prompt
stringlengths
19
1.03M
completion
stringlengths
4
2.12k
api
stringlengths
8
90
import pytest import numpy as np import pandas as pd import pandas.util.testing as tm @pytest.mark.parametrize('ordered', [True, False]) @pytest.mark.parametrize('categories', [ ['b', 'a', 'c'], ['a', 'b', 'c', 'd'], ]) def test_factorize(categories, ordered): cat = pd.Categorical(['b', 'b', 'a', 'c', None], categories=categories, ordered=ordered) labels, uniques = pd.factorize(cat) expected_labels = np.array([0, 0, 1, 2, -1], dtype=np.intp) expected_uniques = pd.Categorical(['b', 'a', 'c'], categories=categories, ordered=ordered) tm.assert_numpy_array_equal(labels, expected_labels) tm.assert_categorical_equal(uniques, expected_uniques) def test_factorized_sort(): cat = pd.Categorical(['b', 'b', None, 'a']) labels, uniques = pd.factorize(cat, sort=True) expected_labels = np.array([1, 1, -1, 0], dtype=np.intp) expected_uniques = pd.Categorical(['a', 'b']) tm.assert_numpy_array_equal(labels, expected_labels) tm.assert_categorical_equal(uniques, expected_uniques) def test_factorized_sort_ordered(): cat = pd.Categorical(['b', 'b', None, 'a'], categories=['c', 'b', 'a'], ordered=True) labels, uniques = pd.factorize(cat, sort=True) expected_labels = np.array([0, 0, -1, 1], dtype=np.intp) expected_uniques = pd.Categorical(['b', 'a'], categories=['c', 'b', 'a'], ordered=True) tm.assert_numpy_array_equal(labels, expected_labels) tm.assert_categorical_equal(uniques, expected_uniques) def test_isin_cats(): # GH2003 cat = pd.Categorical(["a", "b", np.nan]) result = cat.isin(["a", np.nan]) expected = np.array([True, False, True], dtype=bool) tm.assert_numpy_array_equal(expected, result) result = cat.isin(["a", "c"]) expected = np.array([True, False, False], dtype=bool) tm.assert_numpy_array_equal(expected, result) @pytest.mark.parametrize("empty", [[], pd.Series(), np.array([])]) def test_isin_empty(empty): s =
pd.Categorical(["a", "b"])
pandas.Categorical
# pylint: disable=C0103,C0301,E0401 """Process raw IEM data, output single optimized pickle file""" import argparse import os import sys import time from multiprocessing import Pool from pathlib import Path import numpy as np import pandas as pd import ruptures as rpt # note: this would not install properly on AWS EB! # only needed for preprocessing, not the app, so # it has been removed as a dependency from this project's Pipfile # bias-correction = {git = "https://github.com/pankajkarman/bias_correction.git"} # git+https://github.com/pankajkarman/bias_correction.git#egg=bias-correction from bias_correction import BiasCorrection from scipy.signal import find_peaks # this hack is done to alllow import from luts.py in app dir sys.path.append(os.path.dirname(os.path.dirname(os.path.abspath(__file__)))) from luts import decades def filter_spurious(station, tname="ts"): """Identify and remove spurious observations, returns filtered data and flagged observations""" station = station.set_index(tname) # ignore missing speed data ws_series = station[~np.isnan(station["sped"])]["sped"] # identify and remove completely obvious peaks, to help with dip detection obv_peaks, _ = find_peaks(ws_series, prominence=30, threshold=50) # if-else in case no obvious spikes if obv_peaks.shape[0] != 0: obv_spikes = ws_series[obv_peaks] ws_series = ws_series.drop(obv_spikes.index) else: obv_spikes =
pd.Series()
pandas.Series
import warnings import matplotlib.pyplot as plt import matplotlib.patches as mpatches import numpy as np import pandas as pd import seaborn as sns from bdpy.fig import box_off def makeplots( df, x=None, y=None, x_list=None, subplot=None, subplot_list=None, figure=None, figure_list=None, group=None, group_list=None, bar_group_width=0.8, plot_type='bar', horizontal=False, ebar=None, plot_size_auto=True, plot_size=(4, 0.3), max_col=None, y_lim=None, y_ticks=None, title=None, x_label=None, y_label=None, fontsize=12, tick_fontsize=9, points=100, style='default', colorset=None, chance_level=None, chance_level_style={'color': 'k', 'linewidth': 1}, swarm_dot_color='gray', swarm_dot_size=3, swarm_dot_alpha=0.7, swarm_violin_color='blue', box_color='blue', box_width=0.5, box_linewidth=1, box_meanprops=dict(linestyle='-', linewidth=1.5, color='red'), box_medianprops={}, removenan=True, verbose=False, colors=None, reverse_x=False ): '''Make plots. Parameters ---------- df : pandas.core.frame.DataFrame x : str y : str x_list : list subplot : str subplot : list figure : str figure_list : list plot_type : {'bar', 'violin', 'paired violin', 'swarm', 'swarm+box'} horizontal: bool plot_size : (width, height) y_lim : (y_min, y_max) y_ticks : array_like title, x_label, y_label : str fontsize : int tick_fontsize : int style : str verbose : bool Returns ------- fig : matplotlib.figure.Figure or list of matplotlib.figure.Figure ''' x_keys = sorted(df[x].unique()) subplot_keys = sorted(df[subplot].unique()) figure_keys = sorted(df[figure].unique()) if figure is not None else [None] group_keys = sorted(df[group].unique()) if group is not None else [None] x_list = x_keys if x_list is None else x_list subplot_list = subplot_keys if subplot_list is None else subplot_list figure_list = figure_keys if figure_list is None else figure_list group_list = group_keys if group_list is None else group_list if reverse_x: x_list = x_list[::-1] group_list = group_list[::-1] grouping = group is not None if plot_type == 'paired violin': if not grouping: RuntimeError('plot type "paired violin" can be used only when grouping is enabled') comparison_pairs = list(__split_list(group_list, 2)) if grouping: warnings.warn('"grouping mode" is still experimental and will not work correctly yet!') if verbose: print('X: {}'.format(x_list)) print('Subplot: {}'.format(subplot_list)) if grouping: print('Group by: {} ({})'.format(group_keys, group_list)) if figure is not None: print('Figures: {}'.format(figure_list)) col_num = np.ceil(np.sqrt(len(subplot_list))) row_num = int(np.ceil(len(subplot_list) / col_num)) col_num = int(col_num) if max_col is not None and col_num > max_col: col_num = max_col row_num = int(np.ceil(len(subplot_list) / col_num)) # Plot size if plot_size_auto: if horizontal: plot_size = (plot_size[0], plot_size[1] * len(x_list)) else: plot_size = (plot_size[0] * len(x_list), plot_size[1]) # Figure size figsize = (col_num * plot_size[0], row_num * plot_size[1]) # (width, height) if verbose: print('Subplot in {} x {}'.format(row_num, col_num)) # Figure instances if plot_type == 'paired violin': figure_instances = [ { 'label': f, 'comparison pair': p } for f in figure_list for p in comparison_pairs ] else: figure_instances = [ { 'label': f } for f in figure_list ] figs = [] # Figure loop for figure_instance in figure_instances: fig_label = figure_instance['label'] if verbose: if fig_label is None: print('Creating a figure') else: print('Creating figure for {}'.format(fig_label)) plt.style.use(style) fig = plt.figure(figsize=figsize) # Subplot loop for i, sp_label in enumerate(subplot_list): if verbose: print('Creating subplot for {}'.format(sp_label)) # Set subplot position col = int(i / row_num) row = i - col * row_num sbpos = (row_num - row - 1) * col_num + col + 1 # Get data if plot_type == 'paired violin': group_list = figure_instance['comparison pair'] data = __get_data(df, subplot, sp_label, x, x_list, figure, fig_label, y, group, group_list, grouping, removenan) if not isinstance(sp_label, list): if grouping: data_mean = [[np.nanmean(d) for d in data_t] for data_t in data] else: data_mean = [np.nanmean(d) for d in data] else: data_mean = None # Plot ax = plt.subplot(row_num, col_num, sbpos) if not style == 'ggplot': if horizontal: ax.grid(axis='x', color='k', linestyle='-', linewidth=0.5) else: ax.grid(axis='y', color='k', linestyle='-', linewidth=0.5) xpos = range(len(x_list)) if plot_type == 'bar': __plot_bar( ax, xpos, data_mean, horizontal=horizontal, grouping=grouping, group_list=group_list, bar_group_width=bar_group_width ) elif plot_type == 'violin': group_label_list = __plot_violin( ax, xpos, data, horizontal=horizontal, grouping=grouping, group_list=group_list, bar_group_width=bar_group_width, points=points ) elif plot_type == 'paired violin': group_label_list = __plot_violin_paired( ax, xpos, data, horizontal=horizontal, grouping=grouping, group_list=group_list, points=points, colors=colors ) elif plot_type == 'swarm': __plot_swarm( ax, x_list, data, horizontal=horizontal, grouping=grouping, dot_color=swarm_dot_color, dot_size=swarm_dot_size, dot_alpha=swarm_dot_alpha, violin_color=swarm_violin_color, ) elif plot_type == 'swarm+box': group_label_list = __plot_swarmbox( ax, x_list, data, horizontal=horizontal, reverse_x=reverse_x, grouping=grouping, group_list=group_list, dot_color=swarm_dot_color, dot_size=swarm_dot_size, dot_alpha=swarm_dot_alpha, box_color=box_color, box_width=box_width, box_linewidth=box_linewidth, box_meanprops=box_meanprops, box_medianprops=box_medianprops ) else: raise ValueError('Unknown plot_type: {}'.format(plot_type)) if not horizontal: # Vertical plot if grouping and plot_type == 'swarm+box': # swarm+boxのgroupingは擬似的なgroupingになっているためxticksの修正が必要 ax.set_xlim([ -1, len(x_list) * len(group_list) ]) new_x_list = np.arange(len(x_list)) * len(group_list) + len(group_list) / 2. - 0.5 ax.set_xticks(new_x_list) else: ax.set_xlim([-1, len(x_list)]) ax.set_xticks(range(len(x_list))) if row == 0: ax.set_xticklabels(x_list, rotation=-45, ha='left', fontsize=tick_fontsize) else: ax.set_xticklabels([]) if y_lim is None: pass else: ax.set_ylim(y_lim) if y_ticks is not None: ax.set_yticks(y_ticks) ax.tick_params(axis='y', labelsize=tick_fontsize, grid_color='gray', grid_linestyle='--', grid_linewidth=0.8) if chance_level is not None: plt.hlines(chance_level, xmin=plt.gca().get_xlim()[0], xmax=plt.gca().get_xlim()[1], **chance_level_style) else: # Horizontal plot if grouping and plot_type == 'swarm+box': # swarm+boxのgroupingは擬似的なgroupingになっているためyticksの修正が必要 ax.set_ylim([ -1, len(x_list) * len(group_list) ]) new_x_list = np.arange(len(x_list)) * len(group_list) + len(group_list) / 2. - 0.5 ax.set_yticks(new_x_list) else: ax.set_ylim([-1, len(x_list)]) ax.set_yticks(range(len(x_list))) if col == 0: ax.set_yticklabels(x_list, fontsize=tick_fontsize) else: ax.set_yticklabels([]) if y_lim is None: pass else: ax.set_xlim(y_lim) if y_ticks is not None: ax.set_xticks(y_ticks) ax.tick_params(axis='x', labelsize=tick_fontsize, grid_color='gray', grid_linestyle='--', grid_linewidth=0.8) if chance_level is not None: plt.vlines(chance_level, ymin=plt.gca().get_ylim()[0], ymax=plt.gca().get_ylim()[1], **chance_level_style) # Inset title x_range = plt.gca().get_xlim()[1] - plt.gca().get_xlim()[0] y_range = plt.gca().get_ylim()[1] - plt.gca().get_ylim()[0] tpos = ( plt.gca().get_xlim()[0] + 0.03 * x_range, plt.gca().get_ylim()[1] - 0.03 * y_range ) ax.text(tpos[0], tpos[1], sp_label, horizontalalignment='left', verticalalignment='top', fontsize=fontsize, bbox=dict(facecolor='white', edgecolor='none')) # Inset legend if grouping: if 'violin' in plot_type: if i == len(subplot_list) - 1: group_label_list = group_label_list[::-1] ax.legend(*zip(*group_label_list), loc='upper left', bbox_to_anchor=(1, 1)) elif plot_type == 'swarm+box': if i == len(subplot_list) - 1: ax.legend(*zip(*group_label_list), loc='upper left', bbox_to_anchor=(1, 1)) else: plt.legend() box_off(ax) plt.tight_layout() # Draw X/Y labels and title ------------------------------------------ ax = fig.add_axes([0, 0, 1, 1]) ax.patch.set_alpha(0.0) ax.set_axis_off() # X Label if x_label is not None: txt = y_label if horizontal else x_label ax.text(0.5, 0, txt, verticalalignment='center', horizontalalignment='center', fontsize=fontsize) # Y label if y_label is not None: txt = x_label if horizontal else y_label ax.text(0, 0.5, txt, verticalalignment='center', horizontalalignment='center', fontsize=fontsize, rotation=90) # Figure title if title is not None: if fig_label is None: ax.text(0.5, 0.99, title, horizontalalignment='center', fontsize=fontsize) else: ax.text(0.5, 0.99, '{}: {}'.format(title, fig_label), horizontalalignment='center', fontsize=fontsize) figs.append(fig) if figure is None: return figs[0] else: return figs def __plot_bar( ax, xpos, data_mean, horizontal=False, grouping=False, group_list=[], bar_group_width=0.8 ): if grouping: ydata = np.array(data_mean) n_grp = ydata.shape[1] w = bar_group_width / n_grp for grpi in range(n_grp): offset = grpi * w if horizontal: plt.barh(np.array(xpos) - bar_group_width / 2 + (bar_group_width / 2) * w + offset, ydata[:, grpi], height=w, label=group_list[grpi]) else: plt.bar(np.array(xpos) - bar_group_width / 2 + (bar_group_width / 2) * w + offset, ydata[:, grpi], width=w, label=group_list[grpi]) else: if horizontal: ax.barh(xpos, data_mean, color='gray') else: ax.bar(xpos, data_mean, color='gray') def __plot_violin( ax, xpos, data, horizontal=False, grouping=False, group_list=[], bar_group_width=0.8, points=100 ): if grouping: n_grp = len(group_list) w = bar_group_width / (n_grp + 1) group_label_list = [] for grpi in range(n_grp): offset = grpi * w - (n_grp // 2) * w xpos_grp = np.array(xpos) + offset #- bar_group_width / 2 + (bar_group_width / 2) * w + offset ydata_grp = [a_data[grpi] for a_data in data] violinobj = ax.violinplot( ydata_grp, xpos_grp, vert=not horizontal, showmeans=True, showextrema=False, showmedians=False, points=points, widths=w * 0.8) color = violinobj["bodies"][0].get_facecolor().flatten() group_label_list.append((mpatches.Patch(color=color), group_list[grpi])) else: ax.violinplot(data, xpos, vert=not horizontal, showmeans=True, showextrema=False, showmedians=False, points=points) group_label_list = None return group_label_list def __plot_violin_paired( ax, xpos, data, horizontal=False, grouping=False, group_list=[], points=100, colors=None ): assert grouping n_grp = len(group_list) assert n_grp == 2 group_label_list = [] if colors is not None and len(colors) >= 2: __draw_half_violin(ax, [a_data[0] for a_data in data], points, xpos, color=colors[0], left=True, vert=not horizontal) __draw_half_violin(ax, [a_data[1] for a_data in data], points, xpos, color=colors[1], left=False, vert=not horizontal) else: colors = [] color = __draw_half_violin(ax, [a_data[0] for a_data in data], points, xpos, color=None, left=True, vert=not horizontal) colors.append(color) color = __draw_half_violin(ax, [a_data[1] for a_data in data], points, xpos, color=None, left=False, vert=not horizontal) colors.append(color) for color, label in zip(colors, group_list): group_label_list.append((mpatches.Patch(color=color), label)) return group_label_list def __plot_swarm( ax, x_list, data, horizontal=False, grouping=False, dot_color='#595959', dot_size=1.5, dot_alpha=0.8, violin_color='blue' ): if grouping: raise RuntimeError("The function of grouping on `swarm` plot is not implemeted yet.") else: df_list = [] for xi, x_lbl in enumerate(x_list): a_df = pd.DataFrame.from_dict({'y': data[xi]}) a_df['x'] = x_lbl df_list.append(a_df) tmp_df =
pd.concat(df_list)
pandas.concat
from __future__ import division #brings in Python 3.0 mixed type calculation rules import datetime import inspect import numpy as np import numpy.testing as npt import os.path import pandas as pd import sys from tabulate import tabulate import unittest print("Python version: " + sys.version) print("Numpy version: " + np.__version__) # #find parent directory and import model # parent_dir = os.path.abspath(os.path.join(os.path.dirname(__file__), os.path.pardir)) # sys.path.append(parent_dir) from ..kabam_exe import Kabam test = {} class TestKabam(unittest.TestCase): """ Unit tests for Kabam model. : unittest will : 1) call the setup method, : 2) then call every method starting with "test", : 3) then the teardown method """ print("kabam unittests conducted at " + str(datetime.datetime.today())) def setUp(self): """ Setup routine for Kabam unit tests. :return: """ pass # setup the test as needed # e.g. pandas to open Kabam qaqc csv # Read qaqc csv and create pandas DataFrames for inputs and expected outputs def tearDown(self): """ Teardown routine for Kabam unit tests. :return: """ pass # teardown called after each test # e.g. maybe write test results to some text file def create_kabam_object(self): # create empty pandas dataframes to create empty object for testing df_empty =
pd.DataFrame()
pandas.DataFrame
""" Routines for filling missing data. """ from __future__ import annotations from functools import ( partial, wraps, ) from typing import ( TYPE_CHECKING, Any, cast, ) import numpy as np from pandas._libs import ( algos, lib, ) from pandas._typing import ( ArrayLike, Axis, F, npt, ) from pandas.compat._optional import import_optional_dependency from pandas.core.dtypes.cast import infer_dtype_from from pandas.core.dtypes.common import ( is_array_like, is_numeric_v_string_like, needs_i8_conversion, ) from pandas.core.dtypes.missing import ( is_valid_na_for_dtype, isna, na_value_for_dtype, ) if TYPE_CHECKING: from pandas import Index def check_value_size(value, mask: np.ndarray, length: int): """ Validate the size of the values passed to ExtensionArray.fillna. """ if is_array_like(value): if len(value) != length: raise ValueError( f"Length of 'value' does not match. Got ({len(value)}) " f" expected {length}" ) value = value[mask] return value def mask_missing(arr: ArrayLike, values_to_mask) -> npt.NDArray[np.bool_]: """ Return a masking array of same size/shape as arr with entries equaling any member of values_to_mask set to True Parameters ---------- arr : ArrayLike values_to_mask: list, tuple, or scalar Returns ------- np.ndarray[bool] """ # When called from Block.replace/replace_list, values_to_mask is a scalar # known to be holdable by arr. # When called from Series._single_replace, values_to_mask is tuple or list dtype, values_to_mask = infer_dtype_from(values_to_mask) # error: Argument "dtype" to "array" has incompatible type "Union[dtype[Any], # ExtensionDtype]"; expected "Union[dtype[Any], None, type, _SupportsDType, str, # Union[Tuple[Any, int], Tuple[Any, Union[int, Sequence[int]]], List[Any], # _DTypeDict, Tuple[Any, Any]]]" values_to_mask = np.array(values_to_mask, dtype=dtype) # type: ignore[arg-type] na_mask = isna(values_to_mask) nonna = values_to_mask[~na_mask] # GH 21977 mask = np.zeros(arr.shape, dtype=bool) for x in nonna: if is_numeric_v_string_like(arr, x): # GH#29553 prevent numpy deprecation warnings pass else: mask |= arr == x if na_mask.any(): mask |= isna(arr) if not isinstance(mask, np.ndarray): # e.g. if arr is IntegerArray, then mask is BooleanArray mask = mask.to_numpy(dtype=bool, na_value=False) return mask def clean_fill_method(method, allow_nearest: bool = False): # asfreq is compat for resampling if method in [None, "asfreq"]: return None if isinstance(method, str): method = method.lower() if method == "ffill": method = "pad" elif method == "bfill": method = "backfill" valid_methods = ["pad", "backfill"] expecting = "pad (ffill) or backfill (bfill)" if allow_nearest: valid_methods.append("nearest") expecting = "pad (ffill), backfill (bfill) or nearest" if method not in valid_methods: raise ValueError(f"Invalid fill method. Expecting {expecting}. Got {method}") return method # interpolation methods that dispatch to np.interp NP_METHODS = ["linear", "time", "index", "values"] # interpolation methods that dispatch to _interpolate_scipy_wrapper SP_METHODS = [ "nearest", "zero", "slinear", "quadratic", "cubic", "barycentric", "krogh", "spline", "polynomial", "from_derivatives", "piecewise_polynomial", "pchip", "akima", "cubicspline", ] def clean_interp_method(method: str, index: Index, **kwargs) -> str: order = kwargs.get("order") if method in ("spline", "polynomial") and order is None: raise ValueError("You must specify the order of the spline or polynomial.") valid = NP_METHODS + SP_METHODS if method not in valid: raise ValueError(f"method must be one of {valid}. Got '{method}' instead.") if method in ("krogh", "piecewise_polynomial", "pchip"): if not index.is_monotonic: raise ValueError( f"{method} interpolation requires that the index be monotonic." ) return method def find_valid_index(values, *, how: str) -> int | None: """ Retrieves the index of the first valid value. Parameters ---------- values : ndarray or ExtensionArray how : {'first', 'last'} Use this parameter to change between the first or last valid index. Returns ------- int or None """ assert how in ["first", "last"] if len(values) == 0: # early stop return None is_valid = ~isna(values) if values.ndim == 2: is_valid = is_valid.any(1) # reduce axis 1 if how == "first": idxpos = is_valid[::].argmax() elif how == "last": idxpos = len(values) - 1 - is_valid[::-1].argmax() chk_notna = is_valid[idxpos] if not chk_notna: return None return idxpos def interpolate_array_2d( data: np.ndarray, method: str = "pad", axis: int = 0, index: Index | None = None, limit: int | None = None, limit_direction: str = "forward", limit_area: str | None = None, fill_value: Any | None = None, coerce: bool = False, downcast: str | None = None, **kwargs, ) -> None: """ Wrapper to dispatch to either interpolate_2d or _interpolate_2d_with_fill. Notes ----- Alters 'data' in-place. """ try: m = clean_fill_method(method) except ValueError: m = None if m is not None: if fill_value is not None: # similar to validate_fillna_kwargs raise ValueError("Cannot pass both fill_value and method") interpolate_2d( data, method=m, axis=axis, limit=limit, limit_area=limit_area, ) else: assert index is not None # for mypy _interpolate_2d_with_fill( data=data, index=index, axis=axis, method=method, limit=limit, limit_direction=limit_direction, limit_area=limit_area, fill_value=fill_value, **kwargs, ) return def _interpolate_2d_with_fill( data: np.ndarray, # floating dtype index: Index, axis: int, method: str = "linear", limit: int | None = None, limit_direction: str = "forward", limit_area: str | None = None, fill_value: Any | None = None, **kwargs, ) -> None: """ Column-wise application of _interpolate_1d. Notes ----- Alters 'data' in-place. The signature does differ from _interpolate_1d because it only includes what is needed for Block.interpolate. """ # validate the interp method clean_interp_method(method, index, **kwargs) if is_valid_na_for_dtype(fill_value, data.dtype): fill_value = na_value_for_dtype(data.dtype, compat=False) if method == "time": if not needs_i8_conversion(index.dtype): raise ValueError( "time-weighted interpolation only works " "on Series or DataFrames with a " "DatetimeIndex" ) method = "values" valid_limit_directions = ["forward", "backward", "both"] limit_direction = limit_direction.lower() if limit_direction not in valid_limit_directions: raise ValueError( "Invalid limit_direction: expecting one of " f"{valid_limit_directions}, got '{limit_direction}'." ) if limit_area is not None: valid_limit_areas = ["inside", "outside"] limit_area = limit_area.lower() if limit_area not in valid_limit_areas: raise ValueError( f"Invalid limit_area: expecting one of {valid_limit_areas}, got " f"{limit_area}." ) # default limit is unlimited GH #16282 limit = algos.validate_limit(nobs=None, limit=limit) indices = _index_to_interp_indices(index, method) def func(yvalues: np.ndarray) -> None: # process 1-d slices in the axis direction _interpolate_1d( indices=indices, yvalues=yvalues, method=method, limit=limit, limit_direction=limit_direction, limit_area=limit_area, fill_value=fill_value, bounds_error=False, **kwargs, ) # interp each column independently np.apply_along_axis(func, axis, data) return def _index_to_interp_indices(index: Index, method: str) -> np.ndarray: """ Convert Index to ndarray of indices to pass to NumPy/SciPy. """ xarr = index._values if needs_i8_conversion(xarr.dtype): # GH#1646 for dt64tz xarr = xarr.view("i8") if method == "linear": inds = xarr inds = cast(np.ndarray, inds) else: inds = np.asarray(xarr) if method in ("values", "index"): if inds.dtype == np.object_: inds = lib.maybe_convert_objects(inds) return inds def _interpolate_1d( indices: np.ndarray, yvalues: np.ndarray, method: str | None = "linear", limit: int | None = None, limit_direction: str = "forward", limit_area: str | None = None, fill_value: Any | None = None, bounds_error: bool = False, order: int | None = None, **kwargs, ): """ Logic for the 1-d interpolation. The input indices and yvalues will each be 1-d arrays of the same length. Bounds_error is currently hardcoded to False since non-scipy ones don't take it as an argument. Notes ----- Fills 'yvalues' in-place. """ invalid = isna(yvalues) valid = ~invalid if not valid.any(): return if valid.all(): return # These are sets of index pointers to invalid values... i.e. {0, 1, etc... all_nans = set(np.flatnonzero(invalid)) first_valid_index = find_valid_index(yvalues, how="first") if first_valid_index is None: # no nan found in start first_valid_index = 0 start_nans = set(range(first_valid_index)) last_valid_index = find_valid_index(yvalues, how="last") if last_valid_index is None: # no nan found in end last_valid_index = len(yvalues) end_nans = set(range(1 + last_valid_index, len(valid))) # Like the sets above, preserve_nans contains indices of invalid values, # but in this case, it is the final set of indices that need to be # preserved as NaN after the interpolation. # For example if limit_direction='forward' then preserve_nans will # contain indices of NaNs at the beginning of the series, and NaNs that # are more than'limit' away from the prior non-NaN. # set preserve_nans based on direction using _interp_limit preserve_nans: list | set if limit_direction == "forward": preserve_nans = start_nans | set(_interp_limit(invalid, limit, 0)) elif limit_direction == "backward": preserve_nans = end_nans | set(_interp_limit(invalid, 0, limit)) else: # both directions... just use _interp_limit preserve_nans = set(_interp_limit(invalid, limit, limit)) # if limit_area is set, add either mid or outside indices # to preserve_nans GH #16284 if limit_area == "inside": # preserve NaNs on the outside preserve_nans |= start_nans | end_nans elif limit_area == "outside": # preserve NaNs on the inside mid_nans = all_nans - start_nans - end_nans preserve_nans |= mid_nans # sort preserve_nans and convert to list preserve_nans = sorted(preserve_nans) if method in NP_METHODS: # np.interp requires sorted X values, #21037 indexer = np.argsort(indices[valid]) yvalues[invalid] = np.interp( indices[invalid], indices[valid][indexer], yvalues[valid][indexer] ) else: yvalues[invalid] = _interpolate_scipy_wrapper( indices[valid], yvalues[valid], indices[invalid], method=method, fill_value=fill_value, bounds_error=bounds_error, order=order, **kwargs, ) yvalues[preserve_nans] = np.nan return def _interpolate_scipy_wrapper( x, y, new_x, method, fill_value=None, bounds_error=False, order=None, **kwargs ): """ Passed off to scipy.interpolate.interp1d. method is scipy's kind. Returns an array interpolated at new_x. Add any new methods to the list in _clean_interp_method. """ extra = f"{method} interpolation requires SciPy." import_optional_dependency("scipy", extra=extra) from scipy import interpolate new_x = np.asarray(new_x) # ignores some kwargs that could be passed along. alt_methods = { "barycentric": interpolate.barycentric_interpolate, "krogh": interpolate.krogh_interpolate, "from_derivatives": _from_derivatives, "piecewise_polynomial": _from_derivatives, } if getattr(x, "_is_all_dates", False): # GH 5975, scipy.interp1d can't handle datetime64s x, new_x = x._values.astype("i8"), new_x.astype("i8") if method == "pchip": alt_methods["pchip"] = interpolate.pchip_interpolate elif method == "akima": alt_methods["akima"] = _akima_interpolate elif method == "cubicspline": alt_methods["cubicspline"] = _cubicspline_interpolate interp1d_methods = [ "nearest", "zero", "slinear", "quadratic", "cubic", "polynomial", ] if method in interp1d_methods: if method == "polynomial": method = order terp = interpolate.interp1d( x, y, kind=method, fill_value=fill_value, bounds_error=bounds_error ) new_y = terp(new_x) elif method == "spline": # GH #10633, #24014 if
isna(order)
pandas.core.dtypes.missing.isna
# Import required libraries import pandas as pd import nest_asyncio import numpy as np import warnings import re from nltk.corpus import stopwords from nltk.stem import PorterStemmer from nltk.tokenize import TweetTokenizer # Configurations warnings.filterwarnings('ignore') # This function takes a card and transforms it to the shape required by the models def transform_card(insert): # Create the empty dataset to populate with our card set_df = pd.DataFrame(columns=['name', 'lang', 'released_at', 'mana_cost', 'cmc', 'type_line', 'oracle_text', 'power', 'toughness', 'colors', 'color_identity', 'keywords', 'legalities', 'games', 'set', 'set_name', 'set_type', 'digital', 'rarity', 'flavor_text', 'artist', 'edhrec_rank', 'prices', 'loyalty', 'prints','image_uris', 'card_faces', 'oracle_text_1', 'oracle_text_2', 'image_uris_1', 'image_uris_2']) # Insert the new card into the empty dataframe from before set_df = set_df.append(insert,ignore_index=True) # If it has text in "oracle_text_1", then it's a Double Faced Card set_df['DFC'] = np.where(set_df['oracle_text_1'] != "None", 1, 0) # Transform the data in double faced cards # Let's first create a dataframe that just has the card name and the column 'card_faces' double_cards_df = set_df[['name','card_faces']].dropna() # We also filter it so we get cards that actually have 2 sides double_cards_df = double_cards_df[double_cards_df['card_faces']!="none"] # If we actually have information about the 2 faces, we separate them into 2 columns try: double_cards_df[['face1','face2']] = pd.DataFrame(double_cards_df['card_faces'].tolist(), index= double_cards_df.index) except: double_cards_df[['oracle_text_1','oracle_text_2']] = "None" # Now let's drop the column 'card_faces' double_cards_df.drop("card_faces",axis=1, inplace=True) # We now go into each key within the dictionary of face1 and face2 and separate them into columns try: double_cards_df[double_cards_df['face1'].apply(pd.Series).columns + "_1"] = double_cards_df['face1'].apply(pd.Series) double_cards_df[double_cards_df['face2'].apply(pd.Series).columns + "_2"] = double_cards_df['face2'].apply(pd.Series) except: pass # Define a list of columns we want to keep from the 2 sided cards cols_to_keep = ['name','oracle_text_1','oracle_text_2','image_uris_1','image_uris_2', 'colors_1', 'power_1', 'toughness_1', 'loyalty_1'] # For each column in the dataframe, if it's not a selected column, we drop it for i in double_cards_df.columns: if i not in cols_to_keep: double_cards_df.drop(i, axis=1, inplace=True) # We now need to consolidate the 2 oracle texts into 1, we join them together double_cards_df['oracle_text_dobles'] = double_cards_df['oracle_text_1'] + "\n" + double_cards_df['oracle_text_2'] # Reset the indexes double_cards_df = double_cards_df.reset_index(drop=True) # Merge the 2 faces info into our main df # We now merge them by card name set_df = set_df.merge(double_cards_df, on=["name","oracle_text_1","oracle_text_2"], how="left").drop("card_faces",axis=1) # We use this script to replace Nulls with "None" set_df[['oracle_text_1','oracle_text_2']] = set_df[['oracle_text_1','oracle_text_2']].fillna("None") try: set_df[['image_uris_1','image_uris_2', 'colors_1', 'power_1', 'toughness_1','loyalty_1']] = set_df[['image_uris_1','image_uris_2', 'colors_1', 'power_1', 'toughness_1','loyalty_1']].fillna("None") except: pass # Now that we have our oracle text from the 2 card sides joined together, we want to use it to replace # the actual "oracle_text" from the original dataframe, which is actually empty # If oracle_text is empty (meaning it's a double faced card), we replace it with our 'oracle_text_dobles' column set_df['oracle_text'] = np.where(set_df['oracle_text'].isna(),set_df['oracle_text_dobles'],set_df['oracle_text']) # And now that column is useless so we drop it set_df = set_df.drop("oracle_text_dobles",axis=1) # We need to do the same for all the other columns. However, for these columns, we bring the results # of the front card: # Color of the card try: set_df['colors'] = np.where(set_df['colors'].isna(),set_df['colors_1'],set_df['colors']) set_df = set_df.drop("colors_1",axis=1) except: pass # Power of the creature try: set_df['power'] = np.where(set_df['power'].isna(),set_df['power_1'],set_df['power']) set_df = set_df.drop("power_1",axis=1) except: pass # Toughness of the creature try: set_df['toughness'] = np.where(set_df['toughness'].isna(),set_df['toughness_1'],set_df['toughness']) set_df = set_df.drop("toughness_1",axis=1) except: pass # Loyalty of the planeswalker try: set_df['loyalty'] = np.where(set_df['loyalty'].isna(),set_df['loyalty_1'],set_df['loyalty']) set_df = set_df.drop("loyalty_1",axis=1) except: pass # One last thing. We can create a new column that will indicate if the card is a double faced card or not set_df['DFC'] = np.where(set_df['oracle_text_1'] != "None", 1, 0) # CMC grouping # Create groupings for the cmc. For 7 or above, we group them together set_df['cmc_grp'] = np.where(set_df['cmc'] <= 6.0, (set_df['cmc'].astype('int').astype('str'))+"_drop", "7plus_drop") # Separate the Keywords column into unique keyword columns # Create a list to use as column names for the keyword columnn my_list = list(set_df['keywords'].apply(pd.Series).columns) string = 'keyword_' kw_list = [string + str(x+1) for x in my_list] print("Keyword Columns:") print(kw_list) #Apply the separation to our dataset set_df[kw_list] = set_df['keywords'].apply(pd.Series).fillna('99999') # Separate the Legalities column into unique legality columns #Apply the separation to our dataset set_df[set_df['legalities'].apply(pd.Series).columns] = set_df['legalities'].apply(pd.Series) # Separate the prices column into unique price columns #Apply the separation to our dataset set_df[set_df['prices'].apply(pd.Series).columns] = set_df['prices'].apply(pd.Series) # Let's check the shape of our dataframe once again print(f"Shape of dataframe: {set_df.shape}") # Colors print(f"Max colors in a card: {len(list(set_df['colors'].apply(pd.Series).fillna('99999').columns))}") # Lets create a dataframe that joins the colors to create all possible color combinations color_df = set_df['colors'].apply(pd.Series).fillna('') color_df['color'] = color_df.apply(lambda x: ''.join(sorted(x)), axis=1).replace('','Colorless') color_df = color_df[['color']] # Replace the "colors" column in the dataframe with our new column set_df['colors'] = color_df print(f"Different color in data: {len(set_df['colors'].unique())}") # Repeat the process for the "color_identity" column color_id_df = set_df['color_identity'].apply(pd.Series).fillna('') color_id_df['color_identity'] = color_id_df.apply(lambda x: ''.join(sorted(x)), axis=1).replace('','Colorless') color_id_df = color_id_df[['color_identity']] set_df['color_identity'] = color_id_df ### Remove useless columns # List of columns we no longer need cols_to_drop = ['keywords','legalities','games','prices','usd_etched'] # Drop the columns set_df.drop(cols_to_drop,axis=1,inplace=True) # Creating the keywords columns #Lets create a sub dataframe with just the name of the card and the keyword columns temp_df = set_df[['name'] + kw_list] # We now want to melt this dataframe so we have the name repeated as many times as keywords, but just 1 keywords column temp_df2 = pd.melt(temp_df, id_vars=['name'], value_vars=kw_list).drop('variable',axis=1) # Now we can pivot this sub dataframe and get a column for each keyword, with 0s and 1s depending on each card kw_df = temp_df2.pivot(columns="value", values="value").fillna(0) try: kw_df = kw_df.drop('99999',axis=1) except: pass try: kw_df = kw_df.replace(regex={r'\D': 1}) except: pass # Let's add the name of the card to this new sub dataframe result = pd.concat([temp_df2[['name']], kw_df], axis=1) # Summing and resetting index will help to condense the data final_df = result.groupby(['name']).sum().reset_index() # We can now merge this sub dataframe with our main dataframe and get all the keywords! set_df_kw = set_df.merge(final_df, on=['name'], how="left").drop(kw_list, axis=1) ### Replace nulls in `flavor_text` # If a card does not have a flavor text, let's put "no flavor text" instead set_df_kw['flavor_text'] = set_df_kw['flavor_text'].fillna("no_flavor_text") ### Replace nulls in `edhrec_rank` # If a card does not have an edhrec_rank, let's replace it with int 999999 set_df_kw['edhrec_rank'] = set_df_kw['edhrec_rank'].fillna(999999).astype(int) # Separate column ``type_line`` # We first separate the card type of the front from the card type of the back try: set_df_kw[['face','back']] = set_df_kw['type_line'].str.split(' // ',expand=True).fillna('None') except: set_df_kw[['face','back']] = [set_df_kw['type_line'],"None"] # We then separate the face type using the "-" as separator try: set_df_kw[['face_type','face_subtype']] = set_df_kw['face'].str.split(' — ',expand=True).fillna('None') except: set_df_kw['face_type'] = set_df_kw['face'] set_df_kw['face_subtype'] = "None" # If a card has a back, we then separate the back type using the "-" as separator try: set_df_kw[['back_type','back_subtype']] = set_df_kw['back'].str.split(' — ',expand=True).fillna('None') except: set_df_kw['back_type'] = set_df_kw['back'] set_df_kw['back_subtype'] = "None" # Separate ``face_type`` in each possible token # Let's obtain the max quantity of words within "face_type" column max_word_len = [] for i in range(len(set_df_kw['face_type'].unique())): append_length = len(set_df_kw['face_type'].unique()[i].split()) max_word_len.append(append_length) face_type_max = max(max_word_len) print(f"Max words in face_type: {face_type_max}") # Using our result of max words in face_type, create as many face_type_N columns face_type_cols = [] for i in range(face_type_max): face_type_col = f"face_type_{i+1}" face_type_cols.append(face_type_col) # Use these columns to split the face_type column set_df_kw[face_type_cols] = set_df_kw['face_type'].str.split(' ',expand=True).fillna('None') # Separate ``face_subtype`` in each possible token # Let's obtain the max quantity of words within "face_subtype" column max_word_len = [] for i in range(len(set_df_kw['face_subtype'].unique())): append_length = len(set_df_kw['face_subtype'].unique()[i].split()) max_word_len.append(append_length) face_subtype_max = max(max_word_len) print(f"Max words in face_subtype: {face_subtype_max}") # Using our result of max words in face_subtype, create as many face_subtype_N columns face_subtype_cols = [] for i in range(face_subtype_max): face_subtype_col = f"face_subtype_{i+1}" face_subtype_cols.append(face_subtype_col) # Use these columns to split the face_subtype column set_df_kw[face_subtype_cols] = set_df_kw['face_subtype'].str.split(' ',expand=True).fillna('None') # Separate ``back_type`` in each possible token # Let's obtain the max quantity of words within "back_type" column max_word_len = [] for i in range(len(set_df_kw['back_type'].unique())): append_length = len(set_df_kw['back_type'].unique()[i].split()) max_word_len.append(append_length) back_type_max = max(max_word_len) print(f"Max words in back_type: {back_type_max}") # Using our result of max words in back_type, create as many face_subtype_N columns back_type_cols = [] for i in range(back_type_max): back_type_col = f"back_type_{i+1}" back_type_cols.append(back_type_col) # Use these columns to split the back_type column set_df_kw[back_type_cols] = set_df_kw['back_type'].str.split(' ',expand=True).fillna('None') # Separate ``back_subtype`` in each possible token # Let's obtain the max quantity of words within "back_subtype" column max_word_len = [] for i in range(len(set_df_kw['back_subtype'].unique())): append_length = len(set_df_kw['back_subtype'].unique()[i].split()) max_word_len.append(append_length) back_subtype_max = max(max_word_len) print(f"Max words in back_subtype: {back_subtype_max}") # Using our result of max words in back_subtype, create as many back_subtype_N columns back_subtype_cols = [] for i in range(back_subtype_max): back_subtype_col = f"back_subtype_{i+1}" back_subtype_cols.append(back_subtype_col) # Use these columns to split the back_subtype column set_df_kw[back_subtype_cols] = set_df_kw['back_subtype'].str.split(' ',expand=True).fillna('None') # Abilities Count # Define a function that will split the oracle text using \n as delimiter def count_abilities(string): try: abilities_count = len(string.split('\n')) except: abilities_count = 0 return abilities_count # Apply the function and create the "abilities_count" column set_df_kw['abilities_count'] = set_df_kw.apply(lambda x: count_abilities(x['oracle_text']),axis=1) # Cleave fix # Cleave transformation # If card has cleave, remove "[" and "]" and repeat the same orcale text removing whatever is between them try: set_df_kw['oracle_text'] = np.where(set_df_kw['Cleave']==1, set_df_kw['oracle_text'].str.replace("[","").str.replace("]","")+'\n'+set_df_kw['oracle_text'].str.replace(r"[\(\[].*?[\)\]] ", ""), set_df_kw['oracle_text']) except: pass # Monocolored, Multicolored and others # If color column has just 1 character, it's monocolored (eg. "B" or "W") set_df_kw['monocolored'] = np.where(set_df_kw['colors'].str.len() == 1,1,0) # If it has more than 1 charater and it does not say Colorless, then it's multicolored set_df_kw['multicolored'] = np.where((set_df_kw['colors'].str.len() > 1) & (set_df_kw['colors'] != "Colorless"),1,0) # And these other variants set_df_kw['two_colors'] = np.where(set_df_kw['colors'].str.len() == 2,1,0) set_df_kw['three_colors'] = np.where(set_df_kw['colors'].str.len() == 3,1,0) set_df_kw['four_colors'] = np.where(set_df_kw['colors'].str.len() == 4,1,0) set_df_kw['five_colors'] = np.where(set_df_kw['colors'].str.len() == 5,1,0) set_df_kw['colorless'] = np.where(set_df_kw['colors'] == "Colorless",1,0) # Devotion # We count how many mana symbols we find in a card CMC set_df_kw['mana_symbols_cost'] = set_df_kw['mana_cost'].str.count('W|U|B|R|G').fillna(0) # We also count how many specific mana symbols set_df_kw['devotion_W'] = set_df_kw['mana_cost'].str.count('W').fillna(0) set_df_kw['devotion_U'] = set_df_kw['mana_cost'].str.count('U').fillna(0) set_df_kw['devotion_B'] = set_df_kw['mana_cost'].str.count('B').fillna(0) set_df_kw['devotion_R'] = set_df_kw['mana_cost'].str.count('R').fillna(0) set_df_kw['devotion_G'] = set_df_kw['mana_cost'].str.count('G').fillna(0) # Prices # We create some columns to detect if we have missing prices set_df_kw['missing_usd'] = np.where(set_df_kw['usd'].isna(), 1, 0) set_df_kw['missing_usd_foil'] = np.where(set_df_kw['usd_foil'].isna(), 1, 0) set_df_kw['missing_eur'] = np.where(set_df_kw['eur'].isna(), 1, 0) set_df_kw['missing_eur_foil'] = np.where(set_df_kw['eur_foil'].isna(), 1, 0) set_df_kw['missing_tix'] = np.where(set_df_kw['tix'].isna(), 1, 0) # If there are missings, we fill them with 0 set_df_kw['usd'] = set_df_kw['usd'].fillna(0) set_df_kw['eur'] = set_df_kw['eur'].fillna(0) set_df_kw['usd_foil'] = set_df_kw['usd_foil'].fillna(0) set_df_kw['eur_foil'] = set_df_kw['eur_foil'].fillna(0) set_df_kw['tix'] = set_df_kw['tix'].fillna(0) # Power & Toughness # We just want to fill NaNs with "None" to fix any card that is not a creature set_df_kw['power'] = set_df_kw['power'].fillna("None") # Loyalty # We just want to fill NaNs with "None" to fix any card that is not a planeswalker set_df_kw['loyalty'] = set_df_kw['loyalty'].fillna('None') # X spells # Create a column that is 1 if it's a card with X in it's mana cost set_df_kw['X_spell'] = np.where(set_df_kw['mana_cost'].str.contains('{X}'),1,0) # Text `(to be removed)` # Remove text between brackets in oracle_text set_df_kw['oracle_text'] = set_df_kw['oracle_text'].str.replace(r"\(.*\)","") # Mana symbols in oracle text # We create a column tha that is 1 if there are mana symbols inside the oracle text set_df_kw['mana_symbols_oracle'] = np.where(set_df_kw['oracle_text'].str.contains('{W}|{U}|{B}|{R}|{G}'),1,0) # We count how many different mana symbols are in the oracle text set_df_kw['mana_symbols_oracle_nbr'] = set_df_kw['oracle_text'].str.count('{W}|{U}|{B}|{R}|{G}') # Includes tapping ability # We create a column that is 1 if the card has {T} in the oracle_text set_df_kw['tapping_ability'] = np.where(set_df_kw['oracle_text'].str.contains('{T}'),1,0) # Includes multiple choice # We create a column that is 1 if the card has '• ' in the oracle_text set_df_kw['multiple_choice'] = np.where(set_df_kw['oracle_text'].str.contains('• '),1,0) # Replace card name #EXACT MATCH for i in range(len(set_df_kw)): set_df_kw.at[i,"oracle_text"] = set_df_kw.at[i,'oracle_text'].replace(set_df_kw.at[i,'name'].split(" // ")[0], 'CARDNAME') #this is to also replace cardnames from back cards try: set_df_kw.at[i,"oracle_text"] = set_df_kw.at[i,'oracle_text'].replace(set_df_kw.at[i,'name'].split(" // ")[1], 'CARDNAME') except: pass #FIRST NAME MATCH for i in range(len(set_df_kw)): set_df_kw.at[i,"oracle_text"] = set_df_kw.at[i,'oracle_text'].replace(set_df_kw.at[i,'name'].replace(",","").split(" // ")[0].split(" ")[0], 'CARDNAME') #this is to also replace cardnames from back cards try: set_df_kw.at[i,"oracle_text"] = set_df_kw.at[i,'oracle_text'].replace(set_df_kw.at[i,'name'].replace(",","").split(" // ")[1].split(" ")[0], 'CARDNAME') except: pass # Tokenize Oracle Text # Define a function that takes the oracle text, removes undesired characters, stopwords and tokenizes it def process_oracle(oracle): """Process oracle function. Input: oracle: a string containing an oracle Output: oracle_clean: a list of words containing the processed oracle """ import string stemmer = PorterStemmer() stopwords_english = stopwords.words('english') oracle = re.sub(r'\$\w*', '', oracle) oracle = re.sub(r'^RT[\s]+', '', oracle) oracle = re.sub(r'#', '', oracle) oracle = re.sub("\d+", '', oracle) # tokenize tweets tokenizer = TweetTokenizer(preserve_case=False, strip_handles=True, reduce_len=True) oracle_tokens = tokenizer.tokenize(oracle) oracle_clean = [] for word in oracle_tokens: if (word not in stopwords_english and # remove stopwords word not in string.punctuation): # remove punctuation # oracle_clean.append(word) stem_word = stemmer.stem(word) # stemming word oracle_clean.append(stem_word) return oracle_clean # Apply the function and create a new column set_df_kw['oracle_tokens'] = set_df_kw['oracle_text'].apply(lambda x: process_oracle(x)) # Create columns for each token # Separate the tokens into columns tokens_df = set_df_kw['oracle_tokens'].apply(pd.Series).fillna("None") # Create a list with all the different tokens tokens_set_list = [] remove_tokens = ['iii','None','•','x','c','r','−','g','iv','}:', 'eight','nine','ten','—','ii','u','b','w','p'] for i in tokens_df.columns: tokens_set_list = list(set(tokens_set_list+list(tokens_df[i].unique()))) tokens_set_list = [x for x in tokens_set_list if x not in remove_tokens] print(f"Number of tokens: {len(tokens_set_list)}") # Create a new df with as many columns as tokens and 1s or 0s if the card has that token or not empty_df = pd.DataFrame(columns=tokens_set_list) k = 1 for i in empty_df.columns: print(f"Progress: {round(k/len(empty_df.columns),2)*100}%") for j in range(len(set_df_kw)): if i in set_df_kw.at[j,'oracle_tokens']: empty_df.at[j,i] = 1 else: empty_df.at[j,i] = 0 k = k + 1 # Change the name of the columns with the token name and the "_tkn" string added empty_df.columns = empty_df.columns + "_tkn" print(f"Dataframe shape before merge: {set_df_kw.shape}") # Merge with main dataframe set_df_kw = pd.concat([set_df_kw, empty_df], axis=1) print(f"Dataframe shape after merge: {set_df_kw.shape}") # Create columns for each card type and subtype # Get a list of the card types and subtypes columns type_cols = face_type_cols + face_subtype_cols + back_type_cols + back_subtype_cols print(type_cols) # Create a sub-dataframe only with this columns types_df = set_df_kw[type_cols] # Create a list with all the different types type_set_list = [] remove_types = [] for i in types_df.columns: type_set_list = list(set(type_set_list+list(types_df[i].unique()))) type_set_list = [x for x in type_set_list if x not in remove_types] # Create a new df with as many columns as types/subtypes and 1s or 0s if the card has that type/subtype or not empty_df = pd.DataFrame(columns=type_set_list) k = 1 for i in empty_df.columns: print(f"Progress: {round(k/len(empty_df.columns),2)*100}%") for j in range(len(set_df_kw)): if i in set_df_kw.at[j,'type_line']: empty_df.at[j,i] = 1 else: empty_df.at[j,i] = 0 k= k + 1 # Change the name of the columns with the type name and the "_type" string added empty_df.columns = empty_df.columns + "_type" print(f"Dataframe shape before merge: {set_df_kw.shape}") # Concatenate it to our main df set_df_kw = pd.concat([set_df_kw, empty_df], axis=1).drop(face_type_cols+face_subtype_cols+back_type_cols+back_subtype_cols,axis=1) print(f"Dataframe shape after merge: {set_df_kw.shape}") # Flavor text # Create a function that splits text into tokens and counts how many tokens are def count_elements_in_list(string): count = len(string.split()) return count # Apply it to the flavor text set_df_kw['flavor_text_len'] = set_df_kw['flavor_text'].apply(lambda x: count_elements_in_list(x)) # Create a column that is 1s if the card HAS flavor text and 0 if it doesn't set_df_kw['flavor_text'] = np.where(set_df_kw['flavor_text']=="no_flavor_text",0,1) # If the card has NO flavor text, change the flavor_text_len to 0 set_df_kw['flavor_text_len'] = np.where(set_df_kw['flavor_text']==0,0,set_df_kw['flavor_text_len']) # Remove the `\n` from oracle_text # Just replacing "\n" with " " set_df_kw["oracle_text"] = set_df_kw["oracle_text"].apply(lambda x: x.replace("\n"," ")) # Card Super Types!!! try: set_df_kw['counterspell'] = np.where((set_df_kw['counter_tkn']==1) & ((set_df_kw['oracle_text'].str.lower().str.contains("counter target")) | (set_df_kw['oracle_text'].str.lower().str.contains("counter all")) | (set_df_kw['oracle_text'].str.lower().str.contains("counter it"))) ,1,0) except: set_df_kw['counterspell'] = 0 set_df_kw['manarock'] = np.where( ((set_df_kw['tapping_ability']==1) | (set_df_kw['oracle_text']).str.lower().str.contains("tap")) & (set_df_kw['type_line']).str.lower().str.contains("artifact") & ( (set_df_kw['oracle_text'].str.lower().str.contains(r"{t}: add.*?(mana of any color|mana of that color|{(.*?)})",regex=True)==True) | (set_df_kw['oracle_text'].str.lower().str.contains(r"{t}, tap an untapped.*?(mana of any color|mana of that color|{(.*?)})",regex=True)==True) | (set_df_kw['oracle_text'].str.lower().str.contains(r"{t}: choose a color",regex=True)==True) ) ,1,0) set_df_kw['manadork'] = np.where( (set_df_kw['tapping_ability']==1)& (set_df_kw['manarock']!=1) & (set_df_kw['back_type']!="Land") & (set_df_kw['type_line']).str.lower().str.contains("creature") & ( (set_df_kw['oracle_text_1'].str.lower().str.contains(r"{t}: add",regex=True)==True) | (set_df_kw['oracle_text'].str.lower().str.contains(r"{t}:.*?add one mana",regex=True)==True) | (set_df_kw['oracle_text'].str.lower().str.contains(r"{t}: add",regex=True)==True) | (set_df_kw['oracle_text'].str.lower().str.contains(r"add (one|two|three|four|five) mana",regex=True)==True) ) ,1,0) #Regex for a word or a word with "-" una_palabra = "\w+" una_palabra_con_rayita = "\w+-\w+" regex_1 = f"({una_palabra}|{una_palabra_con_rayita})" set_df_kw['removal'] = np.where( ( (set_df_kw['oracle_text'].str.lower().str.contains(f"(destroy|exile) target ({regex_1}|({regex_1}, {regex_1})|({regex_1}, {regex_1}, {regex_1})|({regex_1}, {regex_1}, {regex_1}, {regex_1})) (creature|permanent)(?! from (a|your) graveyard| card from (a|your) graveyard)",regex=True)==True) | (set_df_kw['oracle_text'].str.lower().str.contains(r"(destroy|exile) another target (creature|permanent)",regex=True)==True) | (set_df_kw['oracle_text'].str.lower().str.contains(r"destroy any number of target (creature|creatures|permanent|permanents)",regex=True)==True) | (set_df_kw['oracle_text'].str.lower().str.contains(r"(destroy|exile) target (attacking|blocking|attacking or blocking) creature",regex=True)==True) | (set_df_kw['oracle_text'].str.lower().str.contains(r"destroy up to (one|two|three) target (\w+) (creature|permanent|creatures|permanents)",regex=True)==True) | (set_df_kw['oracle_text'].str.lower().str.contains(r"exile up to (one|two|three) target (creature|permanent|creatures|permanents)",regex=True)==True) | (set_df_kw['oracle_text'].str.lower().str.contains(r"exile up to (one|two|three) target (nonland|nonartifact) (creature|permanent|creatures|permanents)",regex=True)==True) | (set_df_kw['oracle_text'].str.lower().str.contains(r"exile up to (one|two|three) target (\w+) (\w+) (creature|permanent|creatures|permanents)",regex=True)==True) | (set_df_kw['oracle_text'].str.lower().str.contains(r"(destroy|exile) target (\w+) or creature",regex=True)==True) | (set_df_kw['oracle_text'].str.lower().str.contains(r"(destroy|exile) a (creature|permanent) with the (greatest|highest|lowest) (power|toughness|converted mana cost|mana value)",regex=True)==True) | (set_df_kw['oracle_text'].str.lower().str.contains(r"(destroy|exile) target (creature|permanent)(?! from a graveyard| card from a graveyard)", regex=True)==True) | (set_df_kw['oracle_text'].str.lower().str.contains(r"(destroy|exile) up to (\w+) target (attacking or blocking|attacking|blocking) (creature|creatures)", regex=True)==True) | (set_df_kw['oracle_text'].str.lower().str.contains(r"target (player|opponent) sacrifices a (creature|permanent)",regex=True)==True) | (set_df_kw['oracle_text'].str.lower().str.contains(r"each (player|opponent) sacrifices (a|one|two|three|four) (creature|creatures|permanent|permanents)",regex=True)==True) | (set_df_kw['oracle_text'].str.lower().str.contains(r"enchanted (creature|permanent) is a treasure",regex=True)==True) | (set_df_kw['oracle_text'].str.lower().str.contains(r"enchanted creature doesn't untap",regex=True)==True) | (set_df_kw['oracle_text'].str.lower().str.contains(r"(annihilator)")==True) | (set_df_kw['oracle_text'].str.lower().str.contains(r"deals damage equal to its power to target creature",regex=True)==True) | (set_df_kw['oracle_text'].str.lower().str.contains(r"(fights|fight) target creature")==True) | (set_df_kw['oracle_text'].str.lower().str.contains(r"(those creatures|the chosen creatures) fight each other",regex=True)==True) | (set_df_kw['oracle_text'].str.lower().str.contains(r"(fights|fight) up to (\w+) target (creature|creatures)", regex=True)==True) | (set_df_kw['oracle_text'].str.lower().str.contains(r"(fights|fight) another target creature",regex=True)==True) | (set_df_kw['oracle_text'].str.lower().str.contains(r"choose target creature you don't control.*?each creature.*?deals damage equal.*?to that creature",regex=True)==True) | (set_df_kw['oracle_text'].str.lower().str.contains(r"you may have (cardname|it) fight (that creature|target creature|another target creature)",regex=True)==True) | (set_df_kw['oracle_text'].str.lower().str.contains(r"target creature deals damage to itself equal to (its power)",regex=True)==True) | (set_df_kw['oracle_text'].str.lower().str.contains(r"target creature gets -[0-9]/-[2-9]", regex=True)==True) | (set_df_kw['oracle_text'].str.lower().str.contains(r"target creature gets \+[0-9]/-[2-9]", regex=True)==True) | (set_df_kw['oracle_text'].str.lower().str.contains(r"target creature an opponent controls gets \-[0-9]/\-[2-9]", regex=True)==True) | (set_df_kw['oracle_text'].str.lower().str.contains(r"enchanted creature (gets|has).*?loses (all|all other) abilities", regex=True)==True) | (set_df_kw['oracle_text'].str.lower().str.contains(r"enchanted creature gets \-[0-9]/\-[2-9]", regex=True)==True) | (set_df_kw['oracle_text'].str.lower().str.contains(r"enchanted creature gets \-[0-9]/\-[2-9]", regex=True)==True) | (set_df_kw['oracle_text'].str.lower().str.contains(r"enchanted creature gets \+[0-9]/\-[2-9]", regex=True)==True) | (set_df_kw['oracle_text'].str.lower().str.contains(r"(enchanted|target) creature gets \-[0-9][0-9]/\-[0-9][0-9]", regex=True)==True) | (set_df_kw['oracle_text'].str.lower().str.contains("target creature gets \-x/\-x")==True) | (set_df_kw['oracle_text'].str.lower().str.contains("target creature gets \+x/\-x")==True) | (set_df_kw['oracle_text'].str.lower().str.contains(r"target creature an opponent controls gets \-x/\-x", regex=True)==True) | (set_df_kw['oracle_text'].str.lower().str.contains(r"enchanted creature gets \-x/\-x", regex=True)==True) | (set_df_kw['oracle_text'].str.lower().str.contains(r"enchanted (creature|permanent) can't attack or block",regex=True)==True) | (set_df_kw['oracle_text'].str.lower().str.contains("enchanted creature has defender")==True) | (set_df_kw['oracle_text'].str.lower().str.contains("enchanted creature can't block.*?its activated abilities can't be activated")==True) | (set_df_kw['oracle_text'].str.lower().str.contains(r"enchanted creature.*?loses all abilities",regex=True)==True) | (set_df_kw['oracle_text'].str.lower().str.contains(r"enchanted (creature|permanent) can't attack.*?block.*?and its activated abilities can't be activated", regex=True)==True) | (set_df_kw['oracle_text'].str.lower().str.contains(r"deals ([2-9|x]) damage.*?(creature|any target|divided as you choose|to each of them)", regex=True)==True) | (set_df_kw['oracle_text'].str.lower().str.contains(r"deals ([2-9|x]) damage.*?to each of up to (one|two|three|four) (target|targets)", regex=True)==True) | (set_df_kw['oracle_text'].str.lower().str.contains(r"deals damage equal to.*?to (any target|target creature|target attacking creature|target blocking creature|target attacking or blocking creature)", regex=True)==True) | (set_df_kw['oracle_text'].str.lower().str.contains(r"target creature deals (.*?) damage to itself", regex=True)==True) | (set_df_kw['oracle_text'].str.lower().str.contains(r"deals damage to (any target|target creature|target attacking creature|target blocking creature|target attacking or blocking creature).*?equal to", regex=True)==True)) & (set_df_kw['oracle_text'].str.lower().str.contains(r"(cardname|it) deals [a-zA-Z0-9] damage to that player.",regex=True)==False) & (set_df_kw['oracle_text'].str.lower().str.contains("(cardname|it) deals [a-zA-Z0-9] damage to target (player|opponent) or planeswalker")==False) & (set_df_kw['oracle_text'].str.lower().str.contains("(cardname|it) deals [a-zA-Z0-9] damage to that creature's controller")==False) & (set_df_kw['oracle_text'].str.lower().str.contains("that was dealt damage this turn")==False) & (set_df_kw['oracle_text'].str.lower().str.contains("^(?!damage|creature)\w* random")==False) & (set_df_kw['oracle_text'].str.lower().str.contains(r"search.*?(creature|artifact|enchantment) card",regex=True)==False) & (set_df_kw['oracle_text'].str.lower().str.contains(r"(destroy|exile) target land",regex=True)==False) & (set_df_kw['oracle_text'].str.lower().str.contains("return it to the battlefield")==False) & (set_df_kw['oracle_text'].str.lower().str.contains(r"return that (card|creature|permanent) to the battlefield",regex=True)==False) & (set_df_kw['oracle_text'].str.lower().str.contains(r"if you control a.*?^(?!liliana)\w* planeswalker",regex=True)==False) & (set_df_kw['oracle_text'].str.lower().str.contains(r"^(?!additional cost|additional cost)\w* exile (target|a|one|two|three|all).*?from (your|a|target opponent's) graveyard",regex=True)==False) ,1,0) set_df_kw['wrath'] = np.where( ( (set_df_kw['oracle_text'].str.lower().str.contains(r"(destroy|exile) (all|all other|each|each other|all attacking) (creature|creatures|(.*?) creatures|permanent|permanents|(.*?) permanents|(nonland|multicolored) permanent|(nonland|multicolored) permanents)",regex=True)==True) | (set_df_kw['oracle_text'].str.lower().str.contains(r"each (creature|other creature) gets -(x|[0-9])/-(x|[2-9])", regex=True)==True) | (set_df_kw['oracle_text'].str.lower().str.contains(r"each creature deals damage to itself equal to", regex=True)==True) | (set_df_kw['oracle_text'].str.lower().str.contains(r"(destroy|exile) all artifacts, creatures, and enchantments", regex=True)==True) | (set_df_kw['oracle_text'].str.lower().str.contains(r"sacrifices (all|that many) (creatures|(.*?) creatures|permanents|(.*?) permanents)", regex=True)==True) | (set_df_kw['oracle_text'].str.lower().str.contains(r"chooses.*?then sacrifices the rest", regex=True)==True) | (set_df_kw['oracle_text'].str.lower().str.contains(r"creatures.*?get -(x|[0-9])/-(x|[2-9])", regex=True)==True) | #Crippling Fear (set_df_kw['oracle_text'].str.lower().str.contains(f"deals ([3-9]|x|[1-9][0-9]) damage to each (creature|{regex_1} creature)", regex=True)==True) ) ,1,0) regex_2 = "(land|lands|basic land|basic lands|plains|island|swamp|mountain|forest|plains|islands|swamps|mountains|forests|basic plains|basic island|basic swamp|basic mountain|basic forest|basic plains|basic islands|basic swamps|basic mountains|basic forests)" regex_3 = "(a|one|one|two|three|up to one|up to two|up to three|up to ten|up to x|x)" set_df_kw['ramp'] = np.where( (set_df_kw['face_type']!="Land") & (set_df_kw['manadork']!=1) & (set_df_kw['manarock']!=1) & (set_df_kw['face_type']!="Snow Land") & (set_df_kw['face_type']!="Artifact Land") & (set_df_kw['type_line'].str.lower().str.contains(r"(\w+) // land", regex=True)==False) & ( (set_df_kw['oracle_text'].str.lower().str.contains(r"{t}: add", regex=True)==True) | (set_df_kw['oracle_text'].str.lower().str.contains(r"^(?!{[1-9]}: )\w* add (one|two) mana", regex=True)==True) | (set_df_kw['oracle_text'].str.lower().str.contains(r"{[1]}, {t}: add ({(c|w|u|b|r|g)}{(c|w|u|b|r|g)}|two)", regex=True)==True) | (set_df_kw['oracle_text'].str.lower().str.contains(r"whenever enchanted land is tapped for mana.*?adds", regex=True)==True) | (set_df_kw['oracle_text'].str.lower().str.contains(f"search (your|their) library for {regex_3} {regex_2}.*?put.*?onto the battlefield", regex=True)==True) ) & ( (set_df_kw['oracle_text'].str.lower().str.contains(r"{[1-9]}, {t}: add one mana", regex=True)==False) & (set_df_kw['oracle_text'].str.lower().str.contains(r"enchanted land.*?{t}: add {(c|1|w|u|b|r|g)}", regex=True)==False) & (set_df_kw['oracle_text'].str.lower().str.contains(r"destroy target (land|nonbasic land)", regex=True)==False) & (set_df_kw['oracle_text'].str.lower().str.contains(r"spend this mana only to", regex=True)==False) ) ,1,0) set_df_kw['tutor'] = np.where( (set_df_kw['ramp']!=1) & (set_df_kw['face_type']!="Land") & (set_df_kw['face_type']!="Snow Land") & (set_df_kw['face_type']!="Artifact Land") & ( (set_df_kw['oracle_text'].str.lower().str.contains(r"search your (library|library and graveyard) for (a|an|any|any one|one|up to one|two|up to two|three|up to three|four|up to four|a(white|blue|black|red|green|colorless)) (card|cards|permanent|permanents|equipment|aura|aura or equipment|legendary|enchantment|enchantments|artifact|artifacts|creature|(.*?) creature cards|creature cards|creatures|sorcery|sorceries|instant|instants|planeswalker)", regex=True)==True) ) & ( (set_df_kw['oracle_text'].str.lower().str.contains(r"put (it|them|those cards|that card) into your graveyard", regex=True)==False) & (set_df_kw['oracle_text'].str.lower().str.contains(r"named", regex=True)==False) ) ,1,0) set_df_kw['cardraw'] = np.where( ( (set_df_kw['oracle_text'].str.lower().str.contains(r"draw (a|one|two|three|four|five|six|seven|x|(.*?) x) (card|cards)", regex=True)==True) | (set_df_kw['oracle_text'].str.lower().str.contains(r"draw (cards equal to|that many cards)", regex=True)==True) | (set_df_kw['oracle_text'].str.lower().str.contains(r"target player draws (.*?) (card|cards)", regex=True)==True) | (set_df_kw['oracle_text'].str.lower().str.contains(r"(look at|reveal) the.*?put.*?(into|in) your hand", regex=True)==True) | (set_df_kw['oracle_text'].str.lower().str.contains(r"(exile|look at the).*?(card|cards).*?you may (cast|play)", regex=True)==True) ) & ( (set_df_kw['oracle_text'].str.lower().str.contains(r"whenever you draw a card", regex=True)==False) & (set_df_kw['oracle_text'].str.lower().str.contains(r"if you would draw a card", regex=True)==False) & (set_df_kw['oracle_text'].str.lower().str.contains(r"draw (a|one|two|three|four) (card|cards), then discard (a|one|two|three|four) (card|cards)", regex=True)==False) & (set_df_kw['oracle_text'].str.lower().str.contains(r"discard (a|one|two|three|four) (card|cards), then draw (a|one|two|three|four) (card|cards)", regex=True)==False) ) ,1,0) set_df_kw['burn'] = np.where( ( (set_df_kw['oracle_text'].str.lower().str.contains(r"deals ([1-9|x]) damage.*?(any target|player|opponent|to them|to each of them)", regex=True)==True) | (set_df_kw['oracle_text'].str.lower().str.contains(r"deals (x|two|three|four|five) times (damage|x damage).*?(any target|player|opponent|to them|to each of up to)", regex=True)==True) | (set_df_kw['oracle_text'].str.lower().str.contains(r"deals damage equal to.*?to (any target|target player|target opponent|to them|each player|each opponent)", regex=True)==True) | (set_df_kw['oracle_text'].str.lower().str.contains(r"deals damage to (any target|target player|target opponent|to them|each player|each opponent).*?equal to", regex=True)==True) | (set_df_kw['oracle_text'].str.lower().str.contains(r"deals that much damage to (any target|target player|target opponent|each player|each opponent|that source's controller)", regex=True)==True) ) ,1,0) set_df_kw['discard'] = np.where( ( (set_df_kw['oracle_text'].str.lower().str.contains(r"(that|target|each) (player|opponent) discards (a|one|two|three|that|all|all the) (card|cards)", regex=True)==True) | (set_df_kw['oracle_text'].str.lower().str.contains(r"unless that player.*?discards a card", regex=True)==True) | (set_df_kw['oracle_text'].str.lower().str.contains(r"target (player|opponent) reveals their hand.*?you choose.*?exile (that|it)", regex=True)==True) ) ,1,0) set_df_kw['enters_bf'] = np.where( ( (set_df_kw['oracle_text'].str.lower().str.contains(r"(enter|enters) the battlefield", regex=True)==True) ) & ( (set_df_kw['oracle_text'].str.lower().str.contains(r"(enter|enters) the battlefield tapped", regex=True)==False) & (set_df_kw['oracle_text'].str.lower().str.contains(r"land (enter|enters) the battlefield", regex=True)==False) & (set_df_kw['oracle_text'].str.lower().str.contains(r"it becomes day", regex=True)==False) & (set_df_kw['oracle_text'].str.lower().str.contains(r"enchant creature", regex=True)==False) ) ,1,0) set_df_kw['die_trigger'] = np.where( ( (set_df_kw['oracle_text'].str.lower().str.contains(r"when (cardname|equipped creature) dies", regex=True)==True) | (set_df_kw['oracle_text'].str.lower().str.contains(r"whenever.*?dies", regex=True)==True) | (set_df_kw['oracle_text'].str.lower().str.contains(r"whenever.*?you (control|don't control) dies", regex=True)==True) ) ,1,0) set_df_kw['attack_trigger'] = np.where( ( (set_df_kw['oracle_text'].str.lower().str.contains(r"(when|whenever) (cardname|equipped creature|it) attacks", regex=True)==True) | (set_df_kw['oracle_text'].str.lower().str.contains(r"(when|whenever) (cardname|equipped creature|it) and.*?(other|another) (creature|creatures) attack", regex=True)==True) | (set_df_kw['oracle_text'].str.lower().str.contains(r"(battalion|exert|raid)", regex=True)==True) | (set_df_kw['oracle_text'].str.lower().str.contains(r"(when|whenever) (cardname|equipped creature|it) enters the battlefield or attacks", regex=True)==True) ) ,1,0) set_df_kw['pseudo_ramp'] = np.where( ( (set_df_kw['oracle_text'].str.lower().str.contains(r"you may put a (land|basic land).*?onto the battlefield", regex=True)==True) | (set_df_kw['oracle_text'].str.lower().str.contains(r"(you|each player) may (play|put) an additional land", regex=True)==True) | (set_df_kw['oracle_text'].str.lower().str.contains(r"if it's a land card, you may put it onto the battlefield", regex=True)==True) | (set_df_kw['oracle_text'].str.lower().str.contains(r"sacrifice.*?add.*?({(.*?)}|to your mana pool|mana of (any|any one) color)", regex=True)==True) ) ,1,0) set_df_kw['static_ramp'] = np.where( ((set_df_kw['type_line'].str.lower().str.contains("enchantment")) | (set_df_kw['type_line'].str.lower().str.contains("creature")) | (set_df_kw['type_line'].str.lower().str.contains("artifact"))) & (set_df_kw['back'].str.lower().str.contains("land")==False) & ( (set_df_kw['oracle_text'].str.lower().str.contains(r"at the beginning of.*?add.*?(mana|{(.*?)})", regex=True)==True) ) ,1,0) regex_4 = "(a|one|up to one|two|up to two|three|up to three|four|up to four|five|up to five|six|up to six|x|up to x)" set_df_kw['creature_tokens'] = np.where( ( (set_df_kw['oracle_text'].str.lower().str.contains(f"(create|put) {regex_4}.*?creature (token|tokens)", regex=True)==True) | (set_df_kw['oracle_text'].str.lower().str.contains(f"(living weapon|amass|fabricate|afterlife|populate)", regex=True)==True) | (set_df_kw['oracle_text'].str.lower().str.contains(r"(creature tokens|creature tokens with.*?) are created instead", regex=True)==True) ) ,1,0) set_df_kw['extra_turn'] = np.where(set_df_kw['oracle_text'].str.lower().str.contains(r"(take|takes) (an|one|two) extra (turn|turns)", regex=True)==True ,1,0) set_df_kw['plus1_counters'] = np.where( ( (set_df_kw['oracle_text'].str.lower().str.contains(r"\+1/\+1 (counter|counters)", regex=True)==True) | (set_df_kw['oracle_text'].str.lower().str.contains(r"(evolve|mentor|adapt|bolster|bloodthirst|devour|monstrosity|reinforce|training)", regex=True)==True) ) ,1,0) set_df_kw['graveyard_hate'] = np.where( ( (set_df_kw['oracle_text'].str.lower().str.contains(r"exile.*?from (graveyards|a graveyard|his or her graveyard|target player's graveyard|each opponent's graveyard)", regex=True)==True) | (set_df_kw['oracle_text'].str.lower().str.contains(r"remove all graveyards from the game", regex=True)==True) | (set_df_kw['oracle_text'].str.lower().str.contains(r"exile.*?all (cards|creatures) from all (graveyards|opponents' hands and graveyards)", regex=True)==True) | (set_df_kw['oracle_text'].str.lower().str.contains(r"exile each opponent's graveyard", regex=True)==True) | (set_df_kw['oracle_text'].str.lower().str.contains(r"if a.*?(card|creature|permanent) would (be put into.*?graveyard|die).*?(instead exile|exile it instead)", regex=True)==True) | (set_df_kw['oracle_text'].str.lower().str.contains(r"choose target card in (target opponent's|a) graveyard.*?exile (it|them)", regex=True)==True) | (set_df_kw['oracle_text'].str.lower().str.contains(r"(target|each) player puts all the cards from their graveyard", regex=True)==True) | (set_df_kw['oracle_text'].str.lower().str.contains(r"(creature cards|permanents|creatures|permanent cards) in (graveyards|graveyards and libraries) can't enter the battlefield", regex=True)==True) ) ,1,0) set_df_kw['free_spells'] = np.where( ( (set_df_kw['oracle_text'].str.lower().str.contains(r"(rather than pay|without paying) (its|it's|their|this spell's|the) mana cost", regex=True)==True) | (set_df_kw['oracle_text'].str.lower().str.contains(r"cascade", regex=True)==True) ) & ( (set_df_kw['oracle_text'].str.lower().str.contains(r"you may pay {", regex=True)==False) ) ,1,0) set_df_kw['bounce_spell'] = np.where( ( (set_df_kw['oracle_text'].str.lower().str.contains(r"return.*?to (it's|its|their) (owner's|owners') (hand|hands)", regex=True)==True) | (set_df_kw['oracle_text'].str.lower().str.contains(r"owner.*?puts it.*?(top|bottom).*?library", regex=True)==True) ) & ( (set_df_kw['oracle_text'].str.lower().str.contains(r"^(?!islands)\w* you control", regex=True)==False) & (set_df_kw['oracle_text'].str.lower().str.contains(r"(when|whenever).*?dies.*?return.*?to its owner's hand", regex=True)==False) & (set_df_kw['oracle_text'].str.lower().str.contains(r"return (cardname|the exiled card) to its owner's hand", regex=True)==False) & (set_df_kw['oracle_text'].str.lower().str.contains(r"whenever cardname.*?return it to its owner's hand", regex=True)==False) ) ,1,0) set_df_kw['sac_outlet'] = np.where( ( (set_df_kw['oracle_text'].str.lower().str.contains(r"sacrifice (a|another) (creature|permanent)", regex=True)==True) | (set_df_kw['oracle_text'].str.lower().str.contains(r"(exploit)", regex=True)==True) ) ,1,0) set_df_kw['sac_payoff'] = np.where( ( (set_df_kw['oracle_text'].str.lower().str.contains(r"whenever (you|a player) (sacrifice|sacrifices) a (creature|permanent)", regex=True)==True) ) ,1,0) set_df_kw['cant_counter'] = np.where( ( (set_df_kw['oracle_text'].str.lower().str.contains(r"can't be countered", regex=True)==True) ) ,1,0) set_df_kw['costx_more'] = np.where( ( (set_df_kw['oracle_text'].str.lower().str.contains(r"(cost|costs) (.*?) more to cast", regex=True)==True) | (set_df_kw['oracle_text'].str.lower().str.contains(r"ward", regex=True)==True) ) ,1,0) set_df_kw['costx_moreactivate'] = np.where( ( (set_df_kw['oracle_text'].str.lower().str.contains(r"(cost|costs) (.*?) more to activate", regex=True)==True) ) ,1,0) set_df_kw['costx_less'] = np.where( ( (set_df_kw['oracle_text'].str.lower().str.contains(r"(cost|costs) (.*?) less to cast", regex=True)==True) ) ,1,0) set_df_kw['costx_lessacitivate'] = np.where( ( (set_df_kw['oracle_text'].str.lower().str.contains(r"(cost|costs) (.*?) less to activate", regex=True)==True) ) ,1,0) set_df_kw['whenever_opp'] = np.where( ( (set_df_kw['oracle_text'].str.lower().str.contains(r"whenever (an opponent|a player)", regex=True)==True) ) ,1,0) regex_5 = "(all|each|another|another target|x|x target|a|target|any number of|one|up to one|up to one target|two|up to two|up to two target|three|up to three|up to three target|four|up to four|up to four target)" regex_6 = "(card|cards|creature|creatures|nonlegendary creature|creature card|creature cards|permanent|permanents|permanent card|permanent cards|land|lands|land card|land cards|instant or sorcery card|equipment card|aura card|aura or equipment card|artifact or enchantment)" set_df_kw['returnfrom_gy'] = np.where( ( (set_df_kw['oracle_text'].str.lower().str.contains(fr"return {regex_5} {regex_6}.*?from your graveyard to your hand", regex=True)==True) | (set_df_kw['oracle_text'].str.lower().str.contains(fr"return cardname from your graveyard to your hand", regex=True)==True) | (set_df_kw['oracle_text'].str.lower().str.contains(fr"choose.*?graveyard.*?return.*?to your hand", regex=True)==True) | (set_df_kw['oracle_text'].str.lower().str.contains(fr"return.*?up to.*?from your graveyard to your hand", regex=True)==True) | (set_df_kw['oracle_text'].str.lower().str.contains(fr"return (target|another target).*?card from your graveyard to your hand", regex=True)==True) ) ,1,0) set_df_kw['reanimation'] = np.where( ( (set_df_kw['oracle_text'].str.lower().str.contains(fr"(return|put) {regex_5} {regex_6}.*?from (your|a) graveyard (to|onto) the battlefield", regex=True)==True) | (set_df_kw['oracle_text'].str.lower().str.contains(fr"return cardname from your graveyard to the battlefield", regex=True)==True) | (set_df_kw['oracle_text'].str.lower().str.contains(fr"choose.*?graveyard.*?return.*?to the battlefield", regex=True)==True) | (set_df_kw['oracle_text'].str.lower().str.contains(fr"return.*?up to.*?from your graveyard to the battlefield", regex=True)==True) | (set_df_kw['oracle_text'].str.lower().str.contains(fr"enchant creature card in (a|your) graveyard.*?return enchanted creature card to the battlefield under your control", regex=True)==True) | (set_df_kw['oracle_text'].str.lower().str.contains(fr"(return|returns|put) (all|any number of) (creature|permanent|enchantment|artifact|legendary permanent|legendary creature|nonlegendary creature|nonlegendary permanents|(.*?), (.*?) and (.*?)) cards.*?from (their|your|all) (graveyard|graveyards) (to|onto) the battlefield", regex=True)==True) | (set_df_kw['oracle_text'].str.lower().str.contains(fr"(return|put) (target|another target).*?card from your graveyard to the battlefield", regex=True)==True) ) ,1,0) set_df_kw['castfrom_gy'] = np.where( ( (set_df_kw['oracle_text'].str.lower().str.contains(r"you may cast cardname from your graveyard", regex=True)==True) | (set_df_kw['oracle_text'].str.lower().str.contains(r"flashback {", regex=True)==True) | (set_df_kw['oracle_text'].str.lower().str.contains(r"jump-start", regex=True)==True) | (set_df_kw['oracle_text'].str.lower().str.contains(r"escape—{", regex=True)==True) | (set_df_kw['oracle_text'].str.lower().str.contains(r"disturb {", regex=True)==True) | (set_df_kw['oracle_text'].str.lower().str.contains(r"unearth {", regex=True)==True) | (set_df_kw['oracle_text'].str.lower().str.contains(r"retrace", regex=True)==True) | (set_df_kw['oracle_text'].str.lower().str.contains(r"embalm", regex=True)==True) ) ,1,0) set_df_kw['lord'] = np.where( ( (set_df_kw['type_line'].str.lower().str.contains("creature")) | (set_df_kw['type_line'].str.lower().str.contains("artifact")) | (set_df_kw['type_line'].str.lower().str.contains("enchantment")) ) & ( (set_df_kw['oracle_text'].str.lower().str.contains(r"get \+[1-9]/\+[0-9]", regex=True)==True) | (set_df_kw['oracle_text'].str.lower().str.contains(r"(battle cry)", regex=True)==True) | (set_df_kw['oracle_text'].str.lower().str.contains(r"each (creature|other creature).*?gets \+[1-9]/\+[0-9]", regex=True)==True) ) & ( (set_df_kw['oracle_text'].str.lower().str.contains(r"until end of turn", regex=True)==False) ) ,1,0) set_df_kw['upkeep_trigger'] = np.where( ( (set_df_kw['oracle_text'].str.lower().str.contains(r"beginning of (your|enchanted player's|each|each player's) upkeep", regex=True)==True) ) & ( (set_df_kw['oracle_text'].str.lower().str.contains(r"beginning of your upkeep, sacrifice cardname", regex=True)==False) ) ,1,0) set_df_kw['endstep_trigger'] = np.where( ( (set_df_kw['oracle_text'].str.lower().str.contains(r"beginning of (your|enchanted player's|each) end step", regex=True)==True) ) & ( (set_df_kw['oracle_text'].str.lower().str.contains(r"sacrifice.*? at the beginning of your end step", regex=True)==False) ) ,1,0) set_df_kw['landfall'] = np.where( ( (set_df_kw['oracle_text'].str.lower().str.contains(r"whenever a land enters the battlefield under your control", regex=True)==True) | (set_df_kw['oracle_text'].str.lower().str.contains(r"landfall", regex=True)==True) ) ,1,0) set_df_kw['combat_trigger'] = np.where( ( (set_df_kw['oracle_text'].str.lower().str.contains(r"beginning of (combat|each combat)", regex=True)==True) | (set_df_kw['oracle_text'].str.lower().str.contains(r"deals combat damage", regex=True)==True) ) ,1,0) set_df_kw['life_gain'] = np.where( ( (set_df_kw['oracle_text'].str.lower().str.contains(r"gain (.*?) life", regex=True)==True) | (set_df_kw['oracle_text'].str.lower().str.contains(r"gains (.*?) x life", regex=True)==True) | (set_df_kw['oracle_text'].str.lower().str.contains(r"gain life equal", regex=True)==True) | (set_df_kw['oracle_text'].str.lower().str.contains(r"(lifelink|extort)", regex=True)==True) ) ,1,0) set_df_kw['treasure_tokens'] = np.where( ( (set_df_kw['oracle_text'].str.lower().str.contains(f"(create|put) {regex_4}.*?treasure (token|tokens)", regex=True)==True) ) ,1,0) set_df_kw['protection'] = np.where( ( (set_df_kw['oracle_text'].str.lower().str.contains(f"(hexproof|ward|indestructible|shroud)", regex=True)==True) | (set_df_kw['oracle_text'].str.lower().str.contains(f"can't (be|become) (the|target)", regex=True)==True) | (set_df_kw['oracle_text'].str.lower().str.contains(f"protection from", regex=True)==True) | (set_df_kw['oracle_text'].str.lower().str.contains(f"becomes the target of a spell", regex=True)==True) ) & ( (set_df_kw['oracle_text'].str.lower().str.contains(r"becomes the target of.*?sacrifice (it|cardname)", regex=True)==False) & (set_df_kw['oracle_text'].str.lower().str.contains(r"becomes the target of.*?shuffle.*?into its owner's library", regex=True)==False) & (set_df_kw['oracle_text'].str.lower().str.contains(r"becomes.*?with hexproof.*?until end of turn", regex=True)==False) ) ,1,0) set_df_kw['cost_reduction'] = np.where( ( (set_df_kw['oracle_text'].str.lower().str.contains(r"(delve|convoke|affinity|foretell|madness|miracle|spectacle)", regex=True)==True) | (set_df_kw['oracle_text'].str.lower().str.contains(r"evoke", regex=True)==True) | (set_df_kw['oracle_text'].str.lower().str.contains(r"you may pay.*?to cast this spell", regex=True)==True) | (set_df_kw['oracle_text'].str.lower().str.contains(r"you may pay (.*?) rather than pay", regex=True)==True) ) ,1,0) set_df_kw['mana_multipliers'] = np.where( ( (set_df_kw['oracle_text'].str.lower().str.contains(r"(whenever|if).*?tap (a|an) (land|permanent|nonland permanent|plains|island|swamp|mountain|forest|creature) for mana.*?add (one mana|an additional|{(.*?)})", regex=True)==True) | (set_df_kw['oracle_text'].str.lower().str.contains(r"(whenever|if).*?tap (a|an) (land|permanent|nonland permanent|plains|island|swamp|mountain|forest|creature) for mana.*?it produces.*?instead", regex=True)==True) ) ,1,0) set_df_kw['card_selection'] = np.where( ( (set_df_kw['oracle_text'].str.lower().str.contains(r"scry", regex=True)==True) | (set_df_kw['oracle_text'].str.lower().str.contains(r"look at the top.*?bottom of your library.*?on top", regex=True)==True) | (set_df_kw['oracle_text'].str.lower().str.contains(r"look at the top.*?on top.*?bottom of your library", regex=True)==True) | (set_df_kw['oracle_text'].str.lower().str.contains(r"look at the top.*?graveyard.*?on top", regex=True)==True) | (set_df_kw['oracle_text'].str.lower().str.contains(r"look at the top.*?on top.*?graveyard", regex=True)==True) | (set_df_kw['oracle_text'].str.lower().str.contains(r"look at the top.*?you may put.*?into your graveyard", regex=True)==True) | (set_df_kw['oracle_text'].str.lower().str.contains(r"surveil", regex=True)==True) | (set_df_kw['oracle_text'].str.lower().str.contains(r"(explore|explores)", regex=True)==True) ) & ( (set_df_kw['oracle_text'].str.lower().str.contains(r"whenever a creature you control explores", regex=True)==False) ) ,1,0) set_df_kw['whenever_cast'] = np.where( ( (set_df_kw['oracle_text'].str.lower().str.contains(r"(whenever you cast|prowess)",regex=True)==True) ) & ( (set_df_kw['oracle_text'].str.lower().str.contains(r"you may transform", regex=True)==False) ) ,1,0) set_df_kw['gain_control'] = np.where( ( (set_df_kw['oracle_text'].str.lower().str.contains(r"gain control of",regex=True)==True) ) ,1,0) set_df_kw['unblockeable'] = np.where( (set_df_kw['type_line'].str.lower().str.contains("creature")) & ( (set_df_kw['oracle_text'].str.lower().str.contains(r"(cardname|you control) can't be blocked",regex=True)==True) | (set_df_kw['oracle_text'].str.lower().str.contains(r"(unblockable|shadow)",regex=True)==True) ) & ( (set_df_kw['oracle_text'].str.lower().str.contains(r"cardname can't be blocked by", regex=True)==False) ) ,1,0) set_df_kw['difficult_block'] = np.where( (set_df_kw['type_line'].str.lower().str.contains("creature")) & ( (set_df_kw['oracle_text'].str.lower().str.contains(r"cardname can't be blocked by",regex=True)==True) | (set_df_kw['oracle_text'].str.lower().str.contains(r"(menace|first strike|flying|deathtouch|double strike|fear|intimidate)",regex=True)==True) ) ,1,0) set_df_kw['create_copy'] = np.where( ( (set_df_kw['oracle_text'].str.lower().str.contains(r"create a copy of",regex=True)==True) | (set_df_kw['oracle_text'].str.lower().str.contains(r"(that's|as) a copy of",regex=True)==True) | (set_df_kw['oracle_text'].str.lower().str.contains(r"copy (target|it|them|that spell|that ability)",regex=True)==True) | (set_df_kw['oracle_text'].str.lower().str.contains(r"you may copy",regex=True)==True) | (set_df_kw['oracle_text'].str.lower().str.contains(r"(storm)",regex=True)==True) | (set_df_kw['oracle_text'].str.lower().str.contains(r"becomes a copy",regex=True)==True) ) ,1,0) set_df_kw['milling'] = np.where( ( (set_df_kw['oracle_text'].str.lower().str.contains(r"(mill|mills)",regex=True)==True) | (set_df_kw['oracle_text'].str.lower().str.contains(r"puts the top.*?of (their|his or her|your) library into (their|his or her|your) graveyard",regex=True)==True) | (set_df_kw['oracle_text'].str.lower().str.contains(r"exile the top (.*?) cards of (target|each) (player|opponent|players|opponents)",regex=True)==True) | (set_df_kw['oracle_text'].str.lower().str.contains(r"(target|each) opponent exiles cards from the top of their library",regex=True)==True) ) ,1,0) set_df_kw['trigger_multiplier'] = np.where( ( (set_df_kw['oracle_text'].str.lower().str.contains(r"triggers (one more|an additional) time",regex=True)==True) ) ,1,0) set_df_kw['untapper'] = np.where( ( (set_df_kw['oracle_text'].str.lower().str.contains(r"untap (target|that|another|the chosen|them|all)",regex=True)==True) ) & ( (set_df_kw['oracle_text'].str.lower().str.contains(r"gain control", regex=True)==False) ) ,1,0) set_df_kw['static_effects'] = np.where( ( (set_df_kw['oracle_text'].str.lower().str.contains(r"(artifacts and creatures|creatures|permanents) (your opponents|enchanted player|you) (control|controls) (enter|lose|have|with|can't)",regex=True)==True) | (set_df_kw['oracle_text'].str.lower().str.contains(r"activated abilities of (artifacts|creatures).*?can't be activated",regex=True)==True) | (set_df_kw['oracle_text'].str.lower().str.contains(r"can't cause their controller to search their library",regex=True)==True) | (set_df_kw['oracle_text'].str.lower().str.contains(r"don't cause abilities to trigger",regex=True)==True) | (set_df_kw['oracle_text'].str.lower().str.contains(r"can't draw more than",regex=True)==True) | (set_df_kw['oracle_text'].str.lower().str.contains(r"only any time they could cast a sorcery",regex=True)==True) | (set_df_kw['oracle_text'].str.lower().str.contains(r"enchanted player",regex=True)==True) | (set_df_kw['oracle_text'].str.lower().str.contains(r"at the beginning of (your|each).*?(you|that player)",regex=True)==True) | (set_df_kw['oracle_text'].str.lower().str.contains(r"(players|counters) can't",regex=True)==True) | (set_df_kw['oracle_text'].str.lower().str.contains(r"if (you|target opponent|a player|another player) would.*?instead",regex=True)==True) | (set_df_kw['oracle_text'].str.lower().str.contains(r"each (card|(.*?) card) in your (hand|graveyard).*?has",regex=True)==True) | (set_df_kw['oracle_text'].str.lower().str.contains(r"(each player|players|your opponents) can't cast (spells|more than)",regex=True)==True) | (set_df_kw['oracle_text'].str.lower().str.contains(r"is determined by their (power|toughness) rather than their (power|toughness)",regex=True)==True) | (set_df_kw['oracle_text'].str.lower().str.contains(r"each creature.*?assigns combat damage.*?toughness rather than its power",regex=True)==True) | (set_df_kw['oracle_text'].str.lower().str.contains(r"they put half that many",regex=True)==True) ) ,1,0) set_df_kw['damage_multipliers'] = np.where( ( (set_df_kw['oracle_text'].str.lower().str.contains(r"it deals that much damage plus",regex=True)==True) | (set_df_kw['oracle_text'].str.lower().str.contains(r"it deals (double|triple) that damage",regex=True)==True) ) ,1,0) set_df_kw['variable_pt'] = np.where( (set_df_kw['power'].str.lower().str.contains("\\*")) | (set_df_kw['toughness'].str.lower().str.contains("\\*")) ,1,0) set_df_kw['agressive'] = np.where( (set_df_kw['type_line'].str.lower().str.contains("creature")) & ( (set_df_kw['oracle_text'].str.lower().str.contains(r"(haste|riot|dash)",regex=True)==True) ) ,1,0) set_df_kw['doublers'] = np.where( ( (set_df_kw['oracle_text'].str.lower().str.contains(r"(put|it creates|it puts|create) twice that many",regex=True)==True) ) ,1,0) set_df_kw['blinker'] = np.where( ( (set_df_kw['oracle_text'].str.lower().str.contains(r"exile (up to (one|two) target|up to (one|two) other target|target|another target|any number of target) (creature|creatures|(.*?) creature|permanent|permanents|(.*?) permanent|(.*?) or creature).*?return.*?to the battlefield",regex=True)==True) | (set_df_kw['oracle_text'].str.lower().str.contains(r"exile (target|another target) (permanent|creature).*?return (that card|that permanent|it) to the battlefield under its owner's control",regex=True)==True) | (set_df_kw['oracle_text'].str.lower().str.contains(r"exile (two|three|four|five|all|each).*?you (control|own).*?then return (them|those).*?to the battlefield",regex=True)==True) ) ,1,0) set_df_kw['graveyard_tutor'] = np.where( (set_df_kw['ramp']!=1) & (set_df_kw['tutor']!=1) & (set_df_kw['face_type']!="Land") & (set_df_kw['face_type']!="Snow Land") & (set_df_kw['face_type']!="Artifact Land") & ( (set_df_kw['oracle_text'].str.lower().str.contains(r"search your library for.*?put.*?into your graveyard", regex=True)==True) ) ,1,0) set_df_kw['play_toplibrary'] = np.where( ( (set_df_kw['oracle_text'].str.lower().str.contains(r"play with the top of your library",regex=True)==True) | (set_df_kw['oracle_text'].str.lower().str.contains(r"you may (play|cast).*?(from the|the) top of your library",regex=True)==True) ) ,1,0) set_df_kw['life_lose'] = np.where( ( (set_df_kw['oracle_text'].str.lower().str.contains(r"(each opponent|each player|target opponent|target player).*?loses (.*?) life",regex=True)==True) | (set_df_kw['oracle_text'].str.lower().str.contains(r"(afflict|extort)",regex=True)==True) ) ,1,0) set_df_kw['play_from_graveyard'] = np.where( ( (set_df_kw['oracle_text'].str.lower().str.contains(r"you may (play|cast).*?(land|permanent|creature|artifact).*?from your graveyard",regex=True)==True) ) ,1,0) set_df_kw['infect'] = np.where( ( (set_df_kw['oracle_text'].str.lower().str.contains(r"infect",regex=True)==True) ) ,1,0) set_df_kw['disenchant'] = np.where( ( (set_df_kw['oracle_text'].str.lower().str.contains(r"(destroy|exile) (target|each|every) (artifact or enchantment|artifact|enchantment)",regex=True)==True) | (set_df_kw['oracle_text'].str.lower().str.contains(r"destroy (x) target (artifacts or enchantments|artifacts|enchantments)",regex=True)==True) | (set_df_kw['oracle_text'].str.lower().str.contains(r"destroy all (artifacts or enchantments|artifacts|enchantments)",regex=True)==True) ) ,1,0) set_df_kw['venture'] = np.where( ( (set_df_kw['oracle_text'].str.lower().str.contains(r"venture into the dungeon",regex=True)==True) ) ,1,0) set_df_kw['animator'] = np.where( ( (set_df_kw['oracle_text'].str.lower().str.contains(r"(target|another target).*?becomes a.*?creature",regex=True)==True) ) & ( (set_df_kw['oracle_text'].str.lower().str.contains(r"copy", regex=True)==False) & (set_df_kw['oracle_text'].str.lower().str.contains(r"class", regex=True)==False)) ,1,0) set_df_kw['wish'] = np.where( ( (set_df_kw['oracle_text'].str.lower().str.contains(r"you may.*?from outside the game",regex=True)==True) | (set_df_kw['oracle_text'].str.lower().str.contains(r"learn",regex=True)==True) ) ,1,0) set_df_kw['gy_synergies'] = np.where( ( (set_df_kw['oracle_text'].str.lower().str.contains(r"gets.*?for each.*?in your graveyard",regex=True)==True) | (set_df_kw['oracle_text'].str.lower().str.contains(r"(dredge)",regex=True)==True) ) ,1,0) set_df_kw['looting_similar'] = np.where( ( (set_df_kw['oracle_text'].str.lower().str.contains(r"draw (a|one|two|three|four) (card|cards), then discard (a|one|two|three|four) (card|cards)",regex=True)==True) | (set_df_kw['oracle_text'].str.lower().str.contains(r"discard (a|one|two|three|four) (card|cards)(,|:) (draw|then draw) (a|one|two|three|four) (card|cards)",regex=True)==True) | (set_df_kw['oracle_text'].str.lower().str.contains(r"create (.*?) (blood|clue) token",regex=True)==True) | (set_df_kw['oracle_text'].str.lower().str.contains(r"cycling",regex=True)==True) ) ,1,0) set_df_kw['cheatinto_play'] = np.where( ( (set_df_kw['oracle_text'].str.lower().str.contains(r"creature.*?put (it|them) onto the battlefield",regex=True)==True) | (set_df_kw['oracle_text'].str.lower().str.contains(r"look at the.*?put.*?creature.*?onto the battlefield",regex=True)==True) | (set_df_kw['oracle_text'].str.lower().str.contains(r"you may put.*?(creature|permanent).*?onto the battlefield",regex=True)==True) ) ,1,0) set_df_kw['pumped_foreach'] = np.where( ( (set_df_kw['oracle_text'].str.lower().str.contains(r"gets \+[0-9]/\+[0-9] for each",regex=True)==True) ) ,1,0) set_df_kw['ritual'] = np.where( ( (set_df_kw['type_line'].str.lower().str.contains("instant")) | (set_df_kw['type_line'].str.lower().str.contains("sorcery")) ) & ( (set_df_kw['oracle_text'].str.lower().str.contains(r"add {(.*?)}",regex=True)==True) | (set_df_kw['oracle_text'].str.lower().str.contains(r"add (.*?) {(.*?)}",regex=True)==True) ) ,1,0) set_df_kw['no_maximum'] = np.where( ( (set_df_kw['oracle_text'].str.lower().str.contains(r"you have no maximum hand size",regex=True)==True) ) ,1,0) set_df_kw['wheel'] = np.where( ( (set_df_kw['oracle_text'].str.lower().str.contains(r"each player.*?(discards|shuffles (his or her|their) hand and graveyard into (his or her|their) library).*?then draws seven cards",regex=True)==True) ) ,1,0) set_df_kw['extra_combat'] = np.where( ( (set_df_kw['oracle_text'].str.lower().str.contains(r"additional combat phase",regex=True)==True) ) ,1,0) set_df_kw['ghostly_prison'] = np.where( ( (set_df_kw['oracle_text'].str.lower().str.contains(r"creatures can't attack (you|you or planeswalkers you control) unless",regex=True)==True) | (set_df_kw['oracle_text'].str.lower().str.contains(r"whenever an opponent attacks (you|with creatures)",regex=True)==True) ) ,1,0) set_df_kw['land_destruction'] = np.where( ( (set_df_kw['oracle_text'].str.lower().str.contains(r"destroy target (land|nonbasic land)",regex=True)==True) | (set_df_kw['oracle_text'].str.lower().str.contains(r"destroy all lands",regex=True)==True) ) ,1,0) set_df_kw['win_game'] = np.where( ( (set_df_kw['oracle_text'].str.lower().str.contains(r"you win the game",regex=True)==True) ) ,1,0) set_df_kw['lose_game'] = np.where( ( (set_df_kw['oracle_text'].str.lower().str.contains(r"you lose the game",regex=True)==True) ) ,1,0) set_df_kw['cant_lose'] = np.where( ( (set_df_kw['oracle_text'].str.lower().str.contains(r"you can't lose the game",regex=True)==True) | (set_df_kw['oracle_text'].str.lower().str.contains(r"your opponents can't win the game",regex=True)==True) ) ,1,0) # Create Bins for Price categories # Convert column types of prices to float set_df_kw['usd'] = set_df_kw['usd'].astype(float) set_df_kw['eur'] = set_df_kw['eur'].astype(float) set_df_kw['tix'] = set_df_kw['tix'].astype(float) # Create 5 categories price_labels = ['bronze', 'silver', 'gold', 'platinum','diamond'] # Define the cuts of each category usd_bins = [-1.00, 0.25, 1.00, 5.00, 10.00, 1000.00] eur_bins = [-1.00, 0.25, 1.00, 5.00, 10.00, 1000.00] tix_bins = [-1.00, 0.02, 0.05, 0.5, 1.00, 1000.00] # Apply them to the price columns set_df_kw['binusd'] = pd.cut(set_df_kw['usd'], bins=usd_bins, labels=price_labels) set_df_kw['bineur'] = pd.cut(set_df_kw['eur'], bins=eur_bins, labels=price_labels) set_df_kw['bintix'] = pd.cut(set_df_kw['tix'], bins=tix_bins, labels=price_labels) # Convert the categorical columns to string set_df_kw['binusd'] = set_df_kw['binusd'].astype(str) set_df_kw['bineur'] = set_df_kw['bineur'].astype(str) set_df_kw['bintix'] = set_df_kw['bintix'].astype(str) # Column that groups abilities # Define a list with all the super types we created abilities_columns = ['counterspell', 'manarock', 'manadork', 'removal', 'wrath', 'ramp', 'tutor', 'cardraw', 'burn', 'discard', 'enters_bf', 'die_trigger', 'attack_trigger', 'pseudo_ramp', 'static_ramp', 'creature_tokens', 'extra_turn', 'plus1_counters', 'graveyard_hate', 'free_spells', 'bounce_spell', 'sac_outlet', 'sac_payoff', 'cant_counter', 'costx_more', 'costx_moreactivate', 'costx_less', 'costx_lessacitivate', 'whenever_opp', 'returnfrom_gy', 'reanimation', 'castfrom_gy', 'lord', 'upkeep_trigger', 'endstep_trigger', 'landfall', 'combat_trigger', 'life_gain', 'treasure_tokens', 'protection', 'cost_reduction', 'mana_multipliers', 'card_selection', 'whenever_cast', 'gain_control', 'unblockeable', 'difficult_block', 'create_copy', 'milling', 'trigger_multiplier', 'untapper', 'static_effects', 'damage_multipliers', 'variable_pt', 'agressive', 'doublers', 'blinker', 'graveyard_tutor', 'play_toplibrary', 'life_lose', 'play_from_graveyard', 'infect', 'disenchant', 'venture', 'animator', 'wish', 'gy_synergies', 'looting_similar', 'cheatinto_play', 'pumped_foreach', 'ritual', 'no_maximum', 'wheel', 'extra_combat', 'ghostly_prison', 'land_destruction', 'win_game', 'lose_game', 'cant_lose'] print(f"Total super abilities created: {len(abilities_columns)}") # Create a column that sums them for each card set_df_kw['total_abilites'] = set_df_kw[abilities_columns].sum(axis=1) # Release date columns # Convert the column to datetime set_df_kw['released_at'] =
pd.to_datetime(set_df_kw['released_at'])
pandas.to_datetime
import os from multiprocessing import Pool from tempfile import gettempdir from typing import Dict, Union, Type, Any, Tuple, List import numpy as np import pandas as pd from matplotlib import pyplot as plt from ray import tune from tqdm import trange from colosseum.agents.bayes_tools.conjugate_rewards import RewardsConjugateModel from colosseum.agents.bayes_tools.conjugate_transitions import TransitionsConjugateModel from colosseum.agents.continuous.ucrl2 import UCRL2Continuous from colosseum.agents.episodic.psrl import PSRLEpisodic from colosseum.experiments.experiment import MDPLoop from colosseum.mdps import EpisodicMDP, ContinuousMDP from colosseum.utils.acme.in_memory_logger import InMemoryLogger from colosseum.utils.acme.specs import make_environment_spec from colosseum.utils.miscellanea import ensure_folder def run( config: Dict[str, Any], n_seeds: int, mdp_kwargs: Dict[str, Any], mdp_class : Union[Type["EpisodicMDP"], Type["ContinuousMDP"]], max_time: float, T: int, verbose: Union[bool, str, None], folder: Union[None, str], i: int, ) -> Tuple[Dict[str, Any], List[float]]: """ Parameters ---------- config: Dict[str, Any]. the hyperparameters of the agent. n_seeds: int. the number of seeds over which the agent/MDP interaction is averaged. mdp_kwargs: Dict[str, Any]. the parameters of the MDP. mdp_class : Union[Type["EpisodicMDP"], Type["ContinuousMDP"]]. the class of the MDP. max_time: float. the maximum training time for the agent. T: int. the total number of time steps for the agent/MDP interaction. verbose: Union[bool, str, None]. when it is set to bool it prints directly on the console and when it is set to a string it saves the outputs in a file with such name. folder: Union[None, str]. if given, the logs of the agent/MDP interaction will be stored in this folder. i: int. an integer id to assign to the logging file. Returns ------- a tuple containing the hyperparameters of the agent and the cumulative regrets for the different seeds. """ regrets = [] for seed in range(n_seeds): mdp_kwargs["seed"] = seed mdp_kwargs["force_single_thread"] = True mdp = mdp_class(**mdp_kwargs) if issubclass(mdp_class, EpisodicMDP): agent = PSRLEpisodic( environment_spec=make_environment_spec(mdp), seed=seed, H=mdp.H, r_max=mdp.r_max, T=T, reward_prior_model=RewardsConjugateModel.N_NIG, transitions_prior_model=TransitionsConjugateModel.M_DIR, rewards_prior_prms=[config["a"], 1, 1, 1], transitions_prior_prms=[config["b"]], ) else: agent = UCRL2Continuous( environment_spec=make_environment_spec(mdp), seed=seed, r_max=mdp.r_max, T=T, alpha_p=config["a"], alpha_r=config["b"], bound_type_p="bernstein", ) loop = MDPLoop(mdp, agent, logger=InMemoryLogger()) loop.run(T=T, verbose=verbose, max_time=max_time) df_e =
pd.DataFrame(loop.logger.data)
pandas.DataFrame
''' This is code used to look at how the gas prices in Texas are changing as a function of time. Underlaid, I have a moving average plotted, in order to help guide the eye when comparing to the gasbuddy.com charts. It's important to note that while these gas values are mostly coming from the Bryan/College Station area, there are times when I purchased gas on my drive to Austin or Dallas. ---> these locations are logged in "gasforcar" table The original code for the moving average can be found here: https://stackoverflow.com/questions/14313510/how-to-calculate-moving-average-using-numpy/54628145 ''' import numpy as np import matplotlib.pyplot as plt import pandas as pd from mpl_toolkits.axes_grid1.axes_divider import make_axes_locatable #import matplotlib.colorbar as colorbar import matplotlib.patheffects as PathEffects import matplotlib.dates as md __author__ = '<NAME>' __email__ = '<EMAIL>' # reading in data df =
pd.read_csv('gasforcar')
pandas.read_csv
import re import time import logging import functools from datetime import timedelta import numpy as np import pandas as pd from sqlalchemy import func from db import Cluster, Event, ClusterType log = logging.getLogger("dac-parser") class EventParser: events = [ # Custom starting event "INIT", # Indicates that the cluster is being created. "CREATING", # Indicates that a disk is low on space, but adding disks would # put it over the max capacity. "DID_NOT_EXPAND_DISK", # Indicates that a disk was low on space and the disks were expanded. "EXPANDED_DISK", # Indicates that a disk was low on space and disk space # could not be expanded. "FAILED_TO_EXPAND_DISK", # Indicates that the cluster scoped init script is starting. "INIT_SCRIPTS_STARTING", # Indicates that the cluster scoped init script has started. "INIT_SCRIPTS_STARTED", # Indicates that the cluster scoped init script has finished. "INIT_SCRIPTS_FINISHED", # Indicates that the cluster is being started. "STARTING", # Indicates that the cluster is being started. "RESTARTING", # Indicates that the cluster is being terminated. "TERMINATING", # Indicates that the cluster has been edited. "EDITED", # Indicates the cluster has finished being created. # Includes the number of nodes in the cluster and a failure reason # if some nodes could not be acquired. "RUNNING", # Indicates a change in the target size of the cluster # (upsize or downsize). "RESIZING", # Indicates that nodes finished being added to the cluster. # Includes the number of nodes in the cluster and a failure reason # if some nodes could not be acquired. "UPSIZE_COMPLETED", # Indicates that some nodes were lost from the cluster. "NODES_LOST", # Indicates that the driver is healthy and # the cluster is ready for use. "DRIVER_HEALTHY", # Indicates that the driver is unavailable. "DRIVER_UNAVAILABLE", # Indicates that a Spark exception was thrown from the driver. "SPARK_EXCEPTION", # Indicates that the driver is up but is not responsive, # likely due to GC. "DRIVER_NOT_RESPONDING", # Indicates that the driver is up but DBFS is down. "DBFS_DOWN", # Indicates that the driver is up but the metastore is down. "METASTORE_DOWN", # Usage report containing the total and unused instance minutes # of the autoscaling cluster over the last hour. "AUTOSCALING_STATS_REPORT", # Indicates that a node has been blacklisted by Spark. "NODE_BLACKLISTED", # Indicates that the cluster was pinned. "PINNED", # Indicates that the cluster was unpinned. "UNPINNED", ] states = [ 'UNKNOWN', 'RUNNING', 'STOPPED' ] transitions = { # TODO: decide what is the correct state here "PENDING": 'RUNNING', "CREATING": 'RUNNING', "STARTING": 'RUNNING', "RESTARTING": 'RUNNING', "TERMINATING": 'STOPPED', "TERMINATED": 'STOPPED', "RUNNING": 'RUNNING', "UNKONWN": 'UNKNOWN', } instance_type_regex = re.compile(r'(([a-z]\d[a-z]?.[\d]*[x]?large)|' r'((Standard_|Premium_)' r'[a-zA-Z]{1,2}\d+[a-zA-Z]?(_v\d*)?))') def __init__(self, instance_types: pd.DataFrame) -> None: self.instance_type_map = instance_types def parse(self, events: list, clusters: dict) -> pd.DataFrame: timeline = self.process_events(events) result = self.process_timelines(timeline, clusters) return result def process_events(self, events: list) -> list: timeline = [] for event in events: timeline.append(self.process_event(event)) return timeline def process_event(self, event: dict) -> dict: etype = event.get('type') if etype not in self.events: log.warning(f'Unkown event: {event}\n' f'Recognized events are: {self.events}') details = event.get('details', {}) user = details.get('user') num_workers = details.get('current_num_workers') # CREATED / EDITED event only attributes = details.get('attributes', {}) # cluster_name = attributes.get('cluster_name') driver_type = attributes.get('driver_node_type_id') worker_type = attributes.get('node_type_id') return {'timestamp': event.get('timestamp', 0), 'cluster_id': event.get('cluster_id'), 'user_id': user, 'event': etype, 'driver_type': driver_type, 'worker_type': worker_type, 'num_workers': num_workers} def process_timelines(self, raw_timeline: list, clusters: dict) -> pd.DataFrame: timelines = {} for event in raw_timeline: cluster = event['cluster_id'] if cluster not in timelines: timelines[cluster] = [] timelines[cluster].append(event) dfs = [] for cluster_id, timeline in timelines.items(): cluster_name = clusters.get(cluster_id, 'UNKNOWN') dfs.append(self.process_timeline(timeline, cluster_name)) return pd.concat(dfs, sort=False) def process_timeline(self, timeline: list, cluster_name: str) -> pd.DataFrame: # Empty timeline if not len(timeline): return pd.DataFrame() sorted_timeline = sorted(timeline, key=lambda x: x['timestamp']) # initial event first = sorted_timeline[0] init = {key: None for key in first.keys()} init['timestamp'] = first['timestamp'] init['event'] = 'INIT' timeline = [init] + sorted_timeline frm = timeline[:-1] to = timeline[1:] rows = [] status = { 'timestamp': first['timestamp'], 'cluster_id': first['cluster_id'], 'state': 'UNKNOWN', 'user_id': 'UNKNOWN', 'driver_type': first['driver_type'], 'worker_type': first['worker_type'], 'num_workers': 0, 'interval': 0 } for frm_event, to_event in zip(frm, to): delta = to_event['timestamp'] - frm_event['timestamp'] delta = timedelta(milliseconds=delta) delta = delta.seconds / 3600 row = status.copy() row['interval'] = delta rows.append(row) status = self.get_new_status(status, to_event) cluster_type = self.determine_cluster_type(cluster_name) # exclude starting status df =
pd.DataFrame(rows[1:])
pandas.DataFrame
# coding=utf-8 # Copyright 2020 The Google Research Authors. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Evaluation utilities for uniprot predictions.""" from __future__ import absolute_import from __future__ import division from __future__ import print_function import copy import itertools from typing import Dict, FrozenSet, List, Optional, Sequence, Set, Text, Tuple, Union import numpy as np import pandas as pd from pandas.core.groupby.generic import DataFrameGroupBy as pd_DataFrameGroupBy import inference import parenthood_lib import sklearn.metrics import tqdm FALSE_NEGATIVES_KEY = 'false_negatives' FALSE_POSITIVES_KEY = 'false_positives' TRUE_POSITIVES_KEY = 'true_positives' PrecisionRecallF1 = Tuple[float, float, float] def normalize_confidences( predictions, label_vocab, applicable_label_dict): """Set confidences of parent labels to the max of their children. Args: predictions: [num_sequences, num_labels] ndarray. label_vocab: list of vocab strings in an order that corresponds to `predictions`. applicable_label_dict: Mapping from labels to their parents (including indirect parents). Returns: A numpy array [num_sequences, num_labels] with confidences where: if label_vocab[k] in applicable_label_dict[label_vocab[j]], then arr[i, j] >= arr[i, k] for all i. """ vocab_indices = {v: i for i, v in enumerate(label_vocab)} children = parenthood_lib.reverse_map(applicable_label_dict, set(vocab_indices.keys())) # Only vectorize this along the sequences dimension as the number of children # varies between labels. label_confidences = [] for label in label_vocab: child_indices = np.array( [vocab_indices[child] for child in children[label]]) if child_indices.size > 1: confidences = np.max(predictions[:, child_indices], axis=1) label_confidences.append(confidences) else: label_confidences.append(predictions[:, vocab_indices[label]]) return np.stack(label_confidences, axis=1) def get_ground_truth_multihots(label_sets, label_vocab): """Get a multihot matrix from label sets and a vocab.""" vocab_indices = {v: i for i, v in enumerate(label_vocab)} ground_truths = [] for s in label_sets: indices = np.array([vocab_indices[v] for v in s], dtype=np.int32) multihots = np.zeros([len(label_vocab)]) multihots[indices] = 1 ground_truths.append(multihots) return np.vstack(ground_truths) def get_pr_f1_df_from_arrays( ground_truths, normalized_predictions, prediction_precision_limit = None, ): """Convenience method for making a PR curve dataframe. Args: ground_truths: multihot array of shape (num_examples, num_labels). normalized_predictions: array of shape (num_samples, num_labels). prediction_precision_limit: Used to truncate the predictions to a fixed level of precision. Predictions are truncated to `prediction_precision_limit` number of decimal places. This argument is useful to increase the speed of computation, and also to decrease the size of the dataframe returned. If None, no truncation is performed. Returns: pd.DataFrame with columns precision (float); recall (float); threshold (float); f1 (float). """ if prediction_precision_limit: normalized_predictions = np.around(normalized_predictions, prediction_precision_limit) precisions, recalls, thresholds = sklearn.metrics.precision_recall_curve( ground_truths.flatten(), normalized_predictions.flatten()) # Throw away last precision and recall as they are always 0 and 1 # respectively, and have no associated threshold precisions = precisions[:-1] recalls = recalls[:-1] f1s = 2 * (precisions * recalls) / (precisions + recalls) return pd.DataFrame( data={ 'precision': precisions, 'recall': recalls, 'threshold': thresholds, 'f1': f1s }) def get_pr_f1_df( prediction_df, label_vocab, label_normalizer, eval_vocab = None, prediction_precision_limit = 18, ): """Make a dataframe with each possible threshold and it's corresponding values. Args: prediction_df: A dataframe with columns `predictions` and `true_label`. label_vocab: A list of labels. label_normalizer: A mapping from labels to their children. eval_vocab: An optional subset of `label_vocab` on which to restrict analysis. prediction_precision_limit: Used to truncate the predictions to a fixed level of precision. Predictions are truncated to `prediction_precision_limit` number of decimal places. This argument is useful to increase the speed of computation, and also to decrease the size of the dataframe returned. If None, no truncation is performed. Returns: A dataframe with 4 columns; precision, recall, f1, and threshold. At each threshold precision, recall, and f1 are calculated relative to the normalized confidences and true labels given in `prediction_df`. """ if not eval_vocab: eval_vocab = set(label_vocab) label_vocab = np.array(label_vocab) prediction_array = np.vstack(prediction_df.predictions) normalized_predictions = normalize_confidences(prediction_array, label_vocab, label_normalizer) true_label_sets = prediction_df.true_label.apply( eval_vocab.intersection).values eval_indices = np.array( [i for i, v in enumerate(label_vocab) if v in eval_vocab]) ground_truths = get_ground_truth_multihots(true_label_sets, label_vocab[eval_indices]) return get_pr_f1_df_from_arrays(ground_truths, normalized_predictions[:, eval_indices], prediction_precision_limit) def true_false_positive_negative_df(df): """Computes df of all example/label pairs, and whether they were correct. Args: df: pd.Dataframe that has columns: true_label. Contains a set of true labels. predicted_label. Contains a set of true labels. sequence_name. string. Accession. Returns: pd.DataFrame that has columns: sequence_name. string. Name of sequence (accession). class. string. Class name. Either predicted or true. predicted. np.bool. Whether the class was predicted for the sequence. true. np.bool. Whether the class label is true for the sequence. true_positive. Whether the prediction is a true positive. false_positive. Whether the prediction is a false positive. false_negative. Whether the prediction is a false negative. """ dict_prep_for_df = { 'sequence_name': [], 'class': [], 'predicted': [], 'true': [] } for _, row in tqdm.tqdm(df.iterrows(), position=0, total=len(df)): all_classes = row.predicted_label.union(row.true_label) for cls in all_classes: dict_prep_for_df['sequence_name'].append(row.sequence_name) dict_prep_for_df['class'].append(cls) dict_prep_for_df['predicted'].append(cls in row.predicted_label) dict_prep_for_df['true'].append(cls in row.true_label) working_df =
pd.DataFrame(dict_prep_for_df)
pandas.DataFrame
# -*- coding: utf-8 -*- """ Created on Mon Jul 8 14:37:03 2019 @author: ppradeep """ import os clear = lambda: os.system('cls') clear() ## Import packages import warnings warnings.filterwarnings('ignore') import pandas as pd import numpy as np import pickle # Classifiers from sklearn.ensemble import RandomForestRegressor from sklearn import svm, preprocessing path = 'C:/Users/Administrator/OneDrive/Profile/Desktop/HTTK/' #path = 'Z:/Projects/HTTK/' #%% # Normalize descriptors: Transform variables to mean=0, variance=1 def normalizeDescriptors(X): scaler = preprocessing.StandardScaler().fit(X) transformed = scaler.transform(X) x_norm = pd.DataFrame(transformed, index = X.index) x_norm.columns = X.columns return(scaler, x_norm) #%% ########################################################################### ########################################################################### ## Build the final models ########################################################################### ########################################################################### ####----------------------------------------------------------------------------------------------------------------- ## Read training data ####----------------------------------------------------------------------------------------------------------------- data1 = pd.read_csv(path+'data/Prachi-112117.txt', index_col = 'CAS').loc[:,['All.Compound.Names', 'Human.Funbound.plasma', 'Human.Clint']] data1.rename(columns={'All.Compound.Names' : 'Name'}, inplace = True) data2 = pd.read_excel(path+'data/AFFINITY_Model_Results-2018-02-27.xlsx', index_col = 'CAS').loc[:,['Name','Fup.Med']] data2.rename(columns={'Name': 'All.Compound.Names','Fup.Med':'Human.Funbound.plasma'}, inplace = True) data3 = pd.read_excel(path+'data/CLint-2018-03-01-Results.xlsx', index_col = 'CAS').loc[:,['Name','CLint.1uM.Median']] data3.rename(columns={'Name': 'All.Compound.Names','CLint.1uM.Median':'Human.Clint'}, inplace = True) #%% ####----------------------------------------------------------------------------------------------------------------- ## Read training fingerprints ####----------------------------------------------------------------------------------------------------------------- ## Chemotyper FPs: 779 Toxprints df_chemotypes = pd.read_csv(path+'data/toxprint.txt', sep = ';', index_col='M_NAME') #Rename 'M_NAME' to 'CAS' in data file ## PubChem FPs: 881 bits df_pubchem = pd.read_csv(path+'data/pubchem.txt', index_col='row ID') ####----------------------------------------------------------------------------------------------------------------- ## Read continuous descriptors ####----------------------------------------------------------------------------------------------------------------- ### OPERA descriptors df_opera = pd.read_csv(path+'data/OPERA2.5_Pred.csv', index_col='MoleculeID')[['LogP_pred','pKa_a_pred', 'pKa_b_pred']] #In MOE: Right click on mol -> Name -> Extract -> new field 'CAS' df_opera['pKa_pred']=df_opera[['pKa_a_pred','pKa_b_pred']].min(axis=1) opera_scaler, opera = normalizeDescriptors(df_opera)#[['pKa_pred','LogP_pred']] opera = opera[['pKa_pred','LogP_pred']] ## PADEL descriptors df_padel = pd.read_csv(path+'data/padel.txt', index_col='Name').dropna() padel_scaler, padel = normalizeDescriptors(df_padel) ## CDK descriptors df_cdk = pd.read_csv(path+'data/cdk.txt', index_col='row ID').dropna() #Add CAS column to file cdk_scaler, cdk = normalizeDescriptors(df_cdk) #%% ####----------------------------------------------------------------------------------------------------------------- ## Save the normalization vector ####----------------------------------------------------------------------------------------------------------------- pickle.dump(opera_scaler, open(path+'output/opera_scaler.sav', 'wb')) pickle.dump(padel_scaler, open(path+'output/padel_scaler.sav', 'wb')) pickle.dump(cdk_scaler, open(path+'output/cdk_scaler.sav', 'wb')) #%% ####----------------------------------------------------------------------------------------------------------------- ## Features from the 5-fold CV model ####----------------------------------------------------------------------------------------------------------------- fub_features = pd.read_csv(path+'output/Human.Funbound.plasma_Features.csv') clint_features_clas = pd.read_csv(path+'output/Clint_Features_Classification.csv') clint_features_reg = pd.read_csv(path+'output/Clint_Features_Regression.csv') #%% ####----------------------------------------------------------------------------------------------------------------- ## Model for Fraction Unbound in Plasma ####----------------------------------------------------------------------------------------------------------------- y_var = 'Human.Funbound.plasma' # Create a new dataframe with chemical names and y variable value based on raw data casList = list(set(data1.index.tolist()+data2.index.tolist()+data3.index.tolist())) data = pd.DataFrame(index = casList, columns = ['Name',y_var]) # Update the training data. If y value is available from later data (data 2 or 3) use that, if not use from old data (data1) for cas in data.index: try: if cas in data1.index: data.loc[cas,'Name'] = data1.loc[cas,'Name'] data.loc[cas,y_var] = data1.loc[cas,y_var] if cas in data2.index: data.loc[cas,'Name'] = data2.loc[cas,'Name'] data.loc[cas,y_var] = data2.loc[cas,y_var] except: pass data.dropna(inplace = True) #Retain data with y variable values #%% ####----------------------------------------------------------------------------------------------------------------- ## Extract y data ####----------------------------------------------------------------------------------------------------------------- Y = data[y_var] ## Set data for modeling ## Transform Y Y[Y==1.0] = 0.99 Y[Y==0] = 0.005 Y_model = (1-Y)/Y Y_model = Y_model.apply(lambda x: np.log10(x)) Y_index = Y_model.index #%% ####----------------------------------------------------------------------------------------------------------------- ## Combine fingerprints ####----------------------------------------------------------------------------------------------------------------- fingerprints = pd.concat([df_pubchem, df_chemotypes], axis=1).dropna() fingerprints = fingerprints.loc[Y_index,:].dropna() # Select fingerprints from the feature file retain = [str(val.replace("'", "").replace(" ", "")) for val in fub_features.ix[0,'Fingerprints'].split(',')] retain[0] = retain[0].replace("[", "") retain[len(retain)-1] = retain[len(retain)-1].replace("c]",'c') ##manually check the last entry and correct it fingerprints = fingerprints.loc[:,retain] ####----------------------------------------------------------------------------------------------------------------- ## Combine descriptors ####----------------------------------------------------------------------------------------------------------------- descriptors = pd.concat([padel, cdk], axis=1).dropna() descriptors = descriptors.loc[Y_index,:].dropna() # Select descriptors from the feature file retain = [str(val.replace("'", "").replace(" ", "")) for val in fub_features.ix[0,'Padel+CDK'].split(',')] retain[0] = retain[0].replace("[", "") retain[len(retain)-1] = retain[len(retain)-1].replace("]",'') descriptors = descriptors.loc[:,retain] ####----------------------------------------------------------------------------------------------------------------- ## Combine all the descriptors and set the X and Y for training the model ####----------------------------------------------------------------------------------------------------------------- data = pd.concat([Y_model, fingerprints, opera], axis=1).dropna(axis=0, how='any') X_fub_model = data.ix[:, data.columns != y_var] Y_fub_model = data[y_var] meanY = np.mean(Y_fub_model) stdY = np.std(Y_fub_model) #%% ## Histogram of the final training set import matplotlib.pyplot as plt plt.figure(figsize=(8, 6), dpi = 300) Y_fub_model.hist(alpha = 0.75, color = 'r', grid = False) plt.annotate('N = %d' %len(Y_fub_model), [-2.5,200], size = 20) plt.annotate('$\mu = %0.2f$' %(meanY), [-2.5,185], size = 20) plt.annotate('$\sigma = %0.2f$' %(stdY), [-2.5,170], size = 20) plt.xlabel('Fub$_{tr}$', size = 24, labelpad = 10) plt.ylabel('Frequency', size = 24, labelpad = 10) plt.xticks(fontsize = 24)#, rotation = 90) plt.yticks(fontsize = 24) plt.savefig(path+'/output/%s_TrainingData.png' %y_var, bbox_inches='tight') plt.show() data.to_csv(path+'output/fub_trainingdata.csv', index_label='CASRN') #%% ####----------------------------------------------------------------------------------------------------------------- ## Develop model clf_fub1 = svm.SVR(epsilon = 0.1, C = 10, gamma = 0.01, kernel = "rbf") clf_fub1 = clf_fub1.fit(X = X_fub_model, y = Y_fub_model) clf_fub2 = RandomForestRegressor(max_features = 'auto', n_estimators = 1000, random_state = 5) clf_fub2 = clf_fub2.fit(X = X_fub_model, y = Y_fub_model) # ## Save the models to disk pickle.dump(clf_fub1, open(path+'output/fub_svr.sav', 'wb')) pickle.dump(clf_fub2, open(path+'output/fub_rf.sav', 'wb')) #%% ########################################################################### ## Models for Intrinsic Clearance ########################################################################### ########################################################################### ## Read and analyze input data ########################################################################### data1 = pd.read_csv(path+'data/Prachi-112117.txt', index_col = 'CAS').loc[:,['All.Compound.Names', 'Human.Funbound.plasma', 'Human.Clint']] data1.rename(columns={'All.Compound.Names' : 'Name'}, inplace = True) data2 = pd.read_excel(path+'data/AFFINITY_Model_Results-2018-02-27.xlsx', index_col = 'CAS').loc[:,['Name','Fup.Med']] data2.rename(columns={'Name': 'All.Compound.Names','Fup.Med':'Human.Funbound.plasma'}, inplace = True) data3 = pd.read_excel(path+'data/CLint-2018-03-01-Results.xlsx', index_col = 'CAS').loc[:,['Name','CLint.1uM.Median']] data3.rename(columns={'Name': 'All.Compound.Names','CLint.1uM.Median':'Human.Clint'}, inplace = True) #%% ## HTTK package data # Set y variable y_var = 'Human.Clint' # Create a new dataframe with chemical names and y variable value based on raw data casList = list(set(data1.index.tolist()+data2.index.tolist()+data3.index.tolist())) #%% data = pd.DataFrame(index = casList, columns = ['Name',y_var]) #%% # Update the training data. If y value is available from later data (data 2 or 3) use that, if not use from old data (data1) for cas in data.index: try: if cas in data1.index: data.loc[cas,'Name'] = data1.loc[cas,'Name'] data.loc[cas,y_var] = data1.loc[cas,y_var] if cas in data2.index: data.loc[cas,'Name'] = data2.loc[cas,'Name'] data.loc[cas,y_var] = data2.loc[cas,y_var] except: pass data.dropna(inplace = True) #Retain data with y variable values #%% ## Transform the data: Bin the clearance variable for classification Y = data[y_var] Y_clas = Y.copy() [Y_clas.set_value(idx, int(-3)) for idx in Y_clas[Y_clas <= 0.9].index] [Y_clas.set_value(idx, int(-2)) for idx in Y_clas[(Y_clas > 0.9) & (Y_clas <= 50)].index] [Y_clas.set_value(idx, int(-1)) for idx in Y_clas[Y_clas > 50].index] Y_clas = pd.Series(Y_clas, index = Y.index) low_median = Y[Y_clas[Y_clas==-3].index].median() high_median = Y[Y_clas[Y_clas==-1].index].median() ########################################################################### ## Classification: ## Combine fingerprints and perform feature selection fingerprints = pd.concat([df_pubchem, df_chemotypes], axis=1).dropna() fingerprints = fingerprints.loc[Y_clas.index,:].dropna() # Select fingerprints from the feature file retain = [str(val.replace("'", "").replace(" ", "")) for val in clint_features_clas.ix[0,'Fingerprints'].split(',')] retain[0] = retain[0].replace("[", "") retain[len(retain)-1] = retain[len(retain)-1].replace("]",'') fingerprints = fingerprints.loc[:,retain] #%% ## Classification: Combine all the descriptors and set the X and Y for training the classification model data = pd.concat([Y_clas, fingerprints, opera], axis=1).dropna(axis=0, how='any') X_ClintClas_model = data.ix[:, data.columns != y_var] Y_ClintClas_model = data[y_var] #%% data.to_csv(path+'output/clintclas_trainingdata.csv', index_label='CASRN') #%% ## Histogram of the final training set import matplotlib.pyplot as plt plt.gcf().subplots_adjust(bottom=0.5) plt.figure(figsize=[8,6], dpi = 300) plt.hist(Y_ClintClas_model.values.tolist(), color = 'r', align = 'left', rwidth = 1) plt.annotate('N = %d' %len(Y_ClintClas_model.values.tolist()), [-3.15,260], size = 24) labels = ['Low', 'Medium', 'High'] plt.xticks([-3, -2, -1], labels, size = 18) plt.xlabel('Transformed Clearance \n(for classification)', size = 28, labelpad = 5) plt.ylabel('Frequency', size = 28, labelpad = 5) plt.xticks(fontsize = 20)#, rotation = 90) plt.yticks(fontsize = 20) plt.savefig(path+'output/%sClas_TrainingData.png'%y_var, bbox_inches='tight') #%% ########################################################################### ## Develop classification model ## Classification model clf_clintClas = svm.SVC(C=10, decision_function_shape='ovo', gamma=0.01, kernel='rbf') clf_clintClas = clf_clintClas.fit(X = X_ClintClas_model, y = Y_ClintClas_model.values.tolist()) #%% ########################################################################### ## Intrinsic Clearance Regression ########################################################################### ## Regression ## Extract y data for regression Y_reg = Y[(Y > 0.9) & (Y <= 50)] ## Transform Y Y_reg = Y_reg.apply(lambda x: np.log10(x)) ## Combine fingerprints and perform feature selection fingerprints = pd.concat([df_pubchem, df_chemotypes], axis=1).dropna() fingerprints = fingerprints.loc[Y_reg.index,:].dropna() #%% # Select fingerprints from the feature file retain = [str(val.replace("'", "").replace(" ", "")) for val in clint_features_reg.ix[0,'Fingerprints'].split(',')] retain[0] = retain[0].replace("[", "") retain[len(retain)-1] = retain[len(retain)-1].replace("]",'') fingerprints = fingerprints.loc[:,retain] descriptors =
pd.concat([padel, cdk], axis=1)
pandas.concat
import unittest import pandas as pd import skfda class TestPandas(unittest.TestCase): def setUp(self) -> None: self.fd = skfda.FDataGrid( [[1, 2, 3, 4, 5, 6, 7], [2, 3, 4, 5, 6, 7, 9]]) self.fd_basis = self.fd.to_basis(skfda.representation.basis.BSpline( n_basis=5)) def test_fdatagrid_series(self) -> None: series =
pd.Series(self.fd)
pandas.Series
