prompt
stringlengths
19
1.03M
completion
stringlengths
4
2.12k
api
stringlengths
8
90
import datetime import inspect import logging import numpy.testing as npt import os.path import pandas as pd import pkgutil import sys from tabulate import tabulate import unittest try: from StringIO import StringIO except ImportError: from io import StringIO, BytesIO # #find parent directory and import model # parentddir = os.path.abspath(os.path.join(os.path.dirname(__file__), os.path.pardir)) # sys.path.append(parentddir) from ..iec_exe import Iec, IecOutputs #print(sys.path) #print(os.path) # load transposed qaqc data for inputs and expected outputs # this works for both local nosetests and travis deploy #input details try: if __package__ is not None: csv_data = pkgutil.get_data(__package__, 'iec_qaqc_in_transpose.csv') data_inputs = BytesIO(csv_data) pd_obj_inputs = pd.read_csv(data_inputs, index_col=0, engine='python') else: csv_transpose_path_in = os.path.join(os.path.dirname(__file__),"iec_qaqc_in_transpose.csv") print(csv_transpose_path_in) pd_obj_inputs = pd.read_csv(csv_transpose_path_in, index_col=0, engine='python') pd_obj_inputs['csrfmiddlewaretoken'] = '<PASSWORD>' #with open('./iec_qaqc_in_transpose.csv') as f: #csv_data = csv.reader(f) finally: pass #print('iec inputs') #print('iec input dimensions ' + str(pd_obj_inputs.shape)) #print('iec input keys ' + str(pd_obj_inputs.columns.values.tolist())) #print(pd_obj_inputs) # load transposed qaqc data for expected outputs # works for local nosetests from parent directory # but not for travis container that calls nosetests: # csv_transpose_path_exp = "./terrplant_qaqc_exp_transpose.csv" # pd_obj_exp_out = pd.read_csv(csv_transpose_path_exp, index_col=0, engine='python') # print(pd_obj_exp_out) # this works for both local nosetests and travis deploy #expected output details try: if __package__ is not None: data_exp_outputs = BytesIO(pkgutil.get_data(__package__, 'iec_qaqc_exp_transpose.csv')) pd_obj_exp = pd.read_csv(data_exp_outputs, index_col=0, engine= 'python') #print("iec expected outputs") #print('iec expected output dimensions ' + str(pd_obj_exp.shape)) #print('iec expected output keys ' + str(pd_obj_exp.columns.values.tolist())) else: #csv_transpose_path_exp = "./iec_qaqc_exp_transpose.csv" csv_transpose_path_exp = os.path.join(os.path.dirname(__file__),"iec_qaqc_exp_transpose.csv") #print(csv_transpose_path_exp) pd_obj_exp = pd.read_csv(csv_transpose_path_exp, index_col=0, engine='python') finally: pass #print('iec expected') # create an instance of iec object with qaqc data #print("####") #print("dead here") iec_output_empty = IecOutputs() iec_calc = Iec(pd_obj_inputs, pd_obj_exp) iec_calc.execute_model() inputs_json, outputs_json, exp_out_json = iec_calc.get_dict_rep() #print("iec output") #print(inputs_json) # #print(tabulate(pd_obj_inputs.iloc[:,0:5], headers='keys', tablefmt='fancy_grid')) #print(tabulate(pd_obj_inputs.iloc[:,6:11], headers='keys', tablefmt='fancy_grid')) #print(tabulate(pd_obj_inputs.iloc[:,12:17], headers='keys', tablefmt='fancy_grid')) # #print(tabulate(pd_obj_exp.iloc[:,0:1], headers='keys', tablefmt='fancy_grid')) #logging.info("###iec_calc.pd_obj_exp") #logging.info(iec_calc.pd_obj_exp) test = {} class TestIec(unittest.TestCase): """ Integration tests for SIP model. """ print("iec integration tests conducted at " + str(datetime.datetime.today())) def __init__(self, *args, **kwargs): """ adding to TestCase constructor so super :param args: :param kwargs: :return: """ super(TestIec, self).__init__(*args, **kwargs) self.ncases = len(pd_obj_inputs) def setUp(self): """ Test setup method. :return: """ pass def tearDown(self): """ teardown called after each test e.g. maybe write test results to some text file :return: """ def test_assert_output_series(self): """ Verify that each output variable is a pd.Series """ try: num_variables = len(iec_calc.pd_obj_out.columns) result = pd.Series(False, index=list(range(num_variables)), dtype='bool') expected = pd.Series(True, index=list(range(num_variables)), dtype='bool') for i in range(num_variables): column_name = iec_calc.pd_obj_out.columns[i] output = getattr(iec_calc, column_name) if isinstance(output, pd.Series): result[i] = True tab = pd.concat([result,expected], axis=1) print('model output properties as pandas series') print(tabulate(tab, headers='keys', tablefmt='fancy_grid')) npt.assert_array_equal(result, expected) finally: pass return def test_assert_output_series_dtypes(self): """ Verify that each output variable is the correct dtype """ try: num_variables = len(iec_calc.pd_obj_out.columns) #get the string of the type that is expected and the type that has resulted result = pd.Series(False, index=list(range(num_variables)), dtype='bool') expected = pd.Series(True, index=list(range(num_variables)), dtype='bool') for i in range(num_variables): column_name = iec_calc.pd_obj_out.columns[i] output_result = getattr(iec_calc, column_name) column_dtype_result = output_result.dtype.name output_expected = getattr(iec_output_empty, column_name) output_expected2 = getattr(iec_calc.pd_obj_out, column_name) column_dtype_expected = output_expected.dtype.name if column_dtype_result == column_dtype_expected: result[i] = True #tab = pd.concat([result,expected], axis=1) if(result[i] != expected[i]): print(i) print(column_name) print(str(result[i]) + "/" + str(expected[i])) print(column_dtype_result + "/" + column_dtype_expected) print('result') print(output_result) print('expected') print(output_expected2) #print(tabulate(tab, headers='keys', tablefmt='fancy_grid')) npt.assert_array_equal(result, expected) finally: pass return def test_iec_integration_z_score_f(self): """ integration test for output iec.z_score_f """ try: func_name = inspect.currentframe().f_code.co_name self.blackbox_method_int('z_score_f', func_name) finally: pass return def test_iec_integration_f8_f(self): """ integration test for output iec.f8_f """ try: func_name = inspect.currentframe().f_code.co_name self.blackbox_method_int('f8_f', func_name) finally: pass return def test_iec_integration_chance_f(self): """ integration test for output iec.chance_f """ try: func_name = inspect.currentframe().f_code.co_name self.blackbox_method_int('chance_f', func_name) finally: pass return def blackbox_method_int(self, output, func_name): """ Helper method to reuse code for testing numpy array outputs from SIP model :param output: String; Pandas Series name (e.g. column name) without '_out' :return: """ try: # display model output in scientific notation pd.set_option('display.float_format','{:.4E}'.format) logging.info('### blackbox out_' + output) logging.info(iec_calc.pd_obj_out) result = iec_calc.pd_obj_out["out_" + output] expected = iec_calc.pd_obj_exp["exp_" + output] tab =
pd.concat([result, expected], axis=1)
pandas.concat
import pickle from unittest.mock import MagicMock, patch import numpy as np import pandas as pd import pytest from sklearn.model_selection import StratifiedKFold from skopt.space import Categorical from evalml import AutoMLSearch from evalml.automl.pipeline_search_plots import SearchIterationPlot from evalml.exceptions import PipelineNotFoundError from evalml.model_family import ModelFamily from evalml.objectives import ( FraudCost, Precision, PrecisionMicro, Recall, get_objective ) from evalml.pipelines import ( GeneratedPipelineBinary, GeneratedPipelineMulticlass, GeneratedPipelineTimeSeriesBinary, GeneratedPipelineTimeSeriesMulticlass, ModeBaselineBinaryPipeline, ModeBaselineMulticlassPipeline, MulticlassClassificationPipeline, PipelineBase, TimeSeriesBaselineBinaryPipeline, TimeSeriesBaselineMulticlassPipeline ) from evalml.pipelines.components.utils import get_estimators from evalml.pipelines.utils import make_pipeline from evalml.preprocessing import TimeSeriesSplit, split_data from evalml.problem_types import ProblemTypes def test_init(X_y_binary): X, y = X_y_binary automl = AutoMLSearch(X_train=X, y_train=y, problem_type='binary', max_iterations=1, n_jobs=1) automl.search() assert automl.n_jobs == 1 assert isinstance(automl.rankings, pd.DataFrame) assert isinstance(automl.best_pipeline, PipelineBase) automl.best_pipeline.predict(X) # test with dataframes automl = AutoMLSearch(pd.DataFrame(X), pd.Series(y), problem_type='binary', max_iterations=1, n_jobs=1) automl.search() assert isinstance(automl.rankings, pd.DataFrame) assert isinstance(automl.full_rankings, pd.DataFrame) assert isinstance(automl.best_pipeline, PipelineBase) assert isinstance(automl.get_pipeline(0), PipelineBase) assert automl.objective.name == 'Log Loss Binary' automl.best_pipeline.predict(X) def test_init_objective(X_y_binary): X, y = X_y_binary automl = AutoMLSearch(X_train=X, y_train=y, problem_type='binary', objective=Precision(), max_iterations=1) assert isinstance(automl.objective, Precision) automl = AutoMLSearch(X_train=X, y_train=y, problem_type='binary', objective='Precision', max_iterations=1) assert isinstance(automl.objective, Precision) def test_get_pipeline_none(X_y_binary): X, y = X_y_binary automl = AutoMLSearch(X_train=X, y_train=y, problem_type='binary') with pytest.raises(PipelineNotFoundError, match="Pipeline not found"): automl.describe_pipeline(0) def test_data_splitter(X_y_binary): X, y = X_y_binary cv_folds = 5 automl = AutoMLSearch(X_train=X, y_train=y, problem_type='binary', data_splitter=StratifiedKFold(cv_folds), max_iterations=1, n_jobs=1) automl.search() assert isinstance(automl.rankings, pd.DataFrame) assert len(automl.results['pipeline_results'][0]["cv_data"]) == cv_folds automl = AutoMLSearch(X_train=X, y_train=y, problem_type='binary', data_splitter=TimeSeriesSplit(n_splits=cv_folds), max_iterations=1, n_jobs=1) automl.search() assert isinstance(automl.rankings, pd.DataFrame) assert len(automl.results['pipeline_results'][0]["cv_data"]) == cv_folds def test_max_iterations(X_y_binary): X, y = X_y_binary max_iterations = 5 automl = AutoMLSearch(X_train=X, y_train=y, problem_type='binary', max_iterations=max_iterations, n_jobs=1) automl.search() assert len(automl.full_rankings) == max_iterations def test_recall_error(X_y_binary): X, y = X_y_binary # Recall is a valid objective but it's not allowed in AutoML so a ValueError is expected error_msg = 'recall is not allowed in AutoML!' with pytest.raises(ValueError, match=error_msg): AutoMLSearch(X_train=X, y_train=y, problem_type='binary', objective='recall', max_iterations=1) def test_recall_object(X_y_binary): X, y = X_y_binary automl = AutoMLSearch(X_train=X, y_train=y, problem_type='binary', objective=Recall(), max_iterations=1, n_jobs=1) automl.search() assert len(automl.full_rankings) > 0 assert automl.objective.name == 'Recall' def test_binary_auto(X_y_binary): X, y = X_y_binary automl = AutoMLSearch(X_train=X, y_train=y, problem_type='binary', objective="Log Loss Binary", max_iterations=5, n_jobs=1) automl.search() best_pipeline = automl.best_pipeline assert best_pipeline._is_fitted y_pred = best_pipeline.predict(X) assert len(np.unique(y_pred.to_series())) == 2 def test_multi_auto(X_y_multi, multiclass_core_objectives): X, y = X_y_multi objective = PrecisionMicro() automl = AutoMLSearch(X_train=X, y_train=y, problem_type='multiclass', objective=objective, max_iterations=5, n_jobs=1) automl.search() best_pipeline = automl.best_pipeline assert best_pipeline._is_fitted y_pred = best_pipeline.predict(X) assert len(np.unique(y_pred.to_series())) == 3 objective_in_additional_objectives = next((obj for obj in multiclass_core_objectives if obj.name == objective.name), None) multiclass_core_objectives.remove(objective_in_additional_objectives) for expected, additional in zip(multiclass_core_objectives, automl.additional_objectives): assert type(additional) is type(expected) def test_multi_objective(X_y_multi): X, y = X_y_multi automl = AutoMLSearch(X_train=X, y_train=y, problem_type='binary', objective="Log Loss Binary") assert automl.problem_type == ProblemTypes.BINARY automl = AutoMLSearch(X_train=X, y_train=y, problem_type='multiclass', objective="Log Loss Multiclass") assert automl.problem_type == ProblemTypes.MULTICLASS automl = AutoMLSearch(X_train=X, y_train=y, problem_type='multiclass', objective='AUC Micro') assert automl.problem_type == ProblemTypes.MULTICLASS automl = AutoMLSearch(X_train=X, y_train=y, problem_type='binary', objective='AUC') assert automl.problem_type == ProblemTypes.BINARY automl = AutoMLSearch(X_train=X, y_train=y, problem_type='multiclass') assert automl.problem_type == ProblemTypes.MULTICLASS automl = AutoMLSearch(X_train=X, y_train=y, problem_type='binary') assert automl.problem_type == ProblemTypes.BINARY def test_categorical_classification(X_y_categorical_classification): X, y = X_y_categorical_classification automl = AutoMLSearch(X_train=X, y_train=y, problem_type='binary', objective="precision", max_iterations=5, n_jobs=1) automl.search() assert not automl.rankings['score'].isnull().all() def test_random_seed(X_y_binary): X, y = X_y_binary automl = AutoMLSearch(X_train=X, y_train=y, problem_type='binary', objective=Precision(), max_iterations=5, random_seed=0, n_jobs=1) automl.search() automl_1 = AutoMLSearch(X_train=X, y_train=y, problem_type='binary', objective=Precision(), max_iterations=5, random_seed=0, n_jobs=1) automl_1.search() assert automl.rankings.equals(automl_1.rankings) def test_callback(X_y_binary): X, y = X_y_binary counts = { "start_iteration_callback": 0, "add_result_callback": 0, } def start_iteration_callback(pipeline_class, parameters, automl_obj, counts=counts): counts["start_iteration_callback"] += 1 def add_result_callback(results, trained_pipeline, automl_obj, counts=counts): counts["add_result_callback"] += 1 max_iterations = 3 automl = AutoMLSearch(X_train=X, y_train=y, problem_type='binary', objective=Precision(), max_iterations=max_iterations, start_iteration_callback=start_iteration_callback, add_result_callback=add_result_callback, n_jobs=1) automl.search() assert counts["start_iteration_callback"] == max_iterations assert counts["add_result_callback"] == max_iterations def test_additional_objectives(X_y_binary): X, y = X_y_binary objective = FraudCost(retry_percentage=.5, interchange_fee=.02, fraud_payout_percentage=.75, amount_col=10) automl = AutoMLSearch(X_train=X, y_train=y, problem_type='binary', objective='F1', max_iterations=2, additional_objectives=[objective], n_jobs=1) automl.search() results = automl.describe_pipeline(0, return_dict=True) assert 'Fraud Cost' in list(results["cv_data"][0]["all_objective_scores"].keys()) @patch('evalml.objectives.BinaryClassificationObjective.optimize_threshold') @patch('evalml.pipelines.BinaryClassificationPipeline.predict_proba') @patch('evalml.pipelines.BinaryClassificationPipeline.score') @patch('evalml.pipelines.BinaryClassificationPipeline.fit') def test_optimizable_threshold_enabled(mock_fit, mock_score, mock_predict_proba, mock_optimize_threshold, X_y_binary, caplog): mock_optimize_threshold.return_value = 0.8 X, y = X_y_binary automl = AutoMLSearch(X_train=X, y_train=y, problem_type='binary', objective='precision', max_iterations=1, optimize_thresholds=True) mock_score.return_value = {automl.objective.name: 1.0} automl.search() mock_fit.assert_called() mock_score.assert_called() mock_predict_proba.assert_called() mock_optimize_threshold.assert_called() assert automl.best_pipeline.threshold is not None assert automl.results['pipeline_results'][0]['cv_data'][0].get('binary_classification_threshold') == 0.8 assert automl.results['pipeline_results'][0]['cv_data'][1].get('binary_classification_threshold') == 0.8 assert automl.results['pipeline_results'][0]['cv_data'][2].get('binary_classification_threshold') == 0.8 automl.describe_pipeline(0) out = caplog.text assert "Objective to optimize binary classification pipeline thresholds for" in out @patch('evalml.objectives.BinaryClassificationObjective.optimize_threshold') @patch('evalml.pipelines.BinaryClassificationPipeline.predict_proba') @patch('evalml.pipelines.BinaryClassificationPipeline.score') @patch('evalml.pipelines.BinaryClassificationPipeline.fit') def test_optimizable_threshold_disabled(mock_fit, mock_score, mock_predict_proba, mock_optimize_threshold, X_y_binary): mock_optimize_threshold.return_value = 0.8 X, y = X_y_binary automl = AutoMLSearch(X_train=X, y_train=y, problem_type='binary', objective='precision', max_iterations=1, optimize_thresholds=False) mock_score.return_value = {automl.objective.name: 1.0} automl.search() mock_fit.assert_called() mock_score.assert_called() assert not mock_predict_proba.called assert not mock_optimize_threshold.called assert automl.best_pipeline.threshold is not None assert automl.results['pipeline_results'][0]['cv_data'][0].get('binary_classification_threshold') == 0.5 assert automl.results['pipeline_results'][0]['cv_data'][1].get('binary_classification_threshold') == 0.5 assert automl.results['pipeline_results'][0]['cv_data'][2].get('binary_classification_threshold') == 0.5 @patch('evalml.pipelines.BinaryClassificationPipeline.score') @patch('evalml.pipelines.BinaryClassificationPipeline.fit') def test_non_optimizable_threshold(mock_fit, mock_score, X_y_binary): mock_score.return_value = {"AUC": 1.0} X, y = X_y_binary automl = AutoMLSearch(X_train=X, y_train=y, problem_type='binary', objective='AUC', max_iterations=1) automl.search() mock_fit.assert_called() mock_score.assert_called() assert automl.best_pipeline.threshold is None assert automl.results['pipeline_results'][0]['cv_data'][0].get('binary_classification_threshold') is None assert automl.results['pipeline_results'][0]['cv_data'][1].get('binary_classification_threshold') is None assert automl.results['pipeline_results'][0]['cv_data'][2].get('binary_classification_threshold') is None def test_describe_pipeline_objective_ordered(X_y_binary, caplog): X, y = X_y_binary automl = AutoMLSearch(X_train=X, y_train=y, problem_type='binary', objective='AUC', max_iterations=2, n_jobs=1) automl.search() automl.describe_pipeline(0) out = caplog.text out_stripped = " ".join(out.split()) objectives = [get_objective(obj) for obj in automl.additional_objectives] objectives_names = [obj.name for obj in objectives] expected_objective_order = " ".join(objectives_names) assert expected_objective_order in out_stripped def test_max_time_units(X_y_binary): X, y = X_y_binary str_max_time = AutoMLSearch(X_train=X, y_train=y, problem_type='binary', objective='F1', max_time='60 seconds') assert str_max_time.max_time == 60 hour_max_time = AutoMLSearch(X_train=X, y_train=y, problem_type='binary', objective='F1', max_time='1 hour') assert hour_max_time.max_time == 3600 min_max_time = AutoMLSearch(X_train=X, y_train=y, problem_type='binary', objective='F1', max_time='30 mins') assert min_max_time.max_time == 1800 min_max_time = AutoMLSearch(X_train=X, y_train=y, problem_type='binary', objective='F1', max_time='30 s') assert min_max_time.max_time == 30 with pytest.raises(AssertionError, match="Invalid unit. Units must be hours, mins, or seconds. Received 'year'"): AutoMLSearch(X_train=X, y_train=y, problem_type='binary', objective='F1', max_time='30 years') with pytest.raises(TypeError, match="Parameter max_time must be a float, int, string or None. Received <class 'tuple'> with value \\(30, 'minutes'\\)."): AutoMLSearch(X_train=X, y_train=y, problem_type='binary', objective='F1', max_time=(30, 'minutes')) def test_plot_disabled_missing_dependency(X_y_binary, has_minimal_dependencies): X, y = X_y_binary automl = AutoMLSearch(X_train=X, y_train=y, problem_type='binary', max_iterations=3) if has_minimal_dependencies: with pytest.raises(AttributeError): automl.plot.search_iteration_plot else: automl.plot.search_iteration_plot def test_plot_iterations_max_iterations(X_y_binary): go = pytest.importorskip('plotly.graph_objects', reason='Skipping plotting test because plotly not installed') X, y = X_y_binary automl = AutoMLSearch(X_train=X, y_train=y, problem_type='binary', objective="f1", max_iterations=3, n_jobs=1) automl.search() plot = automl.plot.search_iteration_plot() plot_data = plot.data[0] x = pd.Series(plot_data['x']) y = pd.Series(plot_data['y']) assert isinstance(plot, go.Figure) assert x.is_monotonic_increasing assert y.is_monotonic_increasing assert len(x) == 3 assert len(y) == 3 def test_plot_iterations_max_time(X_y_binary): go = pytest.importorskip('plotly.graph_objects', reason='Skipping plotting test because plotly not installed') X, y = X_y_binary automl = AutoMLSearch(X_train=X, y_train=y, problem_type='binary', objective="f1", max_time=10, n_jobs=1) automl.search(show_iteration_plot=False) plot = automl.plot.search_iteration_plot() plot_data = plot.data[0] x = pd.Series(plot_data['x']) y =
pd.Series(plot_data['y'])
pandas.Series
from collections import OrderedDict import contextlib from datetime import datetime, time from functools import partial import os from urllib.error import URLError import warnings import numpy as np import pytest import pandas.util._test_decorators as td import pandas as pd from pandas import DataFrame, Index, MultiIndex, Series import pandas.util.testing as tm @contextlib.contextmanager def ignore_xlrd_time_clock_warning(): """ Context manager to ignore warnings raised by the xlrd library, regarding the deprecation of `time.clock` in Python 3.7. """ with warnings.catch_warnings(): warnings.filterwarnings( action="ignore", message="time.clock has been deprecated", category=DeprecationWarning, ) yield read_ext_params = [".xls", ".xlsx", ".xlsm", ".ods"] engine_params = [ # Add any engines to test here # When defusedxml is installed it triggers deprecation warnings for # xlrd and openpyxl, so catch those here pytest.param( "xlrd", marks=[ td.skip_if_no("xlrd"), pytest.mark.filterwarnings("ignore:.*(tree\\.iter|html argument)"), ], ), pytest.param( "openpyxl", marks=[ td.skip_if_no("openpyxl"), pytest.mark.filterwarnings("ignore:.*html argument"), ], ), pytest.param( None, marks=[ td.skip_if_no("xlrd"), pytest.mark.filterwarnings("ignore:.*(tree\\.iter|html argument)"), ], ), pytest.param("odf", marks=td.skip_if_no("odf")), ] def _is_valid_engine_ext_pair(engine, read_ext: str) -> bool: """ Filter out invalid (engine, ext) pairs instead of skipping, as that produces 500+ pytest.skips. """ engine = engine.values[0] if engine == "openpyxl" and read_ext == ".xls": return False if engine == "odf" and read_ext != ".ods": return False if read_ext == ".ods" and engine != "odf": return False return True def _transfer_marks(engine, read_ext): """ engine gives us a pytest.param objec with some marks, read_ext is just a string. We need to generate a new pytest.param inheriting the marks. """ values = engine.values + (read_ext,) new_param = pytest.param(values, marks=engine.marks) return new_param @pytest.fixture( autouse=True, params=[ _transfer_marks(eng, ext) for eng in engine_params for ext in read_ext_params if _is_valid_engine_ext_pair(eng, ext) ], ) def engine_and_read_ext(request): """ Fixture for Excel reader engine and read_ext, only including valid pairs. """ return request.param @pytest.fixture def engine(engine_and_read_ext): engine, read_ext = engine_and_read_ext return engine @pytest.fixture def read_ext(engine_and_read_ext): engine, read_ext = engine_and_read_ext return read_ext class TestReaders: @pytest.fixture(autouse=True) def cd_and_set_engine(self, engine, datapath, monkeypatch): """ Change directory and set engine for read_excel calls. """ func = partial(pd.read_excel, engine=engine) monkeypatch.chdir(datapath("io", "data", "excel")) monkeypatch.setattr(pd, "read_excel", func) def test_usecols_int(self, read_ext, df_ref): df_ref = df_ref.reindex(columns=["A", "B", "C"]) # usecols as int msg = "Passing an integer for `usecols`" with pytest.raises(ValueError, match=msg): with ignore_xlrd_time_clock_warning(): pd.read_excel("test1" + read_ext, "Sheet1", index_col=0, usecols=3) # usecols as int with pytest.raises(ValueError, match=msg): with ignore_xlrd_time_clock_warning(): pd.read_excel( "test1" + read_ext, "Sheet2", skiprows=[1], index_col=0, usecols=3 ) def test_usecols_list(self, read_ext, df_ref): df_ref = df_ref.reindex(columns=["B", "C"]) df1 = pd.read_excel( "test1" + read_ext, "Sheet1", index_col=0, usecols=[0, 2, 3] ) df2 = pd.read_excel( "test1" + read_ext, "Sheet2", skiprows=[1], index_col=0, usecols=[0, 2, 3] ) # TODO add index to xls file) tm.assert_frame_equal(df1, df_ref, check_names=False) tm.assert_frame_equal(df2, df_ref, check_names=False) def test_usecols_str(self, read_ext, df_ref): df1 = df_ref.reindex(columns=["A", "B", "C"]) df2 = pd.read_excel("test1" + read_ext, "Sheet1", index_col=0, usecols="A:D") df3 = pd.read_excel( "test1" + read_ext, "Sheet2", skiprows=[1], index_col=0, usecols="A:D" ) # TODO add index to xls, read xls ignores index name ? tm.assert_frame_equal(df2, df1, check_names=False) tm.assert_frame_equal(df3, df1, check_names=False) df1 = df_ref.reindex(columns=["B", "C"]) df2 = pd.read_excel("test1" + read_ext, "Sheet1", index_col=0, usecols="A,C,D") df3 = pd.read_excel( "test1" + read_ext, "Sheet2", skiprows=[1], index_col=0, usecols="A,C,D" ) # TODO add index to xls file tm.assert_frame_equal(df2, df1, check_names=False) tm.assert_frame_equal(df3, df1, check_names=False) df1 = df_ref.reindex(columns=["B", "C"]) df2 = pd.read_excel("test1" + read_ext, "Sheet1", index_col=0, usecols="A,C:D") df3 = pd.read_excel( "test1" + read_ext, "Sheet2", skiprows=[1], index_col=0, usecols="A,C:D" ) tm.assert_frame_equal(df2, df1, check_names=False) tm.assert_frame_equal(df3, df1, check_names=False) @pytest.mark.parametrize( "usecols", [[0, 1, 3], [0, 3, 1], [1, 0, 3], [1, 3, 0], [3, 0, 1], [3, 1, 0]] ) def test_usecols_diff_positional_int_columns_order(self, read_ext, usecols, df_ref): expected = df_ref[["A", "C"]] result = pd.read_excel( "test1" + read_ext, "Sheet1", index_col=0, usecols=usecols ) tm.assert_frame_equal(result, expected, check_names=False) @pytest.mark.parametrize("usecols", [["B", "D"], ["D", "B"]]) def test_usecols_diff_positional_str_columns_order(self, read_ext, usecols, df_ref): expected = df_ref[["B", "D"]] expected.index = range(len(expected)) result = pd.read_excel("test1" + read_ext, "Sheet1", usecols=usecols) tm.assert_frame_equal(result, expected, check_names=False) def test_read_excel_without_slicing(self, read_ext, df_ref): expected = df_ref result = pd.read_excel("test1" + read_ext, "Sheet1", index_col=0) tm.assert_frame_equal(result, expected, check_names=False) def test_usecols_excel_range_str(self, read_ext, df_ref): expected = df_ref[["C", "D"]] result = pd.read_excel( "test1" + read_ext, "Sheet1", index_col=0, usecols="A,D:E" ) tm.assert_frame_equal(result, expected, check_names=False) def test_usecols_excel_range_str_invalid(self, read_ext): msg = "Invalid column name: E1" with pytest.raises(ValueError, match=msg): pd.read_excel("test1" + read_ext, "Sheet1", usecols="D:E1") def test_index_col_label_error(self, read_ext): msg = "list indices must be integers.*, not str" with pytest.raises(TypeError, match=msg): pd.read_excel( "test1" + read_ext, "Sheet1", index_col=["A"], usecols=["A", "C"] ) def test_index_col_empty(self, read_ext): # see gh-9208 result = pd.read_excel("test1" + read_ext, "Sheet3", index_col=["A", "B", "C"]) expected = DataFrame( columns=["D", "E", "F"], index=MultiIndex(levels=[[]] * 3, codes=[[]] * 3, names=["A", "B", "C"]), ) tm.assert_frame_equal(result, expected) @pytest.mark.parametrize("index_col", [None, 2]) def test_index_col_with_unnamed(self, read_ext, index_col): # see gh-18792 result = pd.read_excel("test1" + read_ext, "Sheet4", index_col=index_col) expected = DataFrame( [["i1", "a", "x"], ["i2", "b", "y"]], columns=["Unnamed: 0", "col1", "col2"] ) if index_col: expected = expected.set_index(expected.columns[index_col]) tm.assert_frame_equal(result, expected) def test_usecols_pass_non_existent_column(self, read_ext): msg = ( "Usecols do not match columns, " "columns expected but not found: " + r"\['E'\]" ) with pytest.raises(ValueError, match=msg): pd.read_excel("test1" + read_ext, usecols=["E"]) def test_usecols_wrong_type(self, read_ext): msg = ( "'usecols' must either be list-like of " "all strings, all unicode, all integers or a callable." ) with pytest.raises(ValueError, match=msg): pd.read_excel("test1" + read_ext, usecols=["E1", 0]) def test_excel_stop_iterator(self, read_ext): parsed = pd.read_excel("test2" + read_ext, "Sheet1") expected = DataFrame([["aaaa", "bbbbb"]], columns=["Test", "Test1"]) tm.assert_frame_equal(parsed, expected) def test_excel_cell_error_na(self, read_ext): parsed = pd.read_excel("test3" + read_ext, "Sheet1") expected = DataFrame([[np.nan]], columns=["Test"]) tm.assert_frame_equal(parsed, expected) def test_excel_table(self, read_ext, df_ref): df1 = pd.read_excel("test1" + read_ext, "Sheet1", index_col=0) df2 = pd.read_excel("test1" + read_ext, "Sheet2", skiprows=[1], index_col=0) # TODO add index to file tm.assert_frame_equal(df1, df_ref, check_names=False) tm.assert_frame_equal(df2, df_ref, check_names=False) df3 = pd.read_excel("test1" + read_ext, "Sheet1", index_col=0, skipfooter=1) tm.assert_frame_equal(df3, df1.iloc[:-1]) def test_reader_special_dtypes(self, read_ext): expected = DataFrame.from_dict( OrderedDict( [ ("IntCol", [1, 2, -3, 4, 0]), ("FloatCol", [1.25, 2.25, 1.83, 1.92, 0.0000000005]), ("BoolCol", [True, False, True, True, False]), ("StrCol", [1, 2, 3, 4, 5]), # GH5394 - this is why convert_float isn't vectorized ("Str2Col", ["a", 3, "c", "d", "e"]), ( "DateCol", [ datetime(2013, 10, 30), datetime(2013, 10, 31), datetime(1905, 1, 1), datetime(2013, 12, 14), datetime(2015, 3, 14), ], ), ] ) ) basename = "test_types" # should read in correctly and infer types actual = pd.read_excel(basename + read_ext, "Sheet1") tm.assert_frame_equal(actual, expected) # if not coercing number, then int comes in as float float_expected = expected.copy() float_expected["IntCol"] = float_expected["IntCol"].astype(float) float_expected.loc[float_expected.index[1], "Str2Col"] = 3.0 actual = pd.read_excel(basename + read_ext, "Sheet1", convert_float=False) tm.assert_frame_equal(actual, float_expected) # check setting Index (assuming xls and xlsx are the same here) for icol, name in enumerate(expected.columns): actual = pd.read_excel(basename + read_ext, "Sheet1", index_col=icol) exp = expected.set_index(name) tm.assert_frame_equal(actual, exp) # convert_float and converters should be different but both accepted expected["StrCol"] = expected["StrCol"].apply(str) actual = pd.read_excel( basename + read_ext, "Sheet1", converters={"StrCol": str} ) tm.assert_frame_equal(actual, expected) no_convert_float = float_expected.copy() no_convert_float["StrCol"] = no_convert_float["StrCol"].apply(str) actual = pd.read_excel( basename + read_ext, "Sheet1", convert_float=False, converters={"StrCol": str}, ) tm.assert_frame_equal(actual, no_convert_float) # GH8212 - support for converters and missing values def test_reader_converters(self, read_ext): basename = "test_converters" expected = DataFrame.from_dict( OrderedDict( [ ("IntCol", [1, 2, -3, -1000, 0]), ("FloatCol", [12.5, np.nan, 18.3, 19.2, 0.000000005]), ("BoolCol", ["Found", "Found", "Found", "Not found", "Found"]), ("StrCol", ["1", np.nan, "3", "4", "5"]), ] ) ) converters = { "IntCol": lambda x: int(x) if x != "" else -1000, "FloatCol": lambda x: 10 * x if x else np.nan, 2: lambda x: "Found" if x != "" else "Not found", 3: lambda x: str(x) if x else "", } # should read in correctly and set types of single cells (not array # dtypes) actual = pd.read_excel(basename + read_ext, "Sheet1", converters=converters) tm.assert_frame_equal(actual, expected) def test_reader_dtype(self, read_ext): # GH 8212 basename = "testdtype" actual = pd.read_excel(basename + read_ext) expected = DataFrame( { "a": [1, 2, 3, 4], "b": [2.5, 3.5, 4.5, 5.5], "c": [1, 2, 3, 4], "d": [1.0, 2.0, np.nan, 4.0], } ).reindex(columns=["a", "b", "c", "d"]) tm.assert_frame_equal(actual, expected) actual = pd.read_excel( basename + read_ext, dtype={"a": "float64", "b": "float32", "c": str} ) expected["a"] = expected["a"].astype("float64") expected["b"] = expected["b"].astype("float32") expected["c"] = ["001", "002", "003", "004"] tm.assert_frame_equal(actual, expected) with pytest.raises(ValueError): pd.read_excel(basename + read_ext, dtype={"d": "int64"}) @pytest.mark.parametrize( "dtype,expected", [ ( None, DataFrame( { "a": [1, 2, 3, 4], "b": [2.5, 3.5, 4.5, 5.5], "c": [1, 2, 3, 4], "d": [1.0, 2.0, np.nan, 4.0], } ), ), ( {"a": "float64", "b": "float32", "c": str, "d": str}, DataFrame( { "a": Series([1, 2, 3, 4], dtype="float64"), "b": Series([2.5, 3.5, 4.5, 5.5], dtype="float32"), "c": ["001", "002", "003", "004"], "d": ["1", "2", np.nan, "4"], } ), ), ], ) def test_reader_dtype_str(self, read_ext, dtype, expected): # see gh-20377 basename = "testdtype" actual = pd.read_excel(basename + read_ext, dtype=dtype) tm.assert_frame_equal(actual, expected) def test_reading_all_sheets(self, read_ext): # Test reading all sheetnames by setting sheetname to None, # Ensure a dict is returned. # See PR #9450 basename = "test_multisheet" dfs = pd.read_excel(basename + read_ext, sheet_name=None) # ensure this is not alphabetical to test order preservation expected_keys = ["Charlie", "Alpha", "Beta"] tm.assert_contains_all(expected_keys, dfs.keys()) # Issue 9930 # Ensure sheet order is preserved assert expected_keys == list(dfs.keys()) def test_reading_multiple_specific_sheets(self, read_ext): # Test reading specific sheetnames by specifying a mixed list # of integers and strings, and confirm that duplicated sheet # references (positions/names) are removed properly. # Ensure a dict is returned # See PR #9450 basename = "test_multisheet" # Explicitly request duplicates. Only the set should be returned. expected_keys = [2, "Charlie", "Charlie"] dfs = pd.read_excel(basename + read_ext, sheet_name=expected_keys) expected_keys = list(set(expected_keys)) tm.assert_contains_all(expected_keys, dfs.keys()) assert len(expected_keys) == len(dfs.keys()) def test_reading_all_sheets_with_blank(self, read_ext): # Test reading all sheetnames by setting sheetname to None, # In the case where some sheets are blank. # Issue #11711 basename = "blank_with_header" dfs = pd.read_excel(basename + read_ext, sheet_name=None) expected_keys = ["Sheet1", "Sheet2", "Sheet3"] tm.assert_contains_all(expected_keys, dfs.keys()) # GH6403 def test_read_excel_blank(self, read_ext): actual = pd.read_excel("blank" + read_ext, "Sheet1") tm.assert_frame_equal(actual, DataFrame()) def test_read_excel_blank_with_header(self, read_ext): expected = DataFrame(columns=["col_1", "col_2"]) actual = pd.read_excel("blank_with_header" + read_ext, "Sheet1") tm.assert_frame_equal(actual, expected) def test_date_conversion_overflow(self, read_ext): # GH 10001 : pandas.ExcelFile ignore parse_dates=False expected = pd.DataFrame( [ [pd.Timestamp("2016-03-12"), "<NAME>"], [pd.Timestamp("2016-03-16"), "<NAME>"], [1e20, "<NAME>"], ], columns=["DateColWithBigInt", "StringCol"], ) if pd.read_excel.keywords["engine"] == "openpyxl": pytest.xfail("Maybe not supported by openpyxl") result = pd.read_excel("testdateoverflow" + read_ext) tm.assert_frame_equal(result, expected) def test_sheet_name(self, read_ext, df_ref): filename = "test1" sheet_name = "Sheet1" df1 = pd.read_excel( filename + read_ext, sheet_name=sheet_name, index_col=0 ) # doc with ignore_xlrd_time_clock_warning(): df2 = pd.read_excel(filename + read_ext, index_col=0, sheet_name=sheet_name) tm.assert_frame_equal(df1, df_ref, check_names=False) tm.assert_frame_equal(df2, df_ref, check_names=False) def test_excel_read_buffer(self, read_ext): pth = "test1" + read_ext expected = pd.read_excel(pth, "Sheet1", index_col=0) with open(pth, "rb") as f: actual = pd.read_excel(f, "Sheet1", index_col=0) tm.assert_frame_equal(expected, actual) def test_bad_engine_raises(self, read_ext): bad_engine = "foo" with pytest.raises(ValueError, match="Unknown engine: foo"): pd.read_excel("", engine=bad_engine) @tm.network def test_read_from_http_url(self, read_ext): url = ( "https://raw.githubusercontent.com/pandas-dev/pandas/master/" "pandas/tests/io/data/excel/test1" + read_ext ) url_table = pd.read_excel(url) local_table = pd.read_excel("test1" + read_ext) tm.assert_frame_equal(url_table, local_table) @td.skip_if_not_us_locale def test_read_from_s3_url(self, read_ext, s3_resource): # Bucket "pandas-test" created in tests/io/conftest.py with open("test1" + read_ext, "rb") as f: s3_resource.Bucket("pandas-test").put_object(Key="test1" + read_ext, Body=f) url = "s3://pandas-test/test1" + read_ext url_table = pd.read_excel(url) local_table = pd.read_excel("test1" + read_ext) tm.assert_frame_equal(url_table, local_table) @pytest.mark.slow # ignore warning from old xlrd @pytest.mark.filterwarnings("ignore:This metho:PendingDeprecationWarning") def test_read_from_file_url(self, read_ext, datapath): # FILE localtable = os.path.join(datapath("io", "data", "excel"), "test1" + read_ext) local_table = pd.read_excel(localtable) try: url_table = pd.read_excel("file://localhost/" + localtable) except URLError: # fails on some systems import platform pytest.skip("failing on {}".format(" ".join(platform.uname()).strip())) tm.assert_frame_equal(url_table, local_table) def test_read_from_pathlib_path(self, read_ext): # GH12655 from pathlib import Path str_path = "test1" + read_ext expected = pd.read_excel(str_path, "Sheet1", index_col=0) path_obj = Path("test1" + read_ext) actual = pd.read_excel(path_obj, "Sheet1", index_col=0) tm.assert_frame_equal(expected, actual) @td.skip_if_no("py.path") @td.check_file_leaks def test_read_from_py_localpath(self, read_ext): # GH12655 from py.path import local as LocalPath str_path = os.path.join("test1" + read_ext) expected = pd.read_excel(str_path, "Sheet1", index_col=0) path_obj = LocalPath().join("test1" + read_ext) actual = pd.read_excel(path_obj, "Sheet1", index_col=0) tm.assert_frame_equal(expected, actual) def test_reader_seconds(self, read_ext): # Test reading times with and without milliseconds. GH5945. expected = DataFrame.from_dict( { "Time": [ time(1, 2, 3), time(2, 45, 56, 100000), time(4, 29, 49, 200000), time(6, 13, 42, 300000), time(7, 57, 35, 400000), time(9, 41, 28, 500000), time(11, 25, 21, 600000), time(13, 9, 14, 700000), time(14, 53, 7, 800000), time(16, 37, 0, 900000), time(18, 20, 54), ] } ) actual = pd.read_excel("times_1900" + read_ext, "Sheet1") tm.assert_frame_equal(actual, expected) actual = pd.read_excel("times_1904" + read_ext, "Sheet1") tm.assert_frame_equal(actual, expected) def test_read_excel_multiindex(self, read_ext): # see gh-4679 mi = MultiIndex.from_product([["foo", "bar"], ["a", "b"]]) mi_file = "testmultiindex" + read_ext # "mi_column" sheet expected = DataFrame( [ [1, 2.5, pd.Timestamp("2015-01-01"), True], [2, 3.5, pd.Timestamp("2015-01-02"), False], [3, 4.5, pd.Timestamp("2015-01-03"), False], [4, 5.5, pd.Timestamp("2015-01-04"), True], ], columns=mi, ) actual = pd.read_excel(mi_file, "mi_column", header=[0, 1], index_col=0) tm.assert_frame_equal(actual, expected) # "mi_index" sheet expected.index = mi expected.columns = ["a", "b", "c", "d"] actual = pd.read_excel(mi_file, "mi_index", index_col=[0, 1]) tm.assert_frame_equal(actual, expected, check_names=False) # "both" sheet expected.columns = mi actual = pd.read_excel(mi_file, "both", index_col=[0, 1], header=[0, 1]) tm.assert_frame_equal(actual, expected, check_names=False) # "mi_index_name" sheet expected.columns = ["a", "b", "c", "d"] expected.index = mi.set_names(["ilvl1", "ilvl2"]) actual = pd.read_excel(mi_file, "mi_index_name", index_col=[0, 1]) tm.assert_frame_equal(actual, expected) # "mi_column_name" sheet expected.index = list(range(4)) expected.columns = mi.set_names(["c1", "c2"]) actual = pd.read_excel(mi_file, "mi_column_name", header=[0, 1], index_col=0) tm.assert_frame_equal(actual, expected) # see gh-11317 # "name_with_int" sheet expected.columns = mi.set_levels([1, 2], level=1).set_names(["c1", "c2"]) actual = pd.read_excel(mi_file, "name_with_int", index_col=0, header=[0, 1]) tm.assert_frame_equal(actual, expected) # "both_name" sheet expected.columns = mi.set_names(["c1", "c2"]) expected.index = mi.set_names(["ilvl1", "ilvl2"]) actual = pd.read_excel(mi_file, "both_name", index_col=[0, 1], header=[0, 1]) tm.assert_frame_equal(actual, expected) # "both_skiprows" sheet actual = pd.read_excel( mi_file, "both_name_skiprows", index_col=[0, 1], header=[0, 1], skiprows=2 ) tm.assert_frame_equal(actual, expected) def test_read_excel_multiindex_header_only(self, read_ext): # see gh-11733. # # Don't try to parse a header name if there isn't one. mi_file = "testmultiindex" + read_ext result = pd.read_excel(mi_file, "index_col_none", header=[0, 1]) exp_columns = MultiIndex.from_product([("A", "B"), ("key", "val")]) expected = DataFrame([[1, 2, 3, 4]] * 2, columns=exp_columns) tm.assert_frame_equal(result, expected) def test_excel_old_index_format(self, read_ext): # see gh-4679 filename = "test_index_name_pre17" + read_ext # We detect headers to determine if index names exist, so # that "index" name in the "names" version of the data will # now be interpreted as rows that include null data. data = np.array( [ [None, None, None, None, None], ["R0C0", "R0C1", "R0C2", "R0C3", "R0C4"], ["R1C0", "R1C1", "R1C2", "R1C3", "R1C4"], ["R2C0", "R2C1", "R2C2", "R2C3", "R2C4"], ["R3C0", "R3C1", "R3C2", "R3C3", "R3C4"], ["R4C0", "R4C1", "R4C2", "R4C3", "R4C4"], ] ) columns = ["C_l0_g0", "C_l0_g1", "C_l0_g2", "C_l0_g3", "C_l0_g4"] mi = MultiIndex( levels=[ ["R0", "R_l0_g0", "R_l0_g1", "R_l0_g2", "R_l0_g3", "R_l0_g4"], ["R1", "R_l1_g0", "R_l1_g1", "R_l1_g2", "R_l1_g3", "R_l1_g4"], ], codes=[[0, 1, 2, 3, 4, 5], [0, 1, 2, 3, 4, 5]], names=[None, None], ) si = Index( ["R0", "R_l0_g0", "R_l0_g1", "R_l0_g2", "R_l0_g3", "R_l0_g4"], name=None ) expected = pd.DataFrame(data, index=si, columns=columns) actual = pd.read_excel(filename, "single_names", index_col=0) tm.assert_frame_equal(actual, expected) expected.index = mi actual = pd.read_excel(filename, "multi_names", index_col=[0, 1]) tm.assert_frame_equal(actual, expected) # The analogous versions of the "names" version data # where there are explicitly no names for the indices. data = np.array( [ ["R0C0", "R0C1", "R0C2", "R0C3", "R0C4"], ["R1C0", "R1C1", "R1C2", "R1C3", "R1C4"], ["R2C0", "R2C1", "R2C2", "R2C3", "R2C4"], ["R3C0", "R3C1", "R3C2", "R3C3", "R3C4"], ["R4C0", "R4C1", "R4C2", "R4C3", "R4C4"], ] ) columns = ["C_l0_g0", "C_l0_g1", "C_l0_g2", "C_l0_g3", "C_l0_g4"] mi = MultiIndex( levels=[ ["R_l0_g0", "R_l0_g1", "R_l0_g2", "R_l0_g3", "R_l0_g4"], ["R_l1_g0", "R_l1_g1", "R_l1_g2", "R_l1_g3", "R_l1_g4"], ], codes=[[0, 1, 2, 3, 4], [0, 1, 2, 3, 4]], names=[None, None], ) si = Index(["R_l0_g0", "R_l0_g1", "R_l0_g2", "R_l0_g3", "R_l0_g4"], name=None) expected = pd.DataFrame(data, index=si, columns=columns) actual = pd.read_excel(filename, "single_no_names", index_col=0) tm.assert_frame_equal(actual, expected) expected.index = mi actual = pd.read_excel(filename, "multi_no_names", index_col=[0, 1]) tm.assert_frame_equal(actual, expected, check_names=False) def test_read_excel_bool_header_arg(self, read_ext): # GH 6114 for arg in [True, False]: with pytest.raises(TypeError): pd.read_excel("test1" + read_ext, header=arg) def test_read_excel_chunksize(self, read_ext): # GH 8011 with pytest.raises(NotImplementedError): pd.read_excel("test1" + read_ext, chunksize=100) def test_read_excel_skiprows_list(self, read_ext): # GH 4903 actual = pd.read_excel( "testskiprows" + read_ext, "skiprows_list", skiprows=[0, 2] ) expected = DataFrame( [ [1, 2.5, pd.Timestamp("2015-01-01"), True], [2, 3.5, pd.Timestamp("2015-01-02"), False], [3, 4.5, pd.Timestamp("2015-01-03"), False], [4, 5.5, pd.Timestamp("2015-01-04"), True], ], columns=["a", "b", "c", "d"], ) tm.assert_frame_equal(actual, expected) actual = pd.read_excel( "testskiprows" + read_ext, "skiprows_list", skiprows=np.array([0, 2]) ) tm.assert_frame_equal(actual, expected) def test_read_excel_nrows(self, read_ext): # GH 16645 num_rows_to_pull = 5 actual = pd.read_excel("test1" + read_ext, nrows=num_rows_to_pull) expected = pd.read_excel("test1" + read_ext) expected = expected[:num_rows_to_pull]
tm.assert_frame_equal(actual, expected)
pandas.util.testing.assert_frame_equal
# -*- coding: utf-8 -*- from ..data import Data, DataSamples from ..cross import DecisionTree, Crosses #from ..woe import WOE import pandas as pd #import math as m import numpy as np import matplotlib import matplotlib.colors as colors import matplotlib.pyplot as plt from matplotlib.ticker import FuncFormatter import seaborn as sns from sklearn.model_selection import cross_val_score, StratifiedKFold, train_test_split, GridSearchCV, PredefinedSplit from sklearn.linear_model import LogisticRegression, LinearRegression from sklearn.tree import DecisionTreeClassifier from sklearn.metrics import roc_auc_score, roc_curve, auc, r2_score from scipy.stats import chi2, chisquare, ks_2samp, ttest_ind #import statsmodels.formula.api as sm import warnings from abc import ABCMeta, abstractmethod #from sklearn.feature_selection import GenericUnivariateSelect, f_classif from patsy import dmatrices from statsmodels.stats.outliers_influence import variance_inflation_factor import re import ast import os import xlsxwriter from PIL import Image import datetime from dateutil.relativedelta import * from scipy.optimize import minimize import copy import itertools import calendar warnings.simplefilter('ignore') plt.rc('font', family='Verdana') plt.style.use('seaborn-darkgrid') pd.set_option('display.precision', 3) class ScoringModel(metaclass = ABCMeta): ''' Base class for binary scoring models ''' @abstractmethod def __init__(self, model): self.model = model self.features = [] @abstractmethod def fit(self, data): pass def predict(self, data, woe_transform=None): ''' Predicts probability of target = 1 Parameters ----------- data: Data to use for prediction, Data type woe_transform: a WOE object to perform WoE-transformation before using model Returns ----------- matrix with shape [(sample size) X (number of classes)] ''' if woe_transform is not None: data=woe_transform.transform(data, keep_essential=True, original_values=True, calc_gini=False) if self.features == []: self.features = data.features return self.model.predict_proba(data.dataframe[self.features]) def roc_curve(self, data, woe_transform=None, figsize=(10,7), filename = 'roc_curve', verbose = True): ''' Displays ROC-curve and Gini coefficient for the model Parameters ----------- data: a Data or DataSamples object woe_transform: a WOE object to perform WoE-transformation before using model figsize: a tuple for graph size filename: name of the picture with roc_curve verbose: show/not show roc_curve in output Returns ---------- a list of gini values per input sample ''' if woe_transform is not None: data=woe_transform.transform(data, keep_essential=True, original_values=True, calc_gini=False) tpr={} fpr={} roc_auc={} if type(data)==DataSamples: samples=[data.train, data.validate, data.test] sample_names=['Train', 'Validate', 'Test'] for si in range(len(samples)): if samples[si] is not None: preds = self.predict(samples[si])[:,1] fpr[samples[si].name], tpr[samples[si].name], _ = roc_curve(samples[si].dataframe[samples[si].target], preds) roc_auc[samples[si].name] = auc(fpr[samples[si].name], tpr[samples[si].name]) else: fpr[sample_names[si]]=None tpr[sample_names[si]]=None roc_auc[sample_names[si]]=None else: preds = self.predict(data)[:,1] fpr['Data'], tpr['Data'], _ = roc_curve(data.dataframe[data.target], preds) roc_auc['Data'] = auc(fpr['Data'], tpr['Data']) if verbose or (filename is not None): fig = plt.figure(figsize=figsize) ax = fig.add_subplot(111) # Plot tpr vs 1-fpr for sample in roc_auc: if roc_auc[sample] is not None: ax.plot(fpr[sample], tpr[sample], label=sample+' (AUC = %f)' % roc_auc[sample]) ax.plot(tpr[list(tpr)[0]],tpr[list(tpr)[0]]) ax.set_xlabel('False Positive Rate') ax.set_ylabel('True Positive Rate') ax.legend() if filename is not None: plt.savefig(filename + ".png", dpi=100, bbox_inches='tight') if verbose: plt.show() if verbose or (filename is not None): plt.close() ginis=[] for sample in roc_auc: if roc_auc[sample] is not None: gini = round((roc_auc[sample]*2 - 1)*100, 2) ginis.append(gini) if verbose: print ('Gini '+sample, gini) return ginis #--------------------------------------------------------------- class DecisionTreeModel(ScoringModel): ''' Decision tree classifier ''' def __init__(self, **args): self.model = DecisionTreeClassifier(**args) self.features = [] def fit(self, data): if data.weights != None: self.model.fit(data.dataframe[data.features], data.dataframe[data.target], sample_weight = np.array(data.dataframe[data.weights])) else: self.model.fit(data.dataframe[data.features], data.dataframe[data.target]) #--------------------------------------------------------------- class LogisticRegressionModel(ScoringModel): ''' Logistic Regression for scoring. Contains LogisticRegressionClassifier, its coefficients and intercept, scores and scoring card. An object of this class can selected features, fit, edit coefficients, predict probabilities, calculate scores and transform a scorecard to SAS-code. ''' def __init__(self, **args): self.model = LogisticRegression(**args) self.regularization = self.model.get_params()['penalty'] self.regularization_value = self.model.get_params()['C'] self.solver = self.model.get_params()['solver'] # Checks the type of optimizator as it is important for models on weighted samples if self.model.solver != 'sag' and self.model.solver != 'newton-cg' and self.model.solver != 'lbfgs': print ('Warning: this model does not support sample weights! For weighted scoring please use solver sag, newton-cg or lbfgs') self.coefs = {} self.features = [] self.scorecard = pd.DataFrame() self.selected = [] #added 23.08.2018 by <NAME> def inf_criterion(self, data, model=None, features=None, criterion='AIC', woe_transform=None): ''' Calculation of information criterion (AIC/BIC) for given model on given data Parameters ----------- data: data for calculation model: model with coefficients, that will be used to calculate information criterion features: features to be used for information criterion calculation (in case model was not fitted using its own selected features - model.selected) criterion: type of information criterion to calculate woe_transform: a woe object with binning information to perform WoE-transformation Returns ----------- value of information criterion ''' if features is None: features_initial=self.selected.copy() else: features_initial=features.copy() if model is None: model_to_check=self.model else: model_to_check=model if woe_transform is not None: data=woe_transform.transform(data, keep_essential=True, original_values=True, calc_gini=False) features_kept=[] weights_crit=[model_to_check.intercept_[0]] for i in range(len(features_initial)): if model_to_check.coef_[0][i]!=0: features_kept.append(features_initial[i]) weights_crit.append(model_to_check.coef_[0][i]) intercept_crit = np.ones((data.dataframe.shape[0], 1)) features_crit = np.hstack((intercept_crit, data.dataframe[features_kept])) scores_crit = np.dot(features_crit, weights_crit) if data.weights is not None: ll = np.sum(data.dataframe[data.weights]*(data.dataframe[data.target]*scores_crit - np.log(np.exp(scores_crit) + 1))) else: ll = np.sum(data.dataframe[data.target]*scores_crit - np.log(np.exp(scores_crit) + 1)) if criterion in ['aic', 'AIC']: return 2*len(weights_crit)-2*ll elif criterion in ['bic', 'BIC', 'sic', 'SIC', 'sbic', 'SBIC']: if data.weights is not None: return len(weights_crit)*np.log(data.dataframe[data.weights].sum())-2*ll else: return len(weights_crit)*np.log(data.dataframe.shape[0])-2*ll #added 23.08.2018 by <NAME> def wald_test(self, data, model=None, features=None, woe_transform=None, out=None, sep=';'): ''' Calculation of Standard Errors (sqrt from diagonal of covariance matrix), Wald Chi-Square (coefficient divided by SE and squared) and p-values for coefficicents of given model on given data Parameters ----------- data: data for statistics calculation model: model with coefficients, that will be used to calculate statistics features: features to be used for statistics calculation (in case model was not fitted using its own selected features - model.selected) woe_transform: a woe object with binning information to perform WoE-transformation out: a path for csv/xlsx output file to export sep: the separator to be used in case of csv export Returns ----------- a dataframe with standard errors, wald statistics and p-values for feature coefficients ''' if features is not None: features_initial=features.copy() else: features_initial=self.features.copy() if model is None: model_to_check=self.model else: model_to_check=model features_to_check=[] coefs_list=[model_to_check.intercept_[0]] for i in range(len(features_initial)): if model_to_check.coef_[0][i]!=0: features_to_check.append(features_initial[i]) coefs_list.append(model_to_check.coef_[0][i]) if woe_transform is not None: data=woe_transform.transform(data, keep_essential=True, original_values=True, calc_gini=False) # Calculate matrix of predicted class probabilities. # Check resLogit.classes_ to make sure that sklearn ordered your classes as expected predProbs = np.matrix(model_to_check.predict_proba(data.dataframe[features_initial])) # Design matrix -- add column of 1's at the beginning of your X_train matrix X_design = np.hstack((np.ones(shape = (data.dataframe[features_to_check].shape[0],1)), data.dataframe[features_to_check])) # Initiate matrix of 0's, fill diagonal with each predicted observation's variance #not enough memory for big df #V = np.matrix(np.zeros(shape = (X_design.shape[0], X_design.shape[0]))) #np.fill_diagonal(V, np.multiply(predProbs[:,0], predProbs[:,1]).A1) if data.weights is not None: V=np.multiply(np.matrix(data.dataframe[data.weights]).T, np.multiply(predProbs[:,0], predProbs[:,1])).A1 else: V=np.multiply(predProbs[:,0], predProbs[:,1]).A1 # Covariance matrix covLogit = np.linalg.inv(np.matrix(X_design.T * V) * X_design) # Output bse=np.sqrt(np.diag(covLogit)) wald=(coefs_list / bse) ** 2 pvalue=chi2.sf(wald, 1) features_test=pd.DataFrame({'feature':['intercept']+[x for x in features_initial], 'coefficient':model_to_check.intercept_.tolist()+model_to_check.coef_[0].tolist()}).merge(pd.DataFrame({'feature':['intercept']+[x for x in features_to_check], 'se':bse, 'wald':wald, 'p-value':pvalue}), on='feature', how='left') if out is not None: if out[-4:]=='.csv': features_test[['feature', 'coefficient', 'se', 'wald', 'p-value']].to_csv(out, sep = sep, index=False) elif out[-4:]=='.xls' or out[-5:]=='.xlsx': features_test[['feature', 'coefficient', 'se', 'wald', 'p-value']].to_excel(out, sheet_name='Missing', index=False) else: print('Unknown format for export file. Use .csv or .xlsx. Skipping export.') return features_test[['feature', 'coefficient', 'se', 'wald', 'p-value']] def regularized_feature_selection(self, data, regularization=None, regularization_value=None, features=None, solver = None, features_to_leave = None, scoring = 'roc_auc', threshold = .05): ''' Feature selection based on regularization - model uses all available features, then the features with positive or insignificant coefficients are excluded (l1 regularization use is advised for more preliminary exclusion) Parameters ----------- data: data for modeling (type Data) regularization: 'l1' for LASSO (less features to stay) or 'l2' for ridge (smaller coefficients) regression regularization_value: effect of regularization will be more prominent for lesser regularization value features: list of features to use for feature selection (if empty, then all features from data will be used) features_to_leave: features that must be included in the model scoring: type of score used to estimate the model quality threshold: threshold for p-value when removing a feature Returns ----------- score for the model built on selected features and list of selected features ''' if features_to_leave is None: features_to_leave=[] if features is None: features_to_check=data.features.copy() else: features_to_check=features.copy() if regularization is None: regularization=self.regularization if regularization_value is None: regularization_value=self.regularization_value if solver is None: solver = self.solver # correctness check for feature in features_to_leave: if feature not in data.features: print ('Feature is not available:', feature) return None if data.weights is None: lr=LogisticRegression(solver=solver, penalty=regularization, C=regularization_value) else: lr=LogisticRegression(solver='sag', penalty=regularization, C=regularization_value) if data.ginis is None or data.ginis == {}: ginis=data.calc_gini() else: ginis=data.ginis scores=[] to_refit=True while to_refit: to_refit=False if data.weights == None: lr.fit(data.dataframe[features_to_check], data.dataframe[data.target]) else: lr.fit(data.dataframe[features_to_check], data.dataframe[data.target], sample_weight = data.dataframe[data.weights]) new_score = self.get_cv_score(Data(data.dataframe, target = data.target, features = features_to_check, weights = data.weights), scoring = scoring, selected_features=False) scores.append(new_score) positive_to_exclude=[x for x in np.asarray(features_to_check)[lr.coef_[0]>0] if x not in features_to_leave] if len(positive_to_exclude)>0: to_refit=True features_to_exclude={x:ginis[x] for x in positive_to_exclude} to_exclude=min(features_to_exclude, key=features_to_exclude.get) print('Dropping ', to_exclude, 'with positive coefficient and gini =', ginis[to_exclude]) features_to_check.remove(to_exclude) else: wald=self.wald_test(data, model=lr, features=features_to_check) feature_to_exclude_array=wald[(wald['p-value']>threshold) & (wald['p-value']==wald['p-value'].max()) & (wald['feature'].isin(features_to_leave+['intercept'])==False)]['feature'].values if len(feature_to_exclude_array)>0: to_refit=True print('Dropping ', feature_to_exclude_array[0], 'with p-value =', wald[wald['feature']==feature_to_exclude_array[0]]['p-value'].values[0], 'and gini =', ginis[feature_to_exclude_array[0]]) features_to_check.remove(feature_to_exclude_array[0]) result_features=[] for i in range(len(lr.coef_[0])): if lr.coef_[0][i]==0: print('Dropping ', features_to_check[i], 'with zero coefficient (gini =', ginis[features_to_check[i]], ')') else: result_features.append(features_to_check[i]) plt.plot(np.arange(len(scores)), scores, 'bo-', linewidth=2.0) plt.xticks(np.arange(len(scores)), ['step ' + str(i) for i in np.arange(len(scores))], rotation = 'vertical') plt.ylabel(scoring) plt.title('Score changes') plt.show() self.selected = result_features return new_score, self.selected def stepwise_feature_selection(self, data, kind = 'mixed', features=None, features_initial=None, features_to_leave = None, eps = .0005, scoring = 'roc_auc', forward_threshold = .05, backward_threshold = .05, regularization=None, regularization_value=None): ''' Stepwise feature selection can be of 3 types: forward, backward, mixed. Forward: on each step the feature is selected that increases the score most while the score changes are greater than epsilon. Backward: starts from all the possible features, on each step removes the feature with the least score decrease while the score changes are greater than epsilon (epsilon should be set to small negative value). Mixed: each step contains 2 stages. Stage 1: the algorithm selects from features-candidates a significant feature that increases the score most. Stage 2: from the features in models removes the feature with the least significance for the model. Parameters ----------- data: data for modeling (type Data) kind: type of the algorithm, can be 'forward', 'backward' or 'mixed' features: list of features from which selection is working (if None, then data.features are used) features_initial: starting feature set for feature selection features_to_leave: features that must be included in the model eps: minimum significant score difference scoring: type of score used to estimate the model quality forward_threshold: threshold for p-value when adding a feature backward_threshold: threshold for p-value when removing a feature regularization: type of regularization to be used for wald test (l1 or l2) regularization_value: value of regularization parameter to be used for wald test Returns ----------- score for the model built on selected features list of selected features ''' if features_to_leave is None: features_to_leave=[] to_leave = features_to_leave.copy() #final_features = [] candidates = [] if features is None: features=data.features.copy() best_scores = [] features_change = [] # correctness check for feature in features_to_leave: if feature not in data.features: print ('Achtung bitte! Keine', feature) return None if features_initial is not None: if feature not in features_initial: print ('No', feature, 'in initial feature list provided! ') return None if regularization is None: regularization=self.regularization if regularization_value is None: regularization_value=self.regularization_value # Forward selection if kind == 'forward': print ('Forward feature selection started') if features_initial is None: features_initial=to_leave for feature in features: if feature not in features_initial: candidates.append(feature) features=features_initial.copy() if len(features)>0: prev_score = self.get_cv_score(Data(data.dataframe, target = data.target, features = features, weights = data.weights), scoring = scoring, selected_features=False) best_scores.append(prev_score) features_change.append('initial') print('Initial features:', features, '', scoring, 'score', prev_score) else: prev_score=-1000 # maximum number of steps equals to the number of candidates for i in range(len(candidates)): # cross-validation scores for each of the remaining candidates of the step cvs = {} for feature in candidates: tmp_features = features.copy() # the feature is included in the model and the quality of the new model is calculated tmp_features.append(feature) try: score = self.get_cv_score(Data(data.dataframe, target = data.target, features = tmp_features, weights = data.weights), scoring = scoring, selected_features=False) except Exception: pass cvs[feature] = score # looking for the best new feature for f, s in cvs.items(): # warning: the metric is maximized if s == max(cvs.values()): # if the difference between the old and the new scores is greater than eps, the feature is added and the next step follows if s - prev_score > eps: print ('To add:', f, '', scoring, 'score:', cvs[f]) prev_score = s features.append(f) candidates.remove(f) best_scores.append(s) features_change.append(f) # if the difference between the old and the new scoresis smaller than eps, the score dynamics are plotted and exit follows else: self.features = tmp_features plt.plot(np.arange(len(features_change)), best_scores, 'bo-', linewidth=2.0) plt.xticks(np.arange(len(features_change)), features_change, rotation = 'vertical') plt.xlabel('Feature addition') plt.ylabel(scoring) plt.title('Stepwise score changes') plt.show() return prev_score, features # if no features added print('No features are available to add') self.features = features return prev_score, features # Backward selection elif kind == 'backward': if features_initial is not None: features=features_initial.copy() for feature in features: if feature not in to_leave: candidates.append(feature) print ('Backward selection started') if len(features)>0: prev_score = self.get_cv_score(Data(data.dataframe, target = data.target, features = features, weights = data.weights), scoring = scoring, selected_features=False) best_scores.append(prev_score) features_change.append('initial') print('Initial features:', features, '', scoring, 'score', prev_score) else: prev_score=-1000 #print('prev_score', prev_score, 'features', features, 'candidates', candidates) # maximum number of steps equals to the number of candidates for i in range(len(candidates)): cvs = {} if len(features)>1 and len(candidates)>0: for feature in candidates: tmp_features = features.copy() # feature is removed and the cross-validation score is calculated tmp_features.remove(feature) cvs[feature] = self.get_cv_score(Data(data.dataframe, target = data.target, features = tmp_features, weights = data.weights), scoring = scoring, selected_features=False) else: print('No features are available to exclude (at least 1 feature should remain)') # searching for the feature that increases the quality most features_=features.copy() for f, s in cvs.items(): # if the difference between the old and the new scores is greater than eps, the feature is removed and the next step follows if s == max(cvs.values()): if s - prev_score > eps: print ('To drop:', f, '', scoring, 'score:', cvs[f]) prev_score = s candidates.remove(f) features.remove(f) best_scores.append(s) features_change.append(f) # if the quality increase is less than eps, exit if features==features_ or len(candidates)==0: if len(features)>1 and len(candidates): print('All features exclusion cause too significant score decrease') self.features = candidates + to_leave plt.plot(np.arange(len(features_change)), best_scores, 'bo-', linewidth=2.0) plt.xticks(np.arange(len(features_change)), features_change, rotation = 'vertical') plt.xlabel('Features removed') plt.ylabel(scoring) plt.title('Stepwise score changes') plt.show() return prev_score, self.features # if no feature was removed return prev_score, features # Mixed elif kind == 'mixed': print ('Mixed selection started') if features_initial is None: features_initial=to_leave for feature in features: if feature not in to_leave: candidates.append(feature) if data.weights is None: lr=LogisticRegression(solver='saga', penalty=regularization, C=regularization_value) else: lr=LogisticRegression(solver='sag', penalty=regularization, C=regularization_value) prev_score = -1000 result_features = features_initial.copy() scores = [] feature_sets = [] if len(result_features)>0: new_score = self.get_cv_score(Data(data.dataframe, target = data.target, features = result_features, weights = data.weights), scoring = scoring, selected_features=False) scores.append(new_score) feature_sets.append(set(result_features)) else: new_score = 0 to_continue=True while to_continue and len(candidates)> 0: to_continue=False prev_score = new_score pvalues = {} cvs = {} for candidate in [x for x in candidates if (x in result_features)==False]: # new feature addition and the model quality estimation if data.weights == None: lr.fit(data.dataframe[result_features + [candidate]], data.dataframe[data.target]) else: lr.fit(data.dataframe[result_features + [candidate]], data.dataframe[data.target], sample_weight = data.dataframe[data.weights]) new_score = self.get_cv_score(Data(data.dataframe, target = data.target, features = result_features + [candidate], weights = data.weights), scoring = scoring, selected_features=False) wald=self.wald_test(data, model=lr, features=result_features + [candidate]) pvalues[candidate] = wald[wald['feature']==candidate]['p-value'].values[0] cvs[candidate] = new_score # searching for a significant feature that gives the greatest score increase result_features_=result_features.copy() for feature in sorted(cvs, key = cvs.get, reverse = True): if pvalues[feature] < forward_threshold and feature != 'intercept': print ('To add:', feature, '', scoring, 'score:', cvs[feature], ' p-value', pvalues[feature]) result_features.append(feature) break if result_features==result_features_: print('No significant features to add were found') else: if set(result_features) in feature_sets: print('Feature selection entered loop: terminating feature selection') break elif cvs[feature]-prev_score>eps: to_continue=True scores.append(cvs[feature]) feature_sets.append(set(result_features)) #print('result_features', result_features) # the least significant feature is removed # if it is Step1 then no removal if len(result_features)>1: if data.weights == None: lr.fit(data.dataframe[result_features], data.dataframe[data.target]) else: lr.fit(data.dataframe[result_features], data.dataframe[data.target], sample_weight = data.dataframe[data.weights]) wald=self.wald_test(data, model=lr, features=result_features) wald_to_check=wald[wald['feature'].isin(to_leave+['intercept'])==False] #display(wald_to_check) if max(wald_to_check['p-value']) > backward_threshold: to_delete = wald_to_check[wald_to_check['p-value']==wald_to_check['p-value'].max()]['feature'].values[0] """if feature == to_delete: candidates.remove(feature) prev_score = prev_score-eps-0.05""" result_features.remove(to_delete) new_score = self.get_cv_score(Data(data.dataframe, target = data.target, features = result_features, weights = data.weights), scoring = scoring, selected_features=False) print ('To drop:', to_delete, '', scoring, 'score', new_score, 'p-value', wald_to_check[wald_to_check['feature']==to_delete]['p-value'].values[0]) if set(result_features) in feature_sets: print('Feature selection entered loop: terminating feature selection') break else: to_continue=True scores.append(new_score) feature_sets.append(set(result_features)) elif wald_to_check[wald_to_check['coefficient']==0].shape[0] > 0: to_delete = wald_to_check[wald_to_check['coefficient']==0]['feature'].tolist() """if feature == to_delete: candidates.remove(feature) prev_score = prev_score-eps-0.05""" print ('To drop:', to_delete, ' with zero coefficients (no score changes)') result_features=[x for x in result_features if x not in to_delete] if set(result_features) in feature_sets: print('Feature selection entered loop: terminating feature selection') break else: to_continue=True new_score = self.get_cv_score(Data(data.dataframe, target = data.target, features = result_features, weights = data.weights), scoring = scoring, selected_features=False) scores.append(new_score) feature_sets.append(set(result_features)) plt.plot(np.arange(len(scores)), scores, 'bo-', linewidth=2.0) plt.xticks(np.arange(len(scores)), ['step ' + str(i) for i in np.arange(len(scores))], rotation = 'vertical') plt.ylabel(scoring) plt.title('Stepwise score changes') plt.show() self.selected = sorted(list(feature_sets[-1])) return new_score, self.selected else: print ('Incorrect kind of selection. Please use backward, forward or mixed. Good luck.') return None #edited 22.08.2018 by <NAME> - selected_features=True def fit(self, data, selected_features = True): ''' Fits the model to the data given on the selected features or on all. Parameters ----------- data: data (type Data) for fitting selected_features: whether to fit on the features selected previously or not, True - use selected features, False - use all features ''' self.coefs = {} if selected_features: print('Using selected features: '+str(self.selected)) self.features = self.selected else: print('Using all available features: '+str(data.features)) self.features = data.features if self.features == None: print ('No features, how can that happen? :(') return None try: if data.weights is None: self.model.fit(data.dataframe[self.features], data.dataframe[data.target]) else: self.model.fit(data.dataframe[self.features], data.dataframe[data.target], sample_weight = data.dataframe[data.weights]) except Exception: print('Fit failed! Maybe there are missings in data?...') return None for i in range(len(self.features)): self.coefs[self.features[i]] = self.model.coef_[0][i] def final_exclude(self, input_data, excluded=None, apply_changes=False): ''' Checks the effect of one feature exclusion (after exclusion all features from 'excluded' list) for each of available features and prints initial gini values and difference after each feature exclusion. After exclusion list is decided this method can be used to exclude decided features and fit current model, using the rest of them. Parameters ----------- input_data: A Data or DataSamples object for fitting and gini calculation excluded: a list of features to exclude before exclusion cycle apply_changes: if True then all features from 'excluded' list will be excluded and the model will be fitted using the rest of the features ''' if len(self.selected)==0: print('No selected features to try exclusion. Abort.') return if excluded is None: excluded=[] if type(input_data)==DataSamples: retrain_data=input_data.train else: retrain_data=input_data new_selected=[x for x in self.selected if x not in excluded] if apply_changes: self.selected=new_selected self.fit(retrain_data, selected_features=True) self.draw_coefs() return self.roc_curve(input_data, figsize=(10, 7)) else: try_model=LogisticRegressionModel(random_state = 42, penalty = self.regularization, C = self.regularization_value, solver = self.solver) try_model.selected=new_selected try_model.fit(retrain_data, selected_features=True) #try_model.draw_coefs() ginis_excl={} ginis_excl['initial']=try_model.roc_curve(input_data, verbose=False) for excl in new_selected: #try_model = LogisticRegressionModel(random_state = 42, penalty = self.regularization, C = self.regularization_value, solver = self.solver) try_model.selected=[x for x in new_selected if x!