Datasets:
ltg
/

Modalities:
Tabular
Text
Formats:
parquet
Languages:
Norwegian
Libraries:
Datasets
pandas
License:
egilron commited on
Commit
3c4a57b
·
1 Parent(s): c8a29c6

Upload README.md with huggingface_hub

Browse files
Files changed (1) hide show
  1. README.md +53 -2
README.md CHANGED
@@ -1,10 +1,61 @@
1
  ---
2
  language:
3
  - 'no'
4
- pretty_name: NoReC
5
  size_categories:
6
  - 10K<n<100K
7
- license: cc
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
8
  ---
9
  # NoReC: The Norwegian Review Corpus
10
  This repository distributes the Norwegian Review Corpus (NoReC), created for the purpose of training and evaluating models for document-level sentiment analysis.
 
1
  ---
2
  language:
3
  - 'no'
4
+ license: cc
5
  size_categories:
6
  - 10K<n<100K
7
+ pretty_name: NoReC
8
+ configs:
9
+ - config_name: default
10
+ data_files:
11
+ - split: train
12
+ path: data/train-*
13
+ - split: validation
14
+ path: data/validation-*
15
+ - split: test
16
+ path: data/test-*
17
+ dataset_info:
18
+ features:
19
+ - name: id
20
+ dtype: string
21
+ - name: split
22
+ dtype: string
23
+ - name: rating
24
+ dtype: int64
25
+ - name: category
26
+ dtype: string
27
+ - name: day
28
+ dtype: int64
29
+ - name: month
30
+ dtype: int64
31
+ - name: year
32
+ dtype: int64
33
+ - name: excerpt
34
+ dtype: string
35
+ - name: language
36
+ dtype: string
37
+ - name: source
38
+ dtype: string
39
+ - name: authors
40
+ dtype: string
41
+ - name: title
42
+ dtype: string
43
+ - name: url
44
+ dtype: string
45
+ - name: text
46
+ dtype: string
47
+ splits:
48
+ - name: train
49
+ num_bytes: 94334212
50
+ num_examples: 34749
51
+ - name: validation
52
+ num_bytes: 13597517
53
+ num_examples: 4348
54
+ - name: test
55
+ num_bytes: 13787751
56
+ num_examples: 4340
57
+ download_size: 77286913
58
+ dataset_size: 121719480
59
  ---
60
  # NoReC: The Norwegian Review Corpus
61
  This repository distributes the Norwegian Review Corpus (NoReC), created for the purpose of training and evaluating models for document-level sentiment analysis.