import copy import itertools import re import operator from datetime import datetime, timedelta from collections import defaultdict import numpy as np from pandas.core.base import PandasObject from pandas.core.common import (_possibly_downcast_to_dtype, isnull, _NS_DTYPE, _TD_DTYPE, ABCSeries, is_list_like, ABCSparseSeries, _infer_dtype_from_scalar, is_null_datelike_scalar, _maybe_promote, is_timedelta64_dtype, is_datetime64_dtype, array_equivalent, _maybe_convert_string_to_object, is_categorical, needs_i8_conversion, is_datetimelike_v_numeric) from pandas.core.index import Index, MultiIndex, _ensure_index from pandas.core.indexing import maybe_convert_indices, length_of_indexer from pandas.core.categorical import Categorical, maybe_to_categorical import pandas.core.common as com from pandas.sparse.array import _maybe_to_sparse, SparseArray import pandas.lib as lib import pandas.tslib as tslib import pandas.computation.expressions as expressions from pandas.util.decorators import cache_readonly from pandas.tslib import Timestamp, Timedelta from pandas import compat from pandas.compat import range, map, zip, u from pandas.tseries.timedeltas import _coerce_scalar_to_timedelta_type from pandas.lib import BlockPlacement class Block(PandasObject): """ Canonical n-dimensional unit of homogeneous dtype contained in a pandas data structure Index-ignorant; let the container take care of that """ __slots__ = ['_mgr_locs', 'values', 'ndim'] is_numeric = False is_float = False is_integer = False is_complex = False is_datetime = False is_timedelta = False is_bool = False is_object = False is_categorical = False is_sparse = False _can_hold_na = False _downcast_dtype = None _can_consolidate = True _verify_integrity = True _validate_ndim = True _ftype = 'dense' _holder = None def __init__(self, values, placement, ndim=None, fastpath=False): if ndim is None: ndim = values.ndim elif values.ndim != ndim: raise ValueError('Wrong number of dimensions') self.ndim = ndim self.mgr_locs = placement self.values = values if len(self.mgr_locs) != len(self.values): raise ValueError('Wrong number of items passed %d,' ' placement implies %d' % ( len(self.values), len(self.mgr_locs))) @property def _consolidate_key(self): return (self._can_consolidate, self.dtype.name) @property def _is_single_block(self): return self.ndim == 1 @property def is_view(self): """ return a boolean if I am possibly a view """ return self.values.base is not None @property def is_datelike(self): """ return True if I am a non-datelike """ return self.is_datetime or self.is_timedelta def is_categorical_astype(self, dtype): """ validate that we have a astypeable to categorical, returns a boolean if we are a categorical """ if com.is_categorical_dtype(dtype): if dtype == com.CategoricalDtype(): return True # this is a pd.Categorical, but is not # a valid type for astypeing raise TypeError("invalid type {0} for astype".format(dtype)) return False def to_dense(self): return self.values.view() @property def fill_value(self): return np.nan @property def mgr_locs(self): return self._mgr_locs @property def array_dtype(self): """ the dtype to return if I want to construct this block as an array """ return self.dtype def make_block_same_class(self, values, placement, copy=False, fastpath=True, **kwargs): """ Wrap given values in a block of same type as self. `kwargs` are used in SparseBlock override. """ if copy: values = values.copy() return make_block(values, placement, klass=self.__class__, fastpath=fastpath, **kwargs) @mgr_locs.setter def mgr_locs(self, new_mgr_locs): if not isinstance(new_mgr_locs, BlockPlacement): new_mgr_locs = BlockPlacement(new_mgr_locs) self._mgr_locs = new_mgr_locs def __unicode__(self): # don't want to print out all of the items here name = com.pprint_thing(self.__class__.__name__) if self._is_single_block: result = '%s: %s dtype: %s' % ( name, len(self), self.dtype) else: shape = ' x '.join([com.pprint_thing(s) for s in self.shape]) result = '%s: %s, %s, dtype: %s' % ( name, com.pprint_thing(self.mgr_locs.indexer), shape, self.dtype) return result def __len__(self): return len(self.values) def __getstate__(self): return self.mgr_locs.indexer, self.values def __setstate__(self, state): self.mgr_locs = BlockPlacement(state[0]) self.values = state[1] self.ndim = self.values.ndim def _slice(self, slicer): """ return a slice of my values """ return self.values[slicer] def reshape_nd(self, labels, shape, ref_items): """ Parameters ---------- labels : list of new axis labels shape : new shape ref_items : new ref_items return a new block that is transformed to a nd block """ return _block2d_to_blocknd( values=self.get_values().T, placement=self.mgr_locs, shape=shape, labels=labels, ref_items=ref_items) def getitem_block(self, slicer, new_mgr_locs=None): """ Perform __getitem__-like, return result as block. As of now, only supports slices that preserve dimensionality. """ if new_mgr_locs is None: if isinstance(slicer, tuple): axis0_slicer = slicer[0] else: axis0_slicer = slicer new_mgr_locs = self.mgr_locs[axis0_slicer] new_values = self._slice(slicer) if self._validate_ndim and new_values.ndim != self.ndim: raise ValueError("Only same dim slicing is allowed") return self.make_block_same_class(new_values, new_mgr_locs) @property def shape(self): return self.values.shape @property def itemsize(self): return self.values.itemsize @property def dtype(self): return self.values.dtype @property def ftype(self): return "%s:%s" % (self.dtype, self._ftype) def merge(self, other): return _merge_blocks([self, other]) def reindex_axis(self, indexer, method=None, axis=1, fill_value=None, limit=None, mask_info=None): """ Reindex using pre-computed indexer information """ if axis < 1: raise AssertionError('axis must be at least 1, got %d' % axis) if fill_value is None: fill_value = self.fill_value new_values = com.take_nd(self.values, indexer, axis, fill_value=fill_value, mask_info=mask_info) return make_block(new_values, ndim=self.ndim, fastpath=True, placement=self.mgr_locs) def get(self, item): loc = self.items.get_loc(item) return self.values[loc] def iget(self, i): return self.values[i] def set(self, locs, values, check=False): """ Modify Block in-place with new item value Returns ------- None """ self.values[locs] = values def delete(self, loc): """ Delete given loc(-s) from block in-place. """ self.values = np.delete(self.values, loc, 0) self.mgr_locs = self.mgr_locs.delete(loc) def apply(self, func, **kwargs): """ apply the function to my values; return a block if we are not one """ result = func(self.values, **kwargs) if not isinstance(result, Block): result = make_block(values=_block_shape(result), placement=self.mgr_locs,) return result def fillna(self, value, limit=None, inplace=False, downcast=None): if not self._can_hold_na: if inplace: return [self] else: return [self.copy()] mask = isnull(self.values) if limit is not None: if self.ndim > 2: raise NotImplementedError("number of dimensions for 'fillna' " "is currently limited to 2") mask[mask.cumsum(self.ndim-1) > limit] = False value = self._try_fill(value) blocks = self.putmask(mask, value, inplace=inplace) return self._maybe_downcast(blocks, downcast) def _maybe_downcast(self, blocks, downcast=None): # no need to downcast our float # unless indicated if downcast is None and self.is_float: return blocks elif downcast is None and (self.is_timedelta or self.is_datetime): return blocks result_blocks = [] for b in blocks: result_blocks.extend(b.downcast(downcast)) return result_blocks def downcast(self, dtypes=None): """ try to downcast each item to the dict of dtypes if present """ # turn it off completely if dtypes is False: return [self] values = self.values # single block handling if self._is_single_block: # try to cast all non-floats here if dtypes is None: dtypes = 'infer' nv = _possibly_downcast_to_dtype(values, dtypes) return [make_block(nv, ndim=self.ndim, fastpath=True, placement=self.mgr_locs)] # ndim > 1 if dtypes is None: return [self] if not (dtypes == 'infer' or isinstance(dtypes, dict)): raise ValueError("downcast must have a dictionary or 'infer' as " "its argument") # item-by-item # this is expensive as it splits the blocks items-by-item blocks = [] for i, rl in enumerate(self.mgr_locs): if dtypes == 'infer': dtype = 'infer' else: raise AssertionError("dtypes as dict is not supported yet") dtype = dtypes.get(item, self._downcast_dtype) if dtype is None: nv = _block_shape(values[i], ndim=self.ndim) else: nv = _possibly_downcast_to_dtype(values[i], dtype) nv = _block_shape(nv, ndim=self.ndim) blocks.append(make_block(nv, ndim=self.ndim, fastpath=True, placement=[rl])) return blocks def astype(self, dtype, copy=False, raise_on_error=True, values=None, **kwargs): return self._astype(dtype, copy=copy, raise_on_error=raise_on_error, values=values, **kwargs) def _astype(self, dtype, copy=False, raise_on_error=True, values=None, klass=None, **kwargs): """ Coerce to the new type (if copy=True, return a new copy) raise on an except if raise == True """ # may need to convert to categorical # this is only called for non-categoricals if self.is_categorical_astype(dtype): return make_block(Categorical(self.values, **kwargs), ndim=self.ndim, placement=self.mgr_locs) # astype processing dtype = np.dtype(dtype) if self.dtype == dtype: if copy: return self.copy() return self if klass is None: if dtype == np.object_: klass = ObjectBlock try: # force the copy here if values is None: # _astype_nansafe works fine with 1-d only values = com._astype_nansafe(self.values.ravel(), dtype, copy=True) values = values.reshape(self.values.shape) newb = make_block(values, ndim=self.ndim, placement=self.mgr_locs, fastpath=True, dtype=dtype, klass=klass) except: if raise_on_error is True: raise newb = self.copy() if copy else self if newb.is_numeric and self.is_numeric: if newb.shape != self.shape: raise TypeError("cannot set astype for copy = [%s] for dtype " "(%s [%s]) with smaller itemsize that current " "(%s [%s])" % (copy, self.dtype.name, self.itemsize, newb.dtype.name, newb.itemsize)) return newb def convert(self, copy=True, **kwargs): """ attempt to coerce any object types to better types return a copy of the block (if copy = True) by definition we are not an ObjectBlock here! """ return [self.copy()] if copy else [self] def _can_hold_element(self, value): raise NotImplementedError() def _try_cast(self, value): raise NotImplementedError() def _try_cast_result(self, result, dtype=None): """ try to cast the result to our original type, we may have roundtripped thru object in the mean-time """ if dtype is None: dtype = self.dtype if self.is_integer or self.is_bool or self.is_datetime: pass elif self.is_float and result.dtype == self.dtype: # protect against a bool/object showing up here if isinstance(dtype, compat.string_types) and dtype == 'infer': return result if not isinstance(dtype, type): dtype = dtype.type if issubclass(dtype, (np.bool_, np.object_)): if issubclass(dtype, np.bool_): if isnull(result).all(): return result.astype(np.bool_) else: result = result.astype(np.object_) result[result == 1] = True result[result == 0] = False return result else: return result.astype(np.object_) return result # may need to change the dtype here return _possibly_downcast_to_dtype(result, dtype) def _try_operate(self, values): """ return a version to operate on as the input """ return values def _try_coerce_args(self, values, other): """ provide coercion to our input arguments """ return values, other def _try_coerce_result(self, result): """ reverse of try_coerce_args """ return result def _try_coerce_and_cast_result(self, result, dtype=None): result = self._try_coerce_result(result) result = self._try_cast_result(result, dtype=dtype) return result def _try_fill(self, value): return value def to_native_types(self, slicer=None, na_rep='', quoting=None, **kwargs): """ convert to our native types format, slicing if desired """ values = self.values if slicer is not None: values = values[:, slicer] mask = isnull(values) if not self.is_object and not quoting: values = values.astype(str) else: values = np.array(values, dtype='object') values[mask] = na_rep return values # block actions #### def copy(self, deep=True): values = self.values if deep: values = values.copy() return make_block(values, ndim=self.ndim, klass=self.__class__, fastpath=True, placement=self.mgr_locs) def replace(self, to_replace, value, inplace=False, filter=None, regex=False): """ replace the to_replace value with value, possible to create new blocks here this is just a call to putmask. regex is not used here. It is used in ObjectBlocks. It is here for API compatibility.""" mask = com.mask_missing(self.values, to_replace) if filter is not None: filtered_out = ~self.mgr_locs.isin(filter) mask[filtered_out.nonzero()[0]] = False if not mask.any(): if inplace: return [self] return [self.copy()] return self.putmask(mask, value, inplace=inplace) def setitem(self, indexer, value): """ set the value inplace; return a new block (of a possibly different dtype) indexer is a direct slice/positional indexer; value must be a compatible shape """ # coerce None values, if appropriate if value is None: if self.is_numeric: value = np.nan # coerce args values, value = self._try_coerce_args(self.values, value) arr_value = np.array(value) # cast the values to a type that can hold nan (if necessary) if not self._can_hold_element(value): dtype, _ = com._maybe_promote(arr_value.dtype) values = values.astype(dtype) transf = (lambda x: x.T) if self.ndim == 2 else (lambda x: x) values = transf(values) l = len(values) # length checking # boolean with truth values == len of the value is ok too if isinstance(indexer, (np.ndarray, list)): if is_list_like(value) and len(indexer) != len(value): if not (isinstance(indexer, np.ndarray) and indexer.dtype == np.bool_ and len(indexer[indexer]) == len(value)): raise ValueError("cannot set using a list-like indexer " "with a different length than the value") # slice elif isinstance(indexer, slice): if is_list_like(value) and l: if len(value) != length_of_indexer(indexer, values): raise ValueError("cannot set using a slice indexer with a " "different length than the value") try: def _is_scalar_indexer(indexer): # return True if we are all scalar indexers if arr_value.ndim == 1: if not isinstance(indexer, tuple): indexer = tuple([indexer]) return all([ np.isscalar(idx) for idx in indexer ]) return False def _is_empty_indexer(indexer): # return a boolean if we have an empty indexer if arr_value.ndim == 1: if not isinstance(indexer, tuple): indexer = tuple([indexer]) return any(isinstance(idx, np.ndarray) and len(idx) == 0 for idx in indexer) return False # empty indexers # 8669 (empty) if _is_empty_indexer(indexer): pass # setting a single element for each dim and with a rhs that could be say a list # GH 6043 elif _is_scalar_indexer(indexer): values[indexer] = value # if we are an exact match (ex-broadcasting), # then use the resultant dtype elif len(arr_value.shape) and arr_value.shape[0] == values.shape[0] and np.prod(arr_value.shape) == np.prod(values.shape): values[indexer] = value values = values.astype(arr_value.dtype) # set else: values[indexer] = value # coerce and try to infer the dtypes of the result if np.isscalar(value): dtype, _ = _infer_dtype_from_scalar(value) else: dtype = 'infer' values = self._try_coerce_and_cast_result(values, dtype) block = make_block(transf(values), ndim=self.ndim, placement=self.mgr_locs, fastpath=True) # may have to soft convert_objects here if block.is_object and not self.is_object: block = block.convert(numeric=False) return block except (ValueError, TypeError) as detail: raise except Exception as detail: pass return [self] def putmask(self, mask, new, align=True, inplace=False): """ putmask the data to the block; it is possible that we may create a new dtype of block return the resulting block(s) Parameters ---------- mask : the condition to respect new : a ndarray/object align : boolean, perform alignment on other/cond, default is True inplace : perform inplace modification, default is False Returns ------- a new block(s), the result of the putmask """ new_values = self.values if inplace else self.values.copy() # may need to align the new if hasattr(new, 'reindex_axis'): new = new.values.T # may need to align the mask if hasattr(mask, 'reindex_axis'): mask = mask.values.T # if we are passed a scalar None, convert it here if not is_list_like(new) and isnull(new) and not self.is_object: new = self.fill_value if self._can_hold_element(new): new = self._try_cast(new) # pseudo-broadcast if isinstance(new, np.ndarray) and new.ndim == self.ndim - 1: new = np.repeat(new, self.shape[-1]).reshape(self.shape) np.putmask(new_values, mask, new) # maybe upcast me elif mask.any(): # need to go column by column new_blocks = [] if self.ndim > 1: for i, ref_loc in enumerate(self.mgr_locs): m = mask[i] v = new_values[i] # need a new block if m.any(): n = new[i] if isinstance( new, np.ndarray) else np.array(new) # type of the new block dtype, _ = com._maybe_promote(n.dtype) # we need to exiplicty astype here to make a copy n = n.astype(dtype) nv = _putmask_smart(v, m, n) else: nv = v if inplace else v.copy() # Put back the dimension that was taken from it and make # a block out of the result. block = make_block(values=nv[np.newaxis], placement=[ref_loc], fastpath=True) new_blocks.append(block) else: nv = _putmask_smart(new_values, mask, new) new_blocks.append(make_block(values=nv, placement=self.mgr_locs, fastpath=True)) return new_blocks if inplace: return [self] return [make_block(new_values, placement=self.mgr_locs, fastpath=True)] def interpolate(self, method='pad', axis=0, index=None, values=None, inplace=False, limit=None, fill_value=None, coerce=False, downcast=None, **kwargs): def check_int_bool(self, inplace): # Only FloatBlocks will contain NaNs. # timedelta subclasses IntBlock if (self.is_bool or self.is_integer) and not self.is_timedelta: if inplace: return self else: return self.copy() # a fill na type method try: m = com._clean_fill_method(method) except: m = None if m is not None: r = check_int_bool(self, inplace) if r is not None: return r return self._interpolate_with_fill(method=m, axis=axis, inplace=inplace, limit=limit, fill_value=fill_value, coerce=coerce, downcast=downcast) # try an interp method try: m = com._clean_interp_method(method, **kwargs) except: m = None if m is not None: r = check_int_bool(self, inplace) if r is not None: return r return self._interpolate(method=m, index=index, values=values, axis=axis, limit=limit, fill_value=fill_value, inplace=inplace, downcast=downcast, **kwargs) raise ValueError("invalid method '{0}' to interpolate.".format(method)) def _interpolate_with_fill(self, method='pad', axis=0, inplace=False, limit=None, fill_value=None, coerce=False, downcast=None): """ fillna but using the interpolate machinery """ # if we are coercing, then don't force the conversion # if the block can't hold the type if coerce: if not self._can_hold_na: if inplace: return [self] else: return [self.copy()] fill_value = self._try_fill(fill_value) values = self.values if inplace else self.values.copy() values = self._try_operate(values) values = com.interpolate_2d(values, method=method, axis=axis, limit=limit, fill_value=fill_value, dtype=self.dtype) values = self._try_coerce_result(values) blocks = [make_block(values, ndim=self.ndim, klass=self.__class__, fastpath=True, placement=self.mgr_locs)] return self._maybe_downcast(blocks, downcast) def _interpolate(self, method=None, index=None, values=None, fill_value=None, axis=0, limit=None, inplace=False, downcast=None, **kwargs): """ interpolate using scipy wrappers """ data = self.values if inplace else self.values.copy() # only deal with floats if not self.is_float: if not self.is_integer: return self data = data.astype(np.float64) if fill_value is None: fill_value = self.fill_value if method in ('krogh', 'piecewise_polynomial', 'pchip'): if not index.is_monotonic: raise ValueError("{0} interpolation requires that the " "index be monotonic.".format(method)) # process 1-d slices in the axis direction def func(x): # process a 1-d slice, returning it # should the axis argument be handled below in apply_along_axis? # i.e. not an arg to com.interpolate_1d return com.interpolate_1d(index, x, method=method, limit=limit, fill_value=fill_value, bounds_error=False, **kwargs) # interp each column independently interp_values = np.apply_along_axis(func, axis, data) blocks = [make_block(interp_values, ndim=self.ndim, klass=self.__class__, fastpath=True, placement=self.mgr_locs)] return self._maybe_downcast(blocks, downcast) def take_nd(self, indexer, axis, new_mgr_locs=None, fill_tuple=None): """ Take values according to indexer and return them as a block.bb """ if fill_tuple is None: fill_value = self.fill_value new_values = com.take_nd(self.get_values(), indexer, axis=axis, allow_fill=False) else: fill_value = fill_tuple[0] new_values = com.take_nd(self.get_values(), indexer, axis=axis, allow_fill=True, fill_value=fill_value) if new_mgr_locs is None: if axis == 0: slc = lib.indexer_as_slice(indexer) if slc is not None: new_mgr_locs = self.mgr_locs[slc] else: new_mgr_locs = self.mgr_locs[indexer] else: new_mgr_locs = self.mgr_locs if new_values.dtype != self.dtype: return make_block(new_values, new_mgr_locs) else: return self.make_block_same_class(new_values, new_mgr_locs) def get_values(self, dtype=None): return self.values def diff(self, n, axis=1): """ return block for the diff of the values """ new_values = com.diff(self.values, n, axis=axis) return [make_block(values=new_values, ndim=self.ndim, fastpath=True, placement=self.mgr_locs)] def shift(self, periods, axis=0): """ shift the block by periods, possibly upcast """ # convert integer to float if necessary. need to do a lot more than # that, handle boolean etc also new_values, fill_value = com._maybe_upcast(self.values) # make sure array sent to np.roll is c_contiguous f_ordered = new_values.flags.f_contiguous if f_ordered: new_values = new_values.T axis = new_values.ndim - axis - 1 if np.prod(new_values.shape): new_values = np.roll(new_values, com._ensure_platform_int(periods), axis=axis) axis_indexer = [ slice(None) ] * self.ndim if periods > 0: axis_indexer[axis] = slice(None,periods) else: axis_indexer[axis] = slice(periods,None) new_values[tuple(axis_indexer)] = fill_value # restore original order if f_ordered: new_values = new_values.T return [make_block(new_values, ndim=self.ndim, fastpath=True, placement=self.mgr_locs)] def eval(self, func, other, raise_on_error=True, try_cast=False): """ evaluate the block; return result block from the result Parameters ---------- func : how to combine self, other other : a ndarray/object raise_on_error : if True, raise when I can't perform the function, False by default (and just return the data that we had coming in) Returns ------- a new block, the result of the func """ values = self.values if hasattr(other, 'reindex_axis'): other = other.values # make sure that we can broadcast is_transposed = False if hasattr(other, 'ndim') and hasattr(values, 'ndim'): if values.ndim != other.ndim: is_transposed = True else: if values.shape == other.shape[::-1]: is_transposed = True elif values.shape[0] == other.shape[-1]: is_transposed = True else: # this is a broadcast error heree raise ValueError("cannot broadcast shape [%s] with block " "values [%s]" % (values.T.shape, other.shape)) transf = (lambda x: x.T) if is_transposed else (lambda x: x) # coerce/transpose the args if needed values, other = self._try_coerce_args(transf(values), other) # get the result, may need to transpose the other def get_result(other): return self._try_coerce_result(func(values, other)) # error handler if we have an issue operating with the function def handle_error(): if raise_on_error: raise TypeError('Could not operate %s with block values %s' % (repr(other), str(detail))) else: # return the values result = np.empty(values.shape, dtype='O') result.fill(np.nan) return result # get the result try: result = get_result(other) # if we have an invalid shape/broadcast error # GH4576, so raise instead of allowing to pass through except ValueError as detail: raise except Exception as detail: result = handle_error() # technically a broadcast error in numpy can 'work' by returning a # boolean False if not isinstance(result, np.ndarray): if not isinstance(result, np.ndarray): # differentiate between an invalid ndarray-ndarray comparison # and an invalid type comparison if isinstance(values, np.ndarray) and is_list_like(other): raise ValueError('Invalid broadcasting comparison [%s] ' 'with block values' % repr(other)) raise TypeError('Could not compare [%s] with block values' % repr(other)) # transpose if needed result = transf(result) # try to cast if requested if try_cast: result = self._try_cast_result(result) return [make_block(result, ndim=self.ndim, fastpath=True, placement=self.mgr_locs)] def where(self, other, cond, align=True, raise_on_error=True, try_cast=False): """ evaluate the block; return result block(s) from the result Parameters ---------- other : a ndarray/object cond : the condition to respect align : boolean, perform alignment on other/cond raise_on_error : if True, raise when I can't perform the function, False by default (and just return the data that we had coming in) Returns ------- a new block(s), the result of the func """ values = self.values # see if we can align other if hasattr(other, 'reindex_axis'): other = other.values # make sure that we can broadcast is_transposed = False if hasattr(other, 'ndim') and hasattr(values, 'ndim'): if values.ndim != other.ndim or values.shape == other.shape[::-1]: # if its symmetric are ok, no reshaping needed (GH 7506) if (values.shape[0] == np.array(values.shape)).all(): pass # pseodo broadcast (its a 2d vs 1d say and where needs it in a # specific direction) elif (other.ndim >= 1 and values.ndim - 1 == other.ndim and values.shape[0] != other.shape[0]): other = _block_shape(other).T else: values = values.T is_transposed = True # see if we can align cond if not hasattr(cond, 'shape'): raise ValueError( "where must have a condition that is ndarray like") if hasattr(cond, 'reindex_axis'): cond = cond.values # may need to undo transpose of values if hasattr(values, 'ndim'): if values.ndim != cond.ndim or values.shape == cond.shape[::-1]: values = values.T is_transposed = not is_transposed other = _maybe_convert_string_to_object(other) # our where function def func(c, v, o): if c.ravel().all(): return v v, o = self._try_coerce_args(v, o) try: return self._try_coerce_result( expressions.where(c, v, o, raise_on_error=True) ) except Exception as detail: if raise_on_error: raise TypeError('Could not operate [%s] with block values ' '[%s]' % (repr(o), str(detail))) else: # return the values result = np.empty(v.shape, dtype='float64') result.fill(np.nan) return result # see if we can operate on the entire block, or need item-by-item # or if we are a single block (ndim == 1) result = func(cond, values, other) if self._can_hold_na or self.ndim == 1: if not isinstance(result, np.ndarray): raise TypeError('Could not compare [%s] with block values' % repr(other)) if is_transposed: result = result.T # try to cast if requested if try_cast: result = self._try_cast_result(result) return make_block(result, ndim=self.ndim, placement=self.mgr_locs) # might need to separate out blocks axis = cond.ndim - 1 cond = cond.swapaxes(axis, 0) mask = np.array([cond[i].all() for i in range(cond.shape[0])], dtype=bool) result_blocks = [] for m in [mask, ~mask]: if m.any(): r = self._try_cast_result( result.take(m.nonzero()[0], axis=axis)) result_blocks.append(make_block(r.T, placement=self.mgr_locs[m])) return result_blocks def equals(self, other): if self.dtype != other.dtype or self.shape != other.shape: return False return array_equivalent(self.values, other.values) class NonConsolidatableMixIn(object): """ hold methods for the nonconsolidatable blocks """ _can_consolidate = False _verify_integrity = False _validate_ndim = False _holder = None def __init__(self, values, placement, ndim=None, fastpath=False,): # Placement must be converted to BlockPlacement via property setter # before ndim logic, because placement may be a slice which doesn't # have a length. self.mgr_locs = placement # kludgetastic if ndim is None: if len(self.mgr_locs) != 1: ndim = 1 else: ndim = 2 self.ndim = ndim if not isinstance(values, self._holder): raise TypeError("values must be {0}".format(self._holder.__name__)) self.values = values def get_values(self, dtype=None): """ need to to_dense myself (and always return a ndim sized object) """ values = self.values.to_dense() if values.ndim == self.ndim - 1: values = values.reshape((1,) + values.shape) return values def iget(self, col): if self.ndim == 2 and isinstance(col, tuple): col, loc = col if col != 0: raise IndexError("{0} only contains one item".format(self)) return self.values[loc] else: if col != 0: raise IndexError("{0} only contains one item".format(self)) return self.values def should_store(self, value): return isinstance(value, self._holder) def set(self, locs, values, check=False): assert locs.tolist() == [0] self.values = values def get(self, item): if self.ndim == 1: loc = self.items.get_loc(item) return self.values[loc] else: return self.values def _slice(self, slicer): """ return a slice of my values (but densify first) """ return self.get_values()[slicer] def _try_cast_result(self, result, dtype=None): return result class NumericBlock(Block): __slots__ = () is_numeric = True _can_hold_na = True class FloatOrComplexBlock(NumericBlock): __slots__ = () def equals(self, other): if self.dtype != other.dtype or self.shape != other.shape: return False left, right = self.values, other.values return ((left == right) | (np.isnan(left) & np.isnan(right))).all() class FloatBlock(FloatOrComplexBlock): __slots__ = () is_float = True _downcast_dtype = 'int64' def _can_hold_element(self, element): if is_list_like(element): element = np.array(element) tipo = element.dtype.type return issubclass(tipo, (np.floating, np.integer)) and not issubclass( tipo, (np.datetime64, np.timedelta64)) return isinstance(element, (float, int, np.float_, np.int_)) and not isinstance( element, (bool, np.bool_, datetime, timedelta, np.datetime64, np.timedelta64)) def _try_cast(self, element): try: return float(element) except: # pragma: no cover return element def to_native_types(self, slicer=None, na_rep='', float_format=None, decimal='.', quoting=None, **kwargs): """ convert to our native types format, slicing if desired """ values = self.values if slicer is not None: values = values[:, slicer] mask = isnull(values) formatter = None if float_format and decimal != '.': formatter = lambda v : (float_format % v).replace('.',decimal,1) elif decimal != '.': formatter = lambda v : ('%g' % v).replace('.',decimal,1) elif float_format: formatter = lambda v : float_format % v if formatter is None and not quoting: values = values.astype(str) else: values = np.array(values, dtype='object') values[mask] = na_rep if formatter: imask = (~mask).ravel() values.flat[imask] = np.array( [formatter(val) for val in values.ravel()[imask]]) return values def should_store(self, value): # when inserting a column should not coerce integers to floats # unnecessarily return (issubclass(value.dtype.type, np.floating) and value.dtype == self.dtype) class ComplexBlock(FloatOrComplexBlock): __slots__ = () is_complex = True def _can_hold_element(self, element): if is_list_like(element): element = np.array(element) return issubclass(element.dtype.type, (np.floating, np.integer, np.complexfloating)) return (isinstance(element, (float, int, complex, np.float_, np.int_)) and not isinstance(bool, np.bool_)) def _try_cast(self, element): try: return complex(element) except: # pragma: no cover return element def should_store(self, value): return issubclass(value.dtype.type, np.complexfloating) class IntBlock(NumericBlock): __slots__ = () is_integer = True _can_hold_na = False def _can_hold_element(self, element): if is_list_like(element): element = np.array(element) tipo = element.dtype.type return issubclass(tipo, np.integer) and not issubclass(tipo, (np.datetime64, np.timedelta64)) return com.is_integer(element) def _try_cast(self, element): try: return int(element) except: # pragma: no cover return element def should_store(self, value): return com.is_integer_dtype(value) and value.dtype == self.dtype class TimeDeltaBlock(IntBlock): __slots__ = () is_timedelta = True _can_hold_na = True is_numeric = False @property def fill_value(self): return tslib.iNaT def _try_fill(self, value): """ if we are a NaT, return the actual fill value """ if isinstance(value, type(tslib.NaT)) or np.array(isnull(value)).all(): value = tslib.iNaT elif isinstance(value, Timedelta): value = value.value elif isinstance(value, np.timedelta64): pass elif com.is_integer(value): # coerce to seconds of timedelta value = np.timedelta64(int(value * 1e9)) elif isinstance(value, timedelta): value = np.timedelta64(value) return value def _try_coerce_args(self, values, other): """ Coerce values and other to float64, with null values converted to NaN. values is always ndarray-like, other may not be """ def masker(v): mask = isnull(v) v = v.astype('float64') v[mask] = np.nan return v values = masker(values) if is_null_datelike_scalar(other): other = np.nan elif isinstance(other, (np.timedelta64, Timedelta, timedelta)): other = _coerce_scalar_to_timedelta_type(other, unit='s', box=False).item() if other == tslib.iNaT: other = np.nan elif lib.isscalar(other): other = np.float64(other) else: other = masker(other) return values, other def _try_operate(self, values): """ return a version to operate on """ return values.view('i8') def _try_coerce_result(self, result): """ reverse of try_coerce_args / try_operate """ if isinstance(result, np.ndarray): mask = isnull(result) if result.dtype.kind in ['i', 'f', 'O']: result = result.astype('m8[ns]') result[mask] = tslib.iNaT elif isinstance(result, np.integer): result = lib.Timedelta(result) return result def should_store(self, value): return issubclass(value.dtype.type, np.timedelta64) def to_native_types(self, slicer=None, na_rep=None, quoting=None, **kwargs): """ convert to our native types format, slicing if desired """ values = self.values if slicer is not None: values = values[:, slicer] mask = isnull(values) rvalues = np.empty(values.shape, dtype=object) if na_rep is None: na_rep = 'NaT' rvalues[mask] = na_rep imask = (~mask).ravel() #### FIXME #### # should use the core.format.Timedelta64Formatter here # to figure what format to pass to the Timedelta # e.g. to not show the decimals say rvalues.flat[imask] = np.array([Timedelta(val)._repr_base(format='all') for val in values.ravel()[imask]], dtype=object) return rvalues def get_values(self, dtype=None): # return object dtypes as Timedelta if dtype == object: return lib.map_infer(self.values.ravel(), lib.Timedelta ).reshape(self.values.shape) return self.values class BoolBlock(NumericBlock): __slots__ = () is_bool = True _can_hold_na = False def _can_hold_element(self, element): if is_list_like(element): element = np.array(element) return issubclass(element.dtype.type, np.integer) return isinstance(element, (int, bool)) def _try_cast(self, element): try: return bool(element) except: # pragma: no cover return element def should_store(self, value): return issubclass(value.dtype.type, np.bool_) def replace(self, to_replace, value, inplace=False, filter=None, regex=False): to_replace_values = np.atleast_1d(to_replace) if not np.can_cast(to_replace_values, bool): return self return super(BoolBlock, self).replace(to_replace, value, inplace=inplace, filter=filter, regex=regex) class ObjectBlock(Block): __slots__ = () is_object = True _can_hold_na = True def __init__(self, values, ndim=2, fastpath=False, placement=None): if issubclass(values.dtype.type, compat.string_types): values = np.array(values, dtype=object) super(ObjectBlock, self).__init__(values, ndim=ndim, fastpath=fastpath, placement=placement) @property def is_bool(self): """ we can be a bool if we have only bool values but are of type object """ return lib.is_bool_array(self.values.ravel()) def convert(self, datetime=True, numeric=True, timedelta=True, coerce=False, copy=True, by_item=True): """ attempt to coerce any object types to better types return a copy of the block (if copy = True) by definition we ARE an ObjectBlock!!!!! can return multiple blocks! """ # attempt to create new type blocks blocks = [] if by_item and not self._is_single_block: for i, rl in enumerate(self.mgr_locs): values = self.iget(i) values = com._possibly_convert_objects( values.ravel(), datetime=datetime, numeric=numeric, timedelta=timedelta, coerce=coerce, copy=copy ).reshape(values.shape) values = _block_shape(values, ndim=self.ndim) newb = make_block(values, ndim=self.ndim, placement=[rl]) blocks.append(newb) else: values = com._possibly_convert_objects( self.values.ravel(), datetime=datetime, numeric=numeric, timedelta=timedelta, coerce=coerce, copy=copy ).reshape(self.values.shape) blocks.append(make_block(values, ndim=self.ndim, placement=self.mgr_locs)) return blocks def set(self, locs, values, check=False): """ Modify Block in-place with new item value Returns ------- None """ # GH6026 if check: try: if (self.values[locs] == values).all(): return except: pass try: self.values[locs] = values except (ValueError): # broadcasting error # see GH6171 new_shape = list(values.shape) new_shape[0] = len(self.items) self.values = np.empty(tuple(new_shape),dtype=self.dtype) self.values.fill(np.nan) self.values[locs] = values def _maybe_downcast(self, blocks, downcast=None): if downcast is not None: return blocks # split and convert the blocks result_blocks = [] for blk in blocks: result_blocks.extend(blk.convert(datetime=True, numeric=False)) return result_blocks def _can_hold_element(self, element): return True def _try_cast(self, element): return element def should_store(self, value): return not (issubclass(value.dtype.type, (np.integer, np.floating, np.complexfloating, np.datetime64, np.bool_)) or com.is_categorical_dtype(value)) def replace(self, to_replace, value, inplace=False, filter=None, regex=False): blk = [self] to_rep_is_list = com.is_list_like(to_replace) value_is_list = com.is_list_like(value) both_lists = to_rep_is_list and value_is_list either_list = to_rep_is_list or value_is_list if not either_list and com.is_re(to_replace): blk[0], = blk[0]._replace_single(to_replace, value, inplace=inplace, filter=filter, regex=True) elif not (either_list or regex): blk = super(ObjectBlock, self).replace(to_replace, value, inplace=inplace, filter=filter, regex=regex) elif both_lists: for to_rep, v in zip(to_replace, value): blk[0], = blk[0]._replace_single(to_rep, v, inplace=inplace, filter=filter, regex=regex) elif to_rep_is_list and regex: for to_rep in to_replace: blk[0], = blk[0]._replace_single(to_rep, value, inplace=inplace, filter=filter, regex=regex) else: blk[0], = blk[0]._replace_single(to_replace, value, inplace=inplace, filter=filter, regex=regex) return blk def _replace_single(self, to_replace, value, inplace=False, filter=None, regex=False): # to_replace is regex compilable to_rep_re = regex and com.is_re_compilable(to_replace) # regex is regex compilable regex_re = com.is_re_compilable(regex) # only one will survive if to_rep_re and regex_re: raise AssertionError('only one of to_replace and regex can be ' 'regex compilable') # if regex was passed as something that can be a regex (rather than a # boolean) if regex_re: to_replace = regex regex = regex_re or to_rep_re # try to get the pattern attribute (compiled re) or it's a string try: pattern = to_replace.pattern except AttributeError: pattern = to_replace # if the pattern is not empty and to_replace is either a string or a # regex if regex and pattern: rx = re.compile(to_replace) else: # if the thing to replace is not a string or compiled regex call # the superclass method -> to_replace is some kind of object result = super(ObjectBlock, self).replace(to_replace, value, inplace=inplace, filter=filter, regex=regex) if not isinstance(result, list): result = [result] return result new_values = self.values if inplace else self.values.copy() # deal with replacing values with objects (strings) that match but # whose replacement is not a string (numeric, nan, object) if isnull(value) or not isinstance(value, compat.string_types): def re_replacer(s): try: return value if rx.search(s) is not None else s except TypeError: return s else: # value is guaranteed to be a string here, s can be either a string # or null if it's null it gets returned def re_replacer(s): try: return rx.sub(value, s) except TypeError: return s f = np.vectorize(re_replacer, otypes=[self.dtype]) if filter is None: filt = slice(None) else: filt = self.mgr_locs.isin(filter).nonzero()[0] new_values[filt] = f(new_values[filt]) return [self if inplace else make_block(new_values, fastpath=True, placement=self.mgr_locs)] class CategoricalBlock(NonConsolidatableMixIn, ObjectBlock): __slots__ = () is_categorical = True _can_hold_na = True _holder = Categorical def __init__(self, values, placement, fastpath=False, **kwargs): # coerce to categorical if we can super(CategoricalBlock, self).__init__(maybe_to_categorical(values), fastpath=True, placement=placement, **kwargs) @property def is_view(self): """ I am never a view """ return False def to_dense(self): return self.values.to_dense().view() def convert(self, copy=True, **kwargs): return [self.copy() if copy else self] @property def shape(self): return (len(self.mgr_locs), len(self.values)) @property def array_dtype(self): """ the dtype to return if I want to construct this block as an array """ return np.object_ def _slice(self, slicer): """ return a slice of my values """ # slice the category # return same dims as we currently have return self.values._slice(slicer) def fillna(self, value, limit=None, inplace=False, downcast=None): # we may need to upcast our fill to match our dtype if limit is not None: raise NotImplementedError("specifying a limit for 'fillna' has " "not been implemented yet") values = self.values if inplace else self.values.copy() return [self.make_block_same_class(values=values.fillna(value=value, limit=limit), placement=self.mgr_locs)] def interpolate(self, method='pad', axis=0, inplace=False, limit=None, fill_value=None, **kwargs): values = self.values if inplace else self.values.copy() return self.make_block_same_class(values=values.fillna(fill_value=fill_value, method=method, limit=limit), placement=self.mgr_locs) def shift(self, periods, axis=0): return self.make_block_same_class(values=self.values.shift(periods), placement=self.mgr_locs) def take_nd(self, indexer, axis=0, new_mgr_locs=None, fill_tuple=None): """ Take values according to indexer and return them as a block.bb """ if fill_tuple is None: fill_value = None else: fill_value = fill_tuple[0] # axis doesn't matter; we are really a single-dim object # but are passed the axis depending on the calling routing # if its REALLY axis 0, then this will be a reindex and not a take new_values = self.values.take_nd(indexer, fill_value=fill_value) # if we are a 1-dim object, then always place at 0 if self.ndim == 1: new_mgr_locs = [0] else: if new_mgr_locs is None: new_mgr_locs = self.mgr_locs return self.make_block_same_class(new_values, new_mgr_locs) def putmask(self, mask, new, align=True, inplace=False): """ putmask the data to the block; it is possible that we may create a new dtype of block return the resulting block(s) Parameters ---------- mask : the condition to respect new : a ndarray/object align : boolean, perform alignment on other/cond, default is True inplace : perform inplace modification, default is False Returns ------- a new block(s), the result of the putmask """ new_values = self.values if inplace else self.values.copy() new_values[mask] = new return [self.make_block_same_class(values=new_values, placement=self.mgr_locs)] def _astype(self, dtype, copy=False, raise_on_error=True, values=None, klass=None): """ Coerce to the new type (if copy=True, return a new copy) raise on an except if raise == True """ if self.is_categorical_astype(dtype): values = self.values else: values = np.asarray(self.values).astype(dtype, copy=False) if copy: values = values.copy() return make_block(values, ndim=self.ndim, placement=self.mgr_locs) def to_native_types(self, slicer=None, na_rep='', quoting=None, **kwargs): """ convert to our native types format, slicing if desired """ values = self.values if slicer is not None: # Categorical is always one dimension values = values[slicer] mask = isnull(values) values = np.array(values, dtype='object') values[mask] = na_rep # we are expected to return a 2-d ndarray return values.reshape(1,len(values)) class DatetimeBlock(Block): __slots__ = () is_datetime = True _can_hold_na = True def __init__(self, values, placement, fastpath=False, **kwargs): if values.dtype != _NS_DTYPE: values =
tslib.cast_to_nanoseconds(values)
pandas.tslib.cast_to_nanoseconds
# -*- coding: utf-8 -*- # Name: pypandas # Version: 0.1a3 # Owner: <NAME> import pandas as pd def employees_num(engine): """Get number of employees""" df = pd.read_sql_table('employees', con=engine) num = df.employee_id.count() return num def sales_num_per_category(engine): """Get sales per category""" df1 = pd.read_sql_table('order_details', con=engine) df1 = df1[['order_id', 'product_id']] df2 = pd.read_sql_table('products', con=engine) df2 = df2[['product_id', 'category_id']] df3 = pd.merge(df1, df2, on='product_id', how='outer') df4 = pd.read_sql_table('categories', con=engine) df4 = df4[['category_id', 'category_name']] df5 = pd.merge(df3, df4, on='category_id', how='outer') df5 = df5[['order_id', 'category_name']].drop_duplicates() tmp = df5.groupby(['category_name']).count()['order_id'] tmp = tmp.to_frame(name='orders').sort_values(['orders'], ascending=False) result = tmp.to_dict()['orders'] return result def sales_num_per_region(engine): """Get total sales per region""" df = pd.read_sql_table('orders', con=engine) tmp = df.groupby(['ship_region']).count()['order_id'] tmp = tmp.to_frame(name='orders').sort_values(['orders'], ascending=False) result = tmp.to_dict()['orders'] return result def statistics_per_year(engine): """Get sales_overview for each year. Total sales, total products sold, best customer country, best selling category. """ data = {} data['year'] = [] data['sales_num'] = [] data['products_num_sold'] = [] data['top_country'] = [] data['top_category'] = [] df1 = pd.read_sql_table('order_details', con=engine) df2 = pd.read_sql_table('orders', con=engine) df3 = pd.merge(df1, df2, on='order_id', how='outer') df4 = pd.read_sql_table('products', con=engine) df5 = pd.merge(df3, df4, on='product_id', how='outer') df6 = pd.read_sql_table('categories', con=engine) df7 = pd.merge(df5, df6, on='category_id', how='outer') df7 = df7[['order_id', 'order_date', 'quantity', 'unit_price_x', 'ship_country', 'category_name']] df7['year'] = df7.order_date.dt.year years = sorted(df7.year.unique()) for year in years: data['year'].append(year) num = len(df7[df7.year == year]['order_id'].unique()) data['sales_num'].append(num) num = df7[df7.year == year].quantity.sum() data['products_num_sold'].append(num) value = df7[df7.year == year].groupby(['ship_country']) \ .count()['order_id'].to_frame(name='orders') \ .sort_values(['orders'], ascending=False).head(1).index[0] data['top_country'].append(value) value = df7[df7.year == year].groupby(['category_name']) \ .count()['order_id'].to_frame(name='orders') \ .sort_values(['orders'], ascending=False).head(1).index[0] data['top_category'].append(value) return data def suppliers_num(engine): """Get number of suppliers""" df = pd.read_sql_table('suppliers', con=engine) num = df.supplier_id.count() return num def top_countries(engine, limit=5): """Get top selling countries, sales per country""" df =
pd.read_sql_table('orders', con=engine)
pandas.read_sql_table
from calendar import monthrange from datetime import datetime import pandas as pd from flask import Blueprint, jsonify, abort, g from gatekeeping.api.budget import get_budget from gatekeeping.api.position import get_positions from gatekeeping.api.function import get_functions, get_function from gatekeeping.api.user import get_user_function def get_line_chart(function=None): positions = get_positions(check_submitter=False) budget = get_budget() columns = [row.keys() for row in positions] positions = pd.DataFrame(positions, columns=columns[0]) budget = pd.DataFrame(budget, columns=columns[0]) if function: if function != 'All': positions = positions.loc[positions['function'] == function] budget = budget.loc[budget['function'] == function] if g.user['type'] != 'ADMIN' and function == 'All': functions = get_user_function(g.user['id']) function_names = [get_function(function['function_id'])['name'] for function in functions] positions = positions.loc[positions['function'].isin(function_names)] budget = budget.loc[budget['function'].isin(function_names)] positions['FTE'] = pd.to_numeric(positions['hours'], errors='coerce') / 40 budget['FTE'] = pd.to_numeric(budget['hours'], errors='coerce') / 40 positions['salary'] = pd.to_numeric(positions['salary'], errors='coerce') positions['fringe_benefit'] = pd.to_numeric(positions['fringe_benefit'], errors='coerce') positions['social_security_contribution'] = pd.to_numeric(positions['social_security_contribution'], errors='coerce') budget['salary'] = pd.to_numeric(budget['salary'], errors='coerce') budget['fringe_benefit'] = pd.to_numeric(budget['fringe_benefit'], errors='coerce') budget['social_security_contribution'] = pd.to_numeric(budget['social_security_contribution'], errors='coerce') positions['total_cost'] = positions['salary'].add(positions['fringe_benefit'], fill_value=0).add(positions['social_security_contribution'], fill_value=0) budget['total_cost'] = budget['salary'].add(budget['fringe_benefit'], fill_value=0).add(budget['social_security_contribution'], fill_value=0) positions['start_date'] = pd.to_datetime(positions['start_date'], errors='coerce') positions['end_date'] = pd.to_datetime(positions['end_date'], errors='coerce') budget['start_date'] = pd.to_datetime(budget['start_date'], errors='coerce') budget['end_date'] =
pd.to_datetime(budget['end_date'], errors='coerce')
pandas.to_datetime
import pandas as pd import requests import hmac import hashlib import json import base64 import time import math from .base import BaseAPIWrapper, private_api from .exception import ExchangeAPIException def truncate(f, n): return math.floor(round(f * 10 ** n, n)) / 10 ** n class CoinoneAPIWrapper(BaseAPIWrapper): host = 'https://api.coinone.co.kr/' error_messages = { '4': 'Blocked user access', '11': 'Access token is missing', '12': 'Invalid access token', '40': 'Invalid API permission', '50': 'Authenticate error', '51': 'Invalid API', '52': 'Deprecated API', '53': 'Two Factor Auth Fail', '100': 'Session expired', '101': 'Invalid format', '102': 'ID is not exist', '103': 'Lack of Balance', '104': 'Order id is not exist', '105': 'Price is not correct', '106': 'Locking error', '107': 'Parameter error', '111': 'Order id is not exist', '112': 'Cancel failed', '113': 'Quantity is too low(ETH, ETC > 0.01)', '120': 'V2 API payload is missing', '121': 'V2 API signature is missing', '122': 'V2 API nonce is missing', '123': 'V2 API signature is not correct', '130': 'V2 API Nonce value must be a positive integer', '131': 'V2 API Nonce is must be bigger then last nonce', '132': 'V2 API body is corrupted', '141': 'Too many limit orders', '150': "It's V1 API. V2 Access token is not acceptable", '151': "It's V2 API. V1 Access token is not acceptable", '200': 'Wallet Error', '202': 'Limitation error', '210': 'Limitation error', '220': 'Limitation error', '221': 'Limitation error', '310': 'Mobile auth error', '311': 'Need mobile auth', '312': 'Name is not correct', '330': 'Phone number error', '404': 'Page not found error', '405': 'Server error', '429': 'Too Many Requests', '444': 'Locking error', '500': 'Email error', '501': 'Email error', '777': 'Mobile auth error', '778': 'Phone number error', '779': 'Address error', '1202': 'App not found', '1203': 'Already registered', '1204': 'Invalid access', '1205': 'API Key error', '1206': 'User not found', '1207': 'User not found', '1208': 'User not found', '1209': 'User not found' } def __init__(self, api_key=None, secret_key=None): super().__init__('coinone', api_key, secret_key) # self.ticker_keys = ['high', 'low', 'last', 'first', 'volume', # 'yesterday_high', 'yesterday_low', 'yesterday_last', 'yesterday_first', 'yesterday_volume'] def get_base_payload(self): return { 'access_token': self.api_key } @staticmethod def get_encoded_payload(payload): payload['nonce'] = int(time.time()*1000) dumped_json = json.dumps(payload) encoded_json = base64.b64encode(dumped_json.encode()) return encoded_json def get_signature(self, encoded_payload): signature = hmac.new(self.secret_key.upper().encode(), encoded_payload, hashlib.sha512) return signature.hexdigest() def prepare_request(self, method, endpoint, **kwargs): params = dict(**kwargs.get('additional_params', {})) payload = dict(**kwargs.get('additional_payload', {})) headers = { 'Content-Type': 'application/json' } if kwargs.get('private', True): payload = self.get_encoded_payload(dict(payload, **self.get_base_payload())) signature = self.get_signature(payload) headers = dict(headers, **{ 'X-COINONE-PAYLOAD': payload, 'X-COINONE-SIGNATURE': signature }) return requests.Request( method=method, url=(self.host + endpoint), headers=headers, params=params, data=payload ).prepare() def is_req_succeed(self, resp): try: data = resp.json() return int(data.get('errorCode')) == 0 except Exception as e: return json.loads(resp.content.decode('utf-8').replace('“','"').replace('”','"')).get("errorCode") == 0 def get_error_message(self, resp): try: data = resp.json() return self.error_messages.get(str(data.get('errorCode'))) except Exception as e: return self.error_messages.get(json.loads(resp.content.decode('utf-8').replace('“','"').replace('”','"')).get("errorCode")) def get_ticker(self, currency, *args, **kwargs): endpoint = 'ticker/' resp = self.request('GET', endpoint, additional_params={ 'currency': currency }, private=False) if not self.is_req_succeed(resp): return self.get_error_message(resp) else: resp = resp.json() return {k: resp[k] for k in resp.keys() & self.ticker_keys} def get_transactions(self, currency, *args, **kwargs): endpoint = 'trades/' resp = self.request('GET', endpoint, additional_params={ 'currency': currency, 'period': kwargs.get('period', 'hour') }, private=False) if not self.is_req_succeed(resp): return self.get_error_message(resp) else: resp = resp.json() return resp.get('completeOrders') def get_orderbook(self, currency, fiat, limit, *args, **kwargs): endpoint = 'orderbook/' resp = self.request('GET', endpoint, additional_params={ 'currency': currency }, private=False) if not self.is_req_succeed(resp): return self.get_error_message(resp) else: resp = resp.json() orderbook_dict = {'ask_price': list(), 'ask_quantity': list(), 'bid_price': list(), 'bid_quantity': list()} for i in resp['ask'][:limit]: for k, v in i.items(): orderbook_dict['ask_{}'.format('quantity' if k == 'qty' else k)].append(float(v)) for i in resp['bid'][:limit]: for k, v in i.items(): orderbook_dict['bid_{}'.format('quantity' if k =='qty' else k)].append(float(v)) return {'orderbook':
pd.DataFrame(orderbook_dict)
pandas.DataFrame
#!/usr/bin/env python """ Functions used to generate results tables. Used for results in 'Dynamic nested sampling: an improved algorithm for nested sampling parameter estimation and evidence calculation' (Higson et al., 2019). """ import copy import pandas as pd import numpy as np import nestcheck.io_utils as iou import nestcheck.ns_run_utils import nestcheck.error_analysis import nestcheck.parallel_utils as pu import nestcheck.pandas_functions as pf import perfectns.nested_sampling as ns import perfectns.priors as priors import perfectns.estimators as e @iou.timing_decorator def get_dynamic_results(n_run, dynamic_goals_in, estimator_list_in, settings_in, **kwargs): """ Generate data frame showing the standard deviations of the results of repeated calculations and efficiency gains (ratios of variances of results calculations) from different dynamic goals. To make the comparison fair, for dynamic nested sampling settings.n_samples_max is set to slightly below the mean number of samples used by standard nested sampling. This function was used for Tables 1, 2, 3 and 4, as well as to generate the results shown in figures 6 and 7 of 'Dynamic nested sampling: an improved algorithm for nested sampling parameter estimation and evidence calculation' (Higson et al., 2019). See the paper for a more detailed description. Parameters ---------- n_run: int how many runs to use dynamic_goals_in: list of floats which dynamic goals to test estimator_list_in: list of estimator objects settings_in: PerfectNSSettings object load: bool, optional should run data and results be loaded if available? save: bool, optional should run data and results be saved? overwrite_existing: bool, optional if a file exists already but we generate new run data, should we overwrite the existing file when saved? run_random_seeds: list, optional list of random seeds to use for generating runs. parallel: bool, optional cache_dir: str, optional Directory to use for caching. tuned_dynamic_ps: list of bools, same length as dynamic_goals_in, optional max_workers: int or None, optional Number of processes. If max_workers is None then concurrent.futures.ProcessPoolExecutor defaults to using the number of processors of the machine. N.B. If max_workers=None and running on supercomputer clusters with multiple nodes, this may default to the number of processors on a single node and therefore there will be no speedup from multiple nodes (must specify manually in this case). Returns ------- results: pandas data frame results data frame. Contains rows: mean [dynamic goal]: mean calculation result for standard nested sampling and dynamic nested sampling with each input dynamic goal. std [dynamic goal]: standard deviation of results for standard nested sampling and dynamic nested sampling with each input dynamic goal. gain [dynamic goal]: the efficiency gain (computational speedup) from dynamic nested sampling compared to standard nested sampling. This equals (variance of standard results) / (variance of dynamic results); see the dynamic nested sampling paper for more details. """ load = kwargs.pop('load', False) save = kwargs.pop('save', False) max_workers = kwargs.pop('max_workers', None) parallel = kwargs.pop('parallel', True) cache_dir = kwargs.pop('cache_dir', 'cache') overwrite_existing = kwargs.pop('overwrite_existing', True) run_random_seeds = kwargs.pop('run_random_seeds', list(range(n_run))) tuned_dynamic_ps = kwargs.pop('tuned_dynamic_ps', [False] * len(dynamic_goals_in)) assert len(tuned_dynamic_ps) == len(dynamic_goals_in) for goal in dynamic_goals_in: assert goal is not None, \ 'Goals should be dynamic - standard NS already included' # Add a standard nested sampling run for comparison: dynamic_goals = [None] + dynamic_goals_in tuned_dynamic_ps = [False] + tuned_dynamic_ps if kwargs: raise TypeError('Unexpected **kwargs: {0}'.format(kwargs)) # Make a copy of the input settings to stop us editing them settings = copy.deepcopy(settings_in) # make save_name save_root = 'dynamic_test' for dg in dynamic_goals_in: save_root += '_' + str(dg).replace('.', '_') save_root += '_' + settings.save_name(include_dg=False) save_root += '_' + str(n_run) + 'reps' save_file = cache_dir + '/' + save_root + '.pkl' # try loading results if load: try: return pd.read_pickle(save_file) except OSError: print('Could not load file: ' + save_file) # start function # -------------- # get info on the number of samples taken in each run as well estimator_list = [e.CountSamples()] + estimator_list_in est_names = [est.latex_name for est in estimator_list] method_names = [] method_values = [] assert dynamic_goals[0] is None, ( 'Need to start with standard ns to calculate efficiency gains') for i, dynamic_goal in enumerate(dynamic_goals): # set up settings settings.dynamic_goal = dynamic_goal settings.tuned_dynamic_p = tuned_dynamic_ps[i] # if we have already done the standard calculation, set n_samples_max # for dynamic calculations so it is slightly smaller than the number # of samples the standard calculation used to ensure a fair comparison # of performance. Otherwise dynamic nested sampling will end up using # more samples than standard nested sampling as it does not terminate # until after the number of samples is greater than n_samples_max. if i != 0 and settings.dynamic_goal is not None: assert dynamic_goals[0] is None assert isinstance(estimator_list[0], e.CountSamples) n_samples_max = np.mean(np.asarray([val[0] for val in method_values[0]])) # This factor is a function of the dynamic goal as typically # evidence calculations have longer additional threads than # parameter estimation calculations. reduce_factor = 1 - ((1.5 - 0.5 * settings.dynamic_goal) * (settings.nbatch / settings.nlive_const)) settings.n_samples_max = int(n_samples_max * reduce_factor) print('dynamic_goal=' + str(settings.dynamic_goal), 'n_samples_max=' + str(settings.n_samples_max)) # get a name for this calculation method if dynamic_goal is None: method_names.append('standard') else: method_names.append('dynamic $G=' + str(settings.dynamic_goal) + '$') if settings.tuned_dynamic_p is True: method_names[-1] += ' tuned' # generate runs and get results run_list = ns.get_run_data(settings, n_run, parallel=parallel, random_seeds=run_random_seeds, load=load, save=save, max_workers=max_workers, cache_dir=cache_dir, overwrite_existing=overwrite_existing) method_values.append(pu.parallel_apply( nestcheck.ns_run_utils.run_estimators, run_list, func_args=(estimator_list,), max_workers=max_workers, parallel=parallel)) results = pf.efficiency_gain_df(method_names, method_values, est_names) if save: # save the results data frame print('get_dynamic_results: saving results to\n' + save_file) results.to_pickle(save_file) return results @iou.timing_decorator def merged_dynamic_results(dim_scale_list, likelihood_list, settings, estimator_list, **kwargs): """ Wrapper for running get_dynamic_results for many different likelihood, dimension and prior scales, and merging the output into a single data frame. See get_dynamic_results doccumentation for more details. Parameters ---------- dim_scale_list: list of tuples (dim, prior_scale) pairs to run likelihood_list: list of likelihood objects settings_in: PerfectNSSettings object estimator_list: list of estimator objects n_run: int, optional number of runs for use with each setting. dynamic_goals_in: list of floats, optional which dynamic goals to test (remaining kwargs passed to get_dynamic_results) Returns ------- results: pandas data frame """ dynamic_goals = kwargs.pop('dynamic_goals', [0, 1]) load = kwargs.pop('load', True) # ensure default True for merged results save = kwargs.pop('save', True) # ensure default True for merged results n_run = kwargs.pop('n_run', 1000) results_list = [] for likelihood in likelihood_list: for n_dim, prior_scale in dim_scale_list: settings.n_dim = n_dim settings.likelihood = likelihood if n_dim >= 50: settings.prior = priors.GaussianCached(prior_scale=prior_scale) else: settings.prior = priors.Gaussian(prior_scale=prior_scale) like_lab = (type(settings.likelihood).__name__ .replace('ExpPower', 'Exp Power')) if type(settings.likelihood).__name__ == 'ExpPower': like_lab += (', $b=' + str(settings.likelihood.power) .replace('0.75', r'\frac{3}{4}') + '$') print(like_lab, 'd=' + str(n_dim), 'prior_scale=' + str(prior_scale)) df_temp = get_dynamic_results( n_run, dynamic_goals, estimator_list, settings, save=save, load=load, **kwargs) new_inds = ['likelihood', 'dimension $d$', r'$\sigma_\pi$'] df_temp[new_inds[0]] = like_lab df_temp[new_inds[1]] = settings.n_dim df_temp[new_inds[2]] = settings.prior.prior_scale order = new_inds + list(df_temp.index.names) df_temp.set_index(new_inds, drop=True, append=True, inplace=True) df_temp = df_temp.reorder_levels(order) results_list.append(df_temp) results =
pd.concat(results_list)
pandas.concat
#!/usr/bin/env python """Plot data for deepmod methylation calling""" ######################################################################## # File: plot_deepmod_methylation_calling.py # executable: plot_deepmod_methylation_calling.py # # Author: <NAME> # History: Created 04/02/19 ######################################################################## import pandas as pd import numpy as np import os import matplotlib.pyplot as plt from py3helpers.classification import ClassificationMetrics from py3helpers.utils import list_dir, time_it from py3helpers.seq_tools import ReverseComplement class CustomAmbiguityPositions(object): def __init__(self, ambig_filepath): """Deal with ambiguous positions from a tsv ambiguity position file with the format of contig position strand change_from change_to 'name' 0 indexed position +/- C E :param ambig_filepath: path to ambiguity position file""" self.ambig_df = self.parseAmbiguityFile(ambig_filepath) @staticmethod def parseAmbiguityFile(ambig_filepath): """Parses a 'ambiguity position file' that should have the format: contig position strand change_from change_to :param ambig_filepath: path to ambiguity position file """ return pd.read_csv(ambig_filepath, sep='\t', usecols=(0, 1, 2, 3, 4), names=["contig", "position", "strand", "change_from", "change_to"], dtype={"contig": np.str, "position": np.int, "strand": np.str, "change_from": np.str, "change_to": np.str}) def getForwardSequence(self, contig, raw_sequence): """Edit 'raw_sequence' given a ambiguity positions file. Assumes raw_sequence is forward direction( 5'-3') :param contig: which contig the sequence belongs (aka header) :param raw_sequence: raw nucleotide sequence :return: edited nucleotide sequence """ return self._get_substituted_sequence(contig, raw_sequence, "+") def getBackwardSequence(self, contig, raw_sequence): """Edit 'raw_sequence' given a ambiguity positions file, Assumes raw_sequence is forward direction( 5'-3') :param contig: which contig the sequence belongs (aka header) :param raw_sequence: raw nucleotide sequence :return: edited nucleotide sequence """ rc = ReverseComplement() raw_sequence = rc.complement(raw_sequence) return self._get_substituted_sequence(contig, raw_sequence, "-") def _get_substituted_sequence(self, contig, raw_sequence, strand): """Change the given raw nucleotide sequence using the edits defined in the positions file :param contig: name of contig to find :param raw_sequence: nucleotide sequence (note: this is note edited in this function) :param strand: '+' or '-' to indicate strand """ contif_df = self._get_contig_positions(contig, strand) raw_sequence = list(raw_sequence) for _, row in contif_df.iterrows(): if raw_sequence[row["position"]] != row["change_from"]: raise RuntimeError( "[CustomAmbiguityPositions._get_substituted_sequence]Illegal substitution requesting " "change from %s to %s, row: %s" % (raw_sequence[row["position"]], row["change_to"], row)) raw_sequence[row["position"]] = row["change_to"] return "".join(raw_sequence) def _get_contig_positions(self, contig, strand): """Get all unique locations within the positions file :param contig: name of contig to find :param strand: '+' or '-' to indicate strand """ df = self.ambig_df.loc[ (self.ambig_df["contig"] == contig) & (self.ambig_df["strand"] == strand)].drop_duplicates() assert len(df['position']) == len(set(df['position'])), "Multiple different changes for a single position. {}" \ .format(df['position']) return df def parse_deepmod_bed(deepmod_bed_path): """Parse the summary chromosome bed file output from deepmod eg: Chromosome 2 3 C 8 + 2 3 0,0,0 8 0 0 """ return pd.read_csv(deepmod_bed_path, sep=" ", header=None, usecols=(0, 1, 3, 5, 9, 10, 11), names=["contig", "start_position", "base", "strand", "n_reads", "modification_percentage", "n_mod_calls"], dtype={"contig": np.str, "start_position": np.int, "base": np.str, "strand": np.str, "n_reads": np.int, "modification_percentage": np.int, "n_mod_calls": np.int}) def aggregate_deepmod_data(deepmod_output_dir): deepmod_beds = list_dir(deepmod_output_dir, ext="bed") deepmod_bed_data = [] for bed in deepmod_beds: data = parse_deepmod_bed(bed) data["E"] = (data["modification_percentage"] / 100) data["C"] = 1 - (data["modification_percentage"] / 100) deepmod_bed_data.append(data) return pd.concat(deepmod_bed_data) def print_confusion_matrix(tp, fp, fn, tn): precision = tp / (tp + fp) false_discovery_rate = fp / (tp + fp) false_omission_rate = fn / (tn + fn) negative_predictive_value = tn / (tn + fn) true_positive_rate_recall = tp / (tp + fn) false_negative_rate = fn / (tp + fn) false_positive_rate = fp / (fp + tn) true_negative_rate_specificity = tn / (tn + fp) positive_likelihood_ratio = true_positive_rate_recall / false_positive_rate negative_likelihood_ratio = false_negative_rate / true_negative_rate_specificity diagnostic_odds_ratio = positive_likelihood_ratio / negative_likelihood_ratio f1_score = 2 * ((precision * true_positive_rate_recall) / (precision + true_positive_rate_recall)) return (np.asarray( [[tp, fp, precision, false_discovery_rate], [fn, tn, false_omission_rate, negative_predictive_value], [true_positive_rate_recall, false_positive_rate, positive_likelihood_ratio, diagnostic_odds_ratio], [false_negative_rate, true_negative_rate_specificity, negative_likelihood_ratio, f1_score]])) def plot_confusion_matrix(tp, fp, fn, tn, classes=("E", "C"), title="Confusion Matrix", output_path=None, normalize=False): """Plot the confusion matrix with the information of each box explained :param classes: classes to label axis :param normalize: option to normalize output of confusion matrix :param tp: true positives :param fp: false positives :param fn: false negatives :param tn: true negatives :param title: title of the plot :param output_path: place to save plot """ data = np.asarray([[tp, fp], [fn, tn]]) # total = sum([tp, fp, fn, tn]) # precision = tp / (tp + fp) # false_discovery_rate = fp / (tp + fp) # # false_omission_rate = fn / (tn + fn) # negative_predictive_value = tn / (tn + fn) # # true_positive_rate_recall = tp / (tp + fn) # false_negative_rate = fn / (tp + fn) # # false_positive_rate = fp / (fp + tn) # true_negative_rate_specificity = tn / (tn + fp) # # positive_likelihood_ratio = true_positive_rate_recall / false_positive_rate # negative_likelihood_ratio = false_negative_rate / true_negative_rate_specificity # # diagnostic_odds_ratio = positive_likelihood_ratio / negative_likelihood_ratio # # f1_score = 2 * ((precision * true_positive_rate_recall) / (precision + true_positive_rate_recall)) if not title: if normalize: title = 'Normalized confusion matrix' else: title = 'Confusion matrix, without normalization' # Compute confusion matrix n_data = data.astype('float') / data.sum(axis=1)[:, np.newaxis] fig, ax = plt.subplots() im = ax.imshow(data, interpolation='nearest', cmap=plt.cm.Blues) ax.figure.colorbar(im, ax=ax) # We want to show all ticks... ax.set(xticks=np.arange(data.shape[1]), yticks=np.arange(data.shape[0]), xticklabels=classes, yticklabels=classes, title=title, ylabel='True label', xlabel='Predicted label') # Rotate the tick labels and set their alignment. plt.setp(ax.get_xticklabels(), rotation=45, ha="right", rotation_mode="anchor") # Loop over data dimensions and create text annotations. fmt = '.2f' if normalize else 'd' thresh = data.max() / 2. for i in range(data.shape[0]): for j in range(data.shape[1]): ax.text(j, i, format(data[i, j], 'd') + format(n_data[i, j], '.2f'), ha="center", va="center", color="white" if data[i, j] > thresh else "black") fig.tight_layout() if output_path is not None: plt.savefig(output_path) else: plt.show() return True def main(): cpg_positions_file = "/Users/andrewbailey/data/references/ecoli/CG_ecoli_k12_mg1655_C_E.positions" modified_deepmod_output_dir = "/Users/andrewbailey/CLionProjects/DeepMod/ecoli_pcr_MSssI_R9" canonical_deepmod_output_dir = "/Users/andrewbailey/CLionProjects/DeepMod/ecoli_pcr_MSssI_R9" output_dir = "/Users/andrewbailey/CLionProjects/modification_detection_pipeline/output_dir/plotting_output/" log_file_path = os.path.join(output_dir, "confusion_matrices_file.txt") cpg_positions = CustomAmbiguityPositions(cpg_positions_file) canonical_data = aggregate_deepmod_data(canonical_deepmod_output_dir) canonical_data["E_label"] = 0 canonical_data["C_label"] = 1 modified_data = aggregate_deepmod_data(modified_deepmod_output_dir) modified_data["E_label"] = 1 modified_data["C_label"] = 0 tps = 0 fps = 0 tns = 0 fns = 0 all_data = [] with open(log_file_path, "w") as log_file: chromosomes = set(modified_data["contig"]) | set(canonical_data["contig"]) strands = set(modified_data["strand"]) | set(canonical_data["strand"]) for chromosome in chromosomes: for strand in strands: # get positions for strand and contig sc_positions = cpg_positions.ambig_df.loc[(cpg_positions.ambig_df["strand"] == strand) & (cpg_positions.ambig_df["contig"] == chromosome)] # pare data sets for specific contig and strand to get positions that are cpgs mod_sc_data = modified_data.loc[(modified_data["contig"] == chromosome) & (modified_data["strand"] == strand)] mod_methylation_calls = mod_sc_data.loc[mod_sc_data["start_position"].isin(sc_positions["position"])] canon_sc_data = canonical_data.loc[(canonical_data["contig"] == chromosome) & (canonical_data["strand"] == strand)] canon_methylation_calls = canon_sc_data.loc[ canon_sc_data["start_position"].isin(sc_positions["position"])] # per site n_negative_calls = sum(canon_methylation_calls["n_reads"]) n_false_negatives = sum(canon_methylation_calls["n_mod_calls"]) n_true_negatives = n_negative_calls - n_false_negatives n_positive_calls = sum(mod_methylation_calls["n_reads"]) n_true_positives = sum(mod_methylation_calls["n_mod_calls"]) n_false_positives = n_positive_calls - n_true_positives tps += n_true_positives fps += n_false_positives tns += n_true_negatives fns += n_false_negatives print("Chromosome {} strand {}:".format(chromosome, strand), file=log_file) print("Per-call confusion matrix", file=log_file) print(print_confusion_matrix(n_true_positives, n_false_positives, n_false_negatives, n_true_negatives), file=log_file) plot_confusion_matrix(n_true_positives, n_false_positives, n_false_negatives, n_true_negatives, normalize=True, output_path=os.path.join(output_dir, "per_call_{}_{}_confusion_matrix.png".format(strand, chromosome)), title="Per call CpG Normalized Confusion Matrix {}{}".format(strand, chromosome)) # per genomic position chr_strand_data =
pd.concat([canon_methylation_calls, mod_methylation_calls])
pandas.concat
# -*- coding: utf-8 -*- # pylint: disable-msg=E1101,W0612 from datetime import datetime, timedelta import pytest import re from numpy import nan as NA import numpy as np from numpy.random import randint from pandas.compat import range, u import pandas.compat as compat from pandas import Index, Series, DataFrame, isna, MultiIndex, notna from pandas.util.testing import assert_series_equal import pandas.util.testing as tm import pandas.core.strings as strings class TestStringMethods(object): def test_api(self): # GH 6106, GH 9322 assert Series.str is strings.StringMethods assert isinstance(Series(['']).str, strings.StringMethods) # GH 9184 invalid = Series([1]) with tm.assert_raises_regex(AttributeError, "only use .str accessor"): invalid.str assert not hasattr(invalid, 'str') def test_iter(self): # GH3638 strs = 'google', 'wikimedia', 'wikipedia', 'wikitravel' ds = Series(strs) for s in ds.str: # iter must yield a Series assert isinstance(s, Series) # indices of each yielded Series should be equal to the index of # the original Series tm.assert_index_equal(s.index, ds.index) for el in s: # each element of the series is either a basestring/str or nan assert isinstance(el, compat.string_types) or isna(el) # desired behavior is to iterate until everything would be nan on the # next iter so make sure the last element of the iterator was 'l' in # this case since 'wikitravel' is the longest string assert s.dropna().values.item() == 'l' def test_iter_empty(self): ds = Series([], dtype=object) i, s = 100, 1 for i, s in enumerate(ds.str): pass # nothing to iterate over so nothing defined values should remain # unchanged assert i == 100 assert s == 1 def test_iter_single_element(self): ds = Series(['a']) for i, s in enumerate(ds.str): pass assert not i assert_series_equal(ds, s) def test_iter_object_try_string(self): ds = Series([slice(None, randint(10), randint(10, 20)) for _ in range( 4)]) i, s = 100, 'h' for i, s in enumerate(ds.str): pass assert i == 100 assert s == 'h' def test_cat(self): one = np.array(['a', 'a', 'b', 'b', 'c', NA], dtype=np.object_) two = np.array(['a', NA, 'b', 'd', 'foo', NA], dtype=np.object_) # single array result = strings.str_cat(one) exp = 'aabbc' assert result == exp result = strings.str_cat(one, na_rep='NA') exp = 'aabbcNA' assert result == exp result = strings.str_cat(one, na_rep='-') exp = 'aabbc-' assert result == exp result = strings.str_cat(one, sep='_', na_rep='NA') exp = 'a_a_b_b_c_NA' assert result == exp result = strings.str_cat(two, sep='-') exp = 'a-b-d-foo' assert result == exp # Multiple arrays result = strings.str_cat(one, [two], na_rep='NA') exp = np.array(['aa', 'aNA', 'bb', 'bd', 'cfoo', 'NANA'], dtype=np.object_) tm.assert_numpy_array_equal(result, exp) result = strings.str_cat(one, two) exp = np.array(['aa', NA, 'bb', 'bd', 'cfoo', NA], dtype=np.object_) tm.assert_almost_equal(result, exp) def test_count(self): values = np.array(['foo', 'foofoo', NA, 'foooofooofommmfoo'], dtype=np.object_) result = strings.str_count(values, 'f[o]+') exp = np.array([1, 2, NA, 4]) tm.assert_numpy_array_equal(result, exp) result = Series(values).str.count('f[o]+') exp = Series([1, 2, NA, 4]) assert isinstance(result, Series) tm.assert_series_equal(result, exp) # mixed mixed = ['a', NA, 'b', True, datetime.today(), 'foo', None, 1, 2.] rs = strings.str_count(mixed, 'a') xp = np.array([1, NA, 0, NA, NA, 0, NA, NA, NA]) tm.assert_numpy_array_equal(rs, xp) rs = Series(mixed).str.count('a') xp = Series([1, NA, 0, NA, NA, 0, NA, NA, NA]) assert isinstance(rs, Series) tm.assert_series_equal(rs, xp) # unicode values = [u('foo'), u('foofoo'), NA, u('foooofooofommmfoo')] result = strings.str_count(values, 'f[o]+') exp = np.array([1, 2, NA, 4]) tm.assert_numpy_array_equal(result, exp) result = Series(values).str.count('f[o]+') exp = Series([1, 2, NA, 4]) assert isinstance(result, Series) tm.assert_series_equal(result, exp) def test_contains(self): values = np.array(['foo', NA, 'fooommm__foo', 'mmm_', 'foommm[_]+bar'], dtype=np.object_) pat = 'mmm[_]+' result = strings.str_contains(values, pat) expected = np.array([False, NA, True, True, False], dtype=np.object_) tm.assert_numpy_array_equal(result, expected) result = strings.str_contains(values, pat, regex=False) expected = np.array([False, NA, False, False, True], dtype=np.object_) tm.assert_numpy_array_equal(result, expected) values = ['foo', 'xyz', 'fooommm__foo', 'mmm_'] result = strings.str_contains(values, pat) expected = np.array([False, False, True, True]) assert result.dtype == np.bool_ tm.assert_numpy_array_equal(result, expected) # case insensitive using regex values = ['Foo', 'xYz', 'fOOomMm__fOo', 'MMM_'] result = strings.str_contains(values, 'FOO|mmm', case=False) expected = np.array([True, False, True, True]) tm.assert_numpy_array_equal(result, expected) # case insensitive without regex result = strings.str_contains(values, 'foo', regex=False, case=False) expected = np.array([True, False, True, False]) tm.assert_numpy_array_equal(result, expected) # mixed mixed = ['a', NA, 'b', True, datetime.today(), 'foo', None, 1, 2.] rs = strings.str_contains(mixed, 'o') xp = np.array([False, NA, False, NA, NA, True, NA, NA, NA], dtype=np.object_) tm.assert_numpy_array_equal(rs, xp) rs = Series(mixed).str.contains('o') xp = Series([False, NA, False, NA, NA, True, NA, NA, NA]) assert isinstance(rs, Series) tm.assert_series_equal(rs, xp) # unicode values = np.array([u'foo', NA, u'fooommm__foo', u'mmm_'], dtype=np.object_) pat = 'mmm[_]+' result = strings.str_contains(values, pat) expected = np.array([False, np.nan, True, True], dtype=np.object_) tm.assert_numpy_array_equal(result, expected) result = strings.str_contains(values, pat, na=False) expected = np.array([False, False, True, True]) tm.assert_numpy_array_equal(result, expected) values = np.array(['foo', 'xyz', 'fooommm__foo', 'mmm_'], dtype=np.object_) result = strings.str_contains(values, pat) expected = np.array([False, False, True, True]) assert result.dtype == np.bool_ tm.assert_numpy_array_equal(result, expected) # na values = Series(['om', 'foo', np.nan]) res = values.str.contains('foo', na="foo") assert res.loc[2] == "foo" def test_startswith(self): values = Series(['om', NA, 'foo_nom', 'nom', 'bar_foo', NA, 'foo']) result = values.str.startswith('foo') exp = Series([False, NA, True, False, False, NA, True]) tm.assert_series_equal(result, exp) # mixed mixed = np.array(['a', NA, 'b', True, datetime.today(), 'foo', None, 1, 2.], dtype=np.object_) rs = strings.str_startswith(mixed, 'f') xp = np.array([False, NA, False, NA, NA, True, NA, NA, NA], dtype=np.object_) tm.assert_numpy_array_equal(rs, xp) rs = Series(mixed).str.startswith('f') assert isinstance(rs, Series) xp = Series([False, NA, False, NA, NA, True, NA, NA, NA]) tm.assert_series_equal(rs, xp) # unicode values = Series([u('om'), NA, u('foo_nom'), u('nom'), u('bar_foo'), NA, u('foo')]) result = values.str.startswith('foo') exp = Series([False, NA, True, False, False, NA, True]) tm.assert_series_equal(result, exp) result = values.str.startswith('foo', na=True) tm.assert_series_equal(result, exp.fillna(True).astype(bool)) def test_endswith(self): values = Series(['om', NA, 'foo_nom', 'nom', 'bar_foo', NA, 'foo']) result = values.str.endswith('foo') exp = Series([False, NA, False, False, True, NA, True]) tm.assert_series_equal(result, exp) # mixed mixed = ['a', NA, 'b', True, datetime.today(), 'foo', None, 1, 2.] rs = strings.str_endswith(mixed, 'f') xp = np.array([False, NA, False, NA, NA, False, NA, NA, NA], dtype=np.object_) tm.assert_numpy_array_equal(rs, xp) rs = Series(mixed).str.endswith('f') xp = Series([False, NA, False, NA, NA, False, NA, NA, NA]) assert isinstance(rs, Series) tm.assert_series_equal(rs, xp) # unicode values = Series([u('om'), NA, u('foo_nom'), u('nom'), u('bar_foo'), NA, u('foo')]) result = values.str.endswith('foo') exp = Series([False, NA, False, False, True, NA, True]) tm.assert_series_equal(result, exp) result = values.str.endswith('foo', na=False) tm.assert_series_equal(result, exp.fillna(False).astype(bool)) def test_title(self): values = Series(["FOO", "BAR", NA, "Blah", "blurg"]) result = values.str.title() exp = Series(["Foo", "Bar", NA, "Blah", "Blurg"]) tm.assert_series_equal(result, exp) # mixed mixed = Series(["FOO", NA, "bar", True, datetime.today(), "blah", None, 1, 2.]) mixed = mixed.str.title() exp = Series(["Foo", NA, "Bar", NA, NA, "Blah", NA, NA, NA]) tm.assert_almost_equal(mixed, exp) # unicode values = Series([u("FOO"), NA, u("bar"), u("Blurg")]) results = values.str.title() exp = Series([u("Foo"), NA, u("Bar"), u("Blurg")]) tm.assert_series_equal(results, exp) def test_lower_upper(self): values = Series(['om', NA, 'nom', 'nom']) result = values.str.upper() exp = Series(['OM', NA, 'NOM', 'NOM']) tm.assert_series_equal(result, exp) result = result.str.lower() tm.assert_series_equal(result, values) # mixed mixed = Series(['a', NA, 'b', True, datetime.today(), 'foo', None, 1, 2.]) mixed = mixed.str.upper() rs = Series(mixed).str.lower() xp = Series(['a', NA, 'b', NA, NA, 'foo', NA, NA, NA]) assert isinstance(rs, Series) tm.assert_series_equal(rs, xp) # unicode values = Series([u('om'), NA, u('nom'), u('nom')]) result = values.str.upper() exp = Series([u('OM'), NA, u('NOM'), u('NOM')]) tm.assert_series_equal(result, exp) result = result.str.lower() tm.assert_series_equal(result, values) def test_capitalize(self): values = Series(["FOO", "BAR", NA, "Blah", "blurg"]) result = values.str.capitalize() exp = Series(["Foo", "Bar", NA, "Blah", "Blurg"]) tm.assert_series_equal(result, exp) # mixed mixed = Series(["FOO", NA, "bar", True, datetime.today(), "blah", None, 1, 2.]) mixed = mixed.str.capitalize() exp = Series(["Foo", NA, "Bar", NA, NA, "Blah", NA, NA, NA]) tm.assert_almost_equal(mixed, exp) # unicode values = Series([u("FOO"), NA, u("bar"), u("Blurg")]) results = values.str.capitalize() exp = Series([u("Foo"), NA, u("Bar"), u("Blurg")]) tm.assert_series_equal(results, exp) def test_swapcase(self): values = Series(["FOO", "BAR", NA, "Blah", "blurg"]) result = values.str.swapcase() exp = Series(["foo", "bar", NA, "bLAH", "BLURG"]) tm.assert_series_equal(result, exp) # mixed mixed = Series(["FOO", NA, "bar", True, datetime.today(), "Blah", None, 1, 2.]) mixed = mixed.str.swapcase() exp = Series(["foo", NA, "BAR", NA, NA, "bLAH", NA, NA, NA]) tm.assert_almost_equal(mixed, exp) # unicode values = Series([u("FOO"), NA, u("bar"), u("Blurg")]) results = values.str.swapcase() exp = Series([u("foo"), NA, u("BAR"), u("bLURG")]) tm.assert_series_equal(results, exp) def test_casemethods(self): values = ['aaa', 'bbb', 'CCC', 'Dddd', 'eEEE'] s = Series(values) assert s.str.lower().tolist() == [v.lower() for v in values] assert s.str.upper().tolist() == [v.upper() for v in values] assert s.str.title().tolist() == [v.title() for v in values] assert s.str.capitalize().tolist() == [v.capitalize() for v in values] assert s.str.swapcase().tolist() == [v.swapcase() for v in values] def test_replace(self): values = Series(['fooBAD__barBAD', NA]) result = values.str.replace('BAD[_]*', '') exp = Series(['foobar', NA]) tm.assert_series_equal(result, exp) result = values.str.replace('BAD[_]*', '', n=1) exp = Series(['foobarBAD', NA]) tm.assert_series_equal(result, exp) # mixed mixed = Series(['aBAD', NA, 'bBAD', True, datetime.today(), 'fooBAD', None, 1, 2.]) rs = Series(mixed).str.replace('BAD[_]*', '') xp = Series(['a', NA, 'b', NA, NA, 'foo', NA, NA, NA]) assert isinstance(rs, Series) tm.assert_almost_equal(rs, xp) # unicode values = Series([u('fooBAD__barBAD'), NA]) result = values.str.replace('BAD[_]*', '') exp = Series([u('foobar'), NA]) tm.assert_series_equal(result, exp) result = values.str.replace('BAD[_]*', '', n=1) exp = Series([u('foobarBAD'), NA]) tm.assert_series_equal(result, exp) # flags + unicode values = Series([b"abcd,\xc3\xa0".decode("utf-8")]) exp = Series([b"abcd, \xc3\xa0".decode("utf-8")]) result = values.str.replace(r"(?<=\w),(?=\w)", ", ", flags=re.UNICODE) tm.assert_series_equal(result, exp) # GH 13438 for klass in (Series, Index): for repl in (None, 3, {'a': 'b'}): for data in (['a', 'b', None], ['a', 'b', 'c', 'ad']): values = klass(data) pytest.raises(TypeError, values.str.replace, 'a', repl) def test_replace_callable(self): # GH 15055 values = Series(['fooBAD__barBAD', NA]) # test with callable repl = lambda m: m.group(0).swapcase() result = values.str.replace('[a-z][A-Z]{2}', repl, n=2) exp =
Series(['foObaD__baRbaD', NA])
pandas.Series
import shutil from pathlib import Path import itertools import numpy as np import pandas as pd import json input_e_dir = Path('./analysis/item_e/') input_a_dir = Path('./analysis/item_a/') output_ae_dir = Path('./analysis/item_ae') shutil.rmtree(output_ae_dir, ignore_errors=True) output_ae_dir.mkdir(parents=True, exist_ok=True) input_c_dir = Path('./analysis/item_c/') output_ce_dir = Path('./analysis/item_ce') shutil.rmtree(output_ce_dir, ignore_errors=True) output_ce_dir.mkdir(parents=True, exist_ok=True) input_d_dir = Path('./analysis/item_d/') output_de_dir = Path('./analysis/item_de') shutil.rmtree(output_de_dir, ignore_errors=True) output_de_dir.mkdir(parents=True, exist_ok=True) for person in range(1,81): c_csv = input_c_dir / ('S_c_' + str(person).zfill(2) + '.CSV') e_csv = input_e_dir / ('S_e_' + str(person).zfill(2) + '.csv') print(c_csv) print(e_csv) c_df = pd.read_csv(c_csv, na_values=['--undefined--', 'null'], skipinitialspace=True, sep=r"\s*[,]\s*", engine='python') e_df = pd.read_csv(e_csv, na_values=['--undefined--', 'null'], skipinitialspace=True, sep=r"\s*[,]\s*", engine='python') c_df.drop(e_df.filter(regex="Unname"), axis=1, inplace=True) e_df.drop(e_df.filter(regex="Unname"), axis=1, inplace=True) c_rows = [] for _, row in e_df.iterrows(): comps = row['Filename'].split('_') if 'norm' in comps[0]: c_row = row c_row['Filename'] = c_row['Filename'].replace('_e_', '_c_') c_rows.append(c_row) for _, row in c_df.iterrows(): comps = row['Filename'].split('_') if 'norm' not in comps[0]: c_rows.append(row) output_c_df = pd.DataFrame(c_rows) output_c_df.to_csv(output_ce_dir / ('S_c_' + str(person).zfill(2) + '.csv'), index=False) for person in range(1,81): d_csv = input_d_dir / ('S_d_' + str(person).zfill(2) + '.csv') e_csv = input_e_dir / ('S_e_' + str(person).zfill(2) + '.csv') print(d_csv) print(e_csv) d_df = pd.read_csv(d_csv, na_values=['--undefined--', 'null'], skipinitialspace=True, sep=r"\s*[,]\s*", engine='python') e_df = pd.read_csv(e_csv, na_values=['--undefined--', 'null'], skipinitialspace=True, sep=r"\s*[,]\s*", engine='python') d_df.drop(d_df.filter(regex="Unname"), axis=1, inplace=True) e_df.drop(e_df.filter(regex="Unname"), axis=1, inplace=True) d_rows = [] for _, row in e_df.iterrows(): comps = row['Filename'].split('_') if 'norm' in comps[0]: d_row = row d_row['Filename'] = d_row['Filename'].replace('_e_', '_d_') d_rows.append(d_row) for _, row in d_df.iterrows(): comps = row['Filename'].split('_') if 'norm' not in comps[0]: d_rows.append(row) output_d_df =
pd.DataFrame(d_rows)
pandas.DataFrame
#!/usr/bin/env python # coding: utf-8 # In[1]: import click import mdtraj as md import pyemma as pm import pandas as pd import matplotlib.pyplot as plt import numpy as np from typing import Dict, List, Optional, Union, Tuple from pathlib import Path import pickle from msmtools.estimation import transition_matrix as _transition_matrix from msmtools.analysis import timescales as _timescales # In[2]: def featurizer(hp_dict: Dict, traj_paths: List[str], top_path: str) -> List[np.ndarray]: if hp_dict['feature__value'] == 'dihedrals': assert hp_dict['dihedrals__which'] == 'all' def f(traj: md.Trajectory, **kwargs) -> np.ndarray: _, phi = md.compute_phi(traj) _, psi = md.compute_psi(traj) _, chi1 = md.compute_chi1(traj) _, chi2 = md.compute_chi2(traj) _, chi3 = md.compute_chi3(traj) _, chi4 = md.compute_chi4(traj) _, chi5 = md.compute_chi5(traj) ftraj = np.concatenate([phi, psi, chi1, chi2, chi3, chi4, chi5], axis=1) ftraj = np.concatenate([np.cos(ftraj), np.sin(ftraj)], axis=1) return ftraj elif hp_dict['feature__value'] == 'distances': def f(traj: md.Trajectory, **kwargs): scheme = kwargs['distances__scheme'] transform = kwargs['distances__transform'] centre = kwargs['distances__centre'] steepness = kwargs['distances__steepness'] ftraj, _ = md.compute_contacts(traj, scheme=scheme) if transform=='logistic': ftraj = 1.0/(1+np.exp(-steepness*(ftraj - centre))) return ftraj else: raise ValueError ftrajs = [] for traj_path in traj_paths: traj = md.load(traj_path, top=top_path) ftrajs.append(f(traj, **hp_dict)) return ftrajs def tica(hp_dict: Dict[str, Union[float, int, str]], ftrajs: List[np.ndarray]) -> List[np.ndarray]: lag = hp_dict['tica__lag'] stride = hp_dict['tica__stride'] dim = hp_dict['tica__dim'] tica = pm.coordinates.tica(ftrajs, lag=lag, dim=dim, kinetic_map=True) ttrajs = tica.get_output() return ttrajs, tica def kmeans(hp_dict: Dict, ttrajs: List[np.ndarray], seed: int) -> List[np.ndarray]: k = hp_dict['cluster__k'] max_iter = hp_dict['cluster__max_iter'] stride = hp_dict['cluster__stride'] kmeans = pm.coordinates.cluster_kmeans(ttrajs, k=k, max_iter=max_iter, stride=stride, fixed_seed=seed, n_jobs=1) dtrajs = kmeans.dtrajs return dtrajs, kmeans def its(dtrajs: List[np.ndarray], lags: List[int], nits: int) -> np.ndarray: its_obj = pm.msm.timescales_msm(dtrajs=dtrajs, lags=lags, nits=nits) return its_obj.timescales def score(dtrajs: List[np.ndarray], lags: List[int], nits: int) -> np.ndarray: all_vs = [] for lag in lags: m = pm.msm.estimate_markov_model(dtrajs, lag=lag) vs = np.array([m.score(dtrajs, score_k=k) for k in range(2, nits+2)]) vs = vs.reshape(1, -1) all_vs.append(vs) all_vs = np.concatenate(all_vs, axis=0) return all_vs def bootstrap(ftrajs: List[np.ndarray], rng: np.random.Generator) -> List[np.ndarray]: probs = np.array([x.shape[0] for x in ftrajs]) probs = probs/np.sum(probs) ix = np.arange(len(ftrajs)) new_ix = rng.choice(ix,size=len(ftrajs), p=probs, replace=True) return [ftrajs[i] for i in new_ix] def summarise(df): df_summary = df.groupby(['hp_ix', 'lag', 'process']).agg(median=(0, lambda x: np.quantile(x, 0.5)), lb=(0, lambda x: np.quantile(x, 0.025)), ub=(0, lambda x: np.quantile(x, 0.975)), count =(0, lambda x: x.shape[0]-x.isna().sum())) return df_summary def samples_to_summary(samples: np.ndarray, lags: List[int], hp_ix: int)-> pd.DataFrame: """ samples=np.ndarray[lagtime, process, bs_sample] """ df = pd.concat({(hp_ix, lags[i], j+2): pd.DataFrame(samples[i, j, :]) for i in range(samples.shape[0]) for j in range(samples.shape[1])}) df.index.rename(('hp_ix', 'lag', 'process', 'bs_ix'), inplace=True) df_summary = summarise(df) return df_summary @click.command() @click.argument("protein", type=str) @click.argument("hp_ix", type=int) def run(protein, hp_ix): seed = 49587 n_bootstraps = 100 nits=20 rng = np.random.default_rng(seed) lags = list(range(1, 102, 10)) hps = pd.read_hdf('../data/msms/hpsample.h5') top_path = f'/home/rob/Data/DESRES/DESRES-Trajectory_{protein.upper()}-0-protein/{protein.upper()}-0-protein/protein.pdb' traj_paths = list(Path('/home/rob/Data/DESRES/').rglob(f'*{protein.upper()}*/**/*.xtc')) traj_paths = [str(x) for x in traj_paths] traj_paths.sort() assert traj_paths source_ts = pd.DataFrame(pd.read_hdf(f'../analysis/{protein}/summary.h5', key='timescales')) source_vs = pd.DataFrame(pd.read_hdf(f'../analysis/{protein}/summary.h5', key='vamps')) ftrajs_all = featurizer(hps.loc[hp_ix, :].to_dict(), traj_paths, top_path) # Bootstrap results ts_samples = [] vs_samples = [] for i in range(n_bootstraps): print(i, end=', ') ftrajs = bootstrap(ftrajs_all, rng) assert len(ftrajs) == len(ftrajs_all) ttrajs, tica_mod = tica(hps.loc[hp_ix, :].to_dict(), ftrajs) dtrajs, kmeans_mod = kmeans(hps.loc[hp_ix, :].to_dict(), ttrajs, seed) ts = its(dtrajs, lags, nits=nits) vs = score(dtrajs, lags, nits=nits) ts_samples.append(ts[..., np.newaxis]) vs_samples.append(vs[..., np.newaxis]) # Summarise values ts_samples = np.concatenate(ts_samples, axis=-1) vs_samples = np.concatenate(vs_samples, axis=-1) target_ts = samples_to_summary(ts_samples, lags, hp_ix) target_vs = samples_to_summary(vs_samples, lags, hp_ix) # Compare to msmsense values comp_ts =
pd.merge(target_ts, source_ts, left_index=True, right_index=True, how='left')
pandas.merge
import numpy as np import pytest import pandas.util._test_decorators as td import pandas as pd from pandas import ( Index, Interval, IntervalIndex, Timedelta, Timestamp, date_range, timedelta_range, ) import pandas._testing as tm from pandas.core.arrays import IntervalArray @pytest.fixture( params=[ (Index([0, 2, 4]), Index([1, 3, 5])), (Index([0.0, 1.0, 2.0]), Index([1.0, 2.0, 3.0])), (timedelta_range("0 days", periods=3), timedelta_range("1 day", periods=3)), (date_range("20170101", periods=3), date_range("20170102", periods=3)), ( date_range("20170101", periods=3, tz="US/Eastern"),
date_range("20170102", periods=3, tz="US/Eastern")
pandas.date_range
import os from collections import Counter from os import listdir from os.path import isfile, join from mpl_toolkits.mplot3d import axes3d import matplotlib.pyplot as plt import numpy as np from matplotlib.pyplot import figure from matplotlib import style style.use('ggplot') import scipy from matplotlib.ticker import MaxNLocator from mpl_toolkits.mplot3d import Axes3D from matplotlib.collections import PolyCollection from mpl_toolkits.mplot3d import Axes3D import matplotlib.pyplot as plt from matplotlib import cm, ticker import numpy as np from sys import argv import Orange import matplotlib.pyplot as plt import numpy as np import pandas as pd from matplotlib import colors as mcolors, cm from matplotlib.collections import PolyCollection from classifiers import classifiers_list from datasetsDelaunay import dataset_list_bi, dataset_list_mult from folders import output_dir, dir_pca_biclasse, metricas_biclasse, dir_pca_multiclasse, metricas_multiclasse from parameters import order, alphas order_dict = {'area': 1, 'volume': 2, 'area_volume_ratio': 3, 'edge_ratio': 4, 'radius_ratio': 5, 'aspect_ratio': 6, 'max_solid_angle': 7, 'min_solid_angle': 8, 'solid_angle': 9} class Statistics: def __init__(self): pass def compute_CD_customizado(self, avranks, n, alpha="0.05", test="nemenyi"): """ Returns critical difference for Nemenyi or Bonferroni-Dunn test according to given alpha (either alpha="0.05" or alpha="0.1") for average ranks and number of tested datasets N. Test can be either "nemenyi" for for Nemenyi two tailed test or "bonferroni-dunn" for Bonferroni-Dunn test. """ k = len(avranks) d = {("nemenyi", "0.05"): [1.960, 2.344, 2.569, 2.728, 2.850, 2.948, 3.031, 3.102, 3.164, 3.219, 3.268, 3.313, 3.354, 3.391, 3.426, 3.458, 3.489, 3.517, 3.544, 3.569, 3.593, 3.616, 3.637, 3.658, 3.678, 3.696, 3.714, 3.732, 3.749, 3.765, 3.780, 3.795, 3.810, 3.824, 3.837, 3.850, 3.863, 3.876, 3.888, 3.899, 3.911, 3.922, 3.933, 3.943, 3.954, 3.964, 3.973, 3.983, 3.992], ("nemenyi", "0.1"): [0, 0, 1.644854, 2.052293, 2.291341, 2.459516, 2.588521, 2.692732, 2.779884, 2.854606, 2.919889, 2.977768, 3.029694, 3.076733, 3.119693, 3.159199, 3.195743, 3.229723, 3.261461, 3.291224, 3.319233], ("bonferroni-dunn", "0.05"): [0, 0, 1.960, 2.241, 2.394, 2.498, 2.576, 2.638, 2.690, 2.724, 2.773], ("bonferroni-dunn", "0.1"): [0, 0, 1.645, 1.960, 2.128, 2.241, 2.326, 2.394, 2.450, 2.498, 2.539]} q = d[(test, alpha)] cd = q[k] * (k * (k + 1) / (6.0 * n)) ** 0.5 return cd def calcula_media_folds_biclasse(self, df): t = pd.Series(data=np.arange(0, df.shape[0], 1)) dfr = pd.DataFrame( columns=['MODE', 'DATASET', 'PREPROC', 'ALGORITHM', 'ORDER', 'ALPHA', 'PRE', 'REC', 'SPE', 'F1', 'GEO', 'IBA', 'AUC'], index=np.arange(0, int(t.shape[0] / 5))) df_temp = df.groupby(by=['MODE', 'DATASET', 'PREPROC', 'ALGORITHM']) idx = dfr.index.values i = idx[0] for name, group in df_temp: group = group.reset_index() dfr.at[i, 'MODE'] = group.loc[0, 'MODE'] mode = group.loc[0, 'MODE'] dfr.at[i, 'DATASET'] = group.loc[0, 'DATASET'] dfr.at[i, 'PREPROC'] = group.loc[0, 'PREPROC'] dfr.at[i, 'ALGORITHM'] = group.loc[0, 'ALGORITHM'] dfr.at[i, 'ORDER'] = group.loc[0, 'ORDER'] dfr.at[i, 'ALPHA'] = group.loc[0, 'ALPHA'] dfr.at[i, 'PRE'] = group['PRE'].mean() dfr.at[i, 'REC'] = group['REC'].mean() dfr.at[i, 'SPE'] = group['SPE'].mean() dfr.at[i, 'F1'] = group['F1'].mean() dfr.at[i, 'GEO'] = group['GEO'].mean() dfr.at[i, 'IBA'] = group['IBA'].mean() dfr.at[i, 'AUC'] = group['AUC'].mean() i = i + 1 print(i) dfr.to_csv(output_dir + 'resultado_media_biclasse_' + mode + '.csv', index=False) def calcula_media_folds_multiclass(self, df): t = pd.Series(data=np.arange(0, df.shape[0], 1)) dfr = pd.DataFrame( columns=['MODE', 'DATASET', 'PREPROC', 'ALGORITHM', 'ORDER', 'ALPHA', 'PRE', 'REC', 'SPE', 'F1', 'GEO', 'IBA', 'AUC'], index=np.arange(0, int(t.shape[0] / 5))) df_temp = df.groupby(by=['MODE', 'DATASET', 'PREPROC', 'ALGORITHM']) idx = dfr.index.values i = idx[0] for name, group in df_temp: group = group.reset_index() dfr.at[i, 'MODE'] = group.loc[0, 'MODE'] mode = group.loc[0, 'MODE'] dfr.at[i, 'DATASET'] = group.loc[0, 'DATASET'] dfr.at[i, 'PREPROC'] = group.loc[0, 'PREPROC'] dfr.at[i, 'ALGORITHM'] = group.loc[0, 'ALGORITHM'] dfr.at[i, 'ORDER'] = group.loc[0, 'ORDER'] dfr.at[i, 'ALPHA'] = group.loc[0, 'ALPHA'] dfr.at[i, 'PRE'] = group['PRE'].mean() dfr.at[i, 'REC'] = group['REC'].mean() dfr.at[i, 'SPE'] = group['SPE'].mean() dfr.at[i, 'F1'] = group['F1'].mean() dfr.at[i, 'GEO'] = group['GEO'].mean() dfr.at[i, 'IBA'] = group['IBA'].mean() dfr.at[i, 'AUC'] = group['AUC'].mean() i = i + 1 print(i) dfr.to_csv(output_dir + 'resultado_media_multiclass_' + mode + '.csv', index=False) def separa_delaunay_biclass(self, filename): df = pd.read_csv(filename) list_base = [] for p in np.arange(0, len(preproc_type)): list_base.append(df[(df['PREPROC'] == preproc_type[p])]) df_base = list_base.pop(0) for i in np.arange(0, len(list_base)): df_base = pd.concat([df_base, list_base[i]], ignore_index=True) for o in order: for a in alphas: dfr = df[(df['ORDER'] == o)] dfr1 = dfr[(dfr['ALPHA'] == str(a))] df_file = pd.concat([df_base, dfr1], ignore_index=True) df_file.to_csv('./../output_dir/result_biclass' + '_' + o + '_' + str(a) + '.csv', index=False) def read_dir_files(self, dir_name): f = [f for f in listdir(dir_name) if isfile(join(dir_name, f))] return f def find_best_rank(self, results_dir, tipo): results = self.read_dir_files(results_dir) df = pd.DataFrame(columns=[['ARQUIVO', 'WINER']]) i = 0 for f in results: df_temp = pd.read_csv(results_dir + f) df.at[i, 'ARQUIVO'] = f df.at[i, 'WINER'] = df_temp.iloc[0, 0] i += 1 df.to_csv(output_dir + tipo) def find_best_delaunay(self, results_dir, tipo): df = pd.read_csv(results_dir + tipo) i = 0 j = 0 df_best = pd.DataFrame(columns=['ARQUIVO', 'WINER']) win = list(df['WINER']) for w in win: if w == 'DELAUNAY': df_best.at[i, 'ARQUIVO'] = df.iloc[j, 1] df_best.at[i, 'WINER'] = df.iloc[j, 2] i += 1 j += 1 df_best.to_csv(output_dir + 'only_best_delaunay_pca_biclass_media_rank.csv') def rank_by_algorithm(self, df, tipo, wd, reducao, order, alpha): ''' Calcula rank :param df: :param tipo: :param wd: :param delaunay_type: :return: ''' df_tabela = pd.DataFrame( columns=['DATASET', 'ALGORITHM', 'ORIGINAL', 'RANK_ORIGINAL', 'SMOTE', 'RANK_SMOTE', 'SMOTE_SVM', 'RANK_SMOTE_SVM', 'BORDERLINE1', 'RANK_BORDERLINE1', 'BORDERLINE2', 'RANK_BORDERLINE2', 'GEOMETRIC_SMOTE', 'RANK_GEOMETRIC_SMOTE', 'DELAUNAY', 'RANK_DELAUNAY', 'DELAUNAY_TYPE', 'ALPHA', 'unit']) df_temp = df.groupby(by=['ALGORITHM']) for name, group in df_temp: group = group.reset_index() group.drop('index', axis=1, inplace=True) df.to_csv(dir_pca_biclasse + reducao + '_' + tipo + '_' + order + '_' + str(alpha) + '.csv') j = 0 for d in dataset_list_bi: for m in metricas_biclasse: aux = group[group['DATASET'] == d] aux = aux.reset_index() df_tabela.at[j, 'DATASET'] = d df_tabela.at[j, 'ALGORITHM'] = name indice = aux.PREPROC[aux.PREPROC == '_train'].index.tolist()[0] df_tabela.at[j, 'ORIGINAL'] = aux.at[indice, m] indice = aux.PREPROC[aux.PREPROC == '_SMOTE'].index.tolist()[0] df_tabela.at[j, 'SMOTE'] = aux.at[indice, m] indice = aux.PREPROC[aux.PREPROC == '_smoteSVM'].index.tolist()[0] df_tabela.at[j, 'SMOTE_SVM'] = aux.at[indice, m] indice = aux.PREPROC[aux.PREPROC == '_Borderline1'].index.tolist()[0] df_tabela.at[j, 'BORDERLINE1'] = aux.at[indice, m] indice = aux.PREPROC[aux.PREPROC == '_Borderline2'].index.tolist()[0] df_tabela.at[j, 'BORDERLINE2'] = aux.at[indice, m] indice = aux.PREPROC[aux.PREPROC == '_Geometric_SMOTE'].index.tolist()[0] df_tabela.at[j, 'GEOMETRIC_SMOTE'] = aux.at[indice, m] indice = aux.PREPROC[aux.ORDER == order].index.tolist()[0] df_tabela.at[j, 'DELAUNAY'] = aux.at[indice, m] df_tabela.at[j, 'DELAUNAY_TYPE'] = order df_tabela.at[j, 'ALPHA'] = alpha df_tabela.at[j, 'unit'] = m j += 1 df_pre = df_tabela[df_tabela['unit'] == 'PRE'] df_rec = df_tabela[df_tabela['unit'] == 'REC'] df_spe = df_tabela[df_tabela['unit'] == 'SPE'] df_f1 = df_tabela[df_tabela['unit'] == 'F1'] df_geo = df_tabela[df_tabela['unit'] == 'GEO'] df_iba = df_tabela[df_tabela['unit'] == 'IBA'] df_auc = df_tabela[df_tabela['unit'] == 'AUC'] pre = df_pre[ ['ORIGINAL', 'SMOTE', 'SMOTE_SVM', 'BORDERLINE1', 'BORDERLINE2', 'GEOMETRIC_SMOTE', 'DELAUNAY']] rec = df_rec[ ['ORIGINAL', 'SMOTE', 'SMOTE_SVM', 'BORDERLINE1', 'BORDERLINE2', 'GEOMETRIC_SMOTE', 'DELAUNAY']] spe = df_spe[ ['ORIGINAL', 'SMOTE', 'SMOTE_SVM', 'BORDERLINE1', 'BORDERLINE2', 'GEOMETRIC_SMOTE', 'DELAUNAY']] f1 = df_f1[['ORIGINAL', 'SMOTE', 'SMOTE_SVM', 'BORDERLINE1', 'BORDERLINE2', 'GEOMETRIC_SMOTE', 'DELAUNAY']] geo = df_geo[ ['ORIGINAL', 'SMOTE', 'SMOTE_SVM', 'BORDERLINE1', 'BORDERLINE2', 'GEOMETRIC_SMOTE', 'DELAUNAY']] iba = df_iba[ ['ORIGINAL', 'SMOTE', 'SMOTE_SVM', 'BORDERLINE1', 'BORDERLINE2', 'GEOMETRIC_SMOTE', 'DELAUNAY']] auc = df_auc[ ['ORIGINAL', 'SMOTE', 'SMOTE_SVM', 'BORDERLINE1', 'BORDERLINE2', 'GEOMETRIC_SMOTE', 'DELAUNAY']] pre = pre.reset_index() pre.drop('index', axis=1, inplace=True) rec = rec.reset_index() rec.drop('index', axis=1, inplace=True) spe = spe.reset_index() spe.drop('index', axis=1, inplace=True) f1 = f1.reset_index() f1.drop('index', axis=1, inplace=True) geo = geo.reset_index() geo.drop('index', axis=1, inplace=True) iba = iba.reset_index() iba.drop('index', axis=1, inplace=True) auc = auc.reset_index() auc.drop('index', axis=1, inplace=True) # calcula rank linha a linha pre_rank = pre.rank(axis=1, ascending=False) rec_rank = rec.rank(axis=1, ascending=False) spe_rank = spe.rank(axis=1, ascending=False) f1_rank = f1.rank(axis=1, ascending=False) geo_rank = geo.rank(axis=1, ascending=False) iba_rank = iba.rank(axis=1, ascending=False) auc_rank = auc.rank(axis=1, ascending=False) df_pre = df_pre.reset_index() df_pre.drop('index', axis=1, inplace=True) df_pre['RANK_ORIGINAL'] = pre_rank['ORIGINAL'] df_pre['RANK_SMOTE'] = pre_rank['SMOTE'] df_pre['RANK_SMOTE_SVM'] = pre_rank['SMOTE_SVM'] df_pre['RANK_BORDERLINE1'] = pre_rank['BORDERLINE1'] df_pre['RANK_BORDERLINE2'] = pre_rank['BORDERLINE2'] df_pre['RANK_GEOMETRIC_SMOTE'] = pre_rank['GEOMETRIC_SMOTE'] df_pre['RANK_DELAUNAY'] = pre_rank['DELAUNAY'] df_rec = df_rec.reset_index() df_rec.drop('index', axis=1, inplace=True) df_rec['RANK_ORIGINAL'] = rec_rank['ORIGINAL'] df_rec['RANK_SMOTE'] = rec_rank['SMOTE'] df_rec['RANK_SMOTE_SVM'] = rec_rank['SMOTE_SVM'] df_rec['RANK_BORDERLINE1'] = rec_rank['BORDERLINE1'] df_rec['RANK_BORDERLINE2'] = rec_rank['BORDERLINE2'] df_rec['RANK_GEOMETRIC_SMOTE'] = rec_rank['GEOMETRIC_SMOTE'] df_rec['RANK_DELAUNAY'] = rec_rank['DELAUNAY'] df_spe = df_spe.reset_index() df_spe.drop('index', axis=1, inplace=True) df_spe['RANK_ORIGINAL'] = spe_rank['ORIGINAL'] df_spe['RANK_SMOTE'] = spe_rank['SMOTE'] df_spe['RANK_SMOTE_SVM'] = spe_rank['SMOTE_SVM'] df_spe['RANK_BORDERLINE1'] = spe_rank['BORDERLINE1'] df_spe['RANK_BORDERLINE2'] = spe_rank['BORDERLINE2'] df_spe['RANK_GEOMETRIC_SMOTE'] = spe_rank['GEOMETRIC_SMOTE'] df_spe['RANK_DELAUNAY'] = spe_rank['DELAUNAY'] df_f1 = df_f1.reset_index() df_f1.drop('index', axis=1, inplace=True) df_f1['RANK_ORIGINAL'] = f1_rank['ORIGINAL'] df_f1['RANK_SMOTE'] = f1_rank['SMOTE'] df_f1['RANK_SMOTE_SVM'] = f1_rank['SMOTE_SVM'] df_f1['RANK_BORDERLINE1'] = f1_rank['BORDERLINE1'] df_f1['RANK_BORDERLINE2'] = f1_rank['BORDERLINE2'] df_f1['RANK_GEOMETRIC_SMOTE'] = f1_rank['GEOMETRIC_SMOTE'] df_f1['RANK_DELAUNAY'] = f1_rank['DELAUNAY'] df_geo = df_geo.reset_index() df_geo.drop('index', axis=1, inplace=True) df_geo['RANK_ORIGINAL'] = geo_rank['ORIGINAL'] df_geo['RANK_SMOTE'] = geo_rank['SMOTE'] df_geo['RANK_SMOTE_SVM'] = geo_rank['SMOTE_SVM'] df_geo['RANK_BORDERLINE1'] = geo_rank['BORDERLINE1'] df_geo['RANK_BORDERLINE2'] = geo_rank['BORDERLINE2'] df_geo['RANK_GEOMETRIC_SMOTE'] = geo_rank['GEOMETRIC_SMOTE'] df_geo['RANK_DELAUNAY'] = geo_rank['DELAUNAY'] df_iba = df_iba.reset_index() df_iba.drop('index', axis=1, inplace=True) df_iba['RANK_ORIGINAL'] = iba_rank['ORIGINAL'] df_iba['RANK_SMOTE'] = iba_rank['SMOTE'] df_iba['RANK_SMOTE_SVM'] = iba_rank['SMOTE_SVM'] df_iba['RANK_BORDERLINE1'] = iba_rank['BORDERLINE1'] df_iba['RANK_BORDERLINE2'] = iba_rank['BORDERLINE2'] df_iba['RANK_GEOMETRIC_SMOTE'] = iba_rank['GEOMETRIC_SMOTE'] df_iba['RANK_DELAUNAY'] = iba_rank['DELAUNAY'] df_auc = df_auc.reset_index() df_auc.drop('index', axis=1, inplace=True) df_auc['RANK_ORIGINAL'] = auc_rank['ORIGINAL'] df_auc['RANK_SMOTE'] = auc_rank['SMOTE'] df_auc['RANK_SMOTE_SVM'] = auc_rank['SMOTE_SVM'] df_auc['RANK_BORDERLINE1'] = auc_rank['BORDERLINE1'] df_auc['RANK_BORDERLINE2'] = auc_rank['BORDERLINE2'] df_auc['RANK_GEOMETRIC_SMOTE'] = auc_rank['GEOMETRIC_SMOTE'] df_auc['RANK_DELAUNAY'] = auc_rank['DELAUNAY'] # avarege rank media_pre_rank = pre_rank.mean(axis=0) media_rec_rank = rec_rank.mean(axis=0) media_spe_rank = spe_rank.mean(axis=0) media_f1_rank = f1_rank.mean(axis=0) media_geo_rank = geo_rank.mean(axis=0) media_iba_rank = iba_rank.mean(axis=0) media_auc_rank = auc_rank.mean(axis=0) media_pre_rank_file = media_pre_rank.reset_index() media_pre_rank_file = media_pre_rank_file.sort_values(by=0) media_rec_rank_file = media_rec_rank.reset_index() media_rec_rank_file = media_rec_rank_file.sort_values(by=0) media_spe_rank_file = media_spe_rank.reset_index() media_spe_rank_file = media_spe_rank_file.sort_values(by=0) media_f1_rank_file = media_f1_rank.reset_index() media_f1_rank_file = media_f1_rank_file.sort_values(by=0) media_geo_rank_file = media_geo_rank.reset_index() media_geo_rank_file = media_geo_rank_file.sort_values(by=0) media_iba_rank_file = media_iba_rank.reset_index() media_iba_rank_file = media_iba_rank_file.sort_values(by=0) media_auc_rank_file = media_auc_rank.reset_index() media_auc_rank_file = media_auc_rank_file.sort_values(by=0) # Grava arquivos importantes df_pre.to_csv( wd + 'total_rank/' + reducao + '_total_rank_' + tipo + '_' + order + '_' + str( alpha) + '_' + name + '_pre.csv', index=False) df_rec.to_csv( wd + 'total_rank/' + reducao + '_total_rank_' + tipo + '_' + order + '_' + str( alpha) + '_' + name + '_rec.csv', index=False) df_spe.to_csv( wd + 'total_rank/' + reducao + '_total_rank_' + tipo + '_' + order + '_' + str( alpha) + '_' + name + '_spe.csv', index=False) df_f1.to_csv(wd + 'total_rank/' + reducao + '_total_rank_' + tipo + '_' + order + '_' + str( alpha) + '_' + name + '_f1.csv', index=False) df_geo.to_csv( wd + 'total_rank/' + reducao + '_total_rank_' + tipo + '_' + order + '_' + str( alpha) + '_' + name + '_geo.csv', index=False) df_iba.to_csv( wd + 'total_rank/' + reducao + '_total_rank_' + tipo + '_' + order + '_' + str( alpha) + '_' + name + '_iba.csv', index=False) df_auc.to_csv( wd + 'total_rank/' + reducao + '_total_rank_' + tipo + '_' + order + '_' + str( alpha) + '_' + name + '_auc.csv', index=False) media_pre_rank_file.to_csv( wd + 'media_rank/' + reducao + '_media_rank_' + tipo + '_' + order + '_' + str( alpha) + '_' + name + '_pre.csv', index=False) media_rec_rank_file.to_csv( wd + 'media_rank/' + reducao + '_media_rank_' + tipo + '_' + order + '_' + str( alpha) + '_' + name + '_rec.csv', index=False) media_spe_rank_file.to_csv( wd + 'media_rank/' + reducao + '_media_rank_' + tipo + '_' + order + '_' + str( alpha) + '_' + name + '_spe.csv', index=False) media_f1_rank_file.to_csv( wd + 'media_rank/' + reducao + '_media_rank_' + tipo + '_' + order + '_' + str( alpha) + '_' + name + '_f1.csv', index=False) media_geo_rank_file.to_csv( wd + 'media_rank/' + reducao + '_media_rank_' + tipo + '_' + order + '_' + str( alpha) + '_' + name + '_geo.csv', index=False) media_iba_rank_file.to_csv( wd + 'media_rank/' + reducao + '_media_rank_' + tipo + '_' + order + '_' + str( alpha) + '_' + name + '_iba.csv', index=False) media_auc_rank_file.to_csv( wd + 'media_rank/' + reducao + '_media_rank_' + tipo + '_' + order + '_' + str( alpha) + '_' + name + '_auc.csv', index=False) delaunay_type = order + '_' + str(alpha) # grafico CD identificadores = ['ORIGINAL', 'SMOTE', 'SMOTE_SVM', 'BORDERLINE1', 'BORDERLINE2', 'GEOMETRIC_SMOTE', delaunay_type] avranks = list(media_pre_rank) cd = Orange.evaluation.compute_CD(avranks, len(dataset_list_bi)) Orange.evaluation.graph_ranks(avranks, identificadores, cd=cd, width=9, textspace=3) plt.savefig( wd + 'figurasCD/' + 'cd_' + reducao + '_' + tipo + '_' + delaunay_type + '_' + name + '_pre.pdf') plt.close() avranks = list(media_rec_rank) cd = Orange.evaluation.compute_CD(avranks, len(dataset_list_bi)) Orange.evaluation.graph_ranks(avranks, identificadores, cd=cd, width=9, textspace=3) plt.savefig( wd + 'figurasCD/' + 'cd_' + reducao + '_' + tipo + '_' + delaunay_type + '_' + name + '_rec.pdf') plt.close() avranks = list(media_spe_rank) cd = Orange.evaluation.compute_CD(avranks, len(dataset_list_bi)) Orange.evaluation.graph_ranks(avranks, identificadores, cd=cd, width=9, textspace=3) plt.savefig( wd + 'figurasCD/' + 'cd_' + reducao + '_' + tipo + '_' + delaunay_type + '_' + name + '_spe.pdf') plt.close() avranks = list(media_f1_rank) cd = Orange.evaluation.compute_CD(avranks, len(dataset_list_bi)) Orange.evaluation.graph_ranks(avranks, identificadores, cd=cd, width=9, textspace=3) plt.savefig(wd + 'figurasCD/' + 'cd_' + reducao + '_' + tipo + '_' + delaunay_type + '_' + name + '_f1.pdf') plt.close() avranks = list(media_geo_rank) cd = Orange.evaluation.compute_CD(avranks, len(dataset_list_bi)) Orange.evaluation.graph_ranks(avranks, identificadores, cd=cd, width=9, textspace=3) plt.savefig( wd + 'figurasCD/' + 'cd_' + reducao + '_' + tipo + '_' + delaunay_type + '_' + name + '_geo.pdf') plt.close() avranks = list(media_iba_rank) cd = Orange.evaluation.compute_CD(avranks, len(dataset_list_bi)) Orange.evaluation.graph_ranks(avranks, identificadores, cd=cd, width=9, textspace=3) plt.savefig( wd + 'figurasCD/' + 'cd_' + reducao + '_' + tipo + '_' + delaunay_type + '_' + name + '_iba.pdf') plt.close() '''avranks = list(media_auc_rank) cd = Orange.evaluation.compute_CD(avranks, len(dataset_list_bi)) Orange.evaluation.graph_ranks(avranks, identificadores, cd=cd, width=9, textspace=3) plt.savefig( wd + 'figurasCD/' + 'cd_' + reducao + '_' + tipo + '_' + delaunay_type + '_' + name + '_auc.pdf') plt.close()''' print('Delaunay Type= ', delaunay_type) print('Algorithm= ', name) def rank_total_by_algorithm(self, tipo, wd, reducao, order, alpha): delaunay_name = 'RANK_DTO_' + str(order) + '_' + str(alpha) cols = ['ALGORITHM', 'RANK_ORIGINAL', 'RANK_SMOTE', 'RANK_SMOTE_SVM', 'RANK_BORDERLINE1', 'RANK_BORDERLINE2', 'RANK_GEOMETRIC_SMOTE', 'RANK_DELAUNAY'] for name in classifiers_list: print(os.path.abspath(os.getcwd())) # Grava arquivos importantes path_name = wd + reducao + '_total_rank_' + tipo + '_' + order + '_' + str(alpha) + '_' + name + '_pre.csv' df_pre = pd.read_csv(path_name) path_name = wd + reducao + '_total_rank_' + tipo + '_' + order + '_' + str(alpha) + '_' + name + '_rec.csv' df_rec = pd.read_csv(path_name) path_name = wd + reducao + '_total_rank_' + tipo + '_' + order + '_' + str(alpha) + '_' + name + '_spe.csv' df_spe = pd.read_csv(path_name) path_name = wd + reducao + '_total_rank_' + tipo + '_' + order + '_' + str(alpha) + '_' + name + '_f1.csv' df_f1 = pd.read_csv(path_name) path_name = wd + reducao + '_total_rank_' + tipo + '_' + order + '_' + str(alpha) + '_' + name + '_geo.csv' df_geo = pd.read_csv(path_name) path_name = wd + reducao + '_total_rank_' + tipo + '_' + order + '_' + str(alpha) + '_' + name + '_iba.csv' df_iba = pd.read_csv(path_name) path_name = wd + reducao + '_total_rank_' + tipo + '_' + order + '_' + str(alpha) + '_' + name + '_auc.csv' df_auc = pd.read_csv(path_name) # PRE df_pre_col = df_pre[cols] df_pre_col.loc[:, delaunay_name] = df_pre_col['RANK_DELAUNAY'].values df_pre_col.drop(['RANK_DELAUNAY'], axis=1, inplace=True) ranking_pre = df_pre_col.groupby(['ALGORITHM']).mean() path_name = wd + reducao + '_rank_by_algorithm_' + tipo + '_' + order + '_' + str( alpha) + '_' + name + '_pre.csv' ranking_pre['ALGORITHM'] = name ranking_pre.to_csv(path_name, index=False) # REC df_rec_col = df_rec[cols] df_rec_col.loc[:, delaunay_name] = df_rec_col['RANK_DELAUNAY'].values df_rec_col.drop(['RANK_DELAUNAY'], axis=1, inplace=True) ranking_rec = df_rec_col.groupby(['ALGORITHM']).mean() path_name = wd + reducao + '_rank_by_algorithm_' + tipo + '_' + order + '_' + str( alpha) + '_' + name + '_rec.csv' ranking_rec['ALGORITHM'] = name ranking_rec.to_csv(path_name, index=False) # SPE df_spe_col = df_spe[cols] df_spe_col.loc[:, delaunay_name] = df_spe_col['RANK_DELAUNAY'].values df_spe_col.drop(['RANK_DELAUNAY'], axis=1, inplace=True) ranking_spe = df_spe_col.groupby(['ALGORITHM']).mean() path_name = wd + reducao + '_rank_by_algorithm_' + tipo + '_' + order + '_' + str( alpha) + '_' + name + '_spe.csv' ranking_spe['ALGORITHM'] = name ranking_spe.to_csv(path_name, index=False) # F1 df_f1_col = df_f1[cols] df_f1_col.loc[:, delaunay_name] = df_f1_col['RANK_DELAUNAY'].values df_f1_col.drop(['RANK_DELAUNAY'], axis=1, inplace=True) ranking_f1 = df_f1_col.groupby(['ALGORITHM']).mean() path_name = wd + reducao + '_rank_by_algorithm_' + tipo + '_' + order + '_' + str( alpha) + '_' + name + '_f1.csv' ranking_f1['ALGORITHM'] = name ranking_f1.to_csv(path_name, index=False) # GEO df_geo_col = df_geo[cols] df_geo_col.loc[:, delaunay_name] = df_geo_col['RANK_DELAUNAY'].values df_geo_col.drop(['RANK_DELAUNAY'], axis=1, inplace=True) ranking_geo = df_geo_col.groupby(['ALGORITHM']).mean() path_name = wd + reducao + '_rank_by_algorithm_' + tipo + '_' + order + '_' + str( alpha) + '_' + name + '_geo.csv' ranking_geo['ALGORITHM'] = name ranking_geo.to_csv(path_name, index=False) # IBA df_iba_col = df_iba[cols] df_iba_col.loc[:, delaunay_name] = df_iba_col['RANK_DELAUNAY'].values df_iba_col.drop(['RANK_DELAUNAY'], axis=1, inplace=True) ranking_iba = df_iba_col.groupby(['ALGORITHM']).mean() path_name = wd + reducao + '_rank_by_algorithm_' + tipo + '_' + order + '_' + str( alpha) + '_' + name + '_iba.csv' ranking_iba['ALGORITHM'] = name ranking_iba.to_csv(path_name, index=False) # AUC df_auc_col = df_auc[cols] df_auc_col.loc[:, delaunay_name] = df_auc_col['RANK_DELAUNAY'].values df_auc_col.drop(['RANK_DELAUNAY'], axis=1, inplace=True) ranking_auc = df_auc_col.groupby(['ALGORITHM']).mean() path_name = wd + reducao + '_rank_by_algorithm_' + tipo + '_' + order + '_' + str( alpha) + '_' + name + '_auc.csv' ranking_auc['ALGORITHM'] = name ranking_auc.to_csv(path_name, index=False) def rank_by_algorithm_dataset(self, filename): df = pd.read_csv(filename) df_temp = df.groupby(by=['ALGORITHM']) for name, group in df_temp: group = group.reset_index() group.drop('index', axis=1, inplace=True) df_temp1 = group.groupby(by=['DATASET']) for name1, group1 in df_temp1: group1 = group1.reset_index() group1.drop('index', axis=1, inplace=True) group1['rank_f1'] = group1['F1'].rank(ascending=False) group1['rank_geo'] = group1['GEO'].rank(ascending=False) group1['rank_iba'] = group1['IBA'].rank(ascending=False) group1['rank_auc'] = group1['AUC'].rank(ascending=False) group1.to_csv('./../output_dir/rank/rank_algorithm_dataset_' + name + '_' + name1 + '.csv', index=False) def rank_by_algorithm_dataset_only_dto(self, filename): df = pd.read_csv(filename) df = df[df['PREPROC'] != '_SMOTE'] df = df[df['PREPROC'] != '_Geometric_SMOTE'] df = df[df['PREPROC'] != '_Borderline1'] df = df[df['PREPROC'] != '_Borderline2'] df = df[df['PREPROC'] != '_smoteSVM'] df = df[df['PREPROC'] != '_train'] df_temp = df.groupby(by=['ALGORITHM']) for name, group in df_temp: group = group.reset_index() group.drop('index', axis=1, inplace=True) df_temp1 = group.groupby(by=['DATASET']) for name1, group1 in df_temp1: group1 = group1.reset_index() group1.drop('index', axis=1, inplace=True) group1['rank_f1'] = group1['F1'].rank(ascending=False) group1['rank_geo'] = group1['GEO'].rank(ascending=False) group1['rank_iba'] = group1['IBA'].rank(ascending=False) group1['rank_auc'] = group1['AUC'].rank(ascending=False) group1.to_csv( './../output_dir/rank/only_dto/rank_algorithm_dataset_only_dto_' + name + '_' + name1 + '.csv', index=False) df_graph = group1.copy() df_graph = df_graph.replace('area', 1) df_graph = df_graph.replace('volume', 2) df_graph = df_graph.replace('area_volume_ratio', 3) df_graph = df_graph.replace('edge_ratio', 4) df_graph = df_graph.replace('radius_ratio', 5) df_graph = df_graph.replace('aspect_ratio', 6) df_graph = df_graph.replace('max_solid_angle', 7) df_graph = df_graph.replace('min_solid_angle', 8) df_graph = df_graph.replace('solid_angle', 9) legend = ['area', 'volume', 'area_volume_ratio', 'edge_ratio', 'radius_ratio', 'aspect_ratio', 'max_solid_angle', 'min_solid_angle', 'solid_angle'] x = df_graph['ORDER'].values y = df_graph['ALPHA'].values.astype(float) dz = df_graph['AUC'].values N = x.shape[0] z = np.zeros(N) dx = 0.2 * np.ones(N) dy = 0.2 * np.ones(N) fig = plt.figure(figsize=(12, 8)) ax1 = fig.add_subplot(111, projection='3d') cs = ['r', 'g', 'b'] * 9 ax1.bar3d(x, y, z, dx, dy, dz, color=cs) ax1.set_ylabel('Alpha') ax1.set_xlabel('\n\n\n\n\nGeometry') ax1.set_zlabel('AUC') ax1.set_title('Geometry x Alpha \n Algorithm = ' + name + '\n Dataset = ' + name1) ax1.set_xticklabels(legend) ax1.legend() plt.show() fig = plt.figure(figsize=(12, 8)) ax = Axes3D(fig) surf = ax.plot_trisurf(x, y, z, cmap=cm.jet, linewidth=0.5) fig.colorbar(surf, shrink=0.5, aspect=7) ax.set_xlabel('Alpha') ax.set_ylabel('\n\n\n\n\nGeometry') ax.set_zlabel('AUC') ax.set_title('Geometry x Alpha \n Algorithm = ' + name + '\n Dataset = ' + name1) ax.set_yticklabels(legend) ax.legend() plt.savefig('./../output_dir/rank/only_dto/only_dto_geometry_by_alpha_' + name + '_' + name1 + '.pdf') plt.show() def rank_by_measures_only_dto(self, filename): best_geometry = pd.DataFrame(columns=['PREPROC', 'M', 'ALGORITHM', 'MEDIA_RANK']) df = pd.read_csv(filename) df = df[df['PREPROC'] != '_SMOTE'] df = df[df['PREPROC'] != '_Geometric_SMOTE'] df = df[df['PREPROC'] != '_Borderline1'] df = df[df['PREPROC'] != '_Borderline2'] df = df[df['PREPROC'] != '_smoteSVM'] df = df[df['PREPROC'] != '_train'] i = 0 df_temp = df.groupby(by=['ALGORITHM']) for name, group in df_temp: group = group.reset_index() group.drop('index', axis=1, inplace=True) group['rank_f1'] = group['F1'].rank(ascending=False) group['rank_geo'] = group['GEO'].rank(ascending=False) group['rank_iba'] = group['IBA'].rank(ascending=False) group['rank_auc'] = group['AUC'].rank(ascending=False) # AUC group = group.sort_values(by=['rank_auc']) media_rank_auc = group.groupby('PREPROC')['rank_auc'].mean() df_media_rank_auc = pd.DataFrame(columns=['PREPROC', 'MEDIA_RANK_AUC']) df_media_rank_auc['PREPROC'] = media_rank_auc.index df_media_rank_auc['MEDIA_RANK_AUC'] = media_rank_auc.values df_media_rank_auc.sort_values(by=['MEDIA_RANK_AUC'], ascending=True, inplace=True) df_media_rank_auc.reset_index(inplace=True) df_media_rank_auc.drop('index', axis=1, inplace=True) best_auc_geometry = df_media_rank_auc.loc[0] # GEO group = group.sort_values(by=['rank_geo']) media_rank_geo = group.groupby('PREPROC')['rank_geo'].mean() df_media_rank_geo = pd.DataFrame(columns=['PREPROC', 'MEDIA_RANK_GEO']) df_media_rank_geo['PREPROC'] = media_rank_geo.index df_media_rank_geo['MEDIA_RANK_GEO'] = media_rank_geo.values df_media_rank_geo.sort_values(by=['MEDIA_RANK_GEO'], ascending=True, inplace=True) df_media_rank_geo.reset_index(inplace=True) df_media_rank_geo.drop('index', axis=1, inplace=True) best_geo_geometry = df_media_rank_geo.loc[0] # IBA group = group.sort_values(by=['rank_iba']) media_rank_iba = group.groupby('PREPROC')['rank_iba'].mean() df_media_rank_iba = pd.DataFrame(columns=['PREPROC', 'MEDIA_RANK_IBA']) df_media_rank_iba['PREPROC'] = media_rank_iba.index df_media_rank_iba['MEDIA_RANK_IBA'] = media_rank_iba.values df_media_rank_iba.sort_values(by=['MEDIA_RANK_IBA'], ascending=True, inplace=True) df_media_rank_iba.reset_index(inplace=True) df_media_rank_iba.drop('index', axis=1, inplace=True) best_iba_geometry = df_media_rank_iba.loc[0] # F1 group = group.sort_values(by=['rank_f1']) media_rank_f1 = group.groupby('PREPROC')['rank_f1'].mean() df_media_rank_f1 = pd.DataFrame(columns=['PREPROC', 'MEDIA_RANK_F1']) df_media_rank_f1['PREPROC'] = media_rank_f1.index df_media_rank_f1['MEDIA_RANK_F1'] = media_rank_f1.values df_media_rank_f1.sort_values(by=['MEDIA_RANK_F1'], ascending=True, inplace=True) df_media_rank_f1.reset_index(inplace=True) df_media_rank_f1.drop('index', axis=1, inplace=True) best_f1_geometry = df_media_rank_f1.loc[0] best_geometry.loc[i + 0, 'PREPROC'] = best_auc_geometry[0] best_geometry.loc[i + 0, 'MEDIA_RANK'] = best_auc_geometry[1] best_geometry.loc[i + 0, 'ALGORITHM'] = name best_geometry.loc[i + 0, 'M'] = 'AUC' best_geometry.loc[i + 1, 'PREPROC'] = best_geo_geometry[0] best_geometry.loc[i + 1, 'MEDIA_RANK'] = best_geo_geometry[1] best_geometry.loc[i + 1, 'ALGORITHM'] = name best_geometry.loc[i + 1, 'M'] = 'GEO' best_geometry.loc[i + 2, 'PREPROC'] = best_iba_geometry[0] best_geometry.loc[i + 2, 'MEDIA_RANK'] = best_iba_geometry[1] best_geometry.loc[i + 2, 'ALGORITHM'] = name best_geometry.loc[i + 2, 'M'] = 'IBA' best_geometry.loc[i + 3, 'PREPROC'] = best_f1_geometry[0] best_geometry.loc[i + 3, 'MEDIA_RANK'] = best_f1_geometry[1] best_geometry.loc[i + 3, 'ALGORITHM'] = name best_geometry.loc[i + 3, 'M'] = 'F1' i += 4 group.to_csv('./../output_dir/rank/rank_by_measures' + '_' + name + '.csv', index=False) best_geometry.to_csv('./../output_dir/rank/best_dto_geometry_rank.csv', index=False) def find_best_dto(self): ''' Find best DTO geometry and alpha parameter :return: ''' df =
pd.read_csv('./../output_dir/rank/rank_by_measures.csv')
pandas.read_csv
import pandas as pd import numpy as np class TransactionManager: """ An interaface to store and manage all transactions. Transactions are the minimal unit to represent the outcome of a market. Attributes ----------- name_col: list of str Name of the columns to use in the dataframe returned. n_trans: int Number of transactions currently in the Manager trans: list of tuples List of the actual transactions available """ name_col = ['bid', 'quantity', 'price', 'source', 'active'] def __init__(self): """ """ self.n_trans = 0 self.trans = [] def add_transaction(self, bid, quantity, price, source, active): """Add a transaction to the transactions list Parameters ---------- bid : int Unique identifier of the bid quantity : float transacted quantity price : float transacted price source : int Identifier of the second party in the trasaction, -1 if there is no clear second party, such as in a double auction. active : True` if the bid is still active after the transaction. Returns -------- trans_id: int id of the added transaction, -1 if fails Examples --------- >>> tm = pm.TransactionManager() >>> tm.add_transaction(1, 0.5, 2.1, -1, False) 0 >>> tm.trans [(1, 0.5, 2.1, -1, False)] >>> tm.n_trans 1 """ new_trans = (bid, quantity, price, source, active) self.trans.append(new_trans) self.n_trans += 1 return self.n_trans - 1 def get_df(self): """Returns the transaction dataframe Parameters ---------- Returns ------- df: pd.DataFrame A pandas dataframe representing all the transactions stored. Examples --------- >>> tm = pm.TransactionManager() >>> tm.add_transaction(1, 0.5, 2.1, -1, False) 0 >>> tm.add_transaction(5, 0, 0, 3, True) 1 >>> tm.get_df() bid quantity price source active 0 1 0.5 2.1 -1 False 1 5 0.0 0.0 3 True """ df =
pd.DataFrame(self.trans, columns=self.name_col)
pandas.DataFrame
import pandas as pd import numpy as np from apscheduler.schedulers.blocking import BlockingScheduler from github import Github from github import InputGitTreeElement import re sched = BlockingScheduler() @sched.scheduled_job('cron', day_of_week='mon-sun', hour=3) def scheduled_job(): def do_fuzzy_search(country): try: result = pycountry.countries.search_fuzzy(country) except Exception: return np.nan else: return result[0].alpha_2 ################################## ############GitHUB################ death_df = pd.read_csv('https://raw.githubusercontent.com/CSSEGISandData/COVID-19/master/csse_covid_19_data/csse_covid_19_time_series/time_series_covid19_deaths_global.csv') confirmed_df = pd.read_csv('https://raw.githubusercontent.com/CSSEGISandData/COVID-19/master/csse_covid_19_data/csse_covid_19_time_series/time_series_covid19_confirmed_global.csv') recovered_df = pd.read_csv('https://raw.githubusercontent.com/CSSEGISandData/COVID-19/master/csse_covid_19_data/csse_covid_19_time_series/time_series_covid19_recovered_global.csv') country_df = pd.read_csv('https://raw.githubusercontent.com/CSSEGISandData/COVID-19/web-data/data/cases_country.csv') confirmed_df.drop(columns=['Lat','Long'],axis=1,inplace=True) death_df.drop(columns=['Lat','Long'],axis=1,inplace=True) recovered_df.drop(columns=['Lat','Long'],axis=1,inplace=True) country_df.drop(columns=['People_Tested','People_Hospitalized','Lat','Long_','Last_Update','UID'],axis=1,inplace=True) confirmed_df=confirmed_df.groupby(['Country/Region']).sum() death_df=death_df.groupby(['Country/Region']).sum() recovered_df=recovered_df.groupby(['Country/Region']).sum() confirmed_df=confirmed_df.reset_index() death_df=death_df.reset_index() recovered_df=recovered_df.reset_index() dfg=country_df['Country_Region'] dfg=list(dfg) dfg.remove('MS Zaandam') dfg.remove('<NAME>') olo={} for i in dfg: olo[i]=do_fuzzy_search(i) olo['Burma']='MMR' olo['Congo (Brazzaville)']='COG' olo['Congo (Brazzaville)']='COD' olo['Korea, South']='KOR' olo['Laos']='LA' olo['Taiwan*']='TWN' olo['West Bank and Gaza']='PS' country_df.sort_values(by=['Confirmed'],ascending=False,inplace=True) country_df=country_df.reset_index() country_df.drop(columns=['index'],inplace=True) #country_df=country_df.head(10) l=country_df['Country_Region'] l=list(l) l.remove('MS Zaandam') l.remove('Diamond Princess') """ confirmed_df=confirmed_df.loc[confirmed_df['Country/Region'].isin(l) ] death_df=death_df.loc[death_df['Country/Region'].isin(l) ] recovered_df=recovered_df.loc[recovered_df['Country/Region'].isin(l) ] """ confirmed_df=pd.melt(confirmed_df,id_vars='Country/Region',var_name='Date',value_name='No. Of Confirmed Cases') death_df=pd.melt(death_df,id_vars='Country/Region',var_name='Date',value_name='No. Of Death Cases') recovered_df=pd.melt(recovered_df,id_vars='Country/Region',var_name='Date',value_name='No. Of Recovered Cases') confirmed_df=confirmed_df.pivot(index='Date', columns='Country/Region', values='No. Of Confirmed Cases') death_df=death_df.pivot(index='Date', columns='Country/Region', values='No. Of Death Cases') recovered_df=recovered_df.pivot(index='Date', columns='Country/Region', values='No. Of Recovered Cases') confirmed_df=confirmed_df.reset_index() death_df=death_df.reset_index() recovered_df=recovered_df.reset_index() death_df['Date']=pd.to_datetime(death_df['Date']) confirmed_df['Date']=pd.to_datetime(confirmed_df['Date']) recovered_df['Date']=
pd.to_datetime(recovered_df['Date'])
pandas.to_datetime
import pytest import numpy as np import pandas import pandas.util.testing as tm from pandas.tests.frame.common import TestData import matplotlib import modin.pandas as pd from modin.pandas.utils import to_pandas from numpy.testing import assert_array_equal from .utils import ( random_state, RAND_LOW, RAND_HIGH, df_equals, df_is_empty, arg_keys, name_contains, test_data_values, test_data_keys, test_data_with_duplicates_values, test_data_with_duplicates_keys, numeric_dfs, no_numeric_dfs, test_func_keys, test_func_values, query_func_keys, query_func_values, agg_func_keys, agg_func_values, numeric_agg_funcs, quantiles_keys, quantiles_values, indices_keys, indices_values, axis_keys, axis_values, bool_arg_keys, bool_arg_values, int_arg_keys, int_arg_values, ) # TODO remove once modin-project/modin#469 is resolved agg_func_keys.remove("str") agg_func_values.remove(str) pd.DEFAULT_NPARTITIONS = 4 # Force matplotlib to not use any Xwindows backend. matplotlib.use("Agg") class TestDFPartOne: # Test inter df math functions def inter_df_math_helper(self, modin_df, pandas_df, op): # Test dataframe to datframe try: pandas_result = getattr(pandas_df, op)(pandas_df) except Exception as e: with pytest.raises(type(e)): getattr(modin_df, op)(modin_df) else: modin_result = getattr(modin_df, op)(modin_df) df_equals(modin_result, pandas_result) # Test dataframe to int try: pandas_result = getattr(pandas_df, op)(4) except Exception as e: with pytest.raises(type(e)): getattr(modin_df, op)(4) else: modin_result = getattr(modin_df, op)(4) df_equals(modin_result, pandas_result) # Test dataframe to float try: pandas_result = getattr(pandas_df, op)(4.0) except Exception as e: with pytest.raises(type(e)): getattr(modin_df, op)(4.0) else: modin_result = getattr(modin_df, op)(4.0) df_equals(modin_result, pandas_result) # Test transposed dataframes to float try: pandas_result = getattr(pandas_df.T, op)(4.0) except Exception as e: with pytest.raises(type(e)): getattr(modin_df.T, op)(4.0) else: modin_result = getattr(modin_df.T, op)(4.0) df_equals(modin_result, pandas_result) frame_data = { "{}_other".format(modin_df.columns[0]): [0, 2], modin_df.columns[0]: [0, 19], modin_df.columns[1]: [1, 1], } modin_df2 = pd.DataFrame(frame_data) pandas_df2 = pandas.DataFrame(frame_data) # Test dataframe to different dataframe shape try: pandas_result = getattr(pandas_df, op)(pandas_df2) except Exception as e: with pytest.raises(type(e)): getattr(modin_df, op)(modin_df2) else: modin_result = getattr(modin_df, op)(modin_df2) df_equals(modin_result, pandas_result) # Test dataframe to list list_test = random_state.randint(RAND_LOW, RAND_HIGH, size=(modin_df.shape[1])) try: pandas_result = getattr(pandas_df, op)(list_test, axis=1) except Exception as e: with pytest.raises(type(e)): getattr(modin_df, op)(list_test, axis=1) else: modin_result = getattr(modin_df, op)(list_test, axis=1) df_equals(modin_result, pandas_result) # Test dataframe to series series_test_modin = modin_df[modin_df.columns[0]] series_test_pandas = pandas_df[pandas_df.columns[0]] try: pandas_result = getattr(pandas_df, op)(series_test_pandas, axis=0) except Exception as e: with pytest.raises(type(e)): getattr(modin_df, op)(series_test_modin, axis=0) else: modin_result = getattr(modin_df, op)(series_test_modin, axis=0) df_equals(modin_result, pandas_result) # Test dataframe to series with different index series_test_modin = modin_df[modin_df.columns[0]].reset_index(drop=True) series_test_pandas = pandas_df[pandas_df.columns[0]].reset_index(drop=True) try: pandas_result = getattr(pandas_df, op)(series_test_pandas, axis=0) except Exception as e: with pytest.raises(type(e)): getattr(modin_df, op)(series_test_modin, axis=0) else: modin_result = getattr(modin_df, op)(series_test_modin, axis=0) df_equals(modin_result, pandas_result) # Level test new_idx = pandas.MultiIndex.from_tuples( [(i // 4, i // 2, i) for i in modin_df.index] ) modin_df_multi_level = modin_df.copy() modin_df_multi_level.index = new_idx # Defaults to pandas with pytest.warns(UserWarning): # Operation against self for sanity check getattr(modin_df_multi_level, op)(modin_df_multi_level, axis=0, level=1) @pytest.mark.parametrize("data", test_data_values, ids=test_data_keys) def test_add(self, data): modin_df = pd.DataFrame(data) pandas_df = pandas.DataFrame(data) self.inter_df_math_helper(modin_df, pandas_df, "add") @pytest.mark.parametrize("data", test_data_values, ids=test_data_keys) def test_div(self, data): modin_df = pd.DataFrame(data) pandas_df = pandas.DataFrame(data) self.inter_df_math_helper(modin_df, pandas_df, "div") @pytest.mark.parametrize("data", test_data_values, ids=test_data_keys) def test_divide(self, data): modin_df = pd.DataFrame(data) pandas_df = pandas.DataFrame(data) self.inter_df_math_helper(modin_df, pandas_df, "divide") @pytest.mark.parametrize("data", test_data_values, ids=test_data_keys) def test_floordiv(self, data): modin_df = pd.DataFrame(data) pandas_df = pandas.DataFrame(data) self.inter_df_math_helper(modin_df, pandas_df, "floordiv") @pytest.mark.parametrize("data", test_data_values, ids=test_data_keys) def test_mod(self, data): modin_df = pd.DataFrame(data) pandas_df = pandas.DataFrame(data) self.inter_df_math_helper(modin_df, pandas_df, "mod") @pytest.mark.parametrize("data", test_data_values, ids=test_data_keys) def test_mul(self, data): modin_df = pd.DataFrame(data) pandas_df = pandas.DataFrame(data) self.inter_df_math_helper(modin_df, pandas_df, "mul") @pytest.mark.parametrize("data", test_data_values, ids=test_data_keys) def test_multiply(self, data): modin_df = pd.DataFrame(data) pandas_df = pandas.DataFrame(data) self.inter_df_math_helper(modin_df, pandas_df, "multiply") @pytest.mark.parametrize("data", test_data_values, ids=test_data_keys) def test_pow(self, data): modin_df = pd.DataFrame(data) pandas_df = pandas.DataFrame(data) # TODO: Revert to others once we have an efficient way of preprocessing for positive # values try: pandas_df = pandas_df.abs() except Exception: pass else: modin_df = modin_df.abs() self.inter_df_math_helper(modin_df, pandas_df, "pow") @pytest.mark.parametrize("data", test_data_values, ids=test_data_keys) def test_sub(self, data): modin_df = pd.DataFrame(data) pandas_df = pandas.DataFrame(data) self.inter_df_math_helper(modin_df, pandas_df, "sub") @pytest.mark.parametrize("data", test_data_values, ids=test_data_keys) def test_subtract(self, data): modin_df = pd.DataFrame(data) pandas_df = pandas.DataFrame(data) self.inter_df_math_helper(modin_df, pandas_df, "subtract") @pytest.mark.parametrize("data", test_data_values, ids=test_data_keys) def test_truediv(self, data): modin_df = pd.DataFrame(data) pandas_df = pandas.DataFrame(data) self.inter_df_math_helper(modin_df, pandas_df, "truediv") @pytest.mark.parametrize("data", test_data_values, ids=test_data_keys) def test___div__(self, data): modin_df = pd.DataFrame(data) pandas_df = pandas.DataFrame(data) self.inter_df_math_helper(modin_df, pandas_df, "__div__") @pytest.mark.parametrize("data", test_data_values, ids=test_data_keys) def test___add__(self, data): modin_df = pd.DataFrame(data) pandas_df = pandas.DataFrame(data) self.inter_df_math_helper(modin_df, pandas_df, "__add__") @pytest.mark.parametrize("data", test_data_values, ids=test_data_keys) def test___radd__(self, data): modin_df = pd.DataFrame(data) pandas_df = pandas.DataFrame(data) self.inter_df_math_helper(modin_df, pandas_df, "__radd__") @pytest.mark.parametrize("data", test_data_values, ids=test_data_keys) def test___mul__(self, data): modin_df = pd.DataFrame(data) pandas_df = pandas.DataFrame(data) self.inter_df_math_helper(modin_df, pandas_df, "__mul__") @pytest.mark.parametrize("data", test_data_values, ids=test_data_keys) def test___rmul__(self, data): modin_df = pd.DataFrame(data) pandas_df = pandas.DataFrame(data) self.inter_df_math_helper(modin_df, pandas_df, "__rmul__") @pytest.mark.parametrize("data", test_data_values, ids=test_data_keys) def test___pow__(self, data): modin_df = pd.DataFrame(data) pandas_df = pandas.DataFrame(data) self.inter_df_math_helper(modin_df, pandas_df, "__pow__") @pytest.mark.parametrize("data", test_data_values, ids=test_data_keys) def test___rpow__(self, data): modin_df = pd.DataFrame(data) pandas_df = pandas.DataFrame(data) self.inter_df_math_helper(modin_df, pandas_df, "__rpow__") @pytest.mark.parametrize("data", test_data_values, ids=test_data_keys) def test___sub__(self, data): modin_df = pd.DataFrame(data) pandas_df = pandas.DataFrame(data) self.inter_df_math_helper(modin_df, pandas_df, "__sub__") @pytest.mark.parametrize("data", test_data_values, ids=test_data_keys) def test___floordiv__(self, data): modin_df = pd.DataFrame(data) pandas_df = pandas.DataFrame(data) self.inter_df_math_helper(modin_df, pandas_df, "__floordiv__") @pytest.mark.parametrize("data", test_data_values, ids=test_data_keys) def test___rfloordiv__(self, data): modin_df = pd.DataFrame(data) pandas_df = pandas.DataFrame(data) self.inter_df_math_helper(modin_df, pandas_df, "__rfloordiv__") @pytest.mark.parametrize("data", test_data_values, ids=test_data_keys) def test___truediv__(self, data): modin_df = pd.DataFrame(data) pandas_df = pandas.DataFrame(data) self.inter_df_math_helper(modin_df, pandas_df, "__truediv__") @pytest.mark.parametrize("data", test_data_values, ids=test_data_keys) def test___rtruediv__(self, data): modin_df = pd.DataFrame(data) pandas_df = pandas.DataFrame(data) self.inter_df_math_helper(modin_df, pandas_df, "__rtruediv__") @pytest.mark.parametrize("data", test_data_values, ids=test_data_keys) def test___mod__(self, data): modin_df = pd.DataFrame(data) pandas_df = pandas.DataFrame(data) self.inter_df_math_helper(modin_df, pandas_df, "__mod__") @pytest.mark.parametrize("data", test_data_values, ids=test_data_keys) def test___rmod__(self, data): modin_df = pd.DataFrame(data) pandas_df = pandas.DataFrame(data) self.inter_df_math_helper(modin_df, pandas_df, "__rmod__") @pytest.mark.parametrize("data", test_data_values, ids=test_data_keys) def test___rdiv__(self, data): modin_df = pd.DataFrame(data) pandas_df = pandas.DataFrame(data) self.inter_df_math_helper(modin_df, pandas_df, "__rdiv__") # END test inter df math functions # Test comparison of inter operation functions def comparison_inter_ops_helper(self, modin_df, pandas_df, op): try: pandas_result = getattr(pandas_df, op)(pandas_df) except Exception as e: with pytest.raises(type(e)): getattr(modin_df, op)(modin_df) else: modin_result = getattr(modin_df, op)(modin_df) df_equals(modin_result, pandas_result) try: pandas_result = getattr(pandas_df, op)(4) except TypeError: with pytest.raises(TypeError): getattr(modin_df, op)(4) else: modin_result = getattr(modin_df, op)(4) df_equals(modin_result, pandas_result) try: pandas_result = getattr(pandas_df, op)(4.0) except TypeError: with pytest.raises(TypeError): getattr(modin_df, op)(4.0) else: modin_result = getattr(modin_df, op)(4.0) df_equals(modin_result, pandas_result) try: pandas_result = getattr(pandas_df, op)("a") except TypeError: with pytest.raises(TypeError): repr(getattr(modin_df, op)("a")) else: modin_result = getattr(modin_df, op)("a") df_equals(modin_result, pandas_result) frame_data = { "{}_other".format(modin_df.columns[0]): [0, 2], modin_df.columns[0]: [0, 19], modin_df.columns[1]: [1, 1], } modin_df2 = pd.DataFrame(frame_data) pandas_df2 = pandas.DataFrame(frame_data) try: pandas_result = getattr(pandas_df, op)(pandas_df2) except Exception as e: with pytest.raises(type(e)): getattr(modin_df, op)(modin_df2) else: modin_result = getattr(modin_df, op)(modin_df2) df_equals(modin_result, pandas_result) new_idx = pandas.MultiIndex.from_tuples( [(i // 4, i // 2, i) for i in modin_df.index] ) modin_df_multi_level = modin_df.copy() modin_df_multi_level.index = new_idx # Defaults to pandas with pytest.warns(UserWarning): # Operation against self for sanity check getattr(modin_df_multi_level, op)(modin_df_multi_level, axis=0, level=1) @pytest.mark.parametrize("data", test_data_values, ids=test_data_keys) def test_eq(self, data): modin_df = pd.DataFrame(data) pandas_df = pandas.DataFrame(data) self.comparison_inter_ops_helper(modin_df, pandas_df, "eq") @pytest.mark.parametrize("data", test_data_values, ids=test_data_keys) def test_ge(self, data): modin_df = pd.DataFrame(data) pandas_df = pandas.DataFrame(data) self.comparison_inter_ops_helper(modin_df, pandas_df, "ge") @pytest.mark.parametrize("data", test_data_values, ids=test_data_keys) def test_gt(self, data): modin_df = pd.DataFrame(data) pandas_df = pandas.DataFrame(data) self.comparison_inter_ops_helper(modin_df, pandas_df, "gt") @pytest.mark.parametrize("data", test_data_values, ids=test_data_keys) def test_le(self, data): modin_df = pd.DataFrame(data) pandas_df = pandas.DataFrame(data) self.comparison_inter_ops_helper(modin_df, pandas_df, "le") @pytest.mark.parametrize("data", test_data_values, ids=test_data_keys) def test_lt(self, data): modin_df = pd.DataFrame(data) pandas_df = pandas.DataFrame(data) self.comparison_inter_ops_helper(modin_df, pandas_df, "lt") @pytest.mark.parametrize("data", test_data_values, ids=test_data_keys) def test_ne(self, data): modin_df = pd.DataFrame(data) pandas_df = pandas.DataFrame(data) self.comparison_inter_ops_helper(modin_df, pandas_df, "ne") # END test comparison of inter operation functions # Test dataframe right operations def inter_df_math_right_ops_helper(self, modin_df, pandas_df, op): try: pandas_result = getattr(pandas_df, op)(4) except Exception as e: with pytest.raises(type(e)): getattr(modin_df, op)(4) else: modin_result = getattr(modin_df, op)(4) df_equals(modin_result, pandas_result) try: pandas_result = getattr(pandas_df, op)(4.0) except Exception as e: with pytest.raises(type(e)): getattr(modin_df, op)(4.0) else: modin_result = getattr(modin_df, op)(4.0) df_equals(modin_result, pandas_result) new_idx = pandas.MultiIndex.from_tuples( [(i // 4, i // 2, i) for i in modin_df.index] ) modin_df_multi_level = modin_df.copy() modin_df_multi_level.index = new_idx # Defaults to pandas with pytest.warns(UserWarning): # Operation against self for sanity check getattr(modin_df_multi_level, op)(modin_df_multi_level, axis=0, level=1) @pytest.mark.parametrize("data", test_data_values, ids=test_data_keys) def test_radd(self, data): modin_df = pd.DataFrame(data) pandas_df = pandas.DataFrame(data) self.inter_df_math_right_ops_helper(modin_df, pandas_df, "radd") @pytest.mark.parametrize("data", test_data_values, ids=test_data_keys) def test_rdiv(self, data): modin_df = pd.DataFrame(data) pandas_df = pandas.DataFrame(data) self.inter_df_math_right_ops_helper(modin_df, pandas_df, "rdiv") @pytest.mark.parametrize("data", test_data_values, ids=test_data_keys) def test_rfloordiv(self, data): modin_df = pd.DataFrame(data) pandas_df = pandas.DataFrame(data) self.inter_df_math_right_ops_helper(modin_df, pandas_df, "rfloordiv") @pytest.mark.parametrize("data", test_data_values, ids=test_data_keys) def test_rmod(self, data): modin_df = pd.DataFrame(data) pandas_df = pandas.DataFrame(data) self.inter_df_math_right_ops_helper(modin_df, pandas_df, "rmod") @pytest.mark.parametrize("data", test_data_values, ids=test_data_keys) def test_rmul(self, data): modin_df = pd.DataFrame(data) pandas_df = pandas.DataFrame(data) self.inter_df_math_right_ops_helper(modin_df, pandas_df, "rmul") @pytest.mark.parametrize("data", test_data_values, ids=test_data_keys) def test_rpow(self, request, data): modin_df = pd.DataFrame(data) pandas_df = pandas.DataFrame(data) # TODO: Revert to others once we have an efficient way of preprocessing for positive values # We need to check that negative integers are not used efficiently if "100x100" not in request.node.name: self.inter_df_math_right_ops_helper(modin_df, pandas_df, "rpow") @pytest.mark.parametrize("data", test_data_values, ids=test_data_keys) def test_rsub(self, data): modin_df = pd.DataFrame(data) pandas_df = pandas.DataFrame(data) self.inter_df_math_right_ops_helper(modin_df, pandas_df, "rsub") @pytest.mark.parametrize("data", test_data_values, ids=test_data_keys) def test_rtruediv(self, data): modin_df = pd.DataFrame(data) pandas_df = pandas.DataFrame(data) self.inter_df_math_right_ops_helper(modin_df, pandas_df, "rtruediv") @pytest.mark.parametrize("data", test_data_values, ids=test_data_keys) def test___rsub__(self, data): modin_df = pd.DataFrame(data) pandas_df = pandas.DataFrame(data) self.inter_df_math_right_ops_helper(modin_df, pandas_df, "__rsub__") # END test dataframe right operations @pytest.mark.parametrize("data", test_data_values, ids=test_data_keys) def test_abs(self, request, data): modin_df = pd.DataFrame(data) pandas_df = pandas.DataFrame(data) try: pandas_result = pandas_df.abs() except Exception as e: with pytest.raises(type(e)): modin_df.abs() else: modin_result = modin_df.abs() df_equals(modin_result, pandas_result) @pytest.mark.parametrize("data", test_data_values, ids=test_data_keys) def test_add_prefix(self, data): modin_df = pd.DataFrame(data) pandas_df = pandas.DataFrame(data) test_prefix = "TEST" new_modin_df = modin_df.add_prefix(test_prefix) new_pandas_df = pandas_df.add_prefix(test_prefix) df_equals(new_modin_df.columns, new_pandas_df.columns) @pytest.mark.parametrize("data", test_data_values, ids=test_data_keys) @pytest.mark.parametrize("testfunc", test_func_values, ids=test_func_keys) def test_applymap(self, request, data, testfunc): modin_df = pd.DataFrame(data) pandas_df = pandas.DataFrame(data) with pytest.raises(ValueError): x = 2 modin_df.applymap(x) try: pandas_result = pandas_df.applymap(testfunc) except Exception as e: with pytest.raises(type(e)): modin_df.applymap(testfunc) else: modin_result = modin_df.applymap(testfunc) df_equals(modin_result, pandas_result) @pytest.mark.parametrize("data", test_data_values, ids=test_data_keys) @pytest.mark.parametrize("testfunc", test_func_values, ids=test_func_keys) def test_applymap_numeric(self, request, data, testfunc): modin_df = pd.DataFrame(data) pandas_df = pandas.DataFrame(data) if name_contains(request.node.name, numeric_dfs): try: pandas_result = pandas_df.applymap(testfunc) except Exception as e: with pytest.raises(type(e)): modin_df.applymap(testfunc) else: modin_result = modin_df.applymap(testfunc) df_equals(modin_result, pandas_result) @pytest.mark.parametrize("data", test_data_values, ids=test_data_keys) def test_add_suffix(self, data): modin_df = pd.DataFrame(data) pandas_df = pandas.DataFrame(data) test_suffix = "TEST" new_modin_df = modin_df.add_suffix(test_suffix) new_pandas_df = pandas_df.add_suffix(test_suffix) df_equals(new_modin_df.columns, new_pandas_df.columns) @pytest.mark.parametrize("data", test_data_values, ids=test_data_keys) def test_at(self, request, data): modin_df = pd.DataFrame(data) pandas_df = pandas.DataFrame(data) # We skip nan datasets because nan != nan if "nan" not in request.node.name: key1 = modin_df.columns[0] # Scaler assert modin_df.at[0, key1] == pandas_df.at[0, key1] # Series df_equals(modin_df.loc[0].at[key1], pandas_df.loc[0].at[key1]) # Write Item modin_df_copy = modin_df.copy() pandas_df_copy = pandas_df.copy() modin_df_copy.at[1, key1] = modin_df.at[0, key1] pandas_df_copy.at[1, key1] = pandas_df.at[0, key1] df_equals(modin_df_copy, pandas_df_copy) @pytest.mark.parametrize("data", test_data_values, ids=test_data_keys) def test_axes(self, data): modin_df = pd.DataFrame(data) pandas_df = pandas.DataFrame(data) for modin_axis, pd_axis in zip(modin_df.axes, pandas_df.axes): assert np.array_equal(modin_axis, pd_axis) @pytest.mark.parametrize("data", test_data_values, ids=test_data_keys) def test_copy(self, data): modin_df = pd.DataFrame(data) pandas_df = pandas.DataFrame(data) # noqa F841 # pandas_df is unused but there so there won't be confusing list comprehension # stuff in the pytest.mark.parametrize new_modin_df = modin_df.copy() assert new_modin_df is not modin_df assert np.array_equal( new_modin_df._query_compiler._modin_frame._partitions, modin_df._query_compiler._modin_frame._partitions, ) assert new_modin_df is not modin_df df_equals(new_modin_df, modin_df) # Shallow copy tests modin_df = pd.DataFrame(data) modin_df_cp = modin_df.copy(False) modin_df[modin_df.columns[0]] = 0 df_equals(modin_df, modin_df_cp) @pytest.mark.parametrize("data", test_data_values, ids=test_data_keys) def test_dtypes(self, data): modin_df = pd.DataFrame(data) pandas_df = pandas.DataFrame(data) df_equals(modin_df.dtypes, pandas_df.dtypes) @pytest.mark.parametrize("data", test_data_values, ids=test_data_keys) def test_ftypes(self, data): modin_df = pd.DataFrame(data) pandas_df = pandas.DataFrame(data) df_equals(modin_df.ftypes, pandas_df.ftypes) @pytest.mark.parametrize("data", test_data_values, ids=test_data_keys) @pytest.mark.parametrize("key", indices_values, ids=indices_keys) def test_get(self, data, key): modin_df = pd.DataFrame(data) pandas_df = pandas.DataFrame(data) df_equals(modin_df.get(key), pandas_df.get(key)) df_equals( modin_df.get(key, default="default"), pandas_df.get(key, default="default") ) @pytest.mark.parametrize("data", test_data_values, ids=test_data_keys) def test_get_dtype_counts(self, data): modin_result = pd.DataFrame(data).get_dtype_counts().sort_index() pandas_result = pandas.DataFrame(data).get_dtype_counts().sort_index() df_equals(modin_result, pandas_result) @pytest.mark.parametrize("data", test_data_values, ids=test_data_keys) @pytest.mark.parametrize( "dummy_na", bool_arg_values, ids=arg_keys("dummy_na", bool_arg_keys) ) @pytest.mark.parametrize( "drop_first", bool_arg_values, ids=arg_keys("drop_first", bool_arg_keys) ) def test_get_dummies(self, request, data, dummy_na, drop_first): modin_df = pd.DataFrame(data) pandas_df = pandas.DataFrame(data) try: pandas_result = pandas.get_dummies( pandas_df, dummy_na=dummy_na, drop_first=drop_first ) except Exception as e: with pytest.raises(type(e)): pd.get_dummies(modin_df, dummy_na=dummy_na, drop_first=drop_first) else: modin_result = pd.get_dummies( modin_df, dummy_na=dummy_na, drop_first=drop_first ) df_equals(modin_result, pandas_result) @pytest.mark.parametrize("data", test_data_values, ids=test_data_keys) def test_get_ftype_counts(self, data): modin_df = pd.DataFrame(data) pandas_df = pandas.DataFrame(data) df_equals(modin_df.get_ftype_counts(), pandas_df.get_ftype_counts()) @pytest.mark.parametrize("data", test_data_values, ids=test_data_keys) @pytest.mark.parametrize("axis", axis_values, ids=axis_keys) @pytest.mark.parametrize("func", agg_func_values, ids=agg_func_keys) def test_agg(self, data, axis, func): modin_df = pd.DataFrame(data) pandas_df = pandas.DataFrame(data) try: pandas_result = pandas_df.agg(func, axis) except Exception as e: with pytest.raises(type(e)): modin_df.agg(func, axis) else: modin_result = modin_df.agg(func, axis) df_equals(modin_result, pandas_result) @pytest.mark.parametrize("data", test_data_values, ids=test_data_keys) @pytest.mark.parametrize("axis", axis_values, ids=axis_keys) @pytest.mark.parametrize("func", agg_func_values, ids=agg_func_keys) def test_agg_numeric(self, request, data, axis, func): if name_contains(request.node.name, numeric_agg_funcs) and name_contains( request.node.name, numeric_dfs ): modin_df = pd.DataFrame(data) pandas_df = pandas.DataFrame(data) try: pandas_result = pandas_df.agg(func, axis) except Exception as e: with pytest.raises(type(e)): modin_df.agg(func, axis) else: modin_result = modin_df.agg(func, axis) df_equals(modin_result, pandas_result) @pytest.mark.parametrize("data", test_data_values, ids=test_data_keys) @pytest.mark.parametrize("axis", axis_values, ids=axis_keys) @pytest.mark.parametrize("func", agg_func_values, ids=agg_func_keys) def test_aggregate(self, request, data, func, axis): modin_df = pd.DataFrame(data) pandas_df = pandas.DataFrame(data) try: pandas_result = pandas_df.aggregate(func, axis) except Exception as e: with pytest.raises(type(e)): modin_df.aggregate(func, axis) else: modin_result = modin_df.aggregate(func, axis) df_equals(modin_result, pandas_result) @pytest.mark.parametrize("data", test_data_values, ids=test_data_keys) @pytest.mark.parametrize("axis", axis_values, ids=axis_keys) @pytest.mark.parametrize("func", agg_func_values, ids=agg_func_keys) def test_aggregate_numeric(self, request, data, axis, func): if name_contains(request.node.name, numeric_agg_funcs) and name_contains( request.node.name, numeric_dfs ): modin_df = pd.DataFrame(data) pandas_df = pandas.DataFrame(data) try: pandas_result = pandas_df.agg(func, axis) except Exception as e: with pytest.raises(type(e)): modin_df.agg(func, axis) else: modin_result = modin_df.agg(func, axis) df_equals(modin_result, pandas_result) @pytest.mark.parametrize("data", test_data_values, ids=test_data_keys) def test_aggregate_error_checking(self, data): modin_df = pd.DataFrame(data) assert modin_df.aggregate("ndim") == 2 with pytest.warns(UserWarning): modin_df.aggregate( {modin_df.columns[0]: "sum", modin_df.columns[1]: "mean"} ) with pytest.warns(UserWarning): modin_df.aggregate("cumproduct") with pytest.raises(ValueError): modin_df.aggregate("NOT_EXISTS") def test_align(self): data = test_data_values[0] with pytest.warns(UserWarning): pd.DataFrame(data).align(pd.DataFrame(data)) @pytest.mark.parametrize("data", test_data_values, ids=test_data_keys) @pytest.mark.parametrize("axis", axis_values, ids=axis_keys) @pytest.mark.parametrize( "skipna", bool_arg_values, ids=arg_keys("skipna", bool_arg_keys) ) @pytest.mark.parametrize( "bool_only", bool_arg_values, ids=arg_keys("bool_only", bool_arg_keys) ) def test_all(self, data, axis, skipna, bool_only): modin_df = pd.DataFrame(data) pandas_df = pandas.DataFrame(data) try: pandas_result = pandas_df.all(axis=axis, skipna=skipna, bool_only=bool_only) except Exception as e: with pytest.raises(type(e)): modin_df.all(axis=axis, skipna=skipna, bool_only=bool_only) else: modin_result = modin_df.all(axis=axis, skipna=skipna, bool_only=bool_only) df_equals(modin_result, pandas_result) # Test when axis is None. This will get repeated but easier than using list in parameterize decorator try: pandas_result = pandas_df.all(axis=None, skipna=skipna, bool_only=bool_only) except Exception as e: with pytest.raises(type(e)): modin_df.all(axis=None, skipna=skipna, bool_only=bool_only) else: modin_result = modin_df.all(axis=None, skipna=skipna, bool_only=bool_only) df_equals(modin_result, pandas_result) try: pandas_result = pandas_df.T.all( axis=axis, skipna=skipna, bool_only=bool_only ) except Exception as e: with pytest.raises(type(e)): modin_df.T.all(axis=axis, skipna=skipna, bool_only=bool_only) else: modin_result = modin_df.T.all(axis=axis, skipna=skipna, bool_only=bool_only) df_equals(modin_result, pandas_result) # Test when axis is None. This will get repeated but easier than using list in parameterize decorator try: pandas_result = pandas_df.T.all( axis=None, skipna=skipna, bool_only=bool_only ) except Exception as e: with pytest.raises(type(e)): modin_df.T.all(axis=None, skipna=skipna, bool_only=bool_only) else: modin_result = modin_df.T.all(axis=None, skipna=skipna, bool_only=bool_only) df_equals(modin_result, pandas_result) # test level modin_df_multi_level = modin_df.copy() pandas_df_multi_level = pandas_df.copy() axis = modin_df._get_axis_number(axis) if axis is not None else 0 levels = 3 axis_names_list = [["a", "b", "c"], None] for axis_names in axis_names_list: if axis == 0: new_idx = pandas.MultiIndex.from_tuples( [(i // 4, i // 2, i) for i in range(len(modin_df.index))], names=axis_names, ) modin_df_multi_level.index = new_idx pandas_df_multi_level.index = new_idx else: new_col = pandas.MultiIndex.from_tuples( [(i // 4, i // 2, i) for i in range(len(modin_df.columns))], names=axis_names, ) modin_df_multi_level.columns = new_col pandas_df_multi_level.columns = new_col for level in list(range(levels)) + (axis_names if axis_names else []): try: pandas_multi_level_result = pandas_df_multi_level.all( axis=axis, bool_only=bool_only, level=level, skipna=skipna ) except Exception as e: with pytest.raises(type(e)): modin_df_multi_level.all( axis=axis, bool_only=bool_only, level=level, skipna=skipna ) else: modin_multi_level_result = modin_df_multi_level.all( axis=axis, bool_only=bool_only, level=level, skipna=skipna ) df_equals(modin_multi_level_result, pandas_multi_level_result) @pytest.mark.parametrize("data", test_data_values, ids=test_data_keys) @pytest.mark.parametrize("axis", axis_values, ids=axis_keys) @pytest.mark.parametrize( "skipna", bool_arg_values, ids=arg_keys("skipna", bool_arg_keys) ) @pytest.mark.parametrize( "bool_only", bool_arg_values, ids=arg_keys("bool_only", bool_arg_keys) ) def test_any(self, data, axis, skipna, bool_only): modin_df = pd.DataFrame(data) pandas_df = pandas.DataFrame(data) try: pandas_result = pandas_df.any(axis=axis, skipna=skipna, bool_only=bool_only) except Exception as e: with pytest.raises(type(e)): modin_df.any(axis=axis, skipna=skipna, bool_only=bool_only) else: modin_result = modin_df.any(axis=axis, skipna=skipna, bool_only=bool_only) df_equals(modin_result, pandas_result) try: pandas_result = pandas_df.any(axis=None, skipna=skipna, bool_only=bool_only) except Exception as e: with pytest.raises(type(e)): modin_df.any(axis=None, skipna=skipna, bool_only=bool_only) else: modin_result = modin_df.any(axis=None, skipna=skipna, bool_only=bool_only) df_equals(modin_result, pandas_result) try: pandas_result = pandas_df.T.any( axis=axis, skipna=skipna, bool_only=bool_only ) except Exception as e: with pytest.raises(type(e)): modin_df.T.any(axis=axis, skipna=skipna, bool_only=bool_only) else: modin_result = modin_df.T.any(axis=axis, skipna=skipna, bool_only=bool_only) df_equals(modin_result, pandas_result) try: pandas_result = pandas_df.T.any( axis=None, skipna=skipna, bool_only=bool_only ) except Exception as e: with pytest.raises(type(e)): modin_df.T.any(axis=None, skipna=skipna, bool_only=bool_only) else: modin_result = modin_df.T.any(axis=None, skipna=skipna, bool_only=bool_only) df_equals(modin_result, pandas_result) # test level modin_df_multi_level = modin_df.copy() pandas_df_multi_level = pandas_df.copy() axis = modin_df._get_axis_number(axis) if axis is not None else 0 levels = 3 axis_names_list = [["a", "b", "c"], None] for axis_names in axis_names_list: if axis == 0: new_idx = pandas.MultiIndex.from_tuples( [(i // 4, i // 2, i) for i in range(len(modin_df.index))], names=axis_names, ) modin_df_multi_level.index = new_idx pandas_df_multi_level.index = new_idx else: new_col = pandas.MultiIndex.from_tuples( [(i // 4, i // 2, i) for i in range(len(modin_df.columns))], names=axis_names, ) modin_df_multi_level.columns = new_col pandas_df_multi_level.columns = new_col for level in list(range(levels)) + (axis_names if axis_names else []): try: pandas_multi_level_result = pandas_df_multi_level.any( axis=axis, bool_only=bool_only, level=level, skipna=skipna ) except Exception as e: with pytest.raises(type(e)): modin_df_multi_level.any( axis=axis, bool_only=bool_only, level=level, skipna=skipna ) else: modin_multi_level_result = modin_df_multi_level.any( axis=axis, bool_only=bool_only, level=level, skipna=skipna ) df_equals(modin_multi_level_result, pandas_multi_level_result) @pytest.mark.parametrize("data", test_data_values, ids=test_data_keys) def test_append(self, data): modin_df = pd.DataFrame(data) pandas_df = pandas.DataFrame(data) data_to_append = {"append_a": 2, "append_b": 1000} ignore_idx_values = [True, False] for ignore in ignore_idx_values: try: pandas_result = pandas_df.append(data_to_append, ignore_index=ignore) except Exception as e: with pytest.raises(type(e)): modin_df.append(data_to_append, ignore_index=ignore) else: modin_result = modin_df.append(data_to_append, ignore_index=ignore) df_equals(modin_result, pandas_result) try: pandas_result = pandas_df.append(pandas_df.iloc[-1]) except Exception as e: with pytest.raises(type(e)): modin_df.append(modin_df.iloc[-1]) else: modin_result = modin_df.append(modin_df.iloc[-1]) df_equals(modin_result, pandas_result) try: pandas_result = pandas_df.append(list(pandas_df.iloc[-1])) except Exception as e: with pytest.raises(type(e)): modin_df.append(list(modin_df.iloc[-1])) else: modin_result = modin_df.append(list(modin_df.iloc[-1])) df_equals(modin_result, pandas_result) verify_integrity_values = [True, False] for verify_integrity in verify_integrity_values: try: pandas_result = pandas_df.append( [pandas_df, pandas_df], verify_integrity=verify_integrity ) except Exception as e: with pytest.raises(type(e)): modin_df.append( [modin_df, modin_df], verify_integrity=verify_integrity ) else: modin_result = modin_df.append( [modin_df, modin_df], verify_integrity=verify_integrity ) df_equals(modin_result, pandas_result) try: pandas_result = pandas_df.append( pandas_df, verify_integrity=verify_integrity ) except Exception as e: with pytest.raises(type(e)): modin_df.append(modin_df, verify_integrity=verify_integrity) else: modin_result = modin_df.append( modin_df, verify_integrity=verify_integrity ) df_equals(modin_result, pandas_result) @pytest.mark.parametrize("data", test_data_values, ids=test_data_keys) @pytest.mark.parametrize("axis", axis_values, ids=axis_keys) @pytest.mark.parametrize("func", agg_func_values, ids=agg_func_keys) def test_apply(self, request, data, func, axis): modin_df = pd.DataFrame(data) pandas_df = pandas.DataFrame(data) with pytest.raises(TypeError): modin_df.apply({"row": func}, axis=1) try: pandas_result = pandas_df.apply(func, axis) except Exception as e: with pytest.raises(type(e)): modin_df.apply(func, axis) else: modin_result = modin_df.apply(func, axis) df_equals(modin_result, pandas_result) def test_apply_metadata(self): def add(a, b, c): return a + b + c data = {"A": [1, 2, 3], "B": [4, 5, 6], "C": [7, 8, 9]} modin_df = pd.DataFrame(data) modin_df["add"] = modin_df.apply( lambda row: add(row["A"], row["B"], row["C"]), axis=1 ) pandas_df = pandas.DataFrame(data) pandas_df["add"] = pandas_df.apply( lambda row: add(row["A"], row["B"], row["C"]), axis=1 ) df_equals(modin_df, pandas_df) @pytest.mark.parametrize("data", test_data_values, ids=test_data_keys) @pytest.mark.parametrize("func", agg_func_values, ids=agg_func_keys) @pytest.mark.parametrize("axis", axis_values, ids=axis_keys) def test_apply_numeric(self, request, data, func, axis): modin_df = pd.DataFrame(data) pandas_df = pandas.DataFrame(data) if name_contains(request.node.name, numeric_dfs): try: pandas_result = pandas_df.apply(func, axis) except Exception as e: with pytest.raises(type(e)): modin_df.apply(func, axis) else: modin_result = modin_df.apply(func, axis) df_equals(modin_result, pandas_result) if "empty_data" not in request.node.name: key = modin_df.columns[0] modin_result = modin_df.apply(lambda df: df.drop(key), axis=1) pandas_result = pandas_df.apply(lambda df: df.drop(key), axis=1) df_equals(modin_result, pandas_result) def test_as_blocks(self): data = test_data_values[0] with pytest.warns(UserWarning): pd.DataFrame(data).as_blocks() def test_as_matrix(self): test_data = TestData() frame = pd.DataFrame(test_data.frame) mat = frame.as_matrix() frame_columns = frame.columns for i, row in enumerate(mat): for j, value in enumerate(row): col = frame_columns[j] if np.isnan(value): assert np.isnan(frame[col][i]) else: assert value == frame[col][i] # mixed type mat = pd.DataFrame(test_data.mixed_frame).as_matrix(["foo", "A"]) assert mat[0, 0] == "bar" df = pd.DataFrame({"real": [1, 2, 3], "complex": [1j, 2j, 3j]}) mat = df.as_matrix() assert mat[0, 1] == 1j # single block corner case mat = pd.DataFrame(test_data.frame).as_matrix(["A", "B"]) expected = test_data.frame.reindex(columns=["A", "B"]).values tm.assert_almost_equal(mat, expected) def test_to_numpy(self): test_data = TestData() frame = pd.DataFrame(test_data.frame) assert_array_equal(frame.values, test_data.frame.values) def test_partition_to_numpy(self): test_data = TestData() frame = pd.DataFrame(test_data.frame) for ( partition ) in frame._query_compiler._modin_frame._partitions.flatten().tolist(): assert_array_equal(partition.to_pandas().values, partition.to_numpy()) def test_asfreq(self): index = pd.date_range("1/1/2000", periods=4, freq="T") series = pd.Series([0.0, None, 2.0, 3.0], index=index) df = pd.DataFrame({"s": series}) with pytest.warns(UserWarning): # We are only testing that this defaults to pandas, so we will just check for # the warning df.asfreq(freq="30S") def test_asof(self): df = pd.DataFrame( {"a": [10, 20, 30, 40, 50], "b": [None, None, None, None, 500]}, index=pd.DatetimeIndex( [ "2018-02-27 09:01:00", "2018-02-27 09:02:00", "2018-02-27 09:03:00", "2018-02-27 09:04:00", "2018-02-27 09:05:00", ] ), ) with pytest.warns(UserWarning): df.asof(pd.DatetimeIndex(["2018-02-27 09:03:30", "2018-02-27 09:04:30"])) def test_assign(self): data = test_data_values[0] modin_df = pd.DataFrame(data) pandas_df = pandas.DataFrame(data) with pytest.warns(UserWarning): modin_result = modin_df.assign(new_column=pd.Series(modin_df.iloc[:, 0])) pandas_result = pandas_df.assign(new_column=pd.Series(pandas_df.iloc[:, 0])) df_equals(modin_result, pandas_result) def test_astype(self): td = TestData() modin_df = pd.DataFrame( td.frame.values, index=td.frame.index, columns=td.frame.columns ) expected_df = pandas.DataFrame( td.frame.values, index=td.frame.index, columns=td.frame.columns ) modin_df_casted = modin_df.astype(np.int32) expected_df_casted = expected_df.astype(np.int32) df_equals(modin_df_casted, expected_df_casted) modin_df_casted = modin_df.astype(np.float64) expected_df_casted = expected_df.astype(np.float64) df_equals(modin_df_casted, expected_df_casted) modin_df_casted = modin_df.astype(str) expected_df_casted = expected_df.astype(str) df_equals(modin_df_casted, expected_df_casted) modin_df_casted = modin_df.astype("category") expected_df_casted = expected_df.astype("category") df_equals(modin_df_casted, expected_df_casted) dtype_dict = {"A": np.int32, "B": np.int64, "C": str} modin_df_casted = modin_df.astype(dtype_dict) expected_df_casted = expected_df.astype(dtype_dict) df_equals(modin_df_casted, expected_df_casted) # Ignore lint because this is testing bad input bad_dtype_dict = {"B": np.int32, "B": np.int64, "B": str} # noqa F601 modin_df_casted = modin_df.astype(bad_dtype_dict) expected_df_casted = expected_df.astype(bad_dtype_dict) df_equals(modin_df_casted, expected_df_casted) with pytest.raises(KeyError): modin_df.astype({"not_exists": np.uint8}) def test_astype_category(self): modin_df = pd.DataFrame( {"col1": ["A", "A", "B", "B", "A"], "col2": [1, 2, 3, 4, 5]} ) pandas_df = pandas.DataFrame( {"col1": ["A", "A", "B", "B", "A"], "col2": [1, 2, 3, 4, 5]} ) modin_result = modin_df.astype({"col1": "category"}) pandas_result = pandas_df.astype({"col1": "category"}) df_equals(modin_result, pandas_result) assert modin_result.dtypes.equals(pandas_result.dtypes) modin_result = modin_df.astype("category") pandas_result = pandas_df.astype("category") df_equals(modin_result, pandas_result) assert modin_result.dtypes.equals(pandas_result.dtypes) def test_at_time(self): i = pd.date_range("2018-04-09", periods=4, freq="12H") ts = pd.DataFrame({"A": [1, 2, 3, 4]}, index=i) with pytest.warns(UserWarning): ts.at_time("12:00") def test_between_time(self): i = pd.date_range("2018-04-09", periods=4, freq="12H") ts = pd.DataFrame({"A": [1, 2, 3, 4]}, index=i) with pytest.warns(UserWarning): ts.between_time("0:15", "0:45") def test_bfill(self): test_data = TestData() test_data.tsframe["A"][:5] = np.nan test_data.tsframe["A"][-5:] = np.nan modin_df = pd.DataFrame(test_data.tsframe) df_equals(modin_df.bfill(), test_data.tsframe.bfill()) def test_blocks(self): data = test_data_values[0] with pytest.warns(UserWarning): pd.DataFrame(data).blocks @pytest.mark.parametrize("data", test_data_values, ids=test_data_keys) def test_bool(self, data): modin_df = pd.DataFrame(data) pandas_df = pandas.DataFrame(data) # noqa F841 with pytest.raises(ValueError): modin_df.bool() modin_df.