=excl] try_model.fit(retrain_data, selected_features=True) #try_model.draw_coefs() new_ginis=try_model.roc_curve(input_data, verbose=False) ginis_excl[excl]=[new_ginis[0]-ginis_excl['initial'][0], new_ginis[1]-ginis_excl['initial'][1], new_ginis[2]-ginis_excl['initial'][2]] ginis_excl_df=pd.DataFrame(ginis_excl).T if type(input_data)==DataSamples: cols=['Train'] if input_data.validate is not None: cols.append('Validate') if input_data.test is not None: cols.append('Test') ginis_excl_df.columns=cols ginis_excl_df.sort_values('Test' if 'Test' in cols else 'Validate' if 'Validate' in cols else 'Train', ascending=False, inplace=True) else: ginis_excl_df.columns=['Data'] ginis_excl_df.sort_values('Data', ascending=False, inplace=True) return ginis_excl_df def bootstrap_gini(self, bs_base, samples, bootstrap_part=0.75, bootstrap_number=10, stratify=True, replace=True, seed=0, woe_transform=None, crosses_transform=None, figsize=(15,10), bins=None): ''' Calculates Gini in bootstrap samples (either provided or generated) and plots their distribution with gini values from provided samples (Data, DataSamples or list of Data) Parameters ----------- bs_base: a DataSamples object with bootstrap_base and bootstrap or a Data object to generate boostrap samples from samples: a DataSamples object with train/validate/test samples, a Data object or a list of Data objects to mark gini values on plot bootstrap_part: the size of each bootstrap sample is defined as part of input data sample bootstrap_number: number of generated bootstrap samples stratify: should bootstraping be stratified by data target replace: is it acceptable to repeat rows from train dataframe for bootstrap samples seed: value of random_state for dataframe.sample (each random_state is calculated as seed + number in bootstrap) woe_transform: a WOE object to perform WoE-transformation before using model bins: number of bins for the distribution plot (if None - use Freedman-Diaconis rule) crosses_transform: a Crosses object to perform cross-transformation before using model ''' if isinstance(bs_base, DataSamples): if bs_base.bootstrap_base is None: print('No bootstrap data provided in the input DataSamples object. Return none') return None else: print('Using bootstrap data provided in the input DataSamples object..') bootstrap=bs_base.bootstrap bootstrap_base=bs_base.bootstrap_base elif isinstance(bs_base, Data): print('Generating bootstrap data from the input Data object..') DS_gini=DataSamples() DS_gini.bootstrap_split(bs_base, bootstrap_part=bootstrap_part, bootstrap_number=bootstrap_number, stratify=stratify, replace=replace, seed=seed) bootstrap=DS_gini.bootstrap bootstrap_base=DS_gini.bootstrap_base else: print('No bootstrap data was provided in the input. Return none') return None if isinstance(samples, DataSamples): check_samples=[] for sample in [samples.train, samples.validate, samples.test]: if sample is not None: check_samples.append(sample) elif isinstance(samples, list): check_samples=samples.copy() elif isinstance(samples, Data): check_samples=[samples] else: print('No samples data was provided in the input') check_samples=[] samples_gini={} for i in range(len(check_samples)): if check_samples[i].name is None: current_sample=str(i) else: current_sample=check_samples[i].name print('Calculating gini for', current_sample,'sample..') if self.selected!=[x for x in self.selected if x in check_samples[i].dataframe]: print('Not all features from the current model were found in the',current_sample,'sample..') if woe_transform is None and crosses_transform is None: print('No WOE or Crosses object were found. Return None.') return None else: if woe_transform is not None: print('Starting woe-transformation..') to_calc_gini=woe_transform.transform(check_samples[i], features=[x[:-4] for x in self.selected if x[:-4] in woe_transform.feature_woes], keep_essential=False if crosses_transform is not None else True, calc_gini=False) if crosses_transform is not None: print('Starting crosses-transformation..') to_calc_gini=crosses_transform.transform(to_calc_gini if woe_transform is not None else check_samples[i], keep_essential=True, calc_gini=False) else: to_calc_gini=Data(check_samples[i].dataframe[self.selected+[check_samples[i].target]], check_samples[i].target, features=self.selected) preds = self.predict(to_calc_gini)[:,1] fpr, tpr, _ = roc_curve(to_calc_gini.dataframe[to_calc_gini.target], preds) samples_gini[current_sample] = (2*auc(fpr, tpr)-1)*100 if self.selected!=[x for x in self.selected if x in bootstrap_base.dataframe]: print('Not all features from the current model were found in the bootstrap data..') if woe_transform is None and crosses_transform is None: print('No WOE or Crosses object were found. Return None.') return None else: if woe_transform is not None: print('Starting woe-transformation..') bootstrap_base=woe_transform.transform(bootstrap_base, features=[x[:-4] for x in self.selected if x[:-4] in woe_transform.feature_woes], keep_essential=False if crosses_transform is not None else True, calc_gini=False) if crosses_transform is not None: print('Starting crosses-transformation..') bootstrap_base=crosses_transform.transform(bootstrap_base, keep_essential=True, calc_gini=False) #bootstrap_base=woe_transform.transform(bootstrap_base, features=[x[:-4] for x in self.selected], keep_essential=True, calc_gini=False) bootstrap_gini=[] print('Calculating gini for bootstrap samples..') for i in range(len(bootstrap)): preds = self.predict(Data(bootstrap_base.dataframe.iloc[bootstrap[i]][self.selected], bootstrap_base.target, features=self.selected))[:,1] fpr, tpr, _ = roc_curve(bootstrap_base.dataframe.iloc[bootstrap[i]][bootstrap_base.target], preds) bootstrap_gini.append((2*auc(fpr, tpr)-1)*100) plt.figure(figsize=figsize) sns.distplot(bootstrap_gini, bins=bins) palette = itertools.cycle(sns.color_palette()) for s in samples_gini: plt.axvline(x=samples_gini[s], linestyle='--', color=next(palette), label=s) plt.axvline(x=np.mean(bootstrap_gini)-2*np.std(bootstrap_gini), linestyle='-', color='red', alpha=0.5) plt.text(np.mean(bootstrap_gini)-2*np.std(bootstrap_gini), 0, ' mean-2*std = '+str(round(np.mean(bootstrap_gini)-2*np.std(bootstrap_gini),4)), horizontalalignment='right', verticalalignment='bottom', rotation=90, fontsize=12) plt.axvline(x=np.mean(bootstrap_gini)+2*np.std(bootstrap_gini), linestyle='-', color='red', alpha=0.5) plt.text(np.mean(bootstrap_gini)+2*np.std(bootstrap_gini), 0, ' mean+2*std = '+str(round(np.mean(bootstrap_gini)+2*np.std(bootstrap_gini),4)), horizontalalignment='right', verticalalignment='bottom', rotation=90, fontsize=12) plt.xlabel('Gini values in bootstrap') plt.ylabel('Distribution') plt.legend() #plt.title(feature.feature, fontsize = 16) #if out: # plt.savefig(out_images+feature.feature+".png", dpi=100, bbox_inches='tight') plt.show() return samples_gini, bootstrap_gini def drop_features(self, to_drop = None): ''' deletes features from the model Parameters ----------- to_drop: a feature or a list of features that should be excluded ''' if to_drop is None: print ('Please enter the features you want to exclude. Use parameter features_to_drop and restart this method.') return None elif isinstance(to_drop, list): print ('The features will be removed from the "selected features" list.') for feature in to_drop: if feature in self.selected: self.selected.remove(feature) print (feature, 'removed') else: print ('The feature will be removed from the "selected features" list.') if to_drop in self.selected: self.selected.remove(feature) print (to_drop, 'removed') #edited 22.08.2018 by <NAME> - selected_features=True def get_cv_score(self, data, cv = 5, scoring = 'roc_auc', selected_features = True): ''' Calculates the model quality with cross-validation Parameters ----------- data: data for cross-validation score calculation cv: number of folds scoring: metric of quality selected_features: whether to use selected features or not, True - use selected features, False - use all features Returns ----------- cross-validation score ''' if selected_features: features = self.selected else: features = data.features if features == None: print ('No features, how can that happen? :(') return None if data.weights == None: return cross_val_score(self.model, data.dataframe[features], data.dataframe[data.target], cv = cv, scoring = scoring).mean() else: return cross_val_score(self.model, data.dataframe[features], data.dataframe[data.target], cv = cv, scoring = scoring, fit_params = {'sample_weight' : data.dataframe[data.weights]}).mean() def form_scorecard(self, woe=None, crosses=None, out = None, sep=';', score_value=444, score_odds=10, double_odds=69): ''' Makes a scorecard and exports it to a file. Parameters ----------- woe: a WOE object for scoring card crosses: a Crosses object for scoring card out: file to export the scorecard in csv/xlsx format sep: the separator to be used in case of csv export score_value: score value, used for scaling score_odds: odds of score value, used for scaling double_odds: score value increament, that halfes the odds, used for scaling Returns: ---------- A scorecard (pandas.DataFrame) ''' # if no WOE used then onle regression coefficients are included if woe is None and crosses is None: print ('Achung bitte: keine WOE') scorecard = pd.DataFrame(columns = ['feature', 'coefficient']) for feature in self.features: tmp = pd.DataFrame([[feature, self.coefs[feature]]], columns = ['feature', 'coefficient']) scorecard = scorecard.append(tmp, ignore_index=True) scorecard = scorecard.append(pd.DataFrame([['intercept', self.model.intercept_[0]]], columns = ['feature', 'coefficient']), ignore_index=True) #scorecard.to_csv(fname, sep = ';') #return scorecard else: scorecard = pd.DataFrame(columns = ['feature', 'categorical', 'group', 'values', 'missing', 'woe', 'coefficient', 'sample_part', 'ER']) for feature in self.features: if woe is not None and feature[:-4] in woe.feature_woes: woes = woe.feature_woes[feature[:-4]].woes missing_group=woe.feature_woes[feature[:-4]].missing_group groups = woe.feature_woes[feature[:-4]].groups categorical=woe.feature_woes[feature[:-4]].categorical d=woe.feature_woes[feature[:-4]].data if d.weights is None: all_obs=d.dataframe.shape[0] else: all_obs=d.dataframe[d.weights].sum() # searching for WOE for each interval of values for group in [x for x in woes if woes[x] is not None]: if d.weights is None: obs=d.dataframe[d.dataframe[feature]==woes[group]].shape[0] bad=d.dataframe[d.dataframe[feature]==woes[group]][d.target].sum() else: obs=d.dataframe[d.dataframe[feature]==woes[group]][d.weights].sum() bad=d.dataframe[(d.dataframe[feature]==woes[group]) & (d.dataframe[d.target]==1)][d.weights].sum() missing_in=(group==missing_group)*1 tmp = pd.DataFrame([[feature[:-4], categorical, group, groups[group], missing_in, woes[group], self.coefs[feature], obs/all_obs, bad/obs]], columns = ['feature', 'categorical', 'group', 'values', 'missing', 'woe', 'coefficient', 'sample_part', 'ER']) scorecard = scorecard.append(tmp, ignore_index=True) elif crosses is not None and int(feature[len(crosses.prefix):-4]) in crosses.decision_trees: tree = crosses.decision_trees[int(feature[len(crosses.prefix):-4])].tree.dropna(how='all', axis=1) leaves = tree[tree['leaf']] for group in sorted(leaves['group'].unique().tolist()): current_group=leaves[leaves['group']==group] used_features=list(leaves.columns[:leaves.columns.get_loc('node')]) current_woe=current_group['group_woe'].unique()[0] current_er=current_group['group_target'].unique()[0]/current_group['group_amount'].unique()[0] current_sample_part=current_group['group_amount'].unique()[0]/leaves[['group', 'group_amount']].drop_duplicates()['group_amount'].sum() current_values=[] for _, row in current_group.iterrows(): used_features=[] parent_node=row['parent_node'] while parent_node is not None: used_features=[tree[tree['node']==parent_node]['split_feature'].values[0]]+used_features parent_node=tree[tree['node']==parent_node]['parent_node'].values[0] current_values.append({x:row[x] for x in used_features}) #current_values=[{x:row[x] for x in used_features if row[x] is not None} for _, row in current_group.iterrows()] scorecard = scorecard.append({'feature':feature[:-4], 'categorical':np.nan, 'group':group, 'values': current_values, 'missing':0, 'woe':current_woe, 'coefficient':self.coefs[feature], 'sample_part':current_sample_part, 'ER':current_er} , ignore_index=True) else: print ('Achung bitte: keine feature',feature,'. Skipping') scorecard = scorecard.sort_values(by = ['feature', 'group']) # bias addition scorecard_intercept = pd.DataFrame([['intercept', np.nan, np.nan, np.nan, np.nan, np.nan, self.model.intercept_[0], np.nan, np.nan]], columns = ['feature', 'categorical', 'group', 'values', 'missing', 'woe', 'coefficient', 'sample_part', 'ER']) multiplier=double_odds/np.log(2) if double_odds>0: scorecard=scorecard.merge(scorecard[['feature', 'woe']].groupby('feature', as_index=False).min().rename(index=str, columns={"woe": "woe_shift"}), on='feature',how='left') else: scorecard=scorecard.merge(scorecard[['feature', 'woe']].groupby('feature', as_index=False).max().rename(index=str, columns={"woe": "woe_shift"}), on='feature',how='left') scorecard['woe_shifted']=scorecard['woe']-scorecard['woe_shift'] scorecard['score']=-(scorecard['woe_shifted']*scorecard['coefficient']*multiplier) for_intercept=scorecard[['coefficient', 'woe_shift']].drop_duplicates().copy() for_intercept['woe_on_coef']=-for_intercept['coefficient']*for_intercept['woe_shift']*multiplier scorecard_intercept['score']=-((scorecard_intercept['coefficient']+np.log(score_odds))*multiplier)+score_value+for_intercept['woe_on_coef'].sum() scorecard_intercept.index=[-1] scorecard=scorecard.append(scorecard_intercept).sort_index().reset_index(drop=True)[['feature', 'categorical', 'group', 'values', 'missing', 'woe', 'coefficient', 'score', 'sample_part', 'ER']] #display(scorecard) scorecard['score']=round(scorecard['score']).astype('int64') scorecard['values']=scorecard['values'].astype(str) # export to a file if out is not None: if out[-4:]=='.csv': scorecard.to_csv(out, sep = sep, index=False) elif out[-4:]=='.xls' or out[-5:]=='.xlsx': scorecard.to_excel(out, sheet_name='Missing', index=False) else: print('Unknown format for export file. Use .csv or .xlsx. Skipping export.') self.scorecard = scorecard return scorecard #edited 28.08.2018 by <NAME> def score(self, data, features_to_leave=None, include_scores_in_features=False, unknown_score=0, verbose=True): ''' Performs data scoring Parameters ----------- data: data of type Data features_to_leave: list of fields to include in output dataframe include_scores_in_features: should all scores be treated as features in output Data object (otherwise new features will be empty) Returns ----------- Data object, containing dataframe with initial features (+ features_to_leave), their scores and overall score ''' if verbose: print ('Scores calculation...') if self.scorecard is None or self.scorecard.shape[0] == 0: print ('No scorecard! Where is it?') return None if 'score' not in self.scorecard.columns: print ('Please set scores: scorecard[score]') return None scorecard=self.scorecard.copy() scorecard['values']=scorecard['values'].astype(str) features_to_leave=[] if features_to_leave is None else features_to_leave.copy() features_to_leave+=([data.target] if data.target is not None else [])+([data.weights] if data.weights is not None else []) features_to_leave=list(set(features_to_leave)) trees_for_score=scorecard[scorecard.apply(lambda row: pd.isnull(row['categorical']) and row['feature']!='intercept', axis=1)]['feature'].unique().tolist() features_for_score=[x for x in scorecard.feature.unique() if x!='intercept' and x not in trees_for_score] all_features=features_for_score.copy() scorecard.loc[scorecard.feature.isin(trees_for_score)==False, 'values']=\ scorecard.loc[scorecard.feature.isin(trees_for_score)==False, 'values'].apply(lambda x: np.nan if x=='nan' else \ eval(x.replace('[nan]', '[np.nan]').replace('[nan,','[np.nan,').replace(', nan]',', np.nan]')\ .replace(', inf]',', np.inf]').replace('[-inf,','[-np.inf,'))) if len(trees_for_score)>0: scorecard.loc[scorecard.feature.isin(trees_for_score), 'values']=\ scorecard.loc[scorecard.feature.isin(trees_for_score), 'values'].apply(lambda x: eval(x.replace(': nan,',': np.nan,').replace(': nan}',': np.nan}')\ .replace('), nan)','), np.nan)').replace(', nan,',', np.nan,')\ .replace('[nan,','[np.nan,').replace(', nan]',', np.nan]').replace('[nan]', '[np.nan]')\ .replace(', inf)',', np.inf)').replace('(-inf,','(-np.inf,'))) all_features+=list(set([f for values in scorecard[scorecard.feature.isin(trees_for_score)]['values'] for node in values for f in node])) all_features=list(set(all_features)) all_features=sorted(all_features) try: data_with_scores = data.dataframe[list(set(all_features+features_to_leave))].copy() for feature in features_for_score: if verbose: print (feature) bounds = list(scorecard[scorecard.feature == feature]['values']) scores = list(scorecard[scorecard.feature == feature].score) missing = list(scorecard[scorecard.feature == feature].missing) categorical = list(scorecard[scorecard.feature == feature].categorical)[0] if categorical==False: bs = {} missing_score=0 for i in range(len(bounds)): if missing[i]==1: missing_score=scores[i] if isinstance(bounds[i],list): bs[scores[i]]=bounds[i][0] bs[np.inf]=np.inf bs={x:bs[x] for x in sorted(bs, key=bs.get)} data_with_scores[feature+'_scr']=data_with_scores[feature].apply( lambda x: missing_score if pd.isnull(x) \ else list(bs.keys())[np.argmax([bs[list(bs.keys())[i]] <= x and bs[list(bs.keys())[i+1]] > x for i in range(len(bs.keys())-1)])]) else: bs = {} missing_score=0 for i in range(len(bounds)): bs[scores[i]]=bounds[i] for b in bs[scores[i]]: if
pd.isnull(b)
pandas.isnull
""" Parsing source data into simple tsv datasets. To parse Bgl3 and GB1, ENRICH2 MUST BE INSTALLED IN A SEPARATE CONDA ENVIRONEMNT NAMED 'enrich2' """ from os.path import isfile, join import collections import numpy as np import pandas as pd import enrich2 import utils def parse_avgfp(): """ create the gfp dataset from raw source data """ source_fn = "source_data/avgfp/amino_acid_genotypes_to_brightness.tsv" out_fn = "data/avgfp/avgfp.tsv" if isfile(out_fn): print("err: parsed avgfp dataset already exists: {}".format(out_fn)) return # load the source data data = pd.read_csv(source_fn, sep="\t") # remove the wild-type entry data = data.loc[1:] # create columns for variants, number of mutations, and score variants = data["aaMutations"].apply(lambda x: ",".join([x[1:] for x in x.split(":")])) num_mutations = variants.apply(lambda x: len(x.split(","))) score = data["medianBrightness"] # create the dataframe cols = ["variant", "num_mutations", "score"] data_dict = {"variant": variants.values, "num_mutations": num_mutations.values, "score": score.values} df = pd.DataFrame(data_dict, columns=cols) # now add a normalized score column - these scores have the wild-type score subtracted from them df["score_wt_norm"] = df["score"].apply(lambda x: x - 3.7192121319) df.to_csv(out_fn, sep="\t", index=False) def filter_dataset(df, threshold): """ filter out variants that do not meet the required threshold for number of reads """ df = df[(df["inp"] + df["sel"]) >= threshold] return df def parse_bgl3_variant_list(ml, col_name): """ creates a dataframe from the given list of variants """ # filter wild-type counts out, add to dataframe at the end ml_no_wt = [] wt = [] for variant in ml: if variant.startswith("WTcount"): wt.append(int(variant.split(",")[-1].strip())) else: ml_no_wt.append(variant) count_dict = collections.Counter(ml_no_wt) frame = pd.DataFrame(index=count_dict.keys(), data=count_dict.values()) frame.columns = [col_name] # add wild-type counts back in to datafrae frame.loc["_wt"] = sum(wt) return frame def get_bgl3_count_df(output_dir=None): """ combines the inp and sel variant lists into a single dataframe with counts """ inp_fn = "source_data/bgl3/unlabeled_Bgl3_mutations.txt" sel_fn = "source_data/bgl3/positive_Bgl3_mutations.txt" cache_fn = "bgl3_raw_counts.tsv" if output_dir is None or not isfile(join(output_dir, cache_fn)): print("Computing bgl3 count df from raw counts") inp_variant_list = utils.load_lines(inp_fn) sel_variant_list = utils.load_lines(sel_fn) df = pd.concat([parse_bgl3_variant_list(inp_variant_list, "inp"), parse_bgl3_variant_list(sel_variant_list, "sel")], axis=1, sort=True).fillna(0) if output_dir is not None: df.to_csv(join(output_dir, cache_fn), sep="\t") return df print("Loading cached count df from file: {}".format(join(output_dir, cache_fn))) return pd.read_csv(join(output_dir, cache_fn), sep="\t", index_col=0) def parse_bgl3(): """ create the bgl3 dataset from raw source data """ out_dir = "data/bgl3" out_fn = "bgl3.tsv" if isfile(join(out_dir, out_fn)): print("err: parsed bgl3 dataset already exists: {}".format(join(out_dir, out_fn))) return # creates a single dataframe with counts from the given mutations lists df = get_bgl3_count_df(output_dir=out_dir) # filter the variants based on count threshold threshold = 5 df = filter_dataset(df, threshold=threshold) enrich2.create_e2_dataset(df, output_dir=out_dir, output_fn=out_fn) def get_gb1_count_df(output_dir=None): """ creates a single dataframe with raw counts for all gb1 variants """ cache_fn = "gb1_raw_counts.tsv" if output_dir is None or not isfile(join(output_dir, cache_fn)): print("Computing gb1 count df from raw counts") single =
pd.read_csv("source_data/gb1/single_mutants.csv")
pandas.read_csv
# -*- coding: utf-8 -*- """ Created on Tue Mar 26 16:13:07 2019 @author: ning """ import os import pandas as pd from glob import glob import seaborn as sns sns.set_style('whitegrid') sns.set_context('poster') from matplotlib import pyplot as plt working_dir = '../results/raw counts' pos = pd.read_csv(os.path.join(working_dir,'pos.csv')) att = pd.read_csv(os.path.join(working_dir,'att.csv')) fig,axes = plt.subplots(figsize=(15,20),nrows=2,sharey=True) ax = axes[0] hue_order = pd.unique(pos['N-1 --> N']) hue_order.sort() sns.barplot(x = 'x', y = 'Probability', hue = 'N-1 --> N', hue_order = hue_order, data = pos, ax = ax, ) ax.set(ylim=(0,1.),xlabel='',xticks=[], title = "Exp.1") ax = axes[1] hue_order =
pd.unique(att['N-1 --> N'])
pandas.unique
#!/usr/bin/env python # coding: utf-8 # In this notebook,I have done some Exploratory Data Analysis(EDA) on the data and also, I used different classifier models to predict the quality of the wine. # 1. Logistic Regression # 2. KNeighborsClassifier # 3. SVC # 4. DecisionTree Classifier # 5. RandomForest Classifier # And also, I used cross validation evaluation technique to optimize the model performance. # # # In[ ]: # This Python 3 environment comes with many helpful analytics libraries installed # It is defined by the kaggle/python docker image: https://github.com/kaggle/docker-python # For example, here's several helpful packages to load in import numpy as np # linear algebra import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) # Input data files are available in the "../../../input/piyushgoyal443_red-wine-dataset/" directory. # For example, running this (by clicking run or pressing Shift+Enter) will list all files under the input directory import os for dirname, _, filenames in os.walk("../../../input/piyushgoyal443_red-wine-dataset"): for filename in filenames: print(os.path.join(dirname, filename)) # Any results you write to the current directory are saved as output. # In[ ]: import pandas as pd import numpy as np import matplotlib as mpl import matplotlib.pyplot as plt import seaborn as sns import warnings warnings.filterwarnings('ignore') from matplotlib.ticker import FormatStrFormatter from sklearn.model_selection import train_test_split from sklearn.preprocessing import StandardScaler from sklearn.linear_model import LogisticRegression from sklearn.model_selection import cross_val_score from sklearn.metrics import accuracy_score,confusion_matrix,classification_report from sklearn.tree import DecisionTreeClassifier ,export_graphviz import graphviz from IPython.display import Image # To plot decision tree. from sklearn.externals.six import StringIO # In[ ]: df =
pd.read_csv("../../../input/piyushgoyal443_red-wine-dataset/wineQualityReds.csv")
pandas.read_csv
import numpy as np import pytest import pandas as pd from pandas.util import testing as tm pyreadstat = pytest.importorskip("pyreadstat") def test_spss_labelled_num(datapath): # test file from the Haven project (https://haven.tidyverse.org/) fname = datapath("io", "data", "labelled-num.sav") df = pd.read_spss(fname, convert_categoricals=True) expected = pd.DataFrame({"VAR00002": "This is one"}, index=[0]) expected["VAR00002"] = pd.Categorical(expected["VAR00002"])
tm.assert_frame_equal(df, expected)
pandas.util.testing.assert_frame_equal
import pandas as pd import geopandas as gpd import sys sys.path.append("..") from misc.utils import normalize from models.spatial_tools.misc import rank_freq def calculate_distances(gs1, gs2): """ Calculates the distance (ellipsoidal) between to GeoSeries :param gs1: GeoSeries1 :param gs2: GeoSeries2 :return: The GeoSeries of distances """ return gs1.distance(gs2) def commute_distances(trajectories_frame, quantity=2): """ Calculates the commuting distances for each user. Quantity regulates the number of locations to which the distance is calculated. :param trajectories_frame: TrajectoriesFrame class object :param quantity: The number of locations to which the distance will be calculated :return: The DataFrame of distances to the locations """ sig_frame = rank_freq(trajectories_frame, quantity=quantity) indices = [] distances = {} for n in range(quantity - 1): for k in range(n + 1, quantity): indices.append((n, k)) indices = sorted(indices, key=lambda x: x[1]) prev_k = 1 df_list = [] for n, k in indices: if k != prev_k: distances[prev_k] =
pd.concat(df_list, axis=1)
pandas.concat
# -*- coding: utf-8 -*- """ Pre-modeling set-up 06/01/2019 <NAME> """ # Import necessary libraries for data preparation/EDA from sqlalchemy import create_engine import pandas as pd import numpy as np from collections import defaultdict import pickle # SET-UP ---------------------------------------------------------------------- # Connect to PostgresDB and pull in datasets engine = create_engine("postgresql://postgres:dfdk#418!@@172.16.17.32/postgres") # Yahoo! Finance yahoo=pd.read_sql_query('select * from stock_price', con=engine) print("Yahoo! Finance features:") print(yahoo.columns.tolist()) # SimFin Fundamentals simfindaily=pd.read_sql_query('select * from daily_simfin', con=engine) print("SimFin features:") print(simfindaily.columns.tolist()) # Derived momentum features momentum=pd.read_sql_query('select * from momentum_features', con=engine) print("Derived features") print(momentum.columns.tolist()) # S&P 500 index snp = pd.read_sql_query('select * from spy_stock_price', con = engine) print("S&P 500") print(snp.columns.tolist()) # Some quick fixes on keys simfindaily['date_of_transaction'] = simfindaily['date'] simfindaily.drop('date', axis=1, inplace=True) yahoo['ticker'] = yahoo['Symbol'] yahoo.drop('Symbol', axis=1, inplace=True) momentum['ticker'] = momentum['Symbol'] momentum['date_of_transaction'] = momentum['Date'] momentum.drop(['Symbol', 'Date', 'High', 'Low', 'Open', 'Close', 'Volume', 'AdjClose'], axis=1, inplace=True) snp['snp500_close'] = snp['Adj Close'] snp['snp500_open'] = snp['Open'] snp = snp[['date_of_transaction', 'snp500_close', 'snp500_open']] # Merge df = pd.merge(yahoo, momentum, on=['ticker', 'date_of_transaction']) df = pd.merge(df, simfindaily, how='left', on=['ticker', 'date_of_transaction']) df = df.sort_values(['ticker','date_of_transaction']).reset_index(drop = True) df.head() # Pull out the tickers tickers = df['ticker'].unique().tolist() # COMBINED DATA SET FEATURE ENGINEERING --------------------------------------- # Replace some missing values df['Pct_Change_Yearly'].fillna(value=df['Pct_Change_Monthly'], inplace=True) df['Yearly_Return_Rank'].fillna(value=df['Monthly_Return_Rank'], inplace=True) df['Momentum_Quality_Yearly'].fillna(value=df['Momentum_Quality_Monthly'], inplace=True) df['Volatility'].fillna(df['Volatility'].mean(), inplace=True) # Some normalization df['Monthly_Return_Rank'] = df['Monthly_Return_Rank'] / 500 df['Yearly_Return_Rank'] = df['Yearly_Return_Rank'] / 500 df['RSI'] = df['RSI'] / 100 # Construct some aggregate financial ratios from the SimFin data df['eps'] = df['net_income_y'] / df['common_outstanding_basic'] df['pe_ratio'] = df['AdjClose'] / df['eps'] df['debt_ratio'] = df['total_liabilities'] / df['total_equity'] df['debt_to_equity'] = df['total_liabilities'] / df['total_equity'] df['roa'] = df['net_income_y'] / df['total_assets'] # Construct some additional ticker-level returns features df['open_l1'] = df.groupby('ticker')['Open'].shift(1) df['open_l5'] = df.groupby('ticker')['Open'].shift(5) df['open_l10'] = df.groupby('ticker')['Open'].shift(10) df['return_prev1_open_raw'] = 100*(df['Open'] - df['open_l1']) / df['open_l1'] df['return_prev5_open_raw'] = 100*(df['Open'] - df['open_l5']) / df['open_l5'] df['return_prev10_open_raw'] = 100*(df['Open'] - df['open_l10']) / df['open_l10'] df['close_l1'] = df.groupby('ticker')['AdjClose'].shift(1) df['close_l5'] = df.groupby('ticker')['AdjClose'].shift(5) df['close_l10'] = df.groupby('ticker')['AdjClose'].shift(10) df['return_prev1_close_raw'] = 100*(df['AdjClose'] - df['close_l1']) / df['close_l1'] df['return_prev5_close_raw'] = 100*(df['AdjClose'] - df['close_l5']) / df['close_l5'] df['return_prev10_close_raw'] = 100*(df['AdjClose'] - df['close_l10']) / df['close_l10'] # Compute market betas betas = np.empty(df.shape[0]) for t in tickers: idx = df['ticker'].loc[df['ticker'] == t].index.tolist() x_t = df[['date_of_transaction', 'AdjClose']].iloc[idx] x_t = pd.merge(x_t, snp, on='date_of_transaction').sort_values('date_of_transaction') market_return = np.array(x_t['snp500_close'].tolist()) asset_return = np.array(x_t['AdjClose'].tolist()) beta_vector = np.empty(len(asset_return)) * np.nan i = 21 while i < len(beta_vector): beta_vector[i] = (np.cov(market_return[:(i-1)], asset_return[:(i-1)])[0,1] / np.var(market_return[:(i-1)])) i += 1 betas[idx] = beta_vector df['beta'] = betas # Features to smooth to_smooth = ['High', 'Low', 'Open', 'Close', 'Volume', 'AdjClose', 'Pct_Change_Daily', 'Pct_Change_Monthly', 'Pct_Change_Yearly', 'RSI', 'Volatility', 'Yearly_Return_Rank', 'Monthly_Return_Rank', 'Pct_Change_Class', 'Rolling_Yearly_Mean_Positive_Days', 'Rolling_Monthly_Mean_Positive_Days', 'Rolling_Monthly_Mean_Price', 'Rolling_Yearly_Mean_Price', 'open_l1', 'open_l5', 'open_l10', 'close_l1', 'close_l5', 'close_l10', 'return_prev1_open_raw', 'return_prev5_open_raw', 'return_prev10_open_raw', 'return_prev1_close_raw', 'return_prev5_close_raw', 'return_prev10_close_raw', 'pe_ratio', 'debt_ratio', 'debt_to_equity', 'roa', 'Momentum_Quality_Monthly', 'Momentum_Quality_Yearly', 'SPY_Trailing_Month_Return' ] # Create smoothed variants of specified features for feature in to_smooth: print("Smoothing '{}'".format(feature)) x_to_smooth = np.array(df[feature].tolist()) col = feature + "_smoothed" for t in tickers: idx = df['ticker'].loc[df['ticker'] == t].index.tolist() x_t = np.array(x_to_smooth[idx].tolist()) # Compute EMA smoothing of target within ticker ema = 0 gamma_ = 0.1 for t_i in range(len(x_t)): ema = gamma_*x_t[t_i] + (1-gamma_)*ema x_t[t_i] = ema x_to_smooth[idx] = x_t df[col] = x_to_smooth # Hash the ticker to create a categorical feature from sklearn.feature_extraction import FeatureHasher h = FeatureHasher(n_features = len(tickers), input_type = 'string') f = h.transform(df['ticker']) ticker_features = f.toarray() # Remove the quarter of pre-SimFin data train = df[df['date_of_transaction'] >= '2011-03-31'].reset_index(drop=True) # At the ticker level, lead the AdjClose column by n-trading days target_gen = train[['ticker', 'date_of_transaction', 'AdjClose', 'Monthly_Return_Rank', 'SPY_Trailing_Month_Return', 'Pct_Change_Monthly', 'beta']] target_gen =
pd.merge(target_gen, snp, on='date_of_transaction')
pandas.merge
from __future__ import print_function, division, absolute_import import collections import functools as ft import json import operator as op import os.path import re import pandas as pd from pandas.core.dtypes.api import is_scalar def escape_parameters(params): if isinstance(params, dict): return {k: escape(v) for k, v in params.items()} elif isinstance(params, tuple): return tuple(escape(v) for v in params) else: raise NotImplementedError('cannot escape parameters of type %s' % type(params)) def escape(val): if val is None: return 'null' elif isinstance(val, str): return "'" + val.replace("'", "''") + "'" elif isinstance(val, (int, bool, float)): return json.dumps(val) else: raise NotImplementedError() def like(s, pattern): """Execute a SQL ``like`` expression against a str-series.""" pattern = re.escape(pattern) pattern = pattern.replace(r'\%', '.*') pattern = pattern.replace(r'\_', '.') pattern = '^' + pattern + '$' # sqlite is case insenstive, is this always the case? if is_scalar(s): return re.match(pattern, s) is not None else: return s.str.contains(pattern) def not_like(s, pattern): """Execute a SQL ``not like`` expression against a str-series.""" res = like(s, pattern) if is_scalar(s): return not res else: # handle inversion with missing numbers return (1 - res).astype(res.dtype) def trim(what, characters, s): s = _str_funcs(s) if what == 'leading': return s.lstrip(characters) elif what == 'trailing': return s.rstrip(characters) elif what == 'both': return s.strip(characters) raise ValueError('unknown trim mode %s' % what) def position(needle, haystack): return _str_funcs(haystack).find(needle) + 1 def upper(s): return _str_funcs(s).upper() def lower(s): return _str_funcs(s).lower() def concat(head, *tail): strings = [head] + list(tail) strings = [_fillna(s, '') for s in strings] return ft.reduce(op.add, strings) def _str_funcs(s): return s if is_scalar(s) else
pd.Series(s)
pandas.Series
import pandas as pd import urllib.request import numpy as np import shapefile from datetime import datetime from zipfile import ZipFile import pandasql as ps import requests import json import pkg_resources def softmax(x): if np.max(x) > 1: e_x = np.exp(x/np.max(x)) else: e_x = np.exp(x - np.max(x)) return e_x / e_x.sum() ## getProvinceBoundaryBox function is to get the cordinate details from Mapbox API for ITALY ## Parameter Needed - Province Name def getProvinceBoundaryBox(provinceName): Place_Details = requests.get( 'http://api.mapbox.com/geocoding/v5/mapbox.places/' + provinceName + '%20province%20Italy.json?access_token=<KEY>').json()[ 'features'] for eachPlace in Place_Details: try: if eachPlace['context'][0]['text'] == 'Italy' or eachPlace['context'][1]['text'] == 'Italy': getBbox = eachPlace['bbox'] except: continue return getBbox # The below function used to get the USA Patient Data Automatically from HARVARD DATABASE COVID Patient Database and will create a timeseries patient file along with population of the Area at county along with a USA County file ## Parameter Needed - Target Directory to save the File def fetch_us_patientdata(tgtdir): url='https://dataverse.harvard.edu/api/access/datafile/:persistentId?persistentId=doi:10.7910/DVN/HIDLTK/7NWUDK' urllib.request.urlretrieve(url,tgtdir+'/us_county_confirmed_cases.tab') latest_data = pd.read_csv(tgtdir+'/us_county_confirmed_cases.tab',sep='\t') allcols = list(latest_data.columns) datecols = allcols[allcols.index('HHD10')+1:] latest_data = latest_data[['COUNTY', 'NAME']+datecols] datecolsmod=[datetime.strptime(i,'%m/%d/%Y').strftime('%Y%m%d') for i in datecols] latest_data.columns = ['cfips', 'county']+datecolsmod latest_data = latest_data.melt(id_vars=['cfips', 'county'], var_name='data_date', value_name='no_pat') latest_data['county']=latest_data['county'].apply(lambda x : x.split(' County')[0]) url='https://dataverse.harvard.edu/api/access/datafile/:persistentId?persistentId=doi:10.7910/DVN/HIDLTK/OFVFPY' urllib.request.urlretrieve(url,tgtdir+'/COUNTY_MAP.zip') zip = ZipFile(tgtdir+'/COUNTY_MAP.zip') zip.extractall(tgtdir) sf = shapefile.Reader(tgtdir+"/CO_CARTO") shape_df = pd.DataFrame() shapes = sf.shapes() records = sf.records() for eachrec in range(len(records)): eachRec = {} shapebbbox = shapes[eachrec].bbox shapelat = (shapebbbox[1] + shapebbbox[3]) / 2 shapelong = (shapebbbox[0] + shapebbbox[2]) / 2 eachRec['lat'] = [shapelat] eachRec['long'] = [shapelong] eachRec['county_fips'] = [records[eachrec][0]] eachRec['county_name'] = [records[eachrec][1]] eachRec['POP'] = [records[eachrec][10]] eachRec['HHD'] = [records[eachrec][11]] shape_df = shape_df.append(pd.DataFrame.from_dict(eachRec)) us_counties = shape_df us_counties['county_name'] = us_counties['county_name'].apply(lambda x: x.split(' County')[0]) us_counties['county_fips'] = us_counties['county_fips'].apply(lambda x: int(x)) us_counties.columns = ['lat','long', 'cfips', 'county', 'pop', 'HHD'] full_data = pd.merge(latest_data, us_counties, on=['cfips', 'county']) if sum(full_data['no_pat']) != sum(latest_data['no_pat']): print("fetch failed") raise full_data['no_pat'] = full_data.groupby(['cfips'])['no_pat'].apply(lambda x: x.cummax()) full_data['new_pat'] = full_data.groupby(['lat','long'])['no_pat'].diff() full_data = full_data.dropna() us_counties.to_csv(tgtdir+'USA_counties.csv',index=False) full_data.to_csv(tgtdir+'USA_covid_data_final.csv',index=False) print(' USA Patient Data Created under Directory :'+tgtdir) ## Below function will create the China COVID19 time series Patient file by abosrving data from Harvard Database and it will create County file along with Population Data by county/province ## Parameter Needed - Target Directory to save the File def fetch_china_patientdata(tgtdir): url = 'https://dataverse.harvard.edu/api/access/datafile/3781338?format=original&gbrecs=true' urllib.request.urlretrieve(url, tgtdir+'/City_Confirmed_Map_China.csv') latest_data =
pd.read_csv(tgtdir+'/City_Confirmed_Map_China.csv')
pandas.read_csv
"""Project agnostic utility functions.""" import io import os import re import csv import sys import hashlib import logging import contextlib import logging.config from pathlib import Path from copy import deepcopy from numbers import Number from functools import wraps from datetime import date, datetime from collections import OrderedDict, deque from typing import Dict, List, Tuple, Union import jinja2 import numpy as np import pandas as pd from scipy.stats import iqr from jinjasql import JinjaSql from pandas.tseries import offsets from IPython.display import display import matplotlib.pyplot as plt # NOQA logger = logging.getLogger(f'utils.{__name__}') DEFAULT_JINJA_ENV_ARGS = dict( autoescape=True, line_statement_prefix="%", trim_blocks=True, lstrip_blocks=True, ) NULL_COUNT_CLAUSE = """SUM( CASE WHEN {col} IS NULL THEN 1 ELSE 0 END ) AS {as_col}""" def make_dirs(dir_path): """Add a return value to mkdir.""" Path.mkdir(Path(dir_path), exist_ok=True, parents=True) return dir_path def path_or_string(str_or_path): """Load file contents as string or return input str.""" file_path = Path(str_or_path) try: with file_path.open('r') as f: return f.read() except (OSError, ValueError): return str_or_path # PythonDecorators/decorator_function_with_arguments.py def local_df_cache( # pylint: disable=unused-argument use_cache=False, refresh_cache=False, cache_fn='cache_file', cache_dir='/tmp/', # nosec cache_format='pickle', cache_hit_msg='Reading cached data from file: ', cache_miss_msg='Cache missing for file: ', cache_put_msg='Saving data to file: ', ): """Decorate the target function to cache ouputed DataFrames. This decorator receives and removes all cache related kwargs so that the wrapped function doesn't get them nonetheless the caching behavior can be changed on the fly. It must be called as a function even when no arguments are passed: @local_df_cache() The decorated function must not have any params that MATCH the ones of this decorator. Parameters ---------- use_cache : bool Whether to consult the cache or not. refresh_cache : bool Whether to update the cache or not (does not depend on use_cache). cache_fn : str Name of the cache file. cache_dir : str Directory where the cached files will be stored. cache_format : str Cache file format as supported by `df_to_multi`. cache_hit_msg : str Show this when cache hit. cache_miss_msg : str Show this when cache miss. cache_put_msg : str Show this when cache put. IMPORTANT: By default the filename is used as cache key, as such it does not consider the actual contents of the DataFrame being cached. Take care to select a cache name that reflects this changes. Such as including the hash of the query used to generate the data stored. Warnings -------- - If the decorated function returns a tuple, only the first dataframe contained in the tuple will be cached. """ # Scope jumping scheisse. orig_cache_opts = locals() def wrap(func): """Do dummy docstring.""" @wraps(func) def wrapped_f(*args, **kwargs): """Do dummy docstring.""" cache_opts_arg = kwargs.pop('cache_opts').copy() cache_opts = orig_cache_opts.copy() cache_opts.update(cache_opts_arg) use_cache = cache_opts['use_cache'] refresh_cache = cache_opts['refresh_cache'] cache_fn = cache_opts['cache_fn'] cache_dir = cache_opts['cache_dir'] cache_format = cache_opts['cache_format'] cache_hit_msg = cache_opts['cache_hit_msg'] cache_miss_msg = cache_opts['cache_miss_msg'] cache_put_msg = cache_opts['cache_put_msg'] # Clear cache args from kwargs for k in orig_cache_opts: if k in kwargs: del kwargs[k] if callable(cache_fn): cache_fn = cache_fn(cache_opts, *args, **kwargs) base_fn = f"{cache_fn}.{cache_format}" cache_fn = os.path.join(cache_dir, base_fn) if use_cache: if os.access(cache_fn, os.R_OK): logger.debug(f"{cache_hit_msg}{cache_fn}") return df_read_multi(cache_fn) else: logger.debug(f"{cache_miss_msg}{cache_fn}") rv = func(*args, **kwargs) if use_cache: if (not os.access(cache_fn, os.R_OK)) or refresh_cache: logger.debug(f"{cache_put_msg}{cache_fn}") # rv might be a tuple: in this case we only cache the # first dataframe found in the tuple if isinstance(rv, tuple): for i in rv: if isinstance(i, pd.DataFrame): df_to_multi(i, cache_fn) break else: df_to_multi(rv, cache_fn) return rv return wrapped_f return wrap def df_read_multi(fn, index_col=False, quoting=0): """Read multiple table disk-formats into a pandas DataFrame.""" ext = Path(fn).suffix[1:] if ext == 'csv': df = pd.read_csv(fn, index_col=index_col, quoting=quoting) def clean_quotes(s): """Clean start and ending quotes.""" if s[0] in '"\'' and s[-1] in '"\'': return s[1:-1] return s df.columns = list(map(clean_quotes, df.columns)) return df elif ext == 'feather': return pd.read_feather(fn) elif ext in ['pickle', 'pkl']: return pd.read_pickle(fn) else: raise ValueError(f"File format '{ext}' not supported!") def df_to_multi(df, fn, index=False, quoting=csv.QUOTE_NONNUMERIC): """Convert a DF to multiple disk-formats table.""" ext = Path(fn).suffix[1:] if ext == 'csv': return df.to_csv(fn, index=index, quoting=quoting) elif ext == 'feather': return df.to_feather(fn) elif ext in ['pickle', 'pkl']: return df.to_pickle(fn) else: raise ValueError(f"File format '{ext}' not supported!") def convert_to_snake_case(name: str): """Convert string to snake_case.""" s1 = re.sub('(.)([A-Z][a-z]+)', r'\1_\2', name) return re.sub('([a-z0-9])([A-Z])', r'\1_\2', s1).lower() def deque_to_geo_hierarchy_dict(double_linked_list: deque, target_level: str): """Converts a deque to an ordered dictionary using GEO ordered levels.""" orde = OrderedDict() # type: ignore # noqa d = deepcopy(double_linked_list) while len(d) > 0: elem = d.popleft() level = elem.pop('level') orde[level] = elem if target_level == level: return orde def str_to_datetime(datetime_str): """Convert possible date-like string to datetime object.""" formats = ( '%Y-%m-%d %H:%M:%S', '%Y-%m-%d', '%Y-%m-%d %H:%M:%S.%f', '%H:%M:%S.%f', '%H:%M:%S', '%Y%m%dT%H:%M:%S', '%Y-%m-%dT%H:%M:%S', '%Y%m%d', '%Y-%m-%dT%H', '%Y%m', ) for frmt in formats: try: return datetime.strptime(datetime_str, frmt) except ValueError: if frmt is formats[-1]: raise def range_datetime(datetime_start, datetime_end, timeskip=None): """Build datetime generator over successive time steps.""" if timeskip is None: timeskip = offsets.Day(1) while datetime_start <= datetime_end: yield datetime_start datetime_start += timeskip def get_first_fortnight_last_day(ds): """Return the last day of the datestamp's fortnight for its month.""" first_bday = ds + offsets.MonthBegin(1) - offsets.BMonthBegin(1) first_monday_second_fortnight = first_bday + offsets.BDay(10) last_sunday_first_fortnight = first_monday_second_fortnight - offsets.Day(1) return last_sunday_first_fortnight def query_yes_no(question, default='no'): """Ask a yes/no question via input() and return their answer. Parameters ---------- question : str Question presented to the user. default : str Default answer if the user just hits <Enter>. It must be "yes" (the default), "no" or None (meaning an answer is required of the user). The "answer" return value is True for "yes" or False for "no". https://stackoverflow.com/questions/3041986/apt-command-line-interface-like-yes-no-input """ valid = {'yes': True, 'y': True, 'ye': True, 'no': False, 'n': False} if default is None: prompt = ' [y/n] ' elif default == 'yes': prompt = ' [Y/n] ' elif default == 'no': prompt = ' [y/N] ' else: raise ValueError("invalid default answer: '%s'" % default) while True: sys.stdout.write(question + prompt) choice = input().lower() # nosec if default is not None and choice == '': return valid[default] elif choice in valid: return valid[choice] else: sys.stdout.write("Please respond with 'yes' or 'no' " "(or 'y' or 'n').\n") def get_ordered_factor_levels(df, col, top_n=None, min_counts=None): """ Return a list of a column's levels and num of levels. Ideallly used only on factor (categorical-typed) cols or cols without a large amount of values. Note that levels list are ordered by descending popularity. """ rv = df[col].value_counts() if min_counts: rv = rv[rv >= min_counts] if top_n: rv = rv[:top_n] return rv.index.values, len(rv) def normalize_arr(arr): """Normalize a numpy array to sum 1.""" arr_sum = np.sum(arr, axis=0) return 1.0 * arr / arr_sum if arr_sum != 0 else arr def apply_time_bounds(df, sd, ed, ds_col): """Filter time dates in a datetime-type column or index. Warnings -------- - Be aware this function potentially modify the given Dataframe df, so please send a copy of the original if you want it to remain unmodified. """ if ds_col: rv = df.query(f'{ds_col} >= @sd and {ds_col} <= @ed') else: rv = df.loc[sd:ed] return rv def normalize_ds_index(df, ds_col): """Normalize usage of ds_col as column in df. Warnings -------- - Be aware this function potentially modify the given Dataframe df, so please send a copy of the original if you want it to remain unmodified. """ if ds_col in df.columns: return df elif ds_col == df.index.name: df = df.reset_index().rename(columns={'index': ds_col}) else: raise ValueError(f"No column or index found as '{ds_col}'.") return df def standarize_values(values): """Standarize array values with MinMAx.""" assert np.issubdtype(values, np.number) shifted_values = values - values.min() # Degenerate case when values array has all same input values if np.count_nonzero(shifted_values) == 0: return values return shifted_values / (shifted_values.max() - shifted_values.min()) def robust_standarize_values(values): """Standarize values with InterQuartile Range and median.""" assert np.issubdtype(values, np.number) return (values - values.median()) / iqr(values) def hash_str(s, length=8): """Hash a string.""" return hashlib.sha256(s.encode('utf8')).hexdigest()[:length] def df_info_to_str(df): """Cast df info into string type.""" buffer = io.StringIO() df.info(buf=buffer) return buffer.getvalue() class JinjaTemplateException(Exception): """Dummy doc.""" class BadInClauseException(JinjaTemplateException): """Dummy doc.""" def _format_value_in_clause(value: Union[Number, str]) -> str: """Format value according to type. Args: value (Union[Number, str]): any number or string Raises: BadInClauseException: for values other than Number or str Returns: str: formatted string """ if isinstance(value, str): return f"'{value}'" elif isinstance(value, Number): return f"{value}" else: raise BadInClauseException( f"Value type: {type(value)} is not allowed for in clause formatting" ) def format_in_clause( iterable: Union[Tuple[Union[Number, str]], List[Union[Number, str]]] ) -> str: """ Create a Jinja2 filter to format list-like values passed. Args: iterable (list, tuple): list / tuple of strings and numbers. Can be empty. Raises: BadInClauseException: for non iterable inputs. Returns: str: The formatted string of the list of elements. Notes: Idea originally from https://github.com/hashedin/jinjasql/blob/master/jinjasql/core.py Passing an empty tuple/list won't raise an exception, in order to simplify the function. Also, regarding failing queries, there's no explicit goal for sql formatting (although that's a common use case). Examples: >>> format_in_clause([1.12, 1, 'a']) (1.12,1,'a') """ if not isinstance(iterable, (list, tuple)): raise BadInClauseException( f"Value passed is not a list or tuple: '{iterable}'. " f"Where the query uses the '| inclause'." ) values = [_format_value_in_clause(v) for v in iterable] clause = ",".join(values) clause = "(" + clause + ")" return clause def get_default_jinja_template(path_or_str, filters=None, **kwargs): """Create Jinja specific template..""" if filters is None: filters = {"inclause": format_in_clause} # The following line is labeled with nosec so that bandit doesn't fail. In DEFAULT_JINJA_ENV_ARGS, autoescape is set to True. environment = jinja2.Environment(**{**DEFAULT_JINJA_ENV_ARGS, **kwargs}) # nosec environment.filters = {**environment.filters, **filters} return environment.from_string(path_or_string(path_or_str)) def get_cloudera_sql_stats_aggr( input_expression, as_name=None, with_minmax=False, with_std=False, with_ndv=False, with_count=False, ends_comma=True, ): """Get Cloudera-valid battery of statistical aggregations clause.""" rv_l = [ f'SUM({input_expression}) AS sum', f'AVG({input_expression}) AS mean', f'APPX_MEDIAN({input_expression}) AS median', ] if with_minmax: rv_l.append(f'MIN({input_expression}) AS min') rv_l.append(f'MAX({input_expression}) AS max') if with_std: rv_l.append(f'STDDEV({input_expression}) AS std') if with_ndv: rv_l.append(f'NDV({input_expression}) AS unique') if with_count: rv_l.append(f'COUNT({input_expression}) AS count_rows') rv = ',\n'.join([f'{i}_{as_name}' for i in rv_l]) + ',' if not ends_comma: rv = rv[:-1] return rv def get_cloudera_sample_cut(sample_lines_ratio=None): """Get cut int value for sample proportion.""" if sample_lines_ratio is None: sample_lines_ratio = 1.0 # Generate the value for sample selection. sampling_cut = int(2 ** 64 * sample_lines_ratio / 2.0) - 1 return sampling_cut def get_cloudera_hashed_sample_clause(col_or_exp, sample_pct): """ Get Cloudera-valid clause for hashed-sampling. This will work on an id col or on a given expression that outputs a valid column. It takes a sample_pct number between 0 and 1. """ assert 0 < sample_pct < 1, f'{sample_pct} should be a float in (0,1)' threshold_int = get_cloudera_sample_cut(sample_lines_ratio=sample_pct) rv = f'AND abs(fnv_hash(CAST({col_or_exp} AS bigint))) <= {threshold_int}' return rv def str_normalize_pandas(data, str_replace_kws=None): """Normalize all string-like data in pandas objects. Parameters ---------- data (pd.DataFrame, pd.Series): containing the data. Might or not have string columns str_replace_kws (dict): contains pandas str.replace method kwargs Warnings -------- - Be aware this function potentially modify the given Dataframe df, so please send a copy of the original if you want it to remain unmodified. """ if isinstance(data, pd.DataFrame): obj_cols = data.select_dtypes(include=[np.object]).columns for col in obj_cols: data[col] = ( data[col] .str.lower() .str.normalize('NFKD') .str.encode('ascii', errors='ignore') .str.decode('utf-8') ) if str_replace_kws: data[col] = data[col].str.replace(**str_replace_kws) return data elif isinstance(data, pd.Series) and data.dtype == np.object: data = ( data.str.lower() .str.lower() .str.normalize('NFKD') .str.encode('ascii', errors='ignore') .str.decode('utf-8') ) if str_replace_kws: data = data.str.replace(**str_replace_kws) return data else: raise TypeError(f"File format '{type(data)}' not supported!") def df_optimize_float_types( df, type_mappings: Dict[str, str] = None, ): """Cast dataframe columns to more memory friendly types. Parameters ---------- df: DataFrame to be modified. type_mappings: Mapping of types. Defaults to {"float64":"float16", "float32":"float16"} Warnings -------- - Type conversion leads to a loss in accuracy and possible overflow of the target type. Eg: >>> n = 2**128 >>> np.float64(n), np.float32(n) (3.402823669209385e+38, inf) - Be aware this function potentially modify the given Dataframe df, so please send a copy of the original if you want it to remain unmodified. """ if type_mappings is None: type_mappings = { "float64": "float16", "float32": "float16", } new_dtypes = {c: type_mappings.get(t.name, t) for c, t in df.dtypes.iteritems()} df = df.astype(new_dtypes, copy=False) return df def df_replace_empty_strs_null(df): """Replace whitespace or empty strs with nan values. Warnings -------- - Be aware this function potentially modify the given Dataframe df, so please send a copy of the original if you want it to remain unmodified. """ str_cols = df.select_dtypes(include='object').columns.tolist() if str_cols: logger.debug(f'Replacing whitespace in these object cols: {str_cols}...') for col in str_cols: df[col].replace(r'^\s*$', np.nan, regex=True, inplace=True) return df def df_drop_nulls(df, max_null_prop=0.2, protected_cols: List[str] = None): """Drop null columns in df, for null share over a certain threshold. Warnings -------- - Be aware this function potentially modify the given Dataframe df, so please send a copy of the original if you want it to remain unmodified. """ # Note: Pandas treats string columns as `object` data types. if protected_cols is None: protected_cols = list() logger.debug( f'Dropping columns with null ratio greater than {max_null_prop:.2%}...' ) df = df_replace_empty_strs_null(df) null_means = df.isnull().mean() null_mask = null_means < max_null_prop null_mask[[c for c in df.columns if c in protected_cols]] = True drop_cols = null_mask[~null_mask].index.tolist() logger.debug( f'Null proportions:\n' f'{null_means.loc[drop_cols].sort_values(ascending=False)}' ) logger.debug(f'Dropping the following {len(drop_cols)} columns:\n {drop_cols}') df.drop(drop_cols, axis=1, inplace=True) return df def df_drop_std(df, min_std_dev=1.5e-2, protected_cols: List[str] = None): """Drop low variance cols. Warnings -------- - Be aware this function potentially modify the given Dataframe df, so please send a copy of the original if you want it to remain unmodified. """ if protected_cols is None: protected_cols = list() std_values = df.std() low_variance_cols = std_values < min_std_dev low_variance_cols = low_variance_cols.index[low_variance_cols].tolist() low_variance_cols = [c for c in low_variance_cols if c not in protected_cols] logger.debug( f'Dropping the following {len(low_variance_cols)} columns ' f'due to low variance:\n {low_variance_cols}' ) df.drop(low_variance_cols, axis=1, inplace=True) return df def df_drop_corr( df, target_col, max_corr=0.3, protected_cols: List[str] = None, frac=0.2, random_state=None, ): """Drop high correlated to-target cols. Warnings -------- - Be aware this function potentially modify the given Dataframe df, so please send a copy of the original if you want it to remain unmodified. """ if target_col not in df.columns: raise ValueError(f"target col ({target_col}) is not in dataframe columns") if protected_cols is None: protected_cols = list() corr_df = df.sample(frac=frac, random_state=random_state).corr() high_corr_cols = abs(corr_df[target_col]) > max_corr high_corr_cols = high_corr_cols.index[high_corr_cols].tolist() high_corr_cols = [c for c in high_corr_cols if c not in protected_cols] logger.debug( f'Dropping the following {len(high_corr_cols)} columns due to high correlation ' f'with target:\n {high_corr_cols}' ) df.drop(high_corr_cols, axis=1, inplace=True) return df def df_get_typed_cols(df, col_type='cat', protected_cols: List[str] = None): """Get typed columns, excluding protected cols if passed.""" assert col_type in ('cat', 'num', 'date', 'bool', 'timedelta') if protected_cols is None: protected_cols = list() if col_type == 'cat': # Work in cases, else dont define include var include = ['object', 'category'] elif col_type == 'num': include = ['number'] elif col_type == 'date': include = ['datetime'] elif col_type in ('bool', 'timedelta'): include = [col_type] typed_cols = [ c for c in df.select_dtypes(include=include).columns if c not in protected_cols ] return typed_cols def df_encode_categorical_dummies( df, cat_cols: List[str] = None, skip_cols: List[str] = None, top=25, other_val='OTHER', ): """Encode categorical columns into dummies. Warnings -------- - Be aware this function potentially modify the given Dataframe df, so please send a copy of the original if you want it to remain unmodified. """ if skip_cols is None: skip_cols = list() if cat_cols is None: cat_cols = list() pre_dummy_cols = df.columns.tolist() cat_cols = df_get_typed_cols(df, col_type='cat') if cat_cols == [] else cat_cols cat_cols = [c for c in cat_cols if c not in skip_cols] for c in cat_cols: top_categories = df[c].value_counts().index.values[0:top] df[c] = df[c].where(df[c].isin(top_categories), other=other_val) logger.debug(f'Getting dummies from these top categories:{cat_cols}...') df =
pd.get_dummies(df, columns=cat_cols, drop_first=False)
pandas.get_dummies
""" test indexing with ix """ from warnings import catch_warnings import numpy as np import pandas as pd from pandas.types.common import is_scalar from pandas.compat import lrange from pandas import Series, DataFrame, option_context, MultiIndex from pandas.util import testing as tm from pandas.core.common import PerformanceWarning class TestIX(tm.TestCase): def test_ix_deprecation(self): # GH 15114 df = DataFrame({'A': [1, 2, 3]}) with tm.assert_produces_warning(DeprecationWarning, check_stacklevel=False): df.ix[1, 'A'] def test_ix_loc_setitem_consistency(self): # GH 5771 # loc with slice and series s =
Series(0, index=[4, 5, 6])
pandas.Series
import pandas as pd import numpy as np import matplotlib.pyplot as plt import time import decimal import codecs import csv from sklearn.pipeline import Pipeline from sklearn.model_selection import GridSearchCV from sklearn.model_selection import permutation_test_score from sklearn.metrics import roc_auc_score, auc def integrated_clf_model(feat_sel, model, train_data, test_data, cv): starttime = time.time() feature_list = train_data.list_features if feat_sel == None: pipe = Pipeline(steps=[ (model.name, model.model) ]) pipe_param_grid = model.param_grid else: pipe = Pipeline(steps=[ (feat_sel.name, feat_sel.model), (model.name, model.model) ]) pipe_param_grid = dict(feat_sel.param_grid, **model.param_grid) search = GridSearchCV(pipe, pipe_param_grid, iid=False, cv=cv, return_train_score=False, scoring='accuracy') search.fit(train_data.X, train_data.y) optimal_score = search.best_score_ optimal_params = search.best_params_ optimal_model = search.best_estimator_ _, _, pvalue_tested = permutation_test_score( optimal_model, train_data.X, train_data.y, scoring='accuracy', cv=cv, n_permutations=100, n_jobs=1, random_state=0 ) print('The best score is', optimal_score) print('The corresponding parameter setting is', optimal_params) # ======================================== # Evaluation and Visualization # ======================================== # Optimization Curve and Selected Features (if possible) if feat_sel and feat_sel.name == 'pca': # plt.figure() results = pd.DataFrame(search.cv_results_) components_col = 'param_pca__n_components' best_clfs = results.groupby(components_col).apply(lambda g: g.nlargest(1, 'mean_test_score')) # best_clfs.plot(x=components_col, y='mean_test_score', yerr='std_test_score') # plt.ylabel('Classification accuracy (val)') # plt.xlabel('n_components') # plt.title('Optimization Curve') # plt.savefig(result_path + '/' + 'optimization_curve.png', dpi=300) elif feat_sel and feat_sel.name == 'anova': # plt.figure() results = pd.DataFrame(search.cv_results_) components_col = 'param_anova__percentile' best_clfs = results.groupby(components_col).apply(lambda g: g.nlargest(1, 'mean_test_score')) # best_clfs.plot(x=components_col, y='mean_test_score', yerr='std_test_score') # plt.ylabel('Classification accuracy (val)') # plt.xlabel('percentile') # plt.title('Optimization Curve') # plt.savefig(result_path + '/' + 'optimization_curve.png', dpi=300) selector = optimal_model.named_steps['anova'].get_support() selected_feature_list = np.array(feature_list)[selector] if model.name == 'svm': selected_weight_list = optimal_model.named_steps['svm'].coef_[0] feature_weights_list = pd.DataFrame({'Feature': selected_feature_list, 'Weight': selected_weight_list}) elif model.name == 'rf': selected_weight_list = optimal_model.named_steps['rf'].feature_importances_ feature_weights_list = pd.DataFrame({'Feature': selected_feature_list, 'Weight': selected_weight_list}) elif model.name == 'lr': selected_weight_list = optimal_model.named_steps['lr'].coef_[0] feature_weights_list = pd.DataFrame({'Feature': selected_feature_list, 'Weight': selected_weight_list}) elif model.name == 'lda': selected_weight_list = optimal_model.named_steps['lda'].coef_[0] feature_weights_list = pd.DataFrame({'Feature': selected_feature_list, 'Weight': selected_weight_list}) elif feat_sel and feat_sel.name == 'rfe': # plt.figure() results = pd.DataFrame(search.cv_results_) components_col = 'param_rfe__n_features_to_select' best_clfs = results.groupby(components_col).apply(lambda g: g.nlargest(1, 'mean_test_score')) # best_clfs.plot(x=components_col, y='mean_test_score', yerr='std_test_score') # plt.ylabel('Classification accuracy (val)') # plt.xlabel('n_features_to_select') # plt.title('Optimization Curve') # plt.savefig(result_path + '/' + 'optimization_curve.png', dpi=300) selector = optimal_model.named_steps['rfe'].get_support() selected_feature_list = np.array(feature_list)[selector] if model.name == 'svm': selected_weight_list = optimal_model.named_steps['svm'].coef_[0] feature_weights_list = pd.DataFrame({'Feature': selected_feature_list, 'Weight': selected_weight_list}) elif model.name == 'rf': selected_weight_list = optimal_model.named_steps['rf'].feature_importances_ feature_weights_list = pd.DataFrame({'Feature': selected_feature_list, 'Weight': selected_weight_list}) elif model.name == 'lr': selected_weight_list = optimal_model.named_steps['lr'].coef_[0] feature_weights_list = pd.DataFrame({'Feature': selected_feature_list, 'Weight': selected_weight_list}) elif model.name == 'lda': selected_weight_list = optimal_model.named_steps['lda'].coef_[0] feature_weights_list = pd.DataFrame({'Feature': selected_feature_list, 'Weight': selected_weight_list}) elif not feat_sel: if model.name == 'svm': selected_weight_list = optimal_model.named_steps['svm'].coef_[0] feature_weights_list = pd.DataFrame({'Feature': feature_list, 'Weight': selected_weight_list}) elif model.name == 'rf': selected_weight_list = optimal_model.named_steps['rf'].feature_importances_ feature_weights_list = pd.DataFrame({'Feature': feature_list, 'Weight': selected_weight_list}) elif model.name == 'lr': selected_weight_list = optimal_model.named_steps['lr'].coef_[0] feature_weights_list = pd.DataFrame({'Feature': feature_list, 'Weight': selected_weight_list}) elif model.name == 'lda': selected_weight_list = optimal_model.named_steps['lda'].coef_[0] feature_weights_list = pd.DataFrame({'Feature': feature_list, 'Weight': selected_weight_list}) # ROC Curve and Confusion Matrix from scipy import interp from sklearn.metrics import roc_curve, auc optimal_model.probability = True predictions = optimal_model.predict(test_data.X) probas_ = optimal_model.predict_proba(test_data.X) predictions_list = pd.DataFrame({ 'Original': test_data.y, 'Predicted': predictions, 'Proba: Group 0': probas_[:, 0], 'Proba: Group 1': probas_[:, 1] }) from sklearn.metrics import confusion_matrix tn, fp, fn, tp = confusion_matrix(test_data.y, predictions).ravel() cnf_accuracy = (tn + tp) / (tn + fp + fn + tp) test_accuracy = cnf_accuracy cnf_sensitivity = tp / (tp + fn) test_sensitivity = cnf_sensitivity cnf_specificity = tn / (tn + fp) test_specificity = cnf_specificity # plt.figure() mean_fpr = np.linspace(0, 1, 100) fpr, tpr, _ = roc_curve(test_data.y, probas_[:, 1]) roc_auc = auc(fpr, tpr) # plt.plot(fpr, tpr, lw=1, alpha=0.3, color='b', # label='AUC = %0.2f' % (roc_auc)) # plt.plot([0, 1], [0, 1], linestyle='--', lw=2, color='r', # label='Chance', alpha=.8) # plt.xlim([-0.05, 1.05]) # plt.ylim([-0.05, 1.05]) # plt.xlabel('False Positive Rate') # plt.ylabel('True Positive Rate') # plt.title('Receiver Operating Characteristic') # plt.legend(loc="lower right") # plt.savefig(result_path + '/' + 'ROC_curve.png', dpi=300) endtime = time.time() runtime = str(endtime - starttime) runtime = str(decimal.Decimal(runtime).quantize(decimal.Decimal('0.00'))) + 's' print(runtime) result_dict = {} result_dict['Optimal CV Accuracy'] = optimal_score result_dict['Optimal Parameters'] = optimal_params result_dict['Permutation Test p-Value'] = pvalue_tested result_dict['Test Accuracy'] = test_accuracy result_dict['Test Sensitivity'] = test_sensitivity result_dict['Test Specificity'] = test_specificity result_dict['Area Under Curve'] = roc_auc result_dict['Run Time'] = runtime result_dict['ROC fpr'] = list(fpr) result_dict['ROC tpr'] = list(tpr) result_dict['Predictions'] = predictions_list.to_dict('records') try: result_dict['Feature Weights'] = feature_weights_list.to_dict('records') except: result_dict['Feature Weights'] = pd.DataFrame({"Error": ["This model doesn\'t support generating feature weights"]}).to_dict('records') if feat_sel: result_dict['Optimization'] = best_clfs.to_dict('records') return result_dict def integrated_clf_model_notest(feat_sel, model, train_data, cv): starttime = time.time() feature_list = train_data.list_features if feat_sel == None: pipe = Pipeline(steps=[ (model.name, model.model) ]) pipe_param_grid = model.param_grid else: pipe = Pipeline(steps=[ (feat_sel.name, feat_sel.model), (model.name, model.model) ]) pipe_param_grid = dict(feat_sel.param_grid, **model.param_grid) search = GridSearchCV(pipe, pipe_param_grid, iid=False, cv=cv, return_train_score=False, scoring='accuracy') search.fit(train_data.X, train_data.y) optimal_score = search.best_score_ optimal_params = search.best_params_ optimal_model = search.best_estimator_ _, _, pvalue_tested = permutation_test_score( optimal_model, train_data.X, train_data.y, scoring='accuracy', cv=cv, n_permutations=100, n_jobs=1, random_state=0 ) print('The best score is', optimal_score) print('The corresponding parameter setting is', optimal_params) # ======================================== # Evaluation and Visualization # ======================================== # Optimization Curve and Selected Features (if possible) if feat_sel and feat_sel.name == 'pca': # plt.figure() results = pd.DataFrame(search.cv_results_) components_col = 'param_pca__n_components' best_clfs = results.groupby(components_col).apply(lambda g: g.nlargest(1, 'mean_test_score')) # best_clfs.plot(x=components_col, y='mean_test_score', yerr='std_test_score') # plt.ylabel('Classification accuracy (val)') # plt.xlabel('n_components') # plt.title('Optimization Curve') # plt.savefig(result_path + '/' + 'optimization_curve.png', dpi=300) elif feat_sel and feat_sel.name == 'anova': # plt.figure() results = pd.DataFrame(search.cv_results_) components_col = 'param_anova__percentile' best_clfs = results.groupby(components_col).apply(lambda g: g.nlargest(1, 'mean_test_score')) # best_clfs.plot(x=components_col, y='mean_test_score', yerr='std_test_score') # plt.ylabel('Classification accuracy (val)') # plt.xlabel('percentile') # plt.title('Optimization Curve') # plt.savefig(result_path + '/' + 'optimization_curve.png', dpi=300) selector = optimal_model.named_steps['anova'].get_support() selected_feature_list = np.array(feature_list)[selector] if model.name == 'svm': selected_weight_list = optimal_model.named_steps['svm'].coef_[0] feature_weights_list = pd.DataFrame({'Feature': selected_feature_list, 'Weight': selected_weight_list}) elif model.name == 'rf': selected_weight_list = optimal_model.named_steps['rf'].feature_importances_ feature_weights_list = pd.DataFrame({'Feature': selected_feature_list, 'Weight': selected_weight_list}) elif model.name == 'lr': selected_weight_list = optimal_model.named_steps['lr'].coef_[0] feature_weights_list = pd.DataFrame({'Feature': selected_feature_list, 'Weight': selected_weight_list}) elif model.name == 'lda': selected_weight_list = optimal_model.named_steps['lda'].coef_[0] feature_weights_list = pd.DataFrame({'Feature': selected_feature_list, 'Weight': selected_weight_list}) elif feat_sel and feat_sel.name == 'rfe': # plt.figure() results = pd.DataFrame(search.cv_results_) components_col = 'param_rfe__n_features_to_select' best_clfs = results.groupby(components_col).apply(lambda g: g.nlargest(1, 'mean_test_score')) # best_clfs.plot(x=components_col, y='mean_test_score', yerr='std_test_score') # plt.ylabel('Classification accuracy (val)') # plt.xlabel('n_features_to_select') # plt.title('Optimization Curve') # plt.savefig(result_path + '/' + 'optimization_curve.png', dpi=300) selector = optimal_model.named_steps['rfe'].get_support() selected_feature_list = np.array(feature_list)[selector] if model.name == 'svm': selected_weight_list = optimal_model.named_steps['svm'].coef_[0] feature_weights_list = pd.DataFrame({'Feature': selected_feature_list, 'Weight': selected_weight_list}) elif model.name == 'rf': selected_weight_list = optimal_model.named_steps['rf'].feature_importances_ feature_weights_list = pd.DataFrame({'Feature': selected_feature_list, 'Weight': selected_weight_list}) elif model.name == 'lr': selected_weight_list = optimal_model.named_steps['lr'].coef_[0] feature_weights_list = pd.DataFrame({'Feature': selected_feature_list, 'Weight': selected_weight_list}) elif model.name == 'lda': selected_weight_list = optimal_model.named_steps['lda'].coef_[0] feature_weights_list = pd.DataFrame({'Feature': selected_feature_list, 'Weight': selected_weight_list}) elif not feat_sel: if model.name == 'svm': selected_weight_list = optimal_model.named_steps['svm'].coef_[0] feature_weights_list =
