Datasets:
ArXiv:
License:
# coding=utf-8 | |
# Copyright 2020 The HuggingFace Datasets Authors and the current dataset script contributor. | |
# | |
# Licensed under the Apache License, Version 2.0 (the "License"); | |
# you may not use this file except in compliance with the License. | |
# You may obtain a copy of the License at | |
# | |
# http://www.apache.org/licenses/LICENSE-2.0 | |
# | |
# Unless required by applicable law or agreed to in writing, software | |
# distributed under the License is distributed on an "AS IS" BASIS, | |
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
# See the License for the specific language governing permissions and | |
# limitations under the License. | |
"""PsyQA dataset.""" | |
import json | |
import os | |
import datasets | |
_DESCRIPTION = """ FutureWarning | |
""" | |
_CITATION = """ null """ | |
_URLs = { | |
"train": "https://huggingface.co/datasets/siyangliu/PsyQA/resolve/main/train.json", | |
"valid": "https://huggingface.co/datasets/siyangliu/PsyQA/resolve/main/valid.json", | |
"test": "https://huggingface.co/datasets/siyangliu/PsyQA/resolve/main/test.json", | |
"train_translated": "https://huggingface.co/datasets/siyangliu/PsyQA/resolve/main/train_translated.json", | |
"valid_translated": "https://huggingface.co/datasets/siyangliu/PsyQA/resolve/main/valid_translated.json", | |
"test_translated": "https://huggingface.co/datasets/siyangliu/PsyQA/resolve/main/test_translated.json" | |
} | |
_STRATEGY={"Approval and Reassurance": "[AR]", | |
"Interpretation": "[IN]", | |
"Self-disclosure": "[SELF]", | |
"Direct Guidance": "[DG]", | |
"Others": "[OT]", | |
"Restatement": "[RES]", | |
"Information": "[INFO]"} | |
class PsyQA(datasets.GeneratorBasedBuilder): | |
"""PsyQA dataset.""" | |
VERSION = datasets.Version("1.1.0") | |
BUILDER_CONFIGS = [ | |
datasets.BuilderConfig( | |
name="wo strategy", | |
description="", | |
version=VERSION, | |
), | |
datasets.BuilderConfig( | |
name="w strategy", | |
description="", | |
version=VERSION, | |
), | |
datasets.BuilderConfig( | |
name="translated", | |
description="", | |
version=VERSION, | |
) | |
] | |
def _info(self): | |
return datasets.DatasetInfo( | |
description=_DESCRIPTION, | |
features=datasets.Features( | |
{ | |
"question": datasets.Value("string"), | |
"questionID": datasets.Value("int16"), | |
"description": datasets.Value("string"), | |
"keywords": datasets.Value("string"), | |
"answer": datasets.Value("string"), | |
"has_label": datasets.Value("bool"), | |
"reference":datasets.features.Sequence(datasets.Value("string")) | |
# "labels_sequence":datasets.features.Sequence( | |
# { | |
# "start": datasets.Value("int16"), | |
# "end": datasets.Value("int16"), | |
# "type": datasets.Value("string"), | |
# } | |
# ), | |
} | |
), | |
supervised_keys=None, | |
homepage="https://huggingface.co/datasets/siyangliu/PsyQA", | |
citation=_CITATION, | |
) | |
def _split_generators(self, dl_manager): | |
"""Returns SplitGenerators.""" | |
data_dir = dl_manager.download_and_extract(_URLs) | |
if self.config.name != "translated": | |
return [ | |
datasets.SplitGenerator( | |
name=datasets.Split.TRAIN, | |
gen_kwargs={ | |
"filepath": data_dir["train"], | |
"strategy": self.config.name == "w strategy" | |
}, | |
), | |
datasets.SplitGenerator( | |
name=datasets.Split.TEST, | |
gen_kwargs={ | |
"filepath": data_dir["test"], | |
"strategy": self.config.name == "w strategy" | |
}, | |
), | |
datasets.SplitGenerator( | |
name=datasets.Split.VALIDATION, | |
gen_kwargs={ | |
"filepath": data_dir["valid"], | |
"strategy": self.config.name == "w strategy" | |
}, | |
), | |
] | |
else: | |
return [ | |
datasets.SplitGenerator( | |
name=datasets.Split.TRAIN, | |
gen_kwargs={ | |
"filepath": data_dir["train_translated"] | |
}, | |
), | |
datasets.SplitGenerator( | |
name=datasets.Split.TEST, | |
gen_kwargs={ | |
"filepath": data_dir["test_translated"] | |
}, | |
), | |
datasets.SplitGenerator( | |
name=datasets.Split.VALIDATION, | |
gen_kwargs={ | |
"filepath": data_dir["valid_translated"] | |
}, | |
), | |
] | |
def _generate_examples(self, filepath, label_filepath=None, strategy=False): | |
"""Yields examples.""" | |
with open(filepath, encoding="utf-8") as input_file: | |
dataset = json.load(input_file) | |
idx = 0 | |
for meta_data in dataset: | |
reference = [ans["answer_text"] for ans in meta_data["answers"]] | |
for ans in meta_data["answers"]: | |
if strategy and ans["labels_sequence"] is None: | |
continue | |
elif strategy and ans["labels_sequence"] is not None: | |
pieces = [] | |
for label in ans["labels_sequence"]: | |
pieces.append(_STRATEGY[label["type"]]+ans["answer_text"][label["start"]:label["end"]]) | |
ans_w_strategy = "".join(pieces) | |
yield idx, {"question": meta_data["question"], "description": meta_data["description"], "keywords": meta_data["keywords"], "answer": ans_w_strategy, \ | |
"questionID": meta_data["questionID"], "has_label": ans["has_label"], "reference": reference} | |
else: | |
yield idx, {"question": meta_data["question"], "description": meta_data["description"], "keywords": meta_data["keywords"], "answer": ans["answer_text"], \ | |
"questionID": meta_data["questionID"], "has_label": ans["has_label"], "reference":reference} | |
idx += 1 | |