](https://github.com/cstorm125) for adding this dataset. |