pd.DataFrame({'Feature': feature_list, 'Weight': selected_weight_list})
pandas.DataFrame
# -*- coding: utf-8 -*- import csv import glob import math as m import os from datetime import timedelta from getpass import getpass from math import ceil import numpy as np import pandas as pd import robin_stocks as r from portfolios.portfolio.portfolio import Portfolio from portfolios.utils.helpers import last_trading_day def parse_portfolio(df=None, p=None): """ Takes a dataframe with transactions and performs those on a given portfolio Parameters ========== df : input dataframe p : portfolio (Portfolio class object) Returns ======= p : modified portfolio (Portfolio class object) """ # use a lower bound on the minimum number of days pulled minimum_date_for_data = last_trading_day() - timedelta(weeks=1) # put input dataframe(s) in list dfs = [] if type(df) == pd.core.frame.DataFrame: dfs.append(df) else: dfs.extend(df) # loop through list of dataframes Tickers_all = [] for df in dfs: Tickers_all = Tickers_all + list(df.Ticker.values) # load data for all securities for ticker in list(set(Tickers_all)): if ticker: if ticker not in p.securities_archive: if str(ticker).isalnum() & (str(ticker) != "nan"): print("Adding ", ticker) min_date = minimum_date_for_data for df in dfs: if ticker in list(set(df.Ticker)): first_date = min(df.loc[df.Ticker == ticker, "Date"].values) min_date = min(first_date, min_date) p.add_security_archive(ticker, min_date) for df in dfs: # define a priority for transaction types so ordering makes sense df.loc[df.Transaction == "deposit", "Priority"] = 1 df.loc[df.Transaction == "Contribution", "Priority"] = 1 df.loc[df.Transaction == "Funds Received", "Priority"] = 1 df.loc[df.Transaction == "Conversion (incoming)", "Priority"] = 1 df.loc[df.Transaction == "buy", "Priority"] = 2 df.loc[df.Transaction == "Buy", "Priority"] = 2 df.loc[df.Transaction == "Reinvestment", "Priority"] = 2 df.loc[df.Transaction == "dividend", "Priority"] = 3 df.loc[df.Transaction == "Dividend", "Priority"] = 3 df.loc[df.Transaction == "sell", "Priority"] = 4 df.loc[df.Transaction == "Sell", "Priority"] = 4 df.loc[df.Transaction == "withdraw", "Priority"] = 5 df.loc[df.Transaction == "Distribution", "Priority"] = 5 df.sort_values(by=["Date", "Priority"], inplace=True) for index, row in df.iterrows(): if row.notnull()["Date"]: # print(row['Date'], row['Transaction'], row['Ticker'], row['Currency'], row['Price'], row['Quantity']) if str.lower(row["Transaction"]) == "buy": p.buy_security( date=row["Date"], ticker=row["Ticker"], currency=row["Currency"], price=row["Price"], quantity=row["Quantity"], ) elif str.lower(row["Transaction"]) == "sell": p.sell_security( date=row["Date"], ticker=row["Ticker"], currency=row["Currency"], price=row["Price"], quantity=row["Quantity"], ) # FINRA fee of $.000119 per share up to $5.95 #_FINRAfee = min( # max(ceil(0.0119 * row["Quantity"]), 1.0) / 100.0, 5.95 #) # SEC fee of $.000013 per trade of up to $1M #if not np.isnan(row["Price"]): # _SECfee = max(ceil(row["Quantity"] * row["Price"] / 800.0), 1.0) / 100.0 #else: # _SECfee = 0.000013 # need to find a better place to put this fee where price is known #p.wallet = p.wallet.append( # {"Date": row["Date"], "Change": -_FINRAfee - _SECfee}, # ignore_index=True, #) elif str.lower(row["Transaction"]) == "deposit": p.deposit_cash( date=row["Date"], currency=row["Currency"], price=row["Price"], quantity=row["Quantity"], ) elif str.lower(row["Transaction"]) == "withdraw": p.withdraw_cash( date=row["Date"], currency=row["Currency"], price=row["Price"], quantity=row["Quantity"], ) elif row["Transaction"] == "Dividend": p.dividend( date=row["Date"], ticker=row["Ticker"], currency=row["Currency"], price=1.0, quantity=row["Dollars"], ) elif row["Transaction"] == "dividend": p.dividend( date=row["Date"], ticker=row["Ticker"], currency=row["Currency"], price=1.0, quantity=row["Quantity"], ) else: pass else: pass return p def parse_portfolio_vanguard(df=None, p=None): """ Takes a dataframe with transactions in Vanguard format and performs those on a given portfolio Parameters ========== df : input dataframe p : portfolio (Portfolio class object) Returns ======= p : modified portfolio (Portfolio class object) """ # use a lower bound on the minimum number of days pulled minimum_date_for_data = last_trading_day() - timedelta(weeks=1) # put input dataframe(s) in list dfs = [] if type(df) == pd.core.frame.DataFrame: dfs.append(df) else: dfs.extend(df) # loop through list of dataframes Tickers_all = [] for df in dfs: Tickers_all = Tickers_all + list(df.Ticker.values) # load data for all securities for ticker in list(set(Tickers_all)): if ticker: if ticker not in p.securities_archive: if str(ticker).isalnum() & (str(ticker) != "nan"): print("Adding ", ticker) min_date = minimum_date_for_data for df in dfs: if ticker in list(set(df.Ticker)): first_date = min(df.loc[df.Ticker == ticker, "Date"].values) min_date = min(first_date, min_date) p.add_security_archive(ticker, min_date) for df in dfs: # define a priority for transaction types so ordering makes sense df.loc[df.Transaction == "deposit", "Priority"] = 1 df.loc[df.Transaction == "Contribution", "Priority"] = 1 df.loc[df.Transaction == "Funds Received", "Priority"] = 1 df.loc[df.Transaction == "Conversion (incoming)", "Priority"] = 1 df.loc[df.Transaction == "buy", "Priority"] = 2 df.loc[df.Transaction == "Buy", "Priority"] = 2 df.loc[df.Transaction == "Reinvestment", "Priority"] = 2 df.loc[df.Transaction == "Reinvestment (LT)", "Priority"] = 2 df.loc[df.Transaction == "Reinvestment (ST)", "Priority"] = 2 df.loc[df.Transaction == "dividend", "Priority"] = 3 df.loc[df.Transaction == "Dividend", "Priority"] = 3 df.loc[df.Transaction == "Capital gain (LT)", "Priority"] = 3 df.loc[df.Transaction == "Capital gain (ST)", "Priority"] = 3 df.loc[df.Transaction == "sell", "Priority"] = 4 df.loc[df.Transaction == "Sell", "Priority"] = 4 df.loc[df.Transaction == "Withdrawal", "Priority"] = 5 df.loc[df.Transaction == "withdraw", "Priority"] = 5 df.loc[df.Transaction == "Distribution", "Priority"] = 5 df.sort_values(by=["Date", "Priority"], inplace=True) for index, row in df.iterrows(): if row.notnull()["Date"]: # print(row['Date'], row['Transaction'], row['Ticker'], row['Currency'], row['Price'], row['Quantity'], row['Dollars']) if ( row["Transaction"] == "Buy" or row["Transaction"] == "buy" ): p.buy_security( date=row["Date"], ticker=row["Ticker"], currency=row["Currency"], price=row["Price"], quantity=row["Quantity"], ) elif ( row["Transaction"] == "Sell" or row["Transaction"] == "sell" ): p.sell_security( date=row["Date"], ticker=row["Ticker"], currency=row["Currency"], price=row["Price"], quantity=-row["Quantity"], ) # note the minus sign elif ( row["Transaction"] == "Contribution" or row["Transaction"] == "Funds Received" or row["Transaction"] == "Conversion (incoming)" or row["Transaction"] == "deposit" ): p.deposit_cash( date=row["Date"], currency=row["Currency"], price=1.0, quantity=row["Dollars"], ) elif ( row["Transaction"] == "Distribution" or row["Transaction"] == "Withdrawal" or row["Transaction"] == "withdraw" ): p.withdraw_cash( date=row["Date"], currency=row["Currency"], price=1.0, quantity=-1.0*row["Dollars"], ) elif ( row["Transaction"] == "Dividend" or row["Transaction"] == "Capital gain (LT)" or row["Transaction"] == "Capital gain (ST)" ): p.dividend( date=row["Date"], ticker=row["Ticker"], currency=row["Currency"], price=1.0, quantity=row["Dollars"], ) elif ( row["Transaction"] == "Reinvestment" or row["Transaction"] == "Reinvestment (LT)" or row["Transaction"] == "Reinvestment (ST)" ) and row["Quantity"] != 0: p.buy_security( date=row["Date"], ticker=row["Ticker"], currency=row["Currency"], price=row["Price"], quantity=row["Quantity"], ) else: pass else: pass return p def import_portfolio(path="", name="RobinHood"): """ Reads in CSV file with portfolio transactions Parameters ========== path : path and name of CSV file name : desired portfolio name Returns ======= df : dataframe with transactions from CSV file p : portfolio (Portfolio class object) """ # get all files that match path all_files = glob.glob(path) all_dfs = [] for file in all_files: print("Reading in {}".format(file)) # read in transaction list df = pd.read_csv(file, parse_dates=[0]) # collect all dfs before concatenating them all_dfs.append(df) # final portfolio df to parse df = pd.concat(all_dfs, axis=0, ignore_index=True) # create a new portfolio object p = Portfolio(name=name) # parse parse_portfolio(df, p) return p def import_portfolio_vanguard(path="", name="Vanguard"): """ Reads in CSV file with portfolio transactions in Vanguard format Parameters ========== path : path and name of CSV file name : desired portfolio name Returns ======= df : dataframe with transactions from CSV file p : portfolio (Portfolio class object) """ # get all files that match path all_files = glob.glob(path) all_dfs = [] for file in all_files: print("Reading in {}".format(file)) # read in csv to find beginning of transaction list input_file = csv.reader(open(file, "r"), delimiter=",") for i, row in enumerate(input_file): if len(row) > 0 and "Trade" in row[1]: break # read in transaction list df = pd.read_csv( file, skiprows=i, usecols=[ "Trade Date", "Transaction Type", "Symbol", "Shares", "Share Price", "Principal Amount", ], parse_dates=["Trade Date"], skip_blank_lines=False, ) # rename columns to match standard format df.columns = ["Date", "Transaction", "Ticker", "Quantity", "Price", "Dollars"] # add a currency column to match standard format df["Currency"] = "USD" # collect all dfs before concatenating them all_dfs.append(df) # final portfolio df to parse df = pd.concat(all_dfs, axis=0, ignore_index=True) # create a new portfolio object p = Portfolio(name=name) # parse p = parse_portfolio_vanguard(df, p) return p def import_portfolio_robinhood( access_token, username=None, password=None, name="Robinhood", free_stock=False, merger=False ): """ Accesses Robinhood account and downloads transactions Parameters ========== username : Robinhood username password : <PASSWORD> name : desired portfolio name free_stock : include a free stock not captured by transaction history (see below) Returns ======= df : dataframe with transactions p : portfolio (Portfolio class object) """ if not access_token: if username is None: username = getpass("Username: ") if password is None: password = getpass("Password: ") # use Robinhood api to access account and cancel all standing orders r.login(username, password) # build dataframe Date = [] Transaction = [] Ticker = [] Currency = [] Price = [] Quantity = [] # parse order history orders = r.get_all_stock_orders() print("Parsing orders ...") # pre-pull all tickers before creating order history df Tickerset = [] for order in orders: if len(order["executions"]): Tickerset.append(order["instrument"]) Tickerset = list(set(Tickerset)) # make a lookup dict for ticker symbols Tickersymbols = {} for element in Tickerset: Tickersymbols[element] = r.get_instrument_by_url(element)["symbol"] for order in orders: if len(order["executions"]): Date.append(pd.to_datetime(order["last_transaction_at"])) Transaction.append(order["side"]) Ticker.append(Tickersymbols[order["instrument"]]) Currency.append("USD") Price.append(order["average_price"]) Quantity.append(order["quantity"]) # add deposits transfers = r.get_bank_transfers() print("Parsing bank transfers ...") for transfer in transfers: if transfer["cancel"] is None: Date.append(pd.to_datetime(transfer["created_at"])) Transaction.append(transfer["direction"]) Ticker.append(None) Currency.append("USD") Price.append(1.0) Quantity.append(transfer["amount"]) # add dividends dividends = r.get_dividends() print("Parsing dividends ...") for dividend in dividends: if dividend["state"] == "paid": Date.append(
pd.to_datetime(dividend["paid_at"])
pandas.to_datetime
#!/usr/bin/env python3 # -*- coding: utf-8 -*- """ Created on Tue Jul 24 11:26:20 2018 @author: nbaya """ import os import glob import re import pandas as pd from subprocess import call from joblib import Parallel, delayed import multiprocessing import sys import numpy as np v3_path = "/Users/nbaya/Documents/lab/ukbb-sexdiff/imputed-v3-results/" #Get saved phenotypes malefiles = (list(map(os.path.basename,glob.glob(v3_path+"*.male*.gz")))) #restrict to male files to prevent counting phenotype twice find = re.compile(r"^(.*?)\..*") #regex search term for grabbing all the text before the first period in a string savedphenotypes = list(map(lambda filename: re.search(find,filename).group(1), malefiles)) #list of all downloaded phenotypes (for me, it gives 78: 77 original samples + 20116_2) #Get all phenotypes allphenotypes = pd.Series.tolist(pd.read_table(v3_path+"phenotypes.both_sexes.tsv").iloc[:]["phenotype"]) #list of all phenotypes (male & female) allphenotypes = pd.DataFrame({'phenotype':allphenotypes}) allphenotypes.to_csv(v3_path+"allphenotypeslist.tsv",sep = "\t") # TEMPORARY ------------------------------------------------------------------- #savedFiles= (list(map(os.path.basename,glob.glob(chrX_path+"*.gz")))) #restrict to male files to prevent counting phenotype twice #find = re.compile(r"^(.*?)\..*") #regex search term for grabbing all the text before the first period in a string #newphenotypes = list(map(lambda filename: re.search(find,filename).group(1), savedFiles)) #list of all downloaded phenotypes (for me, it gives 78: 77 original samples + 20116_2) # #nextphenotypes = list(set(savedphenotypes).difference(set(newphenotypes))) # #len(nextphenotypes) # ----------------------------------------------------------------------------- n_cores = multiprocessing.cpu_count() #old method of extracting chrX def prev_chrX_from_saved_phenotypes(ph): tb_male = pd.read_csv((v3_path+ph+".imputed_v3.results.male.tsv.gz"), compression='gzip', sep='\t') #read files tb_female = pd.read_csv((v3_path+ph+".imputed_v3.results.female.tsv.gz"), compression='gzip', sep='\t') chrX_male = tb_male[tb_male.iloc[:]["variant"].str.match('X')][:] #get chrX variants for males chrX_female = tb_female[tb_female.iloc[:]["variant"].str.match('X')][:] #get chrX variants for females chrX = pd.merge(chrX_male,chrX_female, on = 'variant',suffixes = ("_male","_female")) chrX.to_csv(chrX_path+ph+".chrX.tsv.gz",sep = '\t', compression = 'gzip') #Parallel(n_jobs=n_cores,verbose = 50)(delayed(chrX_from_saved_phenotypes)(ph) for ph in savedphenotypes) # TEMPORARY ------------------------------------------------------------------- #Parallel(n_jobs=n_cores,verbose = 50)(delayed(chrX_from_saved_phenotypes)(ph) for ph in nextphenotypes) # ----------------------------------------------------------------------------- #def chrX_from_new_phenotypes(ph): # ## call(["gsutil" ,"cp","gs://ukbb-gwas-imputed-v3-results/export1/"+ph+".**male*", ## "~/Documents/lab/ukbb-sexdiff/chrX/"]) # # # call('gsutil ls gs://ukbb-gwas-imputed-v3-results/export1/'+ph+'.**male*', shell=True) ## "~/Documents/lab/ukbb-sexdiff/chrX/',) ## call(["paste","<(cat", ph, ".imputed_v3.results.female.tsv.gz","|","zcat", ## "|" , "cut -f 1,2,3,5,6,8)", "<(cat", ph,".imputed_v3.results.male.tsv.gz" , ## "|", "zcat", "|", "cut", "-f", "1,2,3,5,6,8)", "|", "awk" ,"\'", "NR==1{", ## "print", "\"variant\",\"n_female\",\"n_male\",\"frq_female\",\"frq_male\",\"beta_female\",\"se_female\",\"p_female\",\"beta_male\",\"se_male\",\"p_male\"", ## "}NR>1", "&&", "$1==$7{", "maff=$3/(2*$2);" , "mafm=$9/(2*$8);" , ## "if(maff > .05 && maff<.95 && mafm > .05 && mafm < .95){", ## "print $1,$2,$8,maff,mafm,$4,$5,$6,$10,$11,$12} }\' | gzip >", ph, ".sexdiff.gz]"]) # #testph = ['46','47'] # #for ph in testph: # chrX_from_new_phenotypes(ph) #for ph in set(allphenotypes).difference(set(savedphenotypes)): #for all phenotypes not saved # ----------------------------------------------------------------------------- chrX_path = "/Users/nbaya/Documents/lab/ukbb-sexdiff/chrX/data/" ph = "1757" #Males tb_male = pd.read_csv((v3_path+ph+".imputed_v3.results.male.tsv.gz"), compression='gzip', sep='\t') #read files chrX_male = tb_male[tb_male.iloc[:]["variant"].str.match('X')][:] #get chrX variants for males chrX_male = chrX_male.reset_index() #necessary for upcoming concat between chrX_male and a3 a1 = np.asarray(chrX_male.iloc[:,0]) a2 = list(map(lambda variant: str(variant).split(':'), a1)) a3 = pd.DataFrame(np.asarray(a2).reshape((len(a2),4))) chrX_male2 = pd.concat([a3[[0,1,3,2]],chrX_male], axis = 1).drop(['index','tstat','AC','ytx'], axis =1) chrX_male2.rename(index=str, columns={0: "CHR", 1: "POS", 3: "EFFECT_ALLELE", 2: "NON_EFFECT_ALLELE", "variant": "SNP", "nCompleteSamples": "N", "beta": "BETA", "se": "SE", "pval": "P_VAL"}) chrX_male2.to_csv(chrX_path+ph+".chrX.male.tsv.gz",sep = '\t', compression = 'gzip') #Females tb_female =
pd.read_csv((v3_path+ph+".imputed_v3.results.female.tsv.gz"), compression='gzip', sep='\t')
pandas.read_csv
import os import sys import pytest from shapely.geometry import Polygon, GeometryCollection from pandas import DataFrame, Timestamp from pandas.testing import assert_frame_equal from tests.fixtures import * from tests.test_core_components_route import self_looping_route, route from tests.test_core_components_service import service from genet.inputs_handler import matsim_reader, gtfs_reader from genet.inputs_handler import read from genet.schedule_elements import Schedule, Service, Route, Stop, read_vehicle_types from genet.utils import plot, spatial from genet.validate import schedule_validation from genet.exceptions import ServiceIndexError, RouteIndexError, StopIndexError, UndefinedCoordinateSystemError, \ ConflictingStopData, InconsistentVehicleModeError sys.path.insert(0, os.path.abspath(os.path.join(os.path.dirname(__file__), ".."))) pt2matsim_schedule_file = os.path.abspath( os.path.join(os.path.dirname(__file__), "test_data", "matsim", "schedule.xml")) pt2matsim_vehicles_file = os.path.abspath( os.path.join(os.path.dirname(__file__), "test_data", "matsim", "vehicles.xml")) @pytest.fixture() def schedule(): route_1 = Route(route_short_name='name', mode='bus', id='1', stops=[Stop(id='1', x=4, y=2, epsg='epsg:27700'), Stop(id='2', x=1, y=2, epsg='epsg:27700'), Stop(id='3', x=3, y=3, epsg='epsg:27700'), Stop(id='4', x=7, y=5, epsg='epsg:27700')], trips={'trip_id': ['1', '2'], 'trip_departure_time': ['13:00:00', '13:30:00'], 'vehicle_id': ['veh_1_bus', 'veh_2_bus']}, arrival_offsets=['00:00:00', '00:03:00', '00:07:00', '00:13:00'], departure_offsets=['00:00:00', '00:05:00', '00:09:00', '00:15:00']) route_2 = Route(route_short_name='name_2', mode='bus', id='2', stops=[Stop(id='5', x=4, y=2, epsg='epsg:27700'), Stop(id='6', x=1, y=2, epsg='epsg:27700'), Stop(id='7', x=3, y=3, epsg='epsg:27700'), Stop(id='8', x=7, y=5, epsg='epsg:27700')], trips={'trip_id': ['1', '2'], 'trip_departure_time': ['11:00:00', '13:00:00'], 'vehicle_id': ['veh_3_bus', 'veh_4_bus']}, arrival_offsets=['00:00:00', '00:03:00', '00:07:00', '00:13:00'], departure_offsets=['00:00:00', '00:05:00', '00:09:00', '00:15:00']) service = Service(id='service', routes=[route_1, route_2]) return Schedule(epsg='epsg:27700', services=[service]) @pytest.fixture() def strongly_connected_schedule(): route_1 = Route(route_short_name='name', mode='bus', stops=[Stop(id='1', x=4, y=2, epsg='epsg:27700', name='Stop_1'), Stop(id='2', x=1, y=2, epsg='epsg:27700', name='Stop_2'), Stop(id='3', x=3, y=3, epsg='epsg:27700', name='Stop_3'), Stop(id='4', x=7, y=5, epsg='epsg:27700', name='Stop_4'), Stop(id='1', x=4, y=2, epsg='epsg:27700', name='Stop_1')], trips={'trip_id': ['1', '2'], 'trip_departure_time': ['11:00:00', '13:00:00'], 'vehicle_id': ['veh_1_bus', 'veh_2_bus']}, arrival_offsets=['1', '2'], departure_offsets=['1', '2'], id='1') route_2 = Route(route_short_name='name_2', mode='bus', stops=[Stop(id='5', x=4, y=2, epsg='epsg:27700', name='Stop_5'), Stop(id='2', x=1, y=2, epsg='epsg:27700', name='Stop_2'), Stop(id='7', x=3, y=3, epsg='epsg:27700', name='Stop_7'), Stop(id='8', x=7, y=5, epsg='epsg:27700', name='Stop_8'), Stop(id='5', x=4, y=2, epsg='epsg:27700', name='Stop_5')], trips={'trip_id': ['1', '2'], 'trip_departure_time': ['11:00:00', '13:00:00'], 'vehicle_id': ['veh_3_bus', 'veh_4_bus']}, arrival_offsets=['1', '2', '3', '4', '5'], departure_offsets=['1', '2', '3', '4', '5'], id='2') service = Service(id='service', routes=[route_1, route_2]) return Schedule(epsg='epsg:27700', services=[service]) def test_initiating_schedule(schedule): s = schedule assert_semantically_equal(dict(s._graph.nodes(data=True)), { '5': {'services': {'service'}, 'routes': {'2'}, 'id': '5', 'x': 4.0, 'y': 2.0, 'epsg': 'epsg:27700', 'name': '', 'lat': 49.76682779861249, 'lon': -7.557106577683727, 's2_id': 5205973754090531959, 'additional_attributes': set()}, '6': {'services': {'service'}, 'routes': {'2'}, 'id': '6', 'x': 1.0, 'y': 2.0, 'epsg': 'epsg:27700', 'name': '', 'lat': 49.766825803756994, 'lon': -7.557148039524952, 's2_id': 5205973754090365183, 'additional_attributes': set()}, '7': {'services': {'service'}, 'routes': {'2'}, 'id': '7', 'x': 3.0, 'y': 3.0, 'epsg': 'epsg:27700', 'name': '', 'lat': 49.76683608549253, 'lon': -7.557121424907424, 's2_id': 5205973754090203369, 'additional_attributes': set()}, '8': {'services': {'service'}, 'routes': {'2'}, 'id': '8', 'x': 7.0, 'y': 5.0, 'epsg': 'epsg:27700', 'name': '', 'lat': 49.766856648946295, 'lon': -7.5570681956375, 's2_id': 5205973754097123809, 'additional_attributes': set()}, '1': {'services': {'service'}, 'routes': {'1'}, 'id': '1', 'x': 4.0, 'y': 2.0, 'epsg': 'epsg:27700', 'name': '', 'lat': 49.76682779861249, 'lon': -7.557106577683727, 's2_id': 5205973754090531959, 'additional_attributes': set()}, '4': {'services': {'service'}, 'routes': {'1'}, 'id': '4', 'x': 7.0, 'y': 5.0, 'epsg': 'epsg:27700', 'name': '', 'lat': 49.766856648946295, 'lon': -7.5570681956375, 's2_id': 5205973754097123809, 'additional_attributes': set()}, '2': {'services': {'service'}, 'routes': {'1'}, 'id': '2', 'x': 1.0, 'y': 2.0, 'epsg': 'epsg:27700', 'name': '', 'lat': 49.766825803756994, 'lon': -7.557148039524952, 's2_id': 5205973754090365183, 'additional_attributes': set()}, '3': {'services': {'service'}, 'routes': {'1'}, 'id': '3', 'x': 3.0, 'y': 3.0, 'epsg': 'epsg:27700', 'name': '', 'lat': 49.76683608549253, 'lon': -7.557121424907424, 's2_id': 5205973754090203369, 'additional_attributes': set()}}) assert_semantically_equal(s._graph.edges(data=True)._adjdict, {'5': {'6': {'services': {'service'}, 'routes': {'2'}}}, '6': {'7': {'services': {'service'}, 'routes': {'2'}}}, '7': {'8': {'services': {'service'}, 'routes': {'2'}}}, '8': {}, '4': {}, '1': {'2': {'services': {'service'}, 'routes': {'1'}}}, '3': {'4': {'services': {'service'}, 'routes': {'1'}}}, '2': {'3': {'services': {'service'}, 'routes': {'1'}}}}) log = s._graph.graph.pop('change_log') assert log.empty assert_semantically_equal(s._graph.graph, {'name': 'Schedule graph', 'routes': {'2': {'route_short_name': 'name_2', 'mode': 'bus', 'trips': {'trip_id': ['1', '2'], 'trip_departure_time': ['11:00:00', '13:00:00'], 'vehicle_id': ['veh_3_bus', 'veh_4_bus']}, 'arrival_offsets': ['00:00:00', '00:03:00', '00:07:00', '00:13:00'], 'departure_offsets': ['00:00:00', '00:05:00', '00:09:00', '00:15:00'], 'route_long_name': '', 'id': '2', 'route': [], 'await_departure': [], 'ordered_stops': ['5', '6', '7', '8']}, '1': {'route_short_name': 'name', 'mode': 'bus', 'trips': {'trip_id': ['1', '2'], 'trip_departure_time': ['13:00:00', '13:30:00'], 'vehicle_id': ['veh_1_bus', 'veh_2_bus']}, 'arrival_offsets': ['00:00:00', '00:03:00', '00:07:00', '00:13:00'], 'departure_offsets': ['00:00:00', '00:05:00', '00:09:00', '00:15:00'], 'route_long_name': '', 'id': '1', 'route': [], 'await_departure': [], 'ordered_stops': ['1', '2', '3', '4']}}, 'services': {'service': {'id': 'service', 'name': 'name'}}, 'route_to_service_map': {'1': 'service', '2': 'service'}, 'service_to_route_map': {'service': ['1', '2']}, 'crs': {'init': 'epsg:27700'}}) def test_initiating_schedule_with_non_uniquely_indexed_objects(): route_1 = Route(route_short_name='name', mode='bus', id='', stops=[Stop(id='1', x=4, y=2, epsg='epsg:27700'), Stop(id='2', x=1, y=2, epsg='epsg:27700'), Stop(id='3', x=3, y=3, epsg='epsg:27700'), Stop(id='4', x=7, y=5, epsg='epsg:27700')], trips={'trip_id': ['1', '2'], 'trip_departure_time': ['13:00:00', '13:30:00'], 'vehicle_id': ['veh_1_bus', 'veh_2_bus']}, arrival_offsets=['00:00:00', '00:03:00', '00:07:00', '00:13:00'], departure_offsets=['00:00:00', '00:05:00', '00:09:00', '00:15:00']) route_2 = Route(route_short_name='name_2', mode='bus', id='', stops=[Stop(id='5', x=4, y=2, epsg='epsg:27700'), Stop(id='6', x=1, y=2, epsg='epsg:27700'), Stop(id='7', x=3, y=3, epsg='epsg:27700'), Stop(id='8', x=7, y=5, epsg='epsg:27700')], trips={'trip_id': ['1', '2'], 'trip_departure_time': ['11:00:00', '13:00:00'], 'vehicle_id': ['veh_2_bus', 'veh_3_bus']}, arrival_offsets=['00:00:00', '00:03:00', '00:07:00', '00:13:00'], departure_offsets=['00:00:00', '00:05:00', '00:09:00', '00:15:00']) service1 = Service(id='service', routes=[route_1, route_2]) service2 = Service(id='service', routes=[route_1, route_2]) s = Schedule(epsg='epsg:27700', services=[service1, service2]) assert s.number_of_routes() == 4 assert len(s) == 2 def test__getitem__returns_a_service(test_service): services = [test_service] schedule = Schedule(services=services, epsg='epsg:4326') assert schedule['service'] == services[0] def test_accessing_route(schedule): assert schedule.route('1') == Route(route_short_name='name', mode='bus', id='1', stops=[Stop(id='1', x=4, y=2, epsg='epsg:27700'), Stop(id='2', x=1, y=2, epsg='epsg:27700'), Stop(id='3', x=3, y=3, epsg='epsg:27700'), Stop(id='4', x=7, y=5, epsg='epsg:27700')], trips={'trip_id': ['1', '2'], 'trip_departure_time': ['1', '2'], 'vehicle_id': ['veh_1_bus', 'veh_2_bus']}, arrival_offsets=['00:00:00', '00:03:00', '00:07:00', '00:13:00'], departure_offsets=['00:00:00', '00:05:00', '00:09:00', '00:15:00']) def test__repr__shows_number_of_services(mocker): mocker.patch.object(Schedule, '__len__', return_value=0) schedule = Schedule('epsg:27700') s = schedule.__repr__() assert 'instance at' in s assert 'services' in s Schedule.__len__.assert_called() def test__str__shows_info(): schedule = Schedule('epsg:27700') assert 'Number of services' in schedule.__str__() assert 'Number of routes' in schedule.__str__() def test__len__returns_the_number_of_services(test_service): services = [test_service] schedule = Schedule(services=services, epsg='epsg:4326') assert len(schedule) == 1 def test_print_shows_info(mocker): mocker.patch.object(Schedule, 'info') schedule = Schedule('epsg:27700') schedule.print() Schedule.info.assert_called_once() def test_info_shows_number_of_services_and_routes(mocker): mocker.patch.object(Schedule, '__len__', return_value=0) mocker.patch.object(Schedule, 'number_of_routes') schedule = Schedule('epsg:27700') schedule.print() Schedule.__len__.assert_called() Schedule.number_of_routes.assert_called_once() def test_plot_delegates_to_util_plot_plot_graph_routes(mocker, schedule): mocker.patch.object(plot, 'plot_graph') schedule.plot() plot.plot_graph.assert_called_once() def test_reproject_changes_projection_for_all_stops_in_route(): correct_x_y = {'x': -0.14967658860132668, 'y': 51.52393050617373} schedule = Schedule( 'epsg:27700', [Service(id='10314', routes=[ Route( route_short_name='12', mode='bus', stops=[Stop(id='26997928P', x='528464.1342843144', y='182179.7435136598', epsg='epsg:27700'), Stop(id='26997928P.link:1', x='528464.1342843144', y='182179.7435136598', epsg='epsg:27700')], route=['1'], trips={'trip_id': ['VJ00938baa194cee94700312812d208fe79f3297ee_04:40:00'], 'trip_departure_time': ['04:40:00'], 'vehicle_id': ['veh_1_bus']}, arrival_offsets=['00:00:00', '00:02:00'], departure_offsets=['00:00:00', '00:02:00'] ) ])]) schedule.reproject('epsg:4326') _stops = list(schedule.stops()) stops = dict(zip([stop.id for stop in _stops], _stops)) assert_semantically_equal({'x': stops['26997928P'].x, 'y': stops['26997928P'].y}, correct_x_y) assert_semantically_equal({'x': stops['26997928P.link:1'].x, 'y': stops['26997928P.link:1'].y}, correct_x_y) def test_adding_merges_separable_schedules(route): schedule = Schedule(epsg='epsg:4326', services=[Service(id='1', routes=[route])]) before_graph_nodes = schedule.reference_nodes() before_graph_edges = schedule.reference_edges() a = Stop(id='10', x=40, y=20, epsg='epsg:27700', linkRefId='1') b = Stop(id='20', x=10, y=20, epsg='epsg:27700', linkRefId='2') c = Stop(id='30', x=30, y=30, epsg='epsg:27700', linkRefId='3') d = Stop(id='40', x=70, y=50, epsg='epsg:27700', linkRefId='4') schedule_to_be_added = Schedule(epsg='epsg:4326', services=[Service(id='2', routes=[ Route( route_short_name='name', mode='bus', stops=[a, b, c, d], trips={'trip_id': ['1', '2'], 'trip_departure_time': ['04:40:00', '05:40:00'], 'vehicle_id': ['veh_1_bus', 'veh_2_bus']}, arrival_offsets=['00:00:00', '00:03:00', '00:07:00', '00:13:00'], departure_offsets=['00:00:00', '00:05:00', '00:09:00', '00:15:00'], route=['1', '2', '3', '4'], id='2') ])]) tba_graph_nodes = schedule_to_be_added.reference_nodes() tba_graph_edges = schedule_to_be_added.reference_edges() schedule.add(schedule_to_be_added) assert '1' in list(schedule.service_ids()) assert '2' in list(schedule.service_ids()) assert '1' in list(schedule.route_ids()) assert '2' in list(schedule.route_ids()) assert schedule.epsg == 'epsg:4326' assert schedule.epsg == schedule_to_be_added.epsg assert set(schedule._graph.nodes()) == set(before_graph_nodes) | set(tba_graph_nodes) assert set(schedule._graph.edges()) == set(before_graph_edges) | set(tba_graph_edges) def test_adding_throws_error_when_schedules_not_separable(test_service): schedule = Schedule(epsg='epsg:4326', services=[test_service]) assert 'service' in schedule schedule_to_be_added = Schedule(epsg='epsg:4326', services=[test_service]) with pytest.raises(NotImplementedError) as e: schedule.add(schedule_to_be_added) assert 'This method only supports adding non overlapping services' in str(e.value) def test_adding_calls_on_reproject_when_schedules_dont_have_matching_epsg(test_service, different_test_service, mocker): mocker.patch.object(Schedule, 'reproject') schedule = Schedule(services=[test_service], epsg='epsg:27700') assert schedule.has_service('service') schedule_to_be_added = Schedule(services=[different_test_service], epsg='epsg:4326') schedule.add(schedule_to_be_added) schedule_to_be_added.reproject.assert_called_once_with('epsg:27700') def test_service_ids_returns_keys_of_the_services_dict(test_service): services = [test_service] schedule = Schedule(services=services, epsg='epsg:4326') assert set(schedule.service_ids()) == {'service'} def test_routes_returns_service_ids_with_unique_routes(route, similar_non_exact_test_route): services = [Service(id='1', routes=[route]), Service(id='2', routes=[similar_non_exact_test_route])] schedule = Schedule(services=services, epsg='epsg:4326') routes = list(schedule.routes()) assert route in routes assert similar_non_exact_test_route in routes assert len(routes) == 2 def test_number_of_routes_counts_routes(test_service, different_test_service): schedule = Schedule(services=[test_service, different_test_service], epsg='epsg:4362') assert schedule.number_of_routes() == 3 def test_service_attribute_data_under_key(schedule): df = schedule.service_attribute_data(keys='name').sort_index() assert_frame_equal(df, DataFrame( {'name': {'service': 'name'}} )) def test_service_attribute_data_under_keys(schedule): df = schedule.service_attribute_data(keys=['name', 'id']).sort_index() assert_frame_equal(df, DataFrame( {'name': {'service': 'name'}, 'id': {'service': 'service'}} )) def test_route_attribute_data_under_key(schedule): df = schedule.route_attribute_data(keys='route_short_name').sort_index() assert_frame_equal(df, DataFrame( {'route_short_name': {'1': 'name', '2': 'name_2'}} )) def test_route_attribute_data_under_keys(schedule): df = schedule.route_attribute_data(keys=['route_short_name', 'mode']).sort_index() assert_frame_equal(df, DataFrame( {'route_short_name': {'1': 'name', '2': 'name_2'}, 'mode': {'1': 'bus', '2': 'bus'}} )) def test_stop_attribute_data_under_key(schedule): df = schedule.stop_attribute_data(keys='x').sort_index() assert_frame_equal(df, DataFrame( {'x': {'1': 4.0, '2': 1.0, '3': 3.0, '4': 7.0, '5': 4.0, '6': 1.0, '7': 3.0, '8': 7.0}})) def test_stop_attribute_data_under_keys(schedule): df = schedule.stop_attribute_data(keys=['x', 'y']).sort_index() assert_frame_equal(df, DataFrame( {'x': {'1': 4.0, '2': 1.0, '3': 3.0, '4': 7.0, '5': 4.0, '6': 1.0, '7': 3.0, '8': 7.0}, 'y': {'1': 2.0, '2': 2.0, '3': 3.0, '4': 5.0, '5': 2.0, '6': 2.0, '7': 3.0, '8': 5.0}})) def test_extracting_services_on_condition(schedule): ids = schedule.extract_service_ids_on_attributes(conditions={'name': 'name'}) assert ids == ['service'] def test_extracting_routes_on_condition(schedule): ids = schedule.extract_route_ids_on_attributes(conditions=[{'mode': 'bus'}, {'route_short_name': 'name_2'}], how=all) assert ids == ['2'] def test_extracting_stops_on_condition(schedule): ids = schedule.extract_stop_ids_on_attributes(conditions=[{'x': (0, 4)}, {'y': (0, 2)}], how=all) assert set(ids) == {'5', '6', '1', '2'} def test_getting_services_on_modal_condition(schedule): service_ids = schedule.services_on_modal_condition(modes='bus') assert service_ids == ['service'] def test_getting_routes_on_modal_condition(schedule): route_ids = schedule.routes_on_modal_condition(modes='bus') assert set(route_ids) == {'1', '2'} def test_getting_stops_on_modal_condition(schedule): stop_ids = schedule.stops_on_modal_condition(modes='bus') assert set(stop_ids) == {'5', '6', '7', '8', '3', '1', '4', '2'} test_geojson = os.path.abspath( os.path.join(os.path.dirname(__file__), "test_data", "test_geojson.geojson")) def test_getting_stops_on_spatial_condition_with_geojson(schedule, mocker): mocker.patch.object(spatial, 'read_geojson_to_shapely', return_value=GeometryCollection( [Polygon([(-7.6, 49.7), (-7.4, 49.7), (-7.4, 49.8), (-7.6, 49.8), (-7.6, 49.7)])])) stops = schedule.stops_on_spatial_condition(test_geojson) assert set(stops) == {'5', '6', '7', '8', '2', '4', '3', '1'} def test_getting_stops_on_spatial_condition_with_shapely_polygon(schedule): p = Polygon([(-7.6, 49.7), (-7.4, 49.7), (-7.4, 49.8), (-7.6, 49.8), (-7.6, 49.7)]) stops = schedule.stops_on_spatial_condition(p) assert set(stops) == {'5', '6', '7', '8', '2', '4', '3', '1'} def test_getting_stops_on_spatial_condition_with_s2_hex_region(schedule): s2_region = '4837,4839,483f5,4844,4849' stops = schedule.stops_on_spatial_condition(s2_region) assert set(stops) == {'5', '6', '7', '8', '2', '4', '3', '1'} def test_getting_routes_intersecting_spatial_region(schedule): p = Polygon([(-7.6, 49.7), (-7.4, 49.7), (-7.4, 49.8), (-7.6, 49.8), (-7.6, 49.7)]) routes = schedule.routes_on_spatial_condition(p) assert set(routes) == {'1', '2'} def test_getting_routes_contained_spatial_region(schedule): p = Polygon([(-7.6, 49.7), (-7.4, 49.7), (-7.4, 49.8), (-7.6, 49.8), (-7.6, 49.7)]) routes = schedule.routes_on_spatial_condition(p, how='within') assert set(routes) == {'1', '2'} def test_getting_services_intersecting_spatial_region(schedule): p = Polygon([(-7.6, 49.7), (-7.4, 49.7), (-7.4, 49.8), (-7.6, 49.8), (-7.6, 49.7)]) routes = schedule.services_on_spatial_condition(p) assert set(routes) == {'service'} def test_getting_services_contained_spatial_region(schedule): p = Polygon([(-7.6, 49.7), (-7.4, 49.7), (-7.4, 49.8), (-7.6, 49.8), (-7.6, 49.7)]) routes = schedule.services_on_spatial_condition(p, how='within') assert set(routes) == {'service'} def test_applying_attributes_to_service(schedule): assert schedule._graph.graph['services']['service']['name'] == 'name' assert schedule['service'].name == 'name' schedule.apply_attributes_to_services({'service': {'name': 'new_name'}}) assert schedule._graph.graph['services']['service']['name'] == 'new_name' assert schedule['service'].name == 'new_name' def test_applying_attributes_changing_id_to_service_throws_error(schedule): assert 'service' in schedule._graph.graph['services'] assert schedule._graph.graph['services']['service']['id'] == 'service' assert schedule['service'].id == 'service' with pytest.raises(NotImplementedError) as e: schedule.apply_attributes_to_services({'service': {'id': 'new_id'}}) assert 'Changing id can only be done via the `reindex` method' in str(e.value) def test_applying_attributes_to_route(schedule): assert schedule._graph.graph['routes']['1']['route_short_name'] == 'name' assert schedule.route('1').route_short_name == 'name' schedule.apply_attributes_to_routes({'1': {'route_short_name': 'new_name'}}) assert schedule._graph.graph['routes']['1']['route_short_name'] == 'new_name' assert schedule.route('1').route_short_name == 'new_name' def test_applying_mode_attributes_to_route_results_in_correct_mode_methods(schedule): assert schedule.route('1').mode == 'bus' assert schedule.modes() == {'bus'} assert schedule.mode_graph_map() == { 'bus': {('3', '4'), ('2', '3'), ('1', '2'), ('6', '7'), ('5', '6'), ('7', '8')}} schedule.apply_attributes_to_routes({'1': {'mode': 'new_bus'}}) assert schedule.route('1').mode == 'new_bus' assert schedule.modes() == {'bus', 'new_bus'} assert schedule['service'].modes() == {'bus', 'new_bus'} assert schedule.mode_graph_map() == {'bus': {('7', '8'), ('6', '7'), ('5', '6')}, 'new_bus': {('3', '4'), ('1', '2'), ('2', '3')}} assert schedule['service'].mode_graph_map() == {'bus': {('6', '7'), ('7', '8'), ('5', '6')}, 'new_bus': {('3', '4'), ('2', '3'), ('1', '2')}} def test_applying_attributes_changing_id_to_route_throws_error(schedule): assert '1' in schedule._graph.graph['routes'] assert schedule._graph.graph['routes']['1']['id'] == '1' assert schedule.route('1').id == '1' with pytest.raises(NotImplementedError) as e: schedule.apply_attributes_to_routes({'1': {'id': 'new_id'}}) assert 'Changing id can only be done via the `reindex` method' in str(e.value) def test_applying_attributes_to_stop(schedule): assert schedule._graph.nodes['5']['name'] == '' assert schedule.stop('5').name == '' schedule.apply_attributes_to_stops({'5': {'name': 'new_name'}}) assert schedule._graph.nodes['5']['name'] == 'new_name' assert schedule.stop('5').name == 'new_name' def test_applying_attributes_changing_id_to_stop_throws_error(schedule): assert '5' in schedule._graph.nodes assert schedule._graph.nodes['5']['id'] == '5' assert schedule.stop('5').id == '5' with pytest.raises(NotImplementedError) as e: schedule.apply_attributes_to_routes({'5': {'id': 'new_id'}}) assert 'Changing id can only be done via the `reindex` method' in str(e.value) def change_name(attrib): return 'new_name' def test_applying_function_to_services(schedule): schedule.apply_function_to_services(function=change_name, location='name') assert schedule._graph.graph['services']['service']['name'] == 'new_name' assert schedule['service'].name == 'new_name' def test_applying_function_to_routes(schedule): schedule.apply_function_to_routes(function=change_name, location='route_short_name') for route in schedule.routes(): assert schedule._graph.graph['routes'][route.id]['route_short_name'] == 'new_name' assert route.route_short_name == 'new_name' def test_applying_function_to_stops(schedule): schedule.apply_function_to_stops(function=change_name, location='name') for stop in schedule.stops(): assert stop.name == 'new_name' assert schedule._graph.nodes[stop.id]['name'] == 'new_name' def test_adding_service(schedule, service): service.reindex('different_service') service.route('1').reindex('different_service_1') service.route('2').reindex('different_service_2') schedule.add_service(service) assert set(schedule.route_ids()) == {'1', '2', 'different_service_1', 'different_service_2'} assert set(schedule.service_ids()) == {'service', 'different_service'} assert_semantically_equal(schedule._graph.graph['route_to_service_map'], {'1': 'service', '2': 'service', 'different_service_1': 'different_service', 'different_service_2': 'different_service'}) assert_semantically_equal(schedule._graph.graph['service_to_route_map'], {'service': ['1', '2'], 'different_service': ['different_service_1', 'different_service_2']}) def test_adding_service_with_clashing_route_ids(schedule, service): service.reindex('different_service') schedule.add_service(service) assert set(schedule.route_ids()) == {'1', '2', 'different_service_1', 'different_service_2'} assert set(schedule.service_ids()) == {'service', 'different_service'} assert_semantically_equal(schedule._graph.graph['route_to_service_map'], {'1': 'service', '2': 'service', 'different_service_1': 'different_service', 'different_service_2': 'different_service'}) assert_semantically_equal(schedule._graph.graph['service_to_route_map'], {'service': ['1', '2'], 'different_service': ['different_service_1', 'different_service_2']}) def test_adding_service_with_clashing_id_throws_error(schedule, service): with pytest.raises(ServiceIndexError) as e: schedule.add_service(service) assert 'already exists' in str(e.value) def test_adding_service_with_clashing_stops_data_does_not_overwrite_existing_stops(schedule): expected_stops_data = { '5': {'services': {'service', 'some_id'}, 'routes': {'2', '3'}, 'id': '5', 'x': 4.0, 'y': 2.0, 'epsg': 'epsg:27700', 'name': '', 'lat': 49.76682779861249, 'lon': -7.557106577683727, 's2_id': 5205973754090531959, 'additional_attributes': set()}, '1': {'services': {'service', 'some_id'}, 'routes': {'1', '3'}, 'id': '1', 'x': 4.0, 'y': 2.0, 'epsg': 'epsg:27700', 'name': '', 'lat': 49.76682779861249, 'lon': -7.557106577683727, 's2_id': 5205973754090531959, 'additional_attributes': set()}, '2': {'services': {'service', 'some_id'}, 'routes': {'1', '3'}, 'id': '2', 'x': 1.0, 'y': 2.0, 'epsg': 'epsg:27700', 'name': '', 'lat': 49.766825803756994, 'lon': -7.557148039524952, 's2_id': 5205973754090365183, 'additional_attributes': set()}} r = Route( id='3', route_short_name='name', mode='bus', trips={}, arrival_offsets=[], departure_offsets=[], stops=[Stop(id='1', x=1, y=2, epsg='epsg:27700'), Stop(id='2', x=0, y=1, epsg='epsg:27700'), Stop(id='5', x=0, y=2, epsg='epsg:27700')] ) assert r.ordered_stops == ['1', '2', '5'] s = Service(id='some_id', routes=[r]) schedule.add_service(s, force=True) assert_semantically_equal(dict(s.graph().nodes(data=True)), expected_stops_data) assert_semantically_equal(s.graph()['1']['2'], {'routes': {'1', '3'}, 'services': {'some_id', 'service'}}) assert_semantically_equal(s.graph()['2']['5'], {'routes': {'3'}, 'services': {'some_id'}}) def test_adding_service_with_clashing_stops_data_without_force_flag_throws_error(schedule): r = Route( id='3', route_short_name='name', mode='bus', trips={}, arrival_offsets=[], departure_offsets=[], stops=[Stop(id='1', x=1, y=2, epsg='epsg:27700'), Stop(id='2', x=0, y=1, epsg='epsg:27700'), Stop(id='5', x=0, y=2, epsg='epsg:27700')] ) with pytest.raises(ConflictingStopData) as e: schedule.add_service(Service(id='some_id', routes=[r])) assert 'The following stops would inherit data' in str(e.value) def test_removing_service(schedule): schedule.remove_service('service') assert not set(schedule.route_ids()) assert not set(schedule.service_ids()) assert not schedule._graph.graph['route_to_service_map'] assert not schedule._graph.graph['service_to_route_map'] def test_adding_route(schedule, route): route.reindex('new_id') schedule.add_route('service', route) assert set(schedule.route_ids()) == {'1', '2', 'new_id'} assert set(schedule.service_ids()) == {'service'} assert_semantically_equal(schedule._graph.graph['route_to_service_map'], {'1': 'service', '2': 'service', 'new_id': 'service'}) assert_semantically_equal(schedule._graph.graph['service_to_route_map'], {'service': ['1', '2', 'new_id']}) def test_adding_route_with_clashing_id(schedule, route): schedule.add_route('service', route) assert set(schedule.route_ids()) == {'1', '2', 'service_3'} assert set(schedule.service_ids()) == {'service'} assert_semantically_equal(schedule._graph.graph['route_to_service_map'], {'1': 'service', '2': 'service', 'service_3': 'service'}) assert_semantically_equal(schedule._graph.graph['service_to_route_map'], {'service': ['1', '2', 'service_3']}) def test_adding_route_to_non_existing_service_throws_error(schedule, route): with pytest.raises(ServiceIndexError) as e: schedule.add_route('service_that_doesnt_exist', route) assert 'does not exist' in str(e.value) def test_creating_a_route_to_add_using_id_references_to_existing_stops_inherits_schedule_stops_data(schedule): expected_stops_data = { '5': {'services': {'service'}, 'routes': {'2', '3'}, 'id': '5', 'x': 4.0, 'y': 2.0, 'epsg': 'epsg:27700', 'name': '', 'lat': 49.76682779861249, 'lon': -7.557106577683727, 's2_id': 5205973754090531959, 'additional_attributes': set()}, '1': {'services': {'service'}, 'routes': {'1', '3'}, 'id': '1', 'x': 4.0, 'y': 2.0, 'epsg': 'epsg:27700', 'name': '', 'lat': 49.76682779861249, 'lon': -7.557106577683727, 's2_id': 5205973754090531959, 'additional_attributes': set()}, '2': {'services': {'service'}, 'routes': {'1', '3'}, 'id': '2', 'x': 1.0, 'y': 2.0, 'epsg': 'epsg:27700', 'name': '', 'lat': 49.766825803756994, 'lon': -7.557148039524952, 's2_id': 5205973754090365183, 'additional_attributes': set()}} r = Route( id='3', route_short_name='name', mode='bus', trips={}, arrival_offsets=[], departure_offsets=[], stops=['1', '2', '5'] ) assert r.ordered_stops == ['1', '2', '5'] assert_semantically_equal(dict(r._graph.nodes(data=True)), {'1': {'routes': {'3'}}, '2': {'routes': {'3'}}, '5': {'routes': {'3'}}}) assert_semantically_equal(r._graph.edges(data=True)._adjdict, {'1': {'2': {'routes': {'3'}}}, '2': {'5': {'routes': {'3'}}}, '5': {}}) schedule.add_route('service', r) assert_semantically_equal(dict(r.graph().nodes(data=True)), expected_stops_data) assert_semantically_equal(r.graph()['1']['2'], {'routes': {'1', '3'}, 'services': {'service'}}) assert_semantically_equal(r.graph()['2']['5'], {'routes': {'3'}, 'services': {'service'}}) def test_creating_a_route_to_add_giving_existing_schedule_stops(schedule): expected_stops_data = { '5': {'services': {'service'}, 'routes': {'2', '3'}, 'id': '5', 'x': 4.0, 'y': 2.0, 'epsg': 'epsg:27700', 'name': '', 'lat': 49.76682779861249, 'lon': -7.557106577683727, 's2_id': 5205973754090531959, 'additional_attributes': set()}, '1': {'services': {'service'}, 'routes': {'1', '3'}, 'id': '1', 'x': 4.0, 'y': 2.0, 'epsg': 'epsg:27700', 'name': '', 'lat': 49.76682779861249, 'lon': -7.557106577683727, 's2_id': 5205973754090531959, 'additional_attributes': set()}, '2': {'services': {'service'}, 'routes': {'1', '3'}, 'id': '2', 'x': 1.0, 'y': 2.0, 'epsg': 'epsg:27700', 'name': '', 'lat': 49.766825803756994, 'lon': -7.557148039524952, 's2_id': 5205973754090365183, 'additional_attributes': set()}} r = Route( id='3', route_short_name='name', mode='bus', trips={}, arrival_offsets=[], departure_offsets=[], stops=[schedule.stop('1'), schedule.stop('2'), schedule.stop('5')] ) assert r.ordered_stops == ['1', '2', '5'] assert_semantically_equal(dict(r._graph.nodes(data=True)), {'1': {'routes': {'3'}, 'id': '1', 'x': 4.0, 'y': 2.0, 'epsg': 'epsg:27700', 'name': '', 'lat': 49.76682779861249, 'lon': -7.557106577683727, 's2_id': 5205973754090531959, 'additional_attributes': set()}, '2': {'routes': {'3'}, 'id': '2', 'x': 1.0, 'y': 2.0, 'epsg': 'epsg:27700', 'name': '', 'lat': 49.766825803756994, 'lon': -7.557148039524952, 's2_id': 5205973754090365183, 'additional_attributes': set()}, '5': {'routes': {'3'}, 'id': '5', 'x': 4.0, 'y': 2.0, 'epsg': 'epsg:27700', 'name': '', 'lat': 49.76682779861249, 'lon': -7.557106577683727, 's2_id': 5205973754090531959, 'additional_attributes': set()}}) assert_semantically_equal(r._graph.edges(data=True)._adjdict, {'1': {'2': {'routes': {'3'}}}, '2': {'5': {'routes': {'3'}}}, '5': {}}) schedule.add_route('service', r) assert_semantically_equal(dict(r.graph().nodes(data=True)), expected_stops_data) assert_semantically_equal(r.graph()['1']['2'], {'routes': {'1', '3'}, 'services': {'service'}}) assert_semantically_equal(r.graph()['2']['5'], {'routes': {'3'}, 'services': {'service'}}) def test_adding_route_with_clashing_stops_data_does_not_overwrite_existing_stops(schedule): expected_stops_data = { '5': {'services': {'service'}, 'routes': {'2', '3'}, 'id': '5', 'x': 4.0, 'y': 2.0, 'epsg': 'epsg:27700', 'name': '', 'lat': 49.76682779861249, 'lon': -7.557106577683727, 's2_id': 5205973754090531959, 'additional_attributes': set()}, '1': {'services': {'service'}, 'routes': {'1', '3'}, 'id': '1', 'x': 4.0, 'y': 2.0, 'epsg': 'epsg:27700', 'name': '', 'lat': 49.76682779861249, 'lon': -7.557106577683727, 's2_id': 5205973754090531959, 'additional_attributes': set()}, '2': {'services': {'service'}, 'routes': {'1', '3'}, 'id': '2', 'x': 1.0, 'y': 2.0, 'epsg': 'epsg:27700', 'name': '', 'lat': 49.766825803756994, 'lon': -7.557148039524952, 's2_id': 5205973754090365183, 'additional_attributes': set()}} r = Route( id='3', route_short_name='name', mode='bus', trips={}, arrival_offsets=[], departure_offsets=[], stops=[Stop(id='1', x=1, y=2, epsg='epsg:27700'), Stop(id='2', x=0, y=1, epsg='epsg:27700'), Stop(id='5', x=0, y=2, epsg='epsg:27700')] ) assert r.ordered_stops == ['1', '2', '5'] schedule.add_route('service', r, force=True) assert_semantically_equal(dict(r.graph().nodes(data=True)), expected_stops_data) assert_semantically_equal(r.graph()['1']['2'], {'routes': {'1', '3'}, 'services': {'service'}}) assert_semantically_equal(r.graph()['2']['5'], {'routes': {'3'}, 'services': {'service'}}) def test_adding_route_with_clashing_stops_data_only_flags_those_that_are_actually_different(schedule): r = Route( id='3', route_short_name='name', mode='bus', trips={}, arrival_offsets=[], departure_offsets=[], stops=[Stop(id='1', x=1, y=2, epsg='epsg:27700'), Stop(id='2', x=0, y=1, epsg='epsg:27700'), Stop(id='5', x=4, y=2, epsg='epsg:27700', name='')] ) assert r.ordered_stops == ['1', '2', '5'] with pytest.raises(ConflictingStopData) as e: schedule.add_route('service', r) assert "The following stops would inherit data currently stored under those Stop IDs in the Schedule: " \ "['1', '2']" in str(e.value) def test_adding_route_with_clashing_stops_data_without_force_flag_throws_error(schedule): r = Route( id='3', route_short_name='name', mode='bus', trips={}, arrival_offsets=[], departure_offsets=[], stops=[Stop(id='1', x=1, y=2, epsg='epsg:27700'), Stop(id='2', x=0, y=1, epsg='epsg:27700'), Stop(id='5', x=0, y=2, epsg='epsg:27700')] ) with pytest.raises(ConflictingStopData) as e: schedule.add_route('service', r) assert 'The following stops would inherit data' in str(e.value) def test_extracting_epsg_from_an_intermediate_route_gives_none(): # intermediate meaning not belonging to a schedule yet but referring to stops in a schedule r = Route( route_short_name='name', mode='bus', trips={}, arrival_offsets=[], departure_offsets=[], stops=['S1', 'S2', 'S3'] ) assert r.epsg is None def test_removing_route(schedule): schedule.remove_route('2') assert set(schedule.route_ids()) == {'1'} assert set(schedule.service_ids()) == {'service'} assert_semantically_equal(schedule._graph.graph['route_to_service_map'], {'1': 'service'}) assert_semantically_equal(schedule._graph.graph['service_to_route_map'], {'service': ['1']}) def test_removing_route_updates_services_on_nodes_and_edges(schedule): schedule.remove_route('2') assert_semantically_equal(dict(schedule.graph().nodes(data=True)), {'5': {'services': set(), 'routes': set(), 'id': '5', 'x': 4.0, 'y': 2.0, 'epsg': 'epsg:27700', 'name': '', 'lat': 49.76682779861249, 'lon': -7.557106577683727, 's2_id': 5205973754090531959, 'additional_attributes': set()}, '6': {'services': set(), 'routes': set(), 'id': '6', 'x': 1.0, 'y': 2.0, 'epsg': 'epsg:27700', 'name': '', 'lat': 49.766825803756994, 'lon': -7.557148039524952, 's2_id': 5205973754090365183, 'additional_attributes': set()}, '7': {'services': set(), 'routes': set(), 'id': '7', 'x': 3.0, 'y': 3.0, 'epsg': 'epsg:27700', 'name': '', 'lat': 49.76683608549253, 'lon': -7.557121424907424, 's2_id': 5205973754090203369, 'additional_attributes': set()}, '8': {'services': set(), 'routes': set(), 'id': '8', 'x': 7.0, 'y': 5.0, 'epsg': 'epsg:27700', 'name': '', 'lat': 49.766856648946295, 'lon': -7.5570681956375, 's2_id': 5205973754097123809, 'additional_attributes': set()}, '3': {'services': {'service'}, 'routes': {'1'}, 'id': '3', 'x': 3.0, 'y': 3.0, 'epsg': 'epsg:27700', 'name': '', 'lat': 49.76683608549253, 'lon': -7.557121424907424, 's2_id': 5205973754090203369, 'additional_attributes': set()}, '1': {'services': {'service'}, 'routes': {'1'}, 'id': '1', 'x': 4.0, 'y': 2.0, 'epsg': 'epsg:27700', 'name': '', 'lat': 49.76682779861249, 'lon': -7.557106577683727, 's2_id': 5205973754090531959, 'additional_attributes': set()}, '2': {'services': {'service'}, 'routes': {'1'}, 'id': '2', 'x': 1.0, 'y': 2.0, 'epsg': 'epsg:27700', 'name': '', 'lat': 49.766825803756994, 'lon': -7.557148039524952, 's2_id': 5205973754090365183, 'additional_attributes': set()}, '4': {'services': {'service'}, 'routes': {'1'}, 'id': '4', 'x': 7.0, 'y': 5.0, 'epsg': 'epsg:27700', 'name': '', 'lat': 49.766856648946295, 'lon': -7.5570681956375, 's2_id': 5205973754097123809, 'additional_attributes': set()}}) assert_semantically_equal(schedule.graph().edges(data=True)._adjdict, {'5': {'6': {'services': set(), 'routes': set()}}, '6': {'7': {'services': set(), 'routes': set()}}, '7': {'8': {'services': set(), 'routes': set()}}, '8': {}, '1': {'2': {'services': {'service'}, 'routes': {'1'}}}, '3': {'4': {'services': {'service'}, 'routes': {'1'}}}, '2': {'3': {'services': {'service'}, 'routes': {'1'}}}, '4': {}}) def test_removing_stop(schedule): schedule.remove_stop('5') assert {stop.id for stop in schedule.stops()} == {'1', '3', '4', '7', '8', '6', '2'} def test_removing_unused_stops(schedule): schedule.remove_route('1') schedule.remove_unsused_stops() assert {stop.id for stop in schedule.stops()} == {'6', '8', '5', '7'} def test_iter_stops_returns_stops_objects(test_service, different_test_service): schedule = Schedule(services=[test_service, different_test_service], epsg='epsg:4326') assert set([stop.id for stop in schedule.stops()]) == {'0', '1', '2', '3', '4'} assert all([isinstance(stop, Stop) for stop in schedule.stops()]) def test_read_matsim_schedule_returns_expected_schedule(): schedule = read.read_matsim_schedule( path_to_schedule=pt2matsim_schedule_file, epsg='epsg:27700') correct_services = Service(id='10314', routes=[ Route( route_short_name='12', id='VJbd8660f05fe6f744e58a66ae12bd66acbca88b98', mode='bus', stops=[Stop(id='26997928P', x='528464.1342843144', y='182179.7435136598', epsg='epsg:27700'), Stop(id='26997928P.link:1', x='528464.1342843144', y='182179.7435136598', epsg='epsg:27700')], route=['1'], trips={'trip_id': ['VJ00938baa194cee94700312812d208fe79f3297ee_04:40:00'], 'trip_departure_time': ['04:40:00'], 'vehicle_id': ['veh_0_bus']}, arrival_offsets=['00:00:00', '00:02:00'], departure_offsets=['00:00:00', '00:02:00'] ) ]) for val in schedule.services(): assert val == correct_services assert_semantically_equal(schedule.stop_to_service_ids_map(), {'26997928P.link:1': {'10314'}, '26997928P': {'10314'}}) assert_semantically_equal(schedule.stop_to_route_ids_map(), {'26997928P': {'VJbd8660f05fe6f744e58a66ae12bd66acbca88b98'}, '26997928P.link:1': {'VJbd8660f05fe6f744e58a66ae12bd66acbca88b98'}}) assert_semantically_equal(schedule.route('VJbd8660f05fe6f744e58a66ae12bd66acbca88b98').trips, {'trip_id': ['VJ00938baa194cee94700312812d208fe79f3297ee_04:40:00'], 'trip_departure_time': ['04:40:00'], 'vehicle_id': ['veh_0_bus']}) assert_semantically_equal( dict(schedule.graph().nodes(data=True)), {'26997928P': {'services': {'10314'}, 'routes': {'VJbd8660f05fe6f744e58a66ae12bd66acbca88b98'}, 'id': '26997928P', 'x': 528464.1342843144, 'y': 182179.7435136598, 'epsg': 'epsg:27700', 'name': '<NAME> (Stop P)', 'lat': 51.52393050617373, 'lon': -0.14967658860132668, 's2_id': 5221390302759871369, 'additional_attributes': {'name', 'isBlocking'}, 'isBlocking': 'false'}, '26997928P.link:1': {'services': {'10314'}, 'routes': {'VJbd8660f05fe6f744e58a66ae12bd66acbca88b98'}, 'id': '26997928P.link:1', 'x': 528464.1342843144, 'y': 182179.7435136598, 'epsg': 'epsg:27700', 'name': 'Brunswick Place (Stop P)', 'lat': 51.52393050617373, 'lon': -0.14967658860132668, 's2_id': 5221390302759871369, 'additional_attributes': {'name', 'linkRefId', 'isBlocking'}, 'linkRefId': '1', 'isBlocking': 'false'}} ) def test_reading_vehicles_with_a_schedule(): schedule = read.read_matsim_schedule( path_to_schedule=pt2matsim_schedule_file, path_to_vehicles=pt2matsim_vehicles_file, epsg='epsg:27700') assert_semantically_equal(schedule.vehicles, {'veh_0_bus': {'type': 'bus'}}) assert_semantically_equal(schedule.vehicle_types['bus'], { 'capacity': {'seats': {'persons': '71'}, 'standingRoom': {'persons': '1'}}, 'length': {'meter': '18.0'}, 'width': {'meter': '2.5'}, 'accessTime': {'secondsPerPerson': '0.5'}, 'egressTime': {'secondsPerPerson': '0.5'}, 'doorOperation': {'mode': 'serial'}, 'passengerCarEquivalents': {'pce': '2.8'}}) def test_reading_vehicles_after_reading_schedule(): schedule = read.read_matsim_schedule( path_to_schedule=pt2matsim_schedule_file, path_to_vehicles=pt2matsim_vehicles_file, epsg='epsg:27700') assert_semantically_equal(schedule.vehicles, {'veh_0_bus': {'type': 'bus'}}) assert_semantically_equal(schedule.vehicle_types['bus'], { 'capacity': {'seats': {'persons': '71'}, 'standingRoom': {'persons': '1'}}, 'length': {'meter': '18.0'}, 'width': {'meter': '2.5'}, 'accessTime': {'secondsPerPerson': '0.5'}, 'egressTime': {'secondsPerPerson': '0.5'}, 'doorOperation': {'mode': 'serial'}, 'passengerCarEquivalents': {'pce': '2.8'}}) def test_is_strongly_connected_with_strongly_connected_schedule(strongly_connected_schedule): assert strongly_connected_schedule.is_strongly_connected() def test_is_strongly_connected_with_not_strongly_connected_schedule(schedule): assert not schedule.is_strongly_connected() def test_has_self_loops_with_self_has_self_looping_schedule(self_looping_route): s = Schedule('epsg:27700', [Service(id='service', routes=[self_looping_route])]) assert s.has_self_loops() def test_has_self_loops_returns_self_looping_stops(self_looping_route): s = Schedule('epsg:27700', [Service(id='service', routes=[self_looping_route])]) loop_nodes = s.has_self_loops() assert loop_nodes == ['1'] def test_has_self_loops_with_non_looping_routes(schedule): assert not schedule.has_self_loops() def test_validity_of_services(self_looping_route, route): s = Schedule('epsg:27700', [Service(id='1', routes=[self_looping_route]), Service(id='2', routes=[route])]) assert not s['1'].is_valid_service() assert s['2'].is_valid_service() assert set(s.validity_of_services()) == {False, True} def test_has_valid_services(schedule): assert not schedule.has_valid_services() def test_has_valid_services_with_only_valid_services(service): s = Schedule('epsg:27700', [service]) assert s.has_valid_services() def test_invalid_services_shows_invalid_services(service): for route_id in service.route_ids(): service._graph.graph['routes'][route_id]['route'] = ['1'] s = Schedule('epsg:27700', [service]) assert s.invalid_services() == [service] def test_is_valid_with_valid_schedule(service): s = Schedule('epsg:27700', [service]) assert s.is_valid_schedule() def test_generate_validation_report_delegates_to_method_in_schedule_operations(mocker, schedule): mocker.patch.object(schedule_validation, 'generate_validation_report') schedule.generate_validation_report() schedule_validation.generate_validation_report.assert_called_once() def test_build_graph_builds_correct_graph(strongly_connected_schedule): g = strongly_connected_schedule.graph() assert_semantically_equal(dict(g.nodes(data=True)), {'5': {'services': {'service'}, 'routes': {'2'}, 'id': '5', 'x': 4.0, 'y': 2.0, 'epsg': 'epsg:27700', 'lat': 49.76682779861249, 'lon': -7.557106577683727, 's2_id': 5205973754090531959, 'additional_attributes': set(), 'name': 'Stop_5'}, '2': {'services': {'service'}, 'routes': {'1', '2'}, 'id': '2', 'x': 1.0, 'y': 2.0, 'epsg': 'epsg:27700', 'lat': 49.766825803756994, 'lon': -7.557148039524952, 's2_id': 5205973754090365183, 'additional_attributes': set(), 'name': 'Stop_2'}, '7': {'services': {'service'}, 'routes': {'2'}, 'id': '7', 'x': 3.0, 'y': 3.0, 'epsg': 'epsg:27700', 'lat': 49.76683608549253, 'lon': -7.557121424907424, 's2_id': 5205973754090203369, 'additional_attributes': set(), 'name': 'Stop_7'}, '8': {'services': {'service'}, 'routes': {'2'}, 'id': '8', 'x': 7.0, 'y': 5.0, 'epsg': 'epsg:27700', 'lat': 49.766856648946295, 'lon': -7.5570681956375, 's2_id': 5205973754097123809, 'additional_attributes': set(), 'name': 'Stop_8'}, '3': {'services': {'service'}, 'routes': {'1'}, 'id': '3', 'x': 3.0, 'y': 3.0, 'epsg': 'epsg:27700', 'lat': 49.76683608549253, 'lon': -7.557121424907424, 's2_id': 5205973754090203369, 'additional_attributes': set(), 'name': 'Stop_3'}, '1': {'services': {'service'}, 'routes': {'1'}, 'id': '1', 'x': 4.0, 'y': 2.0, 'epsg': 'epsg:27700', 'lat': 49.76682779861249, 'lon': -7.557106577683727, 's2_id': 5205973754090531959, 'additional_attributes': set(), 'name': 'Stop_1'}, '4': {'services': {'service'}, 'routes': {'1'}, 'id': '4', 'x': 7.0, 'y': 5.0, 'epsg': 'epsg:27700', 'lat': 49.766856648946295, 'lon': -7.5570681956375, 's2_id': 5205973754097123809, 'additional_attributes': set(), 'name': 'Stop_4'}}) assert_semantically_equal(g.edges(data=True)._adjdict, {'5': {'2': {'services': {'service'}, 'routes': {'2'}}}, '2': {'7': {'services': {'service'}, 'routes': {'2'}}, '3': {'services': {'service'}, 'routes': {'1'}}}, '7': {'8': {'services': {'service'}, 'routes': {'2'}}}, '8': {'5': {'services': {'service'}, 'routes': {'2'}}}, '4': {'1': {'services': {'service'}, 'routes': {'1'}}}, '1': {'2': {'services': {'service'}, 'routes': {'1'}}}, '3': {'4': {'services': {'service'}, 'routes': {'1'}}}}) def test_building_trips_dataframe(schedule): df = schedule.route_trips_with_stops_to_dataframe() correct_df = DataFrame({'departure_time': {0: Timestamp('1970-01-01 13:00:00'), 1: Timestamp('1970-01-01 13:05:00'), 2: Timestamp('1970-01-01 13:09:00'), 3: Timestamp('1970-01-01 13:30:00'), 4: Timestamp('1970-01-01 13:35:00'), 5: Timestamp('1970-01-01 13:39:00'), 6: Timestamp('1970-01-01 11:00:00'), 7: Timestamp('1970-01-01 11:05:00'), 8:
Timestamp('1970-01-01 11:09:00')
pandas.Timestamp