__bool__() single_bool_pandas_df = pandas.DataFrame([True]) single_bool_modin_df = pd.DataFrame([True]) assert single_bool_pandas_df.bool() == single_bool_modin_df.bool() with pytest.raises(ValueError): # __bool__ always raises this error for DataFrames single_bool_modin_df.__bool__() @pytest.mark.parametrize("data", test_data_values, ids=test_data_keys) def test_boxplot(self, data): modin_df = pd.DataFrame(data) pandas_df = pandas.DataFrame(data) # noqa F841 assert modin_df.boxplot() == to_pandas(modin_df).boxplot() @pytest.mark.parametrize("data", test_data_values, ids=test_data_keys) @pytest.mark.parametrize("axis", axis_values, ids=axis_keys) def test_clip(self, request, data, axis): modin_df = pd.DataFrame(data) pandas_df = pandas.DataFrame(data) if name_contains(request.node.name, numeric_dfs): ind_len = ( len(modin_df.index) if not pandas.DataFrame()._get_axis_number(axis) else len(modin_df.columns) ) # set bounds lower, upper = np.sort(random_state.random_integers(RAND_LOW, RAND_HIGH, 2)) lower_list = random_state.random_integers(RAND_LOW, RAND_HIGH, ind_len) upper_list = random_state.random_integers(RAND_LOW, RAND_HIGH, ind_len) # test only upper scalar bound modin_result = modin_df.clip(None, upper, axis=axis) pandas_result = pandas_df.clip(None, upper, axis=axis) df_equals(modin_result, pandas_result) # test lower and upper scalar bound modin_result = modin_df.clip(lower, upper, axis=axis) pandas_result = pandas_df.clip(lower, upper, axis=axis) df_equals(modin_result, pandas_result) # test lower and upper list bound on each column modin_result = modin_df.clip(lower_list, upper_list, axis=axis) pandas_result = pandas_df.clip(lower_list, upper_list, axis=axis) df_equals(modin_result, pandas_result) # test only upper list bound on each column modin_result = modin_df.clip(np.nan, upper_list, axis=axis) pandas_result = pandas_df.clip(np.nan, upper_list, axis=axis) df_equals(modin_result, pandas_result) with pytest.raises(ValueError): modin_df.clip(lower=[1, 2, 3], axis=None) @pytest.mark.parametrize("data", test_data_values, ids=test_data_keys) @pytest.mark.parametrize("axis", axis_values, ids=axis_keys) def test_clip_lower(self, request, data, axis): modin_df = pd.DataFrame(data) pandas_df = pandas.DataFrame(data) if name_contains(request.node.name, numeric_dfs): ind_len = ( len(modin_df.index) if not pandas.DataFrame()._get_axis_number(axis) else len(modin_df.columns) ) # set bounds lower = random_state.random_integers(RAND_LOW, RAND_HIGH, 1)[0] lower_list = random_state.random_integers(RAND_LOW, RAND_HIGH, ind_len) # test lower scalar bound pandas_result = pandas_df.clip_lower(lower, axis=axis) modin_result = modin_df.clip_lower(lower, axis=axis) df_equals(modin_result, pandas_result) # test lower list bound on each column pandas_result = pandas_df.clip_lower(lower_list, axis=axis) modin_result = modin_df.clip_lower(lower_list, axis=axis) df_equals(modin_result, pandas_result) @pytest.mark.parametrize("data", test_data_values, ids=test_data_keys) @pytest.mark.parametrize("axis", axis_values, ids=axis_keys) def test_clip_upper(self, request, data, axis): modin_df = pd.DataFrame(data) pandas_df = pandas.DataFrame(data) if name_contains(request.node.name, numeric_dfs): ind_len = ( len(modin_df.index) if not pandas.DataFrame()._get_axis_number(axis) else len(modin_df.columns) ) # set bounds upper = random_state.random_integers(RAND_LOW, RAND_HIGH, 1)[0] upper_list = random_state.random_integers(RAND_LOW, RAND_HIGH, ind_len) # test upper scalar bound modin_result = modin_df.clip_upper(upper, axis=axis) pandas_result = pandas_df.clip_upper(upper, axis=axis) df_equals(modin_result, pandas_result) # test upper list bound on each column modin_result = modin_df.clip_upper(upper_list, axis=axis) pandas_result = pandas_df.clip_upper(upper_list, axis=axis) df_equals(modin_result, pandas_result) def test_combine(self): df1 = pd.DataFrame({"A": [0, 0], "B": [4, 4]}) df2 = pd.DataFrame({"A": [1, 1], "B": [3, 3]}) with pytest.warns(UserWarning): df1.combine(df2, lambda s1, s2: s1 if s1.sum() < s2.sum() else s2) def test_combine_first(self): df1 = pd.DataFrame({"A": [None, 0], "B": [None, 4]}) df2 = pd.DataFrame({"A": [1, 1], "B": [3, 3]}) with pytest.warns(UserWarning): df1.combine_first(df2) def test_compound(self): data = test_data_values[0] with pytest.warns(UserWarning): pd.DataFrame(data).compound() def test_corr(self): data = test_data_values[0] with pytest.warns(UserWarning): pd.DataFrame(data).corr() def test_corrwith(self): data = test_data_values[0] with pytest.warns(UserWarning): pd.DataFrame(data).corrwith(pd.DataFrame(data)) @pytest.mark.parametrize("data", test_data_values, ids=test_data_keys) @pytest.mark.parametrize("axis", axis_values, ids=axis_keys) @pytest.mark.parametrize( "numeric_only", bool_arg_values, ids=arg_keys("numeric_only", bool_arg_keys) ) def test_count(self, request, data, axis, numeric_only): modin_df = pd.DataFrame(data) pandas_df = pandas.DataFrame(data) modin_result = modin_df.count(axis=axis, numeric_only=numeric_only) pandas_result = pandas_df.count(axis=axis, numeric_only=numeric_only) df_equals(modin_result, pandas_result) modin_result = modin_df.T.count(axis=axis, numeric_only=numeric_only) pandas_result = pandas_df.T.count(axis=axis, numeric_only=numeric_only) df_equals(modin_result, pandas_result) # test level modin_df_multi_level = modin_df.copy() pandas_df_multi_level = pandas_df.copy() axis = modin_df._get_axis_number(axis) if axis is not None else 0 levels = 3 axis_names_list = [["a", "b", "c"], None] for axis_names in axis_names_list: if axis == 0: new_idx = pandas.MultiIndex.from_tuples( [(i // 4, i // 2, i) for i in range(len(modin_df.index))], names=axis_names, ) modin_df_multi_level.index = new_idx pandas_df_multi_level.index = new_idx try: # test error pandas_df_multi_level.count( axis=1, numeric_only=numeric_only, level=0 ) except Exception as e: with pytest.raises(type(e)): modin_df_multi_level.count( axis=1, numeric_only=numeric_only, level=0 ) else: new_col = pandas.MultiIndex.from_tuples( [(i // 4, i // 2, i) for i in range(len(modin_df.columns))], names=axis_names, ) modin_df_multi_level.columns = new_col pandas_df_multi_level.columns = new_col try: # test error pandas_df_multi_level.count( axis=0, numeric_only=numeric_only, level=0 ) except Exception as e: with pytest.raises(type(e)): modin_df_multi_level.count( axis=0, numeric_only=numeric_only, level=0 ) for level in list(range(levels)) + (axis_names if axis_names else []): modin_multi_level_result = modin_df_multi_level.count( axis=axis, numeric_only=numeric_only, level=level ) pandas_multi_level_result = pandas_df_multi_level.count( axis=axis, numeric_only=numeric_only, level=level ) df_equals(modin_multi_level_result, pandas_multi_level_result) def test_cov(self): data = test_data_values[0] with pytest.warns(UserWarning): pd.DataFrame(data).cov() @pytest.mark.parametrize("data", test_data_values, ids=test_data_keys) @pytest.mark.parametrize("axis", axis_values, ids=axis_keys) @pytest.mark.parametrize( "skipna", bool_arg_values, ids=arg_keys("skipna", bool_arg_keys) ) def test_cummax(self, request, data, axis, skipna): modin_df = pd.DataFrame(data) pandas_df = pandas.DataFrame(data) try: pandas_result = pandas_df.cummax(axis=axis, skipna=skipna) except Exception as e: with pytest.raises(type(e)): modin_df.cummax(axis=axis, skipna=skipna) else: modin_result = modin_df.cummax(axis=axis, skipna=skipna) df_equals(modin_result, pandas_result) try: pandas_result = pandas_df.T.cummax(axis=axis, skipna=skipna) except Exception as e: with pytest.raises(type(e)): modin_df.T.cummax(axis=axis, skipna=skipna) else: modin_result = modin_df.T.cummax(axis=axis, skipna=skipna) df_equals(modin_result, pandas_result) @pytest.mark.parametrize("data", test_data_values, ids=test_data_keys) @pytest.mark.parametrize("axis", axis_values, ids=axis_keys) @pytest.mark.parametrize( "skipna", bool_arg_values, ids=arg_keys("skipna", bool_arg_keys) ) def test_cummin(self, request, data, axis, skipna): modin_df = pd.DataFrame(data) pandas_df = pandas.DataFrame(data) try: pandas_result = pandas_df.cummin(axis=axis, skipna=skipna) except Exception as e: with pytest.raises(type(e)): modin_df.cummin(axis=axis, skipna=skipna) else: modin_result = modin_df.cummin(axis=axis, skipna=skipna) df_equals(modin_result, pandas_result) try: pandas_result = pandas_df.T.cummin(axis=axis, skipna=skipna) except Exception as e: with pytest.raises(type(e)): modin_df.T.cummin(axis=axis, skipna=skipna) else: modin_result = modin_df.T.cummin(axis=axis, skipna=skipna) df_equals(modin_result, pandas_result) @pytest.mark.parametrize("data", test_data_values, ids=test_data_keys) @pytest.mark.parametrize("axis", axis_values, ids=axis_keys) @pytest.mark.parametrize( "skipna", bool_arg_values, ids=arg_keys("skipna", bool_arg_keys) ) def test_cumprod(self, request, data, axis, skipna): modin_df = pd.DataFrame(data) pandas_df = pandas.DataFrame(data) try: pandas_result = pandas_df.cumprod(axis=axis, skipna=skipna) except Exception as e: with pytest.raises(type(e)): modin_df.cumprod(axis=axis, skipna=skipna) else: modin_result = modin_df.cumprod(axis=axis, skipna=skipna) df_equals(modin_result, pandas_result) try: pandas_result = pandas_df.T.cumprod(axis=axis, skipna=skipna) except Exception as e: with pytest.raises(type(e)): modin_df.T.cumprod(axis=axis, skipna=skipna) else: modin_result = modin_df.T.cumprod(axis=axis, skipna=skipna) df_equals(modin_result, pandas_result) @pytest.mark.parametrize("data", test_data_values, ids=test_data_keys) @pytest.mark.parametrize("axis", axis_values, ids=axis_keys) @pytest.mark.parametrize( "skipna", bool_arg_values, ids=arg_keys("skipna", bool_arg_keys) ) def test_cumsum(self, request, data, axis, skipna): modin_df = pd.DataFrame(data) pandas_df = pandas.DataFrame(data) # pandas exhibits weird behavior for this case # Remove this case when we can pull the error messages from backend if name_contains(request.node.name, ["datetime_timedelta_data"]) and ( axis == 0 or axis == "rows" ): with pytest.raises(TypeError): modin_df.cumsum(axis=axis, skipna=skipna) else: try: pandas_result = pandas_df.cumsum(axis=axis, skipna=skipna) except Exception as e: with pytest.raises(type(e)): modin_df.cumsum(axis=axis, skipna=skipna) else: modin_result = modin_df.cumsum(axis=axis, skipna=skipna) df_equals(modin_result, pandas_result) if name_contains(request.node.name, ["datetime_timedelta_data"]) and ( axis == 0 or axis == "rows" ): with pytest.raises(TypeError): modin_df.T.cumsum(axis=axis, skipna=skipna) else: try: pandas_result = pandas_df.T.cumsum(axis=axis, skipna=skipna) except Exception as e: with pytest.raises(type(e)): modin_df.T.cumsum(axis=axis, skipna=skipna) else: modin_result = modin_df.T.cumsum(axis=axis, skipna=skipna) df_equals(modin_result, pandas_result) @pytest.mark.parametrize("data", test_data_values, ids=test_data_keys) def test_describe(self, data): modin_df = pd.DataFrame(data) pandas_df = pandas.DataFrame(data) df_equals(modin_df.describe(), pandas_df.describe()) percentiles = [0.10, 0.11, 0.44, 0.78, 0.99] df_equals( modin_df.describe(percentiles=percentiles), pandas_df.describe(percentiles=percentiles), ) try: pandas_result = pandas_df.describe(exclude=[np.float64]) except Exception as e: with pytest.raises(type(e)): modin_df.describe(exclude=[np.float64]) else: modin_result = modin_df.describe(exclude=[np.float64]) df_equals(modin_result, pandas_result) try: pandas_result = pandas_df.describe(exclude=np.float64) except Exception as e: with pytest.raises(type(e)): modin_df.describe(exclude=np.float64) else: modin_result = modin_df.describe(exclude=np.float64) df_equals(modin_result, pandas_result) try: pandas_result = pandas_df.describe( include=[np.timedelta64, np.datetime64, np.object, np.bool] ) except Exception as e: with pytest.raises(type(e)): modin_df.describe( include=[np.timedelta64, np.datetime64, np.object, np.bool] ) else: modin_result = modin_df.describe( include=[np.timedelta64, np.datetime64, np.object, np.bool] ) df_equals(modin_result, pandas_result) modin_result = modin_df.describe(include=str(modin_df.dtypes.values[0])) pandas_result = pandas_df.describe(include=str(pandas_df.dtypes.values[0])) df_equals(modin_result, pandas_result) modin_result = modin_df.describe(include=[np.number]) pandas_result = pandas_df.describe(include=[np.number]) df_equals(modin_result, pandas_result) df_equals(modin_df.describe(include="all"), pandas_df.describe(include="all")) modin_df = pd.DataFrame(data).applymap(str) pandas_df = pandas.DataFrame(data).applymap(str) try: df_equals(modin_df.describe(), pandas_df.describe()) except AssertionError: # We have to do this because we choose the highest count slightly differently # than pandas. Because there is no true guarantee which one will be first, # If they don't match, make sure that the `freq` is the same at least. df_equals( modin_df.describe().loc[["count", "unique", "freq"]], pandas_df.describe().loc[["count", "unique", "freq"]], ) def test_describe_dtypes(self): modin_df = pd.DataFrame( { "col1": list("abc"), "col2": list("abc"), "col3": list("abc"), "col4": [1, 2, 3], } ) pandas_df = pandas.DataFrame( { "col1": list("abc"), "col2": list("abc"), "col3": list("abc"), "col4": [1, 2, 3], } ) modin_result = modin_df.describe() pandas_result = pandas_df.describe() df_equals(modin_result, pandas_result) @pytest.mark.parametrize("data", test_data_values, ids=test_data_keys) @pytest.mark.parametrize("axis", axis_values, ids=axis_keys) @pytest.mark.parametrize( "periods", int_arg_values, ids=arg_keys("periods", int_arg_keys) ) def test_diff(self, request, data, axis, periods): modin_df = pd.DataFrame(data) pandas_df = pandas.DataFrame(data) try: pandas_result = pandas_df.diff(axis=axis, periods=periods) except Exception as e: with pytest.raises(type(e)): modin_df.diff(axis=axis, periods=periods) else: modin_result = modin_df.diff(axis=axis, periods=periods) df_equals(modin_result, pandas_result) try: pandas_result = pandas_df.T.diff(axis=axis, periods=periods) except Exception as e: with pytest.raises(type(e)): modin_df.T.diff(axis=axis, periods=periods) else: modin_result = modin_df.T.diff(axis=axis, periods=periods) df_equals(modin_result, pandas_result) def test_drop(self): frame_data = {"A": [1, 2, 3, 4], "B": [0, 1, 2, 3]} simple = pandas.DataFrame(frame_data) modin_simple = pd.DataFrame(frame_data) df_equals(modin_simple.drop("A", axis=1), simple[["B"]]) df_equals(modin_simple.drop(["A", "B"], axis="columns"), simple[[]]) df_equals(modin_simple.drop([0, 1, 3], axis=0), simple.loc[[2], :]) df_equals(modin_simple.drop([0, 3], axis="index"), simple.loc[[1, 2], :]) pytest.raises(ValueError, modin_simple.drop, 5) pytest.raises(ValueError, modin_simple.drop, "C", 1) pytest.raises(ValueError, modin_simple.drop, [1, 5]) pytest.raises(ValueError, modin_simple.drop, ["A", "C"], 1) # errors = 'ignore' df_equals(modin_simple.drop(5, errors="ignore"), simple) df_equals(modin_simple.drop([0, 5], errors="ignore"), simple.loc[[1, 2, 3], :]) df_equals(modin_simple.drop("C", axis=1, errors="ignore"), simple) df_equals(modin_simple.drop(["A", "C"], axis=1, errors="ignore"), simple[["B"]]) # non-unique nu_df = pandas.DataFrame( zip(range(3), range(-3, 1), list("abc")), columns=["a", "a", "b"] ) modin_nu_df = pd.DataFrame(nu_df) df_equals(modin_nu_df.drop("a", axis=1), nu_df[["b"]]) df_equals(modin_nu_df.drop("b", axis="columns"), nu_df["a"]) df_equals(modin_nu_df.drop([]), nu_df) nu_df = nu_df.set_index(pandas.Index(["X", "Y", "X"])) nu_df.columns = list("abc") modin_nu_df = pd.DataFrame(nu_df) df_equals(modin_nu_df.drop("X", axis="rows"), nu_df.loc[["Y"], :]) df_equals(modin_nu_df.drop(["X", "Y"], axis=0), nu_df.loc[[], :]) # inplace cache issue frame_data = random_state.randn(10, 3) df = pandas.DataFrame(frame_data, columns=list("abc")) modin_df = pd.DataFrame(frame_data, columns=list("abc")) expected = df[~(df.b > 0)] modin_df.drop(labels=df[df.b > 0].index, inplace=True) df_equals(modin_df, expected) midx = pd.MultiIndex( levels=[["lama", "cow", "falcon"], ["speed", "weight", "length"]], codes=[[0, 0, 0, 1, 1, 1, 2, 2, 2], [0, 1, 2, 0, 1, 2, 0, 1, 2]], ) df = pd.DataFrame( index=midx, columns=["big", "small"], data=[ [45, 30], [200, 100], [1.5, 1], [30, 20], [250, 150], [1.5, 0.8], [320, 250], [1, 0.8], [0.3, 0.2], ], ) with pytest.warns(UserWarning): df.drop(index="length", level=1) def test_drop_api_equivalence(self): # equivalence of the labels/axis and index/columns API's frame_data = [[1, 2, 3], [3, 4, 5], [5, 6, 7]] modin_df = pd.DataFrame( frame_data, index=["a", "b", "c"], columns=["d", "e", "f"] ) modin_df1 = modin_df.drop("a") modin_df2 = modin_df.drop(index="a") df_equals(modin_df1, modin_df2) modin_df1 = modin_df.drop("d", 1) modin_df2 = modin_df.drop(columns="d") df_equals(modin_df1, modin_df2) modin_df1 = modin_df.drop(labels="e", axis=1) modin_df2 = modin_df.drop(columns="e") df_equals(modin_df1, modin_df2) modin_df1 = modin_df.drop(["a"], axis=0) modin_df2 = modin_df.drop(index=["a"]) df_equals(modin_df1, modin_df2) modin_df1 = modin_df.drop(["a"], axis=0).drop(["d"], axis=1) modin_df2 = modin_df.drop(index=["a"], columns=["d"]) df_equals(modin_df1, modin_df2) with pytest.raises(ValueError): modin_df.drop(labels="a", index="b") with pytest.raises(ValueError): modin_df.drop(labels="a", columns="b") with pytest.raises(ValueError): modin_df.drop(axis=1) @pytest.mark.parametrize("data", test_data_values, ids=test_data_keys) def test_drop_transpose(self, data): modin_df = pd.DataFrame(data) pandas_df = pandas.DataFrame(data) modin_result = modin_df.T.drop(columns=[0, 1, 2]) pandas_result = pandas_df.T.drop(columns=[0, 1, 2]) df_equals(modin_result, pandas_result) modin_result = modin_df.T.drop(index=["col3", "col1"]) pandas_result = pandas_df.T.drop(index=["col3", "col1"]) df_equals(modin_result, pandas_result) modin_result = modin_df.T.drop(columns=[0, 1, 2], index=["col3", "col1"]) pandas_result = pandas_df.T.drop(columns=[0, 1, 2], index=["col3", "col1"]) df_equals(modin_result, pandas_result) def test_droplevel(self): df = ( pd.DataFrame([[1, 2, 3, 4], [5, 6, 7, 8], [9, 10, 11, 12]]) .set_index([0, 1]) .rename_axis(["a", "b"]) ) df.columns = pd.MultiIndex.from_tuples( [("c", "e"), ("d", "f")], names=["level_1", "level_2"] ) with pytest.warns(UserWarning): df.droplevel("a") with pytest.warns(UserWarning): df.droplevel("level_2", axis=1) @pytest.mark.parametrize( "data", test_data_with_duplicates_values, ids=test_data_with_duplicates_keys ) @pytest.mark.parametrize( "keep", ["last", "first", False], ids=["last", "first", "False"] ) @pytest.mark.parametrize( "subset", [None, ["col1", "col3", "col7"]], ids=["None", "subset"] ) def test_drop_duplicates(self, data, keep, subset): modin_df = pd.DataFrame(data) pandas_df = pandas.DataFrame(data) df_equals( modin_df.drop_duplicates(keep=keep, inplace=False, subset=subset), pandas_df.drop_duplicates(keep=keep, inplace=False, subset=subset), ) modin_results = modin_df.drop_duplicates(keep=keep, inplace=True, subset=subset) pandas_results = pandas_df.drop_duplicates( keep=keep, inplace=True, subset=subset ) df_equals(modin_results, pandas_results) def test_drop_duplicates_with_missing_index_values(self): data = { "columns": ["value", "time", "id"], "index": [ 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 20, 21, 22, 23, 24, 25, 26, 27, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, ], "data": [ ["3", 1279213398000.0, 88.0], ["3", 1279204682000.0, 88.0], ["0", 1245772835000.0, 448.0], ["0", 1270564258000.0, 32.0], ["0", 1267106669000.0, 118.0], ["7", 1300621123000.0, 5.0], ["0", 1251130752000.0, 957.0], ["0", 1311683506000.0, 62.0], ["9", 1283692698000.0, 89.0], ["9", 1270234253000.0, 64.0], ["0", 1285088818000.0, 50.0], ["0", 1218212725000.0, 695.0], ["2", 1383933968000.0, 348.0], ["0", 1368227625000.0, 257.0], ["1", 1454514093000.0, 446.0], ["1", 1428497427000.0, 134.0], ["1", 1459184936000.0, 568.0], ["1", 1502293302000.0, 599.0], ["1", 1491833358000.0, 829.0], ["1", 1485431534000.0, 806.0], ["8", 1351800505000.0, 101.0], ["0", 1357247721000.0, 916.0], ["0", 1335804423000.0, 370.0], ["24", 1327547726000.0, 720.0], ["0", 1332334140000.0, 415.0], ["0", 1309543100000.0, 30.0], ["18", 1309541141000.0, 30.0], ["0", 1298979435000.0, 48.0], ["14", 1276098160000.0, 59.0], ["0", 1233936302000.0, 109.0], ], } pandas_df = pandas.DataFrame( data["data"], index=data["index"], columns=data["columns"] ) modin_df = pd.DataFrame( data["data"], index=data["index"], columns=data["columns"] ) modin_result = modin_df.sort_values(["id", "time"]).drop_duplicates(["id"]) pandas_result = pandas_df.sort_values(["id", "time"]).drop_duplicates(["id"]) df_equals(modin_result, pandas_result) def test_drop_duplicates_after_sort(self): data = [ {"value": 1, "time": 2}, {"value": 1, "time": 1}, {"value": 2, "time": 1}, {"value": 2, "time": 2}, ] modin_df = pd.DataFrame(data) pandas_df = pandas.DataFrame(data) modin_result = modin_df.sort_values(["value", "time"]).drop_duplicates( ["value"] ) pandas_result = pandas_df.sort_values(["value", "time"]).drop_duplicates( ["value"] ) df_equals(modin_result, pandas_result) @pytest.mark.parametrize("data", test_data_values, ids=test_data_keys) @pytest.mark.parametrize("axis", axis_values, ids=axis_keys) @pytest.mark.parametrize("how", ["any", "all"], ids=["any", "all"]) def test_dropna(self, data, axis, how): modin_df = pd.DataFrame(data) pandas_df = pandas.DataFrame(data) with pytest.raises(ValueError): modin_df.dropna(axis=axis, how="invalid") with pytest.raises(TypeError): modin_df.dropna(axis=axis, how=None, thresh=None) with pytest.raises(KeyError): modin_df.dropna(axis=axis, subset=["NotExists"], how=how) modin_result = modin_df.dropna(axis=axis, how=how) pandas_result = pandas_df.dropna(axis=axis, how=how) df_equals(modin_result, pandas_result) @pytest.mark.parametrize("data", test_data_values, ids=test_data_keys) def test_dropna_inplace(self, data): modin_df = pd.DataFrame(data) pandas_df = pandas.DataFrame(data) pandas_result = pandas_df.dropna() modin_df.dropna(inplace=True) df_equals(modin_df, pandas_result) modin_df = pd.DataFrame(data) pandas_df = pandas.DataFrame(data) pandas_df.dropna(thresh=2, inplace=True) modin_df.dropna(thresh=2, inplace=True) df_equals(modin_df, pandas_df) modin_df = pd.DataFrame(data) pandas_df = pandas.DataFrame(data) pandas_df.dropna(axis=1, how="any", inplace=True) modin_df.dropna(axis=1, how="any", inplace=True) df_equals(modin_df, pandas_df) @pytest.mark.parametrize("data", test_data_values, ids=test_data_keys) def test_dropna_multiple_axes(self, data): modin_df = pd.DataFrame(data) pandas_df = pandas.DataFrame(data) df_equals( modin_df.dropna(how="all", axis=[0, 1]), pandas_df.dropna(how="all", axis=[0, 1]), ) df_equals( modin_df.dropna(how="all", axis=(0, 1)), pandas_df.dropna(how="all", axis=(0, 1)), ) @pytest.mark.parametrize("data", test_data_values, ids=test_data_keys) def test_dropna_multiple_axes_inplace(self, data): modin_df = pd.DataFrame(data) pandas_df = pandas.DataFrame(data) modin_df_copy = modin_df.copy() pandas_df_copy = pandas_df.copy() modin_df_copy.dropna(how="all", axis=[0, 1], inplace=True) pandas_df_copy.dropna(how="all", axis=[0, 1], inplace=True) df_equals(modin_df_copy, pandas_df_copy) modin_df_copy = modin_df.copy() pandas_df_copy = pandas_df.copy() modin_df_copy.dropna(how="all", axis=(0, 1), inplace=True) pandas_df_copy.dropna(how="all", axis=(0, 1), inplace=True) df_equals(modin_df_copy, pandas_df_copy) @pytest.mark.parametrize("data", test_data_values, ids=test_data_keys) def test_dropna_subset(self, request, data): modin_df = pd.DataFrame(data) pandas_df = pandas.DataFrame(data) if "empty_data" not in request.node.name: column_subset = modin_df.columns[0:2] df_equals( modin_df.dropna(how="all", subset=column_subset), pandas_df.dropna(how="all", subset=column_subset), ) df_equals( modin_df.dropna(how="any", subset=column_subset), pandas_df.dropna(how="any", subset=column_subset), ) row_subset = modin_df.index[0:2] df_equals( modin_df.dropna(how="all", axis=1, subset=row_subset), pandas_df.dropna(how="all", axis=1, subset=row_subset), ) df_equals( modin_df.dropna(how="any", axis=1, subset=row_subset), pandas_df.dropna(how="any", axis=1, subset=row_subset), ) @pytest.mark.parametrize("data", test_data_values, ids=test_data_keys) def test_dropna_subset_error(self, data): modin_df = pd.DataFrame(data) pandas_df = pandas.DataFrame(data) # noqa F841 # pandas_df is unused so there won't be confusing list comprehension # stuff in the pytest.mark.parametrize with pytest.raises(KeyError): modin_df.dropna(subset=list("EF")) if len(modin_df.columns) < 5: with pytest.raises(KeyError): modin_df.dropna(axis=1, subset=[4, 5]) @pytest.mark.parametrize("data", test_data_values, ids=test_data_keys) def test_dot(self, data): modin_df = pd.DataFrame(data) pandas_df = pandas.DataFrame(data) col_len = len(modin_df.columns) # Test list input arr = np.arange(col_len) modin_result = modin_df.dot(arr) pandas_result = pandas_df.dot(arr) df_equals(modin_result, pandas_result) # Test bad dimensions with pytest.raises(ValueError): modin_result = modin_df.dot(np.arange(col_len + 10)) # Test series input modin_series = pd.Series(np.arange(col_len), index=modin_df.columns) pandas_series = pandas.Series(np.arange(col_len), index=modin_df.columns) modin_result = modin_df.dot(modin_series) pandas_result = pandas_df.dot(pandas_series) df_equals(modin_result, pandas_result) # Test when input series index doesn't line up with columns with pytest.raises(ValueError): modin_result = modin_df.dot(pd.Series(np.arange(col_len))) with pytest.warns(UserWarning): modin_df.dot(modin_df.T) @pytest.mark.parametrize("data", test_data_values, ids=test_data_keys) @pytest.mark.parametrize( "keep", ["last", "first", False], ids=["last", "first", "False"] ) def test_duplicated(self, data, keep): modin_df = pd.DataFrame(data) pandas_df = pandas.DataFrame(data) pandas_result = pandas_df.duplicated(keep=keep) modin_result = modin_df.duplicated(keep=keep) df_equals(modin_result, pandas_result) import random subset = random.sample( list(pandas_df.columns), random.randint(1, len(pandas_df.columns)) ) pandas_result = pandas_df.duplicated(keep=keep, subset=subset) modin_result = modin_df.duplicated(keep=keep, subset=subset) df_equals(modin_result, pandas_result) def test_empty_df(self): df = pd.DataFrame(index=["a", "b"]) df_is_empty(df) tm.assert_index_equal(df.index, pd.Index(["a", "b"])) assert len(df.columns) == 0 df = pd.DataFrame(columns=["a", "b"]) df_is_empty(df) assert len(df.index) == 0 tm.assert_index_equal(df.columns, pd.Index(["a", "b"])) df = pd.DataFrame() df_is_empty(df) assert len(df.index) == 0 assert len(df.columns) == 0 df = pd.DataFrame(index=["a", "b"]) df_is_empty(df) tm.assert_index_equal(df.index, pd.Index(["a", "b"])) assert len(df.columns) == 0 df = pd.DataFrame(columns=["a", "b"]) df_is_empty(df) assert len(df.index) == 0 tm.assert_index_equal(df.columns, pd.Index(["a", "b"])) df = pd.DataFrame() df_is_empty(df) assert len(df.index) == 0 assert len(df.columns) == 0 def test_equals(self): frame_data = {"col1": [2.9, 3, 3, 3], "col2": [2, 3, 4, 1]} modin_df1 = pd.DataFrame(frame_data) modin_df2 = pd.DataFrame(frame_data) assert modin_df1.equals(modin_df2) df_equals(modin_df1, modin_df2) df_equals(modin_df1, pd.DataFrame(modin_df1)) frame_data = {"col1": [2.9, 3, 3, 3], "col2": [2, 3, 5, 1]} modin_df3 = pd.DataFrame(frame_data, index=list("abcd")) assert not modin_df1.equals(modin_df3) with pytest.raises(AssertionError): df_equals(modin_df3, modin_df1) with pytest.raises(AssertionError): df_equals(modin_df3, modin_df2) assert modin_df1.equals(modin_df2._query_compiler.to_pandas()) def test_eval_df_use_case(self): frame_data = {"a": random_state.randn(10), "b": random_state.randn(10)} df = pandas.DataFrame(frame_data) modin_df = pd.DataFrame(frame_data) # test eval for series results tmp_pandas = df.eval("arctan2(sin(a), b)", engine="python", parser="pandas") tmp_modin = modin_df.eval( "arctan2(sin(a), b)", engine="python", parser="pandas" ) assert isinstance(tmp_modin, pd.Series) df_equals(tmp_modin, tmp_pandas) # Test not inplace assignments tmp_pandas = df.eval("e = arctan2(sin(a), b)", engine="python", parser="pandas") tmp_modin = modin_df.eval( "e = arctan2(sin(a), b)", engine="python", parser="pandas" ) df_equals(tmp_modin, tmp_pandas) # Test inplace assignments df.eval( "e = arctan2(sin(a), b)", engine="python", parser="pandas", inplace=True ) modin_df.eval( "e = arctan2(sin(a), b)", engine="python", parser="pandas", inplace=True ) # TODO: Use a series equality validator. df_equals(modin_df, df) def test_eval_df_arithmetic_subexpression(self): frame_data = {"a": random_state.randn(10), "b": random_state.randn(10)} df = pandas.DataFrame(frame_data) modin_df = pd.DataFrame(frame_data) df.eval("not_e = sin(a + b)", engine="python", parser="pandas", inplace=True) modin_df.eval( "not_e = sin(a + b)", engine="python", parser="pandas", inplace=True ) # TODO: Use a series equality validator. df_equals(modin_df, df) def test_ewm(self): df = pd.DataFrame({"B": [0, 1, 2, np.nan, 4]}) with pytest.warns(UserWarning): df.ewm(com=0.5).mean() def test_expanding(self): data = test_data_values[0] with pytest.warns(UserWarning): pd.DataFrame(data).expanding() @pytest.mark.parametrize("data", test_data_values, ids=test_data_keys) def test_explode(self, data): modin_df = pd.DataFrame(data) with pytest.warns(UserWarning): modin_df.explode(modin_df.columns[0]) def test_ffill(self): test_data = TestData() test_data.tsframe["A"][:5] = np.nan test_data.tsframe["A"][-5:] = np.nan modin_df = pd.DataFrame(test_data.tsframe) df_equals(modin_df.ffill(), test_data.tsframe.ffill()) @pytest.mark.parametrize("data", test_data_values, ids=test_data_keys) @pytest.mark.parametrize( "method", ["backfill", "bfill", "pad", "ffill", None], ids=["backfill", "bfill", "pad", "ffill", "None"], ) @pytest.mark.parametrize("axis", axis_values, ids=axis_keys) @pytest.mark.parametrize("limit", int_arg_values, ids=int_arg_keys) def test_fillna(self, data, method, axis, limit): # We are not testing when limit is not positive until pandas-27042 gets fixed. # We are not testing when axis is over rows until pandas-17399 gets fixed. if limit > 0 and axis != 1 and axis != "columns": modin_df = pd.DataFrame(data) pandas_df = pandas.DataFrame(data) try: pandas_result = pandas_df.fillna( 0, method=method, axis=axis, limit=limit ) except Exception as e: with pytest.raises(type(e)): modin_df.fillna(0, method=method, axis=axis, limit=limit) else: modin_result = modin_df.fillna(0, method=method, axis=axis, limit=limit) df_equals(modin_result, pandas_result) def test_fillna_sanity(self): test_data = TestData() tf = test_data.tsframe tf.loc[tf.index[:5], "A"] = np.nan tf.loc[tf.index[-5:], "A"] = np.nan zero_filled = test_data.tsframe.fillna(0) modin_df = pd.DataFrame(test_data.tsframe).fillna(0) df_equals(modin_df, zero_filled) padded = test_data.tsframe.fillna(method="pad") modin_df = pd.DataFrame(test_data.tsframe).fillna(method="pad") df_equals(modin_df, padded) # mixed type mf = test_data.mixed_frame mf.loc[mf.index[5:20], "foo"] = np.nan mf.loc[mf.index[-10:], "A"] = np.nan result = test_data.mixed_frame.fillna(value=0) modin_df = pd.DataFrame(test_data.mixed_frame).fillna(value=0) df_equals(modin_df, result) result = test_data.mixed_frame.fillna(method="pad") modin_df = pd.DataFrame(test_data.mixed_frame).fillna(method="pad") df_equals(modin_df, result) pytest.raises(ValueError, test_data.tsframe.fillna) pytest.raises(ValueError, pd.DataFrame(test_data.tsframe).fillna) with pytest.raises(ValueError): pd.DataFrame(test_data.tsframe).fillna(5, method="ffill") # mixed numeric (but no float16) mf = test_data.mixed_float.reindex(columns=["A", "B", "D"]) mf.loc[mf.index[-10:], "A"] = np.nan result = mf.fillna(value=0) modin_df = pd.DataFrame(mf).fillna(value=0) df_equals(modin_df, result) result = mf.fillna(method="pad") modin_df = pd.DataFrame(mf).fillna(method="pad") df_equals(modin_df, result) # TODO: Use this when Arrow issue resolves: # (https://issues.apache.org/jira/browse/ARROW-2122) # empty frame # df = DataFrame(columns=['x']) # for m in ['pad', 'backfill']: # df.x.fillna(method=m, inplace=True) # df.x.fillna(method=m) # with different dtype frame_data = [ ["a", "a", np.nan, "a"], ["b", "b", np.nan, "b"], ["c", "c", np.nan, "c"], ] df = pandas.DataFrame(frame_data) result = df.fillna({2: "foo"}) modin_df = pd.DataFrame(frame_data).fillna({2: "foo"}) df_equals(modin_df, result) modin_df = pd.DataFrame(df) df.fillna({2: "foo"}, inplace=True) modin_df.fillna({2: "foo"}, inplace=True) df_equals(modin_df, result) frame_data = { "Date": [pandas.NaT, pandas.Timestamp("2014-1-1")], "Date2": [pandas.Timestamp("2013-1-1"), pandas.NaT], } df = pandas.DataFrame(frame_data) result = df.fillna(value={"Date": df["Date2"]}) modin_df = pd.DataFrame(frame_data).fillna(value={"Date": df["Date2"]}) df_equals(modin_df, result) # TODO: Use this when Arrow issue resolves: # (https://issues.apache.org/jira/browse/ARROW-2122) # with timezone """ frame_data = {'A': [pandas.Timestamp('2012-11-11 00:00:00+01:00'), pandas.NaT]} df = pandas.DataFrame(frame_data) modin_df = pd.DataFrame(frame_data) df_equals(modin_df.fillna(method='pad'), df.fillna(method='pad')) frame_data = {'A': [pandas.NaT, pandas.Timestamp('2012-11-11 00:00:00+01:00')]} df = pandas.DataFrame(frame_data) modin_df = pd.DataFrame(frame_data).fillna(method='bfill') df_equals(modin_df, df.fillna(method='bfill')) """ def test_fillna_downcast(self): # infer int64 from float64 frame_data = {"a": [1.0, np.nan]} df = pandas.DataFrame(frame_data) result = df.fillna(0, downcast="infer") modin_df = pd.DataFrame(frame_data).fillna(0, downcast="infer") df_equals(modin_df, result) # infer int64 from float64 when fillna value is a dict df = pandas.DataFrame(frame_data) result = df.fillna({"a": 0}, downcast="infer") modin_df = pd.DataFrame(frame_data).fillna({"a": 0}, downcast="infer") df_equals(modin_df, result) def test_ffill2(self): test_data = TestData() test_data.tsframe["A"][:5] = np.nan test_data.tsframe["A"][-5:] = np.nan modin_df = pd.DataFrame(test_data.tsframe) df_equals( modin_df.fillna(method="ffill"), test_data.tsframe.fillna(method="ffill") ) def test_bfill2(self): test_data = TestData() test_data.tsframe["A"][:5] = np.nan test_data.tsframe["A"][-5:] = np.nan modin_df = pd.DataFrame(test_data.tsframe) df_equals( modin_df.fillna(method="bfill"), test_data.tsframe.fillna(method="bfill") ) def test_fillna_inplace(self): frame_data = random_state.randn(10, 4) df = pandas.DataFrame(frame_data) df[1][:4] = np.nan df[3][-4:] = np.nan modin_df = pd.DataFrame(df) df.fillna(value=0, inplace=True) try: df_equals(modin_df, df) except AssertionError: pass else: assert False modin_df.fillna(value=0, inplace=True) df_equals(modin_df, df) modin_df = pd.DataFrame(df).fillna(value={0: 0}, inplace=True) assert modin_df is None df[1][:4] = np.nan df[3][-4:] = np.nan modin_df = pd.DataFrame(df) df.fillna(method="ffill", inplace=True) try: df_equals(modin_df, df) except AssertionError: pass else: assert False modin_df.fillna(method="ffill", inplace=True) df_equals(modin_df, df) @pytest.mark.parametrize("data", test_data_values, ids=test_data_keys) def test_frame_fillna_limit(self, data): pandas_df = pandas.DataFrame(data) index = pandas_df.index result = pandas_df[:2].reindex(index) modin_df = pd.DataFrame(result) df_equals( modin_df.fillna(method="pad", limit=2), result.fillna(method="pad", limit=2) ) result = pandas_df[-2:].reindex(index) modin_df = pd.DataFrame(result) df_equals( modin_df.fillna(method="backfill", limit=2), result.fillna(method="backfill", limit=2), ) @pytest.mark.parametrize("data", test_data_values, ids=test_data_keys) def test_frame_pad_backfill_limit(self, data): pandas_df = pandas.DataFrame(data) index = pandas_df.index result = pandas_df[:2].reindex(index) modin_df = pd.DataFrame(result) df_equals( modin_df.fillna(method="pad", limit=2), result.fillna(method="pad", limit=2) ) result = pandas_df[-2:].reindex(index) modin_df = pd.DataFrame(result) df_equals( modin_df.fillna(method="backfill", limit=2), result.fillna(method="backfill", limit=2), ) def test_fillna_dtype_conversion(self): # make sure that fillna on an empty frame works df = pandas.DataFrame(index=range(3), columns=["A", "B"], dtype="float64") modin_df = pd.DataFrame(index=range(3), columns=["A", "B"], dtype="float64") df_equals(modin_df.fillna("nan"), df.fillna("nan")) frame_data = {"A": [1, np.nan], "B": [1.0, 2.0]} df = pandas.DataFrame(frame_data) modin_df = pd.DataFrame(frame_data) for v in ["", 1, np.nan, 1.0]: df_equals(modin_df.fillna(v), df.fillna(v)) @pytest.mark.parametrize("data", test_data_values, ids=test_data_keys) def test_fillna_skip_certain_blocks(self, data): modin_df = pd.DataFrame(data) pandas_df = pandas.DataFrame(data) # don't try to fill boolean, int blocks df_equals(modin_df.fillna(np.nan), pandas_df.fillna(np.nan)) def test_fillna_dict_series(self): frame_data = { "a": [np.nan, 1, 2, np.nan, np.nan], "b": [1, 2, 3, np.nan, np.nan], "c": [np.nan, 1, 2, 3, 4], } df = pandas.DataFrame(frame_data) modin_df = pd.DataFrame(frame_data) df_equals(modin_df.fillna({"a": 0, "b": 5}), df.fillna({"a": 0, "b": 5})) df_equals( modin_df.fillna({"a": 0, "b": 5, "d": 7}), df.fillna({"a": 0, "b": 5, "d": 7}), ) # Series treated same as dict df_equals(modin_df.fillna(modin_df.max()), df.fillna(df.max())) def test_fillna_dataframe(self): frame_data = { "a": [np.nan, 1, 2, np.nan, np.nan], "b": [1, 2, 3, np.nan, np.nan], "c": [np.nan, 1, 2, 3, 4], } df = pandas.DataFrame(frame_data, index=list("VWXYZ")) modin_df = pd.DataFrame(frame_data, index=list("VWXYZ")) # df2 may have different index and columns df2 = pandas.DataFrame( { "a": [np.nan, 10, 20, 30, 40], "b": [50, 60, 70, 80, 90], "foo": ["bar"] * 5, }, index=list("VWXuZ"), ) modin_df2 = pd.DataFrame(df2) # only those columns and indices which are shared get filled df_equals(modin_df.fillna(modin_df2), df.fillna(df2)) @pytest.mark.parametrize("data", test_data_values, ids=test_data_keys) def test_fillna_columns(self, data): modin_df = pd.DataFrame(data) pandas_df = pandas.DataFrame(data) df_equals( modin_df.fillna(method="ffill", axis=1), pandas_df.fillna(method="ffill", axis=1), ) df_equals( modin_df.fillna(method="ffill", axis=1), pandas_df.fillna(method="ffill", axis=1), ) @pytest.mark.parametrize("data", test_data_values, ids=test_data_keys) def test_fillna_invalid_method(self, data): modin_df = pd.DataFrame(data) pandas_df = pandas.DataFrame(data) # noqa F841 with tm.assert_raises_regex(ValueError, "ffil"): modin_df.fillna(method="ffil") def test_fillna_invalid_value(self): test_data = TestData() modin_df = pd.DataFrame(test_data.frame) # list pytest.raises(TypeError, modin_df.fillna, [1, 2]) # tuple pytest.raises(TypeError, modin_df.fillna, (1, 2)) # frame with series pytest.raises(TypeError, modin_df.iloc[:, 0].fillna, modin_df) @pytest.mark.parametrize("data", test_data_values, ids=test_data_keys) def test_fillna_col_reordering(self, data): modin_df = pd.DataFrame(data) pandas_df = pandas.DataFrame(data) df_equals(modin_df.fillna(method="ffill"), pandas_df.fillna(method="ffill")) """ TODO: Use this when Arrow issue resolves: (https://issues.apache.org/jira/browse/ARROW-2122) def test_fillna_datetime_columns(self): frame_data = {'A': [-1, -2, np.nan], 'B': date_range('20130101', periods=3), 'C': ['foo', 'bar', None], 'D': ['foo2', 'bar2', None]} df = pandas.DataFrame(frame_data, index=date_range('20130110', periods=3)) modin_df = pd.DataFrame(frame_data, index=date_range('20130110', periods=3)) df_equals(modin_df.fillna('?'), df.fillna('?')) frame_data = {'A': [-1, -2, np.nan], 'B': [pandas.Timestamp('2013-01-01'), pandas.Timestamp('2013-01-02'), pandas.NaT], 'C': ['foo', 'bar', None], 'D': ['foo2', 'bar2', None]} df = pandas.DataFrame(frame_data, index=date_range('20130110', periods=3)) modin_df = pd.DataFrame(frame_data, index=date_range('20130110', periods=3)) df_equals(modin_df.fillna('?'), df.fillna('?')) """ @pytest.mark.parametrize("data", test_data_values, ids=test_data_keys) def test_filter(self, data): modin_df = pd.DataFrame(data) pandas_df = pandas.DataFrame(data) by = {"items": ["col1", "col5"], "regex": "4$|3$", "like": "col"} df_equals( modin_df.filter(items=by["items"]), pandas_df.filter(items=by["items"]) ) df_equals( modin_df.filter(regex=by["regex"], axis=0), pandas_df.filter(regex=by["regex"], axis=0), ) df_equals( modin_df.filter(regex=by["regex"], axis=1), pandas_df.filter(regex=by["regex"], axis=1), ) df_equals(modin_df.filter(like=by["like"]), pandas_df.filter(like=by["like"])) with pytest.raises(TypeError): modin_df.filter(items=by["items"], regex=by["regex"]) with pytest.raises(TypeError): modin_df.filter() def test_first(self): i = pd.date_range("2018-04-09", periods=4, freq="2D") ts = pd.DataFrame({"A": [1, 2, 3, 4]}, index=i) with pytest.warns(UserWarning): ts.first("3D") @pytest.mark.parametrize("data", test_data_values, ids=test_data_keys) def test_first_valid_index(self, data): modin_df = pd.DataFrame(data) pandas_df = pandas.DataFrame(data) assert modin_df.first_valid_index() == (pandas_df.first_valid_index()) @pytest.mark.skip(reason="Defaulting to Pandas") @pytest.mark.parametrize("data", test_data_values, ids=test_data_keys) def test_from_dict(self, data): modin_df = pd.DataFrame(data) # noqa F841 pandas_df = pandas.DataFrame(data) # noqa F841 with pytest.raises(NotImplementedError): pd.DataFrame.from_dict(None) @pytest.mark.skip(reason="Defaulting to Pandas") @pytest.mark.parametrize("data", test_data_values, ids=test_data_keys) def test_from_items(self, data): modin_df = pd.DataFrame(data) # noqa F841 pandas_df = pandas.DataFrame(data) # noqa F841 with pytest.raises(NotImplementedError): pd.DataFrame.from_items(None) @pytest.mark.skip(reason="Defaulting to Pandas") @pytest.mark.parametrize("data", test_data_values, ids=test_data_keys) def test_from_records(self, data): modin_df = pd.DataFrame(data) # noqa F841 pandas_df = pandas.DataFrame(data) # noqa F841 with pytest.raises(NotImplementedError): pd.DataFrame.from_records(None) def test_get_value(self): data = test_data_values[0] with pytest.warns(UserWarning): pd.DataFrame(data).get_value(0, "col1") def test_get_values(self): data = test_data_values[0] with pytest.warns(UserWarning): pd.DataFrame(data).get_values() @pytest.mark.parametrize("data", test_data_values, ids=test_data_keys) @pytest.mark.parametrize("n", int_arg_values, ids=arg_keys("n", int_arg_keys)) def test_head(self, data, n): # Test normal dataframe head modin_df = pd.DataFrame(data) pandas_df = pandas.DataFrame(data) df_equals(modin_df.head(n), pandas_df.head(n)) df_equals(modin_df.head(len(modin_df) + 1), pandas_df.head(len(pandas_df) + 1)) # Test head when we call it from a QueryCompilerView modin_result = modin_df.loc[:, ["col1", "col3", "col3"]].head(n) pandas_result = pandas_df.loc[:, ["col1", "col3", "col3"]].head(n) df_equals(modin_result, pandas_result) def test_hist(self): data = test_data_values[0] with pytest.warns(UserWarning): pd.DataFrame(data).hist(None) @pytest.mark.skip(reason="Defaulting to Pandas") @pytest.mark.parametrize("data", test_data_values, ids=test_data_keys) def test_iat(self, data): modin_df = pd.DataFrame(data) pandas_df = pandas.DataFrame(data) # noqa F841 with pytest.raises(NotImplementedError): modin_df.iat() @pytest.mark.parametrize("data", test_data_values, ids=test_data_keys) @pytest.mark.parametrize("axis", axis_values, ids=axis_keys) @pytest.mark.parametrize( "skipna", bool_arg_values, ids=arg_keys("skipna", bool_arg_keys) ) def test_idxmax(self, data, axis, skipna): modin_df = pd.DataFrame(data) pandas_df = pandas.DataFrame(data) pandas_result = pandas_df.idxmax(axis=axis, skipna=skipna) modin_result = modin_df.idxmax(axis=axis, skipna=skipna) df_equals(modin_result, pandas_result) pandas_result = pandas_df.T.idxmax(axis=axis, skipna=skipna) modin_result = modin_df.T.idxmax(axis=axis, skipna=skipna) df_equals(modin_result, pandas_result) @pytest.mark.parametrize("data", test_data_values, ids=test_data_keys) @pytest.mark.parametrize("axis", axis_values, ids=axis_keys) @pytest.mark.parametrize( "skipna", bool_arg_values, ids=arg_keys("skipna", bool_arg_keys) ) def test_idxmin(self, data, axis, skipna): modin_df = pd.DataFrame(data) pandas_df = pandas.DataFrame(data) modin_result = modin_df.idxmin(axis=axis, skipna=skipna) pandas_result = pandas_df.idxmin(axis=axis, skipna=skipna) df_equals(modin_result, pandas_result) modin_result = modin_df.T.idxmin(axis=axis, skipna=skipna) pandas_result = pandas_df.T.idxmin(axis=axis, skipna=skipna) df_equals(modin_result, pandas_result) def test_infer_objects(self): data = test_data_values[0] with pytest.warns(UserWarning): pd.DataFrame(data).infer_objects() @pytest.mark.parametrize("data", test_data_values, ids=test_data_keys) def test_iloc(self, request, data): modin_df = pd.DataFrame(data) pandas_df = pandas.DataFrame(data) if not name_contains(request.node.name, ["empty_data"]): # Scaler np.testing.assert_equal(modin_df.iloc[0, 1], pandas_df.iloc[0, 1]) # Series df_equals(modin_df.iloc[0], pandas_df.iloc[0]) df_equals(modin_df.iloc[1:, 0], pandas_df.iloc[1:, 0]) df_equals(modin_df.iloc[1:2, 0], pandas_df.iloc[1:2, 0]) # DataFrame df_equals(modin_df.iloc[[1, 2]], pandas_df.iloc[[1, 2]]) # See issue #80 # df_equals(modin_df.iloc[[1, 2], [1, 0]], pandas_df.iloc[[1, 2], [1, 0]]) df_equals(modin_df.iloc[1:2, 0:2], pandas_df.iloc[1:2, 0:2]) # Issue #43 modin_df.iloc[0:3, :] # Write Item modin_df.iloc[[1, 2]] = 42 pandas_df.iloc[[1, 2]] = 42 df_equals(modin_df, pandas_df) else: with pytest.raises(IndexError): modin_df.iloc[0, 1] @pytest.mark.parametrize("data", test_data_values, ids=test_data_keys) def test_index(self, data): modin_df = pd.DataFrame(data) pandas_df = pandas.DataFrame(data) df_equals(modin_df.index, pandas_df.index) modin_df_cp = modin_df.copy() pandas_df_cp = pandas_df.copy() modin_df_cp.index = [str(i) for i in modin_df_cp.index] pandas_df_cp.index = [str(i) for i in pandas_df_cp.index] df_equals(modin_df_cp.index, pandas_df_cp.index) @pytest.mark.parametrize("data", test_data_values, ids=test_data_keys) def test_indexing_duplicate_axis(self, data): modin_df = pd.DataFrame(data) pandas_df = pandas.DataFrame(data) modin_df.index = pandas_df.index = [i // 3 for i in range(len(modin_df))] assert any(modin_df.index.duplicated()) assert any(pandas_df.index.duplicated()) df_equals(modin_df.iloc[0], pandas_df.iloc[0]) df_equals(modin_df.loc[0], pandas_df.loc[0]) df_equals(modin_df.iloc[0, 0:4], pandas_df.iloc[0, 0:4]) df_equals( modin_df.loc[0, modin_df.columns[0:4]], pandas_df.loc[0, pandas_df.columns[0:4]], ) def test_info(self): data = test_data_values[0] with pytest.warns(UserWarning): pd.DataFrame(data).info(memory_usage="deep") @pytest.mark.parametrize("data", test_data_values, ids=test_data_keys) @pytest.mark.parametrize("loc", int_arg_values, ids=arg_keys("loc", int_arg_keys)) def test_insert(self, data, loc): modin_df = pd.DataFrame(data) pandas_df = pandas.DataFrame(data) modin_df = modin_df.copy() pandas_df = pandas_df.copy() column = "New Column" value = modin_df.iloc[:, 0] try: pandas_df.insert(loc, column, value) except Exception as e: with pytest.raises(type(e)): modin_df.insert(loc, column, value) else: modin_df.insert(loc, column, value) df_equals(modin_df, pandas_df) with pytest.raises(ValueError): modin_df.insert(0, "Bad Column", modin_df) modin_df = pd.DataFrame(data) pandas_df = pandas.DataFrame(data) modin_df.insert(0, "Duplicate", modin_df[modin_df.columns[0]]) pandas_df.insert(0, "Duplicate", pandas_df[pandas_df.columns[0]]) df_equals(modin_df, pandas_df) modin_df = pd.DataFrame(data) pandas_df = pandas.DataFrame(data) modin_df.insert(0, "Scalar", 100) pandas_df.insert(0, "Scalar", 100) df_equals(modin_df, pandas_df) with pytest.raises(ValueError): modin_df.insert(0, "Too Short", list(modin_df[modin_df.columns[0]])[:-1]) with pytest.raises(ValueError): modin_df.insert(0, modin_df.columns[0], modin_df[modin_df.columns[0]]) with pytest.raises(IndexError): modin_df.insert(len(modin_df.columns) + 100, "Bad Loc", 100) modin_df = pd.DataFrame(data) pandas_df = pandas.DataFrame(data) modin_result = pd.DataFrame(columns=list("ab")).insert( 0, modin_df.columns[0], modin_df[modin_df.columns[0]] ) pandas_result = pandas.DataFrame(columns=list("ab")).insert( 0, pandas_df.columns[0], pandas_df[pandas_df.columns[0]] ) df_equals(modin_result, pandas_result) modin_df = pd.DataFrame(data) pandas_df = pandas.DataFrame(data) modin_result = pd.DataFrame(index=modin_df.index).insert( 0, modin_df.columns[0], modin_df[modin_df.columns[0]] ) pandas_result = pandas.DataFrame(index=pandas_df.index).insert( 0, pandas_df.columns[0], pandas_df[pandas_df.columns[0]] ) df_equals(modin_result, pandas_result) modin_df = pd.DataFrame(data) pandas_df = pandas.DataFrame(data) modin_result = modin_df.insert( 0, "DataFrame insert", modin_df[[modin_df.columns[0]]] ) pandas_result = pandas_df.insert( 0, "DataFrame insert", pandas_df[[pandas_df.columns[0]]] ) df_equals(modin_result, pandas_result) def test_interpolate(self): data = test_data_values[0] with pytest.warns(UserWarning): pd.DataFrame(data).interpolate() def test_is_copy(self): data = test_data_values[0] with pytest.warns(FutureWarning): assert pd.DataFrame(data).is_copy == pandas.DataFrame(data).is_copy @pytest.mark.parametrize("data", test_data_values, ids=test_data_keys) def test_items(self, data): modin_df = pd.DataFrame(data) pandas_df = pandas.DataFrame(data) modin_items = modin_df.items() pandas_items = pandas_df.items() for modin_item, pandas_item in zip(modin_items, pandas_items): modin_index, modin_series = modin_item pandas_index, pandas_series = pandas_item df_equals(pandas_series, modin_series) assert pandas_index == modin_index @pytest.mark.parametrize("data", test_data_values, ids=test_data_keys) def test_iteritems(self, data): modin_df = pd.DataFrame(data) pandas_df = pandas.DataFrame(data) modin_items = modin_df.iteritems() pandas_items = pandas_df.iteritems() for modin_item, pandas_item in zip(modin_items, pandas_items): modin_index, modin_series = modin_item pandas_index, pandas_series = pandas_item df_equals(pandas_series, modin_series) assert pandas_index == modin_index @pytest.mark.parametrize("data", test_data_values, ids=test_data_keys) def test_iterrows(self, data): modin_df = pd.DataFrame(data) pandas_df = pandas.DataFrame(data) modin_iterrows = modin_df.iterrows() pandas_iterrows = pandas_df.iterrows() for modin_row, pandas_row in zip(modin_iterrows, pandas_iterrows): modin_index, modin_series = modin_row pandas_index, pandas_series = pandas_row df_equals(pandas_series, modin_series) assert pandas_index == modin_index @pytest.mark.parametrize("data", test_data_values, ids=test_data_keys) def test_itertuples(self, data): modin_df = pd.DataFrame(data) pandas_df = pandas.DataFrame(data) # test default modin_it_default = modin_df.itertuples() pandas_it_default = pandas_df.itertuples() for modin_row, pandas_row in zip(modin_it_default, pandas_it_default): np.testing.assert_equal(modin_row, pandas_row) # test all combinations of custom params indices = [True, False] names = [None, "NotPandas", "Pandas"] for index in indices: for name in names: modin_it_custom = modin_df.itertuples(index=index, name=name) pandas_it_custom = pandas_df.itertuples(index=index, name=name) for modin_row, pandas_row in zip(modin_it_custom, pandas_it_custom): np.testing.assert_equal(modin_row, pandas_row) @pytest.mark.parametrize("data", test_data_values, ids=test_data_keys) def test_ix(self, data): modin_df = pd.DataFrame(data) pandas_df = pandas.DataFrame(data) # noqa F841 with pytest.raises(NotImplementedError): modin_df.ix() def test_join(self): frame_data = { "col1": [0, 1, 2, 3], "col2": [4, 5, 6, 7], "col3": [8, 9, 0, 1], "col4": [2, 4, 5, 6], } modin_df = pd.DataFrame(frame_data) pandas_df = pandas.DataFrame(frame_data) frame_data2 = {"col5": [0], "col6": [1]} modin_df2 = pd.DataFrame(frame_data2) pandas_df2 = pandas.DataFrame(frame_data2) join_types = ["left", "right", "outer", "inner"] for how in join_types: modin_join = modin_df.join(modin_df2, how=how) pandas_join = pandas_df.join(pandas_df2, how=how) df_equals(modin_join, pandas_join) frame_data3 = {"col7": [1, 2, 3, 5, 6, 7, 8]} modin_df3 = pd.DataFrame(frame_data3) pandas_df3 = pandas.DataFrame(frame_data3) join_types = ["left", "outer", "inner"] for how in join_types: modin_join = modin_df.join([modin_df2, modin_df3], how=how) pandas_join = pandas_df.join([pandas_df2, pandas_df3], how=how) df_equals(modin_join, pandas_join) @pytest.mark.parametrize("data", test_data_values, ids=test_data_keys) def test_keys(self, data): modin_df = pd.DataFrame(data) pandas_df = pandas.DataFrame(data) df_equals(modin_df.keys(), pandas_df.keys()) def test_kurt(self): data = test_data_values[0] with pytest.warns(UserWarning): pd.DataFrame(data).kurt() def test_kurtosis(self): data = test_data_values[0] with pytest.warns(UserWarning): pd.DataFrame(data).kurtosis() def test_last(self): i = pd.date_range("2018-04-09", periods=4, freq="2D") ts = pd.DataFrame({"A": [1, 2, 3, 4]}, index=i) with pytest.warns(UserWarning): ts.last("3D") @pytest.mark.parametrize("data", test_data_values, ids=test_data_keys) def test_last_valid_index(self, data): modin_df = pd.DataFrame(data) pandas_df = pandas.DataFrame(data) assert modin_df.last_valid_index() == (pandas_df.last_valid_index()) @pytest.mark.parametrize("data", test_data_values, ids=test_data_keys) def test_loc(self, request, data): modin_df = pd.DataFrame(data) pandas_df = pandas.DataFrame(data) # We skip nan datasets because nan != nan if "nan" not in request.node.name: key1 = modin_df.columns[0] key2 = modin_df.columns[1] # Scaler assert modin_df.loc[0, key1] == pandas_df.loc[0, key1] # Series df_equals(modin_df.loc[0], pandas_df.loc[0]) df_equals(modin_df.loc[1:, key1], pandas_df.loc[1:, key1]) df_equals(modin_df.loc[1:2, key1], pandas_df.loc[1:2, key1]) # DataFrame df_equals(modin_df.loc[[1, 2]], pandas_df.loc[[1, 2]]) # List-like of booleans indices = [ True if i % 3 == 0 else False for i in range(len(modin_df.index)) ] columns = [ True if i % 5 == 0 else False for i in range(len(modin_df.columns)) ] modin_result = modin_df.loc[indices, columns] pandas_result = pandas_df.loc[indices, columns] df_equals(modin_result, pandas_result) # See issue #80 # df_equals(modin_df.loc[[1, 2], ['col1']], pandas_df.loc[[1, 2], ['col1']]) df_equals(modin_df.loc[1:2, key1:key2], pandas_df.loc[1:2, key1:key2]) # From issue #421 df_equals(modin_df.loc[:, [key2, key1]], pandas_df.loc[:, [key2, key1]]) df_equals(modin_df.loc[[2, 1], :], pandas_df.loc[[2, 1], :]) # Write Item modin_df_copy = modin_df.copy() pandas_df_copy = pandas_df.copy() modin_df_copy.loc[[1, 2]] = 42 pandas_df_copy.loc[[1, 2]] = 42 df_equals(modin_df_copy, pandas_df_copy) def test_loc_multi_index(self): modin_df = pd.read_csv( "modin/pandas/test/data/blah.csv", header=[0, 1, 2, 3], index_col=0 ) pandas_df = pandas.read_csv( "modin/pandas/test/data/blah.csv", header=[0, 1, 2, 3], index_col=0 ) df_equals(modin_df.loc[1], pandas_df.loc[1]) df_equals(modin_df.loc[1, "Presidents"], pandas_df.loc[1, "Presidents"]) df_equals( modin_df.loc[1, ("Presidents", "Pure mentions")], pandas_df.loc[1, ("Presidents", "Pure mentions")], ) assert ( modin_df.loc[1, ("Presidents", "Pure mentions", "IND", "all")] == pandas_df.loc[1, ("Presidents", "Pure mentions", "IND", "all")] ) df_equals( modin_df.loc[(1, 2), "Presidents"], pandas_df.loc[(1, 2), "Presidents"] ) tuples = [ ("bar", "one"), ("bar", "two"), ("bar", "three"), ("bar", "four"), ("baz", "one"), ("baz", "two"), ("baz", "three"), ("baz", "four"), ("foo", "one"), ("foo", "two"), ("foo", "three"), ("foo", "four"), ("qux", "one"), ("qux", "two"), ("qux", "three"), ("qux", "four"), ] modin_index = pd.MultiIndex.from_tuples(tuples, names=["first", "second"]) pandas_index = pandas.MultiIndex.from_tuples(tuples, names=["first", "second"]) frame_data = np.random.randint(0, 100, size=(16, 100)) modin_df = pd.DataFrame( frame_data, index=modin_index, columns=["col{}".format(i) for i in range(100)], ) pandas_df = pandas.DataFrame( frame_data, index=pandas_index, columns=["col{}".format(i) for i in range(100)], ) df_equals(modin_df.loc["bar", "col1"], pandas_df.loc["bar", "col1"]) assert ( modin_df.loc[("bar", "one"), "col1"] == pandas_df.loc[("bar", "one"), "col1"] ) df_equals( modin_df.loc["bar", ("col1", "col2")], pandas_df.loc["bar", ("col1", "col2")], ) def test_lookup(self): data = test_data_values[0] with pytest.warns(UserWarning): pd.DataFrame(data).lookup([0, 1], ["col1", "col2"]) def test_mad(self): data = test_data_values[0] with pytest.warns(UserWarning): pd.DataFrame(data).mad() def test_mask(self): df = pd.DataFrame(np.arange(10).reshape(-1, 2), columns=["A", "B"]) m = df % 3 == 0 with pytest.warns(UserWarning): try: df.mask(~m, -df) except ValueError: pass @pytest.mark.parametrize("data", test_data_values, ids=test_data_keys) @pytest.mark.parametrize("axis", axis_values, ids=axis_keys) @pytest.mark.parametrize( "skipna", bool_arg_values, ids=arg_keys("skipna", bool_arg_keys) ) @pytest.mark.parametrize( "numeric_only", bool_arg_values, ids=arg_keys("numeric_only", bool_arg_keys) ) def test_max(self, request, data, axis, skipna, numeric_only): modin_df = pd.DataFrame(data) pandas_df = pandas.DataFrame(data) try: pandas_result = pandas_df.max( axis=axis, skipna=skipna, numeric_only=numeric_only ) except Exception: with pytest.raises(TypeError): modin_df.max(axis=axis, skipna=skipna, numeric_only=numeric_only) else: modin_result = modin_df.max( axis=axis, skipna=skipna, numeric_only=numeric_only ) df_equals(modin_result, pandas_result) try: pandas_result = pandas_df.T.max( axis=axis, skipna=skipna, numeric_only=numeric_only ) except Exception: with pytest.raises(TypeError): modin_df.T.max(axis=axis, skipna=skipna, numeric_only=numeric_only) else: modin_result = modin_df.T.max( axis=axis, skipna=skipna, numeric_only=numeric_only ) df_equals(modin_result, pandas_result) @pytest.mark.parametrize("data", test_data_values, ids=test_data_keys) @pytest.mark.parametrize("axis", axis_values, ids=axis_keys) @pytest.mark.parametrize( "skipna", bool_arg_values, ids=arg_keys("skipna", bool_arg_keys) ) @pytest.mark.parametrize( "numeric_only", bool_arg_values, ids=arg_keys("numeric_only", bool_arg_keys) ) def test_mean(self, request, data, axis, skipna, numeric_only): modin_df = pd.DataFrame(data) pandas_df = pandas.DataFrame(data) try: pandas_result = pandas_df.mean( axis=axis, skipna=skipna, numeric_only=numeric_only ) except Exception as e: with pytest.raises(type(e)): modin_df.mean(axis=axis, skipna=skipna, numeric_only=numeric_only) else: modin_result = modin_df.mean( axis=axis, skipna=skipna, numeric_only=numeric_only ) df_equals(modin_result, pandas_result) try: pandas_result = pandas_df.T.mean( axis=axis, skipna=skipna, numeric_only=numeric_only ) except Exception as e: with pytest.raises(type(e)): modin_df.T.mean(axis=axis, skipna=skipna, numeric_only=numeric_only) else: modin_result = modin_df.T.mean( axis=axis, skipna=skipna, numeric_only=numeric_only ) df_equals(modin_result, pandas_result) @pytest.mark.parametrize("data", test_data_values, ids=test_data_keys) @pytest.mark.parametrize("axis", axis_values, ids=axis_keys) @pytest.mark.parametrize( "skipna", bool_arg_values, ids=arg_keys("skipna", bool_arg_keys) ) @pytest.mark.parametrize( "numeric_only", bool_arg_values, ids=arg_keys("numeric_only", bool_arg_keys) ) def test_median(self, request, data, axis, skipna, numeric_only): modin_df = pd.DataFrame(data) pandas_df = pandas.DataFrame(data) try: pandas_result = pandas_df.median( axis=axis, skipna=skipna, numeric_only=numeric_only ) except Exception: with pytest.raises(TypeError): modin_df.median(axis=axis, skipna=skipna, numeric_only=numeric_only) else: modin_result = modin_df.median( axis=axis, skipna=skipna, numeric_only=numeric_only ) df_equals(modin_result, pandas_result) try: pandas_result = pandas_df.T.median( axis=axis, skipna=skipna, numeric_only=numeric_only ) except Exception: with pytest.raises(TypeError): modin_df.T.median(axis=axis, skipna=skipna, numeric_only=numeric_only) else: modin_result = modin_df.T.median( axis=axis, skipna=skipna, numeric_only=numeric_only ) df_equals(modin_result, pandas_result) class TestDFPartTwo: def test_melt(self): data = test_data_values[0] with pytest.warns(UserWarning): pd.DataFrame(data).melt() @pytest.mark.parametrize("data", test_data_values, ids=test_data_keys) @pytest.mark.parametrize( "index", bool_arg_values, ids=arg_keys("index", bool_arg_keys) ) def test_memory_usage(self, data, index): modin_df = pd.DataFrame(data) pandas_df = pandas.DataFrame(data) # noqa F841 modin_result = modin_df.memory_usage(index=index) pandas_result = pandas_df.memory_usage(index=index) df_equals(modin_result, pandas_result) def test_merge(self): frame_data = { "col1": [0, 1, 2, 3], "col2": [4, 5, 6, 7], "col3": [8, 9, 0, 1], "col4": [2, 4, 5, 6], } modin_df = pd.DataFrame(frame_data) pandas_df = pandas.DataFrame(frame_data) frame_data2 = {"col1": [0, 1, 2], "col2": [1, 5, 6]} modin_df2 = pd.DataFrame(frame_data2) pandas_df2 = pandas.DataFrame(frame_data2) join_types = ["outer", "inner"] for how in join_types: # Defaults modin_result = modin_df.merge(modin_df2, how=how) pandas_result = pandas_df.merge(pandas_df2, how=how) df_equals(modin_result, pandas_result) # left_on and right_index modin_result = modin_df.merge( modin_df2, how=how, left_on="col1", right_index=True ) pandas_result = pandas_df.merge( pandas_df2, how=how, left_on="col1", right_index=True ) df_equals(modin_result, pandas_result) # left_index and right_on modin_result = modin_df.merge( modin_df2, how=how, left_index=True, right_on="col1" ) pandas_result = pandas_df.merge( pandas_df2, how=how, left_index=True, right_on="col1" ) df_equals(modin_result, pandas_result) # left_on and right_on col1 modin_result = modin_df.merge( modin_df2, how=how, left_on="col1", right_on="col1" ) pandas_result = pandas_df.merge( pandas_df2, how=how, left_on="col1", right_on="col1" ) df_equals(modin_result, pandas_result) # left_on and right_on col2 modin_result = modin_df.merge( modin_df2, how=how, left_on="col2", right_on="col2" ) pandas_result = pandas_df.merge( pandas_df2, how=how, left_on="col2", right_on="col2" ) df_equals(modin_result, pandas_result) # left_index and right_index modin_result = modin_df.merge( modin_df2, how=how, left_index=True, right_index=True ) pandas_result = pandas_df.merge( pandas_df2, how=how, left_index=True, right_index=True ) df_equals(modin_result, pandas_result) # Named Series promoted to DF s = pd.Series(frame_data2.get("col1")) with pytest.raises(ValueError): modin_df.merge(s) s = pd.Series(frame_data2.get("col1"), name="col1") df_equals(modin_df.merge(s), modin_df.merge(modin_df2[["col1"]])) with pytest.raises(ValueError): modin_df.merge("Non-valid type") @pytest.mark.parametrize("data", test_data_values, ids=test_data_keys) @pytest.mark.parametrize("axis", axis_values, ids=axis_keys) @pytest.mark.parametrize( "skipna", bool_arg_values, ids=arg_keys("skipna", bool_arg_keys) ) @pytest.mark.parametrize( "numeric_only", bool_arg_values, ids=arg_keys("numeric_only", bool_arg_keys) ) def test_min(self, data, axis, skipna, numeric_only): modin_df = pd.DataFrame(data) pandas_df = pandas.DataFrame(data) try: pandas_result = pandas_df.min( axis=axis, skipna=skipna, numeric_only=numeric_only ) except Exception: with pytest.raises(TypeError): modin_df.min(axis=axis, skipna=skipna, numeric_only=numeric_only) else: modin_result = modin_df.min( axis=axis, skipna=skipna, numeric_only=numeric_only ) df_equals(modin_result, pandas_result) try: pandas_result = pandas_df.T.min( axis=axis, skipna=skipna, numeric_only=numeric_only ) except Exception: with pytest.raises(TypeError): modin_df.T.min(axis=axis, skipna=skipna, numeric_only=numeric_only) else: modin_result = modin_df.T.min( axis=axis, skipna=skipna, numeric_only=numeric_only ) df_equals(modin_result, pandas_result) @pytest.mark.parametrize("data", test_data_values, ids=test_data_keys) @pytest.mark.parametrize("axis", axis_values, ids=axis_keys) @pytest.mark.parametrize( "numeric_only", bool_arg_values, ids=arg_keys("numeric_only", bool_arg_keys) ) def test_mode(self, request, data, axis, numeric_only): modin_df = pd.DataFrame(data) pandas_df = pandas.DataFrame(data) try: pandas_result = pandas_df.mode(axis=axis, numeric_only=numeric_only) except Exception: with pytest.raises(TypeError): modin_df.mode(axis=axis, numeric_only=numeric_only) else: modin_result = modin_df.mode(axis=axis, numeric_only=numeric_only) df_equals(modin_result, pandas_result) @pytest.mark.parametrize("data", test_data_values, ids=test_data_keys) def test_ndim(self, data): modin_df = pd.DataFrame(data) pandas_df = pandas.DataFrame(data) assert modin_df.ndim == pandas_df.ndim def test_nlargest(self): df = pd.DataFrame( { "population": [ 59000000, 65000000, 434000, 434000, 434000, 337000, 11300, 11300, 11300, ], "GDP": [1937894, 2583560, 12011, 4520, 12128, 17036, 182, 38, 311], "alpha-2": ["IT", "FR", "MT", "MV", "BN", "IS", "NR", "TV", "AI"], }, index=[ "Italy", "France", "Malta", "Maldives", "Brunei", "Iceland", "Nauru", "Tuvalu", "Anguilla", ], ) with pytest.warns(UserWarning): df.nlargest(3, "population") @pytest.mark.parametrize("data", test_data_values, ids=test_data_keys) def test_notna(self, data): modin_df = pd.DataFrame(data) pandas_df = pandas.DataFrame(data) df_equals(modin_df.notna(), pandas_df.notna()) @pytest.mark.parametrize("data", test_data_values, ids=test_data_keys) def test_notnull(self, data): modin_df = pd.DataFrame(data) pandas_df = pandas.DataFrame(data) df_equals(modin_df.notnull(), pandas_df.notnull()) def test_nsmallest(self): df = pd.DataFrame( { "population": [ 59000000, 65000000, 434000, 434000, 434000, 337000, 11300, 11300, 11300, ], "GDP": [1937894, 2583560, 12011, 4520, 12128, 17036, 182, 38, 311], "alpha-2": ["IT", "FR", "MT", "MV", "BN", "IS", "NR", "TV", "AI"], }, index=[ "Italy", "France", "Malta", "Maldives", "Brunei", "Iceland", "Nauru", "Tuvalu", "Anguilla", ], ) with pytest.warns(UserWarning): df.nsmallest(3, "population") @pytest.mark.parametrize("data", test_data_values, ids=test_data_keys) @pytest.mark.parametrize("axis", axis_values, ids=axis_keys) @pytest.mark.parametrize( "dropna", bool_arg_values, ids=arg_keys("dropna", bool_arg_keys) ) def test_nunique(self, data, axis, dropna): modin_df = pd.DataFrame(data) pandas_df = pandas.DataFrame(data) modin_result = modin_df.nunique(axis=axis, dropna=dropna) pandas_result = pandas_df.nunique(axis=axis, dropna=dropna) df_equals(modin_result, pandas_result) modin_result = modin_df.T.nunique(axis=axis, dropna=dropna) pandas_result = pandas_df.T.nunique(axis=axis, dropna=dropna) df_equals(modin_result, pandas_result) def test_pct_change(self): data = test_data_values[0] with pytest.warns(UserWarning): pd.DataFrame(data).pct_change() @pytest.mark.parametrize("data", test_data_values, ids=test_data_keys) def test_pipe(self, data): modin_df = pd.DataFrame(data) pandas_df = pandas.DataFrame(data) n = len(modin_df.index) a, b, c = 2 % n, 0, 3 % n col = modin_df.columns[3 % len(modin_df.columns)] def h(x): return x.drop(columns=[col]) def g(x, arg1=0): for _ in range(arg1): x = x.append(x) return x def f(x, arg2=0, arg3=0): return x.drop([arg2, arg3]) df_equals( f(g(h(modin_df), arg1=a), arg2=b, arg3=c), (modin_df.pipe(h).pipe(g, arg1=a).pipe(f, arg2=b, arg3=c)), ) df_equals( (modin_df.pipe(h).pipe(g, arg1=a).pipe(f, arg2=b, arg3=c)), (pandas_df.pipe(h).pipe(g, arg1=a).pipe(f, arg2=b, arg3=c)), ) def test_pivot(self): df = pd.DataFrame( { "foo": ["one", "one", "one", "two", "two", "two"], "bar": ["A", "B", "C", "A", "B", "C"], "baz": [1, 2, 3, 4, 5, 6], "zoo": ["x", "y", "z", "q", "w", "t"], } ) with pytest.warns(UserWarning): df.pivot(index="foo", columns="bar", values="baz") def test_pivot_table(self): df = pd.DataFrame( { "A": ["foo", "foo", "foo", "foo", "foo", "bar", "bar", "bar", "bar"], "B": ["one", "one", "one", "two", "two", "one", "one", "two", "two"], "C": [ "small", "large", "large", "small", "small", "large", "small", "small", "large", ], "D": [1, 2, 2, 3, 3, 4, 5, 6, 7], "E": [2, 4, 5, 5, 6, 6, 8, 9, 9], } ) with pytest.warns(UserWarning): df.pivot_table(values="D", index=["A", "B"], columns=["C"], aggfunc=np.sum) @pytest.mark.parametrize("data", test_data_values, ids=test_data_keys) def test_plot(self, request, data): modin_df = pd.DataFrame(data) pandas_df = pandas.DataFrame(data) if name_contains(request.node.name, numeric_dfs): # We have to test this way because equality in plots means same object. zipped_plot_lines = zip(modin_df.plot().lines, pandas_df.plot().lines) for l, r in zipped_plot_lines: if isinstance(l.get_xdata(), np.ma.core.MaskedArray) and isinstance( r.get_xdata(), np.ma.core.MaskedArray ): assert all((l.get_xdata() == r.get_xdata()).data) else: assert np.array_equal(l.get_xdata(), r.get_xdata()) if isinstance(l.get_ydata(), np.ma.core.MaskedArray) and isinstance( r.get_ydata(), np.ma.core.MaskedArray ): assert all((l.get_ydata() == r.get_ydata()).data) else: assert np.array_equal(l.get_xdata(), r.get_xdata()) @pytest.mark.parametrize("data", test_data_values, ids=test_data_keys) def test_pop(self, request, data): modin_df = pd.DataFrame(data) pandas_df = pandas.DataFrame(data) if "empty_data" not in request.node.name: key = modin_df.columns[0] temp_modin_df = modin_df.copy() temp_pandas_df = pandas_df.copy() modin_popped = temp_modin_df.pop(key) pandas_popped = temp_pandas_df.pop(key) df_equals(modin_popped, pandas_popped) df_equals(temp_modin_df, temp_pandas_df) @pytest.mark.parametrize("data", test_data_values, ids=test_data_keys) @pytest.mark.parametrize("axis", axis_values, ids=axis_keys) @pytest.mark.parametrize( "skipna", bool_arg_values, ids=arg_keys("skipna", bool_arg_keys) ) @pytest.mark.parametrize( "numeric_only", bool_arg_values, ids=arg_keys("numeric_only", bool_arg_keys) ) @pytest.mark.parametrize( "min_count", int_arg_values, ids=arg_keys("min_count", int_arg_keys) ) def test_prod(self, request, data, axis, skipna, numeric_only, min_count): modin_df = pd.DataFrame(data) pandas_df = pandas.DataFrame(data) try: pandas_result = pandas_df.prod( axis=axis, skipna=skipna, numeric_only=numeric_only, min_count=min_count ) except Exception: with pytest.raises(TypeError): modin_df.prod( axis=axis, skipna=skipna, numeric_only=numeric_only, min_count=min_count, ) else: modin_result = modin_df.prod( axis=axis, skipna=skipna, numeric_only=numeric_only, min_count=min_count ) df_equals(modin_result, pandas_result) try: pandas_result = pandas_df.T.prod( axis=axis, skipna=skipna, numeric_only=numeric_only, min_count=min_count ) except Exception: with pytest.raises(TypeError): modin_df.T.prod( axis=axis, skipna=skipna, numeric_only=numeric_only, min_count=min_count, ) else: modin_result = modin_df.T.prod( axis=axis, skipna=skipna, numeric_only=numeric_only, min_count=min_count ) df_equals(modin_result, pandas_result) @pytest.mark.parametrize("data", test_data_values, ids=test_data_keys) @pytest.mark.parametrize("axis", axis_values, ids=axis_keys) @pytest.mark.parametrize( "skipna", bool_arg_values, ids=arg_keys("skipna", bool_arg_keys) ) @pytest.mark.parametrize( "numeric_only", bool_arg_values, ids=arg_keys("numeric_only", bool_arg_keys) ) @pytest.mark.parametrize( "min_count", int_arg_values, ids=arg_keys("min_count", int_arg_keys) ) def test_product(self, request, data, axis, skipna, numeric_only, min_count): modin_df = pd.DataFrame(data) pandas_df = pandas.DataFrame(data) try: pandas_result = pandas_df.product( axis=axis, skipna=skipna, numeric_only=numeric_only, min_count=min_count ) except Exception: with pytest.raises(TypeError): modin_df.product( axis=axis, skipna=skipna, numeric_only=numeric_only, min_count=min_count, ) else: modin_result = modin_df.product( axis=axis, skipna=skipna, numeric_only=numeric_only, min_count=min_count ) df_equals(modin_result, pandas_result) @pytest.mark.parametrize("data", test_data_values, ids=test_data_keys) @pytest.mark.parametrize("q", quantiles_values, ids=quantiles_keys) def test_quantile(self, request, data, q): modin_df = pd.DataFrame(data) pandas_df = pandas.DataFrame(data) if not name_contains(request.node.name, no_numeric_dfs): df_equals(modin_df.quantile(q), pandas_df.quantile(q)) df_equals(modin_df.quantile(q, axis=1), pandas_df.quantile(q, axis=1)) try: pandas_result = pandas_df.quantile(q, axis=1, numeric_only=False) except Exception as e: with pytest.raises(type(e)): modin_df.quantile(q, axis=1, numeric_only=False) else: modin_result = modin_df.quantile(q, axis=1, numeric_only=False) df_equals(modin_result, pandas_result) else: with pytest.raises(ValueError): modin_df.quantile(q) if not name_contains(request.node.name, no_numeric_dfs): df_equals(modin_df.T.quantile(q), pandas_df.T.quantile(q)) df_equals(modin_df.T.quantile(q, axis=1), pandas_df.T.quantile(q, axis=1)) try: pandas_result = pandas_df.T.quantile(q, axis=1, numeric_only=False) except Exception as e: with pytest.raises(type(e)): modin_df.T.quantile(q, axis=1, numeric_only=False) else: modin_result = modin_df.T.quantile(q, axis=1, numeric_only=False) df_equals(modin_result, pandas_result) else: with pytest.raises(ValueError): modin_df.T.quantile(q) @pytest.mark.parametrize("data", test_data_values, ids=test_data_keys) @pytest.mark.parametrize("funcs", query_func_values, ids=query_func_keys) def test_query(self, data, funcs): modin_df = pd.DataFrame(data) pandas_df = pandas.DataFrame(data) with pytest.raises(ValueError): modin_df.query("") with pytest.raises(NotImplementedError): x = 2 # noqa F841 modin_df.query("col1 < @x") try: pandas_result = pandas_df.query(funcs) except Exception as e: with pytest.raises(type(e)): modin_df.query(funcs) else: modin_result = modin_df.query(funcs) df_equals(modin_result, pandas_result) def test_query_after_insert(self): modin_df = pd.DataFrame({"x": [-1, 0, 1, None], "y": [1, 2, None, 3]}) modin_df["z"] = modin_df.eval("x / y") modin_df = modin_df.query("z >= 0") modin_result = modin_df.reset_index(drop=True) modin_result.columns = ["a", "b", "c"] pandas_df = pd.DataFrame({"x": [-1, 0, 1, None], "y": [1, 2, None, 3]}) pandas_df["z"] = pandas_df.eval("x / y") pandas_df = pandas_df.query("z >= 0") pandas_result = pandas_df.reset_index(drop=True) pandas_result.columns = ["a", "b", "c"] df_equals(modin_result, pandas_result) df_equals(modin_df, pandas_df) @pytest.mark.parametrize("data", test_data_values, ids=test_data_keys) @pytest.mark.parametrize("axis", axis_values, ids=axis_keys) @pytest.mark.parametrize( "numeric_only", bool_arg_values, ids=arg_keys("numeric_only", bool_arg_keys) ) @pytest.mark.parametrize( "na_option", ["keep", "top", "bottom"], ids=["keep", "top", "bottom"] ) def test_rank(self, data, axis, numeric_only, na_option): modin_df = pd.DataFrame(data) pandas_df = pandas.DataFrame(data) try: pandas_result = pandas_df.rank( axis=axis, numeric_only=numeric_only, na_option=na_option ) except Exception as e: with pytest.raises(type(e)): modin_df.rank(axis=axis, numeric_only=numeric_only, na_option=na_option) else: modin_result = modin_df.rank( axis=axis, numeric_only=numeric_only, na_option=na_option ) df_equals(modin_result, pandas_result) def test_reindex(self): frame_data = { "col1": [0, 1, 2, 3], "col2": [4, 5, 6, 7], "col3": [8, 9, 10, 11], "col4": [12, 13, 14, 15], "col5": [0, 0, 0, 0], } pandas_df = pandas.DataFrame(frame_data) modin_df = pd.DataFrame(frame_data) df_equals(modin_df.reindex([0, 3, 2, 1]), pandas_df.reindex([0, 3, 2, 1])) df_equals(modin_df.reindex([0, 6, 2]), pandas_df.reindex([0, 6, 2])) df_equals( modin_df.reindex(["col1", "col3", "col4", "col2"], axis=1), pandas_df.reindex(["col1", "col3", "col4", "col2"], axis=1), ) df_equals( modin_df.reindex(["col1", "col7", "col4", "col8"], axis=1), pandas_df.reindex(["col1", "col7", "col4", "col8"], axis=1), ) df_equals( modin_df.reindex(index=[0, 1, 5], columns=["col1", "col7", "col4", "col8"]), pandas_df.reindex( index=[0, 1, 5], columns=["col1", "col7", "col4", "col8"] ), ) df_equals( modin_df.T.reindex(["col1", "col7", "col4", "col8"], axis=0), pandas_df.T.reindex(["col1", "col7", "col4", "col8"], axis=0), ) def test_reindex_like(self): df1 = pd.DataFrame( [ [24.3, 75.7, "high"], [31, 87.8, "high"], [22, 71.6, "medium"], [35, 95, "medium"], ], columns=["temp_celsius", "temp_fahrenheit", "windspeed"], index=pd.date_range(start="2014-02-12", end="2014-02-15", freq="D"), ) df2 = pd.DataFrame( [[28, "low"], [30, "low"], [35.1, "medium"]], columns=["temp_celsius", "windspeed"], index=pd.DatetimeIndex(["2014-02-12", "2014-02-13", "2014-02-15"]), ) with pytest.warns(UserWarning): df2.reindex_like(df1) def test_rename_sanity(self): test_data = TestData() mapping = {"A": "a", "B": "b", "C": "c", "D": "d"} modin_df = pd.DataFrame(test_data.frame) df_equals( modin_df.rename(columns=mapping), test_data.frame.rename(columns=mapping) ) renamed2 = test_data.frame.rename(columns=str.lower) df_equals(modin_df.rename(columns=str.lower), renamed2) modin_df = pd.DataFrame(renamed2) df_equals( modin_df.rename(columns=str.upper), renamed2.rename(columns=str.upper) ) # index data = {"A": {"foo": 0, "bar": 1}} # gets sorted alphabetical df = pandas.DataFrame(data) modin_df = pd.DataFrame(data) tm.assert_index_equal( modin_df.rename(index={"foo": "bar", "bar": "foo"}).index, df.rename(index={"foo": "bar", "bar": "foo"}).index, ) tm.assert_index_equal( modin_df.rename(index=str.upper).index, df.rename(index=str.upper).index ) # have to pass something with pytest.raises(TypeError): modin_df.rename() # partial columns renamed = test_data.frame.rename(columns={"C": "foo", "D": "bar"}) modin_df = pd.DataFrame(test_data.frame) tm.assert_index_equal( modin_df.rename(columns={"C": "foo", "D": "bar"}).index, test_data.frame.rename(columns={"C": "foo", "D": "bar"}).index, ) # TODO: Uncomment when transpose works # other axis # renamed = test_data.frame.T.rename(index={'C': 'foo', 'D': 'bar'}) # tm.assert_index_equal( # test_data.frame.T.rename(index={'C': 'foo', 'D': 'bar'}).index, # modin_df.T.rename(index={'C': 'foo', 'D': 'bar'}).index) # index with name index = pandas.Index(["foo", "bar"], name="name") renamer = pandas.DataFrame(data, index=index) modin_df = pd.DataFrame(data, index=index) renamed = renamer.rename(index={"foo": "bar", "bar": "foo"}) modin_renamed = modin_df.rename(index={"foo": "bar", "bar": "foo"}) tm.assert_index_equal(renamed.index, modin_renamed.index) assert renamed.index.name == modin_renamed.index.name def test_rename_multiindex(self): tuples_index = [("foo1", "bar1"), ("foo2", "bar2")] tuples_columns = [("fizz1", "buzz1"), ("fizz2", "buzz2")] index = pandas.MultiIndex.from_tuples(tuples_index, names=["foo", "bar"]) columns = pandas.MultiIndex.from_tuples(tuples_columns, names=["fizz", "buzz"]) frame_data = [(0, 0), (1, 1)] df = pandas.DataFrame(frame_data, index=index, columns=columns) modin_df = pd.DataFrame(frame_data, index=index, columns=columns) # # without specifying level -> accross all levels renamed = df.rename( index={"foo1": "foo3", "bar2": "bar3"}, columns={"fizz1": "fizz3", "buzz2": "buzz3"}, ) modin_renamed = modin_df.rename( index={"foo1": "foo3", "bar2": "bar3"}, columns={"fizz1": "fizz3", "buzz2": "buzz3"}, ) tm.assert_index_equal(renamed.index, modin_renamed.index) renamed = df.rename( index={"foo1": "foo3", "bar2": "bar3"}, columns={"fizz1": "fizz3", "buzz2": "buzz3"}, ) tm.assert_index_equal(renamed.columns, modin_renamed.columns) assert renamed.index.names == modin_renamed.index.names assert renamed.columns.names == modin_renamed.columns.names # # with specifying a level # dict renamed = df.rename(columns={"fizz1": "fizz3", "buzz2": "buzz3"}, level=0) modin_renamed = modin_df.rename( columns={"fizz1": "fizz3", "buzz2": "buzz3"}, level=0 ) tm.assert_index_equal(renamed.columns, modin_renamed.columns) renamed = df.rename(columns={"fizz1": "fizz3", "buzz2": "buzz3"}, level="fizz") modin_renamed = modin_df.rename( columns={"fizz1": "fizz3", "buzz2": "buzz3"}, level="fizz" ) tm.assert_index_equal(renamed.columns, modin_renamed.columns) renamed = df.rename(columns={"fizz1": "fizz3", "buzz2": "buzz3"}, level=1) modin_renamed = modin_df.rename( columns={"fizz1": "fizz3", "buzz2": "buzz3"}, level=1 ) tm.assert_index_equal(renamed.columns, modin_renamed.columns) renamed = df.rename(columns={"fizz1": "fizz3", "buzz2": "buzz3"}, level="buzz") modin_renamed = modin_df.rename( columns={"fizz1": "fizz3", "buzz2": "buzz3"}, level="buzz" ) tm.assert_index_equal(renamed.columns, modin_renamed.columns) # function func = str.upper renamed = df.rename(columns=func, level=0) modin_renamed = modin_df.rename(columns=func, level=0) tm.assert_index_equal(renamed.columns, modin_renamed.columns) renamed = df.rename(columns=func, level="fizz") modin_renamed = modin_df.rename(columns=func, level="fizz") tm.assert_index_equal(renamed.columns, modin_renamed.columns) renamed = df.rename(columns=func, level=1) modin_renamed = modin_df.rename(columns=func, level=1) tm.assert_index_equal(renamed.columns, modin_renamed.columns) renamed = df.rename(columns=func, level="buzz") modin_renamed = modin_df.rename(columns=func, level="buzz") tm.assert_index_equal(renamed.columns, modin_renamed.columns) # index renamed = df.rename(index={"foo1": "foo3", "bar2": "bar3"}, level=0) modin_renamed = modin_df.rename(index={"foo1": "foo3", "bar2": "bar3"}, level=0) tm.assert_index_equal(modin_renamed.index, renamed.index) @pytest.mark.skip(reason="Pandas does not pass this test") def test_rename_nocopy(self): test_data = TestData().frame modin_df = pd.DataFrame(test_data) modin_renamed = modin_df.rename(columns={"C": "foo"}, copy=False) modin_renamed["foo"] = 1 assert (modin_df["C"] == 1).all() def test_rename_inplace(self): test_data = TestData().frame modin_df = pd.DataFrame(test_data) df_equals( modin_df.rename(columns={"C": "foo"}), test_data.rename(columns={"C": "foo"}), ) frame = test_data.copy() modin_frame = modin_df.copy() frame.rename(columns={"C": "foo"}, inplace=True) modin_frame.rename(columns={"C": "foo"}, inplace=True) df_equals(modin_frame, frame) def test_rename_bug(self): # rename set ref_locs, and set_index was not resetting frame_data = {0: ["foo", "bar"], 1: ["bah", "bas"], 2: [1, 2]} df = pandas.DataFrame(frame_data) modin_df = pd.DataFrame(frame_data) df = df.rename(columns={0: "a"}) df = df.rename(columns={1: "b"}) # TODO: Uncomment when set_index is implemented # df = df.set_index(['a', 'b']) # df.columns = ['2001-01-01'] modin_df = modin_df.rename(columns={0: "a"}) modin_df = modin_df.rename(columns={1: "b"}) # TODO: Uncomment when set_index is implemented # modin_df = modin_df.set_index(['a', 'b']) # modin_df.columns = ['2001-01-01'] df_equals(modin_df, df) def test_rename_axis(self): data = {"num_legs": [4, 4, 2], "num_arms": [0, 0, 2]} index = ["dog", "cat", "monkey"] modin_df = pd.DataFrame(data, index) pandas_df = pandas.DataFrame(data, index) df_equals(modin_df.rename_axis("animal"), pandas_df.rename_axis("animal")) df_equals( modin_df.rename_axis("limbs", axis="columns"), pandas_df.rename_axis("limbs", axis="columns"), ) modin_df.rename_axis("limbs", axis="columns", inplace=True) pandas_df.rename_axis("limbs", axis="columns", inplace=True) df_equals(modin_df, pandas_df) new_index = pd.MultiIndex.from_product( [["mammal"], ["dog", "cat", "monkey"]], names=["type", "name"] ) modin_df.index = new_index pandas_df.index = new_index df_equals( modin_df.rename_axis(index={"type": "class"}), pandas_df.rename_axis(index={"type": "class"}), ) df_equals( modin_df.rename_axis(columns=str.upper), pandas_df.rename_axis(columns=str.upper), ) df_equals( modin_df.rename_axis( columns=[str.upper(o) for o in modin_df.columns.names] ), pandas_df.rename_axis( columns=[str.upper(o) for o in pandas_df.columns.names] ), ) with pytest.raises(ValueError): df_equals( modin_df.rename_axis(str.upper, axis=1), pandas_df.rename_axis(str.upper, axis=1), ) def test_rename_axis_inplace(self): test_frame = TestData().frame modin_df = pd.DataFrame(test_frame) result = test_frame.copy() modin_result = modin_df.copy() no_return = result.rename_axis("foo", inplace=True) modin_no_return = modin_result.rename_axis("foo", inplace=True) assert no_return is modin_no_return df_equals(modin_result, result) result = test_frame.copy() modin_result = modin_df.copy() no_return = result.rename_axis("bar", axis=1, inplace=True) modin_no_return = modin_result.rename_axis("bar", axis=1, inplace=True) assert no_return is modin_no_return df_equals(modin_result, result) def test_reorder_levels(self): df = pd.DataFrame( index=pd.MultiIndex.from_tuples( [ (num, letter, color) for num in range(1, 3) for letter in ["a", "b", "c"] for color in ["Red", "Green"] ], names=["Number", "Letter", "Color"], ) ) df["Value"] = np.random.randint(1, 100, len(df)) with pytest.warns(UserWarning): df.reorder_levels(["Letter", "Color", "Number"]) def test_replace(self): data = test_data_values[0] with pytest.warns(UserWarning): pd.DataFrame(data).replace() def test_resample(self): d = dict( { "price": [10, 11, 9, 13, 14, 18, 17, 19], "volume": [50, 60, 40, 100, 50, 100, 40, 50], } ) df = pd.DataFrame(d) df["week_starting"] = pd.date_range("01/01/2018", periods=8, freq="W") with pytest.warns(UserWarning): df.resample("M", on="week_starting") @pytest.mark.parametrize("data", test_data_values, ids=test_data_keys) def test_reset_index(self, data): modin_df = pd.DataFrame(data) pandas_df = pandas.DataFrame(data) modin_result = modin_df.reset_index(inplace=False) pandas_result = pandas_df.reset_index(inplace=False) df_equals(modin_result, pandas_result) modin_df_cp = modin_df.copy() pd_df_cp = pandas_df.copy() modin_df_cp.reset_index(inplace=True) pd_df_cp.reset_index(inplace=True) df_equals(modin_df_cp, pd_df_cp) def test_rolling(self): df = pd.DataFrame({"B": [0, 1, 2, np.nan, 4]}) with pytest.warns(UserWarning): df.rolling(2, win_type="triang") @pytest.mark.parametrize("data", test_data_values, ids=test_data_keys) def test_round(self, data): modin_df = pd.DataFrame(data) pandas_df = pandas.DataFrame(data) df_equals(modin_df.round(), pandas_df.round()) df_equals(modin_df.round(1), pandas_df.round(1)) @pytest.mark.parametrize("data", test_data_values, ids=test_data_keys) @pytest.mark.parametrize("axis", axis_values, ids=axis_keys) def test_sample(self, data, axis): modin_df = pd.DataFrame(data) pandas_df = pandas.DataFrame(data) with pytest.raises(ValueError): modin_df.sample(n=3, frac=0.4, axis=axis) with pytest.raises(KeyError): modin_df.sample(frac=0.5, weights="CoLuMn_No_ExIsT", axis=0) with pytest.raises(ValueError): modin_df.sample(frac=0.5, weights=modin_df.columns[0], axis=1) with pytest.raises(ValueError): modin_df.sample( frac=0.5, weights=[0.5 for _ in range(len(modin_df.index[:-1]))], axis=0 ) with pytest.raises(ValueError): modin_df.sample( frac=0.5, weights=[0.5 for _ in range(len(modin_df.columns[:-1]))], axis=1, ) with pytest.raises(ValueError): modin_df.sample(n=-3, axis=axis) with pytest.raises(ValueError): modin_df.sample(frac=0.2, weights=pandas.Series(), axis=axis) if isinstance(axis, str): num_axis = pandas.DataFrame()._get_axis_number(axis) else: num_axis = axis # weights that sum to 1 sums = sum(i % 2 for i in range(len(modin_df.axes[num_axis]))) weights = [i % 2 / sums for i in range(len(modin_df.axes[num_axis]))] modin_result = modin_df.sample( frac=0.5, random_state=42, weights=weights, axis=axis ) pandas_result = pandas_df.sample( frac=0.5, random_state=42, weights=weights, axis=axis ) df_equals(modin_result, pandas_result) # weights that don't sum to 1 weights = [i % 2 for i in range(len(modin_df.axes[num_axis]))] modin_result = modin_df.sample( frac=0.5, random_state=42, weights=weights, axis=axis ) pandas_result = pandas_df.sample( frac=0.5, random_state=42, weights=weights, axis=axis ) df_equals(modin_result, pandas_result) modin_result = modin_df.sample(n=0, axis=axis) pandas_result = pandas_df.sample(n=0, axis=axis) df_equals(modin_result, pandas_result) modin_result = modin_df.sample(frac=0.5, random_state=42, axis=axis) pandas_result = pandas_df.sample(frac=0.5, random_state=42, axis=axis) df_equals(modin_result, pandas_result) modin_result = modin_df.sample(n=2, random_state=42, axis=axis) pandas_result = pandas_df.sample(n=2, random_state=42, axis=axis) df_equals(modin_result, pandas_result) def test_select_dtypes(self): frame_data = { "test1": list("abc"), "test2": np.arange(3, 6).astype("u1"), "test3": np.arange(8.0, 11.0, dtype="float64"), "test4": [True, False, True], "test5": pandas.date_range("now", periods=3).values, "test6": list(range(5, 8)), } df = pandas.DataFrame(frame_data) rd = pd.DataFrame(frame_data) include = np.float, "integer" exclude = (np.bool_,) r = rd.select_dtypes(include=include, exclude=exclude) e = df[["test2", "test3", "test6"]] df_equals(r, e) r = rd.select_dtypes(include=np.bool_) e = df[["test4"]] df_equals(r, e) r = rd.select_dtypes(exclude=np.bool_) e = df[["test1", "test2", "test3", "test5", "test6"]] df_equals(r, e) try: pd.DataFrame().select_dtypes() assert False except ValueError: assert True def test_sem(self): data = test_data_values[0] with pytest.warns(UserWarning): pd.DataFrame(data).sem() @pytest.mark.parametrize("data", test_data_values, ids=test_data_keys) @pytest.mark.parametrize("axis", axis_values, ids=axis_keys) def test_set_axis(self, data, axis): modin_df = pd.DataFrame(data) pandas_df = pandas.DataFrame(data) x = pandas.DataFrame()._get_axis_number(axis) index = modin_df.columns if x else modin_df.index labels = ["{0}_{1}".format(index[i], i) for i in range(modin_df.shape[x])] modin_result = modin_df.set_axis(labels, axis=axis, inplace=False) pandas_result = pandas_df.set_axis(labels, axis=axis, inplace=False) df_equals(modin_result, pandas_result) with pytest.warns(FutureWarning): modin_df.set_axis(axis, labels, inplace=False) modin_df_copy = modin_df.copy() modin_df.set_axis(labels, axis=axis, inplace=True) # Check that the copy and original are different try: df_equals(modin_df, modin_df_copy) except AssertionError: assert True else: assert False pandas_df.set_axis(labels, axis=axis, inplace=True) df_equals(modin_df, pandas_df) with pytest.warns(FutureWarning): modin_df.set_axis(labels, axis=axis, inplace=None) @pytest.mark.parametrize("data", test_data_values, ids=test_data_keys) @pytest.mark.parametrize( "drop", bool_arg_values, ids=arg_keys("drop", bool_arg_keys) ) @pytest.mark.parametrize( "append", bool_arg_values, ids=arg_keys("append", bool_arg_keys) ) def test_set_index(self, request, data, drop, append): modin_df = pd.DataFrame(data) pandas_df = pandas.DataFrame(data) if "empty_data" not in request.node.name: key = modin_df.columns[0] modin_result = modin_df.set_index( key, drop=drop, append=append, inplace=False ) pandas_result = pandas_df.set_index( key, drop=drop, append=append, inplace=False ) df_equals(modin_result, pandas_result) modin_df_copy = modin_df.copy() modin_df.set_index(key, drop=drop, append=append, inplace=True) # Check that the copy and original are different try: df_equals(modin_df, modin_df_copy) except AssertionError: assert True else: assert False pandas_df.set_index(key, drop=drop, append=append, inplace=True) df_equals(modin_df, pandas_df) def test_set_value(self): data = test_data_values[0] with pytest.warns(UserWarning): pd.DataFrame(data).set_value(0, 0, 0) @pytest.mark.parametrize("data", test_data_values, ids=test_data_keys) def test_shape(self, data): modin_df = pd.DataFrame(data) pandas_df = pandas.DataFrame(data) assert modin_df.shape == pandas_df.shape def test_shift(self): data = test_data_values[0] with pytest.warns(UserWarning): pd.DataFrame(data).shift() @pytest.mark.parametrize("data", test_data_values, ids=test_data_keys) def test_size(self, data): modin_df = pd.DataFrame(data) pandas_df = pandas.DataFrame(data) assert modin_df.size == pandas_df.size @pytest.mark.parametrize("data", test_data_values, ids=test_data_keys) @pytest.mark.parametrize("axis", axis_values, ids=axis_keys) @pytest.mark.parametrize( "skipna", bool_arg_values, ids=arg_keys("skipna", bool_arg_keys) ) @pytest.mark.parametrize( "numeric_only", bool_arg_values, ids=arg_keys("numeric_only", bool_arg_keys) ) def test_skew(self, request, data, axis, skipna, numeric_only): modin_df = pd.DataFrame(data) pandas_df = pandas.DataFrame(data) try: pandas_result = pandas_df.skew( axis=axis, skipna=skipna, numeric_only=numeric_only ) except Exception: with pytest.raises(TypeError): modin_df.skew(axis=axis, skipna=skipna, numeric_only=numeric_only) else: modin_result = modin_df.skew( axis=axis, skipna=skipna, numeric_only=numeric_only ) df_equals(modin_result, pandas_result) try: pandas_result = pandas_df.T.skew( axis=axis, skipna=skipna, numeric_only=numeric_only ) except Exception: with pytest.raises(TypeError): modin_df.T.skew(axis=axis, skipna=skipna, numeric_only=numeric_only) else: modin_result = modin_df.T.skew( axis=axis, skipna=skipna, numeric_only=numeric_only ) df_equals(modin_result, pandas_result) def test_slice_shift(self): data = test_data_values[0] with pytest.warns(UserWarning): pd.DataFrame(data).slice_shift() @pytest.mark.parametrize("data", test_data_values, ids=test_data_keys) @pytest.mark.parametrize("axis", axis_values, ids=axis_keys) @pytest.mark.parametrize( "ascending", bool_arg_values, ids=arg_keys("ascending", bool_arg_keys) ) @pytest.mark.parametrize("na_position", ["first", "last"], ids=["first", "last"]) @pytest.mark.parametrize( "sort_remaining", bool_arg_values, ids=arg_keys("sort_remaining", bool_arg_keys) ) def test_sort_index(self, data, axis, ascending, na_position, sort_remaining): modin_df = pd.DataFrame(data) pandas_df = pandas.DataFrame(data) # Change index value so sorting will actually make a difference if axis == "rows" or axis == 0: length = len(modin_df.index) modin_df.index = [(i - length / 2) % length for i in range(length)] pandas_df.index = [(i - length / 2) % length for i in range(length)] # Add NaNs to sorted index if axis == "rows" or axis == 0: length = len(modin_df.index) modin_df.index = [ np.nan if i % 2 == 0 else modin_df.index[i] for i in range(length) ] pandas_df.index = [ np.nan if i % 2 == 0 else pandas_df.index[i] for i in range(length) ] else: length = len(modin_df.columns) modin_df.columns = [ np.nan if i % 2 == 0 else modin_df.columns[i] for i in range(length) ] pandas_df.columns = [ np.nan if i % 2 == 0 else pandas_df.columns[i] for i in range(length) ] modin_result = modin_df.sort_index( axis=axis, ascending=ascending, na_position=na_position, inplace=False ) pandas_result = pandas_df.sort_index( axis=axis, ascending=ascending, na_position=na_position, inplace=False ) df_equals(modin_result, pandas_result) modin_df_cp = modin_df.copy() pandas_df_cp = pandas_df.copy() modin_df_cp.sort_index( axis=axis, ascending=ascending, na_position=na_position, inplace=True ) pandas_df_cp.sort_index( axis=axis, ascending=ascending, na_position=na_position, inplace=True ) df_equals(modin_df_cp, pandas_df_cp) # MultiIndex modin_df = pd.DataFrame(data) pandas_df = pandas.DataFrame(data) modin_df.index = pd.MultiIndex.from_tuples( [(i // 10, i // 5, i) for i in range(len(modin_df))] ) pandas_df.index = pandas.MultiIndex.from_tuples( [(i // 10, i // 5, i) for i in range(len(pandas_df))] ) with pytest.warns(UserWarning): df_equals(modin_df.sort_index(level=0), pandas_df.sort_index(level=0)) with pytest.warns(UserWarning): df_equals(modin_df.sort_index(axis=0), pandas_df.sort_index(axis=0)) @pytest.mark.parametrize("data", test_data_values, ids=test_data_keys) @pytest.mark.parametrize("axis", axis_values, ids=axis_keys) @pytest.mark.parametrize( "ascending", bool_arg_values, ids=arg_keys("ascending", bool_arg_keys) ) @pytest.mark.parametrize("na_position", ["first", "last"], ids=["first", "last"]) def test_sort_values(self, request, data, axis, ascending, na_position): modin_df = pd.DataFrame(data) pandas_df = pandas.DataFrame(data) if "empty_data" not in request.node.name and ( (axis == 0 or axis == "over rows") or name_contains(request.node.name, numeric_dfs) ): index = ( modin_df.index if axis == 1 or axis == "columns" else modin_df.columns ) key = index[0] modin_result = modin_df.sort_values( key, axis=axis, ascending=ascending, na_position=na_position, inplace=False, ) pandas_result = pandas_df.sort_values( key, axis=axis, ascending=ascending, na_position=na_position, inplace=False, ) df_equals(modin_result, pandas_result) modin_df_cp = modin_df.copy() pandas_df_cp = pandas_df.copy() modin_df_cp.sort_values( key, axis=axis, ascending=ascending, na_position=na_position, inplace=True, ) pandas_df_cp.sort_values( key, axis=axis, ascending=ascending, na_position=na_position, inplace=True, ) df_equals(modin_df_cp, pandas_df_cp) keys = [key, index[-1]] modin_result = modin_df.sort_values( keys, axis=axis, ascending=ascending, na_position=na_position, inplace=False, ) pandas_result = pandas_df.sort_values( keys, axis=axis, ascending=ascending, na_position=na_position, inplace=False, ) df_equals(modin_result, pandas_result) modin_df_cp = modin_df.copy() pandas_df_cp = pandas_df.copy() modin_df_cp.sort_values( keys, axis=axis, ascending=ascending, na_position=na_position, inplace=True, ) pandas_df_cp.sort_values( keys, axis=axis, ascending=ascending, na_position=na_position, inplace=True, ) df_equals(modin_df_cp, pandas_df_cp) def test_squeeze(self): frame_data = { "col1": [0, 1, 2, 3], "col2": [4, 5, 6, 7], "col3": [8, 9, 10, 11], "col4": [12, 13, 14, 15], "col5": [0, 0, 0, 0], } frame_data_2 = {"col1": [0, 1, 2, 3]} frame_data_3 = { "col1": [0], "col2": [4], "col3": [8], "col4": [12], "col5": [0], } frame_data_4 = {"col1": [2]} frame_data_5 = {"col1": ["string"]} # Different data for different cases pandas_df = pandas.DataFrame(frame_data).squeeze() ray_df = pd.DataFrame(frame_data).squeeze() df_equals(ray_df, pandas_df) pandas_df_2 = pandas.DataFrame(frame_data_2).squeeze() ray_df_2 = pd.DataFrame(frame_data_2).squeeze() df_equals(ray_df_2, pandas_df_2) pandas_df_3 = pandas.DataFrame(frame_data_3).squeeze() ray_df_3 = pd.DataFrame(frame_data_3).squeeze() df_equals(ray_df_3, pandas_df_3) pandas_df_4 = pandas.DataFrame(frame_data_4).squeeze() ray_df_4 = pd.DataFrame(frame_data_4).squeeze() df_equals(ray_df_4, pandas_df_4) pandas_df_5 = pandas.DataFrame(frame_data_5).squeeze() ray_df_5 = pd.DataFrame(frame_data_5).squeeze() df_equals(ray_df_5, pandas_df_5) data = [ [ pd.Timestamp("2019-01-02"), pd.Timestamp("2019-01-03"), pd.Timestamp("2019-01-04"), pd.Timestamp("2019-01-05"), ], [1, 1, 1, 2], ] df = pd.DataFrame(data, index=["date", "value"]).T pf = pandas.DataFrame(data, index=["date", "value"]).T df.set_index("date", inplace=True) pf.set_index("date", inplace=True) df_equals(df.iloc[0], pf.iloc[0]) def test_stack(self): data = test_data_values[0] with pytest.warns(UserWarning): pd.DataFrame(data).stack() @pytest.mark.parametrize("data", test_data_values, ids=test_data_keys) @pytest.mark.parametrize("axis", axis_values, ids=axis_keys) @pytest.mark.parametrize( "skipna", bool_arg_values, ids=arg_keys("skipna", bool_arg_keys) ) @pytest.mark.parametrize( "numeric_only", bool_arg_values, ids=arg_keys("numeric_only", bool_arg_keys) ) @pytest.mark.parametrize("ddof", int_arg_values, ids=arg_keys("ddof", int_arg_keys)) def test_std(self, request, data, axis, skipna, numeric_only, ddof): modin_df = pd.DataFrame(data) pandas_df = pandas.DataFrame(data) try: pandas_result = pandas_df.std( axis=axis, skipna=skipna, numeric_only=numeric_only, ddof=ddof ) except Exception as e: with pytest.raises(type(e)): modin_df.std( axis=axis, skipna=skipna, numeric_only=numeric_only, ddof=ddof ) else: modin_result = modin_df.std( axis=axis, skipna=skipna, numeric_only=numeric_only, ddof=ddof ) df_equals(modin_result, pandas_result) try: pandas_result = pandas_df.T.std( axis=axis, skipna=skipna, numeric_only=numeric_only, ddof=ddof ) except Exception as e: with pytest.raises(type(e)): modin_df.T.std( axis=axis, skipna=skipna, numeric_only=numeric_only, ddof=ddof ) else: modin_result = modin_df.T.std( axis=axis, skipna=skipna, numeric_only=numeric_only, ddof=ddof ) df_equals(modin_result, pandas_result) def test_style(self): data = test_data_values[0] with pytest.warns(UserWarning): pd.DataFrame(data).style @pytest.mark.parametrize("data", test_data_values, ids=test_data_keys) @pytest.mark.parametrize("axis", axis_values, ids=axis_keys) @pytest.mark.parametrize( "skipna", bool_arg_values, ids=arg_keys("skipna", bool_arg_keys) ) @pytest.mark.parametrize( "numeric_only", bool_arg_values, ids=arg_keys("numeric_only", bool_arg_keys) ) @pytest.mark.parametrize( "min_count", int_arg_values, ids=arg_keys("min_count", int_arg_keys) ) def test_sum(self, request, data, axis, skipna, numeric_only, min_count): modin_df = pd.DataFrame(data) pandas_df = pandas.DataFrame(data) try: pandas_result = pandas_df.sum( axis=axis, skipna=skipna, numeric_only=numeric_only, min_count=min_count ) except Exception: with pytest.raises(TypeError): modin_df.sum( axis=axis, skipna=skipna, numeric_only=numeric_only, min_count=min_count, ) else: modin_result = modin_df.sum( axis=axis, skipna=skipna, numeric_only=numeric_only, min_count=min_count ) df_equals(modin_result, pandas_result) try: pandas_result = pandas_df.T.sum( axis=axis, skipna=skipna, numeric_only=numeric_only, min_count=min_count ) except Exception: with pytest.raises(TypeError): modin_df.T.sum( axis=axis, skipna=skipna, numeric_only=numeric_only, min_count=min_count, ) else: modin_result = modin_df.T.sum( axis=axis, skipna=skipna, numeric_only=numeric_only, min_count=min_count ) df_equals(modin_result, pandas_result) @pytest.mark.parametrize("data", test_data_values, ids=test_data_keys) def test_sum_single_column(self, data): modin_df = pd.DataFrame(data).iloc[:, [0]] pandas_df = pandas.DataFrame(data).iloc[:, [0]] df_equals(modin_df.sum(), pandas_df.sum()) df_equals(modin_df.sum(axis=1), pandas_df.sum(axis=1)) def test_swapaxes(self): data = test_data_values[0] with pytest.warns(UserWarning): pd.DataFrame(data).swapaxes(0, 1) def test_swaplevel(self): df = pd.DataFrame( index=pd.MultiIndex.from_tuples( [ (num, letter, color) for num in range(1, 3) for letter in ["a", "b", "c"] for color in ["Red", "Green"] ], names=["Number", "Letter", "Color"], ) ) df["Value"] = np.random.randint(1, 100, len(df)) with pytest.warns(UserWarning): df.swaplevel("Number", "Color") @pytest.mark.parametrize("data", test_data_values, ids=test_data_keys) @pytest.mark.parametrize("n", int_arg_values, ids=arg_keys("n", int_arg_keys)) def test_tail(self, data, n): modin_df = pd.DataFrame(data) pandas_df = pandas.DataFrame(data) df_equals(modin_df.tail(n), pandas_df.tail(n)) df_equals(modin_df.tail(len(modin_df)), pandas_df.tail(len(pandas_df))) def test_take(self): df = pd.DataFrame( [ ("falcon", "bird", 389.0), ("parrot", "bird", 24.0), ("lion", "mammal", 80.5), ("monkey", "mammal", np.nan), ], columns=["name", "class", "max_speed"], index=[0, 2, 3, 1], ) with pytest.warns(UserWarning): df.take([0, 3]) @pytest.mark.parametrize("data", test_data_values, ids=test_data_keys) def test_to_records(self, request, data): modin_df = pd.DataFrame(data) pandas_df = pandas.DataFrame(data) # Skips nan because only difference is nan instead of NaN if not name_contains(request.node.name, ["nan"]): assert np.array_equal(modin_df.to_records(), pandas_df.to_records()) def test_to_sparse(self): data = test_data_values[0] with pytest.warns(UserWarning): pd.DataFrame(data).to_sparse() @pytest.mark.parametrize("data", test_data_values, ids=test_data_keys) def test_to_string(self, request, data): modin_df = pd.DataFrame(data) pandas_df = pandas.DataFrame(data) # noqa F841 # Skips nan because only difference is nan instead of NaN if not name_contains(request.node.name, ["nan"]): assert modin_df.to_string() == to_pandas(modin_df).to_string() def test_to_timestamp(self): idx = pd.date_range("1/1/2012", periods=5, freq="M") df = pd.DataFrame(np.random.randint(0, 100, size=(len(idx), 4)), index=idx) with pytest.warns(UserWarning): df.to_period().to_timestamp() def test_to_xarray(self): data = test_data_values[0] with pytest.warns(UserWarning): pd.DataFrame(data).to_xarray() @pytest.mark.parametrize("data", test_data_values, ids=test_data_keys) @pytest.mark.parametrize("func", agg_func_values, ids=agg_func_keys) def test_transform(self, request, data, func): modin_df = pd.DataFrame(data) pandas_df = pandas.DataFrame(data) try: pandas_result = pandas_df.transform(func) except Exception as e: with pytest.raises(type(e)): modin_df.transform(func) else: modin_result = modin_df.transform(func) df_equals(modin_result, pandas_result) @pytest.mark.parametrize("data", test_data_values, ids=test_data_keys) @pytest.mark.parametrize("func", agg_func_values, ids=agg_func_keys) def test_transform_numeric(self, request, data, func): if name_contains(request.node.name, numeric_agg_funcs) and name_contains( request.node.name, numeric_dfs ): modin_df = pd.DataFrame(data) pandas_df = pandas.DataFrame(data) try: pandas_result = pandas_df.transform(func) except Exception as e: with pytest.raises(type(e)): modin_df.transform(func) else: modin_result = modin_df.transform(func) df_equals(modin_result, pandas_result) @pytest.mark.parametrize("data", test_data_values, ids=test_data_keys) def test_transpose(self, data): modin_df = pd.DataFrame(data) pandas_df = pandas.DataFrame(data) df_equals(modin_df.T, pandas_df.T) df_equals(modin_df.transpose(), pandas_df.transpose()) # Uncomment below once #165 is merged # Test for map across full axis for select indices # df_equals(modin_df.T.dropna(), pandas_df.T.dropna()) # Test for map across full axis # df_equals(modin_df.T.nunique(), pandas_df.T.nunique()) # Test for map across blocks # df_equals(modin_df.T.notna(), pandas_df.T.notna()) def test_truncate(self): data = test_data_values[0] with pytest.warns(UserWarning): pd.DataFrame(data).truncate() def test_tshift(self): idx = pd.date_range("1/1/2012", periods=5, freq="M") df = pd.DataFrame(np.random.randint(0, 100, size=(len(idx), 4)), index=idx) with pytest.warns(UserWarning): df.to_period().tshift() def test_tz_convert(self): idx = pd.date_range("1/1/2012", periods=5, freq="M") df = pd.DataFrame(np.random.randint(0, 100, size=(len(idx), 4)), index=idx) with pytest.warns(UserWarning): df.tz_localize("America/Los_Angeles").tz_convert("America/Los_Angeles") def test_tz_localize(self): idx = pd.date_range("1/1/2012", periods=5, freq="M") df = pd.DataFrame(np.random.randint(0, 100, size=(len(idx), 4)), index=idx) with pytest.warns(UserWarning): df.tz_localize("America/Los_Angeles") def test_unstack(self): data = test_data_values[0] with pytest.warns(UserWarning): pd.DataFrame(data).unstack() def test_update(self): df = pd.DataFrame( [[1.5, np.nan, 3.0], [1.5, np.nan, 3.0], [1.5, np.nan, 3], [1.5, np.nan, 3]] ) other = pd.DataFrame([[3.6, 2.0, np.nan], [np.nan, np.nan, 7]], index=[1, 3]) df.update(other) expected = pd.DataFrame( [[1.5, np.nan, 3], [3.6, 2, 3], [1.5, np.nan, 3], [1.5, np.nan, 7.0]] ) df_equals(df, expected) @pytest.mark.parametrize("data", test_data_values, ids=test_data_keys) def test_values(self, data): modin_df = pd.DataFrame(data) pandas_df = pandas.DataFrame(data) np.testing.assert_equal(modin_df.values, pandas_df.values) @pytest.mark.parametrize("data", test_data_values, ids=test_data_keys) @pytest.mark.parametrize("axis", axis_values, ids=axis_keys) @pytest.mark.parametrize( "skipna", bool_arg_values, ids=arg_keys("skipna", bool_arg_keys) ) @pytest.mark.parametrize( "numeric_only", bool_arg_values, ids=arg_keys("numeric_only", bool_arg_keys) ) @pytest.mark.parametrize("ddof", int_arg_values, ids=arg_keys("ddof", int_arg_keys)) def test_var(self, request, data, axis, skipna, numeric_only, ddof): modin_df = pd.DataFrame(data) pandas_df = pandas.DataFrame(data) try: pandas_result = pandas_df.var( axis=axis, skipna=skipna, numeric_only=numeric_only, ddof=ddof ) except Exception: with pytest.raises(TypeError): modin_df.var( axis=axis, skipna=skipna, numeric_only=numeric_only, ddof=ddof ) else: modin_result = modin_df.var( axis=axis, skipna=skipna, numeric_only=numeric_only, ddof=ddof ) df_equals(modin_result, pandas_result) try: pandas_result = pandas_df.T.var( axis=axis, skipna=skipna, numeric_only=numeric_only, ddof=ddof ) except Exception: with pytest.raises(TypeError): modin_df.T.var( axis=axis, skipna=skipna, numeric_only=numeric_only, ddof=ddof ) else: modin_result = modin_df.T.var( axis=axis, skipna=skipna, numeric_only=numeric_only, ddof=ddof ) df_equals(modin_result, pandas_result) def test_where(self): frame_data = random_state.randn(100, 10) pandas_df = pandas.DataFrame(frame_data, columns=list("abcdefghij")) modin_df = pd.DataFrame(frame_data, columns=list("abcdefghij")) pandas_cond_df = pandas_df % 5 < 2 modin_cond_df = modin_df % 5 < 2 pandas_result = pandas_df.where(pandas_cond_df, -pandas_df) modin_result = modin_df.where(modin_cond_df, -modin_df) assert all((to_pandas(modin_result) == pandas_result).all()) other = pandas_df.loc[3] pandas_result = pandas_df.where(pandas_cond_df, other, axis=1) modin_result = modin_df.where(modin_cond_df, other, axis=1) assert all((to_pandas(modin_result) == pandas_result).all()) other = pandas_df["e"] pandas_result = pandas_df.where(pandas_cond_df, other, axis=0) modin_result = modin_df.where(modin_cond_df, other, axis=0) assert all((to_pandas(modin_result) == pandas_result).all()) pandas_result = pandas_df.where(pandas_df < 2, True) modin_result = modin_df.where(modin_df < 2, True) assert all((to_pandas(modin_result) == pandas_result).all()) def test_xs(self): d = { "num_legs": [4, 4, 2, 2], "num_wings": [0, 0, 2, 2], "class": ["mammal", "mammal", "mammal", "bird"], "animal": ["cat", "dog", "bat", "penguin"], "locomotion": ["walks", "walks", "flies", "walks"], } df = pd.DataFrame(data=d) df = df.set_index(["class", "animal", "locomotion"]) with pytest.warns(UserWarning): df.xs("mammal") @pytest.mark.parametrize("data", test_data_values, ids=test_data_keys) def test___getitem__(self, data): modin_df = pd.DataFrame(data) pandas_df = pandas.DataFrame(data) key = modin_df.columns[0] modin_col = modin_df.__getitem__(key) assert isinstance(modin_col, pd.Series) pd_col = pandas_df[key] df_equals(pd_col, modin_col) slices = [ (None, -1), (-1, None), (1, 2), (1, None), (None, 1), (1, -1), (-3, -1), (1, -1, 2), ] # slice test for slice_param in slices: s = slice(*slice_param) df_equals(modin_df[s], pandas_df[s]) # Test empty df_equals(pd.DataFrame([])[:10], pandas.DataFrame([])[:10]) def test_getitem_empty_mask(self): # modin-project/modin#517 modin_frames = [] pandas_frames = [] data1 = np.random.randint(0, 100, size=(100, 4)) mdf1 = pd.DataFrame(data1, columns=list("ABCD")) pdf1 = pandas.DataFrame(data1, columns=list("ABCD")) modin_frames.append(mdf1) pandas_frames.append(pdf1) data2 = np.random.randint(0, 100, size=(100, 4)) mdf2 = pd.DataFrame(data2, columns=list("ABCD")) pdf2 = pandas.DataFrame(data2, columns=list("ABCD")) modin_frames.append(mdf2) pandas_frames.append(pdf2) data3 = np.random.randint(0, 100, size=(100, 4)) mdf3 = pd.DataFrame(data3, columns=list("ABCD")) pdf3 = pandas.DataFrame(data3, columns=list("ABCD")) modin_frames.append(mdf3) pandas_frames.append(pdf3) modin_data = pd.concat(modin_frames) pandas_data = pandas.concat(pandas_frames) df_equals( modin_data[[False for _ in modin_data.index]], pandas_data[[False for _ in modin_data.index]], ) def test_getitem_datetime_slice(self): data = {"data": range(1000)} index = pd.date_range("2017/1/4", periods=1000) modin_df = pd.DataFrame(data=data, index=index) pandas_df = pandas.DataFrame(data=data, index=index) s = slice("2017-01-06", "2017-01-09") df_equals(modin_df[s], pandas_df[s]) @pytest.mark.parametrize("data", test_data_values, ids=test_data_keys) def test___getattr__(self, request, data): modin_df = pd.DataFrame(data) pandas_df = pandas.DataFrame(data) # noqa F841 if "empty_data" not in request.node.name: key = modin_df.columns[0] col = modin_df.__getattr__(key) col = modin_df.__getattr__("col1") assert isinstance(col, pd.Series) col = getattr(modin_df, "col1") assert isinstance(col, pd.Series) # Check that lookup in column doesn't override other attributes df2 = modin_df.rename(index=str, columns={key: "columns"}) assert isinstance(df2.columns, pandas.Index) @pytest.mark.parametrize("data", test_data_values, ids=test_data_keys) def test___setitem__(self, data): modin_df = pd.DataFrame(data) pandas_df = pandas.DataFrame(data) modin_df.__setitem__(modin_df.columns[-1], 1) pandas_df.__setitem__(pandas_df.columns[-1], 1) df_equals(modin_df, pandas_df) modin_df = pd.DataFrame(data) pandas_df = pandas.DataFrame(data) modin_df[modin_df.columns[-1]] = pd.DataFrame(modin_df[modin_df.columns[0]]) pandas_df[pandas_df.columns[-1]] = pandas.DataFrame( pandas_df[pandas_df.columns[0]] ) df_equals(modin_df, pandas_df) modin_df = pd.DataFrame(data) pandas_df = pandas.DataFrame(data) rows = len(modin_df) arr = np.arange(rows * 2).reshape(-1, 2) modin_df[modin_df.columns[-1]] = arr pandas_df[pandas_df.columns[-1]] = arr df_equals(pandas_df, modin_df) with pytest.raises(ValueError, match=r"Wrong number of items passed"): modin_df["___NON EXISTENT COLUMN"] = arr modin_df[modin_df.columns[0]] = np.arange(len(modin_df)) pandas_df[pandas_df.columns[0]] = np.arange(len(pandas_df)) df_equals(modin_df, pandas_df) modin_df = pd.DataFrame(columns=modin_df.columns) pandas_df = pandas.DataFrame(columns=pandas_df.columns) for col in modin_df.columns: modin_df[col] = np.arange(1000) for col in pandas_df.columns: pandas_df[col] = np.arange(1000) df_equals(modin_df, pandas_df) # Test series assignment to column modin_df = pd.DataFrame(columns=modin_df.columns) pandas_df = pandas.DataFrame(columns=pandas_df.columns) modin_df[modin_df.columns[-1]] = modin_df[modin_df.columns[0]] pandas_df[pandas_df.columns[-1]] = pandas_df[pandas_df.columns[0]] df_equals(modin_df, pandas_df) # Transpose test modin_df = pd.DataFrame(data).T pandas_df = pandas.DataFrame(data).T # We default to pandas on non-string column names if not all(isinstance(c, str) for c in modin_df.columns): with pytest.warns(UserWarning): modin_df[modin_df.columns[0]] = 0 else: modin_df[modin_df.columns[0]] = 0 pandas_df[pandas_df.columns[0]] = 0 df_equals(modin_df, pandas_df) modin_df.columns = [str(i) for i in modin_df.columns] pandas_df.columns = [str(i) for i in pandas_df.columns] modin_df[modin_df.columns[0]] = 0 pandas_df[pandas_df.columns[0]] = 0 df_equals(modin_df, pandas_df) @pytest.mark.parametrize("data", test_data_values, ids=test_data_keys) def test___len__(self, data): modin_df = pd.DataFrame(data) pandas_df = pandas.DataFrame(data) assert len(modin_df) == len(pandas_df) @pytest.mark.parametrize("data", test_data_values, ids=test_data_keys) def test___neg__(self, request, data): modin_df = pd.DataFrame(data) pandas_df = pandas.DataFrame(data) try: pandas_result = pandas_df.__neg__() except Exception as e: with pytest.raises(type(e)): modin_df.__neg__() else: modin_result = modin_df.__neg__() df_equals(modin_result, pandas_result) @pytest.mark.parametrize("data", test_data_values, ids=test_data_keys) def test___invert__(self, data): modin_df = pd.DataFrame(data) pandas_df = pandas.DataFrame(data) try: pandas_result = ~pandas_df except Exception as e: with pytest.raises(type(e)): repr(~modin_df) else: modin_result = ~modin_df df_equals(modin_result, pandas_result) def test___hash__(self): data = test_data_values[0] with pytest.warns(UserWarning): try: pd.DataFrame(data).__hash__() except TypeError: pass @pytest.mark.parametrize("data", test_data_values, ids=test_data_keys) def test___iter__(self, data): modin_df = pd.DataFrame(data) pandas_df = pandas.DataFrame(data) modin_iterator = modin_df.__iter__() # Check that modin_iterator implements the iterator interface assert hasattr(modin_iterator, "__iter__") assert hasattr(modin_iterator, "next") or hasattr(modin_iterator, "__next__") pd_iterator = pandas_df.__iter__() assert list(modin_iterator) == list(pd_iterator) @pytest.mark.parametrize("data", test_data_values, ids=test_data_keys) def test___contains__(self, request, data): modin_df = pd.DataFrame(data) pandas_df = pandas.DataFrame(data) result = False key = "Not Exist" assert result == modin_df.__contains__(key) assert result == (key in modin_df) if "empty_data" not in request.node.name: result = True key = pandas_df.columns[0] assert result == modin_df.__contains__(key) assert result == (key in modin_df) @pytest.mark.parametrize("data", test_data_values, ids=test_data_keys) def test___nonzero__(self, data): modin_df = pd.DataFrame(data) pandas_df = pandas.DataFrame(data) # noqa F841 with pytest.raises(ValueError): # Always raises ValueError modin_df.__nonzero__() @pytest.mark.parametrize("data", test_data_values, ids=test_data_keys) def test___abs__(self, request, data): modin_df = pd.DataFrame(data) pandas_df = pandas.DataFrame(data) try: pandas_result = abs(pandas_df) except Exception as e: with pytest.raises(type(e)): abs(modin_df) else: modin_result = abs(modin_df) df_equals(modin_result, pandas_result) def test___round__(self): data = test_data_values[0] with pytest.warns(UserWarning): pd.DataFrame(data).__round__() @pytest.mark.parametrize("data", test_data_values, ids=test_data_keys) def test___array__(self, data): modin_df = pd.DataFrame(data) pandas_df = pandas.DataFrame(data) assert_array_equal(modin_df.__array__(), pandas_df.__array__()) @pytest.mark.parametrize("data", test_data_values, ids=test_data_keys) def test___bool__(self, data): modin_df = pd.DataFrame(data) pandas_df = pandas.DataFrame(data) try: pandas_result = pandas_df.__bool__() except Exception as e: with pytest.raises(type(e)): modin_df.__bool__() else: modin_result = modin_df.__bool__() df_equals(modin_result, pandas_result) def test___getstate__(self): data = test_data_values[0] with pytest.warns(UserWarning): pd.DataFrame(data).__getstate__() def test___setstate__(self): data = test_data_values[0] with pytest.warns(UserWarning): try: pd.DataFrame(data).__setstate__(None) except TypeError: pass @pytest.mark.parametrize("data", test_data_values, ids=test_data_keys) def test___delitem__(self, request, data): modin_df = pd.DataFrame(data) pandas_df = pandas.DataFrame(data) if "empty_data" not in request.node.name: key = pandas_df.columns[0] modin_df = modin_df.copy() pandas_df = pandas_df.copy() modin_df.__delitem__(key) pandas_df.__delitem__(key) df_equals(modin_df, pandas_df) # Issue 2027 last_label = pandas_df.iloc[:, -1].name modin_df.__delitem__(last_label) pandas_df.__delitem__(last_label) df_equals(modin_df, pandas_df) def test__options_display(self): frame_data = random_state.randint(RAND_LOW, RAND_HIGH, size=(1000, 102)) pandas_df = pandas.DataFrame(frame_data) modin_df = pd.DataFrame(frame_data) pandas.options.display.max_rows = 10 pandas.options.display.max_columns = 10 x = repr(pandas_df) pd.options.display.max_rows = 5 pd.options.display.max_columns = 5 y = repr(modin_df) assert x != y pd.options.display.max_rows = 10 pd.options.display.max_columns = 10 y = repr(modin_df) assert x == y # test for old fixed max values pandas.options.display.max_rows = 75 pandas.options.display.max_columns = 75 x = repr(pandas_df) pd.options.display.max_rows = 75 pd.options.display.max_columns = 75 y = repr(modin_df) assert x == y def test___finalize__(self): data = test_data_values[0] with pytest.warns(UserWarning): pd.DataFrame(data).__finalize__(None) @pytest.mark.parametrize("data", test_data_values, ids=test_data_keys) def test___copy__(self, data): modin_df = pd.DataFrame(data) pandas_df = pandas.DataFrame(data) modin_df_copy, pandas_df_copy = modin_df.__copy__(), pandas_df.__copy__() df_equals(modin_df_copy, pandas_df_copy) @pytest.mark.parametrize("data", test_data_values, ids=test_data_keys) def test___deepcopy__(self, data): modin_df = pd.DataFrame(data) pandas_df = pandas.DataFrame(data) modin_df_copy, pandas_df_copy = ( modin_df.__deepcopy__(), pandas_df.__deepcopy__(), ) df_equals(modin_df_copy, pandas_df_copy) def test___repr__(self): frame_data = random_state.randint(RAND_LOW, RAND_HIGH, size=(1000, 100)) pandas_df = pandas.DataFrame(frame_data) modin_df = pd.DataFrame(frame_data) assert repr(pandas_df) == repr(modin_df) frame_data = random_state.randint(RAND_LOW, RAND_HIGH, size=(1000, 99)) pandas_df = pandas.DataFrame(frame_data) modin_df = pd.DataFrame(frame_data) assert repr(pandas_df) == repr(modin_df) frame_data = random_state.randint(RAND_LOW, RAND_HIGH, size=(1000, 101)) pandas_df = pandas.DataFrame(frame_data) modin_df = pd.DataFrame(frame_data) assert repr(pandas_df) == repr(modin_df) frame_data = random_state.randint(RAND_LOW, RAND_HIGH, size=(1000, 102)) pandas_df = pandas.DataFrame(frame_data) modin_df = pd.DataFrame(frame_data) assert repr(pandas_df) == repr(modin_df) # ___repr___ method has a different code path depending on # whether the number of rows is >60; and a different code path # depending on the number of columns is >20. # Previous test cases already check the case when cols>20 # and rows>60. The cases that follow exercise the other three # combinations. # rows <= 60, cols > 20 frame_data = random_state.randint(RAND_LOW, RAND_HIGH, size=(10, 100)) pandas_df = pandas.DataFrame(frame_data) modin_df = pd.DataFrame(frame_data) assert repr(pandas_df) == repr(modin_df) # rows <= 60, cols <= 20 frame_data = random_state.randint(RAND_LOW, RAND_HIGH, size=(10, 10)) pandas_df = pandas.DataFrame(frame_data) modin_df = pd.DataFrame(frame_data) assert repr(pandas_df) == repr(modin_df) # rows > 60, cols <= 20 frame_data = random_state.randint(RAND_LOW, RAND_HIGH, size=(100, 10)) pandas_df = pandas.DataFrame(frame_data) modin_df = pd.DataFrame(frame_data) assert repr(pandas_df) == repr(modin_df) # Empty pandas_df = pandas.DataFrame(columns=["col{}".format(i) for i in range(100)]) modin_df = pd.DataFrame(columns=["col{}".format(i) for i in range(100)]) assert repr(pandas_df) == repr(modin_df) @pytest.mark.parametrize("data", test_data_values, ids=test_data_keys) def test_reset_index_with_multi_index(self, data): modin_df = pd.DataFrame(data) pandas_df = pandas.DataFrame(data) if len(modin_df.columns) > len(pandas_df.columns): col0 = modin_df.columns[0] col1 = modin_df.columns[1] modin_cols = modin_df.groupby([col0, col1]).count().reset_index().columns pandas_cols = pandas_df.groupby([col0, col1]).count().reset_index().columns assert modin_cols.equals(pandas_cols) def test_reset_index_with_named_index(self): modin_df = pd.DataFrame(test_data_values[0]) pandas_df = pandas.DataFrame(test_data_values[0]) modin_df.index.name = pandas_df.index.name = "NAME_OF_INDEX" df_equals(modin_df, pandas_df) df_equals(modin_df.reset_index(drop=False), pandas_df.reset_index(drop=False)) modin_df.reset_index(drop=True, inplace=True) pandas_df.reset_index(drop=True, inplace=True) df_equals(modin_df, pandas_df) modin_df = pd.DataFrame(test_data_values[0]) pandas_df = pandas.DataFrame(test_data_values[0]) modin_df.index.name = pandas_df.index.name = "NEW_NAME" df_equals(modin_df.reset_index(drop=False), pandas_df.reset_index(drop=False)) @pytest.mark.parametrize("data", test_data_values, ids=test_data_keys) def test_inplace_series_ops(self, data): pandas_df =
pandas.DataFrame(data)
pandas.DataFrame
import pandas from jardin import config as config from jardin.query_builders import \ SelectQueryBuilder, \ InsertQueryBuilder, \ UpdateQueryBuilder, \ DeleteQueryBuilder, \ RawQueryBuilder from jardin.cache_stores import cached def set_defaults(func): def wrapper(self, *args, **kwargs): kwargs.update( model_metadata=self.model_metadata, scheme=self.db_client.db_config.scheme, lexicon=self.db_client.lexicon ) return func(self, *args, **kwargs) return wrapper class DatabaseAdapter(object): def __init__(self, db_client, model_metadata): self.db_client = db_client self.model_metadata = model_metadata @set_defaults def select(self, **kwargs): query = SelectQueryBuilder(**kwargs).query config.logger.debug(query) results, columns = self.db_client.execute(*query, write=False) if results is None and columns is None: return None return pandas.DataFrame.from_records(results, columns=columns, coerce_float=True) @set_defaults def write(self, query_builder, **kwargs): query = query_builder(**kwargs).query config.logger.debug(query) returning_ids = self.db_client.execute(*query, write=True, **kwargs) if len(returning_ids) > 0: return self.select(where={kwargs['primary_key']: returning_ids}) return None def insert(self, **kwargs): return self.write(InsertQueryBuilder, **kwargs) def update(self, **kwargs): return self.write(UpdateQueryBuilder, **kwargs) @set_defaults def delete(self, **kwargs): query = DeleteQueryBuilder(**kwargs).query config.logger.debug(query) self.db_client.execute(*query, write=False) @set_defaults @cached def raw_query(self, **kwargs): query = RawQueryBuilder(**kwargs).query config.logger.debug(query) results, columns = self.db_client.execute(*query, write=False) if results is None and columns is None: return None return
pandas.DataFrame.from_records(results, columns=columns, coerce_float=True)
pandas.DataFrame.from_records
import numpy as np from pandas import DataFrame, MultiIndex import pandas._testing as tm from pandas.core.arrays import PandasArray class TestToDictOfBlocks: def test_copy_blocks(self, float_frame): # GH#9607 df = DataFrame(float_frame, copy=True) column = df.columns[0] # use the default copy=True, change a column blocks = df._to_dict_of_blocks(copy=True) for dtype, _df in blocks.items(): if column in _df: _df.loc[:, column] = _df[column] + 1 # make sure we did not change the original DataFrame assert not _df[column].equals(df[column]) def test_no_copy_blocks(self, float_frame): # GH#9607 df = DataFrame(float_frame, copy=True) column = df.columns[0] # use the copy=False, change a column blocks = df._to_dict_of_blocks(copy=False) for dtype, _df in blocks.items(): if column in _df: _df.loc[:, column] = _df[column] + 1 # make sure we did change the original DataFrame assert _df[column].equals(df[column]) def test_to_dict_of_blocks_item_cache(): # Calling to_dict_of_blocks should not poison item_cache df =
DataFrame({"a": [1, 2, 3, 4], "b": ["a", "b", "c", "d"]})
pandas.DataFrame
#!/usr/bin/python3 import argparse import json import logging import os import socket import threading import time import bjoern import falcon import jinja2 import pandas as pd from prometheus_client import start_http_server, Counter, Gauge import requests import schedule from gamutrf.sigwindows import calc_db from gamutrf.sigwindows import choose_record_signal from gamutrf.sigwindows import choose_recorders from gamutrf.sigwindows import find_sig_windows from gamutrf.sigwindows import parse_freq_excluded from gamutrf.sigwindows import get_center SOCKET_TIMEOUT = 1.0 ROLLOVERHZ = 100e6 PEAK_DBS = {} def falcon_response(resp, text, status): resp.status = status resp.text = text resp.content_type = 'text/html' def ok_response(resp, text='ok!'): falcon_response(resp, text=text, status=falcon.HTTP_200) def error_response(resp, text='error!'): falcon_response(resp, text=text, status=falcon.HTTP_500) def load_template(name): path = os.path.join('templates', name) with open(os.path.abspath(path), 'r') as fp: return jinja2.Template(fp.read()) class ActiveRequests: def on_get(self, req, resp): all_jobs = schedule.get_jobs() ok_response(resp, f'{all_jobs}') class ScannerForm: def on_get(self, req, resp): template = load_template('scanner_form.html') ok_response(resp, template.render(bins=PEAK_DBS)) class Result: def on_post(self, req, resp): # TODO validate input try: recorder = f'http://{req.media["worker"]}:8000/' signal_hz = int(int(req.media['frequency']) * 1e6) record_bps = int(int(req.media['bandwidth']) * (1024 * 1024)) record_samples = int(record_bps * int(req.media['duration'])) recorder_args = f'record/{signal_hz}/{record_samples}/{record_bps}' timeout = int(req.media['duration']) response = None if int(req.media['repeat']) == -1: schedule.every(timeout).seconds.do(run_threaded, record, recorder=recorder, recorder_args=recorder_args, timeout=timeout).tag(f'{recorder}{recorder_args}-{timeout}') ok_response(resp) else: response = recorder_req(recorder, recorder_args, timeout) time.sleep(timeout) for _ in range(int(req.media['repeat'])): response = recorder_req(recorder, recorder_args, timeout) time.sleep(timeout) if response: ok_response(resp) else: ok_response(resp, f'Request {recorder} {recorder_args} failed.') except Exception as e: error_response(resp, f'{e}') def record(recorder, recorder_args, timeout): recorder_req(recorder, recorder_args, timeout) def run_threaded(job_func, recorder, recorder_args, timeout): job_thread = threading.Thread(target=job_func, args=(recorder, recorder_args, timeout,)) job_thread.start() def init_prom_vars(): prom_vars = { 'last_bin_freq_time': Gauge('last_bin_freq_time', 'epoch time last signal in each bin', labelnames=('bin_mhz',)), 'worker_record_request': Gauge('worker_record_request', 'record requests made to workers', labelnames=('worker',)), 'freq_power': Gauge('freq_power', 'bin frequencies and db over time', labelnames=('bin_freq',)), 'new_bins': Counter('new_bins', 'frequencies of new bins', labelnames=('bin_freq',)), 'old_bins': Counter('old_bins', 'frequencies of old bins', labelnames=('bin_freq',)), 'bin_freq_count': Counter('bin_freq_count', 'count of signals in each bin', labelnames=('bin_mhz',)), 'frame_counter': Counter('frame_counter', 'number of frames processed'), } return prom_vars def update_prom_vars(peak_dbs, new_bins, old_bins, prom_vars): freq_power = prom_vars['freq_power'] new_bins_prom = prom_vars['new_bins'] old_bins_prom = prom_vars['old_bins'] for freq in peak_dbs: freq_power.labels(bin_freq=freq).set(peak_dbs[freq]) for nbin in new_bins: new_bins_prom.labels(bin_freq=nbin).inc() for obin in old_bins: old_bins_prom.labels(bin_freq=obin).inc() def process_fft(args, prom_vars, ts, fftbuffer, lastbins): global PEAK_DBS tsc = time.ctime(ts) logging.info(f'new frame at {tsc}') df =
pd.DataFrame(fftbuffer, columns=['ts', 'freq', 'db'])
pandas.DataFrame
from __future__ import (absolute_import, division, print_function, unicode_literals) from math import log from functools import wraps from operator import itemgetter from bisect import bisect import sys import pandas as pd from collections import OrderedDict, defaultdict import unittest, itertools # interval tests # single pos intervals #|#|#|#|#|#|# # end to end ###|###|### # first starts aat start and last ends at last (3 intervals) ### ### ### # first starts after start and last ends before last (3 intervals) ### ### ### # Three intervals tiled ###### ###### ###### # Three intevals inside each other ####### ##### ### # import glob # import os # chrom_sizes = dict() # for p in glob.glob('/Users/kmt/Downloads/igv-master/genomes/sizes/*.sizes'): # name = os.path.basename(p).replace('.chrom.sizes', '') # with open(p) as f: # d = dict(l.split()[:2] for l in f) # chrom_sizes[name] = d # print('chrom_sizes = {') # for chrom, d in chrom_sizes.items(): # print("'{}': {}".format(chrom, repr(d))) # print('}') from chromwindow.chrom_sizes import chrom_sizes def print_intervals(df): starts, ends = list(df['start']), list(df['end']) m = max(ends) for s, e in zip(starts, ends): print(" " * (s) + "#" * (e-s) + " " * (m - e)) class TestEvenWindows(unittest.TestCase): def setUp(self): self.df_single_end_to_end = pd.DataFrame({'start': list(range(30)), 'end': list(range(1, 31))}) self.df_three_end_to_end = pd.DataFrame({'start': [0, 10, 20], 'end': [10, 20, 30]}) self.df_three_nonoverl = pd.DataFrame({'start': [5, 15, 25], 'end': [10, 20, 30]}) self.df_three_tiled = pd.DataFrame({'start': [0, 3, 6], 'end': [21, 24, 27]}) # print_intervals(self.df_three_tiled) ########## ####### #### ####### ####### ####### #### ####### ########## self.df_three_nested = pd.DataFrame({'start': [0, 3, 6], 'end': [27, 24, 21]}) # print_intervals(self.df_three_nested) ########################### ##################### ############### ########## ####### ########## ####### ####### ####### #### ####### #### self.df_empty = pd.DataFrame() def test_empty(self): with self.assertRaises(KeyError): even_windows(self.df_empty, 3) def test_single_end_to_end_1(self): # three perfect windows self.assertEqual(even_windows(self.df_single_end_to_end, 10), [10, 10, 10]) def test_single_end_to_end_2(self): # one perfect window self.assertEqual(even_windows(self.df_single_end_to_end, 30), [30]) def test_single_end_to_end_3(self): # one window too large self.assertEqual(even_windows(self.df_single_end_to_end, 31), [30]) def test_single_end_to_end_4(self): # three windows, last one not filled self.assertEqual(even_windows(self.df_single_end_to_end, 12), [12, 12, 6]) def test_three_end_to_end_1(self): # three perfect windows self.assertEqual(even_windows(self.df_three_end_to_end, 10), [10, 10, 10]) def test_three_end_to_end_2(self): # one perfect window self.assertEqual(even_windows(self.df_three_end_to_end, 30), [30]) def test_three_end_to_end_3(self): # one window too large self.assertEqual(even_windows(self.df_three_end_to_end, 31), [30]) def test_three_end_to_end_4(self): # last window one not filled self.assertEqual(even_windows(self.df_three_end_to_end, 12), [12, 12, 6]) def test_three_nonoverl_1(self): # three perfect windows self.assertEqual(even_windows(self.df_three_nonoverl, 5), [10, 10, 10]) def test_three_nonoverl_2(self): # one perfect window self.assertEqual(even_windows(self.df_three_nonoverl, 15), [30]) def test_three_nonoverl_3(self): # one window too large self.assertEqual(even_windows(self.df_three_nonoverl, 16), [30]) def test_three_nonoverl_4(self): # last window not filled self.assertEqual(even_windows(self.df_three_nonoverl, 10), [20, 10]) def test_three_tiled_1(self): # three perfect windows self.assertEqual(even_windows(self.df_three_tiled, 21), [10, 7, 10]) def test_three_tiled_2(self): # one perfect window self.assertEqual(even_windows(self.df_three_tiled, 63), [27]) def test_three_tiled_3(self): # one window too large self.assertEqual(even_windows(self.df_three_tiled, 64), [27]) def test_three_tiled_4(self): # last window not filled self.assertEqual(even_windows(self.df_three_tiled, 60), [24, 3]) def test_three_nested_1(self): # three perfect windows self.assertEqual(even_windows(self.df_three_nested, 21), [10, 7, 10]) def test_three_nested_2(self): # one perfect window self.assertEqual(even_windows(self.df_three_nested, 63), [27]) def test_three_nested_3(self): # one window too large self.assertEqual(even_windows(self.df_three_nested, 64), [27]) def test_three_nested_4(self): # last window not filled self.assertEqual(even_windows(self.df_three_nested, 60), [24, 3]) class TestWindowCoordinates(unittest.TestCase): def test_window_coord_1(self): w = iter(WindowCoordinates(binsize=10, logbase=1, bins=None)) self.assertEqual(list(itertools.islice(w, 4)), [(0, 10), (10, 10), (20, 10), (30, 10)]) def test_window_coord_2(self): w = iter(WindowCoordinates(binsize=2, logbase=2, bins=None)) self.assertEqual(list(itertools.islice(w, 4)), [(0, 2), (2, 4), (6, 8), (14, 16)]) def test_window_coord_3(self): w = iter(WindowCoordinates(binsize=None, logbase=1, bins=[10, 20, 30])) self.assertEqual(list(itertools.islice(w, 4)), [(0, 10), (10, 20), (30, 30), (60, float('inf'))]) class TestConcatDicts(unittest.TestCase): pass class TestStatsToDataFrame(unittest.TestCase): pass class TestGenomicWindows(unittest.TestCase): pass class TestStoreGroupbyApply(unittest.TestCase): pass # concat_dicts(l): # stats_data_frame(list_of_stat_results): # genomic_windows(full_df, func, bin_iter): # window(size=None, logbase=1, even=None): # store_groupby_apply(store_file_name, col_names, fun, df_name='df', group_keys=True): class TestWindowDecorator(unittest.TestCase): def setUp(self): self.df_single_end_to_end = pd.DataFrame({'start': list(range(30)), 'end': list(range(1, 31))}) self.df_three_end_to_end = pd.DataFrame({'start': [0, 10, 20], 'end': [10, 20, 30]}) self.df_three_nonoverl =
pd.DataFrame({'start': [5, 15, 25], 'end': [10, 20, 30]})
pandas.DataFrame
import matplotlib as mpl import matplotlib.pyplot as plt import numpy as np import pandas as pd from pandas import DataFrame, Series import scipy as sp from scipy import linalg, optimize from scipy.optimize import minimize, minimize_scalar, rosen, rosen_der, brentq, fminbound, curve_fit import math from scipy.stats import norm import pylab as P import matplotlib.mlab as mlab import beadpy def segmentplotter(table,maxrate, ymin, ymax, legloc = 1, scale = 10): table = table[abs(table['rate']) < maxrate] x = table['x1'] y = table['displacement'] size = abs(table['rate'])/scale fig, ax = plt.subplots(figsize=(10, 7.5)) ax.scatter(x, y, s = size, alpha=0.5, color='magenta', edgecolors='black') bins = np.linspace(0, maxrate, 4) if scale < 5: firstbinsize = 1 elif scale >=5: firstbinsize = 25 l1 = ax.scatter([],[], s=(firstbinsize)/scale, c = 'magenta') l2 = ax.scatter([],[], s=bins[1] / scale, c = 'magenta') l3 = ax.scatter([],[], s=bins[2] / scale, c = 'magenta') l4 = ax.scatter([],[], s=bins[3] / scale,c = 'magenta') labels = [firstbinsize, int(bins[1]), int(bins[2]), int(bins[3])] ax.legend([l1, l2, l3, l4], labels, frameon = True, fontsize = 16, handlelength = 2, loc = legloc, borderpad = 0.5, handletextpad = 1, title ='Rate (nt/s)', scatterpoints = 1) ax.set_xlabel('Segment start time (s)', fontsize=16) ax.set_ylabel('Segment length (nt)', fontsize=16) ax.set_xlim((0, max(x))) ax.set_ylim((ymin, ymax)) fig.tight_layout(pad=2); ax.grid(True) fig.savefig('segments.png', dpi = 300) #plt.clf() return ax; def filterer(resultstable, segmentstable, minrate, maxrate, mindisplacement, starttime, endtime): filtsegments = segmentstable[(abs(segmentstable['rate']) > minrate) & (segmentstable['rate'] < maxrate) & (segmentstable['displacement'] >= mindisplacement) & (segmentstable['x1'] > starttime) & (segmentstable['x1'] < endtime)] filtresults = resultstable[resultstable.trajectory.isin(filtsegments.trajectory)] filtresults.to_csv('filtresults.csv', index = False, float_format='%.4f') filtsegments.to_csv('filtsegments.csv', index = False) return filtresults, filtsegments; def trajectory_plotter(resultstable, exampletraj, sigma = 500, method = ('global', 'table'), sigma_start = 10, sigma_end = 100, eventregion = (200,500), segmenttable = 0): exampletraj = int(exampletraj) fig, ax = plt.subplots(figsize = (10, 7.5)) ax.plot(resultstable['time'][resultstable['trajectory'] == exampletraj], resultstable['nucleotides'][resultstable['trajectory'] == exampletraj]/1000, lw = 3) ax.set_xlabel("Time (s)", fontsize=16) ax.set_ylabel("Nucleotides synthesised (kb)", fontsize=16) ax.set_xlim((-50,resultstable['time'][resultstable['trajectory'] == exampletraj].max()+50)) ax.set_ylim((-0.5 + resultstable['nucleotides'][resultstable['trajectory'] == exampletraj].min()/1000,0.5 + resultstable['nucleotides'][resultstable['trajectory'] == exampletraj].max()/1000)) if not method == 'nofit': if method == ('global', 'table'): exampletrajseg = beadpy.ratefinder(resultstable[resultstable['trajectory']==exampletraj], segtable = segmenttable, sigmaval = sigma) elif method == ('global', 'region'): exampletrajseg = beadpy.segment_finder(resultstable[(resultstable['time']>eventregion[0]) & (resultstable['time'] < eventregion[1])], sigma = sigma, traj = exampletraj) elif method == ('global', 'whole'): exampletrajseg = beadpy.segment_finder(resultstable, sigma = sigma, traj = exampletraj) elif method == ('auto', 'table'): test, sigma = beadpy.segment_finder(resultstable, method = 'auto', traj = int(exampletraj), returnsigma = 'yes', sigma_start = sigma_start, sigma_end = sigma_end) exampletrajseg = beadpy.ratefinder(resultstable[resultstable['trajectory']==exampletraj], segtable = segmenttable, sigmaval = sigma) elif method == ('auto', 'region'): test, sigma = beadpy.segment_finder(resultstable, method = 'auto', traj = int(exampletraj), returnsigma = 'yes', sigma_start = sigma_start, sigma_end = sigma_end) exampletrajseg = beadpy.segment_finder(resultstable[(resultstable['time']>eventregion[0]) & (resultstable['time'] < eventregion[1])], sigma = sigma, traj = exampletraj) elif method == ('auto', 'whole'): exampletrajseg, sigma = beadpy.segment_finder(resultstable, method = 'auto', traj = int(exampletraj), returnsigma = 'yes', sigma_start = sigma_start, sigma_end = sigma_end) fig.suptitle('Trajectory '+str(exampletraj)+', sigma '+str(int(sigma)), fontsize = 16) for row_index, row in exampletrajseg[exampletrajseg.trajectory==exampletraj].iterrows(): ax.plot([row['x1'], row['x2']], [row['y1']/1000, row['y2']/1000],'k-', lw=2, color='Magenta', linestyle='-') else: fig.suptitle('Trajectory '+str(exampletraj), fontsize = 16) ax.tick_params(axis='both', labelsize=14) fig.tight_layout(pad=4) if not method == 'nofit': fig.savefig('traj_'+str(exampletraj)+'_sigma_'+str(sigma)+'.png', dpi = 300) return exampletrajseg else: fig.savefig('traj_'+str(exampletraj)+'.png', dpi = 300) def weighted_avg_and_std(values, weights): average = np.average(values, weights=weights) variance = np.average((values-average)**2, weights=weights) # Fast and numerically precise return (average, math.sqrt(variance)) def ratefinder(restable, segtable, sigmaval = 300): #Filter the results to only be between the first data point of the filtered segments, and the last for each trajectory. restable = restable[restable.trajectory.isin(segtable.trajectory)] segtable = segtable[segtable['trajectory'].isin(restable['trajectory'])] groupedsegs = segtable.groupby(['trajectory'], as_index=False) starttimes = groupedsegs['x1'].min() endtimes = groupedsegs['x2'].max() startendtimes = pd.merge(left=starttimes, right = endtimes, how='left', left_on='trajectory', right_on='trajectory') mergedfiltresults = pd.merge(left=restable,right=startendtimes, how='left', left_on='trajectory', right_on='trajectory') finefiltresults = mergedfiltresults[(mergedfiltresults['time'] >= mergedfiltresults['x1']) & (mergedfiltresults['time'] <= mergedfiltresults['x2'])] #Do change point analysis on these events: segmentsfine = beadpy.segment_finder(finefiltresults, sigma = sigmaval) return segmentsfine; def sigmaval_finder(restable, sigma_start = 0, sigma_end = 150): restable = restable.reset_index(drop=True) sigmaregion = restable[(restable.time > sigma_start) & (restable.time < sigma_end)] sigmavals = sigmaregion.groupby('trajectory')['nucleotides'].apply(lambda x:x.rolling(center=False,window=20).std().mean()) sigmavals = sigmavals[np.logical_not(np.isnan(sigmavals))] trajectories = sigmavals.index.tolist() sigmavals = sigmavals.tolist() return sigmavals, trajectories; def ratefinder_autosigma(restable, segtable, sigma_start, sigma_end): segtable = segtable[segtable['trajectory'].isin(restable['trajectory'])] restable = restable[restable.trajectory.isin(segtable.trajectory)] sigmavals, trajectories = sigmaval_finder(restable, sigma_start, sigma_end) restable = restable[restable.trajectory.isin(trajectories)] segtable = segtable[segtable.trajectory.isin(trajectories)] groupedsegs = segtable.groupby(['trajectory'], as_index=False) starttimes = groupedsegs['x1'].min() endtimes = groupedsegs['x2'].max() startendtimes = pd.merge(left=starttimes, right = endtimes, how='left', left_on='trajectory', right_on='trajectory') mergedfiltresults = pd.merge(left=restable,right=startendtimes, how='left', left_on='trajectory', right_on='trajectory') finefiltresults = mergedfiltresults[(mergedfiltresults['time'] >= mergedfiltresults['x1']) & (mergedfiltresults['time'] <= mergedfiltresults['x2'])] segmentsfine = beadpy.segment_finder(finefiltresults, sigma = sigmavals) return segmentsfine; def ratehist(segtable, minimumrate = 5, maximumrate = 1000, numbins = 50, weighting = 'displacement'): fig = plt.figure() ax = fig.add_subplot(111) x = segtable[(segtable['rate'] > minimumrate) & (segtable['rate'] < maximumrate)] if weighting == 'none': n, bins, patches = P.hist(x.rate, bins = numbins, edgecolor = 'black') P.text(0.95, 0.95, str(len(x)) + ' segments \n' + 'from ' + str(x.trajectory.nunique()) + ' events', verticalalignment='top', horizontalalignment='right', color='magenta', fontsize=15, transform=ax.transAxes) elif weighting == 'fastest': xgrouped = x.groupby(['trajectory']) maxrates = xgrouped['rate'].max() n, bins, patches = P.hist(maxrates, bins = numbins, edgecolor = 'black') P.text(0.95, 0.95, str(x.trajectory.nunique()) + ' events', verticalalignment='top', horizontalalignment='right', color='magenta', fontsize=15, transform=ax.transAxes) elif weighting == 'longest': xgrouped = x.groupby(['trajectory']) x = xgrouped.apply(lambda g: g[g['displacement'] == g['displacement'].max()]) n, bins, patches = P.hist(x.rate, bins = numbins, edgecolor = 'black') P.text(0.95, 0.95, str(x.trajectory.nunique()) + ' events', verticalalignment='top', horizontalalignment='right', color='magenta', fontsize=15, transform=ax.transAxes) else: n, bins, patches = P.hist(x.rate, bins = numbins, weights = x[weighting]/sum(x[weighting]), normed = 1, edgecolor = 'black') P.text(0.95, 0.95, str(len(x)) + ' segments \n' + 'from ' + str(x.trajectory.nunique()) + ' events', verticalalignment='top', horizontalalignment='right', color='magenta', fontsize=15, transform=ax.transAxes) P.setp(patches, 'facecolor', 'g', 'alpha', 0.75) P.xlabel('Rate (nt/s)') P.savefig('rates.png', dpi = 300) def processivity(segtable, minimumprocessivity = 0, maximumprocessivity=15000, binno = 15, skipno = 0, initialguesses = 'default'): fig = plt.figure() ax = fig.add_subplot(111) groupedsegs = segtable.groupby(['trajectory'], as_index=False) starty = groupedsegs['y1'].min() endy = groupedsegs['y2'].max() displacements =
