luke-c commited on
Commit
ec9b424
·
verified ·
1 Parent(s): c45eb5c

Create README.md

Browse files
Files changed (1) hide show
  1. README.md +113 -0
README.md ADDED
@@ -0,0 +1,113 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+
2
+ # Trash Classification Project
3
+
4
+ ## Overview
5
+
6
+ This project focuses on trash classification using machine learning, leveraging multiple datasets with a total of 8,895 images from diverse sources.
7
+
8
+ ## Datasets
9
+
10
+ ### 1. Drinking Waste Classification
11
+ - **Images**: 4,832
12
+ - **Organization**: Directory-based sorting
13
+ - **Classes**: 4 recyclable categories
14
+ - Aluminium Cans
15
+ - Glass Bottles
16
+ - PET (Plastic) Bottles
17
+ - HDPE (Plastic) Milk Bottles
18
+
19
+ ### 2. TACO (Trash Annotations in Context)
20
+ - **Images**: 1,530
21
+ - **Environment**: Diverse settings (woods, roads, beaches)
22
+ - **Format**: Raw images with annotation JSON
23
+ - **Note**: Requires category mapping for proper sorting
24
+
25
+ ### 3. TrashNet
26
+ - **Images**: 2,533
27
+ - **Organization**: Directory-based sorting
28
+ - **Classes**: 6 categories
29
+ - Cardboard
30
+ - Glass
31
+ - Metal
32
+ - Paper
33
+ - Plastic
34
+ - Trash (miscellaneous)
35
+
36
+
37
+ ### 4. Google Images API
38
+ - **Images**: 4,500
39
+ - **Organization**: Directory-based sorting
40
+ - **Collection**: Scraping images from google images API to expand dataset.
41
+ ## Data Processing Pipeline
42
+
43
+ ### Image Augmentation
44
+ We apply 14 different manipulations to expand the dataset:
45
+ | Transformation | Description |
46
+ |----------------|-------------|
47
+ | Grayscale | Convert to grayscale |
48
+ | Rotation | 90°, 180°, 270° rotations |
49
+ | Flipping | Horizontal and vertical flips |
50
+ | Noise | Add random noise |
51
+ | Blur | Apply Gaussian blur |
52
+ | Brightness | Brighten and darken |
53
+ | Color Effects | Invert colors, posterize, solarize |
54
+ | Equalization | Histogram equalization |
55
+
56
+ ### Standardization
57
+ - All images are resized to 224×224 pixels
58
+ - Stored as NumPy arrays (.npy) or PyTorch tensors
59
+
60
+ ## HuggingFace Dataset Upload Instructions
61
+
62
+ 1. **Generate Image Variations**
63
+ ```bash
64
+ python img_manipulation.py
65
+ ```
66
+
67
+ 2. **Standardize Images**
68
+ ```bash
69
+ python standardize.py
70
+ ```
71
+
72
+ 3. **Upload to HuggingFace**
73
+ ```bash
74
+ # Install HuggingFace CLI
75
+ pip install huggingface_hub
76
+
77
+ # Upload files
78
+ python upload_files.py
79
+ ```
80
+ Note: Modify paths in upload_files.py to point to your data
81
+
82
+
83
+ ## Model Architecture: ResNet
84
+ We implement a ResNet (Residual Network) architecture for our trash classification task, leveraging the power of deep residual learning. ResNet represents a significant advancement over traditional Convolutional Neural Networks (CNNs) by introducing skip connections that allow information to bypass layers. This solution addresses the vanishing gradient problem that plagued deep networks, where gradients become extremely small during backpropagation, preventing effective training of deeper layers.
85
+
86
+ Unlike conventional CNNs where performance degrades as network depth increases beyond a certain point, ResNets can be substantially deeper (50, 101, or even 152 layers) while maintaining or improving accuracy. The key innovation is the residual block structure, which learns residual mappings instead of direct mappings, making optimization easier. This allows the network to decide whether to use or skip certain layers during training, effectively creating an ensemble of networks with different depths.
87
+
88
+ For our trash classification task, this architecture provides superior feature extraction capabilities, capturing both fine-grained details and higher-level abstractions necessary for distinguishing between various waste materials.
89
+
90
+ ### Key Features
91
+
92
+ - **Architecture**: ResNet with Bottleneck blocks
93
+ - **Implementation**: Built using TinyGrad for efficient training
94
+ - **Structure**:
95
+ - Initial 7×7 convolution with stride 2
96
+ - Four residual layers with bottleneck blocks
97
+ - Global average pooling
98
+ - Fully connected layer for classification
99
+ - **Residual Learning**: Uses skip connections to address the vanishing gradient problem
100
+ - **Configuration**:
101
+ - Input size: 224×224×3 (RGB images)
102
+ - Output: 3 classes (Compostable, Non-recyclable, Recyclable)
103
+
104
+ ### Training Process
105
+
106
+ - **Optimizer**: SGD with momentum (0.9)
107
+ - **Learning Rate**: 0.001
108
+ - **Batch Size**: Variable (configurable)
109
+ - **Metrics**: Accuracy, Precision, Recall, F1-score
110
+
111
+ ### Performance Evaluation
112
+
113
+ The model is evaluated on a held-out test set with comprehensive metrics to ensure robust classification across all waste categories.