# -*- coding: utf-8 -*- """Constants and functions in common across modules.""" # standard library imports import contextlib import mmap import os import sys import tempfile from pathlib import Path # third-party imports import numpy as np import pandas as pd import xxhash from loguru import logger as loguru_logger from memory_tempfile import MemoryTempfile # global constants NAME = "azulejo" DEFAULT_PARQUET_COMPRESSION = "ZSTD" # Sizes and minimum read times with various compressions # for a file with one proteome on a system with M.2 SSD disk # under pyarrow 1.0.0 into pandas 1.1.0: # "NONE": 43MB, 1.8s # "ZSTD": 13M, 1.8s # "SNAPPY": 29 MB, 1.8s # "BROTLI": 13 MB, 1.9s # "LZ4": 23MB, (disabled under pyarrow 1.0.0, was about like brotli under 0.17) # "GZIP": 14 MB, 2.1 s # "LZO": not supported # "BZ2": not supported # In addition, the ingest process took 28.8s with None, and # 28.4 s with ZSTD, probably due to writing less data. # With its 70% compression factor, ZSTD can be expected to # perform even better relative to uncompressed and snappy # on production systems with slower disks for which # cache is not warmed up (as mine was in this test). # So ZSTD seems a clear choice for now. PARQUET_EXTENSIONS = ["parquet", "pq", "parq"] TSV_EXTENSIONS = ["tsv"] SAVED_INPUT_FILE = "input.toml" # Changing the extension of these files will change the type of file written. # TSV files, though readable/editable, do not give the written values back. # Parquet is also ~100X faster. CLUSTER_FILETYPE = "parq" CLUSTERS_FILE = "homology_clusters.parq" CLUSTERSYN_FILE = "homology_clusters.syn.parq" CLUSTER_HIST_FILE = "homology_cluster_hist.tsv" FRAGMENTS_FILE = "fragments.tsv" ANCHOR_HIST_FILE = "anchor_hist.tsv" HOMOLOGY_FILE = "proteins.hom.parq" PROTEOMES_FILE = "proteomes.tsv" PROTEOMOLOGY_FILE = "proteomes.hom.parq" PROTEOSYN_FILE = "proteomes.hom.syn.parq" PROTEINS_FILE = "proteins.parq" SYNTENY_FILE = "proteins.hom.syn.parq" ANCHORS_FILE = "synteny_anchors.tsv" SYNTENY_FILETYPE = "tsv" COLLECTION_FILE = "collection.json" COLLECTION_HOM_FILE = "collection.hom.json" COLLECTION_SYN_FILE = "collection.hom.syn.json" EXTERNAL_CLUSTERS_FILE = "homology_clusters-external.tsv" # fragment-name defs PLASTID_STARTS = ["chromop", "chl", "mt", "mi", "rh", "mu", "le", "pl"] CHROMOSOME_SYNONYMS = ["chromosome", "chrom", "chro", "gs", "gm"] ALTERNATE_ABBREV = "alt" CHROMOSOME_ABBREV = "chr" SCAFFOLD_SYNONYMS = ["scaffold", "scaf", "sca"] SCAFFOLD_ABBREV = "sc" # synteny codes UNAMBIGUOUS_CODE = "U" DISAMBIGUATED_CODE = "D" INDIRECT_CODE = "I" LOCALLY_UNAMBIGUOUS_CODE = "L" NON_AMBIGUOUS_CODE = "N" AMBIGUOUS_CODE = "A" CODE_DICT = { UNAMBIGUOUS_CODE: "unambiguous", DISAMBIGUATED_CODE: "disambiguated", INDIRECT_CODE: "indirectly unambiguous", LOCALLY_UNAMBIGUOUS_CODE: "locally unambiguous", NON_AMBIGUOUS_CODE: "non-ambiguous", AMBIGUOUS_CODE: "ambiguous", } DIRECTIONAL_CATEGORY = pd.CategoricalDtype(categories=["-", "+"]) YES_NO = pd.CategoricalDtype(categories=["y", "n"]) SYNTENY_CATEGORY = pd.CategoricalDtype(categories=CODE_DICT.keys()) DEFAULT_DTYPE = pd.UInt32Dtype() NONDEFAULT_DTYPES = { "anchor.subframe.ok": pd.BooleanDtype(), "code": SYNTENY_CATEGORY, "fasta_url": pd.StringDtype(), "gff_url": pd.StringDtype(), "frag.direction": DIRECTIONAL_CATEGORY, "frag.id": pd.CategoricalDtype(), "frag.is_chr": YES_NO, "frag.is_plas": YES_NO, "frag.is_scaf": YES_NO, "frag.len": pd.UInt64Dtype(), "frag.orig_id": pd.StringDtype(), "frag.start": pd.UInt64Dtype(), "gff.feature": pd.CategoricalDtype(), "gff.id": pd.CategoricalDtype(), "path": pd.CategoricalDtype(), "phy.*": pd.CategoricalDtype(), "preference": pd.StringDtype(), "prot.m_start": pd.BooleanDtype(), "prot.no_stop": pd.BooleanDtype(), "prot.seq": pd.StringDtype(), "syn.anchor.direction": DIRECTIONAL_CATEGORY, "syn.code": SYNTENY_CATEGORY, "syn.orthogenomic_pct": "float64", "syn.hash.footprint": pd.UInt32Dtype(), "syn.hash.direction": DIRECTIONAL_CATEGORY, "val": "float64", # patterns are matched in order after checking for exact matches "patterns": [ {"start": "phy.", "type": pd.CategoricalDtype()}, {"start": "pct_", "end": "_pct", "type": "float64"}, {"start": "memb", "type": pd.StringDtype()}, ], } MEGABYTES = 1024.0 * 1024.0 INSTALL_ENVIRON_VAR = ( # installs go into "/bin" and other subdirs of this directory NAME.upper() + "_INSTALL_DIR" ) if INSTALL_ENVIRON_VAR in os.environ: INSTALL_PATH = Path(os.environ[INSTALL_ENVIRON_VAR]) else: INSTALL_PATH = Path(sys.executable).parent.parent # logger class for use in testing class PrintLogger: """This logger only prints, for testing only.""" def __init__(self, level): try: self.level = int(level) except ValueError: if level.lower() == "debug": self.level = 10 elif level.lower() == "info": self.level = 20 elif level.lower() == "warning": self.level = 30 elif level.lower() == "error": self.level = 40 else: self.level = 20 def debug(self, message): if self.level <= 10: print(f"Debug: {message}") def info(self, message): if self.level <= 20: print(message) def warning(self, message): if self.level <= 30: print(f"Warning: {message}") def error(self, message): if self.level <= 40: print(f"ERROR: {message}") def is_writable(dev): """Returns whether a device is writable or not.""" try: testdir = tempfile.mkdtemp(prefix=NAME + "-", dir=append_slash(dev)) Path(testdir).rmdir() except OSError: return False return True # global variables that are set depending on envvars # Don't use loguru, just print. Useful for testing. if "LOG_TO_PRINT" in os.environ: logger = PrintLogger(os.environ["LOG_TO_PRINT"]) else: logger = loguru_logger # Update period on spinners. Also useful for testing. if "SPINNER_UPDATE_PERIOD" in os.environ: try: SPINNER_UPDATE_PERIOD = float(os.environ["SPINNER_UPDATE_PERIOD"]) except ValueError: SPINNER_UPDATE_PERIOD = 5.0 else: SPINNER_UPDATE_PERIOD = 1.0 # Fast scratch disk (e.g., SSD or /dev/shm), if other than /tmp if "SCRATCH_DEV" in os.environ and is_writable(os.environ["SCRATCH_DEV"]): SCRATCH_DEV = os.environ["SCRATCH_DEV"] else: SCRATCH_DEV = "/tmp" # Build disk for installer, needs to allow exe bit set if "BUILD_DEV" in os.environ and is_writable(os.environ["BUILD_DEV"]): BUILD_DEV = os.environ["BUILD_DEV"] elif sys.platform == "linux": try: BUILD_DEV = MemoryTempfile( preferred_paths=["/run/user/{uid}"], fallback=True ).get_usable_mem_tempdir_paths()[0] except AttributeError: BUILD_DEV = "/tmp" else: BUILD_DEV = "/tmp" def enforce_canonical_dtypes(frame): """Enforce that dtypes of columns meet expectations.""" for col in frame.columns: if col.startswith("tmp."): continue column_type = frame[col].dtype should_be_type = DEFAULT_DTYPE if col in NONDEFAULT_DTYPES: should_be_type = NONDEFAULT_DTYPES[col] else: for pattern_dict in NONDEFAULT_DTYPES["patterns"]: if "start" in pattern_dict: if col.startswith(pattern_dict["start"]): should_be_type = pattern_dict["type"] break if "end" in pattern_dict: if col.endswith(pattern_dict["end"]): should_be_type = pattern_dict["type"] break try: is_correct_type = column_type == should_be_type except TypeError: is_correct_type = False if not is_correct_type: try: frame[col] = frame[col].astype(should_be_type) except (ValueError, TypeError) as cast_err: logger.warning(f"Cannot cast {col} to {should_be_type}") logger.warning(cast_err) return frame def free_mb(dev): """"Return the number of free MB on dev.""" fs_stats = os.statvfs(dev) free_space_mb = int( np.rint((fs_stats.f_bsize * fs_stats.f_bfree) / MEGABYTES) ) return free_space_mb def append_slash(dev): """Append a final slash, if needed.""" if not dev.endswith("/"): dev += "/" return dev def disk_usage_mb(pathstr): """Calculate the size used in MB by a path.""" path = Path(pathstr) if not path.exists(): logger.error(f"Path '{path}' does not exist for disk usage") return 0 total_size = np.array( [p.stat().st_size for p in path.rglob("*") if not p.is_symlink()] ).sum() return int(np.rint(total_size / MEGABYTES)) class MinSpaceTracker: """Keep track of the minimum space available on a (memory) device.""" def __init__(self, device): """Remember the device and initialize minimum space.""" self.device = Path(device) self.initial_space = free_mb(self.device) self.min_space = self.initial_space def check(self): """Update the minimimum space available.""" self.min_space = min(self.min_space, free_mb(self.device)) def report_min(self): """Report the minimum space available.""" return self.min_space def report_used(self): """Report change from initial space.""" return self.initial_space - self.min_space def cluster_set_name(stem, identity): """Get a setname that specifies the %identity value..""" if identity == 1.0: digits = "10000" else: digits = f"{identity:.4f}"[2:] return f"{stem}-nr-{digits}" def get_paths_from_file(filepath, must_exist=True): """Given a string filepath,, return the resolved path and parent.""" inpath = Path(filepath).expanduser().resolve() if must_exist and not inpath.exists(): raise FileNotFoundError(filepath) dirpath = inpath.parent return inpath, dirpath class TrimmableMemoryMap: """A memory-mapped file that can be resized at the end.""" def __init__(self, filepath, access=mmap.ACCESS_WRITE): """Open the memory-mapped file.""" self.orig_size = None self.size = None self.map_obj = None self.access = access self.filehandle = open(filepath, "r+b") def trim(self, start, end): """Trim the memory map and mark the nex size.""" self.map_obj.move(start, end, self.orig_size - end) self.size -= end - start return self.size @contextlib.contextmanager def map(self): """Open a memory-mapped view of filepath.""" try: self.map_obj = mmap.mmap( self.filehandle.fileno(), 0, access=self.access ) self.orig_size = self.map_obj.size() self.size = self.orig_size yield self.map_obj finally: if self.access == mmap.ACCESS_WRITE: self.map_obj.flush() self.map_obj.close() self.filehandle.truncate(self.size) self.filehandle.close() else: self.map_obj.close() self.filehandle.close() def dotpath_to_path(dotpath): """Return a dot-separated pathstring as a path.""" return Path("/".join(dotpath.split("."))) def fasta_records(filepath): """Count the number of records in a FASTA file.""" count = 0 next_pos = 0 angle_bracket = bytes(">", "utf-8") memory_map = TrimmableMemoryMap(filepath, access=mmap.ACCESS_READ) with memory_map.map() as mem_map: size = memory_map.size next_pos = mem_map.find(angle_bracket, next_pos) while next_pos != -1 and next_pos < size: count += 1 next_pos = mem_map.find(angle_bracket, next_pos + 1) return count, size def protein_file_stats_filename(setname): """Return the name of the protein stat file.""" if setname is None: return "protein_files.tsv" return f"{setname}-protein_files.tsv" def protein_properties_filename(filestem): """Return the name of the protein properties file.""" if filestem is None: return "proteins.tsv" return f"{filestem}-proteins.tsv" def homo_degree_dist_filename(filestem): """Return the name of the homology degree distribution file.""" return f"{filestem}-degreedist.tsv" def group_key_filename(members): """Return the name of the group key file.""" return f"groupkeys-{members}.tsv" def sort_proteome_frame(frame): """Sort a proteome frame by preference and frag.max and renumber.""" frame = frame.copy() if frame.index.name == "path": frame["path"] = frame.index frame.sort_values( by=["preference", "frag.max"], ascending=[True, False], inplace=True ) frame["order"] = range(len(frame)) frame.set_index("order", inplace=True) return frame def remove_tmp_columns(frame): """Remove any columns in a data frame that begin with 'tmp.'.""" drop_cols = [col for col in frame.columns if col.startswith("tmp.")] if len(drop_cols) != 0: return frame.drop(drop_cols, axis=1) return frame def write_tsv_or_parquet( frame, filepath, compression=DEFAULT_PARQUET_COMPRESSION, float_format="%.2f", desc=None, remove_tmp=True, sort_cols=True, enforce_types=True, ): """Write either a TSV or a parquet file by file extension.""" filepath = Path(filepath) ext = filepath.suffix.lstrip(".") if desc is not None: file_desc = f"{desc} file" logger.debug(f'Writing {file_desc} "{filepath}') if remove_tmp: frame = remove_tmp_columns(frame) if enforce_types: frame = enforce_canonical_dtypes(frame) if sort_cols: frame = frame[sorted(frame.columns)] if ext in PARQUET_EXTENSIONS: frame.to_parquet(filepath, compression=compression) elif ext in TSV_EXTENSIONS: frame.to_csv(filepath, sep="\t", float_format=float_format) else: logger.error(f"Unrecognized file extension {ext} in {filepath}") sys.exit(1) def read_tsv_or_parquet(filepath): """Read either a TSV or a parquet file by file extension.""" filepath = Path(filepath) if not filepath.exists(): logger.error(f'File "{filepath}" does not exist.') sys.exit(1) ext = filepath.suffix.lstrip(".") if ext in PARQUET_EXTENSIONS: return pd.read_parquet(filepath) if ext in TSV_EXTENSIONS: frame = pd.read_csv(filepath, sep="\t", index_col=0).convert_dtypes() return enforce_canonical_dtypes(frame) logger.error(f"Unrecognized file extensions {ext} in {filepath}") sys.exit(1) def log_and_add_to_stats(stats, new_stats): """Print stats info and write to stats file.""" with pd.option_context( "display.max_rows", None, "display.max_columns", None, "display.float_format", "{:,.1f}%".format, ): logger.info(new_stats) overlap_cols = list(set(stats.columns) & set(new_stats.columns)) return pd.concat([stats.drop(columns=overlap_cols), new_stats], axis=1) def bool_to_y_or_n(bool_arr): """Convert boolean to T/F value""" boolean_dict = {True: "y", False: "n"} bool_ser = pd.Series(bool_arr) return bool_ser.map(boolean_dict) def y_or_n_to_bool(bool_ser): """Convert boolean to T/F value""" tf_dict = {"y": True, False: "n"} return bool_ser.map(tf_dict).astype(bool) def hash_array(kmer): """Return a hash of a numpy array.""" return xxhash.xxh32_intdigest(kmer.tobytes()) def calculate_adjacency_group(index_series, frag_series): """Calculate an adjacency group numger.""" index_fr = pd.DataFrame({"index": index_series, "fragment": frag_series}) n_prot = len(index_fr) adj_gr_count = 0 was_adj = False index_fr["i"] = range(n_prot) adj_group = np.array([np.nan] * n_prot) for unused_group, subframe in index_fr.groupby(by=["fragment"]): if len(subframe) == 1: continue last_pos = -2 last_row = None if was_adj: adj_gr_count += 1 was_adj = False for unused_i, row in subframe.iterrows(): row_no = row["i"] if row["index"] == last_pos + 1: if not was_adj: adj_group[last_row] = adj_gr_count was_adj = True adj_group[row_no] = adj_gr_count else: if was_adj: adj_gr_count += 1 was_adj = False last_pos = row["index"] last_row = row_no if was_adj: adj_gr_count += 1 adj_arr = pd.Series( adj_group, dtype=
pd.UInt32Dtype()
pandas.UInt32Dtype
import numpy as np import pandas as pd import matplotlib.pyplot as plt import os import cv2 import logging project_path = '/Downloads/GL' def load_train_test_data(): pathToTrainData = 'Dataset/Car Images/Train Images' cars_train_data = load_data(pathToTrainData) logging.info("cars_train_data loaded and built successfully") cars_train_data.to_csv(r'references/cars_train_data.csv', index=False) logging.info("cars_train_data saved successfully") print(cars_train_data.head()) print(cars_train_data.info()) pathToTestData = 'Dataset/Car Images/Test Images' cars_test_data = load_data(pathToTestData) print(cars_test_data.head()) print(cars_test_data.info()) logging.info("cars_test_data loaded and built successfully") cars_test_data.to_csv(r'references/cars_test_data.csv', index=False) logging.info("cars_test_data saved successfully") cars_train_data.sort_values(['imageName'],axis=0,ascending=[True],inplace=True) cars_test_data.sort_values(['imageName'],axis=0,ascending=[True],inplace=True) logging.info("cars train and test data sorted successfully") logging.info('Renaming imageName to match to Annotations Data Set') cars_train_data.rename(columns = {'imageName': 'Image Name'},inplace = True) cars_test_data.rename(columns = {'imageName': 'Image Name'},inplace = True) print(cars_train_data.head()) print(cars_test_data.head()) return cars_train_data, cars_test_data def load_data(pathToData): path = os.getcwd() print(path) # os.chdir(project_path) # print(os.getcwd()) # Importing the data set data = pd.DataFrame(columns=['imageName', 'imagePath', 'class', 'height', 'width']) for dirname, _, filenames in os.walk(pathToData): for filename in filenames: path = os.path.join(dirname, filename) img_name = os.path.split(path)[1] if img_name != '.DS_Store': img = cv2.imread(path) height, width, channel = img.shape class_label = dirname.split('/')[-1] data = data.append( {'imageName': img_name, 'imagePath': path, 'class': class_label, 'height': height, 'width': width}, ignore_index=True) logging.info("Data loaded and built successfully") return data def load_train_test_annotations(): pathToAnotations ='Dataset/Annotations' cars_train_annotations =
pd.read_csv(pathToAnotations+'/Train Annotations.csv')
pandas.read_csv
from datetime import datetime import numpy as np import pytest import pandas as pd from pandas import Series, date_range import pandas._testing as tm from pandas.tseries.offsets import BDay class TestTruncate: def test_truncate(self, datetime_series): offset = BDay() ts = datetime_series[::3] start, end = datetime_series.index[3], datetime_series.index[6] start_missing, end_missing = datetime_series.index[2], datetime_series.index[7] # neither specified truncated = ts.truncate() tm.assert_series_equal(truncated, ts) # both specified expected = ts[1:3] truncated = ts.truncate(start, end) tm.assert_series_equal(truncated, expected) truncated = ts.truncate(start_missing, end_missing) tm.assert_series_equal(truncated, expected) # start specified expected = ts[1:] truncated = ts.truncate(before=start) tm.assert_series_equal(truncated, expected) truncated = ts.truncate(before=start_missing) tm.assert_series_equal(truncated, expected) # end specified expected = ts[:3] truncated = ts.truncate(after=end) tm.assert_series_equal(truncated, expected) truncated = ts.truncate(after=end_missing) tm.assert_series_equal(truncated, expected) # corner case, empty series returned truncated = ts.truncate(after=datetime_series.index[0] - offset) assert len(truncated) == 0 truncated = ts.truncate(before=datetime_series.index[-1] + offset) assert len(truncated) == 0 msg = "Truncate: 1999-12-31 00:00:00 must be after 2000-02-14 00:00:00" with pytest.raises(ValueError, match=msg): ts.truncate( before=datetime_series.index[-1] + offset, after=datetime_series.index[0] - offset, ) def test_truncate_nonsortedindex(self): # GH#17935 s = pd.Series(["a", "b", "c", "d", "e"], index=[5, 3, 2, 9, 0]) msg = "truncate requires a sorted index" with pytest.raises(ValueError, match=msg): s.truncate(before=3, after=9) rng = pd.date_range("2011-01-01", "2012-01-01", freq="W") ts = pd.Series(np.random.randn(len(rng)), index=rng) msg = "truncate requires a sorted index" with pytest.raises(ValueError, match=msg): ts.sort_values(ascending=False).truncate(before="2011-11", after="2011-12") @pytest.mark.parametrize( "before, after, indices", [(1, 2, [2, 1]), (None, 2, [2, 1, 0]), (1, None, [3, 2, 1])], ) @pytest.mark.parametrize("klass", [pd.Int64Index, pd.DatetimeIndex]) def test_truncate_decreasing_index(self, before, after, indices, klass): # https://github.com/pandas-dev/pandas/issues/33756 idx = klass([3, 2, 1, 0]) if klass is pd.DatetimeIndex: before = pd.Timestamp(before) if before is not None else None after = pd.Timestamp(after) if after is not None else None indices = [pd.Timestamp(i) for i in indices] values = pd.Series(range(len(idx)), index=idx) result = values.truncate(before=before, after=after) expected = values.loc[indices] tm.assert_series_equal(result, expected) def test_truncate_datetimeindex_tz(self): # GH 9243 idx = date_range("4/1/2005", "4/30/2005", freq="D", tz="US/Pacific") s = Series(range(len(idx)), index=idx) result = s.truncate(datetime(2005, 4, 2), datetime(2005, 4, 4)) expected = Series([1, 2, 3], index=idx[1:4]) tm.assert_series_equal(result, expected) def test_truncate_periodindex(self): # GH 17717 idx1 = pd.PeriodIndex( [pd.Period("2017-09-02"), pd.Period("2017-09-02"), pd.Period("2017-09-03")] ) series1 = pd.Series([1, 2, 3], index=idx1) result1 = series1.truncate(after="2017-09-02") expected_idx1 = pd.PeriodIndex( [pd.Period("2017-09-02"), pd.Period("2017-09-02")] ) tm.assert_series_equal(result1, pd.Series([1, 2], index=expected_idx1)) idx2 = pd.PeriodIndex( [pd.Period("2017-09-03"), pd.Period("2017-09-02"), pd.Period("2017-09-03")] ) series2 =
pd.Series([1, 2, 3], index=idx2)
pandas.Series
import datetime import os from concurrent.futures import ProcessPoolExecutor from math import ceil import pandas as pd # In[] 读入源数据 def get_source_data(): # 源数据路径 DataPath = 'data/' # 读入源数据 off_train = pd.read_csv(os.path.join(DataPath, 'ccf_offline_stage1_train.csv'), parse_dates=['Date_received', 'Date']) off_train.columns = ['User_id', 'Merchant_id', 'Coupon_id', 'Discount_rate', 'Distance', 'Date_received', 'Date'] on_train = pd.read_csv(os.path.join(DataPath, 'ccf_online_stage1_train.csv'), parse_dates=['Date_received', 'Date']) on_train.columns = ['User_id', 'Merchant_id', 'Action', 'Coupon_id', 'Discount_rate', 'Date_received', 'Date'] off_test = pd.read_csv(os.path.join(DataPath, 'ccf_offline_stage1_test_revised.csv'), parse_dates=['Date_received']) off_test.columns = ['User_id', 'Merchant_id', 'Coupon_id', 'Discount_rate', 'Distance', 'Date_received'] print(off_train.info()) print(off_train.head(5)) return off_train, on_train, off_test # In[] null,na 特殊处理 def null_process_offline(dataset, predict=False): dataset.Distance.fillna(11, inplace=True) dataset.Distance = dataset.Distance.astype(int) dataset.Coupon_id.fillna(0, inplace=True) dataset.Coupon_id = dataset.Coupon_id.astype(int) dataset.Date_received.fillna(date_null, inplace=True) dataset[['discount_rate_x', 'discount_rate_y']] = dataset[dataset.Discount_rate.str.contains(':') == True][ 'Discount_rate'].str.split(':', expand=True).astype(int) dataset['discount_rate'] = 1 - dataset.discount_rate_y / dataset.discount_rate_x dataset.discount_rate = dataset.discount_rate.fillna(dataset.Discount_rate).astype(float) if predict: return dataset else: dataset.Date.fillna(date_null, inplace=True) return dataset def null_process_online(dataset): dataset.Coupon_id.fillna(0, inplace=True) # online.Coupon_id = online.Coupon_id.astype(int) dataset.Date_received.fillna(date_null, inplace=True) dataset.Date.fillna(date_null, inplace=True) return dataset # In[] 生成交叉训练集 def data_process(off_train, on_train, off_test): # train feature split # 交叉训练集一:收到券的日期大于4月14日和小于5月14日 time_range = ['2016-04-16', '2016-05-15'] dataset1 = off_train[(off_train.Date_received >= time_range[0]) & (off_train.Date_received <= time_range[1])].copy() dataset1['label'] = 0 dataset1.loc[ (dataset1.Date != date_null) & (dataset1.Date - dataset1.Date_received <= datetime.timedelta(15)), 'label'] = 1 # 交叉训练集一特征offline:线下数据中领券和用券日期大于1月1日和小于4月13日 time_range_date_received = ['2016-01-01', '2016-03-31'] time_range_date = ['2016-01-01', '2016-04-15'] feature1_off = off_train[(off_train.Date >= time_range_date[0]) & (off_train.Date <= time_range_date[1]) | ( (off_train.Coupon_id == 0) & (off_train.Date_received >= time_range_date_received[0]) & ( off_train.Date_received <= time_range_date_received[1]))] # 交叉训练集一特征online:线上数据中领券和用券日期大于1月1日和小于4月13日[on_train.date == 'null' to on_train.coupon_id == 0] feature1_on = on_train[(on_train.Date >= time_range_date[0]) & (on_train.Date <= time_range_date[1]) | ( (on_train.Coupon_id == 0) & (on_train.Date_received >= time_range_date_received[0]) & ( on_train.Date_received <= time_range_date_received[1]))] # 交叉训练集二:收到券的日期大于5月15日和小于6月15日 time_range = ['2016-05-16', '2016-06-15'] dataset2 = off_train[(off_train.Date_received >= time_range[0]) & (off_train.Date_received <= time_range[1])] dataset2['label'] = 0 dataset2.loc[ (dataset2.Date != date_null) & (dataset2.Date - dataset2.Date_received <= datetime.timedelta(15)), 'label'] = 1 # 交叉训练集二特征offline:线下数据中领券和用券日期大于2月1日和小于5月14日 time_range_date_received = ['2016-02-01', '2016-04-30'] time_range_date = ['2016-02-01', '2016-05-15'] feature2_off = off_train[(off_train.Date >= time_range_date[0]) & (off_train.Date <= time_range_date[1]) | ( (off_train.Coupon_id == 0) & (off_train.Date_received >= time_range_date_received[0]) & ( off_train.Date_received <= time_range_date_received[1]))] # 交叉训练集二特征online:线上数据中领券和用券日期大于2月1日和小于5月14日 feature2_on = on_train[(on_train.Date >= time_range_date[0]) & (on_train.Date <= time_range_date[1]) | ( (on_train.Coupon_id == 0) & (on_train.Date_received >= time_range_date_received[0]) & ( on_train.Date_received <= time_range_date_received[1]))] # 测试集 dataset3 = off_test # 测试集特征offline :线下数据中领券和用券日期大于3月15日和小于6月30日的 time_range = ['2016-03-16', '2016-06-30'] feature3_off = off_train[((off_train.Date >= time_range[0]) & (off_train.Date <= time_range[1])) | ( (off_train.Coupon_id == 0) & (off_train.Date_received >= time_range[0]) & ( off_train.Date_received <= time_range[1]))] # 测试集特征online :线上数据中领券和用券日期大于3月15日和小于6月30日的 feature3_on = on_train[((on_train.Date >= time_range[0]) & (on_train.Date <= time_range[1])) | ( (on_train.Coupon_id == 0) & (on_train.Date_received >= time_range[0]) & ( on_train.Date_received <= time_range[1]))] # get train feature ProcessDataSet1 = get_features(dataset1, feature1_off, feature1_on) ProcessDataSet2 = get_features(dataset2, feature2_off, feature2_on) ProcessDataSet3 = get_features(dataset3, feature3_off, feature3_on) return ProcessDataSet1, ProcessDataSet2, ProcessDataSet3 def get_features(dataset, feature_off, feature_on): dataset = get_offline_features(dataset, feature_off) return get_online_features(feature_on, dataset) # In[] 定义获取feature的函数 def get_offline_features(X, offline): # X = X[:1000] print(len(X), len(X.columns)) temp = offline[offline.Coupon_id != 0] coupon_consume = temp[temp.Date != date_null] coupon_no_consume = temp[temp.Date == date_null] user_coupon_consume = coupon_consume.groupby('User_id') X['weekday'] = X.Date_received.dt.weekday X['day'] = X.Date_received.dt.day # # 距离优惠券消费次数 # temp = coupon_consume.groupby('Distance').size().reset_index(name='distance_0') # X = pd.merge(X, temp, how='left', on='Distance') # # # 距离优惠券不消费次数 # temp = coupon_no_consume.groupby('Distance').size().reset_index(name='distance_1') # X = pd.merge(X, temp, how='left', on='Distance') # # # 距离优惠券领取次数 # X['distance_2'] = X.distance_0 + X.distance_1 # # # 距离优惠券消费率 # X['distance_3'] = X.distance_0 / X.distance_2 # temp = coupon_consume[coupon_consume.Distance != 11].groupby('Distance').size() # temp['d4'] = temp.Distance.sum() / len(temp) # X = pd.merge(X, temp, how='left', on='Distance') '''user features''' # 优惠券消费次数 temp = user_coupon_consume.size().reset_index(name='u2') X = pd.merge(X, temp, how='left', on='User_id') # X.u2.fillna(0, inplace=True) # X.u2 = X.u2.astype(int) # 优惠券不消费次数 temp = coupon_no_consume.groupby('User_id').size().reset_index(name='u3') X = pd.merge(X, temp, how='left', on='User_id') # 使用优惠券次数与没使用优惠券次数比值 X['u19'] = X.u2 / X.u3 # 领取优惠券次数 X['u1'] = X.u2.fillna(0) + X.u3.fillna(0) # 优惠券核销率 X['u4'] = X.u2 / X.u1 # 普通消费次数 temp = offline[(offline.Coupon_id == 0) & (offline.Date != date_null)] temp1 = temp.groupby('User_id').size().reset_index(name='u5') X = pd.merge(X, temp1, how='left', on='User_id') # 一共消费多少次 X['u25'] = X.u2 + X.u5 # 用户使用优惠券消费占比 X['u20'] = X.u2 / X.u25 # 正常消费平均间隔 temp = pd.merge(temp, temp.groupby('User_id').Date.max().reset_index(name='max')) temp = pd.merge(temp, temp.groupby('User_id').Date.min().reset_index(name='min')) temp = pd.merge(temp, temp.groupby('User_id').size().reset_index(name='len')) temp['u6'] = ((temp['max'] - temp['min']).dt.days / (temp['len'] - 1)) temp = temp.drop_duplicates('User_id') X = pd.merge(X, temp[['User_id', 'u6']], how='left', on='User_id') # 优惠券消费平均间隔 temp = pd.merge(coupon_consume, user_coupon_consume.Date.max().reset_index(name='max')) temp = pd.merge(temp, temp.groupby('User_id').Date.min().reset_index(name='min')) temp = pd.merge(temp, temp.groupby('User_id').size().reset_index(name='len')) temp['u7'] = ((temp['max'] - temp['min']).dt.days / (temp['len'] - 1)) temp = temp.drop_duplicates('User_id') X = pd.merge(X, temp[['User_id', 'u7']], how='left', on='User_id') # 15天内平均会普通消费几次 X['u8'] = X.u6 / 15 # 15天内平均会优惠券消费几次 X['u9'] = X.u7 / 15 # 领取优惠券到使用优惠券的平均间隔时间 temp = coupon_consume.copy() temp['days'] = (temp.Date - temp.Date_received).dt.days temp = (temp.groupby('User_id').days.sum() / temp.groupby('User_id').size()).reset_index(name='u10') X = pd.merge(X, temp, how='left', on='User_id') # 在15天内使用掉优惠券的值大小 X['u11'] = X.u10 / 15 # 领取优惠券到使用优惠券间隔小于15天的次数 temp = coupon_consume.copy() temp['days'] = (temp.Date - temp.Date_received).dt.days temp = temp[temp.days <= 15] temp = temp.groupby('User_id').size().reset_index(name='u21') X = pd.merge(X, temp, how='left', on='User_id') # 用户15天使用掉优惠券的次数除以使用优惠券的次数 X['u22'] = X.u21 / X.u2 # 用户15天使用掉优惠券的次数除以领取优惠券未消费的次数 X['u23'] = X.u21 / X.u3 # 用户15天使用掉优惠券的次数除以领取优惠券的总次数 X['u24'] = X.u21 / X.u1 # 消费优惠券的平均折率 temp = user_coupon_consume.discount_rate.mean().reset_index(name='u45') X = pd.merge(X, temp, how='left', on='User_id') # 用户核销优惠券的最低消费折率 temp = user_coupon_consume.discount_rate.min().reset_index(name='u27') X = pd.merge(X, temp, how='left', on='User_id') # 用户核销优惠券的最高消费折率 temp = user_coupon_consume.discount_rate.max().reset_index(name='u28') X = pd.merge(X, temp, how='left', on='User_id') # 用户核销过的不同优惠券数量 temp = coupon_consume.groupby(['User_id', 'Coupon_id']).size() temp = temp.groupby('User_id').size().reset_index(name='u32') X = pd.merge(X, temp, how='left', on='User_id') # 用户领取所有不同优惠券数量 temp = offline[offline.Date_received != date_null] temp = temp.groupby(['User_id', 'Coupon_id']).size().reset_index(name='u47') X = pd.merge(X, temp, how='left', on=['User_id', 'Coupon_id']) # 用户核销过的不同优惠券数量占所有不同优惠券的比重 X['u33'] = X.u32 / X.u47 # 用户平均每种优惠券核销多少张 X['u34'] = X.u2 / X.u47 # 核销优惠券用户-商家平均距离 temp = offline[(offline.Coupon_id != 0) & (offline.Date != date_null) & (offline.Distance != 11)] temp = temp.groupby('User_id').Distance temp = pd.merge(temp.count().reset_index(name='x'), temp.sum().reset_index(name='y'), on='User_id') temp['u35'] = temp.y / temp.x temp = temp[['User_id', 'u35']] X = pd.merge(X, temp, how='left', on='User_id') # 用户核销优惠券中的最小用户-商家距离 temp = coupon_consume[coupon_consume.Distance != 11] temp = temp.groupby('User_id').Distance.min().reset_index(name='u36') X = pd.merge(X, temp, how='left', on='User_id') # 用户核销优惠券中的最大用户-商家距离 temp = coupon_consume[coupon_consume.Distance != 11] temp = temp.groupby('User_id').Distance.max().reset_index(name='u37') X = pd.merge(X, temp, how='left', on='User_id') # 优惠券类型 discount_types = [ '0.2', '0.5', '0.6', '0.7', '0.75', '0.8', '0.85', '0.9', '0.95', '30:20', '50:30', '10:5', '20:10', '100:50', '200:100', '50:20', '30:10', '150:50', '100:30', '20:5', '200:50', '5:1', '50:10', '100:20', '150:30', '30:5', '300:50', '200:30', '150:20', '10:1', '50:5', '100:10', '200:20', '300:30', '150:10', '300:20', '500:30', '20:1', '100:5', '200:10', '30:1', '150:5', '300:10', '200:5', '50:1', '100:1', ] X['discount_type'] = -1 for k, v in enumerate(discount_types): X.loc[X.Discount_rate == v, 'discount_type'] = k # 不同优惠券领取次数 temp = offline.groupby(['User_id', 'Discount_rate']).size().reset_index(name='u41') X = pd.merge(X, temp, how='left', on=['User_id', 'Discount_rate']) # 不同优惠券使用次数 temp = coupon_consume.groupby(['User_id', 'Discount_rate']).size().reset_index(name='u42') X = pd.merge(X, temp, how='left', on=['User_id', 'Discount_rate']) # 不同优惠券不使用次数 temp = coupon_no_consume.groupby(['User_id', 'Discount_rate']).size().reset_index(name='u43') X = pd.merge(X, temp, how='left', on=['User_id', 'Discount_rate']) # 不同打折优惠券使用率 X['u44'] = X.u42 / X.u41 # 满减类型优惠券领取次数 temp = offline[offline.Discount_rate.str.contains(':') == True] temp = temp.groupby('User_id').size().reset_index(name='u48') X =
pd.merge(X, temp, how='left', on='User_id')
pandas.merge
import datetime import string import matplotlib.dates import matplotlib.pyplot as plt import numpy as np import pandas as pd import seaborn as sns from nltk import WordNetLemmatizer, LancasterStemmer, pos_tag, sent_tokenize, word_tokenize from nltk.corpus import stopwords from nltk.sentiment import SentimentIntensityAnalyzer from pandas._libs.tslibs.offsets import BDay from sklearn import tree from sklearn.calibration import calibration_curve from sklearn.ensemble import RandomForestClassifier from sklearn.feature_extraction.text import CountVectorizer, TfidfTransformer from sklearn.linear_model import LogisticRegression from sklearn.metrics import confusion_matrix, classification_report from sklearn.model_selection import train_test_split, learning_curve from sklearn.naive_bayes import GaussianNB from sklearn.preprocessing import StandardScaler from sklearn.svm import SVR, LinearSVC from sklearn.tree import DecisionTreeRegressor, DecisionTreeClassifier, plot_tree from textblob import TextBlob from wordcloud import WordCloud def plot_learning_curve(estimator, title, X, y, axes=None, ylim=None, cv=None, n_jobs=None, train_sizes=np.linspace(.1, 1.0, 5)): if axes is None: _, axes = plt.subplots(1, 3, figsize=(20, 5)) axes[0].set_title(title) if ylim is not None: axes[0].set_ylim(*ylim) axes[0].set_xlabel("Training examples") axes[0].set_ylabel("Score") train_sizes, train_scores, test_scores, fit_times, _ =\ learning_curve(estimator, X, y, cv=cv, n_jobs=n_jobs, train_sizes=train_sizes, return_times=True) train_scores_mean = np.mean(train_scores, axis=1) train_scores_std = np.std(train_scores, axis=1) test_scores_mean = np.mean(test_scores, axis=1) test_scores_std = np.std(test_scores, axis=1) fit_times_mean = np.mean(fit_times, axis=1) fit_times_std = np.std(fit_times, axis=1) axes[0].grid() axes[0].fill_between(train_sizes, train_scores_mean - train_scores_std, train_scores_mean + train_scores_std, alpha=0.1, color="r") axes[0].fill_between(train_sizes, test_scores_mean - test_scores_std, test_scores_mean + test_scores_std, alpha=0.1, color="g") axes[0].plot(train_sizes, train_scores_mean, 'o-', color="r", label="Training score") axes[0].plot(train_sizes, test_scores_mean, 'o-', color="g", label="Cross-validation score") axes[0].legend(loc="best") axes[1].grid() axes[1].plot(train_sizes, fit_times_mean, 'o-') axes[1].fill_between(train_sizes, fit_times_mean - fit_times_std, fit_times_mean + fit_times_std, alpha=0.1) axes[1].set_xlabel("Training examples") axes[1].set_ylabel("fit_times") axes[1].set_title("Scalability of the model") axes[2].grid() axes[2].plot(fit_times_mean, test_scores_mean, 'o-') axes[2].fill_between(fit_times_mean, test_scores_mean - test_scores_std, test_scores_mean + test_scores_std, alpha=0.1) axes[2].set_xlabel("fit_times") axes[2].set_ylabel("Score") axes[2].set_title("Performance of the model") return plt def create_word_cloud(text, type): print('\nCreating word cloud...') word_cloud = WordCloud(width=1024, height=1024, margin=0).generate(text) fig, ax = plt.subplots(1, 1, figsize=(10, 10)) ax.imshow(word_cloud, interpolation='bilinear') ax.axis("off") ax.margins(x=0, y=0) plt.savefig(f'wordcloud_{type}.png') def get_stop_words(tokens): stop_word_tokens = [] for word in tokens: if word.startswith('//t.co/') or word.startswith('http') or word in ['RT', 'http', 'rt', 'timestamp', '.', '[video]', 'AMP', 'and', 'at', 'for', 'from', 'the', 'this', 'is', 'it', 'jul', 'of', 'on', 'to', 'in', 'with', 2018, 'FALSE', '2018', 'amp', 'you', 'by', False, 0, 7, 12, 15, '0', '7', '12', '15', 'inc']: continue elif word not in stopwords.words('english') or word not in ['RT', 'http', 'rt', 'timestamp', '.', '[video]']: stop_word_tokens.append(word) sentence = ' '.join(stop_word_tokens) return sentence def get_lemma(tokens): lemma = WordNetLemmatizer() lemmatized_tokens = [] for token in tokens: temp_tokens = lemma.lemmatize(token) lemmatized_tokens.append(temp_tokens) return get_stop_words(lemmatized_tokens) def get_stems(tokens): stemmer = LancasterStemmer() stemmed_tokens = [] for token in tokens: for word in token: if word[1] == 'DT' or word[1] == 'PRP' or word[1] == 'PRP$' or word[1] == 'NN' or word[1] == 'NNP' or word[1] == 'NNPS': temp_tokens = word[0] else: temp_tokens = stemmer.stem(word[0]) stemmed_tokens.append(temp_tokens) return get_lemma(stemmed_tokens) def get_pos_tag(tokens): pos_tokens = [pos_tag(token) for token in tokens] return get_stems(pos_tokens) def get_tokens(document): sequences = sent_tokenize(document) seq_tokens = [word_tokenize(sequence) for sequence in sequences] no_punctuation_seq_tokens = [] for seq_token in seq_tokens: no_punctuation_seq_tokens.append([token for token in seq_token if token not in string.punctuation]) return get_pos_tag(no_punctuation_seq_tokens) def get_num_words(s): return len(s.split()) def append_col(train_data): print('\nGetting number of words in new text cells...') word_counts = [] for index, row in train_data.iterrows(): word_counts.append(get_num_words(row['new_text'])) train_data['new_text_count'] = word_counts return train_data def get_bigrams(train_data): print("\nCalculating the bigrams...") bigram_vectorizer = CountVectorizer(ngram_range=[2, 2]) x = bigram_vectorizer.fit_transform(train_data.text) bigram_total = bigram_vectorizer.get_feature_names() transformer = TfidfTransformer() mat = transformer.fit_transform(x) bigrams = pd.DataFrame(mat.todense(), index=train_data.index, columns=bigram_vectorizer.get_feature_names()) train_data = pd.concat([train_data, bigrams], ignore_index=False, sort=False, axis=1, join="inner") return len(bigram_total), train_data def get_trigrams(train_data): print("\nCalculating the trigrams...") trigram_vectorizer = CountVectorizer(ngram_range=[3, 3]) x = trigram_vectorizer.fit_transform(train_data.text) trigram_total = trigram_vectorizer.get_feature_names() transformer = TfidfTransformer() mat = transformer.fit_transform(x) trigram = pd.DataFrame(mat.todense(), index=train_data.index, columns=trigram_vectorizer.get_feature_names()) train_data = pd.concat([train_data, trigram], ignore_index=False, sort=False, axis=1, join="inner") return len(trigram_total), train_data def get_bag_of_words(train_data, features, name, type): print("\nCalculating the bag of words...") vectorizer = CountVectorizer(max_features=features, stop_words='english') x = vectorizer.fit_transform(train_data.text) words = vectorizer.get_feature_names() transformer = TfidfTransformer() mat = transformer.fit_transform(x) bow = pd.DataFrame(mat.todense(), index=train_data.index, columns=vectorizer.get_feature_names()) train_data = pd.concat([train_data, bow], ignore_index=False, sort=False, axis=1, join="inner") df_total = train_data.drop(['text'], axis=1) train_data.to_csv(f'df_{type}_{name}_total.csv') return train_data def plot_ngrams(ngrams): print('\nPlotting ngrams...') fig = plt.figure() ax = plt.axes() x = ['unigram', 'bigram', 'trigram'] ax.plot(x, ngrams) ax.set_title('Number of ngrams in Stockerbot Dataset') plt.savefig('ngrams.png') def concat_date_time(train_data): train_data['timestamp'] = train_data['date'].str.cat(train_data['time'], sep=' ') return train_data def get_vader_polarity(document): vader = SentimentIntensityAnalyzer() score = vader.polarity_scores(document) return list(score.values()) def split_vader_polarity(train_data): print('\nSplitting Vader sentiment dictionary into separate columns...') nvs = [] Nvs = [] pvs = [] cvs = [] for v in train_data.iloc[:, 19]: nvs.append(v[0]) Nvs.append(v[1]) pvs.append(v[2]) cvs.append(v[3]) train_data['negative_vader_score'] = nvs train_data['neutral_vader_score'] = Nvs train_data['positive_vader_score'] = pvs train_data['compound_vader_score'] = cvs return train_data def get_textblob_polarity(document): return TextBlob(document).sentiment.polarity def get_decision_tree_regression(name, file): print(f'Conducting decision tree regression on {name}\'s {file} file...') train_data = pd.read_csv(f'df_{file}_{name}_total.csv') train_data = train_data.drop(['Unnamed: 0'], axis=1) train_data = train_data.sample(frac=1).reset_index(drop=True) train_data = train_data.sort_values(by=['final_scores']) X = train_data.iloc[:, 2:3].values.astype(float) y = train_data.iloc[:, 3:4].values.astype(float) sc_X = StandardScaler() sc_y = StandardScaler() X = sc_X.fit_transform(X) y = sc_y.fit_transform(y) print(f'\n{name} training set after standard scaling:') print(X.shape, y.shape) regr_1 = DecisionTreeRegressor(max_depth=2, max_features='auto') regr_2 = DecisionTreeRegressor(max_depth=5, max_features='auto') regr_1.fit(X, y) regr_2.fit(X, y) X_test = np.arange(0.0, 5.0, 0.01)[:, np.newaxis] y_1 = regr_1.predict(X_test) y_2 = regr_2.predict(X_test) plt.figure() plt.scatter(X, y, s=20, edgecolor='black', c='darkorange', label='data') plt.plot(X_test, y_1, color='cornflowerblue', label='max_depth=2', linewidth=2) plt.plot(X_test, y_2, color='yellowgreen', label='max_depth=5', linewidth=2) plt.xlabel('data') plt.ylabel('target') plt.title(f'{name} Decision Tree Regression ({file})') plt.legend() plt.savefig(f'{file}_{name}_dtr.png') return train_data def get_comparison_calibration_classifiers(name1, file): print(f'Conducting a comparison of calibration classifiers on {name1}\'s {file} file...') train_data = pd.read_csv(f'df_{file}_{name1}_total.csv') train_data = train_data.drop(['Unnamed: 0'], axis=1) train_data = train_data.drop(['date'], axis=1) train_data = train_data.sample(frac=1).reset_index(drop=True) train_data = train_data.sort_values(by=['2_SMA']) X = train_data[['final_scores', '2_SMA', '5_SMA', '7_EMA']] y = train_data[['sentiment']] X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.7) lr = LogisticRegression() gnb = GaussianNB() svc = LinearSVC() rfc = RandomForestClassifier() fig = plt.figure(figsize=(10, 10)) ax1 = plt.subplot2grid((3, 1), (0, 0), rowspan=2) ax2 = plt.subplot2grid((3, 1), (2, 0)) ax1.plot([0, 1], [0, 1], "k:", label="Perfectly calibrated") for clf, name in [(lr, 'Logistic'), (gnb, 'Naive Bayes'), (svc, 'Support Vector Classification'), (rfc, 'Random Forest')]: clf.fit(X_train, y_train.values.ravel()) if hasattr(clf, "predict_proba"): prob_pos = clf.predict_proba(X_test)[:, 1] else: prob_pos = clf.decision_function(X_test) prob_pos = \ (prob_pos - prob_pos.min()) / (prob_pos.max() - prob_pos.min()) fraction_of_positives, mean_predicted_value = \ calibration_curve(y_test, prob_pos, n_bins=10) ax1.plot(mean_predicted_value, fraction_of_positives, "s-", label="%s" % (name,)) ax2.hist(prob_pos, range=(0, 1), bins=10, label=name, histtype="step", lw=2) ax1.set_ylabel("Fraction of positives") ax1.set_ylim([-0.5, 1.5]) ax1.legend(loc="lower right") ax1.set_title(f'{name1} Calibration plots (reliability curve)({file})') ax2.set_xlabel("Mean predicted value") ax2.set_ylabel("Count") ax2.legend(loc="upper center", ncol=2) plt.tight_layout() plt.savefig(f'{file}_{name1}_ccc.png') return train_data def get_support_vector_regression(name, file): print(f'Conducting support vector regression on {name}\'s {file} file...') senti_data = pd.read_csv(f'df_{file}_{name}_total.csv') stock_data = pd.read_csv(f'df_stock_{name}.csv') stocks = stock_data[['date', '2_SMA', '5_SMA', '7_EMA']].copy() train_data = senti_data[['date', 'sentiment', 'final_scores']].copy() new = train_data['date'].str.split(' ', n=1, expand=True) train_data['date'] = new[0] train_data = pd.merge(train_data, stocks, on=['date', 'date'], how='left', sort=False) train_data = train_data.sample(frac=1).reset_index(drop=True) train_data = train_data.fillna(method='ffill') train_data = train_data.fillna(value=0) train_data = train_data.sort_values(by=['final_scores']) X = train_data.iloc[:, 2:3].values.astype(float) y = train_data.iloc[:, 3:4].values.astype(float) sc_X = StandardScaler() sc_y = StandardScaler() X = sc_X.fit_transform(X) y = sc_y.fit_transform(y) print(f'\n{name} training set after standard scaling:') print(X.shape, y.shape) svr_rbf = SVR(kernel='rbf', C=10000, gamma=0.1, epsilon=.1) svr_lin = SVR(kernel='linear', C=10000, gamma='auto') svr_poly = SVR(kernel='poly', C=10000, gamma='auto', degree=3, epsilon=.1, coef0=1) lw = 2 svrs = [svr_rbf, svr_lin, svr_poly] kernel_label = ['RBF', 'Linear', 'Polynomial'] model_color = ['m', 'c', 'g'] fig, axes = plt.subplots(nrows=1, ncols=3, figsize=(15, 10), sharey=True) for ix, svr in enumerate(svrs): axes[ix].plot(X, svr.fit(X, y).predict(X), color=model_color[ix], lw=lw, label='{} model'.format(kernel_label[ix])) axes[ix].scatter(X[svr.support_], y[svr.support_], facecolor="none", edgecolor=model_color[ix], s=50, label='{} support vectors'.format(kernel_label[ix])) axes[ix].scatter(X[np.setdiff1d(np.arange(len(X)), svr.support_)], y[np.setdiff1d(np.arange(len(X)), svr.support_)], facecolor="none", edgecolor="k", s=50, label='other training data') axes[ix].legend(loc='upper center', bbox_to_anchor=(0.5, 1.1), ncol=1, fancybox=True, shadow=True) fig.text(0.5, 0.04, 'data', ha='center', va='center') fig.text(0.06, 0.5, 'target', ha='center', va='center', rotation='vertical') fig.suptitle(f'{name} Support Vector Regression ({file})', fontsize=14) plt.savefig(f'{file}_{name}_swr.png') train_data.to_csv(f'df_{file}_{name}_total.csv') return train_data def get_decision_tree_classifier(train_data, name, file): print(f'Creating decision tree classifiers on {name}\'s {file} file...') train_data = train_data.drop(['date'], axis=1) train_data = train_data.drop(['trading_time'], axis=1) train_data = train_data.drop(['source'], axis=1) train_data = train_data.drop(['text'], axis=1) sentiment = train_data.pop('sentiment') train_data.insert(0, 'sentiment', sentiment) y = train_data.iloc[:, 0].values X_train, X_test, y_train, y_test = train_test_split(train_data, y, test_size=0.33) dtc = DecisionTreeClassifier(criterion='entropy', max_features='auto', max_depth=5, random_state=0) print("Decision Tree classifier") pred = dtc.fit(X_train, y_train) predictions = pred.predict(X_test) text_representation = tree.export_text(dtc) with open(f'decision_tree_{file}_{name}.log', 'w') as fout: fout.write(text_representation) feature_names = list(train_data.columns.values) fig = plt.figure(figsize=(15, 10)) plot_tree(dtc, feature_names=feature_names, class_names=["FALSE", "TRUE"], filled=True, fontsize=12) plt.title(f'{file} Decision Tree for {name}') plt.savefig(f'decision_tree_{file}_{name}.png') fig = plt.figure(figsize=(15, 10)) con_mat = confusion_matrix(y_true=y_test, y_pred=predictions) group_names = ['True Neg', 'False Pos', 'False Neg', 'True Pos'] group_counts = ['{0: 0.0f}'.format(value) for value in con_mat.flatten()] group_percentages = ['{0: .2f}'.format(value) for value in con_mat.flatten() / np.sum(con_mat)] labels = [f'{v1}\n{v2}\n{v3}' for v1, v2, v3 in zip(group_names, group_counts, group_percentages)] labels = np.asarray(labels).reshape(2, 2) sns.heatmap(con_mat, annot=labels, fmt='', cmap='Blues') plt.title(f'{file} Confusion Matrix for {name}') plt.savefig(f'confusion_matrix_{file}_{name}.png') fig = plt.figure(figsize=(15, 10)) class_rpt = pd.DataFrame(classification_report(predictions, y_test, digits=2, output_dict=True)) class_rpt.style.background_gradient(cmap='newcmp', subset=pd.IndexSlice['0':'9', :'f1-score']).set_properties( **{'text-align': 'center', 'font-size': '30px'}) sns.heatmap(class_rpt.iloc[:-1, :].T, annot=True) plt.title(f'{file} Classification Report for {name}') plt.savefig(f'classification_report_{file}_{name}.png') def combine_stock_sentiments(name, code): print('\nCombining extreme and blob data frames back with train_data for regressions...') train_data = pd.read_csv(f'stockerbot_cleaned.csv') if code == 0: df_extreme = pd.read_csv(f'df_extreme_vader_{name}.csv') df_extreme['date'] = pd.to_datetime(df_extreme['date']) type = 'vader' elif code == 1: df_extreme =
pd.read_csv(f'df_extreme_blob_{name}.csv')
pandas.read_csv
from torchwisdom.core.predictor import _Predictor from .utils import * from typing import * import numpy as np from PIL import Image import torch import torch.nn as nn import torch.nn.functional as F from torchwisdom.core.utils import DatasetCollector import pandas as pd __all__ = ['TabularClassifierPredictor'] class TabularSupervisedPredictor(_Predictor): def __init__(self, model: nn.Module, data: DatasetCollector, transform=None): super(TabularSupervisedPredictor, self).__init__(model, data, transform) def _pre_check(self, *args: Any, **kwargs: Any) -> bool: la, lk = len(args), len(kwargs) if la == 0 and lk == 0: return False elif la > 0 and lk > 0: return False else: return True def _pre_predict(self, *args: Any, **kwargs: Any) -> torch.Tensor: is_clean = self._pre_check(*args, **kwargs) if is_clean: if len(args) > 0 and len(kwargs) == 0: data = torch.Tensor([args]) else: if 'csv_file' in kwargs: csv_file = kwargs.get('csv_file') frame = pd.read_csv(csv_file) data = torch.from_numpy(frame.values).float() elif 'dataframe' in kwargs: frame = kwargs.get('dataframe') data = torch.from_numpy(frame.values).float() elif 'tensor_data' in kwargs: data = kwargs.get('tensor_data') if data.dim() <2: data = data.unsqueeze(dim=0) elif 'numpy_data' in kwargs: numpy_data = kwargs.get('numpy_data') data = torch.from_numpy(numpy_data).float() elif 'list_data' in kwargs: list_data = kwargs.get("list_data") data = torch.Tensor([list_data]).float() else: data = None else: data = None return data @staticmethod def _clean_remove_kwargs(key, **kwargs): if key in kwargs: kwargs.pop(key) return kwargs def _clean_kwargs(self, **kwargs: Any) -> Any: kwargs = self._clean_remove_kwargs('use_topk', **kwargs) kwargs = self._clean_remove_kwargs('kval', **kwargs) kwargs = self._clean_remove_kwargs('target', **kwargs) kwargs = self._clean_remove_kwargs('show_table', **kwargs) kwargs = self._clean_remove_kwargs('feature_columns', **kwargs) kwargs = self._clean_remove_kwargs('target_columns', **kwargs) return kwargs class TabularUnsupervisedPredictor(_Predictor): def __init__(self): super(TabularUnsupervisedPredictor, self).__init__() class TabularClassifierPredictor(TabularSupervisedPredictor): def __init__(self, model: nn.Module, data: DatasetCollector, transform=None): super(TabularClassifierPredictor, self).__init__(model, data, transform) if transform is None: self.transform = self.data.validset_attr.transform def _predict(self, feature: torch.Tensor): prediction = None if len(feature): feature.to(self.device) self.model = self.model.to(self.device) self.model.eval() with torch.no_grad(): prediction = self.model(feature) return prediction def _post_predict(self, prediction: torch.Tensor, use_topk: bool = False, kval: int = 5) -> Union[None, Tuple]: is_clean = self._post_check(prediction) if is_clean: if not use_topk: return self._predict_label(prediction) else: return self._predict_topk(prediction, kval=kval) return None def _post_check(self, prediction: torch.Tensor) -> bool: # check output is clean (classfier label image, not image) return True def _class_label(self, class_index: torch.Tensor, is_topk=False) -> Union[str, List, None]: class_label = [] classes = self.data.trainset_attr.classes if classes: if not is_topk: if len(class_index) >= 2: for cidx in class_index: class_label.append(classes[cidx]) return class_label else: return classes[class_index] else: for ctn in class_index: topk_label = [] for cidx in ctn: topk_label.append(classes[cidx]) class_label.append(topk_label) return class_label return None def _predict_topk(self, prediction: torch.Tensor, kval: int = 5) -> Union[bool, Tuple]: if is_tensor_label(prediction): output = F.log_softmax(prediction, dim=1) ps = torch.exp(output) probability, class_index = ps.topk(kval, dim=1, largest=True, sorted=True) class_label = self._class_label(class_index, is_topk=True) return probability, class_index, class_label return False def _predict_label(self, prediction: torch.Tensor) -> Union[bool, Tuple]: if is_tensor_label(prediction): class_index = torch.argmax(prediction, dim=1) class_label = self._class_label(class_index) return class_index, class_label return False @staticmethod def _build_topk_series( predict, data_dict, target_columns, kval): for i in range(kval): percent = predict[0] classes = predict[2] data = [] for cls, prc in zip(classes, percent): if len(cls)==1: data.append(f"{cls[0]} ({prc[0]*100:.4f}%)") else: data.append(f"{cls[i]} ({prc[i]*100:.4f}%)") data_dict.update({target_columns[0] + "_predict_top" + str(i + 1): data}) def _show_as_dataframe(self, feature: torch.Tensor, predict: torch.Tensor, target: torch.Tensor, kval, **kwargs: Any) -> pd.DataFrame: feature_columns = kwargs.get("feature_columns", []) target_columns = kwargs.get("target_columns", []) if target.dim() < 2: tdn = 2 - target.dim() for i in range(tdn): target = target.unsqueeze(dim=0) target = self._class_label(target[0]) data_dict = {} for idx, col in enumerate(feature_columns): data_dict.update({col: feature[:, idx]}) if target is not None: data_dict.update({target_columns[0] + "_truth": target[:]}) if len(predict) == 3: self._build_topk_series(predict, data_dict, target_columns, kval) elif len(predict) == 2: data_dict.update({target_columns[0] + "_predict": predict[1]}) df =
pd.DataFrame(data_dict)
pandas.DataFrame
import pandas as pd import glob data_path = 'E:/GenderClassification/PycharmProjects/GenderClassification/home/abeer/Dropbox/Dataset_HAR project/Brushing Teeth/*' addrs = glob.glob(data_path) for i in addrs: folders = glob.glob(i + '/*') for j in folders: csv_files = glob.glob(j + '/*') shoulder = pd.read_csv('initAcc.csv') elbow = pd.read_csv('initAcc.csv') watch = pd.read_csv('initAcc.csv') for k in csv_files: if '(1)' in k or '(2)' in k or '(3)' in k or '(4)' in k or '(5)' in k: continue elif 'Accelerometer' in k and 'Shoulder' in k: file = pd.read_csv(k) shoulder = shoulder.append(file.iloc[:, 3:]) shoulder = shoulder.reset_index(drop=True) print(shoulder.columns) elif 'Accelerometer' in k and "Elbow" in k: file = pd.read_csv(k) elbow = elbow.append(file.iloc[:, 3:]) elbow = elbow.reset_index(drop=True) elif 'D5' not in k and "F5" not in k: file =
pd.read_csv(k)
pandas.read_csv
import pandas as pd import threading from helpers.keywords import keywords_list from helpers.movie_helper import get_movie_keywords from database import save_movie # movies = pd.read_csv("../data/movie_details_after_2010.csv", lineterminator='\n') # movie_groups = movies.groupby(movies.release_date) def get_keywords(): years = movies[['release_date']].drop_duplicates() for idx, row in years.iterrows(): year = row['release_date'].item() # add_keywords(year) threading.Thread(target=add_keywords, args=(year,)).start() def add_keywords(year): movies_by_year = movie_groups.get_group(year) movies_updated =
pd.DataFrame()
pandas.DataFrame
import numpy as np import pandas as pd import matplotlib.pyplot as plt import numba from functools import partial import multiprocessing import random from scipy import stats class naive_sghmc(): def __init__(self,lnp,lnp_grad,initialguess,data=None,usedata = False, M = None): ''' ''' self.data = data self.ndim = len(initialguess) self.get_mass_matrix(M) self.theta0 = initialguess self.lnp = lnp self.lnp_grad = lnp_grad self.res = [] self.r = [] self.usedata = usedata if usedata: self.n = len(data) def get_mass_matrix(self, mass_matrix=None): """ get the inverse of the mass matrix """ if mass_matrix is None: self.mass_matrix = np.identity(self.ndim) self.inverse_mass_matrix = np.identity(self.ndim) else: if len(mass_matrix) != self.ndim: print("Invalid mass matrix") elif len(mass_matrix) == 1: self.mass_matrix = mass_matrix self.inverse_mass_matrix = 1. / mass_matrix #self.ndim_mass = 1 else: self.mass_matrix = mass_matrix self.inverse_mass_matrix = np.linalg.inv(mass_matrix) #self.ndim_mass = 2 def define_momentum(self): """ sample momentum """ if self.ndim == 1: r = np.random.normal(0, np.sqrt(self.mass_matrix)) else: r = np.random.multivariate_normal(np.zeros(self.ndim), self.mass_matrix) return r def velocity(self, r): """ Get the velocities (gradient of kinetic) given a momentum vector """ if self.ndim == 1: v = self.inverse_mass_matrix * r else: v = np.dot(self.inverse_mass_matrix, r) return v def kinetic_energy(self, r): """ Get the kinetic energy given momentum """ if self.ndim == 1: K = self.inverse_mass_matrix * r**2 else: K = np.dot(r.T, np.dot(self.inverse_mass_matrix, r)) return 0.5 * K def grad_U(self, thetax, size): """ get the estimate gradient based on minibatches pramas theta: position pramas size: number of datapoints """ if self.usedata: df =
pd.DataFrame(self.data)
pandas.DataFrame
import os import unittest from unittest import mock import numpy as np import pandas as pd from dataprofiler import Data, Profiler, ProfilerOptions from dataprofiler.labelers.base_data_labeler import BaseDataLabeler from dataprofiler.profilers.profiler_options import FloatOptions, IntOptions @mock.patch('dataprofiler.profilers.data_labeler_column_profile.' 'DataLabelerColumn.update', return_value=None) @mock.patch('dataprofiler.profilers.profile_builder.DataLabeler', spec=BaseDataLabeler) class TestProfilerOptions(unittest.TestCase): @classmethod def setUpClass(cls): cls.data = Data(data=pd.DataFrame([1, 2]), data_type='csv') def test_default_profiler_options(self, *mocks): # Allowing Profiler to create default options profile = Profiler(self.data) self.assertIsNotNone(profile.options) self.assertTrue(profile.options.data_labeler.is_enabled) for column in profile.options.properties: # TODO: remove the check for correlation option once it's updated to True if column == 'correlation': self.assertFalse(profile.options.properties[column].is_enabled) elif column == 'null_values': self.assertIsNone(profile.options.properties[column]) else: self.assertTrue(profile.options.properties[column].is_enabled) for column_type in ["int", "float", "text"]: column = profile.options.properties[column_type] self.assertTrue(column.properties["histogram_and_quantiles"]) self.assertTrue(column.properties["min"]) self.assertTrue(column.properties["max"]) self.assertTrue(column.properties["sum"]) self.assertTrue(column.properties["variance"]) self.assertTrue(column.properties["is_numeric_stats_enabled"]) if column_type != "text": self.assertTrue(column.properties["num_zeros"].is_enabled) self.assertTrue(column.properties["num_negatives"].is_enabled) else: self.assertFalse(column.properties["num_zeros"].is_enabled) self.assertFalse(column.properties["num_negatives"].is_enabled) # Using ProfilerOptions with the default options options = ProfilerOptions() profile2 = Profiler(self.data, options=options) # Stored in Profiler as StructuredOptions self.assertEqual(profile2.options, options.structured_options) def test_set_failures(self, *mocks): options = ProfilerOptions() # check if no '*.' it raises an error bc attribute not found expected_error = ("type object 'ProfilerOptions' has no attribute " "'is_enabled'") with self.assertRaisesRegex(AttributeError, expected_error): options.set({"is_enabled": False}) # check if attribute doesn't exist, it raises an error expected_error = ("type object 'structured_options' has no attribute " "'test'") with self.assertRaisesRegex(AttributeError, expected_error): options.set({"structured_options.test": False}) def test_numerical_stats_option(self, *mocks): # Assert that the stats are disabled options = ProfilerOptions() options.set({"*.is_numeric_stats_enabled": False, "bias_correction.is_enabled": False}) profile = Profiler(self.data, options=options) for col_profiler in profile.profile: profile_column = col_profiler.profile if profile_column["statistics"] \ and "histogram" in profile_column["statistics"].keys() \ and profile_column["statistics"]["histogram"]: self.assertIsNone( profile_column["statistics"]["histogram"]["bin_counts"]) self.assertIsNone( profile_column["statistics"]["histogram"]["bin_edges"]) self.assertIsNone(profile_column["statistics"]["min"]) self.assertIsNone(profile_column["statistics"]["max"]) self.assertTrue(np.isnan(profile_column["statistics"]["variance"])) self.assertIsNone(profile_column["statistics"]["quantiles"][0]) self.assertTrue(np.isnan(profile_column["statistics"]["skewness"])) self.assertTrue(np.isnan(profile_column["statistics"]["kurtosis"])) # Assert that the stats are enabled options.set({"*.is_numeric_stats_enabled": True, "bias_correction.is_enabled": True}) profile = Profiler(self.data, options=options) for col_profiler in profile.profile: profile_column = col_profiler.profile if profile_column["statistics"] \ and "histogram" in profile_column["statistics"].keys() \ and profile_column["statistics"]["histogram"]: self.assertIsNotNone( profile_column["statistics"]["histogram"]["bin_counts"]) self.assertIsNotNone( profile_column["statistics"]["histogram"]["bin_edges"]) self.assertIsNotNone(profile_column["statistics"]["min"]) self.assertIsNotNone(profile_column["statistics"]["max"]) self.assertEqual(0.5, profile_column["statistics"]["variance"]) self.assertIsNotNone( profile_column["statistics"]["quantiles"][0]) self.assertTrue(profile_column["statistics"]["skewness"] is np.nan) self.assertTrue(profile_column["statistics"]["kurtosis"] is np.nan) def test_disable_labeler_in_profiler_options(self, *mocks): options = ProfilerOptions() options.structured_options.data_labeler.enable = False profile = Profiler(self.data, options=options) for col_profiler in profile.profile: profile_column = col_profiler.profile if profile_column["statistics"] \ and "data_label_probability" in \ profile_column["statistics"].keys(): self.assertIsNone(profile_column["statistics"] ["data_label_probability"]) def test_disabling_all_columns(self, *mocks): options = ProfilerOptions() options.structured_options.text.is_enabled = False options.structured_options.float.is_enabled = False options.structured_options.int.is_enabled = False options.structured_options.datetime.is_enabled = False options.structured_options.order.is_enabled = False options.structured_options.category.is_enabled = False options.structured_options.chi2_homogeneity.is_enabled = False options.structured_options.data_labeler.is_enabled = False profile = Profiler(self.data, options=options) for col_profiler in profile.profile: profile_column = col_profiler.profile self.assertIsNone(profile_column["data_type"]) self.assertTrue("data_label" not in profile_column.keys()) self.assertIsNone(profile_column["categorical"]) self.assertIsNone(profile_column["order"]) self.assertDictEqual({ 'sample_size': 2, 'null_count': 0, 'null_types': [], 'null_types_index': {} }, profile_column["statistics"]) @mock.patch('dataprofiler.profilers.text_column_profile.TextColumn' '._update_vocab') def test_disabling_vocab(self, vocab_mock, *mocks): # Check to see disabling vocab prevents vocab from updating options = ProfilerOptions() options.structured_options.text.vocab.is_enabled = False profile = Profiler(self.data, options=options) vocab_mock.assert_not_called() # Check to see default options enable vocab multi_options = ProfilerOptions() multi_options.structured_options.multiprocess.is_enabled = False profile = Profiler(self.data, options=multi_options) vocab_mock.assert_called() def test_disabling_all_stats(self, *mocks): options = ProfilerOptions() statistical_options = { "histogram_and_quantiles.is_enabled": False, "min.is_enabled": False, "max.is_enabled": False, "mode.is_enabled": False, "median.is_enabled": False, "sum.is_enabled": False, "variance.is_enabled": False, "skewness.is_enabled": False, "kurtosis.is_enabled": False, "num_zeros.is_enabled": False, "num_negatives.is_enabled": False, "median_abs_deviation.is_enabled": False } options.set(statistical_options) # Assert the numerics are properly set text_options = options.structured_options.text.properties float_options = options.structured_options.float.properties int_options = options.structured_options.int.properties for option in ["histogram_and_quantiles", "min", "max", "sum", "mode", "variance", "skewness", "kurtosis", "median_abs_deviation", "num_zeros", "num_negatives"]: self.assertFalse(text_options[option].is_enabled) self.assertFalse(float_options[option].is_enabled) self.assertFalse(int_options[option].is_enabled) # Run the profiler profile = Profiler(self.data, options=options) # Assert that the stats are non-existent for col_profiler in profile.profile: profile_column = col_profiler.profile if profile_column["statistics"] \ and "histogram" in profile_column["statistics"].keys() \ and profile_column["statistics"]["histogram"]: self.assertIsNone( profile_column["statistics"]["histogram"]["bin_counts"]) self.assertIsNone( profile_column["statistics"]["histogram"]["bin_edges"]) self.assertIsNone(profile_column["statistics"]["min"]) self.assertIsNone(profile_column["statistics"]["max"]) self.assertTrue(np.isnan(profile_column["statistics"]["variance"])) self.assertIsNone(profile_column["statistics"]["quantiles"][0]) self.assertTrue(profile_column["statistics"]["skewness"] is np.nan) self.assertTrue(profile_column["statistics"]["kurtosis"] is np.nan) self.assertTrue( profile_column["statistics"]["median_abs_deviation"] is np.nan) self.assertTrue(np.isnan(profile_column["statistics"]["mode"])) self.assertTrue(np.isnan(profile_column["statistics"]["median"])) def test_validate(self, *mocks): options = ProfilerOptions() options.structured_options.data_labeler.is_enabled = "Invalid" options.structured_options.data_labeler.data_labeler_dirpath = 5 options.structured_options.int.max = "Invalid" expected_error = ( "ProfilerOptions.structured_options.int.max must be a " "BooleanOption.\n" "ProfilerOptions.structured_options.data_labeler.is_enabled must be" " a Boolean.\n" "ProfilerOptions.structured_options.data_labeler." "data_labeler_dirpath must be a string.") with self.assertRaisesRegex(ValueError, expected_error): options.validate() def test_validate_numeric_stats(self, *mocks): options = ProfilerOptions() numerical_options = { "histogram_and_quantiles.is_enabled": False, "min.is_enabled": False, "max.is_enabled": False, "mode.is_enabled": False, "median.is_enabled": False, "sum.is_enabled": False, "variance.is_enabled": True, "skewness.is_enabled": False, "kurtosis.is_enabled": False, "median_abs_deviation.is_enabled": False } # Asserts error since sum must be toggled on if variance is expected_error = ( "ProfilerOptions.structured_options.int: The numeric stats must " "toggle on the sum if the variance is toggled on.\n" "ProfilerOptions.structured_options.float: The numeric stats must " "toggle on the sum if the variance is toggled on.\n" "ProfilerOptions.structured_options.text: The numeric stats must " "toggle on the sum if the variance is toggled on." ) options.set(numerical_options) with self.assertRaisesRegex(ValueError, expected_error): options.validate() # test warns if is_numeric_stats_enabled = False numerical_options = { "*.is_numeric_stats_enabled": False, } options.set(numerical_options) with self.assertWarnsRegex(UserWarning, 'ProfilerOptions.structured_options.int.' 'numeric_stats: The numeric stats are ' 'completely disabled.'): options.validate() def test_setting_options(self, *mocks): options = ProfilerOptions() # Ensure set works appropriately options.set({ "data_labeler.is_enabled": False, "min.is_enabled": False, "structured_options.data_labeler.data_labeler_dirpath": "test", "data_labeler.max_sample_size": 15}) text_options = options.structured_options.text.properties float_options = options.structured_options.float.properties int_options = options.structured_options.int.properties data_labeler_options = options.structured_options.data_labeler \ .properties self.assertFalse(options.structured_options.data_labeler.is_enabled) self.assertFalse(text_options["min"].is_enabled) self.assertFalse(float_options["min"].is_enabled) self.assertFalse(int_options["min"].is_enabled) self.assertEqual(data_labeler_options["data_labeler_dirpath"], "test") self.assertEqual(data_labeler_options["max_sample_size"], 15) # Ensure direct attribute setting works appropriately options.structured_options.data_labeler.max_sample_size = 12 options.structured_options.text.histogram_and_quantiles\ .is_enabled = True options.structured_options.text.is_enabled = False text_options = options.structured_options.text.properties data_labeler_options = options.structured_options.data_labeler \ .properties self.assertEqual(data_labeler_options["max_sample_size"], 12) self.assertTrue(text_options["histogram_and_quantiles"].is_enabled) self.assertFalse(text_options["is_enabled"]) # check direct attribute access after set float_options = FloatOptions() float_options.set({"precision.is_enabled": False, "min.is_enabled": False, "*.is_enabled": False}) self.assertFalse(float_options.precision.is_enabled) self.assertFalse(float_options.min.is_enabled) self.assertFalse(float_options.is_enabled) def test_improper_profile_options(self, *mocks): with self.assertRaisesRegex( ValueError, "The profile options must be passed as a " "ProfileOptions object."): profile = Profiler(self.data, options="Strings are not accepted") with self.assertRaisesRegex( ValueError, "ProfilerOptions.structured_options.text.max." "is_enabled must be a Boolean."): profile_options = ProfilerOptions() profile_options.structured_options.text.max.is_enabled = "String" profile_options.validate() def test_invalid_options_type(self, *mocks): # Test incorrect data labeler options options = ProfilerOptions() options.structured_options.data_labeler = IntOptions() with self.assertRaisesRegex( ValueError, r"data_labeler must be a\(n\) DataLabelerOptions."): profile = Profiler(self.data, options=options) # Test incorrect float options options = ProfilerOptions() options.structured_options.float = IntOptions() with self.assertRaisesRegex( ValueError, r"float must be a\(n\) FloatOptions."): profile = Profiler(self.data, options=options) @mock.patch('dataprofiler.profilers.float_column_profile.FloatColumn.' '_update_precision') def test_float_precision(self, update_precision, *mocks): options = ProfilerOptions() options.structured_options.float.precision.is_enabled = False options.structured_options.multiprocess.is_enabled = False profile = Profiler(self.data, options=options) update_precision.assert_not_called() multi_options = ProfilerOptions() multi_options.structured_options.multiprocess.is_enabled = False profile = Profiler(self.data, options=multi_options) update_precision.assert_called() def test_set_attribute_error(self, *mocks): options = ProfilerOptions() with self.assertRaisesRegex(AttributeError, "type object \'structured_options." "data_labeler.is_enabled\' has no attribute" " \'is_here\'"): options.set({"data_labeler.is_enabled.is_here": False}) def test_is_prop_enabled(self, *mocks): options = ProfilerOptions() with self.assertRaisesRegex(AttributeError, "Property \"Invalid\" does not exist in " "TextOptions."): options.structured_options.text.is_prop_enabled("Invalid") # This test is to ensure is_prop_enabled works for BooleanOption objects options.structured_options.int.min.is_enabled = True self.assertTrue(options.structured_options.int.is_prop_enabled("min")) # This test is to ensure is_prop_enabled works for bools options.structured_options.int.max.is_enabled = True options.structured_options.int.variance.is_enabled = True options.structured_options.int.histogram_and_quantiles.is_enabled = True options.structured_options.int.sum.is_enabled = True self.assertTrue(options.structured_options.int. is_prop_enabled("is_numeric_stats_enabled")) def test_setting_overlapping_option(self, *mocks): options = ProfilerOptions() # Raises error if overlap option set sets = [ {"data_labeler.data_labeler_object": 3}, {"data_labeler.data_labeler_dirpath": 3}, {"text.is_enabled": False}, {"text.vocab.is_enabled": False} ] for set_dict in sets: msg = f"Attempted to set options {set_dict} in ProfilerOptions " \ f"without specifying whether to set them for " \ f"StructuredOptions or UnstructuredOptions." with self.assertRaisesRegex(ValueError, msg): options.set(set_dict) # Works still for disabling both labelers options.set({"data_labeler.is_enabled": False}) self.assertFalse(options.structured_options.data_labeler.is_enabled) self.assertFalse(options.unstructured_options.data_labeler.is_enabled) # Works for specifying which to set for options = ProfilerOptions() options.set( {"unstructured_options.data_labeler.data_labeler_object": 23}) self.assertIsNone(options.structured_options.data_labeler. data_labeler_object) self.assertEqual(23, options.unstructured_options.data_labeler. data_labeler_object) options = ProfilerOptions() options.set({"structured_options.data_labeler.data_labeler_dirpath": "Hello There"}) self.assertEqual("Hello There", options.structured_options. data_labeler.data_labeler_dirpath) self.assertIsNone(options.unstructured_options.data_labeler. data_labeler_dirpath) options = ProfilerOptions() options.set({"unstructured_options.text.is_enabled": False}) self.assertTrue(options.structured_options.text.is_enabled) self.assertFalse(options.unstructured_options.text.is_enabled) options = ProfilerOptions() options.set({"structured_options.text.vocab.is_enabled": False}) self.assertFalse(options.structured_options.text.vocab.is_enabled) self.assertTrue(options.unstructured_options.text.vocab.is_enabled) def test_eq(self, *mocks): options = ProfilerOptions() options2 = ProfilerOptions() options.unstructured_options.data_labeler.is_enabled = False self.assertNotEqual(options, options2) options2.unstructured_options.data_labeler.is_enabled = False self.assertEqual(options, options2) options.structured_options.float.precision.sample_ratio = 0.1 self.assertNotEqual(options, options2) options2.structured_options.float.precision.sample_ratio = 0.15 self.assertNotEqual(options, options2) options.structured_options.float.precision.sample_ratio = 0.1 self.assertNotEqual(options, options2) @mock.patch('dataprofiler.profilers.data_labeler_column_profile.' 'DataLabelerColumn.update', return_value=None) @mock.patch('dataprofiler.profilers.profile_builder.DataLabeler') class TestDataLabelerCallWithOptions(unittest.TestCase): @classmethod def setUpClass(cls): cls.data = Data(data=
pd.DataFrame([1, 2])
pandas.DataFrame
import os import unittest from typeguard import typechecked from typing import List, Dict import pandas as pd from cgnal.core.logging.defaults import getDefaultLogger from cgnal.core.tests.core import logTest, TestCase from cgnal.core.utils.decorators import lazyproperty as lazy, param_check from cgnal.core.utils.dict import ( groupIterable, pairwise, union, flattenKeys, unflattenKeys, filterNones, groupBy, ) from cgnal.core.utils.fs import ( mkdir, create_dir_if_not_exists, get_lexicographic_dirname, ) from cgnal.core.utils.pandas import is_sparse, loc from tests import TMP_FOLDER logger = getDefaultLogger() class TestUtilsDict(TestCase): @logTest def test_groupIterable(self): self.assertEqual( [ el for el in groupIterable( {"a": 1, "b": 2, "c": 3, "d": 4, "e": 5, "f": 6}, batch_size=3 ) ], [["a", "b", "c"], ["d", "e", "f"]], ) self.assertEqual( [ el for el in groupIterable( {"a": 1, "b": 2, "c": 3, "d": 4, "e": 5}, batch_size=3 ) ], [["a", "b", "c"], ["d", "e"]], ) self.assertEqual( [ el for el in groupIterable( {"a": 1, "b": 2, "c": 3, "d": 4, "e": 5, "f": 6, "g": 7}, batch_size=3, ) ], [["a", "b", "c"], ["d", "e", "f"], ["g"]], ) @logTest def test_pairwise(self): self.assertEqual( [el for el in pairwise({"a": 1, "b": 2, "c": 3, "d": 4, "e": 5, "f": 6})], [("a", "b"), ("b", "c"), ("c", "d"), ("d", "e"), ("e", "f")], ) self.assertEqual([el for el in pairwise({"a": 1})], []) @logTest def test_union(self): self.assertEqual( union({"1": {"a": 1}}, filterNones({"1": {"a": None}, "b": 1})), {"1": {"a": 1}, "b": 1}, ) self.assertEqual( union({"1": {"a": 1}}, filterNones({"1": {"a": 2}, "b": None})), {"1": {"a": 2}}, ) self.assertEqual( union({"1": None}, {"1": 1, "2": 3}, {"1": {"1a": 1, "1b": 2}, "3": 4}), {"1": {"1a": 1, "1b": 2}, "2": 3, "3": 4}, ) @logTest def test_flattenKeys(self): self.assertEqual( flattenKeys({"a": {"b": {"c": 2}}, "d": 2, "e": 3}, sep="."), {"a.b.c": 2, "d": 2, "e": 3}, ) self.assertEqual( flattenKeys({"a": {"b": {"c": 2}}, "a": 2, "e": 3}), {"a": 2, "e": 3} ) @logTest def test_unflattenKeys(self): self.assertEqual( unflattenKeys({"a.b.c": 2, "d": 2, "e": 3}, sep="."), {"a": {"b": {"c": 2}}, "d": 2, "e": 3}, ) self.assertEqual( unflattenKeys({"a.b.c": 2, "d": 2, "e": 3}, sep="_"), {"a.b.c": 2, "d": 2, "e": 3}, ) @logTest def test_filterNones(self): self.assertEqual(filterNones({"a": 1, "b": None}), {"a": 1}) @logTest def test_groupBy(self): self.assertEqual( [(k, v) for k, v in groupBy(["abc", "ab", "bcd", "c"], key=len)], [(1, ["c"]), (2, ["ab"]), (3, ["abc", "bcd"])], ) class TestUtilsFs(TestCase): @logTest def test_mkdir(self): directory = os.path.join("/tmp", "test_utils_fs") mkdir(directory) self.assertTrue(os.path.exists(directory)) os.rmdir(directory) @logTest def test_create_dir_if_not_exists(self): directory = os.path.join("/tmp", "test_utils_fs") create_dir_if_not_exists(directory) self.assertTrue(os.path.exists(directory)) os.rmdir(directory) @logTest def test_get_lexicographic_dirname(self): create_dir_if_not_exists(os.path.join("/tmp", "zzz")) self.assertEqual(get_lexicographic_dirname("/tmp", first=False), "zzz") os.rmdir(os.path.join("/tmp", "zzz")) class TestPandas(TestCase): @logTest def test_is_sparse(self): self.assertTrue( is_sparse( pd.DataFrame( { "v1":