pd.merge(left=starty, right = endy, how='left', left_on='trajectory', right_on='trajectory')
pandas.merge
import pandas as pd import os, re, fnmatch, subprocess from collections import defaultdict from shlex import quote from igf_data.illumina.samplesheet import SampleSheet from igf_data.igfdb.igfTables import Experiment, Run from igf_data.igfdb.baseadaptor import BaseAdaptor from igf_data.igfdb.experimentadaptor import ExperimentAdaptor from igf_data.igfdb.runadaptor import RunAdaptor from igf_data.igfdb.collectionadaptor import CollectionAdaptor from igf_data.igfdb.fileadaptor import FileAdaptor from igf_data.utils.fileutils import calculate_file_checksum class Collect_seqrun_fastq_to_db: ''' A class for collecting raw fastq files after demultiplexing and storing them in database. Additionally this will also create relevant entries for the experiment and run tables in database :param fastq_dir: A directory path for file look up :param model_name: Sequencing platform information :param seqrun_igf_id: Sequencing run name :param session_class: A database session class :param flowcell_id: Flowcell information for the run :param samplesheet_file: Samplesheet filepath :param samplesheet_filename: Name of the samplesheet file, default SampleSheet.csv :param collection_type: Collection type information for new fastq files, default demultiplexed_fastq :param file_location: Fastq file location information, default HPC_PROJECT :param collection_table: Collection table information for fastq files, default run :param manifest_name: Name of the file manifest file, default file_manifest.csv :param singlecell_tag: Samplesheet description for singlecell samples, default 10X ''' def __init__( self,fastq_dir,model_name,seqrun_igf_id,session_class,flowcell_id, samplesheet_file=None,samplesheet_filename='SampleSheet.csv', collection_type='demultiplexed_fastq',file_location='HPC_PROJECT', collection_table='run', manifest_name='file_manifest.csv',singlecell_tag='10X'): self.fastq_dir = fastq_dir self.samplesheet_file = samplesheet_file self.samplesheet_filename = samplesheet_filename self.seqrun_igf_id = seqrun_igf_id self.model_name = model_name self.session_class = session_class self.collection_type = collection_type self.file_location = file_location self.flowcell_id = flowcell_id self.collection_table = collection_table self.manifest_name = manifest_name self.singlecell_tag = singlecell_tag def find_fastq_and_build_db_collection(self): ''' A method for finding fastq files and samplesheet under a run directory and loading the new files to db with their experiment and run information It calculates following entries * library_name Same as sample_id unless mentioned in 'Description' field of samplesheet * experiment_igf_id library_name combined with the platform name same library sequenced in different platform will be added as separate experiemnt * run_igf_id experiment_igf_id combined with sequencing flowcell_id and lane_id collection name: Same as run_igf_id, fastq files will be added to db collection using this id * collection type Default type for fastq file collections are 'demultiplexed_fastq' * file_location Default value is 'HPC_PROJECT' ''' try: fastq_files_list = \ self._collect_fastq_and_sample_info() self._build_and_store_exp_run_and_collection_in_db( fastq_files_list=fastq_files_list) except Exception as e: raise ValueError( 'Failed to find fastq and build collection, error: {0}'.\ format(e)) def _get_fastq_and_samplesheet(self): try: fastq_dir = self.fastq_dir samplesheet_file = self.samplesheet_file samplesheet_filename = self.samplesheet_filename r1_fastq_regex = \ re.compile(r'\S+_R1_\d+\.fastq(\.gz)?', re.IGNORECASE) r2_fastq_regex = \ re.compile(r'\S+_R2_\d+\.fastq(\.gz)?', re.IGNORECASE) samplesheet_list = list() r1_fastq_list = list() r2_fastq_list = list() if os.path.isdir(fastq_dir): for root, _, files in os.walk(top=fastq_dir): if samplesheet_filename in files: samplesheet_list.append( os.path.join(root,samplesheet_filename)) for file in files: if not fnmatch.fnmatch(file, 'Undetermined_'): if r1_fastq_regex.match(file): r1_fastq_list.\ append(os.path.join(root,file)) elif r2_fastq_regex.match(file): r2_fastq_list.\ append(os.path.join(root,file)) if len(r2_fastq_list) > 0 and \ len(r1_fastq_list) != len(r2_fastq_list): raise ValueError( 'R1 {0} and R2 {1}'.format( len(r1_fastq_list), len(r2_fastq_list))) if samplesheet_file is None and \ len(samplesheet_list)==1: self.samplesheet_file = samplesheet_list[0] # set samplesheet file name if len(samplesheet_list) > 1: raise ValueError( 'Found more than one samplesheet file for fastq dir {0}'.\ format(fastq_dir)) if samplesheet_file is None and \ len(samplesheet_list)==0: raise ValueError( 'No samplesheet file for fastq dir {0}'.\ format(fastq_dir)) elif os.path.isfile(fastq_dir): if samplesheet_file is None: raise ValueError( 'Missing samplesheet file for fastq file {0}'.\ format(fastq_dir)) if not fnmatch.fnmatch(file, 'Undetermined_'): if r1_fastq_regex.match(file): r1_fastq_list.\ append(os.path.join(root,file)) elif r2_fastq_regex.match(file): r2_fastq_list.\ append(os.path.join(root,file)) return r1_fastq_list, r2_fastq_list except Exception as e: raise ValueError( 'Failed to get fastq and samplesheet, error: {0}'.\ format(e)) @staticmethod def _link_fastq_file_to_sample(sample_name,r1_fastq_list, r2_fastq_list): try: sample_files = \ defaultdict(lambda: defaultdict(lambda: defaultdict())) r1_regex = \ re.compile( sample_name+'_S\d+_L(\d+)_R1_\d+\.fastq(\.gz)?', re.IGNORECASE) for file1 in r1_fastq_list: if r1_regex.match(os.path.basename(file1)): m = r1_regex.match(os.path.basename(file1)) lane_id = m.group(1).strip('0') sample_files[lane_id]['R1'] = file1 if len(r2_fastq_list) > 0: r2_regex = \ re.compile( sample_name+'_S\d+_L(\d+)_R2_\d+\.fastq(\.gz)?', re.IGNORECASE) for file2 in r2_fastq_list: if r2_regex.match(os.path.basename(file2)): m = r2_regex.match(os.path.basename(file2)) lane_id = m.group(1).strip('0') sample_files[lane_id]['R2'] = file2 return sample_files except Exception as e: raise ValueError( 'Failed to link fastq to sample, error: {0}'.format(e)) def _collect_fastq_and_sample_info(self): ''' An internal method for collecting fastq and sample info ''' try: seqrun_igf_id = self.seqrun_igf_id model_name = self.model_name flowcell_id = self.flowcell_id (r1_fastq_list, r2_fastq_list) = \ self._get_fastq_and_samplesheet() samplesheet_file = self.samplesheet_file final_data = list() samplesheet_sc = \ SampleSheet(infile=samplesheet_file) # read samplesheet for single cell check samplesheet_sc.\ filter_sample_data( condition_key='Description', condition_value=self.singlecell_tag, method='include') # keep only single cell samples if len(samplesheet_sc._data) >0: sc_new_data = \ pd.DataFrame(samplesheet_sc._data).\ drop(['Sample_ID','Sample_Name','index'],axis=1).\ drop_duplicates().\ to_dict(orient='records') # remove duplicate entries from single cell samplesheet final_data.extend(sc_new_data) # add single cell entries to the final dataset samplesheet_data = \ SampleSheet(infile=samplesheet_file) samplesheet_data.\ filter_sample_data( condition_key='Description', condition_value=self.singlecell_tag, method='exclude') # keep non single cell samples if len(samplesheet_data._data) > 0: final_data.\ extend(samplesheet_data._data) # add normal samples to final data fastq_files_list = list() for row in final_data: description = row['Description'] if description==self.singlecell_tag: # collect required values for single cell projects sample_name = row['Original_Sample_Name'] sample_id = row['Original_Sample_ID'] else: sample_name = row['Sample_Name'] # collect default values for normal projects sample_id = row['Sample_ID'] project_name = row['Sample_Project'] sample_files = \ self._link_fastq_file_to_sample( sample_name, r1_fastq_list, r2_fastq_list) for lane, lane_files in sample_files.items(): fastq_info = { 'sample_igf_id':sample_id, 'sample_name':sample_name, 'project_igf_id':project_name, 'lane_number':lane, 'seqrun_igf_id':seqrun_igf_id, 'platform_name':model_name, 'flowcell_id':flowcell_id, 'description':description } for read_type, filepath in lane_files.items(): fastq_info.\ update({read_type:filepath}) # allowing only one file per lane per read type fastq_files_list.\ append(fastq_info) # adding entries per sample per lane return fastq_files_list except Exception as e: raise ValueError( 'Failed to collect info, error: {0}'.format(e)) @staticmethod def _count_fastq_reads(fastq_file): ''' A static method for counting reads from the zipped and bzipped fastq files required params: fastq_file: A fastq file with absolute path ''' try: if not os.path.exists(fastq_file): raise IOError( 'fastq file {0} is not found'.format(fastq_file)) if fnmatch.fnmatch(os.path.basename(fastq_file),'*.fastq.gz'): read_cmd = ['zcat',quote(fastq_file)] elif fnmatch.fnmatch(os.path.basename(fastq_file),'*.fastq.bz'): read_cmd = ['bzcat',quote(fastq_file)] elif fnmatch.fnmatch(os.path.basename(fastq_file),'*.fastq'): read_cmd = ['cat',quote(fastq_file)] else: raise ValueError( 'file {0} is not recognised'.format(fastq_file)) proc = \ subprocess.\ Popen( read_cmd, stdout=subprocess.PIPE) count_cmd = ['wc','-l'] proc2 = \ subprocess.\ Popen( count_cmd, stdin=proc.stdout, stdout=subprocess.PIPE) proc.stdout.close() result = \ int(proc2.communicate()[0].decode('UTF-8')) if result==0: raise ValueError( 'Fastq file {0} has zero lines'.format(fastq_file)) result = int(result/4) return result except Exception as e: raise ValueError( 'Failed to count fastq reads, error: {0}'.format(e)) def _calculate_experiment_run_and_file_info(self,data,restricted_list): try: if not isinstance(data, pd.Series): data = pd.Series(data) # set library id library_id = data.sample_igf_id # calcaulate experiment id experiment_id = \ '{0}_{1}'.format(library_id,data.platform_name) data['library_name'] = library_id data['experiment_igf_id'] = experiment_id # calculate run id run_igf_id = \ '{0}_{1}_{2}'.format( experiment_id, data.flowcell_id, data.lane_number) data['run_igf_id'] = run_igf_id # set collection name and type data['name'] = run_igf_id data['type'] = self.collection_type data['table'] = self.collection_table data['location'] = self.file_location # set file md5 and size if 'R1' in data: data['R1_md5'] = \ calculate_file_checksum( filepath=data.R1, hasher='md5') data['R1_size'] = \ os.path.getsize(data.R1) data['R1_READ_COUNT'] = \ self._count_fastq_reads( fastq_file=data.R1) if 'R2' in data: data['R2_md5'] = \ calculate_file_checksum( filepath=data.R2, hasher='md5') data['R2_size'] = \ os.path.getsize(data.R2) data['R2_READ_COUNT'] = \ self._count_fastq_reads( fastq_file=data.R2) # set library strategy library_layout = 'SINGLE' if 'R1' in data and 'R2' in data and \ data.R1 is not None and data.R2 is not None: library_layout='PAIRED' data['library_layout'] = library_layout return data except Exception as e: raise ValueError( 'Failed to calculate exp, run and file, error: {0}'.\ format(e)) @staticmethod def _reformat_file_group_data(data): try: if isinstance(data, pd.DataFrame): data = data.to_dict(orient='records') if not isinstance(data,list): raise ValueError( 'Expecting list got {0}'.format(type(data))) reformatted_file_group_data = list() reformatted_file_data = list() for row in data: collection_name = None collection_type = None file_location = None if 'name' in row.keys(): collection_name = row['name'] if 'type' in row.keys(): collection_type = row['type'] if 'location' in row.keys(): file_location = row['location'] if 'R1' in row.keys(): r1_file_path = row['R1'] r1_file_size = \ row['R1_size'] if 'R1_size' in row.keys() else None r1_file_md5 = \ row['R1_md5'] if 'R1_md5' in row.keys() else None reformatted_file_data.\ append({ 'file_path':r1_file_path, 'md5':r1_file_md5, 'location':file_location, 'size':r1_file_size}) reformatted_file_group_data.\ append({ 'name':collection_name, 'type':collection_type, 'file_path':r1_file_path}) if 'R2' in row.keys(): r2_file_path = row['R2'] r2_file_size = \ row['R2_size'] if 'R2_size' in row.keys() else None r2_file_md5 = \ row['R2_md5'] if 'R2_md5' in row.keys() else None reformatted_file_data.\ append({ 'file_path':r2_file_path, 'md5':r2_file_md5, 'location':file_location, 'size':r2_file_size}) reformatted_file_group_data.\ append({ 'name':collection_name, 'type':collection_type, 'file_path':r2_file_path}) file_data = \ pd.DataFrame(reformatted_file_data) file_data = file_data.dropna() # removing rows witn None values file_group_data = \ pd.DataFrame(reformatted_file_group_data) file_group_data = \ file_group_data.dropna() # removing rows with None values return file_data, file_group_data except Exception as e: raise ValueError( 'Failed to reformat file group data, error: {0}'.\ format(e)) def _write_manifest_file(self,file_data): ''' An internal method for writing file data to the manifest file ''' try: manifest_name = self.manifest_name fastq_dir = self.fastq_dir manifest_path = \ os.path.join(fastq_dir,manifest_name) if os.path.exists(manifest_path): raise ValueError( 'manifest file {0} already present'.\ format(manifest_path)) if isinstance(file_data, list): file_data = pd.DataFrame(file_data) # convert file data to dataframe file_data['file_path'] = \ file_data['file_path'].\ map( lambda x: \ os.path.relpath(x, start=fastq_dir)) # replace filepath with relative path file_data = \ file_data.drop(['location'],axis=1) # remove file location info file_data.\ to_csv( manifest_path, sep='\t', encoding='utf-8', index=False) # write data to manifest file except Exception as e: raise ValueError( 'Failed to write manifest file, error: {0}'.\ format(e)) @staticmethod def _check_existing_data(data,dbsession,table_name,check_column='EXISTS'): try: if not isinstance(data, pd.Series): raise ValueError( 'Expecting a data series and got {0}'.\ format(type(data))) if table_name=='experiment': if 'experiment_igf_id' in data and \ not pd.isnull(data['experiment_igf_id']): experiment_igf_id = data['experiment_igf_id'] ea = \ ExperimentAdaptor(**{'session':dbsession}) experiment_exists = \ ea.check_experiment_records_id( experiment_igf_id) if experiment_exists: # store data only if experiment is not existing data[check_column] = True else: data[check_column] = False return data else: raise ValueError( 'Missing or empty required column experiment_igf_id') elif table_name=='run': if 'run_igf_id' in data and \ not pd.isnull(data['run_igf_id']): run_igf_id = data['run_igf_id'] ra = RunAdaptor(**{'session':dbsession}) run_exists = \ ra.check_run_records_igf_id(run_igf_id) if run_exists: # store data only if run is not existing data[check_column] = True else: data[check_column] = False return data else: raise ValueError( 'Missing or empty required column run_igf_id') elif table_name=='collection': if 'name' in data and 'type' in data and \ not pd.isnull(data['name']) and \ not
pd.isnull(data['type'])
pandas.isnull
import os import re from collections import Counter, defaultdict import itertools from scipy.spatial.distance import cosine from sklearn.neighbors import NearestNeighbors import util as ut import os.path from numpy import linalg as LA import numpy as np import pandas as pd import time import warnings import sys from abc import ABC, abstractmethod #import hdbscan import matplotlib.pyplot as plt from sklearn.decomposition import PCA from webnlg_util import clean_url warnings.filterwarnings('ignore') def performance_debugger(func_name): def function_name_decoratir(func): def debug(*args, **kwargs): long_string = '' starT = time.time() print('\n\n######', func_name, ' starts ######') r = func(*args, **kwargs) print(func_name, ' took ', time.time() - starT, ' seconds\n') long_string += str(func_name) + ' took:' + str(time.time() - starT) + ' seconds' return r return debug return function_name_decoratir class SimilarityCalculator(ABC): def __init__(self): self._inverted_index = None self._num_triples = None @abstractmethod def get_similarities(self, inverted_index, num_triples, top_K): pass class PPMI(SimilarityCalculator): def __init__(self): """ :param co_occurrences: term to list of terms :param num_triples: """ super().__init__() self._marginal_probs = None def calculate_marginal_probabilities(self): marginal_probs = dict() for unq_ent, list_of_context_ent in enumerate(self.inverted_index): # N is multipled by 2 as list_of_context_ent contains other two element of an RDF triple probability = len(list_of_context_ent) / (self._num_triples * 2) marginal_probs[unq_ent] = probability self._marginal_probs = marginal_probs @performance_debugger('Calculation of PPMIs') def calculate_ppmi(self) -> np.array: holder = list() for unq_ent, list_of_context_ent in enumerate(self.inverted_index): top_k_sim = dict() marginal_prob_of_target = self._marginal_probs[unq_ent] statistical_info_of_cooccurrences = Counter(list_of_context_ent) top_k_sim.setdefault(unq_ent, dict()) for context_ent, co_occuring_freq in statistical_info_of_cooccurrences.items(): joint_prob = co_occuring_freq / self._num_triples marginal_prob_of_context = self._marginal_probs[context_ent] denominator = marginal_prob_of_target * marginal_prob_of_context PMI_val = np.log2(joint_prob) - np.log2(denominator) if PMI_val <= 0: continue if len(top_k_sim[unq_ent]) <= self._topK: top_k_sim[unq_ent][context_ent] = PMI_val.astype(np.float32) else: for k, v in top_k_sim[unq_ent].items(): if v < PMI_val: top_k_sim[unq_ent][context_ent] = PMI_val del top_k_sim[unq_ent][k] break context = np.array(list(top_k_sim[unq_ent].keys()), dtype=np.uint32) sims = np.array(list(top_k_sim[unq_ent].values()), dtype=np.float32) sims.shape = (sims.size, 1) # sampled may contain dublicated variables sampled = np.random.choice(len(self.inverted_index), self._topK) # negatives must be disjoint from context of k.th vocabulary term and k.term itsel negatives = np.setdiff1d(sampled, np.append(context, unq_ent), assume_unique=True) holder.append((context, sims, negatives)) return holder def get_similarities(self, inverted_index, num_triples, top_K): """ :param inverted_index: :param num_triples: :return: similarities data structure is a numpy array of dictionaries. i.th element of the numpy array corresponds to i.th element in the vocabulary. The dictionary stored in the i.th element: Key: a vocabulary term Val: PPMI value """ self.inverted_index = inverted_index self._num_triples = num_triples self._topK = top_K self.calculate_marginal_probabilities() similarities = self.calculate_ppmi() return similarities class Parser: def __init__(self, logger=False, p_folder: str = 'not initialized', k=1): self.path = 'uninitialized' self.logger = logger self.p_folder = p_folder self.similarity_function = None self.similarity_measurer = None self.K = int(k) self.logger = None def set_logger(self, logger): self.logger = logger def set_similarity_function(self, f): self.similarity_function = f def set_similarity_measure(self, f): self.similarity_measurer = f def set_experiment_path(self, p): self.p_folder = p def set_k_entities(self, k): self.K = k def get_path_knowledge_graphs(self, path: str): """ :param path: str represents path of a KB or path of folder containg KBs :return: """ KGs = list() if os.path.isfile(path): KGs.append(path) else: for root, dir, files in os.walk(path): for file in files: if '.nq' in file or '.nt' in file or 'ttl' in file or '.txt' in file: KGs.append(path + '/' + file) if len(KGs) == 0: self.logger.info( '{0} is not a path for a file or a folder containing any .nq or .nt formatted files'.format(path)) self.logger.info('Execution is terminated.') exit(1) return KGs @staticmethod def decompose_rdf(sentence): flag = 0 components = re.findall('<(.+?)>', sentence) #components = sentence.split() if len(components) == 2: s, p = components remaining_sentence = sentence[sentence.index(p) + len(p) + 2:] literal = remaining_sentence[:-1] o = literal flag = 2 elif len(components) == 4: del components[-1] s, p, o = components flag = 4 elif len(components) == 3: s, p, o = components flag = 3 elif len(components) > 4: s = components[0] p = components[1] remaining_sentence = sentence[sentence.index(p) + len(p) + 2:] literal = remaining_sentence[:remaining_sentence.index(' <http://')] o = literal else: ## This means that literal contained in RDF triple contains < > symbol raise ValueError() o = re.sub("\s+", "", o) s = re.sub("\s+", "", s) p = re.sub("\s+", "", p) return s, p, o, flag @performance_debugger('Preprocessing') def pipeline_of_preprocessing(self, f_name, extra_triples=[], bound=''): inverted_index, num_of_rdf, similar_characteristics = self.inverted_index(f_name, bound, extra_triples=extra_triples) holder = self.similarity_measurer().get_similarities(inverted_index, num_of_rdf, self.K) return holder @performance_debugger('Constructing Inverted Index') def inverted_index(self, path, bound, extra_triples = []): inverted_index = {} vocabulary = {} similar_characteristics = defaultdict(lambda: defaultdict(list)) num_of_rdf = 0 type_info = defaultdict(set) sentences = ut.generator_of_reader(bound, self.get_path_knowledge_graphs(path), self.decompose_rdf) for s, p, o in sentences: ss = clean_url(s) pp = clean_url(p) oo = clean_url(o) num_of_rdf += 1 # mapping from string to vocabulary vocabulary.setdefault(ss, len(vocabulary)) vocabulary.setdefault(pp, len(vocabulary)) vocabulary.setdefault(oo, len(vocabulary)) inverted_index.setdefault(vocabulary[ss], []).extend([vocabulary[oo], vocabulary[pp]]) inverted_index.setdefault(vocabulary[pp], []).extend([vocabulary[ss], vocabulary[oo]]) inverted_index.setdefault(vocabulary[oo], []).extend([vocabulary[ss], vocabulary[pp]]) if 'rdf-syntax-ns#type' in p: type_info[vocabulary[ss]].add(vocabulary[oo]) self.logger.info("Before") self.logger.info('Number of RDF triples:\t{0}'.format(num_of_rdf)) self.logger.info('Number of vocabulary terms:\t{0}'.format(len(vocabulary))) self.logger.info('Number of subjects with type information:\t{0}'.format(len(type_info))) self.logger.info('Number of types :\t{0}'.format(len(set(itertools.chain.from_iterable(type_info.values()))))) #Adding extra triples for s, p, o in extra_triples: num_of_rdf += 1 # mapping from string to vocabulary vocabulary.setdefault(s, len(vocabulary)) vocabulary.setdefault(p, len(vocabulary)) vocabulary.setdefault(o, len(vocabulary)) inverted_index.setdefault(vocabulary[s], []).extend([vocabulary[o], vocabulary[p]]) inverted_index.setdefault(vocabulary[p], []).extend([vocabulary[s], vocabulary[o]]) inverted_index.setdefault(vocabulary[o], []).extend([vocabulary[s], vocabulary[p]]) ################################################################### self.logger.info("After") self.logger.info('Number of RDF triples:\t{0}'.format(num_of_rdf)) self.logger.info('Number of vocabulary terms:\t{0}'.format(len(vocabulary))) self.logger.info('Number of subjects with type information:\t{0}'.format(len(type_info))) self.logger.info('Number of types :\t{0}'.format(len(set(itertools.chain.from_iterable(type_info.values()))))) if num_of_rdf == 0: self.logger.info('Exception at parsing dataset: No RDF triple processed.') self.logger.info('Terminating') exit(1) assert list(inverted_index.keys()) == list(range(0, len(vocabulary))) vocabulary = list(vocabulary.keys()) self.logger.info('Vocabulary being serialized. Note that ith vocabulary has ith. representation') ut.serializer(object_=vocabulary, path=self.p_folder, serialized_name='vocabulary') del vocabulary inverted_index = list(inverted_index.values()) self.logger.info('Inverted Index being serialized. Note that ith vocabulary term has ith. document') ut.serializer(object_=inverted_index, path=self.p_folder, serialized_name='inverted_index') ut.serializer(object_=type_info, path=self.p_folder, serialized_name='type_info') del type_info return inverted_index, num_of_rdf, similar_characteristics class PYKE(object): def __init__(self, epsilon=0.01, logger=None): self.epsilon = epsilon self.ratio = list() self.system_energy = 1 self.logger = logger @staticmethod def apply_hooke_s_law(embedding_space, target_index, context_indexes, PMS): """ :param embedding_space: :param target_index: :param context_indexes: :param PMS: :return: """ dist = embedding_space[context_indexes] - embedding_space[target_index] # replace all zeros to 1 as a normalizer. dist[dist == 0] = 0.01 # replace all pull = dist * PMS total_pull = np.sum(pull, axis=0) return total_pull, np.abs(dist).sum() @staticmethod def apply_inverse_hooke_s_law(embedding_space, target_index, repulsive_indexes, omega): """ :param embedding_space: :param target_index: :param repulsive_indexes: :param negative_constant: :return: """ # calculate distance from target to repulsive entities dist = embedding_space[repulsive_indexes] - embedding_space[target_index] # replace all zeros to 1 dist[dist == 0] = 0.01 with warnings.catch_warnings(): try: total_push = -omega * np.reciprocal(dist).sum(axis=0) # replace all zeros to 1 if needed # total_push[total_push == 0] = 0.01 except RuntimeWarning as r: print(r) print("Unexpected error:", sys.exc_info()[0]) exit(1) return total_push, np.abs(dist).sum() def go_through_entities(self, e, holder, omega): sum_pos_sem_dist = 0 sum_neg_sem_dist = 0 for target_index in range(len(e)): indexes_of_attractive, pms_of_contest, indexes_of_repulsive = holder[target_index] pull, p = self.apply_hooke_s_law(e, target_index, indexes_of_attractive, pms_of_contest) sum_pos_sem_dist += p push, n = self.apply_inverse_hooke_s_law(e, target_index, indexes_of_repulsive, omega) sum_neg_sem_dist += n total_effect = (pull + push) * self.system_energy e[target_index] = e[target_index] + total_effect semantic_distance = dict() semantic_distance['pos'] = sum_pos_sem_dist semantic_distance['neg'] = sum_neg_sem_dist return e, semantic_distance @performance_debugger('Generating Embeddings:') def pipeline_of_learning_embeddings(self, *, e, max_iteration, energy_release_at_epoch, holder, omega): for epoch in range(max_iteration): self.logger.info('EPOCH: {0}'.format(epoch)) previous_f_norm = LA.norm(e, 'fro') e, semantic_dist = self.go_through_entities(e, holder, omega) self.system_energy = self.system_energy - energy_release_at_epoch self.logger.info( 'Distance:{0}\t System Energy:{1} \t Distance Ratio:{2}'.format(semantic_dist, self.system_energy, semantic_dist['pos'] / semantic_dist[ 'neg'])) e = np.nan_to_num(e) with warnings.catch_warnings(): try: e = (e - e.min(axis=0)) / (e.max(axis=0) - e.min(axis=0)) except RuntimeWarning as r: print(r) print(e.mean()) print(np.isnan(e).any()) print(np.isinf(e).any()) exit(1) new_f_norm = LA.norm(e, 'fro') if self.equilibrium(epoch, previous_f_norm, new_f_norm): e = np.nan_to_num(e) break return
pd.DataFrame(e)
pandas.DataFrame
# pylint: disable=E1101 from datetime import datetime, timedelta from pandas.compat import range, lrange, zip, product import numpy as np from pandas import Series, TimeSeries, DataFrame, Panel, isnull, notnull, Timestamp from pandas.tseries.index import date_range from pandas.tseries.offsets import Minute, BDay from pandas.tseries.period import period_range, PeriodIndex, Period from pandas.tseries.resample import DatetimeIndex, TimeGrouper import pandas.tseries.offsets as offsets import pandas as pd import unittest import nose from pandas.util.testing import (assert_series_equal, assert_almost_equal, assert_frame_equal) import pandas.util.testing as tm bday = BDay() def _skip_if_no_pytz(): try: import pytz except ImportError: raise nose.SkipTest class TestResample(unittest.TestCase): _multiprocess_can_split_ = True def setUp(self): dti = DatetimeIndex(start=datetime(2005, 1, 1), end=datetime(2005, 1, 10), freq='Min') self.series = Series(np.random.rand(len(dti)), dti) def test_custom_grouper(self): dti = DatetimeIndex(freq='Min', start=datetime(2005, 1, 1), end=datetime(2005, 1, 10)) s = Series(np.array([1] * len(dti)), index=dti, dtype='int64') b = TimeGrouper(Minute(5)) g = s.groupby(b) # check all cython functions work funcs = ['add', 'mean', 'prod', 'ohlc', 'min', 'max', 'var'] for f in funcs: g._cython_agg_general(f) b = TimeGrouper(Minute(5), closed='right', label='right') g = s.groupby(b) # check all cython functions work funcs = ['add', 'mean', 'prod', 'ohlc', 'min', 'max', 'var'] for f in funcs: g._cython_agg_general(f) self.assertEquals(g.ngroups, 2593) self.assert_(notnull(g.mean()).all()) # construct expected val arr = [1] + [5] * 2592 idx = dti[0:-1:5] idx = idx.append(dti[-1:]) expect = Series(arr, index=idx) # GH2763 - return in put dtype if we can result = g.agg(np.sum) assert_series_equal(result, expect) df = DataFrame(np.random.rand(len(dti), 10), index=dti, dtype='float64') r = df.groupby(b).agg(np.sum) self.assertEquals(len(r.columns), 10) self.assertEquals(len(r.index), 2593) def test_resample_basic(self): rng = date_range('1/1/2000 00:00:00', '1/1/2000 00:13:00', freq='min', name='index') s = Series(np.random.randn(14), index=rng) result = s.resample('5min', how='mean', closed='right', label='right') expected = Series([s[0], s[1:6].mean(), s[6:11].mean(), s[11:].mean()], index=date_range('1/1/2000', periods=4, freq='5min')) assert_series_equal(result, expected) self.assert_(result.index.name == 'index') result = s.resample('5min', how='mean', closed='left', label='right') expected = Series([s[:5].mean(), s[5:10].mean(), s[10:].mean()], index=date_range('1/1/2000 00:05', periods=3, freq='5min')) assert_series_equal(result, expected) s = self.series result = s.resample('5Min', how='last') grouper = TimeGrouper(Minute(5), closed='left', label='left') expect = s.groupby(grouper).agg(lambda x: x[-1]) assert_series_equal(result, expect) def test_resample_basic_from_daily(self): # from daily dti = DatetimeIndex( start=datetime(2005, 1, 1), end=datetime(2005, 1, 10), freq='D', name='index') s = Series(np.random.rand(len(dti)), dti) # to weekly result = s.resample('w-sun', how='last') self.assertEquals(len(result), 3) self.assert_((result.index.dayofweek == [6, 6, 6]).all()) self.assertEquals(result.irow(0), s['1/2/2005']) self.assertEquals(result.irow(1), s['1/9/2005']) self.assertEquals(result.irow(2), s.irow(-1)) result = s.resample('W-MON', how='last') self.assertEquals(len(result), 2) self.assert_((result.index.dayofweek == [0, 0]).all()) self.assertEquals(result.irow(0), s['1/3/2005']) self.assertEquals(result.irow(1), s['1/10/2005']) result = s.resample('W-TUE', how='last') self.assertEquals(len(result), 2) self.assert_((result.index.dayofweek == [1, 1]).all()) self.assertEquals(result.irow(0), s['1/4/2005']) self.assertEquals(result.irow(1), s['1/10/2005']) result = s.resample('W-WED', how='last') self.assertEquals(len(result), 2) self.assert_((result.index.dayofweek == [2, 2]).all()) self.assertEquals(result.irow(0), s['1/5/2005']) self.assertEquals(result.irow(1), s['1/10/2005']) result = s.resample('W-THU', how='last') self.assertEquals(len(result), 2) self.assert_((result.index.dayofweek == [3, 3]).all()) self.assertEquals(result.irow(0), s['1/6/2005']) self.assertEquals(result.irow(1), s['1/10/2005']) result = s.resample('W-FRI', how='last') self.assertEquals(len(result), 2) self.assert_((result.index.dayofweek == [4, 4]).all()) self.assertEquals(result.irow(0), s['1/7/2005']) self.assertEquals(result.irow(1), s['1/10/2005']) # to biz day result = s.resample('B', how='last') self.assertEquals(len(result), 7) self.assert_((result.index.dayofweek == [4, 0, 1, 2, 3, 4, 0]).all()) self.assertEquals(result.irow(0), s['1/2/2005']) self.assertEquals(result.irow(1), s['1/3/2005']) self.assertEquals(result.irow(5), s['1/9/2005']) self.assert_(result.index.name == 'index') def test_resample_frame_basic(self): df = tm.makeTimeDataFrame() b = TimeGrouper('M') g = df.groupby(b) # check all cython functions work funcs = ['add', 'mean', 'prod', 'min', 'max', 'var'] for f in funcs: g._cython_agg_general(f) result = df.resample('A') assert_series_equal(result['A'], df['A'].resample('A')) result = df.resample('M') assert_series_equal(result['A'], df['A'].resample('M')) df.resample('M', kind='period') df.resample('W-WED', kind='period') def test_resample_loffset(self): rng = date_range('1/1/2000 00:00:00', '1/1/2000 00:13:00', freq='min') s = Series(np.random.randn(14), index=rng) result = s.resample('5min', how='mean', closed='right', label='right', loffset=timedelta(minutes=1)) idx = date_range('1/1/2000', periods=4, freq='5min') expected = Series([s[0], s[1:6].mean(), s[6:11].mean(), s[11:].mean()], index=idx + timedelta(minutes=1)) assert_series_equal(result, expected) expected = s.resample( '5min', how='mean', closed='right', label='right', loffset='1min') assert_series_equal(result, expected) expected = s.resample( '5min', how='mean', closed='right', label='right', loffset=Minute(1)) assert_series_equal(result, expected) self.assert_(result.index.freq == Minute(5)) # from daily dti = DatetimeIndex( start=datetime(2005, 1, 1), end=datetime(2005, 1, 10), freq='D') ser = Series(np.random.rand(len(dti)), dti) # to weekly result = ser.resample('w-sun', how='last') expected = ser.resample('w-sun', how='last', loffset=-bday) self.assertEqual(result.index[0] - bday, expected.index[0]) def test_resample_upsample(self): # from daily dti = DatetimeIndex( start=datetime(2005, 1, 1), end=datetime(2005, 1, 10), freq='D', name='index') s = Series(np.random.rand(len(dti)), dti) # to minutely, by padding result = s.resample('Min', fill_method='pad') self.assertEquals(len(result), 12961) self.assertEquals(result[0], s[0]) self.assertEquals(result[-1], s[-1]) self.assert_(result.index.name == 'index') def test_upsample_with_limit(self): rng = date_range('1/1/2000', periods=3, freq='5t') ts = Series(np.random.randn(len(rng)), rng) result = ts.resample('t', fill_method='ffill', limit=2) expected = ts.reindex(result.index, method='ffill', limit=2) assert_series_equal(result, expected) def test_resample_ohlc(self): s = self.series grouper = TimeGrouper(Minute(5)) expect = s.groupby(grouper).agg(lambda x: x[-1]) result = s.resample('5Min', how='ohlc') self.assertEquals(len(result), len(expect)) self.assertEquals(len(result.columns), 4) xs = result.irow(-2) self.assertEquals(xs['open'], s[-6]) self.assertEquals(xs['high'], s[-6:-1].max()) self.assertEquals(xs['low'], s[-6:-1].min()) self.assertEquals(xs['close'], s[-2]) xs = result.irow(0) self.assertEquals(xs['open'], s[0]) self.assertEquals(xs['high'], s[:5].max()) self.assertEquals(xs['low'], s[:5].min()) self.assertEquals(xs['close'], s[4]) def test_resample_ohlc_dataframe(self): df = (pd.DataFrame({'PRICE': {Timestamp('2011-01-06 10:59:05', tz=None): 24990, Timestamp('2011-01-06 12:43:33', tz=None): 25499, Timestamp('2011-01-06 12:54:09', tz=None): 25499}, 'VOLUME': {Timestamp('2011-01-06 10:59:05', tz=None): 1500000000, Timestamp('2011-01-06 12:43:33', tz=None): 5000000000, Timestamp('2011-01-06 12:54:09', tz=None): 100000000}}) ).reindex_axis(['VOLUME', 'PRICE'], axis=1) res = df.resample('H', how='ohlc') exp = pd.concat([df['VOLUME'].resample('H', how='ohlc'), df['PRICE'].resample('H', how='ohlc')], axis=1, keys=['VOLUME', 'PRICE']) assert_frame_equal(exp, res) df.columns = [['a', 'b'], ['c', 'd']] res = df.resample('H', how='ohlc') exp.columns = pd.MultiIndex.from_tuples([('a', 'c', 'open'), ('a', 'c', 'high'), ('a', 'c', 'low'), ('a', 'c', 'close'), ('b', 'd', 'open'), ('b', 'd', 'high'), ('b', 'd', 'low'), ('b', 'd', 'close')]) assert_frame_equal(exp, res) # dupe columns fail atm # df.columns = ['PRICE', 'PRICE'] def test_resample_dup_index(self): # GH 4812 # dup columns with resample raising df = DataFrame(np.random.randn(4,12),index=[2000,2000,2000,2000],columns=[ Period(year=2000,month=i+1,freq='M') for i in range(12) ]) df.iloc[3,:] = np.nan result = df.resample('Q',axis=1) expected = df.groupby(lambda x: int((x.month-1)/3),axis=1).mean() expected.columns = [ Period(year=2000,quarter=i+1,freq='Q') for i in range(4) ] assert_frame_equal(result, expected) def test_resample_reresample(self): dti = DatetimeIndex( start=datetime(2005, 1, 1), end=datetime(2005, 1, 10), freq='D') s = Series(np.random.rand(len(dti)), dti) bs = s.resample('B', closed='right', label='right') result = bs.resample('8H') self.assertEquals(len(result), 22) tm.assert_isinstance(result.index.freq, offsets.DateOffset) self.assert_(result.index.freq == offsets.Hour(8)) def test_resample_timestamp_to_period(self): ts = _simple_ts('1/1/1990', '1/1/2000') result = ts.resample('A-DEC', kind='period') expected = ts.resample('A-DEC') expected.index = period_range('1990', '2000', freq='a-dec') assert_series_equal(result, expected) result = ts.resample('A-JUN', kind='period') expected = ts.resample('A-JUN') expected.index = period_range('1990', '2000', freq='a-jun') assert_series_equal(result, expected) result = ts.resample('M', kind='period') expected = ts.resample('M') expected.index = period_range('1990-01', '2000-01', freq='M') assert_series_equal(result, expected) result = ts.resample('M', kind='period') expected = ts.resample('M') expected.index = period_range('1990-01', '2000-01', freq='M') assert_series_equal(result, expected) def test_ohlc_5min(self): def _ohlc(group): if isnull(group).all(): return np.repeat(np.nan, 4) return [group[0], group.max(), group.min(), group[-1]] rng = date_range('1/1/2000 00:00:00', '1/1/2000 5:59:50', freq='10s') ts = Series(np.random.randn(len(rng)), index=rng) resampled = ts.resample('5min', how='ohlc', closed='right', label='right') self.assert_((resampled.ix['1/1/2000 00:00'] == ts[0]).all()) exp = _ohlc(ts[1:31]) self.assert_((resampled.ix['1/1/2000 00:05'] == exp).all()) exp = _ohlc(ts['1/1/2000 5:55:01':]) self.assert_((resampled.ix['1/1/2000 6:00:00'] == exp).all()) def test_downsample_non_unique(self): rng = date_range('1/1/2000', '2/29/2000') rng2 = rng.repeat(5).values ts = Series(np.random.randn(len(rng2)), index=rng2) result = ts.resample('M', how='mean') expected = ts.groupby(lambda x: x.month).mean() self.assertEquals(len(result), 2) assert_almost_equal(result[0], expected[1]) assert_almost_equal(result[1], expected[2]) def test_asfreq_non_unique(self): # GH #1077 rng = date_range('1/1/2000', '2/29/2000') rng2 = rng.repeat(2).values ts = Series(np.random.randn(len(rng2)), index=rng2) self.assertRaises(Exception, ts.asfreq, 'B') def test_resample_axis1(self): rng = date_range('1/1/2000', '2/29/2000') df = DataFrame(np.random.randn(3, len(rng)), columns=rng, index=['a', 'b', 'c']) result = df.resample('M', axis=1) expected = df.T.resample('M').T tm.assert_frame_equal(result, expected) def test_resample_panel(self): rng = date_range('1/1/2000', '6/30/2000') n = len(rng) panel = Panel(np.random.randn(3, n, 5), items=['one', 'two', 'three'], major_axis=rng, minor_axis=['a', 'b', 'c', 'd', 'e']) result = panel.resample('M', axis=1) def p_apply(panel, f): result = {} for item in panel.items: result[item] = f(panel[item]) return Panel(result, items=panel.items) expected = p_apply(panel, lambda x: x.resample('M'))
tm.assert_panel_equal(result, expected)
pandas.util.testing.assert_panel_equal
import numpy as np import pytest from pandas.core.dtypes.generic import ABCIndex import pandas as pd import pandas._testing as tm from pandas.core.arrays.integer import ( Int8Dtype, UInt32Dtype, ) def test_dtypes(dtype): # smoke tests on auto dtype construction if dtype.is_signed_integer: assert np.dtype(dtype.type).kind == "i" else: assert np.dtype(dtype.type).kind == "u" assert dtype.name is not None @pytest.mark.parametrize("op", ["sum", "min", "max", "prod"]) def test_preserve_dtypes(op): # TODO(#22346): preserve Int64 dtype # for ops that enable (mean would actually work here # but generally it is a float return value) df = pd.DataFrame( { "A": ["a", "b", "b"], "B": [1, None, 3], "C": pd.array([1, None, 3], dtype="Int64"), } ) # op result = getattr(df.C, op)() if op in {"sum", "prod", "min", "max"}: assert isinstance(result, np.int64) else: assert isinstance(result, int) # groupby result = getattr(df.groupby("A"), op)() expected = pd.DataFrame( {"B": np.array([1.0, 3.0]), "C": pd.array([1, 3], dtype="Int64")}, index=
pd.Index(["a", "b"], name="A")
pandas.Index
from __future__ import annotations from pathlib import Path import matplotlib.pyplot as plt import numpy as np import pandas as pd import seaborn as sns from scipy.stats import gamma, exponnorm sns.set() BASE_PATH = Path('..', 'data', 'experimental') INPUT_PATHS = [ BASE_PATH / 'control.csv', BASE_PATH / 'tmz.csv', ] CURVE_PARAMETERS = { # estimated from running "clovars fit" on "control.csv" and "tmz.csv" 'control_division_parameters': { 'type': gamma, 'loc': 16.23, 'scale': 2.84, 'a': 3.32, }, 'tmz_division_parameters': { 'type': exponnorm, 'loc': 12.72, 'scale': 8.50, 'K': 2.87, }, 'tmz_death_parameters': { 'type': exponnorm, 'loc': 55.09, 'scale': 23.75, 'K': 2.93, }, } def main( input_paths: list[Path], curve_parameters: dict[str, dict[str, float]], ) -> None: """Main function of this script.""" dfs = [] for path in input_paths: df = pd.melt(pd.read_csv(path, index_col=None), var_name='type', value_name='hours') df['treatment'] = path.stem dfs.append(df) data =
pd.concat(dfs, ignore_index=True)
pandas.concat
#!/usr/bin/env python # -*- coding: utf-8 -*- """ Step 2X Data generation: Generate ground truth for stock markets based on OHLC data License_info: ISC ISC License Copyright (c) 2020, <NAME> Permission to use, copy, modify, and/or distribute this software for any purpose with or without fee is hereby granted, provided that the above copyright notice and this permission notice appear in all copies. THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE. """ # Futures # Built-in/Generic Imports # Libs import argparse import os import pandas as pd import matplotlib.pyplot as plt from statsmodels.nonparametric.smoothers_lowess import lowess import numpy as np from scipy.ndimage.interpolation import shift import matplotlib.dates as mdates from pandas.plotting import register_matplotlib_converters
register_matplotlib_converters()
pandas.plotting.register_matplotlib_converters
import unittest from unittest import TestCase import env import data from eventgraphs import EventGraph, BadInputError import pandas as pd from pandas.testing import assert_frame_equal DATASETS = [data.directed, data.directed_hyper, data.directed_hyper_single, data.undirected_hyper, data.extra_columns, data.string_labels] class IOTests(TestCase): """ Tests the input and output functionality of EventGraph class. """ def from_pandas(self, dataset): """""" df = pd.DataFrame(dataset) EG = EventGraph.from_pandas_eventlist(events=df, graph_rules='teg') self.assertTrue(True) def from_dict(self, dataset): """""" EG = EventGraph.from_dict_eventlist(events=dataset, graph_rules='teg') self.assertTrue(True) def from_save_and_load(self, dataset): """""" EG = EventGraph.from_dict_eventlist(events=dataset, graph_rules='teg') EG.build() EG.save('test.json') LG = EventGraph.from_file('test.json') # Cannot compare dataframes where columns are in different order LG.eg_edges = LG.eg_edges[EG.eg_edges.columns] assert_frame_equal(LG.events, EG.events)
assert_frame_equal(LG.eg_edges, EG.eg_edges)
pandas.testing.assert_frame_equal
from __future__ import division # import libraries from datetime import datetime, timedelta import pandas as pd # %matplotlib inline import matplotlib.pyplot as plt import numpy as np import seaborn as sns import plotly as py import plotly.offline as pyoff import plotly.graph_objs as go #inititate Plotly pyoff.init_notebook_mode() #it generates offline graph in jupyter notebook #load our data from CSV # tx_data = pd.read_csv("data.csv") tx_data = pd.read_csv('data.csv',header=0,encoding = 'unicode_escape') #read csv file and other than ascii mode enabled extra type of characters also tx_data.head(10) #it prints #convert the string date field to datetime tx_data['InvoiceDate'] = pd.to_datetime(tx_data['InvoiceDate']) tx_data['InvoiceDate'].describe() # tx_data.head() #we will be using only UK data tx_uk = tx_data.query("Country=='United Kingdom'").reset_index(drop=True) tx_user = pd.DataFrame(tx_data['CustomerID'].unique()) tx_user.columns = ['CustomerID'] tx_uk.head(10) tx_max_purchase = tx_uk.groupby('CustomerID').InvoiceDate.max().reset_index() tx_max_purchase.columns = ['CustomerID','MaxPurchaseDate'] tx_max_purchase['Recency'] = (tx_max_purchase['MaxPurchaseDate'].max() - tx_max_purchase['MaxPurchaseDate']).dt.days tx_user = pd.merge(tx_user, tx_max_purchase[['CustomerID','Recency']], on='CustomerID') tx_user.head() tx_user.describe() plot_data = [ go.Histogram(x=tx_user['Recency'])] plot_layout = go.Layout( title='Recency') fig = go.Figure(data=plot_data, layout=plot_layout) pyoff.iplot(fig) from sklearn.cluster import KMeans sse={} tx_recency = tx_user[['Recency']] for k in range(1, 10): kmeans = KMeans(n_clusters=k, max_iter=1000).fit(tx_recency) tx_recency["clusters"] = kmeans.labels_ sse[k] = kmeans.inertia_ plt.figure() plt.plot(list(sse.keys()), list(sse.values())) plt.xlabel("Number of cluster") plt.show() kmeans = KMeans(n_clusters=4) kmeans.fit(tx_user[['Recency']]) tx_user['RecencyCluster'] = kmeans.predict(tx_user[['Recency']]) #function for ordering cluster numbers def order_cluster(cluster_field_name, target_field_name,df,ascending): new_cluster_field_name = 'new_' + cluster_field_name df_new = df.groupby(cluster_field_name)[target_field_name].mean().reset_index() df_new = df_new.sort_values(by=target_field_name,ascending=ascending).reset_index(drop=True) df_new['index'] = df_new.index df_final = pd.merge(df,df_new[[cluster_field_name,'index']], on=cluster_field_name) df_final = df_final.drop([cluster_field_name],axis=1) df_final = df_final.rename(columns={"index":cluster_field_name}) return df_final tx_user = order_cluster('RecencyCluster', 'Recency',tx_user,False) tx_frequency = tx_uk.groupby('CustomerID').InvoiceDate.count().reset_index() tx_frequency.columns = ['CustomerID','Frequency'] #add this data to our main dataframe tx_user = pd.merge(tx_user, tx_frequency, on='CustomerID') #plot the histogram plot_data = [ go.Histogram( x=tx_user.query('Frequency < 1000')['Frequency'] ) ] plot_layout = go.Layout( title='Frequency' ) fig = go.Figure(data=plot_data, layout=plot_layout) pyoff.iplot(fig) kmeans = KMeans(n_clusters=6) kmeans.fit(tx_user[['Frequency']]) tx_user['FrequencyCluster'] = kmeans.predict(tx_user[['Frequency']]) #order the frequency cluster tx_user = order_cluster('FrequencyCluster', 'Frequency',tx_user,True) #see details of each cluster tx_user.groupby('FrequencyCluster')['Frequency'].describe() tx_uk['Revenue'] = tx_uk['UnitPrice'] * tx_uk['Quantity'] tx_revenue = tx_uk.groupby('CustomerID').Revenue.sum().reset_index() #merge it with our main dataframe tx_user =
pd.merge(tx_user, tx_revenue, on='CustomerID')
pandas.merge
import argparse, time,re, os,csv,functools, signal,sys, json import logging,datetime, threading,concurrent.futures from logging import handlers from time import gmtime, strftime from urllib.parse import urlparse from os.path import splitext import pandas as pd import numpy as np # Local Imports from Lib.GCS.wrapper import Wrapper from Lib.GCS.origin_settings import Origin_Settings from Lib.GCS.log import ConsoleLogging def ArgsParser(): parser = argparse.ArgumentParser(description='',formatter_class=argparse.RawTextHelpFormatter) parser.add_argument('--switchKey', type=str, help='Account_ID to Query for multi account management (switch key)', required=False) parser.add_argument('--verbose', action='store_true', help='Turn on Verbose Mode.') parser.add_argument('--section', type=str, help='EdgeRc section to be used.', required=False,default='papi') parser.add_argument('--type', type=str.lower, choices=['as','os','har'], help='Type of report to be done [account-summary,offload,http-archive]]', required=False,default='as') parser.add_argument('--cpcodes', nargs='+', type=int, help='List of cpcodes to query. Used only in Offload Analysis.', required=False) parser.add_argument('--start', type=str, help='Report Start date in format YYYY-MM-DD", if not provided default is start of last month. Used only in Offload Analysis.', required=False) parser.add_argument('--end', type=str, help='Report Start date in format YYYY-MM-DD", if not provided default is start of last month. Used only in Offload Analysis.', required=False) parser.add_argument('--domain', type=str, help='Main Domain to be reviewed in HAR, usually it will be the same as the page view URL. Used only in Har Analysis.', required=False) parser.add_argument('--first-parties', nargs='+', type=str, help='List of first party domains --domain will be appended to this list. If only one domain is in quesion, --domain is all you need. Used only in Har Analysis.', required=False) parser.add_argument('--file', type=str, help='File location to be analysed. Used only in Har Analysis.', required=False) parser.add_argument('--groupby', type=str.lower, choices=['ext','url'], help='Used only in Offload Analysis. ', required=False,default='ext') args = vars(parser.parse_args()) return parser, args class Aggregator: def __init__(self,console,args,section_name): self.args = None self.parser = None self.maxThreads = 5 self.outputdir = "None" self.verbose = args['verbose'] self.log = console.log self.wrapper = Wrapper(self.log,section_name) self.accountId = None self.wrapper.account = None self.dfs = {} self.startDate = None self.endDate = None self.accountName = None self.productMap = None self.reportType = "as" self.groupby = args['groupby'] signal.signal(signal.SIGINT, self.signal_handler) def signal_handler(self,sig, frame): self.clear_cache() self.log.critical("Forced Exit... Bye!..") sys.exit(0) def _validateDate(self, date): """Returns False if input date does not follow YYYY-MM-DD. Keyword arguments: date Return type: Boolean """ try: datetime.datetime.strptime(str(date), '%Y-%m-%d') return True except ValueError: return False # raise ValueError("Incorrect data format, should be YYYY-MM-DD") def createFolder(self,directoryName): """Creates directores to store outputs, takes the directory name. This value most of the time will be the account Name. Keyword arguments: directoryName Return type: None """ self.outputdir = 'Reports' # Create Audit Folder try: os.stat(self.outputdir) except: os.mkdir(self.outputdir) self.outputdir = self.outputdir+'/'+directoryName.replace(' ','_')+'/' # Create Account Folder under Audit try: os.stat(self.outputdir) except: os.mkdir(self.outputdir) self.outputdir = self.outputdir + str(datetime.datetime.utcfromtimestamp(time.time()).strftime('%Y-%m-%d %H:%M:%S')).replace(' ','_').replace(':','.') + '-' def _getProducts(self, contractId): """ Return the set of products within a contract as a comma seperated list Keyword arguments: contractId Return type: list """ products = self.wrapper.getProducts(contractId) productNames = [] if 'products' in products: for product in products['products']['items']: productNames.append(product['productName']) new_row = { 'Product_ID':product['productId'], 'Product_Name':product['productName'] } if len(productNames) > 1: return ",".join(productNames) else: return [] def getAccountDetails(self): """ Gets Account Name from ID, also saves the groups for later functions. Keyword arguments: None Return type: Boolean, but also stores dataframe in self.dfs """ if args['switchKey']: self.accountId = args['switchKey'] self.wrapper.account = args['switchKey'] self.groups = self.wrapper.getGroups() if 'incidentId' in self.groups: self.log.error('Account Not Found or insufficient privileges to complete the operation. Try "--section sectionName" o change edgerc section') return False if not args['switchKey']: self.accountId = self.groups['accountId'][4:] # self.wrapper.account = self.groups['accountId'][4:] self.log.info("Account ID: {0}".format(self.accountId)) self.accountName = self.groups['accountName'] self.log.info("Account Name: {0}".format(self.accountName)) csv_file_path = self.createFolder(self.groups['accountName']) columns = ["Account_Id", "Account_Name"] df_acc= pd.DataFrame(columns=columns) new_row = { 'Account_Id':self.groups['accountId'][4:], 'Account_Name':self.groups['accountName'] } df_acc=df_acc.append(new_row, ignore_index=True) self.dfs['account'] = df_acc self._readProductMap() return True def accountSummary(self): """ Main function for AS report type, orchestrates function execution. Keyword arguments: None Return type: None """ self.log.info("Creating Contract summary table") self.printContracts() self.log.info("Creating Groups summary table") self.printGroups() self.log.info("Creating CP_Code summary table") self.printCPcodes() self.log.info("Creating edge host name summary table") self.printEdgeHostNames() self.log.info("Creating Application Security tables") self.printAppSec() if args['verbose']: self.log.info("Creating Property summary. (It may take a while) ") else: self.log.info("Creating Property summary. (It may take a while, view more with '--verbose') ") self.printPropertiesDetails() self.log.info("Creating Certificate Table.") self.getEnrollments() self.log.info("Creating Summary by Hostname") self.presentation() self.log.info("Writing Files...") self._writeFiles() self.log.info("Report successfull, output can be found here:'Reports/{0}/'".format(self.accountName)) def printContracts(self): """ Gets Contracts within Account Keyword arguments: None Return type: None, but stores dataframe in self.dfs """ self.log.info("Creating Contracts table.") columns = ["Contract_ID" , "Contract_Name", "Products"] df_ctr= pd.DataFrame(columns=columns) contracts = self.wrapper.getContractNames() for contract in contracts['contracts']['items']: products = self._getProducts(contract['contractId']) new_row = { 'Contract_ID': contract['contractId'][4:], 'Contract_Name':contract['contractTypeName'], 'Products':products } df_ctr=df_ctr.append(new_row, ignore_index=True) self.dfs['contracts'] = df_ctr def printGroups(self): """ Gets Groups in account Keyword arguments: None Return type: None, but stores dataframe in self.dfs """ self.log.info("Creating Groups table.") columns = ["Group_ID", "Group_Name","Parent"] df_grp = pd.DataFrame(columns=columns) for group in self.groups['groups']['items']: grp_id = int(group['groupId'][4:]) grp_name = group['groupName'] grp_parent = None if 'parentGroupId' in group: grp_parent = int(group['parentGroupId'][4:]) new_row = { 'Group_ID': grp_id, 'Group_Name':grp_name, 'Parent':grp_parent } df_grp=df_grp.append(new_row, ignore_index=True) self.dfs['groups'] = df_grp def printEdgeHostNames(self): """ Gets EdgeHostnames in account Keyword arguments: None Return type: None, but stores dataframe in self.dfs """ lst_eh = [] columns = ["Group_ID", "Contract_ID", "Edge_Host_ID", "Edge_Host_Name", "Edge_Host_Domain_Suffix", "Secure", "IPVersion","Product_ID","Map","Slot"] df_eh = pd.DataFrame(columns=columns) contracts = [] with concurrent.futures.ThreadPoolExecutor(max_workers=self.maxThreads) as executor: for group in self.groups['groups']['items']: groupId = group['groupId'] executor.submit(self.GroupsWorker,'edgehost',group,lst_eh,contracts) df_eh= df_eh.append(lst_eh, ignore_index=True) self.dfs['edgehostnames'] = df_eh def PropertyWorker(self,list_grp_configs,list_grp_behaviors,config_details): """ Gets Property details, Keyword arguments: list_grp_configs list_grp_behaviors config_details Return type: None, but stores dataframe in self.dfs """ args = None args = ['Prod_Version','Staging_Version', 'Latest_Version'] if 'propertyName' in config_details: self.log.debug("Importing data for property: '{0}'".format(config_details['propertyName'])) # Assign values to variables here for readability and will be used in rest of function. groupId = config_details['groupId'] contractId = config_details['contractId'] propertyId = config_details['propertyId'] productionVersion = config_details['productionVersion'] stgVersion = config_details['stagingVersion'] latestVersion = config_details['latestVersion'] productId = None new_row = { 'Config_Name': config_details['propertyName'], 'Group_ID': int(groupId[4:]), 'Contract_ID': contractId[4:], 'Property_ID': int(propertyId[4:]), 'Prod_Version': productionVersion, 'Staging_Version': stgVersion, 'Latest_Version': latestVersion, 'Product': productId } if args: for config_env in args: config_version = new_row[config_env] if config_version is not None: get_version = self.wrapper.getVersionDetails(propertyId,groupId,contractId,str(config_version)) if 'versions' in get_version: for item in get_version['versions']['items']: new_row[config_env + '_Updated_User'] = item['updatedByUser'] new_row[config_env + '_Updated_Time'] = item['updatedDate'] if productId == None: productId = item['productId'][4:] else: new_row[config_env + '_Updated_User'] = 'No_' + config_env new_row[config_env + '_Updated_Time'] = 'No_' + config_env new_row['Product'] = productId version = new_row['Latest_Version'] if ('Prod_Version' in new_row) and (new_row['Prod_Version'] is not None): version = new_row['Prod_Version'] else: if ('Staging_Version' in new_row) and (new_row['Staging_Version'] is not None): version = new_row['Staging_Version'] new_row['Hostnames'] = self.getPropertyHostDetails(new_row['Group_ID'],new_row['Contract_ID'],new_row['Property_ID'], str(version)) new_row['Origins'] = self.getPropertyOriginDetails(new_row['Group_ID'],new_row['Contract_ID'],new_row['Property_ID'], str(version)) new_row['Behaviors'] = self.getBehaviorDetails() new_row['CP_Codes'] = '['+self.getCPCodeDetails()+']' property_behaviors = new_row['Behaviors'] list_grp_configs.append(new_row) if productionVersion is not None: propertyVersion = productionVersion elif stgVersion is not None: propertyVersion = stgVersion else : propertyVersion = latestVersion available_behaviors = self.wrapper.getavailableBehavior(propertyId, str(propertyVersion),contractId, groupId) if 'behaviors' in available_behaviors: for b in available_behaviors['behaviors']['items']: enabled = False if b['name'] in property_behaviors: enabled = True new_row = { 'Config_Name': config_details['propertyName'], 'Behaviors': b['name'], 'Enabled': enabled } list_grp_behaviors.append(new_row) return def GroupsWorker(self, workType,group,main_list=None,second_list=None): """ Worker for multithreads for property functions, cpcode functions, edgehosts due to high number of groups per account, Keyword arguments: workType <= Type of function to be execute [property, cpcode , edgehosts] group <= Dataframe containing list of account groups main_list <= list passed down by maint thread to append results second_list <= secondary list passed down by main thread to append results Return type: None """ groupId = group['groupId'] if 'contractIds' in group: for contractId in group['contractIds']: if workType == 'properties': location_result = self.wrapper.getProperties(groupId, contractId) if 'properties' in location_result: with concurrent.futures.ThreadPoolExecutor(max_workers=self.maxThreads) as executor: for config_details in location_result['properties']['items']: executor.submit(self.PropertyWorker,main_list,second_list,config_details) elif workType == 'cpcodes': cpcodes = self.wrapper.getCPCodes(groupId, contractId) with concurrent.futures.ThreadPoolExecutor(max_workers=self.maxThreads) as executor: for cp in cpcodes['cpcodes']['items']: products = [] for product in cp['productIds']: products.append(product[4:]) new_row = { 'Group_ID': int(groupId[4:]), 'Contract_ID': contractId[4:], 'CP_Code_ID': int(cp['cpcodeId'][4:]), 'CP_Code_Name': cp['cpcodeName'], 'CP_Code_Products': "|".join(products) } if new_row not in main_list: self.log.debug("Fetched data for CPcode: '{0}'".format(cp['cpcodeId'][4:])) main_list.append(new_row) elif workType == 'edgehost': if 'contractIds' in group: for contractId in group['contractIds']: if contractId in second_list: break second_list.append(contractId) edgeHostNames = self.wrapper.getEdgeHostNames(groupId, contractId,'hapi') for edgeHostName in edgeHostNames['edgeHostnames']: slot = None if 'slotNumber' in edgeHostName: slot = edgeHostName['slotNumber'] productID = None if 'productId' in edgeHostName: productID = edgeHostName['productId'] IPv = None if 'ipVersionBehavior' in edgeHostName: IPv = edgeHostName['ipVersionBehavior'] eMap = None if 'map' in edgeHostName: eMap = edgeHostName['map'] new_row = { 'Group_ID': int(groupId[4:]), 'Contract_ID': contractId[4:], 'Edge_Host_ID': edgeHostName['edgeHostnameId'], 'Edge_Host_Name': edgeHostName['recordName']+'.'+edgeHostName['dnsZone'], "Edge_Host_Domain_Suffix":edgeHostName['dnsZone'], "Secure":edgeHostName['securityType'], "IPVersion":IPv, "Product_ID":productID, "Map":eMap, "Slot":slot } main_list.append(new_row) self.log.debug("Fetched configs for group: '{0}'".format(groupId[4:])) return None def printCPcodes(self): """ orchestrates mutlithreading by using the GroupsWorker function to populate CPcode data Keyword arguments: None Return type: None """ lst_cpcodes = [] columns = ["Group_ID", "Contract_ID", "CP_Code_ID", "CP_Code_Name", "CP_Code_Products"] df_cpcodes = pd.DataFrame(columns=columns) with concurrent.futures.ThreadPoolExecutor(max_workers=self.maxThreads) as executor: for group in self.groups['groups']['items']: groupId = group['groupId'] executor.submit(self.GroupsWorker,'cpcodes',group,lst_cpcodes) df_cpcodes= df_cpcodes.append(lst_cpcodes, ignore_index=True) self.dfs['cpcodes'] = df_cpcodes def printPropertiesDetails(self, *args): """ orchestrates mutlithreading by using the GroupsWorker function to populate property data Return type: None """ self.log.debug('Start time is {0}'.format(strftime("%Y-%m-%d %H:%M:%S", gmtime()))) self.log.debug('generating config data.....') columns = [ "Config_Name", "Group_ID", "Contract_ID", "Property_ID", "Prod_Version", "Staging_Version", "Latest_Version", "Product", "Prod_Version_Updated_User", "Prod_Version_Updated_Time", "Staging_Version_Updated_User", "Staging_Version_Updated_Time", "Latest_Version_Updated_User", "Latest_Version_Updated_Time", "Hostnames", "Origins", "Behaviors", "CP_Codes" ] list_properties = [] list_behavior = [] df_property =
pd.DataFrame(columns=columns)
pandas.DataFrame
from functools import partial from types import SimpleNamespace from warnings import warn from numpy import isclose from pandas import DataFrame, Series from pandas.core.dtypes.common import is_numeric_dtype from data_frames import to_nested_dicts, the_only_one from signature_scoring.evaluation import summarize_across_cell_lines, evaluation_summary from signature_scoring.scoring_functions import ScoringFunction def extract_single_score(g: DataFrame): return the_only_one(g.score) def reevaluate(scores_dict_by_cell, scoring_func: ScoringFunction, subtypes_top=None, subtypes_scores=None, **kwargs): # TODO: support scoring functions with no cell grouping # if scoring_func.grouping: # pass summarize_test = partial(evaluation_summary, **kwargs) data = summarize_across_cell_lines( summarize_test, scores_dict_by_cell, subtypes_top=subtypes_top, subtypes_scores=subtypes_scores ) return data def extract_scores_from_result( result: Series, scores_as_series=True, are_grouped_by_cell=True ) -> DataFrame: if scores_as_series: def row_details(scores: Series) -> dict: yield {'score': scores} else: def row_details(scores: Series) -> dict: for row in scores.reset_index().itertuples(): yield row._asdict() if are_grouped_by_cell: def iter_groups(scores: SimpleNamespace): for cell_id, cell_scores in scores.__dict__.items(): yield {'cell_id': cell_id}, cell_scores else: def iter_groups(scores: SimpleNamespace): yield {}, scores data = [] for func, func_scores in result.iteritems(): for group_metadata, group_scores in iter_groups(func_scores): # group: indications / contra / controls for group, score_series in group_scores.__dict__.items(): for row in row_details(score_series): data.append({ 'func': func, 'group': group, **row, **group_metadata }) return DataFrame(data) def reevaluate_benchmark(old_benchmark: DataFrame, reevaluate_kwargs, verbose=True, keep_scores=True) -> DataFrame: # TODO: support scoring functions with no cell grouping scores = extract_scores_from_result(old_benchmark['meta:Scores']) if not any(scores_series.score.any() for scores_series in scores.score): warn(f'Skipping re-evaluation for {", ".join(old_benchmark.index)}: no scores in the original result') # return just empty df with same columns return DataFrame() scores_dict_by_func_cell_group_subtype = to_nested_dicts( scores, ['func', 'cell_id', 'group'], extract=extract_single_score ) del scores data = [] for func, scores_dict_by_cell_group in scores_dict_by_func_cell_group_subtype.items(): reevaluate_kwargs['aggregate'] = None # already aggregated result = reevaluate( scores_dict_by_cell_group, func, **reevaluate_kwargs ) data.append({**result, **{'Func': func}}) reevaluated_benchmark = DataFrame(data).set_index('Func') # preserve execution time information reevaluated_benchmark['Time'] = old_benchmark['Time'] if verbose: old_columns = set(old_benchmark.columns) new_columns = set(reevaluated_benchmark.columns) removed_metrics = old_columns - new_columns if removed_metrics: print(removed_metrics, 'metrics removed') added_metrics = new_columns - old_columns if added_metrics: print(added_metrics, 'metrics added') old_benchmark_reordered = old_benchmark.loc[reevaluated_benchmark.index] for column in (old_columns & new_columns): if not old_benchmark_reordered[column].equals(reevaluated_benchmark[column]): if (
is_numeric_dtype(old_benchmark_reordered[column].dtype)
pandas.core.dtypes.common.is_numeric_dtype
import os import sys import datetime import pandas as pd import numpy as np import tensorflow as tf from sklearn.metrics import classification_report, precision_recall_fscore_support from absl import app from bin.util import * from bin.modules import * from bin.inception_v4 import inception_v4 from bin.all_conv_cnn import all_conv from bin.inception_se import inception_v4_se from bin.resnet import resnet from lib.config import REPLAYS_PARSED_DIR, REPLAY_DIR, REPO_DIR, STANDARD_VERSION def main(): ### define constants for training # supress tf-warning for RAM-usage os.environ['TF_CPP_MIN_LOG_LEVEL'] = '3' # declare all used sample versions versions = ['1_3d_10sup', '1_3d', '1_3d_15sup'] # declare batching, how many samples are used for training and the number of training epochs batch_size = 50 cap = 30000 epochs = 50 # declare if data augmentation is used data_augmentation = False # set train/test-split and number of batches split = int(cap*0.9) batches = int(split/batch_size) test_batches = int((cap-split)/batch_size) # set start time to calculate duration of training now = datetime.datetime.now() # set learning rate lr = 0.005 # initialize directory in which the logs are going to be saved tensorboard_dir = os.path.join(REPO_DIR, 'tensorboard_logs', 'Inception_v4_noAug_noWeight', 'LearningRate_'+str(lr) +'_SampleSize_' + str(cap) + '_' +str(now.year)+'-'+str(now.month)+'-'+str(now.day)+'-'+str(now.hour)+'-'+str(now.minute)) fil = [[], [], []] files = [[], [], []] supp = [[], [], []] # get files and filter them by supply for every specified version for n, v in enumerate(versions): fil[n] = build_file_array(type='csv', version=[v]) file, su = filter_close_matchups(fil[n], 15, [v], 'csv') files[n] = file supp[n] = su # get remaining files files_ = [] supp_ = [] for i in range(3): files_ = np.append(files_, files[i]) supp_ = np.append(supp_, supp[i]) # f is the array of file-paths that are used to evaluate the accuracy by supply # s is the related supplies for each file in f f = files_[cap:] s = supp_[cap:] # initialize the datasets and declare that the input files are gzip-compressed train_dataset = tf.data.TextLineDataset(files_[:split-1], compression_type='GZIP') test_dataset = tf.data.TextLineDataset(files_[split:cap], compression_type='GZIP') # every sample consists of 91731 lines # every line is read individually by the TextLineDataset-Reader # therefore we need to batch them all together and parse them respectively train_dataset = train_dataset.batch(13*84*84+3) test_dataset = test_dataset.batch(13*84*84+3) # if data-augmentation is True we augment the data in parse_func if data_augmentation: train_dataset = train_dataset.map(parse_func, num_parallel_calls=16) test_dataset = test_dataset.map(parse_func, num_parallel_calls=16) # else we do not need augmentation else: train_dataset = train_dataset.map(parse_func_no_aug, num_parallel_calls=16) test_dataset = test_dataset.map(parse_func_no_aug, num_parallel_calls=16) train_dataset = train_dataset.batch(batch_size) test_dataset = test_dataset.batch(batch_size) # the flat function is only needed if we add samples by augmentation if data_augmentation: train_dataset = train_dataset.map(flat_func, num_parallel_calls=16) test_dataset = test_dataset.map(flat_func, num_parallel_calls=16) # to get accuracies for each supply difference # we need to delare another dataset and parse it like the previous ones validation_dataset = tf.data.TextLineDataset(f, compression_type='GZIP') validation_dataset = validation_dataset.batch(13*84*84+3) validation_dataset = validation_dataset.map(parse_func_no_aug, num_parallel_calls=16) validation_dataset = validation_dataset.batch(1) # prefetch(1) allows the datasets to load multiple batches in parallel train_dataset = train_dataset.prefetch(1) test_dataset = test_dataset.prefetch(1) validation_dataset = validation_dataset.prefetch(1) # create an iterator over the dataset and declare initialization methods iter = tf.data.Iterator.from_structure(train_dataset.output_types, train_dataset.output_shapes) train_init_op = iter.make_initializer(train_dataset) test_init_op = iter.make_initializer(test_dataset) val_init_op = iter.make_initializer(validation_dataset) # get features and labels from iterator features, labels = iter.get_next() # give the features to the networks # the one that is going to be evaluated is not in comments # returns the predictions # y_ = inception_v4_se(features) y_ = resnet(features) # y_ = all_conv(features) # y_ = inception_v4(features) # get the ground-truth labels y = labels # apply softmax to the predictions softmax = tf.nn.softmax(y_) #get trainable params para = get_params(tf.trainable_variables()) print(para) # loss without weights cross_entropy = tf.reduce_mean(tf.nn.softmax_cross_entropy_with_logits_v2(logits=y_, labels=y)) # helper to return labels and predictions to session results = tf.argmax(y,1), tf.argmax(softmax, 1) # add an optimiser optimiser = tf.train.AdamOptimizer(learning_rate=lr).minimize(cross_entropy) # define an accuracy assessment operation correct_prediction = tf.equal(tf.argmax(y, 1), tf.argmax(softmax, 1)) accuracy = tf.reduce_mean(tf.cast(correct_prediction, tf.float32)) # setup the initialisation operator init_op = tf.global_variables_initializer() # setup the save and restore functionality for variables saver = tf.train.Saver(max_to_keep=50) with tf.Session() as sess: # declare a last stop if you want to continue training an existing model last_stop = None # set a save path from with the trained model will be loaded save_path_ = os.path.join(tensorboard_dir) # if last_stop is declared try to import the meta graph and variable values from the saved model if not last_stop == None: saver = tf.train.import_meta_graph(os.path.join(save_path_, 'model_at_epoch-'+str(last_stop)+'.meta')) # if the specified checkpoint does not exist load the latest checkpoint if tf.train.checkpoint_exists(os.path.join(save_path_, 'model_at_epoch-'+str(last_stop))): saver.restore(sess, os.path.join(save_path_, 'model_at_epoch-'+str(last_stop))) else: saver.restore(sess, tf.train.latest_checkpoint(save_path_)) # set the epoch range to an array of "last stop" to "end of training" epoch_range = np.arange(last_stop, epochs) tensorboard_dir = save_path_ else: # if we start a new training the epoch range is 0 to "end of training" epoch_range = np.arange(0, epochs) # initialize all variables randomly sess.run(init_op) # initialize the FileWriter and save the session graph to the log data summary_writer = tf.summary.FileWriter(tensorboard_dir, sess.graph) # initialize arrays to save predictions and corresponding labels, as well as starting time labels_by_epoch = [] pred_by_epoch = [] timestamp = datetime.datetime.now() try: for i in epoch_range: # get timestamp epoch_timestamp = datetime.datetime.now() # initialize training dataset sess.run(train_init_op) # initialize logging variables losses = 0 accs = 0 taccs = 0 n= 0 pred = [] pred_test = [] gt = [] gt_test = [] # while there are samples to fetch in the dataset -> keep running while True: try: # run the optimizer function for the current batch # and return cross entropy, resulting labels and predictions and accuracy _, loss, res, acc= sess.run([optimiser, cross_entropy, results, accuracy]) # save gt and labels gt = np.append(gt, res[0]) pred = np.append(pred, res[1]) # calculate loss and accuracy relative to number of batches losses += loss / batches accs += acc / batches sys.stdout.write("\rBatch %2d of %2d" % (n+1, batches)) sys.stdout.flush() n += 1 except tf.errors.OutOfRangeError: break # initialize test dataset sess.run(test_init_op) # while there are samples to fetch in the dataset -> keep running while True: try: # run accuracy and return gt and labels res_test, tacc = sess.run([results, accuracy]) # compute metrics taccs += tacc/test_batches gt_test = np.append(gt_test, res_test[0]) pred_test = np.append(pred_test, res_test[1]) except tf.errors.OutOfRangeError: break # save labels and predictions labels_by_epoch = np.append(labels_by_epoch, [gt]) pred_by_epoch = np.append(pred_by_epoch, [pred]) # evaluate metrics precision, recall and f1-score for training results p, rc, f1, _ = precision_recall_fscore_support(gt, pred, average='weighted') # evaluate metrics precision, recall and f1-score for test results pt, rct, ft, _ = precision_recall_fscore_support(gt_test, pred_test, average='weighted') # calculate time spent for this epoch time_spent = datetime.datetime.now() - epoch_timestamp time_to_sec = time_spent.seconds print(" --- Iter: {:-2}, Loss: {:-15.2f} --- TRAINING --- Precision: {:.4f}, Recall: {:.4f}, F1-Score: {:.4f}, Top-1-Error: {:.2f} --- TEST DATA --- Precision: {:.4f}, Recall: {:.4f}, F1-Score: {:.4f}, Top-1-Error: {:.2f} --- Calculated in {} seconds".format(i+1, losses, p, rc, f1, 1-accs, pt, rct, ft, 1-taccs, time_spent.seconds)) # write all metrics into log data for this step train_summary = tf.Summary(value=[tf.Summary.Value(tag='train_loss', simple_value=losses), tf.Summary.Value(tag='train_precision', simple_value=p), tf.Summary.Value(tag='test_precision', simple_value=pt), tf.Summary.Value(tag='train_recall', simple_value=rc), tf.Summary.Value(tag='test_recall', simple_value=rct), tf.Summary.Value(tag='train_f1_score', simple_value=f1), tf.Summary.Value(tag='test_f1_score', simple_value=ft), tf.Summary.Value(tag='train_accuracy', simple_value=accs), tf.Summary.Value(tag='test_accuracy', simple_value=taccs), tf.Summary.Value(tag='time_spent_seconds', simple_value=time_to_sec)]) summary_writer.add_summary(summary=train_summary, global_step=i) summary_writer.flush() # save model for this step save_path = saver.save(sess, os.path.join(tensorboard_dir, "model_at_epoch"), global_step=i+1) except KeyboardInterrupt: df = pd.DataFrame(labels_by_epoch) os.makedirs(tensorboard_dir, exist_ok=True) df.to_csv(os.path.join(tensorboard_dir, 'labels.csv')) df = pd.DataFrame(pred_by_epoch) df.to_csv(os.path.join(tensorboard_dir, 'preds.csv')) # print(labels_by_epoch) # save labels and predictions as csv data df = pd.DataFrame(labels_by_epoch) os.makedirs(tensorboard_dir, exist_ok=True) df.to_csv(os.path.join(tensorboard_dir, 'labels.csv')) df =
pd.DataFrame(pred_by_epoch)
pandas.DataFrame
import numpy as np import pandas as pd from pandas import DataFrame, MultiIndex, Index, Series, isnull from pandas.compat import lrange from pandas.util.testing import assert_frame_equal, assert_series_equal from .common import MixIn class TestNth(MixIn): def test_first_last_nth(self): # tests for first / last / nth grouped = self.df.groupby('A') first = grouped.first() expected = self.df.loc[[1, 0], ['B', 'C', 'D']] expected.index = Index(['bar', 'foo'], name='A') expected = expected.sort_index() assert_frame_equal(first, expected) nth = grouped.nth(0) assert_frame_equal(nth, expected) last = grouped.last() expected = self.df.loc[[5, 7], ['B', 'C', 'D']] expected.index = Index(['bar', 'foo'], name='A') assert_frame_equal(last, expected) nth = grouped.nth(-1) assert_frame_equal(nth, expected) nth = grouped.nth(1) expected = self.df.loc[[2, 3], ['B', 'C', 'D']].copy() expected.index = Index(['foo', 'bar'], name='A') expected = expected.sort_index() assert_frame_equal(nth, expected) # it works! grouped['B'].first() grouped['B'].last() grouped['B'].nth(0) self.df.loc[self.df['A'] == 'foo', 'B'] = np.nan assert isnull(grouped['B'].first()['foo']) assert isnull(grouped['B'].last()['foo']) assert isnull(grouped['B'].nth(0)['foo']) # v0.14.0 whatsnew df = DataFrame([[1, np.nan], [1, 4], [5, 6]], columns=['A', 'B']) g = df.groupby('A') result = g.first() expected = df.iloc[[1, 2]].set_index('A') assert_frame_equal(result, expected) expected = df.iloc[[1, 2]].set_index('A') result = g.nth(0, dropna='any') assert_frame_equal(result, expected) def test_first_last_nth_dtypes(self): df = self.df_mixed_floats.copy() df['E'] = True df['F'] = 1 # tests for first / last / nth grouped = df.groupby('A') first = grouped.first() expected = df.loc[[1, 0], ['B', 'C', 'D', 'E', 'F']] expected.index = Index(['bar', 'foo'], name='A') expected = expected.sort_index() assert_frame_equal(first, expected) last = grouped.last() expected = df.loc[[5, 7], ['B', 'C', 'D', 'E', 'F']] expected.index = Index(['bar', 'foo'], name='A') expected = expected.sort_index() assert_frame_equal(last, expected) nth = grouped.nth(1) expected = df.loc[[3, 2], ['B', 'C', 'D', 'E', 'F']] expected.index = Index(['bar', 'foo'], name='A') expected = expected.sort_index() assert_frame_equal(nth, expected) # GH 2763, first/last shifting dtypes idx = lrange(10) idx.append(9) s = Series(data=lrange(11), index=idx, name='IntCol') assert s.dtype == 'int64' f = s.groupby(level=0).first() assert f.dtype == 'int64' def test_nth(self): df = DataFrame([[1, np.nan], [1, 4], [5, 6]], columns=['A', 'B']) g = df.groupby('A') assert_frame_equal(g.nth(0), df.iloc[[0, 2]].set_index('A')) assert_frame_equal(g.nth(1), df.iloc[[1]].set_index('A')) assert_frame_equal(g.nth(2), df.loc[[]].set_index('A')) assert_frame_equal(g.nth(-1), df.iloc[[1, 2]].set_index('A')) assert_frame_equal(g.nth(-2), df.iloc[[0]].set_index('A')) assert_frame_equal(g.nth(-3), df.loc[[]].set_index('A')) assert_series_equal(g.B.nth(0), df.set_index('A').B.iloc[[0, 2]]) assert_series_equal(g.B.nth(1), df.set_index('A').B.iloc[[1]]) assert_frame_equal(g[['B']].nth(0), df.loc[[0, 2], ['A', 'B']].set_index('A')) exp = df.set_index('A') assert_frame_equal(g.nth(0, dropna='any'), exp.iloc[[1, 2]]) assert_frame_equal(g.nth(-1, dropna='any'), exp.iloc[[1, 2]]) exp['B'] = np.nan assert_frame_equal(g.nth(7, dropna='any'), exp.iloc[[1, 2]]) assert_frame_equal(g.nth(2, dropna='any'), exp.iloc[[1, 2]]) # out of bounds, regression from 0.13.1 # GH 6621 df = DataFrame({'color': {0: 'green', 1: 'green', 2: 'red', 3: 'red', 4: 'red'}, 'food': {0: 'ham', 1: 'eggs', 2: 'eggs', 3: 'ham', 4: 'pork'}, 'two': {0: 1.5456590000000001, 1: -0.070345000000000005, 2: -2.4004539999999999, 3: 0.46206000000000003, 4: 0.52350799999999997}, 'one': {0: 0.56573799999999996, 1: -0.9742360000000001, 2: 1.033801, 3: -0.78543499999999999, 4: 0.70422799999999997}}).set_index(['color', 'food']) result = df.groupby(level=0, as_index=False).nth(2) expected = df.iloc[[-1]] assert_frame_equal(result, expected) result = df.groupby(level=0, as_index=False).nth(3) expected = df.loc[[]] assert_frame_equal(result, expected) # GH 7559 # from the vbench df = DataFrame(np.random.randint(1, 10, (100, 2)), dtype='int64') s = df[1] g = df[0] expected = s.groupby(g).first() expected2 = s.groupby(g).apply(lambda x: x.iloc[0]) assert_series_equal(expected2, expected, check_names=False) assert expected.name, 0 assert expected.name == 1 # validate first v = s[g == 1].iloc[0] assert expected.iloc[0] == v assert expected2.iloc[0] == v # this is NOT the same as .first (as sorted is default!) # as it keeps the order in the series (and not the group order) # related GH 7287 expected = s.groupby(g, sort=False).first() result = s.groupby(g, sort=False).nth(0, dropna='all') assert_series_equal(result, expected) # doc example df = DataFrame([[1, np.nan], [1, 4], [5, 6]], columns=['A', 'B']) g = df.groupby('A') result = g.B.nth(0, dropna=True) expected = g.B.first() assert_series_equal(result, expected) # test multiple nth values df = DataFrame([[1, np.nan], [1, 3], [1, 4], [5, 6], [5, 7]], columns=['A', 'B']) g = df.groupby('A') assert_frame_equal(g.nth(0), df.iloc[[0, 3]].set_index('A')) assert_frame_equal(g.nth([0]), df.iloc[[0, 3]].set_index('A')) assert_frame_equal(g.nth([0, 1]), df.iloc[[0, 1, 3, 4]].set_index('A')) assert_frame_equal( g.nth([0, -1]), df.iloc[[0, 2, 3, 4]].set_index('A')) assert_frame_equal( g.nth([0, 1, 2]), df.iloc[[0, 1, 2, 3, 4]].set_index('A')) assert_frame_equal( g.nth([0, 1, -1]), df.iloc[[0, 1, 2, 3, 4]].set_index('A')) assert_frame_equal(g.nth([2]), df.iloc[[2]].set_index('A')) assert_frame_equal(g.nth([3, 4]), df.loc[[]].set_index('A')) business_dates = pd.date_range(start='4/1/2014', end='6/30/2014', freq='B') df = DataFrame(1, index=business_dates, columns=['a', 'b']) # get the first, fourth and last two business days for each month key = (df.index.year, df.index.month) result = df.groupby(key, as_index=False).nth([0, 3, -2, -1]) expected_dates = pd.to_datetime( ['2014/4/1', '2014/4/4', '2014/4/29', '2014/4/30', '2014/5/1', '2014/5/6', '2014/5/29', '2014/5/30', '2014/6/2', '2014/6/5', '2014/6/27', '2014/6/30']) expected = DataFrame(1, columns=['a', 'b'], index=expected_dates) assert_frame_equal(result, expected) def test_nth_multi_index(self): # PR 9090, related to issue 8979 # test nth on MultiIndex, should match .first() grouped = self.three_group.groupby(['A', 'B']) result = grouped.nth(0) expected = grouped.first() assert_frame_equal(result, expected) def test_nth_multi_index_as_expected(self): # PR 9090, related to issue 8979 # test nth on MultiIndex three_group = DataFrame( {'A': ['foo', 'foo', 'foo', 'foo', 'bar', 'bar', 'bar', 'bar', 'foo', 'foo', 'foo'], 'B': ['one', 'one', 'one', 'two', 'one', 'one', 'one', 'two', 'two', 'two', 'one'], 'C': ['dull', 'dull', 'shiny', 'dull', 'dull', 'shiny', 'shiny', 'dull', 'shiny', 'shiny', 'shiny']}) grouped = three_group.groupby(['A', 'B']) result = grouped.nth(0) expected = DataFrame( {'C': ['dull', 'dull', 'dull', 'dull']}, index=MultiIndex.from_arrays([['bar', 'bar', 'foo', 'foo'], ['one', 'two', 'one', 'two']], names=['A', 'B'])) assert_frame_equal(result, expected) def test_nth_empty(): # GH 16064 df = DataFrame(index=[0], columns=['a', 'b', 'c']) result = df.groupby('a').nth(10) expected = DataFrame(index=Index([], name='a'), columns=['b', 'c'])
assert_frame_equal(result, expected)
pandas.util.testing.assert_frame_equal
import pandas as pd import numpy as np import sys import os import pdb sys.path.append('../../data') import shutil import re ids = pd.read_csv('../../metadata/pball_site_ids.csv', header=None) ids = ids[0].values glm_all_f = pd.read_csv("../../results/glm_transfer/RMSE_transfer_glm_pball.csv") train_lakes = [re.search('nhdhr_(.*)', x).group(1) for x in np.unique(glm_all_f['target_id'].values)] n_lakes = len(train_lakes) test_lakes = ids[~np.isin(ids, train_lakes)] ids = train_lakes new_df = pd.DataFrame() inc = [] for ct, i_d in enumerate(ids): #for each target id print(ct, ": ", i_d) try: diffs =
pd.read_feather("../../metadata/diffs/target_nhdhr_"+ i_d +".feather")
pandas.read_feather
# -*- coding: utf-8 -*- """ Created on Mon 11 January 2022 Modified by <EMAIL> on 21/10/2021 @author: <NAME> @contact: <EMAIL> @license: / """ import mmap import os import sys import numpy as np import pandas as pd from io import StringIO from configparser import ConfigParser class CustomParser(ConfigParser): """ Original from https://gitlab.cern.ch/datanaso/dEval/-/blob/master/etc/utils.py ConfigParser with a custom dictionary conversion method. """ def as_dict(self): d = dict(self._sections) for k in d: d[k] = dict(self._defaults, **d[k]) d[k].pop('__name__', None) return d class ProcessorBase(): ''' Base-class for MR-ToF MS data proessing ''' def __init__(self): self.files = [] self.data = {} self.pars = {} self.df_dict = {} self.step = 0 def add_all(self, to_csv=False): ''' Returns sum of all handled files while incrementing sweep numbers from one file to the next to get a rolling sweep number. Parameters: - to_csv: File name to store combined .csv in Return: - flattened and sweep-adjusted dataframe ''' if len(self.files) == 0: print(f"(ProcessorBase.add_all): Data not processed yet or empty.") return # Adjust the sweep numbers for i in np.arange(0, len(self.df_dict)): if i == 0: continue key = list(self.df_dict.keys())[i] key_m1 = list(self.df_dict.keys())[i-1] self.df_dict[key]['sweep'] += self.df_dict[key_m1].iloc[-1]['sweep'] + 1 # df = pd.concat(self.df_dict) # Save to file if file name is passed if to_csv != False: df.to_csv(to_csv, index=False) # return df class MCS6Lst(ProcessorBase): ''' Process each list file contained in array of lst_files Param: lst_files: array of list files ''' """ Created on Mon 23 April 2018 Modified and adapted to Python 3 on Wed 17 July 2019 Modified by <EMAIL> on 21/10/2021 @author: <NAME> @author: <NAME> @contact: <EMAIL> @contact: <EMAIL> @license: MIT license """ def __init__(self): """ Initialize the conversion dataframe and some other varaibles """ self.files = [] #-------------------------Create a dataframe containing the conversion table from the MCS6A manual--------------------------------------# Time_Patch_Value = ['0', '5', '1', '1a', '2a', '22', '32','2','5b','Db','f3','43','c3','3'] conversion_dict = {'Data_Length' : pd.Series([2,4,4,6,6,6,6,6,8,8,8,8,8,8], index=Time_Patch_Value), 'Data_Lost_Bit' : pd.Series([np.nan ,np.nan ,np.nan ,np.nan ,np.nan ,np.nan ,47,np.nan ,63,np.nan ,47,63,np.nan ,63], index=Time_Patch_Value), 'Tag_Bits' : pd.Series([(np.nan,np.nan) ,(np.nan,np.nan) ,(np.nan,np.nan) ,(np.nan,np.nan) ,(40,47),(40,47),(np.nan,np.nan), (np.nan,np.nan), (48,62),(48,63),(48,63),(48,62),(48,63),(58,62)], index=Time_Patch_Value), 'Sweep_Counter': pd.Series([(np.nan,np.nan),(24,31),(np.nan,np.nan),(32,47),(32,39),(np.nan,np.nan),(40,46),(np.nan,np.nan),(32,47),(32,47),(40,46),(np.nan,np.nan),(np.nan,np.nan),(np.nan,np.nan)], index=Time_Patch_Value), 'Time_Bits': pd.Series([12,20,28,28,28,36,36,44,28,28,36,44,44,54], index=Time_Patch_Value), 'Max_Sweep_Length': pd.Series([0.0000004096,0.000105,0.027,0.027,0.027,6.872,6.872,1759.2,0.027,0.027,6.872,1759.2,1759.2,1801440], index=Time_Patch_Value)} self.conversion_df = pd.DataFrame(conversion_dict) self.df_dict = {} def convert_bytes(self,bytearray,nb_bits,data_lost_bit,tag_bits,sweep_counter,time_bits,verbose=0): ''' Perform the actual conversion of a single event from binary to integer numbers See pages 5-19 and 5-20 of FastCom MCS6A for more information on the bits meaning Param: bytearray : an array of nb_bits/8 bytes encapsulating the data of a single MCS6A stop event nb_bits : total number of bits on which the data is encoded data_lost_bit : Data lost bit. Indicates if the fifo was fullself. 1 bit index tag_bits : Tag bits. Tag info of a single stop event (see manual). Tuple containing the bit indexes. sweep_counter: Sweep number of a single stop event. Tuple containing the bit indexes. time_bits : Number of bits encoding the time of flight a single stop eventself. The tof seems to be given in an unbinned format with 100ps resolution (to be confirmed). Return: Decoded tof, sweep, channel, edge, tag, fifo ''' bit_word = '' for bytes in reversed(bytearray): bit_word += '{0:08b}'.format(ord(chr(bytes))) #convert data lost bit always first index in the reversed array (last in the manual) if np.isnan(data_lost_bit): fifo = np.nan index_data_lost_bit = -1 else: index_data_lost_bit = nb_bits-1-int(data_lost_bit) fifo = int(bit_word[index_data_lost_bit],2) #convert tag bit if np.isnan(tag_bits[0]): tag = np.nan index_high_tag = -1 index_low_tag = -1 else: index_high_tag = nb_bits-1-int(tag_bits[1]) index_low_tag = nb_bits-1-int(tag_bits[0]) tag = int(bit_word[index_high_tag:index_low_tag+1],2) #convert sweep number if np.isnan(sweep_counter[0]): sweep = np.nan index_high_sweep = -1 index_low_sweep = -1 else: index_high_sweep = nb_bits-1-int(sweep_counter[1]) index_low_sweep = nb_bits-1-int(sweep_counter[0]) sweep = int(bit_word[index_high_sweep:index_low_sweep+1],2) if bit_word != "000000000000000000000000000000000000000000000000" and verbose>1: print(f"bit_word: {bit_word}") print(f"index_data_lost_bit: {fifo}") print(f"index_high_tag: {index_high_tag}") print(f"index_low_tag: {index_low_tag}") print(f"tag: {tag}") print(f"index_high_sweep: {index_high_sweep}") print(f"index_low_sweep: {index_low_sweep}") print(f"sweep: {sweep}") #convert time of flight index_high_tof = max(index_low_sweep,index_low_tag,index_data_lost_bit)+1 index_low_tof = index_high_tof+time_bits tof = int(bit_word[index_high_tof:index_low_tof],2) #these are always there no matter the format channel = int(bit_word[index_low_tof+1:],2) edge = int(bit_word[index_low_tof],2) # if tof != 0: # print(tof, sweep-1, channel, edge, tag, fifo) return tof, sweep-1, channel, edge, tag, fifo def decode_binary(self,binary,time_patch, verbose = 0): ''' Read the binary part of the file by chunks and decode each chunk according to the format given in time_patch The length of a chunk is given by the time_patch Param : binary part of Return: nunpy array containing the converted data : tof, sweep, channel, edge, tag, fifo ''' #-----------extract data from the dataframe--------------------------# data_length = int(self.conversion_df.loc[time_patch.decode('ascii'),'Data_Length']) nb_bits = 8*data_length #convert nb of bytes into nb of bits data_lost_bit = self.conversion_df.loc[time_patch.decode('ascii'),'Data_Lost_Bit'] tag_bits = self.conversion_df.loc[time_patch.decode('ascii'),'Tag_Bits'] sweep_counter = self.conversion_df.loc[time_patch.decode('ascii'),'Sweep_Counter'] time_bits = int(self.conversion_df.loc[time_patch.decode('ascii'),'Time_Bits']) max_sweep_length = self.conversion_df.loc[time_patch.decode('ascii'),'Max_Sweep_Length'] steps = len(binary[binary.tell():])/data_length first_it = True if verbose>1: print(f"Data length: {data_length}\nN bits: {nb_bits}\nData lost bit: {data_lost_bit}\n\ tag bits: {tag_bits}\nsweep_counter: {sweep_counter}\ntime_bits: {time_bits}\n\ max sweep length: {max_sweep_length}\nsteps: {steps}\n") # ! # Introduce sweep_counter_overflow: in some cases, MCS6 seems to allocated only a small amount of bits for storing the sweep number. # In time_patch=32 this is for example only 7 bits -> can count to 128 and then resets to 0. With the overflow counter we just # count how many overflows happen and just at the necessary amount of sweeps to the overall sweep number sweep_counter_overflow = 0 old_sweep = 0 # for detecting when overflow happens # loop through all bytewords for i in range(int(steps)): if verbose>0: if (i%(int(steps/10))==0): print(f"Step {i} of {steps}.") byteword = binary.read(data_length) tof, sweep, channel, edge, tag, fifo = self.convert_bytes(byteword,nb_bits, data_lost_bit, tag_bits, sweep_counter, time_bits, verbose=verbose) # Check whether overflow happened (for example old_sweep = 127, new sweep is 0) # Only do for non-zero events: if tof != 0: if verbose>1: print(f"old_sweep: {old_sweep}") if old_sweep > sweep: sweep_counter_overflow += 1 if verbose>1: print(f"sweep_counter_overflow: {sweep_counter_overflow}") old_sweep = sweep # Add overflow to the sweep number (in case sweep has 7bit int -> 2**7=128) sweep += sweep_counter_overflow*(2**(sweep_counter[1]-sweep_counter[0]+1)) if verbose>1: print(f"sweep: {sweep}") # if channel != 0 :#means for real data if first_it: converted_data = np.array([tof, sweep, channel, edge, tag, fifo]) first_it = False else : converted_data = np.vstack((converted_data, np.array([tof, sweep, channel, edge, tag, fifo]))) binary.close() return converted_data def get_time_patch_and_binary(self, listfile, verbose=False): ''' Memory map the list file and isolate the time_patch and the binary part of the data Param: listfile : input list file Return: mapped_file : memore map of the input listfile time_patch : string code indicating the format in which the data are written (see manual) ''' mapped_file = mmap.mmap(listfile.fileno(), 0, access=mmap.ACCESS_READ) search_dict = {'section' : '[DATA]' , 'list_file_type' : 'time_patch'} #-----------------set file index to time patch code -----------------# pos_type_from = mapped_file.find(search_dict['list_file_type'].encode('ascii'))+len(search_dict['list_file_type'])+1 mapped_file.seek(pos_type_from) time_patch = mapped_file.readline().strip('\r\n'.encode('ascii')) #-----------set file index to beginning of DATA-----------------------------------# pos_data_from = mapped_file.find(search_dict['section'].encode('ascii')) mapped_file.seek(pos_data_from) #---readline and there no matter what the file index should point to the beginning of the binary data mapped_file.readline() if verbose>1: print(f"pos_type_from: {pos_type_from}\npos_data_from: {pos_data_from}\ntime_patch: {time_patch}") return mapped_file, time_patch def process(self,file_array,to_csv = False, verbose=0): """ Perform the processing of the files Parameters: - file_array: Array of file-paths - to_csv: if true, saves files under it's file name with .csv extension - verbose: verbosity """ full_info = False # for regular application the channel, edge, tag and fifo info are constant so they don't have to be saved. In that case keep full_info = False self.files = file_array for filename in self.files: with open(filename,'rb') as listfile: binary, time_patch = self.get_time_patch_and_binary(listfile, verbose=verbose) if full_info: converted_data = self.decode_binary(binary,time_patch,verbose=verbose) # np.array with tof, sweep, channel, edge, tag, fifo header_res ='tof,sweep,channel,edge,tag,fifo' if to_csv: np.savetxt('{}/{}.csv'.format(os.path.split(filename)[0],os.path.splitext(os.path.basename(filename))[0]),converted_data, fmt = '%i,%i,%i,%i,%f,%f', header = header_res) else: converted_data = pd.DataFrame(self.decode_binary(binary,time_patch,verbose)[:, [0,1]], columns=['tof', 'sweep']) # saves only tof and sweep info converted_data.tof = converted_data.tof/10 # 100ps -> ns converted_data.sweep = converted_data.sweep.astype('int64') # sweep is only int if to_csv: converted_data.to_csv('{}/{}.csv'.format(os.path.split(filename)[0],os.path.splitext(os.path.basename(filename))[0]), index=False) print('File {} loaded successfully!'.format(os.path.splitext(os.path.basename(filename))[0])) self.df_dict[os.path.splitext(os.path.basename(filename))[0]] = converted_data if full_info == False: return(
pd.concat(self.df_dict, axis=1)
pandas.concat
# -*- coding: utf-8 -*- """ Code to stack SimFin intermediaries/load into Postgres DB 05/08/2019 <NAME> """ import pandas as pd # Set up connection to Postgres DB # from sqlalchemy import create_engine # engine = create_engine("postgresql://postgres:dfdk#418!@@192.168.3.113/postgres") # c = engine.connect() # conn = c.connection # Use process file to create all relevant file extensions PROCESS_FILE = pd.read_csv('PROCESS_FILE.csv') PROCESS_FILE = PROCESS_FILE.sort_values(['statement_type', 'year', 'quarter']) PROCESS_FILE['year'] = PROCESS_FILE['year'].map(str) exts = (PROCESS_FILE[['statement_type', 'quarter', 'year']] .apply(lambda x: '_'.join(x), axis=1) .tolist()) # Loop through file extensions, appending to SQL database/running list of csvs pls = [] bss = [] cfs = [] for e in exts: file = 'simfin_{}.csv'.format(e) statement = pd.read_csv(file) if 'pl' in e: pls.append(statement) # statement.to_sql('qtrly_simfin_pl', con=engine, if_exists='append') if 'cf' in e: cfs.append(statement) # statement.to_sql('qtrly_simfin_cf', con=engine, if_exists='append') if 'bs' in e: bss.append(statement) # statement.to_sql('qtrly_simfin_bs', con=engine, if_exists='append') # Load shares data into Postgres DB shares_data = pd.read_csv('simfin_shares.csv') # shares_data.to_sql('qtrly_simfin_shares', con=engine, if_exists='replace') # Export csvs to pull in wrangling given driver parameters pd.concat(pls, axis=0).to_csv('qtrly_simfin_pl.csv', index=False) pd.concat(cfs, axis=0).to_csv('qtrly_simfin_cf.csv', index=False)
pd.concat(bss, axis=0)
pandas.concat
#!/usr/bin/env python3 # -*- coding: utf-8 -*- """ Created on Wed Jul 25 17:13:22 2018 @author: kitreatakataglushkoff Kitrea's hand-written copied/adjusted version of the analyze_massredistribution.py, which was last significantly edited Thursday July 18. UPDATE - Oct 9, 2018 - Kitrea double-checked code, added some comments. last updated Wed Nov 14 - to clean out bad data in the new large dataset. """ import pandas as pd import numpy as np import os import glob import matplotlib.pyplot as plt import copy import pygem_input as input import pygemfxns_modelsetup as modelsetup # Tips, comments, and old portions of code no longer used have been moved to bottom of file #%% ===== REGION AND GLACIER FILEPATH OPTIONS ===== # User defines regions of interest rgi_regionO1 = [13, 14, 15] #rgi_regionO1 = [15] search_binnedcsv_fn = (input.main_directory + '/../DEMs/Shean_2018_1109/aster_2000-2018_20181109_bins/*_mb_bins.csv') #%% ===== PLOT OPTIONS ===== # Option to save figures option_savefigs = 1 fig_fp = input.main_directory + '/../Output/figures/massredistribution/' # Plot histogram options option_plot_histogram = 0 histogram_parameters = ['Area', 'Zmed', 'Slope', 'PercDebris'] #histogram_parameters = ['Area', 'Zmin', 'Zmax', 'Zmed', 'Slope', 'Aspect', 'Lmax', 'PercDebris'] # Plot dhdt of each glacier options option_plot_eachglacier = 0 # Plot glaciers above and below a given parameter threshold (*MAIN FUNCTION TO RUN) option_plot_multipleglaciers_single_thresholds = 0 # run for specific parameter or all parameters option_run_specific_pars = 0 # Plot glaciers above and below a given set of multiple thresholds option_plot_multipleglaciers_multiplethresholds = 0 # Plot glacier characteristics to see if parameters are related option_plot_compareparameters = 1 #option_plot_multipleglaciers_binned_parameter = 0 #glaciers within a characteristic's defined range #option_plot_multipleglaciers_indiv_subdivisions = 0 #glaciers binned into 6 categories. (NOT USED) #option_plots_threshold = 0 #scatter plots relating glacier stats # Columns to use for mass balance and dhdt (specify mean or median) mb_cn = 'mb_bin_med_mwea' dhdt_cn = 'dhdt_bin_med_ma' dhdt_max = 2.5 dhdt_min = -4 # Threshold for tossing glaciers with too much missing data perc_area_valid_threshold = 90 # Switch to use merged data or not (0 = don't use, 1 = use merged data) option_use_mergedata = 0 # Remove glacier options (surging, all positive dhdt, etc.) option_remove_surge_glac = 1 option_remove_all_pos_dhdt = 1 option_remove_dhdt_acc = 1 acc_dhdt_threshold = 0.5 # Legend option (switch to show legend on multi-glacier figures or not) option_show_legend = 0 # Transparency value (between 0 & 1: 0 = no plot, 1 = full opaque) glacier_plots_transparency = 0.3 #user-defined stored variables for ideal thresholds, for each region and parameter Area_15_thresholds = list(range(5,40, 5)) Area_13_thresholds = list(range(5, 120, 5)) Area_13_thresholds.extend([150, 200, 250, 300, 350]) #if histogram has 2 separate ranges use .extend Slope_15_thresholds = list(range(10,26,2)) Slope_13_thresholds = list(range(5, 40, 2)) PercDebris_13_thresholds = list(range(0,65,5)) PercDebris_15_thresholds = list(range(0, 65, 5)) Zmin_13_thresholds = list(range(2600,5800, 200)) Zmin_15_thresholds = list(range(3500, 6500, 500)) Zmed_13_thresholds = list(range(3800, 6600, 200)) Zmed_15_thresholds = list(range(4750, 7000, 500)) Aspect_13_thresholds = list(range(0, 450, 90)) Aspect_15_thresholds = list(range(0, 450, 90)) Zmax_15_thresholds = list(range(6000, 7600, 200)) Zmax_13_thresholds = list(range(4000, 7600, 200)) Lmax_15_thresholds = list(range(4000, 14000, 2000)) Lmax_13_thresholds = list(range(4400, 40000, 2000)) Lmax_13_thresholds.extend([56000, 58000, 6000]) dhdt_13_thresholds = [1] Area_14_thresholds = list(range(5, 120, 5,)) Area_14_thresholds.extend([150, 200, 250, 300, 350]) Zmin_14_thresholds = list(range(2600, 5800, 200)) Zmax_14_thresholds = list(range(5000, 7600, 200)) Zmed_14_thresholds = list(range(3800,6400, 200)) Slope_14_thresholds = list(range(10, 42, 2)) Aspect_14_thresholds = list(range(0,450,90)) Lmax_14_thresholds = list(range(4000, 45000,2000)) PercDebris_14_thresholds = list(range(0, 65,5)) #For plotting one parameter at a time #User defines parameter for multi-glacier and histogram runs #set the threshold equal to one of the above, defined thresholds, depending on the current #keep in mind for threshold, that the subplots are examining >= and < the threshold #If you have not yet evaluated the histograms to define the threshold ranges, #then you must define the following variable #For plotting multiple parameters in one run #Create dictionary. key = parameter found in main_glac_rgi, value = thresholds all_13_pars = {'Area': Area_13_thresholds, 'Zmin': Zmin_13_thresholds , 'Zmax':Zmax_13_thresholds, 'Zmed': Zmed_13_thresholds, 'Slope': Slope_13_thresholds, 'Aspect': Aspect_13_thresholds, 'Lmax': Lmax_13_thresholds, 'PercDebris': PercDebris_13_thresholds} all_14_pars = {'Area': Area_14_thresholds, 'Zmin': Zmin_14_thresholds , 'Zmax':Zmax_14_thresholds, 'Zmed': Zmed_14_thresholds, 'Slope': Slope_14_thresholds, 'Aspect': Aspect_14_thresholds, 'Lmax': Lmax_14_thresholds, 'PercDebris': PercDebris_14_thresholds} all_15_pars = {'Area': Area_15_thresholds , 'Zmin': Zmin_15_thresholds , 'Zmax':Zmax_15_thresholds, 'Zmed': Zmed_15_thresholds, 'Slope': Slope_15_thresholds, 'Aspect': Aspect_15_thresholds, 'Lmax': Lmax_15_thresholds, 'PercDebris': PercDebris_15_thresholds} #If only plotting one parameter in the run, define the parameter of interest pars_dict = {'PercDebris': PercDebris_13_thresholds} if option_run_specific_pars == 1: region_pars = pars_dict else: if rgi_regionO1[0] == 13: region_pars = all_13_pars elif rgi_regionO1[0] == 14: region_pars = all_14_pars elif rgi_regionO1[0] == 15: region_pars = all_15_pars else: print("Please Check Region Specification") #Binned CSV column name conversion dictionary # change column names so they are easier to work with (remove spaces, etc.) sheancoldict = {'# bin_center_elev_m': 'bin_center_elev_m', ' z1_bin_count_valid': 'z1_bin_count_valid', ' z1_bin_area_valid_km2': 'z1_bin_area_valid_km2', ' z1_bin_area_perc': 'z1_bin_area_perc', ' z2_bin_count_valid': 'z2_bin_count_valid', ' z2_bin_area_valid_km2': 'z2_bin_area_valid_km2', ' z2_bin_area_perc': 'z2_bin_area_perc', ' dhdt_bin_count' : 'dhdt_bin_count', ' dhdt_bin_area_valid_km2' : 'dhdt_bin_area_valid_km2', ' dhdt_bin_area_perc' : 'dhdt_bin_area_perc', ' dhdt_bin_med_ma': 'dhdt_bin_med_ma', ' dhdt_bin_mad_ma': 'dhdt_bin_mad_ma', ' dhdt_bin_mean_ma': 'dhdt_bin_mean_ma', ' dhdt_bin_std_ma': 'dhdt_bin_std_ma', ' mb_bin_med_mwea': 'mb_bin_med_mwea', ' mb_bin_mad_mwea': 'mb_bin_mad_mwea', ' mb_bin_mean_mwea': 'mb_bin_mean_mwea', ' mb_bin_std_mwea': 'mb_bin_std_mwea', ' debris_thick_med_m': 'debris_thick_med_m', ' debris_thick_mad_m': 'debris_thick_mad_m', ' perc_debris': 'perc_debris', ' perc_pond': 'perc_pond', ' perc_clean': 'perc_clean', ' dhdt_debris_med' : 'dhdt_debris_med', ' dhdt_pond_med' : 'dhdt_pond_med', ' dhdt_clean_med' : 'dhdt_clean_med', ' vm_med' : 'vm_med', ' vm_mad' : 'vm_mad', ' H_mean' : 'H_mean', ' H_std' : 'H_std'} #%% Select Files # Find files for analysis; create list of all binnedcsv filenames (fn) binnedcsv_files_all = glob.glob(search_binnedcsv_fn) # Fill in dataframe of glacier names and RGI IDs, of ALL glaciers with binnedcsv, regardless of the region df_glacnames_all = pd.DataFrame() #empty df df_glacnames_all['reg_glacno'] = [x.split('/')[-1].split('_')[0] for x in binnedcsv_files_all] df_glacnames_all['RGIId'] = 'RGI60-' + df_glacnames_all.reg_glacno # turn region column values from object to float to int, to store just reg df_glacnames_all['region'] = df_glacnames_all.reg_glacno.astype(float).astype(int) # split glacno into list of reg and id, and store just the id part as an object df_glacnames_all['glacno_str'] = (df_glacnames_all.reg_glacno.str.split('.').apply(lambda x: x[1])) # store the same value as glacno_str, but as an int df_glacnames_all['glacno'] = df_glacnames_all.glacno_str.astype(int) # Define df_glacnames containing ONLY the data for desired region(s) df_glacnames = df_glacnames_all[df_glacnames_all.region.isin(rgi_regionO1) == True] # make list of all binnedcsv file pathway names binnedcsv_files = [binnedcsv_files_all[x] for x in df_glacnames.index.values] # Sort glaciers by region and glacier number binnedcsv_files = sorted(binnedcsv_files) df_glacnames = df_glacnames.sort_values('reg_glacno') df_glacnames.reset_index(drop=True, inplace=True) # Create dataframe with RGI attributes for each glacier main_glac_rgi = pd.DataFrame() for n, region in enumerate(rgi_regionO1): print('Region', region) df_glacnames_reg = df_glacnames[df_glacnames.region == region] #temp df for one reg at a time rgi_glac_number = df_glacnames_reg['glacno_str'].tolist() #If statement to avoid errors associated with regions that have no glaciers if len(rgi_glac_number) > 0: #pullselect data from fxn outputs of pygemfxnsmodelsetup, and from #pathways and vars defined in pygem input file main_glac_rgi_reg= modelsetup.selectglaciersrgitable(rgi_regionsO1=[region], rgi_regionsO2='all', rgi_glac_number=rgi_glac_number) # concatenate regions main_glac_rgi = main_glac_rgi.append(main_glac_rgi_reg, ignore_index=True) #%%MAIN DATASET # ds is the main dataset for this analysis and is a list of lists (order of glaciers can be found in df_glacnames) # Data for each glacier is held in a sublist ds = [] norm_list = [] for n in range(len(binnedcsv_files)): # Note: RuntimeWarning: invalid error encountered in greater than is due # to nan and zero values being included in array. This error can be ignored. # Process binned geodetic data binnedcsv = pd.read_csv(binnedcsv_files[n]) # Rename columns so they are easier to read binnedcsv = binnedcsv.rename(columns=sheancoldict) # ===== Filter out bad values ========================================================== # Replace strings of nan with nan and make all columns floats or ints binnedcsv = binnedcsv.replace([' nan'], [np.nan]) for col in binnedcsv.columns.values: binnedcsv[col] = pd.to_numeric(binnedcsv[col]) # Remove bad values of dhdt binnedcsv.loc[binnedcsv[dhdt_cn] > dhdt_max, dhdt_cn] = np.nan binnedcsv.loc[binnedcsv[dhdt_cn] < dhdt_min, dhdt_cn] = np.nan # If dhdt is nan, remove row null_bins = binnedcsv.loc[pd.isnull(binnedcsv[dhdt_cn])].index.values binnedcsv = binnedcsv.drop(null_bins) # Add percent area valid to main_glac_rgi main_glac_rgi.loc[n, 'perc_areavalid'] = binnedcsv['z1_bin_area_perc'].sum() # Debris thickness binnedcsv['debris_thick_med_m'] = binnedcsv['debris_thick_med_m'].astype(float) binnedcsv.loc[pd.isnull(binnedcsv['debris_thick_med_m']), 'debris_thick_med_m'] = 0 binnedcsv.loc[binnedcsv['debris_thick_med_m'] < 0, 'debris_thick_med_m'] = 0 binnedcsv.loc[binnedcsv['debris_thick_med_m'] > 5, 'debris_thick_med_m'] = 0 binnedcsv.loc[binnedcsv['debris_thick_med_m'] == -0, 'debris_thick_med_m'] = 0 #Percent Debris binnedcsv.loc[binnedcsv['perc_debris'] > 100, 'perc_debris'] = 0 binnedcsv.loc[binnedcsv['perc_debris'] <= 0, 'perc_debris'] = 0 # Supraglacial ponds binnedcsv.loc[binnedcsv['perc_pond'] > 100, 'perc_pond'] = 0 binnedcsv.loc[binnedcsv['perc_pond'] <= 0, 'perc_pond'] = 0 # Clean ice binnedcsv.loc[binnedcsv['perc_clean'] > 100, 'perc_clean'] = 0 binnedcsv.loc[binnedcsv['perc_clean'] <= 0, 'perc_clean'] = 0 # Find glacier-wide debris perc for each glacier, and add to main_glac_rgi glacwide_debris = ((binnedcsv['z1_bin_area_valid_km2']*binnedcsv['perc_debris']).sum() / binnedcsv['z1_bin_area_valid_km2'].sum()) main_glac_rgi.loc[n, 'PercDebris'] = glacwide_debris #sort out glaciers based on if they have all positive dh/dt, all negative, dh/dt, or both #based on evaluating, for each glacier, the max from the list of dhdt and the min from the list. if np.nanmin(binnedcsv[dhdt_cn].astype(float)) >= 0: glacwide_dhdt_sign = 1 #glaciers with all positive dh/dt elif np.nanmax(binnedcsv[dhdt_cn].astype(float)) <= 0: glacwide_dhdt_sign = -1 #glaciers with all negative dh/dt else: glacwide_dhdt_sign = 0 #glaciers with both, + and - dh/dt main_glac_rgi.loc[n, 'dhdt_sign'] = glacwide_dhdt_sign # ===== Normalized elevation vs. ice thickness change =============================== # Normalized elevation # (max elevation - bin elevation) / (max_elevation - min_elevation) glac_elev = binnedcsv.bin_center_elev_m.values binnedcsv['elev_norm'] = (glac_elev[-1] - glac_elev) / (glac_elev[-1] - glac_elev[0]) # Normalized ice thickness change [ma] # dhdt / dhdt_max glac_dhdt = binnedcsv[dhdt_cn].values.astype(float) # Shifted normalized ice thickness change such that everything is negative binnedcsv['dhdt_norm_shifted'] = (glac_dhdt - np.nanmax(glac_dhdt)) / np.nanmin(glac_dhdt - np.nanmax(glac_dhdt)) binnedcsv.loc[binnedcsv['dhdt_norm_shifted'] == -0, 'dhdt_norm_shifted'] = 0 # Replace positive values to zero glac_dhdt[glac_dhdt >= 0] = 0 binnedcsv['dhdt_norm_huss'] = glac_dhdt / np.nanmin(glac_dhdt) binnedcsv.loc[binnedcsv['dhdt_norm_huss'] == -0, 'dhdt_norm_huss'] = 0 # ===== ADD DATA TO MAIN DATASET ===================================================== # ds is the main datset, n is index of each glacier # Keep only glaciers with enough good data based on percentage area valid if main_glac_rgi.loc[n, 'perc_areavalid'] > perc_area_valid_threshold: ds.append([n, df_glacnames.loc[n, 'RGIId'], binnedcsv, main_glac_rgi.loc[n]]) # ds.append([n, df_glacnames.loc[n, 'RGIId'], binnedcsv, main_glac_rgi.loc[n], main_glac_hyps.loc[n], # main_glac_icethickness.loc[n], ds_merged_bins]) #%% Remove Unwanted Glaciers # NOTE: TO USE MAIN_GLAC_RGI ATTRIBUTES, NEED TO ACCESS THEM VIA THE DATASET # remove them from both ds and norm_list remove_idx = [] # Indices to remove Surging glaciers (listed as 1 possible, 2 probable, or 3 observed in main_glac_rgi) if option_remove_surge_glac == 1: # Remove indices remove_idx_surge = [i for i in range(len(ds)) if ((ds[i][3].Surging != 9) and (ds[i][3].Surging != 0))] # Add unique values to list for i in remove_idx_surge: if i not in remove_idx: remove_idx.append(i) # Indices to remove glaciers with all positive dh/dt values (listed as 1 in main_glac_rgi) if option_remove_all_pos_dhdt == 1: #add index of glaciers with all pos values to the Int64 Index list remove_idx_allposdhdt = [i for i in range(len(ds)) if ds[i][3].dhdt_sign == 1] for i in remove_idx_allposdhdt: if i not in remove_idx: remove_idx.append(i) # Indices to remove glaciers who have max surface lowering in accumulation area if option_remove_dhdt_acc == 1: remove_idx_acc = [] for glac in range(len(ds)): glac_elevnorm = ds[glac][2]['elev_norm'].values glac_dhdt_norm = ds[glac][2]['dhdt_norm_huss'].values acc_idx = np.where(glac_elevnorm < 0.5)[0] if (glac_dhdt_norm[acc_idx] > acc_dhdt_threshold).any(): remove_idx_acc.append(glac) for i in remove_idx_acc: if i not in remove_idx: remove_idx.append(i) # ===== Remove glaciers ===== all_glac_idx = range(len(ds)) ds = [ds[i] for i in all_glac_idx if i not in remove_idx] # ===== Normalized elevation versus ice thickness change list ====== # List of np.array where first column is elev_norm and second column is dhdt_norm # Each item is a glacier norm_list = [np.array([ds[i][2]['elev_norm'].values, ds[i][2]['dhdt_norm_huss'].values]).transpose() for i in range(len(ds))] #%% MEAN AND STANDARD DEVIATIONS OF CURVES (black lines to add onto plots) def normalized_stats(norm_list): # Merge norm_list to make array of all glaciers with same elevation normalization space max_length = len(max(norm_list,key=len)) #len of glac w most norm values norm_all = np.zeros((max_length, len(norm_list)+1)) #array: each col a glac, each row a norm dhdt val to be interpolated # First column is normalized elevation, pulled from the glac with most norm vals norm_all[:,0] = max(norm_list,key=len)[:,0] # Loop through each glacier's normalized array (where col1 is elev_norm and col2 is norm dhdt) for n in range(len(norm_list)): # print(main_glac_rgi.loc[n,'RGIId']) #NOT SURE IF THIS WILL SHOW THE CORRECT CORRESPONDING GLACIER norm_single = norm_list[n] # get one glacier at a time # #Skip over glaciers that contain only NaN values for normalized dhdt # #(I added this so that it could run, but I want to be sure it doesn't have weird implications.) # if np.isnan(norm_single[:,1][0]) == True and np.isnan(norm_single[:,1][-1]) == True: ## print('The current glacier likely only contains NaNs, and is being skipped') # continue # #also skip over glaciers that contain almost all 0 values . # Fill in nan values for elev_norm of 0 and 1 with nearest neighbor norm_single[0,1] = norm_single[np.where(~np.isnan(norm_single[:,1]))[0][0], 1] norm_single[-1,1] = norm_single[np.where(~np.isnan(norm_single[:,1]))[0][-1], 1] # Remove nan values. norm_single = norm_single[np.where(~np.isnan(norm_single[:,1]))] #~ is the same as ! elev_single = norm_single[:,0] #set name for first col of a given glac dhdt_single = norm_single[:,1] #set name for the second col of a given glac #loop through each dhdt value of the glacier, and add it and interpolate to add to the #norm_all array. for r in range(0, max_length): if r == 0: norm_all[r,n+1] = dhdt_single[0] #put the first value dhdt value into the norm_all. n+1 because the first col is taken by the elevnorms. elif r == (max_length - 1): norm_all[r,n+1] = dhdt_single[-1] #put the last value into the the last row for the glacier's 'stretched out'(interpolated) normalized curve. else: # Find value need to interpolate to norm_elev_value = norm_all[r,0] #go through each row in the elev (col1) # Find index of value above it from dhdt_norm, which is a different size upper_idx = np.where(elev_single == elev_single[elev_single >= norm_elev_value].min())[0][0] # Find index of value below it lower_idx = np.where(elev_single == elev_single[elev_single < norm_elev_value].max())[0][0] #get the two values, based on the indices. upper_elev = elev_single[upper_idx] upper_value = dhdt_single[upper_idx] lower_elev = elev_single[lower_idx] lower_value = dhdt_single[lower_idx] #Linearly Interpolate between two values, and plug in interpolated value into norm_all norm_all[r,n+1] = (lower_value + (norm_elev_value - lower_elev) / (upper_elev - lower_elev) * (upper_value - lower_value)) # Compute mean and standard deviation norm_all_stats = pd.DataFrame() norm_all_stats['norm_elev'] = norm_all[:,0] norm_all_stats['norm_dhdt_mean'] = np.nanmean(norm_all[:,1:], axis=1) norm_all_stats['norm_dhdt_std'] = np.nanstd(norm_all[:,1:], axis=1) norm_all_stats['norm_dhdt_68high'] = norm_all_stats['norm_dhdt_mean'] + norm_all_stats['norm_dhdt_std'] norm_all_stats['norm_dhdt_68low'] = norm_all_stats['norm_dhdt_mean'] - norm_all_stats['norm_dhdt_std'] norm_all_stats.loc[norm_all_stats['norm_dhdt_68high'] > 1, 'norm_dhdt_68high'] = 1 norm_all_stats.loc[norm_all_stats['norm_dhdt_68low'] < 0, 'norm_dhdt_68low'] = 0 return norm_all_stats norm_stats = normalized_stats(norm_list) #%% Plots comparing glacier parameters to see if any are related if option_plot_compareparameters == 1: parameter1 = 'Area' parameter2 = 'Lmax' A = np.array([ds[x][3][parameter1] for x in range(len(ds))]) B = np.array([ds[x][3][parameter2] for x in range(len(ds))]) param_label_dict = {'Area': 'Area [km2]', 'PercDebris': 'Debris cover[%]', 'Slope':'Slope [deg]', 'Lmax': 'Length [km]'} # ===== PLOT ===== fig_width = 4 fig_height = 3 fig, ax = plt.subplots(1, 1, squeeze=False, figsize=(fig_width,fig_height), gridspec_kw = {'wspace':0.2, 'hspace':0.5}) ax[0,0].scatter(A,B, color='k', s=1) ax[0,0].set_xlabel(param_label_dict[parameter1], size=14) ax[0,0].set_ylabel(param_label_dict[parameter2], size=14) # Save figure fig.savefig(fig_fp + ('scatter_' + parameter1 + '_' + parameter2 + '.png'), bbox_inches='tight', dpi=300) #%% Plots for a histogram of parameter (distribution of values) def plot_var_histogram(): #plot histogram, where x-axis is the testing_var values, and y-axis is how many glaciers have that given x-axis value for parameter in histogram_parameters: parameter_values = np.array([ds[i][3][parameter] for i in range(len(ds))]) plt.hist(parameter_values, 50) plt.xlabel(parameter) plt.ylabel('Number of glaciers') plt.title(parameter + ' Distribution' ' Region' + str(rgi_regionO1)) plt.minorticks_on() if option_savefigs == 1: hist_fp = fig_fp + 'histograms/' if not os.path.exists(hist_fp): os.makedirs(hist_fp) plt.savefig(hist_fp + parameter + '_histogram_reg_' + str(rgi_regionO1), bbox_inches='tight') plt.show() parameter_lower_bound = int(parameter_values.min()) parameter_upper_bound = np.ceil(parameter_values.max()) print('Range of '+ parameter+ ': (' + str(parameter_lower_bound) + ', ' + str(parameter_upper_bound) + ')') if option_plot_histogram == 1: plot_var_histogram() #%% Plots for a single glacier def plot_eachglacier(ds, option_merged_dataset=0): # Set position of dataset to plot in list based on using merged or unmerged elev bin data # [2 = 10m, 6 = merged] if option_merged_dataset == 0: ds_position = 2 elif option_merged_dataset == 1: ds_position = 6 individual_fp = fig_fp + 'individual_plots/' if not os.path.exists(individual_fp): os.makedirs(individual_fp) # Loop through glaciers and plot for glac in range(len(ds)): #pull values from binnedcsv into vars glac_elevbins = ds[glac][ds_position]['bin_center_elev_m'] glac_area_t1 = ds[glac][ds_position]['z1_bin_area_valid_km2'] glac_area_t2 = ds[glac][ds_position]['z2_bin_area_valid_km2'] glac_mb_mwea = ds[glac][ds_position][mb_cn] glac_debristhick_cm = ds[glac][ds_position]['debris_thick_med_m'] * 100 glac_debrisperc = ds[glac][ds_position]['perc_debris'] glac_pondperc = ds[glac][ds_position]['perc_pond'] glac_elevnorm = ds[glac][ds_position]['elev_norm'] glac_dhdt_med = ds[glac][ds_position]['dhdt_bin_med_ma'] glac_dhdt_norm_huss = ds[glac][ds_position]['dhdt_norm_huss'] glac_dhdt_norm_shifted = ds[glac][ds_position]['dhdt_norm_shifted'] glac_elevs = ds[glac][ds_position]['bin_center_elev_m'] glacwide_mb_mwea = (glac_area_t1 * glac_mb_mwea).sum() / glac_area_t1.sum() glac_name = ds[glac][1].split('-')[1] # dhdt (raw) vs. elevation (raw) plt.figure(figsize = (20, 12)) plt.plot(glac_elevs, glac_dhdt_med, label=glac_name) plt.gca().invert_xaxis() plt.xlabel('Elevation (m)') plt.ylabel('Ice thickness Change [m/a]') plt.title('Raw dh/dt\n') plt.minorticks_on() # Plot Elevation bins vs. Area, Mass balance, and Debris thickness/pond coverage/ debris coverage plt.figure(figsize=(10,6)) plt.subplots_adjust(wspace=0.05, hspace=0.05) plt.suptitle(ds[glac][1], y=0.94) # Elevation vs. Area plt.subplot(1,3,1) plt.plot(glac_area_t1, glac_elevbins, label='t1') plt.plot(glac_area_t2, glac_elevbins, label='t2') plt.ylabel('Elevation [masl, WGS84]') plt.xlabel('Glacier area [km2]') plt.minorticks_on() plt.legend() # Elevation vs. Mass Balance plt.subplot(1,3,2) plt.plot(glac_mb_mwea, glac_elevbins, 'k-', label=str(round(glacwide_mb_mwea, 2)) + ' mwea') # k refers to the color (k=black, b=blue, g=green, etc.) # - refers to using a line (-- is a dashed line, o is circle points, etc.) plt.ylabel('Elevation [masl, WGS84]') plt.xlabel('Mass balance [mwea]') plt.xlim(-3, 3) plt.xticks(np.arange(-3, 3 + 1, 1)) plt.axvline(x=0, color='k') plt.fill_betweenx(glac_elevbins, glac_mb_mwea, 0, where=glac_mb_mwea<0, color='r', alpha=0.5) plt.fill_betweenx(glac_elevbins, glac_mb_mwea, 0, where=glac_mb_mwea>0, color='b', alpha=0.5) plt.legend(loc=1) plt.minorticks_on() plt.gca().axes.get_yaxis().set_visible(False) # Elevation vs. Debris Area, Pond Area, Thickness plt.subplot(1,3,3) plt.plot(glac_debrisperc, glac_elevbins, label='Debris area') plt.plot(glac_pondperc, glac_elevbins, label='Pond area') plt.plot(glac_debristhick_cm, glac_elevbins, 'k-', label='Thickness') plt.ylabel('Elevation [masl, WGS84]') plt.xlabel('Debris thickness [cm], Area [%]') plt.minorticks_on() plt.legend() plt.gca().axes.get_yaxis().set_visible(False) if option_savefigs == 1: plt.savefig(individual_fp + '/mb_fig' + ds[glac][1] + '_mb_aed.png', bbox_inches='tight') plt.show() # Elevation change vs. Elevation plt.figure(figsize=(10,3)) plt.subplots_adjust(wspace=0.4, hspace=0.4) # Normalized curves using range of dh/dt plt.subplot(1,3,1) plt.plot(glac_elevs, glac_dhdt_med, label=ds[glac][1]) plt.gca().invert_xaxis() plt.xlabel('Elevation [m]') plt.ylabel('dh/dt [m/a]') plt.title('dhdt vs elevation') plt.minorticks_on() plt.legend() # Normalized curves using dhdt max (according to Huss) plt.subplot(1,3,2) plt.plot(glac_elevnorm, glac_dhdt_norm_huss, label=ds[glac][1]) plt.xlabel('Normalized elev range') plt.ylabel('Normalized dh/dt [ma]') plt.title('huss normalization') if glac_dhdt_med.min() < 0: plt.gca().invert_yaxis() plt.minorticks_on() plt.legend() # Normalized curves shifting all values to be negative plt.subplot(1,3,3) plt.plot(glac_elevnorm, glac_dhdt_norm_shifted, label=ds[glac][1]) plt.ylim(1,0) plt.xlabel('Normalized elev range') plt.title('shifted normalization') plt.minorticks_on() plt.legend() if option_savefigs == 1: plt.savefig(individual_fp + 'Single_Plots' + ds[glac][1] + '_normcurves.png', bbox_inches='tight') plt.show() if option_plot_eachglacier == 1: plot_eachglacier(ds, option_merged_dataset=option_use_mergedata) #%% Plot multiple glaciers on the same plot def plot_multipleglaciers_single_threshold(ds, option_merged_dataset=0, parameter='Area', threshold_n=0): # Set position of dataset to plot in list based on using merged or unmerged data # [2 = 10m, 6 = merged] if option_merged_dataset == 0: ds_position = 2 #refer to binnedcsv elif option_merged_dataset == 1: ds_position = 6 #refers to the ds of merged elev bin data #plot empty figure plt.figure(figsize=(10,6)) plt.subplots_adjust(wspace=0.4, hspace=0.6) #set counters to keep track of total number of glac > and < threshold count_lt = 0 count_gt = 0 norm_list_gt = [] norm_list_lt = [] # Parameter values # parameter_values = np.array([ds[i][3][parameter] for i in range(len(ds))]) #loop through each glacier, in order of ascending parameter, accessing binnedcsv values for glac in range(len(ds)): glac_rgi = ds[glac][3] # glac_elevbins = ds[glac][ds_position]['bin_center_elev_m'] # glac_area_t1 = ds[glac][ds_position]['z1_bin_area_valid_km2'] # glac_area_t2 = ds[glac][ds_position]['z2_bin_area_valid_km2'] # glac_area_t1_perc = ds[glac][ds_position]['z1_bin_area_perc'] # glac_bin_count_t1 = ds[glac][ds_position]['z1_bin_count_valid'] # glac_mb_mwea = ds[glac][ds_position][mb_cn] # glac_debristhick_cm = ds[glac][ds_position]['debris_thick_med_m'] * 100 # glac_debrisperc = ds[glac][ds_position]['perc_debris'] # glac_pondperc = ds[glac][ds_position]['perc_pond'] glac_elevnorm = ds[glac][ds_position]['elev_norm'] glac_dhdt_norm_huss = ds[glac][ds_position]['dhdt_norm_huss'] # glac_dhdt_norm_shifted = ds[glac][ds_position]['dhdt_norm_shifted'] glac_dhdt_med = ds[glac][ds_position]['dhdt_bin_med_ma'] # glac_dhdt_mean = ds[glac][ds_position]['dhdt_bin_mean_ma'] # glac_dhdt_std = ds[glac][ds_position]['dhdt_bin_std_ma'] glac_elevs = ds[glac][ds_position]['bin_center_elev_m'] # glacwide_mb_mwea = (glac_area_t1 * glac_mb_mwea).sum() / glac_area_t1.sum() glac_name = ds[glac][1].split('-')[1] # Subset parameters based on column name and threshold if glac_rgi[parameter] < threshold_n: count_lt += 1 # Make list of array containing elev_norm and dhdt_norm_huss norm_list_lt.append(np.array([glac_elevnorm.values, glac_dhdt_norm_huss.values]).transpose()) # dhdt (raw) vs. elevation (raw) plt.subplot(2,2,1) plt.plot(glac_elevs, glac_dhdt_med, label=glac_name) if count_lt == 1: plt.gca().invert_xaxis() plt.xlabel('Elevation (m)') plt.ylabel('dh/dt [m/a]') plt.title('Raw dh/dt\n' + parameter + '<' + str(threshold_n)) plt.minorticks_on() # Huss Norm dhdt vs. Norm Elev plt.subplot(2,2,2) plt.rcParams.update({'font.size': 12}) plt.plot(glac_elevnorm, glac_dhdt_norm_huss, label=glac_name, alpha=glacier_plots_transparency) plt.xlabel('Normalized Elevation Range') plt.ylabel('Normalized dh/dt') if count_lt == 1: plt.gca().invert_yaxis() plt.title('Huss Normalization (' + str(count_lt) + ' Glaciers)\n' + parameter + '<' + str(threshold_n)) plt.minorticks_on() if option_show_legend == 1: plt.legend(bbox_to_anchor=(1.2, 1), loc=2, borderaxespad=0.) # Subset parameters based on column name and threshold elif glac_rgi[parameter] >= threshold_n: count_gt += 1 # Make list of array containing elev_norm and dhdt_norm_huss norm_list_gt.append(np.array([glac_elevnorm.values, glac_dhdt_norm_huss.values]).transpose()) # dhdt vs. elevation plt.subplot(2,2,3) plt.plot(glac_elevs, glac_dhdt_med, label=glac_name) if count_gt == 1: plt.gca().invert_xaxis() plt.xlabel('Elevation (m)') plt.ylabel('dh/dt [m/a]') plt.title('Raw dh/dt\n' + parameter + '>' + str(threshold_n)) plt.minorticks_on() # Normalized curves using dhdt max (according to Huss) plt.subplot(2,2,4) plt.plot(glac_elevnorm, glac_dhdt_norm_huss, label=glac_name, alpha=glacier_plots_transparency) plt.xlabel('Normalized Elevation Range') plt.ylabel('Normalized dh/dt') if count_gt == 1: plt.gca().invert_yaxis() plt.title('Huss Normalization (' + str(count_gt) +' Glaciers)\n' + parameter + '>' + str(threshold_n)) plt.minorticks_on() #display legend, if defined as such in "Input Data" section if option_show_legend == 1: plt.legend(bbox_to_anchor=(1.2, 1), loc=3, borderaxespad=0.) print(count_gt, 'Glaciers above threshold for', parameter) print(count_lt, 'Glaciers below threshold for', parameter) # Put mean and plus/minus 1 standard deviation on normalized plots norm_lt_stats = pd.DataFrame() norm_gt_stats =
pd.DataFrame()
pandas.DataFrame
#!/usr/bin/env python3 # -*- coding: utf-8 -*- """ Fast geotagging of big data (with a progress bar!) See README.md or geotag.py --help for more information. """ import dataclasses import typing import geopandas import pandas import shapely.geometry import rtree import tqdm tqdm.tqdm.pandas() @dataclasses.dataclass class GeotagInput: input_file: str input_column: str output_column: str class Geotagger: """ Class encapsulating fast lookups of unique identifiers from spatial data using an R-tree index. Attributes: id_strs: A dict that maps the integer representation of each unique ID to its original string representation - rtree only supports integer keys, so this allows us to get back things like leading zeroes that become lost in the type conversion. shapes: A dict that maps the integer representation of each unique ID to its corresponding shape. index: The R-tree index. """ def __init__(self, gdf: geopandas.geodataframe.GeoDataFrame, id_column: str = "GEOID", verbose: bool = False ) -> None: """ Initialize Geotagger object. Args: gdf: A GeoDataFrame containing polygons to use for geotagging. id_column: The column of the GeoDataFrame (e.g. field of a shapefile) to pull unique IDs from (must be convertable to int). verbose: If True, print what is being done. """ self.id_strs = {int(id_): id_ for id_ in gdf[id_column]} self.shapes = gdf.set_index(id_column)["geometry"].to_dict() self.index = rtree.index.Index() iterable = self.shapes.items() if verbose: iterable = tqdm.tqdm( self.shapes.items(), "Creating rtree index", unit=" indexed" ) for id_, shape in iterable: self.index.insert(int(id_), shape.bounds) def lookup(self, x: float, y: float) -> typing.Optional[int]: """ Look up a coordinate pair's unique ID. Args: x: The longitude, as a float. y: The latitude, as a float. Returns: The unique ID, if any. """ results = list(self.index.intersection((x, y, x, y))) # single result: return it if len(results) == 1: return self.id_strs[results[0]] # multiple results: check which polygon contains the point else: point = shapely.geometry.Point(x, y) for id_ in results: id_str = self.id_strs[id_] shape = self.shapes[id_str] if shape.contains(point): return id_str def parse_geotag_input(geotag_input: str) -> GeotagInput: """ Parse a geotag operation instructions string. Instruction strings should have the following format: input_file$input_column>output_column Args: geotag_input: A string containing instructions for a geotag operation. Returns: A GeotagInput containing the parsed geotag_input. """ (input_file, other_fields) = geotag_input.split("$") (input_column, output_column) = other_fields.split(">") return GeotagInput( input_file.strip(), input_column.strip(), output_column.strip() ) def dummy_function(*_, **__) -> None: """ A function that does nothing. """ pass if __name__ == "__main__": import argparse import glob import copy parser = argparse.ArgumentParser() parser.add_argument( "geotag", nargs="+", help="A list of geotag operation instructions. These should be in the format \"input_file$input_column>output_column\". This is passed directly into geopandas.read_file(). To directly read compressed shapefile archives, use \"zip://path/to/shapefile.zip\". NOTE: Be careful about bash! Be sure to enclose in single quotes (lack of quotes will register \">\" as an output redirect; double quotes will still register \"$\" as a variable prefix. Globs are also supported, e.g. \"tl_2020*bg.shp$GEOID>geoid_bg\", but all globbed inputs should have the same fields." ) parser.add_argument( "-i", "--input", required=True, help="The path to the input file. This is passed directly into pandas.read_csv()." ) parser.add_argument( "-o", "--output", required=True, help="The path to the output file. This is passed directly into pandas.core.frame.DataFrame.write_csv(). For compression, simply append \".gz\", etc." ) parser.add_argument( "-l", "--longitude", required=True, metavar="LONGITUDE_FIELD", help="The name of the field containing longitude data in the input file." ) parser.add_argument( "-L", "--latitude", required=True, metavar="LATITUDE_FIELD", help="The name of the field containing latitude data in the input file." ) parser.add_argument( "-s", "--subset", metavar="SUBSET_COLUMNS", help="Optional. Mutually exclusive with -r/--rownames-only. A comma-separated list of fields to subset the input file to. This is passed to pandas.read_csv(), so this can be useful for limiting memory usage." ) parser.add_argument( "-r", "--rownames-only", action="store_true", default=False, help="Optional. Mutually exclusive with -s/--subset. Creates a new column containing the data frame rownames and drops all other columns from the input. Rownames will be R-style, starting at 1, rather than pandas-style, starting at 0." ) parser.add_argument( "-f", "--force-overwrite", action="store_true", default=False, help="Optional. Allows overwriting of existing columns in the data frame post-subsetting. Will not allow for overwriting of the longitude or latitude columns." ) parser.add_argument( "-v", "--verbose", action="store_true", default=False, help="Optional. Causes geotag.py to print out everything it is doing (otherwise the script will run without any output)." ) args = parser.parse_args() # verbosity settings display = print if not args.verbose: display = dummy_function # input validation geotag_inputs = [] for geotag_input in args.geotag: try: geotag_inputs.append(parse_geotag_input(geotag_input)) except: raise Exception("could not parse geotag instructions {}".format(geotag_input)) original_subset_columns = None subset_columns = None if args.subset: original_subset_columns = args.subset.split(",") subset_columns = copy.copy(original_subset_columns) # need to force inclusion of longitude and latitude columns; remove later if args.longitude not in subset_columns: display( "Forcing inclusion of \"{}\" pandas.read_csv (will remove later)" .format(args.longitude) ) subset_columns.append(args.longitude) if args.latitude not in subset_columns: display( "Forcing inclusion of \"{}\" in pandas.read_csv (will remove later)" .format(args.latitude) ) subset_columns.append(args.latitude) if args.subset and args.rownames_only: raise Exception("-s/--subset and -r/--rownames-only are mutually-exclusive") # check for duplicate output columns output_columns = [ geotag_input.output_column for geotag_input in geotag_inputs ] if len(output_columns) != len(set(output_columns)): for column in set(output_columns): # inefficient, but probably not an issue due to small size output_columns.remove(column) raise Exception( "The following output columns are duplicated: {}" .format(", ".join(output_columns)) ) if args.longitude in output_columns: raise Exception( "Longitude column \"{}\" overlaps with an output column" .format(args.longitude) ) if args.latitude in output_columns: raise Exception( "Latitude column \"{}\" overlaps with an output column" .format(args.latitude) ) # read input if args.subset: display( "Reading input file (subsetting to {} as per -s/--subset): {}" .format(subset_columns, args.input) ) df = pandas.read_csv(args.input, usecols=subset_columns) elif args.rownames_only: required_columns = [args.longitude, args.latitude] display( "Reading input file (subsetting to {} as per -r/--rownames-only): {}" .format(required_columns, args.input) ) df = pandas.read_csv(args.input, usecols=required_columns) else: display("Reading input file: {}".format(args.input)) df = pandas.read_csv(args.input) # drop null coordinates n_original_rows = len(df) df = df.dropna(subset=[args.longitude, args.latitude]) n_dropped_rows = n_original_rows - len(df) display( "Dropped {}/{} columns with missing coordinates ({:0.2f}%)".format( n_dropped_rows, n_original_rows, n_dropped_rows/n_original_rows*100 ) ) # generate rownames if args.rownames_only: display("Generating rownames") df["rowname"] =
pandas.Series(df.index)
pandas.Series
"""Tests various time series functions which are used extensively in tcapy """ __author__ = 'saeedamen' # <NAME> / <EMAIL> # # Copyright 2017 Cuemacro Ltd. - http//www.cuemacro.com / @cuemacro # # See the License for the specific language governing permissions and limitations under the License. # import pandas as pd import numpy as np from datetime import timedelta from pandas.testing import assert_frame_equal from tcapy.util.timeseries import TimeSeriesOps from tcapy.util.customexceptions import * from test.config import * ticker = 'EURUSD' start_date = '20 Apr 2017' finish_date = '07 Jun 2017' def test_vlookup(): """Runs a test for the VLOOKUP function which is used extensively in a lot of the metric construction """ dt = pd.date_range(start='01 Jan 2018', end='05 Jan 2018', freq='1min') rand_data = np.random.random(len(dt)) df_before = pd.DataFrame(index=dt, columns=['rand'], data=rand_data) millseconds_tests = [100, 500] # Try perturbing by nothing, then 100 and 500 milliseconds for millseconds in millseconds_tests: df_perturb = pd.DataFrame(index=dt - timedelta(milliseconds=millseconds), columns=['rand'], data=rand_data) # Do a VLOOKUP (which should give us all the previous ones) - take off the last point (which would be AFTER # our perturbation) search, dt_search = TimeSeriesOps().vlookup_style_data_frame(dt[0:-1], df_perturb, 'rand') df_after = pd.DataFrame(index=dt_search + timedelta(milliseconds=millseconds), data=search.values, columns=['rand']) # check the search dataframes are equal
assert_frame_equal(df_before[0:-1], df_after, check_dtype=False)
pandas.testing.assert_frame_equal
#!/usr/bin/env python3 # -*- coding: utf-8 -*- """Analyze CSV file into scores. Created on Sat Feb 12 22:15:29 2022 // @hk_nien """ from pathlib import Path import os import re import sys import pandas as pd import numpy as np PCODES = dict([ # Regio Noord (1011, 'Amsterdam'), (1625, 'Hoorn|Zwaag'), (1811, 'Alkmaar'), (7471, 'Goor'), (7556, 'Hengelo'), (7903, 'Hoogeveen'), (7942, 'Meppel'), (8011, 'Zwolle'), (8232, 'Lelystad'), (8442, 'Heerenveen'), (8911, 'Leeuwarden'), (9291, 'Kollum'), (9501, 'Stadskanaal'), (9726, 'Groningen'), # Regio Midden (2406, '<NAME>/<NAME>'), (2515, '<NAME>'), (3013, 'Rotterdam'), (3511, 'Utrecht'), (3901, 'Veenendaal'), ((7137, 7131), 'Lichtenvoorde|Groenlo'), (7311, 'Apeldoorn'), # Regio Zuid (4325, 'Renesse'), (4462, 'Goes'), (4701, 'Roosendaal'), (5038, 'Tilburg'), (5401, 'Uden'), (5611, 'Eindhoven'), (5801, 'Oostrum'), (6101, 'Echt'), (6229, 'Maastricht'), (6541, 'Nijmegen'), ]) def get_bad_scan_times(): """Return list of Timestamps with bad scan times, from CSV data.""" df = pd.read_csv('data-ggd/ggd_bad_scans.txt', comment='#') tstamps = pd.to_datetime(df['Timestamp']).to_list() return tstamps def _mean_time(ts_list): """Return mean timestamp value from list of timestamps.""" ts0 = ts_list[0] delta_sum = pd.Timedelta(0) for ts in ts_list: delta_sum += (ts -ts0) ts_mean = ts0 + delta_sum / len(ts_list) return ts_mean def _delta_time_hhmm(hm): """Convert 'hh:mm' string to TimeDelta.""" return pd.Timedelta(f'{hm}:00') def _summary_to_scores(summary): """Convert summary from _read_log to scores dict and effective timestamp. Parameters: - summary: dict with int(pc4) -> [(query_time, appt_time), ...] Return: - scores dict: int(pc4) -> score (int or float or '?') - timestamp: middle query timestamp of this run. """ # Convert to number codes. scores = {k: '?' for k in PCODES} multi_pcs = {} # pc4 -> (pc4[0], pc4[1], ...) for pc in PCODES: if isinstance(pc, tuple): for pc1 in pc: multi_pcs[pc1] = pc qtms = [] dhm = _delta_time_hhmm for pc4, vlist in summary.items(): pc4 = int(pc4) if pc4 not in scores: if pc4 in multi_pcs: pc4_key = multi_pcs[pc4] else: print(f'{pc4} not in list...') continue else: pc4_key = pc4 if len(vlist) == 0: scores[pc4_key] = 7 continue qtm = _mean_time([v[0] for v in vlist]) # query time qtms.append(qtm) atm = min(v[1] for v in vlist) # earliest appointment time qtm_00 = pd.Timestamp(qtm.strftime('%Y-%m-%dT00:00')) thresholds = [ (3, qtm_00 + dhm('23:59')), (4, qtm + dhm('24:00')), (5, qtm_00 + dhm('48:00')), (6, qtm + dhm('48:00')), (6.3, qtm_00 + dhm('72:00')), (6.7, qtm + dhm('72:00')), (7, atm) ] if qtm.hour < 9: thresholds.insert(0, (1, qtm_00 + dhm('13:00'))) elif qtm.hour < 13: thresholds.insert(0, (1, qtm + dhm('4:00'))) elif qtm.hour < 17: thresholds.insert(0, (1, qtm_00 + dhm('24:00'))) thresholds.insert(1, (2, qtm + dhm('20:00'))) else: thresholds.insert(0, (1, qtm_00 + dhm('24:00'))) thresholds.insert(1, (2, qtm_00 + dhm('37:00'))) for s, tm in thresholds: if atm < tm: scores[pc4_key] = s break if len(qtms) == 0: qtm_mid = pd.Timestamp(None) else: qtm_min = min(qtms) qtm_mid = qtm_min + (max(qtms) - qtm_min)/2 return scores, qtm_mid def _get_min_wait(summary): """Return minimum and median wait Timedelta between scan time and appointment. summary is dict of pc4 -> list of timestamps No data -> 999 h. For the median, NaT is counted as infinite. """ wtimes = [] for _, vlist in summary.items(): wtimes_this = [atm - qtm for qtm, atm in vlist] wtimes.append( min(wtimes_this) if wtimes_this else pd.Timedelta(99, 'h') ) minwait = min(wtimes) if wtimes else 999 medwait = pd.Timedelta(np.median(wtimes)) return minwait, medwait def load_csv(csv_fname): """Return DataFrame and list of start times (+1).""" df = pd.read_csv(csv_fname, comment='#') df['req_pc4'] = df['req_pc4'].astype(int) for c in df.columns: if c.endswith('_time') or c.endswith('_date'): df[c] = pd.to_datetime(df[c]) else: df.loc[df[c].isna(), c] = None # start_tms: list of scan start times (plus one extra at the end) start_tms = df.loc[df['scan_time'].diff() > pd.Timedelta('10 min'), 'scan_time'] start_tms = [df.iloc[0]['scan_time']] + list(start_tms) start_tms += [df.iloc[-1]['scan_time'] + pd.Timedelta('1 min')] return df, start_tms def load_multi_csvs(csv_fnames): """Return DataFrame and list of start times (+1)""" dfs = [] start_tms = [] for f in csv_fnames: df, st = load_csv(f) dfs.append(df) start_tms.extend(st[:-1]) df = pd.concat(dfs).reset_index() start_tms.append(df.iloc[-1]['scan_time'] + pd.Timedelta('1 min')) return df, start_tms def get_scan_scores(df, tm_range): """Get scan scores as pc4 -> score dict. Parameters: - df: DataFrame with scan_time, req_date, req_pc4, opt0_short_addr, opt0_time, opt0_loc_id, etc. - tm_range: (tm_start, tm_stop) timestamps. Return: - tstamp: timestamp of the scan (mid-point) - scores: dict of pc4->score - min_wait: Timedelta of minimum wait time from scan to appointment """ mask = (df['scan_time'] >= tm_range[0]) & (df['scan_time'] < tm_range[1]) df1 = df.loc[mask] summary = {} for pc4, city_re in PCODES.items(): pc4_tup = (pc4,) if isinstance(pc4, int) else pc4 options = [] req_pc4 = None for _, row in df1.loc[df1['req_pc4'].isin(pc4_tup)].iterrows(): req_pc4 = int(row['req_pc4']) for i in range(3): addr = row[f'opt{i}_short_addr'] if addr and re.match(f'{city_re}$', addr[5:]): options.append((row['scan_time'], row[f'opt{i}_time'])) if req_pc4 is not None: summary[req_pc4] = options scores, tstamp = _summary_to_scores(summary) if pd.isna(tstamp): tstamp = df1.iloc[len(df1)//2]['scan_time'] minwait, medwait = _get_min_wait(summary) if medwait == 999: medwait = pd.Timedelta(None) return tstamp, scores, minwait, medwait def get_scan_scores_df(df, tm_ranges, decimal_comma=True): """Get scan scores as dataframe, from csv dataframe. Blacklisted scan times are dropped. Parameters: - df: DataFrame with scan_time, req_date, req_pc4, opt0_short_addr, opt0_time, opt0_loc_id, etc. - tm_ranges: list of timestamps (+one at the end) with boundaries of timestamp ranges. - decimal_comma: True to have string values 6,3 rather than float 6.3. Return: - Dataframe with scores, date_str, time_str, pc4, min_wait, med_wait as columns. """ n = len(tm_ranges) records = [] index = [] minwait_hs = [] medwait_hs = [] bad_stimes = get_bad_scan_times() for i in range(n-1): tm_ra = tm_ranges[i:i+2] is_ok = True for tm in bad_stimes: if tm_ra[0] <= tm < tm_ra[1]: is_ok = False break if not is_ok: print(f'Dropped scan at {tm_ra[0].strftime("%Y-%m-%d %H:%M")}') continue tm, scores, minwait, medwait = get_scan_scores(df, tm_ra) records.append(scores) index.append(tm) minwait_hs.append(minwait.total_seconds() / 3600) medwait_hs.append(medwait.total_seconds() / 3600) dates = [t.strftime('%Y-%m-%d') for t in index] times = [t.strftime('%H:%M') for t in index] sdf =
pd.DataFrame.from_records(records)
pandas.DataFrame.from_records