pd.arrays.SparseArray([0, 0, 0, 0, 1])
pandas.arrays.SparseArray
from datetime import datetime, timedelta import warnings import operator from textwrap import dedent import numpy as np from pandas._libs import (lib, index as libindex, tslib as libts, algos as libalgos, join as libjoin, Timedelta) from pandas._libs.lib import is_datetime_array from pandas.compat import range, u, set_function_name from pandas.compat.numpy import function as nv from pandas import compat from pandas.core.accessor import CachedAccessor from pandas.core.arrays import ExtensionArray from pandas.core.dtypes.generic import ( ABCSeries, ABCDataFrame, ABCMultiIndex, ABCPeriodIndex, ABCTimedeltaIndex, ABCDateOffset) from pandas.core.dtypes.missing import isna, array_equivalent from pandas.core.dtypes.common import ( _ensure_int64, _ensure_object, _ensure_categorical, _ensure_platform_int, is_integer, is_float, is_dtype_equal, is_dtype_union_equal, is_object_dtype, is_categorical, is_categorical_dtype, is_interval_dtype, is_period_dtype, is_bool, is_bool_dtype, is_signed_integer_dtype, is_unsigned_integer_dtype, is_integer_dtype, is_float_dtype, is_datetime64_any_dtype, is_datetime64tz_dtype, is_timedelta64_dtype, is_hashable, needs_i8_conversion, is_iterator, is_list_like, is_scalar) from pandas.core.base import PandasObject, IndexOpsMixin import pandas.core.common as com from pandas.core import ops from pandas.util._decorators import ( Appender, Substitution, cache_readonly, deprecate_kwarg) from pandas.core.indexes.frozen import FrozenList import pandas.core.dtypes.concat as _concat import pandas.core.missing as missing import pandas.core.algorithms as algos import pandas.core.sorting as sorting from pandas.io.formats.printing import ( pprint_thing, default_pprint, format_object_summary, format_object_attrs) from pandas.core.ops import make_invalid_op from pandas.core.strings import StringMethods __all__ = ['Index'] _unsortable_types = frozenset(('mixed', 'mixed-integer')) _index_doc_kwargs = dict(klass='Index', inplace='', target_klass='Index', unique='Index', duplicated='np.ndarray') _index_shared_docs = dict() def _try_get_item(x): try: return x.item() except AttributeError: return x def _make_comparison_op(op, cls): def cmp_method(self, other): if isinstance(other, (np.ndarray, Index, ABCSeries)): if other.ndim > 0 and len(self) != len(other): raise ValueError('Lengths must match to compare') # we may need to directly compare underlying # representations if needs_i8_conversion(self) and needs_i8_conversion(other): return self._evaluate_compare(other, op) if is_object_dtype(self) and self.nlevels == 1: # don't pass MultiIndex with np.errstate(all='ignore'): result = ops._comp_method_OBJECT_ARRAY(op, self.values, other) else: # numpy will show a DeprecationWarning on invalid elementwise # comparisons, this will raise in the future with warnings.catch_warnings(record=True): with np.errstate(all='ignore'): result = op(self.values, np.asarray(other)) # technically we could support bool dtyped Index # for now just return the indexing array directly if is_bool_dtype(result): return result try: return Index(result) except TypeError: return result name = '__{name}__'.format(name=op.__name__) # TODO: docstring? return set_function_name(cmp_method, name, cls) def _make_arithmetic_op(op, cls): def index_arithmetic_method(self, other): if isinstance(other, (ABCSeries, ABCDataFrame)): return NotImplemented elif isinstance(other, ABCTimedeltaIndex): # Defer to subclass implementation return NotImplemented other = self._validate_for_numeric_binop(other, op) # handle time-based others if isinstance(other, (ABCDateOffset, np.timedelta64, timedelta)): return self._evaluate_with_timedelta_like(other, op) elif isinstance(other, (datetime, np.datetime64)): return self._evaluate_with_datetime_like(other, op) values = self.values with np.errstate(all='ignore'): result = op(values, other) result = missing.dispatch_missing(op, values, other, result) attrs = self._get_attributes_dict() attrs = self._maybe_update_attributes(attrs) if op is divmod: result = (Index(result[0], **attrs), Index(result[1], **attrs)) else: result = Index(result, **attrs) return result name = '__{name}__'.format(name=op.__name__) # TODO: docstring? return set_function_name(index_arithmetic_method, name, cls) class InvalidIndexError(Exception): pass _o_dtype = np.dtype(object) _Identity = object def _new_Index(cls, d): """ This is called upon unpickling, rather than the default which doesn't have arguments and breaks __new__ """ # required for backward compat, because PI can't be instantiated with # ordinals through __new__ GH #13277 if issubclass(cls, ABCPeriodIndex): from pandas.core.indexes.period import _new_PeriodIndex return _new_PeriodIndex(cls, **d) return cls.__new__(cls, **d) class Index(IndexOpsMixin, PandasObject): """ Immutable ndarray implementing an ordered, sliceable set. The basic object storing axis labels for all pandas objects Parameters ---------- data : array-like (1-dimensional) dtype : NumPy dtype (default: object) If dtype is None, we find the dtype that best fits the data. If an actual dtype is provided, we coerce to that dtype if it's safe. Otherwise, an error will be raised. copy : bool Make a copy of input ndarray name : object Name to be stored in the index tupleize_cols : bool (default: True) When True, attempt to create a MultiIndex if possible Notes ----- An Index instance can **only** contain hashable objects Examples -------- >>> pd.Index([1, 2, 3]) Int64Index([1, 2, 3], dtype='int64') >>> pd.Index(list('abc')) Index(['a', 'b', 'c'], dtype='object') See Also --------- RangeIndex : Index implementing a monotonic integer range CategoricalIndex : Index of :class:`Categorical` s. MultiIndex : A multi-level, or hierarchical, Index IntervalIndex : an Index of :class:`Interval` s. DatetimeIndex, TimedeltaIndex, PeriodIndex Int64Index, UInt64Index, Float64Index """ # To hand over control to subclasses _join_precedence = 1 # Cython methods _left_indexer_unique = libjoin.left_join_indexer_unique_object _left_indexer = libjoin.left_join_indexer_object _inner_indexer = libjoin.inner_join_indexer_object _outer_indexer = libjoin.outer_join_indexer_object _typ = 'index' _data = None _id = None name = None asi8 = None _comparables = ['name'] _attributes = ['name'] _is_numeric_dtype = False _can_hold_na = True # would we like our indexing holder to defer to us _defer_to_indexing = False # prioritize current class for _shallow_copy_with_infer, # used to infer integers as datetime-likes _infer_as_myclass = False _engine_type = libindex.ObjectEngine _accessors = set(['str']) str = CachedAccessor("str", StringMethods) def __new__(cls, data=None, dtype=None, copy=False, name=None, fastpath=False, tupleize_cols=True, **kwargs): if name is None and hasattr(data, 'name'): name = data.name if fastpath: return cls._simple_new(data, name) from .range import RangeIndex # range if isinstance(data, RangeIndex): return RangeIndex(start=data, copy=copy, dtype=dtype, name=name) elif isinstance(data, range): return RangeIndex.from_range(data, copy=copy, dtype=dtype, name=name) # categorical if is_categorical_dtype(data) or is_categorical_dtype(dtype): from .category import CategoricalIndex return CategoricalIndex(data, dtype=dtype, copy=copy, name=name, **kwargs) # interval if is_interval_dtype(data) or is_interval_dtype(dtype): from .interval import IntervalIndex closed = kwargs.get('closed', None) return IntervalIndex(data, dtype=dtype, name=name, copy=copy, closed=closed) # index-like elif isinstance(data, (np.ndarray, Index, ABCSeries)): if (is_datetime64_any_dtype(data) or (dtype is not None and is_datetime64_any_dtype(dtype)) or 'tz' in kwargs): from pandas.core.indexes.datetimes import DatetimeIndex result = DatetimeIndex(data, copy=copy, name=name, dtype=dtype, **kwargs) if dtype is not None and is_dtype_equal(_o_dtype, dtype): return Index(result.to_pydatetime(), dtype=_o_dtype) else: return result elif (is_timedelta64_dtype(data) or (dtype is not None and is_timedelta64_dtype(dtype))): from pandas.core.indexes.timedeltas import TimedeltaIndex result = TimedeltaIndex(data, copy=copy, name=name, **kwargs) if dtype is not None and _o_dtype == dtype: return Index(result.to_pytimedelta(), dtype=_o_dtype) else: return result if dtype is not None: try: # we need to avoid having numpy coerce # things that look like ints/floats to ints unless # they are actually ints, e.g. '0' and 0.0 # should not be coerced # GH 11836 if is_integer_dtype(dtype): inferred = lib.infer_dtype(data) if inferred == 'integer': try: data = np.array(data, copy=copy, dtype=dtype) except OverflowError: # gh-15823: a more user-friendly error message raise OverflowError( "the elements provided in the data cannot " "all be casted to the dtype {dtype}" .format(dtype=dtype)) elif inferred in ['floating', 'mixed-integer-float']: if isna(data).any(): raise ValueError('cannot convert float ' 'NaN to integer') # If we are actually all equal to integers, # then coerce to integer. try: return cls._try_convert_to_int_index( data, copy, name, dtype) except ValueError: pass # Return an actual float index. from .numeric import Float64Index return Float64Index(data, copy=copy, dtype=dtype, name=name) elif inferred == 'string': pass else: data = data.astype(dtype) elif is_float_dtype(dtype): inferred = lib.infer_dtype(data) if inferred == 'string': pass else: data = data.astype(dtype) else: data = np.array(data, dtype=dtype, copy=copy) except (TypeError, ValueError) as e: msg = str(e) if 'cannot convert float' in msg: raise # maybe coerce to a sub-class from pandas.core.indexes.period import ( PeriodIndex, IncompatibleFrequency) if isinstance(data, PeriodIndex): return PeriodIndex(data, copy=copy, name=name, **kwargs) if is_signed_integer_dtype(data.dtype): from .numeric import Int64Index return Int64Index(data, copy=copy, dtype=dtype, name=name) elif is_unsigned_integer_dtype(data.dtype): from .numeric import UInt64Index return UInt64Index(data, copy=copy, dtype=dtype, name=name) elif is_float_dtype(data.dtype): from .numeric import Float64Index return Float64Index(data, copy=copy, dtype=dtype, name=name) elif issubclass(data.dtype.type, np.bool) or is_bool_dtype(data): subarr = data.astype('object') else: subarr = com._asarray_tuplesafe(data, dtype=object) # _asarray_tuplesafe does not always copy underlying data, # so need to make sure that this happens if copy: subarr = subarr.copy() if dtype is None: inferred = lib.infer_dtype(subarr) if inferred == 'integer': try: return cls._try_convert_to_int_index( subarr, copy, name, dtype) except ValueError: pass return Index(subarr, copy=copy, dtype=object, name=name) elif inferred in ['floating', 'mixed-integer-float']: from .numeric import Float64Index return Float64Index(subarr, copy=copy, name=name) elif inferred == 'interval': from .interval import IntervalIndex return IntervalIndex(subarr, name=name, copy=copy) elif inferred == 'boolean': # don't support boolean explicitly ATM pass elif inferred != 'string': if inferred.startswith('datetime'): if (lib.is_datetime_with_singletz_array(subarr) or 'tz' in kwargs): # only when subarr has the same tz from pandas.core.indexes.datetimes import ( DatetimeIndex) try: return DatetimeIndex(subarr, copy=copy, name=name, **kwargs) except libts.OutOfBoundsDatetime: pass elif inferred.startswith('timedelta'): from pandas.core.indexes.timedeltas import ( TimedeltaIndex) return TimedeltaIndex(subarr, copy=copy, name=name, **kwargs) elif inferred == 'period': try: return PeriodIndex(subarr, name=name, **kwargs) except IncompatibleFrequency: pass return cls._simple_new(subarr, name) elif hasattr(data, '__array__'): return Index(np.asarray(data), dtype=dtype, copy=copy, name=name, **kwargs) elif data is None or is_scalar(data): cls._scalar_data_error(data) else: if tupleize_cols and is_list_like(data) and data: if is_iterator(data): data = list(data) # we must be all tuples, otherwise don't construct # 10697 if all(isinstance(e, tuple) for e in data): from .multi import MultiIndex return MultiIndex.from_tuples( data, names=name or kwargs.get('names')) # other iterable of some kind subarr = com._asarray_tuplesafe(data, dtype=object) return Index(subarr, dtype=dtype, copy=copy, name=name, **kwargs) """ NOTE for new Index creation: - _simple_new: It returns new Index with the same type as the caller. All metadata (such as name) must be provided by caller's responsibility. Using _shallow_copy is recommended because it fills these metadata otherwise specified. - _shallow_copy: It returns new Index with the same type (using _simple_new), but fills caller's metadata otherwise specified. Passed kwargs will overwrite corresponding metadata. - _shallow_copy_with_infer: It returns new Index inferring its type from passed values. It fills caller's metadata otherwise specified as the same as _shallow_copy. See each method's docstring. """ @classmethod def _simple_new(cls, values, name=None, dtype=None, **kwargs): """ we require the we have a dtype compat for the values if we are passed a non-dtype compat, then coerce using the constructor Must be careful not to recurse. """ if not hasattr(values, 'dtype'): if (values is None or not len(values)) and dtype is not None: values = np.empty(0, dtype=dtype) else: values = np.array(values, copy=False) if is_object_dtype(values): values = cls(values, name=name, dtype=dtype, **kwargs)._ndarray_values result = object.__new__(cls) result._data = values result.name = name for k, v in compat.iteritems(kwargs): setattr(result, k, v) return result._reset_identity() _index_shared_docs['_shallow_copy'] = """ create a new Index with the same class as the caller, don't copy the data, use the same object attributes with passed in attributes taking precedence *this is an internal non-public method* Parameters ---------- values : the values to create the new Index, optional kwargs : updates the default attributes for this Index """ @Appender(_index_shared_docs['_shallow_copy']) def _shallow_copy(self, values=None, **kwargs): if values is None: values = self.values attributes = self._get_attributes_dict() attributes.update(kwargs) if not len(values) and 'dtype' not in kwargs: attributes['dtype'] = self.dtype return self._simple_new(values, **attributes) def _shallow_copy_with_infer(self, values=None, **kwargs): """ create a new Index inferring the class with passed value, don't copy the data, use the same object attributes with passed in attributes taking precedence *this is an internal non-public method* Parameters ---------- values : the values to create the new Index, optional kwargs : updates the default attributes for this Index """ if values is None: values = self.values attributes = self._get_attributes_dict() attributes.update(kwargs) attributes['copy'] = False if not len(values) and 'dtype' not in kwargs: attributes['dtype'] = self.dtype if self._infer_as_myclass: try: return self._constructor(values, **attributes) except (TypeError, ValueError): pass return Index(values, **attributes) def _deepcopy_if_needed(self, orig, copy=False): """ .. versionadded:: 0.19.0 Make a copy of self if data coincides (in memory) with orig. Subclasses should override this if self._base is not an ndarray. Parameters ---------- orig : ndarray other ndarray to compare self._data against copy : boolean, default False when False, do not run any check, just return self Returns ------- A copy of self if needed, otherwise self : Index """ if copy: # Retrieve the "base objects", i.e. the original memory allocations if not isinstance(orig, np.ndarray): # orig is a DatetimeIndex orig = orig.values orig = orig if orig.base is None else orig.base new = self._data if self._data.base is None else self._data.base if orig is new: return self.copy(deep=True) return self def _update_inplace(self, result, **kwargs): # guard when called from IndexOpsMixin raise TypeError("Index can't be updated inplace") def _sort_levels_monotonic(self): """ compat with MultiIndex """ return self _index_shared_docs['_get_grouper_for_level'] = """ Get index grouper corresponding to an index level Parameters ---------- mapper: Group mapping function or None Function mapping index values to groups level : int or None Index level Returns ------- grouper : Index Index of values to group on labels : ndarray of int or None Array of locations in level_index uniques : Index or None Index of unique values for level """ @Appender(_index_shared_docs['_get_grouper_for_level']) def _get_grouper_for_level(self, mapper, level=None): assert level is None or level == 0 if mapper is None: grouper = self else: grouper = self.map(mapper) return grouper, None, None def is_(self, other): """ More flexible, faster check like ``is`` but that works through views Note: this is *not* the same as ``Index.identical()``, which checks that metadata is also the same. Parameters ---------- other : object other object to compare against. Returns ------- True if both have same underlying data, False otherwise : bool """ # use something other than None to be clearer return self._id is getattr( other, '_id', Ellipsis) and self._id is not None def _reset_identity(self): """Initializes or resets ``_id`` attribute with new object""" self._id = _Identity() return self # ndarray compat def __len__(self): """ return the length of the Index """ return len(self._data) def __array__(self, dtype=None): """ the array interface, return my values """ return self._data.view(np.ndarray) def __array_wrap__(self, result, context=None): """ Gets called after a ufunc """ if is_bool_dtype(result): return result attrs = self._get_attributes_dict() attrs = self._maybe_update_attributes(attrs) return Index(result, **attrs) @cache_readonly def dtype(self): """ return the dtype object of the underlying data """ return self._data.dtype @cache_readonly def dtype_str(self): """ return the dtype str of the underlying data """ return str(self.dtype) @property def values(self): """ return the underlying data as an ndarray """ return self._data.view(np.ndarray) @property def _values(self): # type: () -> Union[ExtensionArray, Index] # TODO(EA): remove index types as they become extension arrays """The best array representation. This is an ndarray, ExtensionArray, or Index subclass. This differs from ``_ndarray_values``, which always returns an ndarray. Both ``_values`` and ``_ndarray_values`` are consistent between ``Series`` and ``Index``. It may differ from the public '.values' method. index | values | _values | _ndarray_values | ----------------- | -------------- -| ----------- | --------------- | CategoricalIndex | Categorical | Categorical | codes | DatetimeIndex[tz] | ndarray[M8ns] | DTI[tz] | ndarray[M8ns] | For the following, the ``._values`` is currently ``ndarray[object]``, but will soon be an ``ExtensionArray`` index | values | _values | _ndarray_values | ----------------- | --------------- | ------------ | --------------- | PeriodIndex | ndarray[object] | ndarray[obj] | ndarray[int] | IntervalIndex | ndarray[object] | ndarray[obj] | ndarray[object] | See Also -------- values _ndarray_values """ return self.values def get_values(self): """ Return `Index` data as an `numpy.ndarray`. Returns ------- numpy.ndarray A one-dimensional numpy array of the `Index` values. See Also -------- Index.values : The attribute that get_values wraps. Examples -------- Getting the `Index` values of a `DataFrame`: >>> df = pd.DataFrame([[1, 2, 3], [4, 5, 6], [7, 8, 9]], ... index=['a', 'b', 'c'], columns=['A', 'B', 'C']) >>> df A B C a 1 2 3 b 4 5 6 c 7 8 9 >>> df.index.get_values() array(['a', 'b', 'c'], dtype=object) Standalone `Index` values: >>> idx = pd.Index(['1', '2', '3']) >>> idx.get_values() array(['1', '2', '3'], dtype=object) `MultiIndex` arrays also have only one dimension: >>> midx = pd.MultiIndex.from_arrays([[1, 2, 3], ['a', 'b', 'c']], ... names=('number', 'letter')) >>> midx.get_values() array([(1, 'a'), (2, 'b'), (3, 'c')], dtype=object) >>> midx.get_values().ndim 1 """ return self.values @Appender(IndexOpsMixin.memory_usage.__doc__) def memory_usage(self, deep=False): result = super(Index, self).memory_usage(deep=deep) # include our engine hashtable result += self._engine.sizeof(deep=deep) return result # ops compat @deprecate_kwarg(old_arg_name='n', new_arg_name='repeats') def repeat(self, repeats, *args, **kwargs): """ Repeat elements of an Index. Returns a new index where each element of the current index is repeated consecutively a given number of times. Parameters ---------- repeats : int The number of repetitions for each element. **kwargs Additional keywords have no effect but might be accepted for compatibility with numpy. Returns ------- pandas.Index Newly created Index with repeated elements. See Also -------- Series.repeat : Equivalent function for Series numpy.repeat : Underlying implementation Examples -------- >>> idx = pd.Index([1, 2, 3]) >>> idx Int64Index([1, 2, 3], dtype='int64') >>> idx.repeat(2) Int64Index([1, 1, 2, 2, 3, 3], dtype='int64') >>> idx.repeat(3) Int64Index([1, 1, 1, 2, 2, 2, 3, 3, 3], dtype='int64') """ nv.validate_repeat(args, kwargs) return self._shallow_copy(self._values.repeat(repeats)) _index_shared_docs['where'] = """ .. versionadded:: 0.19.0 Return an Index of same shape as self and whose corresponding entries are from self where cond is True and otherwise are from other. Parameters ---------- cond : boolean array-like with the same length as self other : scalar, or array-like """ @Appender(_index_shared_docs['where']) def where(self, cond, other=None): if other is None: other = self._na_value dtype = self.dtype values = self.values if is_bool(other) or is_bool_dtype(other): # bools force casting values = values.astype(object) dtype = None values = np.where(cond, values, other) if self._is_numeric_dtype and np.any(isna(values)): # We can't coerce to the numeric dtype of "self" (unless # it's float) if there are NaN values in our output. dtype = None return self._shallow_copy_with_infer(values, dtype=dtype) def ravel(self, order='C'): """ return an ndarray of the flattened values of the underlying data See also -------- numpy.ndarray.ravel """ return self._ndarray_values.ravel(order=order) # construction helpers @classmethod def _try_convert_to_int_index(cls, data, copy, name, dtype): """ Attempt to convert an array of data into an integer index. Parameters ---------- data : The data to convert. copy : Whether to copy the data or not. name : The name of the index returned. Returns ------- int_index : data converted to either an Int64Index or a UInt64Index Raises ------ ValueError if the conversion was not successful. """ from .numeric import Int64Index, UInt64Index if not is_unsigned_integer_dtype(dtype): # skip int64 conversion attempt if uint-like dtype is passed, as # this could return Int64Index when UInt64Index is what's desrired try: res = data.astype('i8', copy=False) if (res == data).all(): return Int64Index(res, copy=copy, name=name) except (OverflowError, TypeError, ValueError): pass # Conversion to int64 failed (possibly due to overflow) or was skipped, # so let's try now with uint64. try: res = data.astype('u8', copy=False) if (res == data).all(): return UInt64Index(res, copy=copy, name=name) except (OverflowError, TypeError, ValueError): pass raise ValueError @classmethod def _scalar_data_error(cls, data): raise TypeError('{0}(...) must be called with a collection of some ' 'kind, {1} was passed'.format(cls.__name__, repr(data))) @classmethod def _string_data_error(cls, data): raise TypeError('String dtype not supported, you may need ' 'to explicitly cast to a numeric type') @classmethod def _coerce_to_ndarray(cls, data): """coerces data to ndarray, raises on scalar data. Converts other iterables to list first and then to array. Does not touch ndarrays. """ if not isinstance(data, (np.ndarray, Index)): if data is None or is_scalar(data): cls._scalar_data_error(data) # other iterable of some kind if not isinstance(data, (ABCSeries, list, tuple)): data = list(data) data = np.asarray(data) return data def _get_attributes_dict(self): """ return an attributes dict for my class """ return {k: getattr(self, k, None) for k in self._attributes} def view(self, cls=None): # we need to see if we are subclassing an # index type here if cls is not None and not hasattr(cls, '_typ'): result = self._data.view(cls) else: result = self._shallow_copy() if isinstance(result, Index): result._id = self._id return result def _coerce_scalar_to_index(self, item): """ we need to coerce a scalar to a compat for our index type Parameters ---------- item : scalar item to coerce """ dtype = self.dtype if self._is_numeric_dtype and isna(item): # We can't coerce to the numeric dtype of "self" (unless # it's float) if there are NaN values in our output. dtype = None return Index([item], dtype=dtype, **self._get_attributes_dict()) _index_shared_docs['copy'] = """ Make a copy of this object. Name and dtype sets those attributes on the new object. Parameters ---------- name : string, optional deep : boolean, default False dtype : numpy dtype or pandas type Returns ------- copy : Index Notes ----- In most cases, there should be no functional difference from using ``deep``, but if ``deep`` is passed it will attempt to deepcopy. """ @Appender(_index_shared_docs['copy']) def copy(self, name=None, deep=False, dtype=None, **kwargs): if deep: new_index = self._shallow_copy(self._data.copy()) else: new_index = self._shallow_copy() names = kwargs.get('names') names = self._validate_names(name=name, names=names, deep=deep) new_index = new_index.set_names(names) if dtype: new_index = new_index.astype(dtype) return new_index def __copy__(self, **kwargs): return self.copy(**kwargs) def __deepcopy__(self, memo=None): if memo is None: memo = {} return self.copy(deep=True) def _validate_names(self, name=None, names=None, deep=False): """ Handles the quirks of having a singular 'name' parameter for general Index and plural 'names' parameter for MultiIndex. """ from copy import deepcopy if names is not None and name is not None: raise TypeError("Can only provide one of `names` and `name`") elif names is None and name is None: return deepcopy(self.names) if deep else self.names elif names is not None: if not is_list_like(names): raise TypeError("Must pass list-like as `names`.") return names else: if not is_list_like(name): return [name] return name def __unicode__(self): """ Return a string representation for this object. Invoked by unicode(df) in py2 only. Yields a Unicode String in both py2/py3. """ klass = self.__class__.__name__ data = self._format_data() attrs = self._format_attrs() space = self._format_space() prepr = (u(",%s") % space).join(u("%s=%s") % (k, v) for k, v in attrs) # no data provided, just attributes if data is None: data = '' res = u("%s(%s%s)") % (klass, data, prepr) return res def _format_space(self): # using space here controls if the attributes # are line separated or not (the default) # max_seq_items = get_option('display.max_seq_items') # if len(self) > max_seq_items: # space = "\n%s" % (' ' * (len(klass) + 1)) return " " @property def _formatter_func(self): """ Return the formatter function """ return default_pprint def _format_data(self, name=None): """ Return the formatted data as a unicode string """ # do we want to justify (only do so for non-objects) is_justify = not (self.inferred_type in ('string', 'unicode') or (self.inferred_type == 'categorical' and is_object_dtype(self.categories))) return format_object_summary(self, self._formatter_func, is_justify=is_justify, name=name) def _format_attrs(self): """ Return a list of tuples of the (attr,formatted_value) """ return format_object_attrs(self) def to_series(self, index=None, name=None): """ Create a Series with both index and values equal to the index keys useful with map for returning an indexer based on an index Parameters ---------- index : Index, optional index of resulting Series. If None, defaults to original index name : string, optional name of resulting Series. If None, defaults to name of original index Returns ------- Series : dtype will be based on the type of the Index values. """ from pandas import Series if index is None: index = self._shallow_copy() if name is None: name = self.name return Series(self._to_embed(), index=index, name=name) def to_frame(self, index=True): """ Create a DataFrame with a column containing the Index. .. versionadded:: 0.21.0 Parameters ---------- index : boolean, default True Set the index of the returned DataFrame as the original Index. Returns ------- DataFrame DataFrame containing the original Index data. See Also -------- Index.to_series : Convert an Index to a Series. Series.to_frame : Convert Series to DataFrame. Examples -------- >>> idx = pd.Index(['Ant', 'Bear', 'Cow'], name='animal') >>> idx.to_frame() animal animal Ant Ant Bear Bear Cow Cow By default, the original Index is reused. To enforce a new Index: >>> idx.to_frame(index=False) animal 0 Ant 1 Bear 2 Cow """ from pandas import DataFrame result = DataFrame(self._shallow_copy(), columns=[self.name or 0]) if index: result.index = self return result def _to_embed(self, keep_tz=False, dtype=None): """ *this is an internal non-public method* return an array repr of this object, potentially casting to object """ if dtype is not None: return self.astype(dtype)._to_embed(keep_tz=keep_tz) return self.values.copy() _index_shared_docs['astype'] = """ Create an Index with values cast to dtypes. The class of a new Index is determined by dtype. When conversion is impossible, a ValueError exception is raised. Parameters ---------- dtype : numpy dtype or pandas type copy : bool, default True By default, astype always returns a newly allocated object. If copy is set to False and internal requirements on dtype are satisfied, the original data is used to create a new Index or the original Index is returned. .. versionadded:: 0.19.0 """ @Appender(_index_shared_docs['astype']) def astype(self, dtype, copy=True): if is_dtype_equal(self.dtype, dtype): return self.copy() if copy else self elif is_categorical_dtype(dtype): from .category import CategoricalIndex return CategoricalIndex(self.values, name=self.name, dtype=dtype, copy=copy) try: return Index(self.values.astype(dtype, copy=copy), name=self.name, dtype=dtype) except (TypeError, ValueError): msg = 'Cannot cast {name} to dtype {dtype}' raise TypeError(msg.format(name=type(self).__name__, dtype=dtype)) def _to_safe_for_reshape(self): """ convert to object if we are a categorical """ return self def _assert_can_do_setop(self, other): if not is_list_like(other): raise TypeError('Input must be Index or array-like') return True def _convert_can_do_setop(self, other): if not isinstance(other, Index): other = Index(other, name=self.name) result_name = self.name else: result_name = self.name if self.name == other.name else None return other, result_name def _convert_for_op(self, value): """ Convert value to be insertable to ndarray """ return value def _assert_can_do_op(self, value): """ Check value is valid for scalar op """ if not is_scalar(value): msg = "'value' must be a scalar, passed: {0}" raise TypeError(msg.format(type(value).__name__)) @property def nlevels(self): return 1 def _get_names(self): return FrozenList((self.name, )) def _set_names(self, values, level=None): """ Set new names on index. Each name has to be a hashable type. Parameters ---------- values : str or sequence name(s) to set level : int, level name, or sequence of int/level names (default None) If the index is a MultiIndex (hierarchical), level(s) to set (None for all levels). Otherwise level must be None Raises ------ TypeError if each name is not hashable. """ if not is_list_like(values): raise ValueError('Names must be a list-like') if len(values) != 1: raise ValueError('Length of new names must be 1, got %d' % len(values)) # GH 20527 # All items in 'name' need to be hashable: for name in values: if not is_hashable(name): raise TypeError('{}.name must be a hashable type' .format(self.__class__.__name__)) self.name = values[0] names = property(fset=_set_names, fget=_get_names) def set_names(self, names, level=None, inplace=False): """ Set new names on index. Defaults to returning new index. Parameters ---------- names : str or sequence name(s) to set level : int, level name, or sequence of int/level names (default None) If the index is a MultiIndex (hierarchical), level(s) to set (None for all levels). Otherwise level must be None inplace : bool if True, mutates in place Returns ------- new index (of same type and class...etc) [if inplace, returns None] Examples -------- >>> Index([1, 2, 3, 4]).set_names('foo') Int64Index([1, 2, 3, 4], dtype='int64', name='foo') >>> Index([1, 2, 3, 4]).set_names(['foo']) Int64Index([1, 2, 3, 4], dtype='int64', name='foo') >>> idx = MultiIndex.from_tuples([(1, u'one'), (1, u'two'), (2, u'one'), (2, u'two')], names=['foo', 'bar']) >>> idx.set_names(['baz', 'quz']) MultiIndex(levels=[[1, 2], [u'one', u'two']], labels=[[0, 0, 1, 1], [0, 1, 0, 1]], names=[u'baz', u'quz']) >>> idx.set_names('baz', level=0) MultiIndex(levels=[[1, 2], [u'one', u'two']], labels=[[0, 0, 1, 1], [0, 1, 0, 1]], names=[u'baz', u'bar']) """ from .multi import MultiIndex if level is not None and not isinstance(self, MultiIndex): raise ValueError('Level must be None for non-MultiIndex') if level is not None and not is_list_like(level) and is_list_like( names): raise TypeError("Names must be a string") if not is_list_like(names) and level is None and self.nlevels > 1: raise TypeError("Must pass list-like as `names`.") if not is_list_like(names): names = [names] if level is not None and not is_list_like(level): level = [level] if inplace: idx = self else: idx = self._shallow_copy() idx._set_names(names, level=level) if not inplace: return idx def rename(self, name, inplace=False): """ Set new names on index. Defaults to returning new index. Parameters ---------- name : str or list name to set inplace : bool if True, mutates in place Returns ------- new index (of same type and class...etc) [if inplace, returns None] """ return self.set_names([name], inplace=inplace) @property def _has_complex_internals(self): # to disable groupby tricks in MultiIndex return False def _summary(self, name=None): """ Return a summarized representation Parameters ---------- name : str name to use in the summary representation Returns ------- String with a summarized representation of the index """ if len(self) > 0: head = self[0] if (hasattr(head, 'format') and not isinstance(head, compat.string_types)): head = head.format() tail = self[-1] if (hasattr(tail, 'format') and not isinstance(tail, compat.string_types)): tail = tail.format() index_summary = ', %s to %s' % (pprint_thing(head), pprint_thing(tail)) else: index_summary = '' if name is None: name = type(self).__name__ return '%s: %s entries%s' % (name, len(self), index_summary) def summary(self, name=None): """ Return a summarized representation .. deprecated:: 0.23.0 """ warnings.warn("'summary' is deprecated and will be removed in a " "future version.", FutureWarning, stacklevel=2) return self._summary(name) def _mpl_repr(self): # how to represent ourselves to matplotlib return self.values _na_value = np.nan """The expected NA value to use with this index.""" # introspection @property def is_monotonic(self): """ alias for is_monotonic_increasing (deprecated) """ return self.is_monotonic_increasing @property def is_monotonic_increasing(self): """ return if the index is monotonic increasing (only equal or increasing) values. Examples -------- >>> Index([1, 2, 3]).is_monotonic_increasing True >>> Index([1, 2, 2]).is_monotonic_increasing True >>> Index([1, 3, 2]).is_monotonic_increasing False """ return self._engine.is_monotonic_increasing @property def is_monotonic_decreasing(self): """ return if the index is monotonic decreasing (only equal or decreasing) values. Examples -------- >>> Index([3, 2, 1]).is_monotonic_decreasing True >>> Index([3, 2, 2]).is_monotonic_decreasing True >>> Index([3, 1, 2]).is_monotonic_decreasing False """ return self._engine.is_monotonic_decreasing @property def _is_strictly_monotonic_increasing(self): """return if the index is strictly monotonic increasing (only increasing) values Examples -------- >>> Index([1, 2, 3])._is_strictly_monotonic_increasing True >>> Index([1, 2, 2])._is_strictly_monotonic_increasing False >>> Index([1, 3, 2])._is_strictly_monotonic_increasing False """ return self.is_unique and self.is_monotonic_increasing @property def _is_strictly_monotonic_decreasing(self): """return if the index is strictly monotonic decreasing (only decreasing) values Examples -------- >>> Index([3, 2, 1])._is_strictly_monotonic_decreasing True >>> Index([3, 2, 2])._is_strictly_monotonic_decreasing False >>> Index([3, 1, 2])._is_strictly_monotonic_decreasing False """ return self.is_unique and self.is_monotonic_decreasing def is_lexsorted_for_tuple(self, tup): return True @cache_readonly def is_unique(self): """ return if the index has unique values """ return self._engine.is_unique @property def has_duplicates(self): return not self.is_unique def is_boolean(self): return self.inferred_type in ['boolean'] def is_integer(self): return self.inferred_type in ['integer'] def is_floating(self): return self.inferred_type in ['floating', 'mixed-integer-float'] def is_numeric(self): return self.inferred_type in ['integer', 'floating'] def is_object(self): return is_object_dtype(self.dtype) def is_categorical(self): """ Check if the Index holds categorical data. Returns ------- boolean True if the Index is categorical. See Also -------- CategoricalIndex : Index for categorical data. Examples -------- >>> idx = pd.Index(["Watermelon", "Orange", "Apple", ... "Watermelon"]).astype("category") >>> idx.is_categorical() True >>> idx = pd.Index([1, 3, 5, 7]) >>> idx.is_categorical() False >>> s = pd.Series(["Peter", "Victor", "Elisabeth", "Mar"]) >>> s 0 Peter 1 Victor 2 Elisabeth 3 Mar dtype: object >>> s.index.is_categorical() False """ return self.inferred_type in ['categorical'] def is_interval(self): return self.inferred_type in ['interval'] def is_mixed(self): return self.inferred_type in ['mixed'] def holds_integer(self): return self.inferred_type in ['integer', 'mixed-integer'] _index_shared_docs['_convert_scalar_indexer'] = """ Convert a scalar indexer. Parameters ---------- key : label of the slice bound kind : {'ix', 'loc', 'getitem', 'iloc'} or None """ @Appender(_index_shared_docs['_convert_scalar_indexer']) def _convert_scalar_indexer(self, key, kind=None): assert kind in ['ix', 'loc', 'getitem', 'iloc', None] if kind == 'iloc': return self._validate_indexer('positional', key, kind) if len(self) and not isinstance(self, ABCMultiIndex,): # we can raise here if we are definitive that this # is positional indexing (eg. .ix on with a float) # or label indexing if we are using a type able # to be represented in the index if kind in ['getitem', 'ix'] and is_float(key): if not self.is_floating(): return self._invalid_indexer('label', key) elif kind in ['loc'] and is_float(key): # we want to raise KeyError on string/mixed here # technically we *could* raise a TypeError # on anything but mixed though if self.inferred_type not in ['floating', 'mixed-integer-float', 'string', 'unicode', 'mixed']: return self._invalid_indexer('label', key) elif kind in ['loc'] and is_integer(key): if not self.holds_integer(): return self._invalid_indexer('label', key) return key _index_shared_docs['_convert_slice_indexer'] = """ Convert a slice indexer. By definition, these are labels unless 'iloc' is passed in. Floats are not allowed as the start, step, or stop of the slice. Parameters ---------- key : label of the slice bound kind : {'ix', 'loc', 'getitem', 'iloc'} or None """ @
Appender(_index_shared_docs['_convert_slice_indexer'])
pandas.util._decorators.Appender
import math import pandas as pd import numpy as np from sklearn import metrics from sklearn.model_selection import train_test_split from sklearn.linear_model import LinearRegression, SGDRegressor from sklearn.cross_validation import cross_val_score from sklearn.metrics import mean_squared_error from sklearn import svm def get_past_midfielders(): data = pd.read_csv('../resources/merged.csv', sep=',', encoding='utf-8', index_col=0) model = data[['player_id', 'name', 'season', 'pos', 'round', 'team_rank', 'opponent_team_rank', 'team_pot', 'opp_pot', 'concede_pot', 'opp_concede_pot', 'prev_points', 'form_points', 'total_points', 'long_form', 'ict_form']] MidfielderModal = model.loc[model['pos'] == 'Defender'] MidfielderModal.drop('pos', axis=1, inplace=True) MidfielderModal.sort_values(['season', 'round'], ascending=True, inplace=True) MidfielderModal.to_csv('../resources/predictions/MIDFIELDERS.csv', sep=',', encoding='utf-8') players = MidfielderModal[8587:] keys = MidfielderModal['round'] values = pd.cut(MidfielderModal['round'], 3, labels=[1, 2, 3]) dictionary = dict(zip(keys, values)) MidfielderModal['round'] = values X = MidfielderModal.drop(['total_points', 'season', 'player_id', 'name'], axis=1) y = MidfielderModal[['total_points']] X_train = X[:8586] X_test = X[8587:] y_train = y[:8586] y_test = y[8587:] regression_model = LinearRegression() regression_model.fit(X_train, y_train) score = regression_model.score(X_test, y_test) y_pred = regression_model.predict(X_test) testing = pd.concat([X_test, y_test], 1) testing['Predicted'] = np.round(y_pred, 1) testing['Prediction_Error'] = testing['total_points'] - testing['Predicted'] testing['player_id'] = 0 testing['name'] = 0 testing['player_id'] = players.player_id testing['name'] = players.name testing['round'] = 34 testing.to_csv('../resources/past/34_MIDS.csv', sep=',', encoding='utf-8') # get_past_midfielders() def merge(): one = pd.read_csv('../resources/predictions/30FOR.csv', sep=',', encoding='utf-8', index_col=0) two = pd.read_csv('../resources/predictions/31FOR.csv', sep=',', encoding='utf-8', index_col=0) three = pd.read_csv('../resources/predictions/32FOR.csv', sep=',', encoding='utf-8', index_col=0) four = pd.read_csv('../resources/predictions/33FOR.csv', sep=',', encoding='utf-8', index_col=0) five = pd.read_csv('../resources/predictions/34FOR.csv', sep=',', encoding='utf-8', index_col=0) dfarray = [one, two, three, four, five] MergedData = pd.concat(dfarray) MergedData['pos'] = 'Forward' MergedData['save_form'] = 0 MergedData = MergedData[['player_id', 'name', 'pos', 'Predicted', 'total_points', 'Prediction_Error', 'round', 'concede_pot', 'opp_pot', 'team_rank', 'opponent_team_rank', 'form_points', 'ict_form', 'save_form', 'prev_points']] MergedData.to_csv('../resources/predictions/forwards_gw30.csv', sep=',', encoding='utf-8') merge() def get_defenders(): data = pd.read_csv('../resources/merged.csv', sep=',', encoding='utf-8', index_col=0) model = data[ ['player_id', 'name', 'season', 'pos', 'round', 'team_rank', 'opponent_team_rank', 'team_pot', 'opp_pot', 'concede_pot', 'opp_concede_pot', 'prev_points', 'form_points', 'total_points', 'long_form', 'ict_form']] DefenderModal = model.loc[model['pos'] == 'Defender'] DefenderModal.drop('pos', axis=1, inplace=True) DefenderModal.sort_values(['season', 'round'], ascending=True, inplace=True) DefenderModal.to_csv('../resources/predictions/DEFENDERS.csv', sep=',', encoding='utf-8') players = DefenderModal[6228:] keys = DefenderModal['round'] values =
pd.cut(DefenderModal['round'], 3, labels=[1, 2, 3])
pandas.cut
# This is a test file intended to be used with pytest # pytest automatically runs all the function starting with "test_" # see https://docs.pytest.org for more information import math import os import sys import numpy as np import pandas as pd ## Add stuff to the path to enable exec outside of DSS plugin_root = os.path.dirname(os.path.dirname(os.path.realpath(__file__))) sys.path.append(os.path.join(plugin_root, 'python-lib')) import dku_timeseries JUST_BEFORE_SPRING_DST = pd.Timestamp('20190131 01:59:00').tz_localize('CET') JUST_BEFORE_FALL_DST = pd.Timestamp('20191027 02:59:00').tz_localize('CET', ambiguous=True) # It's ambiguous because there are 2 instants with these dates! We # select the first TIME_COL = 'time_col' DATA_COL = 'data_col' GROUP_COL = 'group_col' ### Helpers to create test data, should be fixtures at some point I guess def _make_df_with_one_col(column_data, period=pd.DateOffset(seconds=1), start_time=JUST_BEFORE_SPRING_DST): from datetime import datetime top = datetime.now() time = pd.date_range(start_time, None, len(column_data), period) top = datetime.now() df = pd.DataFrame({TIME_COL: time, DATA_COL: column_data}) return df def _make_window_aggregator_params(window_width=1): params = dku_timeseries.WindowAggregatorParams(window_width=window_width) return params def _make_window_aggregator(window_width=1): params = _make_window_aggregator_params(window_width) return dku_timeseries.WindowAggregator(params) ### Test cases class TestWindowing: def test_empty_df(self): df = _make_df_with_one_col([]) window_aggregator = _make_window_aggregator() output_df = window_aggregator.compute(df, TIME_COL) assert output_df.shape == (0, 2) def test_single_row_df(self): df = _make_df_with_one_col([33]) window_aggregator = _make_window_aggregator() output_df = window_aggregator.compute(df, TIME_COL) assert output_df.shape == (1, 2) assert output_df[DATA_COL][0] == df[DATA_COL][0] def test_two_rows_df(self): length = 2 data = [x for x in range(length)] df = _make_df_with_one_col(data) window_aggregator = _make_window_aggregator() output_df = window_aggregator.compute(df, TIME_COL) assert output_df[DATA_COL + '_min'][1] == 0 def test_incremental_df_left_closed(self): length = 100 data = [x for x in range(length)] df = _make_df_with_one_col(data) print(df.shape) params = dku_timeseries.WindowAggregatorParams(window_width=3, closed_option='left') window_aggregator = dku_timeseries.WindowAggregator(params) output_df = window_aggregator.compute(df, TIME_COL) ground_truth = [np.NaN, 0, 0, 0, 1, 2, 3, 4, 5, 6, 7] assert math.isnan(output_df[DATA_COL + '_min'][0]) for x, y in zip(output_df[DATA_COL + '_min'][1:], ground_truth[1:]): assert output_df[DATA_COL][x] == y def test_incremental_df_right_closed(self): length = 100 data = [x for x in range(length)] df = _make_df_with_one_col(data) print(df.shape) params = dku_timeseries.WindowAggregatorParams(window_width=3, closed_option='right', window_type='gaussian') window_aggregator = dku_timeseries.WindowAggregator(params) output_df = window_aggregator.compute(df, TIME_COL) ground_truth = [0, 0, 0, 1, 2, 3, 4, 5, 6, 7, 8] for x, y in zip(output_df[DATA_COL + '_min'][1:], ground_truth[1:]): assert output_df[DATA_COL][x] == y def test_group_window_time_unit(self): start_time_1 = pd.Timestamp('20190131 01:59:00').tz_localize('CET') start_time_2 = pd.Timestamp('20190131 02:00:00').tz_localize('CET') start_time_list = [start_time_1, start_time_2] len1 = 100 len2 = 10 data1 = range(len1) data2 = range(len2) data_list = [data1, data2] period1 =
pd.DateOffset(seconds=1)
pandas.DateOffset
""" This script cleans the data """ import json import lightgbm as lgb import numpy as np import pandas as pd from scipy.signal import savgol_filter as sg from sklearn.feature_selection import RFECV from sklearn.metrics import make_scorer from sklearn.model_selection import GridSearchCV import shap from auxiliary import week_of_month, BlockingTimeSeriesSplit from config import DATA_CONSUMPTION_PROCESSED_FILE, INTERVENTION_CALENDAR, \ DATA_WEATHER_PROCESSED_FILE, BEST_FEATURES_FILE, ALL_NUMERICAL_FEATURES,ALL_CATEGORICAL_FEATURES, \ DATA_VACATIONS_INTERVENTION_FILE, DATA_METADATA_PROCESSED_FILE, DATA_HOLIDAYS_PROCESSED_FILE, \ DATA_ISO_CONSUMPTION_PROCESSED_FILE, DATA_ENTHALPY_GRADIENTS_PROCESSED_FILE, DATA_VACATIONS_FILE, \ DATA_SOLAR_GAINS_PROCESSED_FILE, DYNAMIC_SPACE, EXPERIMENTS, CONTROL_GROUPS, BEST_PARAMETERS_FILE from custom_scorer_module import scorer_quantile, scorer_rmse def lgbm_regression_efecto_acumulado_con_linea_base_del_experimento(alpha, data_mean, get_best_parameters=False, get_best_features=False, use_best_features=False): # INITIALIZE NEW FIELDS numerical_features_list = ALL_NUMERICAL_FEATURES categorical_features_list = ALL_CATEGORICAL_FEATURES new_field = "GBM_consumption_kWh_" + alpha data_mean[new_field] = 0.0 for experiment, control in zip(EXPERIMENTS, CONTROL_GROUPS): # GET DATA ABOUT PERIODS OF INTERVENTION OF THE EXPERIMENTAL PERIOD intervention_data = INTERVENTION_CALENDAR[experiment] pre_period = intervention_data[1] post_period = intervention_data[2] range_pre_intervention_period =
pd.date_range(start=pre_period[0], end=pre_period[1], freq='D')
pandas.date_range
import numpy as np import pandas as pd from numpy import nan from pvlib import modelchain, pvsystem from pvlib.modelchain import ModelChain from pvlib.pvsystem import PVSystem from pvlib.tracking import SingleAxisTracker from pvlib.location import Location from pandas.util.testing import assert_series_equal, assert_frame_equal import pytest from test_pvsystem import sam_data from conftest import requires_scipy @pytest.fixture def system(sam_data): modules = sam_data['sandiamod'] module_parameters = modules['Canadian_Solar_CS5P_220M___2009_'].copy() inverters = sam_data['cecinverter'] inverter = inverters['ABB__MICRO_0_25_I_OUTD_US_208_208V__CEC_2014_'].copy() system = PVSystem(surface_tilt=32.2, surface_azimuth=180, module_parameters=module_parameters, inverter_parameters=inverter) return system @pytest.fixture def cec_dc_snl_ac_system(sam_data): modules = sam_data['cecmod'] module_parameters = modules['Canadian_Solar_CS5P_220M'].copy() module_parameters['b'] = 0.05 module_parameters['EgRef'] = 1.121 module_parameters['dEgdT'] = -0.0002677 inverters = sam_data['cecinverter'] inverter = inverters['ABB__MICRO_0_25_I_OUTD_US_208_208V__CEC_2014_'].copy() system = PVSystem(surface_tilt=32.2, surface_azimuth=180, module_parameters=module_parameters, inverter_parameters=inverter) return system @pytest.fixture def cec_dc_adr_ac_system(sam_data): modules = sam_data['cecmod'] module_parameters = modules['Canadian_Solar_CS5P_220M'].copy() module_parameters['b'] = 0.05 module_parameters['EgRef'] = 1.121 module_parameters['dEgdT'] = -0.0002677 inverters = sam_data['adrinverter'] inverter = inverters['Zigor__Sunzet_3_TL_US_240V__CEC_2011_'].copy() system = PVSystem(surface_tilt=32.2, surface_azimuth=180, module_parameters=module_parameters, inverter_parameters=inverter) return system @pytest.fixture def pvwatts_dc_snl_ac_system(sam_data): module_parameters = {'pdc0': 220, 'gamma_pdc': -0.003} inverters = sam_data['cecinverter'] inverter = inverters['ABB__MICRO_0_25_I_OUTD_US_208_208V__CEC_2014_'].copy() system = PVSystem(surface_tilt=32.2, surface_azimuth=180, module_parameters=module_parameters, inverter_parameters=inverter) return system @pytest.fixture def pvwatts_dc_pvwatts_ac_system(sam_data): module_parameters = {'pdc0': 220, 'gamma_pdc': -0.003} inverter_parameters = {'eta_inv_nom': 0.95} system = PVSystem(surface_tilt=32.2, surface_azimuth=180, module_parameters=module_parameters, inverter_parameters=inverter_parameters) return system @pytest.fixture() def location(): return Location(32.2, -111, altitude=700) def test_ModelChain_creation(system, location): mc = ModelChain(system, location) @pytest.mark.parametrize('strategy, expected', [ (None, (32.2, 180)), ('None', (32.2, 180)), ('flat', (0, 180)), ('south_at_latitude_tilt', (32.2, 180)) ]) def test_orientation_strategy(strategy, expected, system, location): mc = ModelChain(system, location, orientation_strategy=strategy) # the || accounts for the coercion of 'None' to None assert (mc.orientation_strategy == strategy or mc.orientation_strategy is None) assert system.surface_tilt == expected[0] assert system.surface_azimuth == expected[1] @requires_scipy def test_run_model(system, location): mc = ModelChain(system, location) times = pd.date_range('20160101 1200-0700', periods=2, freq='6H') ac = mc.run_model(times).ac expected = pd.Series(np.array([ 183.522449305, -2.00000000e-02]), index=times) assert_series_equal(ac, expected, check_less_precise=2) def test_run_model_with_irradiance(system, location): mc = ModelChain(system, location) times = pd.date_range('20160101 1200-0700', periods=2, freq='6H') irradiance = pd.DataFrame({'dni':900, 'ghi':600, 'dhi':150}, index=times) ac = mc.run_model(times, weather=irradiance).ac expected = pd.Series(np.array([ 1.90054749e+02, -2.00000000e-02]), index=times) assert_series_equal(ac, expected) def test_run_model_perez(system, location): mc = ModelChain(system, location, transposition_model='perez') times = pd.date_range('20160101 1200-0700', periods=2, freq='6H') irradiance = pd.DataFrame({'dni':900, 'ghi':600, 'dhi':150}, index=times) ac = mc.run_model(times, weather=irradiance).ac expected = pd.Series(np.array([ 190.194545796, -2.00000000e-02]), index=times) assert_series_equal(ac, expected) def test_run_model_gueymard_perez(system, location): mc = ModelChain(system, location, airmass_model='gueymard1993', transposition_model='perez') times = pd.date_range('20160101 1200-0700', periods=2, freq='6H') irradiance = pd.DataFrame({'dni':900, 'ghi':600, 'dhi':150}, index=times) ac = mc.run_model(times, weather=irradiance).ac expected = pd.Series(np.array([ 190.194760203, -2.00000000e-02]), index=times) assert_series_equal(ac, expected) @requires_scipy def test_run_model_with_weather(system, location): mc = ModelChain(system, location) times = pd.date_range('20160101 1200-0700', periods=2, freq='6H') weather = pd.DataFrame({'wind_speed':5, 'temp_air':10}, index=times) ac = mc.run_model(times, weather=weather).ac expected = pd.Series(np.array([ 201.691634921, -2.00000000e-02]), index=times) assert_series_equal(ac, expected, check_less_precise=2) @requires_scipy def test_run_model_tracker(system, location): system = SingleAxisTracker(module_parameters=system.module_parameters, inverter_parameters=system.inverter_parameters) mc = ModelChain(system, location) times = pd.date_range('20160101 1200-0700', periods=2, freq='6H') ac = mc.run_model(times).ac expected = pd.Series(np.array([119.067713606, nan]), index=times) assert_series_equal(ac, expected, check_less_precise=2) expect = pd.DataFrame(np. array([[ 54.82513187, 90. , 11.0039221 , 11.0039221 ], [ nan, 0. , 0. , nan]]), columns=['aoi', 'surface_azimuth', 'surface_tilt', 'tracker_theta'], index=times) expect = expect[['tracker_theta', 'aoi', 'surface_azimuth', 'surface_tilt']] assert_frame_equal(mc.tracking, expect, check_less_precise=2) def poadc(mc): mc.dc = mc.total_irrad['poa_global'] * 0.2 mc.dc.name = None # assert_series_equal will fail without this @requires_scipy @pytest.mark.parametrize('dc_model, expected', [ ('sapm', [181.604438144, -2.00000000e-02]), ('singlediode', [181.044109596, -2.00000000e-02]), ('pvwatts', [190.028186986, 0]), (poadc, [189.183065667, 0]) # user supplied function ]) def test_dc_models(system, cec_dc_snl_ac_system, pvwatts_dc_pvwatts_ac_system, location, dc_model, expected): dc_systems = {'sapm': system, 'singlediode': cec_dc_snl_ac_system, 'pvwatts': pvwatts_dc_pvwatts_ac_system, poadc: pvwatts_dc_pvwatts_ac_system} system = dc_systems[dc_model] mc = ModelChain(system, location, dc_model=dc_model, aoi_model='no_loss', spectral_model='no_loss') times = pd.date_range('20160101 1200-0700', periods=2, freq='6H') ac = mc.run_model(times).ac expected = pd.Series(np.array(expected), index=times) assert_series_equal(ac, expected, check_less_precise=2) @requires_scipy @pytest.mark.parametrize('dc_model', ['sapm', 'singlediode', 'pvwatts_dc']) def test_infer_dc_model(system, cec_dc_snl_ac_system, pvwatts_dc_pvwatts_ac_system, location, dc_model, mocker): dc_systems = {'sapm': system, 'singlediode': cec_dc_snl_ac_system, 'pvwatts_dc': pvwatts_dc_pvwatts_ac_system} system = dc_systems[dc_model] m = mocker.spy(system, dc_model) mc = ModelChain(system, location, aoi_model='no_loss', spectral_model='no_loss') times = pd.date_range('20160101 1200-0700', periods=2, freq='6H') mc.run_model(times) assert m.call_count == 1 assert isinstance(mc.dc, (pd.Series, pd.DataFrame)) def acdc(mc): mc.ac = mc.dc @requires_scipy @pytest.mark.parametrize('ac_model, expected', [ ('snlinverter', [181.604438144, -2.00000000e-02]), ('adrinverter', [np.nan, -25.00000000e-02]), ('pvwatts', [190.028186986, 0]), (acdc, [199.845296258, 0]) # user supplied function ]) def test_ac_models(system, cec_dc_adr_ac_system, pvwatts_dc_pvwatts_ac_system, location, ac_model, expected): ac_systems = {'snlinverter': system, 'adrinverter': cec_dc_adr_ac_system, 'pvwatts': pvwatts_dc_pvwatts_ac_system, acdc: pvwatts_dc_pvwatts_ac_system} system = ac_systems[ac_model] mc = ModelChain(system, location, ac_model=ac_model, aoi_model='no_loss', spectral_model='no_loss') times = pd.date_range('20160101 1200-0700', periods=2, freq='6H') ac = mc.run_model(times).ac expected = pd.Series(np.array(expected), index=times) assert_series_equal(ac, expected, check_less_precise=2) def constant_aoi_loss(mc): mc.aoi_modifier = 0.9 @requires_scipy @pytest.mark.parametrize('aoi_model, expected', [ ('sapm', [182.784057666, -2.00000000e-02]), ('ashrae', [180.825930547, -2.00000000e-02]), ('physical', [181.453077805, -2.00000000e-02]), ('no_loss', [181.604438144, -2.00000000e-02]), (constant_aoi_loss, [164.997043305, -2e-2]) ]) def test_aoi_models(system, location, aoi_model, expected): mc = ModelChain(system, location, dc_model='sapm', aoi_model=aoi_model, spectral_model='no_loss') times = pd.date_range('20160101 1200-0700', periods=2, freq='6H') ac = mc.run_model(times).ac expected = pd.Series(np.array(expected), index=times)
assert_series_equal(ac, expected, check_less_precise=2)
pandas.util.testing.assert_series_equal
import strax import pandas as pd import mongomock import numpy as np from datetime import datetime from pandas._testing import assert_frame_equal import pytz import pymongo import pytest import unittest @mongomock.patch() def corrections(): dummy_client = pymongo.MongoClient() cmt = strax.CorrectionsInterface(client=dummy_client) return cmt def make_dummy_df(): """ Make a dummy pandas.dataframe() """ dates = [datetime(2017, 1, 1), datetime(2021, 1, 1), datetime(2021, 9, 23)] df = pd.DataFrame({'ONLINE' : [10.,10., 8.], 'v1' : [12., 12., 14.], 'v2' : [13., 14., np.nan], 'time': dates}) df['time'] = pd.to_datetime(df['time'], utc=True) df = df.set_index('time') return df def test_db(): cmt = corrections() df = make_dummy_df() # write to the DB cmt.write('test_db', df) # read from the DB df2 = cmt.read('test_db') # pandas.DataFrame should be identical
assert_frame_equal(df, df2)
pandas._testing.assert_frame_equal
''' Author: <NAME> Create Time: 2021-10-14 19:35:38 Copyright: Copyright (c) 2021 <NAME>. See LICENSE for details ''' from OpenFlows.Domain.ModelingElements.NetworkElements import IActiveElementsInput, IBaseLinksInput, IBasePolygonInput, IBasePolygonsInput, INetworkElements, IPointNodesInput from OpenFlows.Water.Domain import IWaterModel from OpenFlows.Water.Domain.ModelingElements.NetworkElements import IBaseDirectedNodesInput, IBaseNodesInput, IBasePumpsInput, IBaseValvesInput, ICheckValveElementsInput, IConventionalTanksInput, ICustomerMetersInput, IDemandNodesInput, IFireFlowNodesInput, IFlowControlValvesInput, IGeneralPurposeValves, IGeneralPurposeValvesInput, IHydrantsInput, IHydroTanksInput, IIsolationValveElementsInput, IJunctionsInput, ILateralsInput, IPhysicalNodeElementsInput, IPipes, IPressureBreakingValves, IPressureBreakingValvesInput, IPressureSustainingValvesInput, IPressureValvesInput, IPumpStations, IPumpStationsInput, IPumps, IPumpsInput, IReservoirs, ISCADAElements, ISCADAElementsInput, ITanks, ITanksInput, ITaps, IThrottleControlValvesInput, IVSPBsInput, IWaterQualityElementsInput, IWaterQualityNodesInput, IWaterZoneableNetworkElementsInput import numpy as np import pandas as pd import networkx as nx from typing import Any, List, Type class NetworkInput: # region Fields __waterModel: IWaterModel # endregion # region Constructor def __init__(self, water_model: IWaterModel) -> None: self.__waterModel = water_model pass def __repr__(self) -> str: line1 = f"{__class__.__name__}: {self.__waterModel}." line2 = f"Pipe Count: {self.__waterModel.Network.Pipes.Count}" line3 = f"Junction Count: {self.__waterModel.Network.Junctions.Count}" return f"{line1} {line2} {line3}." # endregion # region Public Methods def get_networkx_graph(self, laterals: bool = False) -> nx.Graph: columns = ["Id", "Label"] if laterals else [ "Id", "Label", "Diameter", "IsActive"] links_df = self.pipe_df[columns].copy() if laterals: links_df.append(self.lateral_df[columns]) graph: nx.Graph = nx.from_pandas_edgelist( df=links_df, source="StartNodeId", target="StopNodeId", edge_attr=columns) return graph # endregion // Public Methods # region Public Properties (Network Elements DF) @property def pipe_df(self) -> pd.DataFrame: return self.__get_pipe_input(self.__waterModel.Network.Pipes) @property def lateral_df(self) -> pd.DataFrame: return self.__get_lateral_input(self.__waterModel.Network.Laterals) @property def junction_df(self) -> pd.DataFrame: return self.__get_junction_input(self.__waterModel.Network.Junctions) @property def hydrant_df(self) -> pd.DataFrame: return self.__get_hydrant_input(self.__waterModel.Network.Hydrants) @property def tank_df(self) -> pd.DataFrame: return self.__get_tank_input(self.__waterModel.Network.Tanks) @property def reservoir_df(self) -> pd.DataFrame: return self.__get_reservoir_input(self.__waterModel.Network.Reservoirs) @property def tap_df(self) -> pd.DataFrame: return self.__get_tap_input(self.__waterModel.Network.Taps) @property def pump_df(self) -> pd.DataFrame: return self.__get_pump_input(self.__waterModel.Network.Pumps) @property def pump_stn_df(self) -> pd.DataFrame: return self.__get_pump_stn_input(self.__waterModel.Network.PumpStations) @property def customer_meter_df(self) -> pd.DataFrame: return self.__get_customer_meter_input(self.__waterModel.Network.CustomerMeters) @property def scada_elem_df(self) -> pd.DataFrame: return self.__get_scada_elem_input(self.__waterModel.Network.SCADAElements) @property def vspb_df(self) -> pd.DataFrame: return self.__get_vspb_input(self.__waterModel.Network.VSPBs) @property def prv_df(self) -> pd.DataFrame: return self.__get_prv_input(self.__waterModel.Network.PRVs) @property def psv_df(self) -> pd.DataFrame: return self.__get_psv_input(self.__waterModel.Network.PSVs) @property def pbv_df(self) -> pd.DataFrame: return self.__get_pbv_input(self.__waterModel.Network.PBVs) @property def fcv_df(self) -> pd.DataFrame: return self.__get_fcv_input(self.__waterModel.Network.FCVs) @property def tcv_df(self) -> pd.DataFrame: return self.__get_tcv_input(self.__waterModel.Network.TCVs) @property def gpv_df(self) -> pd.DataFrame: return self.__get_gpv_input(self.__waterModel.Network.GPVs) @property def iso_valve_df(self) -> pd.DataFrame: return self.__get_iso_valve_input(self.__waterModel.Network.IsolationValves) @property def hydro_tank_df(self) -> pd.DataFrame: return self.__get_hydro_tank_input(self.__waterModel.Network.HydropneumaticTanks) @property def check_valve_df(self) -> pd.DataFrame: return self.__get_check_valve_input(self.__waterModel.Network.CheckValves) # endregion // Public Properties # region Private methods def __dict_to_value(self, series: pd.Series, data_type: Type) -> pd.Series: series = series.apply(lambda d: d.Value) if data_type: if data_type is str: series = series.astype("string") else: series = series.astype(data_type) return series def __get_elements_input(self, elements: INetworkElements) -> pd.DataFrame: df = pd.DataFrame() df["Label"] = elements.Labels() df["Id"] = df["Label"].apply(lambda d: d.Key).astype(pd.Int64Dtype()) df["Label"] = df["Label"].apply(lambda d: d.Value).astype("string") return df def __get_physical_elevation_input(self, elements: IPhysicalNodeElementsInput, df: pd.DataFrame) -> pd.DataFrame: df["Elevation"] = elements.Elevations() df["Elevation"] = self.__dict_to_value(df["Elevation"], float) return df def __get_active_elements_input(self, elements: IActiveElementsInput, df: pd.DataFrame) -> pd.DataFrame: df["IsActive"] = elements.IsActives() df["IsActive"] = self.__dict_to_value(df["IsActive"], bool) return df def __get_zone_elements_input(self, elements: IWaterZoneableNetworkElementsInput, df: pd.DataFrame) -> pd.DataFrame: df["Zone"] = elements.Zones() df["Zone"] = self.__dict_to_value(df["Zone"], None) df["ZoneId"] = df["Zone"].apply(lambda z: z.Id if z else None) df["ZoneLabel"] = df["Zone"].apply( lambda z: z.Label if z else None).astype("string") return df def __get_point_node_input(self, elements: IPointNodesInput, df: pd.DataFrame) -> pd.DataFrame: df["Geometry"] = elements.Geometries() df["Geometry"] = self.__dict_to_value(df["Geometry"], None) x_and_y: List[Any] = df["Geometry"].apply( lambda p: [p.X, p.Y]).tolist() if x_and_y: # TODO: find the type of x&y df[["X", "Y"]] = x_and_y else: df["X"] = None df["Y"] = None return df def __get_polygons_geometry(self, elements: IBasePolygonsInput, df: pd.DataFrame) -> pd.DataFrame: df["Geometry"] = elements.Geometries() df["Geometry"] = self.__dict_to_value(df["Geometry"], None) df["Geometry"] = df["Geometry"].apply( lambda pts: [[p.X, p.Y] for p in pts]).tolist() return df def __get_water_quality_node_input(self, elements: IWaterQualityElementsInput, df: pd.DataFrame) -> pd.DataFrame: df["InitAge"] = elements.InitialAge() df["InitAge"] = self.__dict_to_value(df["InitAge"], float) df["InitConc"] = elements.InitialConcentration() df["InitConc"] = self.__dict_to_value(df["InitConc"], float) df["InitTrace"] = elements.InitialTrace() df["InitTrace"] = self.__dict_to_value(df["InitTrace"], float) return df def __get_installation_year_input(self, elements: Any, df: pd.DataFrame) -> pd.DataFrame: df["InstallYr"] = elements.InstallationYears() df["InstallYr"] = self.__dict_to_value( df["InstallYr"], pd.Int64Dtype()) return df def __get_minor_loss_node_input(self, elements: Any, df: pd.DataFrame) -> pd.DataFrame: df["dMLossCoeff"] = elements.DerivedMinorLossCoefficient() df["dMLossCoeff"] = self.__dict_to_value(df["dMLossCoeff"], float) df["IsLocalMLoss"] = elements.SpecifyLocalMinorLoss() df["IsLocalMLoss"] = self.__dict_to_value(df["IsLocalMLoss"], bool) df["LocalMLossCoeff"] = elements.LocalMinorLossCoefficient() df["LocalMLossCoeff"] = self.__dict_to_value( df["LocalMLossCoeff"], float) return df def __get_valve_characerstics_input(self, elements: Any, df: pd.DataFrame) -> pd.DataFrame: df["ValveChrsts"] = elements.ValveCharacteristics() df["ValveChrsts"] = self.__dict_to_value(df["ValveChrsts"], None) return df def __get_hammer_valve_type_input(self, elements: Any, df: pd.DataFrame) -> pd.DataFrame: df["ValveType"] = elements.ValveTypes() df["ValveType"] = self.__dict_to_value( df["ValveType"], pd.Int64Dtype()) return df def __get_demand_node_input(self, elements: IDemandNodesInput) -> pd.DataFrame: df = self.__get_base_node_input(elements) return df def __get_fire_node_input(self, elements: IFireFlowNodesInput) -> pd.DataFrame: df = self.__get_demand_node_input(elements) return df # region Base Node / Link / Polygon Inputs def __get_base_node_input(self, elements: IBaseNodesInput) -> pd.DataFrame: df = self.__get_elements_input(elements) df = self.__get_physical_elevation_input(elements, df) df = self.__get_active_elements_input(elements, df) df = self.__get_zone_elements_input(elements, df) df = self.__get_water_quality_node_input(elements, df) df = self.__get_point_node_input(elements, df) return df def __get_base_link_input(self, elements: IBaseLinksInput) -> pd.DataFrame: df = pd.DataFrame() df = self.__get_elements_input(elements) df = self.__get_active_elements_input(elements, df) df["StartNode"] = elements.StartNodes() df["StartNode"] = self.__dict_to_value(df["StartNode"], None) df["StartNodeId"] = df["StartNode"].apply( lambda n: n.Id).astype(pd.Int64Dtype()) df["StopNode"] = elements.StopNodes() df["StopNode"] = self.__dict_to_value(df["StopNode"], None) df["StopNodeId"] = df["StopNode"].apply( lambda n: n.Id).astype(pd.Int64Dtype()) df["IsUDLength"] = elements.IsUserDefinedLengths() df["IsUDLength"] = self.__dict_to_value(df["IsUDLength"], bool) df["Length"] = elements.Lengths() df["Length"] = self.__dict_to_value(df["Length"], float) df["Geometry"] = elements.Geometries() df["Geometry"] = self.__dict_to_value(df["Geometry"], None) return df def __get_base_polygon_input(self, elements: IBasePolygonsInput) -> pd.DataFrame: df = pd.DataFrame() df = self.__get_elements_input(elements) df = self.__get_active_elements_input(elements, df) df = self.__get_polygons_geometry(elements, df) return df # endregion def __get_associated_elements(self, elements: Any, df: pd.DataFrame) -> pd.DataFrame: df["AssocElem"] = elements.AssociatedElements() df["AssocElem"] = self.__dict_to_value(df["AssocElem"], None) df["AssocElemId"] = df["AssocElem"].apply( lambda n: n.Id if n else None).astype(pd.Int64Dtype()) return df # region Base Elements Input def __get_base_directed_node_input(self, elements: IBaseDirectedNodesInput) -> pd.DataFrame: df = self.__get_base_node_input(elements) df = self.__get_installation_year_input(elements, df) return df def __get_base_pump_node_input(self, elements: IPumpsInput) -> pd.DataFrame: df = self.__get_base_directed_node_input(elements) df["InitSpeedFactor"] = elements.InitialRelativeSpeedFactors() df["InitSpeedFactor"] = self.__dict_to_value( df["InitSpeedFactor"], float) df["InitStatus"] = elements.InitialStatus() df["InitStatus"] = self.__dict_to_value(df["InitStatus"], bool) return df def __get_base_valve_node_input(self, elements: IBaseValvesInput) -> pd.DataFrame: df = self.__get_base_directed_node_input(elements) df = self.__get_minor_loss_node_input(elements, df) df["InitStatus"] = elements.InitialStatus() df["InitStatus"] = self.__dict_to_value(df["InitStatus"], None) df["Diameter"] = elements.Diameters() df["Diameter"] = self.__dict_to_value(df["Diameter"], float) return df def __get_base_tank_node_input(self, elements: IConventionalTanksInput) -> pd.DataFrame: df = self.__get_demand_node_input(elements) return df def __get_conventional_tank_node_input(self, elements: IConventionalTanksInput) -> pd.DataFrame: df = self.__get_demand_node_input(elements) df = self.__get_water_quality_node_input(elements, df) df["SectionType"] = elements.TankSection() df["SectionType"] = self.__dict_to_value( df["SectionType"], None) df["ActiveVolFull"] = elements.ActiveVolumeFull() df["ActiveVolFull"] = self.__dict_to_value( df["ActiveVolFull"], float) df["Diameter"] = elements.Diameter() df["Diameter"] = self.__dict_to_value( df["Diameter"], float) df["AvgArea"] = elements.AverageArea() df["AvgArea"] = self.__dict_to_value( df["AvgArea"], float) df["BaseElev"] = elements.BaseElevation() df["BaseElev"] = self.__dict_to_value( df["BaseElev"], float) df["MinLevel"] = elements.MinimumLevel() df["MinLevel"] = self.__dict_to_value( df["MinLevel"], float) df["MaxLevel"] = elements.MaximumLevel() df["MaxLevel"] = self.__dict_to_value( df["MaxLevel"], float) df["InitLevel"] = elements.InitialLevel() df["InitLevel"] = self.__dict_to_value( df["InitLevel"], float) df["UseHighAlarm"] = elements.UseHighAlarm() df["UseHighAlarm"] = self.__dict_to_value( df["UseHighAlarm"], bool) df["HighAlarmLvl"] = elements.HighAlarmLevel() df["HighAlarmLvl"] = self.__dict_to_value( df["HighAlarmLvl"], float) df["UseLowAlarm"] = elements.UseLowAlarm() df["UseLowAlarm"] = self.__dict_to_value( df["UseLowAlarm"], bool) df["LowAlarmLvl"] = elements.LowAlarmLevel() df["LowAlarmLvl"] = self.__dict_to_value( df["LowAlarmLvl"], float) df["InactiveVol"] = elements.InactiveVolume() df["InactiveVol"] = self.__dict_to_value( df["InactiveVol"], float) return df def __get_base_pressure_valve_node_input(self, elements: IPressureValvesInput) -> pd.DataFrame: df = self.__get_base_valve_node_input(elements) df["PressureSettings"] = elements.PressureValveSettings() df["PressureSettings"] = self.__dict_to_value( df["PressureSettings"], float) df["InitSetting"] = elements.InitialSettings() df["InitSetting"] = self.__dict_to_value(df["InitSetting"], None) return df def __get_general_purpose_valve_node_input(self, elements: IGeneralPurposeValvesInput) -> pd.DataFrame: df = self.__get_base_valve_node_input(elements) df["GpvHlCurve"] = elements.GPVHeadlossCurves() df["GpvHlCurve"] = self.__dict_to_value(df["GpvHlCurve"], None) df["ValveChrsts"] = elements.ValveCharacteristics() df["ValveChrsts"] = self.__dict_to_value(df["ValveChrsts"], None) return df def __get_tank_input(self, elements: ITanksInput) -> pd.DataFrame: df = self.__get_conventional_tank_node_input(elements) df = self.__get_valve_characerstics_input(elements, df) df = self.__get_hammer_valve_type_input(elements, df) return df def __get_hydro_tank_input(self, elements: IHydroTanksInput) -> pd.DataFrame: df = self.__get_base_tank_node_input(elements) df["InitGasVol"] = elements.InitialVolumeOfGas() df["InitGasVol"] = self.__dict_to_value(df["InitGasVol"], float) df["InletOrifDia"] = elements.TankInletOrificeDiameter() df["InletOrifDia"] = self.__dict_to_value(df["InletOrifDia"], float) df["RatioOfLosses"] = elements.RatioOfLosses() df["RatioOfLosses"] = self.__dict_to_value(df["RatioOfLosses"], float) df["GasLawExponent"] = elements.GasLawExponent() df["GasLawExponent"] = self.__dict_to_value( df["GasLawExponent"], float) df["HasBladder"] = elements.HasBladder() df["HasBladder"] = self.__dict_to_value(df["HasBladder"], bool) df["GasPresetPressure"] = elements.GasPresetPressure() df["GasPresetPressure"] = self.__dict_to_value( df["GasPresetPressure"], float) df["MeanLqdElev"] = elements.MeanLiquidElevation() df["MeanLqdElev"] = self.__dict_to_value(df["MeanLqdElev"], float) df["AirInOrifDia"] = elements.AirInflowOrificeDiameter() df["AirInOrifDia"] = self.__dict_to_value(df["AirInOrifDia"], float) df["AirOutOrifDia"] = elements.AirOutflowOrificeDiameter() df["AirOutOrifDia"] = self.__dict_to_value(df["AirOutOrifDia"], float) df["DippingTubeDia"] = elements.DippingTubeDiameter() df["DippingTubeDia"] = self.__dict_to_value( df["DippingTubeDia"], float) df["CompChamberVol"] = elements.CompressionChamberVolume() df["CompChamberVol"] = self.__dict_to_value( df["CompChamberVol"], float) df["TopElevDippingTube"] = elements.TopElevationDippingTube() df["TopElevDippingTube"] = self.__dict_to_value( df["TopElevDippingTube"], float) df["LevelType"] = elements.LevelType() df["LevelType"] = self.__dict_to_value(df["LevelType"], None) df["HydroTankType"] = elements.HydroTankType() df["HydroTankType"] = self.__dict_to_value(df["HydroTankType"], None) # df["AirOutOrifDia"] = elements.AirOutflowOrificeDiameter() # df["AirOutOrifDia"] = self.__dict_to_value(df["AirOutOrifDia"], float) # df["DippingTubeDia"] = elements.DippingTubeDiameter() # df["DippingTubeDia"] = self.__dict_to_value(df["DippingTubeDia"], float) # df["CompChamberVol"] = elements.CompressionChamberVolume() # df["CompChamberVol"] = self.__dict_to_value(df["CompChamberVol"], float) # df["TopElevDippingTube"] = elements.TopElevationDippingTube() # df["TopElevDippingTube"] = self.__dict_to_value(df["TopElevDippingTube"], float) return df def __get_reservoir_input(self, elements: IReservoirs) -> pd.DataFrame: df = self.__get_base_node_input(elements) return df def __get_tap_input(self, elements: ITaps) -> pd.DataFrame: df = self.__get_elements_input(elements) df = self.__get_point_node_input(elements, df) df = self.__get_associated_elements(elements, df) return df # endregion # region Pipes/Laterals def __get_pipe_input(self, elements: IPipes) -> pd.DataFrame: df = self.__get_base_link_input(elements) df = self.__get_installation_year_input(elements, df) df["Status"] = elements.Input.PipeStatuses() df["Status"] = self.__dict_to_value(df["Status"], bool) df["Diameter"] = elements.Input.Diameters() df["Diameter"] = self.__dict_to_value(df["Diameter"], float) df["Material"] = elements.Input.Materials() df["Material"] = self.__dict_to_value(df["Material"], str) df["FrictionCoeff"] = elements.Input.FrictionCoefficients() df["FrictionCoeff"] = self.__dict_to_value(df["FrictionCoeff"], float) return df def __get_lateral_input(self, elements: ILateralsInput) -> pd.DataFrame: df = self.__get_base_link_input(elements) return df # endregion # region Fireflow Nodes def __get_junction_input(self, elements: IJunctionsInput) -> pd.DataFrame: df = self.__get_fire_node_input(elements) return df def __get_hydrant_input(self, elements: IHydrantsInput) -> pd.DataFrame: df = self.__get_fire_node_input(elements) return df # endregion # region Pumps / Pump Stations / VSPB def __get_pump_input(self, elements: IPumpsInput) -> pd.DataFrame: df = self.__get_base_directed_node_input(elements) df["InitSpeedFactor"] = elements.InitialRelativeSpeedFactors() df["InitSpeedFactor"] = self.__dict_to_value( df["InitSpeedFactor"], float) df["InitStatus"] = elements.InitialStatus() df["InitStatus"] = self.__dict_to_value( df["InitStatus"], pd.Int64Dtype()) # TODO: double check the fields return df def __get_pump_stn_input(self, elements: IPumpStationsInput) -> pd.DataFrame: df = self.__get_base_polygon_input(elements) return df def __get_vspb_input(self, elements: IVSPBsInput) -> pd.DataFrame: df = self.__get_base_pump_node_input(elements) df["PumpDefinition"] = elements.PumpDefinitions() df["PumpDefinition"] = self.__dict_to_value( df["PumpDefinition"], None) df["PumpDefinitionId"] = df["PumpDefinition"].apply( lambda p: p.Id if p else None).astype(pd.Int64Dtype()) df["ControlNode"] = elements.ControlNodes() df["ControlNode"] = self.__dict_to_value( df["ControlNode"], None) df["ControlNodeId"] = df["ControlNode"].apply( lambda p: p.Id if p else None).astype(pd.Int64Dtype()) df["TgtHGL"] = elements.TargetHydraulicGrades() df["TgtHGL"] = self.__dict_to_value( df["TgtHGL"], float) df["MaxSpeedFactor"] = elements.MaximumRelativeSpeedFactors() df["MaxSpeedFactor"] = self.__dict_to_value( df["MaxSpeedFactor"], float) df["NumLagPumps"] = elements.NumberOfLagPumps() df["NumLagPumps"] = self.__dict_to_value( df["NumLagPumps"],
pd.Int64Dtype()
pandas.Int64Dtype
# # Copyright (c) 2022, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # """ This file contains layer linting functions. """ from collections import OrderedDict from collections import OrderedDict import pandas as pd from .activations import create_activations from .engine_plan import EnginePlan class ConvLinter(): """Convolution layer linter.""" def __init__(self, plan: EnginePlan): self.plan = plan self.convs = plan.get_layers_by_type('Convolution') def tc_lint(self): """Search for Convolutions which are not accelerated by TensorCode""" def is_small_conv(conv): inputs, _ = create_activations(conv) n, c, h, w = inputs[0].shape return c < 32 report = OrderedDict() # Look for kernels that are not scheduled for xmma (TensorCore # acceleration) tc_candidates = self.convs.query(f"precision != \"FP32\"").copy() # Identify acceleration from tactic name df = tc_candidates df = df[df['tactic'].str.contains("imma|hmma|xmma|i88|884", na=False) == False] for index, conv in df.iterrows(): mitigation = "" if is_small_conv(conv): mitigation = "This Convolution has a small number " \ "of input channels so acceleration may not be possible." report[conv.Name] = OrderedDict({ 'name': conv.Name, 'tactic': conv.tactic, 'subtype': conv.subtype, 'hazard': "Convolution is not accelerated.", 'mitigation': mitigation, 'help': "TensorCores accelerate large Convolution and GEMM operations." }) return report def mixed_precision_lint(self): """Search for Convolutions with Int8 inputs and Float outputs""" report = OrderedDict() df = self.convs df = df.loc[df['precision'] == 'INT8'].copy() for index, conv in df.iterrows(): inputs, outputs = create_activations(conv) inf = inputs[0].format[:4] outf = outputs[0].format[:4] found = inf == 'Int8' and outf != 'Int8' if found: report[conv.Name] = OrderedDict({ 'name': conv.Name, 'tactic': conv.tactic, 'subtype': conv.subtype, 'hazard': "Quantized Convolution has float outputs.", 'mitigation': "Consider adding quantization after the convolution.", 'help': "Quantized Convolution with float outputs is ill advised " "for memory-limited convolutions." }) return report def lint(self): report = self.tc_lint() report.update(self.mixed_precision_lint()) df = pd.DataFrame.from_dict(report, orient='index') return df class ReformatLinter(): """Reformat layer linter.""" def __init__(self, plan: EnginePlan): self.plan = plan self.reformats = plan.get_layers_by_type('Reformat') def lint(self): """Search for conversions between types. Conversions between layouts are assumed to be optimized.""" report = OrderedDict() for index, reformat in self.reformats.iterrows(): inputs, outputs = create_activations(reformat) inf = inputs[0].format[:4] outf = outputs[0].format[:4] if inf != outf: mitigation = "" if "INT8" in [inf, outf]: mitigation = "Consider adding quantization around float operations." report[reformat.Name] = OrderedDict({ 'name': reformat.Name, 'origin': reformat['attr.origin'], 'type conversion': f"{inf} -> {outf}", 'shape conversion': f"{inputs[0].shape} -> {outputs[0].shape}", 'hazard': "Reformat layer is converting operand data type.", 'mitigation': mitigation, 'help': "Conversions between float32 and float16 are a red " "flag, as are conversions between float32/16 and INT8." }) df = pd.DataFrame.from_dict(report, orient='index') return df class SliceLinter(): """Slice layer linter.""" def __init__(self, plan: EnginePlan): self.plan = plan self.slices = plan.get_layers_by_type('Slice') def lint(self): """Search for conversions between types. Conversions between layouts are assumed to be optimized.""" report = OrderedDict() for index, slice in self.slices.iterrows(): inputs, outputs = create_activations(slice) inf = inputs[0].format[:4] outf = outputs[0].format[:4] if inf != outf: mitigation = "" if "INT8" in [inf, outf]: mitigation = "Consider adding quantization around float operations." report[slice.Name] = OrderedDict({ 'name': slice.Name, 'type conversion': f"{inf} -> {outf}", 'shape conversion': f"{inputs[0].shape} -> {outputs[0].shape}", 'hazard': "Slice layer is converting operand data type.", 'mitigation': mitigation, 'help': "Conversions between float32 and float16 are a red " "flag, as are conversions between float32/16 <=> INT8." }) df =
pd.DataFrame.from_dict(report, orient='index')
pandas.DataFrame.from_dict
"""Copyright © 2020-present, Swisscom (Schweiz) AG. All rights reserved. """ import pandas as pd import pytest from ..metrics.diversity import Diversity # Evaluate the constructor @pytest.mark.parametrize('attr, error', [(['', 0.9, 0.9, ['a', 'b'], 2], ValueError), (['age', -0.9, 0.9, ['a', 'b'], 2], ValueError), (['age', 1.1, 0.9, ['a', 'b'], 2], ValueError), (['age', 0.9, -0.9, ['a', 'b'], 2], ValueError), (['age', 0.9, 1.1, ['a', 'b'], 2], ValueError), (['age', 0.9, 0.9, ['a', 'b'], 2.2], TypeError), (['age', 0.9, 0.9, ['a', 'b'], -2], ValueError), (['age', 0.9, 0.9, [], 2], ValueError)]) def test_constructor_errors(attr, error): with pytest.raises(error): Diversity(*attr) # Evaluate _compute_hunter_gaston div_age = Diversity('age', 1., 1., ['20s', '30s'], 2) @pytest.mark.parametrize('counts, error', [({}, ValueError), ({'20s': 1}, ValueError), ({'20s': 0, '30s': 0}, ValueError), ({'20s': 0, '30s': -1}, ValueError), ({'20s': 0, '30s': 3.1}, ValueError)]) def test_compute_hunter_gaston_errors(counts, error): with pytest.raises(error): div_age._compute_hunter_gaston(counts) @pytest.mark.parametrize('counts, value', [({'20s': 5, '30s': 5}, 0.56), ({'20s': 5, '30s': 0}, 0.), ({'20s': 1, '30s': 1}, 1.)]) def test_compute_hunter_gaston_values(counts, value): assert pytest.approx(div_age._compute_hunter_gaston(counts), 0.01) == value # Evaluate _get_counts emps = pd.DataFrame(columns=['age'], data=['20s', '30s', '20s', '20s', '20s', '30s']) @pytest.mark.parametrize('data, error', [(pd.DataFrame(), ValueError), (['20s', '30s'], TypeError), (pd.DataFrame(columns=['bla'], data=['a', 'b']), ValueError), (pd.DataFrame(columns=['age'], data=['20s', 'b']), ValueError)]) def test_get_counts_errors(data, error): with pytest.raises(error): div_age._get_counts(data) @pytest.mark.parametrize('data, expected', [(emps, {'20s': 4, '30s': 2}), (pd.DataFrame(columns=['age'], data=['20s', '20s', '20s', '20s']), {'20s': 4, '30s': 0})]) def test_get_counts_value(data, expected): assert div_age._get_counts(data) == expected # Evaluate _compute_uniform_counts @pytest.mark.parametrize('counts, error', [(['bla'], TypeError), ({}, ValueError), ({'a': 0, 'b': 0}, ValueError)]) def test_compute_uniform_counts_errors(counts, error): with pytest.raises(error): div_age._compute_uniform_counts(counts) @pytest.mark.parametrize('counts, value', [({'A': 4, 'B': 2}, {'A': 3, 'B': 3}), ({'A': 1, 'B': 0}, {'A': 1, 'B': 0}), ({'A': 10, 'B': 0}, {'A': 5, 'B': 5}), ({'A': 10, 'B': 1}, {'A': 6, 'B': 5})]) def test_compute_uniform_counts_values(counts, value): assert div_age._compute_uniform_counts(counts) == value # Evaluate compute @pytest.mark.parametrize('data, error', [([], ValueError), (['bla'], TypeError), (pd.DataFrame(columns=['A'], data=[1]), ValueError)]) def test_compute_errors(data, error): with pytest.raises(error): div_age.compute(data) @pytest.mark.parametrize('data, value, obj', [(['20s', '30s', '20s', '20s', '20s', '30s'], 0.88, False), (['20s', '20s', '20s'], 0, False), (['20s', '30s', '30s', '20s', '20s', '30s'], 1, True)]) def test_compute_values(data, value, obj): emps = pd.DataFrame(columns=['age'], data=data) div, check = div_age.compute(emps) assert pytest.approx(div, 0.001) == value assert check == obj # Evaluate distance @pytest.mark.parametrize('data, error', [([], ValueError), (['bla'], TypeError)]) def test_distance_errors(data, error): with pytest.raises(error): div_age.distance(data) @pytest.mark.parametrize('data, expected, value', [(['20s', '30s', '20s', '20s', '20s', '30s'], {'20s': 0, '30s': 1}, 1), (['20s', '20s', '20s'], {'20s': 0, '30s': 2}, 1), (['20s', '30s', '30s', '20s', '20s', '30s'], {'20s': 0, '30s': 0}, 1)]) def test_distance_values(data, expected, value): emps = pd.DataFrame(columns=['age'], data=data) increments, new_div = div_age.distance(emps) assert pytest.approx(new_div, 0.001) == value assert increments == expected # Evaluate difficulty @pytest.mark.parametrize('init, dist, final, error', [(-1, {}, 0.5, ValueError), (1.5, {}, 0.5, ValueError), (0.5, {}, -0.5, ValueError), (0.5, {}, 1.5, ValueError), (0.5, {'A': 1}, 0.5, ValueError), (0.8, {'A': 1}, 0.5, ValueError), (0.5, {'A': -1}, 0.5, ValueError)]) def test_difficulty_errors(init, dist, final, error): with pytest.raises(error): div_age.difficulty(init, dist, final) @pytest.mark.parametrize('init, dist, final, value', [(0, {'A': 1}, 1, 1), (0.9, {'A': 10}, 0.91, 1000)]) def test_difficulty_values(init, dist, final, value): assert pytest.approx(div_age.difficulty(init, dist, final), 0.01) == value # Evaluate visualise @pytest.mark.parametrize('data, error', [(
pd.DataFrame()
pandas.DataFrame
from reprobench.core.db import ParameterGroup, Run, db from reprobench.executors.db import RunStatistic from reprobench.utils import import_class from .base import PandasExporter try: import pandas as pd except ImportError: pass class RunTable(PandasExporter): @classmethod def get_dataframe(cls, config): joins = config.get("joins", []) query = Run.select() for model_class in joins: model = import_class(model_class) query = query.join_from(Run, model).select_extend( *model._meta.fields.values() ) sql, params = query.sql() return pd.read_sql_query(sql, db, params=params) class RunSummaryTable(PandasExporter): DEFAULT_COLUMNS = ("cpu_time", "wall_time", "max_memory") @classmethod def get_dataframe(cls, config): columns = config.get("columns", cls.DEFAULT_COLUMNS) tool_names = [ f"{group.tool_id}_{group.name}" for group in ParameterGroup.select() ] multiindex = pd.MultiIndex.from_product((tool_names, columns)) df = pd.DataFrame(index=multiindex).transpose() for group in ParameterGroup.select(): tool_name = f"{group.tool_id}_{group.name}" query = ( RunStatistic.select() .join(Run) .where(Run.tool_id == group.tool_id) .where(Run.parameter_group_id == group.id) ) sql, params = query.sql() tool_df =
pd.read_sql(sql, db, params=params)
pandas.read_sql
# -*- coding: utf-8 -*- """ Created on Sat Dec 7 12:22:06 2019 @author: YASH """ from nltk.corpus import stopwords from nltk.tokenize import sent_tokenize from nltk.tokenize import word_tokenize from nltk.stem.porter import PorterStemmer import csv import pandas as pd import numpy #Data cleaning Functions: def isEnglish(s): try: s.encode('ascii') except UnicodeEncodeError: return False else: return True #The following function removes the part of the string that contains the substring eg. if #substring = 'http' , then http://www.google.com is removed, that means, remove until a space is found def rem_substring(tweets,substring): m=0; for i in tweets: if (substring in i): #while i.find(substring)!=-1: k=i.find(substring) d=i.find(' ',k,len(i)) if d!=-1: #substring is present somwhere in the middle(not the end of the string) i=i[:k]+i[d:] else: #special case when the substring is present at the end, we needn't append the i=i[:k] #substring after the junk string to our result tweets[m]=i #store the result in tweets "list" m+= 1 return tweets def removeNonEnglish(tweets): result=[] for i in tweets: if isEnglish(i): result.append(i) return result #the following function converts all the text to the lower case def lower_case(tweets): result=[] for i in tweets: result.append(i.lower()) return result def rem_punctuation(tweets): #print(len(tweets)) m=0 validLetters = "abcdefghijklmnopqrstuvwxyzABCDEFGHIJKLMNOPQRSTUVWXYZ " for i in tweets: x = "" for j in i: if (j in validLetters)==True: x += j tweets[m]=x m=m+1 return tweets def stop_words(tweets): #Removal of Stop words like is, am , be, are, was etc. stop_words1 = set(stopwords.words('english')) indi=0 for tweet in tweets: new_s=[] Br_tweet = word_tokenize(tweet) for word in Br_tweet: if (word not in stop_words1): new_s.append(word) et=" ".join(new_s) tweets[indi]=et indi+=1 return tweets def score(college_name): filename = 'data_emotions_words_list.csv' pos_file_name= "Pos_tagged_" + college_name + ".csv" POS=pd.read_csv(pos_file_name) POS_tweets=POS['POS_Tweet'].values adverb1=pd.read_csv("adverb.csv") verb1=pd.read_csv("verb.csv") ''' Verb and adverb are dictionaries having values for verbs and adverbs''' verb={};adverb={} l=adverb1['value'].values j=0 for i in adverb1['adverb'].values: adverb[i]=l[j] j+=1 l=verb1['Value'].values j=0 for i in verb1['Verb'].values: verb[i]=l[j] j+=1 ''' Add the adjectives in the dictionary''' Adjectives={} df=
pd.read_csv("data_emotions_words_list.csv")
pandas.read_csv
import argparse import numpy as np import os import pandas as pd import pdb def add_dataset_info(results_raw: pd.DataFrame, task_metadata: pd.DataFrame): results_raw['tid'] = [int(x.split('/')[-1]) for x in results_raw['id']] task_metadata['ClassRatio'] = task_metadata['MinorityClassSize'] / task_metadata['NumberOfInstances'] results_raw = results_raw.merge(task_metadata, on=['tid']) return results_raw def mean_score(df: pd.DataFrame, column: str = 'result'): return round(df[column].mean(), 4) def filter_type(df: pd.DataFrame): return df[df['type'] == 'binary'].append(df[df['type'] == 'multiclass']) #df[df['type'] == 'regression'] def filter_samples(df, samples=100000, lower=True): return df[df['NumberOfInstances'] < samples] if lower else df[df['NumberOfInstances'] >= samples] def filter_features(df, features=100, lower=True): return df[df['NumberOfFeatures'] < features] if lower else df[df['NumberOfFeatures'] >= features] def filter_duration(df, duration=40000): return df[df['duration'] < duration] def compute_win_lose(base, tie, pseudo_label): total = max(len(base) + len(pseudo_label) + len(tie), 1) return round((len(pseudo_label) + 0.5 * len(tie)) / total, 4), round((len(base) + 0.5 * len(tie)) / total, 4) def print_inference_speedup(df1, df2): relative_speedups = [] absolute_speedups = [] for task in df1['task'].unique(): df1_rows = df1[df1["task"] == task] df2_rows = df2[df2["task"] == task] for fold in df1_rows["fold"].unique(): row1, row2 = df1_rows[df1_rows["fold"] == fold], df2_rows[df2_rows["fold"] == fold] if len(row1) == 0 or len(row2) == 0 or row1['predict_duration'].isna().item() or row2['predict_duration'].isna().item(): continue df1_time, df2_time = row1['predict_duration'].item(), row2['predict_duration'].item() if df1_time == 0 or df2_time == 0: continue relative_speedups.append((df1_time - df2_time)/min(df1_time, df2_time)) absolute_speedups.append(df1_time - df2_time) print(f"Average Relative Speedup: {round(np.mean(relative_speedups), 4)}, Average Absolute Speedup: {round(np.mean(absolute_speedups), 4)}") def compare_dfs_improvement(df1, df2): metric = "acc" binary, multiclass, regression = [], [], [] for task in df1['task'].unique(): df1_rows = df1[df1["task"] == task] df2_rows = df2[df2["task"] == task] for fold in df1_rows["fold"].unique(): row1, row2 = df1_rows[df1_rows["fold"] == fold], df2_rows[df2_rows["fold"] == fold] if len(row1) == 0 or len(row2) == 0 or row1[metric].isna().item() or row2[metric].isna().item(): continue df1_score, df2_score = row1[metric].item(), row2[metric].item() problem_type = df1_rows.iloc[0]['type'] try: if problem_type == "binary": score = (df2_score - df1_score) / df1_score if df1_score > df2_score else (df2_score - df1_score) / df2_score binary.append(score) elif problem_type == "multiclass": score = (df1_score - df2_score) / df1_score if df1_score < df2_score else (df1_score - df2_score) / df2_score multiclass.append(score) else: score = (df1_score - df2_score) / df1_score if df1_score < df2_score else (df1_score - df2_score) / df2_score regression.append(score) except: pass binary_improvement = round(np.mean(binary), 4) multiclass_improvement = round(np.mean(multiclass), 4) regression_improvement = round(np.mean(regression), 4) total_improvement = round(np.mean(binary + multiclass + regression), 4) return total_improvement, binary_improvement, multiclass_improvement, regression_improvement def compare_dfs(df1, df2, grouped=False): df1_better, equal_performance, df2_better = [], [], [] metric = "acc" for task in df1['task'].unique(): df1_rows = df1[df1["task"] == task] df2_rows = df2[df2["task"] == task] if grouped: if len(df1_rows) > 0: df1_score = df1_rows[metric].dropna().mean() if df1_score != df1_score: continue else: continue if len(df2_rows) > 0: df2_score = df2_rows[metric].dropna().mean() if df2_score != df2_score: continue else: continue if df1_score > df2_score: df1_better.append(task) elif df1_score < df2_score: df2_better.append(task) else: equal_performance.append(task) else: for fold in df1_rows["fold"].unique(): row1, row2 = df1_rows[df1_rows["fold"] == fold], df2_rows[df2_rows["fold"] == fold] if len(row1) == 0 or len(row2) == 0 or row1[metric].isna().item() or row2[metric].isna().item(): continue score1, score2 = row1[metric].item(), row2[metric].item() if score1 > score2: df1_better.append(task+f"_{fold}") elif score1 < score2: df2_better.append(task+f"_{fold}") else: equal_performance.append(task+f"_{fold}") return df1_better, equal_performance, df2_better def print_miscellaneous(df1, df2): metric = "acc" score_diffs = [] for task in df1['task'].unique(): df1_rows = df1[df1["task"] == task] df2_rows = df2[df2["task"] == task] if len(df1_rows) > 0: df1_score = df1_rows[metric].dropna().mean() if df1_score != df1_score: continue else: continue if len(df2_rows) > 0: df2_score = df2_rows[metric].dropna().mean() if df2_score != df2_score: continue else: continue problem_type = df1_rows.iloc[0]['type'] if problem_type == "binary": score = (df2_score - df1_score) / df1_score if df1_score > df2_score else (df2_score - df1_score) / df2_score elif problem_type == "multiclass": score = (df1_score - df2_score) / df1_score if df1_score < df2_score else (df1_score - df2_score) / df2_score else: score = (df1_score - df2_score) / df1_score if df1_score < df2_score else (df1_score - df2_score) / df2_score score_diffs.append((task, score)) score_diffs = sorted(score_diffs, key=lambda info: info[1]) score_diffs = [diff[1] for diff in score_diffs] print(f"Relative Error Reduction Info: {round(np.mean(score_diffs), 4)} ± {round(np.std(score_diffs), 4)}, ({round(score_diffs[0], 4)}, {round(score_diffs[-1], 4)})") lower_quantile, upper_quantile = np.quantile(score_diffs, 0.025), np.quantile(score_diffs, 0.975) score_diffs = [diff for diff in score_diffs if lower_quantile < diff < upper_quantile] print(f"Relative Error Reduction Info (mean ± 2 * sigma): {round(np.mean(score_diffs), 4)} ± {round(np.std(score_diffs), 4)}, ({round(score_diffs[0], 4)}, {round(score_diffs[-1], 4)})") print(f"Number of Errored Runs (Base/pseudo_label): {len(base[~base['info'].isna()])}/{len(pseudo_label[~pseudo_label['info'].isna()])}") def print_automl_comparisons(base: pd.DataFrame, pseudo_label: pd.DataFrame, others: pd.DataFrame): print("==============================================================================") rows = [] for framework in others['framework'].unique(): other = others[others['framework'] == framework] first_better, equal_performance, second_better = compare_dfs(other, base) base_win, base_lose = compute_win_lose(first_better, equal_performance, second_better) first_better, equal_performance, second_better = compare_dfs(other, pseudo_label) pseudo_label_win, pseudo_label_lose = compute_win_lose(first_better, equal_performance, second_better) base_improvement, _, _, _ = compare_dfs_improvement(other, base) pseudo_label_improvement, _, _, _ = compare_dfs_improvement(other, pseudo_label) rows.append({'Framework': framework, 'Base Win Rate': base_win, 'pseudo_label Win Rate': pseudo_label_win, 'Base Error Reduction': base_improvement, 'pseudo_label Error Reduction': pseudo_label_improvement, 'Win Rate Improvement': pseudo_label_win - base_win, 'Error Reduction Improvement': pseudo_label_improvement - base_improvement}) df =
pd.DataFrame(rows)
pandas.DataFrame
import pandas as pd from liuy.Interface.BaseSampler import BaseSampler from liuy.utils.ComputeLoss import LiuyComputeLoss import copy import re def name2id(losses_name): losses_id = [] for item in losses_name: loss = {} loss['loss_mask'] = item['loss_mask'] digit = re.findall(r"\d+\d*", item['file_name']) img_id = digit[2] img_id = int(img_id) # img_id = str(img_id) loss['image_id'] = img_id losses_id.append(loss) return losses_id def decrease_sort_losses(losses): if len(losses) <= 1: return losses pivot = losses[len(losses) // 2] left = [x for x in losses if x['loss_mask'] > pivot['loss_mask']] middle = [x for x in losses if x['loss_mask'] == pivot['loss_mask']] right = [x for x in losses if x['loss_mask'] < pivot['loss_mask']] return decrease_sort_losses(left) + middle + decrease_sort_losses(right) def increase_sort_losses(losses): if len(losses) <= 1: return losses pivot = losses[len(losses) // 2] left = [x for x in losses if x['loss_mask'] < pivot['loss_mask']] middle = [x for x in losses if x['loss_mask'] == pivot['loss_mask']] right = [x for x in losses if x['loss_mask'] > pivot['loss_mask']] return increase_sort_losses(left) + middle + increase_sort_losses(right) class LossSampler(): def __init__(self, sampler_name): self.sampler_name = sampler_name def group_image(slef, image2class): """ :param image2class: a nd array, m * 2, m means number of feature, the first column is the image id, and the second is the class id :return: list of list, each list is contain the same class' image id """ image2class_pd =
pd.DataFrame(image2class)
pandas.DataFrame
import abc import re from abc import ABCMeta, abstractmethod, abstractproperty from datetime import timedelta from time import sleep import numpy as np import pandas as pd from catalyst.assets._assets import TradingPair from logbook import Logger from catalyst.data.data_portal import BASE_FIELDS from catalyst.exchange.bundle_utils import get_start_dt, \ get_delta, get_periods, get_adj_dates from catalyst.exchange.exchange_bundle import ExchangeBundle from catalyst.exchange.exchange_errors import MismatchingBaseCurrencies, \ InvalidOrderStyle, BaseCurrencyNotFoundError, SymbolNotFoundOnExchange, \ InvalidHistoryFrequencyError, MismatchingFrequencyError, \ BundleNotFoundError, NoDataAvailableOnExchange, PricingDataNotLoadedError from catalyst.exchange.exchange_execution import ExchangeStopLimitOrder, \ ExchangeLimitOrder, ExchangeStopOrder from catalyst.exchange.exchange_portfolio import ExchangePortfolio from catalyst.exchange.exchange_utils import get_exchange_symbols from catalyst.finance.order import ORDER_STATUS from catalyst.finance.transaction import Transaction from catalyst.constants import LOG_LEVEL log = Logger('Exchange', level=LOG_LEVEL) class Exchange: __metaclass__ = ABCMeta def __init__(self): self.name = None self.assets = {} self._portfolio = None self.minute_writer = None self.minute_reader = None self.base_currency = None self.num_candles_limit = None self.max_requests_per_minute = None self.request_cpt = None self.bundle = ExchangeBundle(self) @property def positions(self): return self.portfolio.positions @property def portfolio(self): """ Return the Portfolio :return: """ if self._portfolio is None: self._portfolio = ExchangePortfolio( start_date=pd.Timestamp.utcnow() ) self.synchronize_portfolio() return self._portfolio @abstractproperty def account(self): pass @abstractproperty def time_skew(self): pass def ask_request(self): """ Asks permission to issue a request to the exchange. The primary purpose is to avoid hitting rate limits. The application will pause if the maximum requests per minute permitted by the exchange is exceeded. :return boolean: """ now = pd.Timestamp.utcnow() if not self.request_cpt: self.request_cpt = dict() self.request_cpt[now] = 0 return True cpt_date = self.request_cpt.keys()[0] cpt = self.request_cpt[cpt_date] if now > cpt_date + timedelta(minutes=1): self.request_cpt = dict() self.request_cpt[now] = 0 return True if cpt >= self.max_requests_per_minute: delta = now - cpt_date sleep_period = 60 - delta.total_seconds() sleep(sleep_period) now = pd.Timestamp.utcnow() self.request_cpt = dict() self.request_cpt[now] = 0 return True else: self.request_cpt[cpt_date] += 1 def get_symbol(self, asset): """ Get the exchange specific symbol of the given asset. :param asset: Asset :return: symbol: str """ symbol = None for key in self.assets: if not symbol and self.assets[key].symbol == asset.symbol: symbol = key if not symbol: raise ValueError('Currency %s not supported by exchange %s' % (asset['symbol'], self.name.title())) return symbol def get_symbols(self, assets): """ Get a list of symbols corresponding to each given asset. :param assets: Asset[] :return: """ symbols = [] for asset in assets: symbols.append(self.get_symbol(asset)) return symbols def get_assets(self, symbols=None): assets = [] if symbols is not None: for symbol in symbols: asset = self.get_asset(symbol) assets.append(asset) else: for key in self.assets: assets.append(self.assets[key]) return assets def get_asset(self, symbol): """ Find an Asset on the current exchange based on its Catalyst symbol :param symbol: the [target]_[base] currency pair symbol :return: Asset """ asset = None for key in self.assets: if not asset and self.assets[key].symbol.lower() == symbol.lower(): asset = self.assets[key] if not asset: supported_symbols = [pair.symbol.encode('utf-8') for pair in self.assets.values()] raise SymbolNotFoundOnExchange( symbol=symbol, exchange=self.name.title(), supported_symbols=supported_symbols ) return asset def fetch_symbol_map(self): return get_exchange_symbols(self.name) def load_assets(self): """ Populate the 'assets' attribute with a dictionary of Assets. The key of the resulting dictionary is the exchange specific currency pair symbol. The universal symbol is contained in the 'symbol' attribute of each asset. Notes ----- The sid of each asset is calculated based on a numeric hash of the universal symbol. This simple approach avoids maintaining a mapping of sids. This method can be overridden if an exchange offers equivalent data via its api. """ symbol_map = self.fetch_symbol_map() for exchange_symbol in symbol_map: asset = symbol_map[exchange_symbol] if 'start_date' in asset: start_date = pd.to_datetime(asset['start_date'], utc=True) else: start_date = None if 'end_date' in asset: end_date =
pd.to_datetime(asset['end_date'], utc=True)
pandas.to_datetime
# ***************************************************************************** # Copyright (c) 2019-2020, Intel Corporation All rights reserved. # # Redistribution and use in source and binary forms, with or without # modification, are permitted provided that the following conditions are met: # # Redistributions of source code must retain the above copyright notice, # this list of conditions and the following disclaimer. # # Redistributions in binary form must reproduce the above copyright notice, # this list of conditions and the following disclaimer in the documentation # and/or other materials provided with the distribution. # # THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" # AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, # THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR # PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR # CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, # EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, # PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; # OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, # WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR # OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, # EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. # ***************************************************************************** import itertools import os import platform import string import unittest from copy import deepcopy from itertools import product import numpy as np import pandas as pd from numba.core.errors import TypingError from sdc.hiframes.rolling import supported_rolling_funcs from sdc.tests.test_base import TestCase from sdc.tests.test_series import gen_frand_array from sdc.tests.test_utils import (count_array_REPs, count_parfor_REPs, skip_numba_jit, skip_sdc_jit, test_global_input_data_float64) LONG_TEST = (int(os.environ['SDC_LONG_ROLLING_TEST']) != 0 if 'SDC_LONG_ROLLING_TEST' in os.environ else False) test_funcs = ('mean', 'max',) if LONG_TEST: # all functions except apply, cov, corr test_funcs = supported_rolling_funcs[:-3] def rolling_std_usecase(obj, window, min_periods, ddof): return obj.rolling(window, min_periods).std(ddof) def rolling_var_usecase(obj, window, min_periods, ddof): return obj.rolling(window, min_periods).var(ddof) class TestRolling(TestCase): @skip_numba_jit def test_series_rolling1(self): def test_impl(S): return S.rolling(3).sum() hpat_func = self.jit(test_impl) S = pd.Series([1.0, 2., 3., 4., 5.]) pd.testing.assert_series_equal(hpat_func(S), test_impl(S)) @skip_numba_jit def test_fixed1(self): # test sequentially with manually created dfs wins = (3,) if LONG_TEST: wins = (2, 3, 5) centers = (False, True) for func_name in test_funcs: func_text = "def test_impl(df, w, c):\n return df.rolling(w, center=c).{}()\n".format(func_name) loc_vars = {} exec(func_text, {}, loc_vars) test_impl = loc_vars['test_impl'] hpat_func = self.jit(test_impl) for args in itertools.product(wins, centers): df = pd.DataFrame({'B': [0, 1, 2, np.nan, 4]}) pd.testing.assert_frame_equal(hpat_func(df, *args), test_impl(df, *args)) df = pd.DataFrame({'B': [0, 1, 2, -2, 4]}) pd.testing.assert_frame_equal(hpat_func(df, *args), test_impl(df, *args)) @skip_numba_jit def test_fixed2(self): # test sequentially with generated dfs sizes = (121,) wins = (3,) if LONG_TEST: sizes = (1, 2, 10, 11, 121, 1000) wins = (2, 3, 5) centers = (False, True) for func_name in test_funcs: func_text = "def test_impl(df, w, c):\n return df.rolling(w, center=c).{}()\n".format(func_name) loc_vars = {} exec(func_text, {}, loc_vars) test_impl = loc_vars['test_impl'] hpat_func = self.jit(test_impl) for n, w, c in itertools.product(sizes, wins, centers): df = pd.DataFrame({'B': np.arange(n)}) pd.testing.assert_frame_equal(hpat_func(df, w, c), test_impl(df, w, c)) @skip_numba_jit def test_fixed_apply1(self): # test sequentially with manually created dfs def test_impl(df, w, c): return df.rolling(w, center=c).apply(lambda a: a.sum()) hpat_func = self.jit(test_impl) wins = (3,) if LONG_TEST: wins = (2, 3, 5) centers = (False, True) for args in itertools.product(wins, centers): df = pd.DataFrame({'B': [0, 1, 2, np.nan, 4]}) pd.testing.assert_frame_equal(hpat_func(df, *args), test_impl(df, *args)) df = pd.DataFrame({'B': [0, 1, 2, -2, 4]}) pd.testing.assert_frame_equal(hpat_func(df, *args), test_impl(df, *args)) @skip_numba_jit def test_fixed_apply2(self): # test sequentially with generated dfs def test_impl(df, w, c): return df.rolling(w, center=c).apply(lambda a: a.sum()) hpat_func = self.jit(test_impl) sizes = (121,) wins = (3,) if LONG_TEST: sizes = (1, 2, 10, 11, 121, 1000) wins = (2, 3, 5) centers = (False, True) for n, w, c in itertools.product(sizes, wins, centers): df = pd.DataFrame({'B': np.arange(n)}) pd.testing.assert_frame_equal(hpat_func(df, w, c), test_impl(df, w, c)) @skip_numba_jit def test_fixed_parallel1(self): def test_impl(n, w, center): df = pd.DataFrame({'B': np.arange(n)}) R = df.rolling(w, center=center).sum() return R.B.sum() hpat_func = self.jit(test_impl) sizes = (121,) wins = (5,) if LONG_TEST: sizes = (1, 2, 10, 11, 121, 1000) wins = (2, 4, 5, 10, 11) centers = (False, True) for args in itertools.product(sizes, wins, centers): self.assertEqual(hpat_func(*args), test_impl(*args), "rolling fixed window with {}".format(args)) self.assertEqual(count_array_REPs(), 0) self.assertEqual(count_parfor_REPs(), 0) @skip_numba_jit def test_fixed_parallel_apply1(self): def test_impl(n, w, center): df = pd.DataFrame({'B': np.arange(n)}) R = df.rolling(w, center=center).apply(lambda a: a.sum()) return R.B.sum() hpat_func = self.jit(test_impl) sizes = (121,) wins = (5,) if LONG_TEST: sizes = (1, 2, 10, 11, 121, 1000) wins = (2, 4, 5, 10, 11) centers = (False, True) for args in itertools.product(sizes, wins, centers): self.assertEqual(hpat_func(*args), test_impl(*args), "rolling fixed window with {}".format(args)) self.assertEqual(count_array_REPs(), 0) self.assertEqual(count_parfor_REPs(), 0) @skip_numba_jit def test_variable1(self): # test sequentially with manually created dfs df1 = pd.DataFrame({'B': [0, 1, 2, np.nan, 4], 'time': [pd.Timestamp('20130101 09:00:00'), pd.Timestamp('20130101 09:00:02'), pd.Timestamp('20130101 09:00:03'), pd.Timestamp('20130101 09:00:05'), pd.Timestamp('20130101 09:00:06')]}) df2 = pd.DataFrame({'B': [0, 1, 2, -2, 4], 'time': [pd.Timestamp('20130101 09:00:01'), pd.Timestamp('20130101 09:00:02'), pd.Timestamp('20130101 09:00:03'), pd.Timestamp('20130101 09:00:04'), pd.Timestamp('20130101 09:00:09')]}) wins = ('2s',) if LONG_TEST: wins = ('1s', '2s', '3s', '4s') # all functions except apply for w, func_name in itertools.product(wins, test_funcs): func_text = "def test_impl(df):\n return df.rolling('{}', on='time').{}()\n".format(w, func_name) loc_vars = {} exec(func_text, {}, loc_vars) test_impl = loc_vars['test_impl'] hpat_func = self.jit(test_impl) # XXX: skipping min/max for this test since the behavior of Pandas # is inconsistent: it assigns NaN to last output instead of 4! if func_name not in ('min', 'max'): pd.testing.assert_frame_equal(hpat_func(df1), test_impl(df1)) pd.testing.assert_frame_equal(hpat_func(df2), test_impl(df2)) @skip_numba_jit def test_variable2(self): # test sequentially with generated dfs wins = ('2s',) sizes = (121,) if LONG_TEST: wins = ('1s', '2s', '3s', '4s') sizes = (1, 2, 10, 11, 121, 1000) # all functions except apply for w, func_name in itertools.product(wins, test_funcs): func_text = "def test_impl(df):\n return df.rolling('{}', on='time').{}()\n".format(w, func_name) loc_vars = {} exec(func_text, {}, loc_vars) test_impl = loc_vars['test_impl'] hpat_func = self.jit(test_impl) for n in sizes: time = pd.date_range(start='1/1/2018', periods=n, freq='s') df = pd.DataFrame({'B': np.arange(n), 'time': time}) pd.testing.assert_frame_equal(hpat_func(df), test_impl(df)) @skip_numba_jit def test_variable_apply1(self): # test sequentially with manually created dfs df1 = pd.DataFrame({'B': [0, 1, 2, np.nan, 4], 'time': [pd.Timestamp('20130101 09:00:00'), pd.Timestamp('20130101 09:00:02'), pd.Timestamp('20130101 09:00:03'), pd.Timestamp('20130101 09:00:05'), pd.Timestamp('20130101 09:00:06')]}) df2 = pd.DataFrame({'B': [0, 1, 2, -2, 4], 'time': [pd.Timestamp('20130101 09:00:01'), pd.Timestamp('20130101 09:00:02'), pd.Timestamp('20130101 09:00:03'), pd.Timestamp('20130101 09:00:04'), pd.Timestamp('20130101 09:00:09')]}) wins = ('2s',) if LONG_TEST: wins = ('1s', '2s', '3s', '4s') # all functions except apply for w in wins: func_text = "def test_impl(df):\n return df.rolling('{}', on='time').apply(lambda a: a.sum())\n".format(w) loc_vars = {} exec(func_text, {}, loc_vars) test_impl = loc_vars['test_impl'] hpat_func = self.jit(test_impl) pd.testing.assert_frame_equal(hpat_func(df1), test_impl(df1)) pd.testing.assert_frame_equal(hpat_func(df2), test_impl(df2)) @skip_numba_jit def test_variable_apply2(self): # test sequentially with generated dfs wins = ('2s',) sizes = (121,) if LONG_TEST: wins = ('1s', '2s', '3s', '4s') # TODO: this crashes on Travis (3 process config) with size 1 sizes = (2, 10, 11, 121, 1000) # all functions except apply for w in wins: func_text = "def test_impl(df):\n return df.rolling('{}', on='time').apply(lambda a: a.sum())\n".format(w) loc_vars = {} exec(func_text, {}, loc_vars) test_impl = loc_vars['test_impl'] hpat_func = self.jit(test_impl) for n in sizes: time = pd.date_range(start='1/1/2018', periods=n, freq='s') df = pd.DataFrame({'B': np.arange(n), 'time': time}) pd.testing.assert_frame_equal(hpat_func(df), test_impl(df)) @skip_numba_jit @unittest.skipIf(platform.system() == 'Windows', "ValueError: time must be monotonic") def test_variable_parallel1(self): wins = ('2s',) sizes = (121,) if LONG_TEST: wins = ('1s', '2s', '3s', '4s') # XXX: Pandas returns time = [np.nan] for size==1 for some reason sizes = (2, 10, 11, 121, 1000) # all functions except apply for w, func_name in itertools.product(wins, test_funcs): func_text = "def test_impl(n):\n" func_text += " df = pd.DataFrame({'B': np.arange(n), 'time': " func_text += " pd.DatetimeIndex(np.arange(n) * 1000000000)})\n" func_text += " res = df.rolling('{}', on='time').{}()\n".format(w, func_name) func_text += " return res.B.sum()\n" loc_vars = {} exec(func_text, {'pd': pd, 'np': np}, loc_vars) test_impl = loc_vars['test_impl'] hpat_func = self.jit(test_impl) for n in sizes: np.testing.assert_almost_equal(hpat_func(n), test_impl(n)) self.assertEqual(count_array_REPs(), 0) self.assertEqual(count_parfor_REPs(), 0) @skip_numba_jit @unittest.skipIf(platform.system() == 'Windows', "ValueError: time must be monotonic") def test_variable_apply_parallel1(self): wins = ('2s',) sizes = (121,) if LONG_TEST: wins = ('1s', '2s', '3s', '4s') # XXX: Pandas returns time = [np.nan] for size==1 for some reason sizes = (2, 10, 11, 121, 1000) # all functions except apply for w in wins: func_text = "def test_impl(n):\n" func_text += " df = pd.DataFrame({'B': np.arange(n), 'time': " func_text += " pd.DatetimeIndex(np.arange(n) * 1000000000)})\n" func_text += " res = df.rolling('{}', on='time').apply(lambda a: a.sum())\n".format(w) func_text += " return res.B.sum()\n" loc_vars = {} exec(func_text, {'pd': pd, 'np': np}, loc_vars) test_impl = loc_vars['test_impl'] hpat_func = self.jit(test_impl) for n in sizes: np.testing.assert_almost_equal(hpat_func(n), test_impl(n)) self.assertEqual(count_array_REPs(), 0) self.assertEqual(count_parfor_REPs(), 0) @skip_numba_jit def test_series_fixed1(self): # test series rolling functions # all functions except apply S1 = pd.Series([0, 1, 2, np.nan, 4]) S2 = pd.Series([0, 1, 2, -2, 4]) wins = (3,) if LONG_TEST: wins = (2, 3, 5) centers = (False, True) for func_name in test_funcs: func_text = "def test_impl(S, w, c):\n return S.rolling(w, center=c).{}()\n".format(func_name) loc_vars = {} exec(func_text, {}, loc_vars) test_impl = loc_vars['test_impl'] hpat_func = self.jit(test_impl) for args in itertools.product(wins, centers): pd.testing.assert_series_equal(hpat_func(S1, *args), test_impl(S1, *args)) pd.testing.assert_series_equal(hpat_func(S2, *args), test_impl(S2, *args)) # test apply def apply_test_impl(S, w, c): return S.rolling(w, center=c).apply(lambda a: a.sum()) hpat_func = self.jit(apply_test_impl) for args in itertools.product(wins, centers): pd.testing.assert_series_equal(hpat_func(S1, *args), apply_test_impl(S1, *args)) pd.testing.assert_series_equal(hpat_func(S2, *args), apply_test_impl(S2, *args)) @skip_numba_jit def test_series_cov1(self): # test series rolling functions # all functions except apply S1 = pd.Series([0, 1, 2, np.nan, 4]) S2 = pd.Series([0, 1, 2, -2, 4]) wins = (3,) if LONG_TEST: wins = (2, 3, 5) centers = (False, True) def test_impl(S, S2, w, c): return S.rolling(w, center=c).cov(S2) hpat_func = self.jit(test_impl) for args in itertools.product([S1, S2], [S1, S2], wins, centers): pd.testing.assert_series_equal(hpat_func(*args), test_impl(*args)) pd.testing.assert_series_equal(hpat_func(*args), test_impl(*args)) def test_impl2(S, S2, w, c): return S.rolling(w, center=c).corr(S2) hpat_func = self.jit(test_impl2) for args in itertools.product([S1, S2], [S1, S2], wins, centers): pd.testing.assert_series_equal(hpat_func(*args), test_impl2(*args)) pd.testing.assert_series_equal(hpat_func(*args), test_impl2(*args)) @skip_numba_jit def test_df_cov1(self): # test series rolling functions # all functions except apply df1 = pd.DataFrame({'A': [0, 1, 2, np.nan, 4], 'B': np.ones(5)}) df2 = pd.DataFrame({'A': [0, 1, 2, -2, 4], 'C': np.ones(5)}) wins = (3,) if LONG_TEST: wins = (2, 3, 5) centers = (False, True) def test_impl(df, df2, w, c): return df.rolling(w, center=c).cov(df2) hpat_func = self.jit(test_impl) for args in itertools.product([df1, df2], [df1, df2], wins, centers): pd.testing.assert_frame_equal(hpat_func(*args), test_impl(*args)) pd.testing.assert_frame_equal(hpat_func(*args), test_impl(*args)) def test_impl2(df, df2, w, c): return df.rolling(w, center=c).corr(df2) hpat_func = self.jit(test_impl2) for args in itertools.product([df1, df2], [df1, df2], wins, centers): pd.testing.assert_frame_equal(hpat_func(*args), test_impl2(*args)) pd.testing.assert_frame_equal(hpat_func(*args), test_impl2(*args)) def _get_assert_equal(self, obj): if isinstance(obj, pd.Series): return pd.testing.assert_series_equal elif isinstance(obj, pd.DataFrame): return pd.testing.assert_frame_equal elif isinstance(obj, np.ndarray): return np.testing.assert_array_equal return self.assertEqual def _test_rolling_unsupported_values(self, obj): def test_impl(obj, window, min_periods, center, win_type, on, axis, closed): return obj.rolling(window, min_periods, center, win_type, on, axis, closed).min() hpat_func = self.jit(test_impl) with self.assertRaises(ValueError) as raises: hpat_func(obj, -1, None, False, None, None, 0, None) self.assertIn('window must be non-negative', str(raises.exception)) with self.assertRaises(ValueError) as raises: hpat_func(obj, 1, -1, False, None, None, 0, None) self.assertIn('min_periods must be >= 0', str(raises.exception)) with self.assertRaises(ValueError) as raises: hpat_func(obj, 1, 2, False, None, None, 0, None) self.assertIn('min_periods must be <= window', str(raises.exception)) with self.assertRaises(ValueError) as raises: hpat_func(obj, 1, 2, False, None, None, 0, None) self.assertIn('min_periods must be <= window', str(raises.exception)) msg_tmpl = 'Method rolling(). The object {}\n expected: {}' with self.assertRaises(ValueError) as raises: hpat_func(obj, 1, None, True, None, None, 0, None) msg = msg_tmpl.format('center', 'False') self.assertIn(msg, str(raises.exception)) with self.assertRaises(ValueError) as raises: hpat_func(obj, 1, None, False, 'None', None, 0, None) msg = msg_tmpl.format('win_type', 'None') self.assertIn(msg, str(raises.exception)) with self.assertRaises(ValueError) as raises: hpat_func(obj, 1, None, False, None, 'None', 0, None) msg = msg_tmpl.format('on', 'None') self.assertIn(msg, str(raises.exception)) with self.assertRaises(ValueError) as raises: hpat_func(obj, 1, None, False, None, None, 1, None) msg = msg_tmpl.format('axis', '0') self.assertIn(msg, str(raises.exception)) with self.assertRaises(ValueError) as raises: hpat_func(obj, 1, None, False, None, None, 0, 'None') msg = msg_tmpl.format('closed', 'None') self.assertIn(msg, str(raises.exception)) def _test_rolling_unsupported_types(self, obj): def test_impl(obj, window, min_periods, center, win_type, on, axis, closed): return obj.rolling(window, min_periods, center, win_type, on, axis, closed).min() hpat_func = self.jit(test_impl) msg_tmpl = 'Method rolling(). The object {}\n given: {}\n expected: {}' with self.assertRaises(TypingError) as raises: hpat_func(obj, '1', None, False, None, None, 0, None) msg = msg_tmpl.format('window', 'unicode_type', 'int') self.assertIn(msg, str(raises.exception)) with self.assertRaises(TypingError) as raises: hpat_func(obj, 1, '1', False, None, None, 0, None) msg = msg_tmpl.format('min_periods', 'unicode_type', 'None, int') self.assertIn(msg, str(raises.exception)) with self.assertRaises(TypingError) as raises: hpat_func(obj, 1, None, 0, None, None, 0, None) msg = msg_tmpl.format('center', 'int64', 'bool') self.assertIn(msg, str(raises.exception)) with self.assertRaises(TypingError) as raises: hpat_func(obj, 1, None, False, -1, None, 0, None) msg = msg_tmpl.format('win_type', 'int64', 'str') self.assertIn(msg, str(raises.exception)) with self.assertRaises(TypingError) as raises: hpat_func(obj, 1, None, False, None, -1, 0, None) msg = msg_tmpl.format('on', 'int64', 'str') self.assertIn(msg, str(raises.exception)) with self.assertRaises(TypingError) as raises: hpat_func(obj, 1, None, False, None, None, None, None) msg = msg_tmpl.format('axis', 'none', 'int, str') self.assertIn(msg, str(raises.exception)) with self.assertRaises(TypingError) as raises: hpat_func(obj, 1, None, False, None, None, 0, -1) msg = msg_tmpl.format('closed', 'int64', 'str') self.assertIn(msg, str(raises.exception)) def _test_rolling_apply_mean(self, obj): def test_impl(obj, window, min_periods): def func(x): if len(x) == 0: return np.nan return x.mean() return obj.rolling(window, min_periods).apply(func) hpat_func = self.jit(test_impl) assert_equal = self._get_assert_equal(obj) for window in range(0, len(obj) + 3, 2): for min_periods in range(0, window + 1, 2): with self.subTest(obj=obj, window=window, min_periods=min_periods): jit_result = hpat_func(obj, window, min_periods) ref_result = test_impl(obj, window, min_periods) assert_equal(jit_result, ref_result) def _test_rolling_apply_unsupported_types(self, obj): def test_impl(obj, raw): def func(x): if len(x) == 0: return np.nan return np.median(x) return obj.rolling(3).apply(func, raw=raw) hpat_func = self.jit(test_impl) with self.assertRaises(TypingError) as raises: hpat_func(obj, 1) msg = 'Method rolling.apply(). The object raw\n given: int64\n expected: bool' self.assertIn(msg, str(raises.exception)) def _test_rolling_apply_args(self, obj): def test_impl(obj, window, min_periods, q): def func(x, q): if len(x) == 0: return np.nan return np.quantile(x, q) return obj.rolling(window, min_periods).apply(func, raw=None, args=(q,)) hpat_func = self.jit(test_impl) assert_equal = self._get_assert_equal(obj) for window in range(0, len(obj) + 3, 2): for min_periods in range(0, window + 1, 2): for q in [0.25, 0.5, 0.75]: with self.subTest(obj=obj, window=window, min_periods=min_periods, q=q): jit_result = hpat_func(obj, window, min_periods, q) ref_result = test_impl(obj, window, min_periods, q) assert_equal(jit_result, ref_result) def _test_rolling_corr(self, obj, other): def test_impl(obj, window, min_periods, other): return obj.rolling(window, min_periods).corr(other) hpat_func = self.jit(test_impl) assert_equal = self._get_assert_equal(obj) for window in range(0, len(obj) + 3, 2): for min_periods in range(0, window, 2): with self.subTest(obj=obj, other=other, window=window, min_periods=min_periods): jit_result = hpat_func(obj, window, min_periods, other) ref_result = test_impl(obj, window, min_periods, other) assert_equal(jit_result, ref_result) def _test_rolling_corr_with_no_other(self, obj): def test_impl(obj, window, min_periods): return obj.rolling(window, min_periods).corr(pairwise=False) hpat_func = self.jit(test_impl) assert_equal = self._get_assert_equal(obj) for window in range(0, len(obj) + 3, 2): for min_periods in range(0, window, 2): with self.subTest(obj=obj, window=window, min_periods=min_periods): jit_result = hpat_func(obj, window, min_periods) ref_result = test_impl(obj, window, min_periods) assert_equal(jit_result, ref_result) def _test_rolling_corr_unsupported_types(self, obj): def test_impl(obj, pairwise): return obj.rolling(3, 3).corr(pairwise=pairwise) hpat_func = self.jit(test_impl) with self.assertRaises(TypingError) as raises: hpat_func(obj, 1) msg = 'Method rolling.corr(). The object pairwise\n given: int64\n expected: bool' self.assertIn(msg, str(raises.exception)) def _test_rolling_count(self, obj): def test_impl(obj, window, min_periods): return obj.rolling(window, min_periods).count() hpat_func = self.jit(test_impl) assert_equal = self._get_assert_equal(obj) for window in range(0, len(obj) + 3, 2): for min_periods in range(0, window + 1, 2): with self.subTest(obj=obj, window=window, min_periods=min_periods): jit_result = hpat_func(obj, window, min_periods) ref_result = test_impl(obj, window, min_periods) assert_equal(jit_result, ref_result) def _test_rolling_cov(self, obj, other): def test_impl(obj, window, min_periods, other, ddof): return obj.rolling(window, min_periods).cov(other, ddof=ddof) hpat_func = self.jit(test_impl) assert_equal = self._get_assert_equal(obj) for window in range(0, len(obj) + 3, 2): for min_periods, ddof in product(range(0, window, 2), [0, 1]): with self.subTest(obj=obj, other=other, window=window, min_periods=min_periods, ddof=ddof): jit_result = hpat_func(obj, window, min_periods, other, ddof) ref_result = test_impl(obj, window, min_periods, other, ddof) assert_equal(jit_result, ref_result) def _test_rolling_cov_with_no_other(self, obj): def test_impl(obj, window, min_periods): return obj.rolling(window, min_periods).cov(pairwise=False) hpat_func = self.jit(test_impl) assert_equal = self._get_assert_equal(obj) for window in range(0, len(obj) + 3, 2): for min_periods in range(0, window, 2): with self.subTest(obj=obj, window=window, min_periods=min_periods): jit_result = hpat_func(obj, window, min_periods) ref_result = test_impl(obj, window, min_periods) assert_equal(jit_result, ref_result) def _test_rolling_cov_unsupported_types(self, obj): def test_impl(obj, pairwise, ddof): return obj.rolling(3, 3).cov(pairwise=pairwise, ddof=ddof) hpat_func = self.jit(test_impl) msg_tmpl = 'Method rolling.cov(). The object {}\n given: {}\n expected: {}' with self.assertRaises(TypingError) as raises: hpat_func(obj, 1, 1) msg = msg_tmpl.format('pairwise', 'int64', 'bool') self.assertIn(msg, str(raises.exception)) with self.assertRaises(TypingError) as raises: hpat_func(obj, None, '1') msg = msg_tmpl.format('ddof', 'unicode_type', 'int') self.assertIn(msg, str(raises.exception)) def _test_rolling_kurt(self, obj): def test_impl(obj, window, min_periods): return obj.rolling(window, min_periods).kurt() hpat_func = self.jit(test_impl) assert_equal = self._get_assert_equal(obj) for window in range(4, len(obj) + 1): for min_periods in range(window + 1): with self.subTest(obj=obj, window=window, min_periods=min_periods): ref_result = test_impl(obj, window, min_periods) jit_result = hpat_func(obj, window, min_periods) assert_equal(jit_result, ref_result) def _test_rolling_max(self, obj): def test_impl(obj, window, min_periods): return obj.rolling(window, min_periods).max() hpat_func = self.jit(test_impl) assert_equal = self._get_assert_equal(obj) # python implementation crashes if window = 0, jit works correctly for window in range(1, len(obj) + 2): for min_periods in range(window + 1): with self.subTest(obj=obj, window=window, min_periods=min_periods): jit_result = hpat_func(obj, window, min_periods) ref_result = test_impl(obj, window, min_periods) assert_equal(jit_result, ref_result) def _test_rolling_mean(self, obj): def test_impl(obj, window, min_periods): return obj.rolling(window, min_periods).mean() hpat_func = self.jit(test_impl) assert_equal = self._get_assert_equal(obj) for window in range(len(obj) + 2): for min_periods in range(window): with self.subTest(obj=obj, window=window, min_periods=min_periods): jit_result = hpat_func(obj, window, min_periods) ref_result = test_impl(obj, window, min_periods) assert_equal(jit_result, ref_result) def _test_rolling_median(self, obj): def test_impl(obj, window, min_periods): return obj.rolling(window, min_periods).median() hpat_func = self.jit(test_impl) assert_equal = self._get_assert_equal(obj) for window in range(0, len(obj) + 3, 2): for min_periods in range(0, window + 1, 2): with self.subTest(obj=obj, window=window, min_periods=min_periods): jit_result = hpat_func(obj, window, min_periods) ref_result = test_impl(obj, window, min_periods) assert_equal(jit_result, ref_result) def _test_rolling_min(self, obj): def test_impl(obj, window, min_periods): return obj.rolling(window, min_periods).min() hpat_func = self.jit(test_impl) assert_equal = self._get_assert_equal(obj) # python implementation crashes if window = 0, jit works correctly for window in range(1, len(obj) + 2): for min_periods in range(window + 1): with self.subTest(obj=obj, window=window, min_periods=min_periods): jit_result = hpat_func(obj, window, min_periods) ref_result = test_impl(obj, window, min_periods) assert_equal(jit_result, ref_result) def _test_rolling_quantile(self, obj): def test_impl(obj, window, min_periods, quantile): return obj.rolling(window, min_periods).quantile(quantile) hpat_func = self.jit(test_impl) assert_equal = self._get_assert_equal(obj) quantiles = [0, 0.25, 0.5, 0.75, 1] for window in range(0, len(obj) + 3, 2): for min_periods, q in product(range(0, window, 2), quantiles): with self.subTest(obj=obj, window=window, min_periods=min_periods, quantiles=q): jit_result = hpat_func(obj, window, min_periods, q) ref_result = test_impl(obj, window, min_periods, q) assert_equal(jit_result, ref_result) def _test_rolling_quantile_exception_unsupported_types(self, obj): def test_impl(obj, quantile, interpolation): return obj.rolling(3, 2).quantile(quantile, interpolation) hpat_func = self.jit(test_impl) msg_tmpl = 'Method rolling.quantile(). The object {}\n given: {}\n expected: {}' with self.assertRaises(TypingError) as raises: hpat_func(obj, '0.5', 'linear') msg = msg_tmpl.format('quantile', 'unicode_type', 'float') self.assertIn(msg, str(raises.exception)) with self.assertRaises(TypingError) as raises: hpat_func(obj, 0.5, None) msg = msg_tmpl.format('interpolation', 'none', 'str') self.assertIn(msg, str(raises.exception)) def _test_rolling_quantile_exception_unsupported_values(self, obj): def test_impl(obj, quantile, interpolation): return obj.rolling(3, 2).quantile(quantile, interpolation) hpat_func = self.jit(test_impl) with self.assertRaises(ValueError) as raises: hpat_func(obj, 2, 'linear') self.assertIn('quantile value not in [0, 1]', str(raises.exception)) with self.assertRaises(ValueError) as raises: hpat_func(obj, 0.5, 'lower') self.assertIn('interpolation value not "linear"', str(raises.exception)) def _test_rolling_skew(self, obj): def test_impl(obj, window, min_periods): return obj.rolling(window, min_periods).skew() hpat_func = self.jit(test_impl) assert_equal = self._get_assert_equal(obj) for window in range(3, len(obj) + 1): for min_periods in range(window + 1): with self.subTest(obj=obj, window=window, min_periods=min_periods): ref_result = test_impl(obj, window, min_periods) jit_result = hpat_func(obj, window, min_periods) assert_equal(jit_result, ref_result) def _test_rolling_std(self, obj): test_impl = rolling_std_usecase hpat_func = self.jit(test_impl) assert_equal = self._get_assert_equal(obj) for window in range(0, len(obj) + 3, 2): for min_periods, ddof in product(range(0, window, 2), [0, 1]): with self.subTest(obj=obj, window=window, min_periods=min_periods, ddof=ddof): jit_result = hpat_func(obj, window, min_periods, ddof) ref_result = test_impl(obj, window, min_periods, ddof) assert_equal(jit_result, ref_result) def _test_rolling_std_exception_unsupported_ddof(self, obj): test_impl = rolling_std_usecase hpat_func = self.jit(test_impl) window, min_periods, invalid_ddof = 3, 2, '1' with self.assertRaises(TypingError) as raises: hpat_func(obj, window, min_periods, invalid_ddof) msg = 'Method rolling.std(). The object ddof\n given: unicode_type\n expected: int' self.assertIn(msg, str(raises.exception)) def _test_rolling_sum(self, obj): def test_impl(obj, window, min_periods): return obj.rolling(window, min_periods).sum() hpat_func = self.jit(test_impl) assert_equal = self._get_assert_equal(obj) for window in range(len(obj) + 2): for min_periods in range(window): with self.subTest(obj=obj, window=window, min_periods=min_periods): jit_result = hpat_func(obj, window, min_periods) ref_result = test_impl(obj, window, min_periods) assert_equal(jit_result, ref_result) def _test_rolling_var(self, obj): test_impl = rolling_var_usecase hpat_func = self.jit(test_impl) assert_equal = self._get_assert_equal(obj) for window in range(0, len(obj) + 3, 2): for min_periods, ddof in product(range(0, window, 2), [0, 1]): with self.subTest(obj=obj, window=window, min_periods=min_periods, ddof=ddof): jit_result = hpat_func(obj, window, min_periods, ddof) ref_result = test_impl(obj, window, min_periods, ddof) assert_equal(jit_result, ref_result) def _test_rolling_var_exception_unsupported_ddof(self, obj): test_impl = rolling_var_usecase hpat_func = self.jit(test_impl) window, min_periods, invalid_ddof = 3, 2, '1' with self.assertRaises(TypingError) as raises: hpat_func(obj, window, min_periods, invalid_ddof) msg = 'Method rolling.var(). The object ddof\n given: unicode_type\n expected: int' self.assertIn(msg, str(raises.exception)) @skip_sdc_jit('DataFrame.rolling.min() unsupported exceptions') def test_df_rolling_unsupported_values(self): all_data = test_global_input_data_float64 length = min(len(d) for d in all_data) data = {n: d[:length] for n, d in zip(string.ascii_uppercase, all_data)} df = pd.DataFrame(data) self._test_rolling_unsupported_values(df) @skip_sdc_jit('DataFrame.rolling.min() unsupported exceptions') def test_df_rolling_unsupported_types(self): all_data = test_global_input_data_float64 length = min(len(d) for d in all_data) data = {n: d[:length] for n, d in zip(string.ascii_uppercase, all_data)} df = pd.DataFrame(data) self._test_rolling_unsupported_types(df) @skip_sdc_jit('DataFrame.rolling.apply() unsupported') def test_df_rolling_apply_mean(self): all_data = [ list(range(10)), [1., -1., 0., 0.1, -0.1], [1., np.inf, np.inf, -1., 0., np.inf, np.NINF, np.NINF], [np.nan, np.inf, np.inf, np.nan, np.nan, np.nan, np.NINF, np.NZERO] ] length = min(len(d) for d in all_data) data = {n: d[:length] for n, d in zip(string.ascii_uppercase, all_data)} df = pd.DataFrame(data) self._test_rolling_apply_mean(df) @skip_sdc_jit('DataFrame.rolling.apply() unsupported exceptions') def test_df_rolling_apply_unsupported_types(self): all_data = [[1., -1., 0., 0.1, -0.1], [-1., 1., 0., -0.1, 0.1]] length = min(len(d) for d in all_data) data = {n: d[:length] for n, d in zip(string.ascii_uppercase, all_data)} df = pd.DataFrame(data) self._test_rolling_apply_unsupported_types(df) @unittest.skip('DataFrame.rolling.apply() unsupported args') def test_df_rolling_apply_args(self): all_data = [ list(range(10)), [1., -1., 0., 0.1, -0.1], [1., np.inf, np.inf, -1., 0., np.inf, np.NINF, np.NINF], [np.nan, np.inf, np.inf, np.nan, np.nan, np.nan, np.NINF, np.NZERO] ] length = min(len(d) for d in all_data) data = {n: d[:length] for n, d in zip(string.ascii_uppercase, all_data)} df = pd.DataFrame(data) self._test_rolling_apply_args(df) @skip_sdc_jit('DataFrame.rolling.corr() unsupported') def test_df_rolling_corr(self): all_data = [ list(range(10)), [1., -1., 0., 0.1, -0.1], [1., np.inf, np.inf, -1., 0., np.inf, np.NINF, np.NINF], [np.nan, np.inf, np.inf, np.nan, np.nan, np.nan, np.NINF, np.NZERO] ] length = min(len(d) for d in all_data) data = {n: d[:length] for n, d in zip(string.ascii_uppercase, all_data)} df = pd.DataFrame(data) for d in all_data: other = pd.Series(d) self._test_rolling_corr(df, other) other_all_data = deepcopy(all_data) + [list(range(10))[::-1]] other_all_data[1] = [-1., 1., 0., -0.1, 0.1, 0.] other_length = min(len(d) for d in other_all_data) other_data = {n: d[:other_length] for n, d in zip(string.ascii_uppercase, other_all_data)} other = pd.DataFrame(other_data) self._test_rolling_corr(df, other) @skip_sdc_jit('DataFrame.rolling.corr() unsupported') def test_df_rolling_corr_no_other(self): all_data = [ list(range(10)), [1., -1., 0., 0.1, -0.1], [1., np.inf, np.inf, -1., 0., np.inf, np.NINF, np.NINF], [np.nan, np.inf, np.inf, np.nan, np.nan, np.nan, np.NINF, np.NZERO] ] length = min(len(d) for d in all_data) data = {n: d[:length] for n, d in zip(string.ascii_uppercase, all_data)} df = pd.DataFrame(data) self._test_rolling_corr_with_no_other(df) @skip_sdc_jit('DataFrame.rolling.corr() unsupported exceptions') def test_df_rolling_corr_unsupported_types(self): all_data = [[1., -1., 0., 0.1, -0.1], [-1., 1., 0., -0.1, 0.1]] length = min(len(d) for d in all_data) data = {n: d[:length] for n, d in zip(string.ascii_uppercase, all_data)} df = pd.DataFrame(data) self._test_rolling_corr_unsupported_types(df) @skip_sdc_jit('DataFrame.rolling.corr() unsupported exceptions') def test_df_rolling_corr_unsupported_values(self): def test_impl(df, other, pairwise): return df.rolling(3, 3).corr(other=other, pairwise=pairwise) hpat_func = self.jit(test_impl) msg_tmpl = 'Method rolling.corr(). The object pairwise\n expected: {}' df = pd.DataFrame({'A': [1., -1., 0., 0.1, -0.1], 'B': [-1., 1., 0., -0.1, 0.1]}) for pairwise in [None, True]: with self.assertRaises(ValueError) as raises: hpat_func(df, None, pairwise) self.assertIn(msg_tmpl.format('False'), str(raises.exception)) other = pd.DataFrame({'A': [-1., 1., 0., -0.1, 0.1], 'C': [1., -1., 0., 0.1, -0.1]}) with self.assertRaises(ValueError) as raises: hpat_func(df, other, True) self.assertIn(msg_tmpl.format('False, None'), str(raises.exception)) @skip_sdc_jit('DataFrame.rolling.count() unsupported') def test_df_rolling_count(self): all_data = test_global_input_data_float64 length = min(len(d) for d in all_data) data = {n: d[:length] for n, d in zip(string.ascii_uppercase, all_data)} df = pd.DataFrame(data) self._test_rolling_count(df) @skip_sdc_jit('DataFrame.rolling.cov() unsupported') def test_df_rolling_cov(self): all_data = [ list(range(10)), [1., -1., 0., 0.1, -0.1], [1., np.inf, np.inf, -1., 0., np.inf, np.NINF, np.NINF], [np.nan, np.inf, np.inf, np.nan, np.nan, np.nan, np.NINF, np.NZERO] ] length = min(len(d) for d in all_data) data = {n: d[:length] for n, d in zip(string.ascii_uppercase, all_data)} df = pd.DataFrame(data) for d in all_data: other = pd.Series(d) self._test_rolling_cov(df, other) other_all_data = deepcopy(all_data) + [list(range(10))[::-1]] other_all_data[1] = [-1., 1., 0., -0.1, 0.1] other_length = min(len(d) for d in other_all_data) other_data = {n: d[:other_length] for n, d in zip(string.ascii_uppercase, other_all_data)} other = pd.DataFrame(other_data) self._test_rolling_cov(df, other) @skip_sdc_jit('DataFrame.rolling.cov() unsupported') def test_df_rolling_cov_no_other(self): all_data = [ list(range(10)), [1., -1., 0., 0.1, -0.1], [1., np.inf, np.inf, -1., 0., np.inf, np.NINF, np.NINF], [np.nan, np.inf, np.inf, np.nan, np.nan, np.nan, np.NINF, np.NZERO] ] length = min(len(d) for d in all_data) data = {n: d[:length] for n, d in zip(string.ascii_uppercase, all_data)} df = pd.DataFrame(data) self._test_rolling_cov_with_no_other(df) @skip_sdc_jit('DataFrame.rolling.cov() unsupported exceptions') def test_df_rolling_cov_unsupported_types(self): all_data = [[1., -1., 0., 0.1, -0.1], [-1., 1., 0., -0.1, 0.1]] length = min(len(d) for d in all_data) data = {n: d[:length] for n, d in zip(string.ascii_uppercase, all_data)} df = pd.DataFrame(data) self._test_rolling_cov_unsupported_types(df) @skip_sdc_jit('DataFrame.rolling.cov() unsupported exceptions') def test_df_rolling_cov_unsupported_values(self): def test_impl(df, other, pairwise): return df.rolling(3, 3).cov(other=other, pairwise=pairwise) hpat_func = self.jit(test_impl) msg_tmpl = 'Method rolling.cov(). The object pairwise\n expected: {}' df = pd.DataFrame({'A': [1., -1., 0., 0.1, -0.1], 'B': [-1., 1., 0., -0.1, 0.1]}) for pairwise in [None, True]: with self.assertRaises(ValueError) as raises: hpat_func(df, None, pairwise) self.assertIn(msg_tmpl.format('False'), str(raises.exception)) other = pd.DataFrame({'A': [-1., 1., 0., -0.1, 0.1], 'C': [1., -1., 0., 0.1, -0.1]}) with self.assertRaises(ValueError) as raises: hpat_func(df, other, True) self.assertIn(msg_tmpl.format('False, None'), str(raises.exception)) @skip_sdc_jit('Series.rolling.cov() unsupported Series index') @unittest.expectedFailure def test_df_rolling_cov_issue_floating_point_rounding(self): """ Cover issue of different float rounding in Python and SDC/Numba: s = np.Series([1., -1., 0., 0.1, -0.1]) s.rolling(2, 0).mean() Python: SDC/Numba: 0 1.000000e+00 0 1.00 1 0.000000e+00 1 0.00 2 -5.000000e-01 2 -0.50 3 5.000000e-02 3 0.05 4 -1.387779e-17 4 0.00 dtype: float64 dtype: float64 BTW: cov uses mean inside itself """ def test_impl(df, window, min_periods, other, ddof): return df.rolling(window, min_periods).cov(other, ddof=ddof) hpat_func = self.jit(test_impl) df = pd.DataFrame({'A': [1., -1., 0., 0.1, -0.1]}) other = pd.DataFrame({'A': [-1., 1., 0., -0.1, 0.1, 0.]