import os import random import math import numpy as np import pandas as pd import itertools from functools import lru_cache ########################## ## Compliance functions ## ########################## def delayed_ramp_fun(Nc_old, Nc_new, t, tau_days, l, t_start): """ t : timestamp current date tau : int number of days before measures start having an effect l : int number of additional days after the time delay until full compliance is reached """ return Nc_old + (Nc_new-Nc_old)/l * (t-t_start-tau_days)/pd.Timedelta('1D') def ramp_fun(Nc_old, Nc_new, t, t_start, l): """ t : timestamp current date l : int number of additional days after the time delay until full compliance is reached """ return Nc_old + (Nc_new-Nc_old)/l * (t-t_start)/pd.Timedelta('1D') ############################### ## Mobility update functions ## ############################### def load_all_mobility_data(agg, dtype='fractional', beyond_borders=False): """ Function that fetches all available mobility data and adds it to a DataFrame with dates as indices and numpy matrices as values. Make sure to regularly update the mobility data with the notebook notebooks/preprocessing/Quick-update_mobility-matrices.ipynb to get the data for the most recent days. Also returns the average mobility over all available data, which might NOT always be desirable as a back-up mobility. Input ----- agg : str Denotes the spatial aggregation at hand. Either 'prov', 'arr' or 'mun' dtype : str Choose the type of mobility data to return. Either 'fractional' (default), staytime (all available hours for region g spent in h), or visits (all unique visits from region g to h) beyond_borders : boolean If true, also include mobility abroad and mobility from foreigners Returns ------- all_mobility_data : pd.DataFrame DataFrame with datetime objects as indices ('DATE') and np.arrays ('place') as value column average_mobility_data : np.array average mobility matrix over all available dates """ ### Validate input ### if agg not in ['mun', 'arr', 'prov']: raise ValueError( "spatial stratification '{0}' is not legitimate. Possible spatial " "stratifications are 'mun', 'arr', or 'prov'".format(agg) ) if dtype not in ['fractional', 'staytime', 'visits']: raise ValueError( "data type '{0}' is not legitimate. Possible mobility matrix " "data types are 'fractional', 'staytime', or 'visits'".format(dtype) ) ### Load all available data ### # Define absolute location of this file abs_dir = os.path.dirname(__file__) # Define data location for this particular aggregation level data_location = f'../../../data/interim/mobility/{agg}/{dtype}' # Iterate over all available interim mobility data all_available_dates=[] all_available_places=[] directory=os.path.join(abs_dir, f'{data_location}') for csv in os.listdir(directory): # take YYYYMMDD information from processed CSVs. NOTE: this supposes a particular data name format! datum = csv[-12:-4] # Create list of datetime objects all_available_dates.append(pd.to_datetime(datum, format="%Y%m%d")) # Load the CSV as a np.array if beyond_borders: place = pd.read_csv(f'{directory}/{csv}', index_col='mllp_postalcode').values else: place = pd.read_csv(f'{directory}/{csv}', index_col='mllp_postalcode').drop(index='Foreigner', columns='ABROAD').values if dtype=='fractional': # make sure the rows sum up to 1 nicely again after dropping a row and a column place = place / place.sum(axis=1) # Create list of places all_available_places.append(place) # Create new empty dataframe with available dates. Load mobility later df = pd.DataFrame({'DATE' : all_available_dates, 'place' : all_available_places}).set_index('DATE') all_mobility_data = df.copy() # Take average of all available mobility data average_mobility_data = df['place'].values.mean() return all_mobility_data, average_mobility_data class make_mobility_update_function(): """ Output the time-dependent mobility function with the data loaded in cache Input ----- proximus_mobility_data : DataFrame Pandas DataFrame with dates as indices and matrices as values. Output of mobility.get_proximus_mobility_data. proximus_mobility_data_avg : np.array Average mobility matrix over all matrices """ def __init__(self, proximus_mobility_data, proximus_mobility_data_avg): self.proximus_mobility_data = proximus_mobility_data self.proximus_mobility_data_avg = proximus_mobility_data_avg @lru_cache() # Define mobility_update_func def __call__(self, t, default_mobility=None): """ time-dependent function which has a mobility matrix of type dtype for every date. Note: only works with datetime input (no integer time steps). This Input ----- t : timestamp current date as datetime object states : str formal necessity param : str formal necessity default_mobility : np.array or None If None (default), returns average mobility over all available dates. Else, return user-defined mobility Returns ------- place : np.array square matrix with mobility of type dtype (fractional, staytime or visits), dimension depending on agg """ t = pd.Timestamp(t.date()) try: # if there is data available for this date (if the key exists) place = self.proximus_mobility_data['place'][t] except: if default_mobility: # If there is no data available and a user-defined input is given place = self.default_mobility else: # No data and no user input: fall back on average mobility place = self.proximus_mobility_data_avg return place def mobility_wrapper_func(self, t, states, param, default_mobility=None): t = pd.Timestamp(t.date()) if t <= pd.Timestamp('2020-03-17'): place = self.__call__(t, default_mobility=default_mobility) return np.eye(place.shape[0]) else: return self.__call__(t, default_mobility=default_mobility) ################### ## VOC functions ## ################### class make_VOC_function(): """ Class that returns a time-dependant parameter function for COVID-19 SEIRD model parameter alpha (variant fraction). Current implementation includes the alpha - delta strains. If the class is initialized without arguments, a logistic model fitted to prelevance data of the alpha-gamma variant is used. The class can also be initialized with the alpha-gamma prelavence data provided by Prof. <NAME>. A logistic model fitted to prelevance data of the delta variant is always used. Input ----- *df_abc: pd.dataFrame (optional) Alpha, Beta, Gamma prelevance dataset by <NAME>, obtained using: `from covid19model.data import VOC` `df_abc = VOC.get_abc_data()` `VOC_function = make_VOC_function(df_abc)` Output ------ __class__ : function Default variant function """ def __init__(self, *df_abc): self.df_abc = df_abc self.data_given = False if self.df_abc != (): self.df_abc = df_abc[0] # First entry in list of optional arguments (dataframe) self.data_given = True @lru_cache() def VOC_abc_data(self,t): return self.df_abc.iloc[self.df_abc.index.get_loc(t, method='nearest')]['baselinesurv_f_501Y.V1_501Y.V2_501Y.V3'] @lru_cache() def VOC_abc_logistic(self,t): # Parameters obtained by fitting logistic model to weekly prevalence data t_sig = pd.Timestamp('2021-02-14') k = 0.07 # Function to return the fraction of the delta-variant return 1/(1+np.exp(-k*(t-t_sig)/pd.Timedelta(days=1))) @lru_cache() def VOC_delta_logistic(self,t): # Parameters obtained by fitting logistic model to weekly prevalence data t_sig = pd.Timestamp('2021-06-25') k = 0.11 # Function to return the fraction of the delta-variant return 1/(1+np.exp(-k*(t-t_sig)/pd.Timedelta(days=1))) # Default VOC function includes British and Indian variants def __call__(self, t, states, param): # Convert time to timestamp t = pd.Timestamp(t.date()) # Introduction Indian variant t1 = pd.Timestamp('2021-05-01') # Construct alpha if t <= t1: if self.data_given: return np.array([1-self.VOC_abc_data(t), self.VOC_abc_data(t), 0]) else: return np.array([1-self.VOC_abc_logistic(t), self.VOC_abc_logistic(t), 0]) else: return np.array([0, 1-self.VOC_delta_logistic(t), self.VOC_delta_logistic(t)]) ########################### ## Vaccination functions ## ########################### from covid19model.data.model_parameters import construct_initN class make_vaccination_function(): """ Class that returns a two-fold time-dependent parameter function for the vaccination strategy by default. First, first dose data by sciensano are used. In the future, a hypothetical scheme is used. If spatial data is given, the output consists of vaccination data per NIS code. Input ----- df : pd.dataFrame *either* Sciensano public dataset, obtained using: `from covid19model.data import sciensano` `df = sciensano.get_sciensano_COVID19_data(update=False)` *or* public spatial vaccination data, obtained using: `from covid19model.data import sciensano` `df = sciensano.get_public_spatial_vaccination_data(update=False,agg='arr')` spatial : Boolean True if df is spatially explicit. None by default. Output ------ __class__ : function Default vaccination function """ def __init__(self, df, age_classes=pd.IntervalIndex.from_tuples([(0,12),(12,18),(18,25),(25,35),(35,45),(45,55),(55,65),(65,75),(75,85),(85,120)], closed='left')): age_stratification_size = len(age_classes) # Assign inputs to object self.df = df self.age_agg = age_stratification_size # Check if spatial data is provided self.spatial = None if 'NIS' in self.df.index.names: self.spatial = True self.space_agg = len(self.df.index.get_level_values('NIS').unique().values) # infer aggregation (prov, arr or mun) if self.space_agg == 11: self.agg = 'prov' elif self.space_agg == 43: self.agg = 'arr' elif self.space_agg == 581: self.agg = 'mun' else: raise Exception(f"Space is {G}-fold stratified. This is not recognized as being stratification at Belgian province, arrondissement, or municipality level.") # Check if dose data is provided self.doses = None if 'dose' in self.df.index.names: self.doses = True self.dose_agg = len(self.df.index.get_level_values('dose').unique().values) # Define start- and enddate self.df_start = pd.Timestamp(self.df.index.get_level_values('date').min()) self.df_end = pd.Timestamp(self.df.index.get_level_values('date').max()) # Perform age conversion # Define dataframe with desired format iterables=[] for index_name in self.df.index.names: if index_name != 'age': iterables += [self.df.index.get_level_values(index_name).unique()] else: iterables += [age_classes] index = pd.MultiIndex.from_product(iterables, names=self.df.index.names) self.new_df = pd.Series(index=index) # Four possibilities exist: can this be sped up? if self.spatial: if self.doses: # Shorten? for date in self.df.index.get_level_values('date').unique(): for NIS in self.df.index.get_level_values('NIS').unique(): for dose in self.df.index.get_level_values('dose').unique(): data = self.df.loc[(date, NIS, slice(None), dose)] self.new_df.loc[(date, NIS, slice(None), dose)] = self.convert_age_stratified_vaccination_data(data, age_classes, self.agg, NIS).values else: for date in self.df.index.get_level_values('date').unique(): for NIS in self.df.index.get_level_values('NIS').unique(): data = self.df.loc[(date,NIS)] self.new_df.loc[(date, NIS)] = self.convert_age_stratified_vaccination_data(data, age_classes, self.agg, NIS).values else: if self.doses: for date in self.df.index.get_level_values('date').unique(): for dose in self.df.index.get_level_values('dose').unique(): data = self.df.loc[(date, slice(None), dose)] self.new_df.loc[(date, slice(None), dose)] = self.convert_age_stratified_vaccination_data(data, age_classes).values else: for date in self.df.index.get_level_values('date').unique(): data = self.df.loc[(date)] self.new_df.loc[(date)] = self.convert_age_stratified_vaccination_data(data, age_classes).values self.df = self.new_df def convert_age_stratified_vaccination_data(self, data, age_classes, agg=None, NIS=None): """ A function to convert the sciensano vaccination data to the desired model age groups Parameters ---------- data: pd.Series A series of age-stratified vaccination incidences. Index must be of type pd.Intervalindex. age_classes : pd.IntervalIndex Desired age groups of the vaccination dataframe. agg: str Spatial aggregation: prov, arr or mun NIS : str NIS code of consired spatial element Returns ------- out: pd.Series Converted data. """ # Pre-allocate new series out = pd.Series(index = age_classes, dtype=float) # Extract demographics if agg: data_n_individuals = construct_initN(data.index.get_level_values('age'), agg).loc[NIS,:].values demographics = construct_initN(None, agg).loc[NIS,:].values else: data_n_individuals = construct_initN(data.index.get_level_values('age'), agg).values demographics = construct_initN(None, agg).values # Loop over desired intervals for idx,interval in enumerate(age_classes): result = [] for age in range(interval.left, interval.right): try: result.append(demographics[age]/data_n_individuals[data.index.get_level_values('age').contains(age)]*data.iloc[np.where(data.index.get_level_values('age').contains(age))[0][0]]) except: result.append(0) out.iloc[idx] = sum(result) return out @lru_cache() def get_data(self,t): if self.spatial: if self.doses: try: # Only includes doses A, B and C (so not boosters!) for now data = np.zeros([self.space_agg, self.age_agg, self.dose_agg+1]) data[:,:,:-1] = np.array(self.df.loc[t,:,:,:].values).reshape( (self.space_agg, self.age_agg, self.dose_agg) ) return data except: return np.zeros([self.space_agg, self.age_agg, self.dose_agg+1]) else: try: return np.array(self.df.loc[t,:,:].values).reshape( (self.space_agg, self.age_agg) ) except: return np.zeros([self.space_agg, self.age_agg]) else: if self.doses: try: return np.array(self.df.loc[t,:,:].values).reshape( (self.age_agg, self.dose_agg) ) except: return np.zeros([self.age_agg, self.dose_agg]) else: try: return np.array(self.df.loc[t,:].values) except: return np.zeros(self.age_agg) def unidose_2021_vaccination_campaign(self, states, initN, daily_doses, delay_immunity, vacc_order, stop_idx, refusal): # Compute the number of vaccine eligible individuals VE = states['S'] + states['R'] # Initialize N_vacc N_vacc = np.zeros(self.age_agg) # Start vaccination loop idx = 0 while daily_doses > 0: if idx == stop_idx: daily_doses = 0 #End vaccination campaign at age 20 elif VE[vacc_order[idx]] - initN[vacc_order[idx]]*refusal[vacc_order[idx]] > daily_doses: N_vacc[vacc_order[idx]] = daily_doses daily_doses = 0 else: N_vacc[vacc_order[idx]] = VE[vacc_order[idx]] - initN[vacc_order[idx]]*refusal[vacc_order[idx]] daily_doses = daily_doses - (VE[vacc_order[idx]] - initN[vacc_order[idx]]*refusal[vacc_order[idx]]) idx = idx + 1 return N_vacc def booster_campaign(self, states, daily_doses, vacc_order, stop_idx, refusal): # Compute the number of booster eligible individuals VE = states['S'][:,2] + states['E'][:,2] + states['I'][:,2] + states['A'][:,2] + states['R'][:,2] \ + states['S'][:,3] + states['E'][:,3] + states['I'][:,3] + states['A'][:,3] + states['R'][:,3] # Initialize N_vacc N_vacc = np.zeros([self.age_agg,self.dose_agg]) # Booster vaccination strategy without refusal idx = 0 while daily_doses > 0: if idx == stop_idx: daily_doses= 0 #End vaccination campaign at age 20 elif VE[vacc_order[idx]] - self.fully_vaccinated_0[vacc_order[idx]]*refusal[vacc_order[idx]] > daily_doses: N_vacc[vacc_order[idx],3] = daily_doses daily_doses= 0 else: N_vacc[vacc_order[idx],3] = VE[vacc_order[idx]] - self.fully_vaccinated_0[vacc_order[idx]]*refusal[vacc_order[idx]] daily_doses = daily_doses - (VE[vacc_order[idx]] - self.fully_vaccinated_0[vacc_order[idx]]*refusal[vacc_order[idx]]) idx = idx + 1 return N_vacc # Default vaccination strategy = Sciensano data + hypothetical scheme after end of data collection for unidose model only (for now) def __call__(self, t, states, param, initN, daily_doses=60000, delay_immunity = 21, vacc_order = [8,7,6,5,4,3,2,1,0], stop_idx=9, refusal = [0.3,0.3,0.3,0.3,0.3,0.3,0.3,0.3,0.3]): """ time-dependent function for the Belgian vaccination strategy First, all available first-dose data from Sciensano are used. Then, the user can specify a custom vaccination strategy of "daily_first_dose" first doses per day, administered in the order specified by the vector "vacc_order" with a refusal propensity of "refusal" in every age group. This vaccination strategy does not distinguish between vaccination doses, individuals are transferred to the vaccination circuit after some time delay after the first dose. For use with the model `COVID19_SEIRD` and `COVID19_SEIRD_spatial_vacc` in `~src/models/models.py` Parameters ---------- t : int Simulation time states: dict Dictionary containing values of model states param : dict Model parameter dictionary initN : list or np.array Demographics according to the epidemiological model age bins daily_first_dose : int Number of doses administered per day. Default is 30000 doses/day. delay_immunity : int Time delay between first dose vaccination and start of immunity. Default is 21 days. vacc_order : array Vector containing vaccination prioritization preference. Default is old to young. Must be equal in length to the number of age bins in the model. stop_idx : float Index of age group at which the vaccination campaign is halted. An index of 9 corresponds to vaccinating all age groups, an index of 8 corresponds to not vaccinating the age group corresponding with vacc_order[idx]. refusal: array Vector containing the fraction of individuals refusing a vaccine per age group. Default is 30% in every age group. Must be equal in length to the number of age bins in the model. Return ------ N_vacc : np.array Number of individuals to be vaccinated at simulation time "t" per age, or per [patch,age] """ # Convert time to suitable format t = pd.Timestamp(t.date()) # Convert delay to a timedelta delay = pd.Timedelta(str(int(delay_immunity))+'D') # Compute vaccinated individuals after spring-summer 2021 vaccination campaign check_time = pd.Timestamp('2021-10-01') # Only for non-spatial multi-vaccindation dose model if not self.spatial: if self.doses: if t == check_time: self.fully_vaccinated_0 = states['S'][:,2] + states['E'][:,2] + states['I'][:,2] + states['A'][:,2] + states['R'][:,2] + \ states['S'][:,3] + states['E'][:,3] + states['I'][:,3] + states['A'][:,3] + states['R'][:,3] # Use data if t <= self.df_end + delay: return self.get_data(t-delay) # Projection into the future else: if self.spatial: if self.doses: # No projection implemented return np.zeros([self.space_agg, self.age_agg, self.dose_agg+1]) else: # No projection implemented return np.zeros([self.space_agg,self.age_agg]) else: if self.doses: return self.booster_campaign(states, daily_doses, vacc_order, stop_idx, refusal) else: return self.unidose_2021_vaccination_campaign(states, initN, daily_doses, delay_immunity, vacc_order, stop_idx, refusal) ################################### ## Google social policy function ## ################################### class make_contact_matrix_function(): """ Class that returns contact matrix based on 4 prevention parameters by default, but has other policies defined as well. Input ----- Nc_all : dictionnary contact matrices for home, schools, work, transport, leisure and others df_google : dataframe google mobility data Output ------ __class__ : default function Default output function, based on contact_matrix_4prev """ def __init__(self, df_google, Nc_all): self.df_google = df_google.astype(float) self.Nc_all = Nc_all # Compute start and endtimes of dataframe self.df_google_start = df_google.index.get_level_values('date')[0] self.df_google_end = df_google.index.get_level_values('date')[-1] # Check if provincial data is provided self.provincial = None if 'NIS' in self.df_google.index.names: self.provincial = True self.space_agg = len(self.df_google.index.get_level_values('NIS').unique().values) @lru_cache() # once the function is run for a set of parameters, it doesn't need to compile again def __call__(self, t, prev_home=1, prev_schools=1, prev_work=1, prev_rest = 1, school=None, work=None, transport=None, leisure=None, others=None, home=None): """ t : timestamp current date prev_... : float [0,1] prevention parameter to estimate school, work, transport, leisure, others : float [0,1] level of opening of these sectors if None, it is calculated from google mobility data only school cannot be None! """ if school is None: raise ValueError( "Please indicate to which extend schools are open") places_var = [work, transport, leisure, others] places_names = ['work', 'transport', 'leisure', 'others'] GCMR_names = ['work', 'transport', 'retail_recreation', 'grocery'] if self.provincial: if t < pd.Timestamp('2020-03-17'): return np.ones(self.space_agg)[:,np.newaxis,np.newaxis]*self.Nc_all['total'] elif pd.Timestamp('2020-03-17') <= t <= self.df_google_end: # Extract row at timestep t row = -self.df_google.loc[(t, slice(None)),:]/100 else: # Extract last 14 days and take the mean row = -self.df_google.loc[(self.df_google_end - pd.Timedelta(days=14)): self.df_google_end, slice(None)].mean(level='NIS')/100 # Sort NIS codes from low to high row.sort_index(level='NIS', ascending=True,inplace=True) # Extract values values_dict={} for idx,place in enumerate(places_var): if place is None: place = 1 - row[GCMR_names[idx]].values else: try: test=len(place) except: place = place*np.ones(self.space_agg) values_dict.update({places_names[idx]: place}) # Schools: try: test=len(school) except: school = school*np.ones(self.space_agg) # Construct contact matrix CM = (prev_home*np.ones(self.space_agg)[:, np.newaxis,np.newaxis]*self.Nc_all['home'] + (prev_schools*school)[:, np.newaxis,np.newaxis]*self.Nc_all['schools'] + (prev_work*values_dict['work'])[:,np.newaxis,np.newaxis]*self.Nc_all['work'] + (prev_rest*values_dict['transport'])[:,np.newaxis,np.newaxis]*self.Nc_all['transport'] + (prev_rest*values_dict['leisure'])[:,np.newaxis,np.newaxis]*self.Nc_all['leisure'] + (prev_rest*values_dict['others'])[:,np.newaxis,np.newaxis]*self.Nc_all['others']) else: if t < pd.Timestamp('2020-03-17'): return self.Nc_all['total'] elif pd.Timestamp('2020-03-17') <= t <= self.df_google_end: # Extract row at timestep t row = -self.df_google.loc[t]/100 else: # Extract last 14 days and take the mean row = -self.df_google[-14:-1].mean()/100 # Extract values values_dict={} for idx,place in enumerate(places_var): if place is None: place = 1 - row[GCMR_names[idx]] values_dict.update({places_names[idx]: place}) # Construct contact matrix CM = (prev_home*self.Nc_all['home'] + prev_schools*school*self.Nc_all['schools'] + prev_work*values_dict['work']*self.Nc_all['work'] + prev_rest*values_dict['transport']*self.Nc_all['transport'] + prev_rest*values_dict['leisure']*self.Nc_all['leisure'] + prev_rest*values_dict['others']*self.Nc_all['others']) return CM def all_contact(self): return self.Nc_all['total'] def all_contact_no_schools(self): return self.Nc_all['total'] - self.Nc_all['schools'] def ramp_fun(self, Nc_old, Nc_new, t, t_start, l): """ t : timestamp current simulation time t_start : timestamp start of policy change l : int number of additional days after the time delay until full compliance is reached """ return Nc_old + (Nc_new-Nc_old)/l * float( (t-t_start)/pd.Timedelta('1D') ) def delayed_ramp_fun(self, Nc_old, Nc_new, t, tau_days, l, t_start): """ t : timestamp current simulation time t_start : timestamp start of policy change tau : int number of days before measures start having an effect l : int number of additional days after the time delay until full compliance is reached """ return Nc_old + (Nc_new-Nc_old)/l * float( (t-t_start-tau_days)/pd.Timedelta('1D') ) #################### ## National model ## #################### def policies_all(self, t, states, param, l1, l2, prev_schools, prev_work, prev_rest_lockdown, prev_rest_relaxation, prev_home): ''' Function that returns the time-dependant social contact matrix Nc for all COVID waves. Input ----- t : Timestamp simulation time states : xarray model states param : dict model parameter dictionary l1 : float Compliance parameter for social policies during first lockdown 2020 COVID-19 wave l2 : float Compliance parameter for social policies during second lockdown 2020 COVID-19 wave prev_{location} : float Effectivity of contacts at {location} Returns ------- CM : np.array (9x9) Effective contact matrix (output of __call__ function) ''' t = pd.Timestamp(t.date()) # Convert compliance l to dates l1_days = pd.Timedelta(l1, unit='D') l2_days = pd.Timedelta(l2, unit='D') # Define key dates of first wave t1 = pd.Timestamp('2020-03-15') # start of lockdown t2 = pd.Timestamp('2020-05-15') # gradual re-opening of schools (assume 50% of nominal scenario) t3 = pd.Timestamp('2020-07-01') # start of summer holidays t4 =
pd.Timestamp('2020-08-03')
pandas.Timestamp
import os from nose.tools import * import unittest import pandas as pd from py_entitymatching.utils.generic_helper import get_install_path import py_entitymatching.catalog.catalog_manager as cm import py_entitymatching.utils.catalog_helper as ch from py_entitymatching.io.parsers import read_csv_metadata datasets_path = os.sep.join([get_install_path(), 'tests', 'test_datasets']) catalog_datasets_path = os.sep.join([get_install_path(), 'tests', 'test_datasets', 'catalog']) path_a = os.sep.join([datasets_path, 'A.csv']) path_b = os.sep.join([datasets_path, 'B.csv']) path_c = os.sep.join([datasets_path, 'C.csv']) class CatalogManagerTestCases(unittest.TestCase): def setUp(self): cm.del_catalog() def tearDown(self): cm.del_catalog() def test_get_property_valid_df_name_1(self): # cm.del_catalog() df = read_csv_metadata(path_a) self.assertEqual(cm.get_property(df, 'key'), 'ID') # cm.del_catalog() def test_get_property_valid_df_name_2(self): # cm.del_catalog() self.assertEqual(cm.get_catalog_len(), 0) A = read_csv_metadata(path_a) B = read_csv_metadata(path_b, key='ID') C = read_csv_metadata(path_c, ltable=A, rtable=B) self.assertEqual(cm.get_property(C, 'key'), '_id') self.assertEqual(cm.get_property(C, 'fk_ltable'), 'ltable_ID') self.assertEqual(cm.get_property(C, 'fk_rtable'), 'rtable_ID') self.assertEqual(cm.get_property(C, 'ltable').equals(A), True) self.assertEqual(cm.get_property(C, 'rtable').equals(B), True) # cm.del_catalog() @raises(AssertionError) def test_get_property_invalid_df_1(self): cm.get_property(10, 'key') @raises(AssertionError) def test_get_property_invalid_path_1(self): # cm.del_catalog() A = read_csv_metadata(path_a) cm.get_property(A, None) # cm.del_catalog() @raises(KeyError) def test_get_property_df_notin_catalog(self): # cm.del_catalog() A = pd.read_csv(path_a) cm.get_property(A, 'key') # cm.del_catalog() def test_set_property_valid_df_name_value(self): # cm.del_catalog() df = pd.read_csv(path_a) cm.set_property(df, 'key', 'ID') self.assertEqual(cm.get_property(df, 'key'), 'ID') # cm.del_catalog() @raises(AssertionError) def test_set_property_invalid_df(self): # cm.del_catalog() cm.set_property(None, 'key', 'ID') # cm.del_catalog() @raises(AssertionError) def test_set_property_valid_df_invalid_prop(self): # cm.del_catalog() A = pd.read_csv(path_a) cm.set_property(A, None, 'ID') # cm.del_catalog() def test_init_properties_valid(self): # cm.del_catalog() A = pd.read_csv(path_a) cm.init_properties(A) self.assertEqual(cm.is_dfinfo_present(A), True) # cm.del_catalog() @raises(AssertionError) def test_init_properties_invalid_df(self): cm.init_properties(None) def test_get_all_properties_valid_1(self): # cm.del_catalog() A = read_csv_metadata(path_a) m = cm.get_all_properties(A) self.assertEqual(len(m), 1) self.assertEqual(m['key'], 'ID') # cm.del_catalog() def test_get_all_properties_valid_2(self): # cm.del_catalog() A = read_csv_metadata(path_a) B = read_csv_metadata(path_b, key='ID') C = read_csv_metadata(path_c, ltable=A, rtable=B) m = cm.get_all_properties(C) self.assertEqual(len(m), 5) self.assertEqual(m['key'], '_id') self.assertEqual(m['fk_ltable'], 'ltable_ID') self.assertEqual(m['fk_rtable'], 'rtable_ID') self.assertEqual(m['ltable'].equals(A), True) self.assertEqual(m['rtable'].equals(B), True) # cm.del_catalog() @raises(AssertionError) def test_get_all_properties_invalid_df_1(self): # cm.del_catalog() C = cm.get_all_properties(None) @raises(KeyError) def test_get_all_properties_invalid_df_2(self): # cm.del_catalog() A = pd.read_csv(path_a) C = cm.get_all_properties(A) def test_del_property_valid_df_name(self): A = read_csv_metadata(path_a) cm.del_property(A, 'key') self.assertEqual(len(cm.get_all_properties(A)), 0) @raises(AssertionError) def test_del_property_invalid_df(self): cm.del_property(None, 'key') @raises(AssertionError) def test_del_property_invalid_property(self): A = read_csv_metadata(path_a) cm.del_property(A, None) @raises(KeyError) def test_del_property_df_notin_catalog(self): A = pd.read_csv(path_a) cm.del_property(A, 'key') @raises(KeyError) def test_del_property_prop_notin_catalog(self): A = read_csv_metadata(path_a) cm.del_property(A, 'key1') def test_del_all_properties_valid_1(self): A = read_csv_metadata(path_a) cm.del_all_properties(A) self.assertEqual(cm.is_dfinfo_present(A), False) def test_del_all_properties_valid_2(self): A = read_csv_metadata(path_a) B = read_csv_metadata(path_b) C = read_csv_metadata(path_c, ltable=A, rtable=B) cm.del_all_properties(C) self.assertEqual(cm.is_dfinfo_present(C), False) @raises(AssertionError) def test_del_all_properties_invalid_df(self): cm.del_all_properties(None) @raises(KeyError) def test_del_all_properties_df_notin_catalog(self): A = pd.read_csv(path_a) cm.del_all_properties(A) def test_get_catalog_valid(self): A = read_csv_metadata(path_a) cg = cm.get_catalog() self.assertEqual(len(cg), 1) def test_del_catalog_valid(self): A = read_csv_metadata(path_a) cm.del_catalog() cg = cm.get_catalog() self.assertEqual(len(cg), 0) def test_is_catalog_empty(self): A = read_csv_metadata(path_a) cm.del_catalog() self.assertEqual(cm.is_catalog_empty(), True) def test_is_dfinfo_present_valid_1(self): A = read_csv_metadata(path_a) status = cm.is_dfinfo_present(A) self.assertEqual(status, True) def test_is_dfinfo_present_valid_2(self): A = pd.read_csv(path_a) status = cm.is_dfinfo_present(A) self.assertEqual(status, False) @raises(AssertionError) def test_is_dfinfo_present_invalid(self): cm.is_dfinfo_present(None) def test_is_property_present_for_df_valid_1(self): A = read_csv_metadata(path_a) status = cm.is_property_present_for_df(A, 'key') self.assertEqual(status, True) def test_is_property_present_for_df_valid_2(self): A = read_csv_metadata(path_a) status = cm.is_property_present_for_df(A, 'key1') self.assertEqual(status, False) @raises(AssertionError) def test_is_property_present_for_df_invalid_df(self): cm.is_property_present_for_df(None, 'key') @raises(KeyError) def test_is_property_present_for_df_notin_catalog(self): A = pd.read_csv(path_a) cm.is_property_present_for_df(A, 'key') def test_catalog_len(self): A = read_csv_metadata(path_a) self.assertEqual(cm.get_catalog_len(), 1) def test_set_properties_valid_1(self): A = read_csv_metadata(path_a) p = cm.get_all_properties(A) B = pd.read_csv(path_b) cm.init_properties(B) cm.set_properties(B,p) self.assertEqual(cm.get_all_properties(B)==p, True) def test_set_properties_valid_2(self): A = read_csv_metadata(path_a) p = cm.get_all_properties(A) B = pd.read_csv(path_b) cm.set_properties(B,p) self.assertEqual(cm.get_all_properties(B)==p, True) @raises(AssertionError) def test_set_properties_invalid_df_1(self): cm.set_properties(None, {}) @raises(AssertionError) def test_set_properties_invalid_dict_1(self): A = read_csv_metadata(path_a) cm.set_properties(A, None) def test_set_properties_df_notin_catalog_replace_false(self): A = read_csv_metadata(path_a) cm.set_properties(A, {}, replace=False) self.assertEqual(cm.get_key(A), 'ID') # def test_has_property_valid_1(self): # A = read_csv_metadata(path_a) # self.assertEqual(cm.has_property(A, 'key'), True) # # def test_has_property_valid_2(self): # A = read_csv_metadata(path_a) # self.assertEqual(cm.has_property(A, 'key1'), False) # # @raises(AssertionError) # def test_has_property_invalid_df(self): # cm.has_property(None, 'key') # # @raises(AssertionError) # def test_has_property_invalid_prop_name(self): # A = read_csv_metadata(path_a) # cm.has_property(A, None) # # @raises(KeyError) # def test_has_property_df_notin_catalog(self): # A = pd.read_csv(path_a) # cm.has_property(A, 'key') def test_copy_properties_valid_1(self): A = read_csv_metadata(path_a) A1 = pd.read_csv(path_a) cm.copy_properties(A, A1) self.assertEqual(cm.is_dfinfo_present(A1), True) p = cm.get_all_properties(A) p1 = cm.get_all_properties(A1) self.assertEqual(p, p1) self.assertEqual(cm.get_key(A1), cm.get_key(A)) def test_copy_properties_valid_2(self): A = read_csv_metadata(path_a) B = read_csv_metadata(path_b) C = read_csv_metadata(path_c, ltable=A, rtable=B) C1 = pd.read_csv(path_c) cm.copy_properties(C, C1) self.assertEqual(cm.is_dfinfo_present(C1), True) p = cm.get_all_properties(C1) p1 = cm.get_all_properties(C1) self.assertEqual(p, p1) self.assertEqual(cm.get_key(C1), cm.get_key(C)) self.assertEqual(cm.get_ltable(C1).equals(A), True) self.assertEqual(cm.get_rtable(C1).equals(B), True) self.assertEqual(cm.get_fk_ltable(C1), cm.get_fk_ltable(C)) self.assertEqual(cm.get_fk_rtable(C1), cm.get_fk_rtable(C)) @raises(AssertionError) def test_copy_properties_invalid_tar_df(self): A = read_csv_metadata(path_a) cm.copy_properties(A, None) @raises(AssertionError) def test_copy_properties_invalid_src_df(self): A = read_csv_metadata(path_a) cm.copy_properties(None, A) def test_copy_properties_update_false_1(self): A = read_csv_metadata(path_a) A1 = read_csv_metadata(path_a) status=cm.copy_properties(A, A1, replace=False) self.assertEqual(status, False) def test_copy_properties_update_false_2(self): A = read_csv_metadata(path_a) A1 = pd.read_csv(path_a) cm.copy_properties(A, A1, replace=False) p = cm.get_all_properties(A) p1 = cm.get_all_properties(A1) self.assertEqual(p, p1) self.assertEqual(cm.get_key(A1), cm.get_key(A)) @raises(KeyError) def test_copy_properties_src_df_notin_catalog(self): A = pd.read_csv(path_a) A1 = pd.read_csv(path_a) cm.copy_properties(A, A1) def test_get_key_valid(self): A = pd.read_csv(path_a) cm.set_key(A, 'ID') self.assertEqual(cm.get_key(A), 'ID') @raises(AssertionError) def test_get_key_invalid_df(self): cm.get_key(None) @raises(KeyError) def test_get_key_df_notin_catalog(self): A = pd.read_csv(path_a) cm.get_key(A) def test_set_key_valid(self): A = pd.read_csv(path_a) cm.set_key(A, 'ID') self.assertEqual(cm.get_key(A), 'ID') @raises(AssertionError) def test_set_key_invalid_df(self): cm.set_key(None, 'ID') @raises(KeyError) def test_set_key_notin_df(self): A = pd.read_csv(path_a) cm.set_key(A, 'ID1') def test_set_key_with_dupids(self): p = os.sep.join([catalog_datasets_path, 'A_dupid.csv']) A = pd.read_csv(p) status = cm.set_key(A, 'ID') self.assertEqual(status, False) def test_set_key_with_mvals(self): p = os.sep.join([catalog_datasets_path, 'A_mvals.csv']) A = pd.read_csv(p) status = cm.set_key(A, 'ID') self.assertEqual(status, False) def test_get_fk_ltable_valid(self): A = read_csv_metadata(path_a) B = read_csv_metadata(path_b) C = read_csv_metadata(path_c, ltable=A, rtable=B) self.assertEqual(cm.get_fk_ltable(C), cm.get_property(C, 'fk_ltable')) self.assertEqual(cm.get_fk_ltable(C), 'ltable_ID') @raises(AssertionError) def test_get_fk_ltable_invalid_df(self): cm.get_fk_ltable(None) def test_get_fk_rtable_valid(self): A = read_csv_metadata(path_a) B = read_csv_metadata(path_b) C = read_csv_metadata(path_c, ltable=A, rtable=B) self.assertEqual(cm.get_fk_rtable(C), cm.get_property(C, 'fk_rtable')) self.assertEqual(cm.get_fk_rtable(C), 'rtable_ID') @raises(AssertionError) def test_get_fk_rtable_invalid_df(self): cm.get_fk_rtable(None) def test_set_fk_ltable_valid(self): A = read_csv_metadata(path_a) B = read_csv_metadata(path_b) C = pd.read_csv(path_c) cm.set_fk_ltable(C, 'ltable_ID') self.assertEqual(cm.get_fk_ltable(C), 'ltable_ID') @raises(AssertionError) def test_set_fk_ltable_invalid_df(self): cm.set_fk_ltable(None, 'ltable_ID') @raises(KeyError) def test_set_fk_ltable_invalid_col(self): C = pd.read_csv(path_c) cm.set_fk_ltable(C, 'ltable_ID1') def test_set_fk_rtable_valid(self): A = read_csv_metadata(path_a) B = read_csv_metadata(path_b) C = pd.read_csv(path_c) cm.set_fk_rtable(C, 'rtable_ID') self.assertEqual(cm.get_fk_rtable(C), 'rtable_ID') @raises(AssertionError) def test_set_fk_rtable_invalid_df(self): cm.set_fk_rtable(None, 'rtable_ID') @raises(KeyError) def test_set_fk_rtable_invalid_col(self): C = pd.read_csv(path_c) cm.set_fk_rtable(C, 'rtable_ID1') def test_validate_and_set_fk_ltable_valid(self): A = read_csv_metadata(path_a) B = read_csv_metadata(path_b) C = pd.read_csv(path_c) cm.validate_and_set_fk_ltable(C, 'ltable_ID', A, 'ID') self.assertEqual(cm.get_fk_ltable(C), 'ltable_ID') def test_validate_and_set_fk_ltable_err_case_1(self): C = pd.read_csv(path_c) p = os.sep.join([catalog_datasets_path, 'A_dupid.csv']) A = pd.read_csv(p) status = cm.validate_and_set_fk_ltable(C, 'ltable_ID', A, 'ID') self.assertEqual(status, False) self.assertEqual(cm.is_dfinfo_present(C), False) def test_validate_and_set_fk_ltable_err_case_2(self): C = pd.read_csv(path_c) p = os.sep.join([catalog_datasets_path, 'A_inv_fk.csv']) A = pd.read_csv(p) status = cm.validate_and_set_fk_ltable(C, 'ltable_ID', A, 'ID') self.assertEqual(status, False) self.assertEqual(cm.is_dfinfo_present(C), False) def test_validate_and_set_fk_rtable_valid(self): A = read_csv_metadata(path_a) C = pd.read_csv(path_c) cm.validate_and_set_fk_rtable(C, 'ltable_ID', A, 'ID') self.assertEqual(cm.get_fk_rtable(C), 'ltable_ID') def test_validate_and_set_fk_rtable_err_case_1(self): C = pd.read_csv(path_c) p = os.sep.join([catalog_datasets_path, 'A_dupid.csv']) A = pd.read_csv(p) status = cm.validate_and_set_fk_rtable(C, 'ltable_ID', A, 'ID') self.assertEqual(status, False) self.assertEqual(cm.is_dfinfo_present(C), False) def test_validate_and_set_fk_rtable_err_case_2(self): C = pd.read_csv(path_c) p = os.sep.join([catalog_datasets_path, 'A_inv_fk.csv']) A = pd.read_csv(p) status = cm.validate_and_set_fk_rtable(C, 'ltable_ID', A, 'ID') self.assertEqual(status, False) self.assertEqual(cm.is_dfinfo_present(C), False) # def test_get_reqd_metadata_from_catalog_valid_1(self): # A = read_csv_metadata(path_a) # d = cm.get_reqd_metadata_from_catalog(A, 'key') # self.assertEqual(d['key'], cm.get_key(A)) # # def test_get_reqd_metadata_from_catalog_valid_2(self): # A = read_csv_metadata(path_a) # d = cm.get_reqd_metadata_from_catalog(A, ['key']) # self.assertEqual(d['key'], cm.get_key(A)) # # def test_get_reqd_metadata_from_catalog_valid_3(self): # A = read_csv_metadata(path_a) # B = read_csv_metadata(path_b, key='ID') # C = read_csv_metadata(path_c, ltable=A, rtable=B) # d = cm.get_reqd_metadata_from_catalog(C, ['key', 'fk_ltable', 'fk_rtable', 'ltable', 'rtable']) # self.assertEqual(d['key'], cm.get_key(C)) # self.assertEqual(d['fk_ltable'], cm.get_fk_ltable(C)) # self.assertEqual(d['fk_rtable'], cm.get_fk_rtable(C)) # self.assertEqual(cm.get_ltable(C).equals(A), True) # self.assertEqual(cm.get_rtable(C).equals(B), True) # # @raises(AssertionError) # def test_get_reqd_metadata_from_catalog_err_1(self): # cm.get_reqd_metadata_from_catalog(None, ['key']) # # @raises(AssertionError) # def test_get_reqd_metadata_from_catalog_err_2(self): # A = read_csv_metadata(path_a) # B = read_csv_metadata(path_b, key='ID') # C = read_csv_metadata(path_c, ltable=A, rtable=B) # d = cm.get_reqd_metadata_from_catalog(C, ['key', 'fk_ltable1', 'fk_rtable', 'ltable', 'rtable']) # # # def test_update_reqd_metadata_with_kwargs_valid_1(self): # A = read_csv_metadata(path_a) # d = cm.get_all_properties(A) # metadata = {} # cm._update_reqd_metadata_with_kwargs(metadata, d, ['key']) # self.assertEqual(metadata['key'], d['key']) # # def test_update_reqd_metadata_with_kwargs_valid_2(self): # A = read_csv_metadata(path_a) # d = cm.get_all_properties(A) # metadata = {} # cm._update_reqd_metadata_with_kwargs(metadata, d, 'key') # self.assertEqual(metadata['key'], d['key']) # # @raises(AssertionError) # def test_update_reqf_metadata_with_kwargs_invalid_dict_1(self): # A = read_csv_metadata(path_a) # d = cm.get_all_properties(A) # cm._update_reqd_metadata_with_kwargs(None, d, 'key') # # @raises(AssertionError) # def test_update_reqf_metadata_with_kwargs_invalid_dict_2(self): # A = read_csv_metadata(path_a) # d = cm.get_all_properties(A) # cm._update_reqd_metadata_with_kwargs(d, None, 'key') # # @raises(AssertionError) # def test_update_reqd_metadata_with_kwargs_invalid_elts(self): # A = read_csv_metadata(path_a) # d = cm.get_all_properties(A) # metadata = {} # cm._update_reqd_metadata_with_kwargs(metadata, d, ['key1']) # def test_get_diff_with_reqd_metadata_valid_1(self): # A = read_csv_metadata(path_a) # d = cm.get_all_properties(A) # d1 = cm._get_diff_with_required_metadata(d, 'key1') # self.assertEqual(len(d1), 1) # # def test_get_diff_with_reqd_metadata_valid_2(self): # A = read_csv_metadata(path_a) # d = cm.get_all_properties(A) # d1 = cm._get_diff_with_required_metadata(d, ['key1']) # self.assertEqual(len(d1), 1) # # @raises(AssertionError) # def test_get_diff_with_reqd_metadata_invalid_dict(self): # d1 = cm._get_diff_with_required_metadata(None, ['key1']) # def test_is_all_reqd_metadata_present_valid_1(self): # A = read_csv_metadata(path_a) # d = cm.get_all_properties(A) # self.assertEqual(cm.is_all_reqd_metadata_present(d, 'key'),True) # # def test_is_all_reqd_metadata_present_valid_2(self): # A = read_csv_metadata(path_a) # d = cm.get_all_properties(A) # self.assertEqual(cm.is_all_reqd_metadata_present(d, ['key']),True) # # def test_is_all_reqd_metadata_present_valid_3(self): # A = read_csv_metadata(path_a) # d = cm.get_all_properties(A) # self.assertEqual(cm.is_all_reqd_metadata_present(d, ['key1']), False) # # @raises(AssertionError) # def test_is_all_reqd_metadata_present_invalid_dict(self): # cm.is_all_reqd_metadata_present(None, 'key') def test_show_properties_for_df_valid_1(self): A = read_csv_metadata(path_a) cm.show_properties(A) def test_show_properties_for_df_valid_2(self): A = pd.read_csv(path_a) cm.show_properties(A) def test_show_properties_for_df_valid_3(self): A = read_csv_metadata(path_a) B = read_csv_metadata(path_b, key='ID') C = read_csv_metadata(path_c, ltable=A, rtable=B) cm.show_properties(C) def test_show_properties_for_objid_valid_1(self): A = read_csv_metadata(path_a) cm.show_properties_for_id(id(A)) @raises(KeyError) def test_show_properties_for_objid_err_1(self): A = pd.read_csv(path_a) cm.show_properties_for_id(id(A)) def test_show_properties_for_objid_valid_3(self): A = read_csv_metadata(path_a) B = read_csv_metadata(path_b, key='ID') C = read_csv_metadata(path_c, ltable=A, rtable=B) cm.show_properties_for_id(id(C)) def test_validate_metadata_for_table_valid_1(self): A = pd.read_csv(path_a) status = cm._validate_metadata_for_table(A, 'ID', 'table', None, False) self.assertEqual(status, True) def test_validate_metadata_for_table_valid_2(self): import logging logger = logging.getLogger(__name__) A = pd.read_csv(path_a) status = cm._validate_metadata_for_table(A, 'ID', 'table', logger, True) self.assertEqual(status, True) @raises(AssertionError) def test_validate_metadata_for_table_invalid_df(self): status = cm._validate_metadata_for_table(None, 'ID', 'table', None, False) @raises(KeyError) def test_validate_metadata_for_table_key_notin_catalog(self): A = pd.read_csv(path_a) status = cm._validate_metadata_for_table(A, 'ID1', 'table', None, False) @raises(KeyError) def test_validate_metadata_for_table_key_notstring(self): A = pd.read_csv(path_a) status = cm._validate_metadata_for_table(A, None, 'table', None, False) @raises(AssertionError) def test_validate_metadata_for_table_key_notstring(self): A = pd.read_csv(path_a) status = cm._validate_metadata_for_table(A, 'zipcode', 'table', None, False) def test_validate_metadata_for_candset_valid_1(self): A = read_csv_metadata(path_a) B = read_csv_metadata(path_b, key='ID') C = read_csv_metadata(path_c, ltable=A, rtable=B) status = cm._validate_metadata_for_candset(C, '_id', 'ltable_ID', 'rtable_ID', A, B, 'ID', 'ID', None, False) self.assertEqual(status, True) @raises(AssertionError) def test_validate_metadata_for_candset_invalid_df(self): status = cm._validate_metadata_for_candset(None, '_id', 'ltable_ID', 'rtable_ID', None, None, 'ID', 'ID', None, False) @raises(KeyError) def test_validate_metadata_for_candset_id_notin(self): A = read_csv_metadata(path_a) B = read_csv_metadata(path_b, key='ID') C = read_csv_metadata(path_c, ltable=A, rtable=B) status = cm._validate_metadata_for_candset(C, 'id', 'ltable_ID', 'rtable_ID', A, B, 'ID', 'ID', None, False) @raises(KeyError) def test_validate_metadata_for_candset_fk_ltable_notin(self): A = read_csv_metadata(path_a) B = read_csv_metadata(path_b, key='ID') C = read_csv_metadata(path_c, ltable=A, rtable=B) status = cm._validate_metadata_for_candset(C, '_id', 'ltableID', 'rtable_ID', A, B, 'ID', 'ID', None, False) @raises(KeyError) def test_validate_metadata_for_candset_fk_rtable_notin(self): A = read_csv_metadata(path_a) B = read_csv_metadata(path_b, key='ID') C = read_csv_metadata(path_c, ltable=A, rtable=B) status = cm._validate_metadata_for_candset(C, '_id', 'ltable_ID', 'rtableID', A, B, 'ID', 'ID', None, False) @raises(AssertionError) def test_validate_metadata_for_candset_invlaid_ltable(self): B = pd.read_csv(path_b) C =
pd.read_csv(path_c)
pandas.read_csv
import pytest from ..BPtPipeline import BPtPipeline from .helpers import ToFixedTransformer, get_fake_mapping, clean_fake_mapping from ..ScopeObjs import ScopeTransformer from ..BPtModel import BPtModel from ..BPtLoader import BPtLoader from ...extensions import Identity from sklearn.linear_model import LinearRegression import numpy as np import pandas as pd import os import tempfile from ...default.params.Params import Choice, TransitionChoice from .helpers import get_param_search from ..BPtSearchCV import NevergradSearchCV import shutil from joblib import hash as joblib_hash from sklearn.feature_selection import SelectKBest from ..BPtFeatureSelector import BPtFeatureSelector from ..BPtTransformer import BPtTransformer import warnings from sklearn.decomposition import PCA def test_BPtPipeline(): # 'loaders', 'imputers', # 'scalers', # 'transformers', # 'feat_selectors', 'model'] steps = [] to_ones = ToFixedTransformer(to=1) st = ScopeTransformer(estimator=to_ones, inds=[1, 2]) steps.append(('to_ones', st)) model = BPtModel(estimator=LinearRegression(), inds=[0, 1]) steps.append(('model', model)) pipe = BPtPipeline(steps=steps) X = np.zeros((3, 3)) y = np.ones(3) pipe.fit(X, y) assert pipe['to_ones'].inds_ == [1, 2] # Should update so that next inds are 0, 2 # as 1 -> 0, 2 -> 1, 0 -> 2, so 0,1 -> 2, 0, sorted = 0, 2 assert pipe['model'].inds_ == [0, 2] assert len(pipe.mapping_) == 3 assert pipe.mapping_[0] == 2 assert pipe.mapping_[1] == 0 assert pipe.mapping_[2] == 1 # Make sure when re-fit resets mapping each time pipe.fit(X, y) assert pipe.mapping_[0] == 2 assert pipe.mapping_[1] == 0 assert pipe.mapping_[2] == 1 # Test propegate n_jobs pipe.n_jobs = 2 assert pipe['to_ones'].n_jobs == 2 assert pipe['to_ones'].estimator.n_jobs == 2 X_df = pd.DataFrame(X) X_trans = pipe.transform_df(X_df) assert X_trans[0].sum() == 0 assert X_trans[1].sum() == 3 assert X_trans[2].sum() == 3 def test_skip_loader_no_inds(): steps = [] loader = BPtLoader(estimator=Identity(), inds=[], file_mapping={}) steps.append(('loader', loader)) to_ones = ToFixedTransformer(to=1) st = ScopeTransformer(estimator=to_ones, inds=[1, 2]) steps.append(('to_ones', st)) model = BPtModel(estimator=LinearRegression(), inds=[0, 1]) steps.append(('model', model)) pipe = BPtPipeline(steps=steps) X = np.zeros((3, 3)) y = np.ones(3) # If no errors then means worked # since loader isn't constructed correctly. pipe.fit(X, y) assert pipe.steps[0][1].estimator_ is None def test_file_mapping_hash(): # Make sure that regardless of DataFile position # in memory, that it hashes correctly. mapping = get_fake_mapping(10) h1 = joblib_hash(mapping) clean_fake_mapping(10) mapping = get_fake_mapping(10) h2 = joblib_hash(mapping) clean_fake_mapping(10) assert h1 == h2 def run_pipe_with_loader_ts(cache_loc=None): steps = [] # Loader - transform (5, 2) to (5, 8) # as each DataFile contains np.zeros((2, 2)) file_mapping = get_fake_mapping(100) loader = BPtLoader(estimator=Identity(), inds=[0, 1], file_mapping=file_mapping, n_jobs=1, fix_n_jobs=False, cache_loc=None) steps.append(('loader', loader)) # Add transformer to ones # input here should be (5, 8) of real val, original # inds of 0 should work on half to_ones = ToFixedTransformer(to=1) st = ScopeTransformer(estimator=to_ones, inds=[0]) steps.append(('to_ones', st)) # Add basic linear regression model # Original inds should work on all model = BPtModel(estimator=LinearRegression(), inds=[0, 1]) param_dists = {'estimator__fit_intercept': Choice([True, False])} search_model = NevergradSearchCV(estimator=model, ps=get_param_search(), param_distributions=param_dists) steps.append(('model', search_model)) # Create pipe pipe = BPtPipeline(steps=steps, cache_loc=cache_loc) X = np.arange(100).reshape((50, 2)) y = np.ones(50) pipe.fit(X, y, fit_index=np.arange(50)) # Make sure fit worked correctly assert pipe[0].n_features_in_ == 2 assert pipe[1].n_features_in_ == 8 assert pipe[1].estimator_.n_features_in_ == 4 assert len(pipe.mapping_[0]) == 4 assert len(pipe.mapping_[1]) == 4 assert 7 in pipe.mapping_[1] # Make sure reverse transform works X_df = pd.DataFrame(X) X_trans = pipe.transform_df(X_df) assert X_trans.shape == (50, 8) assert X_trans.loc[4, '1_3'] == 9 assert X_trans.loc[1, '1_2'] == 3 assert X_trans.loc[4, '0_0'] == 1 assert X_trans.loc[0, '0_0'] == 1 # Make sure predict works, # seems safe to assume model # can learn to predict 1's # as all targets are 1's. # but may need to change? preds = pipe.predict(X) assert np.all(preds > .99) # Check bpt pipeline coef attribute assert np.array_equal(pipe[-1].best_estimator_.coef_, pipe.coef_) # Clean fake file mapping clean_fake_mapping(100) return pipe def test_pipeline_with_loader(): # Base pipeline with loader tests run_pipe_with_loader_ts(cache_loc=None) def test_pipeline_fit_caching(): # Run with cache fit dr cache_loc =\ os.path.join(tempfile.gettempdir(), 'test_cache') # If already exists, say from a failed test # delete if os.path.exists(cache_loc): shutil.rmtree(cache_loc) pipe = run_pipe_with_loader_ts(cache_loc=cache_loc) # Make sure computed hash + saved copy assert hasattr(pipe, 'hash_',) assert os.path.exists(pipe._get_hash_loc()) # Delete existing pipe del pipe # Run again a few times to make sure loading from cache works for i in range(5): pipe = run_pipe_with_loader_ts(cache_loc=cache_loc) assert hasattr(pipe, 'hash_') assert pipe.loaded_ is True del pipe # Removed cached once done shutil.rmtree(cache_loc) def test_pipeline_inverse_transform_FIs_loader_static_transform(): steps = [] # Loader - transform (5, 2) to (5, 8) # as each DataFile contains np.zeros((2, 2)) loader = BPtLoader(estimator=Identity(), inds=[1], file_mapping=get_fake_mapping(100)) steps.append(('loader', loader)) # Add transformer to ones # input here should be (5, 8) of real val, original # inds of 0 should work on half to_ones = ToFixedTransformer(to=1) st = ScopeTransformer(estimator=to_ones, inds=Ellipsis) steps.append(('to_ones', st)) # Add basic linear regression model # Original inds should work on all model = BPtModel(estimator=LinearRegression(), inds=Ellipsis) steps.append(('model', model)) # Create pipe pipe = BPtPipeline(steps=steps) X = pd.DataFrame(np.arange(100).reshape((50, 2))) y = np.ones(50) pipe.fit(X, y) # Fake coef coef_ = [0, 1, 2, 3, 4] feat_names = pipe.transform_feat_names(X) fis = pd.Series(coef_, index=feat_names) inverse_fis = pipe.inverse_transform_FIs(fis) assert inverse_fis.loc[0] == 4 assert inverse_fis.loc[1].shape == ((2, 2)) assert inverse_fis.loc[1][0][0] == 0 clean_fake_mapping(100) def test_pipeline_inverse_transform_FIs_loader_fs(): warnings.filterwarnings("ignore") steps = [] # Loader - transform (5, 2) to (5, 8) # as each DataFile contains np.zeros((2, 2)) loader = BPtLoader(estimator=Identity(), inds=[0, 1], file_mapping=get_fake_mapping(100)) steps.append(('loader', loader)) kbest = SelectKBest(k=3) fs = BPtFeatureSelector(kbest, Ellipsis) steps.append(('kbest', fs)) # Add basic linear regression model # Original inds should work on all model = BPtModel(estimator=LinearRegression(), inds=Ellipsis) steps.append(('model', model)) # Create pipe pipe = BPtPipeline(steps=steps) X = pd.DataFrame(np.arange(100).reshape((50, 2))) y = np.arange(50) pipe.fit(X, y) coef_ = pipe.coef_ feat_names = pipe.transform_feat_names(X) fis = pd.Series(coef_, index=feat_names) inverse_fis = pipe.inverse_transform_FIs(fis) # Don't make assumptions on specific coef assert inverse_fis.loc[0].shape == (2, 2) assert inverse_fis.loc[1].shape == (2, 2) assert np.sum(np.sum(inverse_fis)) == np.sum(coef_) # Clean up clean_fake_mapping(100) def test_pipeline_inverse_transform_FIs_loader_fs_v2(): warnings.filterwarnings("ignore") steps = [] # Loader - transform (5, 2) to (5, 8) # as each DataFile contains np.zeros((2, 2)) loader = BPtLoader(estimator=Identity(), inds=[0, 1], file_mapping=get_fake_mapping(100)) steps.append(('loader', loader)) to_ones = ToFixedTransformer(to=.15) st = ScopeTransformer(estimator=to_ones, inds=[0, 1]) steps.append(('to_ones', st)) kbest = SelectKBest(k=3) fs = BPtFeatureSelector(kbest, Ellipsis) steps.append(('kbest', fs)) # Add basic linear regression model # Original inds should work on all model = BPtModel(estimator=LinearRegression(), inds=Ellipsis) steps.append(('model', model)) # Create pipe pipe = BPtPipeline(steps=steps) X = pd.DataFrame(np.arange(100).reshape((50, 2))) y = np.arange(50) pipe.fit(X, y) coef_ = pipe.coef_ feat_names = pipe.transform_feat_names(X) fis = pd.Series(coef_, index=feat_names) inverse_fis = pipe.inverse_transform_FIs(fis) # Don't make assumptions on specific coef assert inverse_fis.loc[0].shape == (2, 2) assert inverse_fis.loc[1].shape == (2, 2) assert np.sum(np.sum(inverse_fis)) == np.sum(coef_) # Clean up clean_fake_mapping(100) def test_pipeline_inverse_transform_FIs_loader_fs_v3(): warnings.filterwarnings("ignore") steps = [] # Loader - transform (5, 2) to (5, 8) # as each DataFile contains np.zeros((2, 2)) loader = BPtLoader(estimator=Identity(), inds=[0, 1], file_mapping=get_fake_mapping(100)) steps.append(('loader', loader)) to_ones = ToFixedTransformer(to=.15) st = ScopeTransformer(estimator=to_ones, inds=[0]) steps.append(('to_ones', st)) kbest = SelectKBest(k=3) fs = BPtFeatureSelector(kbest, Ellipsis) steps.append(('kbest', fs)) # Add basic linear regression model # Original inds should work on all model = BPtModel(estimator=LinearRegression(), inds=Ellipsis) steps.append(('model', model)) # Create pipe pipe = BPtPipeline(steps=steps) X = pd.DataFrame(np.arange(100).reshape((50, 2))) y = np.arange(50) pipe.fit(X, y) coef_ = pipe.coef_ feat_names = pipe.transform_feat_names(X) fis = pd.Series(coef_, index=feat_names) inverse_fis = pipe.inverse_transform_FIs(fis) # Don't make assumptions on specific coef assert inverse_fis.loc[0].shape == (2, 2) assert inverse_fis.loc[1].shape == (2, 2) assert np.sum(np.sum(inverse_fis)) == np.sum(coef_) # Clean up clean_fake_mapping(100) def test_pipeline_inverse_transform_FIs_impossible(): warnings.filterwarnings("ignore") steps = [] # Loader - transform (5, 2) to (5, 8) # as each DataFile contains np.zeros((2, 2)) loader = BPtLoader(estimator=Identity(), inds=[0, 1], file_mapping=get_fake_mapping(100)) steps.append(('loader', loader)) pca = PCA(n_components=3) st = BPtTransformer(estimator=pca, inds=[0, 1]) steps.append(('pca', st)) # Add basic linear regression model # Original inds should work on all model = BPtModel(estimator=LinearRegression(), inds=Ellipsis) steps.append(('model', model)) # Create pipe pipe = BPtPipeline(steps=steps) X = pd.DataFrame(np.arange(100).reshape((50, 2))) y = np.arange(50) pipe.fit(X, y) coef_ = pipe.coef_ feat_names = pipe.transform_feat_names(X) fis =
pd.Series(coef_, index=feat_names)
pandas.Series
"""All functions that are not so useful, but still useful.""" from collections import Counter from collections import OrderedDict from collections import defaultdict import errno import itertools import math import os import re import sys import ntpath import pickle import subprocess from scipy import stats import numpy as np import pandas as pd import six import pybedtools import pysam import pyBigWig from bx.intervals.intersection import IntervalTree import warnings from .interval import Interval # Unmapped, Unmapped+Reverse strand, Not primary alignment, # Not primary alignment + reverse strand, supplementary alignment # Source: https://broadinstitute.github.io/picard/explain-flags.html __SAM_NOT_UNIQ_FLAGS__ = [4, 20, 256, 272, 2048] CBB_PALETTE = [ "#000000", "#E69F00", "#56B4E9", "#009E73", "#F0E442", "#0072B2", "#D55E00", "#CC79A7", ] def order_dataframe(df, columns): """Order a dataframe Order a dataframe by moving the `columns` in the front Parameters ---------- df: Dataframe Dataframe columns: list List of columns that need to be put in front """ if isinstance(columns, six.string_types): columns = [columns] # let the command take a string or list remaining_columns = [w for w in df.columns if w not in columns] df = df[columns + remaining_columns] return df def _fix_bed_coltype(bed): """Fix bed chrom and name columns to be string This is necessary since the chromosome numbers are often interpreted as int """ bed["chrom"] = bed["chrom"].astype(str) bed["name"] = bed["name"].astype(str) return bed def check_file_exists(filepath): """Check if file exists. Parameters ---------- filepath : str Path to file """ if os.path.isfile(os.path.abspath(filepath)): return True return False def list_to_ranges(list_of_int): """Convert a list to a list of range object Parameters ---------- list_of_int: list List of integers to be squeezed into range Returns ------- list_of_range: list List of range objects """ sorted_list = sorted(set(list_of_int)) for key, group in itertools.groupby(enumerate(sorted_list), lambda x: x[1] - x[0]): group = list(group) yield group[0][1], group[-1][1] def create_ideal_periodic_signal(signal_length): """Create ideal ribo-seq signal. Parameters ---------- signal_length : int Length of signal to create Returns ------- signal : array_like 1-0-0 signal """ uniform_signal = np.array([4 / 6.0] * signal_length) uniform_signal[list(range(1, len(uniform_signal), 3))] = 1 / 6.0 uniform_signal[list(range(2, len(uniform_signal), 3))] = 1 / 6.0 return uniform_signal def identify_peaks(coverage): """Given coverage array, find the site of maximum density""" return np.argmax(coverage[list(range(-18, -10))]) def millify(n): """Convert integer to human readable format. Parameters ---------- n : int Returns ------- millidx : str Formatted integer """ if n is None or np.isnan(n): return "NaN" millnames = ["", " K", " M", " B", " T"] # Source: http://stackoverflow.com/a/3155023/756986 n = float(n) millidx = max( 0, min( len(millnames) - 1, int(math.floor(0 if n == 0 else math.log10(abs(n)) / 3)) ), ) return "{:.1f}{}".format(n / 10 ** (3 * millidx), millnames[millidx]) def mkdir_p(path): """Python version mkdir -p Parameters ---------- path : str """ if path: try: os.makedirs(path) except OSError as exc: # Python >2.5 if exc.errno == errno.EEXIST and os.path.isdir(path): pass else: raise def symlink_force(source, destination): """Create forcelink forcefully Parameters ---------- source: string Location to source file destination: string Location to target """ try: os.symlink(source, destination) except OSError as exc: if exc.errno == errno.EEXIST: os.remove(destination) os.symlink(source, destination) else: raise exc def r2(x, y): """Calculate pearson correlation between two vectors. Parameters ---------- x : array_like Input y : array_like Input """ return stats.pearsonr(x, y)[0] ** 2 def round_to_nearest(x, base=5): """Round to nearest base. Parameters ---------- x : float Input Returns ------- v : int Output """ return int(base * round(float(x) / base)) def set_xrotation(ax, degrees): """Rotate labels on x-axis. Parameters ---------- ax : matplotlib.Axes Axes object degrees : int Rotation degrees """ for i in ax.get_xticklabels(): i.set_rotation(degrees) def summary_stats_two_arrays_welch( old_mean_array, new_array, old_var_array=None, old_n_counter=None, carried_forward_observations=None, ): """Average two arrays using welch's method Parameters ---------- old_mean_array : Series Series of previous means with index as positions old_var_array : Series Series of previous variances with index as positions new_array : array like Series of new observations (Does noes Ciunts of number of positions at a certain index Returns ------- m : array like Column wise Mean array var : array like Column wise variance Consider an example: [1,2,3], [1,2,3,4], [1,2,3,4,5] old = [1,2,3] new = [1,2,3,4] counter = [1,1,1] mean = [1,2,3,4] Var =[na, na, na, na], carried_fowrad = [[1,1], [2,2], [3,3], [4]] old = [1,2,3,4] new = [1,2,3,4,5] couter = [2,2,2,1] mean = [1,2,3,4,5] var = [0,0,0, na, na] carried_forward = [[], [], [], [4,4], [5]] """ if not isinstance(old_mean_array, pd.Series): old_mean_array = pd.Series(old_mean_array) if not isinstance(new_array, pd.Series): new_array = pd.Series(new_array) if old_n_counter is not None and not isinstance(old_n_counter, pd.Series): old_n_counter = pd.Series(old_n_counter) len_old, len_new = len(old_mean_array), len(new_array) if old_n_counter is None: # Initlaized from current series old_n_counter = pd.Series( np.zeros(len(old_mean_array)) + 1, index=old_mean_array.index ) if old_var_array is None: # Initlaized from current series old_var_array = pd.Series( np.zeros(len(old_mean_array)) + np.nan, index=old_mean_array.index ) # Update positions counts based on new_array new_n_counter = old_n_counter.add( pd.Series(np.zeros(len(new_array)) + 1, index=new_array.index), fill_value=0 ) if len_old > len_new: len_diff = len_old - len_new # Pad the incoming array # We append NAs to the end of new_array since it will mostly be in the metagene context max_index = np.max(new_array.index.tolist()) new_index = np.arange(max_index + 1, max_index + 1 + len_diff) new_array = new_array.append( pd.Series(np.zeros(len_diff) + np.nan, index=new_index), verify_integrity=True, ) elif len_old < len_new: len_diff = len_new - len_old # Pad the old array if len_old == 0: old_mean_array = pd.Series([]) else: max_index = np.max(old_mean_array.index.tolist()) new_index = np.arange(max_index + 1, max_index + 1 + len_diff) old_mean_array = old_mean_array.append( pd.Series(np.zeros(len_diff) + np.nan, index=new_index), verify_integrity=True, ) if not (old_mean_array.index == new_array.index).all(): print("old array index: {}".format(old_mean_array)) print("new array index: {}".format(new_array)) positions_with_less_than3_obs = defaultdict(list) for index, counts in six.iteritems(new_n_counter): # Which positions has <3 counts for calculating variance if counts <= 3: # Fetch the exact observations from history try: last_observations = carried_forward_observations[index] except: # No carreid forward passed if not np.isnan(old_mean_array[index]): last_observations = [old_mean_array[index]] else: last_observations = [] # Add entry from new_array only if it is not NAN if not np.isnan(new_array[index]): last_observations.append(new_array[index]) positions_with_less_than3_obs[index] = last_observations # positions_with_less_than3_obs = pd.Series(positions_with_less_than3_obs) # delta = x_n - mean(x_{n-1}) delta = new_array.subtract(old_mean_array) """ for index, value in six.iteritems( delta ): if np.isnan(value): if not np.isnan(old_mean_array[index]): delta[index] = old_mean_array[index] else: delta[index] = new_array[index] """ # delta = delta/n delta_normalized = delta.divide(new_n_counter) # mean(x_n) = mean(x_{n-1}) + delta/n new_mean_array = old_mean_array.add(delta_normalized) for index, value in six.iteritems(new_mean_array): if np.isnan(value): if not np.isnan(old_mean_array[index]): new_mean_array[index] = old_mean_array[index] else: new_mean_array[index] = new_array[index] # print(delta) # print(new_n_counter) # print(delta_normalized) # print(new_mean_array) # mean_difference_current = x_n - mean(x_n) # mean_difference_previous = x_n - mean(x_{n-1}) mean_difference_current = new_array.fillna(0) - new_mean_array.fillna(0) mean_difference_previous = new_array.fillna(0) - old_mean_array.fillna(0) # (x_n-mean(x_n))(x_n-mean(x_{n-1}) product = np.multiply(mean_difference_current, mean_difference_previous) # (n-1)S_n^2 - (n-2)S_{n-1}^2 = (x_n-mean(x_n)) (x_n-mean(x_{n-1})) # old_ssq = (n-1)S_{n-1}^2 # (n-2)S_{n-1}^2 old_sum_of_sq = (old_n_counter - 2).multiply(old_var_array.fillna(0)) # new_ssq = (old_ssq + product) # (n-1) S_n^2 new_sum_of_sq = old_sum_of_sq + product # if counts is less than 3, set sum of sq to NA new_sum_of_sq[new_n_counter < 3] = np.nan # if counts just became 3, compute the variance for index, counts in six.iteritems(new_n_counter): if counts == 3: observations = positions_with_less_than3_obs[index] variance = np.var(observations) print(index, variance) new_sum_of_sq[index] = variance # delete it from the history del positions_with_less_than3_obs[index] new_var_array = new_sum_of_sq.divide(new_n_counter - 1) new_var_array[new_var_array == np.inf] = np.nan new_var_array[new_n_counter < 3] = np.nan """ for index, counts in six.iteritems(new_n_counter): if counts < 3: if not np.isnan(new_array[index]): if index not in list(positions_with_less_than3_obs.keys()): positions_with_less_than3_obs[index] = list() assert index in positions_with_less_than3_obs.keys() positions_with_less_than3_obs[index].append(new_array[index]) """ return new_mean_array, new_var_array, new_n_counter, positions_with_less_than3_obs def path_leaf(path): """Get path's tail from a filepath""" head, tail = ntpath.split(path) return tail or ntpath.basename(head) def parse_star_logs(infile, outfile=None): """Parse star logs into a dict Parameters ---------- infile : str Path to starlogs.final.out file Returns ------- star_info : dict Dict with necessary records parsed """ ANNOTATIONS = [ "total_reads", "uniquely_mapped", "uniquely_mapped_percent", "multi_mapped_percent", "unmapped_percent", "multi_mapped", ] star_info = OrderedDict() with open(infile) as fh: for line in fh: line = line.strip() if line.startswith("Number of input reads"): star_info[ANNOTATIONS[0]] = int(line.strip().split("\t")[1]) elif line.startswith("Uniquely mapped reads number"): star_info[ANNOTATIONS[1]] = int(line.strip().split("\t")[1]) elif line.startswith("Uniquely mapped reads %"): star_info[ANNOTATIONS[2]] = round( float(line.strip("%").split("\t")[1]), 2 ) elif line.startswith("Number of reads mapped to multiple loci"): star_info[ANNOTATIONS[5]] = int(line.strip().split("\t")[1]) elif line.startswith("Number of reads mapped to too many loci"): star_info[ANNOTATIONS[5]] += int(line.strip().split("\t")[1]) elif line.startswith("% of reads mapped to multiple loci"): star_info[ANNOTATIONS[3]] = round( float(line.strip("%").split("\t")[1]), 2 ) elif line.startswith("% of reads mapped to too many loci"): star_info[ANNOTATIONS[3]] += round( float(line.strip("%").split("\t")[1]), 2 ) elif line.startswith("% of reads unmapped: too many mismatches"): star_info[ANNOTATIONS[4]] = round( float(line.strip("%").split("\t")[1]), 2 ) elif line.startswith("% of reads unmapped: too short"): star_info[ANNOTATIONS[4]] += round( float(line.strip("%").split("\t")[1]), 2 ) elif line.startswith("% of reads unmapped: other"): star_info[ANNOTATIONS[4]] += round( float(line.strip("%").split("\t")[1]), 2 ) star_info = {key: round(star_info[key], 2) for key in list(star_info.keys())} if outfile is None: return star_info filename = path_leaf(infile) filename = filename.strip("Log.final.out") counts_df = pd.DataFrame.from_dict(star_info, orient="index").T counts_df.index = [filename] if outfile: counts_df.to_csv(outfile, sep=str("\t"), index=True, header=True) return counts_df def get_strandedness(filepath): """Parse output of infer_experiment.py from RSeqC to get strandedness. Parameters ---------- filepath : str Path to infer_experiment.py output Returns ------- strandedness : str reverse or forward or none """ with open(filepath) as f: data = f.read() splitted = [x.strip() for x in data.split("\n") if len(x.strip()) >= 1] assert splitted[0] == "This is SingleEnd Data" fwd_percentage = None rev_percentage = None for line in splitted[1:]: if "Fraction of reads failed to determine:" in line: continue elif 'Fraction of reads explained by "++,--":' in line: fwd_percentage = float(line.split(":")[1]) elif 'Fraction of reads explained by "+-,-+":' in line: rev_percentage = float(line.split(":")[1]) assert rev_percentage is not None assert fwd_percentage is not None ratio = fwd_percentage / rev_percentage if np.isclose([ratio], [1]): return "none" elif ratio >= 0.5: return "forward" else: return "reverse" def load_pickle(filepath): """Read pickled files easy in Python 2/3""" if ".tsv" in filepath: raise IndexError if sys.version_info > (3, 0): pickled = pickle.load(open(filepath, "rb"), encoding="latin1") else: pickled = pickle.load(open(filepath, "rb")) return pickled def pad_or_truncate(some_list, target_len): """Pad or truncate a list upto given target length Parameters ---------- some_list : list Input list target_length : int Final length of list If being extended, returns list padded with NAs. """ return some_list[:target_len] + [np.nan] * (target_len - len(some_list)) def pad_five_prime_or_truncate(some_list, offset_5p, target_len): """Pad first the 5prime end and then the 3prime end or truncate Parameters ---------- some_list : list Input list offset_5p : int 5' offset target_length : int Final length of list If being extended, returns list padded with NAs. """ some_list = list(some_list) padded_5p = [np.nan] * offset_5p + some_list return padded_5p[:target_len] + [np.nan] * (target_len - len(padded_5p)) def codon_to_anticodon(codon): """Codon to anticodon. Parameters ---------- codon : string Input codon """ pairs = {"A": "T", "C": "G", "T": "A", "G": "C", "N": "N"} return "".join(pairs[c] for c in codon)[::-1] def merge_intervals( intervals, chromosome_lengths=None, offset_5p=0, offset_3p=0, zero_based=True ): """Collapse intervals into non overlapping manner Parameters ---------- intervals : list of Interval chromosome_lengths : dict A map of each chromosome'e length Only used with offset_3p, offset_5p>0 offset_5p : int (positive) Number of bases to count upstream (5') offset_3p : int (positive) Number of bases to count downstream (3') zero_based: bool Indicate if the intervals are zero-based True means zero-based half open False means one-based full closed Returns ------- interval_combined : list of Interval sorted by the start A merged version of intervals This is useful when the annotations are overlapping. Example: chr1 310 320 gene1 + chr1 319 324 gene1 + Returns: chr1 310 324 gene1 + gene_offset_5p: Gene wise 5 prime offset This might be different from `offset_5p` in cases where `offset_5p` leads to a negative coordinate gene_offset_3p: Gene wise 3 prime offset This might be different from `offset_3p` in cases where `offset_3p` leads to position beyond chromsome length """ if not intervals: return ([], offset_5p, offset_3p) chroms = list(set([i.chrom for i in intervals])) strands = list(set([i.strand for i in intervals])) if len(chroms) != 1: sys.stderr.write("Error: chromosomes should be unique") return ([], offset_5p, offset_3p) if len(strands) != 1: sys.stderr.write("Error: strands should be unique") return ([], offset_5p, offset_3p) chrom = chroms[0] strand = strands[0] # Sort intervals by start intervals.sort(key=lambda x: x.start) # Find first interval first_interval = intervals[0] # Find last interval last_interval = intervals[-1] for i in intervals: if i.end > last_interval.end: last_interval = i if offset_5p != 0 or offset_3p != 0: if str(chrom) in chromosome_lengths: chrom_length = chromosome_lengths[str(chrom)] else: warnings.warn("Chromosome {} does not exist".format(chrom), UserWarning) chrom_length = np.inf else: chrom_length = np.inf if zero_based: lower_bound = 0 else: lower_bound = 1 upper_bound = chrom_length if strand == "+": if first_interval.start - offset_5p >= lower_bound: first_interval.start -= offset_5p gene_offset_5p = offset_5p else: gene_offset_5p = first_interval.start - lower_bound first_interval.start = lower_bound if last_interval.end + offset_3p <= upper_bound: last_interval.end += offset_3p gene_offset_3p = offset_3p else: gene_offset_3p = upper_bound - last_interval.end last_interval.end = upper_bound else: if last_interval.end + offset_5p <= upper_bound: last_interval.end += offset_5p gene_offset_5p = offset_5p else: gene_offset_5p = upper_bound - last_interval.end last_interval.end = upper_bound if first_interval.start - offset_3p >= lower_bound: first_interval.start -= offset_3p gene_offset_3p = offset_3p else: gene_offset_3p = first_interval.start - lower_bound first_interval.start = lower_bound # Merge overlapping intervals to_merge = Interval(chrom, first_interval.start, first_interval.end, strand) intervals_combined = [] for i in intervals: if i.start <= to_merge.end: to_merge.end = max(to_merge.end, i.end) else: intervals_combined.append(to_merge) to_merge = Interval(chrom, i.start, i.end, strand) intervals_combined.append(to_merge) return (intervals_combined, gene_offset_5p, gene_offset_3p) def summarize_counters(samplewise_dict): """Summarize gene counts for a collection of samples. Parameters ---------- samplewise_dict : dict A dictionary with key as sample name and value as another dictionary of counts for each gene Returns ------- totals : dict A dictionary with key as sample name and value as total gene count """ totals = {} for key, sample_dict in six.iteritems(samplewise_dict): totals[key] = np.nansum([np.nansum(d) for d in list(sample_dict.values)]) return totals def complementary_strand(strand): """Get complementary strand Parameters ---------- strand: string +/- Returns ------- rs: string -/+ """ if strand == "+": return "-" elif strand == "-": return "+" else: raise ValueError("Not a valid strand: {}".format(strand)) def read_refseq_bed(filepath): """Read refseq bed12 from UCSC. Parameters ---------- filepath: string Location to bed12 Returns ------- refseq: dict dict with keys as gene name and values as intervaltree """ refseq = defaultdict(IntervalTree) with open(filepath, "r") as fh: for line in fh: line = line.strip() if line.startswith(("#", "track", "browser")): continue fields = line.split("\t") chrom, tx_start, tx_end, name, score, strand = fields[:6] tx_start = int(tx_start) tx_end = int(tx_end) refseq[chrom].insert(tx_start, tx_end, strand) return refseq def read_bed_as_intervaltree(filepath): """Read bed as interval tree Useful for reading start/stop codon beds Parameters ---------- filepath: string Location to bed Returns ------- bedint_tree: dict dict with keys as gene name and strand as intervaltree """ bed_df = pybedtools.BedTool(filepath).sort().to_dataframe() bed_df["chrom"] = bed_df["chrom"].astype(str) bed_df["name"] = bed_df["name"].astype(str) bed_grouped = bed_df.groupby("chrom") bedint_tree = defaultdict(IntervalTree) for chrom, df in bed_grouped: df_list = list(zip(df["start"], df["end"], df["strand"])) for start, end, strand in df_list: bedint_tree[chrom].insert(start, end, strand) return bedint_tree def read_chrom_sizes(filepath): """Read chr.sizes file sorted by chromosome name Parameters ---------- filepath: string Location to chr.sizes Returns ------- chrom_lengths: list of tuple A list of tuples with chromsome name and their size """ chrom_lengths = [] with open(filepath, "r") as fh: for line in fh: chrom, size = line.strip().split("\t") chrom_lengths.append((chrom, int(size))) chrom_lengths = list(sorted(chrom_lengths, key=lambda x: x[0])) def create_bam_index(bam): """Create bam index. Parameters ---------- bam : str Path to bam file """ if isinstance(bam, pysam.AlignmentFile): bam = bam.filename if not os.path.exists("{}.bai".format(bam)): pysam.index(bam) def is_read_uniq_mapping(read): """Check if read is uniquely mappable. Parameters ---------- read : pysam.Alignment.fetch object Most reliable: ['NH'] tag """ # Filter out secondary alignments if read.is_secondary: return False tags = dict(read.get_tags()) try: nh_count = tags["NH"] except KeyError: # Reliable in case of STAR if read.mapping_quality == 255: return True if read.mapping_quality < 1: return False # NH tag not set so rely on flags if read.flag in __SAM_NOT_UNIQ_FLAGS__: return False else: raise RuntimeError("Malformed BAM?") if nh_count == 1: return True return False def find_first_non_none(positions): """Given a list of positions, find the index and value of first non-none element. This method is specifically designed for pysam, which has a weird way of returning the reference positions. If they are mismatched/softmasked it returns None when fetched using get_reference_positions. query_alignment_start and query_alignment_end give you indexes of position in the read which technically align, but are not softmasked i.e. it is set to None even if the position does not align Parameters ---------- positions: list of int Positions as returned by pysam.fetch.get_reference_positions Return ------ index: int Index of first non-None value position: int Value at that index """ for idx, position in enumerate(positions): if position is not None: return idx, position def find_last_non_none(positions): """Given a list of positions, find the index and value of last non-none element. This function is similar to the `find_first_non_none` function, but does it for the reversed list. It is specifically useful for reverse strand cases Parameters ---------- positions: list of int Positions as returned by pysam.fetch.get_reference_positions Return ------ index: int Index of first non-None value position: int Value at that index """ return find_first_non_none(positions[::-1]) # NOTE: We can in principle do a longer metagene anaylsis # using this helper funciont def yield_intervals(chrom_size, chunk_size=20000): for start in np.arange(0, chrom_size, chunk_size): end = start + chunk_size if end > chrom_size: yield (start, chrom_size) else: yield (start, end) def bwsum(bw, chunk_size=5000, scale_to=1e6): bw_sum = 0 if isinstance(bw, six.string_types): bw = pyBigWig.open(bw) chrom_sizes = bw.chroms() for chrom, chrom_size in six.iteritems(chrom_sizes): for start, end in yield_intervals(chrom_size, chunk_size): bw_sum += np.nansum(bw.values(chrom, start, end)) scale_factor = 1 / (bw_sum / scale_to) return bw_sum, scale_factor def scale_bigwig(inbigwig, chrom_sizes, outbigwig, scale_factor=1): """Scale a bigwig by certain factor. Parameters ---------- inbigwig: string Path to input bigwig chrom_sizes: string Path to chrom.sizes file outbigwig: string Path to output bigwig scale_factor: float Scale by value """ wigfile = os.path.abspath("{}.wig".format(outbigwig)) chrom_sizes = os.path.abspath(chrom_sizes) inbigwig = os.path.abspath(inbigwig) outbigwig = os.path.abspath(outbigwig) if os.path.isfile(wigfile): # wiggletools errors if the file already exists os.remove(wigfile) cmds = ["wiggletools", "write", wigfile, "scale", str(scale_factor), inbigwig] try: p = subprocess.Popen( cmds, stdout=subprocess.PIPE, stderr=subprocess.PIPE, universal_newlines=True, ) stdout, stderr = p.communicate() rc = p.returncode if rc != 0: raise RuntimeError( "Error running wiggletools.\nstdout : {} \n stderr : {}".format( stdout, stderr ) ) except FileNotFoundError: raise FileNotFoundError( "wiggletool not found on the path." "Use `conda install wiggletools`" ) cmds = ["wigToBigWig", wigfile, chrom_sizes, outbigwig] try: p = subprocess.Popen( cmds, stdout=subprocess.PIPE, stderr=subprocess.PIPE, universal_newlines=True, ) stdout, stderr = p.communicate() rc = p.returncode if rc != 0: raise RuntimeError( "Error running wigToBigWig.\nstdout : {} \n stderr : {}".format( stdout, stderr ) ) os.remove(wigfile) except FileNotFoundError: raise FileNotFoundError( "wigToBigwig not found on the path. This is an external " "tool from UCSC which can be downloaded from " "http://hgdownload.soe.ucsc.edu/admin/exe/. Alternatatively, use " "`conda install ucsc-wigtobigwig`" ) def get_region_sizes(region_bed): """Get summed up size of a CDS/UTR region from bed file Parameters ---------- region_bed: string Input bed file Returns ------- region_sizes: pd.Series Series with region name as index and size as key """ if isinstance(region_bed, six.string_types): region_bed = pybedtools.BedTool(region_bed).to_dataframe() region_bed_grouped = region_bed.groupby("name") region_sizes = {} for gene_name, gene_group in region_bed_grouped: ## Get rid of trailing dots gene_name = re.sub(r"\.[0-9]+", "", gene_name) # Collect all intervals at once intervals = list( zip( gene_group["chrom"], gene_group["start"], gene_group["end"], gene_group["strand"], ) ) for interval in intervals: if gene_name not in region_sizes: # End is always 1-based so does not require +1 region_sizes[gene_name] = interval[2] - interval[1] else: region_sizes[gene_name] += interval[2] - interval[1] return pd.Series(region_sizes) def htseq_to_tpm(htseq_f, outfile, cds_bed_f): """Convert htseq-counts file to tpm Parameters ---------- htseq_f: string Path to htseq-count output outfile: string Path to output file with tpm values cds_bed_f: string Path to CDS/genesize bed file """ cds_bed = pybedtools.BedTool(cds_bed_f).to_dataframe() cds_bed_sizes = get_region_sizes(cds_bed) htseq = pd.read_table(htseq_f, names=["name", "counts"]).set_index("name") htseq = htseq.iloc[:-5] if htseq.shape[0] <= 10: print("Empty dataframe for : {}\n".format(htseq_f)) return None rate = np.log(htseq["counts"]).subtract(np.log(cds_bed_sizes)) denom = np.log(np.sum(np.exp(rate))) tpm = np.exp(rate - denom + np.log(1e6)) tpm = pd.DataFrame(tpm, columns=["tpm"]) tpm = tpm.sort_values(by=["tpm"], ascending=False) tpm.to_csv(outfile, sep="\t", index=True, header=False) def counts_to_tpm(counts, sizes): """Counts to TPM Parameters ---------- counts: array like Series/array of counts sizes: array like Series/array of region sizes """ rate = np.log(counts).subtract(np.log(sizes)) denom = np.log(np.sum(np.exp(rate))) tpm = np.exp(rate - denom + np.log(1e6)) return tpm def featurecounts_to_tpm(fc_f, outfile): """Convert htseq-counts file to tpm Parameters ---------- fc_f: string Path to htseq-count output outfile: string Path to output file with tpm values """ feature_counts = pd.read_csv(fc_f, sep="\t") feature_counts = feature_counts.set_index("Geneid") feature_counts = feature_counts.drop(columns=["Chr", "Start", "End", "Strand"]) lengths = feature_counts["Length"] feature_counts = feature_counts.drop(columns=["Length"]) tpm = feature_counts.apply(lambda x: counts_to_tpm(x, lengths), axis=0) tpm.columns = [ col.replace("bams_unique/", "").replace(".bam", "") for col in tpm.columns ] tpm.to_csv(outfile, sep="\t", index=True, header=True) def read_htseq(htseq_f): """Read HTSeq file. Parameters ---------- htseq_f: str Path to htseq counts file Returns ------- htseq_df: dataframe HTseq counts as in a dataframe """ htseq =
pd.read_table(htseq_f, names=["name", "counts"])
pandas.read_table
# -*- coding: utf-8 -*- # Licensed to the Apache Software Foundation (ASF) under one # or more contributor license agreements. See the NOTICE file # distributed with this work for additional information # regarding copyright ownership. The ASF licenses this file # to you under the Apache License, Version 2.0 (the # "License"); you may not use this file except in compliance # with the License. You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, # software distributed under the License is distributed on an # "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY # KIND, either express or implied. See the License for the # specific language governing permissions and limitations # under the License. import decimal import json import multiprocessing as mp from collections import OrderedDict from datetime import date, datetime, time, timedelta import numpy as np import numpy.testing as npt import pandas as pd import pandas.util.testing as tm import pytest import pyarrow as pa import pyarrow.types as patypes from pyarrow.compat import PY2 from .pandas_examples import dataframe_with_arrays, dataframe_with_lists def _alltypes_example(size=100): return pd.DataFrame({ 'uint8': np.arange(size, dtype=np.uint8), 'uint16': np.arange(size, dtype=np.uint16), 'uint32': np.arange(size, dtype=np.uint32), 'uint64': np.arange(size, dtype=np.uint64), 'int8': np.arange(size, dtype=np.int16), 'int16': np.arange(size, dtype=np.int16), 'int32': np.arange(size, dtype=np.int32), 'int64': np.arange(size, dtype=np.int64), 'float32': np.arange(size, dtype=np.float32), 'float64': np.arange(size, dtype=np.float64), 'bool': np.random.randn(size) > 0, # TODO(wesm): Pandas only support ns resolution, Arrow supports s, ms, # us, ns 'datetime': np.arange("2016-01-01T00:00:00.001", size, dtype='datetime64[ms]'), 'str': [str(x) for x in range(size)], 'str_with_nulls': [None] + [str(x) for x in range(size - 2)] + [None], 'empty_str': [''] * size }) def _check_pandas_roundtrip(df, expected=None, use_threads=True, expected_schema=None, check_dtype=True, schema=None, preserve_index=False, as_batch=False): klass = pa.RecordBatch if as_batch else pa.Table table = klass.from_pandas(df, schema=schema, preserve_index=preserve_index, nthreads=2 if use_threads else 1) result = table.to_pandas(use_threads=use_threads) if expected_schema: # all occurences of _check_pandas_roundtrip passes expected_schema # without the pandas generated key-value metadata, so we need to # add it before checking schema equality expected_schema = expected_schema.add_metadata(table.schema.metadata) assert table.schema.equals(expected_schema) if expected is None: expected = df tm.assert_frame_equal(result, expected, check_dtype=check_dtype, check_index_type=('equiv' if preserve_index else False)) def _check_series_roundtrip(s, type_=None, expected_pa_type=None): arr = pa.array(s, from_pandas=True, type=type_) if type_ is not None and expected_pa_type is None: expected_pa_type = type_ if expected_pa_type is not None: assert arr.type == expected_pa_type result = pd.Series(arr.to_pandas(), name=s.name) if patypes.is_timestamp(arr.type) and arr.type.tz is not None: result = (result.dt.tz_localize('utc') .dt.tz_convert(arr.type.tz)) tm.assert_series_equal(s, result) def _check_array_roundtrip(values, expected=None, mask=None, type=None): arr = pa.array(values, from_pandas=True, mask=mask, type=type) result = arr.to_pandas() values_nulls = pd.isnull(values) if mask is None: assert arr.null_count == values_nulls.sum() else: assert arr.null_count == (mask | values_nulls).sum() if mask is None: tm.assert_series_equal(pd.Series(result), pd.Series(values), check_names=False) else: expected = pd.Series(np.ma.masked_array(values, mask=mask)) tm.assert_series_equal(pd.Series(result), expected, check_names=False) def _check_array_from_pandas_roundtrip(np_array, type=None): arr = pa.array(np_array, from_pandas=True, type=type) result = arr.to_pandas() npt.assert_array_equal(result, np_array) class TestConvertMetadata(object): """ Conversion tests for Pandas metadata & indices. """ def test_non_string_columns(self): df = pd.DataFrame({0: [1, 2, 3]}) table = pa.Table.from_pandas(df) assert table.column(0).name == '0' def test_from_pandas_with_columns(self): df = pd.DataFrame({0: [1, 2, 3], 1: [1, 3, 3], 2: [2, 4, 5]}) table = pa.Table.from_pandas(df, columns=[0, 1]) expected = pa.Table.from_pandas(df[[0, 1]]) assert expected.equals(table) record_batch_table = pa.RecordBatch.from_pandas(df, columns=[0, 1]) record_batch_expected = pa.RecordBatch.from_pandas(df[[0, 1]]) assert record_batch_expected.equals(record_batch_table) def test_column_index_names_are_preserved(self): df = pd.DataFrame({'data': [1, 2, 3]}) df.columns.names = ['a'] _check_pandas_roundtrip(df, preserve_index=True) def test_multiindex_columns(self): columns = pd.MultiIndex.from_arrays([ ['one', 'two'], ['X', 'Y'] ]) df = pd.DataFrame([(1, 'a'), (2, 'b'), (3, 'c')], columns=columns) _check_pandas_roundtrip(df, preserve_index=True) def test_multiindex_columns_with_dtypes(self): columns = pd.MultiIndex.from_arrays( [ ['one', 'two'], pd.DatetimeIndex(['2017-08-01', '2017-08-02']), ], names=['level_1', 'level_2'], ) df = pd.DataFrame([(1, 'a'), (2, 'b'), (3, 'c')], columns=columns) _check_pandas_roundtrip(df, preserve_index=True) def test_multiindex_columns_unicode(self): columns = pd.MultiIndex.from_arrays([[u'あ', u'い'], ['X', 'Y']]) df = pd.DataFrame([(1, 'a'), (2, 'b'), (3, 'c')], columns=columns) _check_pandas_roundtrip(df, preserve_index=True) def test_integer_index_column(self): df = pd.DataFrame([(1, 'a'), (2, 'b'), (3, 'c')]) _check_pandas_roundtrip(df, preserve_index=True) def test_index_metadata_field_name(self): # test None case, and strangely named non-index columns df = pd.DataFrame( [(1, 'a', 3.1), (2, 'b', 2.2), (3, 'c', 1.3)], index=pd.MultiIndex.from_arrays( [['c', 'b', 'a'], [3, 2, 1]], names=[None, 'foo'] ), columns=['a', None, '__index_level_0__'], ) t = pa.Table.from_pandas(df, preserve_index=True) raw_metadata = t.schema.metadata js = json.loads(raw_metadata[b'pandas'].decode('utf8')) col1, col2, col3, idx0, foo = js['columns'] assert col1['name'] == 'a' assert col1['name'] == col1['field_name'] assert col2['name'] is None assert col2['field_name'] == 'None' assert col3['name'] == '__index_level_0__' assert col3['name'] == col3['field_name'] idx0_name, foo_name = js['index_columns'] assert idx0_name == '__index_level_0__' assert idx0['field_name'] == idx0_name assert idx0['name'] is None assert foo_name == 'foo' assert foo['field_name'] == foo_name assert foo['name'] == foo_name def test_categorical_column_index(self): df = pd.DataFrame( [(1, 'a', 2.0), (2, 'b', 3.0), (3, 'c', 4.0)], columns=pd.Index(list('def'), dtype='category') ) t = pa.Table.from_pandas(df, preserve_index=True) raw_metadata = t.schema.metadata js = json.loads(raw_metadata[b'pandas'].decode('utf8')) column_indexes, = js['column_indexes'] assert column_indexes['name'] is None assert column_indexes['pandas_type'] == 'categorical' assert column_indexes['numpy_type'] == 'int8' md = column_indexes['metadata'] assert md['num_categories'] == 3 assert md['ordered'] is False def test_string_column_index(self): df = pd.DataFrame( [(1, 'a', 2.0), (2, 'b', 3.0), (3, 'c', 4.0)], columns=pd.Index(list('def'), name='stringz') ) t = pa.Table.from_pandas(df, preserve_index=True) raw_metadata = t.schema.metadata js = json.loads(raw_metadata[b'pandas'].decode('utf8')) column_indexes, = js['column_indexes'] assert column_indexes['name'] == 'stringz' assert column_indexes['name'] == column_indexes['field_name'] assert column_indexes['pandas_type'] == ('bytes' if PY2 else 'unicode') assert column_indexes['numpy_type'] == 'object' md = column_indexes['metadata'] if not PY2: assert len(md) == 1 assert md['encoding'] == 'UTF-8' else: assert md is None or 'encoding' not in md def test_datetimetz_column_index(self): df = pd.DataFrame( [(1, 'a', 2.0), (2, 'b', 3.0), (3, 'c', 4.0)], columns=pd.date_range( start='2017-01-01', periods=3, tz='America/New_York' ) ) t = pa.Table.from_pandas(df, preserve_index=True) raw_metadata = t.schema.metadata js = json.loads(raw_metadata[b'pandas'].decode('utf8')) column_indexes, = js['column_indexes'] assert column_indexes['name'] is None assert column_indexes['pandas_type'] == 'datetimetz' assert column_indexes['numpy_type'] == 'datetime64[ns]' md = column_indexes['metadata'] assert md['timezone'] == 'America/New_York' def test_datetimetz_row_index(self): df = pd.DataFrame({ 'a': pd.date_range( start='2017-01-01', periods=3, tz='America/New_York' ) }) df = df.set_index('a') _check_pandas_roundtrip(df, preserve_index=True) def test_categorical_row_index(self): df = pd.DataFrame({'a': [1, 2, 3], 'b': [1, 2, 3]}) df['a'] = df.a.astype('category') df = df.set_index('a') _check_pandas_roundtrip(df, preserve_index=True) def test_duplicate_column_names_does_not_crash(self): df = pd.DataFrame([(1, 'a'), (2, 'b')], columns=list('aa')) with pytest.raises(ValueError): pa.Table.from_pandas(df) def test_dictionary_indices_boundscheck(self): # ARROW-1658. No validation of indices leads to segfaults in pandas indices = [[0, 1], [0, -1]] for inds in indices: arr = pa.DictionaryArray.from_arrays(inds, ['a'], safe=False) batch = pa.RecordBatch.from_arrays([arr], ['foo']) table = pa.Table.from_batches([batch, batch, batch]) with pytest.raises(pa.ArrowInvalid): arr.to_pandas() with pytest.raises(pa.ArrowInvalid): table.to_pandas() def test_unicode_with_unicode_column_and_index(self): df = pd.DataFrame({u'あ': [u'い']}, index=[u'う']) _check_pandas_roundtrip(df, preserve_index=True) def test_mixed_unicode_column_names(self): df = pd.DataFrame({u'あ': [u'い'], b'a': 1}, index=[u'う']) # TODO(phillipc): Should this raise? with pytest.raises(AssertionError): _check_pandas_roundtrip(df, preserve_index=True) def test_binary_column_name(self): column_data = [u'い'] key = u'あ'.encode('utf8') data = {key: column_data} df = pd.DataFrame(data) # we can't use _check_pandas_roundtrip here because our metdata # is always decoded as utf8: even if binary goes in, utf8 comes out t = pa.Table.from_pandas(df, preserve_index=True) df2 = t.to_pandas() assert df.values[0] == df2.values[0] assert df.index.values[0] == df2.index.values[0] assert df.columns[0] == key def test_multiindex_duplicate_values(self): num_rows = 3 numbers = list(range(num_rows)) index = pd.MultiIndex.from_arrays( [['foo', 'foo', 'bar'], numbers], names=['foobar', 'some_numbers'], ) df = pd.DataFrame({'numbers': numbers}, index=index) table = pa.Table.from_pandas(df) result_df = table.to_pandas() tm.assert_frame_equal(result_df, df) def test_metadata_with_mixed_types(self): df = pd.DataFrame({'data': [b'some_bytes', u'some_unicode']}) table = pa.Table.from_pandas(df) metadata = table.schema.metadata assert b'mixed' not in metadata[b'pandas'] js = json.loads(metadata[b'pandas'].decode('utf8')) data_column = js['columns'][0] assert data_column['pandas_type'] == 'bytes' assert data_column['numpy_type'] == 'object' def test_list_metadata(self): df = pd.DataFrame({'data': [[1], [2, 3, 4], [5] * 7]}) schema = pa.schema([pa.field('data', type=pa.list_(pa.int64()))]) table = pa.Table.from_pandas(df, schema=schema) metadata = table.schema.metadata assert b'mixed' not in metadata[b'pandas'] js = json.loads(metadata[b'pandas'].decode('utf8')) data_column = js['columns'][0] assert data_column['pandas_type'] == 'list[int64]' assert data_column['numpy_type'] == 'object' def test_decimal_metadata(self): expected = pd.DataFrame({ 'decimals': [ decimal.Decimal('394092382910493.12341234678'), -decimal.Decimal('314292388910493.12343437128'), ] }) table = pa.Table.from_pandas(expected) metadata = table.schema.metadata assert b'mixed' not in metadata[b'pandas'] js = json.loads(metadata[b'pandas'].decode('utf8')) data_column = js['columns'][0] assert data_column['pandas_type'] == 'decimal' assert data_column['numpy_type'] == 'object' assert data_column['metadata'] == {'precision': 26, 'scale': 11} def test_table_column_subset_metadata(self): # ARROW-1883 df = pd.DataFrame({ 'a': [1, 2, 3], 'b': pd.date_range("2017-01-01", periods=3, tz='Europe/Brussels')}) table = pa.Table.from_pandas(df) table_subset = table.remove_column(1) result = table_subset.to_pandas() tm.assert_frame_equal(result, df[['a']]) table_subset2 = table_subset.remove_column(1) result = table_subset2.to_pandas() tm.assert_frame_equal(result, df[['a']]) # non-default index for index in [ pd.Index(['a', 'b', 'c'], name='index'), pd.date_range("2017-01-01", periods=3, tz='Europe/Brussels')]: df = pd.DataFrame({'a': [1, 2, 3], 'b': [.1, .2, .3]}, index=index) table = pa.Table.from_pandas(df) table_subset = table.remove_column(1) result = table_subset.to_pandas() tm.assert_frame_equal(result, df[['a']]) table_subset2 = table_subset.remove_column(1) result = table_subset2.to_pandas() tm.assert_frame_equal(result, df[['a']].reset_index(drop=True)) def test_empty_list_metadata(self): # Create table with array of empty lists, forced to have type # list(string) in pyarrow c1 = [["test"], ["a", "b"], None] c2 = [[], [], []] arrays = OrderedDict([ ('c1', pa.array(c1, type=pa.list_(pa.string()))), ('c2', pa.array(c2, type=pa.list_(pa.string()))), ]) rb = pa.RecordBatch.from_arrays( list(arrays.values()), list(arrays.keys()) ) tbl = pa.Table.from_batches([rb]) # First roundtrip changes schema, because pandas cannot preserve the # type of empty lists df = tbl.to_pandas() tbl2 = pa.Table.from_pandas(df, preserve_index=True) md2 = json.loads(tbl2.schema.metadata[b'pandas'].decode('utf8')) # Second roundtrip df2 = tbl2.to_pandas() expected = pd.DataFrame(OrderedDict([('c1', c1), ('c2', c2)])) tm.assert_frame_equal(df2, expected) assert md2['columns'] == [ { 'name': 'c1', 'field_name': 'c1', 'metadata': None, 'numpy_type': 'object', 'pandas_type': 'list[unicode]', }, { 'name': 'c2', 'field_name': 'c2', 'metadata': None, 'numpy_type': 'object', 'pandas_type': 'list[empty]', }, { 'name': None, 'field_name': '__index_level_0__', 'metadata': None, 'numpy_type': 'int64', 'pandas_type': 'int64', } ] class TestConvertPrimitiveTypes(object): """ Conversion tests for primitive (e.g. numeric) types. """ def test_float_no_nulls(self): data = {} fields = [] dtypes = [('f2', pa.float16()), ('f4', pa.float32()), ('f8', pa.float64())] num_values = 100 for numpy_dtype, arrow_dtype in dtypes: values = np.random.randn(num_values) data[numpy_dtype] = values.astype(numpy_dtype) fields.append(pa.field(numpy_dtype, arrow_dtype)) df = pd.DataFrame(data) schema = pa.schema(fields) _check_pandas_roundtrip(df, expected_schema=schema) def test_float_nulls(self): num_values = 100 null_mask = np.random.randint(0, 10, size=num_values) < 3 dtypes = [('f2', pa.float16()), ('f4', pa.float32()), ('f8', pa.float64())] names = ['f2', 'f4', 'f8'] expected_cols = [] arrays = [] fields = [] for name, arrow_dtype in dtypes: values = np.random.randn(num_values).astype(name) arr = pa.array(values, from_pandas=True, mask=null_mask) arrays.append(arr) fields.append(pa.field(name, arrow_dtype)) values[null_mask] = np.nan expected_cols.append(values) ex_frame = pd.DataFrame(dict(zip(names, expected_cols)), columns=names) table = pa.Table.from_arrays(arrays, names) assert table.schema.equals(pa.schema(fields)) result = table.to_pandas() tm.assert_frame_equal(result, ex_frame) def test_float_nulls_to_ints(self): # ARROW-2135 df =
pd.DataFrame({"a": [1.0, 2.0, pd.np.NaN]})
pandas.DataFrame
import numpy as np import pandas as pd from numba import njit, typeof from numba.typed import List from datetime import datetime, timedelta import pytest from copy import deepcopy import vectorbt as vbt from vectorbt.portfolio.enums import * from vectorbt.generic.enums import drawdown_dt from vectorbt.utils.random_ import set_seed from vectorbt.portfolio import nb from tests.utils import record_arrays_close seed = 42 day_dt = np.timedelta64(86400000000000) price = pd.Series([1., 2., 3., 4., 5.], index=pd.Index([ datetime(2020, 1, 1), datetime(2020, 1, 2), datetime(2020, 1, 3), datetime(2020, 1, 4), datetime(2020, 1, 5) ])) price_wide = price.vbt.tile(3, keys=['a', 'b', 'c']) big_price = pd.DataFrame(np.random.uniform(size=(1000,))) big_price.index = [datetime(2018, 1, 1) + timedelta(days=i) for i in range(1000)] big_price_wide = big_price.vbt.tile(1000) # ############# Global ############# # def setup_module(): vbt.settings.numba['check_func_suffix'] = True vbt.settings.portfolio['attach_call_seq'] = True vbt.settings.caching.enabled = False vbt.settings.caching.whitelist = [] vbt.settings.caching.blacklist = [] def teardown_module(): vbt.settings.reset() # ############# nb ############# # def assert_same_tuple(tup1, tup2): for i in range(len(tup1)): assert tup1[i] == tup2[i] or np.isnan(tup1[i]) and np.isnan(tup2[i]) def test_execute_order_nb(): # Errors, ignored and rejected orders with pytest.raises(Exception): _ = nb.execute_order_nb( ProcessOrderState(-100., 100., 0., 100., 10., 1100., 0, 0), nb.order_nb(10, 10)) with pytest.raises(Exception): _ = nb.execute_order_nb( ProcessOrderState(np.nan, 100., 0., 100., 10., 1100., 0, 0), nb.order_nb(10, 10)) with pytest.raises(Exception): _ = nb.execute_order_nb( ProcessOrderState(100., np.inf, 0., 100., 10., 1100., 0, 0), nb.order_nb(10, 10)) with pytest.raises(Exception): _ = nb.execute_order_nb( ProcessOrderState(100., np.nan, 0., 100., 10., 1100., 0, 0), nb.order_nb(10, 10)) with pytest.raises(Exception): _ = nb.execute_order_nb( ProcessOrderState(100., 100., np.nan, 100., 10., 1100., 0, 0), nb.order_nb(10, 10)) with pytest.raises(Exception): _ = nb.execute_order_nb( ProcessOrderState(100., 100., -10., 100., 10., 1100., 0, 0), nb.order_nb(10, 10)) with pytest.raises(Exception): _ = nb.execute_order_nb( ProcessOrderState(100., 100., 0., np.nan, 10., 1100., 0, 0), nb.order_nb(10, 10)) with pytest.raises(Exception): _ = nb.execute_order_nb( ProcessOrderState(100., 100., 0., 100., 10., 1100., 0, 0), nb.order_nb(10, 10, size_type=-2)) with pytest.raises(Exception): _ = nb.execute_order_nb( ProcessOrderState(100., 100., 0., 100., 10., 1100., 0, 0), nb.order_nb(10, 10, size_type=20)) with pytest.raises(Exception): _ = nb.execute_order_nb( ProcessOrderState(100., 100., 0., 100., 10., 1100., 0, 0), nb.order_nb(10, 10, direction=-2)) with pytest.raises(Exception): _ = nb.execute_order_nb( ProcessOrderState(100., 100., 0., 100., 10., 1100., 0, 0), nb.order_nb(10, 10, direction=20)) with pytest.raises(Exception): _ = nb.execute_order_nb( ProcessOrderState(100., -100., 0., 100., 10., 1100., 0, 0), nb.order_nb(10, 10, direction=Direction.LongOnly)) with pytest.raises(Exception): _ = nb.execute_order_nb( ProcessOrderState(100., 100., 0., 100., 10., 1100., 0, 0), nb.order_nb(10, 10, direction=Direction.ShortOnly)) with pytest.raises(Exception): _ = nb.execute_order_nb( ProcessOrderState(100., 100., 0., 100., 10., 1100., 0, 0), nb.order_nb(10, np.inf)) with pytest.raises(Exception): _ = nb.execute_order_nb( ProcessOrderState(100., 100., 0., 100., 10., 1100., 0, 0), nb.order_nb(10, -10)) with pytest.raises(Exception): _ = nb.execute_order_nb( ProcessOrderState(100., 100., 0., 100., 10., 1100., 0, 0), nb.order_nb(10, 10, fees=np.inf)) with pytest.raises(Exception): _ = nb.execute_order_nb( ProcessOrderState(100., 100., 0., 100., 10., 1100., 0, 0), nb.order_nb(10, 10, fees=-1)) with pytest.raises(Exception): _ = nb.execute_order_nb( ProcessOrderState(100., 100., 0., 100., 10., 1100., 0, 0), nb.order_nb(10, 10, fixed_fees=np.inf)) with pytest.raises(Exception): _ = nb.execute_order_nb( ProcessOrderState(100., 100., 0., 100., 10., 1100., 0, 0), nb.order_nb(10, 10, fixed_fees=-1)) with pytest.raises(Exception): _ = nb.execute_order_nb( ProcessOrderState(100., 100., 0., 100., 10., 1100., 0, 0), nb.order_nb(10, 10, slippage=np.inf)) with pytest.raises(Exception): _ = nb.execute_order_nb( ProcessOrderState(100., 100., 0., 100., 10., 1100., 0, 0), nb.order_nb(10, 10, slippage=-1)) with pytest.raises(Exception): _ = nb.execute_order_nb( ProcessOrderState(100., 100., 0., 100., 10., 1100., 0, 0), nb.order_nb(10, 10, min_size=np.inf)) with pytest.raises(Exception): _ = nb.execute_order_nb( ProcessOrderState(100., 100., 0., 100., 10., 1100., 0, 0), nb.order_nb(10, 10, min_size=-1)) with pytest.raises(Exception): _ = nb.execute_order_nb( ProcessOrderState(100., 100., 0., 100., 10., 1100., 0, 0), nb.order_nb(10, 10, max_size=0)) with pytest.raises(Exception): _ = nb.execute_order_nb( ProcessOrderState(100., 100., 0., 100., 10., 1100., 0, 0), nb.order_nb(10, 10, max_size=-10)) with pytest.raises(Exception): _ = nb.execute_order_nb( ProcessOrderState(100., 100., 0., 100., 10., 1100., 0, 0), nb.order_nb(10, 10, reject_prob=np.nan)) with pytest.raises(Exception): _ = nb.execute_order_nb( ProcessOrderState(100., 100., 0., 100., 10., 1100., 0, 0), nb.order_nb(10, 10, reject_prob=-1)) with pytest.raises(Exception): _ = nb.execute_order_nb( ProcessOrderState(100., 100., 0., 100., 10., 1100., 0, 0), nb.order_nb(10, 10, reject_prob=2)) exec_state, order_result = nb.execute_order_nb( ProcessOrderState(100., 100., 0., 100., 10., np.nan, 0, 0), nb.order_nb(1, 10, size_type=SizeType.TargetPercent)) assert exec_state == ExecuteOrderState(cash=100.0, position=100.0, debt=0.0, free_cash=100.0) assert_same_tuple(order_result, OrderResult( size=np.nan, price=np.nan, fees=np.nan, side=-1, status=1, status_info=3)) exec_state, order_result = nb.execute_order_nb( ProcessOrderState(100., 100., 0., 100., 10., -10., 0, 0), nb.order_nb(1, 10, size_type=SizeType.TargetPercent)) assert exec_state == ExecuteOrderState(cash=100.0, position=100.0, debt=0.0, free_cash=100.0) assert_same_tuple(order_result, OrderResult( size=np.nan, price=np.nan, fees=np.nan, side=-1, status=2, status_info=4)) with pytest.raises(Exception): _ = nb.execute_order_nb( ProcessOrderState(100., 100., 0., 100., np.inf, 1100., 0, 0), nb.order_nb(10, 10, size_type=SizeType.Value)) with pytest.raises(Exception): _ = nb.execute_order_nb( ProcessOrderState(100., 100., 0., 100., -10., 1100, 0, 0), nb.order_nb(10, 10, size_type=SizeType.Value)) exec_state, order_result = nb.execute_order_nb( ProcessOrderState(100., 100., 0., 100., np.nan, 1100., 0, 0), nb.order_nb(10, 10, size_type=SizeType.Value)) assert exec_state == ExecuteOrderState(cash=100.0, position=100.0, debt=0.0, free_cash=100.0) with pytest.raises(Exception): _ = nb.execute_order_nb( ProcessOrderState(100., 100., 0., 100., np.inf, 1100., 0, 0), nb.order_nb(10, 10, size_type=SizeType.TargetValue)) with pytest.raises(Exception): _ = nb.execute_order_nb( ProcessOrderState(100., 100., 0., 100., -10., 1100, 0, 0), nb.order_nb(10, 10, size_type=SizeType.TargetValue)) exec_state, order_result = nb.execute_order_nb( ProcessOrderState(100., 100., 0., 100., np.nan, 1100., 0, 0), nb.order_nb(10, 10, size_type=SizeType.TargetValue)) assert exec_state == ExecuteOrderState(cash=100.0, position=100.0, debt=0.0, free_cash=100.0) assert_same_tuple(order_result, OrderResult( size=np.nan, price=np.nan, fees=np.nan, side=-1, status=1, status_info=2)) exec_state, order_result = nb.execute_order_nb( ProcessOrderState(100., -10., 0., 100., 10., 1100., 0, 0), nb.order_nb(np.inf, 10, direction=Direction.ShortOnly)) assert exec_state == ExecuteOrderState(cash=200.0, position=-20.0, debt=100.0, free_cash=0.0) assert_same_tuple(order_result, OrderResult( size=10.0, price=10.0, fees=0.0, side=1, status=0, status_info=-1)) exec_state, order_result = nb.execute_order_nb( ProcessOrderState(100., -10., 0., 100., 10., 1100., 0, 0), nb.order_nb(-np.inf, 10, direction=Direction.Both)) assert exec_state == ExecuteOrderState(cash=200.0, position=-20.0, debt=100.0, free_cash=0.0) assert_same_tuple(order_result, OrderResult( size=10.0, price=10.0, fees=0.0, side=1, status=0, status_info=-1)) exec_state, order_result = nb.execute_order_nb( ProcessOrderState(100., 10., 0., 100., 10., 1100., 0, 0), nb.order_nb(0, 10)) assert exec_state == ExecuteOrderState(cash=100.0, position=10.0, debt=0.0, free_cash=100.0) assert_same_tuple(order_result, OrderResult( size=np.nan, price=np.nan, fees=np.nan, side=-1, status=1, status_info=5)) exec_state, order_result = nb.execute_order_nb( ProcessOrderState(100., 100., 0., 100., 10., 1100., 0, 0), nb.order_nb(15, 10, max_size=10, allow_partial=False)) assert exec_state == ExecuteOrderState(cash=100.0, position=100.0, debt=0.0, free_cash=100.0) assert_same_tuple(order_result, OrderResult( size=np.nan, price=np.nan, fees=np.nan, side=-1, status=2, status_info=9)) exec_state, order_result = nb.execute_order_nb( ProcessOrderState(100., 100., 0., 100., 10., 1100., 0, 0), nb.order_nb(10, 10, reject_prob=1.)) assert exec_state == ExecuteOrderState(cash=100.0, position=100.0, debt=0.0, free_cash=100.0) assert_same_tuple(order_result, OrderResult( size=np.nan, price=np.nan, fees=np.nan, side=-1, status=2, status_info=10)) exec_state, order_result = nb.execute_order_nb( ProcessOrderState(0., 100., 0., 0., 10., 1100., 0, 0), nb.order_nb(10, 10, direction=Direction.LongOnly)) assert exec_state == ExecuteOrderState(cash=0.0, position=100.0, debt=0.0, free_cash=0.0) assert_same_tuple(order_result, OrderResult( size=np.nan, price=np.nan, fees=np.nan, side=-1, status=2, status_info=7)) exec_state, order_result = nb.execute_order_nb( ProcessOrderState(0., 100., 0., 0., 10., 1100., 0, 0), nb.order_nb(10, 10, direction=Direction.Both)) assert exec_state == ExecuteOrderState(cash=0.0, position=100.0, debt=0.0, free_cash=0.0) assert_same_tuple(order_result, OrderResult( size=np.nan, price=np.nan, fees=np.nan, side=-1, status=2, status_info=7)) with pytest.raises(Exception): _ = nb.execute_order_nb( ProcessOrderState(np.inf, 100, 0., np.inf, np.nan, 1100., 0, 0), nb.order_nb(np.inf, 10, direction=Direction.LongOnly)) with pytest.raises(Exception): _ = nb.execute_order_nb( ProcessOrderState(np.inf, 100., 0., np.inf, 10., 1100., 0, 0), nb.order_nb(np.inf, 10, direction=Direction.Both)) exec_state, order_result = nb.execute_order_nb( ProcessOrderState(100., 0., 0., 100., 10., 1100., 0, 0), nb.order_nb(-10, 10, direction=Direction.ShortOnly)) assert exec_state == ExecuteOrderState(cash=100.0, position=0.0, debt=0.0, free_cash=100.0) assert_same_tuple(order_result, OrderResult( size=np.nan, price=np.nan, fees=np.nan, side=-1, status=2, status_info=8)) with pytest.raises(Exception): _ = nb.execute_order_nb( ProcessOrderState(np.inf, 100., 0., np.inf, 10., 1100., 0, 0), nb.order_nb(-np.inf, 10, direction=Direction.ShortOnly)) with pytest.raises(Exception): _ = nb.execute_order_nb( ProcessOrderState(np.inf, 100., 0., np.inf, 10., 1100., 0, 0), nb.order_nb(-np.inf, 10, direction=Direction.Both)) exec_state, order_result = nb.execute_order_nb( ProcessOrderState(100., 0., 0., 100., 10., 1100., 0, 0), nb.order_nb(-10, 10, direction=Direction.LongOnly)) assert exec_state == ExecuteOrderState(cash=100.0, position=0.0, debt=0.0, free_cash=100.0) assert_same_tuple(order_result, OrderResult( size=np.nan, price=np.nan, fees=np.nan, side=-1, status=2, status_info=8)) exec_state, order_result = nb.execute_order_nb( ProcessOrderState(100., 100., 0., 100., 10., 1100., 0, 0), nb.order_nb(10, 10, fixed_fees=100)) assert exec_state == ExecuteOrderState(cash=100.0, position=100.0, debt=0.0, free_cash=100.0) assert_same_tuple(order_result, OrderResult( size=np.nan, price=np.nan, fees=np.nan, side=-1, status=2, status_info=11)) exec_state, order_result = nb.execute_order_nb( ProcessOrderState(100., 100., 0., 100., 10., 1100., 0, 0), nb.order_nb(10, 10, min_size=100)) assert exec_state == ExecuteOrderState(cash=100.0, position=100.0, debt=0.0, free_cash=100.0) assert_same_tuple(order_result, OrderResult( size=np.nan, price=np.nan, fees=np.nan, side=-1, status=2, status_info=12)) exec_state, order_result = nb.execute_order_nb( ProcessOrderState(100., 100., 0., 100., 10., 1100., 0, 0), nb.order_nb(100, 10, allow_partial=False)) assert exec_state == ExecuteOrderState(cash=100.0, position=100.0, debt=0.0, free_cash=100.0) assert_same_tuple(order_result, OrderResult( size=np.nan, price=np.nan, fees=np.nan, side=-1, status=2, status_info=13)) exec_state, order_result = nb.execute_order_nb( ProcessOrderState(100., 100., 0., 100., 10., 1100., 0, 0), nb.order_nb(-10, 10, min_size=100)) assert exec_state == ExecuteOrderState(cash=100.0, position=100.0, debt=0.0, free_cash=100.0) assert_same_tuple(order_result, OrderResult( size=np.nan, price=np.nan, fees=np.nan, side=-1, status=2, status_info=12)) exec_state, order_result = nb.execute_order_nb( ProcessOrderState(100., 100., 0., 100., 10., 1100., 0, 0), nb.order_nb(-200, 10, direction=Direction.LongOnly, allow_partial=False)) assert exec_state == ExecuteOrderState(cash=100.0, position=100.0, debt=0.0, free_cash=100.0) assert_same_tuple(order_result, OrderResult( size=np.nan, price=np.nan, fees=np.nan, side=-1, status=2, status_info=13)) exec_state, order_result = nb.execute_order_nb( ProcessOrderState(100., 100., 0., 100., 10., 1100., 0, 0), nb.order_nb(-10, 10, fixed_fees=1000)) assert exec_state == ExecuteOrderState(cash=100.0, position=100.0, debt=0.0, free_cash=100.0) assert_same_tuple(order_result, OrderResult( size=np.nan, price=np.nan, fees=np.nan, side=-1, status=2, status_info=11)) # Calculations exec_state, order_result = nb.execute_order_nb( ProcessOrderState(100., 0., 0., 100., 10., 100., 0, 0), nb.order_nb(10, 10, fees=0.1, fixed_fees=1, slippage=0.1)) assert exec_state == ExecuteOrderState(cash=0.0, position=8.18181818181818, debt=0.0, free_cash=0.0) assert_same_tuple(order_result, OrderResult( size=8.18181818181818, price=11.0, fees=10.000000000000014, side=0, status=0, status_info=-1)) exec_state, order_result = nb.execute_order_nb( ProcessOrderState(100., 0., 0., 100., 10., 100., 0, 0), nb.order_nb(100, 10, fees=0.1, fixed_fees=1, slippage=0.1)) assert exec_state == ExecuteOrderState(cash=0.0, position=8.18181818181818, debt=0.0, free_cash=0.0) assert_same_tuple(order_result, OrderResult( size=8.18181818181818, price=11.0, fees=10.000000000000014, side=0, status=0, status_info=-1)) exec_state, order_result = nb.execute_order_nb( ProcessOrderState(100., 0., 0., 100., 10., 100., 0, 0), nb.order_nb(-10, 10, fees=0.1, fixed_fees=1, slippage=0.1)) assert exec_state == ExecuteOrderState(cash=180.0, position=-10.0, debt=90.0, free_cash=0.0) assert_same_tuple(order_result, OrderResult( size=10.0, price=9.0, fees=10.0, side=1, status=0, status_info=-1)) exec_state, order_result = nb.execute_order_nb( ProcessOrderState(100., 0., 0., 100., 10., 100., 0, 0), nb.order_nb(-100, 10, fees=0.1, fixed_fees=1, slippage=0.1)) assert exec_state == ExecuteOrderState(cash=909.0, position=-100.0, debt=900.0, free_cash=-891.0) assert_same_tuple(order_result, OrderResult( size=100.0, price=9.0, fees=91.0, side=1, status=0, status_info=-1)) exec_state, order_result = nb.execute_order_nb( ProcessOrderState(100., 0., 0., 100., 10., 100., 0, 0), nb.order_nb(10, 10, size_type=SizeType.TargetAmount)) assert exec_state == ExecuteOrderState(cash=0.0, position=10.0, debt=0.0, free_cash=0.0) assert_same_tuple(order_result, OrderResult( size=10., price=10.0, fees=0., side=0, status=0, status_info=-1)) exec_state, order_result = nb.execute_order_nb( ProcessOrderState(100., 0., 0., 100., 10., 100., 0, 0), nb.order_nb(-10, 10, size_type=SizeType.TargetAmount)) assert exec_state == ExecuteOrderState(cash=200.0, position=-10.0, debt=100.0, free_cash=0.0) assert_same_tuple(order_result, OrderResult( size=10., price=10.0, fees=0., side=1, status=0, status_info=-1)) exec_state, order_result = nb.execute_order_nb( ProcessOrderState(100., 0., 0., 100., 10., 100., 0, 0), nb.order_nb(100, 10, size_type=SizeType.Value)) assert exec_state == ExecuteOrderState(cash=0.0, position=10.0, debt=0.0, free_cash=0.0) assert_same_tuple(order_result, OrderResult( size=10., price=10.0, fees=0., side=0, status=0, status_info=-1)) exec_state, order_result = nb.execute_order_nb( ProcessOrderState(100., 0., 0., 100., 10., 100., 0, 0), nb.order_nb(-100, 10, size_type=SizeType.Value)) assert exec_state == ExecuteOrderState(cash=200.0, position=-10.0, debt=100.0, free_cash=0.0) assert_same_tuple(order_result, OrderResult( size=10., price=10.0, fees=0., side=1, status=0, status_info=-1)) exec_state, order_result = nb.execute_order_nb( ProcessOrderState(100., 0., 0., 100., 10., 100., 0, 0), nb.order_nb(100, 10, size_type=SizeType.TargetValue)) assert exec_state == ExecuteOrderState(cash=0.0, position=10.0, debt=0.0, free_cash=0.0) assert_same_tuple(order_result, OrderResult( size=10., price=10.0, fees=0., side=0, status=0, status_info=-1)) exec_state, order_result = nb.execute_order_nb( ProcessOrderState(100., 0., 0., 100., 10., 100., 0, 0), nb.order_nb(-100, 10, size_type=SizeType.TargetValue)) assert exec_state == ExecuteOrderState(cash=200.0, position=-10.0, debt=100.0, free_cash=0.0) assert_same_tuple(order_result, OrderResult( size=10., price=10.0, fees=0., side=1, status=0, status_info=-1)) exec_state, order_result = nb.execute_order_nb( ProcessOrderState(100., 0., 0., 100., 10., 100., 0, 0), nb.order_nb(1, 10, size_type=SizeType.TargetPercent)) assert exec_state == ExecuteOrderState(cash=0.0, position=10.0, debt=0.0, free_cash=0.0) assert_same_tuple(order_result, OrderResult( size=10., price=10.0, fees=0., side=0, status=0, status_info=-1)) exec_state, order_result = nb.execute_order_nb( ProcessOrderState(100., 0., 0., 100., 10., 100., 0, 0), nb.order_nb(-1, 10, size_type=SizeType.TargetPercent)) assert exec_state == ExecuteOrderState(cash=200.0, position=-10.0, debt=100.0, free_cash=0.0) assert_same_tuple(order_result, OrderResult( size=10., price=10.0, fees=0., side=1, status=0, status_info=-1)) exec_state, order_result = nb.execute_order_nb( ProcessOrderState(50., 5., 0., 50., 10., 100., 0, 0), nb.order_nb(1, 10, size_type=SizeType.Percent)) assert exec_state == ExecuteOrderState(cash=0.0, position=10.0, debt=0.0, free_cash=0.0) assert_same_tuple(order_result, OrderResult( size=5.0, price=10.0, fees=0.0, side=0, status=0, status_info=-1)) exec_state, order_result = nb.execute_order_nb( ProcessOrderState(50., 5., 0., 50., 10., 100., 0, 0), nb.order_nb(0.5, 10, size_type=SizeType.Percent)) assert exec_state == ExecuteOrderState(cash=25.0, position=7.5, debt=0.0, free_cash=25.0) assert_same_tuple(order_result, OrderResult( size=2.5, price=10.0, fees=0.0, side=0, status=0, status_info=-1)) exec_state, order_result = nb.execute_order_nb( ProcessOrderState(50., 5., 0., 50., 10., 100., 0, 0), nb.order_nb(-0.5, 10, size_type=SizeType.Percent)) assert exec_state == ExecuteOrderState(cash=125.0, position=-2.5, debt=25.0, free_cash=75.0) assert_same_tuple(order_result, OrderResult( size=7.5, price=10.0, fees=0.0, side=1, status=0, status_info=-1)) exec_state, order_result = nb.execute_order_nb( ProcessOrderState(50., 5., 0., 50., 10., 100., 0, 0), nb.order_nb(-1, 10, size_type=SizeType.Percent)) assert exec_state == ExecuteOrderState(cash=200.0, position=-10.0, debt=100.0, free_cash=0.0) assert_same_tuple(order_result, OrderResult( size=15.0, price=10.0, fees=0.0, side=1, status=0, status_info=-1)) exec_state, order_result = nb.execute_order_nb( ProcessOrderState(50., 0., 0., 50., 10., 100., 0, 0), nb.order_nb(1, 10, size_type=SizeType.Percent)) assert exec_state == ExecuteOrderState(cash=0.0, position=5.0, debt=0.0, free_cash=0.0) assert_same_tuple(order_result, OrderResult( size=5.0, price=10.0, fees=0.0, side=0, status=0, status_info=-1)) exec_state, order_result = nb.execute_order_nb( ProcessOrderState(50., 0., 0., 50., 10., 100., 0, 0), nb.order_nb(0.5, 10, size_type=SizeType.Percent)) assert exec_state == ExecuteOrderState(cash=25.0, position=2.5, debt=0.0, free_cash=25.0) assert_same_tuple(order_result, OrderResult( size=2.5, price=10.0, fees=0.0, side=0, status=0, status_info=-1)) exec_state, order_result = nb.execute_order_nb( ProcessOrderState(50., 0., 0., 50., 10., 100., 0, 0), nb.order_nb(-0.5, 10, size_type=SizeType.Percent)) assert exec_state == ExecuteOrderState(cash=75.0, position=-2.5, debt=25.0, free_cash=25.0) assert_same_tuple(order_result, OrderResult( size=2.5, price=10.0, fees=0.0, side=1, status=0, status_info=-1)) exec_state, order_result = nb.execute_order_nb( ProcessOrderState(50., 0., 0., 50., 10., 100., 0, 0), nb.order_nb(-1, 10, size_type=SizeType.Percent)) assert exec_state == ExecuteOrderState(cash=100.0, position=-5.0, debt=50.0, free_cash=0.0) assert_same_tuple(order_result, OrderResult( size=5.0, price=10.0, fees=0.0, side=1, status=0, status_info=-1)) exec_state, order_result = nb.execute_order_nb( ProcessOrderState(50., -5., 0., 50., 10., 100., 0, 0), nb.order_nb(1, 10, size_type=SizeType.Percent)) assert exec_state == ExecuteOrderState(cash=0.0, position=0.0, debt=0.0, free_cash=0.0) assert_same_tuple(order_result, OrderResult( size=5.0, price=10.0, fees=0.0, side=0, status=0, status_info=-1)) exec_state, order_result = nb.execute_order_nb( ProcessOrderState(50., -5., 0., 50., 10., 100., 0, 0), nb.order_nb(0.5, 10, size_type=SizeType.Percent)) assert exec_state == ExecuteOrderState(cash=25.0, position=-2.5, debt=0.0, free_cash=25.0) assert_same_tuple(order_result, OrderResult( size=2.5, price=10.0, fees=0.0, side=0, status=0, status_info=-1)) exec_state, order_result = nb.execute_order_nb( ProcessOrderState(50., -5., 0., 50., 10., 100., 0, 0), nb.order_nb(-0.5, 10, size_type=SizeType.Percent)) assert exec_state == ExecuteOrderState(cash=75.0, position=-7.5, debt=25.0, free_cash=25.0) assert_same_tuple(order_result, OrderResult( size=2.5, price=10.0, fees=0.0, side=1, status=0, status_info=-1)) exec_state, order_result = nb.execute_order_nb( ProcessOrderState(50., -5., 0., 50., 10., 100., 0, 0), nb.order_nb(-1, 10, size_type=SizeType.Percent)) assert exec_state == ExecuteOrderState(cash=100.0, position=-10.0, debt=50.0, free_cash=0.0) assert_same_tuple(order_result, OrderResult( size=5.0, price=10.0, fees=0.0, side=1, status=0, status_info=-1)) exec_state, order_result = nb.execute_order_nb( ProcessOrderState(100., 0., 0., 100., 10., 100., 0, 0), nb.order_nb(np.inf, 10)) assert exec_state == ExecuteOrderState(cash=0.0, position=10.0, debt=0.0, free_cash=0.0) assert_same_tuple(order_result, OrderResult( size=10., price=10.0, fees=0., side=0, status=0, status_info=-1)) exec_state, order_result = nb.execute_order_nb( ProcessOrderState(100., -5., 0., 100., 10., 100., 0, 0), nb.order_nb(np.inf, 10)) assert exec_state == ExecuteOrderState(cash=0.0, position=5.0, debt=0.0, free_cash=0.0) assert_same_tuple(order_result, OrderResult( size=10., price=10.0, fees=0., side=0, status=0, status_info=-1)) exec_state, order_result = nb.execute_order_nb( ProcessOrderState(100., 0., 0., 100., 10., 100., 0, 0), nb.order_nb(-np.inf, 10)) assert exec_state == ExecuteOrderState(cash=200.0, position=-10.0, debt=100.0, free_cash=0.0) assert_same_tuple(order_result, OrderResult( size=10., price=10.0, fees=0., side=1, status=0, status_info=-1)) exec_state, order_result = nb.execute_order_nb( ProcessOrderState(150., -5., 0., 150., 10., 100., 0, 0), nb.order_nb(-np.inf, 10)) assert exec_state == ExecuteOrderState(cash=300.0, position=-20.0, debt=150.0, free_cash=0.0) assert_same_tuple(order_result, OrderResult( size=15.0, price=10.0, fees=0.0, side=1, status=0, status_info=-1)) exec_state, order_result = nb.execute_order_nb( ProcessOrderState(100., 0., 0., 50., 10., 100., 0, 0), nb.order_nb(10, 10, lock_cash=True)) assert exec_state == ExecuteOrderState(cash=50.0, position=5.0, debt=0.0, free_cash=0.0) assert_same_tuple(order_result, OrderResult( size=5.0, price=10.0, fees=0.0, side=0, status=0, status_info=-1)) exec_state, order_result = nb.execute_order_nb( ProcessOrderState(1000., -5., 50., 50., 10., 100., 0, 0), nb.order_nb(10, 17.5, lock_cash=True)) assert exec_state == ExecuteOrderState(cash=850.0, position=3.571428571428571, debt=0.0, free_cash=0.0) assert_same_tuple(order_result, OrderResult( size=8.571428571428571, price=17.5, fees=0.0, side=0, status=0, status_info=-1)) exec_state, order_result = nb.execute_order_nb( ProcessOrderState(100., -5., 50., 50., 10., 100., 0, 0), nb.order_nb(10, 100, lock_cash=True)) assert exec_state == ExecuteOrderState(cash=37.5, position=-4.375, debt=43.75, free_cash=0.0) assert_same_tuple(order_result, OrderResult( size=0.625, price=100.0, fees=0.0, side=0, status=0, status_info=-1)) exec_state, order_result = nb.execute_order_nb( ProcessOrderState(0., 10., 0., -50., 10., 100., 0, 0), nb.order_nb(-20, 10, lock_cash=True)) assert exec_state == ExecuteOrderState(cash=150.0, position=-5.0, debt=50.0, free_cash=0.0) assert_same_tuple(order_result, OrderResult( size=15.0, price=10.0, fees=0.0, side=1, status=0, status_info=-1)) exec_state, order_result = nb.execute_order_nb( ProcessOrderState(0., 1., 0., -50., 10., 100., 0, 0), nb.order_nb(-10, 10, lock_cash=True)) assert exec_state == ExecuteOrderState(cash=10.0, position=0.0, debt=0.0, free_cash=-40.0) assert_same_tuple(order_result, OrderResult( size=1.0, price=10.0, fees=0.0, side=1, status=0, status_info=-1)) exec_state, order_result = nb.execute_order_nb( ProcessOrderState(0., 0., 0., -100., 10., 100., 0, 0), nb.order_nb(-10, 10, lock_cash=True)) assert exec_state == ExecuteOrderState(cash=0.0, position=0.0, debt=0.0, free_cash=-100.0) assert_same_tuple(order_result, OrderResult( size=np.nan, price=np.nan, fees=np.nan, side=-1, status=2, status_info=6)) exec_state, order_result = nb.execute_order_nb( ProcessOrderState(0., 0., 0., 100., 10., 100., 0, 0), nb.order_nb(-20, 10, fees=0.1, slippage=0.1, fixed_fees=1., lock_cash=True)) assert exec_state == ExecuteOrderState(cash=80.0, position=-10.0, debt=90.0, free_cash=0.0) assert_same_tuple(order_result, OrderResult( size=10.0, price=9.0, fees=10.0, side=1, status=0, status_info=-1)) def test_build_call_seq_nb(): group_lens = np.array([1, 2, 3, 4]) np.testing.assert_array_equal( nb.build_call_seq_nb((10, 10), group_lens, CallSeqType.Default), nb.build_call_seq((10, 10), group_lens, CallSeqType.Default) ) np.testing.assert_array_equal( nb.build_call_seq_nb((10, 10), group_lens, CallSeqType.Reversed), nb.build_call_seq((10, 10), group_lens, CallSeqType.Reversed) ) set_seed(seed) out1 = nb.build_call_seq_nb((10, 10), group_lens, CallSeqType.Random) set_seed(seed) out2 = nb.build_call_seq((10, 10), group_lens, CallSeqType.Random) np.testing.assert_array_equal(out1, out2) # ############# from_orders ############# # order_size = pd.Series([np.inf, -np.inf, np.nan, np.inf, -np.inf], index=price.index) order_size_wide = order_size.vbt.tile(3, keys=['a', 'b', 'c']) order_size_one = pd.Series([1, -1, np.nan, 1, -1], index=price.index) def from_orders_both(close=price, size=order_size, **kwargs): return vbt.Portfolio.from_orders(close, size, direction='both', **kwargs) def from_orders_longonly(close=price, size=order_size, **kwargs): return vbt.Portfolio.from_orders(close, size, direction='longonly', **kwargs) def from_orders_shortonly(close=price, size=order_size, **kwargs): return vbt.Portfolio.from_orders(close, size, direction='shortonly', **kwargs) class TestFromOrders: def test_one_column(self): record_arrays_close( from_orders_both().order_records, np.array([ (0, 0, 0, 100.0, 1.0, 0.0, 0), (1, 0, 1, 200.0, 2.0, 0.0, 1), (2, 0, 3, 100.0, 4.0, 0.0, 0) ], dtype=order_dt) ) record_arrays_close( from_orders_longonly().order_records, np.array([ (0, 0, 0, 100.0, 1.0, 0.0, 0), (1, 0, 1, 100.0, 2.0, 0.0, 1), (2, 0, 3, 50.0, 4.0, 0.0, 0), (3, 0, 4, 50.0, 5.0, 0.0, 1) ], dtype=order_dt) ) record_arrays_close( from_orders_shortonly().order_records, np.array([ (0, 0, 0, 100.0, 1.0, 0.0, 1), (1, 0, 1, 100.0, 2.0, 0.0, 0) ], dtype=order_dt) ) pf = from_orders_both() pd.testing.assert_index_equal( pf.wrapper.index, pd.DatetimeIndex(['2020-01-01', '2020-01-02', '2020-01-03', '2020-01-04', '2020-01-05']) ) pd.testing.assert_index_equal( pf.wrapper.columns, pd.Int64Index([0], dtype='int64') ) assert pf.wrapper.ndim == 1 assert pf.wrapper.freq == day_dt assert pf.wrapper.grouper.group_by is None def test_multiple_columns(self): record_arrays_close( from_orders_both(close=price_wide).order_records, np.array([ (0, 0, 0, 100.0, 1.0, 0.0, 0), (1, 0, 1, 200.0, 2.0, 0.0, 1), (2, 0, 3, 100.0, 4.0, 0.0, 0), (3, 1, 0, 100.0, 1.0, 0.0, 0), (4, 1, 1, 200.0, 2.0, 0.0, 1), (5, 1, 3, 100.0, 4.0, 0.0, 0), (6, 2, 0, 100.0, 1.0, 0.0, 0), (7, 2, 1, 200.0, 2.0, 0.0, 1), (8, 2, 3, 100.0, 4.0, 0.0, 0) ], dtype=order_dt) ) record_arrays_close( from_orders_longonly(close=price_wide).order_records, np.array([ (0, 0, 0, 100.0, 1.0, 0.0, 0), (1, 0, 1, 100.0, 2.0, 0.0, 1), (2, 0, 3, 50.0, 4.0, 0.0, 0), (3, 0, 4, 50.0, 5.0, 0.0, 1), (4, 1, 0, 100.0, 1.0, 0.0, 0), (5, 1, 1, 100.0, 2.0, 0.0, 1), (6, 1, 3, 50.0, 4.0, 0.0, 0), (7, 1, 4, 50.0, 5.0, 0.0, 1), (8, 2, 0, 100.0, 1.0, 0.0, 0), (9, 2, 1, 100.0, 2.0, 0.0, 1), (10, 2, 3, 50.0, 4.0, 0.0, 0), (11, 2, 4, 50.0, 5.0, 0.0, 1) ], dtype=order_dt) ) record_arrays_close( from_orders_shortonly(close=price_wide).order_records, np.array([ (0, 0, 0, 100.0, 1.0, 0.0, 1), (1, 0, 1, 100.0, 2.0, 0.0, 0), (2, 1, 0, 100.0, 1.0, 0.0, 1), (3, 1, 1, 100.0, 2.0, 0.0, 0), (4, 2, 0, 100.0, 1.0, 0.0, 1), (5, 2, 1, 100.0, 2.0, 0.0, 0) ], dtype=order_dt) ) pf = from_orders_both(close=price_wide) pd.testing.assert_index_equal( pf.wrapper.index, pd.DatetimeIndex(['2020-01-01', '2020-01-02', '2020-01-03', '2020-01-04', '2020-01-05']) ) pd.testing.assert_index_equal( pf.wrapper.columns, pd.Index(['a', 'b', 'c'], dtype='object') ) assert pf.wrapper.ndim == 2 assert pf.wrapper.freq == day_dt assert pf.wrapper.grouper.group_by is None def test_size_inf(self): record_arrays_close( from_orders_both(size=[[np.inf, -np.inf]]).order_records, np.array([ (0, 0, 0, 100.0, 1.0, 0.0, 0), (1, 1, 0, 100.0, 1.0, 0.0, 1) ], dtype=order_dt) ) record_arrays_close( from_orders_longonly(size=[[np.inf, -np.inf]]).order_records, np.array([ (0, 0, 0, 100.0, 1.0, 0.0, 0) ], dtype=order_dt) ) record_arrays_close( from_orders_shortonly(size=[[np.inf, -np.inf]]).order_records, np.array([ (0, 0, 0, 100.0, 1.0, 0.0, 1) ], dtype=order_dt) ) def test_price(self): record_arrays_close( from_orders_both(price=price * 1.01).order_records, np.array([ (0, 0, 0, 99.00990099009901, 1.01, 0.0, 0), (1, 0, 1, 198.01980198019803, 2.02, 0.0, 1), (2, 0, 3, 99.00990099009901, 4.04, 0.0, 0) ], dtype=order_dt) ) record_arrays_close( from_orders_longonly(price=price * 1.01).order_records, np.array([ (0, 0, 0, 99.00990099009901, 1.01, 0.0, 0), (1, 0, 1, 99.00990099009901, 2.02, 0.0, 1), (2, 0, 3, 49.504950495049506, 4.04, 0.0, 0), (3, 0, 4, 49.504950495049506, 5.05, 0.0, 1) ], dtype=order_dt) ) record_arrays_close( from_orders_shortonly(price=price * 1.01).order_records, np.array([ (0, 0, 0, 99.00990099009901, 1.01, 0.0, 1), (1, 0, 1, 99.00990099009901, 2.02, 0.0, 0) ], dtype=order_dt) ) record_arrays_close( from_orders_both(price=np.inf).order_records, np.array([ (0, 0, 0, 100.0, 1.0, 0.0, 0), (1, 0, 1, 200.0, 2.0, 0.0, 1), (2, 0, 3, 100.0, 4.0, 0.0, 0) ], dtype=order_dt) ) record_arrays_close( from_orders_longonly(price=np.inf).order_records, np.array([ (0, 0, 0, 100.0, 1.0, 0.0, 0), (1, 0, 1, 100.0, 2.0, 0.0, 1), (2, 0, 3, 50.0, 4.0, 0.0, 0), (3, 0, 4, 50.0, 5.0, 0.0, 1) ], dtype=order_dt) ) record_arrays_close( from_orders_shortonly(price=np.inf).order_records, np.array([ (0, 0, 0, 100.0, 1.0, 0.0, 1), (1, 0, 1, 100.0, 2.0, 0.0, 0) ], dtype=order_dt) ) record_arrays_close( from_orders_both(price=-np.inf).order_records, np.array([ (0, 0, 1, 100.0, 1.0, 0.0, 1), (1, 0, 3, 66.66666666666667, 3.0, 0.0, 0) ], dtype=order_dt) ) record_arrays_close( from_orders_longonly(price=-np.inf).order_records, np.array([ (0, 0, 3, 33.333333333333336, 3.0, 0.0, 0), (1, 0, 4, 33.333333333333336, 4.0, 0.0, 1) ], dtype=order_dt) ) record_arrays_close( from_orders_shortonly(price=-np.inf).order_records, np.array([ (0, 0, 3, 33.333333333333336, 3.0, 0.0, 1), (1, 0, 4, 33.333333333333336, 4.0, 0.0, 0) ], dtype=order_dt) ) def test_val_price(self): price_nan = pd.Series([1, 2, np.nan, 4, 5], index=price.index) record_arrays_close( from_orders_both(close=price_nan, size=order_size_one, val_price=np.inf, size_type='value').order_records, from_orders_both(close=price_nan, size=order_size_one, val_price=price, size_type='value').order_records ) record_arrays_close( from_orders_longonly(close=price_nan, size=order_size_one, val_price=np.inf, size_type='value').order_records, from_orders_longonly(close=price_nan, size=order_size_one, val_price=price, size_type='value').order_records ) record_arrays_close( from_orders_shortonly(close=price_nan, size=order_size_one, val_price=np.inf, size_type='value').order_records, from_orders_shortonly(close=price_nan, size=order_size_one, val_price=price, size_type='value').order_records ) shift_price = price_nan.ffill().shift(1) record_arrays_close( from_orders_both(close=price_nan, size=order_size_one, val_price=-np.inf, size_type='value').order_records, from_orders_both(close=price_nan, size=order_size_one, val_price=shift_price, size_type='value').order_records ) record_arrays_close( from_orders_longonly(close=price_nan, size=order_size_one, val_price=-np.inf, size_type='value').order_records, from_orders_longonly(close=price_nan, size=order_size_one, val_price=shift_price, size_type='value').order_records ) record_arrays_close( from_orders_shortonly(close=price_nan, size=order_size_one, val_price=-np.inf, size_type='value').order_records, from_orders_shortonly(close=price_nan, size=order_size_one, val_price=shift_price, size_type='value').order_records ) record_arrays_close( from_orders_both(close=price_nan, size=order_size_one, val_price=np.inf, size_type='value', ffill_val_price=False).order_records, from_orders_both(close=price_nan, size=order_size_one, val_price=price_nan, size_type='value', ffill_val_price=False).order_records ) record_arrays_close( from_orders_longonly(close=price_nan, size=order_size_one, val_price=np.inf, size_type='value', ffill_val_price=False).order_records, from_orders_longonly(close=price_nan, size=order_size_one, val_price=price_nan, size_type='value', ffill_val_price=False).order_records ) record_arrays_close( from_orders_shortonly(close=price_nan, size=order_size_one, val_price=np.inf, size_type='value', ffill_val_price=False).order_records, from_orders_shortonly(close=price_nan, size=order_size_one, val_price=price_nan, size_type='value', ffill_val_price=False).order_records ) shift_price_nan = price_nan.shift(1) record_arrays_close( from_orders_both(close=price_nan, size=order_size_one, val_price=-np.inf, size_type='value', ffill_val_price=False).order_records, from_orders_both(close=price_nan, size=order_size_one, val_price=shift_price_nan, size_type='value', ffill_val_price=False).order_records ) record_arrays_close( from_orders_longonly(close=price_nan, size=order_size_one, val_price=-np.inf, size_type='value', ffill_val_price=False).order_records, from_orders_longonly(close=price_nan, size=order_size_one, val_price=shift_price_nan, size_type='value', ffill_val_price=False).order_records ) record_arrays_close( from_orders_shortonly(close=price_nan, size=order_size_one, val_price=-np.inf, size_type='value', ffill_val_price=False).order_records, from_orders_shortonly(close=price_nan, size=order_size_one, val_price=shift_price_nan, size_type='value', ffill_val_price=False).order_records ) def test_fees(self): record_arrays_close( from_orders_both(size=order_size_one, fees=[[0., 0.1, 1.]]).order_records, np.array([ (0, 0, 0, 1.0, 1.0, 0.0, 0), (1, 0, 1, 1.0, 2.0, 0.0, 1), (2, 0, 3, 1.0, 4.0, 0.0, 0), (3, 0, 4, 1.0, 5.0, 0.0, 1), (4, 1, 0, 1.0, 1.0, 0.1, 0), (5, 1, 1, 1.0, 2.0, 0.2, 1), (6, 1, 3, 1.0, 4.0, 0.4, 0), (7, 1, 4, 1.0, 5.0, 0.5, 1), (8, 2, 0, 1.0, 1.0, 1.0, 0), (9, 2, 1, 1.0, 2.0, 2.0, 1), (10, 2, 3, 1.0, 4.0, 4.0, 0), (11, 2, 4, 1.0, 5.0, 5.0, 1) ], dtype=order_dt) ) record_arrays_close( from_orders_longonly(size=order_size_one, fees=[[0., 0.1, 1.]]).order_records, np.array([ (0, 0, 0, 1.0, 1.0, 0.0, 0), (1, 0, 1, 1.0, 2.0, 0.0, 1), (2, 0, 3, 1.0, 4.0, 0.0, 0), (3, 0, 4, 1.0, 5.0, 0.0, 1), (4, 1, 0, 1.0, 1.0, 0.1, 0), (5, 1, 1, 1.0, 2.0, 0.2, 1), (6, 1, 3, 1.0, 4.0, 0.4, 0), (7, 1, 4, 1.0, 5.0, 0.5, 1), (8, 2, 0, 1.0, 1.0, 1.0, 0), (9, 2, 1, 1.0, 2.0, 2.0, 1), (10, 2, 3, 1.0, 4.0, 4.0, 0), (11, 2, 4, 1.0, 5.0, 5.0, 1) ], dtype=order_dt) ) record_arrays_close( from_orders_shortonly(size=order_size_one, fees=[[0., 0.1, 1.]]).order_records, np.array([ (0, 0, 0, 1.0, 1.0, 0.0, 1), (1, 0, 1, 1.0, 2.0, 0.0, 0), (2, 0, 3, 1.0, 4.0, 0.0, 1), (3, 0, 4, 1.0, 5.0, 0.0, 0), (4, 1, 0, 1.0, 1.0, 0.1, 1), (5, 1, 1, 1.0, 2.0, 0.2, 0), (6, 1, 3, 1.0, 4.0, 0.4, 1), (7, 1, 4, 1.0, 5.0, 0.5, 0), (8, 2, 0, 1.0, 1.0, 1.0, 1), (9, 2, 1, 1.0, 2.0, 2.0, 0), (10, 2, 3, 1.0, 4.0, 4.0, 1), (11, 2, 4, 1.0, 5.0, 5.0, 0) ], dtype=order_dt) ) def test_fixed_fees(self): record_arrays_close( from_orders_both(size=order_size_one, fixed_fees=[[0., 0.1, 1.]]).order_records, np.array([ (0, 0, 0, 1.0, 1.0, 0.0, 0), (1, 0, 1, 1.0, 2.0, 0.0, 1), (2, 0, 3, 1.0, 4.0, 0.0, 0), (3, 0, 4, 1.0, 5.0, 0.0, 1), (4, 1, 0, 1.0, 1.0, 0.1, 0), (5, 1, 1, 1.0, 2.0, 0.1, 1), (6, 1, 3, 1.0, 4.0, 0.1, 0), (7, 1, 4, 1.0, 5.0, 0.1, 1), (8, 2, 0, 1.0, 1.0, 1.0, 0), (9, 2, 1, 1.0, 2.0, 1.0, 1), (10, 2, 3, 1.0, 4.0, 1.0, 0), (11, 2, 4, 1.0, 5.0, 1.0, 1) ], dtype=order_dt) ) record_arrays_close( from_orders_longonly(size=order_size_one, fixed_fees=[[0., 0.1, 1.]]).order_records, np.array([ (0, 0, 0, 1.0, 1.0, 0.0, 0), (1, 0, 1, 1.0, 2.0, 0.0, 1), (2, 0, 3, 1.0, 4.0, 0.0, 0), (3, 0, 4, 1.0, 5.0, 0.0, 1), (4, 1, 0, 1.0, 1.0, 0.1, 0), (5, 1, 1, 1.0, 2.0, 0.1, 1), (6, 1, 3, 1.0, 4.0, 0.1, 0), (7, 1, 4, 1.0, 5.0, 0.1, 1), (8, 2, 0, 1.0, 1.0, 1.0, 0), (9, 2, 1, 1.0, 2.0, 1.0, 1), (10, 2, 3, 1.0, 4.0, 1.0, 0), (11, 2, 4, 1.0, 5.0, 1.0, 1) ], dtype=order_dt) ) record_arrays_close( from_orders_shortonly(size=order_size_one, fixed_fees=[[0., 0.1, 1.]]).order_records, np.array([ (0, 0, 0, 1.0, 1.0, 0.0, 1), (1, 0, 1, 1.0, 2.0, 0.0, 0), (2, 0, 3, 1.0, 4.0, 0.0, 1), (3, 0, 4, 1.0, 5.0, 0.0, 0), (4, 1, 0, 1.0, 1.0, 0.1, 1), (5, 1, 1, 1.0, 2.0, 0.1, 0), (6, 1, 3, 1.0, 4.0, 0.1, 1), (7, 1, 4, 1.0, 5.0, 0.1, 0), (8, 2, 0, 1.0, 1.0, 1.0, 1), (9, 2, 1, 1.0, 2.0, 1.0, 0), (10, 2, 3, 1.0, 4.0, 1.0, 1), (11, 2, 4, 1.0, 5.0, 1.0, 0) ], dtype=order_dt) ) def test_slippage(self): record_arrays_close( from_orders_both(size=order_size_one, slippage=[[0., 0.1, 1.]]).order_records, np.array([ (0, 0, 0, 1.0, 1.0, 0.0, 0), (1, 0, 1, 1.0, 2.0, 0.0, 1), (2, 0, 3, 1.0, 4.0, 0.0, 0), (3, 0, 4, 1.0, 5.0, 0.0, 1), (4, 1, 0, 1.0, 1.1, 0.0, 0), (5, 1, 1, 1.0, 1.8, 0.0, 1), (6, 1, 3, 1.0, 4.4, 0.0, 0), (7, 1, 4, 1.0, 4.5, 0.0, 1), (8, 2, 0, 1.0, 2.0, 0.0, 0), (9, 2, 1, 1.0, 0.0, 0.0, 1), (10, 2, 3, 1.0, 8.0, 0.0, 0), (11, 2, 4, 1.0, 0.0, 0.0, 1) ], dtype=order_dt) ) record_arrays_close( from_orders_longonly(size=order_size_one, slippage=[[0., 0.1, 1.]]).order_records, np.array([ (0, 0, 0, 1.0, 1.0, 0.0, 0), (1, 0, 1, 1.0, 2.0, 0.0, 1), (2, 0, 3, 1.0, 4.0, 0.0, 0), (3, 0, 4, 1.0, 5.0, 0.0, 1), (4, 1, 0, 1.0, 1.1, 0.0, 0), (5, 1, 1, 1.0, 1.8, 0.0, 1), (6, 1, 3, 1.0, 4.4, 0.0, 0), (7, 1, 4, 1.0, 4.5, 0.0, 1), (8, 2, 0, 1.0, 2.0, 0.0, 0), (9, 2, 1, 1.0, 0.0, 0.0, 1), (10, 2, 3, 1.0, 8.0, 0.0, 0), (11, 2, 4, 1.0, 0.0, 0.0, 1) ], dtype=order_dt) ) record_arrays_close( from_orders_shortonly(size=order_size_one, slippage=[[0., 0.1, 1.]]).order_records, np.array([ (0, 0, 0, 1.0, 1.0, 0.0, 1), (1, 0, 1, 1.0, 2.0, 0.0, 0), (2, 0, 3, 1.0, 4.0, 0.0, 1), (3, 0, 4, 1.0, 5.0, 0.0, 0), (4, 1, 0, 1.0, 0.9, 0.0, 1), (5, 1, 1, 1.0, 2.2, 0.0, 0), (6, 1, 3, 1.0, 3.6, 0.0, 1), (7, 1, 4, 1.0, 5.5, 0.0, 0), (8, 2, 0, 1.0, 0.0, 0.0, 1), (9, 2, 1, 1.0, 4.0, 0.0, 0), (10, 2, 3, 1.0, 0.0, 0.0, 1), (11, 2, 4, 1.0, 10.0, 0.0, 0) ], dtype=order_dt) ) def test_min_size(self): record_arrays_close( from_orders_both(size=order_size_one, min_size=[[0., 1., 2.]]).order_records, np.array([ (0, 0, 0, 1.0, 1.0, 0.0, 0), (1, 0, 1, 1.0, 2.0, 0.0, 1), (2, 0, 3, 1.0, 4.0, 0.0, 0), (3, 0, 4, 1.0, 5.0, 0.0, 1), (4, 1, 0, 1.0, 1.0, 0.0, 0), (5, 1, 1, 1.0, 2.0, 0.0, 1), (6, 1, 3, 1.0, 4.0, 0.0, 0), (7, 1, 4, 1.0, 5.0, 0.0, 1) ], dtype=order_dt) ) record_arrays_close( from_orders_longonly(size=order_size_one, min_size=[[0., 1., 2.]]).order_records, np.array([ (0, 0, 0, 1.0, 1.0, 0.0, 0), (1, 0, 1, 1.0, 2.0, 0.0, 1), (2, 0, 3, 1.0, 4.0, 0.0, 0), (3, 0, 4, 1.0, 5.0, 0.0, 1), (4, 1, 0, 1.0, 1.0, 0.0, 0), (5, 1, 1, 1.0, 2.0, 0.0, 1), (6, 1, 3, 1.0, 4.0, 0.0, 0), (7, 1, 4, 1.0, 5.0, 0.0, 1) ], dtype=order_dt) ) record_arrays_close( from_orders_shortonly(size=order_size_one, min_size=[[0., 1., 2.]]).order_records, np.array([ (0, 0, 0, 1.0, 1.0, 0.0, 1), (1, 0, 1, 1.0, 2.0, 0.0, 0), (2, 0, 3, 1.0, 4.0, 0.0, 1), (3, 0, 4, 1.0, 5.0, 0.0, 0), (4, 1, 0, 1.0, 1.0, 0.0, 1), (5, 1, 1, 1.0, 2.0, 0.0, 0), (6, 1, 3, 1.0, 4.0, 0.0, 1), (7, 1, 4, 1.0, 5.0, 0.0, 0) ], dtype=order_dt) ) def test_max_size(self): record_arrays_close( from_orders_both(size=order_size_one, max_size=[[0.5, 1., np.inf]]).order_records, np.array([ (0, 0, 0, 0.5, 1.0, 0.0, 0), (1, 0, 1, 0.5, 2.0, 0.0, 1), (2, 0, 3, 0.5, 4.0, 0.0, 0), (3, 0, 4, 0.5, 5.0, 0.0, 1), (4, 1, 0, 1.0, 1.0, 0.0, 0), (5, 1, 1, 1.0, 2.0, 0.0, 1), (6, 1, 3, 1.0, 4.0, 0.0, 0), (7, 1, 4, 1.0, 5.0, 0.0, 1), (8, 2, 0, 1.0, 1.0, 0.0, 0), (9, 2, 1, 1.0, 2.0, 0.0, 1), (10, 2, 3, 1.0, 4.0, 0.0, 0), (11, 2, 4, 1.0, 5.0, 0.0, 1) ], dtype=order_dt) ) record_arrays_close( from_orders_longonly(size=order_size_one, max_size=[[0.5, 1., np.inf]]).order_records, np.array([ (0, 0, 0, 0.5, 1.0, 0.0, 0), (1, 0, 1, 0.5, 2.0, 0.0, 1), (2, 0, 3, 0.5, 4.0, 0.0, 0), (3, 0, 4, 0.5, 5.0, 0.0, 1), (4, 1, 0, 1.0, 1.0, 0.0, 0), (5, 1, 1, 1.0, 2.0, 0.0, 1), (6, 1, 3, 1.0, 4.0, 0.0, 0), (7, 1, 4, 1.0, 5.0, 0.0, 1), (8, 2, 0, 1.0, 1.0, 0.0, 0), (9, 2, 1, 1.0, 2.0, 0.0, 1), (10, 2, 3, 1.0, 4.0, 0.0, 0), (11, 2, 4, 1.0, 5.0, 0.0, 1) ], dtype=order_dt) ) record_arrays_close( from_orders_shortonly(size=order_size_one, max_size=[[0.5, 1., np.inf]]).order_records, np.array([ (0, 0, 0, 0.5, 1.0, 0.0, 1), (1, 0, 1, 0.5, 2.0, 0.0, 0), (2, 0, 3, 0.5, 4.0, 0.0, 1), (3, 0, 4, 0.5, 5.0, 0.0, 0), (4, 1, 0, 1.0, 1.0, 0.0, 1), (5, 1, 1, 1.0, 2.0, 0.0, 0), (6, 1, 3, 1.0, 4.0, 0.0, 1), (7, 1, 4, 1.0, 5.0, 0.0, 0), (8, 2, 0, 1.0, 1.0, 0.0, 1), (9, 2, 1, 1.0, 2.0, 0.0, 0), (10, 2, 3, 1.0, 4.0, 0.0, 1), (11, 2, 4, 1.0, 5.0, 0.0, 0) ], dtype=order_dt) ) def test_reject_prob(self): record_arrays_close( from_orders_both(size=order_size_one, reject_prob=[[0., 0.5, 1.]], seed=42).order_records, np.array([ (0, 0, 0, 1.0, 1.0, 0.0, 0), (1, 0, 1, 1.0, 2.0, 0.0, 1), (2, 0, 3, 1.0, 4.0, 0.0, 0), (3, 0, 4, 1.0, 5.0, 0.0, 1), (4, 1, 1, 1.0, 2.0, 0.0, 1), (5, 1, 3, 1.0, 4.0, 0.0, 0), (6, 1, 4, 1.0, 5.0, 0.0, 1) ], dtype=order_dt) ) record_arrays_close( from_orders_longonly(size=order_size_one, reject_prob=[[0., 0.5, 1.]], seed=42).order_records, np.array([ (0, 0, 0, 1.0, 1.0, 0.0, 0), (1, 0, 1, 1.0, 2.0, 0.0, 1), (2, 0, 3, 1.0, 4.0, 0.0, 0), (3, 0, 4, 1.0, 5.0, 0.0, 1), (4, 1, 3, 1.0, 4.0, 0.0, 0), (5, 1, 4, 1.0, 5.0, 0.0, 1) ], dtype=order_dt) ) record_arrays_close( from_orders_shortonly(size=order_size_one, reject_prob=[[0., 0.5, 1.]], seed=42).order_records, np.array([ (0, 0, 0, 1.0, 1.0, 0.0, 1), (1, 0, 1, 1.0, 2.0, 0.0, 0), (2, 0, 3, 1.0, 4.0, 0.0, 1), (3, 0, 4, 1.0, 5.0, 0.0, 0), (4, 1, 3, 1.0, 4.0, 0.0, 1), (5, 1, 4, 1.0, 5.0, 0.0, 0) ], dtype=order_dt) ) def test_lock_cash(self): pf = vbt.Portfolio.from_orders( pd.Series([1, 1]), pd.DataFrame([[-25, -25], [np.inf, np.inf]]), group_by=True, cash_sharing=True, lock_cash=False, fees=0.01, fixed_fees=1., slippage=0.01) np.testing.assert_array_equal( pf.asset_flow().values, np.array([ [-25.0, -25.0], [143.12812469365747, 0.0] ]) ) np.testing.assert_array_equal( pf.cash(group_by=False, in_sim_order=True).values, np.array([ [123.5025, 147.005], [0.0, 0.0] ]) ) np.testing.assert_array_equal( pf.cash(group_by=False, in_sim_order=True, free=True).values, np.array([ [74.0025, 48.004999999999995], [-49.5, -49.5] ]) ) pf = vbt.Portfolio.from_orders( pd.Series([1, 1]), pd.DataFrame([[-25, -25], [np.inf, np.inf]]), group_by=True, cash_sharing=True, lock_cash=True, fees=0.01, fixed_fees=1., slippage=0.01) np.testing.assert_array_equal( pf.asset_flow().values, np.array([ [-25.0, -25.0], [94.6034702480149, 47.54435839623566] ]) ) np.testing.assert_array_equal( pf.cash(group_by=False, in_sim_order=True).values, np.array([ [123.5025, 147.005], [49.5, 0.0] ]) ) np.testing.assert_array_equal( pf.cash(group_by=False, in_sim_order=True, free=True).values, np.array([ [74.0025, 48.004999999999995], [0.0, 0.0] ]) ) pf = vbt.Portfolio.from_orders( pd.Series([1, 100]), pd.DataFrame([[-25, -25], [np.inf, np.inf]]), group_by=True, cash_sharing=True, lock_cash=False, fees=0.01, fixed_fees=1., slippage=0.01) np.testing.assert_array_equal( pf.asset_flow().values, np.array([ [-25.0, -25.0], [1.4312812469365748, 0.0] ]) ) np.testing.assert_array_equal( pf.cash(group_by=False, in_sim_order=True).values, np.array([ [123.5025, 147.005], [0.0, 0.0] ]) ) np.testing.assert_array_equal( pf.cash(group_by=False, in_sim_order=True, free=True).values, np.array([ [74.0025, 48.004999999999995], [-96.16606313106556, -96.16606313106556] ]) ) pf = vbt.Portfolio.from_orders( pd.Series([1, 100]), pd.DataFrame([[-25, -25], [np.inf, np.inf]]), group_by=True, cash_sharing=True, lock_cash=True, fees=0.01, fixed_fees=1., slippage=0.01) np.testing.assert_array_equal( pf.asset_flow().values, np.array([ [-25.0, -25.0], [0.4699090272918124, 0.0] ]) ) np.testing.assert_array_equal( pf.cash(group_by=False, in_sim_order=True).values, np.array([ [123.5025, 147.005], [98.06958012596222, 98.06958012596222] ]) ) np.testing.assert_array_equal( pf.cash(group_by=False, in_sim_order=True, free=True).values, np.array([ [74.0025, 48.004999999999995], [0.0, 0.0] ]) ) pf = from_orders_both(size=order_size_one * 1000, lock_cash=[[False, True]]) record_arrays_close( pf.order_records, np.array([ (0, 0, 0, 100., 1., 0., 0), (1, 0, 1, 1000., 2., 0., 1), (2, 0, 3, 500., 4., 0., 0), (3, 0, 4, 1000., 5., 0., 1), (4, 1, 0, 100., 1., 0., 0), (5, 1, 1, 200., 2., 0., 1), (6, 1, 3, 100., 4., 0., 0) ], dtype=order_dt) ) np.testing.assert_array_equal( pf.cash(free=True).values, np.array([ [0.0, 0.0], [-1600.0, 0.0], [-1600.0, 0.0], [-1600.0, 0.0], [-6600.0, 0.0] ]) ) pf = from_orders_longonly(size=order_size_one * 1000, lock_cash=[[False, True]]) record_arrays_close( pf.order_records, np.array([ (0, 0, 0, 100., 1., 0., 0), (1, 0, 1, 100., 2., 0., 1), (2, 0, 3, 50., 4., 0., 0), (3, 0, 4, 50., 5., 0., 1), (4, 1, 0, 100., 1., 0., 0), (5, 1, 1, 100., 2., 0., 1), (6, 1, 3, 50., 4., 0., 0), (7, 1, 4, 50., 5., 0., 1) ], dtype=order_dt) ) np.testing.assert_array_equal( pf.cash(free=True).values, np.array([ [0.0, 0.0], [200.0, 200.0], [200.0, 200.0], [0.0, 0.0], [250.0, 250.0] ]) ) pf = from_orders_shortonly(size=order_size_one * 1000, lock_cash=[[False, True]]) record_arrays_close( pf.order_records, np.array([ (0, 0, 0, 1000., 1., 0., 1), (1, 0, 1, 550., 2., 0., 0), (2, 0, 3, 1000., 4., 0., 1), (3, 0, 4, 800., 5., 0., 0), (4, 1, 0, 100., 1., 0., 1), (5, 1, 1, 100., 2., 0., 0) ], dtype=order_dt) ) np.testing.assert_array_equal( pf.cash(free=True).values, np.array([ [-900.0, 0.0], [-900.0, 0.0], [-900.0, 0.0], [-4900.0, 0.0], [-3989.6551724137926, 0.0] ]) ) def test_allow_partial(self): record_arrays_close( from_orders_both(size=order_size_one * 1000, allow_partial=[[True, False]]).order_records, np.array([ (0, 0, 0, 100.0, 1.0, 0.0, 0), (1, 0, 1, 1000.0, 2.0, 0.0, 1), (2, 0, 3, 500.0, 4.0, 0.0, 0), (3, 0, 4, 1000.0, 5.0, 0.0, 1), (4, 1, 1, 1000.0, 2.0, 0.0, 1), (5, 1, 4, 1000.0, 5.0, 0.0, 1) ], dtype=order_dt) ) record_arrays_close( from_orders_longonly(size=order_size_one * 1000, allow_partial=[[True, False]]).order_records, np.array([ (0, 0, 0, 100.0, 1.0, 0.0, 0), (1, 0, 1, 100.0, 2.0, 0.0, 1), (2, 0, 3, 50.0, 4.0, 0.0, 0), (3, 0, 4, 50.0, 5.0, 0.0, 1) ], dtype=order_dt) ) record_arrays_close( from_orders_shortonly(size=order_size_one * 1000, allow_partial=[[True, False]]).order_records, np.array([ (0, 0, 0, 1000.0, 1.0, 0.0, 1), (1, 0, 1, 550.0, 2.0, 0.0, 0), (2, 0, 3, 1000.0, 4.0, 0.0, 1), (3, 0, 4, 800.0, 5.0, 0.0, 0), (4, 1, 0, 1000.0, 1.0, 0.0, 1), (5, 1, 3, 1000.0, 4.0, 0.0, 1), (6, 1, 4, 1000.0, 5.0, 0.0, 0) ], dtype=order_dt) ) record_arrays_close( from_orders_both(size=order_size, allow_partial=[[True, False]]).order_records, np.array([ (0, 0, 0, 100.0, 1.0, 0.0, 0), (1, 0, 1, 200.0, 2.0, 0.0, 1), (2, 0, 3, 100.0, 4.0, 0.0, 0), (3, 1, 0, 100.0, 1.0, 0.0, 0), (4, 1, 1, 200.0, 2.0, 0.0, 1), (5, 1, 3, 100.0, 4.0, 0.0, 0) ], dtype=order_dt) ) record_arrays_close( from_orders_longonly(size=order_size, allow_partial=[[True, False]]).order_records, np.array([ (0, 0, 0, 100.0, 1.0, 0.0, 0), (1, 0, 1, 100.0, 2.0, 0.0, 1), (2, 0, 3, 50.0, 4.0, 0.0, 0), (3, 0, 4, 50.0, 5.0, 0.0, 1), (4, 1, 0, 100.0, 1.0, 0.0, 0), (5, 1, 1, 100.0, 2.0, 0.0, 1), (6, 1, 3, 50.0, 4.0, 0.0, 0), (7, 1, 4, 50.0, 5.0, 0.0, 1) ], dtype=order_dt) ) record_arrays_close( from_orders_shortonly(size=order_size, allow_partial=[[True, False]]).order_records, np.array([ (0, 0, 0, 100.0, 1.0, 0.0, 1), (1, 0, 1, 100.0, 2.0, 0.0, 0), (2, 1, 0, 100.0, 1.0, 0.0, 1), (3, 1, 1, 100.0, 2.0, 0.0, 0) ], dtype=order_dt) ) def test_raise_reject(self): record_arrays_close( from_orders_both(size=order_size_one * 1000, allow_partial=True, raise_reject=True).order_records, np.array([ (0, 0, 0, 100.0, 1.0, 0.0, 0), (1, 0, 1, 1000.0, 2.0, 0.0, 1), (2, 0, 3, 500.0, 4.0, 0.0, 0), (3, 0, 4, 1000.0, 5.0, 0.0, 1) ], dtype=order_dt) ) record_arrays_close( from_orders_longonly(size=order_size_one * 1000, allow_partial=True, raise_reject=True).order_records, np.array([ (0, 0, 0, 100.0, 1.0, 0.0, 0), (1, 0, 1, 100.0, 2.0, 0.0, 1), (2, 0, 3, 50.0, 4.0, 0.0, 0), (3, 0, 4, 50.0, 5.0, 0.0, 1) ], dtype=order_dt) ) record_arrays_close( from_orders_shortonly(size=order_size_one * 1000, allow_partial=True, raise_reject=True).order_records, np.array([ (0, 0, 0, 1000.0, 1.0, 0.0, 1), (1, 0, 1, 550.0, 2.0, 0.0, 0), (2, 0, 3, 1000.0, 4.0, 0.0, 1), (3, 0, 4, 800.0, 5.0, 0.0, 0) ], dtype=order_dt) ) with pytest.raises(Exception): _ = from_orders_both(size=order_size_one * 1000, allow_partial=False, raise_reject=True).order_records with pytest.raises(Exception): _ = from_orders_longonly(size=order_size_one * 1000, allow_partial=False, raise_reject=True).order_records with pytest.raises(Exception): _ = from_orders_shortonly(size=order_size_one * 1000, allow_partial=False, raise_reject=True).order_records def test_log(self): record_arrays_close( from_orders_both(log=True).log_records, np.array([ (0, 0, 0, 0, 100.0, 0.0, 0.0, 100.0, 1.0, 100.0, np.inf, 1.0, 0, 2, 0.0, 0.0, 0.0, 1e-08, np.inf, 0.0, False, True, False, True, 0.0, 100.0, 0.0, 0.0, 1.0, 100.0, 100.0, 1.0, 0.0, 0, 0, -1, 0), (1, 0, 0, 1, 0.0, 100.0, 0.0, 0.0, 2.0, 200.0, -np.inf, 2.0, 0, 2, 0.0, 0.0, 0.0, 1e-08, np.inf, 0.0, False, True, False, True, 400.0, -100.0, 200.0, 0.0, 2.0, 200.0, 200.0, 2.0, 0.0, 1, 0, -1, 1), (2, 0, 0, 2, 400.0, -100.0, 200.0, 0.0, 3.0, 100.0, np.nan, 3.0, 0, 2, 0.0, 0.0, 0.0, 1e-08, np.inf, 0.0, False, True, False, True, 400.0, -100.0, 200.0, 0.0, 3.0, 100.0, np.nan, np.nan, np.nan, -1, 1, 0, -1), (3, 0, 0, 3, 400.0, -100.0, 200.0, 0.0, 4.0, 0.0, np.inf, 4.0, 0, 2, 0.0, 0.0, 0.0, 1e-08, np.inf, 0.0, False, True, False, True, 0.0, 0.0, 0.0, 0.0, 4.0, 0.0, 100.0, 4.0, 0.0, 0, 0, -1, 2), (4, 0, 0, 4, 0.0, 0.0, 0.0, 0.0, 5.0, 0.0, -np.inf, 5.0, 0, 2, 0.0, 0.0, 0.0, 1e-08, np.inf, 0.0, False, True, False, True, 0.0, 0.0, 0.0, 0.0, 5.0, 0.0, np.nan, np.nan, np.nan, -1, 2, 6, -1) ], dtype=log_dt) ) def test_group_by(self): pf = from_orders_both(close=price_wide, group_by=np.array([0, 0, 1])) record_arrays_close( pf.order_records, np.array([ (0, 0, 0, 100.0, 1.0, 0.0, 0), (1, 0, 1, 200.0, 2.0, 0.0, 1), (2, 0, 3, 100.0, 4.0, 0.0, 0), (3, 1, 0, 100.0, 1.0, 0.0, 0), (4, 1, 1, 200.0, 2.0, 0.0, 1), (5, 1, 3, 100.0, 4.0, 0.0, 0), (6, 2, 0, 100.0, 1.0, 0.0, 0), (7, 2, 1, 200.0, 2.0, 0.0, 1), (8, 2, 3, 100.0, 4.0, 0.0, 0) ], dtype=order_dt) ) pd.testing.assert_index_equal( pf.wrapper.grouper.group_by, pd.Int64Index([0, 0, 1], dtype='int64') ) pd.testing.assert_series_equal( pf.init_cash, pd.Series([200., 100.], index=pd.Int64Index([0, 1], dtype='int64')).rename('init_cash') ) assert not pf.cash_sharing def test_cash_sharing(self): pf = from_orders_both(close=price_wide, group_by=np.array([0, 0, 1]), cash_sharing=True) record_arrays_close( pf.order_records, np.array([ (0, 0, 0, 100., 1., 0., 0), (1, 0, 1, 200., 2., 0., 1), (2, 0, 3, 100., 4., 0., 0), (3, 2, 0, 100., 1., 0., 0), (4, 2, 1, 200., 2., 0., 1), (5, 2, 3, 100., 4., 0., 0) ], dtype=order_dt) ) pd.testing.assert_index_equal( pf.wrapper.grouper.group_by, pd.Int64Index([0, 0, 1], dtype='int64') ) pd.testing.assert_series_equal( pf.init_cash, pd.Series([100., 100.], index=pd.Int64Index([0, 1], dtype='int64')).rename('init_cash') ) assert pf.cash_sharing with pytest.raises(Exception): _ = pf.regroup(group_by=False) def test_call_seq(self): pf = from_orders_both(close=price_wide, group_by=np.array([0, 0, 1]), cash_sharing=True) record_arrays_close( pf.order_records, np.array([ (0, 0, 0, 100., 1., 0., 0), (1, 0, 1, 200., 2., 0., 1), (2, 0, 3, 100., 4., 0., 0), (3, 2, 0, 100., 1., 0., 0), (4, 2, 1, 200., 2., 0., 1), (5, 2, 3, 100., 4., 0., 0) ], dtype=order_dt) ) np.testing.assert_array_equal( pf.call_seq.values, np.array([ [0, 1, 0], [0, 1, 0], [0, 1, 0], [0, 1, 0], [0, 1, 0] ]) ) pf = from_orders_both( close=price_wide, group_by=np.array([0, 0, 1]), cash_sharing=True, call_seq='reversed') record_arrays_close( pf.order_records, np.array([ (0, 1, 0, 100., 1., 0., 0), (1, 1, 1, 200., 2., 0., 1), (2, 1, 3, 100., 4., 0., 0), (3, 2, 0, 100., 1., 0., 0), (4, 2, 1, 200., 2., 0., 1), (5, 2, 3, 100., 4., 0., 0) ], dtype=order_dt) ) np.testing.assert_array_equal( pf.call_seq.values, np.array([ [1, 0, 0], [1, 0, 0], [1, 0, 0], [1, 0, 0], [1, 0, 0] ]) ) pf = from_orders_both( close=price_wide, group_by=np.array([0, 0, 1]), cash_sharing=True, call_seq='random', seed=seed) record_arrays_close( pf.order_records, np.array([ (0, 1, 0, 100., 1., 0., 0), (1, 1, 1, 200., 2., 0., 1), (2, 1, 3, 100., 4., 0., 0), (3, 2, 0, 100., 1., 0., 0), (4, 2, 1, 200., 2., 0., 1), (5, 2, 3, 100., 4., 0., 0) ], dtype=order_dt) ) np.testing.assert_array_equal( pf.call_seq.values, np.array([ [1, 0, 0], [0, 1, 0], [1, 0, 0], [1, 0, 0], [1, 0, 0] ]) ) kwargs = dict( close=1., size=pd.DataFrame([ [0., 0., np.inf], [0., np.inf, -np.inf], [np.inf, -np.inf, 0.], [-np.inf, 0., np.inf], [0., np.inf, -np.inf], ]), group_by=np.array([0, 0, 0]), cash_sharing=True, call_seq='auto' ) pf = from_orders_both(**kwargs) record_arrays_close( pf.order_records, np.array([ (0, 2, 0, 100., 1., 0., 0), (1, 2, 1, 200., 1., 0., 1), (2, 1, 1, 200., 1., 0., 0), (3, 1, 2, 200., 1., 0., 1), (4, 0, 2, 200., 1., 0., 0), (5, 0, 3, 200., 1., 0., 1), (6, 2, 3, 200., 1., 0., 0), (7, 2, 4, 200., 1., 0., 1), (8, 1, 4, 200., 1., 0., 0) ], dtype=order_dt) ) np.testing.assert_array_equal( pf.call_seq.values, np.array([ [0, 1, 2], [2, 0, 1], [1, 2, 0], [0, 1, 2], [2, 0, 1] ]) ) pf = from_orders_longonly(**kwargs) record_arrays_close( pf.order_records, np.array([ (0, 2, 0, 100., 1., 0., 0), (1, 2, 1, 100., 1., 0., 1), (2, 1, 1, 100., 1., 0., 0), (3, 1, 2, 100., 1., 0., 1), (4, 0, 2, 100., 1., 0., 0), (5, 0, 3, 100., 1., 0., 1), (6, 2, 3, 100., 1., 0., 0), (7, 2, 4, 100., 1., 0., 1), (8, 1, 4, 100., 1., 0., 0) ], dtype=order_dt) ) np.testing.assert_array_equal( pf.call_seq.values, np.array([ [0, 1, 2], [2, 0, 1], [1, 2, 0], [0, 1, 2], [2, 0, 1] ]) ) pf = from_orders_shortonly(**kwargs) record_arrays_close( pf.order_records, np.array([ (0, 2, 0, 100., 1., 0., 1), (1, 2, 1, 100., 1., 0., 0), (2, 0, 2, 100., 1., 0., 1), (3, 0, 3, 100., 1., 0., 0), (4, 1, 4, 100., 1., 0., 1) ], dtype=order_dt) ) np.testing.assert_array_equal( pf.call_seq.values, np.array([ [2, 0, 1], [1, 0, 2], [0, 2, 1], [2, 1, 0], [1, 0, 2] ]) ) def test_value(self): record_arrays_close( from_orders_both(size=order_size_one, size_type='value').order_records, np.array([ (0, 0, 0, 1.0, 1.0, 0.0, 0), (1, 0, 1, 0.5, 2.0, 0.0, 1), (2, 0, 3, 0.25, 4.0, 0.0, 0), (3, 0, 4, 0.2, 5.0, 0.0, 1) ], dtype=order_dt) ) record_arrays_close( from_orders_longonly(size=order_size_one, size_type='value').order_records, np.array([ (0, 0, 0, 1.0, 1.0, 0.0, 0), (1, 0, 1, 0.5, 2.0, 0.0, 1), (2, 0, 3, 0.25, 4.0, 0.0, 0), (3, 0, 4, 0.2, 5.0, 0.0, 1) ], dtype=order_dt) ) record_arrays_close( from_orders_shortonly(size=order_size_one, size_type='value').order_records, np.array([ (0, 0, 0, 1.0, 1.0, 0.0, 1), (1, 0, 1, 0.5, 2.0, 0.0, 0), (2, 0, 3, 0.25, 4.0, 0.0, 1), (3, 0, 4, 0.2, 5.0, 0.0, 0) ], dtype=order_dt) ) def test_target_amount(self): record_arrays_close( from_orders_both(size=[[75., -75.]], size_type='targetamount').order_records, np.array([ (0, 0, 0, 75.0, 1.0, 0.0, 0), (1, 1, 0, 75.0, 1.0, 0.0, 1) ], dtype=order_dt) ) record_arrays_close( from_orders_longonly(size=[[75., -75.]], size_type='targetamount').order_records, np.array([ (0, 0, 0, 75.0, 1.0, 0.0, 0) ], dtype=order_dt) ) record_arrays_close( from_orders_shortonly(size=[[75., -75.]], size_type='targetamount').order_records, np.array([ (0, 0, 0, 75.0, 1.0, 0.0, 1) ], dtype=order_dt) ) record_arrays_close( from_orders_both( close=price_wide, size=75., size_type='targetamount', group_by=np.array([0, 0, 0]), cash_sharing=True).order_records, np.array([ (0, 0, 0, 75.0, 1.0, 0.0, 0), (1, 1, 0, 25.0, 1.0, 0.0, 0) ], dtype=order_dt) ) def test_target_value(self): record_arrays_close( from_orders_both(size=[[50., -50.]], size_type='targetvalue').order_records, np.array([ (0, 0, 0, 50.0, 1.0, 0.0, 0), (1, 0, 1, 25.0, 2.0, 0.0, 1), (2, 0, 2, 8.333333333333332, 3.0, 0.0, 1), (3, 0, 3, 4.166666666666668, 4.0, 0.0, 1), (4, 0, 4, 2.5, 5.0, 0.0, 1), (5, 1, 0, 50.0, 1.0, 0.0, 1), (6, 1, 1, 25.0, 2.0, 0.0, 0), (7, 1, 2, 8.333333333333332, 3.0, 0.0, 0), (8, 1, 3, 4.166666666666668, 4.0, 0.0, 0), (9, 1, 4, 2.5, 5.0, 0.0, 0) ], dtype=order_dt) ) record_arrays_close( from_orders_longonly(size=[[50., -50.]], size_type='targetvalue').order_records, np.array([ (0, 0, 0, 50.0, 1.0, 0.0, 0), (1, 0, 1, 25.0, 2.0, 0.0, 1), (2, 0, 2, 8.333333333333332, 3.0, 0.0, 1), (3, 0, 3, 4.166666666666668, 4.0, 0.0, 1), (4, 0, 4, 2.5, 5.0, 0.0, 1) ], dtype=order_dt) ) record_arrays_close( from_orders_shortonly(size=[[50., -50.]], size_type='targetvalue').order_records, np.array([ (0, 0, 0, 50.0, 1.0, 0.0, 1), (1, 0, 1, 25.0, 2.0, 0.0, 0), (2, 0, 2, 8.333333333333332, 3.0, 0.0, 0), (3, 0, 3, 4.166666666666668, 4.0, 0.0, 0), (4, 0, 4, 2.5, 5.0, 0.0, 0) ], dtype=order_dt) ) record_arrays_close( from_orders_both( close=price_wide, size=50., size_type='targetvalue', group_by=np.array([0, 0, 0]), cash_sharing=True).order_records, np.array([ (0, 0, 0, 50.0, 1.0, 0.0, 0), (1, 1, 0, 50.0, 1.0, 0.0, 0), (2, 0, 1, 25.0, 2.0, 0.0, 1), (3, 1, 1, 25.0, 2.0, 0.0, 1), (4, 2, 1, 25.0, 2.0, 0.0, 0), (5, 0, 2, 8.333333333333332, 3.0, 0.0, 1), (6, 1, 2, 8.333333333333332, 3.0, 0.0, 1), (7, 2, 2, 8.333333333333332, 3.0, 0.0, 1), (8, 0, 3, 4.166666666666668, 4.0, 0.0, 1), (9, 1, 3, 4.166666666666668, 4.0, 0.0, 1), (10, 2, 3, 4.166666666666668, 4.0, 0.0, 1), (11, 0, 4, 2.5, 5.0, 0.0, 1), (12, 1, 4, 2.5, 5.0, 0.0, 1), (13, 2, 4, 2.5, 5.0, 0.0, 1) ], dtype=order_dt) ) def test_target_percent(self): record_arrays_close( from_orders_both(size=[[0.5, -0.5]], size_type='targetpercent').order_records, np.array([ (0, 0, 0, 50.0, 1.0, 0.0, 0), (1, 0, 1, 12.5, 2.0, 0.0, 1), (2, 0, 2, 6.25, 3.0, 0.0, 1), (3, 0, 3, 3.90625, 4.0, 0.0, 1), (4, 0, 4, 2.734375, 5.0, 0.0, 1), (5, 1, 0, 50.0, 1.0, 0.0, 1), (6, 1, 1, 37.5, 2.0, 0.0, 0), (7, 1, 2, 6.25, 3.0, 0.0, 0), (8, 1, 3, 2.34375, 4.0, 0.0, 0), (9, 1, 4, 1.171875, 5.0, 0.0, 0) ], dtype=order_dt) ) record_arrays_close( from_orders_longonly(size=[[0.5, -0.5]], size_type='targetpercent').order_records, np.array([ (0, 0, 0, 50.0, 1.0, 0.0, 0), (1, 0, 1, 12.5, 2.0, 0.0, 1), (2, 0, 2, 6.25, 3.0, 0.0, 1), (3, 0, 3, 3.90625, 4.0, 0.0, 1), (4, 0, 4, 2.734375, 5.0, 0.0, 1) ], dtype=order_dt) ) record_arrays_close( from_orders_shortonly(size=[[0.5, -0.5]], size_type='targetpercent').order_records, np.array([ (0, 0, 0, 50.0, 1.0, 0.0, 1), (1, 0, 1, 37.5, 2.0, 0.0, 0), (2, 0, 2, 6.25, 3.0, 0.0, 0), (3, 0, 3, 2.34375, 4.0, 0.0, 0), (4, 0, 4, 1.171875, 5.0, 0.0, 0) ], dtype=order_dt) ) record_arrays_close( from_orders_both( close=price_wide, size=0.5, size_type='targetpercent', group_by=np.array([0, 0, 0]), cash_sharing=True).order_records, np.array([ (0, 0, 0, 50.0, 1.0, 0.0, 0), (1, 1, 0, 50.0, 1.0, 0.0, 0) ], dtype=order_dt) ) def test_update_value(self): record_arrays_close( from_orders_both(size=0.5, size_type='targetpercent', fees=0.01, slippage=0.01, update_value=False).order_records, from_orders_both(size=0.5, size_type='targetpercent', fees=0.01, slippage=0.01, update_value=True).order_records ) record_arrays_close( from_orders_both( close=price_wide, size=0.5, size_type='targetpercent', fees=0.01, slippage=0.01, group_by=np.array([0, 0, 0]), cash_sharing=True, update_value=False).order_records, np.array([ (0, 0, 0, 50.0, 1.01, 0.505, 0), (1, 1, 0, 48.02960494069208, 1.01, 0.485099009900992, 0), (2, 0, 1, 0.9851975296539592, 1.98, 0.019506911087148394, 1), (3, 1, 1, 0.9465661198057499, 2.02, 0.019120635620076154, 0), (4, 0, 2, 0.019315704924103727, 2.9699999999999998, 0.0005736764362458806, 1), (5, 1, 2, 0.018558300554959377, 3.0300000000000002, 0.0005623165068152705, 0), (6, 0, 3, 0.00037870218456959037, 3.96, 1.4996606508955778e-05, 1), (7, 1, 3, 0.0003638525743521767, 4.04, 1.4699644003827875e-05, 0), (8, 0, 4, 7.424805112066224e-06, 4.95, 3.675278530472781e-07, 1), (9, 1, 4, 7.133664827307231e-06, 5.05, 3.6025007377901643e-07, 0) ], dtype=order_dt) ) record_arrays_close( from_orders_both( close=price_wide, size=0.5, size_type='targetpercent', fees=0.01, slippage=0.01, group_by=np.array([0, 0, 0]), cash_sharing=True, update_value=True).order_records, np.array([ (0, 0, 0, 50.0, 1.01, 0.505, 0), (1, 1, 0, 48.02960494069208, 1.01, 0.485099009900992, 0), (2, 0, 1, 0.9851975296539592, 1.98, 0.019506911087148394, 1), (3, 1, 1, 0.7303208018821721, 2.02, 0.014752480198019875, 0), (4, 2, 1, 0.21624531792357785, 2.02, 0.0043681554220562635, 0), (5, 0, 2, 0.019315704924103727, 2.9699999999999998, 0.0005736764362458806, 1), (6, 1, 2, 0.009608602243410758, 2.9699999999999998, 0.00028537548662929945, 1), (7, 2, 2, 0.02779013180558861, 3.0300000000000002, 0.0008420409937093393, 0), (8, 0, 3, 0.0005670876809631409, 3.96, 2.2456672166140378e-05, 1), (9, 1, 3, 0.00037770350099464167, 3.96, 1.4957058639387809e-05, 1), (10, 2, 3, 0.0009077441794302741, 4.04, 3.6672864848982974e-05, 0), (11, 0, 4, 1.8523501267964093e-05, 4.95, 9.169133127642227e-07, 1), (12, 1, 4, 1.2972670177191503e-05, 4.95, 6.421471737709794e-07, 1), (13, 2, 4, 3.0261148547590434e-05, 5.05, 1.5281880016533242e-06, 0) ], dtype=order_dt) ) def test_percent(self): record_arrays_close( from_orders_both(size=[[0.5, -0.5]], size_type='percent').order_records, np.array([ (0, 0, 0, 50., 1., 0., 0), (1, 0, 1, 12.5, 2., 0., 0), (2, 0, 2, 4.16666667, 3., 0., 0), (3, 0, 3, 1.5625, 4., 0., 0), (4, 0, 4, 0.625, 5., 0., 0), (5, 1, 0, 50., 1., 0., 1), (6, 1, 1, 12.5, 2., 0., 1), (7, 1, 2, 4.16666667, 3., 0., 1), (8, 1, 3, 1.5625, 4., 0., 1), (9, 1, 4, 0.625, 5., 0., 1) ], dtype=order_dt) ) record_arrays_close( from_orders_longonly(size=[[0.5, -0.5]], size_type='percent').order_records, np.array([ (0, 0, 0, 50., 1., 0., 0), (1, 0, 1, 12.5, 2., 0., 0), (2, 0, 2, 4.16666667, 3., 0., 0), (3, 0, 3, 1.5625, 4., 0., 0), (4, 0, 4, 0.625, 5., 0., 0) ], dtype=order_dt) ) record_arrays_close( from_orders_shortonly(size=[[0.5, -0.5]], size_type='percent').order_records, np.array([ (0, 0, 0, 50., 1., 0., 1), (1, 0, 1, 12.5, 2., 0., 1), (2, 0, 2, 4.16666667, 3., 0., 1), (3, 0, 3, 1.5625, 4., 0., 1), (4, 0, 4, 0.625, 5., 0., 1) ], dtype=order_dt) ) record_arrays_close( from_orders_both( close=price_wide, size=0.5, size_type='percent', group_by=np.array([0, 0, 0]), cash_sharing=True).order_records, np.array([ (0, 0, 0, 5.00000000e+01, 1., 0., 0), (1, 1, 0, 2.50000000e+01, 1., 0., 0), (2, 2, 0, 1.25000000e+01, 1., 0., 0), (3, 0, 1, 3.12500000e+00, 2., 0., 0), (4, 1, 1, 1.56250000e+00, 2., 0., 0), (5, 2, 1, 7.81250000e-01, 2., 0., 0), (6, 0, 2, 2.60416667e-01, 3., 0., 0), (7, 1, 2, 1.30208333e-01, 3., 0., 0), (8, 2, 2, 6.51041667e-02, 3., 0., 0), (9, 0, 3, 2.44140625e-02, 4., 0., 0), (10, 1, 3, 1.22070312e-02, 4., 0., 0), (11, 2, 3, 6.10351562e-03, 4., 0., 0), (12, 0, 4, 2.44140625e-03, 5., 0., 0), (13, 1, 4, 1.22070312e-03, 5., 0., 0), (14, 2, 4, 6.10351562e-04, 5., 0., 0) ], dtype=order_dt) ) def test_auto_seq(self): target_hold_value = pd.DataFrame({ 'a': [0., 70., 30., 0., 70.], 'b': [30., 0., 70., 30., 30.], 'c': [70., 30., 0., 70., 0.] }, index=price.index) pd.testing.assert_frame_equal( from_orders_both( close=1., size=target_hold_value, size_type='targetvalue', group_by=np.array([0, 0, 0]), cash_sharing=True, call_seq='auto').asset_value(group_by=False), target_hold_value ) pd.testing.assert_frame_equal( from_orders_both( close=1., size=target_hold_value / 100, size_type='targetpercent', group_by=np.array([0, 0, 0]), cash_sharing=True, call_seq='auto').asset_value(group_by=False), target_hold_value ) def test_max_orders(self): _ = from_orders_both(close=price_wide) _ = from_orders_both(close=price_wide, max_orders=9) with pytest.raises(Exception): _ = from_orders_both(close=price_wide, max_orders=8) def test_max_logs(self): _ = from_orders_both(close=price_wide, log=True) _ = from_orders_both(close=price_wide, log=True, max_logs=15) with pytest.raises(Exception): _ = from_orders_both(close=price_wide, log=True, max_logs=14) # ############# from_signals ############# # entries = pd.Series([True, True, True, False, False], index=price.index) entries_wide = entries.vbt.tile(3, keys=['a', 'b', 'c']) exits = pd.Series([False, False, True, True, True], index=price.index) exits_wide = exits.vbt.tile(3, keys=['a', 'b', 'c']) def from_signals_both(close=price, entries=entries, exits=exits, **kwargs): return vbt.Portfolio.from_signals(close, entries, exits, direction='both', **kwargs) def from_signals_longonly(close=price, entries=entries, exits=exits, **kwargs): return vbt.Portfolio.from_signals(close, entries, exits, direction='longonly', **kwargs) def from_signals_shortonly(close=price, entries=entries, exits=exits, **kwargs): return vbt.Portfolio.from_signals(close, entries, exits, direction='shortonly', **kwargs) def from_ls_signals_both(close=price, entries=entries, exits=exits, **kwargs): return vbt.Portfolio.from_signals(close, entries, False, exits, False, **kwargs) def from_ls_signals_longonly(close=price, entries=entries, exits=exits, **kwargs): return vbt.Portfolio.from_signals(close, entries, exits, False, False, **kwargs) def from_ls_signals_shortonly(close=price, entries=entries, exits=exits, **kwargs): return vbt.Portfolio.from_signals(close, False, False, entries, exits, **kwargs) class TestFromSignals: @pytest.mark.parametrize( "test_ls", [False, True], ) def test_one_column(self, test_ls): _from_signals_both = from_ls_signals_both if test_ls else from_signals_both _from_signals_longonly = from_ls_signals_longonly if test_ls else from_signals_longonly _from_signals_shortonly = from_ls_signals_shortonly if test_ls else from_signals_shortonly record_arrays_close( _from_signals_both().order_records, np.array([ (0, 0, 0, 100., 1., 0., 0), (1, 0, 3, 200., 4., 0., 1) ], dtype=order_dt) ) record_arrays_close( _from_signals_longonly().order_records, np.array([ (0, 0, 0, 100., 1., 0., 0), (1, 0, 3, 100., 4., 0., 1) ], dtype=order_dt) ) record_arrays_close( _from_signals_shortonly().order_records, np.array([ (0, 0, 0, 100., 1., 0., 1), (1, 0, 3, 50., 4., 0., 0) ], dtype=order_dt) ) pf = _from_signals_both() pd.testing.assert_index_equal( pf.wrapper.index, pd.DatetimeIndex(['2020-01-01', '2020-01-02', '2020-01-03', '2020-01-04', '2020-01-05']) ) pd.testing.assert_index_equal( pf.wrapper.columns, pd.Int64Index([0], dtype='int64') ) assert pf.wrapper.ndim == 1 assert pf.wrapper.freq == day_dt assert pf.wrapper.grouper.group_by is None @pytest.mark.parametrize( "test_ls", [False, True], ) def test_multiple_columns(self, test_ls): _from_signals_both = from_ls_signals_both if test_ls else from_signals_both _from_signals_longonly = from_ls_signals_longonly if test_ls else from_signals_longonly _from_signals_shortonly = from_ls_signals_shortonly if test_ls else from_signals_shortonly record_arrays_close( _from_signals_both(close=price_wide).order_records, np.array([ (0, 0, 0, 100., 1., 0., 0), (1, 0, 3, 200., 4., 0., 1), (2, 1, 0, 100., 1., 0., 0), (3, 1, 3, 200., 4., 0., 1), (4, 2, 0, 100., 1., 0., 0), (5, 2, 3, 200., 4., 0., 1) ], dtype=order_dt) ) record_arrays_close( _from_signals_longonly(close=price_wide).order_records, np.array([ (0, 0, 0, 100., 1., 0., 0), (1, 0, 3, 100., 4., 0., 1), (2, 1, 0, 100., 1., 0., 0), (3, 1, 3, 100., 4., 0., 1), (4, 2, 0, 100., 1., 0., 0), (5, 2, 3, 100., 4., 0., 1) ], dtype=order_dt) ) record_arrays_close( _from_signals_shortonly(close=price_wide).order_records, np.array([ (0, 0, 0, 100., 1., 0., 1), (1, 0, 3, 50., 4., 0., 0), (2, 1, 0, 100., 1., 0., 1), (3, 1, 3, 50., 4., 0., 0), (4, 2, 0, 100., 1., 0., 1), (5, 2, 3, 50., 4., 0., 0) ], dtype=order_dt) ) pf = _from_signals_both(close=price_wide) pd.testing.assert_index_equal( pf.wrapper.index, pd.DatetimeIndex(['2020-01-01', '2020-01-02', '2020-01-03', '2020-01-04', '2020-01-05']) ) pd.testing.assert_index_equal( pf.wrapper.columns, pd.Index(['a', 'b', 'c'], dtype='object') ) assert pf.wrapper.ndim == 2 assert pf.wrapper.freq == day_dt assert pf.wrapper.grouper.group_by is None def test_custom_signal_func(self): @njit def signal_func_nb(c, long_num_arr, short_num_arr): long_num = nb.get_elem_nb(c, long_num_arr) short_num = nb.get_elem_nb(c, short_num_arr) is_long_entry = long_num > 0 is_long_exit = long_num < 0 is_short_entry = short_num > 0 is_short_exit = short_num < 0 return is_long_entry, is_long_exit, is_short_entry, is_short_exit pf_base = vbt.Portfolio.from_signals( pd.Series([1, 2, 3, 4, 5]), entries=pd.Series([True, False, False, False, False]), exits=pd.Series([False, False, True, False, False]), short_entries=pd.Series([False, True, False, True, False]), short_exits=pd.Series([False, False, False, False, True]), size=1, upon_opposite_entry='ignore' ) pf = vbt.Portfolio.from_signals( pd.Series([1, 2, 3, 4, 5]), signal_func_nb=signal_func_nb, signal_args=(vbt.Rep('long_num_arr'), vbt.Rep('short_num_arr')), broadcast_named_args=dict( long_num_arr=pd.Series([1, 0, -1, 0, 0]), short_num_arr=pd.Series([0, 1, 0, 1, -1]) ), size=1, upon_opposite_entry='ignore' ) record_arrays_close( pf_base.order_records, pf.order_records ) def test_amount(self): record_arrays_close( from_signals_both(size=[[0, 1, np.inf]], size_type='amount').order_records, np.array([ (0, 1, 0, 1.0, 1.0, 0.0, 0), (1, 1, 3, 2.0, 4.0, 0.0, 1), (2, 2, 0, 100.0, 1.0, 0.0, 0), (3, 2, 3, 200.0, 4.0, 0.0, 1) ], dtype=order_dt) ) record_arrays_close( from_signals_longonly(size=[[0, 1, np.inf]], size_type='amount').order_records, np.array([ (0, 1, 0, 1.0, 1.0, 0.0, 0), (1, 1, 3, 1.0, 4.0, 0.0, 1), (2, 2, 0, 100.0, 1.0, 0.0, 0), (3, 2, 3, 100.0, 4.0, 0.0, 1) ], dtype=order_dt) ) record_arrays_close( from_signals_shortonly(size=[[0, 1, np.inf]], size_type='amount').order_records, np.array([ (0, 1, 0, 1.0, 1.0, 0.0, 1), (1, 1, 3, 1.0, 4.0, 0.0, 0), (2, 2, 0, 100.0, 1.0, 0.0, 1), (3, 2, 3, 50.0, 4.0, 0.0, 0) ], dtype=order_dt) ) def test_value(self): record_arrays_close( from_signals_both(size=[[0, 1, np.inf]], size_type='value').order_records, np.array([ (0, 1, 0, 1.0, 1.0, 0.0, 0), (1, 1, 3, 0.3125, 4.0, 0.0, 1), (2, 1, 4, 0.1775, 5.0, 0.0, 1), (3, 2, 0, 100.0, 1.0, 0.0, 0), (4, 2, 3, 200.0, 4.0, 0.0, 1) ], dtype=order_dt) ) record_arrays_close( from_signals_longonly(size=[[0, 1, np.inf]], size_type='value').order_records, np.array([ (0, 1, 0, 1.0, 1.0, 0.0, 0), (1, 1, 3, 1.0, 4.0, 0.0, 1), (2, 2, 0, 100.0, 1.0, 0.0, 0), (3, 2, 3, 100.0, 4.0, 0.0, 1) ], dtype=order_dt) ) record_arrays_close( from_signals_shortonly(size=[[0, 1, np.inf]], size_type='value').order_records, np.array([ (0, 1, 0, 1.0, 1.0, 0.0, 1), (1, 1, 3, 1.0, 4.0, 0.0, 0), (2, 2, 0, 100.0, 1.0, 0.0, 1), (3, 2, 3, 50.0, 4.0, 0.0, 0) ], dtype=order_dt) ) def test_percent(self): with pytest.raises(Exception): _ = from_signals_both(size=0.5, size_type='percent') record_arrays_close( from_signals_both(size=0.5, size_type='percent', upon_opposite_entry='close').order_records, np.array([ (0, 0, 0, 50., 1., 0., 0), (1, 0, 3, 50., 4., 0., 1), (2, 0, 4, 25., 5., 0., 1) ], dtype=order_dt) ) record_arrays_close( from_signals_both(size=0.5, size_type='percent', upon_opposite_entry='close', accumulate=True).order_records, np.array([ (0, 0, 0, 50.0, 1.0, 0.0, 0), (1, 0, 1, 12.5, 2.0, 0.0, 0), (2, 0, 3, 62.5, 4.0, 0.0, 1), (3, 0, 4, 27.5, 5.0, 0.0, 1) ], dtype=order_dt) ) record_arrays_close( from_signals_longonly(size=0.5, size_type='percent').order_records, np.array([ (0, 0, 0, 50., 1., 0., 0), (1, 0, 3, 50., 4., 0., 1) ], dtype=order_dt) ) record_arrays_close( from_signals_shortonly(size=0.5, size_type='percent').order_records, np.array([ (0, 0, 0, 50., 1., 0., 1), (1, 0, 3, 37.5, 4., 0., 0) ], dtype=order_dt) ) record_arrays_close( from_signals_longonly( close=price_wide, size=0.5, size_type='percent', group_by=np.array([0, 0, 0]), cash_sharing=True).order_records, np.array([ (0, 0, 0, 50., 1., 0., 0), (1, 1, 0, 25., 1., 0., 0), (2, 2, 0, 12.5, 1., 0., 0), (3, 0, 3, 50., 4., 0., 1), (4, 1, 3, 25., 4., 0., 1), (5, 2, 3, 12.5, 4., 0., 1) ], dtype=order_dt) ) def test_price(self): record_arrays_close( from_signals_both(price=price * 1.01).order_records, np.array([ (0, 0, 0, 99.00990099009901, 1.01, 0.0, 0), (1, 0, 3, 198.01980198019803, 4.04, 0.0, 1) ], dtype=order_dt) ) record_arrays_close( from_signals_longonly(price=price * 1.01).order_records, np.array([ (0, 0, 0, 99.00990099, 1.01, 0., 0), (1, 0, 3, 99.00990099, 4.04, 0., 1) ], dtype=order_dt) ) record_arrays_close( from_signals_shortonly(price=price * 1.01).order_records, np.array([ (0, 0, 0, 99.00990099009901, 1.01, 0.0, 1), (1, 0, 3, 49.504950495049506, 4.04, 0.0, 0) ], dtype=order_dt) ) record_arrays_close( from_signals_both(price=np.inf).order_records, np.array([ (0, 0, 0, 100.0, 1.0, 0.0, 0), (1, 0, 3, 200.0, 4.0, 0.0, 1) ], dtype=order_dt) ) record_arrays_close( from_signals_longonly(price=np.inf).order_records, np.array([ (0, 0, 0, 100.0, 1.0, 0.0, 0), (1, 0, 3, 100.0, 4.0, 0.0, 1) ], dtype=order_dt) ) record_arrays_close( from_signals_shortonly(price=np.inf).order_records, np.array([ (0, 0, 0, 100.0, 1.0, 0.0, 1), (1, 0, 3, 50.0, 4.0, 0.0, 0) ], dtype=order_dt) ) record_arrays_close( from_signals_both(price=-np.inf).order_records, np.array([ (0, 0, 1, 100.0, 1.0, 0.0, 0), (1, 0, 3, 200.0, 3.0, 0.0, 1) ], dtype=order_dt) ) record_arrays_close( from_signals_longonly(price=-np.inf).order_records, np.array([ (0, 0, 1, 100.0, 1.0, 0.0, 0), (1, 0, 3, 100.0, 3.0, 0.0, 1) ], dtype=order_dt) ) record_arrays_close( from_signals_shortonly(price=-np.inf).order_records, np.array([ (0, 0, 1, 100.0, 1.0, 0.0, 1), (1, 0, 3, 66.66666666666667, 3.0, 0.0, 0) ], dtype=order_dt) ) def test_val_price(self): price_nan = pd.Series([1, 2, np.nan, 4, 5], index=price.index) record_arrays_close( from_signals_both(close=price_nan, size=1, val_price=np.inf, size_type='value').order_records, from_signals_both(close=price_nan, size=1, val_price=price, size_type='value').order_records ) record_arrays_close( from_signals_longonly(close=price_nan, size=1, val_price=np.inf, size_type='value').order_records, from_signals_longonly(close=price_nan, size=1, val_price=price, size_type='value').order_records ) record_arrays_close( from_signals_shortonly(close=price_nan, size=1, val_price=np.inf, size_type='value').order_records, from_signals_shortonly(close=price_nan, size=1, val_price=price, size_type='value').order_records ) shift_price = price_nan.ffill().shift(1) record_arrays_close( from_signals_both(close=price_nan, size=1, val_price=-np.inf, size_type='value').order_records, from_signals_both(close=price_nan, size=1, val_price=shift_price, size_type='value').order_records ) record_arrays_close( from_signals_longonly(close=price_nan, size=1, val_price=-np.inf, size_type='value').order_records, from_signals_longonly(close=price_nan, size=1, val_price=shift_price, size_type='value').order_records ) record_arrays_close( from_signals_shortonly(close=price_nan, size=1, val_price=-np.inf, size_type='value').order_records, from_signals_shortonly(close=price_nan, size=1, val_price=shift_price, size_type='value').order_records ) record_arrays_close( from_signals_both(close=price_nan, size=1, val_price=np.inf, size_type='value', ffill_val_price=False).order_records, from_signals_both(close=price_nan, size=1, val_price=price_nan, size_type='value', ffill_val_price=False).order_records ) record_arrays_close( from_signals_longonly(close=price_nan, size=1, val_price=np.inf, size_type='value', ffill_val_price=False).order_records, from_signals_longonly(close=price_nan, size=1, val_price=price_nan, size_type='value', ffill_val_price=False).order_records ) record_arrays_close( from_signals_shortonly(close=price_nan, size=1, val_price=np.inf, size_type='value', ffill_val_price=False).order_records, from_signals_shortonly(close=price_nan, size=1, val_price=price_nan, size_type='value', ffill_val_price=False).order_records ) shift_price_nan = price_nan.shift(1) record_arrays_close( from_signals_both(close=price_nan, size=1, val_price=-np.inf, size_type='value', ffill_val_price=False).order_records, from_signals_both(close=price_nan, size=1, val_price=shift_price_nan, size_type='value', ffill_val_price=False).order_records ) record_arrays_close( from_signals_longonly(close=price_nan, size=1, val_price=-np.inf, size_type='value', ffill_val_price=False).order_records, from_signals_longonly(close=price_nan, size=1, val_price=shift_price_nan, size_type='value', ffill_val_price=False).order_records ) record_arrays_close( from_signals_shortonly(close=price_nan, size=1, val_price=-np.inf, size_type='value', ffill_val_price=False).order_records, from_signals_shortonly(close=price_nan, size=1, val_price=shift_price_nan, size_type='value', ffill_val_price=False).order_records ) def test_fees(self): record_arrays_close( from_signals_both(size=1, fees=[[0., 0.1, 1.]]).order_records, np.array([ (0, 0, 0, 1.0, 1.0, 0.0, 0), (1, 0, 3, 2.0, 4.0, 0.0, 1), (2, 1, 0, 1.0, 1.0, 0.1, 0), (3, 1, 3, 2.0, 4.0, 0.8, 1), (4, 2, 0, 1.0, 1.0, 1.0, 0), (5, 2, 3, 2.0, 4.0, 8.0, 1) ], dtype=order_dt) ) record_arrays_close( from_signals_longonly(size=1, fees=[[0., 0.1, 1.]]).order_records, np.array([ (0, 0, 0, 1.0, 1.0, 0.0, 0), (1, 0, 3, 1.0, 4.0, 0.0, 1), (2, 1, 0, 1.0, 1.0, 0.1, 0), (3, 1, 3, 1.0, 4.0, 0.4, 1), (4, 2, 0, 1.0, 1.0, 1.0, 0), (5, 2, 3, 1.0, 4.0, 4.0, 1) ], dtype=order_dt) ) record_arrays_close( from_signals_shortonly(size=1, fees=[[0., 0.1, 1.]]).order_records, np.array([ (0, 0, 0, 1.0, 1.0, 0.0, 1), (1, 0, 3, 1.0, 4.0, 0.0, 0), (2, 1, 0, 1.0, 1.0, 0.1, 1), (3, 1, 3, 1.0, 4.0, 0.4, 0), (4, 2, 0, 1.0, 1.0, 1.0, 1), (5, 2, 3, 1.0, 4.0, 4.0, 0) ], dtype=order_dt) ) def test_fixed_fees(self): record_arrays_close( from_signals_both(size=1, fixed_fees=[[0., 0.1, 1.]]).order_records, np.array([ (0, 0, 0, 1.0, 1.0, 0.0, 0), (1, 0, 3, 2.0, 4.0, 0.0, 1), (2, 1, 0, 1.0, 1.0, 0.1, 0), (3, 1, 3, 2.0, 4.0, 0.1, 1), (4, 2, 0, 1.0, 1.0, 1.0, 0), (5, 2, 3, 2.0, 4.0, 1.0, 1) ], dtype=order_dt) ) record_arrays_close( from_signals_longonly(size=1, fixed_fees=[[0., 0.1, 1.]]).order_records, np.array([ (0, 0, 0, 1.0, 1.0, 0.0, 0), (1, 0, 3, 1.0, 4.0, 0.0, 1), (2, 1, 0, 1.0, 1.0, 0.1, 0), (3, 1, 3, 1.0, 4.0, 0.1, 1), (4, 2, 0, 1.0, 1.0, 1.0, 0), (5, 2, 3, 1.0, 4.0, 1.0, 1) ], dtype=order_dt) ) record_arrays_close( from_signals_shortonly(size=1, fixed_fees=[[0., 0.1, 1.]]).order_records, np.array([ (0, 0, 0, 1.0, 1.0, 0.0, 1), (1, 0, 3, 1.0, 4.0, 0.0, 0), (2, 1, 0, 1.0, 1.0, 0.1, 1), (3, 1, 3, 1.0, 4.0, 0.1, 0), (4, 2, 0, 1.0, 1.0, 1.0, 1), (5, 2, 3, 1.0, 4.0, 1.0, 0) ], dtype=order_dt) ) def test_slippage(self): record_arrays_close( from_signals_both(size=1, slippage=[[0., 0.1, 1.]]).order_records, np.array([ (0, 0, 0, 1.0, 1.0, 0.0, 0), (1, 0, 3, 2.0, 4.0, 0.0, 1), (2, 1, 0, 1.0, 1.1, 0.0, 0), (3, 1, 3, 2.0, 3.6, 0.0, 1), (4, 2, 0, 1.0, 2.0, 0.0, 0), (5, 2, 3, 2.0, 0.0, 0.0, 1) ], dtype=order_dt) ) record_arrays_close( from_signals_longonly(size=1, slippage=[[0., 0.1, 1.]]).order_records, np.array([ (0, 0, 0, 1.0, 1.0, 0.0, 0), (1, 0, 3, 1.0, 4.0, 0.0, 1), (2, 1, 0, 1.0, 1.1, 0.0, 0), (3, 1, 3, 1.0, 3.6, 0.0, 1), (4, 2, 0, 1.0, 2.0, 0.0, 0), (5, 2, 3, 1.0, 0.0, 0.0, 1) ], dtype=order_dt) ) record_arrays_close( from_signals_shortonly(size=1, slippage=[[0., 0.1, 1.]]).order_records, np.array([ (0, 0, 0, 1.0, 1.0, 0.0, 1), (1, 0, 3, 1.0, 4.0, 0.0, 0), (2, 1, 0, 1.0, 0.9, 0.0, 1), (3, 1, 3, 1.0, 4.4, 0.0, 0), (4, 2, 0, 1.0, 0.0, 0.0, 1), (5, 2, 3, 1.0, 8.0, 0.0, 0) ], dtype=order_dt) ) def test_min_size(self): record_arrays_close( from_signals_both(size=1, min_size=[[0., 1., 2.]]).order_records, np.array([ (0, 0, 0, 1.0, 1.0, 0.0, 0), (1, 0, 3, 2.0, 4.0, 0.0, 1), (2, 1, 0, 1.0, 1.0, 0.0, 0), (3, 1, 3, 2.0, 4.0, 0.0, 1) ], dtype=order_dt) ) record_arrays_close( from_signals_longonly(size=1, min_size=[[0., 1., 2.]]).order_records, np.array([ (0, 0, 0, 1.0, 1.0, 0.0, 0), (1, 0, 3, 1.0, 4.0, 0.0, 1), (2, 1, 0, 1.0, 1.0, 0.0, 0), (3, 1, 3, 1.0, 4.0, 0.0, 1) ], dtype=order_dt) ) record_arrays_close( from_signals_shortonly(size=1, min_size=[[0., 1., 2.]]).order_records, np.array([ (0, 0, 0, 1.0, 1.0, 0.0, 1), (1, 0, 3, 1.0, 4.0, 0.0, 0), (2, 1, 0, 1.0, 1.0, 0.0, 1), (3, 1, 3, 1.0, 4.0, 0.0, 0) ], dtype=order_dt) ) def test_max_size(self): record_arrays_close( from_signals_both(size=1, max_size=[[0.5, 1., np.inf]]).order_records, np.array([ (0, 0, 0, 0.5, 1.0, 0.0, 0), (1, 0, 3, 0.5, 4.0, 0.0, 1), (2, 0, 4, 0.5, 5.0, 0.0, 1), (3, 1, 0, 1.0, 1.0, 0.0, 0), (4, 1, 3, 1.0, 4.0, 0.0, 1), (5, 1, 4, 1.0, 5.0, 0.0, 1), (6, 2, 0, 1.0, 1.0, 0.0, 0), (7, 2, 3, 2.0, 4.0, 0.0, 1) ], dtype=order_dt) ) record_arrays_close( from_signals_longonly(size=1, max_size=[[0.5, 1., np.inf]]).order_records, np.array([ (0, 0, 0, 0.5, 1.0, 0.0, 0), (1, 0, 3, 0.5, 4.0, 0.0, 1), (2, 1, 0, 1.0, 1.0, 0.0, 0), (3, 1, 3, 1.0, 4.0, 0.0, 1), (4, 2, 0, 1.0, 1.0, 0.0, 0), (5, 2, 3, 1.0, 4.0, 0.0, 1) ], dtype=order_dt) ) record_arrays_close( from_signals_shortonly(size=1, max_size=[[0.5, 1., np.inf]]).order_records, np.array([ (0, 0, 0, 0.5, 1.0, 0.0, 1), (1, 0, 3, 0.5, 4.0, 0.0, 0), (2, 1, 0, 1.0, 1.0, 0.0, 1), (3, 1, 3, 1.0, 4.0, 0.0, 0), (4, 2, 0, 1.0, 1.0, 0.0, 1), (5, 2, 3, 1.0, 4.0, 0.0, 0) ], dtype=order_dt) ) def test_reject_prob(self): record_arrays_close( from_signals_both(size=1., reject_prob=[[0., 0.5, 1.]], seed=42).order_records, np.array([ (0, 0, 0, 1.0, 1.0, 0.0, 0), (1, 0, 3, 2.0, 4.0, 0.0, 1), (2, 1, 1, 1.0, 2.0, 0.0, 0), (3, 1, 3, 2.0, 4.0, 0.0, 1) ], dtype=order_dt) ) record_arrays_close( from_signals_longonly(size=1., reject_prob=[[0., 0.5, 1.]], seed=42).order_records, np.array([ (0, 0, 0, 1.0, 1.0, 0.0, 0), (1, 0, 3, 1.0, 4.0, 0.0, 1), (2, 1, 1, 1.0, 2.0, 0.0, 0), (3, 1, 3, 1.0, 4.0, 0.0, 1) ], dtype=order_dt) ) record_arrays_close( from_signals_shortonly(size=1., reject_prob=[[0., 0.5, 1.]], seed=42).order_records, np.array([ (0, 0, 0, 1.0, 1.0, 0.0, 1), (1, 0, 3, 1.0, 4.0, 0.0, 0), (2, 1, 1, 1.0, 2.0, 0.0, 1), (3, 1, 3, 1.0, 4.0, 0.0, 0) ], dtype=order_dt) ) def test_allow_partial(self): record_arrays_close( from_signals_both(size=1000, allow_partial=[[True, False]]).order_records, np.array([ (0, 0, 0, 100.0, 1.0, 0.0, 0), (1, 0, 3, 1100.0, 4.0, 0.0, 1), (2, 1, 3, 1000.0, 4.0, 0.0, 1) ], dtype=order_dt) ) record_arrays_close( from_signals_longonly(size=1000, allow_partial=[[True, False]]).order_records, np.array([ (0, 0, 0, 100.0, 1.0, 0.0, 0), (1, 0, 3, 100.0, 4.0, 0.0, 1) ], dtype=order_dt) ) record_arrays_close( from_signals_shortonly(size=1000, allow_partial=[[True, False]]).order_records, np.array([ (0, 0, 0, 1000.0, 1.0, 0.0, 1), (1, 0, 3, 275.0, 4.0, 0.0, 0), (2, 1, 0, 1000.0, 1.0, 0.0, 1) ], dtype=order_dt) ) record_arrays_close( from_signals_both(size=np.inf, allow_partial=[[True, False]]).order_records, np.array([ (0, 0, 0, 100.0, 1.0, 0.0, 0), (1, 0, 3, 200.0, 4.0, 0.0, 1), (2, 1, 0, 100.0, 1.0, 0.0, 0), (3, 1, 3, 200.0, 4.0, 0.0, 1) ], dtype=order_dt) ) record_arrays_close( from_signals_longonly(size=np.inf, allow_partial=[[True, False]]).order_records, np.array([ (0, 0, 0, 100.0, 1.0, 0.0, 0), (1, 0, 3, 100.0, 4.0, 0.0, 1), (2, 1, 0, 100.0, 1.0, 0.0, 0), (3, 1, 3, 100.0, 4.0, 0.0, 1) ], dtype=order_dt) ) record_arrays_close( from_signals_shortonly(size=np.inf, allow_partial=[[True, False]]).order_records, np.array([ (0, 0, 0, 100.0, 1.0, 0.0, 1), (1, 0, 3, 50.0, 4.0, 0.0, 0), (2, 1, 0, 100.0, 1.0, 0.0, 1) ], dtype=order_dt) ) def test_raise_reject(self): record_arrays_close( from_signals_both(size=1000, allow_partial=True, raise_reject=True).order_records, np.array([ (0, 0, 0, 100.0, 1.0, 0.0, 0), (1, 0, 3, 1100.0, 4.0, 0.0, 1) ], dtype=order_dt) ) record_arrays_close( from_signals_longonly(size=1000, allow_partial=True, raise_reject=True).order_records, np.array([ (0, 0, 0, 100.0, 1.0, 0.0, 0), (1, 0, 3, 100.0, 4.0, 0.0, 1) ], dtype=order_dt) ) with pytest.raises(Exception): _ = from_signals_shortonly(size=1000, allow_partial=True, raise_reject=True).order_records with pytest.raises(Exception): _ = from_signals_both(size=1000, allow_partial=False, raise_reject=True).order_records with pytest.raises(Exception): _ = from_signals_longonly(size=1000, allow_partial=False, raise_reject=True).order_records with pytest.raises(Exception): _ = from_signals_shortonly(size=1000, allow_partial=False, raise_reject=True).order_records def test_log(self): record_arrays_close( from_signals_both(log=True).log_records, np.array([ (0, 0, 0, 0, 100.0, 0.0, 0.0, 100.0, 1.0, 100.0, np.inf, 1.0, 0, 2, 0.0, 0.0, 0.0, 1e-08, np.inf, 0.0, False, True, False, True, 0.0, 100.0, 0.0, 0.0, 1.0, 100.0, 100.0, 1.0, 0.0, 0, 0, -1, 0), (1, 0, 0, 3, 0.0, 100.0, 0.0, 0.0, 4.0, 400.0, -np.inf, 4.0, 0, 2, 0.0, 0.0, 0.0, 1e-08, np.inf, 0.0, False, True, False, True, 800.0, -100.0, 400.0, 0.0, 4.0, 400.0, 200.0, 4.0, 0.0, 1, 0, -1, 1) ], dtype=log_dt) ) def test_accumulate(self): record_arrays_close( from_signals_both(size=1, accumulate=[['disabled', 'addonly', 'removeonly', 'both']]).order_records, np.array([ (0, 0, 0, 1.0, 1.0, 0.0, 0), (1, 0, 3, 2.0, 4.0, 0.0, 1), (2, 1, 0, 1.0, 1.0, 0.0, 0), (3, 1, 1, 1.0, 2.0, 0.0, 0), (4, 1, 3, 3.0, 4.0, 0.0, 1), (5, 1, 4, 1.0, 5.0, 0.0, 1), (6, 2, 0, 1.0, 1.0, 0.0, 0), (7, 2, 3, 1.0, 4.0, 0.0, 1), (8, 2, 4, 1.0, 5.0, 0.0, 1), (9, 3, 0, 1.0, 1.0, 0.0, 0), (10, 3, 1, 1.0, 2.0, 0.0, 0), (11, 3, 3, 1.0, 4.0, 0.0, 1), (12, 3, 4, 1.0, 5.0, 0.0, 1) ], dtype=order_dt) ) record_arrays_close( from_signals_longonly(size=1, accumulate=[['disabled', 'addonly', 'removeonly', 'both']]).order_records, np.array([ (0, 0, 0, 1.0, 1.0, 0.0, 0), (1, 0, 3, 1.0, 4.0, 0.0, 1), (2, 1, 0, 1.0, 1.0, 0.0, 0), (3, 1, 1, 1.0, 2.0, 0.0, 0), (4, 1, 3, 2.0, 4.0, 0.0, 1), (5, 2, 0, 1.0, 1.0, 0.0, 0), (6, 2, 3, 1.0, 4.0, 0.0, 1), (7, 3, 0, 1.0, 1.0, 0.0, 0), (8, 3, 1, 1.0, 2.0, 0.0, 0), (9, 3, 3, 1.0, 4.0, 0.0, 1), (10, 3, 4, 1.0, 5.0, 0.0, 1) ], dtype=order_dt) ) record_arrays_close( from_signals_shortonly(size=1, accumulate=[['disabled', 'addonly', 'removeonly', 'both']]).order_records, np.array([ (0, 0, 0, 1.0, 1.0, 0.0, 1), (1, 0, 3, 1.0, 4.0, 0.0, 0), (2, 1, 0, 1.0, 1.0, 0.0, 1), (3, 1, 1, 1.0, 2.0, 0.0, 1), (4, 1, 3, 2.0, 4.0, 0.0, 0), (5, 2, 0, 1.0, 1.0, 0.0, 1), (6, 2, 3, 1.0, 4.0, 0.0, 0), (7, 3, 0, 1.0, 1.0, 0.0, 1), (8, 3, 1, 1.0, 2.0, 0.0, 1), (9, 3, 3, 1.0, 4.0, 0.0, 0), (10, 3, 4, 1.0, 5.0, 0.0, 0) ], dtype=order_dt) ) def test_upon_long_conflict(self): kwargs = dict( close=price[:3], entries=pd.DataFrame([ [True, True, True, True, True, True, True], [True, True, True, True, False, True, False], [True, True, True, True, True, True, True] ]), exits=pd.DataFrame([ [True, True, True, True, True, True, True], [False, False, False, False, True, False, True], [True, True, True, True, True, True, True] ]), size=1., accumulate=True, upon_long_conflict=[[ 'ignore', 'entry', 'exit', 'adjacent', 'adjacent', 'opposite', 'opposite' ]] ) record_arrays_close( from_signals_longonly(**kwargs).order_records, np.array([ (0, 0, 1, 1.0, 2.0, 0.0, 0), (1, 1, 0, 1.0, 1.0, 0.0, 0), (2, 1, 1, 1.0, 2.0, 0.0, 0), (3, 1, 2, 1.0, 3.0, 0.0, 0), (4, 2, 1, 1.0, 2.0, 0.0, 0), (5, 2, 2, 1.0, 3.0, 0.0, 1), (6, 3, 1, 1.0, 2.0, 0.0, 0), (7, 3, 2, 1.0, 3.0, 0.0, 0), (8, 5, 1, 1.0, 2.0, 0.0, 0), (9, 5, 2, 1.0, 3.0, 0.0, 1) ], dtype=order_dt) ) def test_upon_short_conflict(self): kwargs = dict( close=price[:3], entries=pd.DataFrame([ [True, True, True, True, True, True, True], [True, True, True, True, False, True, False], [True, True, True, True, True, True, True] ]), exits=pd.DataFrame([ [True, True, True, True, True, True, True], [False, False, False, False, True, False, True], [True, True, True, True, True, True, True] ]), size=1., accumulate=True, upon_short_conflict=[[ 'ignore', 'entry', 'exit', 'adjacent', 'adjacent', 'opposite', 'opposite' ]] ) record_arrays_close( from_signals_shortonly(**kwargs).order_records, np.array([ (0, 0, 1, 1.0, 2.0, 0.0, 1), (1, 1, 0, 1.0, 1.0, 0.0, 1), (2, 1, 1, 1.0, 2.0, 0.0, 1), (3, 1, 2, 1.0, 3.0, 0.0, 1), (4, 2, 1, 1.0, 2.0, 0.0, 1), (5, 2, 2, 1.0, 3.0, 0.0, 0), (6, 3, 1, 1.0, 2.0, 0.0, 1), (7, 3, 2, 1.0, 3.0, 0.0, 1), (8, 5, 1, 1.0, 2.0, 0.0, 1), (9, 5, 2, 1.0, 3.0, 0.0, 0) ], dtype=order_dt) ) def test_upon_dir_conflict(self): kwargs = dict( close=price[:3], entries=pd.DataFrame([ [True, True, True, True, True, True, True], [True, True, True, True, False, True, False], [True, True, True, True, True, True, True] ]), exits=pd.DataFrame([ [True, True, True, True, True, True, True], [False, False, False, False, True, False, True], [True, True, True, True, True, True, True] ]), size=1., accumulate=True, upon_dir_conflict=[[ 'ignore', 'long', 'short', 'adjacent', 'adjacent', 'opposite', 'opposite' ]] ) record_arrays_close( from_signals_both(**kwargs).order_records, np.array([ (0, 0, 1, 1.0, 2.0, 0.0, 0), (1, 1, 0, 1.0, 1.0, 0.0, 0), (2, 1, 1, 1.0, 2.0, 0.0, 0), (3, 1, 2, 1.0, 3.0, 0.0, 0), (4, 2, 0, 1.0, 1.0, 0.0, 1), (5, 2, 1, 1.0, 2.0, 0.0, 0), (6, 2, 2, 1.0, 3.0, 0.0, 1), (7, 3, 1, 1.0, 2.0, 0.0, 0), (8, 3, 2, 1.0, 3.0, 0.0, 0), (9, 4, 1, 1.0, 2.0, 0.0, 1), (10, 4, 2, 1.0, 3.0, 0.0, 1), (11, 5, 1, 1.0, 2.0, 0.0, 0), (12, 5, 2, 1.0, 3.0, 0.0, 1), (13, 6, 1, 1.0, 2.0, 0.0, 1), (14, 6, 2, 1.0, 3.0, 0.0, 0) ], dtype=order_dt) ) def test_upon_opposite_entry(self): kwargs = dict( close=price[:3], entries=pd.DataFrame([ [True, False, True, False, True, False, True, False, True, False], [False, True, False, True, False, True, False, True, False, True], [True, False, True, False, True, False, True, False, True, False] ]), exits=pd.DataFrame([ [False, True, False, True, False, True, False, True, False, True], [True, False, True, False, True, False, True, False, True, False], [False, True, False, True, False, True, False, True, False, True] ]), size=1., upon_opposite_entry=[[ 'ignore', 'ignore', 'close', 'close', 'closereduce', 'closereduce', 'reverse', 'reverse', 'reversereduce', 'reversereduce' ]] ) record_arrays_close( from_signals_both(**kwargs).order_records, np.array([ (0, 0, 0, 1.0, 1.0, 0.0, 0), (1, 1, 0, 1.0, 1.0, 0.0, 1), (2, 2, 0, 1.0, 1.0, 0.0, 0), (3, 2, 1, 1.0, 2.0, 0.0, 1), (4, 2, 2, 1.0, 3.0, 0.0, 0), (5, 3, 0, 1.0, 1.0, 0.0, 1), (6, 3, 1, 1.0, 2.0, 0.0, 0), (7, 3, 2, 1.0, 3.0, 0.0, 1), (8, 4, 0, 1.0, 1.0, 0.0, 0), (9, 4, 1, 1.0, 2.0, 0.0, 1), (10, 4, 2, 1.0, 3.0, 0.0, 0), (11, 5, 0, 1.0, 1.0, 0.0, 1), (12, 5, 1, 1.0, 2.0, 0.0, 0), (13, 5, 2, 1.0, 3.0, 0.0, 1), (14, 6, 0, 1.0, 1.0, 0.0, 0), (15, 6, 1, 2.0, 2.0, 0.0, 1), (16, 6, 2, 2.0, 3.0, 0.0, 0), (17, 7, 0, 1.0, 1.0, 0.0, 1), (18, 7, 1, 2.0, 2.0, 0.0, 0), (19, 7, 2, 2.0, 3.0, 0.0, 1), (20, 8, 0, 1.0, 1.0, 0.0, 0), (21, 8, 1, 2.0, 2.0, 0.0, 1), (22, 8, 2, 2.0, 3.0, 0.0, 0), (23, 9, 0, 1.0, 1.0, 0.0, 1), (24, 9, 1, 2.0, 2.0, 0.0, 0), (25, 9, 2, 2.0, 3.0, 0.0, 1) ], dtype=order_dt) ) record_arrays_close( from_signals_both(**kwargs, accumulate=True).order_records, np.array([ (0, 0, 0, 1.0, 1.0, 0.0, 0), (1, 0, 2, 1.0, 3.0, 0.0, 0), (2, 1, 0, 1.0, 1.0, 0.0, 1), (3, 1, 2, 1.0, 3.0, 0.0, 1), (4, 2, 0, 1.0, 1.0, 0.0, 0), (5, 2, 1, 1.0, 2.0, 0.0, 1), (6, 2, 2, 1.0, 3.0, 0.0, 0), (7, 3, 0, 1.0, 1.0, 0.0, 1), (8, 3, 1, 1.0, 2.0, 0.0, 0), (9, 3, 2, 1.0, 3.0, 0.0, 1), (10, 4, 0, 1.0, 1.0, 0.0, 0), (11, 4, 1, 1.0, 2.0, 0.0, 1), (12, 4, 2, 1.0, 3.0, 0.0, 0), (13, 5, 0, 1.0, 1.0, 0.0, 1), (14, 5, 1, 1.0, 2.0, 0.0, 0), (15, 5, 2, 1.0, 3.0, 0.0, 1), (16, 6, 0, 1.0, 1.0, 0.0, 0), (17, 6, 1, 2.0, 2.0, 0.0, 1), (18, 6, 2, 2.0, 3.0, 0.0, 0), (19, 7, 0, 1.0, 1.0, 0.0, 1), (20, 7, 1, 2.0, 2.0, 0.0, 0), (21, 7, 2, 2.0, 3.0, 0.0, 1), (22, 8, 0, 1.0, 1.0, 0.0, 0), (23, 8, 1, 1.0, 2.0, 0.0, 1), (24, 8, 2, 1.0, 3.0, 0.0, 0), (25, 9, 0, 1.0, 1.0, 0.0, 1), (26, 9, 1, 1.0, 2.0, 0.0, 0), (27, 9, 2, 1.0, 3.0, 0.0, 1) ], dtype=order_dt) ) def test_init_cash(self): record_arrays_close( from_signals_both(close=price_wide, size=1., init_cash=[0., 1., 100.]).order_records, np.array([ (0, 0, 3, 1.0, 4.0, 0.0, 1), (1, 1, 0, 1.0, 1.0, 0.0, 0), (2, 1, 3, 2.0, 4.0, 0.0, 1), (3, 2, 0, 1.0, 1.0, 0.0, 0), (4, 2, 3, 2.0, 4.0, 0.0, 1) ], dtype=order_dt) ) record_arrays_close( from_signals_longonly(close=price_wide, size=1., init_cash=[0., 1., 100.]).order_records, np.array([ (0, 1, 0, 1.0, 1.0, 0.0, 0), (1, 1, 3, 1.0, 4.0, 0.0, 1), (2, 2, 0, 1.0, 1.0, 0.0, 0), (3, 2, 3, 1.0, 4.0, 0.0, 1) ], dtype=order_dt) ) record_arrays_close( from_signals_shortonly(close=price_wide, size=1., init_cash=[0., 1., 100.]).order_records, np.array([ (0, 0, 0, 1.0, 1.0, 0.0, 1), (1, 0, 3, 0.25, 4.0, 0.0, 0), (2, 1, 0, 1.0, 1.0, 0.0, 1), (3, 1, 3, 0.5, 4.0, 0.0, 0), (4, 2, 0, 1.0, 1.0, 0.0, 1), (5, 2, 3, 1.0, 4.0, 0.0, 0) ], dtype=order_dt) ) with pytest.raises(Exception): _ = from_signals_both(init_cash=np.inf).order_records with pytest.raises(Exception): _ = from_signals_longonly(init_cash=np.inf).order_records with pytest.raises(Exception): _ = from_signals_shortonly(init_cash=np.inf).order_records def test_group_by(self): pf = from_signals_both(close=price_wide, group_by=np.array([0, 0, 1])) record_arrays_close( pf.order_records, np.array([ (0, 0, 0, 100.0, 1.0, 0.0, 0), (1, 0, 3, 200.0, 4.0, 0.0, 1), (2, 1, 0, 100.0, 1.0, 0.0, 0), (3, 1, 3, 200.0, 4.0, 0.0, 1), (4, 2, 0, 100.0, 1.0, 0.0, 0), (5, 2, 3, 200.0, 4.0, 0.0, 1) ], dtype=order_dt) ) pd.testing.assert_index_equal( pf.wrapper.grouper.group_by, pd.Int64Index([0, 0, 1], dtype='int64') ) pd.testing.assert_series_equal( pf.init_cash, pd.Series([200., 100.], index=pd.Int64Index([0, 1], dtype='int64')).rename('init_cash') ) assert not pf.cash_sharing def test_cash_sharing(self): pf = from_signals_both(close=price_wide, group_by=np.array([0, 0, 1]), cash_sharing=True) record_arrays_close( pf.order_records, np.array([ (0, 0, 0, 100., 1., 0., 0), (1, 0, 3, 200., 4., 0., 1), (2, 2, 0, 100., 1., 0., 0), (3, 2, 3, 200., 4., 0., 1) ], dtype=order_dt) ) pd.testing.assert_index_equal( pf.wrapper.grouper.group_by, pd.Int64Index([0, 0, 1], dtype='int64') ) pd.testing.assert_series_equal( pf.init_cash, pd.Series([100., 100.], index=pd.Int64Index([0, 1], dtype='int64')).rename('init_cash') ) assert pf.cash_sharing with pytest.raises(Exception): _ = pf.regroup(group_by=False) def test_call_seq(self): pf = from_signals_both(close=price_wide, group_by=np.array([0, 0, 1]), cash_sharing=True) record_arrays_close( pf.order_records, np.array([ (0, 0, 0, 100., 1., 0., 0), (1, 0, 3, 200., 4., 0., 1), (2, 2, 0, 100., 1., 0., 0), (3, 2, 3, 200., 4., 0., 1) ], dtype=order_dt) ) np.testing.assert_array_equal( pf.call_seq.values, np.array([ [0, 1, 0], [0, 1, 0], [0, 1, 0], [0, 1, 0], [0, 1, 0] ]) ) pf = from_signals_both( close=price_wide, group_by=np.array([0, 0, 1]), cash_sharing=True, call_seq='reversed') record_arrays_close( pf.order_records, np.array([ (0, 1, 0, 100., 1., 0., 0), (1, 1, 3, 200., 4., 0., 1), (2, 2, 0, 100., 1., 0., 0), (3, 2, 3, 200., 4., 0., 1) ], dtype=order_dt) ) np.testing.assert_array_equal( pf.call_seq.values, np.array([ [1, 0, 0], [1, 0, 0], [1, 0, 0], [1, 0, 0], [1, 0, 0] ]) ) pf = from_signals_both( close=price_wide, group_by=np.array([0, 0, 1]), cash_sharing=True, call_seq='random', seed=seed) record_arrays_close( pf.order_records, np.array([ (0, 1, 0, 100., 1., 0., 0), (1, 1, 3, 200., 4., 0., 1), (2, 2, 0, 100., 1., 0., 0), (3, 2, 3, 200., 4., 0., 1) ], dtype=order_dt) ) np.testing.assert_array_equal( pf.call_seq.values, np.array([ [1, 0, 0], [0, 1, 0], [1, 0, 0], [1, 0, 0], [1, 0, 0] ]) ) kwargs = dict( close=1., entries=pd.DataFrame([ [False, False, True], [False, True, False], [True, False, False], [False, False, True], [False, True, False], ]), exits=pd.DataFrame([ [False, False, False], [False, False, True], [False, True, False], [True, False, False], [False, False, True], ]), group_by=np.array([0, 0, 0]), cash_sharing=True, call_seq='auto' ) pf = from_signals_both(**kwargs) record_arrays_close( pf.order_records, np.array([ (0, 2, 0, 100., 1., 0., 0), (1, 2, 1, 200., 1., 0., 1), (2, 1, 1, 200., 1., 0., 0), (3, 1, 2, 200., 1., 0., 1), (4, 0, 2, 200., 1., 0., 0), (5, 0, 3, 200., 1., 0., 1), (6, 2, 3, 200., 1., 0., 0), (7, 2, 4, 200., 1., 0., 1), (8, 1, 4, 200., 1., 0., 0) ], dtype=order_dt) ) np.testing.assert_array_equal( pf.call_seq.values, np.array([ [0, 1, 2], [2, 0, 1], [1, 2, 0], [0, 1, 2], [2, 0, 1] ]) ) pf = from_signals_longonly(**kwargs) record_arrays_close( pf.order_records, np.array([ (0, 2, 0, 100., 1., 0., 0), (1, 2, 1, 100., 1., 0., 1), (2, 1, 1, 100., 1., 0., 0), (3, 1, 2, 100., 1., 0., 1), (4, 0, 2, 100., 1., 0., 0), (5, 0, 3, 100., 1., 0., 1), (6, 2, 3, 100., 1., 0., 0), (7, 2, 4, 100., 1., 0., 1), (8, 1, 4, 100., 1., 0., 0) ], dtype=order_dt) ) np.testing.assert_array_equal( pf.call_seq.values, np.array([ [0, 1, 2], [2, 0, 1], [1, 2, 0], [0, 1, 2], [2, 0, 1] ]) ) pf = from_signals_shortonly(**kwargs) record_arrays_close( pf.order_records, np.array([ (0, 2, 0, 100., 1., 0., 1), (1, 2, 1, 100., 1., 0., 0), (2, 0, 2, 100., 1., 0., 1), (3, 0, 3, 100., 1., 0., 0), (4, 1, 4, 100., 1., 0., 1) ], dtype=order_dt) ) np.testing.assert_array_equal( pf.call_seq.values, np.array([ [2, 0, 1], [1, 0, 2], [0, 1, 2], [2, 1, 0], [1, 0, 2] ]) ) pf = from_signals_longonly(**kwargs, size=1., size_type='percent') record_arrays_close( pf.order_records, np.array([ (0, 2, 0, 100.0, 1.0, 0.0, 0), (1, 2, 1, 100.0, 1.0, 0.0, 1), (2, 1, 1, 100.0, 1.0, 0.0, 0), (3, 1, 2, 100.0, 1.0, 0.0, 1), (4, 0, 2, 100.0, 1.0, 0.0, 0), (5, 0, 3, 100.0, 1.0, 0.0, 1), (6, 2, 3, 100.0, 1.0, 0.0, 0), (7, 2, 4, 100.0, 1.0, 0.0, 1), (8, 1, 4, 100.0, 1.0, 0.0, 0) ], dtype=order_dt) ) np.testing.assert_array_equal( pf.call_seq.values, np.array([ [0, 1, 2], [2, 0, 1], [1, 0, 2], [0, 1, 2], [2, 0, 1] ]) ) def test_sl_stop(self): entries = pd.Series([True, False, False, False, False], index=price.index) exits = pd.Series([False, False, False, False, False], index=price.index) with pytest.raises(Exception): _ = from_signals_both(sl_stop=-0.1) close = pd.Series([5., 4., 3., 2., 1.], index=price.index) open = close + 0.25 high = close + 0.5 low = close - 0.5 record_arrays_close( from_signals_longonly( close=close, entries=entries, exits=exits, sl_stop=[[np.nan, 0.1, 0.5, np.inf]]).order_records, np.array([ (0, 0, 0, 20.0, 5.0, 0.0, 0), (1, 1, 0, 20.0, 5.0, 0.0, 0), (2, 1, 1, 20.0, 4.0, 0.0, 1), (3, 2, 0, 20.0, 5.0, 0.0, 0), (4, 2, 3, 20.0, 2.0, 0.0, 1), (5, 3, 0, 20.0, 5.0, 0.0, 0) ], dtype=order_dt) ) record_arrays_close( from_signals_shortonly( close=close, entries=entries, exits=exits, sl_stop=[[np.nan, 0.1, 0.5, np.inf]]).order_records, np.array([ (0, 0, 0, 20.0, 5.0, 0.0, 1), (1, 1, 0, 20.0, 5.0, 0.0, 1), (2, 2, 0, 20.0, 5.0, 0.0, 1), (3, 3, 0, 20.0, 5.0, 0.0, 1) ], dtype=order_dt) ) record_arrays_close( from_signals_both( close=close, entries=entries, exits=exits, sl_stop=[[np.nan, 0.1, 0.5, np.inf]]).order_records, from_signals_longonly( close=close, entries=entries, exits=exits, sl_stop=[[np.nan, 0.1, 0.5, np.inf]]).order_records ) record_arrays_close( from_signals_both( close=close, entries=exits, exits=entries, sl_stop=[[np.nan, 0.1, 0.5, np.inf]]).order_records, from_signals_shortonly( close=close, entries=entries, exits=exits, sl_stop=[[np.nan, 0.1, 0.5, np.inf]]).order_records ) record_arrays_close( from_signals_longonly( close=close, entries=entries, exits=exits, open=open, high=high, low=low, sl_stop=[[np.nan, 0.1, 0.15, 0.2, np.inf]]).order_records, np.array([ (0, 0, 0, 20.0, 5.0, 0.0, 0), (1, 1, 0, 20.0, 5.0, 0.0, 0), (2, 1, 1, 20.0, 4.25, 0.0, 1), (3, 2, 0, 20.0, 5.0, 0.0, 0), (4, 2, 1, 20.0, 4.25, 0.0, 1), (5, 3, 0, 20.0, 5.0, 0.0, 0), (6, 3, 1, 20.0, 4.0, 0.0, 1), (7, 4, 0, 20.0, 5.0, 0.0, 0) ], dtype=order_dt) ) record_arrays_close( from_signals_shortonly( close=close, entries=entries, exits=exits, open=open, high=high, low=low, sl_stop=[[np.nan, 0.1, 0.15, 0.2, np.inf]]).order_records, np.array([ (0, 0, 0, 20.0, 5.0, 0.0, 1), (1, 1, 0, 20.0, 5.0, 0.0, 1), (2, 2, 0, 20.0, 5.0, 0.0, 1), (3, 3, 0, 20.0, 5.0, 0.0, 1), (4, 4, 0, 20.0, 5.0, 0.0, 1) ], dtype=order_dt) ) close = pd.Series([1., 2., 3., 4., 5.], index=price.index) open = close - 0.25 high = close + 0.5 low = close - 0.5 record_arrays_close( from_signals_longonly( close=close, entries=entries, exits=exits, sl_stop=[[np.nan, 0.5, 3., np.inf]]).order_records, np.array([ (0, 0, 0, 100.0, 1.0, 0.0, 0), (1, 1, 0, 100.0, 1.0, 0.0, 0), (2, 2, 0, 100.0, 1.0, 0.0, 0), (3, 3, 0, 100.0, 1.0, 0.0, 0) ], dtype=order_dt) ) record_arrays_close( from_signals_shortonly( close=close, entries=entries, exits=exits, sl_stop=[[np.nan, 0.5, 3., np.inf]]).order_records, np.array([ (0, 0, 0, 100.0, 1.0, 0.0, 1), (1, 1, 0, 100.0, 1.0, 0.0, 1), (2, 1, 1, 100.0, 2.0, 0.0, 0), (3, 2, 0, 100.0, 1.0, 0.0, 1), (4, 2, 3, 50.0, 4.0, 0.0, 0), (5, 3, 0, 100.0, 1.0, 0.0, 1) ], dtype=order_dt) ) record_arrays_close( from_signals_both( close=close, entries=entries, exits=exits, sl_stop=[[np.nan, 0.5, 3., np.inf]]).order_records, from_signals_longonly( close=close, entries=entries, exits=exits, sl_stop=[[np.nan, 0.5, 3., np.inf]]).order_records ) record_arrays_close( from_signals_both( close=close, entries=exits, exits=entries, sl_stop=[[np.nan, 0.5, 3., np.inf]]).order_records, from_signals_shortonly( close=close, entries=entries, exits=exits, sl_stop=[[np.nan, 0.5, 3., np.inf]]).order_records ) record_arrays_close( from_signals_longonly( close=close, entries=entries, exits=exits, open=open, high=high, low=low, sl_stop=[[np.nan, 0.5, 0.75, 1., np.inf]]).order_records, np.array([ (0, 0, 0, 100.0, 1.0, 0.0, 0), (1, 1, 0, 100.0, 1.0, 0.0, 0), (2, 2, 0, 100.0, 1.0, 0.0, 0), (3, 3, 0, 100.0, 1.0, 0.0, 0), (4, 4, 0, 100.0, 1.0, 0.0, 0) ], dtype=order_dt) ) record_arrays_close( from_signals_shortonly( close=close, entries=entries, exits=exits, open=open, high=high, low=low, sl_stop=[[np.nan, 0.5, 0.75, 1., np.inf]]).order_records, np.array([ (0, 0, 0, 100.0, 1.0, 0.0, 1), (1, 1, 0, 100.0, 1.0, 0.0, 1), (2, 1, 1, 100.0, 1.75, 0.0, 0), (3, 2, 0, 100.0, 1.0, 0.0, 1), (4, 2, 1, 100.0, 1.75, 0.0, 0), (5, 3, 0, 100.0, 1.0, 0.0, 1), (6, 3, 1, 100.0, 2.0, 0.0, 0), (7, 4, 0, 100.0, 1.0, 0.0, 1) ], dtype=order_dt) ) def test_ts_stop(self): entries = pd.Series([True, False, False, False, False], index=price.index) exits = pd.Series([False, False, False, False, False], index=price.index) with pytest.raises(Exception): _ = from_signals_both(ts_stop=-0.1) close = pd.Series([4., 5., 4., 3., 2.], index=price.index) open = close + 0.25 high = close + 0.5 low = close - 0.5 record_arrays_close( from_signals_longonly( close=close, entries=entries, exits=exits, sl_stop=[[np.nan, 0.1, 0.5, np.inf]], sl_trail=True).order_records, np.array([ (0, 0, 0, 25.0, 4.0, 0.0, 0), (1, 1, 0, 25.0, 4.0, 0.0, 0), (2, 1, 2, 25.0, 4.0, 0.0, 1), (3, 2, 0, 25.0, 4.0, 0.0, 0), (4, 2, 4, 25.0, 2.0, 0.0, 1), (5, 3, 0, 25.0, 4.0, 0.0, 0) ], dtype=order_dt) ) record_arrays_close( from_signals_shortonly( close=close, entries=entries, exits=exits, sl_stop=[[np.nan, 0.1, 0.5, np.inf]], sl_trail=True).order_records, np.array([ (0, 0, 0, 25.0, 4.0, 0.0, 1), (1, 1, 0, 25.0, 4.0, 0.0, 1), (2, 1, 1, 25.0, 5.0, 0.0, 0), (3, 2, 0, 25.0, 4.0, 0.0, 1), (4, 3, 0, 25.0, 4.0, 0.0, 1) ], dtype=order_dt) ) record_arrays_close( from_signals_both( close=close, entries=entries, exits=exits, sl_stop=[[np.nan, 0.1, 0.5, np.inf]], sl_trail=True).order_records, from_signals_longonly( close=close, entries=entries, exits=exits, sl_stop=[[np.nan, 0.1, 0.5, np.inf]], sl_trail=True).order_records ) print('here') record_arrays_close( from_signals_both( close=close, entries=exits, exits=entries, sl_stop=[[np.nan, 0.1, 0.5, np.inf]], sl_trail=True).order_records, from_signals_shortonly( close=close, entries=entries, exits=exits, sl_stop=[[np.nan, 0.1, 0.5, np.inf]], sl_trail=True).order_records ) record_arrays_close( from_signals_longonly( close=close, entries=entries, exits=exits, open=open, high=high, low=low, sl_stop=[[np.nan, 0.15, 0.2, 0.25, np.inf]], sl_trail=True).order_records, np.array([ (0, 0, 0, 25.0, 4.0, 0.0, 0), (1, 1, 0, 25.0, 4.0, 0.0, 0), (2, 1, 2, 25.0, 4.25, 0.0, 1), (3, 2, 0, 25.0, 4.0, 0.0, 0), (4, 2, 2, 25.0, 4.25, 0.0, 1), (5, 3, 0, 25.0, 4.0, 0.0, 0), (6, 3, 2, 25.0, 4.125, 0.0, 1), (7, 4, 0, 25.0, 4.0, 0.0, 0) ], dtype=order_dt) ) record_arrays_close( from_signals_shortonly( close=close, entries=entries, exits=exits, open=open, high=high, low=low, sl_stop=[[np.nan, 0.15, 0.2, 0.25, np.inf]], sl_trail=True).order_records, np.array([ (0, 0, 0, 25.0, 4.0, 0.0, 1), (1, 1, 0, 25.0, 4.0, 0.0, 1), (2, 1, 1, 25.0, 5.25, 0.0, 0), (3, 2, 0, 25.0, 4.0, 0.0, 1), (4, 2, 1, 25.0, 5.25, 0.0, 0), (5, 3, 0, 25.0, 4.0, 0.0, 1), (6, 3, 1, 25.0, 5.25, 0.0, 0), (7, 4, 0, 25.0, 4.0, 0.0, 1) ], dtype=order_dt) ) close = pd.Series([2., 1., 2., 3., 4.], index=price.index) open = close - 0.25 high = close + 0.5 low = close - 0.5 record_arrays_close( from_signals_longonly( close=close, entries=entries, exits=exits, sl_stop=[[np.nan, 0.5, 3., np.inf]], sl_trail=True).order_records, np.array([ (0, 0, 0, 50.0, 2.0, 0.0, 0), (1, 1, 0, 50.0, 2.0, 0.0, 0), (2, 1, 1, 50.0, 1.0, 0.0, 1), (3, 2, 0, 50.0, 2.0, 0.0, 0), (4, 3, 0, 50.0, 2.0, 0.0, 0) ], dtype=order_dt) ) record_arrays_close( from_signals_shortonly( close=close, entries=entries, exits=exits, sl_stop=[[np.nan, 0.5, 3., np.inf]], sl_trail=True).order_records, np.array([ (0, 0, 0, 50.0, 2.0, 0.0, 1), (1, 1, 0, 50.0, 2.0, 0.0, 1), (2, 1, 2, 50.0, 2.0, 0.0, 0), (3, 2, 0, 50.0, 2.0, 0.0, 1), (4, 2, 4, 50.0, 4.0, 0.0, 0), (5, 3, 0, 50.0, 2.0, 0.0, 1) ], dtype=order_dt) ) record_arrays_close( from_signals_both( close=close, entries=entries, exits=exits, sl_stop=[[np.nan, 0.5, 3., np.inf]], sl_trail=True).order_records, from_signals_longonly( close=close, entries=entries, exits=exits, sl_stop=[[np.nan, 0.5, 3., np.inf]], sl_trail=True).order_records ) record_arrays_close( from_signals_both( close=close, entries=exits, exits=entries, sl_stop=[[np.nan, 0.5, 3., np.inf]], sl_trail=True).order_records, from_signals_shortonly( close=close, entries=entries, exits=exits, sl_stop=[[np.nan, 0.5, 3., np.inf]], sl_trail=True).order_records ) record_arrays_close( from_signals_longonly( close=close, entries=entries, exits=exits, open=open, high=high, low=low, sl_stop=[[np.nan, 0.5, 0.75, 1., np.inf]], sl_trail=True).order_records, np.array([ (0, 0, 0, 50.0, 2.0, 0.0, 0), (1, 1, 0, 50.0, 2.0, 0.0, 0), (2, 1, 1, 50.0, 0.75, 0.0, 1), (3, 2, 0, 50.0, 2.0, 0.0, 0), (4, 2, 1, 50.0, 0.5, 0.0, 1), (5, 3, 0, 50.0, 2.0, 0.0, 0), (6, 4, 0, 50.0, 2.0, 0.0, 0) ], dtype=order_dt) ) record_arrays_close( from_signals_shortonly( close=close, entries=entries, exits=exits, open=open, high=high, low=low, sl_stop=[[np.nan, 0.5, 0.75, 1., np.inf]], sl_trail=True).order_records, np.array([ (0, 0, 0, 50.0, 2.0, 0.0, 1), (1, 1, 0, 50.0, 2.0, 0.0, 1), (2, 1, 2, 50.0, 1.75, 0.0, 0), (3, 2, 0, 50.0, 2.0, 0.0, 1), (4, 2, 2, 50.0, 1.75, 0.0, 0), (5, 3, 0, 50.0, 2.0, 0.0, 1), (6, 3, 2, 50.0, 1.75, 0.0, 0), (7, 4, 0, 50.0, 2.0, 0.0, 1) ], dtype=order_dt) ) def test_tp_stop(self): entries = pd.Series([True, False, False, False, False], index=price.index) exits = pd.Series([False, False, False, False, False], index=price.index) with pytest.raises(Exception): _ = from_signals_both(sl_stop=-0.1) close = pd.Series([5., 4., 3., 2., 1.], index=price.index) open = close + 0.25 high = close + 0.5 low = close - 0.5 record_arrays_close( from_signals_longonly( close=close, entries=entries, exits=exits, tp_stop=[[np.nan, 0.1, 0.5, np.inf]]).order_records, np.array([ (0, 0, 0, 20.0, 5.0, 0.0, 0), (1, 1, 0, 20.0, 5.0, 0.0, 0), (2, 2, 0, 20.0, 5.0, 0.0, 0), (3, 3, 0, 20.0, 5.0, 0.0, 0) ], dtype=order_dt) ) record_arrays_close( from_signals_shortonly( close=close, entries=entries, exits=exits, tp_stop=[[np.nan, 0.1, 0.5, np.inf]]).order_records, np.array([ (0, 0, 0, 20.0, 5.0, 0.0, 1), (1, 1, 0, 20.0, 5.0, 0.0, 1), (2, 1, 1, 20.0, 4.0, 0.0, 0), (3, 2, 0, 20.0, 5.0, 0.0, 1), (4, 2, 3, 20.0, 2.0, 0.0, 0), (5, 3, 0, 20.0, 5.0, 0.0, 1) ], dtype=order_dt) ) record_arrays_close( from_signals_both( close=close, entries=entries, exits=exits, tp_stop=[[np.nan, 0.1, 0.5, np.inf]]).order_records, from_signals_longonly( close=close, entries=entries, exits=exits, tp_stop=[[np.nan, 0.1, 0.5, np.inf]]).order_records ) record_arrays_close( from_signals_both( close=close, entries=exits, exits=entries, tp_stop=[[np.nan, 0.1, 0.5, np.inf]]).order_records, from_signals_shortonly( close=close, entries=entries, exits=exits, tp_stop=[[np.nan, 0.1, 0.5, np.inf]]).order_records ) record_arrays_close( from_signals_longonly( close=close, entries=entries, exits=exits, open=open, high=high, low=low, tp_stop=[[np.nan, 0.1, 0.15, 0.2, np.inf]]).order_records, np.array([ (0, 0, 0, 20.0, 5.0, 0.0, 0), (1, 1, 0, 20.0, 5.0, 0.0, 0), (2, 2, 0, 20.0, 5.0, 0.0, 0), (3, 3, 0, 20.0, 5.0, 0.0, 0), (4, 4, 0, 20.0, 5.0, 0.0, 0) ], dtype=order_dt) ) record_arrays_close( from_signals_shortonly( close=close, entries=entries, exits=exits, open=open, high=high, low=low, tp_stop=[[np.nan, 0.1, 0.15, 0.2, np.inf]]).order_records, np.array([ (0, 0, 0, 20.0, 5.0, 0.0, 1), (1, 1, 0, 20.0, 5.0, 0.0, 1), (2, 1, 1, 20.0, 4.25, 0.0, 0), (3, 2, 0, 20.0, 5.0, 0.0, 1), (4, 2, 1, 20.0, 4.25, 0.0, 0), (5, 3, 0, 20.0, 5.0, 0.0, 1), (6, 3, 1, 20.0, 4.0, 0.0, 0), (7, 4, 0, 20.0, 5.0, 0.0, 1) ], dtype=order_dt) ) close = pd.Series([1., 2., 3., 4., 5.], index=price.index) open = close - 0.25 high = close + 0.5 low = close - 0.5 record_arrays_close( from_signals_longonly( close=close, entries=entries, exits=exits, tp_stop=[[np.nan, 0.5, 3., np.inf]]).order_records, np.array([ (0, 0, 0, 100.0, 1.0, 0.0, 0), (1, 1, 0, 100.0, 1.0, 0.0, 0), (2, 1, 1, 100.0, 2.0, 0.0, 1), (3, 2, 0, 100.0, 1.0, 0.0, 0), (4, 2, 3, 100.0, 4.0, 0.0, 1), (5, 3, 0, 100.0, 1.0, 0.0, 0) ], dtype=order_dt) ) record_arrays_close( from_signals_shortonly( close=close, entries=entries, exits=exits, tp_stop=[[np.nan, 0.5, 3., np.inf]]).order_records, np.array([ (0, 0, 0, 100.0, 1.0, 0.0, 1), (1, 1, 0, 100.0, 1.0, 0.0, 1), (2, 2, 0, 100.0, 1.0, 0.0, 1), (3, 3, 0, 100.0, 1.0, 0.0, 1) ], dtype=order_dt) ) record_arrays_close( from_signals_both( close=close, entries=entries, exits=exits, tp_stop=[[np.nan, 0.5, 3., np.inf]]).order_records, from_signals_longonly( close=close, entries=entries, exits=exits, tp_stop=[[np.nan, 0.5, 3., np.inf]]).order_records ) record_arrays_close( from_signals_both( close=close, entries=exits, exits=entries, tp_stop=[[np.nan, 0.5, 3., np.inf]]).order_records, from_signals_shortonly( close=close, entries=entries, exits=exits, tp_stop=[[np.nan, 0.5, 3., np.inf]]).order_records ) record_arrays_close( from_signals_longonly( close=close, entries=entries, exits=exits, open=open, high=high, low=low, tp_stop=[[np.nan, 0.5, 0.75, 1., np.inf]]).order_records, np.array([ (0, 0, 0, 100.0, 1.0, 0.0, 0), (1, 1, 0, 100.0, 1.0, 0.0, 0), (2, 1, 1, 100.0, 1.75, 0.0, 1), (3, 2, 0, 100.0, 1.0, 0.0, 0), (4, 2, 1, 100.0, 1.75, 0.0, 1), (5, 3, 0, 100.0, 1.0, 0.0, 0), (6, 3, 1, 100.0, 2.0, 0.0, 1), (7, 4, 0, 100.0, 1.0, 0.0, 0) ], dtype=order_dt) ) record_arrays_close( from_signals_shortonly( close=close, entries=entries, exits=exits, open=open, high=high, low=low, tp_stop=[[np.nan, 0.5, 0.75, 1., np.inf]]).order_records, np.array([ (0, 0, 0, 100.0, 1.0, 0.0, 1), (1, 1, 0, 100.0, 1.0, 0.0, 1), (2, 2, 0, 100.0, 1.0, 0.0, 1), (3, 3, 0, 100.0, 1.0, 0.0, 1), (4, 4, 0, 100.0, 1.0, 0.0, 1) ], dtype=order_dt) ) def test_stop_entry_price(self): entries = pd.Series([True, False, False, False, False], index=price.index) exits = pd.Series([False, False, False, False, False], index=price.index) close = pd.Series([5., 4., 3., 2., 1.], index=price.index) open = close + 0.25 high = close + 0.5 low = close - 0.5 record_arrays_close( from_signals_longonly( close=close, entries=entries, exits=exits, open=open, high=high, low=low, sl_stop=[[0.05, 0.5, 0.75]], price=1.1 * close, val_price=1.05 * close, stop_entry_price='val_price', stop_exit_price='stoplimit', slippage=0.1).order_records, np.array([ (0, 0, 0, 16.52892561983471, 6.050000000000001, 0.0, 0), (1, 0, 1, 16.52892561983471, 4.25, 0.0, 1), (2, 1, 0, 16.52892561983471, 6.050000000000001, 0.0, 0), (3, 1, 2, 16.52892561983471, 2.625, 0.0, 1), (4, 2, 0, 16.52892561983471, 6.050000000000001, 0.0, 0), (5, 2, 4, 16.52892561983471, 1.25, 0.0, 1) ], dtype=order_dt) ) record_arrays_close( from_signals_longonly( close=close, entries=entries, exits=exits, open=open, high=high, low=low, sl_stop=[[0.05, 0.5, 0.75]], price=1.1 * close, val_price=1.05 * close, stop_entry_price='price', stop_exit_price='stoplimit', slippage=0.1).order_records, np.array([ (0, 0, 0, 16.52892561983471, 6.050000000000001, 0.0, 0), (1, 0, 1, 16.52892561983471, 4.25, 0.0, 1), (2, 1, 0, 16.52892561983471, 6.050000000000001, 0.0, 0), (3, 1, 2, 16.52892561983471, 2.75, 0.0, 1), (4, 2, 0, 16.52892561983471, 6.050000000000001, 0.0, 0), (5, 2, 4, 16.52892561983471, 1.25, 0.0, 1) ], dtype=order_dt) ) record_arrays_close( from_signals_longonly( close=close, entries=entries, exits=exits, open=open, high=high, low=low, sl_stop=[[0.05, 0.5, 0.75]], price=1.1 * close, val_price=1.05 * close, stop_entry_price='fillprice', stop_exit_price='stoplimit', slippage=0.1).order_records, np.array([ (0, 0, 0, 16.52892561983471, 6.050000000000001, 0.0, 0), (1, 0, 1, 16.52892561983471, 4.25, 0.0, 1), (2, 1, 0, 16.52892561983471, 6.050000000000001, 0.0, 0), (3, 1, 2, 16.52892561983471, 3.0250000000000004, 0.0, 1), (4, 2, 0, 16.52892561983471, 6.050000000000001, 0.0, 0), (5, 2, 3, 16.52892561983471, 1.5125000000000002, 0.0, 1) ], dtype=order_dt) ) record_arrays_close( from_signals_longonly( close=close, entries=entries, exits=exits, open=open, high=high, low=low, sl_stop=[[0.05, 0.5, 0.75]], price=1.1 * close, val_price=1.05 * close, stop_entry_price='close', stop_exit_price='stoplimit', slippage=0.1).order_records, np.array([ (0, 0, 0, 16.52892561983471, 6.050000000000001, 0.0, 0), (1, 0, 1, 16.52892561983471, 4.25, 0.0, 1), (2, 1, 0, 16.52892561983471, 6.050000000000001, 0.0, 0), (3, 1, 2, 16.52892561983471, 2.5, 0.0, 1), (4, 2, 0, 16.52892561983471, 6.050000000000001, 0.0, 0), (5, 2, 4, 16.52892561983471, 1.25, 0.0, 1) ], dtype=order_dt) ) def test_stop_exit_price(self): entries = pd.Series([True, False, False, False, False], index=price.index) exits = pd.Series([False, False, False, False, False], index=price.index) close = pd.Series([5., 4., 3., 2., 1.], index=price.index) open = close + 0.25 high = close + 0.5 low = close - 0.5 record_arrays_close( from_signals_longonly( close=close, entries=entries, exits=exits, open=open, high=high, low=low, sl_stop=[[0.05, 0.5, 0.75]], price=1.1 * close, stop_exit_price='stoplimit', slippage=0.1).order_records, np.array([ (0, 0, 0, 16.528926, 6.05, 0.0, 0), (1, 0, 1, 16.528926, 4.25, 0.0, 1), (2, 1, 0, 16.528926, 6.05, 0.0, 0), (3, 1, 2, 16.528926, 2.5, 0.0, 1), (4, 2, 0, 16.528926, 6.05, 0.0, 0), (5, 2, 4, 16.528926, 1.25, 0.0, 1) ], dtype=order_dt) ) record_arrays_close( from_signals_longonly( close=close, entries=entries, exits=exits, open=open, high=high, low=low, sl_stop=[[0.05, 0.5, 0.75]], price=1.1 * close, stop_exit_price='stopmarket', slippage=0.1).order_records, np.array([ (0, 0, 0, 16.528926, 6.05, 0.0, 0), (1, 0, 1, 16.528926, 3.825, 0.0, 1), (2, 1, 0, 16.528926, 6.05, 0.0, 0), (3, 1, 2, 16.528926, 2.25, 0.0, 1), (4, 2, 0, 16.528926, 6.05, 0.0, 0), (5, 2, 4, 16.528926, 1.125, 0.0, 1) ], dtype=order_dt) ) record_arrays_close( from_signals_longonly( close=close, entries=entries, exits=exits, open=open, high=high, low=low, sl_stop=[[0.05, 0.5, 0.75]], price=1.1 * close, stop_exit_price='close', slippage=0.1).order_records, np.array([ (0, 0, 0, 16.528926, 6.05, 0.0, 0), (1, 0, 1, 16.528926, 3.6, 0.0, 1), (2, 1, 0, 16.528926, 6.05, 0.0, 0), (3, 1, 2, 16.528926, 2.7, 0.0, 1), (4, 2, 0, 16.528926, 6.05, 0.0, 0), (5, 2, 4, 16.528926, 0.9, 0.0, 1) ], dtype=order_dt) ) record_arrays_close( from_signals_longonly( close=close, entries=entries, exits=exits, open=open, high=high, low=low, sl_stop=[[0.05, 0.5, 0.75]], price=1.1 * close, stop_exit_price='price', slippage=0.1).order_records, np.array([ (0, 0, 0, 16.528926, 6.05, 0.0, 0), (1, 0, 1, 16.528926, 3.9600000000000004, 0.0, 1), (2, 1, 0, 16.528926, 6.05, 0.0, 0), (3, 1, 2, 16.528926, 2.97, 0.0, 1), (4, 2, 0, 16.528926, 6.05, 0.0, 0), (5, 2, 4, 16.528926, 0.9900000000000001, 0.0, 1) ], dtype=order_dt) ) def test_upon_stop_exit(self): entries = pd.Series([True, False, False, False, False], index=price.index) exits = pd.Series([False, False, False, False, False], index=price.index) close = pd.Series([5., 4., 3., 2., 1.], index=price.index) record_arrays_close( from_signals_both( close=close, entries=entries, exits=exits, size=1, sl_stop=0.1, upon_stop_exit=[['close', 'closereduce', 'reverse', 'reversereduce']], accumulate=True).order_records, np.array([ (0, 0, 0, 1.0, 5.0, 0.0, 0), (1, 0, 1, 1.0, 4.0, 0.0, 1), (2, 1, 0, 1.0, 5.0, 0.0, 0), (3, 1, 1, 1.0, 4.0, 0.0, 1), (4, 2, 0, 1.0, 5.0, 0.0, 0), (5, 2, 1, 2.0, 4.0, 0.0, 1), (6, 3, 0, 1.0, 5.0, 0.0, 0), (7, 3, 1, 1.0, 4.0, 0.0, 1) ], dtype=order_dt) ) record_arrays_close( from_signals_both( close=close, entries=entries, exits=exits, size=1, sl_stop=0.1, upon_stop_exit=[['close', 'closereduce', 'reverse', 'reversereduce']]).order_records, np.array([ (0, 0, 0, 1.0, 5.0, 0.0, 0), (1, 0, 1, 1.0, 4.0, 0.0, 1), (2, 1, 0, 1.0, 5.0, 0.0, 0), (3, 1, 1, 1.0, 4.0, 0.0, 1), (4, 2, 0, 1.0, 5.0, 0.0, 0), (5, 2, 1, 2.0, 4.0, 0.0, 1), (6, 3, 0, 1.0, 5.0, 0.0, 0), (7, 3, 1, 2.0, 4.0, 0.0, 1) ], dtype=order_dt) ) def test_upon_stop_update(self): entries = pd.Series([True, True, False, False, False], index=price.index) exits = pd.Series([False, False, False, False, False], index=price.index) close = pd.Series([5., 4., 3., 2., 1.], index=price.index) sl_stop = pd.Series([0.4, np.nan, np.nan, np.nan, np.nan]) record_arrays_close( from_signals_longonly( close=close, entries=entries, exits=exits, accumulate=True, size=1., sl_stop=sl_stop, upon_stop_update=[['keep', 'override', 'overridenan']]).order_records, np.array([ (0, 0, 0, 1.0, 5.0, 0.0, 0), (1, 0, 1, 1.0, 4.0, 0.0, 0), (2, 0, 2, 2.0, 3.0, 0.0, 1), (3, 1, 0, 1.0, 5.0, 0.0, 0), (4, 1, 1, 1.0, 4.0, 0.0, 0), (5, 1, 2, 2.0, 3.0, 0.0, 1), (6, 2, 0, 1.0, 5.0, 0.0, 0), (7, 2, 1, 1.0, 4.0, 0.0, 0) ], dtype=order_dt) ) sl_stop = pd.Series([0.4, 0.4, np.nan, np.nan, np.nan]) record_arrays_close( from_signals_longonly( close=close, entries=entries, exits=exits, accumulate=True, size=1., sl_stop=sl_stop, upon_stop_update=[['keep', 'override']]).order_records, np.array([ (0, 0, 0, 1.0, 5.0, 0.0, 0), (1, 0, 1, 1.0, 4.0, 0.0, 0), (2, 0, 2, 2.0, 3.0, 0.0, 1), (3, 1, 0, 1.0, 5.0, 0.0, 0), (4, 1, 1, 1.0, 4.0, 0.0, 0), (5, 1, 3, 2.0, 2.0, 0.0, 1) ], dtype=order_dt) ) def test_adjust_sl_func(self): entries = pd.Series([True, False, False, False, False], index=price.index) exits = pd.Series([False, False, False, False, False], index=price.index) close =
pd.Series([5., 4., 3., 2., 1.], index=price.index)
pandas.Series
# # Copyright (c) 2016, Novartis Institutes for BioMedical Research Inc. # All rights reserved. # # Redistribution and use in source and binary forms, with or without # modification, are permitted provided that the following conditions are # met: # # * Redistributions of source code must retain the above copyright # notice, this list of conditions and the following disclaimer. # * Redistributions in binary form must reproduce the above # copyright notice, this list of conditions and the following # disclaimer in the documentation and/or other materials provided # with the distribution. # * Neither the name of Novartis Institutes for BioMedical Research Inc. # nor the names of its contributors may be used to endorse or promote # products derived from this software without specific prior written permission. # # THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS # "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT # LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR # A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT # OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, # SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT # LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, # DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY # THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT # (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE # OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. # # Created by <NAME>, June 2016 import random import pandas as pd import numpy as np from collections import defaultdict, Counter import re from sklearn.feature_extraction import DictVectorizer from sklearn.decomposition import LatentDirichletAllocation from sklearn.externals.joblib import Parallel, delayed from rdkit import Chem from rdkit.Chem import AllChem, rdqueries, BRICS from ChemTopicModel import utilsFP #### FRAGMENT GENERATION #################### def _prepBRICSSmiles(m): smi = Chem.MolToSmiles(m,isomericSmiles=True, allHsExplicit=True, allBondsExplicit=True) # delete the connection ids smi = re.sub(r"\[\d+\*\]", "[*]", smi) order = eval(m.GetProp("_smilesAtomOutputOrder")) # make the smiles more descriptive, add properties return utilsFP.writePropsToSmiles(m,smi,order) def _generateFPs(mol,fragmentMethod='Morgan'): aBits={} fp=None # circular Morgan fingerprint fragmentation, we use a simple invariant than ususal here if fragmentMethod=='Morgan': tmp={} fp = AllChem.GetMorganFingerprint(mol,radius=2,invariants=utilsFP.generateAtomInvariant(mol),bitInfo=tmp) aBits = utilsFP.getMorganEnvironment(mol, tmp, fp=fp, minRad=2) fp = fp.GetNonzeroElements() # path-based RDKit fingerprint fragmentation elif fragmentMethod=='RDK': fp = AllChem.UnfoldedRDKFingerprintCountBased(mol,maxPath=5,minPath=3,bitInfo=aBits) fp = fp.GetNonzeroElements() # get the final BRICS fragmentation (= smallest possible BRICS fragments of a molecule) elif fragmentMethod=='Brics': fragMol=BRICS.BreakBRICSBonds(mol) propSmi = _prepBRICSSmiles(fragMol) fp=Counter(propSmi.split('.')) else: print("Unknown fragment method") return fp, aBits # this function is not part of the class due to parallelisation # generate the fragments of a molecule, return a map with moleculeID and fragment dict def _generateMolFrags(datachunk, vocabulary, fragmentMethod, fragIdx=None): if fragIdx is None and fragmentMethod == 'Brics': return result={} for idx, smi in datachunk: mol = Chem.MolFromSmiles(str(smi)) if mol == None: continue fp,_=_generateFPs(mol,fragmentMethod=fragmentMethod) if fp is None: continue tmp={} for k,v in fp.items(): if k not in vocabulary: continue # save memory: for BRICS use index instead of long complicated SMILES if fragmentMethod == 'Brics': tmp[fragIdx[k]]=v else: tmp[k]=v result[idx]=tmp return result ########### chemical topic modeling class ################### class ChemTopicModel: # initialisation chemical topic model def __init__(self, fragmentMethod = 'Morgan', randomState=42, sizeSampleDataSet=0.1, rareThres=0.001, commonThres=0.1, verbose=0, n_jobs=1, chunksize=1000, learningMethod='batch'): self.fragmentMethod = fragmentMethod self.seed = randomState self.sizeSampleDataSet = sizeSampleDataSet self.rareThres = rareThres self.commonThres = commonThres self.verbose = verbose self.n_jobs = n_jobs self.chunksize = chunksize self.learningMethod = learningMethod # generate the fragments used for the model, exclude rare and common fragments depending on a threshold def _generateFragmentVocabulary(self,molSample): fps=defaultdict(int) # collect fragments from a sample of the dataset for smi in molSample: mol = Chem.MolFromSmiles(str(smi)) if mol is None: continue fp,_=_generateFPs(mol,fragmentMethod=self.fragmentMethod) if fp is None: continue for bit in fp.keys(): fps[bit]+=1 # filter rare and common fragments fragOcc = np.array(list(fps.values())) normFragOcc = fragOcc/float(len(molSample)) ids = normFragOcc > self.commonThres normFragOcc[ids] = 0 ids = normFragOcc < self.rareThres normFragOcc[ids] = 0 keys = list(fps.keys()) self.vocabulary = sorted(n for n,i in zip(keys,normFragOcc) if i != 0) self.fragIdx=dict((i,j) for j,i in enumerate(self.vocabulary)) if self.verbose: print('Created vocabulary, size: {0}, used sample size: {1}'.format(len(self.vocabulary),len(molSample))) # generate the fragment templates important for the visualisation of the topics later def _generateFragmentTemplates(self,molSample): fragTemplateDict=defaultdict(list) voc=set(self.vocabulary) if not len(self.vocabulary): print('Please generate your vocabulary first') return sizeVocabulary=len(self.vocabulary) for n,smi in enumerate(molSample): mol = Chem.MolFromSmiles(str(smi)) if mol == None: continue fp,aBits=_generateFPs(mol,fragmentMethod=self.fragmentMethod) if fp is None: continue for k,v in fp.items(): if k not in voc or k in fragTemplateDict: continue # save memory: for brics use index instead of long complicated smarts if self.fragmentMethod in ['Brics','BricsAll']: fragTemplateDict[self.fragIdx[k]]=['', []] else: fragTemplateDict[k]=[smi, aBits[k][0]] if len(fragTemplateDict) == sizeVocabulary: break tmp = [[k,v[0],v[1]] for k,v in fragTemplateDict.items()] self.fragmentTemplates =
pd.DataFrame(tmp,columns=['bitIdx','templateMol','bitPathTemplateMol'])
pandas.DataFrame
from pandas import Series,DataFrame import pandas as pd import numpy as np import matplotlib.pyplot as plt from sklearn.cross_validation import train_test_split from sklearn.cluster import KMeans from sklearn import preprocessing import os from sklearn import datasets import sklearn.metrics as sm from sklearn.preprocessing import LabelEncoder #calling in libraries data= pd.read_csv(r"C:\Users\mudit\Google Drive\docs\bank\Book1.csv") #reading csv file\ #dataset https://archive.ics.uci.edu/ml/datasets/Bank+Marketing data_clean=data.dropna() #delete observations with missing data cluster=data_clean[['age','job','marital','education','default', 'balance', 'housing' ,'loan','contact', 'day', 'month', 'duration', 'campaign', 'pdays', 'previous', 'poutcome','y','p']] #variables choosen for clustering #cluster.describe() number =LabelEncoder() clustervar=cluster.copy() clustervar['job']=number.fit_transform(clustervar['job'].astype('str')) clustervar['job']=preprocessing.scale(clustervar['job'].astype('float64')) clustervar['marital']=number.fit_transform(clustervar['marital'].astype('str')) clustervar['marital']=preprocessing.scale(clustervar['marital'].astype('float64')) clustervar['education']=number.fit_transform(clustervar['education'].astype('str')) clustervar['education']=preprocessing.scale(clustervar['education'].astype('float64')) clustervar['housing']=number.fit_transform(clustervar['housing'].astype('str')) clustervar['housing']=preprocessing.scale(clustervar['housing'].astype('float64')) clustervar['loan']=number.fit_transform(clustervar['loan'].astype('str')) clustervar['loan']=preprocessing.scale(clustervar['loan'].astype('float64')) clustervar['default']=number.fit_transform(clustervar['default'].astype('str')) clustervar['default']=preprocessing.scale(clustervar['default'].astype('float64')) clustervar['contact']=number.fit_transform(clustervar['contact'].astype('str')) clustervar['contact']=preprocessing.scale(clustervar['contact'].astype('float64')) clustervar['poutcome']=number.fit_transform(clustervar['poutcome'].astype('str')) clustervar['poutcome']=preprocessing.scale(clustervar['poutcome'].astype('float64')) clustervar['y']=number.fit_transform(clustervar['y'].astype('str')) clustervar['y']=preprocessing.scale(clustervar['y'].astype('float64')) clustervar['month']=number.fit_transform(clustervar['month'].astype('str')) clustervar['month']=preprocessing.scale(clustervar['month'].astype('float64')) clustervar['p']=number.fit_transform(clustervar['p'].astype('str')) clustervar['p']=preprocessing.scale(clustervar['p'].astype('float64')) #standardize clustering variables to have mean=0 and sd(standard deviation)=1 #split data into train and test sets clus_train, clus_test = train_test_split(clustervar,test_size=.3,random_state=123) # k-means cluster analysis for 1-9 clusters from scipy.spatial.distance import cdist #clusters=np.array(range(1,10)) clusters=range(1,10) meandist=[] for k in clusters: model=KMeans(n_clusters=k) model.fit(clus_train) clusassign=model.predict(clus_train) meandist.append(sum(np.min(cdist(clus_train,model.cluster_centers_,'euclidean'),axis=1)) / clus_train.shape[0]) #plotting average distaance from observations from the cluster #centroid to use the elbow method to identify the number of clusters to choose plt.plot(clusters,meandist) plt.xlabel("number of clusters") plt.ylabel("average distance") plt.title("selecting k with elbow method") plt.show() #now k means for 3 clusters model3=KMeans(n_clusters=3) model3.fit(clus_train) clusassign=model3.predict(clus_train) #plot of clusters model3.labels_ from sklearn.decomposition import PCA pca_2=PCA(2) plot_columns=pca_2.fit_transform(clus_train) plt.scatter(x=plot_columns[:,0], y=plot_columns[:,1], c=model3.labels_,) plt.xlabel('canonical variable 1') plt.ylabel('canonical variable 2') plt.title('Scatterplot of canonical variable for 3 clusters') plt.show() #BEGIN multiple steps to merge cluster assignment with clustering variables to examine #cluster variable means by cluster #examining cluster variables # create a unique identifier variable from the index for the # cluster training data to merge with the cluster assignment variable clus_train.reset_index(level=0, inplace=True) # create a list that has the new index variable cluslist=list(clus_train['index']) # create a list of cluster assignments labels=list(model3.labels_) # combine index variable list with cluster assignment list into a dictionary newlist=dict(zip(cluslist, labels)) newlist # convert newlist dictionary to a dataframe newclus=
DataFrame.from_dict(newlist,orient='index')
pandas.DataFrame.from_dict
import argparse import os import random import numpy as np import pandas as pd import torch import torch.nn as nn import torch.nn.functional as F from sklearn.model_selection import StratifiedShuffleSplit from torch import optim class DevNet(nn.Module): """docstring for ClassName.""" def __init__(self, feature_dim, num_class, ae_hidden_neurons=[512, 256, 128], cl_hidden_neurons=[64, 32, 10], drop_rate=0.2, batch_norm=True, hidden_activation='relu', output_activation='sigmoid'): super(DevNet, self).__init__() self.feature_dim = feature_dim self.num_class = num_class self.layers_neurons_encoder = [self.feature_dim, *ae_hidden_neurons] self.layers_neurons_decoder = self.layers_neurons_encoder[::-1] self.cl_hidden_neurons = [ae_hidden_neurons[-1], *cl_hidden_neurons, 1] self.drop_rate = drop_rate self.batch_norm = batch_norm self.hidden_activation = nn.ReLU() self.output_activation = nn.Sigmoid() self.encoder = nn.Sequential() self.decoder = nn.Sequential() self.classifier = nn.Sequential() # create encoder model for idx, layer in enumerate(self.layers_neurons_encoder[:-1]): self.encoder.add_module( 'linear' + str(idx), nn.Linear(self.layers_neurons_encoder[idx], self.layers_neurons_encoder[idx + 1])) self.encoder.add_module( 'batch_norm' + str(idx), nn.BatchNorm1d(self.layers_neurons_encoder[idx + 1])) self.encoder.add_module('dropout' + str(idx), nn.Dropout(self.drop_rate)) self.encoder.add_module(hidden_activation + str(idx), self.hidden_activation) # create decoder model for idx, layer in enumerate(self.layers_neurons_decoder[:-1]): self.decoder.add_module( 'linear' + str(idx), nn.Linear(self.layers_neurons_decoder[idx], self.layers_neurons_decoder[idx + 1])) self.decoder.add_module( 'batch_norm' + str(idx), nn.BatchNorm1d(self.layers_neurons_decoder[idx + 1])) self.decoder.add_module('dropout' + str(idx), nn.Dropout(self.drop_rate)) if idx == len(self.layers_neurons_decoder) - 2: self.decoder.add_module(output_activation + str(idx), self.output_activation) else: self.decoder.add_module(hidden_activation + str(idx), self.hidden_activation) # create classifier for idx, layer in enumerate(self.cl_hidden_neurons[:-2]): self.classifier.add_module( 'linear' + str(idx), nn.Linear(self.cl_hidden_neurons[idx], self.cl_hidden_neurons[idx + 1])) self.classifier.add_module( 'batch_norm' + str(idx), nn.BatchNorm1d(self.cl_hidden_neurons[idx + 1])) self.classifier.add_module('dropout' + str(idx), nn.Dropout(self.drop_rate)) self.classifier.add_module(hidden_activation + str(idx), self.hidden_activation) idx += 1 self.classifier.add_module( 'linear' + str(idx), nn.Linear(self.cl_hidden_neurons[idx], self.cl_hidden_neurons[idx + 1])) def forward(self, x): feature_vector = self.encoder(x) ae_output = self.decoder(feature_vector) cls_output = self.classifier(feature_vector) return ae_output, cls_output class Task(object): def __init__(self, data_name, data_path, label_name, saved=False): super(Task, self).__init__() self.data_name = data_name self.data_path = data_path self.label_name = label_name self.saved = saved def data_split(self): """split dataset to train set and test set.""" data_all =
pd.read_csv(self.data_path)
pandas.read_csv
"""Ibis expression API definitions.""" from __future__ import annotations import collections import datetime import numbers from typing import Iterable, Literal, Mapping, Sequence, TypeVar import dateutil.parser import pandas as pd import ibis.common.exceptions as com import ibis.expr.builders as bl import ibis.expr.datatypes as dt import ibis.expr.operations as ops import ibis.expr.rules as rlz import ibis.expr.schema as sch import ibis.expr.types as ir from ibis.expr.random import random # noqa from ibis.expr.schema import Schema from ibis.expr.types import ( # noqa ArrayColumn, ArrayScalar, ArrayValue, BooleanColumn, BooleanScalar, BooleanValue, CategoryScalar, CategoryValue, ColumnExpr, DateColumn, DateScalar, DateValue, DecimalColumn, DecimalScalar, DecimalValue, DestructColumn, DestructScalar, DestructValue, Expr, FloatingColumn, FloatingScalar, FloatingValue, GeoSpatialColumn, GeoSpatialScalar, GeoSpatialValue, IntegerColumn, IntegerScalar, IntegerValue, IntervalColumn, IntervalScalar, IntervalValue, LineStringColumn, LineStringScalar, LineStringValue, MapColumn, MapScalar, MapValue, MultiLineStringColumn, MultiLineStringScalar, MultiLineStringValue, MultiPointColumn, MultiPointScalar, MultiPointValue, MultiPolygonColumn, MultiPolygonScalar, MultiPolygonValue, NullColumn, NullScalar, NullValue, NumericColumn, NumericScalar, NumericValue, PointColumn, PointScalar, PointValue, PolygonColumn, PolygonScalar, PolygonValue, ScalarExpr, StringColumn, StringScalar, StringValue, StructColumn, StructScalar, StructValue, TableExpr, TimeColumn, TimeScalar, TimestampColumn, TimestampScalar, TimestampValue, TimeValue, ValueExpr, array, literal, map, null, struct, ) from ibis.expr.types.groupby import GroupedTableExpr # noqa from ibis.expr.window import ( cumulative_window, range_window, rows_with_max_lookback, trailing_range_window, trailing_window, window, ) __all__ = ( 'aggregate', 'array', 'case', 'coalesce', 'cross_join', 'cumulative_window', 'date', 'desc', 'asc', 'Expr', 'geo_area', 'geo_as_binary', 'geo_as_ewkb', 'geo_as_ewkt', 'geo_as_text', 'geo_azimuth', 'geo_buffer', 'geo_centroid', 'geo_contains', 'geo_contains_properly', 'geo_covers', 'geo_covered_by', 'geo_crosses', 'geo_d_fully_within', 'geo_disjoint', 'geo_difference', 'geo_d_within', 'geo_envelope', 'geo_equals', 'geo_geometry_n', 'geo_geometry_type', 'geo_intersection', 'geo_intersects', 'geo_is_valid', 'geo_line_locate_point', 'geo_line_merge', 'geo_line_substring', 'geo_ordering_equals', 'geo_overlaps', 'geo_touches', 'geo_distance', 'geo_end_point', 'geo_length', 'geo_max_distance', 'geo_n_points', 'geo_n_rings', 'geo_perimeter', 'geo_point', 'geo_point_n', 'geo_simplify', 'geo_srid', 'geo_start_point', 'geo_transform', 'geo_unary_union', 'geo_union', 'geo_within', 'geo_x', 'geo_x_max', 'geo_x_min', 'geo_y', 'geo_y_max', 'geo_y_min', 'greatest', 'ifelse', 'infer_dtype', 'infer_schema', 'interval', 'join', 'least', 'literal', 'map', 'NA', 'negate', 'now', 'null', 'param', 'pi', 'prevent_rewrite', 'random', 'range_window', 'row_number', 'rows_with_max_lookback', 'schema', 'Schema', 'sequence', 'struct', 'table', 'time', 'timestamp', 'trailing_range_window', 'trailing_window', 'where', 'window', ) infer_dtype = dt.infer infer_schema = sch.infer NA = null() T = TypeVar("T") def param(type: dt.DataType) -> ir.ScalarExpr: """Create a deferred parameter of a given type. Parameters ---------- type The type of the unbound parameter, e.g., double, int64, date, etc. Returns ------- ScalarExpr A scalar expression backend by a parameter Examples -------- >>> import ibis >>> import ibis.expr.datatypes as dt >>> start = ibis.param(dt.date) >>> end = ibis.param(dt.date) >>> schema = [('timestamp_col', 'timestamp'), ('value', 'double')] >>> t = ibis.table(schema) >>> predicates = [t.timestamp_col >= start, t.timestamp_col <= end] >>> expr = t.filter(predicates).value.sum() """ return ops.ScalarParameter(dt.dtype(type)).to_expr() def sequence(values: Sequence[T | None]) -> ir.ListExpr: """Wrap a list of Python values as an Ibis sequence type. Parameters ---------- values Should all be None or the same type Returns ------- ListExpr A list expression """ return ops.ValueList(values).to_expr() def schema( pairs: Iterable[tuple[str, dt.DataType]] | Mapping[str, dt.DataType] | None = None, names: Iterable[str] | None = None, types: Iterable[str | dt.DataType] | None = None, ) -> sch.Schema: """Validate and return an Schema object. Parameters ---------- pairs List or dictionary of name, type pairs. Mutually exclusive with `names` and `types`. names Field names. Mutually exclusive with `pairs`. types Field types. Mutually exclusive with `pairs`. Examples -------- >>> from ibis import schema >>> sc = schema([('foo', 'string'), ... ('bar', 'int64'), ... ('baz', 'boolean')]) >>> sc2 = schema(names=['foo', 'bar', 'baz'], ... types=['string', 'int64', 'boolean']) Returns ------- Schema An ibis schema """ # noqa: E501 if pairs is not None: return Schema.from_dict(dict(pairs)) else: return Schema(names, types) _schema = schema def table(schema: sch.Schema, name: str | None = None) -> ir.TableExpr: """Create an unbound table for build expressions without data. Parameters ---------- schema A schema for the table name Name for the table Returns ------- TableExpr An unbound table expression """ if not isinstance(schema, Schema): schema = _schema(pairs=schema) node = ops.UnboundTable(schema, name=name) return node.to_expr() def desc(expr: ir.ColumnExpr | str) -> ir.SortExpr | ops.DeferredSortKey: """Create a descending sort key from `expr` or column name. Parameters ---------- expr The expression or column name to use for sorting Examples -------- >>> import ibis >>> t = ibis.table([('g', 'string')]) >>> result = t.group_by('g').size('count').sort_by(ibis.desc('count')) Returns ------- ops.DeferredSortKey A deferred sort key """ if not isinstance(expr, Expr): return ops.DeferredSortKey(expr, ascending=False) else: return ops.SortKey(expr, ascending=False).to_expr() def asc(expr: ir.ColumnExpr | str) -> ir.SortExpr | ops.DeferredSortKey: """Create a ascending sort key from `asc` or column name. Parameters ---------- expr The expression or column name to use for sorting Examples -------- >>> import ibis >>> t = ibis.table([('g', 'string')]) >>> result = t.group_by('g').size('count').sort_by(ibis.asc('count')) Returns ------- ops.DeferredSortKey A deferred sort key """ if not isinstance(expr, Expr): return ops.DeferredSortKey(expr) else: return ops.SortKey(expr).to_expr() def timestamp( value: str | numbers.Integral, timezone: str | None = None, ) -> ir.TimestampScalar: """Construct a timestamp literal if `value` is coercible to a timestamp. Parameters ---------- value The value to use for constructing the timestamp timezone The timezone of the timestamp Returns ------- TimestampScalar A timestamp expression """ if isinstance(value, str): try: value =
pd.Timestamp(value, tz=timezone)
pandas.Timestamp
# Copyright (c) 2018-2021, NVIDIA CORPORATION. import operator import string import numpy as np import pandas as pd import pytest import cudf from cudf.core._compat import PANDAS_GE_110 from cudf.testing._utils import ( NUMERIC_TYPES, assert_eq, assert_exceptions_equal, ) @pytest.fixture def pd_str_cat(): categories = list("abc") codes = [0, 0, 1, 0, 1, 2, 0, 1, 1, 2] return pd.Categorical.from_codes(codes, categories=categories) def test_categorical_basic(): cat = pd.Categorical(["a", "a", "b", "c", "a"], categories=["a", "b", "c"]) cudf_cat = cudf.Index(cat) pdsr = pd.Series(cat, index=["p", "q", "r", "s", "t"]) sr = cudf.Series(cat, index=["p", "q", "r", "s", "t"]) assert_eq(pdsr.cat.codes, sr.cat.codes, check_dtype=False) # Test attributes assert_eq(pdsr.cat.categories, sr.cat.categories) assert pdsr.cat.ordered == sr.cat.ordered np.testing.assert_array_equal( pdsr.cat.codes.values, sr.cat.codes.to_array() ) string = str(sr) expect_str = """ p a q a r b s c t a """ assert all(x == y for x, y in zip(string.split(), expect_str.split())) assert_eq(cat.codes, cudf_cat.codes.to_array()) def test_categorical_integer(): if not PANDAS_GE_110: pytest.xfail(reason="pandas >=1.1 required") cat = pd.Categorical(["a", "_", "_", "c", "a"], categories=["a", "b", "c"]) pdsr = pd.Series(cat) sr = cudf.Series(cat) np.testing.assert_array_equal( cat.codes, sr.cat.codes.astype(cat.codes.dtype).fillna(-1).to_array() ) assert sr.null_count == 2 np.testing.assert_array_equal( pdsr.cat.codes.values, sr.cat.codes.astype(pdsr.cat.codes.dtype).fillna(-1).to_array(), ) string = str(sr) expect_str = """ 0 a 1 <NA> 2 <NA> 3 c 4 a dtype: category Categories (3, object): ['a', 'b', 'c'] """ assert string.split() == expect_str.split() def test_categorical_compare_unordered(): cat = pd.Categorical(["a", "a", "b", "c", "a"], categories=["a", "b", "c"]) pdsr = pd.Series(cat) sr = cudf.Series(cat) # test equal out = sr == sr assert out.dtype == np.bool_ assert type(out[0]) == np.bool_ assert np.all(out.to_array()) assert np.all(pdsr == pdsr) # test inequality out = sr != sr assert not np.any(out.to_array()) assert not np.any(pdsr != pdsr) assert not pdsr.cat.ordered assert not sr.cat.ordered # test using ordered operators assert_exceptions_equal( lfunc=operator.lt, rfunc=operator.lt, lfunc_args_and_kwargs=([pdsr, pdsr],), rfunc_args_and_kwargs=([sr, sr],), ) def test_categorical_compare_ordered(): cat1 = pd.Categorical( ["a", "a", "b", "c", "a"], categories=["a", "b", "c"], ordered=True ) pdsr1 = pd.Series(cat1) sr1 = cudf.Series(cat1) cat2 = pd.Categorical( ["a", "b", "a", "c", "b"], categories=["a", "b", "c"], ordered=True ) pdsr2 = pd.Series(cat2) sr2 = cudf.Series(cat2) # test equal out = sr1 == sr1 assert out.dtype == np.bool_ assert type(out[0]) == np.bool_ assert np.all(out.to_array()) assert np.all(pdsr1 == pdsr1) # test inequality out = sr1 != sr1 assert not np.any(out.to_array()) assert not np.any(pdsr1 != pdsr1) assert pdsr1.cat.ordered assert sr1.cat.ordered # test using ordered operators np.testing.assert_array_equal(pdsr1 < pdsr2, (sr1 < sr2).to_array()) np.testing.assert_array_equal(pdsr1 > pdsr2, (sr1 > sr2).to_array()) def test_categorical_binary_add(): cat = pd.Categorical(["a", "a", "b", "c", "a"], categories=["a", "b", "c"]) pdsr = pd.Series(cat) sr = cudf.Series(cat) assert_exceptions_equal( lfunc=operator.add, rfunc=operator.add, lfunc_args_and_kwargs=([pdsr, pdsr],), rfunc_args_and_kwargs=([sr, sr],), expected_error_message="Series of dtype `category` cannot perform " "the operation: add", ) def test_categorical_unary_ceil(): cat = pd.Categorical(["a", "a", "b", "c", "a"], categories=["a", "b", "c"]) pdsr = pd.Series(cat) sr = cudf.Series(cat) assert_exceptions_equal( lfunc=getattr, rfunc=sr.ceil, lfunc_args_and_kwargs=([pdsr, "ceil"],), check_exception_type=False, expected_error_message="Series of dtype `category` cannot " "perform the operation: ceil", ) def test_categorical_element_indexing(): """ Element indexing to a cat column must give the underlying object not the numerical index. """ cat = pd.Categorical(["a", "a", "b", "c", "a"], categories=["a", "b", "c"]) pdsr = pd.Series(cat) sr = cudf.Series(cat) assert_eq(pdsr, sr) assert_eq(pdsr.cat.codes, sr.cat.codes, check_dtype=False) def test_categorical_masking(): """ Test common operation for getting a all rows that matches a certain category. """ cat = pd.Categorical(["a", "a", "b", "c", "a"], categories=["a", "b", "c"]) pdsr = pd.Series(cat) sr = cudf.Series(cat) # check scalar comparison expect_matches = pdsr == "a" got_matches = sr == "a" np.testing.assert_array_equal( expect_matches.values, got_matches.to_array() ) # mask series expect_masked = pdsr[expect_matches] got_masked = sr[got_matches] assert len(expect_masked) == len(got_masked) assert len(expect_masked) == got_masked.valid_count assert_eq(got_masked, expect_masked) def test_df_cat_set_index(): df = cudf.DataFrame() df["a"] = pd.Categorical(list("aababcabbc"), categories=list("abc")) df["b"] = np.arange(len(df)) got = df.set_index("a") pddf = df.to_pandas(nullable_pd_dtype=False) expect = pddf.set_index("a") assert_eq(got, expect) def test_df_cat_sort_index(): df = cudf.DataFrame() df["a"] = pd.Categorical(list("aababcabbc"), categories=list("abc")) df["b"] = np.arange(len(df)) got = df.set_index("a").sort_index() expect = df.to_pandas(nullable_pd_dtype=False).set_index("a").sort_index() assert_eq(got, expect) def test_cat_series_binop_error(): df = cudf.DataFrame() df["a"] = pd.Categorical(list("aababcabbc"), categories=list("abc")) df["b"] = np.arange(len(df)) dfa = df["a"] dfb = df["b"] # lhs is a categorical assert_exceptions_equal( lfunc=operator.add, rfunc=operator.add, lfunc_args_and_kwargs=([dfa, dfb],), rfunc_args_and_kwargs=([dfa, dfb],), check_exception_type=False, expected_error_message="Series of dtype `category` cannot " "perform the operation: add", ) # if lhs is a numerical assert_exceptions_equal( lfunc=operator.add, rfunc=operator.add, lfunc_args_and_kwargs=([dfb, dfa],), rfunc_args_and_kwargs=([dfb, dfa],), check_exception_type=False, expected_error_message="'add' operator not supported", ) @pytest.mark.parametrize("num_elements", [10, 100, 1000]) def test_categorical_unique(num_elements): # create categorical series np.random.seed(12) pd_cat = pd.Categorical( pd.Series( np.random.choice( list(string.ascii_letters + string.digits), num_elements ), dtype="category", ) ) # gdf gdf = cudf.DataFrame() gdf["a"] = cudf.Series.from_categorical(pd_cat) gdf_unique_sorted = np.sort(gdf["a"].unique().to_pandas()) # pandas pdf = pd.DataFrame() pdf["a"] = pd_cat pdf_unique_sorted = np.sort(pdf["a"].unique()) # verify np.testing.assert_array_equal(pdf_unique_sorted, gdf_unique_sorted) @pytest.mark.parametrize("nelem", [20, 50, 100]) def test_categorical_unique_count(nelem): # create categorical series np.random.seed(12) pd_cat = pd.Categorical( pd.Series( np.random.choice( list(string.ascii_letters + string.digits), nelem ), dtype="category", ) ) # gdf gdf = cudf.DataFrame() gdf["a"] = cudf.Series.from_categorical(pd_cat) gdf_unique_count = gdf["a"].nunique() # pandas pdf = pd.DataFrame() pdf["a"] = pd_cat pdf_unique = pdf["a"].unique() # verify assert gdf_unique_count == len(pdf_unique) def test_categorical_empty(): cat = pd.Categorical([]) pdsr = pd.Series(cat) sr = cudf.Series(cat) np.testing.assert_array_equal(cat.codes, sr.cat.codes.to_array()) # Test attributes assert_eq(pdsr.cat.categories, sr.cat.categories) assert pdsr.cat.ordered == sr.cat.ordered np.testing.assert_array_equal( pdsr.cat.codes.values, sr.cat.codes.to_array() ) def test_categorical_set_categories(): cat = pd.Categorical(["a", "a", "b", "c", "a"], categories=["a", "b", "c"]) psr =
pd.Series(cat)
pandas.Series
#!/usr/bin/env python3 # -*- coding: utf-8 -*- """ pandas 学习 字典形式的numpy """ from __future__ import print_function import numpy as np import pandas as pd # concatenating # ignore index df1 = pd.DataFrame(np.ones((3,4))*0, columns=['a','b','c','d']) df2 = pd.DataFrame(np.ones((3,4))*1, columns=['a','b','c','d']) df3 = pd.DataFrame(np.ones((3,4))*2, columns=['a','b','c','d']) # print(df1) # print(df2) # print(df3) res = pd.concat([df1, df2, df3], axis=0, ignore_index=True) # print(res) # join, ('inner', 'outer') df1 = pd.DataFrame(np.ones((3,4))*0, columns=['a','b','c','d'], index=[1,2,3]) df2 = pd.DataFrame(np.ones((3,4))*1, columns=['b','c','d', 'e'], index=[2,3,4]) res = pd.concat([df1, df2], axis=1, join='outer') # print(res) res = pd.concat([df1, df2], axis=1, join='inner') # print(res) # # join_axes res =
pd.concat([df1, df2], axis=1, join_axes=[df1.index])
pandas.concat
# -*- coding: utf-8 -*- import numpy as np import pytest from numpy.random import RandomState from numpy import nan from datetime import datetime from itertools import permutations from pandas import (Series, Categorical, CategoricalIndex, Timestamp, DatetimeIndex, Index, IntervalIndex) import pandas as pd from pandas import compat from pandas._libs import (groupby as libgroupby, algos as libalgos, hashtable as ht) from pandas._libs.hashtable import unique_label_indices from pandas.compat import lrange, range import pandas.core.algorithms as algos import pandas.core.common as com import pandas.util.testing as tm import pandas.util._test_decorators as td from pandas.core.dtypes.dtypes import CategoricalDtype as CDT from pandas.compat.numpy import np_array_datetime64_compat from pandas.util.testing import assert_almost_equal class TestMatch(object): def test_ints(self): values = np.array([0, 2, 1]) to_match = np.array([0, 1, 2, 2, 0, 1, 3, 0]) result = algos.match(to_match, values) expected = np.array([0, 2, 1, 1, 0, 2, -1, 0], dtype=np.int64) tm.assert_numpy_array_equal(result, expected) result = Series(algos.match(to_match, values, np.nan)) expected = Series(np.array([0, 2, 1, 1, 0, 2, np.nan, 0])) tm.assert_series_equal(result, expected) s = Series(np.arange(5), dtype=np.float32) result = algos.match(s, [2, 4]) expected = np.array([-1, -1, 0, -1, 1], dtype=np.int64) tm.assert_numpy_array_equal(result, expected) result = Series(algos.match(s, [2, 4], np.nan)) expected = Series(np.array([np.nan, np.nan, 0, np.nan, 1])) tm.assert_series_equal(result, expected) def test_strings(self): values = ['foo', 'bar', 'baz'] to_match = ['bar', 'foo', 'qux', 'foo', 'bar', 'baz', 'qux'] result = algos.match(to_match, values) expected = np.array([1, 0, -1, 0, 1, 2, -1], dtype=np.int64) tm.assert_numpy_array_equal(result, expected) result = Series(algos.match(to_match, values, np.nan)) expected = Series(np.array([1, 0, np.nan, 0, 1, 2, np.nan])) tm.assert_series_equal(result, expected) class TestFactorize(object): def test_basic(self): labels, uniques = algos.factorize(['a', 'b', 'b', 'a', 'a', 'c', 'c', 'c']) tm.assert_numpy_array_equal( uniques, np.array(['a', 'b', 'c'], dtype=object)) labels, uniques = algos.factorize(['a', 'b', 'b', 'a', 'a', 'c', 'c', 'c'], sort=True) exp = np.array([0, 1, 1, 0, 0, 2, 2, 2], dtype=np.intp) tm.assert_numpy_array_equal(labels, exp) exp = np.array(['a', 'b', 'c'], dtype=object) tm.assert_numpy_array_equal(uniques, exp) labels, uniques = algos.factorize(list(reversed(range(5)))) exp = np.array([0, 1, 2, 3, 4], dtype=np.intp) tm.assert_numpy_array_equal(labels, exp) exp = np.array([4, 3, 2, 1, 0], dtype=np.int64) tm.assert_numpy_array_equal(uniques, exp) labels, uniques = algos.factorize(list(reversed(range(5))), sort=True) exp = np.array([4, 3, 2, 1, 0], dtype=np.intp) tm.assert_numpy_array_equal(labels, exp) exp = np.array([0, 1, 2, 3, 4], dtype=np.int64) tm.assert_numpy_array_equal(uniques, exp) labels, uniques = algos.factorize(list(reversed(np.arange(5.)))) exp = np.array([0, 1, 2, 3, 4], dtype=np.intp) tm.assert_numpy_array_equal(labels, exp) exp = np.array([4., 3., 2., 1., 0.], dtype=np.float64) tm.assert_numpy_array_equal(uniques, exp) labels, uniques = algos.factorize(list(reversed(np.arange(5.))), sort=True) exp = np.array([4, 3, 2, 1, 0], dtype=np.intp) tm.assert_numpy_array_equal(labels, exp) exp = np.array([0., 1., 2., 3., 4.], dtype=np.float64) tm.assert_numpy_array_equal(uniques, exp) def test_mixed(self): # doc example reshaping.rst x = Series(['A', 'A', np.nan, 'B', 3.14, np.inf]) labels, uniques = algos.factorize(x) exp = np.array([0, 0, -1, 1, 2, 3], dtype=np.intp) tm.assert_numpy_array_equal(labels, exp) exp = Index(['A', 'B', 3.14, np.inf]) tm.assert_index_equal(uniques, exp) labels, uniques = algos.factorize(x, sort=True) exp = np.array([2, 2, -1, 3, 0, 1], dtype=np.intp) tm.assert_numpy_array_equal(labels, exp) exp = Index([3.14, np.inf, 'A', 'B']) tm.assert_index_equal(uniques, exp) def test_datelike(self): # M8 v1 = Timestamp('20130101 09:00:00.00004') v2 = Timestamp('20130101') x = Series([v1, v1, v1, v2, v2, v1]) labels, uniques = algos.factorize(x) exp = np.array([0, 0, 0, 1, 1, 0], dtype=np.intp) tm.assert_numpy_array_equal(labels, exp) exp = DatetimeIndex([v1, v2]) tm.assert_index_equal(uniques, exp) labels, uniques = algos.factorize(x, sort=True) exp = np.array([1, 1, 1, 0, 0, 1], dtype=np.intp) tm.assert_numpy_array_equal(labels, exp) exp = DatetimeIndex([v2, v1]) tm.assert_index_equal(uniques, exp) # period v1 = pd.Period('201302', freq='M') v2 = pd.Period('201303', freq='M') x = Series([v1, v1, v1, v2, v2, v1]) # periods are not 'sorted' as they are converted back into an index labels, uniques = algos.factorize(x) exp = np.array([0, 0, 0, 1, 1, 0], dtype=np.intp) tm.assert_numpy_array_equal(labels, exp) tm.assert_index_equal(uniques, pd.PeriodIndex([v1, v2])) labels, uniques = algos.factorize(x, sort=True) exp = np.array([0, 0, 0, 1, 1, 0], dtype=np.intp) tm.assert_numpy_array_equal(labels, exp) tm.assert_index_equal(uniques, pd.PeriodIndex([v1, v2])) # GH 5986 v1 = pd.to_timedelta('1 day 1 min') v2 = pd.to_timedelta('1 day') x = Series([v1, v2, v1, v1, v2, v2, v1]) labels, uniques = algos.factorize(x) exp = np.array([0, 1, 0, 0, 1, 1, 0], dtype=np.intp) tm.assert_numpy_array_equal(labels, exp) tm.assert_index_equal(uniques, pd.to_timedelta([v1, v2])) labels, uniques = algos.factorize(x, sort=True) exp = np.array([1, 0, 1, 1, 0, 0, 1], dtype=np.intp) tm.assert_numpy_array_equal(labels, exp) tm.assert_index_equal(uniques, pd.to_timedelta([v2, v1])) def test_factorize_nan(self): # nan should map to na_sentinel, not reverse_indexer[na_sentinel] # rizer.factorize should not raise an exception if na_sentinel indexes # outside of reverse_indexer key = np.array([1, 2, 1, np.nan], dtype='O') rizer = ht.Factorizer(len(key)) for na_sentinel in (-1, 20): ids = rizer.factorize(key, sort=True, na_sentinel=na_sentinel) expected = np.array([0, 1, 0, na_sentinel], dtype='int32') assert len(set(key)) == len(set(expected)) tm.assert_numpy_array_equal(pd.isna(key), expected == na_sentinel) # nan still maps to na_sentinel when sort=False key = np.array([0, np.nan, 1], dtype='O') na_sentinel = -1 # TODO(wesm): unused? ids = rizer.factorize(key, sort=False, na_sentinel=na_sentinel) # noqa expected = np.array([2, -1, 0], dtype='int32') assert len(set(key)) == len(set(expected)) tm.assert_numpy_array_equal(pd.isna(key), expected == na_sentinel) @pytest.mark.parametrize("data,expected_label,expected_level", [ ( [(1, 1), (1, 2), (0, 0), (1, 2), 'nonsense'], [0, 1, 2, 1, 3], [(1, 1), (1, 2), (0, 0), 'nonsense'] ), ( [(1, 1), (1, 2), (0, 0), (1, 2), (1, 2, 3)], [0, 1, 2, 1, 3], [(1, 1), (1, 2), (0, 0), (1, 2, 3)] ), ( [(1, 1), (1, 2), (0, 0), (1, 2)], [0, 1, 2, 1], [(1, 1), (1, 2), (0, 0)] ) ]) def test_factorize_tuple_list(self, data, expected_label, expected_level): # GH9454 result = pd.factorize(data) tm.assert_numpy_array_equal(result[0], np.array(expected_label, dtype=np.intp)) expected_level_array = com._asarray_tuplesafe(expected_level, dtype=object) tm.assert_numpy_array_equal(result[1], expected_level_array) def test_complex_sorting(self): # gh 12666 - check no segfault # Test not valid numpy versions older than 1.11 if pd._np_version_under1p11: pytest.skip("Test valid only for numpy 1.11+") x17 = np.array([complex(i) for i in range(17)], dtype=object) pytest.raises(TypeError, algos.factorize, x17[::-1], sort=True) def test_uint64_factorize(self): data = np.array([2**63, 1, 2**63], dtype=np.uint64) exp_labels = np.array([0, 1, 0], dtype=np.intp) exp_uniques = np.array([2**63, 1], dtype=np.uint64) labels, uniques = algos.factorize(data) tm.assert_numpy_array_equal(labels, exp_labels) tm.assert_numpy_array_equal(uniques, exp_uniques) data = np.array([2**63, -1, 2**63], dtype=object) exp_labels = np.array([0, 1, 0], dtype=np.intp) exp_uniques = np.array([2**63, -1], dtype=object) labels, uniques = algos.factorize(data) tm.assert_numpy_array_equal(labels, exp_labels) tm.assert_numpy_array_equal(uniques, exp_uniques) def test_deprecate_order(self): # gh 19727 - check warning is raised for deprecated keyword, order. # Test not valid once order keyword is removed. data = np.array([2**63, 1, 2**63], dtype=np.uint64) with tm.assert_produces_warning(expected_warning=FutureWarning): algos.factorize(data, order=True) with tm.assert_produces_warning(False): algos.factorize(data) @pytest.mark.parametrize('data', [ np.array([0, 1, 0], dtype='u8'), np.array([-2**63, 1, -2**63], dtype='i8'), np.array(['__nan__', 'foo', '__nan__'], dtype='object'), ]) def test_parametrized_factorize_na_value_default(self, data): # arrays that include the NA default for that type, but isn't used. l, u = algos.factorize(data) expected_uniques = data[[0, 1]] expected_labels = np.array([0, 1, 0], dtype=np.intp) tm.assert_numpy_array_equal(l, expected_labels) tm.assert_numpy_array_equal(u, expected_uniques) @pytest.mark.parametrize('data, na_value', [ (np.array([0, 1, 0, 2], dtype='u8'), 0), (np.array([1, 0, 1, 2], dtype='u8'), 1), (np.array([-2**63, 1, -2**63, 0], dtype='i8'), -2**63), (np.array([1, -2**63, 1, 0], dtype='i8'), 1), (np.array(['a', '', 'a', 'b'], dtype=object), 'a'), (np.array([(), ('a', 1), (), ('a', 2)], dtype=object), ()), (np.array([('a', 1), (), ('a', 1), ('a', 2)], dtype=object), ('a', 1)), ]) def test_parametrized_factorize_na_value(self, data, na_value): l, u = algos._factorize_array(data, na_value=na_value) expected_uniques = data[[1, 3]] expected_labels = np.array([-1, 0, -1, 1], dtype=np.intp) tm.assert_numpy_array_equal(l, expected_labels) tm.assert_numpy_array_equal(u, expected_uniques) class TestUnique(object): def test_ints(self): arr = np.random.randint(0, 100, size=50) result = algos.unique(arr) assert isinstance(result, np.ndarray) def test_objects(self): arr = np.random.randint(0, 100, size=50).astype('O') result = algos.unique(arr) assert isinstance(result, np.ndarray) def test_object_refcount_bug(self): lst = ['A', 'B', 'C', 'D', 'E'] for i in range(1000): len(algos.unique(lst)) def test_on_index_object(self): mindex = pd.MultiIndex.from_arrays([np.arange(5).repeat(5), np.tile( np.arange(5), 5)]) expected = mindex.values expected.sort() mindex = mindex.repeat(2) result = pd.unique(mindex) result.sort() tm.assert_almost_equal(result, expected) def test_datetime64_dtype_array_returned(self): # GH 9431 expected = np_array_datetime64_compat( ['2015-01-03T00:00:00.000000000+0000', '2015-01-01T00:00:00.000000000+0000'], dtype='M8[ns]') dt_index = pd.to_datetime(['2015-01-03T00:00:00.000000000+0000', '2015-01-01T00:00:00.000000000+0000', '2015-01-01T00:00:00.000000000+0000']) result = algos.unique(dt_index) tm.assert_numpy_array_equal(result, expected) assert result.dtype == expected.dtype s = Series(dt_index) result = algos.unique(s) tm.assert_numpy_array_equal(result, expected) assert result.dtype == expected.dtype arr = s.values result = algos.unique(arr) tm.assert_numpy_array_equal(result, expected) assert result.dtype == expected.dtype def test_timedelta64_dtype_array_returned(self): # GH 9431 expected = np.array([31200, 45678, 10000], dtype='m8[ns]') td_index = pd.to_timedelta([31200, 45678, 31200, 10000, 45678]) result = algos.unique(td_index) tm.assert_numpy_array_equal(result, expected) assert result.dtype == expected.dtype s = Series(td_index) result = algos.unique(s) tm.assert_numpy_array_equal(result, expected) assert result.dtype == expected.dtype arr = s.values result = algos.unique(arr) tm.assert_numpy_array_equal(result, expected) assert result.dtype == expected.dtype def test_uint64_overflow(self): s = Series([1, 2, 2**63, 2**63], dtype=np.uint64) exp = np.array([1, 2, 2**63], dtype=np.uint64) tm.assert_numpy_array_equal(algos.unique(s), exp) def test_nan_in_object_array(self): l = ['a', np.nan, 'c', 'c'] result = pd.unique(l) expected = np.array(['a', np.nan, 'c'], dtype=object) tm.assert_numpy_array_equal(result, expected) def test_categorical(self): # we are expecting to return in the order # of appearance expected = Categorical(list('bac'), categories=list('bac')) # we are expecting to return in the order # of the categories expected_o = Categorical( list('bac'), categories=list('abc'), ordered=True) # GH 15939 c = Categorical(list('baabc')) result = c.unique() tm.assert_categorical_equal(result, expected) result = algos.unique(c) tm.assert_categorical_equal(result, expected) c = Categorical(list('baabc'), ordered=True) result = c.unique() tm.assert_categorical_equal(result, expected_o) result = algos.unique(c) tm.assert_categorical_equal(result, expected_o) # Series of categorical dtype s = Series(Categorical(list('baabc')), name='foo') result = s.unique() tm.assert_categorical_equal(result, expected) result = pd.unique(s) tm.assert_categorical_equal(result, expected) # CI -> return CI ci = CategoricalIndex(Categorical(list('baabc'), categories=list('bac'))) expected = CategoricalIndex(expected) result = ci.unique() tm.assert_index_equal(result, expected) result = pd.unique(ci) tm.assert_index_equal(result, expected) def test_datetime64tz_aware(self): # GH 15939 result = Series( Index([Timestamp('20160101', tz='US/Eastern'), Timestamp('20160101', tz='US/Eastern')])).unique() expected = np.array([Timestamp('2016-01-01 00:00:00-0500', tz='US/Eastern')], dtype=object) tm.assert_numpy_array_equal(result, expected) result = Index([Timestamp('20160101', tz='US/Eastern'), Timestamp('20160101', tz='US/Eastern')]).unique() expected = DatetimeIndex(['2016-01-01 00:00:00'], dtype='datetime64[ns, US/Eastern]', freq=None) tm.assert_index_equal(result, expected) result = pd.unique( Series(Index([Timestamp('20160101', tz='US/Eastern'), Timestamp('20160101', tz='US/Eastern')]))) expected = np.array([Timestamp('2016-01-01 00:00:00-0500', tz='US/Eastern')], dtype=object) tm.assert_numpy_array_equal(result, expected) result = pd.unique(Index([Timestamp('20160101', tz='US/Eastern'), Timestamp('20160101', tz='US/Eastern')])) expected = DatetimeIndex(['2016-01-01 00:00:00'], dtype='datetime64[ns, US/Eastern]', freq=None) tm.assert_index_equal(result, expected) def test_order_of_appearance(self): # 9346 # light testing of guarantee of order of appearance # these also are the doc-examples result = pd.unique(Series([2, 1, 3, 3])) tm.assert_numpy_array_equal(result, np.array([2, 1, 3], dtype='int64')) result = pd.unique(Series([2] + [1] * 5)) tm.assert_numpy_array_equal(result, np.array([2, 1], dtype='int64')) result = pd.unique(Series([
Timestamp('20160101')
pandas.Timestamp
# -*- coding: utf-8 -*- # pylint: disable=E1101 # flake8: noqa from datetime import datetime import csv import os import sys import re import nose import platform from multiprocessing.pool import ThreadPool from numpy import nan import numpy as np from pandas.io.common import DtypeWarning from pandas import DataFrame, Series, Index, MultiIndex, DatetimeIndex from pandas.compat import( StringIO, BytesIO, PY3, range, long, lrange, lmap, u ) from pandas.io.common import URLError import pandas.io.parsers as parsers from pandas.io.parsers import (read_csv, read_table, read_fwf, TextFileReader, TextParser) import pandas.util.testing as tm import pandas as pd from pandas.compat import parse_date import pandas.lib as lib from pandas import compat from pandas.lib import Timestamp from pandas.tseries.index import date_range import pandas.tseries.tools as tools from numpy.testing.decorators import slow import pandas.parser class ParserTests(object): """ Want to be able to test either C+Cython or Python+Cython parsers """ data1 = """index,A,B,C,D foo,2,3,4,5 bar,7,8,9,10 baz,12,13,14,15 qux,12,13,14,15 foo2,12,13,14,15 bar2,12,13,14,15 """ def read_csv(self, *args, **kwargs): raise NotImplementedError def read_table(self, *args, **kwargs): raise NotImplementedError def setUp(self): import warnings warnings.filterwarnings(action='ignore', category=FutureWarning) self.dirpath = tm.get_data_path() self.csv1 = os.path.join(self.dirpath, 'test1.csv') self.csv2 = os.path.join(self.dirpath, 'test2.csv') self.xls1 = os.path.join(self.dirpath, 'test.xls') def construct_dataframe(self, num_rows): df = DataFrame(np.random.rand(num_rows, 5), columns=list('abcde')) df['foo'] = 'foo' df['bar'] = 'bar' df['baz'] = 'baz' df['date'] = pd.date_range('20000101 09:00:00', periods=num_rows, freq='s') df['int'] = np.arange(num_rows, dtype='int64') return df def generate_multithread_dataframe(self, path, num_rows, num_tasks): def reader(arg): start, nrows = arg if not start: return pd.read_csv(path, index_col=0, header=0, nrows=nrows, parse_dates=['date']) return pd.read_csv(path, index_col=0, header=None, skiprows=int(start) + 1, nrows=nrows, parse_dates=[9]) tasks = [ (num_rows * i / num_tasks, num_rows / num_tasks) for i in range(num_tasks) ] pool = ThreadPool(processes=num_tasks) results = pool.map(reader, tasks) header = results[0].columns for r in results[1:]: r.columns = header final_dataframe = pd.concat(results) return final_dataframe def test_converters_type_must_be_dict(self): with tm.assertRaisesRegexp(TypeError, 'Type converters.+'): self.read_csv(StringIO(self.data1), converters=0) def test_empty_decimal_marker(self): data = """A|B|C 1|2,334|5 10|13|10. """ self.assertRaises(ValueError, read_csv, StringIO(data), decimal='') def test_empty_thousands_marker(self): data = """A|B|C 1|2,334|5 10|13|10. """ self.assertRaises(ValueError, read_csv, StringIO(data), thousands='') def test_multi_character_decimal_marker(self): data = """A|B|C 1|2,334|5 10|13|10. """ self.assertRaises(ValueError, read_csv, StringIO(data), thousands=',,') def test_empty_string(self): data = """\ One,Two,Three a,1,one b,2,two ,3,three d,4,nan e,5,five nan,6, g,7,seven """ df = self.read_csv(StringIO(data)) xp = DataFrame({'One': ['a', 'b', np.nan, 'd', 'e', np.nan, 'g'], 'Two': [1, 2, 3, 4, 5, 6, 7], 'Three': ['one', 'two', 'three', np.nan, 'five', np.nan, 'seven']}) tm.assert_frame_equal(xp.reindex(columns=df.columns), df) df = self.read_csv(StringIO(data), na_values={'One': [], 'Three': []}, keep_default_na=False) xp = DataFrame({'One': ['a', 'b', '', 'd', 'e', 'nan', 'g'], 'Two': [1, 2, 3, 4, 5, 6, 7], 'Three': ['one', 'two', 'three', 'nan', 'five', '', 'seven']}) tm.assert_frame_equal(xp.reindex(columns=df.columns), df) df = self.read_csv( StringIO(data), na_values=['a'], keep_default_na=False) xp = DataFrame({'One': [np.nan, 'b', '', 'd', 'e', 'nan', 'g'], 'Two': [1, 2, 3, 4, 5, 6, 7], 'Three': ['one', 'two', 'three', 'nan', 'five', '', 'seven']}) tm.assert_frame_equal(xp.reindex(columns=df.columns), df) df = self.read_csv(StringIO(data), na_values={'One': [], 'Three': []}) xp = DataFrame({'One': ['a', 'b', np.nan, 'd', 'e', np.nan, 'g'], 'Two': [1, 2, 3, 4, 5, 6, 7], 'Three': ['one', 'two', 'three', np.nan, 'five', np.nan, 'seven']}) tm.assert_frame_equal(xp.reindex(columns=df.columns), df) # GH4318, passing na_values=None and keep_default_na=False yields # 'None' as a na_value data = """\ One,Two,Three a,1,None b,2,two ,3,None d,4,nan e,5,five nan,6, g,7,seven """ df = self.read_csv( StringIO(data), keep_default_na=False) xp = DataFrame({'One': ['a', 'b', '', 'd', 'e', 'nan', 'g'], 'Two': [1, 2, 3, 4, 5, 6, 7], 'Three': ['None', 'two', 'None', 'nan', 'five', '', 'seven']}) tm.assert_frame_equal(xp.reindex(columns=df.columns), df) def test_read_csv(self): if not compat.PY3: if compat.is_platform_windows(): prefix = u("file:///") else: prefix = u("file://") fname = prefix + compat.text_type(self.csv1) # it works! read_csv(fname, index_col=0, parse_dates=True) def test_dialect(self): data = """\ label1,label2,label3 index1,"a,c,e index2,b,d,f """ dia = csv.excel() dia.quoting = csv.QUOTE_NONE df = self.read_csv(StringIO(data), dialect=dia) data = '''\ label1,label2,label3 index1,a,c,e index2,b,d,f ''' exp = self.read_csv(StringIO(data)) exp.replace('a', '"a', inplace=True) tm.assert_frame_equal(df, exp) def test_dialect_str(self): data = """\ fruit:vegetable apple:brocolli pear:tomato """ exp = DataFrame({ 'fruit': ['apple', 'pear'], 'vegetable': ['brocolli', 'tomato'] }) dia = csv.register_dialect('mydialect', delimiter=':') # noqa df = self.read_csv(StringIO(data), dialect='mydialect') tm.assert_frame_equal(df, exp) csv.unregister_dialect('mydialect') def test_1000_sep(self): data = """A|B|C 1|2,334|5 10|13|10. """ expected = DataFrame({ 'A': [1, 10], 'B': [2334, 13], 'C': [5, 10.] }) df = self.read_csv(StringIO(data), sep='|', thousands=',') tm.assert_frame_equal(df, expected) df = self.read_table(StringIO(data), sep='|', thousands=',') tm.assert_frame_equal(df, expected) def test_1000_sep_with_decimal(self): data = """A|B|C 1|2,334.01|5 10|13|10. """ expected = DataFrame({ 'A': [1, 10], 'B': [2334.01, 13], 'C': [5, 10.] }) tm.assert_equal(expected.A.dtype, 'int64') tm.assert_equal(expected.B.dtype, 'float') tm.assert_equal(expected.C.dtype, 'float') df = self.read_csv(StringIO(data), sep='|', thousands=',', decimal='.') tm.assert_frame_equal(df, expected) df = self.read_table(StringIO(data), sep='|', thousands=',', decimal='.') tm.assert_frame_equal(df, expected) data_with_odd_sep = """A|B|C 1|2.334,01|5 10|13|10, """ df = self.read_csv(StringIO(data_with_odd_sep), sep='|', thousands='.', decimal=',') tm.assert_frame_equal(df, expected) df = self.read_table(StringIO(data_with_odd_sep), sep='|', thousands='.', decimal=',') tm.assert_frame_equal(df, expected) def test_separator_date_conflict(self): # Regression test for issue #4678: make sure thousands separator and # date parsing do not conflict. data = '06-02-2013;13:00;1-000.215' expected = DataFrame( [[datetime(2013, 6, 2, 13, 0, 0), 1000.215]], columns=['Date', 2] ) df = self.read_csv(StringIO(data), sep=';', thousands='-', parse_dates={'Date': [0, 1]}, header=None) tm.assert_frame_equal(df, expected) def test_squeeze(self): data = """\ a,1 b,2 c,3 """ idx = Index(['a', 'b', 'c'], name=0) expected = Series([1, 2, 3], name=1, index=idx) result = self.read_table(StringIO(data), sep=',', index_col=0, header=None, squeeze=True) tm.assertIsInstance(result, Series) tm.assert_series_equal(result, expected) def test_squeeze_no_view(self): # GH 8217 # series should not be a view data = """time,data\n0,10\n1,11\n2,12\n4,14\n5,15\n3,13""" result = self.read_csv(StringIO(data), index_col='time', squeeze=True) self.assertFalse(result._is_view) def test_inf_parsing(self): data = """\ ,A a,inf b,-inf c,Inf d,-Inf e,INF f,-INF g,INf h,-INf i,inF j,-inF""" inf = float('inf') expected = Series([inf, -inf] * 5) df = read_csv(StringIO(data), index_col=0) tm.assert_almost_equal(df['A'].values, expected.values) df = read_csv(StringIO(data), index_col=0, na_filter=False) tm.assert_almost_equal(df['A'].values, expected.values) def test_multiple_date_col(self): # Can use multiple date parsers data = """\ KORD,19990127, 19:00:00, 18:56:00, 0.8100, 2.8100, 7.2000, 0.0000, 280.0000 KORD,19990127, 20:00:00, 19:56:00, 0.0100, 2.2100, 7.2000, 0.0000, 260.0000 KORD,19990127, 21:00:00, 20:56:00, -0.5900, 2.2100, 5.7000, 0.0000, 280.0000 KORD,19990127, 21:00:00, 21:18:00, -0.9900, 2.0100, 3.6000, 0.0000, 270.0000 KORD,19990127, 22:00:00, 21:56:00, -0.5900, 1.7100, 5.1000, 0.0000, 290.0000 KORD,19990127, 23:00:00, 22:56:00, -0.5900, 1.7100, 4.6000, 0.0000, 280.0000 """ def func(*date_cols): return lib.try_parse_dates(parsers._concat_date_cols(date_cols)) df = self.read_csv(StringIO(data), header=None, date_parser=func, prefix='X', parse_dates={'nominal': [1, 2], 'actual': [1, 3]}) self.assertIn('nominal', df) self.assertIn('actual', df) self.assertNotIn('X1', df) self.assertNotIn('X2', df) self.assertNotIn('X3', df) d = datetime(1999, 1, 27, 19, 0) self.assertEqual(df.ix[0, 'nominal'], d) df = self.read_csv(StringIO(data), header=None, date_parser=func, parse_dates={'nominal': [1, 2], 'actual': [1, 3]}, keep_date_col=True) self.assertIn('nominal', df) self.assertIn('actual', df) self.assertIn(1, df) self.assertIn(2, df) self.assertIn(3, df) data = """\ KORD,19990127, 19:00:00, 18:56:00, 0.8100, 2.8100, 7.2000, 0.0000, 280.0000 KORD,19990127, 20:00:00, 19:56:00, 0.0100, 2.2100, 7.2000, 0.0000, 260.0000 KORD,19990127, 21:00:00, 20:56:00, -0.5900, 2.2100, 5.7000, 0.0000, 280.0000 KORD,19990127, 21:00:00, 21:18:00, -0.9900, 2.0100, 3.6000, 0.0000, 270.0000 KORD,19990127, 22:00:00, 21:56:00, -0.5900, 1.7100, 5.1000, 0.0000, 290.0000 KORD,19990127, 23:00:00, 22:56:00, -0.5900, 1.7100, 4.6000, 0.0000, 280.0000 """ df = read_csv(StringIO(data), header=None, prefix='X', parse_dates=[[1, 2], [1, 3]]) self.assertIn('X1_X2', df) self.assertIn('X1_X3', df) self.assertNotIn('X1', df) self.assertNotIn('X2', df) self.assertNotIn('X3', df) d = datetime(1999, 1, 27, 19, 0) self.assertEqual(df.ix[0, 'X1_X2'], d) df = read_csv(StringIO(data), header=None, parse_dates=[[1, 2], [1, 3]], keep_date_col=True) self.assertIn('1_2', df) self.assertIn('1_3', df) self.assertIn(1, df) self.assertIn(2, df) self.assertIn(3, df) data = '''\ KORD,19990127 19:00:00, 18:56:00, 0.8100, 2.8100, 7.2000, 0.0000, 280.0000 KORD,19990127 20:00:00, 19:56:00, 0.0100, 2.2100, 7.2000, 0.0000, 260.0000 KORD,19990127 21:00:00, 20:56:00, -0.5900, 2.2100, 5.7000, 0.0000, 280.0000 KORD,19990127 21:00:00, 21:18:00, -0.9900, 2.0100, 3.6000, 0.0000, 270.0000 KORD,19990127 22:00:00, 21:56:00, -0.5900, 1.7100, 5.1000, 0.0000, 290.0000 ''' df = self.read_csv(StringIO(data), sep=',', header=None, parse_dates=[1], index_col=1) d = datetime(1999, 1, 27, 19, 0) self.assertEqual(df.index[0], d) def test_multiple_date_cols_int_cast(self): data = ("KORD,19990127, 19:00:00, 18:56:00, 0.8100\n" "KORD,19990127, 20:00:00, 19:56:00, 0.0100\n" "KORD,19990127, 21:00:00, 20:56:00, -0.5900\n" "KORD,19990127, 21:00:00, 21:18:00, -0.9900\n" "KORD,19990127, 22:00:00, 21:56:00, -0.5900\n" "KORD,19990127, 23:00:00, 22:56:00, -0.5900") date_spec = {'nominal': [1, 2], 'actual': [1, 3]} import pandas.io.date_converters as conv # it works! df = self.read_csv(StringIO(data), header=None, parse_dates=date_spec, date_parser=conv.parse_date_time) self.assertIn('nominal', df) def test_multiple_date_col_timestamp_parse(self): data = """05/31/2012,15:30:00.029,1306.25,1,E,0,,1306.25 05/31/2012,15:30:00.029,1306.25,8,E,0,,1306.25""" result = self.read_csv(StringIO(data), sep=',', header=None, parse_dates=[[0, 1]], date_parser=Timestamp) ex_val = Timestamp('05/31/2012 15:30:00.029') self.assertEqual(result['0_1'][0], ex_val) def test_single_line(self): # GH 6607 # Test currently only valid with python engine because sep=None and # delim_whitespace=False. Temporarily copied to TestPythonParser. # Test for ValueError with other engines: with tm.assertRaisesRegexp(ValueError, 'sep=None with delim_whitespace=False'): # sniff separator buf = StringIO() sys.stdout = buf # printing warning message when engine == 'c' for now try: # it works! df = self.read_csv(StringIO('1,2'), names=['a', 'b'], header=None, sep=None) tm.assert_frame_equal(DataFrame({'a': [1], 'b': [2]}), df) finally: sys.stdout = sys.__stdout__ def test_multiple_date_cols_with_header(self): data = """\ ID,date,NominalTime,ActualTime,TDew,TAir,Windspeed,Precip,WindDir KORD,19990127, 19:00:00, 18:56:00, 0.8100, 2.8100, 7.2000, 0.0000, 280.0000 KORD,19990127, 20:00:00, 19:56:00, 0.0100, 2.2100, 7.2000, 0.0000, 260.0000 KORD,19990127, 21:00:00, 20:56:00, -0.5900, 2.2100, 5.7000, 0.0000, 280.0000 KORD,19990127, 21:00:00, 21:18:00, -0.9900, 2.0100, 3.6000, 0.0000, 270.0000 KORD,19990127, 22:00:00, 21:56:00, -0.5900, 1.7100, 5.1000, 0.0000, 290.0000 KORD,19990127, 23:00:00, 22:56:00, -0.5900, 1.7100, 4.6000, 0.0000, 280.0000""" df = self.read_csv(StringIO(data), parse_dates={'nominal': [1, 2]}) self.assertNotIsInstance(df.nominal[0], compat.string_types) ts_data = """\ ID,date,nominalTime,actualTime,A,B,C,D,E KORD,19990127, 19:00:00, 18:56:00, 0.8100, 2.8100, 7.2000, 0.0000, 280.0000 KORD,19990127, 20:00:00, 19:56:00, 0.0100, 2.2100, 7.2000, 0.0000, 260.0000 KORD,19990127, 21:00:00, 20:56:00, -0.5900, 2.2100, 5.7000, 0.0000, 280.0000 KORD,19990127, 21:00:00, 21:18:00, -0.9900, 2.0100, 3.6000, 0.0000, 270.0000 KORD,19990127, 22:00:00, 21:56:00, -0.5900, 1.7100, 5.1000, 0.0000, 290.0000 KORD,19990127, 23:00:00, 22:56:00, -0.5900, 1.7100, 4.6000, 0.0000, 280.0000 """ def test_multiple_date_col_name_collision(self): self.assertRaises(ValueError, self.read_csv, StringIO(self.ts_data), parse_dates={'ID': [1, 2]}) data = """\ date_NominalTime,date,NominalTime,ActualTime,TDew,TAir,Windspeed,Precip,WindDir KORD1,19990127, 19:00:00, 18:56:00, 0.8100, 2.8100, 7.2000, 0.0000, 280.0000 KORD2,19990127, 20:00:00, 19:56:00, 0.0100, 2.2100, 7.2000, 0.0000, 260.0000 KORD3,19990127, 21:00:00, 20:56:00, -0.5900, 2.2100, 5.7000, 0.0000, 280.0000 KORD4,19990127, 21:00:00, 21:18:00, -0.9900, 2.0100, 3.6000, 0.0000, 270.0000 KORD5,19990127, 22:00:00, 21:56:00, -0.5900, 1.7100, 5.1000, 0.0000, 290.0000 KORD6,19990127, 23:00:00, 22:56:00, -0.5900, 1.7100, 4.6000, 0.0000, 280.0000""" # noqa self.assertRaises(ValueError, self.read_csv, StringIO(data), parse_dates=[[1, 2]]) def test_index_col_named(self): no_header = """\ KORD1,19990127, 19:00:00, 18:56:00, 0.8100, 2.8100, 7.2000, 0.0000, 280.0000 KORD2,19990127, 20:00:00, 19:56:00, 0.0100, 2.2100, 7.2000, 0.0000, 260.0000 KORD3,19990127, 21:00:00, 20:56:00, -0.5900, 2.2100, 5.7000, 0.0000, 280.0000 KORD4,19990127, 21:00:00, 21:18:00, -0.9900, 2.0100, 3.6000, 0.0000, 270.0000 KORD5,19990127, 22:00:00, 21:56:00, -0.5900, 1.7100, 5.1000, 0.0000, 290.0000 KORD6,19990127, 23:00:00, 22:56:00, -0.5900, 1.7100, 4.6000, 0.0000, 280.0000""" h = "ID,date,NominalTime,ActualTime,TDew,TAir,Windspeed,Precip,WindDir\n" data = h + no_header rs = self.read_csv(StringIO(data), index_col='ID') xp = self.read_csv(StringIO(data), header=0).set_index('ID') tm.assert_frame_equal(rs, xp) self.assertRaises(ValueError, self.read_csv, StringIO(no_header), index_col='ID') data = """\ 1,2,3,4,hello 5,6,7,8,world 9,10,11,12,foo """ names = ['a', 'b', 'c', 'd', 'message'] xp = DataFrame({'a': [1, 5, 9], 'b': [2, 6, 10], 'c': [3, 7, 11], 'd': [4, 8, 12]}, index=Index(['hello', 'world', 'foo'], name='message')) rs = self.read_csv(StringIO(data), names=names, index_col=['message']) tm.assert_frame_equal(xp, rs) self.assertEqual(xp.index.name, rs.index.name) rs = self.read_csv(StringIO(data), names=names, index_col='message') tm.assert_frame_equal(xp, rs) self.assertEqual(xp.index.name, rs.index.name) def test_usecols_index_col_False(self): # Issue 9082 s = "a,b,c,d\n1,2,3,4\n5,6,7,8" s_malformed = "a,b,c,d\n1,2,3,4,\n5,6,7,8," cols = ['a', 'c', 'd'] expected = DataFrame({'a': [1, 5], 'c': [3, 7], 'd': [4, 8]}) df = self.read_csv(StringIO(s), usecols=cols, index_col=False) tm.assert_frame_equal(expected, df) df = self.read_csv(StringIO(s_malformed), usecols=cols, index_col=False) tm.assert_frame_equal(expected, df) def test_index_col_is_True(self): # Issue 9798 self.assertRaises(ValueError, self.read_csv, StringIO(self.ts_data), index_col=True) def test_converter_index_col_bug(self): # 1835 data = "A;B\n1;2\n3;4" rs = self.read_csv(StringIO(data), sep=';', index_col='A', converters={'A': lambda x: x}) xp = DataFrame({'B': [2, 4]}, index=Index([1, 3], name='A')) tm.assert_frame_equal(rs, xp) self.assertEqual(rs.index.name, xp.index.name) def test_date_parser_int_bug(self): # #3071 log_file = StringIO( 'posix_timestamp,elapsed,sys,user,queries,query_time,rows,' 'accountid,userid,contactid,level,silo,method\n' '1343103150,0.062353,0,4,6,0.01690,3,' '12345,1,-1,3,invoice_InvoiceResource,search\n' ) def f(posix_string): return datetime.utcfromtimestamp(int(posix_string)) # it works! read_csv(log_file, index_col=0, parse_dates=0, date_parser=f) def test_multiple_skts_example(self): data = "year, month, a, b\n 2001, 01, 0.0, 10.\n 2001, 02, 1.1, 11." pass def test_malformed(self): # all data = """ignore A,B,C 1,2,3 # comment 1,2,3,4,5 2,3,4 """ try: df = self.read_table( StringIO(data), sep=',', header=1, comment='#') self.assertTrue(False) except Exception as inst: self.assertIn('Expected 3 fields in line 4, saw 5', str(inst)) # skip_footer data = """ignore A,B,C 1,2,3 # comment 1,2,3,4,5 2,3,4 footer """ # GH 6607 # Test currently only valid with python engine because # skip_footer != 0. Temporarily copied to TestPythonParser. # Test for ValueError with other engines: try: with tm.assertRaisesRegexp(ValueError, 'skip_footer'): # XXX df = self.read_table( StringIO(data), sep=',', header=1, comment='#', skip_footer=1) self.assertTrue(False) except Exception as inst: self.assertIn('Expected 3 fields in line 4, saw 5', str(inst)) # first chunk data = """ignore A,B,C skip 1,2,3 3,5,10 # comment 1,2,3,4,5 2,3,4 """ try: it = self.read_table(StringIO(data), sep=',', header=1, comment='#', iterator=True, chunksize=1, skiprows=[2]) df = it.read(5) self.assertTrue(False) except Exception as inst: self.assertIn('Expected 3 fields in line 6, saw 5', str(inst)) # middle chunk data = """ignore A,B,C skip 1,2,3 3,5,10 # comment 1,2,3,4,5 2,3,4 """ try: it = self.read_table(StringIO(data), sep=',', header=1, comment='#', iterator=True, chunksize=1, skiprows=[2]) df = it.read(1) it.read(2) self.assertTrue(False) except Exception as inst: self.assertIn('Expected 3 fields in line 6, saw 5', str(inst)) # last chunk data = """ignore A,B,C skip 1,2,3 3,5,10 # comment 1,2,3,4,5 2,3,4 """ try: it = self.read_table(StringIO(data), sep=',', header=1, comment='#', iterator=True, chunksize=1, skiprows=[2]) df = it.read(1) it.read() self.assertTrue(False) except Exception as inst: self.assertIn('Expected 3 fields in line 6, saw 5', str(inst)) def test_passing_dtype(self): # GH 6607 # Passing dtype is currently only supported by the C engine. # Temporarily copied to TestCParser*. # Test for ValueError with other engines: with tm.assertRaisesRegexp(ValueError, "The 'dtype' option is not supported"): df = DataFrame(np.random.rand(5, 2), columns=list( 'AB'), index=['1A', '1B', '1C', '1D', '1E']) with tm.ensure_clean('__passing_str_as_dtype__.csv') as path: df.to_csv(path) # GH 3795 # passing 'str' as the dtype result = self.read_csv(path, dtype=str, index_col=0) tm.assert_series_equal(result.dtypes, Series( {'A': 'object', 'B': 'object'})) # we expect all object columns, so need to convert to test for # equivalence result = result.astype(float) tm.assert_frame_equal(result, df) # invalid dtype self.assertRaises(TypeError, self.read_csv, path, dtype={'A': 'foo', 'B': 'float64'}, index_col=0) # valid but we don't support it (date) self.assertRaises(TypeError, self.read_csv, path, dtype={'A': 'datetime64', 'B': 'float64'}, index_col=0) self.assertRaises(TypeError, self.read_csv, path, dtype={'A': 'datetime64', 'B': 'float64'}, index_col=0, parse_dates=['B']) # valid but we don't support it self.assertRaises(TypeError, self.read_csv, path, dtype={'A': 'timedelta64', 'B': 'float64'}, index_col=0) with tm.assertRaisesRegexp(ValueError, "The 'dtype' option is not supported"): # empty frame # GH12048 self.read_csv(
StringIO('A,B')
pandas.compat.StringIO
import pandas as pd import pdb import pickle import matplotlib.pyplot as plt from Analysis_Utils import preprocessing_df as preprocessing import DataStream_Vis_Utils as utils from moviepy.editor import * import skvideo import cv2 import imageio import numpy as np from scipy import ndimage from errno import EEXIST, ENOENT ffm_path = 'C:/Users/bassp/OneDrive/Desktop/ffmpeg/bin/' skvideo.setFFmpegPath(ffm_path) import skvideo.io # Public Functions def loop_over_rats_and_extract_reaches(prediction_dataframe, e_dataframe, dummy_video_path, rat): global r_mask, reaching, bout save_path = '/Users/bassp/OneDrive/Desktop/Classification Project/reach_thresholds_RM15/' # Get rat, date, session for each block we need to process. k_dataframe =
pd.read_pickle(prediction_dataframe)
pandas.read_pickle
# -*- coding: utf-8 -*- import json import pandas as pd import tweepy N_TWEETS_PER_REQUEST = 200 def from_twitter(profile, access_token=None, access_token_secret=None, consumer_key=None, consumer_secret=None, as_file=None): """ Downloads the timeline of a Twitter profile and turn it into a dataframe. Args: profiles: scalar or list of one/multiple Twitter screen names. access_token: the access token as provided by Twitter. access_token_secret: the access token as provided by Twitter. consumer_key: the consumer key as provided by Twitter. consumer_secret:the consumer secret as provided by Twitter. as_file: boolean. Returns: A dataframe, each row is a Tweet. """ api = authenticate( consumer_key=consumer_key, consumer_secret=consumer_secret, access_token=access_token, access_token_secret=access_token_secret) if not api.verify_credentials(): print("Credentials are invalid.") return None pages = fetch_timeline_pages( api, profile, n_tweets_per_request=N_TWEETS_PER_REQUEST) pages = [pd.DataFrame(page) for page in pages] df =
pd.concat(pages)
pandas.concat
import pandas as pd import matplotlib.pyplot as plt import numpy as np #-------------read csv--------------------- df_2010_2011 = pd.read_csv("/mnt/nadavrap-students/STS/data/data_Shapira_20200911_2010_2011.csv") df_2012_2013 = pd.read_csv("/mnt/nadavrap-students/STS/data/data_Shapira_20200911_2012_2013.csv") df_2014_2015 = pd.read_csv("/mnt/nadavrap-students/STS/data/data_Shapira_20200911_2014_2015.csv") df_2016_2017 = pd.read_csv("/mnt/nadavrap-students/STS/data/data_Shapira_20200911_2016_2017.csv") df_2018_2019 = pd.read_csv("/mnt/nadavrap-students/STS/data/data_Shapira_20200911_2018_2019.csv") df_2010_2011['prcab'].fillna(2, inplace=True) df_2012_2013['prcab'].fillna(2, inplace=True) df_2014_2015['prcab'].fillna(2, inplace=True) df_2016_2017['prcab'].fillna(2, inplace=True) df_2018_2019['prcab'].fillna(2, inplace=True) mask = df_2010_2011['surgyear'] != 2010 df_2011 = df_2010_2011[mask] df_2010 = df_2010_2011[~mask] mask2 = df_2012_2013['surgyear'] != 2012 df_2013 = df_2012_2013[mask2] df_2012 = df_2012_2013[~mask2] mask3 = df_2014_2015['surgyear'] != 2014 df_2015 = df_2014_2015[mask3] df_2014 = df_2014_2015[~mask3] mask4 = df_2016_2017['surgyear'] != 2016 df_2017 = df_2016_2017[mask4] df_2016 = df_2016_2017[~mask4] mask5 = df_2018_2019['surgyear'] != 2018 df_2019 = df_2018_2019[mask5] df_2018 = df_2018_2019[~mask5] avg_siteid = pd.DataFrame() avg_surgid = pd.DataFrame() def groupby_siteid(): df2010 = df_2010.groupby('siteid')['siteid'].count().reset_index(name='2010_total') df2011 = df_2011.groupby('siteid')['siteid'].count().reset_index(name='2011_total') df2012 = df_2012.groupby('siteid')['siteid'].count().reset_index(name='2012_total') df2013 = df_2013.groupby('siteid')['siteid'].count().reset_index(name='2013_total') df2014 = df_2014.groupby('siteid')['siteid'].count().reset_index(name='2014_total') df2015 = df_2015.groupby('siteid')['siteid'].count().reset_index(name='2015_total') df2016 = df_2016.groupby('siteid')['siteid'].count().reset_index(name='2016_total') df2017 = df_2017.groupby('siteid')['siteid'].count().reset_index(name='2017_total') df2018 = df_2018.groupby('siteid')['siteid'].count().reset_index(name='2018_total') df2019 = df_2019.groupby('siteid')['siteid'].count().reset_index(name='2019_total') df1 =pd.merge(df2010, df2011, on='siteid', how='outer') df2 =pd.merge(df1, df2012, on='siteid', how='outer') df3 =pd.merge(df2, df2013, on='siteid', how='outer') df4 =pd.merge(df3, df2014, on='siteid', how='outer') df5 =pd.merge(df4, df2015, on='siteid', how='outer') df6 =pd.merge(df5, df2016, on='siteid', how='outer') df7 =pd.merge(df6, df2017, on='siteid', how='outer') df8 =pd.merge(df7, df2018, on='siteid', how='outer') df_sum_all_Years =pd.merge(df8, df2019, on='siteid', how='outer') df_sum_all_Years.fillna(0,inplace=True) cols = df_sum_all_Years.columns.difference(['siteid']) df_sum_all_Years['Distinct_years'] = df_sum_all_Years[cols].gt(0).sum(axis=1) cols_sum = df_sum_all_Years.columns.difference(['siteid','Distinct_years']) df_sum_all_Years['Year_sum'] =df_sum_all_Years.loc[:,cols_sum].sum(axis=1) df_sum_all_Years['Year_avg'] = df_sum_all_Years['Year_sum']/df_sum_all_Years['Distinct_years'] df_sum_all_Years.to_csv("total op sum all years siteid.csv") print("details on site id dist:") print("num of all sites: ", len(df_sum_all_Years)) less_8 =df_sum_all_Years[df_sum_all_Years['Distinct_years'] !=10] less_8.to_csv("total op less 10 years siteid.csv") print("num of sites with less years: ", len(less_8)) x = np.array(less_8['Distinct_years']) print(np.unique(x)) avg_siteid['siteid'] = df_sum_all_Years['siteid'] avg_siteid['total_year_sum'] = df_sum_all_Years['Year_sum'] avg_siteid['total_year_avg'] = df_sum_all_Years['Year_avg'] avg_siteid['num_of_years'] = df_sum_all_Years['Distinct_years'] def groupby_siteid_prcab(): df2010 = df_2010.groupby('siteid')['prcab'].apply(lambda x: (x == 1).sum()).reset_index(name='2010_reop') df2011 = df_2011.groupby('siteid')['prcab'].apply(lambda x: (x == 1).sum()).reset_index(name='2011_reop') df2012 = df_2012.groupby('siteid')['prcab'].apply(lambda x: (x == 1).sum()).reset_index(name='2012_reop') df2013 = df_2013.groupby('siteid')['prcab'].apply(lambda x: (x == 1).sum()).reset_index(name='2013_reop') df2014 = df_2014.groupby('siteid')['prcab'].apply(lambda x: (x == 1).sum()).reset_index(name='2014_reop') df2015 = df_2015.groupby('siteid')['prcab'].apply(lambda x: (x == 1).sum()).reset_index(name='2015_reop') df2016 = df_2016.groupby('siteid')['prcab'].apply(lambda x: (x == 1).sum()).reset_index(name='2016_reop') df2017 = df_2017.groupby('siteid')['prcab'].apply(lambda x: (x == 1).sum()).reset_index(name='2017_reop') df2018 = df_2018.groupby('siteid')['prcab'].apply(lambda x: (x == 1).sum()).reset_index(name='2018_reop') df2019 = df_2019.groupby('siteid')['prcab'].apply(lambda x: (x == 1).sum()).reset_index(name='2019_reop') df1 =pd.merge(df2010, df2011, on='siteid', how='outer') df2 =pd.merge(df1, df2012, on='siteid', how='outer') df3 =pd.merge(df2, df2013, on='siteid', how='outer') df4 =pd.merge(df3, df2014, on='siteid', how='outer') df5 =pd.merge(df4, df2015, on='siteid', how='outer') df6 =pd.merge(df5, df2016, on='siteid', how='outer') df7 =pd.merge(df6, df2017, on='siteid', how='outer') df8 =pd.merge(df7, df2018, on='siteid', how='outer') df_sum_all_Years =pd.merge(df8, df2019, on='siteid', how='outer') df_sum_all_Years.fillna(0,inplace=True) cols = df_sum_all_Years.columns.difference(['siteid']) df_sum_all_Years['Distinct_years_reop'] = df_sum_all_Years[cols].gt(0).sum(axis=1) cols_sum = df_sum_all_Years.columns.difference(['siteid', 'Distinct_years_reop']) df_sum_all_Years['Year_sum_reop'] = df_sum_all_Years.loc[:, cols_sum].sum(axis=1) df_sum_all_Years['Year_avg_reop'] = df_sum_all_Years['Year_sum_reop'] / avg_siteid['num_of_years'] df_sum_all_Years.to_csv("sum all years siteid reop.csv") less_8 = df_sum_all_Years[df_sum_all_Years['Distinct_years_reop'] != 10] less_8.to_csv("less 10 years reop siteid.csv") print("num of sites with less years reop : ", len(less_8)) x = np.array(less_8['Distinct_years_reop']) print(np.unique(x)) df_10 = df_2010.groupby('siteid')['prcab'].apply(lambda x:(x==2).sum()).reset_index(name='2010_Firstop') df_11 = df_2011.groupby('siteid')['prcab'].apply(lambda x:(x==2).sum()).reset_index(name='2011_Firstop') df_12 = df_2012.groupby('siteid')['prcab'].apply(lambda x:(x==2).sum()).reset_index(name='2012_Firstop') df_13 = df_2013.groupby('siteid')['prcab'].apply(lambda x:(x==2).sum()).reset_index(name='2013_Firstop') df_14 = df_2014.groupby('siteid')['prcab'].apply(lambda x:(x==2).sum()).reset_index(name='2014_Firstop') df_15 = df_2015.groupby('siteid')['prcab'].apply(lambda x:(x==2).sum()).reset_index(name='2015_Firstop') df_16 = df_2016.groupby('siteid')['prcab'].apply(lambda x:(x==2).sum()).reset_index(name='2016_Firstop') df_17 = df_2017.groupby('siteid')['prcab'].apply(lambda x:(x==2).sum()).reset_index(name='2017_Firstop') df_18 = df_2018.groupby('siteid')['prcab'].apply(lambda x:(x==2).sum()).reset_index(name='2018_Firstop') df_19 = df_2019.groupby('siteid')['prcab'].apply(lambda x:(x==2).sum()).reset_index(name='2019_Firstop') d1 = pd.merge(df_10, df_11, on='siteid', how='outer') d2 = pd.merge(d1, df_12, on='siteid', how='outer') d3 = pd.merge(d2, df_13, on='siteid', how='outer') d4 = pd.merge(d3, df_14, on='siteid', how='outer') d5 = pd.merge(d4, df_15, on='siteid', how='outer') d6 = pd.merge(d5, df_16, on='siteid', how='outer') d7 = pd.merge(d6, df_17, on='siteid', how='outer') d8 = pd.merge(d7, df_18, on='siteid', how='outer') df_sum_all_Years_total = pd.merge(d8, df_19, on='siteid', how='outer') df_sum_all_Years_total.fillna(0, inplace=True) cols = df_sum_all_Years_total.columns.difference(['siteid']) df_sum_all_Years_total['Distinct_years'] = df_sum_all_Years_total[cols].gt(0).sum(axis=1) cols_sum = df_sum_all_Years_total.columns.difference(['siteid', 'Distinct_years']) df_sum_all_Years_total['Year_sum'] = df_sum_all_Years_total.loc[:, cols_sum].sum(axis=1) df_sum_all_Years_total['Year_avg'] = df_sum_all_Years_total['Year_sum'] / avg_siteid['num_of_years'] df_sum_all_Years_total.to_csv("First op sum all years siteid.csv") less = df_sum_all_Years_total[df_sum_all_Years_total['Distinct_years'] != 10] less.to_csv("First op less 10 years siteid.csv") print("First op num of sites with less years: ", len(less)) x = np.array(less['Distinct_years']) print(np.unique(x)) temp_first = pd.DataFrame() temp_first['siteid'] = df_sum_all_Years_total['siteid'] temp_first['Year_sum_Firstop'] = df_sum_all_Years_total['Year_sum'] temp_first['Year_avg_Firstop'] = df_sum_all_Years_total['Year_avg'] temp_reop = pd.DataFrame() temp_reop['siteid'] = df_sum_all_Years['siteid'] temp_reop['Year_avg_reop'] = df_sum_all_Years['Year_avg_reop'] temp_reop['Year_sum_reop'] = df_sum_all_Years['Year_sum_reop'] df20 = pd.merge(avg_siteid, temp_first, on='siteid', how='outer') total_avg_site_id = pd.merge(df20, temp_reop, on='siteid', how='outer') total_avg_site_id['firstop/total'] = (total_avg_site_id['Year_avg_Firstop'] / total_avg_site_id['num_of_years']) * 100 total_avg_site_id['reop/total'] = (total_avg_site_id['Year_avg_reop'] / total_avg_site_id['num_of_years']) * 100 total_avg_site_id.fillna(0,inplace=True) total_avg_site_id.to_csv('total_avg_site_id.csv') def groupby_surgid(): df2010 = df_2010.groupby('surgid')['surgid'].count().reset_index(name='2010_total') df2011 = df_2011.groupby('surgid')['surgid'].count().reset_index(name='2011_total') df2012 = df_2012.groupby('surgid')['surgid'].count().reset_index(name='2012_total') df2013 = df_2013.groupby('surgid')['surgid'].count().reset_index(name='2013_total') df2014 = df_2014.groupby('surgid')['surgid'].count().reset_index(name='2014_total') df2015 = df_2015.groupby('surgid')['surgid'].count().reset_index(name='2015_total') df2016 = df_2016.groupby('surgid')['surgid'].count().reset_index(name='2016_total') df2017 = df_2017.groupby('surgid')['surgid'].count().reset_index(name='2017_total') df2018 = df_2018.groupby('surgid')['surgid'].count().reset_index(name='2018_total') df2019 = df_2019.groupby('surgid')['surgid'].count().reset_index(name='2019_total') df1 = pd.merge(df2010, df2011, on='surgid', how='outer') df2 = pd.merge(df1, df2012, on='surgid', how='outer') df3 = pd.merge(df2, df2013, on='surgid', how='outer') df4 = pd.merge(df3, df2014, on='surgid', how='outer') df5 = pd.merge(df4, df2015, on='surgid', how='outer') df6 = pd.merge(df5, df2016, on='surgid', how='outer') df7 = pd.merge(df6, df2017, on='surgid', how='outer') df8 = pd.merge(df7, df2018, on='surgid', how='outer') df_sum_all_Years = pd.merge(df8, df2019, on='surgid', how='outer') df_sum_all_Years.fillna(0, inplace=True) cols = df_sum_all_Years.columns.difference(['surgid']) df_sum_all_Years['Distinct_years'] = df_sum_all_Years[cols].gt(0).sum(axis=1) cols_sum = df_sum_all_Years.columns.difference(['surgid', 'Distinct_years']) df_sum_all_Years['Year_sum'] = df_sum_all_Years.loc[:, cols_sum].sum(axis=1) df_sum_all_Years['Year_avg'] = df_sum_all_Years['Year_sum'] / df_sum_all_Years['Distinct_years'] df_sum_all_Years.to_csv("total op sum all years surgid.csv") print("details on surg id dist:") print("num of all surgid: ", len(df_sum_all_Years)) less_8 = df_sum_all_Years[df_sum_all_Years['Distinct_years'] != 10] less_8.to_csv("total op less 10 years surgid.csv") print("num of surgid with less years: ", len(less_8)) x = np.array(less_8['Distinct_years']) print(np.unique(x)) # avg_surgid['surgid'] = df_sum_all_Years['surgid'] # avg_surgid['total_year_avg'] = df_sum_all_Years['Year_avg'] avg_surgid['surgid'] = df_sum_all_Years['surgid'] avg_surgid['total_year_avg'] = df_sum_all_Years['Year_avg'] avg_surgid['total_year_count'] = df_sum_all_Years['Year_sum'] avg_surgid['num_of_years'] = df_sum_all_Years['Distinct_years'] def groupby_surgid_prcab(): df2010 = df_2010.groupby('surgid')['prcab'].apply(lambda x: (x == 1).sum()).reset_index(name='2010_reop') df2011 = df_2011.groupby('surgid')['prcab'].apply(lambda x: (x == 1).sum()).reset_index(name='2011_reop') df2012 = df_2012.groupby('surgid')['prcab'].apply(lambda x: (x == 1).sum()).reset_index(name='2012_reop') df2013 = df_2013.groupby('surgid')['prcab'].apply(lambda x: (x == 1).sum()).reset_index(name='2013_reop') df2014 = df_2014.groupby('surgid')['prcab'].apply(lambda x: (x == 1).sum()).reset_index(name='2014_reop') df2015 = df_2015.groupby('surgid')['prcab'].apply(lambda x: (x == 1).sum()).reset_index(name='2015_reop') df2016 = df_2016.groupby('surgid')['prcab'].apply(lambda x: (x == 1).sum()).reset_index(name='2016_reop') df2017 = df_2017.groupby('surgid')['prcab'].apply(lambda x: (x == 1).sum()).reset_index(name='2017_reop') df2018 = df_2018.groupby('surgid')['prcab'].apply(lambda x: (x == 1).sum()).reset_index(name='2018_reop') df2019 = df_2019.groupby('surgid')['prcab'].apply(lambda x: (x == 1).sum()).reset_index(name='2019_reop') df1 = pd.merge(df2010, df2011, on='surgid', how='outer') df2 = pd.merge(df1, df2012, on='surgid', how='outer') df3 = pd.merge(df2, df2013, on='surgid', how='outer') df4 = pd.merge(df3, df2014, on='surgid', how='outer') df5 = pd.merge(df4, df2015, on='surgid', how='outer') df6 = pd.merge(df5, df2016, on='surgid', how='outer') df7 = pd.merge(df6, df2017, on='surgid', how='outer') df8 = pd.merge(df7, df2018, on='surgid', how='outer') df_sum_all_Years = pd.merge(df8, df2019, on='surgid', how='outer') df_sum_all_Years.fillna(0, inplace=True) cols = df_sum_all_Years.columns.difference(['surgid']) df_sum_all_Years['Distinct_years_reop'] = df_sum_all_Years[cols].gt(0).sum(axis=1) cols_sum = df_sum_all_Years.columns.difference(['surgid', 'Distinct_years_reop']) df_sum_all_Years['Year_sum_reop'] = df_sum_all_Years.loc[:, cols_sum].sum(axis=1) df_sum_all_Years['Year_avg_reop'] = df_sum_all_Years['Year_sum_reop'] / avg_surgid['num_of_years'] df_sum_all_Years.to_csv("sum all years surgid reop.csv") less_8 = df_sum_all_Years[df_sum_all_Years['Distinct_years_reop'] != 10] less_8.to_csv("less 10 years reop surgid.csv") print("num of surgid with less years reop : ", len(less_8)) x = np.array(less_8['Distinct_years_reop']) print(np.unique(x)) df_10 = df_2010.groupby('surgid')['prcab'].apply(lambda x: (x == 2).sum()).reset_index(name='2010_Firstop') df_11 = df_2011.groupby('surgid')['prcab'].apply(lambda x: (x == 2).sum()).reset_index(name='2011_Firstop') df_12 = df_2012.groupby('surgid')['prcab'].apply(lambda x: (x == 2).sum()).reset_index(name='2012_Firstop') df_13 = df_2013.groupby('surgid')['prcab'].apply(lambda x: (x == 2).sum()).reset_index(name='2013_Firstop') df_14 = df_2014.groupby('surgid')['prcab'].apply(lambda x: (x == 2).sum()).reset_index(name='2014_Firstop') df_15 = df_2015.groupby('surgid')['prcab'].apply(lambda x: (x == 2).sum()).reset_index(name='2015_Firstop') df_16 = df_2016.groupby('surgid')['prcab'].apply(lambda x: (x == 2).sum()).reset_index(name='2016_Firstop') df_17 = df_2017.groupby('surgid')['prcab'].apply(lambda x: (x == 2).sum()).reset_index(name='2017_Firstop') df_18 = df_2018.groupby('surgid')['prcab'].apply(lambda x: (x == 2).sum()).reset_index(name='2018_Firstop') df_19 = df_2019.groupby('surgid')['prcab'].apply(lambda x: (x == 2).sum()).reset_index(name='2019_Firstop') d1 = pd.merge(df_10, df_11, on='surgid', how='outer') d2 = pd.merge(d1, df_12, on='surgid', how='outer') d3 = pd.merge(d2, df_13, on='surgid', how='outer') d4 = pd.merge(d3, df_14, on='surgid', how='outer') d5 = pd.merge(d4, df_15, on='surgid', how='outer') d6 = pd.merge(d5, df_16, on='surgid', how='outer') d7 = pd.merge(d6, df_17, on='surgid', how='outer') d8 =