}) jit_result = hpat_func(df, 2, 0, other, 1) ref_result = test_impl(df, 2, 0, other, 1) pd.testing.assert_frame_equal(jit_result, ref_result) @skip_sdc_jit('DataFrame.rolling.kurt() unsupported') def test_df_rolling_kurt(self): all_data = test_global_input_data_float64 length = min(len(d) for d in all_data) data = {n: d[:length] for n, d in zip(string.ascii_uppercase, all_data)} df = pd.DataFrame(data) self._test_rolling_kurt(df) @skip_sdc_jit('DataFrame.rolling.max() unsupported') def test_df_rolling_max(self): all_data = test_global_input_data_float64 length = min(len(d) for d in all_data) data = {n: d[:length] for n, d in zip(string.ascii_uppercase, all_data)} df = pd.DataFrame(data) self._test_rolling_max(df) @skip_sdc_jit('DataFrame.rolling.mean() unsupported') def test_df_rolling_mean(self): all_data = [ list(range(10)), [1., -1., 0., 0.1, -0.1], [1., np.inf, np.inf, -1., 0., np.inf, np.NINF, np.NINF], [np.nan, np.inf, np.inf, np.nan, np.nan, np.nan, np.NINF, np.NZERO] ] length = min(len(d) for d in all_data) data = {n: d[:length] for n, d in zip(string.ascii_uppercase, all_data)} df = pd.DataFrame(data) self._test_rolling_mean(df) @skip_sdc_jit('DataFrame.rolling.median() unsupported') def test_df_rolling_median(self): all_data = test_global_input_data_float64 length = min(len(d) for d in all_data) data = {n: d[:length] for n, d in zip(string.ascii_uppercase, all_data)} df = pd.DataFrame(data) self._test_rolling_median(df) @skip_sdc_jit('DataFrame.rolling.min() unsupported') def test_df_rolling_min(self): all_data = test_global_input_data_float64 length = min(len(d) for d in all_data) data = {n: d[:length] for n, d in zip(string.ascii_uppercase, all_data)} df = pd.DataFrame(data) self._test_rolling_min(df) @unittest.expectedFailure @unittest.skipIf(platform.system() == 'Darwin', 'Segmentation fault on Mac') @skip_sdc_jit('DataFrame.rolling.min() unsupported') def test_df_rolling_min_exception_many_columns(self): def test_impl(df): return df.rolling(3).min() hpat_func = self.jit(test_impl) # more than 19 columns raise SystemError: CPUDispatcher() returned a result with an error set all_data = test_global_input_data_float64 * 5 length = min(len(d) for d in all_data) data = {n: d[:length] for n, d in zip(string.ascii_uppercase, all_data)} df = pd.DataFrame(data) pd.testing.assert_frame_equal(hpat_func(df), test_impl(df)) @skip_sdc_jit('DataFrame.rolling.quantile() unsupported') def test_df_rolling_quantile(self): all_data = [ list(range(10)), [1., -1., 0., 0.1, -0.1], [1., np.inf, np.inf, -1., 0., np.inf, np.NINF, np.NINF], [np.nan, np.inf, np.inf, np.nan, np.nan, np.nan, np.NINF, np.NZERO] ] length = min(len(d) for d in all_data) data = {n: d[:length] for n, d in zip(string.ascii_uppercase, all_data)} df = pd.DataFrame(data) self._test_rolling_quantile(df) @skip_sdc_jit('DataFrame.rolling.quantile() unsupported exceptions') def test_df_rolling_quantile_exception_unsupported_types(self): all_data = [[1., -1., 0., 0.1, -0.1], [-1., 1., 0., -0.1, 0.1]] length = min(len(d) for d in all_data) data = {n: d[:length] for n, d in zip(string.ascii_uppercase, all_data)} df = pd.DataFrame(data) self._test_rolling_quantile_exception_unsupported_types(df) @skip_sdc_jit('DataFrame.rolling.quantile() unsupported exceptions') def test_df_rolling_quantile_exception_unsupported_values(self): all_data = [[1., -1., 0., 0.1, -0.1], [-1., 1., 0., -0.1, 0.1]] length = min(len(d) for d in all_data) data = {n: d[:length] for n, d in zip(string.ascii_uppercase, all_data)} df = pd.DataFrame(data) self._test_rolling_quantile_exception_unsupported_values(df) @skip_sdc_jit('DataFrame.rolling.skew() unsupported') def test_df_rolling_skew(self): all_data = test_global_input_data_float64 length = min(len(d) for d in all_data) data = {n: d[:length] for n, d in zip(string.ascii_uppercase, all_data)} df = pd.DataFrame(data) self._test_rolling_skew(df) @skip_sdc_jit('DataFrame.rolling.std() unsupported') def test_df_rolling_std(self): all_data = [ list(range(10)), [1., -1., 0., 0.1, -0.1], [1., np.inf, np.inf, -1., 0., np.inf, np.NINF, np.NINF], [np.nan, np.inf, np.inf, np.nan, np.nan, np.nan, np.NINF, np.NZERO] ] length = min(len(d) for d in all_data) data = {n: d[:length] for n, d in zip(string.ascii_uppercase, all_data)} df = pd.DataFrame(data) self._test_rolling_std(df) @skip_sdc_jit('DataFrame.rolling.std() unsupported exceptions') def test_df_rolling_std_exception_unsupported_ddof(self): all_data = [[1., -1., 0., 0.1, -0.1], [-1., 1., 0., -0.1, 0.1]] length = min(len(d) for d in all_data) data = {n: d[:length] for n, d in zip(string.ascii_uppercase, all_data)} df = pd.DataFrame(data) self._test_rolling_std_exception_unsupported_ddof(df) @skip_sdc_jit('DataFrame.rolling.sum() unsupported') def test_df_rolling_sum(self): all_data = [ list(range(10)), [1., -1., 0., 0.1, -0.1], [1., np.inf, np.inf, -1., 0., np.inf, np.NINF, np.NINF], [np.nan, np.inf, np.inf, np.nan, np.nan, np.nan, np.NINF, np.NZERO] ] length = min(len(d) for d in all_data) data = {n: d[:length] for n, d in zip(string.ascii_uppercase, all_data)} df = pd.DataFrame(data) self._test_rolling_sum(df) @skip_sdc_jit('DataFrame.rolling.var() unsupported') def test_df_rolling_var(self): all_data = [ list(range(10)), [1., -1., 0., 0.1, -0.1], [1., np.inf, np.inf, -1., 0., np.inf, np.NINF, np.NINF], [np.nan, np.inf, np.inf, np.nan, np.nan, np.nan, np.NINF, np.NZERO] ] length = min(len(d) for d in all_data) data = {n: d[:length] for n, d in zip(string.ascii_uppercase, all_data)} df = pd.DataFrame(data) self._test_rolling_var(df) @skip_sdc_jit('DataFrame.rolling.var() unsupported exceptions') def test_df_rolling_var_exception_unsupported_ddof(self): all_data = [[1., -1., 0., 0.1, -0.1], [-1., 1., 0., -0.1, 0.1]] length = min(len(d) for d in all_data) data = {n: d[:length] for n, d in zip(string.ascii_uppercase, all_data)} df = pd.DataFrame(data) self._test_rolling_var_exception_unsupported_ddof(df) @skip_sdc_jit('Series.rolling.min() unsupported exceptions') def test_series_rolling_unsupported_values(self): series = pd.Series(test_global_input_data_float64[0]) self._test_rolling_unsupported_values(series) @skip_sdc_jit('Series.rolling.min() unsupported exceptions') def test_series_rolling_unsupported_types(self): series = pd.Series(test_global_input_data_float64[0]) self._test_rolling_unsupported_types(series) @skip_sdc_jit('Series.rolling.apply() unsupported Series index') def test_series_rolling_apply_mean(self): all_data = [ list(range(10)), [1., -1., 0., 0.1, -0.1], [1., np.inf, np.inf, -1., 0., np.inf, np.NINF, np.NINF], [np.nan, np.inf, np.inf, np.nan, np.nan, np.nan, np.NINF, np.NZERO] ] indices = [list(range(len(data)))[::-1] for data in all_data] for data, index in zip(all_data, indices): series = pd.Series(data, index, name='A') self._test_rolling_apply_mean(series) @skip_sdc_jit('Series.rolling.apply() unsupported exceptions') def test_series_rolling_apply_unsupported_types(self): series = pd.Series([1., -1., 0., 0.1, -0.1]) self._test_rolling_apply_unsupported_types(series) @unittest.skip('Series.rolling.apply() unsupported args') def test_series_rolling_apply_args(self): all_data = [ list(range(10)), [1., -1., 0., 0.1, -0.1], [1., np.inf, np.inf, -1., 0., np.inf, np.NINF, np.NINF], [np.nan, np.inf, np.inf, np.nan, np.nan, np.nan, np.NINF, np.NZERO] ] indices = [list(range(len(data)))[::-1] for data in all_data] for data, index in zip(all_data, indices): series = pd.Series(data, index, name='A') self._test_rolling_apply_args(series) @skip_sdc_jit('Series.rolling.corr() unsupported Series index') def test_series_rolling_corr(self): all_data = [ list(range(10)), [1., -1., 0., 0.1, -0.1], [-1., 1., 0., -0.1, 0.1, 0.], [1., np.inf, np.inf, -1., 0., np.inf, np.NINF, np.NINF], [np.nan, np.inf, np.inf, np.nan, np.nan, np.nan, np.NINF, np.NZERO] ] for main_data, other_data in product(all_data, all_data): series = pd.Series(main_data) other = pd.Series(other_data) self._test_rolling_corr(series, other) @skip_sdc_jit('Series.rolling.corr() unsupported Series index') def test_series_rolling_corr_diff_length(self): def test_impl(series, window, other): return series.rolling(window).corr(other) hpat_func = self.jit(test_impl) series = pd.Series([1., -1., 0., 0.1, -0.1]) other = pd.Series(gen_frand_array(40)) window = 5 jit_result = hpat_func(series, window, other) ref_result = test_impl(series, window, other) pd.testing.assert_series_equal(jit_result, ref_result) @skip_sdc_jit('Series.rolling.corr() unsupported Series index') def test_series_rolling_corr_with_no_other(self): all_data = [ list(range(10)), [1., -1., 0., 0.1, -0.1], [1., np.inf, np.inf, -1., 0., np.inf, np.NINF, np.NINF], [np.nan, np.inf, np.inf, np.nan, np.nan, np.nan, np.NINF, np.NZERO] ] for data in all_data: series = pd.Series(data) self._test_rolling_corr_with_no_other(series) @skip_sdc_jit('Series.rolling.corr() unsupported exceptions') def test_series_rolling_corr_unsupported_types(self): series = pd.Series([1., -1., 0., 0.1, -0.1]) self._test_rolling_corr_unsupported_types(series) @skip_sdc_jit('Series.rolling.corr() unsupported Series index') @unittest.expectedFailure # https://jira.devtools.intel.com/browse/SAT-2377 def test_series_rolling_corr_index(self): def test_impl(S1, S2): return S1.rolling(window=3).corr(S2) hpat_func = self.jit(test_impl) n = 11 np.random.seed(0) index_values = np.arange(n) np.random.shuffle(index_values) S1 = pd.Series(np.arange(n), index=index_values, name='A') np.random.shuffle(index_values) S2 = pd.Series(2 * np.arange(n) - 5, index=index_values, name='B') result = hpat_func(S1, S2) result_ref = test_impl(S1, S2) pd.testing.assert_series_equal(result, result_ref) @skip_sdc_jit('Series.rolling.count() unsupported Series index') def test_series_rolling_count(self): all_data = test_global_input_data_float64 indices = [list(range(len(data)))[::-1] for data in all_data] for data, index in zip(all_data, indices): series = pd.Series(data, index, name='A') self._test_rolling_count(series) @skip_sdc_jit('Series.rolling.cov() unsupported Series index') def test_series_rolling_cov(self): all_data = [ list(range(5)), [1., -1., 0., 0.1, -0.1], [1., np.inf, np.inf, -1., 0., np.inf, np.NINF, np.NINF], [np.nan, np.inf, np.inf, np.nan, np.nan, np.nan, np.NINF, np.NZERO] ] for main_data, other_data in product(all_data, all_data): series = pd.Series(main_data) other = pd.Series(other_data) self._test_rolling_cov(series, other) @skip_sdc_jit('Series.rolling.cov() unsupported Series index') def test_series_rolling_cov_diff_length(self): def test_impl(series, window, other): return series.rolling(window).cov(other) hpat_func = self.jit(test_impl) series = pd.Series([1., -1., 0., 0.1, -0.1]) other = pd.Series(gen_frand_array(40)) window = 5 jit_result = hpat_func(series, window, other) ref_result = test_impl(series, window, other) pd.testing.assert_series_equal(jit_result, ref_result) @skip_sdc_jit('Series.rolling.cov() unsupported Series index') def test_series_rolling_cov_no_other(self): all_data = [ list(range(5)), [1., -1., 0., 0.1, -0.1], [1., np.inf, np.inf, -1., 0., np.inf, np.NINF, np.NINF], [np.nan, np.inf, np.inf, np.nan, np.nan, np.nan, np.NINF, np.NZERO] ] for data in all_data: series = pd.Series(data) self._test_rolling_cov_with_no_other(series) @skip_sdc_jit('Series.rolling.cov() unsupported Series index') @unittest.expectedFailure def test_series_rolling_cov_issue_floating_point_rounding(self): """Cover issue of different float rounding in Python and SDC/Numba""" def test_impl(series, window, min_periods, other, ddof): return series.rolling(window, min_periods).cov(other, ddof=ddof) hpat_func = self.jit(test_impl) series = pd.Series(list(range(10))) other = pd.Series([1., -1., 0., 0.1, -0.1]) jit_result = hpat_func(series, 6, 0, other, 1) ref_result = test_impl(series, 6, 0, other, 1) pd.testing.assert_series_equal(jit_result, ref_result) @skip_sdc_jit('Series.rolling.cov() unsupported exceptions') def test_series_rolling_cov_unsupported_types(self): series = pd.Series([1., -1., 0., 0.1, -0.1]) self._test_rolling_cov_unsupported_types(series) @skip_sdc_jit('Series.rolling.kurt() unsupported Series index') def test_series_rolling_kurt(self): all_data = test_global_input_data_float64 indices = [list(range(len(data)))[::-1] for data in all_data] for data, index in zip(all_data, indices): series = pd.Series(data, index, name='A') self._test_rolling_kurt(series) @skip_sdc_jit('Series.rolling.max() unsupported Series index') def test_series_rolling_max(self): all_data = test_global_input_data_float64 indices = [list(range(len(data)))[::-1] for data in all_data] for data, index in zip(all_data, indices): series = pd.Series(data, index, name='A') self._test_rolling_max(series) @skip_sdc_jit('Series.rolling.mean() unsupported Series index') def test_series_rolling_mean(self): all_data = [ list(range(10)), [1., -1., 0., 0.1, -0.1], [1., np.inf, np.inf, -1., 0., np.inf, np.NINF, np.NINF], [np.nan, np.inf, np.inf, np.nan, np.nan, np.nan, np.NINF, np.NZERO] ] indices = [list(range(len(data)))[::-1] for data in all_data] for data, index in zip(all_data, indices): series = pd.Series(data, index, name='A') self._test_rolling_mean(series) @skip_sdc_jit('Series.rolling.median() unsupported Series index') def test_series_rolling_median(self): all_data = test_global_input_data_float64 indices = [list(range(len(data)))[::-1] for data in all_data] for data, index in zip(all_data, indices): series = pd.Series(data, index, name='A') self._test_rolling_median(series) @skip_sdc_jit('Series.rolling.min() unsupported Series index') def test_series_rolling_min(self): all_data = test_global_input_data_float64 indices = [list(range(len(data)))[::-1] for data in all_data] for data, index in zip(all_data, indices): series = pd.Series(data, index, name='A') self._test_rolling_min(series) @skip_sdc_jit('Series.rolling.quantile() unsupported Series index') def test_series_rolling_quantile(self): all_data = [ list(range(10)), [1., -1., 0., 0.1, -0.1], [1., np.inf, np.inf, -1., 0., np.inf, np.NINF, np.NINF], [np.nan, np.inf, np.inf, np.nan, np.nan, np.nan, np.NINF, np.NZERO] ] indices = [list(range(len(data)))[::-1] for data in all_data] for data, index in zip(all_data, indices): series = pd.Series(data, index, name='A') self._test_rolling_quantile(series) @skip_sdc_jit('Series.rolling.quantile() unsupported exceptions') def test_series_rolling_quantile_exception_unsupported_types(self): series =
pd.Series([1., -1., 0., 0.1, -0.1])
pandas.Series
""" @author: ludvigolsen """ import numpy as np import pandas as pd def convert_to_df(data): """ Checks the type of data If it is not a pd.DataFrame it attempts to convert to pd.DataFrame """ data_type = 'pd.DataFrame' if isinstance(data, pd.DataFrame): return data, data_type elif isinstance(data, pd.Series): data_type = 'pd.Series' data = pd.DataFrame({'x': data}) elif type(data).__module__ == np.__name__: try: data =
pd.DataFrame(data)
pandas.DataFrame
from numpy import linalg, zeros, ones, hstack, asarray, vstack, array, mean, std import itertools import matplotlib.pyplot as plt from datetime import datetime import pandas as pd import numpy as np import matplotlib.dates as mdates from sklearn.metrics import mean_squared_error from math import sqrt import warnings import copy import time warnings.filterwarnings("ignore") import seaborn as sns sns.set(style="whitegrid") from PVPolyfit import preprocessing as preprocess from PVPolyfit import utilities from PVPolyfit import clustering as cluster from PVPolyfit import kernel def pvpolyfit(train_df, test_df, Y_tag, xs, I_tag, ghi_tag, cs_tag, highest_num_clusters, highest_degree, kernel_type, Y_high_filter, min_count_per_day, include_preprocess = False, plot_graph = True, graph_type = 'regression', print_info = False): #print("h ERE") if len(train_df) == 0 or len(test_df) == 0: raise Exception("Either one or both DataFrames are empty.") pvpoly = PVPolyfit(train_df, test_df, Y_tag, xs, I_tag, ghi_tag, cs_tag, print_info) #print("H eRE") pvpoly.prepare(Y_high_filter, min_count_per_day, include_preprocess) #print("He RE") rmse_list = [] std_rmse_list = [] pvpoly_objects = [] combined_labels = [] for i in range(1, highest_num_clusters+1): pvpoly_iter = copy.deepcopy(pvpoly) try: labels = pvpoly_iter.run(num_clusters = i, num_iterations = 1, degrees = list(range(1,highest_degree+1)), kernel_type = kernel_type) all_best_dfs, ultimate_days, avg_rmse, std_rmse = pvpoly_iter.evaluate(print_info = print_info) rmse_list.append(avg_rmse) std_rmse_list.append(std_rmse) pvpoly_objects.append(pvpoly_iter) combined_labels.append(labels) except Exception as e: if print_info: print(e) break if len(rmse_list) == 0: raise Exception("No Output was produced.") min_idx = np.argmin(rmse_list) if print_info: print(min_idx) print("{} cluster(s) were used.".format(range(1,highest_num_clusters+1)[min_idx])) days_rmses, model_output, meases, df = pvpoly_objects[min_idx].plot(graph_type = graph_type, print_info = print_info, plot_graph = plot_graph) return model_output, meases, days_rmses, range(1,highest_num_clusters+1)[min_idx], df, combined_labels[min_idx] def _pvpolyfit_inputCluster(train_df, test_df, Y_tag, xs, I_tag, ghi_tag, cs_tag, num_clusters, highest_degree, kernel_type, Y_high_filter, min_count_per_day, include_preprocess = False, plot_graph = True, graph_type = 'regression', print_info = False): #print('inside') if len(train_df) == 0 or len(test_df) == 0: raise Exception("Either one or both DataFrames are empty.") pvpoly = PVPolyfit(train_df, test_df, Y_tag, xs, I_tag, ghi_tag, cs_tag, print_info) pvpoly.prepare(Y_high_filter, min_count_per_day, include_preprocess) try: pvpoly.run(num_clusters = num_clusters, num_iterations = 1, degrees = list(range(1,highest_degree+1)), kernel_type = kernel_type) all_best_dfs, ultimate_days, avg_rmse, std_rmse = pvpoly.evaluate(print_info = print_info) except Exception as e: raise Exception("Error has occurred: ", e) if len(str(avg_rmse)) == 0: raise Exception("No Output was produced. Go here for more information: ") days_rmses, model_output, meases, df = pvpoly.plot(graph_type = graph_type, print_info = print_info, plot_graph = plot_graph) return model_output, meases, days_rmses, num_clusters, df def break_days(df, filter_bool, min_count_per_day = 8, frequency = 'days', print_info = False): index_list = [] day_hour_list = [] prev = 0 for index, j in enumerate(df.index): if str(type(j)) != "<class 'str'>": print(type(j)) print(j) print(df.loc[j]) j = j.strftime('%m/%d/%Y %H:%M:%S %p') if frequency == 'days': curr = int(datetime.strptime(j, '%m/%d/%Y %H:%M:%S %p').strftime('%d')) frq = datetime.strptime(j, '%m/%d/%Y %H:%M:%S %p').strftime('%m/%d/%Y') elif frequency == 'hours': curr = int(datetime.strptime(j, '%m/%d/%Y %H:%M:%S %p').strftime('%H')) frq = datetime.strptime(j, '%m/%d/%Y %H:%M:%S %p').strftime('%m/%d/%Y %H') if curr != prev: index_list.append(index) day_hour_list.append(frq) prev = curr last_index = index cut_results = [] # Break df into days for k in range(len(index_list)): if k == (len(index_list)-1): # append lasfinal_df.iloc[[iindex]].indext day cut_results.append(df[index_list[k]:-1]) else: cut_results.append(df[index_list[k]:index_list[k+1]]) cut_results[-1] =
pd.concat([cut_results[-1], df.iloc[[-1]]])
pandas.concat
from PySDDP.dessem.script.templates.dadger import DadgerTemplate import pandas as pd import os from typing import IO COMENTARIO = '&' class Dadger(DadgerTemplate): """ Classe que contem todos os elementos comuns a qualquer versao do arquivo Entdados do Dessem. Esta classe tem como intuito fornecer duck typing para a classe Dessem e ainda adicionar um nivel de especificacao dentro da fabrica. Alem disso esta classe deve passar adiante a responsabilidade da implementacao dos metodos de leitura e escrita """ def __init__(self): super().__init__() self.comentarios = list() self.tm = dict() self.sist = dict() self.ree = dict() self.uh = dict() self.tviag = dict() self.ut = dict() self.usie = dict() self.dp = dict() self.de = dict() self.cd = dict() self.ri = dict() self.ia = dict() self.rd = dict() self.rivar = dict() self.it = dict() self.gp = dict() self.ni = dict() self.ve = dict() self.ci_ce = dict() self.re = dict() self.lu = dict() self.fh = dict() self.ft = dict() self.fi = dict() self.fe = dict() self.fr = dict() self.fc = dict() self.ac = dict() self.da = dict() self.fp = dict() self.ez = dict() self.ag = dict() self.mh = dict() self.mt = dict() self.tx = dict() self.pq = dict() self.secr = dict() self.cr = dict() self.r11 = dict() self.vr = dict() self.pd = dict() self.vm = dict() self.df = dict() self.me = dict() self.meta_cjsist = dict() self.meta_sist = dict() self.meta_usit = dict() self.sh = dict() self.tf = dict() self.rs = dict() self.sp = dict() self.ps = dict() self.pp = dict() def ler(self, file_name: str) -> None: self.entdados = list() # listas referentes ao dicionário TM self.tm['mne'] = list() self.tm['dd'] = list() self.tm['hr'] = list() self.tm['mh'] = list() self.tm['durac'] = list() self.tm['rede'] = list() self.tm['patamar'] = list() # listas referentes ao dicionário SIST self.sist['mne'] = list() self.sist['num'] = list() self.sist['mne_iden'] = list() self.sist['flag'] = list() self.sist['nome'] = list() # listas referentes ao dicionário REE self.ree['mne'] = list() self.ree['num_ree'] = list() self.ree['num_sub'] = list() self.ree['nome'] = list() # listas referentes ao dicionário UH self.uh['mne'] = list() self.uh['ind'] = list() self.uh['nome'] = list() self.uh['ss'] = list() self.uh['vinic'] = list() self.uh['evap'] = list() self.uh['di'] = list() self.uh['hi'] = list() self.uh['m'] = list() self.uh['vmor'] = list() self.uh['prod'] = list() self.uh['rest'] = list() # listas referentes ao dicionário TVIAG self.tviag['mne'] = list() self.tviag['mont'] = list() self.tviag['jus'] = list() self.tviag['tp'] = list() self.tviag['hr'] = list() self.tviag['tpTviag'] = list() # listas referentes ao dicionário UT self.ut['mne'] = list() self.ut['num'] = list() self.ut['nome'] = list() self.ut['ss'] = list() self.ut['flag'] = list() self.ut['di'] = list() self.ut['hi'] = list() self.ut['mi'] = list() self.ut['df'] = list() self.ut['hf'] = list() self.ut['mf'] = list() self.ut['rest'] = list() self.ut['gmin'] = list() self.ut['gmax'] = list() self.ut['g_anterior'] = list() # listas referentes ao dicionário USIE self.usie['mne'] = list() self.usie['num'] = list() self.usie['ss'] = list() self.usie['nome'] = list() self.usie['mont'] = list() self.usie['jus'] = list() self.usie['qmin'] = list() self.usie['qmax'] = list() self.usie['taxa_consumo'] = list() # listas referentes ao dicionário DP self.dp['mne'] = list() self.dp['ss'] = list() self.dp['di'] = list() self.dp['hi'] = list() self.dp['mi'] = list() self.dp['df'] = list() self.dp['hf'] = list() self.dp['mf'] = list() self.dp['demanda'] = list() # listas referentes ao dicionário DE self.de['mne'] = list() self.de['nde'] = list() self.de['di'] = list() self.de['hi'] = list() self.de['mi'] = list() self.de['df'] = list() self.de['hf'] = list() self.de['mf'] = list() self.de['demanda'] = list() self.de['justific'] = list() # listas referentes ao dicionário CD self.cd['mne'] = list() self.cd['is'] = list() self.cd['cd'] = list() self.cd['di'] = list() self.cd['hi'] = list() self.cd['mi'] = list() self.cd['df'] = list() self.cd['hf'] = list() self.cd['mf'] = list() self.cd['custo'] = list() self.cd['limsup'] = list() # listas referentes ao dicionário RI self.ri['mne'] = list() self.ri['di'] = list() self.ri['hi'] = list() self.ri['mi'] = list() self.ri['df'] = list() self.ri['hf'] = list() self.ri['mf'] = list() self.ri['gh50min'] = list() self.ri['gh50max'] = list() self.ri['gh60min'] = list() self.ri['gh60max'] = list() self.ri['ande'] = list() # listas referentes ao dicionário IA self.ia['mne'] = list() self.ia['ss1'] = list() self.ia['ss2'] = list() self.ia['di'] = list() self.ia['hi'] = list() self.ia['mi'] = list() self.ia['df'] = list() self.ia['hf'] = list() self.ia['mf'] = list() self.ia['ss1_ss2'] = list() self.ia['ss2_ss1'] = list() # listas referentes ao dicionário RD self.rd['mne'] = list() self.rd['flag_fol'] = list() self.rd['ncirc'] = list() self.rd['dbar'] = list() self.rd['lim'] = list() self.rd['dlin'] = list() self.rd['perd'] = list() self.rd['formato'] = list() # listas referentes ao dicionário RIVAR self.rivar['mne'] = list() self.rivar['num'] = list() self.rivar['ss'] = list() self.rivar['cod'] = list() self.rivar['penalidade'] = list() # listas referentes ao dicionário IT self.it['mne'] = list() self.it['num'] = list() self.it['coef'] = list() # listas referentes ao dicionário GP self.gp['mne'] = list() self.gp['tol_conv'] = list() self.gp['tol_prob'] = list() # listas referentes ao dicionário NI self.ni['mne'] = list() self.ni['flag'] = list() self.ni['nmax'] = list() # listas referentes ao dicionário VE self.ve['mne'] = list() self.ve['ind'] = list() self.ve['di'] = list() self.ve['hi'] = list() self.ve['mi'] = list() self.ve['df'] = list() self.ve['hf'] = list() self.ve['mf'] = list() self.ve['vol'] = list() # listas referentes ao dicionário CI/CE self.ci_ce['mne'] = list() self.ci_ce['num'] = list() self.ci_ce['nome'] = list() self.ci_ce['ss_busf'] = list() self.ci_ce['flag'] = list() self.ci_ce['di'] = list() self.ci_ce['hi'] = list() self.ci_ce['mi'] = list() self.ci_ce['df'] = list() self.ci_ce['hf'] = list() self.ci_ce['mf'] = list() self.ci_ce['unid'] = list() self.ci_ce['linf'] = list() self.ci_ce['lsup'] = list() self.ci_ce['custo'] = list() self.ci_ce['energia'] = list() # listas referentes ao dicionário RE self.re['mne'] = list() self.re['ind'] = list() self.re['di'] = list() self.re['hi'] = list() self.re['mi'] = list() self.re['df'] = list() self.re['hf'] = list() self.re['mf'] = list() # listas referentes ao dicionário LU self.lu['mne'] = list() self.lu['ind'] = list() self.lu['di'] = list() self.lu['hi'] = list() self.lu['mi'] = list() self.lu['df'] = list() self.lu['hf'] = list() self.lu['mf'] = list() self.lu['linf'] = list() self.lu['lsup'] = list() # listas referentes ao dicionário FH self.fh['mne'] = list() self.fh['ind'] = list() self.fh['di'] = list() self.fh['hi'] = list() self.fh['mi'] = list() self.fh['df'] = list() self.fh['hf'] = list() self.fh['mf'] = list() self.fh['ush'] = list() self.fh['unh'] = list() self.fh['fator'] = list() # listas referentes ao dicionário FT self.ft['mne'] = list() self.ft['ind'] = list() self.ft['di'] = list() self.ft['hi'] = list() self.ft['mi'] = list() self.ft['df'] = list() self.ft['hf'] = list() self.ft['mf'] = list() self.ft['ust'] = list() self.ft['fator'] = list() # listas referentes ao dicionário FI self.fi['mne'] = list() self.fi['ind'] = list() self.fi['di'] = list() self.fi['hi'] = list() self.fi['mi'] = list() self.fi['df'] = list() self.fi['hf'] = list() self.fi['mf'] = list() self.fi['ss1'] = list() self.fi['ss2'] = list() self.fi['fator'] = list() # listas referentes ao dicionário FE self.fe['mne'] = list() self.fe['ind'] = list() self.fe['di'] = list() self.fe['hi'] = list() self.fe['mi'] = list() self.fe['df'] = list() self.fe['hf'] = list() self.fe['mf'] = list() self.fe['num_contrato'] = list() self.fe['fator'] = list() # listas referentes ao dicionário FR self.fr['mne'] = list() self.fr['ind'] = list() self.fr['di'] = list() self.fr['hi'] = list() self.fr['mi'] = list() self.fr['df'] = list() self.fr['hf'] = list() self.fr['mf'] = list() self.fr['useol'] = list() self.fr['fator'] = list() # listas referentes ao dicionário FC self.fc['mne'] = list() self.fc['ind'] = list() self.fc['di'] = list() self.fc['hi'] = list() self.fc['mi'] = list() self.fc['df'] = list() self.fc['hf'] = list() self.fc['mf'] = list() self.fc['demanda'] = list() self.fc['fator'] = list() # listas referentes ao dicionário AC self.ac['mne'] = list() self.ac['usi'] = list() self.ac['mneumonico'] = list() self.ac['ind'] = list() self.ac['valor'] = list() # listas referentes ao dicionário DA self.da['mne'] = list() self.da['ind'] = list() self.da['di'] = list() self.da['hi'] = list() self.da['mi'] = list() self.da['df'] = list() self.da['hf'] = list() self.da['mf'] = list() self.da['taxa'] = list() self.da['obs'] = list() # listas referentes ao dicionário FP self.fp['mne'] = list() self.fp['usi'] = list() self.fp['f'] = list() self.fp['nptQ'] = list() self.fp['nptV'] = list() self.fp['concavidade'] = list() self.fp['min_quadraticos'] = list() self.fp['deltaV'] = list() self.fp['tr'] = list() # listas referentes ao dicionário EZ self.ez['mne'] = list() self.ez['usi'] = list() self.ez['perc_vol'] = list() # listas referentes ao dicionário AG self.ag['mne'] = list() self.ag['num_estagios'] = list() # listas referentes ao dicionário MH self.mh['mne'] = list() self.mh['num'] = list() self.mh['gr'] = list() self.mh['id'] = list() self.mh['di'] = list() self.mh['hi'] = list() self.mh['mi'] = list() self.mh['df'] = list() self.mh['hf'] = list() self.mh['mf'] = list() self.mh['f'] = list() # listas referentes ao dicionário MT self.mt['mne'] = list() self.mt['ute'] = list() self.mt['ug'] = list() self.mt['di'] = list() self.mt['hi'] = list() self.mt['mi'] = list() self.mt['df'] = list() self.mt['hf'] = list() self.mt['mf'] = list() self.mt['f'] = list() # listas referentes ao dicionário TX self.tx['mne'] = list() self.tx['taxa_fcf'] = list() # listas referentes ao dicionário PQ self.pq['mne'] = list() self.pq['ind'] = list() self.pq['nome'] = list() self.pq['ss/b'] = list() self.pq['di'] = list() self.pq['hi'] = list() self.pq['mi'] = list() self.pq['df'] = list() self.pq['hf'] = list() self.pq['mf'] = list() self.pq['geracao'] = list() # listas referentes ao dicionário SECR self.secr['mne'] = list() self.secr['num'] = list() self.secr['nome'] = list() self.secr['usi_1'] = list() self.secr['fator_1'] = list() self.secr['usi_2'] = list() self.secr['fator_2'] = list() self.secr['usi_3'] = list() self.secr['fator_3'] = list() self.secr['usi_4'] = list() self.secr['fator_4'] = list() self.secr['usi_5'] = list() self.secr['fator_5'] = list() # listas referentes ao dicionário CR self.cr['mne'] = list() self.cr['num'] = list() self.cr['nome'] = list() self.cr['gr'] = list() self.cr['A0'] = list() self.cr['A1'] = list() self.cr['A2'] = list() self.cr['A3'] = list() self.cr['A4'] = list() self.cr['A5'] = list() self.cr['A6'] = list() # listas referentes ao dicionário R11 self.r11['mne'] = list() self.r11['di'] = list() self.r11['hi'] = list() self.r11['mi'] = list() self.r11['df'] = list() self.r11['hf'] = list() self.r11['mf'] = list() self.r11['cotaIni'] = list() self.r11['varhora'] = list() self.r11['vardia'] = list() self.r11['coef'] = list() # listas referentes ao dicionário VR self.vr['mne'] = list() self.vr['dia'] = list() self.vr['mneumo_verao'] = list() # listas referentes ao dicionário PD self.pd['mne'] = list() self.pd['tol_perc'] = list() self.pd['tol_MW'] = list() # listas referentes ao dicionário VM self.vm['mne'] = list() self.vm['ind'] = list() self.vm['di'] = list() self.vm['hi'] = list() self.vm['mi'] = list() self.vm['df'] = list() self.vm['hf'] = list() self.vm['mf'] = list() self.vm['taxa_enchimento'] = list() # listas referentes ao dicionário DF self.df['mne'] = list() self.df['ind'] = list() self.df['di'] = list() self.df['hi'] = list() self.df['mi'] = list() self.df['df'] = list() self.df['hf'] = list() self.df['mf'] = list() self.df['taxa_descarga'] = list() # listas referentes ao dicionário ME self.me['mne'] = list() self.me['ind'] = list() self.me['di'] = list() self.me['hi'] = list() self.me['mi'] = list() self.me['df'] = list() self.me['hf'] = list() self.me['mf'] = list() self.me['fator'] = list() # listas referentes ao dicionário META CJSIST self.meta_cjsist['mneumo'] = list() self.meta_cjsist['ind'] = list() self.meta_cjsist['nome'] = list() # listas referentes ao dicionário META SIST self.meta_sist['mne'] = list() self.meta_sist['ind'] = list() self.meta_sist['tp'] = list() self.meta_sist['num'] = list() self.meta_sist['meta'] = list() self.meta_sist['tol_MW'] = list() self.meta_sist['tol_perc'] = list() # listas referentes ao dicionário META USIT self.meta_usit['mne'] = list() self.meta_usit['ind'] = list() self.meta_usit['tp'] = list() self.meta_usit['num'] = list() self.meta_usit['meta'] = list() self.meta_usit['tol_MW'] = list() self.meta_usit['tol_perc'] = list() # listas referentes ao dicionário SH self.sh['mne'] = list() self.sh['flag_simul'] = list() self.sh['flag_pl'] = list() self.sh['num_min'] = list() self.sh['num_max'] = list() self.sh['flag_quebra'] = list() self.sh['ind_1'] = list() self.sh['ind_2'] = list() self.sh['ind_3'] = list() self.sh['ind_4'] = list() self.sh['ind_5'] = list() # listas referentes ao dicionário TF self.tf['mne'] = list() self.tf['custo'] = list() # listas referentes ao dicionário RS self.rs['mne'] = list() self.rs['cod'] = list() self.rs['ind'] = list() self.rs['subs'] = list() self.rs['tp'] = list() self.rs['comentario'] = list() # listas referentes ao dicionário SP self.sp['mne'] = list() self.sp['flag'] = list() # listas referentes ao dicionário PS self.ps['mne'] = list() self.ps['flag'] = list() # listas referentes ao dicionário PP self.pp['mne'] = list() self.pp['flag'] = list() self.pp['iteracoes'] = list() self.pp['num'] = list() self.pp['tp'] = list() try: with open(file_name, 'r', encoding='latin-1') as f: # type: IO[str] continua = True while continua: self.next_line(f) linha = self.linha if linha[0] == COMENTARIO: self.comentarios.append(linha) self.entdados.append(linha) continue mne = linha[:6].strip().lower() mne_sigla = linha[:3].strip().lower() mneumo = linha[:13].strip().lower() self.entdados.append(linha[:6]) # Leitura dos dados de acordo com o mneumo correspondente if mne_sigla == 'tm': self.tm['mne'].append(self.linha[:2]) self.tm['dd'].append(self.linha[4:6]) self.tm['hr'].append(self.linha[9:11]) self.tm['mh'].append(self.linha[14:15]) self.tm['durac'].append(self.linha[19:24]) self.tm['rede'].append(self.linha[29:30]) self.tm['patamar'].append(self.linha[33:39]) continue if mne == 'sist': self.sist['mne'].append(self.linha[:6]) self.sist['num'].append(self.linha[7:9]) self.sist['mne_iden'].append(self.linha[10:12]) self.sist['flag'].append(self.linha[13:15]) self.sist['nome'].append(self.linha[16:26]) continue if mne == 'ree': self.ree['mne'].append(self.linha[:3]) self.ree['num_ree'].append(self.linha[6:8]) self.ree['num_sub'].append(self.linha[9:11]) self.ree['nome'].append(self.linha[12:22]) continue if mne_sigla == 'uh': self.uh['mne'].append(self.linha[:2]) self.uh['ind'].append(self.linha[4:7]) self.uh['nome'].append(self.linha[9:21]) self.uh['ss'].append(self.linha[24:26]) self.uh['vinic'].append(self.linha[29:39]) self.uh['evap'].append(self.linha[39:40]) self.uh['di'].append(self.linha[41:43]) self.uh['hi'].append(self.linha[44:46]) self.uh['m'].append(self.linha[47:48]) self.uh['vmor'].append(self.linha[49:59]) self.uh['prod'].append(self.linha[64:65]) self.uh['rest'].append(self.linha[69:70]) continue if mne == 'tviag': self.tviag['mne'].append(self.linha[:6]) self.tviag['mont'].append(self.linha[6:9]) self.tviag['jus'].append(self.linha[10:13]) self.tviag['tp'].append(self.linha[14:15]) self.tviag['hr'].append(self.linha[19:22]) self.tviag['tpTviag'].append(self.linha[24:25]) continue if mne_sigla == 'ut': self.ut['mne'].append(self.linha[:2]) self.ut['num'].append(self.linha[4:7]) self.ut['nome'].append(self.linha[9:21]) self.ut['ss'].append(self.linha[22:24]) self.ut['flag'].append(self.linha[25:26]) self.ut['di'].append(self.linha[27:29]) self.ut['hi'].append(self.linha[30:32]) self.ut['mi'].append(self.linha[33:34]) self.ut['df'].append(self.linha[35:37]) self.ut['hf'].append(self.linha[38:40]) self.ut['mf'].append(self.linha[41:42]) self.ut['rest'].append(self.linha[46:47]) self.ut['gmin'].append(self.linha[47:57]) self.ut['gmax'].append(self.linha[57:67]) self.ut['g_anterior'].append(self.linha[67:77]) continue if mne == 'usie': self.usie['mne'].append(self.linha[:4]) self.usie['num'].append(self.linha[5:8]) self.usie['ss'].append(self.linha[9:11]) self.usie['nome'].append(self.linha[14:26]) self.usie['mont'].append(self.linha[29:32]) self.usie['jus'].append(self.linha[34:37]) self.usie['qmin'].append(self.linha[39:49]) self.usie['qmax'].append(self.linha[49:59]) self.usie['taxa_consumo'].append(self.linha[59:69]) continue if mne_sigla == 'dp': self.dp['mne'].append(self.linha[:2]) self.dp['ss'].append(self.linha[4:6]) self.dp['di'].append(self.linha[8:10]) self.dp['hi'].append(self.linha[11:13]) self.dp['mi'].append(self.linha[14:15]) self.dp['df'].append(self.linha[16:18]) self.dp['hf'].append(self.linha[19:21]) self.dp['mf'].append(self.linha[22:23]) self.dp['demanda'].append(self.linha[24:34]) continue if mne_sigla == 'de': self.de['mne'].append(self.linha[:2]) self.de['nde'].append(self.linha[4:7]) self.de['di'].append(self.linha[8:10]) self.de['hi'].append(self.linha[11:13]) self.de['mi'].append(self.linha[14:15]) self.de['df'].append(self.linha[16:18]) self.de['hf'].append(self.linha[19:21]) self.de['mf'].append(self.linha[22:23]) self.de['demanda'].append(self.linha[24:34]) self.de['justific'].append(self.linha[35:45]) continue if mne_sigla == 'cd': self.cd['mne'].append(self.linha[:2]) self.cd['is'].append(self.linha[3:5]) self.cd['cd'].append(self.linha[6:8]) self.cd['di'].append(self.linha[9:11]) self.cd['hi'].append(self.linha[12:14]) self.cd['mi'].append(self.linha[15:16]) self.cd['df'].append(self.linha[17:19]) self.cd['hf'].append(self.linha[20:22]) self.cd['mf'].append(self.linha[23:24]) self.cd['custo'].append(self.linha[25:35]) self.cd['limsup'].append(self.linha[35:45]) continue if mne_sigla == 'ri': self.ri['mne'].append(self.linha[:2]) self.ri['di'].append(self.linha[8:10]) self.ri['hi'].append(self.linha[11:13]) self.ri['mi'].append(self.linha[14:15]) self.ri['df'].append(self.linha[16:18]) self.ri['hf'].append(self.linha[19:21]) self.ri['mf'].append(self.linha[22:23]) self.ri['gh50min'].append(self.linha[26:36]) self.ri['gh50max'].append(self.linha[36:46]) self.ri['gh60min'].append(self.linha[46:56]) self.ri['gh60max'].append(self.linha[56:66]) self.ri['ande'].append(self.linha[66:76]) continue if mne_sigla == 'ia': self.ia['mne'].append(self.linha[:2]) self.ia['ss1'].append(self.linha[4:6]) self.ia['ss2'].append(self.linha[9:11]) self.ia['di'].append(self.linha[13:15]) self.ia['hi'].append(self.linha[16:18]) self.ia['mi'].append(self.linha[19:20]) self.ia['df'].append(self.linha[21:23]) self.ia['hf'].append(self.linha[24:26]) self.ia['mf'].append(self.linha[27:28]) self.ia['ss1_ss2'].append(self.linha[29:39]) self.ia['ss2_ss1'].append(self.linha[39:49]) continue if mne_sigla == 'rd': self.rd['mne'].append(self.linha[:2]) self.rd['flag_fol'].append(self.linha[4:5]) self.rd['ncirc'].append(self.linha[8:12]) self.rd['dbar'].append(self.linha[14:15]) self.rd['lim'].append(self.linha[16:17]) self.rd['dlin'].append(self.linha[18:19]) self.rd['perd'].append(self.linha[20:21]) self.rd['formato'].append(self.linha[22:23]) continue if mne == 'rivar': self.rivar['mne'].append(self.linha[:5]) self.rivar['num'].append(self.linha[7:10]) self.rivar['ss'].append(self.linha[11:14]) self.rivar['cod'].append(self.linha[15:17]) self.rivar['penalidade'].append(self.linha[19:29]) continue if mne_sigla == 'it': self.it['mne'].append(self.linha[:2]) self.it['num'].append(self.linha[4:6]) self.it['coef'].append(self.linha[9:84]) continue if mne_sigla == 'gp': self.gp['mne'].append(self.linha[:2]) self.gp['tol_conv'].append(self.linha[4:14]) self.gp['tol_prob'].append(self.linha[15:25]) continue if mne_sigla == 'ni': self.ni['mne'].append(self.linha[:2]) self.ni['flag'].append(self.linha[4:5]) self.ni['nmax'].append(self.linha[9:12]) continue if mne_sigla == 've': self.ve['mne'].append(self.linha[:2]) self.ve['ind'].append(self.linha[4:7]) self.ve['di'].append(self.linha[8:10]) self.ve['hi'].append(self.linha[11:13]) self.ve['mi'].append(self.linha[14:15]) self.ve['df'].append(self.linha[16:18]) self.ve['hf'].append(self.linha[19:21]) self.ve['mf'].append(self.linha[22:23]) self.ve['vol'].append(self.linha[24:34]) continue if mne_sigla == 'ci' or mne_sigla == 'ce': self.ci_ce['mne'].append(self.linha[:2]) self.ci_ce['num'].append(self.linha[3:6]) self.ci_ce['nome'].append(self.linha[7:17]) self.ci_ce['ss_busf'].append(self.linha[18:23]) self.ci_ce['flag'].append(self.linha[23:24]) self.ci_ce['di'].append(self.linha[25:27]) self.ci_ce['hi'].append(self.linha[28:30]) self.ci_ce['mi'].append(self.linha[31:32]) self.ci_ce['df'].append(self.linha[33:35]) self.ci_ce['hf'].append(self.linha[36:38]) self.ci_ce['mf'].append(self.linha[39:40]) self.ci_ce['unid'].append(self.linha[41:42]) self.ci_ce['linf'].append(self.linha[43:53]) self.ci_ce['lsup'].append(self.linha[53:63]) self.ci_ce['custo'].append(self.linha[63:73]) self.ci_ce['energia'].append(self.linha[73:83]) continue if mne_sigla == 're': self.re['mne'].append(self.linha[:2]) self.re['ind'].append(self.linha[4:7]) self.re['di'].append(self.linha[9:11]) self.re['hi'].append(self.linha[12:14]) self.re['mi'].append(self.linha[15:16]) self.re['df'].append(self.linha[17:19]) self.re['hf'].append(self.linha[20:22]) self.re['mf'].append(self.linha[23:24]) continue if mne_sigla == 'lu': self.lu['mne'].append(self.linha[:2]) self.lu['ind'].append(self.linha[4:7]) self.lu['di'].append(self.linha[8:10]) self.lu['hi'].append(self.linha[11:13]) self.lu['mi'].append(self.linha[14:15]) self.lu['df'].append(self.linha[16:18]) self.lu['hf'].append(self.linha[19:21]) self.lu['mf'].append(self.linha[22:23]) self.lu['linf'].append(self.linha[24:34]) self.lu['lsup'].append(self.linha[34:44]) continue if mne_sigla == 'fh': self.fh['mne'].append(self.linha[:2]) self.fh['ind'].append(self.linha[4:7]) self.fh['di'].append(self.linha[8:10]) self.fh['hi'].append(self.linha[11:13]) self.fh['mi'].append(self.linha[14:15]) self.fh['df'].append(self.linha[16:18]) self.fh['hf'].append(self.linha[19:21]) self.fh['mf'].append(self.linha[22:23]) self.fh['ush'].append(self.linha[24:27]) self.fh['unh'].append(self.linha[27:29]) self.fh['fator'].append(self.linha[34:44]) continue if mne_sigla == 'ft': self.ft['mne'].append(self.linha[:2]) self.ft['ind'].append(self.linha[4:7]) self.ft['di'].append(self.linha[8:10]) self.ft['hi'].append(self.linha[11:13]) self.ft['mi'].append(self.linha[14:15]) self.ft['df'].append(self.linha[16:18]) self.ft['hf'].append(self.linha[19:21]) self.ft['mf'].append(self.linha[22:23]) self.ft['ust'].append(self.linha[24:27]) self.ft['fator'].append(self.linha[34:44]) continue if mne_sigla == 'fi': self.fi['mne'].append(self.linha[:2]) self.fi['ind'].append(self.linha[4:7]) self.fi['di'].append(self.linha[8:10]) self.fi['hi'].append(self.linha[11:13]) self.fi['mi'].append(self.linha[14:15]) self.fi['df'].append(self.linha[16:18]) self.fi['hf'].append(self.linha[19:21]) self.fi['mf'].append(self.linha[22:23]) self.fi['ss1'].append(self.linha[24:26]) self.fi['ss2'].append(self.linha[29:31]) self.fi['fator'].append(self.linha[34:44]) continue if mne_sigla == 'fe': self.fe['mne'].append(self.linha[:2]) self.fe['ind'].append(self.linha[4:7]) self.fe['di'].append(self.linha[8:10]) self.fe['hi'].append(self.linha[11:13]) self.fe['mi'].append(self.linha[14:15]) self.fe['df'].append(self.linha[16:18]) self.fe['hf'].append(self.linha[19:21]) self.fe['mf'].append(self.linha[22:23]) self.fe['num_contrato'].append(self.linha[24:27]) self.fe['fator'].append(self.linha[34:44]) continue if mne_sigla == 'fr': self.fr['mne'].append(self.linha[:2]) self.fr['ind'].append(self.linha[4:9]) self.fr['di'].append(self.linha[10:12]) self.fr['hi'].append(self.linha[13:15]) self.fr['mi'].append(self.linha[16:17]) self.fr['df'].append(self.linha[18:20]) self.fr['hf'].append(self.linha[21:23]) self.fr['mf'].append(self.linha[24:25]) self.fr['useol'].append(self.linha[26:31]) self.fr['fator'].append(self.linha[36:46]) continue if mne_sigla == 'fc': self.fc['mne'].append(self.linha[:2]) self.fc['ind'].append(self.linha[4:7]) self.fc['di'].append(self.linha[10:12]) self.fc['hi'].append(self.linha[13:15]) self.fc['mi'].append(self.linha[16:17]) self.fc['df'].append(self.linha[18:20]) self.fc['hf'].append(self.linha[21:23]) self.fc['mf'].append(self.linha[24:25]) self.fc['demanda'].append(self.linha[26:29]) self.fc['fator'].append(self.linha[36:46]) continue if mne_sigla == 'ac': self.ac['mne'].append(self.linha[:2]) self.ac['usi'].append(self.linha[4:7]) self.ac['mneumonico'].append(self.linha[9:15]) self.ac['ind'].append(self.linha[15:19]) self.ac['valor'].append(self.linha[19:]) continue if mne_sigla == 'da': self.da['mne'].append(self.linha[:2]) self.da['ind'].append(self.linha[4:7]) self.da['di'].append(self.linha[8:10]) self.da['hi'].append(self.linha[11:13]) self.da['mi'].append(self.linha[14:15]) self.da['df'].append(self.linha[16:18]) self.da['hf'].append(self.linha[19:21]) self.da['mf'].append(self.linha[22:23]) self.da['taxa'].append(self.linha[24:34]) self.da['obs'].append(self.linha[35:47]) continue if mne_sigla == 'fp': self.fp['mne'].append(self.linha[:2]) self.fp['usi'].append(self.linha[3:6]) self.fp['f'].append(self.linha[7:8]) self.fp['nptQ'].append(self.linha[10:13]) self.fp['nptV'].append(self.linha[15:18]) self.fp['concavidade'].append(self.linha[20:21]) self.fp['min_quadraticos'].append(self.linha[24:25]) self.fp['deltaV'].append(self.linha[29:39]) self.fp['tr'].append(self.linha[39:49]) continue if mne_sigla == 'ez': self.ez['mne'].append(self.linha[:2]) self.ez['usi'].append(self.linha[4:7]) self.ez['perc_vol'].append(self.linha[9:14]) continue if mne_sigla == 'ag': self.ag['mne'].append(self.linha[:2]) self.ag['num_estagios'].append(self.linha[3:6]) continue if mne_sigla == 'mh': self.mh['mne'].append(self.linha[:2]) self.mh['num'].append(self.linha[4:7]) self.mh['gr'].append(self.linha[9:11]) self.mh['id'].append(self.linha[12:14]) self.mh['di'].append(self.linha[14:16]) self.mh['hi'].append(self.linha[17:19]) self.mh['mi'].append(self.linha[20:21]) self.mh['df'].append(self.linha[22:24]) self.mh['hf'].append(self.linha[25:27]) self.mh['mf'].append(self.linha[28:29]) self.mh['f'].append(self.linha[30:31]) continue if mne_sigla == 'mt': self.mt['mne'].append(self.linha[:2]) self.mt['ute'].append(self.linha[4:7]) self.mt['ug'].append(self.linha[8:11]) self.mt['di'].append(self.linha[13:15]) self.mt['hi'].append(self.linha[16:18]) self.mt['mi'].append(self.linha[19:20]) self.mt['df'].append(self.linha[21:23]) self.mt['hf'].append(self.linha[24:26]) self.mt['mf'].append(self.linha[27:28]) self.mt['f'].append(self.linha[29:30]) continue if mne_sigla == 'tx': self.tx['mne'].append(self.linha[:2]) self.tx['taxa_fcf'].append(self.linha[4:14]) continue if mne_sigla == 'pq': self.pq['mne'].append(self.linha[:2]) self.pq['ind'].append(self.linha[4:7]) self.pq['nome'].append(self.linha[9:19]) self.pq['ss/b'].append(self.linha[19:24]) self.pq['di'].append(self.linha[24:26]) self.pq['hi'].append(self.linha[27:29]) self.pq['mi'].append(self.linha[30:31]) self.pq['df'].append(self.linha[32:34]) self.pq['hf'].append(self.linha[35:37]) self.pq['mf'].append(self.linha[38:39]) self.pq['geracao'].append(self.linha[40:50]) continue if mne == 'secr': self.secr['mne'].append(self.linha[:4]) self.secr['num'].append(self.linha[5:8]) self.secr['nome'].append(self.linha[9:21]) self.secr['usi_1'].append(self.linha[24:27]) self.secr['fator_1'].append(self.linha[28:33]) self.secr['usi_2'].append(self.linha[34:37]) self.secr['fator_2'].append(self.linha[38:43]) self.secr['usi_3'].append(self.linha[44:47]) self.secr['fator_3'].append(self.linha[48:53]) self.secr['usi_4'].append(self.linha[54:57]) self.secr['fator_4'].append(self.linha[58:63]) self.secr['usi_5'].append(self.linha[64:67]) self.secr['fator_5'].append(self.linha[68:73]) continue if mne_sigla == 'cr': self.cr['mne'].append(self.linha[:2]) self.cr['num'].append(self.linha[4:7]) self.cr['nome'].append(self.linha[9:21]) self.cr['gr'].append(self.linha[24:26]) self.cr['A0'].append(self.linha[27:42]) self.cr['A1'].append(self.linha[43:58]) self.cr['A2'].append(self.linha[59:74]) self.cr['A3'].append(self.linha[75:90]) self.cr['A4'].append(self.linha[91:106]) self.cr['A5'].append(self.linha[107:122]) self.cr['A6'].append(self.linha[123:138]) continue if mne_sigla == 'r11': self.r11['mne'].append(self.linha[:3]) self.r11['di'].append(self.linha[4:6]) self.r11['hi'].append(self.linha[7:9]) self.r11['mi'].append(self.linha[10:11]) self.r11['df'].append(self.linha[12:14]) self.r11['hf'].append(self.linha[15:17]) self.r11['mf'].append(self.linha[18:19]) self.r11['cotaIni'].append(self.linha[20:30]) self.r11['varhora'].append(self.linha[30:40]) self.r11['vardia'].append(self.linha[40:50]) self.r11['coef'].append(self.linha[59:164]) continue if mne_sigla == 'vr': self.vr['mne'].append(self.linha[:2]) self.vr['dia'].append(self.linha[4:6]) self.vr['mneumo_verao'].append(self.linha[9:12]) continue if mne_sigla == 'pd': self.pd['mne'].append(self.linha[:2]) self.pd['tol_perc'].append(self.linha[3:9]) self.pd['tol_MW'].append(self.linha[12:22]) continue if mne_sigla == 'vm': self.vm['mne'].append(self.linha[:2]) self.vm['ind'].append(self.linha[4:7]) self.vm['di'].append(self.linha[8:10]) self.vm['hi'].append(self.linha[11:13]) self.vm['mi'].append(self.linha[14:15]) self.vm['df'].append(self.linha[16:18]) self.vm['hf'].append(self.linha[19:21]) self.vm['mf'].append(self.linha[22:23]) self.vm['taxa_enchimento'].append(self.linha[24:34]) continue if mne_sigla == 'df': self.df['mne'].append(self.linha[:2]) self.df['ind'].append(self.linha[4:7]) self.df['di'].append(self.linha[8:10]) self.df['hi'].append(self.linha[11:13]) self.df['mi'].append(self.linha[14:15]) self.df['df'].append(self.linha[16:18]) self.df['hf'].append(self.linha[19:21]) self.df['mf'].append(self.linha[22:23]) self.df['taxa_descarga'].append(self.linha[24:34]) continue if mne_sigla == 'me': self.me['mne'].append(self.linha[:2]) self.me['ind'].append(self.linha[4:7]) self.me['di'].append(self.linha[8:10]) self.me['hi'].append(self.linha[11:13]) self.me['mi'].append(self.linha[14:15]) self.me['df'].append(self.linha[16:18]) self.me['hf'].append(self.linha[19:21]) self.me['mf'].append(self.linha[22:23]) self.me['fator'].append(self.linha[24:34]) continue if mneumo == 'meta cjsist': self.meta_cjsist['mneumo'].append(self.linha[:13]) self.meta_cjsist['ind'].append(self.linha[14:17]) self.meta_cjsist['nome'].append(self.linha[18:20]) continue if mneumo == 'meta receb': self.meta_sist['mne'].append(self.linha[:13]) self.meta_sist['ind'].append(self.linha[14:17]) self.meta_sist['tp'].append(self.linha[19:21]) self.meta_sist['num'].append(self.linha[22:23]) self.meta_sist['meta'].append(self.linha[24:34]) self.meta_sist['tol_MW'].append(self.linha[34:44]) self.meta_sist['tol_perc'].append(self.linha[44:54]) continue if mneumo == 'meta gter': self.meta_usit['mne'].append(self.linha[:13]) self.meta_usit['ind'].append(self.linha[14:17]) self.meta_usit['tp'].append(self.linha[19:21]) self.meta_usit['num'].append(self.linha[22:23]) self.meta_usit['meta'].append(self.linha[24:34]) self.meta_usit['tol_MW'].append(self.linha[34:44]) self.meta_usit['tol_perc'].append(self.linha[44:54]) continue if mne_sigla == 'sh': self.sh['mne'].append(self.linha[:2]) self.sh['flag_simul'].append(self.linha[4:5]) self.sh['flag_pl'].append(self.linha[9:10]) self.sh['num_min'].append(self.linha[14:17]) self.sh['num_max'].append(self.linha[19:22]) self.sh['flag_quebra'].append(self.linha[24:25]) self.sh['ind_1'].append(self.linha[29:32]) self.sh['ind_2'].append(self.linha[34:37]) self.sh['ind_3'].append(self.linha[39:42]) self.sh['ind_4'].append(self.linha[44:47]) self.sh['ind_5'].append(self.linha[49:52]) continue if mne_sigla == 'tf': self.tf['mne'].append(self.linha[:2]) self.tf['custo'].append(self.linha[4:14]) continue if mne_sigla == 'rs': self.rs['mne'].append(self.linha[:2]) self.rs['cod'].append(self.linha[3:6]) self.rs['ind'].append(self.linha[7:11]) self.rs['subs'].append(self.linha[12:16]) self.rs['tp'].append(self.linha[22:26]) self.rs['comentario'].append(self.linha[27:39]) continue if mne_sigla == 'sp': self.sp['mne'].append(self.linha[:2]) self.sp['flag'].append(self.linha[4:5]) continue if mne_sigla == 'ps': self.ps['mne'].append(self.linha[:2]) self.ps['flag'].append(self.linha[4:5]) continue if mne_sigla == 'pp': self.pp['mne'].append(self.linha[:2]) self.pp['flag'].append(self.linha[3:4]) self.pp['iteracoes'].append(self.linha[5:8]) self.pp['num'].append(self.linha[9:12]) self.pp['tp'].append(self.linha[13:14]) continue except Exception as err: if isinstance(err, StopIteration): self.bloco_tm['df'] = pd.DataFrame(self.tm) self.bloco_sist['df'] = pd.DataFrame(self.sist) self.bloco_ree['df'] = pd.DataFrame(self.ree) self.bloco_uh['df'] = pd.DataFrame(self.uh) self.bloco_tviag['df'] = pd.DataFrame(self.tviag) self.bloco_ut['df'] = pd.DataFrame(self.ut) self.bloco_usie['df'] = pd.DataFrame(self.usie) self.bloco_dp['df'] = pd.DataFrame(self.dp) self.bloco_de['df'] = pd.DataFrame(self.de) self.bloco_cd['df'] = pd.DataFrame(self.cd) self.bloco_ri['df'] = pd.DataFrame(self.ri) self.bloco_ia['df'] = pd.DataFrame(self.ia) self.bloco_rd['df'] = pd.DataFrame(self.rd) self.bloco_rivar['df'] = pd.DataFrame(self.rivar) self.bloco_it['df'] = pd.DataFrame(self.it) self.bloco_gp['df'] = pd.DataFrame(self.gp) self.bloco_ni['df'] = pd.DataFrame(self.ni) self.bloco_ve['df'] =
pd.DataFrame(self.ve)
pandas.DataFrame
""" Copyright 2018 <NAME>. Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. """ import datetime import pandas as pd import pytest from pandas.testing import assert_series_equal from testfixtures import Replacer from testfixtures.mock import Mock from gs_quant.timeseries import EdrDataReference from gs_quant.timeseries.backtesting import Basket, basket_series, MqValueError, MqTypeError, RebalFreq, date, \ DataContext, np def test_basket_series(): dates = [ datetime.datetime(2019, 1, 1), datetime.datetime(2019, 1, 2), datetime.datetime(2019, 1, 3), datetime.datetime(2019, 1, 4), datetime.datetime(2019, 1, 5), datetime.datetime(2019, 1, 6), ] x = pd.Series([100.0, 101, 103.02, 100.9596, 100.9596, 102.978792], index=dates) y = pd.Series([100.0, 100, 100, 100, 100, 100], index=dates) assert_series_equal(x, basket_series([x], [1])) assert_series_equal(x, basket_series([x, x], [0.5, 0.5])) assert_series_equal(x, basket_series([x, x, x], [1 / 3, 1 / 3, 1 / 3])) assert_series_equal(x, basket_series([x, y], [1, 0])) assert_series_equal(y, basket_series([x, y], [0, 1])) with pytest.raises(MqValueError): basket_series([x, y], [1]) with pytest.raises(MqTypeError): basket_series([1, 2, 3], [1]) dates = [ datetime.datetime(2019, 1, 1), datetime.datetime(2019, 1, 2), datetime.datetime(2019, 1, 3), datetime.datetime(2019, 1, 4), datetime.datetime(2019, 1, 5), datetime.datetime(2019, 1, 6), datetime.datetime(2019, 2, 1), datetime.datetime(2019, 2, 2), datetime.datetime(2019, 2, 3), datetime.datetime(2019, 2, 4), datetime.datetime(2019, 2, 5), datetime.datetime(2019, 2, 6), ] mreb = pd.Series( [100.0, 101, 103.02, 100.9596, 100.9596, 102.978792, 100.0, 101, 103.02, 100.9596, 100.9596, 102.978792], index=dates) assert_series_equal(mreb, basket_series([mreb], [1], rebal_freq=RebalFreq.MONTHLY)) def _mock_spot_data(): dates = pd.date_range(start='2021-01-01', periods=6) x = pd.DataFrame({'spot': [100.0, 101, 103.02, 100.9596, 100.9596, 102.978792]}, index=dates) x['assetId'] = 'MA4B66MW5E27U9VBB94' y = pd.DataFrame({'spot': [100.0, 100, 100, 100, 100, 100]}, index=dates) y['assetId'] = 'MA4B66MW5E27UAL9SUX' return x.append(y) def _mock_spot_data_feb(): dates_feb = pd.date_range(start='2021-02-01', periods=6) x = pd.DataFrame({'spot': [100.0, 101.5, 106.02, 100.1, 105.3, 102.9]}, index=dates_feb) x['assetId'] = 'MA4B66MW5E27U9VBB94' y = pd.DataFrame({'spot': [100.0, 101.5, 100.02, 98.1, 95.3, 93.9]}, index=dates_feb) y['assetId'] = 'MA4B66MW5E27UAL9SUX' return x.append(y) def test_basket_price(): with pytest.raises(MqValueError): Basket(['AAPL UW'], [0.1, 0.9], RebalFreq.MONTHLY) dates = pd.DatetimeIndex([date(2021, 1, 1), date(2021, 1, 2), date(2021, 1, 3), date(2021, 1, 4), date(2021, 1, 5), date(2021, 1, 6)]) dates_feb = pd.DatetimeIndex([date(2021, 2, 1), date(2021, 2, 2), date(2021, 2, 3), date(2021, 2, 4), date(2021, 2, 5), date(2021, 2, 6)]) replace = Replacer() mock_data = replace('gs_quant.timeseries.measures.GsDataApi.get_market_data', Mock()) mock_data.side_effect = [_mock_spot_data(), _mock_spot_data_feb()] mock_asset = replace('gs_quant.timeseries.backtesting.GsAssetApi.get_many_assets_data', Mock()) mock_asset.return_value = [{'id': 'MA4B66MW5E27U9VBB94', 'bbid': 'AAPL UW'}, {'id': 'MA4B66MW5E27UAL9SUX', 'bbid': 'MSFT UW'}] a_basket = Basket(['AAPL UW', 'MSFT UW'], [0.1, 0.9], RebalFreq.MONTHLY) expected = pd.Series([100.0, 100.1, 100.302, 100.09596, 100.09596, 100.297879], index=dates) with DataContext('2021-01-01', '2021-01-06'): actual = a_basket.price()
assert_series_equal(actual, expected)
pandas.testing.assert_series_equal
# -*- coding: utf-8 -*- """ Created on Mon Oct 12 16:44:24 2020 @author: Borja """ import os import pandas as pd import numpy as np import matplotlib.pyplot as plt """ - Ultra Trail Mont Blanc. Clasificación desde 2003 hasta 2017. https://www.kaggle.com/ceruleansea/ultratrail-du-montblanc-20032017?select=utmb_2017.csv -Ultra Trail Mont Blanc, Clasificación desde 2017 hasta 2019. https://www.kaggle.com/purpleyupi/utmb-results Datos guardados en 'Data/csv/*.csv' """ utmb_2003 = pd.read_csv('Data/csv/utmb_2003.csv', sep=',', decimal='.') utmb_2004 = pd.read_csv('Data/csv/utmb_2004.csv', sep=',', decimal='.') utmb_2005 = pd.read_csv('Data/csv/utmb_2005.csv', sep=',', decimal='.') utmb_2006 = pd.read_csv('Data/csv/utmb_2006.csv', sep=',', decimal='.') utmb_2007 = pd.read_csv('Data/csv/utmb_2007.csv', sep=',', decimal='.') utmb_2008 = pd.read_csv('Data/csv/utmb_2008.csv', sep=',', decimal='.') utmb_2009 = pd.read_csv('Data/csv/utmb_2009.csv', sep=',', decimal='.') utmb_2010 = pd.read_csv('Data/csv/utmb_2010.csv', sep=',', decimal='.') utmb_2011 = pd.read_csv('Data/csv/utmb_2011.csv', sep=',', decimal='.') utmb_2012 = pd.read_csv('Data/csv/utmb_2012.csv', sep=',', decimal='.') utmb_2013 = pd.read_csv('Data/csv/utmb_2013.csv', sep=',', decimal='.') utmb_2014 = pd.read_csv('Data/csv/utmb_2014.csv', sep=',', decimal='.') utmb_2015 = pd.read_csv('Data/csv/utmb_2015.csv', sep=',', decimal='.') utmb_2016 = pd.read_csv('Data/csv/utmb_2016.csv', sep=',', decimal='.') utmb_2017 = pd.read_csv('Data/csv/utmb_2017.csv', sep=',', decimal='.') """ Los datos obtenidos de la segunda fuente contienen en una celda el nombre del corredor y seguido por un espacio también el nombre del equipo que pertenecen. """ def clean_data(utmb_year): name_s2 = utmb_year["name"] nationality_s2 = utmb_year["nationality"] time_s2 = utmb_year["time"] data_cleaned_year = pd.DataFrame({"name": name_s2, "nationality": nationality_s2, "time": time_s2}) del(name_s2) del(nationality_s2) del(time_s2) return data_cleaned_year def rename_column(utmb_year, string_old, string_new): utmb_year = utmb_year.rename(columns={string_old:string_new}) return utmb_year def clean_and_rename_data(utmb_year, string_new): utmb_year_clean = clean_data(utmb_year) utmb_year_clean = rename_column(utmb_year_clean, 'time', string_new) return utmb_year_clean utmb_clean_2003 = clean_and_rename_data(utmb_2003, 'time_2003') utmb_clean_2004 = clean_and_rename_data(utmb_2004, 'time_2004') utmb_clean_2005 = clean_and_rename_data(utmb_2005, 'time_2005') utmb_clean_2006 = clean_and_rename_data(utmb_2006, 'time_2006') utmb_clean_2007 = clean_and_rename_data(utmb_2007, 'time_2007') utmb_clean_2008 = clean_and_rename_data(utmb_2008, 'time_2008') utmb_clean_2009 = clean_and_rename_data(utmb_2009, 'time_2009') utmb_clean_2010 = clean_and_rename_data(utmb_2010, 'time_2010') utmb_clean_2011 = clean_and_rename_data(utmb_2011, 'time_2011') utmb_clean_2012 = clean_and_rename_data(utmb_2012, 'time_2012') utmb_clean_2013 = clean_and_rename_data(utmb_2013, 'time_2013') utmb_clean_2014 = clean_and_rename_data(utmb_2014, 'time_2014') utmb_clean_2015 = clean_and_rename_data(utmb_2015, 'time_2015') utmb_clean_2016 = clean_and_rename_data(utmb_2016, 'time_2016') utmb_clean_2017 = clean_and_rename_data(utmb_2017, 'time_2017') """ Merge all the data in a single data frame. """ utmb_clean_multiyear = pd.merge(utmb_clean_2003, utmb_clean_2004,how='outer',on=['name', 'nationality'], copy=True) utmb_clean_multiyear = pd.merge(utmb_clean_multiyear, utmb_clean_2005,how='outer',on=['name', 'nationality'], copy=True) utmb_clean_multiyear = pd.merge(utmb_clean_multiyear, utmb_clean_2006,how='outer',on=['name', 'nationality'], copy=True) utmb_clean_multiyear = pd.merge(utmb_clean_multiyear, utmb_clean_2007,how='outer',on=['name', 'nationality'], copy=True) utmb_clean_multiyear = pd.merge(utmb_clean_multiyear, utmb_clean_2008,how='outer',on=['name', 'nationality'], copy=True) utmb_clean_multiyear = pd.merge(utmb_clean_multiyear, utmb_clean_2009,how='outer',on=['name', 'nationality'], copy=True) utmb_clean_multiyear = pd.merge(utmb_clean_multiyear, utmb_clean_2010,how='outer',on=['name', 'nationality'], copy=True) utmb_clean_multiyear =
pd.merge(utmb_clean_multiyear, utmb_clean_2011,how='outer',on=['name', 'nationality'], copy=True)
pandas.merge
#### ----- LIBRARIES ----- #### import os import sys import time import random import shutil import time import smtplib import ssl import pandas as pd from selenium import webdriver from bs4 import BeautifulSoup #### ----- FUNCTIONS DEFINITION ----- #### ## ----- Core scraping functions ----- ## def get_profile_info(): '''Scrape username, number of posts, followers and following. Returns the number of followers and a string formatted to be saved as the line of a csv file.''' username_xpath = '//*[@id="react-root"]/section/main/div/header/section/div[1]/h1' post_xpath = '//*[@id="react-root"]/section/main/div/header/section/ul/li[1]/span/span' followers_xpath = '//*[@id="react-root"]/section/main/div/header/section/ul/li[2]/a/span' following_xpath = '//*[@id="react-root"]/section/main/div/header/section/ul/li[3]/a/span' username_element = driver.find_element_by_xpath(username_xpath) post_element = driver.find_element_by_xpath(post_xpath) followers_element = driver.find_element_by_xpath(followers_xpath) following_element = driver.find_element_by_xpath(following_xpath) username = username_element.get_attribute('innerText') post = post_element.get_attribute('innerText').replace(',', '') followers = followers_element.get_attribute('innerText').replace(',', '') following = following_element.get_attribute('innerText').replace(',', '') print('Scraping metadata for %s...'% username) time.sleep(random.randint(1,3)) string = username + ',' + post + ',' + followers + ',' + following return int(followers), string def get_followers_list(): '''Parse the html of the page to get list of followers - and a lot of html rubbish. Then iterate through the list to clean up the rubbish and add the usernames to a set. Return the set as a list.''' # Parse the html of the page followers_list_xpath = '/html/body/div[3]/div/div/div[2]/ul/div' followers_list_element = driver.find_element_by_xpath(followers_list_xpath) followers_list_html = followers_list_element.get_attribute('innerHTML') followers_list_parsed = BeautifulSoup(followers_list_html, "html.parser").find_all('a') # Save the list of followers in a set followers_set = set() for follower in followers_list_parsed: username = follower.get('href').replace('/', '') followers_set.add(username) print('\nFollowers list returned succesfully!') return list(followers_set) def profile_scraper(username): '''Wrapper for the bunch of functions that together scrape the profile, write the metadata and returns a list of followers''' go_to_profile(username) n_followers, profile_info = get_profile_info() write_metadata(profile_info) print('-'*30) followers_window = get_followers_window() scroll_followers_window(n_followers, followers_window) followers_list = get_followers_list() print('-'*30) return followers_list ## ----- Browser related functions ----- ## def start_browser(): '''Initiates a browser window and load instagram.com''' driver_path = '/Users/andrea/Desktop/Instagram/chromedriver' driver = webdriver.Chrome(executable_path=driver_path) driver.set_window_size(1000,1000) driver.get("https://www.instagram.com/accounts/login/") print('-'*30) print('Starting browser...') time.sleep(10) print('Browser started succesfully!') return driver def login(username, password): '''Login to instagram with the given credentials''' # Fill in username user_box = driver.find_element_by_name("username") user_box.click() user_box.send_keys(username) time.sleep(random.randint(1,5)) # Fill in password psw_box = driver.find_element_by_name("password") psw_box.click() psw_box.send_keys(password) time.sleep(random.randint(1,5)) # Click login button login_button_xpath = '//*[@id="react-root"]/section/main/div/article/div/div[1]/div/form/div[3]' login_button = driver.find_element_by_xpath(login_button_xpath) login_button.click() print('Logging in to instagram...') time.sleep(random.randint(1,5)) def go_to_profile(username): '''Go to the profile page of a given user''' print('Loading the profile of %s...'% username) driver.get('https://www.instagram.com/' + username) time.sleep(2) def get_followers_window(): '''Click on the follower button and return the follower window element''' followers_button_xpath = '//*[@id="react-root"]/section/main/div/header/section/ul/li[2]' followers_window_xpath = '/html/body/div[3]/div/div/div[2]' followers_button_element = driver.find_element_by_xpath(followers_button_xpath) followers_button_element.click() time.sleep(random.randint(1,3)) followers_window_element = driver.find_element_by_xpath(followers_window_xpath) print('Getting followers window...') return followers_window_element def scroll_followers_window(n_followers, followers_window): '''Use a js script to scroll the followers window until the end, so that the names of all the followers are loaded in the html of the page''' initial_scroll_height = 100 scroll_height = initial_scroll_height n_followers_loaded = 0 n_followers_constant = 0 followers_list_xpath = '/html/body/div[3]/div/div/div[2]/ul/div' while n_followers_loaded < n_followers: # Build and execute the js script script = "arguments[0].scrollTop = " + str(scroll_height) driver.execute_script(script, followers_window) # Save the number of followers loaded before this iteration n_followers_loaded_before = n_followers_loaded # Update the number of followers loaded followers_list_element = driver.find_element_by_xpath(followers_list_xpath) followers_list_html = followers_list_element.get_attribute('innerHTML') followers_list_parsed = BeautifulSoup(followers_list_html, "html.parser") n_followers_loaded = len(followers_list_parsed.find_all('li')) # Count for how many iterations the number of followers loaded has remained constant if n_followers_loaded_before == n_followers_loaded: n_followers_constant += 1 else: n_followers_constant = 0 # Break the while loop if the number of followers has remained constant for too long if n_followers_constant > 100: write_error(kind='timeout') break # Increase scroll height. Start slowly, increase speed after some iterations if scroll_height <= 1000: scroll_height = scroll_height + random.randint(50, 150) else: scroll_height = scroll_height + random.randint(500, 1500) sys.stdout.write('\rScrolling followers window: %s of %s followers currently loaded.' % (n_followers_loaded, n_followers)) time.sleep(random.randint(1,3)) ## ----- Gephi related functions ----- ## def merge_all_csv(): '''Read all the single csv files scraped and merge them all in a single dataframe''' csv_names_list = os.listdir(cwd + '/data/followers') merged_df = pd.DataFrame(columns=['followers', 'username']) for csv in csv_names_list: temp_df = pd.read_csv(cwd + '/data/followers/%s' %csv) merged_df =
pd.concat([merged_df, temp_df], axis=0)
pandas.concat