pd.merge(d7, df_18, on='surgid', how='outer')
pandas.merge
""" I/O functions of the aecg package: tools for annotated ECG HL7 XML files This module implements helper functions to parse and read annotated electrocardiogram (ECG) stored in XML files following HL7 specification. See authors, license and disclaimer at the top level directory of this project. """ # Imports ===================================================================== from typing import Dict, Tuple from lxml import etree from aecg import validate_xpath, new_validation_row, VALICOLS, \ TIME_CODES, SEQUENCE_CODES, \ Aecg, AecgLead, AecgAnnotationSet import copy import logging import pandas as pd import re import zipfile # Python logging ============================================================== logger = logging.getLogger(__name__) def parse_annotations(xml_filename: str, zip_filename: str, aecg_doc: etree._ElementTree, aecgannset: AecgAnnotationSet, path_prefix: str, annsset_xmlnode_path: str, valgroup: str = "RHYTHM", log_validation: bool = False) -> Tuple[ AecgAnnotationSet, pd.DataFrame]: """Parses `aecg_doc` XML document and extracts annotations Args: xml_filename (str): Filename of the aECG XML file. zip_filename (str): Filename of zip file containint the aECG XML file. If '', then xml file is not stored in a zip file. aecg_doc (etree._ElementTree): XML document of the aECG XML file. aecgannset (AecgAnnotationSet): Annotation set to which append found annotations. path_prefix (str): Prefix of xml path from which start searching for annotations. annsset_xmlnode_path (str): Path to xml node of the annotation set containing the annotations. valgroup (str, optional): Indicates whether to search annotations in rhythm or derived waveform. Defaults to "RHYTHM". log_validation (bool, optional): Indicates whether to maintain the validation results in `aecg.validatorResults`. Defaults to False. Returns: Tuple[AecgAnnotationSet, pd.DataFrame]: Annotation set updated with found annotations and dataframe with results of validation. """ anngrpid = 0 # Annotations stored within a beat beatnodes = aecg_doc.xpath(( path_prefix + "/component/annotation/code[@code=\'MDC_ECG_BEAT\']").replace( '/', '/ns:'), namespaces={'ns': 'urn:hl7-org:v3'}) beatnum = 0 valpd = pd.DataFrame() if len(beatnodes) > 0: logger.info( f'{xml_filename},{zip_filename},' f'{valgroup} {len(beatnodes)} annotated beats found') for beatnode in beatnodes: for rel_path in ["../component/annotation/" "code[contains(@code, \"MDC_ECG_\")]"]: annsnodes = beatnode.xpath(rel_path.replace('/', '/ns:'), namespaces={'ns': 'urn:hl7-org:v3'}) rel_path2 = "../value" for annsnode in annsnodes: ann = {"anngrpid": anngrpid, "beatnum": "", "code": "", "codetype": "", "wavecomponent": "", "wavecomponent2": "", "timecode": "", "value": "", "value_unit": "", "low": "", "low_unit": "", "high": "", "high_unit": "", "lead": ""} # Annotation code valrow2 = validate_xpath( annsnode, ".", "urn:hl7-org:v3", "code", new_validation_row(xml_filename, valgroup, "ANNSET_BEAT_ANNS"), failcat="WARNING") valrow2["XPATH"] = annsset_xmlnode_path + "/" + rel_path if valrow2["VALIOUT"] == "PASSED": ann["code"] = valrow2["VALUE"] # Annotation type from top level value valrow2 = validate_xpath(annsnode, "../value", "urn:hl7-org:v3", "code", new_validation_row( xml_filename, valgroup, "ANNSET_BEAT_ANNS"), failcat="WARNING") valrow2["XPATH"] = annsset_xmlnode_path + "/value" if log_validation: valpd = valpd.append(pd.DataFrame( [valrow2], columns=VALICOLS), ignore_index=True) if valrow2["VALIOUT"] == "PASSED": ann["codetype"] = valrow2["VALUE"] # Annotations type valrow2 = validate_xpath( annsnode, rel_path2, "urn:hl7-org:v3", "code", new_validation_row(xml_filename, valgroup, "ANNSET_BEAT_ANNS"), failcat="WARNING") valrow2["XPATH"] = annsset_xmlnode_path + "/" + rel_path + \ "/" + rel_path2 if valrow2["VALIOUT"] == "PASSED": ann["beatnum"] = beatnum ann["codetype"] = valrow2["VALUE"] if log_validation: valpd = valpd.append( pd.DataFrame([valrow2], columns=VALICOLS), ignore_index=True) subannsnodes = annsnode.xpath( rel_path.replace('/', '/ns:'), namespaces={'ns': 'urn:hl7-org:v3'}) if len(subannsnodes) == 0: subannsnodes = [annsnode] else: subannsnodes += [annsnode] # Exclude annotations reporting interval values only subannsnodes = [ sa for sa in subannsnodes if not sa.get("code").startswith("MDC_ECG_TIME_PD_")] for subannsnode in subannsnodes: # Annotations type valrow2 = validate_xpath(subannsnode, rel_path2, "urn:hl7-org:v3", "code", new_validation_row( xml_filename, valgroup, "ANNSET_BEAT_ANNS"), failcat="WARNING") valrow2["XPATH"] = annsset_xmlnode_path + "/" + \ rel_path + "/" + rel_path2 if valrow2["VALIOUT"] == "PASSED": ann["wavecomponent"] = valrow2["VALUE"] if log_validation: valpd = valpd.append( pd.DataFrame([valrow2], columns=VALICOLS), ignore_index=True) # Annotations value valrow2 = validate_xpath(subannsnode, rel_path2, "urn:hl7-org:v3", "value", new_validation_row( xml_filename, valgroup, "ANNSET_BEAT_ANNS"), failcat="WARNING") valrow2["XPATH"] = annsset_xmlnode_path + "/" + \ rel_path + "/" + rel_path2 if valrow2["VALIOUT"] == "PASSED": ann["value"] = valrow2["VALUE"] if log_validation: valpd = valpd.append( pd.DataFrame([valrow2], columns=VALICOLS), ignore_index=True) # Annotations value units valrow2 = validate_xpath(subannsnode, rel_path2, "urn:hl7-org:v3", "unit", new_validation_row( xml_filename, valgroup, "ANNSET_BEAT_ANNS"), failcat="WARNING") valrow2["XPATH"] = annsset_xmlnode_path + "/" + \ rel_path + "/" + rel_path2 if valrow2["VALIOUT"] == "PASSED": ann["value_unit"] = valrow2["VALUE"] if log_validation: valpd = valpd.append( pd.DataFrame([valrow2], columns=VALICOLS), ignore_index=True) # annotations info from supporting ROI rel_path3 = "../support/supportingROI/component/"\ "boundary/value" for n in ["", "low", "high"]: if n != "": rp = rel_path3 + "/" + n else: rp = rel_path3 valrow3 = validate_xpath( subannsnode, rp, "urn:hl7-org:v3", "value", new_validation_row(xml_filename, valgroup, "ANNSET_BEAT_ANNS"), failcat="WARNING") valrow3["XPATH"] = annsset_xmlnode_path + "/" + \ rel_path + "/" + rp if valrow3["VALIOUT"] == "PASSED": if n != "": ann[n] = valrow3["VALUE"] else: ann["value"] = valrow3["VALUE"] if log_validation: valpd = valpd.append( pd.DataFrame([valrow3], columns=VALICOLS), ignore_index=True) valrow3 = validate_xpath( subannsnode, rp, "urn:hl7-org:v3", "unit", new_validation_row(xml_filename, valgroup, "ANNSET_BEAT_ANNS"), failcat="WARNING") valrow3["XPATH"] = annsset_xmlnode_path + "/" + \ rel_path + "/" + rp if valrow3["VALIOUT"] == "PASSED": if n != "": ann[n + "_unit"] = valrow3["VALUE"] else: ann["value_unit"] = valrow3["VALUE"] if log_validation: valpd = valpd.append( pd.DataFrame([valrow3], columns=VALICOLS), ignore_index=True) # annotations time encoding, lead and other info used # by value and supporting ROI rel_path4 = "../support/supportingROI/component/"\ "boundary/code" roinodes = subannsnode.xpath( rel_path4.replace('/', '/ns:'), namespaces={'ns': 'urn:hl7-org:v3'}) for roinode in roinodes: valrow4 = validate_xpath( roinode, ".", "urn:hl7-org:v3", "code", new_validation_row(xml_filename, valgroup, "ANNSET_BEAT_ANNS"), failcat="WARNING") valrow4["XPATH"] = annsset_xmlnode_path + "/" + \ rel_path + "/" + rel_path4 if valrow4["VALIOUT"] == "PASSED": if valrow4["VALUE"] in ["TIME_ABSOLUTE", "TIME_RELATIVE"]: ann["timecode"] = valrow4["VALUE"] else: ann["lead"] = valrow4["VALUE"] if log_validation: valpd = valpd.append( pd.DataFrame([valrow4], columns=VALICOLS), ignore_index=True) aecgannset.anns.append(copy.deepcopy(ann)) else: # Annotations type valrow2 = validate_xpath(annsnode, ".", "urn:hl7-org:v3", "code", new_validation_row(xml_filename, valgroup, "ANNSET_BEAT_" "ANNS"), failcat="WARNING") valrow2["XPATH"] = annsset_xmlnode_path + "/" + rel_path +\ "/" + rel_path2 if valrow2["VALIOUT"] == "PASSED": ann["beatnum"] = beatnum ann["codetype"] = valrow2["VALUE"] if log_validation: valpd = valpd.append( pd.DataFrame([valrow2], columns=VALICOLS), ignore_index=True) # Annotations value valrow2 = validate_xpath(annsnode, rel_path2, "urn:hl7-org:v3", "value", new_validation_row( xml_filename, valgroup, "ANNSET_BEAT_ANNS"), failcat="WARNING") valrow2["XPATH"] = annsset_xmlnode_path + "/" + \ rel_path + "/" + rel_path2 if valrow2["VALIOUT"] == "PASSED": ann["value"] = valrow2["VALUE"] if log_validation: valpd = valpd.append( pd.DataFrame([valrow2], columns=VALICOLS), ignore_index=True) # Annotations value units valrow2 = validate_xpath(annsnode, rel_path2, "urn:hl7-org:v3", "unit", new_validation_row( xml_filename, valgroup, "ANNSET_BEAT_ANNS"), failcat="WARNING") valrow2["XPATH"] = annsset_xmlnode_path + "/" + \ rel_path + "/" + rel_path2 if valrow2["VALIOUT"] == "PASSED": ann["value_unit"] = valrow2["VALUE"] if log_validation: valpd = valpd.append( pd.DataFrame([valrow2], columns=VALICOLS), ignore_index=True) # annotations time encoding, lead and other info used # by value and supporting ROI rel_path4 = "../support/supportingROI/component/" \ "boundary/code" roinodes = annsnode.xpath( rel_path4.replace('/', '/ns:'), namespaces={'ns': 'urn:hl7-org:v3'}) for roinode in roinodes: valrow4 = validate_xpath(roinode, ".", "urn:hl7-org:v3", "code", new_validation_row( xml_filename, valgroup, "ANNSET_BEAT_ANNS"), failcat="WARNING") valrow4["XPATH"] = annsset_xmlnode_path + "/" + \ rel_path + "/" + rel_path4 if valrow4["VALIOUT"] == "PASSED": if valrow4["VALUE"] in ["TIME_ABSOLUTE", "TIME_RELATIVE"]: ann["timecode"] = valrow4["VALUE"] else: ann["lead"] = valrow4["VALUE"] if log_validation: valpd = valpd.append( pd.DataFrame([valrow4], columns=VALICOLS), ignore_index=True) aecgannset.anns.append(copy.deepcopy(ann)) else: if log_validation: valpd = valpd.append( pd.DataFrame([valrow2], columns=VALICOLS), ignore_index=True) anngrpid = anngrpid + 1 beatnum = beatnum + 1 if len(beatnodes) > 0: logger.info( f'{xml_filename},{zip_filename},' f'{valgroup} {beatnum} annotated beats and {anngrpid} ' f'annotations groups found') anngrpid_from_beats = anngrpid # Annotations stored without an associated beat for codetype_path in ["/component/annotation/code[" "(contains(@code, \"MDC_ECG_\") and" " not (@code=\'MDC_ECG_BEAT\'))]"]: annsnodes = aecg_doc.xpath( (path_prefix + codetype_path).replace('/', '/ns:'), namespaces={'ns': 'urn:hl7-org:v3'}) rel_path2 = "../value" for annsnode in annsnodes: ann = {"anngrpid": anngrpid, "beatnum": "", "code": "", "codetype": "", "wavecomponent": "", "wavecomponent2": "", "timecode": "", "value": "", "value_unit": "", "low": "", "low_unit": "", "high": "", "high_unit": "", "lead": ""} # Annotations code valrow2 = validate_xpath(annsnode, ".", "urn:hl7-org:v3", "code", new_validation_row(xml_filename, valgroup, "ANNSET_NOBEAT_ANNS"), failcat="WARNING") valrow2["XPATH"] = annsset_xmlnode_path if log_validation: valpd = valpd.append(pd.DataFrame([valrow2], columns=VALICOLS), ignore_index=True) if valrow2["VALIOUT"] == "PASSED": ann["code"] = valrow2["VALUE"] # Annotation type from top level value valrow2 = validate_xpath(annsnode, "../value", "urn:hl7-org:v3", "code", new_validation_row(xml_filename, valgroup, "ANNSET_NOBEAT_ANNS"), failcat="WARNING") valrow2["XPATH"] = annsset_xmlnode_path + "/value" if log_validation: valpd = valpd.append(pd.DataFrame([valrow2], columns=VALICOLS), ignore_index=True) if valrow2["VALIOUT"] == "PASSED": ann["codetype"] = valrow2["VALUE"] subannsnodes = annsnode.xpath( (".." + codetype_path).replace('/', '/ns:'), namespaces={'ns': 'urn:hl7-org:v3'}) if len(subannsnodes) == 0: subannsnodes = [annsnode] for subannsnode in subannsnodes: subsubannsnodes = subannsnode.xpath( (".." + codetype_path).replace('/', '/ns:'), namespaces={'ns': 'urn:hl7-org:v3'}) tmpnodes = [subannsnode] if len(subsubannsnodes) > 0: tmpnodes = tmpnodes + subsubannsnodes for subsubannsnode in tmpnodes: ann["wavecomponent"] = "" ann["wavecomponent2"] = "" ann["timecode"] = "" ann["value"] = "" ann["value_unit"] = "" ann["low"] = "" ann["low_unit"] = "" ann["high"] = "" ann["high_unit"] = "" roi_base = "../support/supportingROI/component/boundary" rel_path3 = roi_base + "/value" valrow2 = validate_xpath( subsubannsnode, ".", "urn:hl7-org:v3", "code", new_validation_row(xml_filename, valgroup, "ANNSET_NOBEAT_" "ANNS"), failcat="WARNING") valrow2["XPATH"] = annsset_xmlnode_path + "/.." + \ codetype_path + "/code" if valrow2["VALIOUT"] == "PASSED": if not ann["codetype"].endswith("WAVE"): ann["codetype"] = valrow2["VALUE"] if log_validation: valpd = valpd.append( pd.DataFrame([valrow2], columns=VALICOLS), ignore_index=True) # Annotations type valrow2 = validate_xpath( subsubannsnode, rel_path2, "urn:hl7-org:v3", "code", new_validation_row(xml_filename, valgroup, "ANNSET_NOBEAT_" "ANNS"), failcat="WARNING") valrow2["XPATH"] = annsset_xmlnode_path + "/.." + \ codetype_path + "/" + rel_path2 if valrow2["VALIOUT"] == "PASSED": ann["wavecomponent"] = valrow2["VALUE"] # if ann["wavecomponent"] == "": # ann["wavecomponent"] = valrow2["VALUE"] # else: # ann["wavecomponent2"] = valrow2["VALUE"] if log_validation: valpd = valpd.append( pd.DataFrame([valrow2], columns=VALICOLS), ignore_index=True) # Annotations value valrow2 = validate_xpath( subsubannsnode, rel_path2, "urn:hl7-org:v3", "", new_validation_row(xml_filename, valgroup, "ANNSET_NOBEAT_" "ANNS"), failcat="WARNING") valrow2["XPATH"] = annsset_xmlnode_path + "/.." + \ codetype_path + "/" + rel_path2 if valrow2["VALIOUT"] == "PASSED": ann["value"] = valrow2["VALUE"] if log_validation: valpd = valpd.append( pd.DataFrame([valrow2], columns=VALICOLS), ignore_index=True) # Annotations value as attribute valrow2 = validate_xpath( subsubannsnode, rel_path2, "urn:hl7-org:v3", "value", new_validation_row(xml_filename, valgroup, "ANNSET_NOBEAT_" "ANNS"), failcat="WARNING") valrow2["XPATH"] = annsset_xmlnode_path + "/.." + \ codetype_path + "/" + rel_path2 if valrow2["VALIOUT"] == "PASSED": ann["value"] = valrow2["VALUE"] if log_validation: valpd = valpd.append( pd.DataFrame([valrow2], columns=VALICOLS), ignore_index=True) # Annotations value units valrow2 = validate_xpath( subsubannsnode, rel_path2, "urn:hl7-org:v3", "unit", new_validation_row(xml_filename, valgroup, "ANNSET_NOBEAT_" "ANNS"), failcat="WARNING") valrow2["XPATH"] = annsset_xmlnode_path + "/.." + \ codetype_path + "/" + rel_path2 if valrow2["VALIOUT"] == "PASSED": ann["value_unit"] = valrow2["VALUE"] if log_validation: valpd = valpd.append( pd.DataFrame([valrow2], columns=VALICOLS), ignore_index=True) # annotations info from supporting ROI for n in ["", "low", "high"]: if n != "": rp = rel_path3 + "/" + n else: rp = rel_path3 valrow3 = validate_xpath( subsubannsnode, rp, "urn:hl7-org:v3", "value", new_validation_row(xml_filename, valgroup, "ANNSET_NOBEAT_" "ANNS"), failcat="WARNING") valrow3["XPATH"] = annsset_xmlnode_path + "/.." + \ codetype_path + "/" + rp if valrow3["VALIOUT"] == "PASSED": if n != "": ann[n] = valrow3["VALUE"] else: ann["value"] = valrow3["VALUE"] else: roi_base = "../component/annotation/support/"\ "supportingROI/component/boundary" # Annotations type valrow2 = validate_xpath(subsubannsnode, "../component/annotation/" "value", "urn:hl7-org:v3", "code", new_validation_row( xml_filename, valgroup, "ANNSET_NOBEAT_ANNS"), failcat="WARNING") valrow2["XPATH"] = annsset_xmlnode_path + "/.." + \ codetype_path + "/" + \ "../component/annotation/value" if valrow2["VALIOUT"] == "PASSED": ann["wavecomponent2"] = valrow2["VALUE"] if log_validation: valpd = valpd.append( pd.DataFrame([valrow2], columns=VALICOLS), ignore_index=True) # annotation values if n != "": rp = roi_base + "/value/" + n else: rp = roi_base + "/value" valrow3 = validate_xpath(subsubannsnode, rp, "urn:hl7-org:v3", "value", new_validation_row( xml_filename, valgroup, "ANNSET_NOBEAT_ANNS"), failcat="WARNING") valrow3["XPATH"] = annsset_xmlnode_path + "/.." + \ codetype_path + "/" + rp if valrow3["VALIOUT"] == "PASSED": if n != "": ann[n] = valrow3["VALUE"] else: ann["value"] = valrow3["VALUE"] if log_validation: valpd = valpd.append( pd.DataFrame([valrow3], columns=VALICOLS), ignore_index=True) valrow3 = validate_xpath( subsubannsnode, rp, "urn:hl7-org:v3", "unit", new_validation_row(xml_filename, valgroup, "ANNSET_NOBEAT" "_ANNS"), failcat="WARNING") valrow3["XPATH"] = annsset_xmlnode_path + "/.." + \ codetype_path + "/" + rp if valrow3["VALIOUT"] == "PASSED": if n != "": ann[n + "_unit"] = valrow3["VALUE"] else: ann["value_unit"] = valrow3["VALUE"] if log_validation: valpd = valpd.append( pd.DataFrame([valrow3], columns=VALICOLS), ignore_index=True) # annotations time encoding, lead and other info used by # value and supporting ROI for rel_path4 in ["../support/supportingROI/component/" "boundary", "../component/annotation/support/" "supportingROI/component/boundary"]: roinodes = subsubannsnode.xpath( rel_path4.replace('/', '/ns:'), namespaces={'ns': 'urn:hl7-org:v3'}) for roinode in roinodes: valrow4 = validate_xpath(roinode, "./code", "urn:hl7-org:v3", "code", new_validation_row( xml_filename, valgroup, "ANNSET_NOBEAT_ANNS"), failcat="WARNING") valrow4["XPATH"] = annsset_xmlnode_path + "/.." + \ codetype_path + "/" + rel_path4 if valrow4["VALIOUT"] == "PASSED": if valrow4["VALUE"] in ["TIME_ABSOLUTE", "TIME_RELATIVE"]: ann["timecode"] = valrow4["VALUE"] else: ann["lead"] = valrow4["VALUE"] if log_validation: valpd = valpd.append( pd.DataFrame([valrow4], columns=VALICOLS), ignore_index=True) aecgannset.anns.append(copy.deepcopy(ann)) anngrpid = anngrpid + 1 logger.info( f'{xml_filename},{zip_filename},' f'{valgroup} {anngrpid-anngrpid_from_beats} annotations groups' f' without an associated beat found') return aecgannset, valpd def parse_generalinfo(aecg_doc: etree._ElementTree, aecg: Aecg, log_validation: bool = False) -> Aecg: """Parses `aecg_doc` XML document and extracts general information This function parses the `aecg_doc` xml document searching for general information that includes in the returned `Aecg`: unique identifier (UUID), ECG date and time of collection (EGDTC), and device information. Args: aecg_doc (etree._ElementTree): aECG XML document aecg (Aecg): The aECG object to update log_validation (bool, optional): Indicates whether to maintain the validation results in `aecg.validatorResults`. Defaults to False. Returns: Aecg: `aecg` updated with the information found in the xml document. """ # ======================================= # UUID # ======================================= valrow = validate_xpath(aecg_doc, "./*[local-name() = \"id\"]", "", "root", new_validation_row(aecg.filename, "GENERAL", "UUID")) if log_validation: aecg.validatorResults = aecg.validatorResults.append( pd.DataFrame([valrow], columns=VALICOLS), ignore_index=True) if valrow["VALIOUT"] == "PASSED": logger.info( f'{aecg.filename},{aecg.zipContainer},' f'UUID found: {valrow["VALUE"]}') aecg.UUID = valrow["VALUE"] else: logger.critical( f'{aecg.filename},{aecg.zipContainer},' f'UUID not found') valrow = validate_xpath(aecg_doc, "./*[local-name() = \"id\"]", "", "extension", new_validation_row(aecg.filename, "GENERAL", "UUID")) if log_validation: aecg.validatorResults = aecg.validatorResults.append( pd.DataFrame([valrow], columns=VALICOLS), ignore_index=True) if valrow["VALIOUT"] == "PASSED": logger.debug( f'{aecg.filename},{aecg.zipContainer},' f'UUID extension found: {valrow["VALUE"]}') aecg.UUID += valrow["VALUE"] logger.info( f'{aecg.filename},{aecg.zipContainer},' f'UUID updated to: {aecg.UUID}') else: logger.debug( f'{aecg.filename},{aecg.zipContainer},' f'UUID extension not found') # ======================================= # EGDTC # ======================================= valpd = pd.DataFrame() egdtc_found = False for n in ["low", "center", "high"]: valrow = validate_xpath(aecg_doc, "./*[local-name() = \"effectiveTime\"]/" "*[local-name() = \"" + n + "\"]", "", "value", new_validation_row(aecg.filename, "GENERAL", "EGDTC_" + n), "WARNING") if valrow["VALIOUT"] == "PASSED": egdtc_found = True logger.info( f'{aecg.filename},{aecg.zipContainer},' f'EGDTC {n} found: {valrow["VALUE"]}') aecg.EGDTC[n] = valrow["VALUE"] if log_validation: valpd = valpd.append(pd.DataFrame([valrow], columns=VALICOLS), ignore_index=True) if not egdtc_found: logger.critical( f'{aecg.filename},{aecg.zipContainer},' f'EGDTC not found') if log_validation: aecg.validatorResults = aecg.validatorResults.append(valpd, ignore_index=True) # ======================================= # DEVICE # ======================================= # DEVICE = {"manufacturer": "", "model": "", "software": ""} valrow = validate_xpath(aecg_doc, "./component/series/author/" "seriesAuthor/manufacturerOrganization/name", "urn:hl7-org:v3", "", new_validation_row(aecg.filename, "GENERAL", "DEVICE_manufacturer"), "WARNING") if valrow["VALIOUT"] == "PASSED": tmp = valrow["VALUE"].replace("\n", "|") logger.info( f'{aecg.filename},{aecg.zipContainer},' f'DEVICE manufacturer found: {tmp}') aecg.DEVICE["manufacturer"] = valrow["VALUE"] else: logger.warning( f'{aecg.filename},{aecg.zipContainer},' f'DEVICE manufacturer not found') if log_validation: aecg.validatorResults = aecg.validatorResults.append( pd.DataFrame([valrow], columns=VALICOLS), ignore_index=True) valrow = validate_xpath(aecg_doc, "./component/series/author/" "seriesAuthor/manufacturedSeriesDevice/" "manufacturerModelName", "urn:hl7-org:v3", "", new_validation_row(aecg.filename, "GENERAL", "DEVICE_model"), "WARNING") if valrow["VALIOUT"] == "PASSED": tmp = valrow["VALUE"].replace("\n", "|") logger.info( f'{aecg.filename},{aecg.zipContainer},' f'DEVICE model found: {tmp}') aecg.DEVICE["model"] = valrow["VALUE"] else: logger.warning( f'{aecg.filename},{aecg.zipContainer},' f'DEVICE model not found') if log_validation: aecg.validatorResults = aecg.validatorResults.append( pd.DataFrame([valrow], columns=VALICOLS), ignore_index=True) valrow = validate_xpath(aecg_doc, "./component/series/author/" "seriesAuthor/manufacturedSeriesDevice/" "softwareName", "urn:hl7-org:v3", "", new_validation_row(aecg.filename, "GENERAL", "DEVICE_software"), "WARNING") if valrow["VALIOUT"] == "PASSED": tmp = valrow["VALUE"].replace("\n", "|") logger.info( f'{aecg.filename},{aecg.zipContainer},' f'DEVICE software found: {tmp}') aecg.DEVICE["software"] = valrow["VALUE"] else: logger.warning( f'{aecg.filename},{aecg.zipContainer},' f'DEVICE software not found') if log_validation: aecg.validatorResults = aecg.validatorResults.append( pd.DataFrame([valrow], columns=VALICOLS), ignore_index=True) return aecg def parse_subjectinfo(aecg_doc: etree._ElementTree, aecg: Aecg, log_validation: bool = False) -> Aecg: """Parses `aecg_doc` XML document and extracts subject information This function parses the `aecg_doc` xml document searching for subject information that includes in the returned `Aecg`: subject unique identifier (USUBJID), gender, birthtime, and race. Args: aecg_doc (etree._ElementTree): aECG XML document aecg (Aecg): The aECG object to update log_validation (bool, optional): Indicates whether to maintain the validation results in `aecg.validatorResults`. Defaults to False. Returns: Aecg: `aecg` updated with the information found in the xml document. """ # ======================================= # USUBJID # ======================================= valpd = pd.DataFrame() for n in ["root", "extension"]: valrow = validate_xpath(aecg_doc, "./componentOf/timepointEvent/componentOf/" "subjectAssignment/subject/trialSubject/id", "urn:hl7-org:v3", n, new_validation_row(aecg.filename, "SUBJECTINFO", "USUBJID_" + n)) if valrow["VALIOUT"] == "PASSED": logger.info( f'{aecg.filename},{aecg.zipContainer},' f'DM.USUBJID ID {n} found: {valrow["VALUE"]}') aecg.USUBJID[n] = valrow["VALUE"] else: if n == "root": logger.warning( f'{aecg.filename},{aecg.zipContainer},' f'DM.USUBJID ID {n} not found') else: logger.warning( f'{aecg.filename},{aecg.zipContainer},' f'DM.USUBJID ID {n} not found') if log_validation: valpd = valpd.append(pd.DataFrame([valrow], columns=VALICOLS), ignore_index=True) if (aecg.USUBJID["root"] == "") and (aecg.USUBJID["extension"] == ""): logger.error( f'{aecg.filename},{aecg.zipContainer},' f'DM.USUBJID cannot be established.') if log_validation: aecg.validatorResults = aecg.validatorResults.append(valpd, ignore_index=True) # ======================================= # SEX / GENDER # ======================================= valrow = validate_xpath(aecg_doc, "./componentOf/timepointEvent/componentOf/" "subjectAssignment/subject/trialSubject/" "subjectDemographicPerson/" "administrativeGenderCode", "urn:hl7-org:v3", "code", new_validation_row(aecg.filename, "SUBJECTINFO", "SEX"), failcat="WARNING") if valrow["VALIOUT"] == "PASSED": logger.info( f'{aecg.filename},{aecg.zipContainer},' f'DM.SEX found: {valrow["VALUE"]}') aecg.SEX = valrow["VALUE"] else: logger.debug( f'{aecg.filename},{aecg.zipContainer},' f'DM.SEX not found') if log_validation: aecg.validatorResults = aecg.validatorResults.append( pd.DataFrame([valrow], columns=VALICOLS), ignore_index=True) # ======================================= # BIRTHTIME # ======================================= valrow = validate_xpath(aecg_doc, "./componentOf/timepointEvent/componentOf/" "subjectAssignment/subject/trialSubject/" "subjectDemographicPerson/birthTime", "urn:hl7-org:v3", "value", new_validation_row(aecg.filename, "SUBJECTINFO", "BIRTHTIME"), failcat="WARNING") if valrow["VALIOUT"] == "PASSED": logger.info( f'{aecg.filename},{aecg.zipContainer},' f'DM.BIRTHTIME found.') aecg.BIRTHTIME = valrow["VALUE"] # age_in_years = aecg.subject_age_in_years() else: logger.debug( f'{aecg.filename},{aecg.zipContainer},' f'DM.BIRTHTIME not found') if log_validation: aecg.validatorResults = aecg.validatorResults.append( pd.DataFrame([valrow], columns=VALICOLS), ignore_index=True) # ======================================= # RACE # ======================================= valrow = validate_xpath(aecg_doc, "./componentOf/timepointEvent/componentOf/" "subjectAssignment/subject/trialSubject/" "subjectDemographicPerson/raceCode", "urn:hl7-org:v3", "code", new_validation_row(aecg.filename, "SUBJECTINFO", "RACE"), failcat="WARNING") if valrow["VALIOUT"] == "PASSED": logger.info( f'{aecg.filename},{aecg.zipContainer},' f'DM.RACE found: {valrow["VALUE"]}') else: logger.debug( f'{aecg.filename},{aecg.zipContainer},' f'DM.RACE not found') aecg.RACE = valrow["VALUE"] if log_validation: aecg.validatorResults = aecg.validatorResults.append( pd.DataFrame([valrow], columns=VALICOLS), ignore_index=True) return aecg def parse_trtainfo(aecg_doc: etree._ElementTree, aecg: Aecg, log_validation: bool = False) -> Aecg: """Parses `aecg_doc` XML document and extracts subject information This function parses the `aecg_doc` xml document searching for treatment information that includes in the returned `Aecg`. Args: aecg_doc (etree._ElementTree): aECG XML document aecg (Aecg): The aECG object to update log_validation (bool, optional): Indicates whether to maintain the validation results in `aecg.validatorResults`. Defaults to False. Returns: Aecg: `aecg` updated with the information found in the xml document. """ valrow = validate_xpath(aecg_doc, "./componentOf/timepointEvent/componentOf/" "subjectAssignment/definition/" "treatmentGroupAssignment/code", "urn:hl7-org:v3", "code", new_validation_row(aecg.filename, "STUDYINFO", "TRTA"), failcat="WARNING") if valrow["VALIOUT"] == "PASSED": logger.info( f'{aecg.filename},{aecg.zipContainer},' f'TRTA information found: {valrow["VALUE"]}') aecg.TRTA = valrow["VALUE"] else: logger.debug( f'{aecg.filename},{aecg.zipContainer},' f'TRTA information not found') if log_validation: aecg.validatorResults = aecg.validatorResults.append(
pd.DataFrame([valrow], columns=VALICOLS)
pandas.DataFrame
import numpy import matplotlib.pyplot as plt import pandas from scipy.stats import pearsonr import seaborn as sns import plotting import torch #Load experimental data viabilitydata = pandas.read_csv('viabilityModel/viability.tsv', sep='\t', low_memory=False, index_col=0) drugData =
pandas.read_csv('viabilityModel/drug.tsv', sep='\t', low_memory=False, index_col=0)
pandas.read_csv
""" Copyright 2019 <NAME>. Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. """ import datetime import datetime as dt import os from typing import Union import numpy as np import pandas as pd import pytest import pytz from gs_quant.target.common import XRef, PricingLocation, Currency as CurrEnum from numpy.testing import assert_allclose from pandas.testing import assert_series_equal from pandas.tseries.offsets import CustomBusinessDay from pytz import timezone from testfixtures import Replacer from testfixtures.mock import Mock import gs_quant.timeseries.measures as tm import gs_quant.timeseries.measures_rates as tm_rates from gs_quant.api.gs.assets import GsTemporalXRef, GsAssetApi, GsIdType, IdList, GsAsset from gs_quant.api.gs.data import GsDataApi, MarketDataResponseFrame from gs_quant.api.gs.data import QueryType from gs_quant.data.core import DataContext from gs_quant.data.dataset import Dataset from gs_quant.data.fields import Fields from gs_quant.errors import MqError, MqValueError, MqTypeError from gs_quant.markets.securities import AssetClass, Cross, Index, Currency, SecurityMaster, Stock, \ Swap, CommodityNaturalGasHub from gs_quant.session import GsSession, Environment from gs_quant.test.timeseries.utils import mock_request from gs_quant.timeseries import Returns from gs_quant.timeseries.measures import BenchmarkType _index = [pd.Timestamp('2019-01-01')] _test_datasets = ('TEST_DATASET',) def mock_empty_market_data_response(): df = MarketDataResponseFrame() df.dataset_ids = () return df def map_identifiers_default_mocker(input_type: Union[GsIdType, str], output_type: Union[GsIdType, str], ids: IdList, as_of: dt.datetime = None, multimap: bool = False, limit: int = None, **kwargs ) -> dict: if "USD-LIBOR-BBA" in ids: return {"USD-LIBOR-BBA": "MAPDB7QNB2TZVQ0E"} elif "EUR-EURIBOR-TELERATE" in ids: return {"EUR-EURIBOR-TELERATE": "MAJNQPFGN1EBDHAE"} elif "GBP-LIBOR-BBA" in ids: return {"GBP-LIBOR-BBA": "MAFYB8Z4R1377A19"} elif "JPY-LIBOR-BBA" in ids: return {"JPY-LIBOR-BBA": "MABMVE27EM8YZK33"} elif "EUR OIS" in ids: return {"EUR OIS": "MARFAGXDQRWM07Y2"} def map_identifiers_swap_rate_mocker(input_type: Union[GsIdType, str], output_type: Union[GsIdType, str], ids: IdList, as_of: dt.datetime = None, multimap: bool = False, limit: int = None, **kwargs ) -> dict: if "USD-3m" in ids: return {"USD-3m": "MAAXGV0GZTW4GFNC"} elif "EUR-6m" in ids: return {"EUR-6m": "MA5WM2QWRVMYKDK0"} elif "KRW" in ids: return {"KRW": 'MAJ6SEQH3GT0GA2Z'} def map_identifiers_inflation_mocker(input_type: Union[GsIdType, str], output_type: Union[GsIdType, str], ids: IdList, as_of: dt.datetime = None, multimap: bool = False, limit: int = None, **kwargs ) -> dict: if "CPI-UKRPI" in ids: return {"CPI-UKRPI": "MAQ7ND0MBP2AVVQW"} elif "CPI-CPXTEMU" in ids: return {"CPI-CPXTEMU": "MAK1FHKH5P5GJSHH"} def map_identifiers_cross_basis_mocker(input_type: Union[GsIdType, str], output_type: Union[GsIdType, str], ids: IdList, as_of: dt.datetime = None, multimap: bool = False, limit: int = None, **kwargs ) -> dict: if "USD-3m/JPY-3m" in ids: return {"USD-3m/JPY-3m": "MA99N6C1KF9078NM"} elif "EUR-3m/USD-3m" in ids: return {"EUR-3m/USD-3m": "MAXPKTXW2D4X6MFQ"} elif "GBP-3m/USD-3m" in ids: return {"GBP-3m/USD-3m": "MA8BZHQV3W32V63B"} def get_data_policy_rate_expectation_mocker( start: Union[dt.date, dt.datetime] = None, end: Union[dt.date, dt.datetime] = None, as_of: dt.datetime = None, since: dt.datetime = None, fields: Union[str, Fields] = None, asset_id_type: str = None, **kwargs) -> pd.DataFrame: if 'meetingNumber' in kwargs: if kwargs['meetingNumber'] == 0: return mock_meeting_spot() elif 'meeting_date' in kwargs: if kwargs['meeting_date'] == dt.date(2019, 10, 24): return mock_meeting_spot() return mock_meeting_expectation() def test_parse_meeting_date(): assert tm.parse_meeting_date(5) == '' assert tm.parse_meeting_date('') == '' assert tm.parse_meeting_date('test') == '' assert tm.parse_meeting_date('2019-09-01') == dt.date(2019, 9, 1) def test_currency_to_default_benchmark_rate(mocker): mocker.patch.object(GsSession.__class__, 'default_value', return_value=GsSession.get(Environment.QA, 'client_id', 'secret')) mocker.patch.object(GsSession.current, '_get', side_effect=mock_request) mocker.patch.object(GsAssetApi, 'map_identifiers', side_effect=map_identifiers_default_mocker) asset_id_list = ["MAZ7RWC904JYHYPS", "MAJNQPFGN1EBDHAE", "MA66CZBQJST05XKG", "MAK1FHKH5P5GJSHH", "MA4J1YB8XZP2BPT8", "MA4B66MW5E27U8P32SB"] correct_mapping = ["MAPDB7QNB2TZVQ0E", "MAJNQPFGN1EBDHAE", "MAFYB8Z4R1377A19", "MABMVE27EM8YZK33", "MA4J1YB8XZP2BPT8", "MA4B66MW5E27U8P32SB"] with tm.PricingContext(dt.date.today()): for i in range(len(asset_id_list)): correct_id = tm.currency_to_default_benchmark_rate(asset_id_list[i]) assert correct_id == correct_mapping[i] def test_currency_to_default_swap_rate_asset(mocker): mocker.patch.object(GsSession.__class__, 'default_value', return_value=GsSession.get(Environment.QA, 'client_id', 'secret')) mocker.patch.object(GsSession.current, '_get', side_effect=mock_request) mocker.patch.object(GsAssetApi, 'map_identifiers', side_effect=map_identifiers_swap_rate_mocker) asset_id_list = ['MAZ7RWC904JYHYPS', 'MAJNQPFGN1EBDHAE', 'MAJ6SEQH3GT0GA2Z'] correct_mapping = ['MAAXGV0GZTW4GFNC', 'MA5WM2QWRVMYKDK0', 'MAJ6SEQH3GT0GA2Z'] with tm.PricingContext(dt.date.today()): for i in range(len(asset_id_list)): correct_id = tm.currency_to_default_swap_rate_asset(asset_id_list[i]) assert correct_id == correct_mapping[i] def test_currency_to_inflation_benchmark_rate(mocker): mocker.patch.object(GsSession.__class__, 'default_value', return_value=GsSession.get(Environment.QA, 'client_id', 'secret')) mocker.patch.object(GsSession.current, '_get', side_effect=mock_request) mocker.patch.object(GsAssetApi, 'map_identifiers', side_effect=map_identifiers_inflation_mocker) asset_id_list = ["MA66CZBQJST05XKG", "MAK1FHKH5P5GJSHH", "MA4J1YB8XZP2BPT8"] correct_mapping = ["MAQ7ND0MBP2AVVQW", "MAK1FHKH5P5GJSHH", "MA4J1YB8XZP2BPT8"] with tm.PricingContext(dt.date.today()): for i in range(len(asset_id_list)): correct_id = tm.currency_to_inflation_benchmark_rate(asset_id_list[i]) assert correct_id == correct_mapping[i] # Test that the same id is returned when a TypeError is raised mocker.patch.object(GsAssetApi, 'map_identifiers', side_effect=TypeError('Test')) assert tm.currency_to_inflation_benchmark_rate('MA66CZBQJST05XKG') == 'MA66CZBQJST05XKG' def test_cross_to_basis(mocker): mocker.patch.object(GsSession.__class__, 'default_value', return_value=GsSession.get(Environment.QA, 'client_id', 'secret')) mocker.patch.object(GsSession.current, '_get', side_effect=mock_request) mocker.patch.object(GsAssetApi, 'map_identifiers', side_effect=map_identifiers_cross_basis_mocker) asset_id_list = ["MAYJPCVVF2RWXCES", "MA4B66MW5E27U8P32SB", "nobbid"] correct_mapping = ["MA99N6C1KF9078NM", "MA4B66MW5E27U8P32SB", "nobbid"] with tm.PricingContext(dt.date.today()): for i in range(len(asset_id_list)): correct_id = tm.cross_to_basis(asset_id_list[i]) assert correct_id == correct_mapping[i] # Test that the same id is returned when a TypeError is raised mocker.patch.object(GsAssetApi, 'map_identifiers', side_effect=TypeError('Test')) assert tm.cross_to_basis('MAYJPCVVF2RWXCES') == 'MAYJPCVVF2RWXCES' def test_currency_to_tdapi_swap_rate_asset(mocker): replace = Replacer() mocker.patch.object(GsSession.__class__, 'current', return_value=GsSession.get(Environment.QA, 'client_id', 'secret')) mocker.patch.object(GsSession.current, '_get', side_effect=mock_request) mocker.patch.object(SecurityMaster, 'get_asset', side_effect=mock_request) bbid_mock = replace('gs_quant.timeseries.measures.Asset.get_identifier', Mock()) with tm.PricingContext(dt.date.today()): asset = Currency('MA25DW5ZGC1BSC8Y', 'NOK') bbid_mock.return_value = 'NOK' correct_id = tm_rates._currency_to_tdapi_swap_rate_asset(asset) asset = Currency('MAZ7RWC904JYHYPS', 'USD') bbid_mock.return_value = 'USD' correct_id = tm_rates._currency_to_tdapi_swap_rate_asset(asset) assert 'MAFRSWPAF5QPNTP2' == correct_id bbid_mock.return_value = 'CHF' correct_id = tm_rates._currency_to_tdapi_swap_rate_asset(asset) assert 'MAW25BGQJH9P6DPT' == correct_id bbid_mock.return_value = 'EUR' correct_id = tm_rates._currency_to_tdapi_swap_rate_asset(asset) assert 'MAA9MVX15AJNQCVG' == correct_id bbid_mock.return_value = 'GBP' correct_id = tm_rates._currency_to_tdapi_swap_rate_asset(asset) assert 'MA6QCAP9B7ABS9HA' == correct_id bbid_mock.return_value = 'JPY' correct_id = tm_rates._currency_to_tdapi_swap_rate_asset(asset) assert 'MAEE219J5ZP0ZKRK' == correct_id bbid_mock.return_value = 'SEK' correct_id = tm_rates._currency_to_tdapi_swap_rate_asset(asset) assert 'MAETMVTPNP3199A5' == correct_id bbid_mock.return_value = 'HKD' correct_id = tm_rates._currency_to_tdapi_swap_rate_asset(asset) assert 'MABRNGY8XRFVC36N' == correct_id bbid_mock.return_value = 'NZD' correct_id = tm_rates._currency_to_tdapi_swap_rate_asset(asset) assert 'MAH16NHE1HBN0FBZ' == correct_id bbid_mock.return_value = 'AUD' correct_id = tm_rates._currency_to_tdapi_swap_rate_asset(asset) assert 'MAY8147CRK0ZP53B' == correct_id bbid_mock.return_value = 'CAD' correct_id = tm_rates._currency_to_tdapi_swap_rate_asset(asset) assert 'MANJ8SS88WJ6N28Q' == correct_id bbid_mock.return_value = 'KRW' correct_id = tm_rates._currency_to_tdapi_swap_rate_asset(asset) assert 'MAP55AXG5SQVS6C5' == correct_id bbid_mock.return_value = 'INR' correct_id = tm_rates._currency_to_tdapi_swap_rate_asset(asset) assert 'MA20JHJXN1PD5HGE' == correct_id bbid_mock.return_value = 'CNY' correct_id = tm_rates._currency_to_tdapi_swap_rate_asset(asset) assert 'MA4K1D8HH2R0RQY5' == correct_id bbid_mock.return_value = 'SGD' correct_id = tm_rates._currency_to_tdapi_swap_rate_asset(asset) assert 'MA5CQFHYBPH9E5BS' == correct_id bbid_mock.return_value = 'DKK' correct_id = tm_rates._currency_to_tdapi_swap_rate_asset(asset) assert 'MAF131NKWVRESFYA' == correct_id asset = Currency('MA890', 'PLN') bbid_mock.return_value = 'PLN' assert 'MA890' == tm_rates._currency_to_tdapi_swap_rate_asset(asset) replace.restore() def test_currency_to_tdapi_basis_swap_rate_asset(mocker): replace = Replacer() mocker.patch.object(GsSession.__class__, 'current', return_value=GsSession.get(Environment.QA, 'client_id', 'secret')) mocker.patch.object(GsSession.current, '_get', side_effect=mock_request) mocker.patch.object(SecurityMaster, 'get_asset', side_effect=mock_request) bbid_mock = replace('gs_quant.timeseries.measures.Asset.get_identifier', Mock()) with tm.PricingContext(dt.date.today()): asset = Currency('MA890', 'NOK') bbid_mock.return_value = 'NOK' assert 'MA890' == tm_rates._currency_to_tdapi_basis_swap_rate_asset(asset) asset = Currency('MAZ7RWC904JYHYPS', 'USD') bbid_mock.return_value = 'USD' correct_id = tm_rates._currency_to_tdapi_basis_swap_rate_asset(asset) assert 'MAQB1PGEJFCET3GG' == correct_id bbid_mock.return_value = 'EUR' correct_id = tm_rates._currency_to_tdapi_basis_swap_rate_asset(asset) assert 'MAGRG2VT11GQ2RQ9' == correct_id bbid_mock.return_value = 'GBP' correct_id = tm_rates._currency_to_tdapi_basis_swap_rate_asset(asset) assert 'MAHCYNB3V75JC5Q8' == correct_id bbid_mock.return_value = 'JPY' correct_id = tm_rates._currency_to_tdapi_basis_swap_rate_asset(asset) assert 'MAXVRBEZCJVH0C4V' == correct_id replace.restore() def test_check_clearing_house(): assert tm_rates._ClearingHouse.LCH == tm_rates._check_clearing_house('lch') assert tm_rates._ClearingHouse.CME == tm_rates._check_clearing_house(tm_rates._ClearingHouse.CME) assert tm_rates._ClearingHouse.LCH == tm_rates._check_clearing_house(None) invalid_ch = ['NYSE'] for ch in invalid_ch: with pytest.raises(MqError): tm_rates._check_clearing_house(ch) def test_get_swap_csa_terms(): euribor_index = tm_rates.CURRENCY_TO_SWAP_RATE_BENCHMARK['EUR'][BenchmarkType.EURIBOR.value] usd_libor_index = tm_rates.CURRENCY_TO_SWAP_RATE_BENCHMARK['USD'][BenchmarkType.LIBOR.value] fed_funds_index = tm_rates.CURRENCY_TO_SWAP_RATE_BENCHMARK['USD'][BenchmarkType.Fed_Funds.value] estr_index = tm_rates.CURRENCY_TO_SWAP_RATE_BENCHMARK['EUR'][BenchmarkType.EUROSTR.value] assert dict(csaTerms='USD-1') == tm_rates._get_swap_csa_terms('USD', fed_funds_index) assert dict(csaTerms='EUR-EuroSTR') == tm_rates._get_swap_csa_terms('EUR', estr_index) assert {} == tm_rates._get_swap_csa_terms('EUR', euribor_index) assert {} == tm_rates._get_swap_csa_terms('USD', usd_libor_index) def test_get_basis_swap_csa_terms(): euribor_index = tm_rates.CURRENCY_TO_SWAP_RATE_BENCHMARK['EUR'][BenchmarkType.EURIBOR.value] usd_libor_index = tm_rates.CURRENCY_TO_SWAP_RATE_BENCHMARK['USD'][BenchmarkType.LIBOR.value] fed_funds_index = tm_rates.CURRENCY_TO_SWAP_RATE_BENCHMARK['USD'][BenchmarkType.Fed_Funds.value] sofr_index = tm_rates.CURRENCY_TO_SWAP_RATE_BENCHMARK['USD'][BenchmarkType.SOFR.value] estr_index = tm_rates.CURRENCY_TO_SWAP_RATE_BENCHMARK['EUR'][BenchmarkType.EUROSTR.value] eonia_index = tm_rates.CURRENCY_TO_SWAP_RATE_BENCHMARK['EUR'][BenchmarkType.EONIA.value] assert dict(csaTerms='USD-1') == tm_rates._get_basis_swap_csa_terms('USD', fed_funds_index, sofr_index) assert dict(csaTerms='EUR-EuroSTR') == tm_rates._get_basis_swap_csa_terms('EUR', estr_index, eonia_index) assert {} == tm_rates._get_basis_swap_csa_terms('EUR', eonia_index, euribor_index) assert {} == tm_rates._get_basis_swap_csa_terms('USD', fed_funds_index, usd_libor_index) def test_match_floating_tenors(): swap_args = dict(asset_parameters_payer_rate_option=tm_rates.CURRENCY_TO_SWAP_RATE_BENCHMARK['USD']['LIBOR'], asset_parameters_payer_designated_maturity='3m', asset_parameters_receiver_rate_option=tm_rates.CURRENCY_TO_SWAP_RATE_BENCHMARK['USD']['SOFR'], asset_parameters_receiver_designated_maturity='1y') assert '3m' == tm_rates._match_floating_tenors(swap_args)['asset_parameters_receiver_designated_maturity'] swap_args = dict(asset_parameters_payer_rate_option=tm_rates.CURRENCY_TO_SWAP_RATE_BENCHMARK['USD']['SOFR'], asset_parameters_payer_designated_maturity='1y', asset_parameters_receiver_rate_option=tm_rates.CURRENCY_TO_SWAP_RATE_BENCHMARK['USD']['LIBOR'], asset_parameters_receiver_designated_maturity='3m') assert '3m' == tm_rates._match_floating_tenors(swap_args)['asset_parameters_payer_designated_maturity'] swap_args = dict(asset_parameters_payer_rate_option=tm_rates.CURRENCY_TO_SWAP_RATE_BENCHMARK['GBP']['SONIA'], asset_parameters_payer_designated_maturity='1y', asset_parameters_receiver_rate_option=tm_rates.CURRENCY_TO_SWAP_RATE_BENCHMARK['GBP']['LIBOR'], asset_parameters_receiver_designated_maturity='3m') assert '3m' == tm_rates._match_floating_tenors(swap_args)['asset_parameters_payer_designated_maturity'] swap_args = dict(asset_parameters_payer_rate_option=tm_rates.CURRENCY_TO_SWAP_RATE_BENCHMARK['GBP']['LIBOR'], asset_parameters_payer_designated_maturity='3m', asset_parameters_receiver_rate_option=tm_rates.CURRENCY_TO_SWAP_RATE_BENCHMARK['GBP']['SONIA'], asset_parameters_receiver_designated_maturity='1y') assert '3m' == tm_rates._match_floating_tenors(swap_args)['asset_parameters_receiver_designated_maturity'] swap_args = dict(asset_parameters_payer_rate_option=tm_rates.CURRENCY_TO_SWAP_RATE_BENCHMARK['USD']['LIBOR'], asset_parameters_payer_designated_maturity='3m', asset_parameters_receiver_rate_option=tm_rates.CURRENCY_TO_SWAP_RATE_BENCHMARK['USD']['LIBOR'], asset_parameters_receiver_designated_maturity='6m') assert swap_args == tm_rates._match_floating_tenors(swap_args) def test_get_term_struct_date(mocker): today = datetime.datetime.today() biz_day = CustomBusinessDay() assert today == tm_rates._get_term_struct_date(tenor=today, index=today, business_day=biz_day) date_index = datetime.datetime(2020, 7, 31, 0, 0) assert date_index == tm_rates._get_term_struct_date(tenor='2020-07-31', index=date_index, business_day=biz_day) assert date_index == tm_rates._get_term_struct_date(tenor='0b', index=date_index, business_day=biz_day) assert datetime.datetime(2021, 7, 30, 0, 0) == tm_rates._get_term_struct_date(tenor='1y', index=date_index, business_day=biz_day) def test_cross_stored_direction_for_fx_vol(mocker): mocker.patch.object(GsSession.__class__, 'default_value', return_value=GsSession.get(Environment.QA, 'client_id', 'secret')) mocker.patch.object(GsSession.current, '_get', side_effect=mock_request) mocker.patch.object(GsSession.current, '_post', side_effect=mock_request) asset_id_list = ["MAYJPCVVF2RWXCES", "MATGYV0J9MPX534Z"] correct_mapping = ["MATGYV0J9MPX534Z", "MATGYV0J9MPX534Z"] with tm.PricingContext(dt.date.today()): for i in range(len(asset_id_list)): correct_id = tm.cross_stored_direction_for_fx_vol(asset_id_list[i]) assert correct_id == correct_mapping[i] def test_cross_to_usd_based_cross_for_fx_forecast(mocker): mocker.patch.object(GsSession.__class__, 'default_value', return_value=GsSession.get(Environment.QA, 'client_id', 'secret')) mocker.patch.object(GsSession.current, '_get', side_effect=mock_request) mocker.patch.object(GsSession.current, '_post', side_effect=mock_request) asset_id_list = ["MAYJPCVVF2RWXCES", "MATGYV0J9MPX534Z"] correct_mapping = ["MATGYV0J9MPX534Z", "MATGYV0J9MPX534Z"] with tm.PricingContext(dt.date.today()): for i in range(len(asset_id_list)): correct_id = tm.cross_to_usd_based_cross(asset_id_list[i]) assert correct_id == correct_mapping[i] def test_cross_to_used_based_cross(mocker): mocker.patch.object(GsSession.__class__, 'default_value', return_value=GsSession.get(Environment.QA, 'client_id', 'secret')) mocker.patch.object(GsSession.current, '_get', side_effect=mock_request) mocker.patch.object(GsSession.current, '_post', side_effect=mock_request) mocker.patch.object(SecurityMaster, 'get_asset', side_effect=TypeError('unsupported')) replace = Replacer() bbid_mock = replace('gs_quant.timeseries.measures.Asset.get_identifier', Mock()) bbid_mock.return_value = 'HELLO' assert 'FUN' == tm.cross_to_usd_based_cross(Cross('FUN', 'EURUSD')) replace.restore() def test_cross_stored_direction(mocker): mocker.patch.object(GsSession.__class__, 'default_value', return_value=GsSession.get(Environment.QA, 'client_id', 'secret')) mocker.patch.object(GsSession.current, '_get', side_effect=mock_request) mocker.patch.object(GsSession.current, '_post', side_effect=mock_request) mocker.patch.object(SecurityMaster, 'get_asset', side_effect=TypeError('unsupported')) replace = Replacer() bbid_mock = replace('gs_quant.timeseries.measures.Asset.get_identifier', Mock()) bbid_mock.return_value = 'HELLO' assert 'FUN' == tm.cross_stored_direction_for_fx_vol(Cross('FUN', 'EURUSD')) replace.restore() def test_get_tdapi_rates_assets(mocker): mock_asset_1 = GsAsset(asset_class='Rate', id='MAW25BGQJH9P6DPT', type_='Swap', name='Test_asset') mock_asset_2 = GsAsset(asset_class='Rate', id='MAA9MVX15AJNQCVG', type_='Swap', name='Test_asset') mock_asset_3 = GsAsset(asset_class='Rate', id='MANQHVYC30AZFT7R', type_='BasisSwap', name='Test_asset') replace = Replacer() assets = replace('gs_quant.timeseries.measures.GsAssetApi.get_many_assets', Mock()) assets.return_value = [mock_asset_1] assert 'MAW25BGQJH9P6DPT' == tm_rates._get_tdapi_rates_assets() replace.restore() assets = replace('gs_quant.timeseries.measures.GsAssetApi.get_many_assets', Mock()) assets.return_value = [mock_asset_1, mock_asset_2] kwargs = dict(asset_parameters_termination_date='10y', asset_parameters_effective_date='0b') with pytest.raises(MqValueError): tm_rates._get_tdapi_rates_assets(**kwargs) replace.restore() assets = replace('gs_quant.timeseries.measures.GsAssetApi.get_many_assets', Mock()) assets.return_value = [] with pytest.raises(MqValueError): tm_rates._get_tdapi_rates_assets() replace.restore() assets = replace('gs_quant.timeseries.measures.GsAssetApi.get_many_assets', Mock()) assets.return_value = [mock_asset_1, mock_asset_2] kwargs = dict() assert ['MAW25BGQJH9P6DPT', 'MAA9MVX15AJNQCVG'] == tm_rates._get_tdapi_rates_assets(**kwargs) replace.restore() # test case will test matching sofr maturity with libor leg and flipping legs to get right asset kwargs = dict(type='BasisSwap', asset_parameters_termination_date='10y', asset_parameters_payer_rate_option=BenchmarkType.LIBOR, asset_parameters_payer_designated_maturity='3m', asset_parameters_receiver_rate_option=BenchmarkType.SOFR, asset_parameters_receiver_designated_maturity='1y', asset_parameters_clearing_house='lch', asset_parameters_effective_date='Spot', asset_parameters_notional_currency='USD', pricing_location='NYC') assets = replace('gs_quant.timeseries.measures.GsAssetApi.get_many_assets', Mock()) assets.return_value = [mock_asset_3] assert 'MANQHVYC30AZFT7R' == tm_rates._get_tdapi_rates_assets(**kwargs) replace.restore() def test_get_swap_leg_defaults(): result_dict = dict(currency=CurrEnum.JPY, benchmark_type='JPY-LIBOR-BBA', floating_rate_tenor='6m', pricing_location=PricingLocation.TKO) defaults = tm_rates._get_swap_leg_defaults(CurrEnum.JPY) assert result_dict == defaults result_dict = dict(currency=CurrEnum.USD, benchmark_type='USD-LIBOR-BBA', floating_rate_tenor='3m', pricing_location=PricingLocation.NYC) defaults = tm_rates._get_swap_leg_defaults(CurrEnum.USD) assert result_dict == defaults result_dict = dict(currency=CurrEnum.EUR, benchmark_type='EUR-EURIBOR-TELERATE', floating_rate_tenor='6m', pricing_location=PricingLocation.LDN) defaults = tm_rates._get_swap_leg_defaults(CurrEnum.EUR) assert result_dict == defaults result_dict = dict(currency=CurrEnum.SEK, benchmark_type='SEK-STIBOR-SIDE', floating_rate_tenor='6m', pricing_location=PricingLocation.LDN) defaults = tm_rates._get_swap_leg_defaults(CurrEnum.SEK) assert result_dict == defaults def test_check_forward_tenor(): valid_tenors = [datetime.date(2020, 1, 1), '1y', 'imm2', 'frb2', '1m', '0b'] for tenor in valid_tenors: assert tenor == tm_rates._check_forward_tenor(tenor) invalid_tenors = ['5yr', 'imm5', 'frb0'] for tenor in invalid_tenors: with pytest.raises(MqError): tm_rates._check_forward_tenor(tenor) def mock_commod(_cls, _q): d = { 'price': [30, 30, 30, 30, 35.929686, 35.636039, 27.307498, 23.23177, 19.020833, 18.827291, 17.823749, 17.393958, 17.824999, 20.307603, 24.311249, 25.160103, 25.245728, 25.736873, 28.425206, 28.779789, 30.519996, 34.896348, 33.966973, 33.95489, 33.686348, 34.840307, 32.674163, 30.261665, 30, 30, 30] } df = MarketDataResponseFrame(data=d, index=pd.date_range('2019-05-01', periods=31, freq='H', tz=timezone('UTC'))) df.dataset_ids = _test_datasets return df def mock_forward_price(_cls, _q): d = { 'forwardPrice': [ 22.0039, 24.8436, 24.8436, 11.9882, 14.0188, 11.6311, 18.9234, 21.3654, 21.3654, ], 'quantityBucket': [ "PEAK", "PEAK", "PEAK", "7X8", "7X8", "7X8", "2X16H", "2X16H", "2X16H", ], 'contract': [ "J20", "K20", "M20", "J20", "K20", "M20", "J20", "K20", "M20", ] } df = MarketDataResponseFrame(data=d, index=pd.to_datetime([datetime.date(2019, 1, 2)] * 9)) df.dataset_ids = _test_datasets return df def mock_fair_price(_cls, _q): d = { 'fairPrice': [ 2.880, 2.844, 2.726, ], 'contract': [ "F21", "G21", "H21", ] } df = MarketDataResponseFrame(data=d, index=pd.to_datetime([datetime.date(2019, 1, 2)] * 3)) df.dataset_ids = _test_datasets return df def mock_natgas_forward_price(_cls, _q): d = { 'forwardPrice': [ 2.880, 2.844, 2.726, ], 'contract': [ "F21", "G21", "H21", ] } df = MarketDataResponseFrame(data=d, index=pd.to_datetime([datetime.date(2019, 1, 2)] * 3)) df.dataset_ids = _test_datasets return df def mock_fair_price_swap(_cls, _q): d = {'fairPrice': [2.880]} df = MarketDataResponseFrame(data=d, index=pd.to_datetime([datetime.date(2019, 1, 2)])) df.dataset_ids = _test_datasets return df def mock_implied_volatility(_cls, _q): d = { 'impliedVolatility': [ 2.880, 2.844, 2.726, ], 'contract': [ "F21", "G21", "H21", ] } df = MarketDataResponseFrame(data=d, index=pd.to_datetime([datetime.date(2019, 1, 2)] * 3)) df.dataset_ids = _test_datasets return df def mock_missing_bucket_forward_price(_cls, _q): d = { 'forwardPrice': [ 22.0039, 24.8436, 24.8436, 11.9882, 14.0188, 18.9234, 21.3654, 21.3654, ], 'quantityBucket': [ "PEAK", "PEAK", "PEAK", "7X8", "7X8", "2X16H", "2X16H", "2X16H", ], 'contract': [ "J20", "K20", "M20", "J20", "K20", "J20", "K20", "M20", ] } return pd.DataFrame(data=d, index=pd.to_datetime([datetime.date(2019, 1, 2)] * 8)) def mock_fx_vol(_cls, q): queries = q.get('queries', []) if len(queries) > 0 and 'Last' in queries[0]['measures']: return MarketDataResponseFrame({'impliedVolatility': [3]}, index=[pd.Timestamp('2019-01-04T12:00:00Z')]) d = { 'strikeReference': ['delta', 'spot', 'forward'], 'relativeStrike': [25, 100, 100], 'impliedVolatility': [5, 1, 2], 'forecast': [1.1, 1.1, 1.1] } df = MarketDataResponseFrame(data=d, index=pd.date_range('2019-01-01', periods=3, freq='D')) df.dataset_ids = _test_datasets return df def mock_fx_forecast(_cls, _q): d = { 'fxForecast': [1.1, 1.1, 1.1] } df = MarketDataResponseFrame(data=d, index=_index * 3) df.dataset_ids = _test_datasets return df def mock_fx_delta(_cls, _q): d = { 'relativeStrike': [25, -25, 0], 'impliedVolatility': [1, 5, 2], 'forecast': [1.1, 1.1, 1.1] } df = MarketDataResponseFrame(data=d, index=_index * 3) df.dataset_ids = _test_datasets return df def mock_fx_empty(_cls, _q): d = { 'strikeReference': [], 'relativeStrike': [], 'impliedVolatility': [] } df = MarketDataResponseFrame(data=d, index=[]) df.dataset_ids = _test_datasets return df def mock_fx_switch(_cls, _q, _n): replace = Replacer() replace('gs_quant.timeseries.measures.GsDataApi.get_market_data', mock_fx_empty) replace.restore() return Cross('MA1889', 'ABC/XYZ') def mock_curr(_cls, _q): d = { 'swapAnnuity': [1, 2, 3], 'swapRate': [1, 2, 3], 'basisSwapRate': [1, 2, 3], 'swaptionVol': [1, 2, 3], 'atmFwdRate': [1, 2, 3], 'midcurveVol': [1, 2, 3], 'capFloorVol': [1, 2, 3], 'spreadOptionVol': [1, 2, 3], 'inflationSwapRate': [1, 2, 3], 'midcurveAtmFwdRate': [1, 2, 3], 'capFloorAtmFwdRate': [1, 2, 3], 'spreadOptionAtmFwdRate': [1, 2, 3], 'strike': [0.25, 0.5, 0.75] } df = MarketDataResponseFrame(data=d, index=_index * 3) df.dataset_ids = _test_datasets return df def mock_cross(_cls, _q): d = { 'basis': [1, 2, 3], } df = MarketDataResponseFrame(data=d, index=_index * 3) df.dataset_ids = _test_datasets return df def mock_eq(_cls, _q): d = { 'relativeStrike': [0.75, 0.25, 0.5], 'impliedVolatility': [5, 1, 2], 'impliedCorrelation': [5, 1, 2], 'realizedCorrelation': [3.14, 2.71828, 1.44], 'averageImpliedVolatility': [5, 1, 2], 'averageImpliedVariance': [5, 1, 2], 'averageRealizedVolatility': [5, 1, 2], 'impliedVolatilityByDeltaStrike': [5, 1, 2], 'fundamentalMetric': [5, 1, 2] } df = MarketDataResponseFrame(data=d, index=_index * 3) df.dataset_ids = _test_datasets return df def mock_eq_vol(_cls, q): queries = q.get('queries', []) if len(queries) > 0 and 'Last' in queries[0]['measures']: idx = [pd.Timestamp(datetime.datetime.now(pytz.UTC))] return MarketDataResponseFrame({'impliedVolatility': [3]}, index=idx) d = { 'impliedVolatility': [5, 1, 2], } end = datetime.datetime.now(pytz.UTC).date() - datetime.timedelta(days=1) df = MarketDataResponseFrame(data=d, index=pd.date_range(end=end, periods=3, freq='D')) df.dataset_ids = _test_datasets return df def mock_eq_vol_last_err(_cls, q): queries = q.get('queries', []) if len(queries) > 0 and 'Last' in queries[0]['measures']: raise MqValueError('error while getting last') d = { 'impliedVolatility': [5, 1, 2], } end = datetime.date.today() - datetime.timedelta(days=1) df = MarketDataResponseFrame(data=d, index=pd.date_range(end=end, periods=3, freq='D')) df.dataset_ids = _test_datasets return df def mock_eq_vol_last_empty(_cls, q): queries = q.get('queries', []) if len(queries) > 0 and 'Last' in queries[0]['measures']: return MarketDataResponseFrame() d = { 'impliedVolatility': [5, 1, 2], } end = datetime.date.today() - datetime.timedelta(days=1) df = MarketDataResponseFrame(data=d, index=pd.date_range(end=end, periods=3, freq='D')) df.dataset_ids = _test_datasets return df def mock_eq_norm(_cls, _q): d = { 'relativeStrike': [-4.0, 4.0, 0], 'impliedVolatility': [5, 1, 2] } df = MarketDataResponseFrame(data=d, index=_index * 3) df.dataset_ids = _test_datasets return df def mock_eq_spot(_cls, _q): d = { 'relativeStrike': [0.75, 1.25, 1.0], 'impliedVolatility': [5, 1, 2] } df = MarketDataResponseFrame(data=d, index=_index * 3) df.dataset_ids = _test_datasets return df def mock_inc(_cls, _q): d = { 'relativeStrike': [0.25, 0.75], 'impliedVolatility': [5, 1] } df = MarketDataResponseFrame(data=d, index=_index * 2) df.dataset_ids = _test_datasets return df def mock_meeting_expectation(): data_dict = MarketDataResponseFrame({'date': [dt.date(2019, 12, 6)], 'assetId': ['MARFAGXDQRWM07Y2'], 'location': ['NYC'], 'rateType': ['Meeting Forward'], 'startingDate': [dt.date(2020, 1, 29)], 'endingDate': [dt.date(2020, 1, 29)], 'meetingNumber': [2], 'valuationDate': [dt.date(2019, 12, 6)], 'meetingDate': [dt.date(2020, 1, 23)], 'value': [-0.004550907771] }) data_dict.dataset_ids = _test_datasets return data_dict def mock_meeting_spot(): data_dict = MarketDataResponseFrame({'date': [dt.date(2019, 12, 6)], 'assetId': ['MARFAGXDQRWM07Y2'], 'location': ['NYC'], 'rateType': ['Meeting Forward'], 'startingDate': [dt.date(2019, 10, 30)], 'endingDate': [dt.date(2019, 12, 18)], 'meetingNumber': [0], 'valuationDate': [dt.date(2019, 12, 6)], 'meetingDate': [dt.date(2019, 10, 24)], 'value': [-0.004522570525] }) data_dict.dataset_ids = _test_datasets return data_dict def mock_meeting_absolute(): data_dict = MarketDataResponseFrame({'date': [datetime.date(2019, 12, 6), datetime.date(2019, 12, 6)], 'assetId': ['MARFAGXDQRWM07Y2', 'MARFAGXDQRWM07Y2'], 'location': ['NYC', 'NYC'], 'rateType': ['Meeting Forward', 'Meeting Forward'], 'startingDate': [datetime.date(2019, 10, 30), datetime.date(2020, 1, 29)], 'endingDate': [datetime.date(2019, 10, 30), datetime.date(2020, 1, 29)], 'meetingNumber': [0, 2], 'valuationDate': [datetime.date(2019, 12, 6), datetime.date(2019, 12, 6)], 'meetingDate': [datetime.date(2019, 10, 24), datetime.date(2020, 1, 23)], 'value': [-0.004522570525, -0.004550907771] }) data_dict.dataset_ids = _test_datasets return data_dict def mock_ois_spot(): data_dict = MarketDataResponseFrame({'date': [datetime.date(2019, 12, 6)], 'assetId': ['MARFAGXDQRWM07Y2'], 'location': ['NYC'], 'rateType': ['Spot'], 'startingDate': [datetime.date(2019, 12, 6)], 'endingDate': [datetime.date(2019, 12, 7)], 'meetingNumber': [-1], 'valuationDate': [datetime.date(2019, 12, 6)], 'meetingDate': [datetime.date(2019, 12, 6)], 'value': [-0.00455] }) data_dict.dataset_ids = _test_datasets return data_dict def mock_esg(_cls, _q): d = { "esNumericScore": [2, 4, 6], "esNumericPercentile": [81.2, 75.4, 65.7], "esPolicyScore": [2, 4, 6], "esPolicyPercentile": [81.2, 75.4, 65.7], "esScore": [2, 4, 6], "esPercentile": [81.2, 75.4, 65.7], "esProductImpactScore": [2, 4, 6], "esProductImpactPercentile": [81.2, 75.4, 65.7], "gScore": [2, 4, 6], "gPercentile": [81.2, 75.4, 65.7], "esMomentumScore": [2, 4, 6], "esMomentumPercentile": [81.2, 75.4, 65.7], "gRegionalScore": [2, 4, 6], "gRegionalPercentile": [81.2, 75.4, 65.7], "controversyScore": [2, 4, 6], "controversyPercentile": [81.2, 75.4, 65.7], "esDisclosurePercentage": [49.2, 55.7, 98.4] } df = MarketDataResponseFrame(data=d, index=_index * 3) df.dataset_ids = _test_datasets return df def mock_index_positions_data( asset_id, start_date, end_date, fields=None, position_type=None ): return [ {'underlyingAssetId': 'MA3', 'netWeight': 0.1, 'positionType': 'close', 'assetId': 'MA890', 'positionDate': '2020-01-01' }, {'underlyingAssetId': 'MA1', 'netWeight': 0.6, 'positionType': 'close', 'assetId': 'MA890', 'positionDate': '2020-01-01' }, {'underlyingAssetId': 'MA2', 'netWeight': 0.3, 'positionType': 'close', 'assetId': 'MA890', 'positionDate': '2020-01-01' } ] def mock_rating(_cls, _q): d = { 'rating': ['Buy', 'Sell', 'Buy', 'Neutral'], 'convictionList': [1, 0, 0, 0] } df = MarketDataResponseFrame(data=d, index=pd.to_datetime([datetime.date(2020, 8, 13), datetime.date(2020, 8, 14), datetime.date(2020, 8, 17), datetime.date(2020, 8, 18)])) df.dataset_ids = _test_datasets return df def mock_gsdeer_gsfeer(_cls, assetId, start_date): d = { 'gsdeer': [1, 1.2, 1.1], 'gsfeer': [2, 1.8, 1.9], 'year': [2000, 2010, 2020], 'quarter': ['Q1', 'Q2', 'Q3'] } df = MarketDataResponseFrame(data=d, index=_index * 3) return df def mock_factor_profile(_cls, _q): d = { 'growthScore': [0.238, 0.234, 0.234, 0.230], 'financialReturnsScore': [0.982, 0.982, 0.982, 0.982], 'multipleScore': [0.204, 0.192, 0.190, 0.190], 'integratedScore': [0.672, 0.676, 0.676, 0.674] } df = MarketDataResponseFrame(data=d, index=pd.to_datetime([datetime.date(2020, 8, 13), datetime.date(2020, 8, 14), datetime.date(2020, 8, 17), datetime.date(2020, 8, 18)])) df.dataset_ids = _test_datasets return df def mock_commodity_forecast(_cls, _q): d = { 'forecastPeriod': ['3m', '3m', '3m', '3m'], 'forecastType': ['spotReturn', 'spotReturn', 'spotReturn', 'spotReturn'], 'commodityForecast': [1700, 1400, 1500, 1600] } df = MarketDataResponseFrame(data=d, index=pd.to_datetime([datetime.date(2020, 8, 13), datetime.date(2020, 8, 14), datetime.date(2020, 8, 17), datetime.date(2020, 8, 18)])) df.dataset_ids = _test_datasets return df def test_skew(): replace = Replacer() mock_spx = Index('MA890', AssetClass.Equity, 'SPX') replace('gs_quant.timeseries.measures.GsDataApi.get_market_data', mock_eq) actual = tm.skew(mock_spx, '1m', tm.SkewReference.DELTA, 25) assert_series_equal(pd.Series([2.0], index=_index, name='impliedVolatility'), pd.Series(actual)) assert actual.dataset_ids == _test_datasets replace('gs_quant.timeseries.measures.GsDataApi.get_market_data', mock_eq_norm) actual = tm.skew(mock_spx, '1m', tm.SkewReference.NORMALIZED, 4) assert_series_equal(pd.Series([2.0], index=_index, name='impliedVolatility'), pd.Series(actual)) assert actual.dataset_ids == _test_datasets replace('gs_quant.timeseries.measures.GsDataApi.get_market_data', mock_eq_spot) actual = tm.skew(mock_spx, '1m', tm.SkewReference.SPOT, 25) assert_series_equal(pd.Series([2.0], index=_index, name='impliedVolatility'), pd.Series(actual)) assert actual.dataset_ids == _test_datasets mock = replace('gs_quant.timeseries.measures.GsDataApi.get_market_data', Mock()) mock.return_value = mock_empty_market_data_response() actual = tm.skew(mock_spx, '1m', tm.SkewReference.SPOT, 25) assert actual.empty replace('gs_quant.timeseries.measures.GsDataApi.get_market_data', mock_inc) with pytest.raises(MqError): tm.skew(mock_spx, '1m', tm.SkewReference.DELTA, 25) replace.restore() with pytest.raises(MqError): tm.skew(mock_spx, '1m', None, 25) def test_skew_fx(): replace = Replacer() cross = Cross('MAA0NE9QX2ABETG6', 'USD/EUR') xrefs = replace('gs_quant.timeseries.measures.GsAssetApi.get_asset_xrefs', Mock()) xrefs.return_value = [GsTemporalXRef(dt.date(2019, 1, 1), dt.date(2952, 12, 31), XRef(bbid='EURUSD', ))] replace('gs_quant.markets.securities.SecurityMaster.get_asset', Mock()).return_value = cross replace('gs_quant.timeseries.measures.GsDataApi.get_market_data', mock_fx_delta) mock = cross actual = tm.skew(mock, '1m', tm.SkewReference.DELTA, 25) assert_series_equal(pd.Series([2.0], index=_index, name='impliedVolatility'), pd.Series(actual)) assert actual.dataset_ids == _test_datasets with pytest.raises(MqError): tm.skew(mock, '1m', tm.SkewReference.DELTA, 25, real_time=True) with pytest.raises(MqError): tm.skew(mock, '1m', tm.SkewReference.SPOT, 25) with pytest.raises(MqError): tm.skew(mock, '1m', tm.SkewReference.FORWARD, 25) with pytest.raises(MqError): tm.skew(mock, '1m', tm.SkewReference.NORMALIZED, 25) with pytest.raises(MqError): tm.skew(mock, '1m', None, 25) replace.restore() def test_implied_vol(): replace = Replacer() mock_spx = Index('MA890', AssetClass.Equity, 'SPX') replace('gs_quant.timeseries.measures.GsDataApi.get_market_data', mock_eq_vol) idx = pd.date_range(end=datetime.datetime.now(pytz.UTC).date(), periods=4, freq='D') actual = tm.implied_volatility(mock_spx, '1m', tm.VolReference.DELTA_CALL, 25) assert_series_equal(pd.Series([5, 1, 2, 3], index=idx, name='impliedVolatility'), pd.Series(actual)) assert actual.dataset_ids == _test_datasets actual = tm.implied_volatility(mock_spx, '1m', tm.VolReference.DELTA_PUT, 75) assert_series_equal(pd.Series([5, 1, 2, 3], index=idx, name='impliedVolatility'), pd.Series(actual)) assert actual.dataset_ids == _test_datasets with pytest.raises(MqError): tm.implied_volatility(mock_spx, '1m', tm.VolReference.DELTA_NEUTRAL) with pytest.raises(MqError): tm.implied_volatility(mock_spx, '1m', tm.VolReference.DELTA_CALL) replace.restore() def test_implied_vol_no_last(): replace = Replacer() mock_spx = Index('MA890', AssetClass.Equity, 'SPX') idx = pd.date_range(end=datetime.date.today() - datetime.timedelta(days=1), periods=3, freq='D') replace('gs_quant.timeseries.measures.GsDataApi.get_market_data', mock_eq_vol_last_err) actual = tm.implied_volatility(mock_spx, '1m', tm.VolReference.DELTA_CALL, 25) assert_series_equal(pd.Series([5, 1, 2], index=idx, name='impliedVolatility'), pd.Series(actual)) actual = tm.implied_volatility(mock_spx, '1m', tm.VolReference.DELTA_PUT, 75) assert_series_equal(pd.Series([5, 1, 2], index=idx, name='impliedVolatility'), pd.Series(actual)) replace('gs_quant.timeseries.measures.GsDataApi.get_market_data', mock_eq_vol_last_empty) actual = tm.implied_volatility(mock_spx, '1m', tm.VolReference.DELTA_CALL, 25) assert_series_equal(pd.Series([5, 1, 2], index=idx, name='impliedVolatility'), pd.Series(actual)) actual = tm.implied_volatility(mock_spx, '1m', tm.VolReference.DELTA_PUT, 75) assert_series_equal(pd.Series([5, 1, 2], index=idx, name='impliedVolatility'), pd.Series(actual)) replace.restore() def test_implied_vol_fx(): replace = Replacer() mock = Cross('MAA0NE9QX2ABETG6', 'USD/EUR') xrefs = replace('gs_quant.timeseries.measures.GsAssetApi.get_asset_xrefs', Mock()) xrefs.return_value = [GsTemporalXRef(dt.date(2019, 1, 1), dt.date(2952, 12, 31), XRef(bbid='EURUSD', ))] replace('gs_quant.markets.securities.SecurityMaster.get_asset', Mock()).return_value = mock # for different delta strikes replace('gs_quant.timeseries.measures.GsDataApi.get_market_data', mock_fx_vol) actual = tm.implied_volatility(mock, '1m', tm.VolReference.DELTA_CALL, 25) expected = pd.Series([5, 1, 2, 3], index=pd.date_range('2019-01-01', periods=4, freq='D'), name='impliedVolatility') assert_series_equal(expected, pd.Series(actual)) assert actual.dataset_ids == _test_datasets actual = tm.implied_volatility(mock, '1m', tm.VolReference.DELTA_PUT, 25) assert_series_equal(expected, pd.Series(actual)) assert actual.dataset_ids == _test_datasets actual = tm.implied_volatility(mock, '1m', tm.VolReference.DELTA_NEUTRAL) assert_series_equal(expected, pd.Series(actual)) assert actual.dataset_ids == _test_datasets actual = tm.implied_volatility(mock, '1m', tm.VolReference.FORWARD, 100) assert_series_equal(expected, pd.Series(actual)) assert actual.dataset_ids == _test_datasets actual = tm.implied_volatility(mock, '1m', tm.VolReference.SPOT, 100) assert_series_equal(expected, pd.Series(actual)) assert actual.dataset_ids == _test_datasets # NORMALIZED not supported with pytest.raises(MqError): tm.implied_volatility(mock, '1m', tm.VolReference.DELTA_CALL) with pytest.raises(MqError): tm.implied_volatility(mock, '1m', tm.VolReference.NORMALIZED, 25) with pytest.raises(MqError): tm.implied_volatility(mock, '1m', tm.VolReference.SPOT, 25) with pytest.raises(MqError): tm.implied_volatility(mock, '1m', tm.VolReference.FORWARD, 25) replace.restore() def test_fx_forecast(): replace = Replacer() mock = Cross('MAA0NE9QX2ABETG6', 'USD/EUR') xrefs = replace('gs_quant.timeseries.measures.GsAssetApi.get_asset_xrefs', Mock()) xrefs.return_value = [GsTemporalXRef(dt.date(2019, 1, 1), dt.date(2952, 12, 31), XRef(bbid='EURUSD', ))] replace('gs_quant.markets.securities.SecurityMaster.get_asset', Mock()).return_value = mock replace('gs_quant.timeseries.measures.GsDataApi.get_market_data', mock_fx_forecast) actual = tm.fx_forecast(mock, '12m') assert_series_equal(pd.Series([1.1, 1.1, 1.1], index=_index * 3, name='fxForecast'), pd.Series(actual)) assert actual.dataset_ids == _test_datasets actual = tm.fx_forecast(mock, '3m') assert_series_equal(pd.Series([1.1, 1.1, 1.1], index=_index * 3, name='fxForecast'), pd.Series(actual)) assert actual.dataset_ids == _test_datasets with pytest.raises(NotImplementedError): tm.fx_forecast(mock, '3m', real_time=True) replace.restore() def test_fx_forecast_inverse(): replace = Replacer() get_cross = replace('gs_quant.timeseries.measures.cross_to_usd_based_cross', Mock()) get_cross.return_value = "MATGYV0J9MPX534Z" replace('gs_quant.timeseries.measures.GsDataApi.get_market_data', mock_fx_forecast) mock = Cross("MAYJPCVVF2RWXCES", 'USD/JPY') actual = tm.fx_forecast(mock, '3m') assert_series_equal(pd.Series([1 / 1.1, 1 / 1.1, 1 / 1.1], index=_index * 3, name='fxForecast'), pd.Series(actual)) assert actual.dataset_ids == _test_datasets replace.restore() def test_vol_smile(): replace = Replacer() mock_spx = Index('MA890', AssetClass.Equity, 'SPX') replace('gs_quant.timeseries.measures.GsDataApi.get_market_data', mock_eq) actual = tm.vol_smile(mock_spx, '1m', tm.VolSmileReference.FORWARD, '5d') assert_series_equal(pd.Series([5, 1, 2], index=[0.75, 0.25, 0.5]), pd.Series(actual)) assert actual.dataset_ids == _test_datasets actual = tm.vol_smile(mock_spx, '1m', tm.VolSmileReference.SPOT, '5d') assert_series_equal(pd.Series([5, 1, 2], index=[0.75, 0.25, 0.5]),
pd.Series(actual)
pandas.Series
# -*- coding: utf-8 -*- """ @author: hkaneko """ import random import warnings import matplotlib.figure as figure import matplotlib.pyplot as plt import numpy as np import pandas as pd import structure_generator from deap import base from deap import creator from deap import tools from gtm import GTM from rdkit import Chem from rdkit.Chem import AllChem, Descriptors from rdkit.ML.Descriptors import MoleculeDescriptors warnings.filterwarnings('ignore') target_y_value = [1, -60, 30] # y-target for inverse analysis dataset = pd.read_csv('molecules_with_multi_y.csv', index_col=0) # SMILES 付きデータセットの読み込み target_ranges = pd.read_csv('settings_of_target_ys.csv', index_col=0) # 各 y の目標範囲の読み込み file_name_of_main_fragments = 'sample_main_fragments_logS.smi' # 'r_group' 主骨格のフラグメントがあるファイル名。サンプルとして、'sample_main_fragments.smi' があります。 file_name_of_sub_fragments = 'sample_sub_fragments.smi' # 'r_group' 側鎖のフラグメントがあるファイル名。サンプルとして、'sample_main_fragments.smi' があります deleting_descriptor_names = ['Ipc', 'Kappa3'] #deleting_descriptor_names = [] number_of_iteration_of_ga = 10 # GA による構造生成を何回繰り返すか (number_of_iteration_of_ga × number_of_population) の数だけ化学構造が得られます shape_of_map = [30, 30] shape_of_rbf_centers = [8, 8] variance_of_rbfs = 0.03125 lambda_in_em_algorithm = 0.5 number_of_iterations = 300 display_flag = 1 number_of_population = 30 # GA の個体数 number_of_generation = 50 # GA の世代数 probability_of_crossover = 0.5 probability_of_mutation = 0.2 threshold_of_variable_selection = 0.5 minimum_number = -10 ** 30 smiles = dataset.iloc[:, 0] # 分子の SMILES y = dataset.iloc[:, 1:] # 物性・活性などの目的変数 numbers_of_y = np.arange(y.shape[1]) # 計算する記述子名の取得 descriptor_names = [] for descriptor_information in Descriptors.descList: descriptor_names.append(descriptor_information[0]) print('計算する記述子の数 :', len(descriptor_names)) # 記述子の計算 descriptor_calculator = MoleculeDescriptors.MolecularDescriptorCalculator(descriptor_names) descriptors = [] # ここに計算された記述子の値を追加 print('分子の数 :', len(smiles)) for index, smiles_i in enumerate(smiles): print(index + 1, '/', len(smiles)) molecule = Chem.MolFromSmiles(smiles_i) descriptors.append(descriptor_calculator.CalcDescriptors(molecule)) original_x = pd.DataFrame(descriptors, index=dataset.index, columns=descriptor_names) if deleting_descriptor_names is not None: original_x = original_x.drop(deleting_descriptor_names, axis=1) original_x = original_x.replace(np.inf, np.nan).fillna(np.nan) # inf を NaN に置き換え nan_variable_flags = original_x.isnull().any() # NaN を含む変数 original_x = original_x.drop(original_x.columns[nan_variable_flags], axis=1) # NaN を含む変数を削除 # 標準偏差が 0 の説明変数を削除 std_0_variable_flags = original_x.std() == 0 x = original_x.drop(original_x.columns[std_0_variable_flags], axis=1) variables = pd.concat([y, x], axis=1) numbers_of_x = np.arange(numbers_of_y[-1] + 1, variables.shape[1]) # standardize x and y autoscaled_variables = (variables - variables.mean(axis=0)) / variables.std(axis=0, ddof=1) autoscaled_target_y_value = (target_y_value - variables.mean(axis=0)[numbers_of_y]) / variables.std(axis=0, ddof=1)[ numbers_of_y] # construct GTMR model model = GTM(shape_of_map, shape_of_rbf_centers, variance_of_rbfs, lambda_in_em_algorithm, number_of_iterations, display_flag) model.fit(autoscaled_variables) if model.success_flag: # calculate of responsibilities responsibilities = model.responsibility(autoscaled_variables) means = responsibilities.dot(model.map_grids) modes = model.map_grids[responsibilities.argmax(axis=1), :] mean_of_estimated_mean_of_y, mode_of_estimated_mean_of_y, responsibilities_y, py = \ model.gtmr_predict(autoscaled_variables.iloc[:, numbers_of_x], numbers_of_x, numbers_of_y) plt.rcParams['font.size'] = 18 for index, y_number in enumerate(numbers_of_y): predicted_y_test = mode_of_estimated_mean_of_y[:, index] * variables.iloc[:, y_number].std() + variables.iloc[:, y_number].mean() # yy-plot plt.figure(figsize=figure.figaspect(1)) plt.scatter(variables.iloc[:, y_number], predicted_y_test) y_max = np.max(np.array([np.array(variables.iloc[:, y_number]), predicted_y_test])) y_min = np.min(np.array([np.array(variables.iloc[:, y_number]), predicted_y_test])) plt.plot([y_min - 0.05 * (y_max - y_min), y_max + 0.05 * (y_max - y_min)], [y_min - 0.05 * (y_max - y_min), y_max + 0.05 * (y_max - y_min)], 'k-') plt.ylim(y_min - 0.05 * (y_max - y_min), y_max + 0.05 * (y_max - y_min)) plt.xlim(y_min - 0.05 * (y_max - y_min), y_max + 0.05 * (y_max - y_min)) plt.xlabel('Actual Y') plt.ylabel('Estimated Y') plt.show() # r2, RMSE, MAE print( 'r2: {0}'.format(float(1 - sum((variables.iloc[:, y_number] - predicted_y_test) ** 2) / sum( (variables.iloc[:, y_number] - variables.iloc[:, y_number].mean()) ** 2)))) print('RMSE: {0}'.format(float((sum((variables.iloc[:, y_number] - predicted_y_test) ** 2) / len( variables.iloc[:, y_number])) ** 0.5))) print('MAE: {0}'.format(float(sum(abs(variables.iloc[:, y_number] - predicted_y_test)) / len( variables.iloc[:, y_number])))) # plot the mean of responsibilities plt.scatter(means[:, 0], means[:, 1], c=variables.iloc[:, y_number]) plt.colorbar() plt.ylim(-1.1, 1.1) plt.xlim(-1.1, 1.1) plt.xlabel('z1 (mean)') plt.ylabel('z2 (mean)') plt.show() # plot the mode of responsibilities plt.scatter(modes[:, 0], modes[:, 1], c=variables.iloc[:, y_number]) plt.colorbar() plt.ylim(-1.1, 1.1) plt.xlim(-1.1, 1.1) plt.xlabel('z1 (mode)') plt.ylabel('z2 (mode)') plt.show() # GTMR prediction for inverse analysis autoscaled_mean_of_estimated_mean_of_x, autoscaled_mode_of_estimated_mean_of_x, responsibilities_y, py = \ model.gtmr_predict(autoscaled_target_y_value, numbers_of_y, numbers_of_x) # Check results of inverse analysis print('Results of inverse analysis') mean_of_estimated_mean_of_x = pd.DataFrame(autoscaled_mean_of_estimated_mean_of_x, columns=x.columns) * x.std( axis=0, ddof=1) + x.mean(axis=0) mode_of_estimated_mean_of_x = pd.DataFrame(autoscaled_mode_of_estimated_mean_of_x, columns=x.columns) * x.std( axis=0, ddof=1) + x.mean(axis=0) print('estimated x-mode: {0}'.format(mode_of_estimated_mean_of_x)) estimated_x_mean_on_map = responsibilities_y.dot(model.map_grids) estimated_x_mode_on_map = model.map_grids[np.argmax(responsibilities_y), :] print('estimated x-mode on map: {0}'.format(estimated_x_mode_on_map)) plt.scatter(modes[:, 0], modes[:, 1], c='blue') plt.scatter(estimated_x_mode_on_map[0], estimated_x_mode_on_map[1], c='red', marker='x', s=100) plt.ylim(-1.1, 1.1) plt.xlim(-1.1, 1.1) plt.xlabel('z1 (mode)') plt.ylabel('z2 (mode)') plt.show() # 構造生成 main_molecules = [molecule for molecule in Chem.SmilesMolSupplier(file_name_of_main_fragments, delimiter='\t', titleLine=False) if molecule is not None] fragment_molecules = [molecule for molecule in Chem.SmilesMolSupplier(file_name_of_sub_fragments, delimiter='\t', titleLine=False) if molecule is not None] creator.create('FitnessMax', base.Fitness, weights=(1.0,)) # for minimization, set weights as (-1.0,) creator.create('Individual', list, fitness=creator.FitnessMax) toolbox = base.Toolbox() min_boundary = np.zeros(len(fragment_molecules) + 1) max_boundary = np.ones(len(fragment_molecules) + 1) * 1.0 def create_ind_uniform(min_boundary, max_boundary): index = [] for min, max in zip(min_boundary, max_boundary): index.append(random.uniform(min, max)) return index toolbox.register('create_ind', create_ind_uniform, min_boundary, max_boundary) toolbox.register('individual', tools.initIterate, creator.Individual, toolbox.create_ind) toolbox.register('population', tools.initRepeat, list, toolbox.individual) def evalOneMax(individual): individual_array = np.array(individual) generated_smiles = structure_generator.structure_generator_based_on_r_group(main_molecules, fragment_molecules, individual_array) generated_molecule = Chem.MolFromSmiles(generated_smiles) if generated_molecule is not None: AllChem.Compute2DCoords(generated_molecule) descriptors_of_generated_molecule = descriptor_calculator.CalcDescriptors(generated_molecule) descriptors_of_generated_molecule = pd.DataFrame(descriptors_of_generated_molecule, index=descriptor_names) descriptors_of_generated_molecule = descriptors_of_generated_molecule.T if deleting_descriptor_names is not None: descriptors_of_generated_molecule = descriptors_of_generated_molecule.drop(deleting_descriptor_names, axis=1) descriptors_of_generated_molecule = descriptors_of_generated_molecule.drop( descriptors_of_generated_molecule.columns[nan_variable_flags], axis=1) # NaN を含む変数を削除 descriptors_of_generated_molecule = descriptors_of_generated_molecule.drop( descriptors_of_generated_molecule.columns[std_0_variable_flags], axis=1) descriptors_of_generated_molecule = descriptors_of_generated_molecule.replace(np.inf, np.nan).fillna( np.nan) # inf を NaN に置き換え if descriptors_of_generated_molecule.isnull().sum(axis=1)[0] > 0: value = minimum_number else: # オートスケーリング autoscaled_x_prediction = (descriptors_of_generated_molecule - x.mean()) / x.std() distance = (((autoscaled_mode_of_estimated_mean_of_x[0, :] - autoscaled_x_prediction.values[0, :]) ** 2).sum()) ** 0.5 value = 1 / distance else: value = minimum_number return value, toolbox.register('evaluate', evalOneMax) toolbox.register('mate', tools.cxTwoPoint) toolbox.register('mutate', tools.mutFlipBit, indpb=0.05) toolbox.register('select', tools.selTournament, tournsize=3) generated_smiles_all = [] estimated_y_all = [] for iteration_number in range(number_of_iteration_of_ga): print(iteration_number + 1, '/', number_of_iteration_of_ga) # random.seed(100) random.seed() pop = toolbox.population(n=number_of_population) print('Start of evolution') fitnesses = list(map(toolbox.evaluate, pop)) for ind, fit in zip(pop, fitnesses): ind.fitness.values = fit print(' Evaluated %i individuals' % len(pop)) for generation in range(number_of_generation): print('-- Generation {0} --'.format(generation + 1)) offspring = toolbox.select(pop, len(pop)) offspring = list(map(toolbox.clone, offspring)) for child1, child2 in zip(offspring[::2], offspring[1::2]): if random.random() < probability_of_crossover: toolbox.mate(child1, child2) del child1.fitness.values del child2.fitness.values for mutant in offspring: if random.random() < probability_of_mutation: toolbox.mutate(mutant) del mutant.fitness.values invalid_ind = [ind for ind in offspring if not ind.fitness.valid] fitnesses = map(toolbox.evaluate, invalid_ind) for ind, fit in zip(invalid_ind, fitnesses): ind.fitness.values = fit print(' Evaluated %i individuals' % len(invalid_ind)) pop[:] = offspring fits = [ind.fitness.values[0] for ind in pop] length = len(pop) mean = sum(fits) / length sum2 = sum(x * x for x in fits) std = abs(sum2 / length - mean ** 2) ** 0.5 print(' Min %s' % min(fits)) print(' Max %s' % max(fits)) print(' Avg %s' % mean) print(' Std %s' % std) print('-- End of (successful) evolution --') for each_pop in pop: if each_pop.fitness.values[0] > minimum_number / 2: estimated_y_all.append(each_pop.fitness.values[0]) each_pop_array = np.array(each_pop) smiles = structure_generator.structure_generator_based_on_r_group(main_molecules, fragment_molecules, each_pop_array) generated_smiles_all.append(smiles) estimated_y_all =
pd.DataFrame(estimated_y_all, index=generated_smiles_all, columns=['estimated_y'])
pandas.DataFrame
"""Tests Anomaly Controller Functions.""" from dataclasses import dataclass from datetime import datetime import pandas as pd from pandas.core.base import NoNewAttributesMixin import pytest from _pytest.monkeypatch import MonkeyPatch from pandas.testing import assert_frame_equal from chaos_genius.core.anomaly.controller import AnomalyDetectionController from chaos_genius.databases.models.data_source_model import DataSource def load_input_data(file_name): """Load the test data.""" df =
pd.read_csv(file_name)
pandas.read_csv
""" Author: <NAME> Python 3.8.3 """ import argparse import os from pathlib import Path import sys from pyfaidx import Fasta import pandas as pd import numpy as np import plotly.graph_objects as go from plotly.subplots import make_subplots import plotly # Set working directory to current directory sys.path.insert(0, os.path.realpath(os.path.dirname(__file__))) os.chdir(os.path.realpath(os.path.dirname(__file__))) def phased_haplotype_analysis(): """ This script compares the TrioCanu output's from a reference cross (bio-parent x bio-parent) to a replacement cross of one or both bio-parents. It provides a breakdown of the number of reads sorted to the same bins in both crosses (correctly sorted) and the number of reads that were sorted differently (incorrectly sorted) from the reference cross. It also further breaks down the incorrectly sorted reads into bins describing where the read was incorrectly sorted to in the replacement cross. """ # ---------------- Argparse inputs ---------------- parser = argparse.ArgumentParser(description="Phased Haplotype Analysis (PHA)") # Required input arguments parser.add_argument('--bio_mom', type=str, required=True, action='store', help='Pathway to biological mothers fasta file') parser.add_argument('--bio_dad', type=str, required=True, action='store', help='Pathway to biological fathers fasta file') parser.add_argument('--bio_unknown', type=str, required=True, action='store', help='Pathway to biological unknown fasta file') parser.add_argument('--nonbio_mom', type=str, required=True, action='store', help='Pathway to non-biological mothers fasta file') parser.add_argument('--nonbio_dad', type=str, required=True, action='store', help='Pathway to non-biological mothers fasta file') parser.add_argument('--nonbio_unknown', type=str, required=True, action='store', help='Pathway to non-biological unknown fasta file') parser.add_argument('--cross', type=str, required=True, action='store', help="Name of replacement cross (i.e. LilBubxPbe14).") parser.add_argument('--biocross', type=str, required=True, action='store', help="Name of replacement cross (i.e. LilBubxPbe14).") parser.add_argument('--excel', type=str, required=True, action='store', help="Excel file with TrioCanu output read counts and coverages.") # Optional - defaults to False parser.add_argument('--show_graph', action='store_True', default=False, help='Automatically load graph into browser') args = parser.parse_args() # input variables bio_mom = args.bio_mom bio_dad = args.bio_dad bio_unknown = args.bio_unknown non_bio_mom = args.nonbio_mom non_bio_dad = args.nonbio_dad non_bio_unknown = args.nonbio_unknown cross_used = args.cross bio_parents = args.biocross auto_open = args.show_graph excel_file_pathway = args.excel # ---------------- Helper Functions ---------------- def output_directory_setup(): # Create cross used output directory Path(f"./read_names/{cross_used}").mkdir(parents=True, exist_ok=True) # Create data output directory isr_pathway = f"./data_output/{cross_used}/incorrectly_sorted_reads/" Path(isr_pathway).mkdir(parents=True, exist_ok=True) return def self_check(df, individual): """ This function will perform a duplicate drop test on each file to see if a particular individual contains duplicate reads. """ df_copy = df.copy() df_copy.sort_values(by='names', inplace=True) before_drop_length = len(df_copy) df_copy.drop_duplicates(subset='names', keep=False, inplace=True) if before_drop_length - len(df_copy) == 0: print("--------------------------------------------") print("\t-- Duplicate Self Check --") print( "|-- {} input file **DOES NOT** contain any duplicate reads".format(individual)) return True else: print( "|-- {} input file **DOES** contain any duplicate reads".format(individual)) return False def read_names_to_csv(file_pathway, sample_name): """ This function takes in the fasta files and pulls the read names and then outputs them into csv files. :param file_pathway: Pathway to Fasta files :param sample_name: Name of current sample being loaded (i.e. bio_mom) :return: The output filename """ output_filename = f"./read_names/{cross_used}/{sample_name}.csv" output_df = pd.DataFrame() print(f"-- Loading {sample_name} Fasta file --") file_read = Fasta(file_pathway) print(f"-- Loaded {sample_name} Fasta file --") file_read_names_list = [name for name in file_read.keys()] file_read_names_list.sort() output_df['names'] = file_read_names_list print(f"-- Output {sample_name} read names to {sample_name}.csv --") output_df.to_csv(output_filename, sep=',', index=False) print(f'-- {sample_name} finished --') return output_filename def mom_check(bio_mom, nonbio_mom): """ This function takes in the bio and non-bio mom reads and... 1. Merges the two list together 2. Drops any duplicate (correctly sorted reads) 3. Separates the remaining reads back into bio and non-bio lists. The remaining bio-mom reads are the reads lost in the sorting. The remaining nonbio-mom reads are the reads that were gained in the sorting. """ # Run self check to see if any individuals contain duplicate reads self_check(bio_mom, 'bio_mom') self_check(nonbio_mom, 'nonbio_mom') concat_df = pd.concat([bio_mom, nonbio_mom], sort=True) concat_df = concat_df.reset_index(drop=True) concat_df.sort_values(by='names', inplace=True) before_length = len(concat_df) print("--------------------------------------------") print('|--') print("|-- Maternal read count before drop:", len(concat_df)) concat_df.drop_duplicates(subset='names', keep=False, inplace=True) print("|-- Maternal read count after drop:", len(concat_df)) print("|-- Maternal read count difference:", (before_length - len(concat_df))) print('|--') num_correctly_sorted = (before_length - len(concat_df)) / 2 nonbio_mom_tally = [] [nonbio_mom_tally.append( 1) for relationship in concat_df["parental_relationships"] if relationship == 'nonbio_mom'] bio_mom_tally = [] [bio_mom_tally.append( 1) for relationship in concat_df["parental_relationships"] if relationship == 'bio_mom'] lost_mom_reads = concat_df[concat_df.isin( {'bio_mom'}).any(1)] # removed ['names'] gained_mom_reads = concat_df[concat_df.isin( {'nonbio_mom'}).any(1)] # removed ['names'] lost_mom_reads.reset_index(inplace=True, drop=True) gained_mom_reads.reset_index(inplace=True, drop=True) print("--------------------------------------------") print('|--') print('|-- Total maternal reads correctly sorted:', num_correctly_sorted) print('|-- Total maternal reads gained:', sum(nonbio_mom_tally)) print('|-- Total maternal reads lost:', sum(bio_mom_tally)) print('|-- Total gained+lost:', sum(bio_mom_tally) + sum(nonbio_mom_tally)) print('|--') print("--------------------------------------------") print("------ Maternal Read Sorting Complete ------") print("--------------------------------------------") print() print("\t-- Moving to Paternal Reads --\t") return lost_mom_reads, gained_mom_reads, num_correctly_sorted def dad_check(bio_dad, nonbio_dad): """ This function takes in the bio and non-bio dad reads and... 1. Merges the two list together 2. Drops any duplicate (correctly sorted reads) 3. Separates the remaining reads back into bio and non-bio lists. The remaining bio-dad reads are the reads lost in the sorting. The remaining nonbio-dad reads are the reads that were gained in the sorting. """ # Run self check to see if any individuals contain duplicate reads self_check(bio_dad, 'bio_dad') self_check(nonbio_dad, 'nonbio_dad') concat_df = pd.concat([bio_dad, nonbio_dad], sort=True) concat_df = concat_df.reset_index(drop=True) concat_df.sort_values(by='names', inplace=True) before_length = len(concat_df) print("--------------------------------------------") print('|--') print("|-- Paternal before drop count:", len(concat_df)) concat_df.drop_duplicates(subset='names', keep=False, inplace=True) print("|-- Paternal after drop count:", len(concat_df)) print("|-- Paternal read count difference:", (before_length - len(concat_df))) print('|--') # Divide by two because we dropped two copies of each read num_correctly_sorted = (before_length - len(concat_df)) / 2 nonbio_dad_tally = [] [nonbio_dad_tally.append( 1) for relationship in concat_df["parental_relationships"] if relationship == 'nonbio_dad'] bio_dad_tally = [] [bio_dad_tally.append( 1) for relationship in concat_df["parental_relationships"] if relationship == 'bio_dad'] lost_dad_reads = concat_df[concat_df.isin({'bio_dad'}).any(1)] gained_dad_reads = concat_df[concat_df.isin({'nonbio_dad'}).any(1)] lost_dad_reads.reset_index(inplace=True, drop=True) gained_dad_reads.reset_index(inplace=True, drop=True) print("--------------------------------------------") print('|--') print('|-- Total paternal reads correctly sorted:', num_correctly_sorted) print('|-- Total paternal reads gained:', sum(nonbio_dad_tally)) print('|-- Total paternal reads lost:', sum(bio_dad_tally)) print('|-- Total gained+lost:', sum(bio_dad_tally) + sum(nonbio_dad_tally)) print('|--') print("--------------------------------------------") print("------ Paternal Read Sorting Complete ------") print("--------------------------------------------") print() print("\t-- Moving to Unknown Reads --\t") return lost_dad_reads, gained_dad_reads, num_correctly_sorted def unknown_check(bio_unknown, nonbio_unknown): """ This function takes in the bio and non-bio unknown reads and... 1. Merges the two list together 2. Drops any duplicate (correctly sorted reads) 3. Separates the remaining reads back into bio and non-bio lists. The remaining bio-unknown reads are the reads lost in the sorting. The remaining nonbio-unknown reads are the reads that were gained in the sorting. """ # Run self check to see if any individuals contain duplicate reads self_check(bio_unknown, 'bio_unknown') self_check(nonbio_unknown, 'nonbio_unknown') concat_df = pd.concat([bio_unknown, nonbio_unknown], sort=True) concat_df = concat_df.reset_index(drop=True) concat_df.sort_values(by='names', inplace=True) before_length = len(concat_df) print("--------------------------------------------") print('|--') print("|-- Unknown before drop count:", len(concat_df)) concat_df.drop_duplicates(subset='names', keep=False, inplace=True) print("|-- Unknown after drop count:", len(concat_df)) print("|-- Unknown read count difference:", (before_length - len(concat_df))) print('|--') num_correctly_sorted = (before_length - len(concat_df)) / 2 nonbio_unknown_tally = [] [nonbio_unknown_tally.append( 1) for relationship in concat_df["parental_relationships"] if relationship == 'nonbio_unknown'] bio_unknown_tally = [] [bio_unknown_tally.append( 1) for relationship in concat_df["parental_relationships"] if relationship == 'bio_unknown'] lost_unknown_reads = concat_df[concat_df.isin({'bio_unknown'}).any(1)] gained_unknown_reads = concat_df[concat_df.isin( {'nonbio_unknown'}).any(1)] lost_unknown_reads.reset_index(inplace=True, drop=True) gained_unknown_reads.reset_index(inplace=True, drop=True) print("--------------------------------------------") print('|--') print('|-- Total unknown reads correctly sorted:', num_correctly_sorted) print('|-- Total unknown reads gained:', sum(nonbio_unknown_tally)) print('|-- Total unknown reads lost:', sum(bio_unknown_tally)) print('|-- Total gained+lost:', sum(bio_unknown_tally) + sum(nonbio_unknown_tally)) print('|--') print("--------------------------------------------") print("------ Unknown Read Sorting Complete ------") print("--------------------------------------------") print() print("\t*** -- Initiating Phase 2 -- ***\t\n") return lost_unknown_reads, gained_unknown_reads, num_correctly_sorted def maternal_load_n_run(bio_mom, non_bio_mom): bio_mom_read_to_csv = read_names_to_csv(bio_mom, 'bio_mom') bio_mom_read_names = pd.read_csv( bio_mom_read_to_csv, dtype={'names': str}) bm_df = pd.DataFrame( [value for value in bio_mom_read_names['names']], columns=['names']) bm_df['parental_relationships'] = [ 'bio_mom' for _ in range(len(bm_df.index))] bio_mom_read_count = len(bm_df) stats_collecting_df.at["biomom_initial_read_count", str( cross_used)] = bio_mom_read_count non_bio_mom_read_to_csv = read_names_to_csv(non_bio_mom, 'nonbio_mom') non_bio_mom_read_names = pd.read_csv( non_bio_mom_read_to_csv, dtype={'names': str}) nbm_df = pd.DataFrame( [value for value in non_bio_mom_read_names['names']], columns=['names']) nbm_df['parental_relationships'] = [ 'nonbio_mom' for _ in range(len(nbm_df.index))] print("--------------------------------------------") print("-- Maternal gained/lost read information --") print("--------------------------------------------") print('|--') print('|-- Number of bio mom reads:', len(bm_df)) print('|-- Number of nonbio mom reads:', len(nbm_df)) print('|--') mom_check_output = mom_check(bm_df, nbm_df) return mom_check_output, bio_mom_read_count def paternal_load_n_run(bio_dad, non_bio_dad): bio_dad_read_to_csv = read_names_to_csv(bio_dad, 'bio_dad') bio_dad_read_names = pd.read_csv( bio_dad_read_to_csv, dtype={'names': str}) bd_df = pd.DataFrame( [value for value in bio_dad_read_names['names']], columns=['names']) bd_df['parental_relationships'] = [ 'bio_dad' for _ in range(len(bd_df.index))] bio_dad_read_count = len(bd_df) stats_collecting_df.at["biodad_initial_read_count", str( cross_used)] = bio_dad_read_count non_bio_dad_read_to_csv = read_names_to_csv(non_bio_dad, 'nonbio_dad') non_bio_dad_read_names = pd.read_csv( non_bio_dad_read_to_csv, dtype={'names': str}) nbd_df = pd.DataFrame( [value for value in non_bio_dad_read_names['names']], columns=['names']) nbd_df['parental_relationships'] = [ 'nonbio_dad' for _ in range(len(nbd_df.index))] print() print("--------------------------------------------") print("-- Paternal gained/lost read information --") print("--------------------------------------------") print('|--') print('|-- Number of bio dad reads:', len(bd_df)) print('|-- Number of nonbio dad reads:', len(nbd_df)) print('|--') dad_check_output = dad_check(bd_df, nbd_df) return dad_check_output, bio_dad_read_count def unknown_load_n_run(bio_unknown, non_bio_unknown): # Load Bio Unknown and py bio_unknown_read_to_csv = read_names_to_csv(bio_unknown, 'bio_unknown') bio_unknown_read_names = pd.read_csv( bio_unknown_read_to_csv, dtype={'names': str}) bu_df = pd.DataFrame( [value for value in bio_unknown_read_names['names']], columns=['names']) bu_df['parental_relationships'] = [ 'bio_unknown' for _ in range(len(bu_df.index))] bio_unknown_read_count = len(bu_df) stats_collecting_df.at["biounknown_initial_read_count", str( cross_used)] = bio_unknown_read_count non_bio_unknown_read_to_csv = read_names_to_csv( non_bio_unknown, 'nonbio_unknown') non_bio_unknown_read_names = pd.read_csv( non_bio_unknown_read_to_csv, dtype={'names': str}) nbu_df = pd.DataFrame( [value for value in non_bio_unknown_read_names['names']], columns=['names']) nbu_df['parental_relationships'] = [ 'nonbio_unknown' for _ in range(len(nbu_df.index))] print() print("--------------------------------------------") print("----Unknown gained/lost read information----") print("--------------------------------------------") print('|--') print('|-- Number of bio unknown reads:', len(bu_df)) print('|-- Number of nonbio unknown reads:', len(nbu_df)) unknown_check_output = unknown_check(bu_df, nbu_df) return unknown_check_output, bio_unknown_read_count def phase_2(maternal_lists, paternal_lists, unknown_lists): """Indentify number and direction of incorrect sorting""" # Lists are ordered [lost reads (bio), gained reads (nonbio)] maternal_lost_reads = maternal_lists[0] maternal_gained_reads = maternal_lists[1] paternal_lost_reads = paternal_lists[0] paternal_gained_reads = paternal_lists[1] unknown_lost_reads = unknown_lists[0] unknown_gained_reads = unknown_lists[1] def maternal_to_other_stats(maternal_lost, paternal_gained, unknown_gained): def paternal_gain_check(maternal_lost, paternal_gain_list): concat = pd.concat([maternal_lost, paternal_gain_list]) before_length = len(concat) before_drop_df = concat.copy() before_drop_df.drop_duplicates( subset='names', keep='first', inplace=True) concat.drop_duplicates( subset='names', keep=False, inplace=True) difference = before_length - len(concat) number_of_reads = int(difference / 2) duplicate_df = pd.concat([concat, before_drop_df]) duplicate_df.sort_values(by='names', inplace=True) duplicate_df.drop_duplicates( subset='names', keep=False, inplace=True) duplicate_df['names'].to_csv( "./data_output/{}/incorrectly_sorted_reads/mom_to_dad_reads.csv".format(cross_used), sep=',', index=False) return number_of_reads def unknown_gain_check(maternal_lost, unknown_gain_list): concat = pd.concat([maternal_lost, unknown_gain_list]) before_length = len(concat) before_drop_df = concat.copy() before_drop_df.drop_duplicates( subset='names', keep='first', inplace=True) concat.drop_duplicates( subset='names', keep=False, inplace=True) difference = before_length - len(concat) number_of_reads = int(difference / 2) duplicate_df = pd.concat([concat, before_drop_df]) duplicate_df.sort_values(by='names', inplace=True) duplicate_df.drop_duplicates( subset='names', keep=False, inplace=True) duplicate_df['names'].to_csv( "./data_output/{}/incorrectly_sorted_reads/mom_to_unknown_reads.csv".format(cross_used), sep=',', index=False) return number_of_reads count_to_dad = paternal_gain_check(maternal_lost, paternal_gained) count_to_unknown = unknown_gain_check( maternal_lost, unknown_gained) count = count_to_dad + count_to_unknown print("--------------------------------------------") print('\t-- Maternal Check Complete --') print('|-- Num. Reads 2 Dad = {}'. format(count_to_dad)) print('|-- Num. Reads 2 Unknown = {}'. format(count_to_unknown)) print('|-- Total Moved Reads = {}'. format(count)) print("--------------------------------------------") return count_to_dad, count_to_unknown def paternal_to_other_stats(paternal_lost, maternal_gained, unknown_gained): def maternal_gain_check(paternal_lost, maternal_gained): concat = pd.concat([paternal_lost, maternal_gained]) before_length = len(concat) before_drop_df = concat.copy() before_drop_df.drop_duplicates( subset='names', keep='first', inplace=True) concat.drop_duplicates( subset='names', keep=False, inplace=True) difference = before_length - len(concat) number_of_reads = int(difference / 2) duplicate_df = pd.concat([concat, before_drop_df]) duplicate_df.sort_values(by='names', inplace=True) duplicate_df.drop_duplicates( subset='names', keep=False, inplace=True) duplicate_df['names'].to_csv( "./data_output/{}/incorrectly_sorted_reads/dad_to_mom_reads.csv".format(cross_used), sep=',', index=False) return number_of_reads def unknown_gain_check(paternal_lost, unknown_gained): concat = pd.concat([paternal_lost, unknown_gained]) before_length = len(concat) before_drop_df = concat.copy() before_drop_df.drop_duplicates( subset='names', keep='first', inplace=True) concat.drop_duplicates( subset='names', keep=False, inplace=True) difference = before_length - len(concat) number_of_reads = int(difference / 2) duplicate_df =
pd.concat([concat, before_drop_df])
pandas.concat
from __future__ import division, print_function from datetime import timedelta from jitterbug import * from supervised_models import TM,SVM,RF,DT,NB,LR from pdb import set_trace import matplotlib.pyplot as plt from os import listdir from collections import Counter import pandas as pd from demos import cmd try: import cPickle as pickle except: import pickle import warnings warnings.filterwarnings('ignore') def parse(path = "../data/"): for file in listdir(path): df = pd.read_csv("../data/"+file) df.rename(columns={'commenttext':'Abstract'}, inplace=True) df['label'] = ["no" if type=="WITHOUT_CLASSIFICATION" else "yes" for type in df["classification"]] df['ID'] = range(len(df)) df = df[["ID","projectname","classification","Abstract","label",]] df.to_csv("../new_data/original/"+file, line_terminator="\r\n", index=False) def find_patterns(target='apache-ant-1.7.0'): data=load_csv(path="../new_data/original/") jitterbug = Jitterbug(data,target) patterns = jitterbug.find_patterns() print("Patterns:") print(patterns) print("Precisions on training set:") print({p: jitterbug.easy.precs[i] for i,p in enumerate(patterns)}) def validate_ground_truth(target='apache-ant-1.7.0'): data=load_csv(path="../new_data/original/") jitterbug = Jitterbug(data,target) patterns = jitterbug.find_patterns() jitterbug.easy_code(patterns) jitterbug.output_conflicts(output="../new_data/conflicts/") def summarize_validate(input = "../new_data/validate/",output="../results/"): data=load_csv(input) columns = ["Double Check"]+list(data.keys()) result = {} result["Double Check"] = ["yes (Easy)","no (GT)"] for project in data: count = Counter(data[project]["validate"]) result[project]=[count["yes"],count["no"]] df = pd.DataFrame(data=result,columns=columns) df.to_csv(output+"validate_sum.csv", line_terminator="\r\n", index=False) def correct_ground_truth(validated="../new_data/validate/", output="../new_data/corrected/"): data = load_csv(path="../new_data/original/") data_validated = load_csv(path=validated) for project in data: for id in data_validated[project][data_validated[project]["validate"]=="yes"]["ID"]: data[project]["label"][id]="yes" data[project].to_csv(output+project+".csv", line_terminator="\r\n", index=False) stats = Counter(data_validated[project]["validate"]) ratio = float(stats["yes"])/(stats["yes"]+stats["no"]) print(project) print(ratio) def Easy_results(source="corrected",output="../results/"): input = "../new_data/"+source+"/" data=load_csv(path=input) results = {"Metrics":["Precision","Recall","F1"]} for target in data: jitterbug = Jitterbug(data,target) patterns = jitterbug.find_patterns() print(patterns) print(jitterbug.easy.precs) stats = jitterbug.test_patterns(output=True) stats["t"] = len(data[target][data[target]["label"]=="yes"]) prec = float(stats['tp'])/stats['p'] rec = float(stats['tp'])/stats['t'] f1 = 2*prec*rec/(prec+rec) results[target]=[prec,rec,f1] df = pd.DataFrame(data=results,columns=["Metrics"]+list(data.keys())) df.to_csv(output+"step1_Easy_"+source+".csv", line_terminator="\r\n", index=False) def MAT_results(source="corrected",output="../results/"): input = "../new_data/"+source+"/" data=load_csv(path=input) results = {"Metrics":["Precision","Recall","F1"]} for target in data: mat = MAT(data,target) mat.preprocess() mat.find_patterns() stats = mat.test_patterns() stats["t"] = len(data[target][data[target]["label"]=="yes"]) prec = float(stats['tp'])/stats['p'] rec = float(stats['tp'])/stats['t'] f1 = 2*prec*rec/(prec+rec) results[target]=[prec,rec,f1] df = pd.DataFrame(data=results,columns=["Metrics"]+list(data.keys())) df.to_csv(output+"step1_MAT_"+source+".csv", line_terminator="\r\n", index=False) def fitness_pattern(pattern='xxx'): data=load_csv(path="../new_data/original/") fitness = {} for target in data: jitterbug = Jitterbug(data,target) p_id = list(jitterbug.easy.voc).index(pattern) poses = np.where(np.array(jitterbug.easy.y_label)== "yes")[0] count_tp = np.array(np.sum(jitterbug.easy.test_data[poses], axis=0))[0][p_id] count_p = np.array(np.sum(jitterbug.easy.test_data, axis=0))[0][p_id] fitness[target] = np.nan_to_num(count_tp * (count_tp / count_p) ** 3) print(fitness) def rest_results(seed=0,input="../new_data/rest/",output="../results/"): treatments = ["LR","DT","RF","SVM","NB","TM"] data=load_csv(path=input) columns = ["Treatment"]+list(data.keys()) # Supervised Learning Results result = {target: [supervised_model(data,target,model=model,seed=seed) for model in treatments] for target in data} result["Treatment"] = treatments to_dump = {key: {"RF": result[key][2], "TM": result[key][5]} for key in data} # Output results to tables metrics = result[columns[-1]][0].keys() for metric in metrics: df = {key: (result[key] if key=="Treatment" else [dict[metric] for dict in result[key]]) for key in result} pd.DataFrame(df,columns=columns).to_csv(output+"rest_"+metric+".csv", line_terminator="\r\n", index=False) # Hard Results (continuous learning) APFD_result = {} AUC_result = {} for target in data: APFD_result[target] = [] AUC_result[target] = [] for model in treatments[:-1]: jitterbug = Jitterbug_hard(data,target,model=model,seed=seed) stats = jitterbug.eval() APFD_result[target].append(stats['APFD']) AUC_result[target].append(stats['AUC']) if model=="RF": to_dump[target]["Hard"] = stats with open("../dump/rest_result.pickle","wb") as f: pickle.dump(to_dump,f) APFD_result["Treatment"] = treatments[:-1] AUC_result["Treatment"] = treatments[:-1] pd.DataFrame(APFD_result,columns=columns).to_csv(output+"rest_APFD_Hard.csv", line_terminator="\r\n", index=False) pd.DataFrame(AUC_result,columns=columns).to_csv(output+"rest_AUC_Hard.csv", line_terminator="\r\n", index=False) def estimate_results(seed=0,T_rec=0.90,model="RF",input="../new_data/rest/"): data=load_csv(path=input) # Hard Results for target in data: jitterbug = Jitterbug_hard(data,target,est=True,T_rec=T_rec,model=model,seed=seed) jitterbug.hard.plot(T_rec=T_rec) def overall_results(seed=0,input="../new_data/corrected/",output="../results/"): data=load_csv(path=input) columns = ["Treatment"] + list(data.keys()) APFDs = {"Treatment":["Jitterbug","Easy+RF","Hard","MAT+RF","TM","RF"]} AUCs = {"Treatment":["Jitterbug","Easy+RF","Hard","MAT+RF","TM","RF"]} results = {} for target in data: results[target]={} APFDs[target] = [] AUCs[target] = [] print(target) start = time.time() stats = two_step_Jitterbug(data,target,seed=seed) APFDs[target].append(stats["APFD"]) AUCs[target].append(stats["AUC"]) results[target]["Jitterbug"] = stats end = time.time() print("Jitterbug") print(str(timedelta(seconds=end-start))) start = end stats = two_step_Easy(data,target,seed=seed) APFDs[target].append(stats["APFD"]) AUCs[target].append(stats["AUC"]) results[target]["Easy+RF"] = stats end = time.time() print("Easy+RF") print(str(timedelta(seconds=end - start))) start = end stats = Jitterbug_hard(data,target,est=False,seed=seed).eval() APFDs[target].append(stats["APFD"]) AUCs[target].append(stats["AUC"]) results[target]["Hard"] = stats end = time.time() print("Hard") print(str(timedelta(seconds=end - start))) start = end stats = two_step_MAT(data,target,seed=seed) APFDs[target].append(stats["APFD"]) AUCs[target].append(stats["AUC"]) results[target]["MAT+RF"] = stats end = time.time() print("MAT+RF") print(str(timedelta(seconds=end - start))) start = end stats = supervised_model(data,target, model = "RF",seed=seed) APFDs[target].append(stats["APFD"]) AUCs[target].append(stats["AUC"]) results[target]["RF"] = stats end = time.time() print("RF") print(str(timedelta(seconds=end - start))) start = end stats = supervised_model(data,target, model = "TM",seed=seed) APFDs[target].append(stats["APFD"]) AUCs[target].append(stats["AUC"]) results[target]["TM"] = stats end = time.time() print("TM") print(str(timedelta(seconds=end - start))) with open("../dump/overall_result.pickle","wb") as f: pickle.dump(results,f) pd.DataFrame(APFDs,columns=columns).to_csv(output+"overall_APFD.csv", line_terminator="\r\n", index=False) pd.DataFrame(AUCs,columns=columns).to_csv(output+"overall_AUC.csv", line_terminator="\r\n", index=False) def stopping_results(which="corrected",seed=0,input="../new_data/",output="../results/"): data=load_csv(path=input+which+"/") columns = ["Metrics"] + list(data.keys()) result = {"Metrics":["Precision","Recall","F1","Cost"]} for target in data: result[target] = [] stats = two_step_Jitterbug(data,target, est = True, T_rec=0.9, seed=seed) for metric in result["Metrics"]: result[target].append(stats[metric])
pd.DataFrame(result,columns=columns)
pandas.DataFrame
""" Plot the evolution of validation/test set scores on fit_with_prune model refits. 1. For each seed, 1a. Initialize model and run fit_with_prune to obtain a list of models. 1b. On each model, run score to obtain its test set performance. 2. For each fit, compute average validation and test set scores. 3. Plot two sequences. """ from autogluon.core.data import LabelCleaner from autogluon.core.utils import infer_problem_type from autogluon.core.models import BaggedEnsembleModel from autogluon.tabular.models.rf.rf_model import RFModel from autogluon.tabular.models import KNNModel, RFModel, CatBoostModel, NNFastAiTabularModel, LGBModel from autogluon.tabular import TabularDataset from autogluon.features.generators import AutoMLPipelineFeatureGenerator from sklearn.model_selection import train_test_split import argparse import numpy as np import os import pandas as pd import matplotlib.pyplot as plt parser = argparse.ArgumentParser() parser.add_argument('-n', '--name', help='directory to save results', type=str, default='plots/score/UNNAMED') parser.add_argument('-f', '--train_path', help='path to train dataset CSV', type=str, default=None) parser.add_argument('-g', '--test_path', help='path to test dataset CSV', type=str, default=None) parser.add_argument('-l', '--label', help='label column name', type=str, default='class') parser.add_argument('-s', '--seeds', help='number of seeds to use', type=int, default=2) parser.add_argument('-m', '--max_num_fit', help='maximum number of times the model will be fitted', type=int, default=50) parser.add_argument('-d', '--stop_threshold', help='if score does not improve for this many iterations, stop feature pruning', type=int, default=3) parser.add_argument('-p', '--prune_ratio', help='prune at most this amount of features at once per pruning iteration', type=float, default=0.05) parser.add_argument('-r', '--resource', help='number of shuffles to evaluate per model fit iteration', type=int, default=None) parser.add_argument('-t', '--strategy', help='which strategy to evaluate', type=str, default='uniform', choices=['uniform', 'backwardsearch']) parser.add_argument('-u', '--subsample_size', help='how many subsamples to use per shuffle', type=int, default=5000) parser.add_argument('-z', '--mode', help='which model to use', type=str, default='catboost', choices=['randomforest', 'catboost', 'fastai', 'knn', 'lightgbm']) parser.add_argument('-b', '--bagged', help='whether to bag models. 0 for false and 1 for true.', type=int, default=0, choices=[0, 1]) args = parser.parse_args() os.makedirs(args.name, exist_ok=True) RESULT_DIR = args.name # Load Data if args.train_path is None: fit_data = TabularDataset('https://autogluon.s3.amazonaws.com/datasets/Inc/train.csv') else: fit_data = pd.read_csv(args.train_path) if args.test_path is None: test_data = TabularDataset('https://autogluon.s3.amazonaws.com/datasets/Inc/test.csv') else: test_data = pd.read_csv(args.test_path) # import pdb; pdb.set_trace() ## NOTE: Try fitting with only noised data # fit_data = fit_data[[feature for feature in fit_data.columns if 'noise_' in feature or args.label == feature]] # test_data = test_data[[feature for feature in test_data.columns if 'noise_' in feature or args.label == feature]] # On multiple seeds, fit model and evaluate accuracy # fit_data = fit_data.head(10000) # subsample for faster demo X_all, y_all = fit_data.drop(columns=[args.label]), fit_data[args.label] X_test, y_test = test_data.drop(columns=[args.label]), test_data[args.label] val_trajectories, test_trajectories = [], [] num_original_features, num_noised_features = [], [] for seed in range(args.seeds): auto_ml_pipeline_feature_generator = AutoMLPipelineFeatureGenerator() if args.mode == 'autogluon': # TODO: Enable this with full autogluon run pass else: # call fit_with_prune, return all models, and do stuff there if args.mode == 'randomforest': model = RFModel() elif args.mode == 'fastai': model = NNFastAiTabularModel() elif args.mode == 'knn': model = KNNModel() elif args.mode == 'lightgbm': model = LGBModel() else: model = CatBoostModel() if args.strategy == 'uniform': fi_strategy = 'uniform' fp_strategy = 'percentage' else: fi_strategy = 'backwardsearch' fp_strategy = 'single' # clean data and call fit_with_prune if args.bagged: model = BaggedEnsembleModel(model, random_state=seed) problem_type = infer_problem_type(y=y_all) label_cleaner = LabelCleaner.construct(problem_type=problem_type, y=y_all) X_all_new = auto_ml_pipeline_feature_generator.fit_transform(X=X_all) y_all_new = label_cleaner.transform(y_all) best_model, all_model_info = model.fit_with_prune(X=X_all_new, y=y_all_new, X_val=None, y_val=None, max_num_fit=args.max_num_fit, stop_threshold=args.stop_threshold, prune_ratio=0.1, num_resource=args.resource, fi_strategy=fi_strategy, fp_strategy=fp_strategy, subsample_size=args.subsample_size, prune_threshold=0.001) else: X, X_val, y, y_val = train_test_split(X_all, y_all, test_size=int(0.2*len(fit_data)), random_state=seed) problem_type = infer_problem_type(y=y) label_cleaner = LabelCleaner.construct(problem_type=problem_type, y=y) X = auto_ml_pipeline_feature_generator.fit_transform(X=X) y = label_cleaner.transform(y) X_val = auto_ml_pipeline_feature_generator.transform(X=X_val) y_val = label_cleaner.transform(y_val) best_model, all_model_info = model.fit_with_prune(X=X, y=y, X_val=X_val, y_val=y_val, max_num_fit=args.max_num_fit, stop_threshold=args.stop_threshold, prune_ratio=0.1, num_resource=args.resource, fi_strategy=fi_strategy, fp_strategy=fp_strategy, subsample_size=args.subsample_size, prune_threshold=0.001) X_test_new = auto_ml_pipeline_feature_generator.transform(X=X_test) y_test_new = label_cleaner.transform(y_test) val_trajectory, test_trajectory = [], [] num_original_feature, num_noised_feature = [], [] best_val_score, best_val_score_test = -float('inf'), -float('inf') # plot evolution of test score of model with best validation loss for i, model_info in enumerate(all_model_info): val_score, model = model_info if val_score > best_val_score: best_val_score = val_score best_val_score_test = model.score(X_test_new, y_test_new) best_num_original_feature = len([feature for feature in model.features if 'noise_' not in feature]) best_num_noised_feature = len([feature for feature in model.features if 'noise_' in feature]) val_trajectory.append(best_val_score) test_trajectory.append(best_val_score_test) num_original_feature.append(best_num_original_feature) num_noised_feature.append(best_num_noised_feature) val_trajectories.append(val_trajectory) test_trajectories.append(test_trajectory) num_original_features.append(num_original_feature) num_noised_features.append(num_noised_feature) # pad trajectories so they are all of equal length max_trajectory_len = max(list(map(lambda trajectory: len(trajectory), val_trajectories))) for i in range(len(val_trajectories)): val_trajectory, test_trajectory = val_trajectories[i], test_trajectories[i] fill_len = max_trajectory_len - len(val_trajectory) val_trajectories[i] = val_trajectory + fill_len*[val_trajectory[-1]] test_trajectories[i] = test_trajectory + fill_len*[test_trajectory[-1]] num_original_feature, num_noised_feature = num_original_features[i], num_noised_features[i] num_original_features[i] = num_original_feature + fill_len*[num_original_feature[-1]] num_noised_features[i] = num_noised_feature + fill_len*[num_noised_feature[-1]] # plot result_val = np.asarray(val_trajectories) result_test = np.asarray(test_trajectories) mean_val = result_val.mean(axis=0) mean_test = result_test.mean(axis=0) std_val = 1.96 * np.std(result_val, axis=0) std_test = 1.96 * np.std(result_test, axis=0) result_orig_feat = np.asarray(num_original_features) result_noised_feat = np.asarray(num_noised_features) mean_orig_feat = result_orig_feat.mean(axis=0) mean_noised_feat = result_noised_feat.mean(axis=0) std_orig_feat = np.std(result_orig_feat, axis=0) std_noised_feat = np.std(result_noised_feat, axis=0) x = [i+1 for i in range(max_trajectory_len)] fig, ax = plt.subplots(1, 2, figsize=(12, 6)) ax[0].plot(x, mean_val, color='r') ax[0].fill_between(x, mean_val-std_val, mean_val+std_val, color='r', alpha=.1) ax[0].set_title(f"Validation and Test Set Scores") ax[0].set_xlabel("Number of Model Fits") ax[0].set_ylabel("Accuracy") ax[0].plot(x, mean_test, color='b') ax[0].fill_between(x, mean_test-std_test, mean_test+std_test, color='b', alpha=.1) ax[0].legend([f"Val ({round(mean_val[0],4)}=>{round(mean_val[-1],4)})", f"Test ({round(mean_test[0],4)}=>{round(mean_test[-1],4)})"]) ax[1].plot(x, mean_orig_feat, color='g') ax[1].fill_between(x, mean_orig_feat-std_orig_feat, mean_orig_feat+std_orig_feat, color='g', alpha=.1) ax[1].set_title("Number of Kept Features") ax[1].set_xlabel("Number of Model Fits") ax[1].set_ylabel("Number of Kept Features") ax[1].plot(x, mean_noised_feat, color='y') ax[1].fill_between(x, mean_noised_feat-std_noised_feat, mean_noised_feat+std_noised_feat, color='y', alpha=.1) ax[1].legend([f"# Original Features", f"# Synthetic Features"]) fig.suptitle(f"{'Bagged ' if args.bagged else ''}{args.mode.upper()} Stats From Strategy: {args.strategy}") fig.tight_layout() fig.savefig(f'{RESULT_DIR}/evolution.png') # save trajectories result_val_df = pd.DataFrame(val_trajectories) result_test_df =
pd.DataFrame(test_trajectories)
pandas.DataFrame
from collections import ( abc, deque, ) from decimal import Decimal from warnings import catch_warnings import numpy as np import pytest import pandas as pd from pandas import ( DataFrame, Index, MultiIndex, PeriodIndex, Series, concat, date_range, ) import pandas._testing as tm from pandas.core.arrays import SparseArray from pandas.core.construction import create_series_with_explicit_dtype from pandas.tests.extension.decimal import to_decimal class TestConcatenate: def test_append_concat(self): # GH#1815 d1 = date_range("12/31/1990", "12/31/1999", freq="A-DEC") d2 = date_range("12/31/2000", "12/31/2009", freq="A-DEC") s1 = Series(np.random.randn(10), d1) s2 = Series(np.random.randn(10), d2) s1 = s1.to_period() s2 = s2.to_period() # drops index result = concat([s1, s2]) assert isinstance(result.index, PeriodIndex) assert result.index[0] == s1.index[0] def test_concat_copy(self, using_array_manager): df = DataFrame(np.random.randn(4, 3)) df2 = DataFrame(np.random.randint(0, 10, size=4).reshape(4, 1)) df3 = DataFrame({5: "foo"}, index=range(4)) # These are actual copies. result = concat([df, df2, df3], axis=1, copy=True) for arr in result._mgr.arrays: assert arr.base is None # These are the same. result = concat([df, df2, df3], axis=1, copy=False) for arr in result._mgr.arrays: if arr.dtype.kind == "f": assert arr.base is df._mgr.arrays[0].base elif arr.dtype.kind in ["i", "u"]: assert arr.base is df2._mgr.arrays[0].base elif arr.dtype == object: if using_array_manager: # we get the same array object, which has no base assert arr is df3._mgr.arrays[0] else: assert arr.base is not None # Float block was consolidated. df4 = DataFrame(np.random.randn(4, 1)) result = concat([df, df2, df3, df4], axis=1, copy=False) for arr in result._mgr.arrays: if arr.dtype.kind == "f": if using_array_manager: # this is a view on some array in either df or df4 assert any( np.shares_memory(arr, other) for other in df._mgr.arrays + df4._mgr.arrays ) else: # the block was consolidated, so we got a copy anyway assert arr.base is None elif arr.dtype.kind in ["i", "u"]: assert arr.base is df2._mgr.arrays[0].base elif arr.dtype == object: # this is a view on df3 assert any(np.shares_memory(arr, other) for other in df3._mgr.arrays) def test_concat_with_group_keys(self): # axis=0 df = DataFrame(np.random.randn(3, 4)) df2 = DataFrame(np.random.randn(4, 4)) result = concat([df, df2], keys=[0, 1]) exp_index = MultiIndex.from_arrays( [[0, 0, 0, 1, 1, 1, 1], [0, 1, 2, 0, 1, 2, 3]] ) expected = DataFrame(np.r_[df.values, df2.values], index=exp_index) tm.assert_frame_equal(result, expected) result = concat([df, df], keys=[0, 1]) exp_index2 = MultiIndex.from_arrays([[0, 0, 0, 1, 1, 1], [0, 1, 2, 0, 1, 2]]) expected = DataFrame(np.r_[df.values, df.values], index=exp_index2) tm.assert_frame_equal(result, expected) # axis=1 df = DataFrame(np.random.randn(4, 3)) df2 = DataFrame(np.random.randn(4, 4)) result = concat([df, df2], keys=[0, 1], axis=1) expected = DataFrame(np.c_[df.values, df2.values], columns=exp_index) tm.assert_frame_equal(result, expected) result = concat([df, df], keys=[0, 1], axis=1) expected = DataFrame(np.c_[df.values, df.values], columns=exp_index2) tm.assert_frame_equal(result, expected) def test_concat_keys_specific_levels(self): df = DataFrame(np.random.randn(10, 4)) pieces = [df.iloc[:, [0, 1]], df.iloc[:, [2]], df.iloc[:, [3]]] level = ["three", "two", "one", "zero"] result = concat( pieces, axis=1, keys=["one", "two", "three"], levels=[level], names=["group_key"], ) tm.assert_index_equal(result.columns.levels[0], Index(level, name="group_key")) tm.assert_index_equal(result.columns.levels[1], Index([0, 1, 2, 3])) assert result.columns.names == ["group_key", None] @pytest.mark.parametrize("mapping", ["mapping", "dict"]) def test_concat_mapping(self, mapping, non_dict_mapping_subclass): constructor = dict if mapping == "dict" else non_dict_mapping_subclass frames = constructor( { "foo": DataFrame(np.random.randn(4, 3)), "bar": DataFrame(np.random.randn(4, 3)), "baz": DataFrame(np.random.randn(4, 3)), "qux": DataFrame(np.random.randn(4, 3)), } ) sorted_keys = list(frames.keys()) result = concat(frames) expected = concat([frames[k] for k in sorted_keys], keys=sorted_keys) tm.assert_frame_equal(result, expected) result = concat(frames, axis=1) expected = concat([frames[k] for k in sorted_keys], keys=sorted_keys, axis=1) tm.assert_frame_equal(result, expected) keys = ["baz", "foo", "bar"] result = concat(frames, keys=keys) expected = concat([frames[k] for k in keys], keys=keys) tm.assert_frame_equal(result, expected) def test_concat_keys_and_levels(self): df = DataFrame(np.random.randn(1, 3)) df2 = DataFrame(np.random.randn(1, 4)) levels = [["foo", "baz"], ["one", "two"]] names = ["first", "second"] result = concat( [df, df2, df, df2], keys=[("foo", "one"), ("foo", "two"), ("baz", "one"), ("baz", "two")], levels=levels, names=names, ) expected = concat([df, df2, df, df2]) exp_index = MultiIndex( levels=levels + [[0]], codes=[[0, 0, 1, 1], [0, 1, 0, 1], [0, 0, 0, 0]], names=names + [None], ) expected.index = exp_index tm.assert_frame_equal(result, expected) # no names result = concat( [df, df2, df, df2], keys=[("foo", "one"), ("foo", "two"), ("baz", "one"), ("baz", "two")], levels=levels, ) assert result.index.names == (None,) * 3 # no levels result = concat( [df, df2, df, df2], keys=[("foo", "one"), ("foo", "two"), ("baz", "one"), ("baz", "two")], names=["first", "second"], ) assert result.index.names == ("first", "second", None) tm.assert_index_equal( result.index.levels[0], Index(["baz", "foo"], name="first") ) def test_concat_keys_levels_no_overlap(self): # GH #1406 df = DataFrame(np.random.randn(1, 3), index=["a"]) df2 = DataFrame(np.random.randn(1, 4), index=["b"]) msg = "Values not found in passed level" with pytest.raises(ValueError, match=msg): concat([df, df], keys=["one", "two"], levels=[["foo", "bar", "baz"]]) msg = "Key one not in level" with pytest.raises(ValueError, match=msg): concat([df, df2], keys=["one", "two"], levels=[["foo", "bar", "baz"]]) def test_crossed_dtypes_weird_corner(self): columns = ["A", "B", "C", "D"] df1 = DataFrame( { "A": np.array([1, 2, 3, 4], dtype="f8"), "B": np.array([1, 2, 3, 4], dtype="i8"), "C": np.array([1, 2, 3, 4], dtype="f8"), "D": np.array([1, 2, 3, 4], dtype="i8"), }, columns=columns, ) df2 = DataFrame( { "A": np.array([1, 2, 3, 4], dtype="i8"), "B": np.array([1, 2, 3, 4], dtype="f8"), "C": np.array([1, 2, 3, 4], dtype="i8"), "D": np.array([1, 2, 3, 4], dtype="f8"), }, columns=columns, ) appended = df1.append(df2, ignore_index=True) expected = DataFrame( np.concatenate([df1.values, df2.values], axis=0), columns=columns ) tm.assert_frame_equal(appended, expected) df = DataFrame(np.random.randn(1, 3), index=["a"]) df2 = DataFrame(np.random.randn(1, 4), index=["b"]) result = concat([df, df2], keys=["one", "two"], names=["first", "second"]) assert result.index.names == ("first", "second") def test_with_mixed_tuples(self, sort): # 10697 # columns have mixed tuples, so handle properly df1 = DataFrame({"A": "foo", ("B", 1): "bar"}, index=range(2)) df2 = DataFrame({"B": "foo", ("B", 1): "bar"}, index=range(2)) # it works concat([df1, df2], sort=sort) def test_concat_mixed_objs(self): # concat mixed series/frames # G2385 # axis 1 index = date_range("01-Jan-2013", periods=10, freq="H") arr = np.arange(10, dtype="int64") s1 = Series(arr, index=index) s2 = Series(arr, index=index) df = DataFrame(arr.reshape(-1, 1), index=index) expected = DataFrame( np.repeat(arr, 2).reshape(-1, 2), index=index, columns=[0, 0] ) result = concat([df, df], axis=1) tm.assert_frame_equal(result, expected) expected = DataFrame( np.repeat(arr, 2).reshape(-1, 2), index=index, columns=[0, 1] ) result = concat([s1, s2], axis=1) tm.assert_frame_equal(result, expected) expected = DataFrame( np.repeat(arr, 3).reshape(-1, 3), index=index, columns=[0, 1, 2] ) result = concat([s1, s2, s1], axis=1) tm.assert_frame_equal(result, expected) expected = DataFrame( np.repeat(arr, 5).reshape(-1, 5), index=index, columns=[0, 0, 1, 2, 3] ) result = concat([s1, df, s2, s2, s1], axis=1) tm.assert_frame_equal(result, expected) # with names s1.name = "foo" expected = DataFrame( np.repeat(arr, 3).reshape(-1, 3), index=index, columns=["foo", 0, 0] ) result = concat([s1, df, s2], axis=1) tm.assert_frame_equal(result, expected) s2.name = "bar" expected = DataFrame( np.repeat(arr, 3).reshape(-1, 3), index=index, columns=["foo", 0, "bar"] ) result = concat([s1, df, s2], axis=1) tm.assert_frame_equal(result, expected) # ignore index expected = DataFrame( np.repeat(arr, 3).reshape(-1, 3), index=index, columns=[0, 1, 2] ) result = concat([s1, df, s2], axis=1, ignore_index=True) tm.assert_frame_equal(result, expected) # axis 0 expected = DataFrame( np.tile(arr, 3).reshape(-1, 1), index=index.tolist() * 3, columns=[0] ) result = concat([s1, df, s2]) tm.assert_frame_equal(result, expected) expected = DataFrame(np.tile(arr, 3).reshape(-1, 1), columns=[0]) result = concat([s1, df, s2], ignore_index=True) tm.assert_frame_equal(result, expected) def test_dtype_coerceion(self): # 12411 df = DataFrame({"date": [pd.Timestamp("20130101").tz_localize("UTC"), pd.NaT]}) result = concat([df.iloc[[0]], df.iloc[[1]]]) tm.assert_series_equal(result.dtypes, df.dtypes) # 12045 import datetime df = DataFrame( {"date": [datetime.datetime(2012, 1, 1), datetime.datetime(1012, 1, 2)]} ) result = concat([df.iloc[[0]], df.iloc[[1]]]) tm.assert_series_equal(result.dtypes, df.dtypes) # 11594 df = DataFrame({"text": ["some words"] + [None] * 9}) result = concat([df.iloc[[0]], df.iloc[[1]]]) tm.assert_series_equal(result.dtypes, df.dtypes) def test_concat_single_with_key(self): df = DataFrame(np.random.randn(10, 4)) result = concat([df], keys=["foo"]) expected = concat([df, df], keys=["foo", "bar"]) tm.assert_frame_equal(result, expected[:10]) def test_concat_no_items_raises(self): with pytest.raises(ValueError, match="No objects to concatenate"): concat([]) def test_concat_exclude_none(self): df = DataFrame(np.random.randn(10, 4)) pieces = [df[:5], None, None, df[5:]] result = concat(pieces) tm.assert_frame_equal(result, df) with pytest.raises(ValueError, match="All objects passed were None"): concat([None, None]) def test_concat_keys_with_none(self): # #1649 df0 = DataFrame([[10, 20, 30], [10, 20, 30], [10, 20, 30]]) result = concat({"a": None, "b": df0, "c": df0[:2], "d": df0[:1], "e": df0}) expected = concat({"b": df0, "c": df0[:2], "d": df0[:1], "e": df0}) tm.assert_frame_equal(result, expected) result = concat( [None, df0, df0[:2], df0[:1], df0], keys=["a", "b", "c", "d", "e"] ) expected = concat([df0, df0[:2], df0[:1], df0], keys=["b", "c", "d", "e"]) tm.assert_frame_equal(result, expected) def test_concat_bug_1719(self): ts1 = tm.makeTimeSeries() ts2 = tm.makeTimeSeries()[::2] # to join with union # these two are of different length! left = concat([ts1, ts2], join="outer", axis=1) right = concat([ts2, ts1], join="outer", axis=1) assert len(left) == len(right) def test_concat_bug_2972(self): ts0 = Series(np.zeros(5)) ts1 = Series(np.ones(5)) ts0.name = ts1.name = "same name" result = concat([ts0, ts1], axis=1) expected = DataFrame({0: ts0, 1: ts1}) expected.columns = ["same name", "same name"] tm.assert_frame_equal(result, expected) def test_concat_bug_3602(self): # GH 3602, duplicate columns df1 = DataFrame( { "firmNo": [0, 0, 0, 0], "prc": [6, 6, 6, 6], "stringvar": ["rrr", "rrr", "rrr", "rrr"], } ) df2 = DataFrame( {"C": [9, 10, 11, 12], "misc": [1, 2, 3, 4], "prc": [6, 6, 6, 6]} ) expected = DataFrame( [ [0, 6, "rrr", 9, 1, 6], [0, 6, "rrr", 10, 2, 6], [0, 6, "rrr", 11, 3, 6], [0, 6, "rrr", 12, 4, 6], ] ) expected.columns = ["firmNo", "prc", "stringvar", "C", "misc", "prc"] result =
concat([df1, df2], axis=1)
pandas.concat
# Run a classification experiment # implements model fitting with equalized odds and demonstrates # how to use equlized coverage for unbiased uncertainty estimation # We rely on the nonconformist package and CQR package, available at # https://github.com/donlnz/nonconformist # https://github.com/yromano/cqr import os import sys sys.path.append(os.path.abspath(os.path.join(os.getcwd() + '/others/third_party/fairness_aware_learning'))) sys.path.append(os.path.abspath(os.path.join(os.getcwd() + '/others/third_party/cqr'))) base_path = os.getcwd() + '/data/' import torch import random import get_dataset import numpy as np import pandas as pd from others import adv_debiasing from others import continuous_fairness from fair_dummies import utility_functions from fair_dummies import fair_dummies_learning from nonconformist.nc import ClassifierNc from nonconformist.cp import IcpClassifier from nonconformist.base import ClassifierAdapter from nonconformist.nc import InverseProbabilityErrFunc pd.set_option('precision', 4) # Get length def get_length(Y,predicted_C): length = sum(predicted_C) return length # Get coverage def get_coverage(Y,predicted_C): coverage = int( predicted_C[int(Y)] == True ) return coverage # Get coverage and length def get_stat(Y,predicted_C): coverage = int( predicted_C[int(Y)] == True ) length = sum(predicted_C) return coverage, length def class_compute_coverage_len(y_test, y_set): results = [get_stat(y_test[test],y_set[test]) for test in range(len(y_test))] results = list(zip(*results)) coverage = pd.DataFrame([row for row in results[0]]) length =
pd.DataFrame([r for r in results[1]])
pandas.DataFrame
# -*- coding: utf-8 -*- """ Created on Thu Feb 18 12:21:39 2021 Generates demographics table of the ICU readmission dataset in eICU. V2 has changes for readability, modularization, and efficiency, as well as a few new additional outcomes. Also adds mann-whitney and chi-squared testing. @author: Kirby """ #%% Package setup import pandas as pd import numpy as np import matplotlib.pyplot as plt from pathlib import Path from scipy.stats import mannwhitneyu from scipy.stats import chisquare from time import time start = time() file_path = Path(__file__) eicu_path = file_path.parent.parent.parent.joinpath('eicu') hist_path = file_path.parent.parent.joinpath('Features','History') comorb_path = file_path.parent.parent.joinpath('Features','Comorbidity') #%% Import data. comp = pd.read_csv('ICU_readmissions_dataset.csv') pat = pd.read_csv(eicu_path.joinpath('patient.csv'), usecols=['patientunitstayid','gender', 'age', 'ethnicity','unitdischargeoffset', 'unitadmitsource','hospitaldischargestatus']) apache = pd.read_csv(eicu_path.joinpath('apachepatientresult.csv'), usecols=['patientunitstayid','apachescore', 'apacheversion']) diag = pd.read_csv(eicu_path.joinpath('admissiondx.csv'), usecols=['patientunitstayid','admitdxname']) names = pd.read_csv('admissiondx_organ_system_paths.csv') #%% Data cleaning. #Get just patient stays we care about. for data in [pat,apache,diag]: data.drop(data[ ~data['patientunitstayid'].isin(comp['patientunitstayid'])].index, inplace=True) #Just get organ systems from diag. diag = diag[diag['admitdxname'].isin(names['admitdxname'])] #Convert age to numeric. def age_to_nums(age): if age == '> 89': return 90 else: return float(age) pat['age'] = pat['age'].apply(age_to_nums) #Get just apacheiv scores, make -1s nans. apache = apache[apache['apacheversion']=='IV'] apache = apache[['patientunitstayid','apachescore']] apache = apache[~(apache['apachescore']==-1)] apache = apache.merge(pat[['patientunitstayid']],on='patientunitstayid', how='right') #Make unitdischargeoffset into hours. pat['unitdischargeoffset'] = pat['unitdischargeoffset']/60 # Combine rare admission sources into one "Other" category. def other_adm_sources(admit_source): if admit_source in ['Operating Room','Recovery Room','PACU','Floor', 'Emergency Department']: return admit_source else: return 'Other' pat['unitadmitsource'] = pat['unitadmitsource'].apply(other_adm_sources) #%% Get separate groups. #Which patients were postive? Which were negative? readm_pos = comp[comp['bad_disch_plan']==1]['patientunitstayid'] readm_neg = comp[comp['bad_disch_plan']==0]['patientunitstayid'] #Merge all the data together. pat = pat.merge(apache,on='patientunitstayid',how='left') pat = pat.merge(diag,on='patientunitstayid',how='left') #Get positive only versions of all extracted info. pat_pos = pat[pat['patientunitstayid'].isin(readm_pos)] #Get negative only versions of all extracted info. pat_neg = pat[pat['patientunitstayid'].isin(readm_neg)] #%% Get demographic data. #Add proportion function. Takes a column of raw categorical data, gets counts, #and adds proportion while converting to string. def add_prop(col): col = col.value_counts() return (' ' + col.astype(str) + ' (' + (np.round(col/(col.sum())*100,decimals=2)).astype(str) + '%)') #Gets proportion and counts for each cohort, makes a dataframe of it. def all_prop(col_name): df = pd.DataFrame(columns=['No Readmit/Death','Readmit/Death','Total','p-Value']) df['No Readmit/Death'] = add_prop(pat_neg[col_name]) df['Readmit/Death'] = add_prop(pat_pos[col_name]) df['Total'] = add_prop(pat[col_name]) #Chi squared testing, #Find if difference between no delirium/delirium groups is significant. num_df = df[['No Readmit/Death','Readmit/Death']].copy() #Convert the data to just proportions. for col in num_df.columns: #Replace nans with 0s. num_df.replace(to_replace=np.nan,value='(0%',inplace=True) #Parse string to get percentage. num_df[col] = num_df[col].str.split('(',1) num_df[col] = num_df[col].apply(lambda x: x[1]) num_df[col] = num_df[col].str.split('%',1) num_df[col] = num_df[col].apply(lambda x: x[0]) num_df[col] = num_df[col].astype(float) chisq,p = chisquare(num_df[['Readmit/Death']],num_df[['No Readmit/Death']]) df.iloc[0,3] = np.round(p[0],decimals=3) return df #Gender gender = all_prop('gender') #Ethnicity ethn = all_prop('ethnicity') #Hospital Mortality mort = all_prop('hospitaldischargestatus') #Unit Admit Source source = all_prop('unitadmitsource') #Primary AdmissionDx Group groups = all_prop('admitdxname') #Takes in raw data column, outputs string of median and IQR. def get_med_iqr(col): return (str(np.round(col.median(),decimals=2)) + ' [' + str(np.round(col.quantile(q=0.25),decimals=2)) + '-' + str(np.round(col.quantile(q=0.75),decimals=2)) + ']') #Takes in raw data column,a title and a unit, makes IQR dataframe out of it #for each cohort. def all_med_iqr(col_name,title,units): neg_col = pat_neg[col_name] pos_col = pat_pos[col_name] df =
pd.DataFrame(columns=['No Readmit/Death','Readmit/Death','Total','p-Value'])
pandas.DataFrame
from datetime import datetime from datetime import timedelta from time import time from datetime import date import pandas as pd import numpy as np import yfinance as yf from bs4 import BeautifulSoup import requests from . import db from tqdm import tqdm headers = { 'User-Agent': 'Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/71.0.3578.98 Safari/537.36' } stocks = db.stockDB() sectors = db.sectors periods = db.periods def nameForUrl(stockName): name = [v for k, v in stocks.items() if k == stockName][0] return name def parseData(url, timeFrame): page = requests.get(url) soup = BeautifulSoup(page.content, 'html.parser') results = soup.find_all('table', class_=['historical_data_table table']) time = [results[0] if timeFrame == "A" else results[1]] history = time[0].find_all('td') histList = [i.get_text() for i in history] yearsQuarters = [histList[i::2] for i in range(2)] change = [yearsQuarters[1][i].replace('$', '') for i in range(len(yearsQuarters[1]))] change = [c if len(c) > 0 else '0' for c in change] output = [int(change[i].replace(',', '')) for i in range(len(change))] return dict(zip(yearsQuarters[0], output)) def parseNoTime(url): page = requests.get(url) soup = BeautifulSoup(page.content, 'html.parser') results = soup.find_all('table', class_=['historical_data_table table']) time = [results[0]] history = time[0].find_all('td') histList = [i.get_text() for i in history] yearsQuarters = [histList[i::2] for i in range(2)] change = [yearsQuarters[1][i].replace('$', '') for i in range(len(yearsQuarters[1]))] change = [c if len(c) > 0 else '0' for c in change] output = [int(change[i].replace(',', '')) for i in range(len(change))] final = dict(zip(yearsQuarters[0], output)) return final ###### Income statement data def getInventory(stockName,timeFrame): name = nameForUrl(stockName) url = "https://www.macrotrends.net/stocks/charts/"+ stockName + "/" + name + "/inventory" final = parseData(url, timeFrame) return final def getRevenue(stockName, timeFrame): name = nameForUrl(stockName) url = "https://www.macrotrends.net/stocks/charts/"+ stockName + "/" + name + "/revenue" final = parseData(url, timeFrame) return final def getGrossProfit(stockName, timeFrame): name = nameForUrl(stockName) url = "https://www.macrotrends.net/stocks/charts/"+ stockName + "/" + name + "/gross-profit" final = parseData(url, timeFrame) return final def getOperatingIncome(stockName, timeFrame): name = nameForUrl(stockName) url = "https://www.macrotrends.net/stocks/charts/"+ stockName + "/" + name + "/operating-income" final = parseData(url, timeFrame) return final def getEbit(stockName, timeFrame): name = nameForUrl(stockName) url = "https://www.macrotrends.net/stocks/charts/"+ stockName + "/" + name + "/ebit" final = parseData(url, timeFrame) return final def getEBITDA(stockName, timeFrame): name = nameForUrl(stockName) url = "https://www.macrotrends.net/stocks/charts/"+ stockName + "/" + name + "/ebitda" final = parseData(url, timeFrame) return final def getInterest(ticker): url = 'https://finance.yahoo.com/quote/' + ticker + '/financials' page = requests.get(url, headers=headers) soup = BeautifulSoup(page.text, 'html.parser') tables = soup.find_all('span') row = [t.get_text() for t in tables] dates = [row.index("Breakdown")+num for num in range(1,6)] date = [row[i] for i in dates] int_tables = soup.find_all('span') int_row = [t.get_text() for t in int_tables] ie = [int_row.index('Interest Expense')+num for num in range(1,6)] interests = [int_row[i] for i in ie] change = [i if len(i) > 0 else '0' for i in interests] interest = [c[:-3].replace(',', '') for c in change if "," in c] final_int = [int(i) for i in interest] return {date[i]: final_int[i] for i in range(len(final_int))} def getNetIncome(stockName, timeFrame): name = nameForUrl(stockName) url = "https://www.macrotrends.net/stocks/charts/"+ stockName + "/" + name + "/net-income" final = parseData(url, timeFrame) return final def getEPS(stockName, timeFrame): name = nameForUrl(stockName) url = "https://www.macrotrends.net/stocks/charts/"+ stockName + "/" + name + "/eps-earnings-per-share-diluted" page = requests.get(url) soup = BeautifulSoup(page.content, 'html.parser') results = soup.find_all('table', class_=['historical_data_table table']) time = [results[0] if timeFrame == "A" else results[1]] history = time[0].find_all('td') histList = [i.get_text() for i in history] yearsQuarters = [histList[i::2] for i in range(2)] change = [yearsQuarters[1][i].replace('$', '') for i in range(len(yearsQuarters[1]))] change = [c if len(c) > 0 else '0' for c in change] output = [float(change[i].replace(',', '')) for i in range(len(change))] return dict(zip(yearsQuarters[0], output)) def getSharesOutstanding(stockName, timeFrame): name = nameForUrl(stockName) url = "https://www.macrotrends.net/stocks/charts/"+ stockName + "/" + name + "/shares-outstanding" final = parseData(url, timeFrame) return final ##### Balance sheet items def getTotalAssets(stockName, timeFrame): name = nameForUrl(stockName) url = "https://www.macrotrends.net/stocks/charts/"+ stockName + "/" + name + "/total-assets" final = parseData(url, timeFrame) return final def getCashOnHand(stockName, timeFrame): name = nameForUrl(stockName) url = "https://www.macrotrends.net/stocks/charts/"+ stockName + "/" + name + "/cash-on-hand" final = parseData(url, timeFrame) return final def getLongTermDebt(stockName, timeFrame): name = nameForUrl(stockName) url = "https://www.macrotrends.net/stocks/charts/"+ stockName + "/" + name + "/long-term-debt" final = parseData(url, timeFrame) return final def getTotalLiab(ticker, timeFrame): name = nameForUrl(ticker) url = "https://www.macrotrends.net/stocks/charts/" + ticker + "/" + name + "/total-liabilities" final = parseData(url, timeFrame) return final def getShareholderEquity(stockName, timeFrame): name = nameForUrl(stockName) url = "https://www.macrotrends.net/stocks/charts/"+ stockName + "/" + name + "/total-share-holder-equity" final = parseData(url, timeFrame) return final def getEmployees(stockName): name = nameForUrl(stockName) url = "https://www.macrotrends.net/stocks/charts/"+ stockName + "/" + name + "/number-of-employees" page = requests.get(url) soup = BeautifulSoup(page.content, 'html.parser') results = soup.find_all('table', class_=['historical_data_table table']) time = [results[0]] history = time[0].find_all('td') histList = [i.get_text() for i in history] yearsQuarters = [histList[i::2] for i in range(2)] change = [yearsQuarters[1][i].replace('$', '') for i in range(len(yearsQuarters[1]))] output = [int(change[i].replace(',', '')) for i in range(len(change))] final = dict(zip(yearsQuarters[0], output)) return final def getCurrentAssets(stockName, timeFrame): name = nameForUrl(stockName) url = "https://www.macrotrends.net/stocks/charts/"+ stockName + "/" + name + "/total-current-assets" final = parseData(url, timeFrame) return final def getCurrentLiab(stockName, timeFrame): name = nameForUrl(stockName) url = "https://www.macrotrends.net/stocks/charts/"+ stockName + "/" + name + "/total-current-liabilities" final = parseData(url, timeFrame) return final def getPPE(stockName, timeFrame): name = nameForUrl(stockName) url = "https://www.macrotrends.net/stocks/charts/"+ stockName + "/" + name + "/net-property-plant-equipment" final = parseData(url, timeFrame) return final def getRecievables(stockName, timeFrame): name = nameForUrl(stockName) url = "https://www.macrotrends.net/stocks/charts/"+ stockName + "/" + name + "/receivables-total" final = parseData(url, timeFrame) return final def getPayables(ticker): url = 'https://www.zacks.com/stock/quote/' + ticker + '/balance-sheet' page = requests.get(url, headers=headers) soup = BeautifulSoup(page.text, 'html.parser') pay_tables = soup.find_all('td') tables = soup.find_all('span') row = [t.get_text() for t in tables] payRow = [t.get_text() for t in pay_tables] ap = [payRow.index('Accounts Payable')+num for num in range(1,6)] dates = [row.index("Liabilities & Shareholders Equity")+num for num in range(1,6)] payable = [payRow[i] for i in ap] date = [row[i] for i in dates[1:]] payables = [int(i.replace(',', '')) for i in payable[1:]] return {date[i]: payables[i] for i in range(len(payables))} def getCOGS(stockName, timeFrame): name = nameForUrl(stockName) url = "https://www.macrotrends.net/stocks/charts/"+ stockName + "/" + name + "/cost-goods-sold" final = parseData(url, timeFrame) return final def getOperatingExpenses(stock, timeFrame): operatingIncome = getOperatingIncome(stock, timeFrame) grossProfit = getGrossProfit(stock, timeFrame) operatingAnn = list(operatingIncome.values()) grossAnn = list(grossProfit.values()) opExpAnn = [grossAnn[i] - operatingAnn[i] for i in range(len(grossAnn))] years = list(grossProfit.keys()) finalOpAnn = dict(zip(years, opExpAnn)) return finalOpAnn def getOperatingCF(stockName): name = nameForUrl(stockName) url = "https://www.macrotrends.net/stocks/charts/"+ stockName + "/" + name + "/cash-flow-from-operating-activities" final = parseNoTime(url) return final def getInvestingCF(stockName): name = nameForUrl(stockName) url = "https://www.macrotrends.net/stocks/charts/"+ stockName + "/" + name + "/cash-flow-from-investing-activities" final = parseNoTime(url) return final def getFinancingCF(stockName): name = nameForUrl(stockName) url = "https://www.macrotrends.net/stocks/charts/"+ stockName + "/" + name + "/cash-flow-from-financial-activities" final = parseNoTime(url) return final def getDepreciation(stockName): name = nameForUrl(stockName) url = "https://www.macrotrends.net/stocks/charts/"+ stockName + "/" + name + "/total-depreciation-amortization-cash-flow" final = parseNoTime(url) return final def getNetPPEchange(stockName): name = nameForUrl(stockName) url = "https://www.macrotrends.net/stocks/charts/"+ stockName + "/" + name + "/net-change-in-property-plant-equipment" final = parseNoTime(url) return final def getNetCurrentDebt(stockName): name = nameForUrl(stockName) url = "https://www.macrotrends.net/stocks/charts/"+ stockName + "/" + name + "/net-current-debt" final = parseNoTime(url) return final def getNetDebt(stockName): name = nameForUrl(stockName) url = "https://www.macrotrends.net/stocks/charts/"+ stockName + "/" + name + "/debt-issuance-retirement-net-total" final = parseNoTime(url) return final def getTotalDivsPaid(stockName): name = nameForUrl(stockName) url = "https://www.macrotrends.net/stocks/charts/"+ stockName + "/" + name + "/total-common-preferred-stock-dividends-paid" final = parseNoTime(url) return final def getTaxes(stockName, timeFrame): name = nameForUrl(stockName) url = "https://www.macrotrends.net/stocks/charts/"+ stockName + "/" + name + "/total-provision-income-taxes" final = parseData(url, timeFrame) return final def getPretaxIncome(stockName, timeFrame): name = nameForUrl(stockName) url = "https://www.macrotrends.net/stocks/charts/"+ stockName + "/" + name + "/pre-tax-income" final = parseData(url, timeFrame) return final def getCapex(ticker): ppe = list(getPPE(ticker, "A").values()) ppeChange = [ppe[i] - ppe[i+1] for i in range(len(ppe)-1)] dep = list(getDepreciation('AAPL').values()) years = list(getDepreciation('AAPL').keys()) capex = [ppeChange[i] + dep[i] for i in range(len(ppeChange))] return {years[i]: capex[i] for i in range(len(capex))} def fcf(ticker): ocf = list(getOperatingCF(ticker).values()) interest = list(getInterest(ticker).values()) taxes = list(getTaxes(ticker, "A").values()) pretax = list(getPretaxIncome(ticker, "A").values()) taxPerc = [taxes[i] / pretax[i] for i in range(len(taxes))] intertax = [interest[i] * (1-taxPerc[i]) for i in range(len(interest))] capex = list(getCapex(ticker).values()) fcf = [ocf[i] + intertax[i] - capex[i] for i in range(len(intertax))] years = list(getOperatingCF(ticker).keys()) return {years[i]: round(fcf[i], 2) for i in range(len(fcf))} def price(stockName): url = "https://finance.yahoo.com/quote/" + stockName page = requests.get(url, headers=headers) soup = BeautifulSoup(page.content, 'html.parser') results = list(soup.find('span', class_=["Trsdu(0.3s) Fw(b) Fz(36px) Mb(-4px) D(ib)"])) results = [results[0].replace(',', '')] return float(results[0]) def marketCap(ticker): p = price(ticker) shares = getSharesOutstanding(ticker, 'Q') return p * shares def sectorTickers(sectorName): name = [v for k, v in sectors.items() if k == sectorName][0] url = "https://www.stockmonitor.com/sector/" + name page = requests.get(url) soup = BeautifulSoup(page.content, 'html.parser') results = soup.find_all('a', href=True) parsed = [r.get_text() for r in results] front = parsed[0:10] back = parsed[:-7] tickers = back[10:] return tickers def prices(stock, start, end=None): if end == None: if start in periods.keys(): period = [v for k, v in periods.items() if start == k][0] if period == 756: prices = yf.Ticker(stock).history('max')['Close'] hist = prices[-period:] return pd.DataFrame(hist) else: prices = yf.Ticker(stock).history(period)['Close'] return pd.DataFrame(prices) else: raise ValueError('invalid input: ' + start + '. Valid options are: 1d, 5d, 1m, 3m, 6m, 1y, 2y, 3y, 5y, 10y, ytd, max. Or add a finish date.') else: prices = list(yf.download(stock, start=start, end=end)['Adj Close']) return prices def volume(stock, start, end=None): if end == None: if start in periods.keys(): period = [v for k, v in periods.items() if start == k][0] if period == 756: volumes = yf.Ticker(stock).history('max')['Volume'] hist = volumes[-period:] return pd.DataFrame(hist) else: volumes = yf.Ticker(stock).history(period)['Volume'] return pd.DataFrame(volumes) else: raise ValueError('invalid input: ' + start + '. Valid options are: 1d, 5d, 1m, 3m, 6m, 1y, 2y, 3y, 5y, 10y, ytd, max. Or add a finish date.') else: volumes = list(yf.download(stock, start=start, end=end)['Volume']) return volumes def sector(ticker): url = 'https://finance.yahoo.com/quote/'+ ticker + '/profile' page = requests.get(url, headers=headers) soup = BeautifulSoup(page.text, 'html.parser') find = soup.find_all('span', class_='Fw(600)') results = [f.get_text() for f in find] if len(results) == 0: find = soup.find_all('span', class_='Fl(end)') results = [f.get_text() for f in find] #sec = [results[0] if results[0] != "N/A" else results[1]] sec = results[5] else: sec = results[0] return sec def industry(ticker): url = 'https://finance.yahoo.com/quote/'+ ticker + '/profile' page = requests.get(url, headers=headers) soup = BeautifulSoup(page.text, 'html.parser') find = soup.find_all('span', class_='Fw(600)') results = [f.get_text() for f in find] if len(results) == 0: find = soup.find_all('span', class_='Fl(end)') results = [f.get_text() for f in find] ind = [results[0] if results[0] != "N/A" else results[1]] ind = ind[0] else: ind = results[1] return ind def optionExp(ticker): url = "https://finance.yahoo.com/quote/" + ticker + "/options" page = requests.get(url, headers=headers) soup = BeautifulSoup(page.content, "html.parser") tables = soup.find_all('option') values = [tag['value'] for tag in tables if "value" in tag.attrs] dates = [i.get_text() for i in tables] reference = dict(zip(dates, values)) return reference def optionExpry(ticker): url = "https://finance.yahoo.com/quote/" + ticker + "/options" page = requests.get(url, headers=headers) soup = BeautifulSoup(page.content, "html.parser") tables = soup.find_all('option') dates = [i.get_text() for i in tables] return dates def callsPuts(ticker, date): reference = optionExp(ticker) table = [v for k, v in reference.items() if k == date][0] tableUrl = 'https://finance.yahoo.com/quote/' + ticker + '/options?date=' + table page = requests.get(tableUrl, headers=headers) test =
pd.read_html(page.text)
pandas.read_html
# 0.0 - Imports import pandas as pd import numpy as np import seaborn as sns import matplotlib.pyplot as plt from boruta import BorutaPy from sklearn.ensemble import RandomForestRegressor from sklearn.preprocessing import MinMaxScaler, RobustScaler from sklearn.metrics import mean_absolute_error, mean_absolute_percentage_error ## 0.1 - Helper Functions # This codes are for displaying a larger number of rowns and columns pd.options.display.max_columns = 200 pd.options.display.max_rows= 200 # This codes are for displaying larger pictures and graphics plt.rcParams['figure.figsize']= [30,20] plt.rcParams['font.size'] = 30 # 1.0 - Data management df_train_raw = pd.read_csv('C:/Users/<NAME>/Desktop/Projetos/ciencia de dados/House_prices/train.csv') df_test_raw = pd.read_csv('C:/Users/<NAME>/Desktop/Projetos/ciencia de dados/House_prices/test.csv') df_sample_submission_raw =
pd.read_csv('C:/Users/<NAME>/Desktop/Projetos/ciencia de dados/House_prices/sample_submission.csv')
pandas.read_csv
import matplotlib.pyplot as plt import seaborn as sns import matplotlib import numpy as np from pathlib import Path import pandas as pd plt.style.use('seaborn-white') # sns.set() font = {'family' : 'sans-serif', 'size' : 16} matplotlib.rc('font', **font) sns.set_palette('mako') if __name__ == '__main__': random = Path(__file__).resolve().parent / 'random/active_learning_1.npy' random_history = np.load(random, allow_pickle=True).item() n_data = [len(random_history[k]['train_index']) for k in random_history] r2 = [random_history[k]['R2_test'] for k in random_history] df =
pd.DataFrame({'n_data': n_data, 'R2_random': r2})
pandas.DataFrame
import os from math import ceil import numpy as np from scipy.io import wavfile from collections import defaultdict import pandas as pd # Ensure that the current file is a wave file def is_wav_file(file_name): return file_name.lower().endswith('.wav') # Create a dictionary to match each class_name with its files def get_dataset_files(dataset_path): # Create a dictionary of lists dataset_files = defaultdict(list) for dir_path, _, file_names in os.walk(dataset_path): for file_name in file_names: if is_wav_file(file_name): class_name = os.path.basename(dir_path) dataset_files[class_name].append(file_name) return dataset_files # Create a list that contains all background noise files and their probability_distribution def get_noise_files(bkg_noise_path, signal_sr=16000): files_list = list() for file_name in os.listdir(bkg_noise_path): if is_wav_file(file_name): files_list.append(file_name) signals_length = list() for file_name in files_list: file_path = os.path.join(bkg_noise_path, file_name) sampling_rate, signal = wavfile.read(file_path) file_dir = os.path.join('background_noise', file_name) # Ensure that the sampling rate of the current file is correct assert sampling_rate == signal_sr, '{}'.format(file_dir) signals_length.append(signal.shape[0]) signals_length = np.array(signals_length) probability_distribution = signals_length / signals_length.sum() return files_list, probability_distribution # Group the list of files by person def group_by_person(files_list): person = defaultdict(list) for file_name in files_list: person[file_name[:8]].append(file_name) return list(person.values()) # Dataset splitting: training set, validation set, test set def split(args, validation_part=0.2, test_part=0.2): dataset_path = os.path.join(args.data_root, 'dataset') dataset_files = get_dataset_files(dataset_path) training_files, validation_files, test_files = [], [], [] permutation = None for class_name, files_list in dataset_files.items(): files_lists = group_by_person(files_list) if permutation is None: permutation = np.random.permutation(len(files_lists)) num_test = ceil(test_part * len(files_lists)) num_validation = ceil(validation_part * len(files_lists)) for i in range(num_test): idx = permutation[i] for file_name in files_lists[idx]: file_path = os.path.join('dataset', class_name, file_name).replace("\\", "/") test_files.append((file_path, class_name)) for i in range(num_test, num_test + num_validation): idx = permutation[i] for file_name in files_lists[idx]: file_path = os.path.join('dataset', class_name, file_name).replace("\\", "/") validation_files.append((file_path, class_name)) for i in range(num_test + num_validation, len(files_lists)): idx = permutation[i] for file_name in files_lists[idx]: file_path = os.path.join('dataset', class_name, file_name).replace("\\", "/") training_files.append((file_path, class_name)) return {'train': training_files, 'val': validation_files, 'test': test_files} def split_to_csv(dataset_splits): d = defaultdict(lambda: defaultdict(list)) for set_name, set_data in dataset_splits.items(): for file_path, class_name in set_data: d[set_name]['file'].append(file_path) d[set_name]['class'].append(class_name) for set_name, set_dict in d.items(): data_frame =
pd.DataFrame(set_dict)
pandas.DataFrame
#python3 import argparse import os from Bio.PDB import * import pandas as pd # input parameters ap = argparse.ArgumentParser(description="search for pdb files in the current directory, run DSSP, calculate the percentage of secondary structures for each pdb and export a txt file with the file names as rows and the secondary structure as columns") ap.add_argument("-out", "--output", required=True, help="output txt file") args = vars(ap.parse_args()) # retrieve fasta file names file_list = [] for filename in sorted(os.listdir(str(os.getcwd()))): if filename.endswith(".pdb"): file_list.append(filename.split(".pdb")[0]) # main df_list = [] # setup empty list # retrieves each pdb file on the current directory and calculates the secondary structure percentage for filename in sorted(os.listdir(str(os.getcwd()))): if filename.endswith(".pdb"): parser = PDBParser() s = parser.get_structure("name", filename) fill = s[0] dssp = DSSP(fill, filename, dssp='mkdssp') df =
pd.DataFrame(dssp)
pandas.DataFrame
import sys, os from sklearn.metrics import roc_auc_score, roc_curve, precision_recall_curve, average_precision_score, auc import pandas as pd import numpy as np import matplotlib.pyplot as plt import matplotlib.font_manager as font_manager from matplotlib import rcParams from scipy import interp fontpath = '/usr/share/fonts/truetype/msttcorefonts/Times_New_Roman.ttf' prop = font_manager.FontProperties(fname = fontpath) rcParams['font.family'] = prop.get_name() rcParams['font.serif'] = ['Times New Roman'] rcParams['text.usetex'] = True EVAL_PAIRS_SCORE=False AVERAGE_PER_COMPLEX=False SAVE_FIG_NAME=None SAVE_FIG_NAME="ROC-and-precision-recall_DImS_struct_differentScoring_BIPSPI.png" #SAVE_FIG_NAME="ROC-and-precision-recall_DBv5_Pairs.png" def loadResults( resultsPath, prefix, evalPairsScores): if EVAL_PAIRS_SCORE: fname= os.path.join(resultsPath, prefix+".res.tab") scoresDf= pd.read_table(fname, comment="#", sep="\s+", dtype={"structResIdL":str, "chainIdL":str, "structResIdR":str, "chainIdR":str}) else: fname= os.path.join(resultsPath, prefix+".res.tab.rec") scoresDf1= pd.read_table(fname, comment="#", sep="\s+", dtype={"resId":str, "chainId":str}) fname= os.path.join(resultsPath, prefix+".res.tab.lig") scoresDf2=
pd.read_table(fname, comment="#", sep="\s+", dtype={"resId":str, "chainId":str})
pandas.read_table
import pandas as pd import numpy as np from scipy.stats import linregress as _linregress from scipy.stats import rv_histogram as _rv_histogram def Froude_number(v, h, g=9.80665): """ Calculate the Froude Number of the river, channel or duct flow, to check subcritical flow assumption (if Fr <1). Parameters ------------ v : int/float Average velocity [m/s]. h : int/float Mean hydrolic depth float [m]. g : int/float Gravitational acceleration [m/s2]. Returns --------- Fr : float Froude Number of the river [unitless]. """ assert isinstance(v, (int,float)), 'v must be of type int or float' assert isinstance(h, (int,float)), 'h must be of type int or float' assert isinstance(g, (int,float)), 'g must be of type int or float' Fr = v / np.sqrt( g * h ) return Fr def exceedance_probability(D): """ Calculates the exceedance probability Parameters ---------- D : pandas Series Data indexed by time [datetime or s]. Returns ------- F : pandas DataFrame Exceedance probability [unitless] indexed by time [datetime or s] """ assert isinstance(D, (pd.DataFrame, pd.Series)), 'D must be of type pd.Series' # dataframe allowed for matlab if isinstance(D, pd.DataFrame) and len(D.columns) == 1: # for matlab D = D.squeeze().copy() # Calculate exceedence probability (F) rank = D.rank(method='max', ascending=False) F = 100* (rank / (len(D)+1) ) F = F.to_frame('F') # for matlab return F def polynomial_fit(x, y, n): """ Returns a polynomial fit for y given x of order n with an R-squared score of the fit Parameters ----------- x : numpy array x data for polynomial fit. y : numpy array y data for polynomial fit. n : int order of the polynomial fit. Returns ---------- polynomial_coefficients : numpy polynomial List of polynomial coefficients R2 : float Polynomical fit coeffcient of determination """ try: x = np.array(x) except: pass try: y = np.array(y) except: pass assert isinstance(x, np.ndarray), 'x must be of type np.ndarray' assert isinstance(y, np.ndarray), 'y must be of type np.ndarray' assert isinstance(n, int), 'n must be of type int' # Get coeffcients of polynomial of order n polynomial_coefficients = np.poly1d(np.polyfit(x, y, n)) # Calculate the coeffcient of determination slope, intercept, r_value, p_value, std_err = _linregress(y, polynomial_coefficients(x)) R2 = r_value**2 return polynomial_coefficients, R2 def discharge_to_velocity(D, polynomial_coefficients): """ Calculates velocity given discharge data and the relationship between discharge and velocity at an individual turbine Parameters ------------ D : pandas Series Discharge data [m3/s] indexed by time [datetime or s] polynomial_coefficients : numpy polynomial List of polynomial coefficients that discribe the relationship between discharge and velocity at an individual turbine Returns ------------ V: pandas DataFrame Velocity [m/s] indexed by time [datetime or s] """ assert isinstance(D, (pd.DataFrame, pd.Series)), 'D must be of type pd.Series' # dataframe allowed for matlab assert isinstance(polynomial_coefficients, np.poly1d), 'polynomial_coefficients must be of type np.poly1d' if isinstance(D, pd.DataFrame) and len(D.columns) == 1: # for matlab D = D.squeeze().copy() # Calculate velocity using polynomial vals = polynomial_coefficients(D) V =
pd.Series(vals, index=D.index)
pandas.Series
import numpy as np import pandas as pd import os import matplotlib matplotlib.use("Agg") import matplotlib.pyplot as plt import itertools from sklearn.metrics import confusion_matrix, accuracy_score, classification_report, roc_auc_score from sklearn import metrics from sklearn.model_selection import train_test_split, StratifiedKFold from sklearn.metrics import f1_score from functools import reduce import subprocess def bash(command, mute = False): process = subprocess.Popen(command.split(), stdout=subprocess.PIPE) output, error = process.communicate() if not mute: print(output) def files(path): for file in os.listdir(path): if os.path.isfile(os.path.join(path, file)): yield file def reduce_memory(df): for col in df.columns: if df[col].dtype != object: # make variables for Int, max and min IsInt = False mx = df[col].max() mn = df[col].min() # Integer does not support NA, therefore, NA needs to be filled if not np.isfinite(df[col]).all(): df[col].fillna(mn-1,inplace=True) # test if column can be converted to an integer asint = df[col].fillna(0).astype(np.int64) result = (df[col] - asint) result = result.sum() if result > -0.01 and result < 0.01: IsInt = True # Make Integer/unsigned Integer datatypes if IsInt: if mn >= 0: if mx < 255: df[col] = df[col].astype(np.uint8) elif mx < 65535: df[col] = df[col].astype(np.uint16) elif mx < 4294967295: df[col] = df[col].astype(np.uint32) else: df[col] = df[col].astype(np.uint64) else: if mn > np.iinfo(np.int8).min and mx < np.iinfo(np.int8).max: df[col] = df[col].astype(np.int8) elif mn > np.iinfo(np.int16).min and mx < np.iinfo(np.int16).max: df[col] = df[col].astype(np.int16) elif mn > np.iinfo(np.int32).min and mx < np.iinfo(np.int32).max: df[col] = df[col].astype(np.int32) elif mn > np.iinfo(np.int64).min and mx < np.iinfo(np.int64).max: df[col] = df[col].astype(np.int64) # Make float datatypes 32 bit else: df[col] = df[col].astype(np.float32) return df def get_csv_dataset(DATAPATH, pattern, target = 'target', separate_x_y = True): data_dict = {'target': [], 'county': [], 'record': []} count = 0 for i, filepath in enumerate(files(DATAPATH)): if pattern in filepath: with open(os.path.join(DATAPATH, filepath), 'r') as file: lines = file.readlines() for record_line in lines: count += 1 data_dict['target'].append(int(filepath[1:4] == "POS")) data_dict['fips'].append(filepath[4:]) data_dict['record'].append(record_line) df = pd.DataFrame(data_dict) if not separate_x_y: return df else: return df.drop(target, 1), df[target] def get_csv_dataset(DATAPATH): data_dict = {'gender': [], 'fips': [], 'record': [], 'target': []} for filename in os.listdir(DATAPATH): with open(DATAPATH + "/" + filename, 'r') as f: ao = f.readlines() for record in ao: #data_dict['patient_id'].append(int(record[1])) data_dict['gender'].append(int(filename[0] == "M")) data_dict['target'].append(int(filename[1:4] == "POS")) data_dict['fips'].append(filename[4:]) data_dict['record'].append(record) df = pd.DataFrame(data_dict) return df def intc(i): try: return int(i) except: return 0 def powerset(iterable, minlen = 0): """ RETURN THE LIST OF ALL THE PROPER SUBSETS """ xs = list(iterable) # note we return an iterator rather than a list return [list(i) for i in chain.from_iterable(combinations(xs,n) for n in range(len(xs)+1)) if len(i) > minlen] def get_test_data(PATH, FIRST_N_WEEKS, full = False): if full: #test = get_csv_dataset(PATH, 'M', separate_x_y = False) test = get_csv_dataset(PATH) else: test = pd.read_csv('TEST_SET.csv') test['sequence'] = [[intc(i) for i in record[:-2].split(' ')][:FIRST_N_WEEKS] for record in test.record] #intc(i) to get integer X = pd.DataFrame(test.sequence.tolist(), columns=['SEQ_%i' % i for i in range(FIRST_N_WEEKS)]) X['fips'] = test.fips X['target'] = test.target X['gender'] = test.gender #X['patient_id'] = test.patient_id X.dropna(axis=0, inplace = True) return X def read_neighbor(sep=" "): ''' Read neighbor fips file ''' n_f =
pd.DataFrame()
pandas.DataFrame
from Bio import SeqIO import pandas as pd import numpy as np import math import re import os def invert_new(pdDataFrame, No_genes, pd_column_index, gene_description): pdDataFrame_dict = pdDataFrame.to_dict() new_pdDataFrame_dict = {} for i in No_genes.index: new_pdDataFrame_dict[i] = list(pdDataFrame_dict[i].values())[:No_genes[i]] complement = re.compile(r'strand_(.*)?\|\|') pdDataFrame_dict_inverted = {} for i in pd_column_index.columns: for j in pd_column_index.index: if 1 <= pd_column_index.at[j,i] < 2: if complement.search(gene_description.at[j,i]).group(1) == '-1': pdDataFrame_dict_inverted[i] = list(new_pdDataFrame_dict[i])[::-1] else: pdDataFrame_dict_inverted[i] = list(new_pdDataFrame_dict[i]) else: continue return pd.DataFrame.from_dict(pdDataFrame_dict_inverted, orient='index').T def make_target_centered(list_AMR, temp): AMR = list_AMR[0].copy() for i in range(len(list_AMR))[::-1]: AMR.update(list_AMR[i][list_AMR[i].astype(int) == list_AMR[i].astype(int).max().max()]) AMR.replace({0.01:np.nan}, inplace=True) No_genes = (~(AMR.isnull())).sum() gene_dict = {} description = {} gene_name = re.compile(r'\|\|\s(.*)?') for i in No_genes.index: each_gene = [] each_description = [] for j in range(No_genes[i]): record = SeqIO.read(temp + '/each_fasta/' + i +'/' + str(j) + '.fasta','fasta') each_description.append(record.description) each_gene.append(gene_name.search(record.description).group(1)) gene_dict[i] = each_gene description[i] = each_description gene = pd.DataFrame.from_dict(gene_dict, orient='index').T gene_description = pd.DataFrame.from_dict(description, orient='index').T AMR_inverted = invert_new(AMR, No_genes, AMR, gene_description) target_len = pd.DataFrame(columns=['complete sequence','position','len','seq']) AMR_inverted_int = AMR_inverted.fillna(0).astype(int) for i in AMR_inverted_int.T.index: position = [] length = [] sequence = [] for j in AMR_inverted_int[i][AMR_inverted_int[i]==1].index: record = SeqIO.read(temp + '/each_fasta/' + i +'/' + str(j) + '.fasta','fasta') position.append(j) length.append(len(record.seq)) sequence.append(str(record.seq)) target_len.loc[i,'position'] = position target_len.loc[i,'len'] = length target_len.loc[i,'seq'] = sequence for i in No_genes.index: record = SeqIO.read(temp + '/fasta/'+ i + '.fasta','fasta') if re.compile(r'complete sequence').search(record.description) or re.compile(r'complete genome').search(record.description): if not re.compile(r'cds').search(record.description): target_len.loc[i,'complete sequence'] = 'yes' # targetを先頭にする first = {} for i in AMR_inverted.columns: position = target_len.loc[i,'position'][0] upper = list(AMR_inverted.T.loc[i,position:].dropna()) lower = list(AMR_inverted.T.loc[i,:position-1].dropna()) first[i] = upper + lower target_first = pd.DataFrame.from_dict(first,orient='index') gene_inverted = invert_new(gene, No_genes, AMR, gene_description) # geneの種類についてtargetを先頭にする first_gene = {} for i in AMR_inverted.columns: position = target_len.loc[i,'position'][0] upper = list(gene_inverted.T.loc[i,position:].dropna()) lower = list(gene_inverted.T.loc[i,:position-1].dropna()) first_gene[i] = upper + lower gene_target_first = pd.DataFrame.from_dict(first_gene,orient='index') # 最大のレーン決める mid = pd.DataFrame(columns=['mid']) for i in target_first.index: mid.loc[i,'mid'] = math.ceil((len(target_first.loc[i,:]) - target_first.loc[i,:].isnull().sum())/2) maximum = mid.max() # とりあえずplasmidを半分にして、targetをだいたい中央に持ってくる center = {} for i in target_first.index: Mid = int(mid.loc[i,'mid']) center[i] = [None] * (int(maximum[0])-Mid) + list(target_first.loc[i,Mid+1:].dropna()) + list(target_first.loc[i,:Mid]) modified_AMR = pd.DataFrame.from_dict(center, orient='index').T # とりあえずplasmidを半分にして、targetをだいたい中央に持ってくる gene_center = {} for i in gene_target_first.index: Mid = int(mid.loc[i,'mid']) gene_center[i] = [None] * (int(maximum[0])-Mid) + list(gene_target_first.loc[i,Mid+1:].dropna()) + list(gene_target_first.loc[i,:Mid]) modified_gene = pd.DataFrame.from_dict(gene_center, orient='index').T # targetが中央になるようにする。これで完成 # completeでないdata setはそのままの順序で挿入しておく。 if len(modified_AMR.index) > 10: around_max_target10 = modified_AMR.loc[int(maximum[0])-5:int(maximum[0])+5,:].fillna(0).astype(int) else: around_max_target10 = modified_AMR.fillna(0).astype(int) count_target = (around_max_target10==1).sum(axis='columns') count_target_max = count_target.max() for i in list(count_target[count_target == count_target_max].index): target_max_row = i if count_target[target_max_row+1] > 0: # 1つ下の行に1があれば、そちらに合わせる。 target_max_row += 1 new_modified = {} gene_new_modified = {} for i in modified_AMR.columns: if target_len.loc[i,'complete sequence'] == 'yes': align_AMR = list(modified_AMR.T.loc[i,:]) align_gene = list(modified_gene.T.loc[i,:]) d = 0 while modified_AMR.fillna(0).astype(int).T.loc[i,target_max_row-d] != 1: d += 1 new_modified[i] = [np.nan] * d + align_AMR gene_new_modified[i] = [np.nan] * d + align_gene else: align_AMR = list(AMR_inverted.T.loc[i,:]) align_gene = list(gene_inverted.T.loc[i,:]) new_modified[i] = [np.nan] * (target_max_row - target_len.loc[i,'position'][0]) + align_AMR gene_new_modified[i] = [np.nan] * (target_max_row - target_len.loc[i,'position'][0]) + align_gene pd_new_modified =
pd.DataFrame.from_dict(new_modified, orient='index')
pandas.DataFrame.from_dict
import datetime import pathlib import pickle from io import BytesIO from unittest.mock import MagicMock, patch import matplotlib.pyplot as plt import numpy as np import pandas as pd import pytest import yaml from sklearn.base import BaseEstimator, RegressorMixin from sklearn.dummy import DummyClassifier from sklearn.ensemble import RandomForestClassifier from sklearn.linear_model import LinearRegression, LogisticRegression from sklearn.pipeline import Pipeline from ml_tooling import Model from ml_tooling.data import Dataset from ml_tooling.logging import Log from ml_tooling.metrics import Metrics, Metric from ml_tooling.result import Result from ml_tooling.search import Real from ml_tooling.storage import FileStorage from ml_tooling.transformers import DFStandardScaler, DFFeatureUnion from ml_tooling.utils import MLToolingError, DatasetError plt.switch_backend("agg") class TestBaseClass: def test_is_properties_works( self, classifier: Model, regression: Model, pipeline_linear: Pipeline ): assert classifier.is_regressor is False assert classifier.is_classifier is True assert regression.is_regressor is True assert regression.is_classifier is False assert classifier.is_pipeline is False assert regression.is_pipeline is False pipeline = Model(pipeline_linear) assert pipeline.is_pipeline is True def test_instantiate_model_with_non_estimator_pipeline_fails(self): example_pipe = Pipeline([("scale", DFStandardScaler)]) with pytest.raises( MLToolingError, match="You passed a Pipeline without an estimator as the last step", ): Model(example_pipe) def test_instantiate_model_with_feature_pipeline_sets_estimator_correctly(self): example_pipe = Pipeline([("scale", DFStandardScaler)]) clf = LinearRegression() model = Model(clf, feature_pipeline=example_pipe) expected = Pipeline([("features", example_pipe), ("estimator", clf)]) assert model.estimator.steps == expected.steps def test_instantiate_model_with_other_object_fails(self): with pytest.raises( MLToolingError, match="Expected a Pipeline or Estimator - got <class 'dict'>", ): Model({}) def test_default_metric_getter_works_as_expected_classifier(self): rf = Model(RandomForestClassifier(n_estimators=10)) assert rf.config.CLASSIFIER_METRIC == "accuracy" assert rf.config.REGRESSION_METRIC == "r2" assert rf.default_metric == "accuracy" rf.default_metric = "fowlkes_mallows_score" assert rf.config.CLASSIFIER_METRIC == "fowlkes_mallows_score" assert rf.config.REGRESSION_METRIC == "r2" assert rf.default_metric == "fowlkes_mallows_score" rf.config.reset_config() def test_default_metric_getter_works_as_expected_regressor(self): linreg = Model(LinearRegression()) assert linreg.config.CLASSIFIER_METRIC == "accuracy" assert linreg.config.REGRESSION_METRIC == "r2" assert linreg.default_metric == "r2" linreg.default_metric = "neg_mean_squared_error" assert linreg.config.CLASSIFIER_METRIC == "accuracy" assert linreg.config.REGRESSION_METRIC == "neg_mean_squared_error" assert linreg.default_metric == "neg_mean_squared_error" linreg.config.reset_config() def test_default_metric_works_as_expected_without_pipeline(self): rf = Model(RandomForestClassifier(n_estimators=10)) linreg = Model(LinearRegression()) assert "accuracy" == rf.default_metric assert "r2" == linreg.default_metric rf.config.CLASSIFIER_METRIC = "fowlkes_mallows_score" linreg.config.REGRESSION_METRIC = "neg_mean_squared_error" assert "fowlkes_mallows_score" == rf.default_metric assert "neg_mean_squared_error" == linreg.default_metric rf.config.reset_config() linreg.config.reset_config() def test_default_metric_works_as_expected_with_pipeline( self, pipeline_logistic: Pipeline, pipeline_linear: Pipeline ): logreg = Model(pipeline_logistic) linreg = Model(pipeline_linear) assert "accuracy" == logreg.default_metric assert "r2" == linreg.default_metric logreg.config.CLASSIFIER_METRIC = "fowlkes_mallows_score" linreg.config.REGRESSION_METRIC = "neg_mean_squared_error" assert "fowlkes_mallows_score" == logreg.default_metric assert "neg_mean_squared_error" == linreg.default_metric logreg.config.reset_config() linreg.config.reset_config() def test_regression_model_can_be_saved( self, classifier: Model, tmp_path: pathlib.Path, train_iris_dataset ): classifier.score_estimator(train_iris_dataset) load_storage = FileStorage(tmp_path) storage = FileStorage(tmp_path) saved_model_path = classifier.save_estimator(storage) assert saved_model_path.exists() loaded_model = classifier.load_estimator(saved_model_path, storage=load_storage) assert loaded_model.estimator.get_params() == classifier.estimator.get_params() def test_regression_model_filename_is_generated_correctly( self, classifier: Model, tmp_path: pathlib.Path, train_iris_dataset ): storage = FileStorage(tmp_path) saved_model_path = classifier.save_estimator(storage) assert saved_model_path.exists() assert datetime.datetime.strptime( saved_model_path.stem, f"{classifier.estimator_name}_%Y_%m_%d_%H_%M_%S_%f" ) def test_save_model_saves_pipeline_correctly( self, pipeline_logistic: Pipeline, tmp_path: pathlib.Path, train_iris_dataset ): model = Model(pipeline_logistic) model.train_estimator(train_iris_dataset) saved_model_path = model.save_estimator(FileStorage(tmp_path)) assert saved_model_path.exists() @patch("ml_tooling.logging.log_estimator.get_git_hash") def test_save_estimator_saves_logging_dir_correctly( self, mock_hash: MagicMock, classifier: Model, tmp_path: pathlib.Path ): mock_hash.return_value = "1234" with classifier.log(str(tmp_path)): expected_file = classifier.save_estimator(FileStorage(tmp_path)) assert expected_file.exists() assert ( "LogisticRegression" in [str(file) for file in tmp_path.rglob("*.yaml")][0] ) mock_hash.assert_called_once() def test_save_estimator_with_prod_flag_saves_correctly(self, classifier: Model): mock_storage = MagicMock() classifier.save_estimator(mock_storage, prod=True) mock_storage.save.assert_called_once_with( classifier.estimator, "production_model.pkl", prod=True ) def test_save_estimator_uses_default_storage_if_no_storage_is_passed( self, tmp_path: pathlib.Path, classifier: Model ): classifier.config.ESTIMATOR_DIR = tmp_path classifier.save_estimator() models = classifier.config.default_storage.get_list() assert len(models) == 1 new_classifier = Model.load_estimator(models[0]) assert ( classifier.estimator.get_params() == new_classifier.estimator.get_params() ) @patch("ml_tooling.baseclass.import_path") def test_can_load_production_estimator( self, mock_path: MagicMock, classifier: Model ): buffer = BytesIO() pickle.dump(classifier.estimator, buffer) buffer.seek(0) mock_path.return_value.__enter__.return_value = buffer model = Model.load_production_estimator("test") assert isinstance(model, Model) assert isinstance(model.estimator, BaseEstimator) def test_log_context_manager_works_as_expected(self, regression: Model): assert regression.config.LOG is False assert "runs" == regression.config.RUN_DIR.name with regression.log("test"): assert regression.config.LOG is True assert "test" == regression.config.RUN_DIR.name assert "runs" == regression.config.RUN_DIR.parent.name assert regression.config.LOG is False assert "runs" == regression.config.RUN_DIR.name assert "test" not in regression.config.RUN_DIR.parts def test_log_context_manager_logs_when_scoring_model( self, tmp_path: pathlib.Path, train_iris_dataset ): model = Model(LinearRegression()) runs = tmp_path / "runs" with model.log(str(runs)): result = model.score_estimator(train_iris_dataset) for file in runs.rglob("LinearRegression_*"): with file.open() as f: log_result = yaml.safe_load(f) assert result.metrics.score == log_result["metrics"]["r2"] assert result.model.estimator_name == log_result["estimator_name"] def test_test_models_logs_when_given_dir( self, tmp_path: pathlib.Path, train_iris_dataset ): test_models_log = tmp_path / "test_estimators" Model.test_estimators( train_iris_dataset, [ RandomForestClassifier(n_estimators=10), DummyClassifier(strategy="prior"), ], log_dir=str(test_models_log), metrics="accuracy", ) for file in test_models_log.rglob("*.yaml"): with file.open() as f: result = yaml.safe_load(f) model_name = result["model_name"] assert model_name in { "IrisData_RandomForestClassifier", "IrisData_DummyClassifier", } def test_dump_serializes_correctly_without_pipeline(self, regression: Model): serialized_model = regression.to_dict() expected = [ { "module": "sklearn.linear_model._base", "classname": "LinearRegression", "params": { "copy_X": True, "fit_intercept": True, "n_jobs": None, "normalize": False, }, } ] assert serialized_model == expected def test_dump_serializes_correctly_with_pipeline(self, pipeline_linear: Pipeline): serialized_model = Model(pipeline_linear).to_dict() expected = [ { "name": "scale", "module": "sklearn.preprocessing._data", "classname": "StandardScaler", "params": {"copy": True, "with_mean": True, "with_std": True}, }, { "name": "estimator", "module": "sklearn.linear_model._base", "classname": "LinearRegression", "params": { "copy_X": True, "fit_intercept": True, "n_jobs": None, "normalize": False, }, }, ] assert serialized_model == expected def test_to_dict_serializes_correctly_with_feature_union( self, feature_union_classifier: DFFeatureUnion ): model = Model(feature_union_classifier) result = model.to_dict() assert len(result) == 2 union = result[0] assert union["name"] == "features" assert len(union["params"]) == 2 pipe1 = union["params"][0] pipe2 = union["params"][1] assert pipe1["name"] == "pipe1" select1 = pipe1["params"][0] scale1 = pipe1["params"][1] assert select1["name"] == "select" assert select1["classname"] == "Select" assert select1["params"] == { "columns": ["sepal length (cm)", "sepal width (cm)"] } assert scale1["name"] == "scale" assert scale1["classname"] == "DFStandardScaler" assert scale1["params"] == {"copy": True, "with_mean": True, "with_std": True} assert pipe2["name"] == "pipe2" select2 = pipe2["params"][0] scale2 = pipe2["params"][1] assert select2["name"] == "select" assert select2["classname"] == "Select" assert select2["params"] == { "columns": ["petal length (cm)", "petal width (cm)"] } assert scale2["name"] == "scale" assert scale2["classname"] == "DFStandardScaler" assert scale2["params"] == {"copy": True, "with_mean": True, "with_std": True} def test_from_yaml_serializes_correctly_with_feature_union( self, feature_union_classifier: DFFeatureUnion, tmp_path: pathlib.Path ): model = Model(feature_union_classifier) result = model.to_dict() log = Log( name="test", metrics=Metrics.from_list(["accuracy"]), estimator=result ) log.save_log(tmp_path) new_model = Model.from_yaml(log.output_path) assert len(new_model.estimator.steps[0][1].transformer_list) == 2 new_steps = new_model.estimator.steps old_steps = model.estimator.steps assert new_steps[0][0] == old_steps[0][0] assert isinstance(new_steps[0][1], type(old_steps[0][1])) new_union = new_steps[0][1].transformer_list old_union = old_steps[0][1].transformer_list assert len(new_union) == len(old_union) for new_transform, old_transform in zip(new_union, old_union): assert new_transform[1].steps[0][0] == old_transform[1].steps[0][0] assert ( new_transform[1].steps[0][1].get_params() == old_transform[1].steps[0][1].get_params() ) def test_can_load_serialized_model_from_pipeline( self, pipeline_linear: Pipeline, tmp_path: pathlib.Path ): model = Model(pipeline_linear) log = Log( name="test", estimator=model.to_dict(), metrics=Metrics([Metric("accuracy", score=1.0)]), ) log.save_log(tmp_path) model2 = Model.from_yaml(log.output_path) for model1, model2 in zip(model.estimator.steps, model2.estimator.steps): assert model1[0] == model2[0] assert model1[1].get_params() == model2[1].get_params() def test_can_load_serialized_model_from_estimator( self, classifier: Model, tmp_path: pathlib.Path ): log = Log( name="test", estimator=classifier.to_dict(), metrics=Metrics([Metric("accuracy", score=1.0)]), ) log.save_log(tmp_path) model2 = Model.from_yaml(log.output_path) assert model2.estimator.get_params() == classifier.estimator.get_params() class TestTrainEstimator: def test_train_model_sets_result_to_none( self, regression: Model, train_iris_dataset ): assert regression.result is not None regression.train_estimator(train_iris_dataset) assert regression.result is None def test_train_model_followed_by_score_model_returns_correctly( self, pipeline_logistic: Pipeline, train_iris_dataset ): model = Model(pipeline_logistic) model.train_estimator(train_iris_dataset) model.score_estimator(train_iris_dataset) assert isinstance(model.result, Result) def test_train_model_errors_correctly_when_not_scored( self, pipeline_logistic: Pipeline, tmp_path: pathlib.Path, train_iris_dataset ): model = Model(pipeline_logistic) with pytest.raises(MLToolingError, match="You haven't scored the estimator"): with model.log(str(tmp_path)): model.train_estimator(train_iris_dataset) model.save_estimator(FileStorage(tmp_path)) def test_can_score_estimator_with_no_y_value(self): class DummyEstimator(BaseEstimator, RegressorMixin): def __init__(self): self.average = None def fit(self, x, y=None): self.average = np.mean(x, axis=0) return self def predict(self, x): return self.average class DummyData(Dataset): def load_training_data(self): return pd.DataFrame({"col1": [1, 2, 3, 4], "col2": [4, 5, 6, 7]}), None def load_prediction_data(self, *args, **kwargs): return pd.DataFrame({"col1": [1, 2, 3, 4], "col2": [4, 5, 6, 7]}) model = Model(DummyEstimator()) data = DummyData() model.train_estimator(data) assert np.all(np.isclose(model.estimator.average, np.array([2.5, 5.5]))) with pytest.raises(DatasetError, match="The dataset does not define a y value"): data.create_train_test() class TestScoreEstimator: def test_score_estimator_creates_train_test_data( self, boston_dataset, train_boston_dataset ): model = Model(LinearRegression()) data = boston_dataset() model.score_estimator(data) test = train_boston_dataset
pd.testing.assert_frame_equal(data.test_x, test.test_x)
pandas.testing.assert_frame_equal
# Copyright (c) Gradient Institute. All rights reserved. # Licensed under the Apache 2.0 License. """`hypothesis` strategies to generate test data.""" import logging from typing import Callable, Optional, Tuple, Union import hypothesis as hyp import hypothesis.extra as hxt import hypothesis.strategies as hst import numpy as np import pandas as pd from hypothesis.extra import numpy as hnp logger = logging.getLogger() @hst.composite def Xy_np( draw: Callable, n_rows: Optional[Union[int, hst.SearchStrategy[int]]] = None ) -> Tuple[np.ndarray, np.ndarray]: """Generate sklearn data as numpy arrays. A `hypothesis` strategy. By construction, constructed arrays: - are 2d - have no infinite values - X and y arrays have at least 1 entry # TODO: weaken assumption on y? - X and y arrays have same number of rows Parameters ---------- draw : Callable Should be of type hst.SearchStrategy[A] -> A Passed in by hst.composite decorator to construct a composite strategy n_rows : Optional[Union[int, hst.SearchStrategy[int]]], optional Number of data rows. If strategy, draw from it. If None, draw from default strategy; integer between 1 and 10. By default None Returns ------- (X, y) : Tuple[np.ndarray, np.ndarray] Input, output test data """ if n_rows is None: n_rows_ = draw(hst.integers(min_value=1, max_value=10)) elif not isinstance(n_rows, int): n_rows_ = draw(n_rows) else: n_rows_ = n_rows n_X_cols = draw(hst.integers(min_value=1, max_value=10)) n_y_cols = draw(hst.integers(min_value=1, max_value=2)) X_shape = (n_rows_, n_X_cols) y_shape = (n_rows_, n_y_cols) # logger.info(f"{X_shape}, {y_shape}") dtype_strategy = hst.one_of( hnp.floating_dtypes(endianness="<"), # TODO: re-introduce other types # hxt.numpy.boolean_dtypes(), # hxt.numpy.integer_dtypes(endianness="<"), # scipy expects little-endian # hxt.numpy.unsigned_integer_dtypes(), # hxt.numpy.complex_number_dtypes() ) X_strategy = hxt.numpy.arrays(dtype=dtype_strategy, shape=X_shape) y_strategy = hxt.numpy.arrays(dtype=dtype_strategy, shape=y_shape) X = draw(X_strategy) y = draw(y_strategy) # filter infinities (TODO: this could be made more efficient) hyp.assume(np.all(np.isfinite(X))) hyp.assume(np.all(np.isfinite(y))) return X, y @hst.composite def Xy_pd( draw: Callable, n_rows: Optional[Union[int, hst.SearchStrategy[int]]] = None ) -> Tuple[pd.DataFrame, pd.DataFrame]: """Generate sklearn data as numeric pandas arrays. A light wrapper around Xy_np. Parameters ---------- draw : Callable Should be of type hst.SearchStrategy[A] -> A Passed in by hst.composite decorator to construct a composite strategy n_rows : Optional[Union[int, hst.SearchStrategy[int]]], optional Number of data rows. If strategy, draw from it. If None, draw from default strategy; integer between 1 and 10. By default None Returns ------- (X, y) : Tuple[pd.DataFrame, pd.DataFrame] Input, output test data """ n_rows_ = hst.integers(min_value=1, max_value=10) if n_rows is None else n_rows X, y = draw(Xy_np(n_rows=n_rows_)) X_pd =
pd.DataFrame(X)
pandas.DataFrame
# Project: fuelmeter-tools # Created by: # Created on: 5/7/2020 from pandas.tseries.offsets import MonthEnd from puma.Report import Report import pandas as pd import numpy as np import puma.plot as pplot import puma.tex as ptex import datetime import os class MultiMonthReport(Report): def __init__(self,start,end,title,nc,houses,monthly_fuel_price): super(MultiMonthReport, self).__init__(start,end,title,nc,houses,monthly_fuel_price) def getAveCostPerDay(self): '''calculates the average cost of fuel per day. If the attribute gph_hdd is available this will be used to calculate costs otherwise the attribute fuel_by_day is used.''' if 'gpd_hdd' not in self.__dict__: self.cost_per_day = self.getCostPerDay(self.fuel_by_day) else: self.cost_per_day = self.getCostPerDay(self.gpd_hdd) return self.cost_per_day.mean() def getCostPerDay(self,fuel_by_day): '''calculate cost for each day based on a fuel price for each day and fuel consumption for each day''' self.fuel_price.name = 'fuel_price' df = pd.concat([fuel_by_day, self.fuel_price.groupby(pd.Grouper(freq='D')).mean()], axis=1) df.fuel_price = df.fuel_price.ffill() # filled for days that did not match return df.fuel_consumption * df.fuel_price # def getEstimatedTotalGallons(self): # '''calculates the total gallons used each month and sets the attribute gallons_by_month # :return float total gallons for the entire report period''' # self.estimated_gallons_by_month = self.calculateTotalGallonsByMonth() # return self.gallons_by_month.sum() def getCostPerMonth(self): '''calculates the total cost of consumed fuel per month by summing cost per day for every day within a month''' if self.cost_per_day == None: if 'gpd_hdd' in self.__dict__: self.cost_per_day = self.getCostPerDay(self.gpd_hdd) else: self.cost_per_day = self.getCostPerDay(self.fuel_by_day) self.cost_per_month = self.cost_per_day.groupby(pd.Grouper(freq="M")).sum() return def getTotalCost(self): '''uses hdd corrected estimate of fuel consumption to estimate cost per day and aggregate to the entire report period.''' costPerDay = self.getCostPerDay(self.gpd_hdd) return costPerDay.sum() def calculateMeanDailyGallonsPerMonth(self): '''Calculates the total gallons consumed by month based on an average daily consumption rate for each month''' #actual measured total by day We use a count of 5 records as our cutoff for producing a legit average groupedDaily = self.filtered_df['fuel_consumption'].groupby(pd.Grouper(freq="D")).sum(min_count=5) #total gallons each day #total days needing estimates self.meanDailyByMonth = groupedDaily.groupby(pd.Grouper(freq='M')).agg(['mean','count']) #total daily gallons averaged over month self.meanDailyByMonth = self.meanDailyByMonth.loc[self.meanDailyByMonth['count'] >=15,'mean'] #drop months with fewer than 20 days of data #estimatedTotalByMonth = self.meanDailyByMonth * self.meanDailyByMonth.index.days_in_month #use the average to calculate a total amount for the month return def calculateMeanGallonsPerMonth(self): '''get the average gallons consumed for all months in the reporting period''' tgpm = self.calculateTotalGallonsByMonth() return tgpm.mean() def getGallonsPerFt(self): '''get the total gallons used in the report period per house area (square feet). sets the aveGPFByYear attribute which is the totalGPF for each year averaged over all years. :return float total gallons per house square footage for the report period''' totalGPF = super().getGallonsPerFt() AveDailyByYear = self.filtered_df['fuel_consumption'].groupby(pd.Grouper(freq='A')).mean() self.aveGPFByYear = AveDailyByYear/self.area return totalGPF def makePlots(self): '''produces pngs of plots specific to this report''' os.chdir(self.name) outDoor = self.ave_MonthlyoutdoorT['ave'] pplot.plotActualvsEstimated(self.actualGallonsByMonth, self.estimatedGallonsByMonth['total_fuel'] ) pplot.plot_multiyear_bar_progress_with_temperature(self.actualAverageGallonsPerHDDByMonth['average_gphdd'], outDoor[self.start:self.end], 'monthly_track_your_progress.png') you = self.getMeanGallonsPerMonthPerAreaByYear() you.name = 'you' df = pd.concat([you, self.yearly_neighbor_ave_monthly_usage_per_area], join='inner', axis=1) pplot.plot_annual_fuel_usage(df, 'fuel_usage.png') gph = pd.DataFrame(self.gph,index = self.gph.index) gph['season'] = 0 gph.loc[(gph.index.month >= 1) & (gph.index.month <= 3), 'season'] = 1 gph.loc[(gph.index.month >= 4) & (gph.index.month <= 6), 'season'] = 2 gph.loc[(gph.index.month >= 7) & (gph.index.month <= 9), 'season'] = 3 gph.loc[(gph.index.month >= 10) & (gph.index.month <= 12), 'season'] = 4 ave_gal_by_hour_by_season = gph.groupby([gph.season, gph.index.hour]).mean() pplot.seasonal_polar_flow_plot(ave_gal_by_hour_by_season, 'seasonal_polar_plot.png') os.chdir("..") return def getAveCostPerYear(self): '''calculate the average cost per year based on the average daily cost for the report period''' return self.ave_cost_per_day * 365 def getMeanGallonsPerMonthPerAreaByYear(self): gpmpa = self.estimatedGallonsByMonth/self.area gpmpa = pd.concat([gpmpa,self.actualGallonsByMonth], axis=1) gpmpa = gpmpa[pd.notnull(gpmpa.iloc[:,1])] #estimate is only produced for months with at least 15 days of actual data AverageGPMPerArea = gpmpa['total_fuel'].groupby(pd.Grouper(freq='A')).mean() return AverageGPMPerArea def getYearlyNeigborhoodUsagePerArea(self): return self.neighborhood.getMeanMonthlyGPFByYear(self.houses) def getNeighborhoodUsagePerArea(self): return self.neighborhood.getUsageTable([]) def compare2Neighbors(self): '''generate neighborhood metrics''' super().compare2Neighbors() self.yearly_neighbor_ave_monthly_usage_per_area, self.yearly_neighbor_usage_std_per_area =self.getYearlyNeigborhoodUsagePerArea() self.neighborhoodUsage = self.getNeighborhoodUsagePerArea() return def generateSummaryTable(self,cost): '''create a summary table of fuel usage, costs and temperatures by month''' combinedData = pd.concat([np.round(self.estimatedGallonsByMonth['total_fuel'],2), self.estimatedGallonsByMonth['sample_size'],np.round(self.meanDailyByMonth,4), np.round(self.ave_MonthlyindoorT['ave'], 0), np.round(self.ave_MonthlyoutdoorT['ave'], 0)], axis=1) combinedData = combinedData[:self.estimatedGallonsByMonth.index[-1]] combinedData.columns = ['total_gal_by_month','sample_size','ave_daily_by_month','ave_indoor_t_by_month','ave_outdoor_t_by_month'] combinedData.loc[pd.isnull(combinedData['ave_indoor_t_by_month']), 'ave_daily_by_month'] = np.nan combinedData['ave_daily_cost_by_month'] = np.round(combinedData['ave_daily_by_month'] * cost,2) combinedData['total_cost_by_month'] = np.round(combinedData['total_gal_by_month'] * cost,2) #self.estimatedCostByMonth = combinedData['total_cost_by_month'] combinedData['month_year'] = [datetime.datetime.strftime(pd.to_datetime(i),format="%b %y") for i in combinedData.index] combinedData['total_cost_by_month'] = combinedData['total_cost_by_month'].map('\${:,.2f}'.format) combinedData['ave_daily_cost_by_month'] = combinedData['ave_daily_cost_by_month'].map('\${:,.2f}'.format) combinedData = combinedData[self.reportRange[0]:self.reportRange[-1]] combinedData = combinedData.astype(str) #combinedData = combinedData.astype(dtype=pd.StringDtype()) combinedData.loc[combinedData['ave_daily_by_month'] != 'nan', 'ave_daily_by_month'] = combinedData.loc[combinedData['ave_daily_by_month'] != 'nan', 'ave_daily_by_month'] + " (" + combinedData.loc[combinedData['ave_daily_by_month'] != 'nan', 'sample_size'] + ")" subset = combinedData[['month_year','ave_daily_by_month','ave_daily_cost_by_month','total_gal_by_month', 'total_cost_by_month','ave_indoor_t_by_month','ave_outdoor_t_by_month']] myTable = [tuple(x) for x in subset.to_numpy()] return myTable def generateHighMonths(self): '''calculate which months are in the 90th percentile for fuel consumption for the entier report period based on gallons_by_month attribute :return list of string month names''' highValue = np.percentile(self.estimatedGallonsByMonth , 90) highMonths = self.estimatedGallonsByMonth [self.estimatedGallonsByMonth > highValue].index.month if len(highMonths) > 0: return [datetime.datetime.strftime(datetime.datetime(2021, h, 1), format="%B") for h in highMonths] else: return None def generateMetrics(self): super().generateMetrics() #generate all the metrics used in monthly reports self.calculateMeanDailyGallonsPerMonth() #gpm is an estimated average per month self.aveYearlyCost = self.getAveCostPerYear() firstIndex = self.indoorTData[pd.notnull(self.indoorTData['inT'])].index[0] lastIndex = self.indoorTData[pd.notnull(self.indoorTData['inT'])].index[-1] + MonthEnd(1) if lastIndex.month == firstIndex.month: lastIndex = lastIndex + pd.to_timedelta('1d') if firstIndex.hour == 2: #starting a sequence at 2 am will result in an error once day light savings time ends firstIndex = firstIndex + pd.to_timedelta('1 h') elif firstIndex.hour == 1: firstIndex = firstIndex +
pd.to_timedelta('2 h')
pandas.to_timedelta
from flask import Flask, render_template, request, redirect, make_response, url_for app_onc = Flask(__name__) import astrodbkit from astrodbkit import astrodb from SEDkit import sed from SEDkit import utilities as u import os import sys import re from io import StringIO from bokeh.plotting import figure from bokeh.embed import components from bokeh.models import ColumnDataSource, HoverTool, OpenURL, TapTool, Range1d from bokeh.models.widgets import Panel, Tabs from astropy import units as q from astropy.coordinates import SkyCoord import astropy.constants as ac from scipy.ndimage.interpolation import zoom import pandas as pd import numpy as np TABLE_CLASSES = 'display no-wrap hover table' app_onc.vars = dict() app_onc.vars['query'] = '' app_onc.vars['search'] = '' app_onc.vars['specid'] = '' app_onc.vars['source_id'] = '' db_file = os.environ['ONC_database'] db = astrodb.Database(db_file)
pd.set_option('max_colwidth', -1)
pandas.set_option
from numpy import where from collections import Counter from sklearn.datasets import make_blobs import matplotlib.pyplot as plt from pandas import read_csv import pandas as pd import numpy as np # define dataset X, y = make_blobs(n_samples=1000, centers=4, random_state=1) va = read_csv('Walking.csv') MaxAx = va.MaxAx MinAy = va.MinAy MaxGx = va.MaxGx tmparr = np.zeros_like(MaxAx) aa = pd.DataFrame({"MaxAx": MaxAx, "MinAy": MinAy}) # x,y in 2D y = va.PoseName X = np.array(aa) # summarize dataset shape print(X.shape, y.shape) # summarize observations by class label counter = Counter(y) print(counter) # summarize first few examples # for i in range(10): # print(X[i], y[i]) # plot the dataset and color the by class label for label, _ in counter.items(): row_ix = where(y == label)[0] plt.scatter(X[row_ix, 0], X[row_ix, 1], label=str(label)) plt.figure(1) plt.xlabel('Max Ax') plt.ylabel('Min Ay') plt.title('Walking') plt.legend() plt.show() va = read_csv('Upstair.csv') MaxAx = va.MaxAx MinAy = va.MinAy MaxGx = va.MaxGx tmparr = np.zeros_like(MaxAx) aa =
pd.DataFrame({"MaxAx": MaxAx, "MinAy": MinAy})
pandas.DataFrame
import dask.dataframe as dd import pandas as pd import pytest import featuretools as ft from featuretools.entityset import EntitySet, Relationship from featuretools.utils.gen_utils import Library def test_create_entity_from_dask_df(pd_es): dask_es = EntitySet(id="dask_es") log_dask = dd.from_pandas(pd_es["log"].df, npartitions=2) dask_es = dask_es.entity_from_dataframe( entity_id="log_dask", dataframe=log_dask, index="id", time_index="datetime", variable_types=pd_es["log"].variable_types ) pd.testing.assert_frame_equal(pd_es["log"].df, dask_es["log_dask"].df.compute(), check_like=True) def test_create_entity_with_non_numeric_index(pd_es, dask_es): df = pd.DataFrame({"id": ["A_1", "A_2", "C", "D"], "values": [1, 12, -34, 27]}) dask_df = dd.from_pandas(df, npartitions=2) pd_es.entity_from_dataframe( entity_id="new_entity", dataframe=df, index="id") dask_es.entity_from_dataframe( entity_id="new_entity", dataframe=dask_df, index="id", variable_types={"id": ft.variable_types.Id, "values": ft.variable_types.Numeric}) pd.testing.assert_frame_equal(pd_es['new_entity'].df.reset_index(drop=True), dask_es['new_entity'].df.compute()) def test_create_entityset_with_mixed_dataframe_types(pd_es, dask_es): df = pd.DataFrame({"id": [0, 1, 2, 3], "values": [1, 12, -34, 27]}) dask_df = dd.from_pandas(df, npartitions=2) # Test error is raised when trying to add Dask entity to entitset with existing pandas entities err_msg = "All entity dataframes must be of the same type. " \ "Cannot add entity of type {} to an entityset with existing entities " \ "of type {}".format(type(dask_df), type(pd_es.entities[0].df)) with pytest.raises(ValueError, match=err_msg): pd_es.entity_from_dataframe( entity_id="new_entity", dataframe=dask_df, index="id") # Test error is raised when trying to add pandas entity to entitset with existing dask entities err_msg = "All entity dataframes must be of the same type. " \ "Cannot add entity of type {} to an entityset with existing entities " \ "of type {}".format(type(df), type(dask_es.entities[0].df)) with pytest.raises(ValueError, match=err_msg): dask_es.entity_from_dataframe( entity_id="new_entity", dataframe=df, index="id") def test_add_last_time_indexes(): pd_es = EntitySet(id="pd_es") dask_es = EntitySet(id="dask_es") sessions = pd.DataFrame({"id": [0, 1, 2, 3], "user": [1, 2, 1, 3], "time": [
pd.to_datetime('2019-01-10')
pandas.to_datetime
import json import os import numpy as np import pandas as pd import arviz as az if os.environ.get("USEGIT") == "true": env_name = "git" else: env_name = "pypi-cran" with open(f"8school_results_{env_name}.json") as f: res = json.load(f) res = np.array(res) print(res.shape) res = {"X": np.swapaxes(res, 0, 1)} res_warmup = {"X": res["X"][:, :-4000, :]} res = {"X": res["X"][:, -4000:, :]} print(res["X"].shape) print(res_warmup["X"].shape) idata = az.from_dict(res) print(idata) pd.set_option("display.max_columns", None) pd.set_option("display.max_rows", None) print(az.summary(idata)) with open(f"posterior_summary_{env_name}.json") as f: res_posterior_summary = json.load(f) res_posterior_summary = pd.DataFrame.from_records( res_posterior_summary, index="variable" ) res_posterior_summary.index.name = None print(res_posterior_summary) reference = ( pd.read_csv( f"./reference_posterior_{env_name}.csv", index_col=0, float_precision="high" ) .reset_index() .astype(float) ) # test arviz functions funcs = { "rhat_rank": lambda x: az.rhat(x, method="rank"), "rhat_raw": lambda x: az.rhat(x, method="identity"), "ess_bulk": lambda x: az.ess(x, method="bulk"), "ess_tail": lambda x: az.ess(x, method="tail"), "ess_mean": lambda x: az.ess(x, method="mean"), "ess_sd": lambda x: az.ess(x, method="sd"), "ess_median": lambda x: az.ess(x, method="median"), "ess_raw": lambda x: az.ess(x, method="identity"), "ess_quantile01": lambda x: az.ess(x, method="quantile", prob=0.01), "ess_quantile10": lambda x: az.ess(x, method="quantile", prob=0.1), "ess_quantile30": lambda x: az.ess(x, method="quantile", prob=0.3), "mcse_mean": lambda x: az.mcse(x, method="mean"), "mcse_sd": lambda x: az.mcse(x, method="sd"), "mcse_median": lambda x: az.mcse(x, method="quantile", prob=0.5), "mcse_quantile01": lambda x: az.mcse(x, method="quantile", prob=0.01), "mcse_quantile10": lambda x: az.mcse(x, method="quantile", prob=0.1), "mcse_quantile30": lambda x: az.mcse(x, method="quantile", prob=0.3), } results = {} for key, coord_dict, vals in az.plots.plot_utils.xarray_var_iter( idata.posterior, combined=True ): if coord_dict: key = "{}".format(list(coord_dict.values())[0] + 1) results[key] = {func_name: func(vals) for func_name, func in funcs.items()} arviz_data =
pd.DataFrame.from_dict(results)
pandas.DataFrame.from_dict
# -*- coding: utf-8 -*- from datetime import timedelta import operator from string import ascii_lowercase import warnings import numpy as np import pytest from pandas.compat import lrange import pandas.util._test_decorators as td import pandas as pd from pandas import ( Categorical, DataFrame, MultiIndex, Series, Timestamp, date_range, isna, notna, to_datetime, to_timedelta) import pandas.core.algorithms as algorithms import pandas.core.nanops as nanops import pandas.util.testing as tm def assert_stat_op_calc(opname, alternative, frame, has_skipna=True, check_dtype=True, check_dates=False, check_less_precise=False, skipna_alternative=None): """ Check that operator opname works as advertised on frame Parameters ---------- opname : string Name of the operator to test on frame alternative : function Function that opname is tested against; i.e. "frame.opname()" should equal "alternative(frame)". frame : DataFrame The object that the tests are executed on has_skipna : bool, default True Whether the method "opname" has the kwarg "skip_na" check_dtype : bool, default True Whether the dtypes of the result of "frame.opname()" and "alternative(frame)" should be checked. check_dates : bool, default false Whether opname should be tested on a Datetime Series check_less_precise : bool, default False Whether results should only be compared approximately; passed on to tm.assert_series_equal skipna_alternative : function, default None NaN-safe version of alternative """ f = getattr(frame, opname) if check_dates: df = DataFrame({'b': date_range('1/1/2001', periods=2)}) result = getattr(df, opname)() assert isinstance(result, Series) df['a'] = lrange(len(df)) result = getattr(df, opname)() assert isinstance(result, Series) assert len(result) if has_skipna: def wrapper(x): return alternative(x.values) skipna_wrapper = tm._make_skipna_wrapper(alternative, skipna_alternative) result0 = f(axis=0, skipna=False) result1 = f(axis=1, skipna=False) tm.assert_series_equal(result0, frame.apply(wrapper), check_dtype=check_dtype, check_less_precise=check_less_precise) # HACK: win32 tm.assert_series_equal(result1, frame.apply(wrapper, axis=1), check_dtype=False, check_less_precise=check_less_precise) else: skipna_wrapper = alternative result0 = f(axis=0) result1 = f(axis=1) tm.assert_series_equal(result0, frame.apply(skipna_wrapper), check_dtype=check_dtype, check_less_precise=check_less_precise) if opname in ['sum', 'prod']: expected = frame.apply(skipna_wrapper, axis=1) tm.assert_series_equal(result1, expected, check_dtype=False, check_less_precise=check_less_precise) # check dtypes if check_dtype: lcd_dtype = frame.values.dtype assert lcd_dtype == result0.dtype assert lcd_dtype == result1.dtype # bad axis with pytest.raises(ValueError, match='No axis named 2'): f(axis=2) # all NA case if has_skipna: all_na = frame * np.NaN r0 = getattr(all_na, opname)(axis=0) r1 = getattr(all_na, opname)(axis=1) if opname in ['sum', 'prod']: unit = 1 if opname == 'prod' else 0 # result for empty sum/prod expected = pd.Series(unit, index=r0.index, dtype=r0.dtype) tm.assert_series_equal(r0, expected) expected = pd.Series(unit, index=r1.index, dtype=r1.dtype) tm.assert_series_equal(r1, expected) def assert_stat_op_api(opname, float_frame, float_string_frame, has_numeric_only=False): """ Check that API for operator opname works as advertised on frame Parameters ---------- opname : string Name of the operator to test on frame float_frame : DataFrame DataFrame with columns of type float float_string_frame : DataFrame DataFrame with both float and string columns has_numeric_only : bool, default False Whether the method "opname" has the kwarg "numeric_only" """ # make sure works on mixed-type frame getattr(float_string_frame, opname)(axis=0) getattr(float_string_frame, opname)(axis=1) if has_numeric_only: getattr(float_string_frame, opname)(axis=0, numeric_only=True) getattr(float_string_frame, opname)(axis=1, numeric_only=True) getattr(float_frame, opname)(axis=0, numeric_only=False) getattr(float_frame, opname)(axis=1, numeric_only=False) def assert_bool_op_calc(opname, alternative, frame, has_skipna=True): """ Check that bool operator opname works as advertised on frame Parameters ---------- opname : string Name of the operator to test on frame alternative : function Function that opname is tested against; i.e. "frame.opname()" should equal "alternative(frame)". frame : DataFrame The object that the tests are executed on has_skipna : bool, default True Whether the method "opname" has the kwarg "skip_na" """ f = getattr(frame, opname) if has_skipna: def skipna_wrapper(x): nona = x.dropna().values return alternative(nona) def wrapper(x): return alternative(x.values) result0 = f(axis=0, skipna=False) result1 = f(axis=1, skipna=False) tm.assert_series_equal(result0, frame.apply(wrapper)) tm.assert_series_equal(result1, frame.apply(wrapper, axis=1), check_dtype=False) # HACK: win32 else: skipna_wrapper = alternative wrapper = alternative result0 = f(axis=0) result1 = f(axis=1) tm.assert_series_equal(result0, frame.apply(skipna_wrapper)) tm.assert_series_equal(result1, frame.apply(skipna_wrapper, axis=1), check_dtype=False) # bad axis with pytest.raises(ValueError, match='No axis named 2'): f(axis=2) # all NA case if has_skipna: all_na = frame * np.NaN r0 = getattr(all_na, opname)(axis=0) r1 = getattr(all_na, opname)(axis=1) if opname == 'any': assert not r0.any() assert not r1.any() else: assert r0.all() assert r1.all() def assert_bool_op_api(opname, bool_frame_with_na, float_string_frame, has_bool_only=False): """ Check that API for boolean operator opname works as advertised on frame Parameters ---------- opname : string Name of the operator to test on frame float_frame : DataFrame DataFrame with columns of type float float_string_frame : DataFrame DataFrame with both float and string columns has_bool_only : bool, default False Whether the method "opname" has the kwarg "bool_only" """ # make sure op works on mixed-type frame mixed = float_string_frame mixed['_bool_'] = np.random.randn(len(mixed)) > 0.5 getattr(mixed, opname)(axis=0) getattr(mixed, opname)(axis=1) if has_bool_only: getattr(mixed, opname)(axis=0, bool_only=True) getattr(mixed, opname)(axis=1, bool_only=True) getattr(bool_frame_with_na, opname)(axis=0, bool_only=False) getattr(bool_frame_with_na, opname)(axis=1, bool_only=False) class TestDataFrameAnalytics(object): # --------------------------------------------------------------------- # Correlation and covariance @td.skip_if_no_scipy def test_corr_pearson(self, float_frame): float_frame['A'][:5] = np.nan float_frame['B'][5:10] = np.nan self._check_method(float_frame, 'pearson') @td.skip_if_no_scipy def test_corr_kendall(self, float_frame): float_frame['A'][:5] = np.nan float_frame['B'][5:10] = np.nan self._check_method(float_frame, 'kendall') @td.skip_if_no_scipy def test_corr_spearman(self, float_frame): float_frame['A'][:5] = np.nan float_frame['B'][5:10] = np.nan self._check_method(float_frame, 'spearman') def _check_method(self, frame, method='pearson'): correls = frame.corr(method=method) expected = frame['A'].corr(frame['C'], method=method) tm.assert_almost_equal(correls['A']['C'], expected) @td.skip_if_no_scipy def test_corr_non_numeric(self, float_frame, float_string_frame): float_frame['A'][:5] = np.nan float_frame['B'][5:10] = np.nan # exclude non-numeric types result = float_string_frame.corr() expected = float_string_frame.loc[:, ['A', 'B', 'C', 'D']].corr() tm.assert_frame_equal(result, expected) @td.skip_if_no_scipy @pytest.mark.parametrize('meth', ['pearson', 'kendall', 'spearman']) def test_corr_nooverlap(self, meth): # nothing in common df = DataFrame({'A': [1, 1.5, 1, np.nan, np.nan, np.nan], 'B': [np.nan, np.nan, np.nan, 1, 1.5, 1], 'C': [np.nan, np.nan, np.nan, np.nan, np.nan, np.nan]}) rs = df.corr(meth) assert isna(rs.loc['A', 'B']) assert isna(rs.loc['B', 'A']) assert rs.loc['A', 'A'] == 1 assert rs.loc['B', 'B'] == 1 assert isna(rs.loc['C', 'C']) @td.skip_if_no_scipy @pytest.mark.parametrize('meth', ['pearson', 'spearman']) def test_corr_constant(self, meth): # constant --> all NA df = DataFrame({'A': [1, 1, 1, np.nan, np.nan, np.nan], 'B': [np.nan, np.nan, np.nan, 1, 1, 1]}) rs = df.corr(meth) assert isna(rs.values).all() def test_corr_int(self): # dtypes other than float64 #1761 df3 = DataFrame({"a": [1, 2, 3, 4], "b": [1, 2, 3, 4]}) df3.cov() df3.corr() @td.skip_if_no_scipy def test_corr_int_and_boolean(self): # when dtypes of pandas series are different # then ndarray will have dtype=object, # so it need to be properly handled df = DataFrame({"a": [True, False], "b": [1, 0]}) expected = DataFrame(np.ones((2, 2)), index=[ 'a', 'b'], columns=['a', 'b']) for meth in ['pearson', 'kendall', 'spearman']: with warnings.catch_warnings(record=True): warnings.simplefilter("ignore", RuntimeWarning) result = df.corr(meth) tm.assert_frame_equal(result, expected) def test_corr_cov_independent_index_column(self): # GH 14617 df = pd.DataFrame(np.random.randn(4 * 10).reshape(10, 4), columns=list("abcd")) for method in ['cov', 'corr']: result = getattr(df, method)() assert result.index is not result.columns assert result.index.equals(result.columns) def test_corr_invalid_method(self): # GH 22298 df = pd.DataFrame(np.random.normal(size=(10, 2))) msg = ("method must be either 'pearson', " "'spearman', 'kendall', or a callable, ") with pytest.raises(ValueError, match=msg): df.corr(method="____") def test_cov(self, float_frame, float_string_frame): # min_periods no NAs (corner case) expected = float_frame.cov() result = float_frame.cov(min_periods=len(float_frame)) tm.assert_frame_equal(expected, result) result = float_frame.cov(min_periods=len(float_frame) + 1) assert isna(result.values).all() # with NAs frame = float_frame.copy() frame['A'][:5] = np.nan frame['B'][5:10] = np.nan result = float_frame.cov(min_periods=len(float_frame) - 8) expected = float_frame.cov() expected.loc['A', 'B'] = np.nan expected.loc['B', 'A'] = np.nan # regular float_frame['A'][:5] = np.nan float_frame['B'][:10] = np.nan cov = float_frame.cov() tm.assert_almost_equal(cov['A']['C'], float_frame['A'].cov(float_frame['C'])) # exclude non-numeric types result = float_string_frame.cov() expected = float_string_frame.loc[:, ['A', 'B', 'C', 'D']].cov() tm.assert_frame_equal(result, expected) # Single column frame df = DataFrame(np.linspace(0.0, 1.0, 10)) result = df.cov() expected = DataFrame(np.cov(df.values.T).reshape((1, 1)), index=df.columns, columns=df.columns) tm.assert_frame_equal(result, expected) df.loc[0] = np.nan result = df.cov() expected = DataFrame(np.cov(df.values[1:].T).reshape((1, 1)), index=df.columns, columns=df.columns) tm.assert_frame_equal(result, expected) def test_corrwith(self, datetime_frame): a = datetime_frame noise = Series(np.random.randn(len(a)), index=a.index) b = datetime_frame.add(noise, axis=0) # make sure order does not matter b = b.reindex(columns=b.columns[::-1], index=b.index[::-1][10:]) del b['B'] colcorr = a.corrwith(b, axis=0) tm.assert_almost_equal(colcorr['A'], a['A'].corr(b['A'])) rowcorr = a.corrwith(b, axis=1) tm.assert_series_equal(rowcorr, a.T.corrwith(b.T, axis=0)) dropped = a.corrwith(b, axis=0, drop=True) tm.assert_almost_equal(dropped['A'], a['A'].corr(b['A'])) assert 'B' not in dropped dropped = a.corrwith(b, axis=1, drop=True) assert a.index[-1] not in dropped.index # non time-series data index = ['a', 'b', 'c', 'd', 'e'] columns = ['one', 'two', 'three', 'four'] df1 = DataFrame(np.random.randn(5, 4), index=index, columns=columns) df2 = DataFrame(np.random.randn(4, 4), index=index[:4], columns=columns) correls = df1.corrwith(df2, axis=1) for row in index[:4]: tm.assert_almost_equal(correls[row], df1.loc[row].corr(df2.loc[row])) def test_corrwith_with_objects(self): df1 = tm.makeTimeDataFrame() df2 = tm.makeTimeDataFrame() cols = ['A', 'B', 'C', 'D'] df1['obj'] = 'foo' df2['obj'] = 'bar' result = df1.corrwith(df2) expected = df1.loc[:, cols].corrwith(df2.loc[:, cols]) tm.assert_series_equal(result, expected) result = df1.corrwith(df2, axis=1) expected = df1.loc[:, cols].corrwith(df2.loc[:, cols], axis=1) tm.assert_series_equal(result, expected) def test_corrwith_series(self, datetime_frame): result = datetime_frame.corrwith(datetime_frame['A']) expected = datetime_frame.apply(datetime_frame['A'].corr) tm.assert_series_equal(result, expected) def test_corrwith_matches_corrcoef(self): df1 = DataFrame(np.arange(10000), columns=['a']) df2 = DataFrame(np.arange(10000) ** 2, columns=['a']) c1 = df1.corrwith(df2)['a'] c2 = np.corrcoef(df1['a'], df2['a'])[0][1] tm.assert_almost_equal(c1, c2) assert c1 < 1 def test_corrwith_mixed_dtypes(self): # GH 18570 df = pd.DataFrame({'a': [1, 4, 3, 2], 'b': [4, 6, 7, 3], 'c': ['a', 'b', 'c', 'd']}) s = pd.Series([0, 6, 7, 3]) result = df.corrwith(s) corrs = [df['a'].corr(s), df['b'].corr(s)] expected = pd.Series(data=corrs, index=['a', 'b']) tm.assert_series_equal(result, expected) def test_corrwith_index_intersection(self): df1 = pd.DataFrame(np.random.random(size=(10, 2)), columns=["a", "b"]) df2 = pd.DataFrame(np.random.random(size=(10, 3)), columns=["a", "b", "c"]) result = df1.corrwith(df2, drop=True).index.sort_values() expected = df1.columns.intersection(df2.columns).sort_values() tm.assert_index_equal(result, expected) def test_corrwith_index_union(self): df1 = pd.DataFrame(np.random.random(size=(10, 2)), columns=["a", "b"]) df2 = pd.DataFrame(np.random.random(size=(10, 3)), columns=["a", "b", "c"]) result = df1.corrwith(df2, drop=False).index.sort_values() expected = df1.columns.union(df2.columns).sort_values() tm.assert_index_equal(result, expected) def test_corrwith_dup_cols(self): # GH 21925 df1 = pd.DataFrame(np.vstack([np.arange(10)] * 3).T) df2 = df1.copy() df2 = pd.concat((df2, df2[0]), axis=1) result = df1.corrwith(df2) expected = pd.Series(np.ones(4), index=[0, 0, 1, 2]) tm.assert_series_equal(result, expected) @td.skip_if_no_scipy def test_corrwith_spearman(self): # GH 21925 df = pd.DataFrame(np.random.random(size=(100, 3))) result = df.corrwith(df**2, method="spearman") expected = Series(np.ones(len(result))) tm.assert_series_equal(result, expected) @td.skip_if_no_scipy def test_corrwith_kendall(self): # GH 21925 df = pd.DataFrame(np.random.random(size=(100, 3))) result = df.corrwith(df**2, method="kendall") expected = Series(np.ones(len(result))) tm.assert_series_equal(result, expected) # --------------------------------------------------------------------- # Describe def test_bool_describe_in_mixed_frame(self): df = DataFrame({ 'string_data': ['a', 'b', 'c', 'd', 'e'], 'bool_data': [True, True, False, False, False], 'int_data': [10, 20, 30, 40, 50], }) # Integer data are included in .describe() output, # Boolean and string data are not. result = df.describe() expected = DataFrame({'int_data': [5, 30, df.int_data.std(), 10, 20, 30, 40, 50]}, index=['count', 'mean', 'std', 'min', '25%', '50%', '75%', 'max']) tm.assert_frame_equal(result, expected) # Top value is a boolean value that is False result = df.describe(include=['bool']) expected = DataFrame({'bool_data': [5, 2, False, 3]}, index=['count', 'unique', 'top', 'freq']) tm.assert_frame_equal(result, expected) def test_describe_bool_frame(self): # GH 13891 df = pd.DataFrame({ 'bool_data_1': [False, False, True, True], 'bool_data_2': [False, True, True, True] }) result = df.describe() expected = DataFrame({'bool_data_1': [4, 2, True, 2], 'bool_data_2': [4, 2, True, 3]}, index=['count', 'unique', 'top', 'freq']) tm.assert_frame_equal(result, expected) df = pd.DataFrame({ 'bool_data': [False, False, True, True, False], 'int_data': [0, 1, 2, 3, 4] }) result = df.describe() expected = DataFrame({'int_data': [5, 2, df.int_data.std(), 0, 1, 2, 3, 4]}, index=['count', 'mean', 'std', 'min', '25%', '50%', '75%', 'max']) tm.assert_frame_equal(result, expected) df = pd.DataFrame({ 'bool_data': [False, False, True, True], 'str_data': ['a', 'b', 'c', 'a'] }) result = df.describe() expected = DataFrame({'bool_data': [4, 2, True, 2], 'str_data': [4, 3, 'a', 2]}, index=['count', 'unique', 'top', 'freq']) tm.assert_frame_equal(result, expected) def test_describe_categorical(self): df = DataFrame({'value': np.random.randint(0, 10000, 100)}) labels = ["{0} - {1}".format(i, i + 499) for i in range(0, 10000, 500)] cat_labels = Categorical(labels, labels) df = df.sort_values(by=['value'], ascending=True) df['value_group'] = pd.cut(df.value, range(0, 10500, 500), right=False, labels=cat_labels) cat = df # Categoricals should not show up together with numerical columns result = cat.describe() assert len(result.columns) == 1 # In a frame, describe() for the cat should be the same as for string # arrays (count, unique, top, freq) cat = Categorical(["a", "b", "b", "b"], categories=['a', 'b', 'c'], ordered=True) s = Series(cat) result = s.describe() expected = Series([4, 2, "b", 3], index=['count', 'unique', 'top', 'freq']) tm.assert_series_equal(result, expected) cat = Series(Categorical(["a", "b", "c", "c"])) df3 = DataFrame({"cat": cat, "s": ["a", "b", "c", "c"]}) result = df3.describe() tm.assert_numpy_array_equal(result["cat"].values, result["s"].values) def test_describe_categorical_columns(self): # GH 11558 columns = pd.CategoricalIndex(['int1', 'int2', 'obj'], ordered=True, name='XXX') df = DataFrame({'int1': [10, 20, 30, 40, 50], 'int2': [10, 20, 30, 40, 50], 'obj': ['A', 0, None, 'X', 1]}, columns=columns) result = df.describe() exp_columns = pd.CategoricalIndex(['int1', 'int2'], categories=['int1', 'int2', 'obj'], ordered=True, name='XXX') expected = DataFrame({'int1': [5, 30, df.int1.std(), 10, 20, 30, 40, 50], 'int2': [5, 30, df.int2.std(), 10, 20, 30, 40, 50]}, index=['count', 'mean', 'std', 'min', '25%', '50%', '75%', 'max'], columns=exp_columns) tm.assert_frame_equal(result, expected) tm.assert_categorical_equal(result.columns.values, expected.columns.values) def test_describe_datetime_columns(self): columns = pd.DatetimeIndex(['2011-01-01', '2011-02-01', '2011-03-01'], freq='MS', tz='US/Eastern', name='XXX') df = DataFrame({0: [10, 20, 30, 40, 50], 1: [10, 20, 30, 40, 50], 2: ['A', 0, None, 'X', 1]}) df.columns = columns result = df.describe() exp_columns = pd.DatetimeIndex(['2011-01-01', '2011-02-01'], freq='MS', tz='US/Eastern', name='XXX') expected = DataFrame({0: [5, 30, df.iloc[:, 0].std(), 10, 20, 30, 40, 50], 1: [5, 30, df.iloc[:, 1].std(), 10, 20, 30, 40, 50]}, index=['count', 'mean', 'std', 'min', '25%', '50%', '75%', 'max']) expected.columns = exp_columns tm.assert_frame_equal(result, expected) assert result.columns.freq == 'MS' assert result.columns.tz == expected.columns.tz def test_describe_timedelta_values(self): # GH 6145 t1 = pd.timedelta_range('1 days', freq='D', periods=5) t2 = pd.timedelta_range('1 hours', freq='H', periods=5) df = pd.DataFrame({'t1': t1, 't2': t2}) expected = DataFrame({'t1': [5, pd.Timedelta('3 days'), df.iloc[:, 0].std(), pd.Timedelta('1 days'), pd.Timedelta('2 days'), pd.Timedelta('3 days'), pd.Timedelta('4 days'), pd.Timedelta('5 days')], 't2': [5, pd.Timedelta('3 hours'), df.iloc[:, 1].std(), pd.Timedelta('1 hours'), pd.Timedelta('2 hours'), pd.Timedelta('3 hours'), pd.Timedelta('4 hours'), pd.Timedelta('5 hours')]}, index=['count', 'mean', 'std', 'min', '25%', '50%', '75%', 'max']) result = df.describe() tm.assert_frame_equal(result, expected) exp_repr = (" t1 t2\n" "count 5 5\n" "mean 3 days 00:00:00 0 days 03:00:00\n" "std 1 days 13:56:50.394919 0 days 01:34:52.099788\n" "min 1 days 00:00:00 0 days 01:00:00\n" "25% 2 days 00:00:00 0 days 02:00:00\n" "50% 3 days 00:00:00 0 days 03:00:00\n" "75% 4 days 00:00:00 0 days 04:00:00\n" "max 5 days 00:00:00 0 days 05:00:00") assert repr(result) == exp_repr def test_describe_tz_values(self, tz_naive_fixture): # GH 21332 tz = tz_naive_fixture s1 = Series(range(5)) start = Timestamp(2018, 1, 1) end = Timestamp(2018, 1, 5) s2 = Series(date_range(start, end, tz=tz)) df = pd.DataFrame({'s1': s1, 's2': s2}) expected = DataFrame({'s1': [5, np.nan, np.nan, np.nan, np.nan, np.nan, 2, 1.581139, 0, 1, 2, 3, 4], 's2': [5, 5, s2.value_counts().index[0], 1, start.tz_localize(tz), end.tz_localize(tz), np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan]}, index=['count', 'unique', 'top', 'freq', 'first', 'last', 'mean', 'std', 'min', '25%', '50%', '75%', 'max'] ) result = df.describe(include='all') tm.assert_frame_equal(result, expected) # --------------------------------------------------------------------- # Reductions def test_stat_op_api(self, float_frame, float_string_frame): assert_stat_op_api('count', float_frame, float_string_frame, has_numeric_only=True) assert_stat_op_api('sum', float_frame, float_string_frame, has_numeric_only=True) assert_stat_op_api('nunique', float_frame, float_string_frame) assert_stat_op_api('mean', float_frame, float_string_frame) assert_stat_op_api('product', float_frame, float_string_frame) assert_stat_op_api('median', float_frame, float_string_frame) assert_stat_op_api('min', float_frame, float_string_frame) assert_stat_op_api('max', float_frame, float_string_frame) assert_stat_op_api('mad', float_frame, float_string_frame) assert_stat_op_api('var', float_frame, float_string_frame) assert_stat_op_api('std', float_frame, float_string_frame) assert_stat_op_api('sem', float_frame, float_string_frame) assert_stat_op_api('median', float_frame, float_string_frame) try: from scipy.stats import skew, kurtosis # noqa:F401 assert_stat_op_api('skew', float_frame, float_string_frame) assert_stat_op_api('kurt', float_frame, float_string_frame) except ImportError: pass def test_stat_op_calc(self, float_frame_with_na, mixed_float_frame): def count(s): return notna(s).sum() def nunique(s): return len(algorithms.unique1d(s.dropna())) def mad(x): return np.abs(x - x.mean()).mean() def var(x): return np.var(x, ddof=1) def std(x): return np.std(x, ddof=1) def sem(x): return np.std(x, ddof=1) / np.sqrt(len(x)) def skewness(x): from scipy.stats import skew # noqa:F811 if len(x) < 3: return np.nan return skew(x, bias=False) def kurt(x): from scipy.stats import kurtosis # noqa:F811 if len(x) < 4: return np.nan return kurtosis(x, bias=False) assert_stat_op_calc('nunique', nunique, float_frame_with_na, has_skipna=False, check_dtype=False, check_dates=True) # mixed types (with upcasting happening) assert_stat_op_calc('sum', np.sum, mixed_float_frame.astype('float32'), check_dtype=False, check_less_precise=True) assert_stat_op_calc('sum', np.sum, float_frame_with_na, skipna_alternative=np.nansum) assert_stat_op_calc('mean', np.mean, float_frame_with_na, check_dates=True) assert_stat_op_calc('product', np.prod, float_frame_with_na) assert_stat_op_calc('mad', mad, float_frame_with_na) assert_stat_op_calc('var', var, float_frame_with_na) assert_stat_op_calc('std', std, float_frame_with_na) assert_stat_op_calc('sem', sem, float_frame_with_na) assert_stat_op_calc('count', count, float_frame_with_na, has_skipna=False, check_dtype=False, check_dates=True) try: from scipy import skew, kurtosis # noqa:F401 assert_stat_op_calc('skew', skewness, float_frame_with_na) assert_stat_op_calc('kurt', kurt, float_frame_with_na) except ImportError: pass # TODO: Ensure warning isn't emitted in the first place @pytest.mark.filterwarnings("ignore:All-NaN:RuntimeWarning") def test_median(self, float_frame_with_na, int_frame): def wrapper(x): if isna(x).any(): return np.nan return np.median(x) assert_stat_op_calc('median', wrapper, float_frame_with_na, check_dates=True) assert_stat_op_calc('median', wrapper, int_frame, check_dtype=False, check_dates=True) @pytest.mark.parametrize('method', ['sum', 'mean', 'prod', 'var', 'std', 'skew', 'min', 'max']) def test_stat_operators_attempt_obj_array(self, method): # GH#676 data = { 'a': [-0.00049987540199591344, -0.0016467257772919831, 0.00067695870775883013], 'b': [-0, -0, 0.0], 'c': [0.00031111847529610595, 0.0014902627951905339, -0.00094099200035979691] } df1 = DataFrame(data, index=['foo', 'bar', 'baz'], dtype='O') df2 = DataFrame({0: [np.nan, 2], 1: [np.nan, 3], 2: [np.nan, 4]}, dtype=object) for df in [df1, df2]: assert df.values.dtype == np.object_ result = getattr(df, method)(1) expected = getattr(df.astype('f8'), method)(1) if method in ['sum', 'prod']: tm.assert_series_equal(result, expected) @pytest.mark.parametrize('op', ['mean', 'std', 'var', 'skew', 'kurt', 'sem']) def test_mixed_ops(self, op): # GH#16116 df = DataFrame({'int': [1, 2, 3, 4], 'float': [1., 2., 3., 4.], 'str': ['a', 'b', 'c', 'd']}) result = getattr(df, op)() assert len(result) == 2 with pd.option_context('use_bottleneck', False): result = getattr(df, op)() assert len(result) == 2 def test_reduce_mixed_frame(self): # GH 6806 df = DataFrame({ 'bool_data': [True, True, False, False, False], 'int_data': [10, 20, 30, 40, 50], 'string_data': ['a', 'b', 'c', 'd', 'e'], }) df.reindex(columns=['bool_data', 'int_data', 'string_data']) test = df.sum(axis=0) tm.assert_numpy_array_equal(test.values, np.array([2, 150, 'abcde'], dtype=object)) tm.assert_series_equal(test, df.T.sum(axis=1)) def test_nunique(self): df = DataFrame({'A': [1, 1, 1], 'B': [1, 2, 3], 'C': [1, np.nan, 3]}) tm.assert_series_equal(df.nunique(), Series({'A': 1, 'B': 3, 'C': 2})) tm.assert_series_equal(df.nunique(dropna=False),
Series({'A': 1, 'B': 3, 'C': 3})
pandas.Series
# pylint: disable-msg=W0612,E1101,W0141 import nose from numpy.random import randn import numpy as np from pandas.core.index import Index, MultiIndex from pandas import Panel, DataFrame, Series, notnull, isnull from pandas.util.testing import (assert_almost_equal, assert_series_equal, assert_frame_equal, assertRaisesRegexp) import pandas.core.common as com import pandas.util.testing as tm from pandas.compat import (range, lrange, StringIO, lzip, u, cPickle, product as cart_product, zip) import pandas as pd import pandas.index as _index class TestMultiLevel(tm.TestCase): _multiprocess_can_split_ = True def setUp(self): import warnings warnings.filterwarnings(action='ignore', category=FutureWarning) index = MultiIndex(levels=[['foo', 'bar', 'baz', 'qux'], ['one', 'two', 'three']], labels=[[0, 0, 0, 1, 1, 2, 2, 3, 3, 3], [0, 1, 2, 0, 1, 1, 2, 0, 1, 2]], names=['first', 'second']) self.frame = DataFrame(np.random.randn(10, 3), index=index, columns=Index(['A', 'B', 'C'], name='exp')) self.single_level = MultiIndex(levels=[['foo', 'bar', 'baz', 'qux']], labels=[[0, 1, 2, 3]], names=['first']) # create test series object arrays = [['bar', 'bar', 'baz', 'baz', 'qux', 'qux', 'foo', 'foo'], ['one', 'two', 'one', 'two', 'one', 'two', 'one', 'two']] tuples = lzip(*arrays) index = MultiIndex.from_tuples(tuples) s = Series(randn(8), index=index) s[3] = np.NaN self.series = s tm.N = 100 self.tdf = tm.makeTimeDataFrame() self.ymd = self.tdf.groupby([lambda x: x.year, lambda x: x.month, lambda x: x.day]).sum() # use Int64Index, to make sure things work self.ymd.index.set_levels([lev.astype('i8') for lev in self.ymd.index.levels], inplace=True) self.ymd.index.set_names(['year', 'month', 'day'], inplace=True) def test_append(self): a, b = self.frame[:5], self.frame[5:] result = a.append(b) tm.assert_frame_equal(result, self.frame) result = a['A'].append(b['A']) tm.assert_series_equal(result, self.frame['A']) def test_dataframe_constructor(self): multi = DataFrame(np.random.randn(4, 4), index=[np.array(['a', 'a', 'b', 'b']), np.array(['x', 'y', 'x', 'y'])]) tm.assert_isinstance(multi.index, MultiIndex) self.assertNotIsInstance(multi.columns, MultiIndex) multi = DataFrame(np.random.randn(4, 4), columns=[['a', 'a', 'b', 'b'], ['x', 'y', 'x', 'y']]) tm.assert_isinstance(multi.columns, MultiIndex) def test_series_constructor(self): multi = Series(1., index=[np.array(['a', 'a', 'b', 'b']), np.array(['x', 'y', 'x', 'y'])]) tm.assert_isinstance(multi.index, MultiIndex) multi = Series(1., index=[['a', 'a', 'b', 'b'], ['x', 'y', 'x', 'y']]) tm.assert_isinstance(multi.index, MultiIndex) multi = Series(lrange(4), index=[['a', 'a', 'b', 'b'], ['x', 'y', 'x', 'y']]) tm.assert_isinstance(multi.index, MultiIndex) def test_reindex_level(self): # axis=0 month_sums = self.ymd.sum(level='month') result = month_sums.reindex(self.ymd.index, level=1) expected = self.ymd.groupby(level='month').transform(np.sum) assert_frame_equal(result, expected) # Series result = month_sums['A'].reindex(self.ymd.index, level=1) expected = self.ymd['A'].groupby(level='month').transform(np.sum) assert_series_equal(result, expected) # axis=1 month_sums = self.ymd.T.sum(axis=1, level='month') result = month_sums.reindex(columns=self.ymd.index, level=1) expected = self.ymd.groupby(level='month').transform(np.sum).T assert_frame_equal(result, expected) def test_binops_level(self): def _check_op(opname): op = getattr(DataFrame, opname) month_sums = self.ymd.sum(level='month') result = op(self.ymd, month_sums, level='month') broadcasted = self.ymd.groupby(level='month').transform(np.sum) expected = op(self.ymd, broadcasted) assert_frame_equal(result, expected) # Series op = getattr(Series, opname) result = op(self.ymd['A'], month_sums['A'], level='month') broadcasted = self.ymd['A'].groupby( level='month').transform(np.sum) expected = op(self.ymd['A'], broadcasted) assert_series_equal(result, expected) _check_op('sub') _check_op('add') _check_op('mul') _check_op('div') def test_pickle(self): def _test_roundtrip(frame): pickled = cPickle.dumps(frame) unpickled = cPickle.loads(pickled) assert_frame_equal(frame, unpickled) _test_roundtrip(self.frame) _test_roundtrip(self.frame.T) _test_roundtrip(self.ymd) _test_roundtrip(self.ymd.T) def test_reindex(self): reindexed = self.frame.ix[[('foo', 'one'), ('bar', 'one')]] expected = self.frame.ix[[0, 3]] assert_frame_equal(reindexed, expected) def test_reindex_preserve_levels(self): new_index = self.ymd.index[::10] chunk = self.ymd.reindex(new_index) self.assertIs(chunk.index, new_index) chunk = self.ymd.ix[new_index] self.assertIs(chunk.index, new_index) ymdT = self.ymd.T chunk = ymdT.reindex(columns=new_index) self.assertIs(chunk.columns, new_index) chunk = ymdT.ix[:, new_index] self.assertIs(chunk.columns, new_index) def test_sort_index_preserve_levels(self): result = self.frame.sort_index() self.assertEquals(result.index.names, self.frame.index.names) def test_repr_to_string(self): repr(self.frame) repr(self.ymd) repr(self.frame.T) repr(self.ymd.T) buf = StringIO() self.frame.to_string(buf=buf) self.ymd.to_string(buf=buf) self.frame.T.to_string(buf=buf) self.ymd.T.to_string(buf=buf) def test_repr_name_coincide(self): index = MultiIndex.from_tuples([('a', 0, 'foo'), ('b', 1, 'bar')], names=['a', 'b', 'c']) df = DataFrame({'value': [0, 1]}, index=index) lines = repr(df).split('\n') self.assert_(lines[2].startswith('a 0 foo')) def test_getitem_simple(self): df = self.frame.T col = df['foo', 'one'] assert_almost_equal(col.values, df.values[:, 0]) self.assertRaises(KeyError, df.__getitem__, ('foo', 'four')) self.assertRaises(KeyError, df.__getitem__, 'foobar') def test_series_getitem(self): s = self.ymd['A'] result = s[2000, 3] result2 = s.ix[2000, 3] expected = s.reindex(s.index[42:65]) expected.index = expected.index.droplevel(0).droplevel(0) assert_series_equal(result, expected) result = s[2000, 3, 10] expected = s[49] self.assertEquals(result, expected) # fancy result = s.ix[[(2000, 3, 10), (2000, 3, 13)]] expected = s.reindex(s.index[49:51]) assert_series_equal(result, expected) # key error self.assertRaises(KeyError, s.__getitem__, (2000, 3, 4)) def test_series_getitem_corner(self): s = self.ymd['A'] # don't segfault, GH #495 # out of bounds access self.assertRaises(IndexError, s.__getitem__, len(self.ymd)) # generator result = s[(x > 0 for x in s)] expected = s[s > 0] assert_series_equal(result, expected) def test_series_setitem(self): s = self.ymd['A'] s[2000, 3] = np.nan self.assert_(isnull(s.values[42:65]).all()) self.assert_(notnull(s.values[:42]).all()) self.assert_(notnull(s.values[65:]).all()) s[2000, 3, 10] = np.nan self.assert_(isnull(s[49])) def test_series_slice_partial(self): pass def test_frame_getitem_setitem_boolean(self): df = self.frame.T.copy() values = df.values result = df[df > 0] expected = df.where(df > 0) assert_frame_equal(result, expected) df[df > 0] = 5 values[values > 0] = 5 assert_almost_equal(df.values, values) df[df == 5] = 0 values[values == 5] = 0 assert_almost_equal(df.values, values) # a df that needs alignment first df[df[:-1] < 0] = 2 np.putmask(values[:-1], values[:-1] < 0, 2) assert_almost_equal(df.values, values) with assertRaisesRegexp(TypeError, 'boolean values only'): df[df * 0] = 2 def test_frame_getitem_setitem_slice(self): # getitem result = self.frame.ix[:4] expected = self.frame[:4] assert_frame_equal(result, expected) # setitem cp = self.frame.copy() cp.ix[:4] = 0 self.assert_((cp.values[:4] == 0).all()) self.assert_((cp.values[4:] != 0).all()) def test_frame_getitem_setitem_multislice(self): levels = [['t1', 't2'], ['a', 'b', 'c']] labels = [[0, 0, 0, 1, 1], [0, 1, 2, 0, 1]] midx = MultiIndex(labels=labels, levels=levels, names=[None, 'id']) df = DataFrame({'value': [1, 2, 3, 7, 8]}, index=midx) result = df.ix[:, 'value'] assert_series_equal(df['value'], result) result = df.ix[1:3, 'value'] assert_series_equal(df['value'][1:3], result) result = df.ix[:, :] assert_frame_equal(df, result) result = df df.ix[:, 'value'] = 10 result['value'] = 10 assert_frame_equal(df, result) df.ix[:, :] = 10 assert_frame_equal(df, result) def test_frame_getitem_multicolumn_empty_level(self): f = DataFrame({'a': ['1', '2', '3'], 'b': ['2', '3', '4']}) f.columns = [['level1 item1', 'level1 item2'], ['', 'level2 item2'], ['level3 item1', 'level3 item2']] result = f['level1 item1'] expected = DataFrame([['1'], ['2'], ['3']], index=f.index, columns=['level3 item1']) assert_frame_equal(result, expected) def test_frame_setitem_multi_column(self): df = DataFrame(randn(10, 4), columns=[['a', 'a', 'b', 'b'], [0, 1, 0, 1]]) cp = df.copy() cp['a'] = cp['b'] assert_frame_equal(cp['a'], cp['b']) # set with ndarray cp = df.copy() cp['a'] = cp['b'].values assert_frame_equal(cp['a'], cp['b']) #---------------------------------------- # #1803 columns = MultiIndex.from_tuples([('A', '1'), ('A', '2'), ('B', '1')]) df = DataFrame(index=[1, 3, 5], columns=columns) # Works, but adds a column instead of updating the two existing ones df['A'] = 0.0 # Doesn't work self.assertTrue((df['A'].values == 0).all()) # it broadcasts df['B', '1'] = [1, 2, 3] df['A'] = df['B', '1'] assert_series_equal(df['A', '1'], df['B', '1']) assert_series_equal(df['A', '2'], df['B', '1']) def test_getitem_tuple_plus_slice(self): # GH #671 df = DataFrame({'a': lrange(10), 'b': lrange(10), 'c': np.random.randn(10), 'd': np.random.randn(10)}) idf = df.set_index(['a', 'b']) result = idf.ix[(0, 0), :] expected = idf.ix[0, 0] expected2 = idf.xs((0, 0)) assert_series_equal(result, expected) assert_series_equal(result, expected2) def test_getitem_setitem_tuple_plus_columns(self): # GH #1013 df = self.ymd[:5] result = df.ix[(2000, 1, 6), ['A', 'B', 'C']] expected = df.ix[2000, 1, 6][['A', 'B', 'C']] assert_series_equal(result, expected) def test_getitem_multilevel_index_tuple_unsorted(self): index_columns = list("abc") df = DataFrame([[0, 1, 0, "x"], [0, 0, 1, "y"]], columns=index_columns + ["data"]) df = df.set_index(index_columns) query_index = df.index[:1] rs = df.ix[query_index, "data"] xp = Series(['x'], index=MultiIndex.from_tuples([(0, 1, 0)])) assert_series_equal(rs, xp) def test_xs(self): xs = self.frame.xs(('bar', 'two')) xs2 = self.frame.ix[('bar', 'two')] assert_series_equal(xs, xs2) assert_almost_equal(xs.values, self.frame.values[4]) # GH 6574 # missing values in returned index should be preserrved acc = [ ('a','abcde',1), ('b','bbcde',2), ('y','yzcde',25), ('z','xbcde',24), ('z',None,26), ('z','zbcde',25), ('z','ybcde',26), ] df = DataFrame(acc, columns=['a1','a2','cnt']).set_index(['a1','a2']) expected = DataFrame({ 'cnt' : [24,26,25,26] }, index=Index(['xbcde',np.nan,'zbcde','ybcde'],name='a2')) result = df.xs('z',level='a1') assert_frame_equal(result, expected) def test_xs_partial(self): result = self.frame.xs('foo') result2 = self.frame.ix['foo'] expected = self.frame.T['foo'].T assert_frame_equal(result, expected) assert_frame_equal(result, result2) result = self.ymd.xs((2000, 4)) expected = self.ymd.ix[2000, 4] assert_frame_equal(result, expected) # ex from #1796 index = MultiIndex(levels=[['foo', 'bar'], ['one', 'two'], [-1, 1]], labels=[[0, 0, 0, 0, 1, 1, 1, 1], [0, 0, 1, 1, 0, 0, 1, 1], [0, 1, 0, 1, 0, 1, 0, 1]]) df = DataFrame(np.random.randn(8, 4), index=index, columns=list('abcd')) result = df.xs(['foo', 'one']) expected = df.ix['foo', 'one'] assert_frame_equal(result, expected) def test_xs_level(self): result = self.frame.xs('two', level='second') expected = self.frame[self.frame.index.get_level_values(1) == 'two'] expected.index = expected.index.droplevel(1) assert_frame_equal(result, expected) index = MultiIndex.from_tuples([('x', 'y', 'z'), ('a', 'b', 'c'), ('p', 'q', 'r')]) df = DataFrame(np.random.randn(3, 5), index=index) result = df.xs('c', level=2) expected = df[1:2] expected.index = expected.index.droplevel(2) assert_frame_equal(result, expected) # this is a copy in 0.14 result = self.frame.xs('two', level='second') # setting this will give a SettingWithCopyError # as we are trying to write a view def f(x): x[:] = 10 self.assertRaises(com.SettingWithCopyError, f, result) def test_xs_level_multiple(self): from pandas import read_table text = """ A B C D E one two three four a b 10.0032 5 -0.5109 -2.3358 -0.4645 0.05076 0.3640 a q 20 4 0.4473 1.4152 0.2834 1.00661 0.1744 x q 30 3 -0.6662 -0.5243 -0.3580 0.89145 2.5838""" df = read_table(StringIO(text), sep='\s+', engine='python') result = df.xs(('a', 4), level=['one', 'four']) expected = df.xs('a').xs(4, level='four') assert_frame_equal(result, expected) # this is a copy in 0.14 result = df.xs(('a', 4), level=['one', 'four']) # setting this will give a SettingWithCopyError # as we are trying to write a view def f(x): x[:] = 10 self.assertRaises(com.SettingWithCopyError, f, result) # GH2107 dates = lrange(20111201, 20111205) ids = 'abcde' idx = MultiIndex.from_tuples([x for x in cart_product(dates, ids)]) idx.names = ['date', 'secid'] df = DataFrame(np.random.randn(len(idx), 3), idx, ['X', 'Y', 'Z']) rs = df.xs(20111201, level='date') xp = df.ix[20111201, :] assert_frame_equal(rs, xp) def test_xs_level0(self): from pandas import read_table text = """ A B C D E one two three four a b 10.0032 5 -0.5109 -2.3358 -0.4645 0.05076 0.3640 a q 20 4 0.4473 1.4152 0.2834 1.00661 0.1744 x q 30 3 -0.6662 -0.5243 -0.3580 0.89145 2.5838""" df = read_table(StringIO(text), sep='\s+', engine='python') result = df.xs('a', level=0) expected = df.xs('a') self.assertEqual(len(result), 2) assert_frame_equal(result, expected) def test_xs_level_series(self): s = self.frame['A'] result = s[:, 'two'] expected = self.frame.xs('two', level=1)['A'] assert_series_equal(result, expected) s = self.ymd['A'] result = s[2000, 5] expected = self.ymd.ix[2000, 5]['A'] assert_series_equal(result, expected) # not implementing this for now self.assertRaises(TypeError, s.__getitem__, (2000, slice(3, 4))) # result = s[2000, 3:4] # lv =s.index.get_level_values(1) # expected = s[(lv == 3) | (lv == 4)] # expected.index = expected.index.droplevel(0) # assert_series_equal(result, expected) # can do this though def test_get_loc_single_level(self): s = Series(np.random.randn(len(self.single_level)), index=self.single_level) for k in self.single_level.values: s[k] def test_getitem_toplevel(self): df = self.frame.T result = df['foo'] expected = df.reindex(columns=df.columns[:3]) expected.columns = expected.columns.droplevel(0) assert_frame_equal(result, expected) result = df['bar'] result2 = df.ix[:, 'bar'] expected = df.reindex(columns=df.columns[3:5]) expected.columns = expected.columns.droplevel(0) assert_frame_equal(result, expected) assert_frame_equal(result, result2) def test_getitem_setitem_slice_integers(self): index = MultiIndex(levels=[[0, 1, 2], [0, 2]], labels=[[0, 0, 1, 1, 2, 2], [0, 1, 0, 1, 0, 1]]) frame = DataFrame(np.random.randn(len(index), 4), index=index, columns=['a', 'b', 'c', 'd']) res = frame.ix[1:2] exp = frame.reindex(frame.index[2:]) assert_frame_equal(res, exp) frame.ix[1:2] = 7 self.assert_((frame.ix[1:2] == 7).values.all()) series = Series(np.random.randn(len(index)), index=index) res = series.ix[1:2] exp = series.reindex(series.index[2:]) assert_series_equal(res, exp) series.ix[1:2] = 7 self.assert_((series.ix[1:2] == 7).values.all()) def test_getitem_int(self): levels = [[0, 1], [0, 1, 2]] labels = [[0, 0, 0, 1, 1, 1], [0, 1, 2, 0, 1, 2]] index = MultiIndex(levels=levels, labels=labels) frame = DataFrame(np.random.randn(6, 2), index=index) result = frame.ix[1] expected = frame[-3:] expected.index = expected.index.droplevel(0) assert_frame_equal(result, expected) # raises exception self.assertRaises(KeyError, frame.ix.__getitem__, 3) # however this will work result = self.frame.ix[2] expected = self.frame.xs(self.frame.index[2]) assert_series_equal(result, expected) def test_getitem_partial(self): ymd = self.ymd.T result = ymd[2000, 2] expected = ymd.reindex(columns=ymd.columns[ymd.columns.labels[1] == 1]) expected.columns = expected.columns.droplevel(0).droplevel(0) assert_frame_equal(result, expected) def test_getitem_slice_not_sorted(self): df = self.frame.sortlevel(1).T # buglet with int typechecking result = df.ix[:, :np.int32(3)] expected = df.reindex(columns=df.columns[:3]) assert_frame_equal(result, expected) def test_setitem_change_dtype(self): dft = self.frame.T s = dft['foo', 'two'] dft['foo', 'two'] = s > s.median() assert_series_equal(dft['foo', 'two'], s > s.median()) # tm.assert_isinstance(dft._data.blocks[1].items, MultiIndex) reindexed = dft.reindex(columns=[('foo', 'two')]) assert_series_equal(reindexed['foo', 'two'], s > s.median()) def test_frame_setitem_ix(self): self.frame.ix[('bar', 'two'), 'B'] = 5 self.assertEquals(self.frame.ix[('bar', 'two'), 'B'], 5) # with integer labels df = self.frame.copy() df.columns = lrange(3) df.ix[('bar', 'two'), 1] = 7 self.assertEquals(df.ix[('bar', 'two'), 1], 7) def test_fancy_slice_partial(self): result = self.frame.ix['bar':'baz'] expected = self.frame[3:7] assert_frame_equal(result, expected) result = self.ymd.ix[(2000, 2):(2000, 4)] lev = self.ymd.index.labels[1] expected = self.ymd[(lev >= 1) & (lev <= 3)] assert_frame_equal(result, expected) def test_getitem_partial_column_select(self): idx = MultiIndex(labels=[[0, 0, 0], [0, 1, 1], [1, 0, 1]], levels=[['a', 'b'], ['x', 'y'], ['p', 'q']]) df = DataFrame(np.random.rand(3, 2), index=idx) result = df.ix[('a', 'y'), :] expected = df.ix[('a', 'y')] assert_frame_equal(result, expected) result = df.ix[('a', 'y'), [1, 0]] expected = df.ix[('a', 'y')][[1, 0]] assert_frame_equal(result, expected) self.assertRaises(KeyError, df.ix.__getitem__, (('a', 'foo'), slice(None, None))) def test_sortlevel(self): df = self.frame.copy() df.index = np.arange(len(df)) assertRaisesRegexp(TypeError, 'hierarchical index', df.sortlevel, 0) # axis=1 # series a_sorted = self.frame['A'].sortlevel(0) with assertRaisesRegexp(TypeError, 'hierarchical index'): self.frame.reset_index()['A'].sortlevel() # preserve names self.assertEquals(a_sorted.index.names, self.frame.index.names) # inplace rs = self.frame.copy() rs.sortlevel(0, inplace=True) assert_frame_equal(rs, self.frame.sortlevel(0)) def test_sortlevel_large_cardinality(self): # #2684 (int64) index = MultiIndex.from_arrays([np.arange(4000)]*3) df = DataFrame(np.random.randn(4000), index=index, dtype = np.int64) # it works! result = df.sortlevel(0) self.assertTrue(result.index.lexsort_depth == 3) # #2684 (int32) index = MultiIndex.from_arrays([np.arange(4000)]*3) df = DataFrame(np.random.randn(4000), index=index, dtype = np.int32) # it works! result = df.sortlevel(0) self.assert_((result.dtypes.values == df.dtypes.values).all() == True) self.assertTrue(result.index.lexsort_depth == 3) def test_delevel_infer_dtype(self): tuples = [tuple for tuple in cart_product(['foo', 'bar'], [10, 20], [1.0, 1.1])] index = MultiIndex.from_tuples(tuples, names=['prm0', 'prm1', 'prm2']) df = DataFrame(np.random.randn(8, 3), columns=['A', 'B', 'C'], index=index) deleveled = df.reset_index() self.assert_(com.is_integer_dtype(deleveled['prm1'])) self.assert_(com.is_float_dtype(deleveled['prm2'])) def test_reset_index_with_drop(self): deleveled = self.ymd.reset_index(drop=True) self.assertEquals(len(deleveled.columns), len(self.ymd.columns)) deleveled = self.series.reset_index() tm.assert_isinstance(deleveled, DataFrame) self.assertEqual(len(deleveled.columns), len(self.series.index.levels) + 1) deleveled = self.series.reset_index(drop=True) tm.assert_isinstance(deleveled, Series) def test_sortlevel_by_name(self): self.frame.index.names = ['first', 'second'] result = self.frame.sortlevel(level='second') expected = self.frame.sortlevel(level=1) assert_frame_equal(result, expected) def test_sortlevel_mixed(self): sorted_before = self.frame.sortlevel(1) df = self.frame.copy() df['foo'] = 'bar' sorted_after = df.sortlevel(1) assert_frame_equal(sorted_before, sorted_after.drop(['foo'], axis=1)) dft = self.frame.T sorted_before = dft.sortlevel(1, axis=1) dft['foo', 'three'] = 'bar' sorted_after = dft.sortlevel(1, axis=1) assert_frame_equal(sorted_before.drop([('foo', 'three')], axis=1), sorted_after.drop([('foo', 'three')], axis=1)) def test_count_level(self): def _check_counts(frame, axis=0): index = frame._get_axis(axis) for i in range(index.nlevels): result = frame.count(axis=axis, level=i) expected = frame.groupby(axis=axis, level=i).count(axis=axis) expected = expected.reindex_like(result).astype('i8') assert_frame_equal(result, expected) self.frame.ix[1, [1, 2]] = np.nan self.frame.ix[7, [0, 1]] = np.nan self.ymd.ix[1, [1, 2]] = np.nan self.ymd.ix[7, [0, 1]] = np.nan _check_counts(self.frame) _check_counts(self.ymd) _check_counts(self.frame.T, axis=1) _check_counts(self.ymd.T, axis=1) # can't call with level on regular DataFrame df = tm.makeTimeDataFrame() assertRaisesRegexp(TypeError, 'hierarchical', df.count, level=0) self.frame['D'] = 'foo' result = self.frame.count(level=0, numeric_only=True) assert_almost_equal(result.columns, ['A', 'B', 'C']) def test_count_level_series(self): index = MultiIndex(levels=[['foo', 'bar', 'baz'], ['one', 'two', 'three', 'four']], labels=[[0, 0, 0, 2, 2], [2, 0, 1, 1, 2]]) s = Series(np.random.randn(len(index)), index=index) result = s.count(level=0) expected = s.groupby(level=0).count() assert_series_equal(result.astype('f8'), expected.reindex(result.index).fillna(0)) result = s.count(level=1) expected = s.groupby(level=1).count() assert_series_equal(result.astype('f8'), expected.reindex(result.index).fillna(0)) def test_count_level_corner(self): s = self.frame['A'][:0] result = s.count(level=0) expected = Series(0, index=s.index.levels[0]) assert_series_equal(result, expected) df = self.frame[:0] result = df.count(level=0) expected = DataFrame({}, index=s.index.levels[0], columns=df.columns).fillna(0).astype(np.int64) assert_frame_equal(result, expected) def test_unstack(self): # just check that it works for now unstacked = self.ymd.unstack() unstacked2 = unstacked.unstack() # test that ints work unstacked = self.ymd.astype(int).unstack() # test that int32 work unstacked = self.ymd.astype(np.int32).unstack() def test_unstack_multiple_no_empty_columns(self): index = MultiIndex.from_tuples([(0, 'foo', 0), (0, 'bar', 0), (1, 'baz', 1), (1, 'qux', 1)]) s = Series(np.random.randn(4), index=index) unstacked = s.unstack([1, 2]) expected = unstacked.dropna(axis=1, how='all') assert_frame_equal(unstacked, expected) def test_stack(self): # regular roundtrip unstacked = self.ymd.unstack() restacked = unstacked.stack() assert_frame_equal(restacked, self.ymd) unlexsorted = self.ymd.sortlevel(2) unstacked = unlexsorted.unstack(2) restacked = unstacked.stack() assert_frame_equal(restacked.sortlevel(0), self.ymd) unlexsorted = unlexsorted[::-1] unstacked = unlexsorted.unstack(1) restacked = unstacked.stack().swaplevel(1, 2) assert_frame_equal(restacked.sortlevel(0), self.ymd) unlexsorted = unlexsorted.swaplevel(0, 1) unstacked = unlexsorted.unstack(0).swaplevel(0, 1, axis=1) restacked = unstacked.stack(0).swaplevel(1, 2) assert_frame_equal(restacked.sortlevel(0), self.ymd) # columns unsorted unstacked = self.ymd.unstack() unstacked = unstacked.sort(axis=1, ascending=False) restacked = unstacked.stack() assert_frame_equal(restacked, self.ymd) # more than 2 levels in the columns unstacked = self.ymd.unstack(1).unstack(1) result = unstacked.stack(1) expected = self.ymd.unstack() assert_frame_equal(result, expected) result = unstacked.stack(2) expected = self.ymd.unstack(1) assert_frame_equal(result, expected) result = unstacked.stack(0) expected = self.ymd.stack().unstack(1).unstack(1) assert_frame_equal(result, expected) # not all levels present in each echelon unstacked = self.ymd.unstack(2).ix[:, ::3] stacked = unstacked.stack().stack() ymd_stacked = self.ymd.stack() assert_series_equal(stacked, ymd_stacked.reindex(stacked.index)) # stack with negative number result = self.ymd.unstack(0).stack(-2) expected = self.ymd.unstack(0).stack(0) def test_unstack_odd_failure(self): data = """day,time,smoker,sum,len Fri,Dinner,No,8.25,3. Fri,Dinner,Yes,27.03,9 Fri,Lunch,No,3.0,1 Fri,Lunch,Yes,13.68,6 Sat,Dinner,No,139.63,45 Sat,Dinner,Yes,120.77,42 Sun,Dinner,No,180.57,57 Sun,Dinner,Yes,66.82,19 Thur,Dinner,No,3.0,1 Thur,Lunch,No,117.32,44 Thur,Lunch,Yes,51.51,17""" df = pd.read_csv(StringIO(data)).set_index(['day', 'time', 'smoker']) # it works, #2100 result = df.unstack(2) recons = result.stack() assert_frame_equal(recons, df) def test_stack_mixed_dtype(self): df = self.frame.T df['foo', 'four'] = 'foo' df = df.sortlevel(1, axis=1) stacked = df.stack() assert_series_equal(stacked['foo'], df['foo'].stack()) self.assertEqual(stacked['bar'].dtype, np.float_) def test_unstack_bug(self): df = DataFrame({'state': ['naive', 'naive', 'naive', 'activ', 'activ', 'activ'], 'exp': ['a', 'b', 'b', 'b', 'a', 'a'], 'barcode': [1, 2, 3, 4, 1, 3], 'v': ['hi', 'hi', 'bye', 'bye', 'bye', 'peace'], 'extra': np.arange(6.)}) result = df.groupby(['state', 'exp', 'barcode', 'v']).apply(len) unstacked = result.unstack() restacked = unstacked.stack() assert_series_equal(restacked, result.reindex(restacked.index).astype(float)) def test_stack_unstack_preserve_names(self): unstacked = self.frame.unstack() self.assertEquals(unstacked.index.name, 'first') self.assertEquals(unstacked.columns.names, ['exp', 'second']) restacked = unstacked.stack() self.assertEquals(restacked.index.names, self.frame.index.names) def test_unstack_level_name(self): result = self.frame.unstack('second') expected = self.frame.unstack(level=1) assert_frame_equal(result, expected) def test_stack_level_name(self): unstacked = self.frame.unstack('second') result = unstacked.stack('exp') expected = self.frame.unstack().stack(0) assert_frame_equal(result, expected) result = self.frame.stack('exp') expected = self.frame.stack() assert_series_equal(result, expected) def test_stack_unstack_multiple(self): unstacked = self.ymd.unstack(['year', 'month']) expected = self.ymd.unstack('year').unstack('month') assert_frame_equal(unstacked, expected) self.assertEquals(unstacked.columns.names, expected.columns.names) # series s = self.ymd['A'] s_unstacked = s.unstack(['year', 'month']) assert_frame_equal(s_unstacked, expected['A']) restacked = unstacked.stack(['year', 'month']) restacked = restacked.swaplevel(0, 1).swaplevel(1, 2) restacked = restacked.sortlevel(0) assert_frame_equal(restacked, self.ymd) self.assertEquals(restacked.index.names, self.ymd.index.names) # GH #451 unstacked = self.ymd.unstack([1, 2]) expected = self.ymd.unstack(1).unstack(1).dropna(axis=1, how='all') assert_frame_equal(unstacked, expected) unstacked = self.ymd.unstack([2, 1]) expected = self.ymd.unstack(2).unstack(1).dropna(axis=1, how='all') assert_frame_equal(unstacked, expected.ix[:, unstacked.columns]) def test_unstack_period_series(self): # GH 4342 idx1 = pd.PeriodIndex(['2013-01', '2013-01', '2013-02', '2013-02', '2013-03', '2013-03'], freq='M', name='period') idx2 = Index(['A', 'B'] * 3, name='str') value = [1, 2, 3, 4, 5, 6] idx = MultiIndex.from_arrays([idx1, idx2]) s = Series(value, index=idx) result1 = s.unstack() result2 = s.unstack(level=1) result3 = s.unstack(level=0) e_idx = pd.PeriodIndex(['2013-01', '2013-02', '2013-03'], freq='M', name='period') expected = DataFrame({'A': [1, 3, 5], 'B': [2, 4, 6]}, index=e_idx, columns=['A', 'B']) expected.columns.name = 'str' assert_frame_equal(result1, expected) assert_frame_equal(result2, expected) assert_frame_equal(result3, expected.T) idx1 = pd.PeriodIndex(['2013-01', '2013-01', '2013-02', '2013-02', '2013-03', '2013-03'], freq='M', name='period1') idx2 = pd.PeriodIndex(['2013-12', '2013-11', '2013-10', '2013-09', '2013-08', '2013-07'], freq='M', name='period2') idx = pd.MultiIndex.from_arrays([idx1, idx2]) s = Series(value, index=idx) result1 = s.unstack() result2 = s.unstack(level=1) result3 = s.unstack(level=0) e_idx = pd.PeriodIndex(['2013-01', '2013-02', '2013-03'], freq='M', name='period1') e_cols = pd.PeriodIndex(['2013-07', '2013-08', '2013-09', '2013-10', '2013-11', '2013-12'], freq='M', name='period2') expected = DataFrame([[np.nan, np.nan, np.nan, np.nan, 2, 1], [np.nan, np.nan, 4, 3, np.nan, np.nan], [6, 5, np.nan, np.nan, np.nan, np.nan]], index=e_idx, columns=e_cols) assert_frame_equal(result1, expected) assert_frame_equal(result2, expected) assert_frame_equal(result3, expected.T) def test_unstack_period_frame(self): # GH 4342 idx1 = pd.PeriodIndex(['2014-01', '2014-02', '2014-02', '2014-02', '2014-01', '2014-01'], freq='M', name='period1') idx2 = pd.PeriodIndex(['2013-12', '2013-12', '2014-02', '2013-10', '2013-10', '2014-02'], freq='M', name='period2') value = {'A': [1, 2, 3, 4, 5, 6], 'B': [6, 5, 4, 3, 2, 1]} idx = pd.MultiIndex.from_arrays([idx1, idx2]) df = pd.DataFrame(value, index=idx) result1 = df.unstack() result2 = df.unstack(level=1) result3 = df.unstack(level=0) e_1 = pd.PeriodIndex(['2014-01', '2014-02'], freq='M', name='period1') e_2 = pd.PeriodIndex(['2013-10', '2013-12', '2014-02', '2013-10', '2013-12', '2014-02'], freq='M', name='period2') e_cols = pd.MultiIndex.from_arrays(['A A A B B B'.split(), e_2]) expected = DataFrame([[5, 1, 6, 2, 6, 1], [4, 2, 3, 3, 5, 4]], index=e_1, columns=e_cols) assert_frame_equal(result1, expected) assert_frame_equal(result2, expected) e_1 = pd.PeriodIndex(['2014-01', '2014-02', '2014-01', '2014-02'], freq='M', name='period1') e_2 = pd.PeriodIndex(['2013-10', '2013-12', '2014-02'], freq='M', name='period2') e_cols = pd.MultiIndex.from_arrays(['A A B B'.split(), e_1]) expected = DataFrame([[5, 4, 2, 3], [1, 2, 6, 5], [6, 3, 1, 4]], index=e_2, columns=e_cols) assert_frame_equal(result3, expected) def test_stack_multiple_bug(self): """ bug when some uniques are not present in the data #3170""" id_col = ([1] * 3) + ([2] * 3) name = (['a'] * 3) + (['b'] * 3) date = pd.to_datetime(['2013-01-03', '2013-01-04', '2013-01-05'] * 2) var1 = np.random.randint(0, 100, 6) df = DataFrame(dict(ID=id_col, NAME=name, DATE=date, VAR1=var1)) multi = df.set_index(['DATE', 'ID']) multi.columns.name = 'Params' unst = multi.unstack('ID') down = unst.resample('W-THU') rs = down.stack('ID') xp = unst.ix[:, ['VAR1']].resample('W-THU').stack('ID') xp.columns.name = 'Params' assert_frame_equal(rs, xp) def test_stack_dropna(self): # GH #3997 df = pd.DataFrame({'A': ['a1', 'a2'], 'B': ['b1', 'b2'], 'C': [1, 1]}) df = df.set_index(['A', 'B']) stacked = df.unstack().stack(dropna=False) self.assertTrue(len(stacked) > len(stacked.dropna())) stacked = df.unstack().stack(dropna=True) assert_frame_equal(stacked, stacked.dropna()) def test_unstack_multiple_hierarchical(self): df = DataFrame(index=[[0, 0, 0, 0, 1, 1, 1, 1], [0, 0, 1, 1, 0, 0, 1, 1], [0, 1, 0, 1, 0, 1, 0, 1]], columns=[[0, 0, 1, 1], [0, 1, 0, 1]]) df.index.names = ['a', 'b', 'c'] df.columns.names = ['d', 'e'] # it works! df.unstack(['b', 'c']) def test_groupby_transform(self): s = self.frame['A'] grouper = s.index.get_level_values(0) grouped = s.groupby(grouper) applied = grouped.apply(lambda x: x * 2) expected = grouped.transform(lambda x: x * 2) assert_series_equal(applied.reindex(expected.index), expected) def test_unstack_sparse_keyspace(self): # memory problems with naive impl #2278 # Generate Long File & Test Pivot NUM_ROWS = 1000 df = DataFrame({'A': np.random.randint(100, size=NUM_ROWS), 'B': np.random.randint(300, size=NUM_ROWS), 'C': np.random.randint(-7, 7, size=NUM_ROWS), 'D': np.random.randint(-19, 19, size=NUM_ROWS), 'E': np.random.randint(3000, size=NUM_ROWS), 'F': np.random.randn(NUM_ROWS)}) idf = df.set_index(['A', 'B', 'C', 'D', 'E']) # it works! is sufficient idf.unstack('E') def test_unstack_unobserved_keys(self): # related to #2278 refactoring levels = [[0, 1], [0, 1, 2, 3]] labels = [[0, 0, 1, 1], [0, 2, 0, 2]] index = MultiIndex(levels, labels) df = DataFrame(np.random.randn(4, 2), index=index) result = df.unstack() self.assertEquals(len(result.columns), 4) recons = result.stack() assert_frame_equal(recons, df) def test_groupby_corner(self): midx = MultiIndex(levels=[['foo'], ['bar'], ['baz']], labels=[[0], [0], [0]], names=['one', 'two', 'three']) df = DataFrame([np.random.rand(4)], columns=['a', 'b', 'c', 'd'], index=midx) # should work df.groupby(level='three') def test_groupby_level_no_obs(self): # #1697 midx = MultiIndex.from_tuples([('f1', 's1'), ('f1', 's2'), ('f2', 's1'), ('f2', 's2'), ('f3', 's1'), ('f3', 's2')]) df = DataFrame( [[1, 2, 3, 4, 5, 6], [7, 8, 9, 10, 11, 12]], columns=midx) df1 = df.select(lambda u: u[0] in ['f2', 'f3'], axis=1) grouped = df1.groupby(axis=1, level=0) result = grouped.sum() self.assert_((result.columns == ['f2', 'f3']).all()) def test_join(self): a = self.frame.ix[:5, ['A']] b = self.frame.ix[2:, ['B', 'C']] joined = a.join(b, how='outer').reindex(self.frame.index) expected = self.frame.copy() expected.values[np.isnan(joined.values)] = np.nan self.assert_(not np.isnan(joined.values).all()) assert_frame_equal(joined, expected, check_names=False) # TODO what should join do with names ? def test_swaplevel(self): swapped = self.frame['A'].swaplevel(0, 1) swapped2 = self.frame['A'].swaplevel('first', 'second') self.assert_(not swapped.index.equals(self.frame.index)) assert_series_equal(swapped, swapped2) back = swapped.swaplevel(0, 1) back2 = swapped.swaplevel('second', 'first') self.assert_(back.index.equals(self.frame.index)) assert_series_equal(back, back2) ft = self.frame.T swapped = ft.swaplevel('first', 'second', axis=1) exp = self.frame.swaplevel('first', 'second').T assert_frame_equal(swapped, exp) def test_swaplevel_panel(self): panel = Panel({'ItemA': self.frame, 'ItemB': self.frame * 2}) result = panel.swaplevel(0, 1, axis='major') expected = panel.copy() expected.major_axis = expected.major_axis.swaplevel(0, 1) tm.assert_panel_equal(result, expected) def test_reorder_levels(self): result = self.ymd.reorder_levels(['month', 'day', 'year']) expected = self.ymd.swaplevel(0, 1).swaplevel(1, 2) assert_frame_equal(result, expected) result = self.ymd['A'].reorder_levels(['month', 'day', 'year']) expected = self.ymd['A'].swaplevel(0, 1).swaplevel(1, 2) assert_series_equal(result, expected) result = self.ymd.T.reorder_levels(['month', 'day', 'year'], axis=1) expected = self.ymd.T.swaplevel(0, 1, axis=1).swaplevel(1, 2, axis=1) assert_frame_equal(result, expected) with assertRaisesRegexp(TypeError, 'hierarchical axis'): self.ymd.reorder_levels([1, 2], axis=1) with assertRaisesRegexp(IndexError, 'Too many levels'): self.ymd.index.reorder_levels([1, 2, 3]) def test_insert_index(self): df = self.ymd[:5].T df[2000, 1, 10] = df[2000, 1, 7] tm.assert_isinstance(df.columns, MultiIndex) self.assert_((df[2000, 1, 10] == df[2000, 1, 7]).all()) def test_alignment(self): x = Series(data=[1, 2, 3], index=MultiIndex.from_tuples([("A", 1), ("A", 2), ("B", 3)])) y = Series(data=[4, 5, 6], index=MultiIndex.from_tuples([("Z", 1), ("Z", 2), ("B", 3)])) res = x - y exp_index = x.index.union(y.index) exp = x.reindex(exp_index) - y.reindex(exp_index) assert_series_equal(res, exp) # hit non-monotonic code path res = x[::-1] - y[::-1] exp_index = x.index.union(y.index) exp = x.reindex(exp_index) - y.reindex(exp_index) assert_series_equal(res, exp) def test_is_lexsorted(self): levels = [[0, 1], [0, 1, 2]] index = MultiIndex(levels=levels, labels=[[0, 0, 0, 1, 1, 1], [0, 1, 2, 0, 1, 2]]) self.assert_(index.is_lexsorted()) index = MultiIndex(levels=levels, labels=[[0, 0, 0, 1, 1, 1], [0, 1, 2, 0, 2, 1]]) self.assert_(not index.is_lexsorted()) index = MultiIndex(levels=levels, labels=[[0, 0, 1, 0, 1, 1], [0, 1, 0, 2, 2, 1]]) self.assert_(not index.is_lexsorted()) self.assertEqual(index.lexsort_depth, 0) def test_frame_getitem_view(self): df = self.frame.T.copy() # this works because we are modifying the underlying array # really a no-no df['foo'].values[:] = 0 self.assert_((df['foo'].values == 0).all()) # but not if it's mixed-type df['foo', 'four'] = 'foo' df = df.sortlevel(0, axis=1) # this will work, but will raise/warn as its chained assignment def f(): df['foo']['one'] = 2 return df self.assertRaises(com.SettingWithCopyError, f) try: df = f() except: pass self.assert_((df['foo', 'one'] == 0).all()) def test_frame_getitem_not_sorted(self): df = self.frame.T df['foo', 'four'] = 'foo' arrays = [np.array(x) for x in zip(*df.columns._tuple_index)] result = df['foo'] result2 = df.ix[:, 'foo'] expected = df.reindex(columns=df.columns[arrays[0] == 'foo']) expected.columns = expected.columns.droplevel(0) assert_frame_equal(result, expected) assert_frame_equal(result2, expected) df = df.T result = df.xs('foo') result2 = df.ix['foo'] expected = df.reindex(df.index[arrays[0] == 'foo']) expected.index = expected.index.droplevel(0) assert_frame_equal(result, expected) assert_frame_equal(result2, expected) def test_series_getitem_not_sorted(self): arrays = [['bar', 'bar', 'baz', 'baz', 'qux', 'qux', 'foo', 'foo'], ['one', 'two', 'one', 'two', 'one', 'two', 'one', 'two']] tuples = lzip(*arrays) index = MultiIndex.from_tuples(tuples) s = Series(randn(8), index=index) arrays = [np.array(x) for x in zip(*index._tuple_index)] result = s['qux'] result2 = s.ix['qux'] expected = s[arrays[0] == 'qux'] expected.index = expected.index.droplevel(0) assert_series_equal(result, expected) assert_series_equal(result2, expected) def test_count(self): frame = self.frame.copy() frame.index.names = ['a', 'b'] result = frame.count(level='b') expect = self.frame.count(level=1) assert_frame_equal(result, expect, check_names=False) result = frame.count(level='a') expect = self.frame.count(level=0) assert_frame_equal(result, expect, check_names=False) series = self.series.copy() series.index.names = ['a', 'b'] result = series.count(level='b') expect = self.series.count(level=1) assert_series_equal(result, expect) result = series.count(level='a') expect = self.series.count(level=0) assert_series_equal(result, expect) self.assertRaises(KeyError, series.count, 'x') self.assertRaises(KeyError, frame.count, level='x') AGG_FUNCTIONS = ['sum', 'prod', 'min', 'max', 'median', 'mean', 'skew', 'mad', 'std', 'var'] def test_series_group_min_max(self): for op, level, skipna in cart_product(self.AGG_FUNCTIONS, lrange(2), [False, True]): grouped = self.series.groupby(level=level) aggf = lambda x: getattr(x, op)(skipna=skipna) # skipna=True leftside = grouped.agg(aggf) rightside = getattr(self.series, op)(level=level, skipna=skipna) assert_series_equal(leftside, rightside) def test_frame_group_ops(self): self.frame.ix[1, [1, 2]] = np.nan self.frame.ix[7, [0, 1]] = np.nan for op, level, axis, skipna in cart_product(self.AGG_FUNCTIONS, lrange(2), lrange(2), [False, True]): if axis == 0: frame = self.frame else: frame = self.frame.T grouped = frame.groupby(level=level, axis=axis) pieces = [] def aggf(x): pieces.append(x) return getattr(x, op)(skipna=skipna, axis=axis) leftside = grouped.agg(aggf) rightside = getattr(frame, op)(level=level, axis=axis, skipna=skipna) # for good measure, groupby detail level_index = frame._get_axis(axis).levels[level] self.assert_(leftside._get_axis(axis).equals(level_index)) self.assert_(rightside._get_axis(axis).equals(level_index)) assert_frame_equal(leftside, rightside) def test_stat_op_corner(self): obj = Series([10.0], index=MultiIndex.from_tuples([(2, 3)])) result = obj.sum(level=0) expected = Series([10.0], index=[2]) assert_series_equal(result, expected) def test_frame_any_all_group(self): df = DataFrame( {'data': [False, False, True, False, True, False, True]}, index=[ ['one', 'one', 'two', 'one', 'two', 'two', 'two'], [0, 1, 0, 2, 1, 2, 3]]) result = df.any(level=0) ex = DataFrame({'data': [False, True]}, index=['one', 'two']) assert_frame_equal(result, ex) result = df.all(level=0) ex = DataFrame({'data': [False, False]}, index=['one', 'two']) assert_frame_equal(result, ex) def test_std_var_pass_ddof(self): index = MultiIndex.from_arrays([np.arange(5).repeat(10), np.tile(np.arange(10), 5)]) df = DataFrame(np.random.randn(len(index), 5), index=index) for meth in ['var', 'std']: ddof = 4 alt = lambda x: getattr(x, meth)(ddof=ddof) result = getattr(df[0], meth)(level=0, ddof=ddof) expected = df[0].groupby(level=0).agg(alt) assert_series_equal(result, expected) result = getattr(df, meth)(level=0, ddof=ddof) expected = df.groupby(level=0).agg(alt) assert_frame_equal(result, expected) def test_frame_series_agg_multiple_levels(self): result = self.ymd.sum(level=['year', 'month']) expected = self.ymd.groupby(level=['year', 'month']).sum() assert_frame_equal(result, expected) result = self.ymd['A'].sum(level=['year', 'month']) expected = self.ymd['A'].groupby(level=['year', 'month']).sum() assert_series_equal(result, expected) def test_groupby_multilevel(self): result = self.ymd.groupby(level=[0, 1]).mean() k1 = self.ymd.index.get_level_values(0) k2 = self.ymd.index.get_level_values(1) expected = self.ymd.groupby([k1, k2]).mean() assert_frame_equal(result, expected, check_names=False) # TODO groupby with level_values drops names self.assertEquals(result.index.names, self.ymd.index.names[:2]) result2 = self.ymd.groupby(level=self.ymd.index.names[:2]).mean() assert_frame_equal(result, result2) def test_groupby_multilevel_with_transform(self): pass def test_multilevel_consolidate(self): index = MultiIndex.from_tuples([('foo', 'one'), ('foo', 'two'), ('bar', 'one'), ('bar', 'two')]) df = DataFrame(np.random.randn(4, 4), index=index, columns=index) df['Totals', ''] = df.sum(1) df = df.consolidate() def test_ix_preserve_names(self): result = self.ymd.ix[2000] result2 = self.ymd['A'].ix[2000] self.assertEquals(result.index.names, self.ymd.index.names[1:]) self.assertEquals(result2.index.names, self.ymd.index.names[1:]) result = self.ymd.ix[2000, 2] result2 = self.ymd['A'].ix[2000, 2] self.assertEquals(result.index.name, self.ymd.index.names[2]) self.assertEquals(result2.index.name, self.ymd.index.names[2]) def test_partial_set(self): # GH #397 df = self.ymd.copy() exp = self.ymd.copy() df.ix[2000, 4] = 0 exp.ix[2000, 4].values[:] = 0 assert_frame_equal(df, exp) df['A'].ix[2000, 4] = 1 exp['A'].ix[2000, 4].values[:] = 1 assert_frame_equal(df, exp) df.ix[2000] = 5 exp.ix[2000].values[:] = 5 assert_frame_equal(df, exp) # this works...for now df['A'].ix[14] = 5 self.assertEquals(df['A'][14], 5) def test_unstack_preserve_types(self): # GH #403 self.ymd['E'] = 'foo' self.ymd['F'] = 2 unstacked = self.ymd.unstack('month') self.assertEqual(unstacked['A', 1].dtype, np.float64) self.assertEqual(unstacked['E', 1].dtype, np.object_) self.assertEqual(unstacked['F', 1].dtype, np.float64) def test_unstack_group_index_overflow(self): labels = np.tile(np.arange(500), 2) level = np.arange(500) index = MultiIndex(levels=[level] * 8 + [[0, 1]], labels=[labels] * 8 + [np.arange(2).repeat(500)]) s = Series(np.arange(1000), index=index) result = s.unstack() self.assertEqual(result.shape, (500, 2)) # test roundtrip stacked = result.stack() assert_series_equal(s, stacked.reindex(s.index)) # put it at beginning index = MultiIndex(levels=[[0, 1]] + [level] * 8, labels=[np.arange(2).repeat(500)] + [labels] * 8) s = Series(np.arange(1000), index=index) result = s.unstack(0) self.assertEqual(result.shape, (500, 2)) # put it in middle index = MultiIndex(levels=[level] * 4 + [[0, 1]] + [level] * 4, labels=([labels] * 4 + [np.arange(2).repeat(500)] + [labels] * 4)) s = Series(np.arange(1000), index=index) result = s.unstack(4) self.assertEqual(result.shape, (500, 2)) def test_getitem_lowerdim_corner(self): self.assertRaises(KeyError, self.frame.ix.__getitem__, (('bar', 'three'), 'B')) # in theory should be inserting in a sorted space???? self.frame.ix[('bar','three'),'B'] = 0 self.assertEqual(self.frame.sortlevel().ix[('bar','three'),'B'], 0) #---------------------------------------------------------------------- # AMBIGUOUS CASES! def test_partial_ix_missing(self): raise nose.SkipTest("skipping for now") result = self.ymd.ix[2000, 0] expected = self.ymd.ix[2000]['A'] assert_series_equal(result, expected) # need to put in some work here # self.ymd.ix[2000, 0] = 0 # self.assert_((self.ymd.ix[2000]['A'] == 0).all()) # Pretty sure the second (and maybe even the first) is already wrong. self.assertRaises(Exception, self.ymd.ix.__getitem__, (2000, 6)) self.assertRaises(Exception, self.ymd.ix.__getitem__, (2000, 6), 0) #---------------------------------------------------------------------- def test_to_html(self): self.ymd.columns.name = 'foo' self.ymd.to_html() self.ymd.T.to_html() def test_level_with_tuples(self): index = MultiIndex(levels=[[('foo', 'bar', 0), ('foo', 'baz', 0), ('foo', 'qux', 0)], [0, 1]], labels=[[0, 0, 1, 1, 2, 2], [0, 1, 0, 1, 0, 1]]) series = Series(np.random.randn(6), index=index) frame = DataFrame(np.random.randn(6, 4), index=index) result = series[('foo', 'bar', 0)] result2 = series.ix[('foo', 'bar', 0)] expected = series[:2] expected.index = expected.index.droplevel(0) assert_series_equal(result, expected) assert_series_equal(result2, expected) self.assertRaises(KeyError, series.__getitem__, (('foo', 'bar', 0), 2)) result = frame.ix[('foo', 'bar', 0)] result2 = frame.xs(('foo', 'bar', 0)) expected = frame[:2] expected.index = expected.index.droplevel(0) assert_frame_equal(result, expected) assert_frame_equal(result2, expected) index = MultiIndex(levels=[[('foo', 'bar'), ('foo', 'baz'), ('foo', 'qux')], [0, 1]], labels=[[0, 0, 1, 1, 2, 2], [0, 1, 0, 1, 0, 1]]) series = Series(np.random.randn(6), index=index) frame = DataFrame(np.random.randn(6, 4), index=index) result = series[('foo', 'bar')] result2 = series.ix[('foo', 'bar')] expected = series[:2] expected.index = expected.index.droplevel(0) assert_series_equal(result, expected) assert_series_equal(result2, expected) result = frame.ix[('foo', 'bar')] result2 = frame.xs(('foo', 'bar')) expected = frame[:2] expected.index = expected.index.droplevel(0) assert_frame_equal(result, expected) assert_frame_equal(result2, expected) def test_int_series_slicing(self): s = self.ymd['A'] result = s[5:] expected = s.reindex(s.index[5:]) assert_series_equal(result, expected) exp = self.ymd['A'].copy() s[5:] = 0 exp.values[5:] = 0 self.assert_numpy_array_equal(s.values, exp.values) result = self.ymd[5:] expected = self.ymd.reindex(s.index[5:]) assert_frame_equal(result, expected) def test_mixed_depth_get(self): arrays = [['a', 'top', 'top', 'routine1', 'routine1', 'routine2'], ['', 'OD', 'OD', 'result1', 'result2', 'result1'], ['', 'wx', 'wy', '', '', '']] tuples = sorted(zip(*arrays)) index = MultiIndex.from_tuples(tuples) df = DataFrame(randn(4, 6), columns=index) result = df['a'] expected = df['a', '', ''] assert_series_equal(result, expected) self.assertEquals(result.name, 'a') result = df['routine1', 'result1'] expected = df['routine1', 'result1', ''] assert_series_equal(result, expected) self.assertEquals(result.name, ('routine1', 'result1')) def test_mixed_depth_insert(self): arrays = [['a', 'top', 'top', 'routine1', 'routine1', 'routine2'], ['', 'OD', 'OD', 'result1', 'result2', 'result1'], ['', 'wx', 'wy', '', '', '']] tuples = sorted(zip(*arrays)) index = MultiIndex.from_tuples(tuples) df = DataFrame(randn(4, 6), columns=index) result = df.copy() expected = df.copy() result['b'] = [1, 2, 3, 4] expected['b', '', ''] = [1, 2, 3, 4] assert_frame_equal(result, expected) def test_mixed_depth_drop(self): arrays = [['a', 'top', 'top', 'routine1', 'routine1', 'routine2'], ['', 'OD', 'OD', 'result1', 'result2', 'result1'], ['', 'wx', 'wy', '', '', '']] tuples = sorted(zip(*arrays)) index = MultiIndex.from_tuples(tuples) df = DataFrame(randn(4, 6), columns=index) result = df.drop('a', axis=1) expected = df.drop([('a', '', '')], axis=1) assert_frame_equal(expected, result) result = df.drop(['top'], axis=1) expected = df.drop([('top', 'OD', 'wx')], axis=1) expected = expected.drop([('top', 'OD', 'wy')], axis=1) assert_frame_equal(expected, result) result = df.drop(('top', 'OD', 'wx'), axis=1) expected = df.drop([('top', 'OD', 'wx')], axis=1) assert_frame_equal(expected, result) expected = df.drop([('top', 'OD', 'wy')], axis=1) expected = df.drop('top', axis=1) result = df.drop('result1', level=1, axis=1) expected = df.drop([('routine1', 'result1', ''), ('routine2', 'result1', '')], axis=1) assert_frame_equal(expected, result) def test_drop_nonunique(self): df = DataFrame([["x-a", "x", "a", 1.5], ["x-a", "x", "a", 1.2], ["z-c", "z", "c", 3.1], ["x-a", "x", "a", 4.1], ["x-b", "x", "b", 5.1], ["x-b", "x", "b", 4.1], ["x-b", "x", "b", 2.2], ["y-a", "y", "a", 1.2], ["z-b", "z", "b", 2.1]], columns=["var1", "var2", "var3", "var4"]) grp_size = df.groupby("var1").size() drop_idx = grp_size.ix[grp_size == 1] idf = df.set_index(["var1", "var2", "var3"]) # it works! #2101 result = idf.drop(drop_idx.index, level=0).reset_index() expected = df[-df.var1.isin(drop_idx.index)] result.index = expected.index assert_frame_equal(result, expected) def test_mixed_depth_pop(self): arrays = [['a', 'top', 'top', 'routine1', 'routine1', 'routine2'], ['', 'OD', 'OD', 'result1', 'result2', 'result1'], ['', 'wx', 'wy', '', '', '']] tuples = sorted(zip(*arrays)) index = MultiIndex.from_tuples(tuples) df = DataFrame(randn(4, 6), columns=index) df1 = df.copy() df2 = df.copy() result = df1.pop('a') expected = df2.pop(('a', '', '')) assert_series_equal(expected, result) assert_frame_equal(df1, df2) self.assertEquals(result.name, 'a') expected = df1['top'] df1 = df1.drop(['top'], axis=1) result = df2.pop('top') assert_frame_equal(expected, result) assert_frame_equal(df1, df2) def test_reindex_level_partial_selection(self): result = self.frame.reindex(['foo', 'qux'], level=0) expected = self.frame.ix[[0, 1, 2, 7, 8, 9]] assert_frame_equal(result, expected) result = self.frame.T.reindex_axis(['foo', 'qux'], axis=1, level=0) assert_frame_equal(result, expected.T) result = self.frame.ix[['foo', 'qux']] assert_frame_equal(result, expected) result = self.frame['A'].ix[['foo', 'qux']] assert_series_equal(result, expected['A']) result = self.frame.T.ix[:, ['foo', 'qux']] assert_frame_equal(result, expected.T) def test_setitem_multiple_partial(self): expected = self.frame.copy() result = self.frame.copy() result.ix[['foo', 'bar']] = 0 expected.ix['foo'] = 0 expected.ix['bar'] = 0 assert_frame_equal(result, expected) expected = self.frame.copy() result = self.frame.copy() result.ix['foo':'bar'] = 0 expected.ix['foo'] = 0 expected.ix['bar'] = 0 assert_frame_equal(result, expected) expected = self.frame['A'].copy() result = self.frame['A'].copy() result.ix[['foo', 'bar']] = 0 expected.ix['foo'] = 0 expected.ix['bar'] = 0 assert_series_equal(result, expected) expected = self.frame['A'].copy() result = self.frame['A'].copy() result.ix['foo':'bar'] = 0 expected.ix['foo'] = 0 expected.ix['bar'] = 0 assert_series_equal(result, expected) def test_drop_level(self): result = self.frame.drop(['bar', 'qux'], level='first') expected = self.frame.ix[[0, 1, 2, 5, 6]] assert_frame_equal(result, expected) result = self.frame.drop(['two'], level='second') expected = self.frame.ix[[0, 2, 3, 6, 7, 9]] assert_frame_equal(result, expected) result = self.frame.T.drop(['bar', 'qux'], axis=1, level='first') expected = self.frame.ix[[0, 1, 2, 5, 6]].T assert_frame_equal(result, expected) result = self.frame.T.drop(['two'], axis=1, level='second') expected = self.frame.ix[[0, 2, 3, 6, 7, 9]].T assert_frame_equal(result, expected) def test_drop_preserve_names(self): index = MultiIndex.from_arrays([[0, 0, 0, 1, 1, 1], [1, 2, 3, 1, 2, 3]], names=['one', 'two']) df = DataFrame(np.random.randn(6, 3), index=index) result = df.drop([(0, 2)]) self.assertEqual(result.index.names, ('one', 'two')) def test_unicode_repr_issues(self): levels = [Index([u('a/\u03c3'), u('b/\u03c3'), u('c/\u03c3')]), Index([0, 1])] labels = [np.arange(3).repeat(2), np.tile(np.arange(2), 3)] index = MultiIndex(levels=levels, labels=labels) repr(index.levels) # NumPy bug # repr(index.get_level_values(1)) def test_unicode_repr_level_names(self): index = MultiIndex.from_tuples([(0, 0), (1, 1)], names=[u('\u0394'), 'i1']) s = Series(lrange(2), index=index) df = DataFrame(np.random.randn(2, 4), index=index) repr(s) repr(df) def test_dataframe_insert_column_all_na(self): # GH #1534 mix = MultiIndex.from_tuples( [('1a', '2a'), ('1a', '2b'), ('1a', '2c')]) df = DataFrame([[1, 2], [3, 4], [5, 6]], index=mix) s = Series({(1, 1): 1, (1, 2): 2}) df['new'] = s self.assert_(df['new'].isnull().all()) def test_join_segfault(self): # 1532 df1 = DataFrame({'a': [1, 1], 'b': [1, 2], 'x': [1, 2]}) df2 = DataFrame({'a': [2, 2], 'b': [1, 2], 'y': [1, 2]}) df1 = df1.set_index(['a', 'b']) df2 = df2.set_index(['a', 'b']) # it works! for how in ['left', 'right', 'outer']: df1.join(df2, how=how) def test_set_column_scalar_with_ix(self): subset = self.frame.index[[1, 4, 5]] self.frame.ix[subset] = 99 self.assert_((self.frame.ix[subset].values == 99).all()) col = self.frame['B'] col[subset] = 97 self.assert_((self.frame.ix[subset, 'B'] == 97).all()) def test_frame_dict_constructor_empty_series(self): s1 = Series([1, 2, 3, 4], index=MultiIndex.from_tuples([(1, 2), (1, 3), (2, 2), (2, 4)])) s2 = Series([1, 2, 3, 4], index=MultiIndex.from_tuples([(1, 2), (1, 3), (3, 2), (3, 4)])) s3 = Series() # it works! df = DataFrame({'foo': s1, 'bar': s2, 'baz': s3}) df = DataFrame.from_dict({'foo': s1, 'baz': s3, 'bar': s2}) def test_indexing_ambiguity_bug_1678(self): columns = MultiIndex.from_tuples([('Ohio', 'Green'), ('Ohio', 'Red'), ('Colorado', 'Green')]) index = MultiIndex.from_tuples( [('a', 1), ('a', 2), ('b', 1), ('b', 2)]) frame = DataFrame(np.arange(12).reshape((4, 3)), index=index, columns=columns) result = frame.ix[:, 1] exp = frame.icol(1) tm.assert_isinstance(result, Series) assert_series_equal(result, exp) def test_nonunique_assignment_1750(self): df = DataFrame([[1, 1, "x", "X"], [1, 1, "y", "Y"], [1, 2, "z", "Z"]], columns=list("ABCD")) df = df.set_index(['A', 'B']) ix = MultiIndex.from_tuples([(1, 1)]) df.ix[ix, "C"] = '_' self.assert_((df.xs((1, 1))['C'] == '_').all()) def test_indexing_over_hashtable_size_cutoff(self): n = 10000 old_cutoff = _index._SIZE_CUTOFF _index._SIZE_CUTOFF = 20000 s = Series(np.arange(n), MultiIndex.from_arrays((["a"] * n, np.arange(n)))) # hai it works! self.assertEquals(s[("a", 5)], 5) self.assertEquals(s[("a", 6)], 6) self.assertEquals(s[("a", 7)], 7) _index._SIZE_CUTOFF = old_cutoff def test_multiindex_na_repr(self): # only an issue with long columns from numpy import nan df3 = DataFrame({ 'A' * 30: {('A', 'A0006000', 'nuit'): 'A0006000'}, 'B' * 30: {('A', 'A0006000', 'nuit'): nan}, 'C' * 30: {('A', 'A0006000', 'nuit'): nan}, 'D' * 30: {('A', 'A0006000', 'nuit'): nan}, 'E' * 30: {('A', 'A0006000', 'nuit'): 'A'}, 'F' * 30: {('A', 'A0006000', 'nuit'): nan}, }) idf = df3.set_index(['A' * 30, 'C' * 30]) repr(idf) def test_assign_index_sequences(self): # #2200 df = DataFrame({"a": [1, 2, 3], "b": [4, 5, 6], "c": [7, 8, 9]}).set_index(["a", "b"]) l = list(df.index) l[0] = ("faz", "boo") df.index = l repr(df) # this travels an improper code path l[0] = ["faz", "boo"] df.index = l repr(df) def test_tuples_have_na(self): index = MultiIndex(levels=[[1, 0], [0, 1, 2, 3]], labels=[[1, 1, 1, 1, -1, 0, 0, 0], [0, 1, 2, 3, 0, 1, 2, 3]]) self.assertTrue(isnull(index[4][0])) self.assertTrue(isnull(index.values[4][0])) def test_duplicate_groupby_issues(self): idx_tp = [('600809', '20061231'), ('600809', '20070331'), ('600809', '20070630'), ('600809', '20070331')] dt = ['demo','demo','demo','demo'] idx = MultiIndex.from_tuples(idx_tp,names = ['STK_ID','RPT_Date']) s = Series(dt, index=idx) result = s.groupby(s.index).first() self.assertEquals(len(result), 3) def test_duplicate_mi(self): # GH 4516 df = DataFrame([['foo','bar',1.0,1],['foo','bar',2.0,2],['bah','bam',3.0,3], ['bah','bam',4.0,4],['foo','bar',5.0,5],['bah','bam',6.0,6]], columns=list('ABCD')) df = df.set_index(['A','B']) df = df.sortlevel(0) expected = DataFrame([['foo','bar',1.0,1],['foo','bar',2.0,2],['foo','bar',5.0,5]], columns=list('ABCD')).set_index(['A','B']) result = df.loc[('foo','bar')]
assert_frame_equal(result,expected)
pandas.util.testing.assert_frame_equal
from itertools import product import pytest import numpy as np import pandas as pd import iguanas.rule_scoring.rule_scoring_methods as rsm import iguanas.rule_scoring.rule_score_scalers as rss from iguanas.rule_scoring import RuleScorer from iguanas.metrics.classification import Precision @pytest.fixture def create_data(): np.random.seed(0) X_rules = pd.DataFrame({ 'A': np.random.randint(0, 2, 1000), 'B': np.random.randint(0, 2, 1000), 'C': np.random.randint(0, 2, 1000), }) y = pd.Series(np.random.randint(0, 2, 1000)) weights = (y + 1) * 2 return X_rules, y, weights @pytest.fixture def expected_results(): expected_results = { ('LR', 'MMS(-100, -10)', 'No weights'): pd.Series({'A': -10.0, 'B': -100.0, 'C': -32.0}), ('LR', 'MMS(100, 10)', 'No weights'): pd.Series({'A': 10.0, 'B': 100.0, 'C': 32.0}), ('LR', 'CS(-100)', 'No weights'): pd.Series({'A': -69.0, 'B': -100.0, 'C': -77.0}), ('LR', 'CS(100)', 'No weights'): pd.Series({'A': 69.0, 'B': 100.0, 'C': 77.0}), ('PS', 'MMS(-100, -10)', 'No weights'): pd.Series({'A': -10.0, 'B': -100.0, 'C': -36.0}), ('PS', 'MMS(100, 10)', 'No weights'): pd.Series({'A': 10.0, 'B': 100.0, 'C': 36.0}), ('PS', 'CS(-100)', 'No weights'): pd.Series({'A': -91.0, 'B': -100.0, 'C': -94.0}), ('PS', 'CS(100)', 'No weights'): pd.Series({'A': 91.0, 'B': 100.0, 'C': 94.0}), ('RFS', 'MMS(-100, -10)', 'No weights'): pd.Series({'A': -100.0, 'B': -26.0, 'C': -10.0}), ('RFS', 'MMS(100, 10)', 'No weights'): pd.Series({'A': 100.0, 'B': 26.0, 'C': 10.0}), ('RFS', 'CS(-100)', 'No weights'): pd.Series({'A': -100.0, 'B': -73.0, 'C': -68.0}), ('RFS', 'CS(100)', 'No weights'): pd.Series({'A': 100.0, 'B': 73.0, 'C': 68.0}), ('LR', 'MMS(-100, -10)', 'Weights'): pd.Series({'A': -10, 'B': -100, 'C': -31}), ('LR', 'MMS(100, 10)', 'Weights'): pd.Series({'A': 10, 'B': 100, 'C': 31}), ('LR', 'CS(-100)', 'Weights'): pd.Series({'A': -69, 'B': -100, 'C': -76}), ('LR', 'CS(100)', 'Weights'): pd.Series({'A': 69, 'B': 100, 'C': 76}), ('PS', 'MMS(-100, -10)', 'Weights'):
pd.Series({'A': -10, 'B': -100, 'C': -36})
pandas.Series
# -*- coding: utf-8 -*- """Copy of All 1DCNN.ipynb Automatically generated by Colaboratory. Original file is located at https://colab.research.google.com/drive/18gSDf4XkvJZMP99AeDXIuz6RaI35i0zZ """ from six.moves import cPickle as pickle import keras from keras.models import Sequential from keras.layers import Conv1D, MaxPooling1D, Flatten, Dense, Dropout from keras.callbacks import ModelCheckpoint from google.colab import drive drive.mount('/content/drive') data_dir = '/content/drive/My Drive/Colab Notebooks/HEX New folder' # Commented out IPython magic to ensure Python compatibility. import glob import os import numpy as np import pandas as pd import seaborn as sns from scipy import stats import matplotlib.pyplot as plt import statsmodels.api as sm from sklearn.cluster import KMeans from sklearn.preprocessing import MinMaxScaler from sklearn.preprocessing import StandardScaler from sklearn.decomposition import PCA from sklearn.linear_model import LinearRegression from sklearn.model_selection import train_test_split from sklearn.metrics import mean_squared_error, r2_score, mean_absolute_error # %matplotlib inline # normalize inputs from 0-255 to 0-1 import keras import tensorflow as tf from keras.models import Sequential from keras.layers import Dense from keras.layers import LSTM from keras.layers import Dropout #from keras.utils import to_categorical from tensorflow.keras.utils import to_categorical from sklearn.preprocessing import LabelEncoder import pandas.util.testing as tm def ReshapeY(Y_train,n): Y = list() for x in Y_train: Y.append(find_1(x, n)) Y = np.array(Y) return Y print(Y.shape) # look for 1 ( spoof) in each def find_1(x, n): if 1 in x: res = 1 else: res = 0 return res def LOAD_data(path ): filenames = glob.glob(path + "/*.csv") dfs = [] for filename in filenames: df=pd.read_csv(filename) if 'le0.csv'== filename[-7:]: df['attack'] = 0 df = df[190:] else: df['attack'] = 1 dfa = df['attack'] df = df[14:] df = df.iloc[:-180] df = df.select_dtypes(exclude=['object','bool']) #remove nan df = df.loc[:, (df != 0).any(axis=0)] #remove zeros df = df.drop(df.std()[(df.std() == 0)].index, axis=1) #remove equals df=((df-df.min())/(df.max()-df.min()))*1 df['attack'] = dfa dfs.append(df) # Concatenate all data into one DataFrame df = pd.concat(dfs, ignore_index=True) #df.head() # Concatenate all data into one DataFrame df = pd.concat(dfs, ignore_index=True) #df.head() df = df.select_dtypes(exclude=['object','bool']) #remove nan df = df.loc[:, (df != 0).any(axis=0)] #remove zeros df = df.drop(df.std()[(df.std() == 0)].index, axis=1) #remove equals sf = df[['roll', 'pitch', 'heading', 'rollRate', 'pitchRate', 'yawRate', 'groundSpeed', 'altitudeRelative', 'throttlePct', 'estimatorStatus.horizPosRatio', 'estimatorStatus.vertPosRatio', 'estimatorStatus.horizPosAccuracy','gps.courseOverGround']] scaled_data = scale(sf) pca = PCA(n_components = 9) pca.fit(scaled_data) pca_data = pca.transform(scaled_data) pca_data = pd.DataFrame(pca_data) df_sf =
pd.concat([pca_data, df[['attack']]], axis=1)
pandas.concat
#!/usr/bin/env python3 # -*- coding: utf-8 -*- """ @author: Daniel This script contains all the functions used to analyse the structural data. It contains a function to calculate spearmans correlation, cohens d and kruskal test. """ import pandas as pd from scipy import stats import math def correlation(column, volumearray, volume): ''' Runs Spearmans correlation. Input: df with measures that area all used in the correlation. Second array/df with thrid variable (string) that states which measure from this second array/df to be used in the correlation. Returns: pvalues and correlation values in list ''' pvalues=[] correlation=[] for i in column.columns: array=pd.concat([volumearray[volume], column[i]],axis=1).dropna() c, p =stats.spearmanr(array[volume], array[i]) pvalues.append(p) correlation.append(c) return pvalues, correlation def cohen_d(group1,group2): ''' Calculate cohens d. Input: two series/list Output: d ''' diff = group1.mean()-group2.mean() pooledstdev = math.sqrt((group1.std()**2 + group2.std())/2 ) cohend = diff / pooledstdev return cohend def kruskal(x,y,z): ''' Runs kruskal-wallis test. Input: Series from three groups. Output: df with pvals, degrees of freedom and eta/epsilon effect sizes ''' number_of_observations = len(pd.concat([x,y,z])) number_of_groups = len([x, y, z] ) h,p = stats.kruskal(x,y,z) degrees_of_freedom=(number_of_observations-number_of_groups)-(number_of_groups) eta = (h-number_of_groups+1)/(number_of_observations-number_of_groups) epsilon = h/((number_of_observations**2-1)/(number_of_observations+1)) df=
pd.DataFrame({'pval': [p], 'kruskal_test_statistic': [h],'df': [degrees_of_freedom],'eta': [eta],'epsilon':[epsilon]})
pandas.DataFrame
# Data sourced from https://archive.ics.uci.edu/ml/datasets/banknote+authentication# import pandas as pd import numpy as np import seaborn as sns import matplotlib.pyplot as plt from sklearn.preprocessing import StandardScaler from sklearn.model_selection import train_test_split from sklearn import model_selection, metrics from sklearn.metrics import classification_report, confusion_matrix from sklearn.ensemble import RandomForestClassifier import tensorflow as tf bank =
pd.read_csv('bank_note_data.csv')
pandas.read_csv