# coding=utf-8 # Author: <NAME> # Date: Sept 02, 2019 # # Description: Reads a MultiLayer network (HS, MM & DM) and prints information. # # import pandas as pd pd.set_option('display.max_rows', 100) pd.set_option('display.max_columns', 500) pd.set_option('display.width', 1000) import networkx as nx from utils import get_network_layer, get_network_by_attribute, ensurePathExists from tabulate import tabulate from itertools import combinations def df2md(df, y_index=False, *args, **kwargs): blob = tabulate(df, headers='keys', tablefmt='pipe', *args, **kwargs) if not y_index: return '\n'.join(['| {}'.format(row.split('|', 2)[-1]) for row in blob.split('\n')]) return blob if __name__ == '__main__': celltypes = ['spermatocyte', 'spermatogonia', 'spermatid', 'enterocyte', 'neuron', 'muscle'] # # Node/Edge stats on complete network # r = [] for celltype in celltypes: print('Loading {celltype:s} network'.format(celltype=celltype)) rGfile_gpickle = '../../04-network/results/network/{celltype:s}/net-{celltype:s}-{network:s}.gpickle'.format(celltype=celltype, network='full') G = nx.read_gpickle(rGfile_gpickle) for layer in ['HS', 'MM', 'DM']: print('Separate {layer:s} layer'.format(layer=layer)) Gt = get_network_layer(G, layer) # Number of nodes/edges n_nodes = Gt.number_of_nodes() n_edges = Gt.number_of_edges() r.append((celltype, layer, n_nodes, n_edges)) print('# Number of nodes/edges in each layer of the full network\n') df_stat = pd.DataFrame(r, columns=['celltype', 'species', '#-nodes', '#-edges']) print(df2md(df_stat, floatfmt='.4f')) file = 'results/stats-full-network.csv' ensurePathExists(file) df_stat.to_csv(file) # # Node/Edge stats on threshold/conserved Network # network = 'conserved' # ['thr', 'conserved'] threshold = 0.5 threshold_str = str(threshold).replace('.', 'p') # if network == 'conserved': celltypes = ['spermatocyte', 'enterocyte'] else: celltypes = ['spermatocyte', 'spermatogonia', 'spermatid', 'enterocyte', 'neuron', 'muscle'] # r = [] for celltype in celltypes: print('Reading {celltype:s}-{network:s}-{threshold:s} network'.format(celltype=celltype, network=network, threshold=threshold_str)) path_net = '../../04-network/results/network/{celltype:s}/'.format(celltype=celltype) if network in ['thr', 'conserved']: rGfile_gpickle = path_net + 'net-{celltype:s}-{network:s}-{threshold:s}.gpickle'.format(celltype=celltype, network=network, threshold=threshold_str) elif network == 'full': rGfile_gpickle = path_net + 'net-{celltype:s}-{network:s}.gpickle'.format(celltype=celltype, network=network) G = nx.read_gpickle(rGfile_gpickle) for layer in ['HS', 'MM', 'DM']: print('Separate {layer:s} layer'.format(layer=layer)) Gt = get_network_layer(G, layer) # Number of nodes/edges n_nodes = Gt.number_of_nodes() n_edges = Gt.number_of_edges() # Number of components (islands) n_components = nx.number_connected_components(Gt) # Largest Component Gtlc = max(nx.connected_component_subgraphs(Gt), key=len) n_nodes_largest_component = Gtlc.number_of_nodes() n_edges_largest_component = Gtlc.number_of_edges() for weight in ['combined_score', 'textmining', 'database', 'experiments', 'coexpression', 'cooccurence', 'fusion', 'neighborhood']: edges = [(i, j) for i, j, d in Gt.edges(data=True) if weight in d] Gtw = Gt.edge_subgraph(edges).copy() # Number of nodes/edges n_nodes = Gtw.number_of_nodes() n_edges = Gtw.number_of_edges() # Number of components (islands) n_components = nx.number_connected_components(Gtw) # Largest Component if n_edges > 0: Gtlc = max(nx.connected_component_subgraphs(Gtw), key=len) n_nodes_largest_component = Gtlc.number_of_nodes() n_edges_largest_component = Gtlc.number_of_edges() else: n_nodes_largest_component = 0 n_edges_largest_component = 0 r.append((celltype, layer, weight, n_nodes, n_edges, n_components, n_nodes_largest_component, n_edges_largest_component)) print('# Number of nodes/edges in the layer of the thresholded>0.5 network\n') df_stat = pd.DataFrame(r, columns=['celltype', 'species', 'edge-type', '#-nodes', '#-edges', '#-comps.', '#-nodes-in-lgt-comp.', '#-edges-lgt-comp.']) print(df2md(df_stat, floatfmt='.4f')) if network in ['thr', 'conserved']: file = 'results/stats-{network:s}-{threshold:s}-network.csv'.format(network=network, threshold=threshold_str) elif network == 'full': file = 'results/stats-{network:s}-network.csv'.format(network=network) ensurePathExists(file) df_stat.to_csv(file) # # Pairwise conserved genes # network = 'thr' threshold = 0.5 threshold_str = str(threshold).replace('.', 'p') biotype = 'protein_coding' r = [] for celltype in celltypes: # print('Loading {celltype:s}-{network:s} Network'.format(celltype=celltype, network=network)) path_net = '../../04-network/results/network/{celltype:s}/'.format(celltype=celltype) if network == 'thr': rGfile_gpickle = path_net + 'net-{celltype:s}-{network:s}-{threshold:s}.gpickle'.format(celltype=celltype, network=network, threshold=threshold_str) elif network == 'full': rGfile_gpickle = path_net + 'net-{celltype:s}-{network:s}.gpickle'.format(celltype=celltype, network=network) G = nx.read_gpickle(rGfile_gpickle) print('Separate Layers') HSG = get_network_layer(G, 'HS') MMG = get_network_layer(G, 'MM') DMG = get_network_layer(G, 'DM') print("Select nodes where biotype='{biotype:s}'".format(biotype=biotype)) HSG = get_network_by_attribute(HSG, attribute='biotype', value=biotype) MMG = get_network_by_attribute(MMG, attribute='biotype', value=biotype) DMG = get_network_by_attribute(DMG, attribute='biotype', value=biotype) # Pairs for (layer_i, Gi), (layer_j, Gj) in combinations([('HS', HSG), ('MM', MMG), ('DM', DMG)], 2): print("Comparing: {layer_i:s} with {layer_j:s}".format(layer_i=layer_i, layer_j=layer_j)) pair = layer_i + 'x' + layer_j genes_i = [*Gi.nodes()] genes_j = [*Gj.nodes()] genes_ij = genes_i + genes_j # Only genes between these species Gtmp = nx.subgraph(G, genes_ij).copy() # Remove intra edges remove_intra_edges = [(i, j) for i, j, d in Gtmp.edges(data=True) if d.get('type', None) == 'intra'] Gtmp.remove_edges_from(remove_intra_edges) # Remove isolates remove_isolates_nodes = list(nx.isolates(Gtmp)) Gtmp.remove_nodes_from(remove_isolates_nodes) # Keep only homolgos Gitmp = nx.subgraph(Gi, Gtmp).copy() Gjtmp = nx.subgraph(Gj, Gtmp).copy() # Number of nodes/edges n_nodes_i = Gitmp.number_of_nodes() n_nodes_j = Gjtmp.number_of_nodes() n_edges_i = Gitmp.number_of_edges() n_edges_j = Gjtmp.number_of_edges() r.append((celltype, pair, layer_i, n_nodes_i, n_edges_i, layer_j, n_nodes_j, n_edges_j)) print('# Pairwise number of conserved nodes/edges of the full network\n') df_stat =
pd.DataFrame(r, columns=['celltype', 'specie-pair', 'layer-i', '#-nodes-i', '#-edges-i', 'layer-j', '#-nodes-j', '#-edges-j'])
pandas.DataFrame
# -*- coding: utf-8 -*- import numpy as np import pandas as pd from data import * from resource import * from utils import (load_dataframe, explode, merge_all, convert_dtype) from utils import mock_name as _mm f_item_meta_gte_50000 = FeatResource(_mm('item_metadata_gte_50000')) f_item_int_cnt = FeatResource(_mm('item_interaction_cnt')) f_item_expo_cnt = FeatResource(_mm('item_exposure_count')) f_sess_basic = TrainTestResource(FeatResource, _mm('session_basic_%s')) f_sess_int = TrainTestResource(FeatResource, _mm('session_interaction_%s')) f_sess_imp_eq = TrainTestResource(FeatResource, _mm('session_impressions_eq_%s')) f_sess_imp = TrainTestResource(FeatResource, _mm('session_imp_%s')) f_sess_int_price = TrainTestResource(FeatResource, _mm('session_interaction_price_%s')) f_sess_le = TrainTestResource(FeatResource, _mm('session_label_encode_%s')) f_si_basic = TrainTestResource(FeatResource, _mm('session_item_basic_%s')) f_si_first_last = TrainTestResource(FeatResource, _mm('session_item_first_last_%s')) f_si_int = TrainTestResource(FeatResource, _mm('session_item_interaction_%s')) f_si_diff_last_int = TrainTestResource(FeatResource, _mm('session_item_diff_last_interaction_index_%s')) f_si_diff_imp_price = TrainTestResource(FeatResource, _mm('session_item_price_div_imp_price_%s')) f_top30 = TrainTestResource(FeatResource, _mm('top_30_feats_%s')) f_top100 = TrainTestResource(FeatResource, _mm('top_100_feats_%s')) f_si_sim = TrainTestResource(FeatResource, _mm('similarity_pair_%s')) f_si_cmp = TrainTestResource(FeatResource, _mm('compare_pair_%s')) f_si_win = TrainTestResource(FeatResource, _mm('win_pair_%s')) @register(out=f_item_meta_gte_50000, inp=t_item_metadata_sp) def item_metadata_gte_50000(): dd = t_item_metadata_sp.load() cols_meta = [col for col in dd.columns if col != 'item_id'] meta_count = dd[cols_meta].sum() meta_keep = list(meta_count[meta_count >= 50000].index) dd = dd[['item_id'] + meta_keep] dd['item_id'] = dd['item_id'].astype(int) for col in meta_keep: dd[col] = dd[col].astype('float32') f_item_meta_gte_50000.save(dd) @register(out=f_item_int_cnt, inp=i_tr_te) def item_interaction_cnt(): cols_keep = ['user_id', 'session_id', 'reference', 'action_type'] df_train = i_tr_te.train.load(columns=cols_keep) df_test = i_tr_te.test.load(columns=cols_keep) df =
pd.concat([df_train, df_test])
pandas.concat
import argparse import os from io import BytesIO from time import ctime from urllib.parse import urljoin from urllib.request import urlopen from zipfile import ZipFile import boto3 import pandas as pd from column_map_benchmark import benchmark_column_map from foreign_key_benchmark import benchmark_foreign_key from how_lineage_benchmark import benchmark_how_lineage from primary_key_benchmark import benchmark_primary_key BUCKET_NAME = 'tracer-data' DATA_URL = 'http://{}.s3.amazonaws.com/'.format(BUCKET_NAME) def download(data_dir): """Download benchmark datasets from S3. This downloads the benchmark datasets from S3 into the target folder in an uncompressed format. It skips datasets that have already been downloaded. Please make sure an appropriate S3 credential is installed before you call this method. Args: data_dir: The directory to download the datasets to. Returns: A DataFrame describing the downloaded datasets. Raises: NoCredentialsError: If AWS S3 credentials are not found. """ rows = [] client = boto3.client('s3') for dataset in client.list_objects(Bucket=BUCKET_NAME)['Contents']: if not '.zip' in dataset['Key']: continue rows.append(dataset) dataset_name = dataset['Key'].replace(".zip", "") dataset_path = os.path.join(data_dir, dataset_name) if os.path.exists(dataset_path): dataset["Status"] = "Skipped" print("Skipping %s" % dataset_name) else: dataset["Status"] = "Downloaded" print("Downloading %s" % dataset_name) with urlopen(urljoin(DATA_URL, dataset['Key'])) as fp: with ZipFile(BytesIO(fp.read())) as zipfile: zipfile.extractall(dataset_path) return pd.DataFrame(rows) def start_with(target, source): return len(source) <= len(target) and target[:len(source)] == source def aggregate(cmd_name): cmd_abbrv = {'column': 'ColMap_st', 'foreign': 'ForeignKey_st', 'primary': 'PrimaryKey_st' } if cmd_name not in cmd_abbrv: print("Invalid command name!") return None # invalid command name cmd_name = cmd_abbrv[cmd_name] dfs = [] for file in os.listdir("Reports"): if start_with(file, cmd_name): dfs.append(pd.read_csv("Reports/" + file)) if len(dfs) == 0: print("No available test results!") return None df =
pd.concat(dfs, axis=0, ignore_index=True)
pandas.concat
#!/usr/bin/env python3 # -*- coding: utf-8 -*- """ ########## Processing ########## *Created on Thu Jun 1 14:15 2017 by <NAME>* Processing results from the CellPainting Assay in the Jupyter notebook. This module provides the DataSet class and its methods. Additional functions in this module act on pandas DataFrames.""" import time import glob import os.path as op from collections import Counter import xml.etree.ElementTree as ET import pickle import pandas as pd import numpy as np from rdkit.Chem import AllChem as Chem from rdkit import DataStructs from IPython.core.display import HTML from . import tools as cpt from .config import ACT_PROF_PARAMETERS from .config import LIMIT_SIMILARITY_L, LIMIT_CELL_COUNT_L, LIMIT_ACTIVITY_L try: from misc_tools import apl_tools AP_TOOLS = True #: Library version VERSION = apl_tools.get_commit(__file__) # I use this to keep track of the library versions I use in my project notebooks print("{:45s} (commit: {})".format(__name__, VERSION)) except ImportError: AP_TOOLS = False print("{:45s} ({})".format(__name__, time.strftime("%y%m%d-%H:%M", time.localtime(op.getmtime(__file__))))) try: from . import resource_paths as cprp except ImportError: from . import resource_paths_templ as cprp print("* Resource paths not found, stub loaded.") print(" Automatic loading of resources will not work,") print(" please have a look at resource_paths_templ.py") FINAL_PARAMETERS = ['Metadata_Plate', 'Metadata_Well', 'plateColumn', 'plateRow', "Compound_Id", 'Container_Id', "Well_Id", "Producer", "Pure_Flag", "Toxic", "Rel_Cell_Count", "Known_Act", "Trivial_Name", 'WellType', 'Conc_uM', "Activity", "Act_Profile", "Plate", "Smiles"] DROP_FROM_NUMBERS = ['plateColumn', 'plateRow', 'Conc_uM', "Compound_Id"] DROP_GLOBAL = ["PathName_CellOutlines", "URL_CellOutlines", 'FileName_CellOutlines', 'ImageNumber', 'Metadata_Site', 'Metadata_Site_1', 'Metadata_Site_2'] QUANT = [0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9] DEBUG = False def debug_print(txt, val): if DEBUG: txt = txt + ":" print("DEBUG {:20s}".format(txt), val) class DataSet(): def __init__(self, log=True): self.data = pd.DataFrame() self.fields = {"plateColumn": "Metadata_Plate", "WellType": "WellType", "ControlWell": "Control", "CompoundWell": "Compound"} self.log = log def __getitem__(self, item): res = self.data[item] if isinstance(res, pd.DataFrame): result = DataSet() result.data = res result.print_log("subset") else: result = res return result def __getattr__(self, name): """Try to call undefined methods on the underlying pandas DataFrame.""" def method(*args, **kwargs): res = getattr(self.data, name)(*args, **kwargs) if isinstance(res, pd.DataFrame): result = DataSet() result.data = res result.print_log(name) else: result = res return result return method def show(self): parameters = [k for k in FINAL_PARAMETERS if k in self.data] print("Shape: ", self.shape) print("Parameters:", parameters) return HTML(self.data[parameters]._repr_html_()) def head(self, n=5): parameters = [k for k in FINAL_PARAMETERS if k in self.data] res = self.data[parameters].head(n) result = DataSet() result.data = res result.print_log("head") return result def drop_cols(self, cols, inplace=False): """Drops the list of columns from the DataFrame. Listed columns that are not present in the DataFrame are simply ignored (no error is thrown).""" if inplace: drop_cols(self.data, cols, inplace=True) self.print_log("drop cols (inplace)") else: result = DataSet() result.data = drop_cols(self.data, cols, inplace=False) result.print_log("drop cols") return result def keep_cols(self, cols, inplace=False): if inplace: self.data = self.data[cols] self.print_log("keep cols (inplace)") else: result = DataSet() result.data = self.data[cols] result.print_log("keep cols") return result def print_log(self, component, add_info=""): if self.log: print_log(self.data, component, add_info) def load(self, fn, sep="\t"): """Read one or multiple result files and concatenate them into one dataset. `fn` is a single filename (string) or a list of filenames.""" self.data = load(fn, sep=sep).data self.print_log("load data") def write_csv(self, fn, parameters=None, sep="\t"): result = self.data.copy() if isinstance(parameters, list): result = result[parameters] result.to_csv(fn, sep=sep, index=False) def write_pkl(self, fn): self.data.to_pickle(fn) def write_parameters(self, fn="parameters.txt"): parameters = sorted(self.measurements) with open("parameters.txt", "w") as f: f.write('"') f.write('",\n"'.join(parameters)) f.write('"') print(len(parameters), "parameters written.") def describe(self, times_mad=3.0): df = numeric_parameters(self.data) stats = pd.DataFrame() stats["Min"] = df.min() stats["Max"] = df.max() stats["Median"] = df.median() stats["MAD"] = df.mad() stats["Outliers"] = df[(((df - df.median()).abs() - times_mad * df.mad()) > 0)].count() print(self.shape) return stats def well_type_from_position(self): """Assign the WellType from the position on the plate. Controls are in column 11 and 12""" result = DataSet(log=self.log) result.data = well_type_from_position(self.data) result.print_log("well type from pos") return result def well_from_position(self, well_name="Metadata_Well", row_name="plateRow", col_name="plateColumn"): """Assign Metadata_Well from plateRow, plateColumn""" result = DataSet(log=self.log) result.data = well_from_position(self.data, well_name=well_name, row_name=row_name, col_name=col_name) result.print_log("well from pos") return result def position_from_well(self, well_name="Metadata_Well", row_name="plateRow", col_name="plateColumn"): """Generate plateRow and plateColumn from Metatadata_Well""" result = DataSet(log=self.log) result.data = position_from_well(self.data, well_name=well_name, row_name=row_name, col_name=col_name) result.print_log("pos from well") return result def join_layout_384(self, layout_fn, on="Address_384"): result = DataSet(log=self.log) result.data = join_layout_384(self.data, layout_fn, on=on) result.print_log("join layout 384") return result def join_layout_1536(self, plate, quadrant, on="Address_384", how="inner"): """Cell Painting is always run in 384er plates. COMAS standard screening plates are format 1536. With this function, the 1536-to-384 reformatting file with the smiles added by join_smiles_to_layout_1536() can be used directly to join the layout to the individual 384er plates.""" result = DataSet(log=self.log) result.data = join_layout_1536(self.data, plate, quadrant, on=on, how=how) result.print_log("join layout 1536") return result def numeric_parameters(self): result = DataSet() result.data = numeric_parameters(self.data) return result def flag_toxic(self, cutoff=LIMIT_CELL_COUNT_L / 100): """Flag data rows of toxic compounds""" result = DataSet() result.data = flag_toxic(self.data, cutoff=cutoff) flagged = result.data["Toxic"].sum() result.print_log("flag toxic", "{:3d} flagged".format(flagged)) return result def remove_toxic(self, cutoff=LIMIT_CELL_COUNT_L / 100): """Remove data rows of toxic compounds""" result = DataSet() toxic = DataSet() result.data, toxic.data = remove_toxic(self.data, cutoff=cutoff) result.print_log("remove toxic", "{:3d} removed".format(toxic.shape[0])) return result, toxic def remove_impure(self, strict=False, reset_index=True): """Remove entries with `Pure_Flag == "Fail"`""" result = DataSet() flagged = DataSet() result.data, flagged.data = remove_impure(self.data) result.print_log("remove impure", "{:3d} removed".format(flagged.shape[0])) return result, flagged def remove_outliers(self, times_dev=3.0, group_by=None, method="median"): """Returns the filtered dataframe as well as the outliers. method can be `median`or `mean` """ result = DataSet() outliers = DataSet() result.data, outliers.data = remove_outliers(self.data, times_dev=times_dev, group_by=group_by, method=method) result.print_log("remove outliers", "{:3d} removed".format(outliers.shape[0])) return result, outliers def remove_skipped_echo_direct_transfer(self, fn): """Remove wells that were reported as skipped in the Echo protocol (xml). This functions works with Echo direct transfer protocols. Function supports using wildcards in the filename, the first file will be used. Returns a new dataframe without the skipped wells.""" result = DataSet() result.data, skipped = remove_skipped_echo_direct_transfer(self.data, fn=fn) skipped_str = "(" + ", ".join(skipped) + ")" result.print_log("remove skipped", "{:3d} skipped {}".format(self.shape[0] - result.shape[0], skipped_str)) return result def drop_dups(self, cpd_id="Compound_Id"): """Drop duplicate Compound_Ids""" result = DataSet() result.data = self.data.drop_duplicates(cpd_id) result.print_log("drop dups") return result def group_on_well(self, group_by=FINAL_PARAMETERS): """Group results on well level.""" result = DataSet() result.data = group_on_well(self.data, group_by=group_by) result.print_log("group on well") return result def join_batch_data(self, df_data=None, how="left", fillna="n.d."): """Join data by Batch_Id.""" result = DataSet() result.data = join_batch_data(self.data, df_data=df_data, how=how, fillna=fillna) result.print_log("join batch data") return result def join_container_data(self, df_data=None, how="left", fillna=""): """Join data by Container_Id.""" result = DataSet() result.data = join_container_data(self.data, df_data=df_data, how=how, fillna=fillna) result.print_log("join cntnr data") return result def join_container(self, cont_data=None, how="inner"): result = DataSet(log=self.log) result.data = join_container(self.data, cont_data=cont_data, how=how) result.print_log("join container") return result def join_smiles(self, df_smiles=None, how="left"): """Join Smiles from Compound_Id.""" result = DataSet() result.data = join_smiles(self.data, df_smiles=df_smiles, how=how) result.print_log("join smiles") return result def join_annotations(self): """Join Annotations from Compound_Id.""" result = DataSet() result.data = join_annotations(self.data) result.print_log("join annotations") return result def add_dmso(self): """Add DMSO to references.""" result = DataSet() result.data = add_dmso(self.data) result.print_log("add DMSO") return result def poc(self, group_by=None, well_type="WellType", control_name="Control"): """Normalize the data set to Percent-Of-Control per group (e.g. per plate) based on the median of the controls. Parameters: group_by (string or None): optional column by which the calculation should be grouped, e.g. the column with plate name.""" result = DataSet() result.data = poc(self.data, group_by=group_by) self.print_log("POC") return result def activity_profile(self, mad_mult=3.5, parameters=ACT_PROF_PARAMETERS, only_final=True): """Generates the `Act_Profile` column. The byte is set when the parameter's value is greater (or smaller) than parameter_ctrl.median() + (or -) `mad_mult`* parameter.mad() If a list of parameters is given, then the activity profile will be calculated for these parameters. If `only_final` == `True`, then only the parameters listed in `FINAL_PARAMETERS` are kept in the output_table. Returns a new Pandas DataFrame.""" result = DataSet() result.data = activity_profile(self.data, mad_mult=mad_mult, parameters=parameters, only_final=only_final) result.print_log("activity profile") return result def relevant_parameters(self, ctrls_std_rel_min=0.001, ctrls_std_rel_max=0.10): result = DataSet() result.data = relevant_parameters(self.data, ctrls_std_rel_min=ctrls_std_rel_min, ctrls_std_rel_max=ctrls_std_rel_max) num_parm = len(result.measurements) result.print_log("relevant parameters", "{:.3f}/{:.3f}/{:4d}" .format(ctrls_std_rel_min, ctrls_std_rel_max, num_parm)) return result def correlation_filter(self, cutoff=0.9, method="pearson"): """The correlation removes all highly correlated columns from the dataframe. The function was implemented according to the description of the corresponding KNIME component. Parameters: cutoff (float): correlation cutoff method (string): "pearson", "kendall", "spearman" (very slow) Returns a new DataFrame with only the non-correlated columns""" result = DataSet() result.data, iterations = correlation_filter(self.data, cutoff=cutoff, method=method) num_parm = len(result.measurements) result.print_log("correl. filter (mad)", "{:3d} iterations/{:4d}" .format(iterations, num_parm)) return result def correlation_filter_std(self, cutoff=0.9, method="pearson"): """The correlation removes all highly correlated columns from the dataframe. The function was implemented according to the description of the corresponding KNIME component. Parameters: cutoff (float): correlation cutoff method (string): "pearson", "kendall", "spearman" (very slow) Returns a new DataFrame with only the non-correlated columns""" result = DataSet() result.data, iterations = correlation_filter_std(self.data, cutoff=cutoff, method=method) num_parm = len(result.measurements) result.print_log("correl. filter (std)", "{:3d} iterations/{:4d}" .format(iterations, num_parm)) return result def add_act_profile_for_control(self, parameters=ACT_PROF_PARAMETERS): # Compound_Id DMSO: 245754 control = {"Compound_Id": 245754, "Trivial_Name": "Control", "Activity": 0, "Act_Profile": "".join(["1"] * len(parameters))} ck = control.keys() for k in ck: if k not in self.data.keys(): control.pop(k) tmp = pd.DataFrame(control) result = DataSet() result.data = pd.concat(self.data, tmp) return result def update_similar_refs(self, mode="cpd", write=True): """Find similar compounds in references and update the export file. The export file of the dict object is in pkl format. In addition, a tsv file (or maybe JSON?) is written for use in PPilot. This method dpes not return anything, it just writes the result to fle.""" rem = "" if write else "write is off" update_similar_refs(self.data, mode=mode, write=write) self.print_log("update similar", rem) def update_datastore(self, mode="cpd", write=True): """Update the DataStore with the current DataFrame.""" update_datastore(self.data, mode=mode, write=write) def find_similar(self, act_profile, cutoff=0.5, max_num=5): """Filter the dataframe for activity profiles similar to the given one. `cutoff` gives the similarity threshold, default is 0.5.""" result = DataSet() result.data = find_similar(self.data, act_profile=act_profile, cutoff=cutoff, max_num=max_num) result.print_log("find similar") return result def well_id_similarity(self, well_id1, well_id2): """Calculate the similarity of the activity profiles from two compounds (identified by `Compound_Id`). Returns value between 0 .. 1""" return well_id_similarity(self.data, well_id1, self.data, well_id2) def count_active_parameters_occurrences(self, act_prof="Act_Profile", parameters=ACT_PROF_PARAMETERS): """Counts the number of times each parameter has been active in the dataset.""" return count_active_parameters_occurrences(self.data, act_prof=act_prof, parameters=ACT_PROF_PARAMETERS) @property def shape(self): return self.data.shape @property def metadata(self): """Returns a list of the those parameters in the DataFrame that are NOT CellProfiler measurements.""" return metadata(self.data) @property def measurements(self): """Returns a list of the CellProfiler parameters that are in the DataFrame.""" return measurements(self.data) def load(fn, sep="\t"): """Read one or multiple result files and concatenate them into one dataset. `fn` is a single filename (string) or a list of filenames.""" result = DataSet() if isinstance(fn, list): result.data = pd.concat((pd.read_csv(f, sep=sep) for f in fn)) else: result.data = pd.read_csv(fn, sep=sep) drop = [d for d in DROP_GLOBAL if d in result.data.keys()] result.data.drop(drop, axis=1, inplace=True) result.print_log("load dataset") return result def load_pkl(fn): result = DataSet() result.data = pd.read_pickle(fn) result.print_log("load pickle") return result def print_log(df, component, add_info=""): component = component + ":" if len(add_info) > 0: add_info = " ({})".format(add_info) print("* {:22s} ({:5d} | {:4d}){}".format(component, df.shape[0], df.shape[1], add_info)) def read_smiles_file(fn, props=['Compound_Id', "Smiles"]): """Read in the file with the Compound_Ids and the Smiles. Return a DataFrame for fast access.""" result = pd.read_csv(fn, sep="\t") result = result[props] result = result.apply(pd.to_numeric, errors='ignore') return result def clear_resources(): try: del SMILES print("* deleted resource: SMILES") except NameError: pass try: del ANNOTATIONS print("* deleted resource: ANNOTATIONS") except NameError: pass try: del REFERENCES print("* deleted resource: REFERENCES") except NameError: pass try: del SIM_REFS print("* deleted resource: SIM_REFS") except NameError: pass try: del DATASTORE print("* deleted resource: DATASTORE") except NameError: pass try: del LAYOUTS print("* deleted resource: LAYOUTS") except NameError: pass def load_resource(resource, mode="cpd"): """Available resources: SMILES, ANNOTATIONS, SIM_REFS, REFERENCES, CONTAINER, CONTAINER_DATA, BATCH_DATA, DATASTORE, LAYOUTS""" res = resource.lower() glbls = globals() if "smi" in res: if "SMILES" not in glbls: # except NameError: global SMILES print("- loading resource: (SMILES)") SMILES = read_smiles_file(cprp.smiles_path, props=cprp.smiles_cols) SMILES = SMILES.apply(pd.to_numeric, errors='ignore') elif "annot" in res: if "ANNOTATIONS" not in glbls: global ANNOTATIONS print("- loading resource: (ANNOTATIONS)") ANNOTATIONS = pd.read_csv(cprp.annotations_path, sep="\t") ANNOTATIONS = ANNOTATIONS.apply(pd.to_numeric, errors='ignore') elif "sim" in res: if "SIM_REFS" not in glbls: global SIM_REFS print("- loading resource: (SIM_REFS)") if "ext" in mode.lower(): srp = cprp.sim_refs_ext_path else: srp = cprp.sim_refs_path try: SIM_REFS = pd.read_csv(srp, sep="\t") except FileNotFoundError: print(" * SIM_REFS not found, creating new one.") SIM_REFS = pd.DataFrame() elif "ref" in res: if "REFERENCES" not in glbls: global REFERENCES print("- loading resource: (REFERENCES)") REFERENCES = pd.read_csv(cprp.references_path, sep="\t") # .fillna("") elif "cont" in res: if "CONTAINER" not in glbls: global CONTAINER print("- loading resource: (CONTAINER)") CONTAINER = pd.read_csv(cprp.container_path, sep="\t") if len(cprp.container_data_cols) > 0: CONTAINER = CONTAINER[cprp.container_cols] CONTAINER = CONTAINER.apply(pd.to_numeric, errors='ignore') elif "container_d" in res: if "CONTAINER_DATA" not in glbls: global CONTAINER_DATA print("- loading resource: (CONTAINER)") CONTAINER_DATA = pd.read_csv(cprp.container_data_path, sep="\t") if len(cprp.container_data_cols) > 0: CONTAINER_DATA = CONTAINER_DATA[cprp.container_data_cols] CONTAINER_DATA = CONTAINER_DATA.apply(pd.to_numeric, errors='ignore') elif "batch_d" in res: if "BATCH_DATA" not in glbls: global BATCH_DATA print("- loading resource: (BATCH_DATA)") BATCH_DATA = pd.read_csv(cprp.batch_data_path, sep="\t") if len(cprp.batch_data_cols) > 0: BATCH_DATA = BATCH_DATA[cprp.batch_data_cols] BATCH_DATA = BATCH_DATA.apply(pd.to_numeric, errors='ignore') elif "datast" in res: if "DATASTORE" not in glbls: global DATASTORE print("- loading resource: (DATASTORE)") try: DATASTORE = pd.read_csv(cprp.datastore_path, sep="\t") except FileNotFoundError: print(" * DATASTORE not found, creating new one.") DATASTORE = pd.DataFrame() elif "layout" in res: if "LAYOUTS" not in glbls: global LAYOUTS print("- loading resource: (LAYOUTS)") LAYOUTS = pd.read_csv(cprp.layouts_path, sep="\t") else: raise FileNotFoundError("# unknown resource: {}".format(resource)) def well_type_from_position(df): """Assign the WellType from the position on the plate. Controls are in column 11 and 12""" result = df.copy() result["WellType"] = "Compound" result["WellType"][(result["plateColumn"] == 11) | (result["plateColumn"] == 12)] = "Control" return result def drop_cols(df, cols, inplace=False): """Drops the list of columns from the DataFrame. Listed columns that are not present in the DataFrame are simply ignored (no error is thrown).""" df_keys = df.keys() drop = [k for k in cols if k in df_keys] if inplace: df.drop(drop, axis=1, inplace=True) else: result = df.drop(drop, axis=1) return result def well_from_position(df, well_name="Metadata_Well", row_name="plateRow", col_name="plateColumn"): """Assign Metadata_Well from plateRow, plateColumn""" def _well_from_position_series(s): return cpt.well_from_position_single(s[0], s[1]) result = df.copy() result[well_name] = result[[row_name, col_name]].apply(_well_from_position_series, axis=1) return result def position_from_well(df, well_name="Metadata_Well", row_name="plateRow", col_name="plateColumn"): """Generate plateRow and plateColumn from Metatadata_Well""" def _position_from_well_series(well): return (pd.Series(cpt.position_from_well_single(well))) result = df.copy() result[[row_name, col_name]] = result[well_name].apply(_position_from_well_series) return result def join_layout_384(df, layout_fn, on="Address"): result = df.copy() result[on] = result["Metadata_Well"] layout = pd.read_csv(layout_fn) result = result.merge(layout, on=on) result.drop(on, axis=1, inplace=True) result = result.apply(pd.to_numeric, errors='ignore') return result def get_batch_from_container(df): result = df.copy() result["Batch_Id"] = result["Container_Id"].str[:9] return result def get_cpd_from_container(df): result = pd.concat([df, df["Container_Id"].str.split(":", expand=True)], axis=1) result.rename(columns={0: "Compound_Id"}, inplace=True) drop_cols(result, [1, 2, 3, 4], inplace=True) return result def join_layout_1536(df, plate, quadrant, on="Address_384", sep="\t", how="inner"): """Cell Painting is always run in 384er plates. COMAS standard screening plates are format 1536. With this function, the 1536-to-384 reformatting file can be used directly to join the layout to the individual 384er plates.""" load_resource("LAYOUTS") layout = LAYOUTS.copy() if not isinstance(quadrant, str): quadrant = str(quadrant) drop = ["Plate_name_384", "Plate_name_1536", "Address_1536", "Index", 1, 2] result = df.copy() layout[on] = layout["Plate_name_384"] + layout[on] if "Container_ID_1536" in layout.keys(): layout.rename(columns={"Container_ID_1536": "Container_Id"}, inplace=True) if "Conc" in layout.keys(): layout.rename(columns={"Conc": "Conc_uM"}, inplace=True) layout = join_container(layout) drop_cols(layout, drop, inplace=True) result[on] = plate + "." + quadrant[-1:] + result["Metadata_Well"] result = result.merge(layout, on=on, how=how) result.drop(on, axis=1, inplace=True) result["Well_Id"] = result["Container_Id"] + "_" + result["Metadata_Well"] result = result.apply(pd.to_numeric, errors='ignore') return result def write_datastore(): df = DATASTORE[cprp.datastore_cols] df = df.sort_values("Well_Id") df.to_csv(cprp.datastore_path, index=False, sep="\t") print_log(df, "write datastore") def update_datastore(df2, on="Well_Id", mode="cpd", write=False): global DATASTORE load_resource("DATASTORE") df1 = DATASTORE df2 = df2.copy() if "ref" in mode: df2["Is_Ref"] = True else: df2["Is_Ref"] = False df2 = df2[cprp.datastore_cols] df1 = df1.append(df2, ignore_index=True) rem = "" if write else "write is off" print_log(df2, "update datastore", rem) DATASTORE = df1.drop_duplicates(subset=on, keep="last") if write: write_datastore() def join_batch_data(df, df_data=None, how="Left", fillna="n.d."): """Join data from Batch_Id.""" if df_data is None: load_resource("BATCH_DATA") df_data = BATCH_DATA if "Batch_Id" not in df.keys(): df = get_batch_from_container(df) result = df.merge(df_data, on="Batch_Id", how=how) result = result.apply(pd.to_numeric, errors='ignore') result = result.fillna(fillna) return result def join_container_data(df, df_data=None, how="Left", fillna=""): """Join data from Container_Id.""" if df_data is None: load_resource("CONTAINER_DATA") df_data = CONTAINER_DATA result = df.merge(df_data, on="Container_Id", how=how) result = result.apply(pd.to_numeric, errors='ignore') result = result.fillna(fillna) return result def join_container(df, cont_data=None, how="inner"): if cont_data is None: load_resource("CONTAINER") cont_data = CONTAINER[["Container_Id", "Compound_Id"]] result = df.merge(cont_data, on="Container_Id", how=how) return result def join_smiles(df, df_smiles=None, how="left"): """Join Smiles from Compound_Id.""" if df_smiles is None: load_resource("SMILES") df_smiles = SMILES result = df.merge(df_smiles, on="Compound_Id", how=how) result = result.apply(pd.to_numeric, errors='ignore') result = result.fillna("*") return result def join_annotations(df): """Join Annotations from Compound_Id.""" load_resource("ANNOTATIONS") annotations = ANNOTATIONS drop_cols(df, ["Trivial_Name", "Known_Act"], inplace=True) result = df.merge(annotations, on="Compound_Id", how="left") result = result.fillna("") return result def add_dmso(df): if df[df["Compound_Id"] == 245754].shape[0] > 0: # DMSO already present result = df.copy() else: d = { "Compound_Id": [245754], "Container_Id": ["245754:01:01"], "Well_Id": ["245754:01:01_H11"], "Producer": ["DMSO"], "Conc_uM": [10], "Activity": [0.0], "Rel_Cell_Count": [100], "Pure_Flag": ["Ok"], "Toxic": [False], "Trivial_Name": ["DMSO"], "Known_Act": ["Control"], "Metadata_Well": ["H11"], "Plate": ["170523-S0195-1"], "Smiles": ["CS(C)=O"], "Act_Profile": [len(ACT_PROF_PARAMETERS) * "1"] } dmso = pd.DataFrame(d) result = pd.concat([df, dmso]) return result def metadata(df): """Returns a list of the those parameters in the DataFrame that are NOT CellProfiler measurements.""" parameters = [k for k in df.keys() if not (k.startswith("Count_") or k.startswith("Median_"))] return parameters def measurements(df): """Returns a list of the CellProfiler parameters that are in the DataFrame.""" parameters = [k for k in df.select_dtypes(include=[np.number]).keys() if k.startswith("Count_") or k.startswith("Median_")] return parameters def numeric_parameters(df): result = df.copy()[measurements(df)] return result def flag_toxic(df, cutoff=LIMIT_CELL_COUNT_L / 100): """Flag data rows of toxic compounds""" result = df.copy() median_cell_count_controls = df[df["WellType"] == "Control"]["Count_Cells"].median() result["Toxic"] = (result["Count_Cells"] < median_cell_count_controls * cutoff) result["Rel_Cell_Count"] = (100 * (result["Count_Cells"] / median_cell_count_controls)).astype(int) return result def remove_toxic(df, cutoff=LIMIT_CELL_COUNT_L / 100): """Remove data rows of toxic compounds""" if "Toxic" not in df.keys(): flagged = flag_toxic(df, cutoff=cutoff) else: flagged = df.copy() result = flagged[~flagged["Toxic"]] toxic = flagged[flagged["Toxic"]] return result, toxic def remove_skipped_echo_direct_transfer(df, fn): """Remove wells that were reported as skipped in the Echo protocol (xml). This functions works with Echo direct transfer protocols. Function supports using wildcards in the filename, the first file will be used. Returns a new dataframe without the skipped wells.""" assert fn.endswith(".xml"), "Echo file expected in XML format." skipped_wells = [] try: echo_fn = glob.glob(fn)[0] # use the first glob match except IndexError: raise FileNotFoundError("Echo file could not be found") echo_print = ET.parse(echo_fn).getroot() skipped = echo_print.find("skippedwells") for well in skipped.findall("w"): skipped_wells.append(cpt.format_well(well.get("dn"))) # print("Skipped wells (will be removed):", skipped_wells) # remove the rows with the skipped wells # i.e. keep the rows where Metadata_Well is not in the list skipped_wells result = df[~df["Metadata_Well"].isin(skipped_wells)] return result, skipped_wells def remove_impure(df, strict=False, reset_index=True): """Remove entries with `Pure_Flag == "Fail"` If `strict == True` compound with `Pure_Flag == Warn` are also removed.""" result = df.copy() outliers_list = [] try: outl = result[result["Pure_Flag"] == "Fail"] except TypeError: print(result["Pure_Flag"].dtype) raise result = result[result["Pure_Flag"] != "Fail"] outliers_list.append(outl) if strict: outl = result[result["Pure_Flag"] == "Warn"] result = result[result["Pure_Flag"] != "Warn"] outliers_list.append(outl) outliers =
pd.concat(outliers_list)
pandas.concat
import pytest import numpy as np import pandas import pandas.util.testing as tm from pandas.tests.frame.common import TestData import matplotlib import modin.pandas as pd from modin.pandas.utils import to_pandas from numpy.testing import assert_array_equal from .utils import ( random_state, RAND_LOW, RAND_HIGH, df_equals, df_is_empty, arg_keys, name_contains, test_data_values, test_data_keys, test_data_with_duplicates_values, test_data_with_duplicates_keys, numeric_dfs, no_numeric_dfs, test_func_keys, test_func_values, query_func_keys, query_func_values, agg_func_keys, agg_func_values, numeric_agg_funcs, quantiles_keys, quantiles_values, indices_keys, indices_values, axis_keys, axis_values, bool_arg_keys, bool_arg_values, int_arg_keys, int_arg_values, ) # TODO remove once modin-project/modin#469 is resolved agg_func_keys.remove("str") agg_func_values.remove(str) pd.DEFAULT_NPARTITIONS = 4 # Force matplotlib to not use any Xwindows backend. matplotlib.use("Agg") class TestDFPartOne: # Test inter df math functions def inter_df_math_helper(self, modin_df, pandas_df, op): # Test dataframe to datframe try: pandas_result = getattr(pandas_df, op)(pandas_df) except Exception as e: with pytest.raises(type(e)): getattr(modin_df, op)(modin_df) else: modin_result = getattr(modin_df, op)(modin_df) df_equals(modin_result, pandas_result) # Test dataframe to int try: pandas_result = getattr(pandas_df, op)(4) except Exception as e: with pytest.raises(type(e)): getattr(modin_df, op)(4) else: modin_result = getattr(modin_df, op)(4) df_equals(modin_result, pandas_result) # Test dataframe to float try: pandas_result = getattr(pandas_df, op)(4.0) except Exception as e: with pytest.raises(type(e)): getattr(modin_df, op)(4.0) else: modin_result = getattr(modin_df, op)(4.0) df_equals(modin_result, pandas_result) # Test transposed dataframes to float try: pandas_result = getattr(pandas_df.T, op)(4.0) except Exception as e: with pytest.raises(type(e)): getattr(modin_df.T, op)(4.0) else: modin_result = getattr(modin_df.T, op)(4.0) df_equals(modin_result, pandas_result) frame_data = { "{}_other".format(modin_df.columns[0]): [0, 2], modin_df.columns[0]: [0, 19], modin_df.columns[1]: [1, 1], } modin_df2 = pd.DataFrame(frame_data) pandas_df2 = pandas.DataFrame(frame_data) # Test dataframe to different dataframe shape try: pandas_result = getattr(pandas_df, op)(pandas_df2) except Exception as e: with pytest.raises(type(e)): getattr(modin_df, op)(modin_df2) else: modin_result = getattr(modin_df, op)(modin_df2) df_equals(modin_result, pandas_result) # Test dataframe to list list_test = random_state.randint(RAND_LOW, RAND_HIGH, size=(modin_df.shape[1])) try: pandas_result = getattr(pandas_df, op)(list_test, axis=1) except Exception as e: with pytest.raises(type(e)): getattr(modin_df, op)(list_test, axis=1) else: modin_result = getattr(modin_df, op)(list_test, axis=1) df_equals(modin_result, pandas_result) # Test dataframe to series series_test_modin = modin_df[modin_df.columns[0]] series_test_pandas = pandas_df[pandas_df.columns[0]] try: pandas_result = getattr(pandas_df, op)(series_test_pandas, axis=0) except Exception as e: with pytest.raises(type(e)): getattr(modin_df, op)(series_test_modin, axis=0) else: modin_result = getattr(modin_df, op)(series_test_modin, axis=0) df_equals(modin_result, pandas_result) # Test dataframe to series with different index series_test_modin = modin_df[modin_df.columns[0]].reset_index(drop=True) series_test_pandas = pandas_df[pandas_df.columns[0]].reset_index(drop=True) try: pandas_result = getattr(pandas_df, op)(series_test_pandas, axis=0) except Exception as e: with pytest.raises(type(e)): getattr(modin_df, op)(series_test_modin, axis=0) else: modin_result = getattr(modin_df, op)(series_test_modin, axis=0) df_equals(modin_result, pandas_result) # Level test new_idx = pandas.MultiIndex.from_tuples( [(i // 4, i // 2, i) for i in modin_df.index] ) modin_df_multi_level = modin_df.copy() modin_df_multi_level.index = new_idx # Defaults to pandas with pytest.warns(UserWarning): # Operation against self for sanity check getattr(modin_df_multi_level, op)(modin_df_multi_level, axis=0, level=1) @pytest.mark.parametrize("data", test_data_values, ids=test_data_keys) def test_add(self, data): modin_df = pd.DataFrame(data) pandas_df = pandas.DataFrame(data) self.inter_df_math_helper(modin_df, pandas_df, "add") @pytest.mark.parametrize("data", test_data_values, ids=test_data_keys) def test_div(self, data): modin_df = pd.DataFrame(data) pandas_df = pandas.DataFrame(data) self.inter_df_math_helper(modin_df, pandas_df, "div") @pytest.mark.parametrize("data", test_data_values, ids=test_data_keys) def test_divide(self, data): modin_df = pd.DataFrame(data) pandas_df = pandas.DataFrame(data) self.inter_df_math_helper(modin_df, pandas_df, "divide") @pytest.mark.parametrize("data", test_data_values, ids=test_data_keys) def test_floordiv(self, data): modin_df = pd.DataFrame(data) pandas_df = pandas.DataFrame(data) self.inter_df_math_helper(modin_df, pandas_df, "floordiv") @pytest.mark.parametrize("data", test_data_values, ids=test_data_keys) def test_mod(self, data): modin_df = pd.DataFrame(data) pandas_df = pandas.DataFrame(data) self.inter_df_math_helper(modin_df, pandas_df, "mod") @pytest.mark.parametrize("data", test_data_values, ids=test_data_keys) def test_mul(self, data): modin_df = pd.DataFrame(data) pandas_df = pandas.DataFrame(data) self.inter_df_math_helper(modin_df, pandas_df, "mul") @pytest.mark.parametrize("data", test_data_values, ids=test_data_keys) def test_multiply(self, data): modin_df = pd.DataFrame(data) pandas_df = pandas.DataFrame(data) self.inter_df_math_helper(modin_df, pandas_df, "multiply") @pytest.mark.parametrize("data", test_data_values, ids=test_data_keys) def test_pow(self, data): modin_df = pd.DataFrame(data) pandas_df = pandas.DataFrame(data) # TODO: Revert to others once we have an efficient way of preprocessing for positive # values try: pandas_df = pandas_df.abs() except Exception: pass else: modin_df = modin_df.abs() self.inter_df_math_helper(modin_df, pandas_df, "pow") @pytest.mark.parametrize("data", test_data_values, ids=test_data_keys) def test_sub(self, data): modin_df = pd.DataFrame(data) pandas_df = pandas.DataFrame(data) self.inter_df_math_helper(modin_df, pandas_df, "sub") @pytest.mark.parametrize("data", test_data_values, ids=test_data_keys) def test_subtract(self, data): modin_df = pd.DataFrame(data) pandas_df = pandas.DataFrame(data) self.inter_df_math_helper(modin_df, pandas_df, "subtract") @pytest.mark.parametrize("data", test_data_values, ids=test_data_keys) def test_truediv(self, data): modin_df = pd.DataFrame(data) pandas_df = pandas.DataFrame(data) self.inter_df_math_helper(modin_df, pandas_df, "truediv") @pytest.mark.parametrize("data", test_data_values, ids=test_data_keys) def test___div__(self, data): modin_df = pd.DataFrame(data) pandas_df = pandas.DataFrame(data) self.inter_df_math_helper(modin_df, pandas_df, "__div__") @pytest.mark.parametrize("data", test_data_values, ids=test_data_keys) def test___add__(self, data): modin_df = pd.DataFrame(data) pandas_df = pandas.DataFrame(data) self.inter_df_math_helper(modin_df, pandas_df, "__add__") @pytest.mark.parametrize("data", test_data_values, ids=test_data_keys) def test___radd__(self, data): modin_df = pd.DataFrame(data) pandas_df = pandas.DataFrame(data) self.inter_df_math_helper(modin_df, pandas_df, "__radd__") @pytest.mark.parametrize("data", test_data_values, ids=test_data_keys) def test___mul__(self, data): modin_df = pd.DataFrame(data) pandas_df = pandas.DataFrame(data) self.inter_df_math_helper(modin_df, pandas_df, "__mul__") @pytest.mark.parametrize("data", test_data_values, ids=test_data_keys) def test___rmul__(self, data): modin_df = pd.DataFrame(data) pandas_df = pandas.DataFrame(data) self.inter_df_math_helper(modin_df, pandas_df, "__rmul__") @pytest.mark.parametrize("data", test_data_values, ids=test_data_keys) def test___pow__(self, data): modin_df = pd.DataFrame(data) pandas_df = pandas.DataFrame(data) self.inter_df_math_helper(modin_df, pandas_df, "__pow__") @pytest.mark.parametrize("data", test_data_values, ids=test_data_keys) def test___rpow__(self, data): modin_df = pd.DataFrame(data) pandas_df = pandas.DataFrame(data) self.inter_df_math_helper(modin_df, pandas_df, "__rpow__") @pytest.mark.parametrize("data", test_data_values, ids=test_data_keys) def test___sub__(self, data): modin_df = pd.DataFrame(data) pandas_df = pandas.DataFrame(data) self.inter_df_math_helper(modin_df, pandas_df, "__sub__") @pytest.mark.parametrize("data", test_data_values, ids=test_data_keys) def test___floordiv__(self, data): modin_df = pd.DataFrame(data) pandas_df = pandas.DataFrame(data) self.inter_df_math_helper(modin_df, pandas_df, "__floordiv__") @pytest.mark.parametrize("data", test_data_values, ids=test_data_keys) def test___rfloordiv__(self, data): modin_df = pd.DataFrame(data) pandas_df = pandas.DataFrame(data) self.inter_df_math_helper(modin_df, pandas_df, "__rfloordiv__") @pytest.mark.parametrize("data", test_data_values, ids=test_data_keys) def test___truediv__(self, data): modin_df = pd.DataFrame(data) pandas_df = pandas.DataFrame(data) self.inter_df_math_helper(modin_df, pandas_df, "__truediv__") @pytest.mark.parametrize("data", test_data_values, ids=test_data_keys) def test___rtruediv__(self, data): modin_df = pd.DataFrame(data) pandas_df = pandas.DataFrame(data) self.inter_df_math_helper(modin_df, pandas_df, "__rtruediv__") @pytest.mark.parametrize("data", test_data_values, ids=test_data_keys) def test___mod__(self, data): modin_df = pd.DataFrame(data) pandas_df = pandas.DataFrame(data) self.inter_df_math_helper(modin_df, pandas_df, "__mod__") @pytest.mark.parametrize("data", test_data_values, ids=test_data_keys) def test___rmod__(self, data): modin_df = pd.DataFrame(data) pandas_df = pandas.DataFrame(data) self.inter_df_math_helper(modin_df, pandas_df, "__rmod__") @pytest.mark.parametrize("data", test_data_values, ids=test_data_keys) def test___rdiv__(self, data): modin_df = pd.DataFrame(data) pandas_df = pandas.DataFrame(data) self.inter_df_math_helper(modin_df, pandas_df, "__rdiv__") # END test inter df math functions # Test comparison of inter operation functions def comparison_inter_ops_helper(self, modin_df, pandas_df, op): try: pandas_result = getattr(pandas_df, op)(pandas_df) except Exception as e: with pytest.raises(type(e)): getattr(modin_df, op)(modin_df) else: modin_result = getattr(modin_df, op)(modin_df) df_equals(modin_result, pandas_result) try: pandas_result = getattr(pandas_df, op)(4) except TypeError: with pytest.raises(TypeError): getattr(modin_df, op)(4) else: modin_result = getattr(modin_df, op)(4) df_equals(modin_result, pandas_result) try: pandas_result = getattr(pandas_df, op)(4.0) except TypeError: with pytest.raises(TypeError): getattr(modin_df, op)(4.0) else: modin_result = getattr(modin_df, op)(4.0) df_equals(modin_result, pandas_result) try: pandas_result = getattr(pandas_df, op)("a") except TypeError: with pytest.raises(TypeError): repr(getattr(modin_df, op)("a")) else: modin_result = getattr(modin_df, op)("a") df_equals(modin_result, pandas_result) frame_data = { "{}_other".format(modin_df.columns[0]): [0, 2], modin_df.columns[0]: [0, 19], modin_df.columns[1]: [1, 1], } modin_df2 = pd.DataFrame(frame_data) pandas_df2 = pandas.DataFrame(frame_data) try: pandas_result = getattr(pandas_df, op)(pandas_df2) except Exception as e: with pytest.raises(type(e)): getattr(modin_df, op)(modin_df2) else: modin_result = getattr(modin_df, op)(modin_df2) df_equals(modin_result, pandas_result) new_idx = pandas.MultiIndex.from_tuples( [(i // 4, i // 2, i) for i in modin_df.index] ) modin_df_multi_level = modin_df.copy() modin_df_multi_level.index = new_idx # Defaults to pandas with pytest.warns(UserWarning): # Operation against self for sanity check getattr(modin_df_multi_level, op)(modin_df_multi_level, axis=0, level=1) @pytest.mark.parametrize("data", test_data_values, ids=test_data_keys) def test_eq(self, data): modin_df = pd.DataFrame(data) pandas_df = pandas.DataFrame(data) self.comparison_inter_ops_helper(modin_df, pandas_df, "eq") @pytest.mark.parametrize("data", test_data_values, ids=test_data_keys) def test_ge(self, data): modin_df = pd.DataFrame(data) pandas_df = pandas.DataFrame(data) self.comparison_inter_ops_helper(modin_df, pandas_df, "ge") @pytest.mark.parametrize("data", test_data_values, ids=test_data_keys) def test_gt(self, data): modin_df = pd.DataFrame(data) pandas_df = pandas.DataFrame(data) self.comparison_inter_ops_helper(modin_df, pandas_df, "gt") @pytest.mark.parametrize("data", test_data_values, ids=test_data_keys) def test_le(self, data): modin_df = pd.DataFrame(data) pandas_df = pandas.DataFrame(data) self.comparison_inter_ops_helper(modin_df, pandas_df, "le") @pytest.mark.parametrize("data", test_data_values, ids=test_data_keys) def test_lt(self, data): modin_df = pd.DataFrame(data) pandas_df = pandas.DataFrame(data) self.comparison_inter_ops_helper(modin_df, pandas_df, "lt") @pytest.mark.parametrize("data", test_data_values, ids=test_data_keys) def test_ne(self, data): modin_df = pd.DataFrame(data) pandas_df = pandas.DataFrame(data) self.comparison_inter_ops_helper(modin_df, pandas_df, "ne") # END test comparison of inter operation functions # Test dataframe right operations def inter_df_math_right_ops_helper(self, modin_df, pandas_df, op): try: pandas_result = getattr(pandas_df, op)(4) except Exception as e: with pytest.raises(type(e)): getattr(modin_df, op)(4) else: modin_result = getattr(modin_df, op)(4) df_equals(modin_result, pandas_result) try: pandas_result = getattr(pandas_df, op)(4.0) except Exception as e: with pytest.raises(type(e)): getattr(modin_df, op)(4.0) else: modin_result = getattr(modin_df, op)(4.0) df_equals(modin_result, pandas_result) new_idx = pandas.MultiIndex.from_tuples( [(i // 4, i // 2, i) for i in modin_df.index] ) modin_df_multi_level = modin_df.copy() modin_df_multi_level.index = new_idx # Defaults to pandas with pytest.warns(UserWarning): # Operation against self for sanity check getattr(modin_df_multi_level, op)(modin_df_multi_level, axis=0, level=1) @pytest.mark.parametrize("data", test_data_values, ids=test_data_keys) def test_radd(self, data): modin_df = pd.DataFrame(data) pandas_df = pandas.DataFrame(data) self.inter_df_math_right_ops_helper(modin_df, pandas_df, "radd") @pytest.mark.parametrize("data", test_data_values, ids=test_data_keys) def test_rdiv(self, data): modin_df = pd.DataFrame(data) pandas_df = pandas.DataFrame(data) self.inter_df_math_right_ops_helper(modin_df, pandas_df, "rdiv") @pytest.mark.parametrize("data", test_data_values, ids=test_data_keys) def test_rfloordiv(self, data): modin_df = pd.DataFrame(data) pandas_df = pandas.DataFrame(data) self.inter_df_math_right_ops_helper(modin_df, pandas_df, "rfloordiv") @pytest.mark.parametrize("data", test_data_values, ids=test_data_keys) def test_rmod(self, data): modin_df = pd.DataFrame(data) pandas_df = pandas.DataFrame(data) self.inter_df_math_right_ops_helper(modin_df, pandas_df, "rmod") @pytest.mark.parametrize("data", test_data_values, ids=test_data_keys) def test_rmul(self, data): modin_df = pd.DataFrame(data) pandas_df = pandas.DataFrame(data) self.inter_df_math_right_ops_helper(modin_df, pandas_df, "rmul") @pytest.mark.parametrize("data", test_data_values, ids=test_data_keys) def test_rpow(self, request, data): modin_df = pd.DataFrame(data) pandas_df = pandas.DataFrame(data) # TODO: Revert to others once we have an efficient way of preprocessing for positive values # We need to check that negative integers are not used efficiently if "100x100" not in request.node.name: self.inter_df_math_right_ops_helper(modin_df, pandas_df, "rpow") @pytest.mark.parametrize("data", test_data_values, ids=test_data_keys) def test_rsub(self, data): modin_df = pd.DataFrame(data) pandas_df = pandas.DataFrame(data) self.inter_df_math_right_ops_helper(modin_df, pandas_df, "rsub") @pytest.mark.parametrize("data", test_data_values, ids=test_data_keys) def test_rtruediv(self, data): modin_df = pd.DataFrame(data) pandas_df = pandas.DataFrame(data) self.inter_df_math_right_ops_helper(modin_df, pandas_df, "rtruediv") @pytest.mark.parametrize("data", test_data_values, ids=test_data_keys) def test___rsub__(self, data): modin_df = pd.DataFrame(data) pandas_df = pandas.DataFrame(data) self.inter_df_math_right_ops_helper(modin_df, pandas_df, "__rsub__") # END test dataframe right operations @pytest.mark.parametrize("data", test_data_values, ids=test_data_keys) def test_abs(self, request, data): modin_df = pd.DataFrame(data) pandas_df = pandas.DataFrame(data) try: pandas_result = pandas_df.abs() except Exception as e: with pytest.raises(type(e)): modin_df.abs() else: modin_result = modin_df.abs() df_equals(modin_result, pandas_result) @pytest.mark.parametrize("data", test_data_values, ids=test_data_keys) def test_add_prefix(self, data): modin_df = pd.DataFrame(data) pandas_df = pandas.DataFrame(data) test_prefix = "TEST" new_modin_df = modin_df.add_prefix(test_prefix) new_pandas_df = pandas_df.add_prefix(test_prefix) df_equals(new_modin_df.columns, new_pandas_df.columns) @pytest.mark.parametrize("data", test_data_values, ids=test_data_keys) @pytest.mark.parametrize("testfunc", test_func_values, ids=test_func_keys) def test_applymap(self, request, data, testfunc): modin_df = pd.DataFrame(data) pandas_df = pandas.DataFrame(data) with pytest.raises(ValueError): x = 2 modin_df.applymap(x) try: pandas_result = pandas_df.applymap(testfunc) except Exception as e: with pytest.raises(type(e)): modin_df.applymap(testfunc) else: modin_result = modin_df.applymap(testfunc) df_equals(modin_result, pandas_result) @pytest.mark.parametrize("data", test_data_values, ids=test_data_keys) @pytest.mark.parametrize("testfunc", test_func_values, ids=test_func_keys) def test_applymap_numeric(self, request, data, testfunc): modin_df = pd.DataFrame(data) pandas_df = pandas.DataFrame(data) if name_contains(request.node.name, numeric_dfs): try: pandas_result = pandas_df.applymap(testfunc) except Exception as e: with pytest.raises(type(e)): modin_df.applymap(testfunc) else: modin_result = modin_df.applymap(testfunc) df_equals(modin_result, pandas_result) @pytest.mark.parametrize("data", test_data_values, ids=test_data_keys) def test_add_suffix(self, data): modin_df = pd.DataFrame(data) pandas_df = pandas.DataFrame(data) test_suffix = "TEST" new_modin_df = modin_df.add_suffix(test_suffix) new_pandas_df = pandas_df.add_suffix(test_suffix) df_equals(new_modin_df.columns, new_pandas_df.columns) @pytest.mark.parametrize("data", test_data_values, ids=test_data_keys) def test_at(self, request, data): modin_df = pd.DataFrame(data) pandas_df = pandas.DataFrame(data) # We skip nan datasets because nan != nan if "nan" not in request.node.name: key1 = modin_df.columns[0] # Scaler assert modin_df.at[0, key1] == pandas_df.at[0, key1] # Series df_equals(modin_df.loc[0].at[key1], pandas_df.loc[0].at[key1]) # Write Item modin_df_copy = modin_df.copy() pandas_df_copy = pandas_df.copy() modin_df_copy.at[1, key1] = modin_df.at[0, key1] pandas_df_copy.at[1, key1] = pandas_df.at[0, key1] df_equals(modin_df_copy, pandas_df_copy) @pytest.mark.parametrize("data", test_data_values, ids=test_data_keys) def test_axes(self, data): modin_df = pd.DataFrame(data) pandas_df = pandas.DataFrame(data) for modin_axis, pd_axis in zip(modin_df.axes, pandas_df.axes): assert np.array_equal(modin_axis, pd_axis) @pytest.mark.parametrize("data", test_data_values, ids=test_data_keys) def test_copy(self, data): modin_df = pd.DataFrame(data) pandas_df = pandas.DataFrame(data) # noqa F841 # pandas_df is unused but there so there won't be confusing list comprehension # stuff in the pytest.mark.parametrize new_modin_df = modin_df.copy() assert new_modin_df is not modin_df assert np.array_equal( new_modin_df._query_compiler._modin_frame._partitions, modin_df._query_compiler._modin_frame._partitions, ) assert new_modin_df is not modin_df df_equals(new_modin_df, modin_df) # Shallow copy tests modin_df = pd.DataFrame(data) modin_df_cp = modin_df.copy(False) modin_df[modin_df.columns[0]] = 0 df_equals(modin_df, modin_df_cp) @pytest.mark.parametrize("data", test_data_values, ids=test_data_keys) def test_dtypes(self, data): modin_df = pd.DataFrame(data) pandas_df = pandas.DataFrame(data) df_equals(modin_df.dtypes, pandas_df.dtypes) @pytest.mark.parametrize("data", test_data_values, ids=test_data_keys) def test_ftypes(self, data): modin_df = pd.DataFrame(data) pandas_df = pandas.DataFrame(data) df_equals(modin_df.ftypes, pandas_df.ftypes) @pytest.mark.parametrize("data", test_data_values, ids=test_data_keys) @pytest.mark.parametrize("key", indices_values, ids=indices_keys) def test_get(self, data, key): modin_df = pd.DataFrame(data) pandas_df = pandas.DataFrame(data) df_equals(modin_df.get(key), pandas_df.get(key)) df_equals( modin_df.get(key, default="default"), pandas_df.get(key, default="default") ) @pytest.mark.parametrize("data", test_data_values, ids=test_data_keys) def test_get_dtype_counts(self, data): modin_result = pd.DataFrame(data).get_dtype_counts().sort_index() pandas_result = pandas.DataFrame(data).get_dtype_counts().sort_index() df_equals(modin_result, pandas_result) @pytest.mark.parametrize("data", test_data_values, ids=test_data_keys) @pytest.mark.parametrize( "dummy_na", bool_arg_values, ids=arg_keys("dummy_na", bool_arg_keys) ) @pytest.mark.parametrize( "drop_first", bool_arg_values, ids=arg_keys("drop_first", bool_arg_keys) ) def test_get_dummies(self, request, data, dummy_na, drop_first): modin_df = pd.DataFrame(data) pandas_df = pandas.DataFrame(data) try: pandas_result = pandas.get_dummies( pandas_df, dummy_na=dummy_na, drop_first=drop_first ) except Exception as e: with pytest.raises(type(e)): pd.get_dummies(modin_df, dummy_na=dummy_na, drop_first=drop_first) else: modin_result = pd.get_dummies( modin_df, dummy_na=dummy_na, drop_first=drop_first ) df_equals(modin_result, pandas_result) @pytest.mark.parametrize("data", test_data_values, ids=test_data_keys) def test_get_ftype_counts(self, data): modin_df = pd.DataFrame(data) pandas_df = pandas.DataFrame(data) df_equals(modin_df.get_ftype_counts(), pandas_df.get_ftype_counts()) @pytest.mark.parametrize("data", test_data_values, ids=test_data_keys) @pytest.mark.parametrize("axis", axis_values, ids=axis_keys) @pytest.mark.parametrize("func", agg_func_values, ids=agg_func_keys) def test_agg(self, data, axis, func): modin_df = pd.DataFrame(data) pandas_df = pandas.DataFrame(data) try: pandas_result = pandas_df.agg(func, axis) except Exception as e: with pytest.raises(type(e)): modin_df.agg(func, axis) else: modin_result = modin_df.agg(func, axis) df_equals(modin_result, pandas_result) @pytest.mark.parametrize("data", test_data_values, ids=test_data_keys) @pytest.mark.parametrize("axis", axis_values, ids=axis_keys) @pytest.mark.parametrize("func", agg_func_values, ids=agg_func_keys) def test_agg_numeric(self, request, data, axis, func): if name_contains(request.node.name, numeric_agg_funcs) and name_contains( request.node.name, numeric_dfs ): modin_df = pd.DataFrame(data) pandas_df = pandas.DataFrame(data) try: pandas_result = pandas_df.agg(func, axis) except Exception as e: with pytest.raises(type(e)): modin_df.agg(func, axis) else: modin_result = modin_df.agg(func, axis) df_equals(modin_result, pandas_result) @pytest.mark.parametrize("data", test_data_values, ids=test_data_keys) @pytest.mark.parametrize("axis", axis_values, ids=axis_keys) @pytest.mark.parametrize("func", agg_func_values, ids=agg_func_keys) def test_aggregate(self, request, data, func, axis): modin_df = pd.DataFrame(data) pandas_df = pandas.DataFrame(data) try: pandas_result = pandas_df.aggregate(func, axis) except Exception as e: with pytest.raises(type(e)): modin_df.aggregate(func, axis) else: modin_result = modin_df.aggregate(func, axis) df_equals(modin_result, pandas_result) @pytest.mark.parametrize("data", test_data_values, ids=test_data_keys) @pytest.mark.parametrize("axis", axis_values, ids=axis_keys) @pytest.mark.parametrize("func", agg_func_values, ids=agg_func_keys) def test_aggregate_numeric(self, request, data, axis, func): if name_contains(request.node.name, numeric_agg_funcs) and name_contains( request.node.name, numeric_dfs ): modin_df = pd.DataFrame(data) pandas_df = pandas.DataFrame(data) try: pandas_result = pandas_df.agg(func, axis) except Exception as e: with pytest.raises(type(e)): modin_df.agg(func, axis) else: modin_result = modin_df.agg(func, axis) df_equals(modin_result, pandas_result) @pytest.mark.parametrize("data", test_data_values, ids=test_data_keys) def test_aggregate_error_checking(self, data): modin_df = pd.DataFrame(data) assert modin_df.aggregate("ndim") == 2 with pytest.warns(UserWarning): modin_df.aggregate( {modin_df.columns[0]: "sum", modin_df.columns[1]: "mean"} ) with pytest.warns(UserWarning): modin_df.aggregate("cumproduct") with pytest.raises(ValueError): modin_df.aggregate("NOT_EXISTS") def test_align(self): data = test_data_values[0] with pytest.warns(UserWarning): pd.DataFrame(data).align(pd.DataFrame(data)) @pytest.mark.parametrize("data", test_data_values, ids=test_data_keys) @pytest.mark.parametrize("axis", axis_values, ids=axis_keys) @pytest.mark.parametrize( "skipna", bool_arg_values, ids=arg_keys("skipna", bool_arg_keys) ) @pytest.mark.parametrize( "bool_only", bool_arg_values, ids=arg_keys("bool_only", bool_arg_keys) ) def test_all(self, data, axis, skipna, bool_only): modin_df = pd.DataFrame(data) pandas_df = pandas.DataFrame(data) try: pandas_result = pandas_df.all(axis=axis, skipna=skipna, bool_only=bool_only) except Exception as e: with pytest.raises(type(e)): modin_df.all(axis=axis, skipna=skipna, bool_only=bool_only) else: modin_result = modin_df.all(axis=axis, skipna=skipna, bool_only=bool_only) df_equals(modin_result, pandas_result) # Test when axis is None. This will get repeated but easier than using list in parameterize decorator try: pandas_result = pandas_df.all(axis=None, skipna=skipna, bool_only=bool_only) except Exception as e: with pytest.raises(type(e)): modin_df.all(axis=None, skipna=skipna, bool_only=bool_only) else: modin_result = modin_df.all(axis=None, skipna=skipna, bool_only=bool_only) df_equals(modin_result, pandas_result) try: pandas_result = pandas_df.T.all( axis=axis, skipna=skipna, bool_only=bool_only ) except Exception as e: with pytest.raises(type(e)): modin_df.T.all(axis=axis, skipna=skipna, bool_only=bool_only) else: modin_result = modin_df.T.all(axis=axis, skipna=skipna, bool_only=bool_only) df_equals(modin_result, pandas_result) # Test when axis is None. This will get repeated but easier than using list in parameterize decorator try: pandas_result = pandas_df.T.all( axis=None, skipna=skipna, bool_only=bool_only ) except Exception as e: with pytest.raises(type(e)): modin_df.T.all(axis=None, skipna=skipna, bool_only=bool_only) else: modin_result = modin_df.T.all(axis=None, skipna=skipna, bool_only=bool_only) df_equals(modin_result, pandas_result) # test level modin_df_multi_level = modin_df.copy() pandas_df_multi_level = pandas_df.copy() axis = modin_df._get_axis_number(axis) if axis is not None else 0 levels = 3 axis_names_list = [["a", "b", "c"], None] for axis_names in axis_names_list: if axis == 0: new_idx = pandas.MultiIndex.from_tuples( [(i // 4, i // 2, i) for i in range(len(modin_df.index))], names=axis_names, ) modin_df_multi_level.index = new_idx pandas_df_multi_level.index = new_idx else: new_col = pandas.MultiIndex.from_tuples( [(i // 4, i // 2, i) for i in range(len(modin_df.columns))], names=axis_names, ) modin_df_multi_level.columns = new_col pandas_df_multi_level.columns = new_col for level in list(range(levels)) + (axis_names if axis_names else []): try: pandas_multi_level_result = pandas_df_multi_level.all( axis=axis, bool_only=bool_only, level=level, skipna=skipna ) except Exception as e: with pytest.raises(type(e)): modin_df_multi_level.all( axis=axis, bool_only=bool_only, level=level, skipna=skipna ) else: modin_multi_level_result = modin_df_multi_level.all( axis=axis, bool_only=bool_only, level=level, skipna=skipna ) df_equals(modin_multi_level_result, pandas_multi_level_result) @pytest.mark.parametrize("data", test_data_values, ids=test_data_keys) @pytest.mark.parametrize("axis", axis_values, ids=axis_keys) @pytest.mark.parametrize( "skipna", bool_arg_values, ids=arg_keys("skipna", bool_arg_keys) ) @pytest.mark.parametrize( "bool_only", bool_arg_values, ids=arg_keys("bool_only", bool_arg_keys) ) def test_any(self, data, axis, skipna, bool_only): modin_df = pd.DataFrame(data) pandas_df = pandas.DataFrame(data) try: pandas_result = pandas_df.any(axis=axis, skipna=skipna, bool_only=bool_only) except Exception as e: with pytest.raises(type(e)): modin_df.any(axis=axis, skipna=skipna, bool_only=bool_only) else: modin_result = modin_df.any(axis=axis, skipna=skipna, bool_only=bool_only) df_equals(modin_result, pandas_result) try: pandas_result = pandas_df.any(axis=None, skipna=skipna, bool_only=bool_only) except Exception as e: with pytest.raises(type(e)): modin_df.any(axis=None, skipna=skipna, bool_only=bool_only) else: modin_result = modin_df.any(axis=None, skipna=skipna, bool_only=bool_only) df_equals(modin_result, pandas_result) try: pandas_result = pandas_df.T.any( axis=axis, skipna=skipna, bool_only=bool_only ) except Exception as e: with pytest.raises(type(e)): modin_df.T.any(axis=axis, skipna=skipna, bool_only=bool_only) else: modin_result = modin_df.T.any(axis=axis, skipna=skipna, bool_only=bool_only) df_equals(modin_result, pandas_result) try: pandas_result = pandas_df.T.any( axis=None, skipna=skipna, bool_only=bool_only ) except Exception as e: with pytest.raises(type(e)): modin_df.T.any(axis=None, skipna=skipna, bool_only=bool_only) else: modin_result = modin_df.T.any(axis=None, skipna=skipna, bool_only=bool_only) df_equals(modin_result, pandas_result) # test level modin_df_multi_level = modin_df.copy() pandas_df_multi_level = pandas_df.copy() axis = modin_df._get_axis_number(axis) if axis is not None else 0 levels = 3 axis_names_list = [["a", "b", "c"], None] for axis_names in axis_names_list: if axis == 0: new_idx = pandas.MultiIndex.from_tuples( [(i // 4, i // 2, i) for i in range(len(modin_df.index))], names=axis_names, ) modin_df_multi_level.index = new_idx pandas_df_multi_level.index = new_idx else: new_col = pandas.MultiIndex.from_tuples( [(i // 4, i // 2, i) for i in range(len(modin_df.columns))], names=axis_names, ) modin_df_multi_level.columns = new_col pandas_df_multi_level.columns = new_col for level in list(range(levels)) + (axis_names if axis_names else []): try: pandas_multi_level_result = pandas_df_multi_level.any( axis=axis, bool_only=bool_only, level=level, skipna=skipna ) except Exception as e: with pytest.raises(type(e)): modin_df_multi_level.any( axis=axis, bool_only=bool_only, level=level, skipna=skipna ) else: modin_multi_level_result = modin_df_multi_level.any( axis=axis, bool_only=bool_only, level=level, skipna=skipna ) df_equals(modin_multi_level_result, pandas_multi_level_result) @pytest.mark.parametrize("data", test_data_values, ids=test_data_keys) def test_append(self, data): modin_df = pd.DataFrame(data) pandas_df = pandas.DataFrame(data) data_to_append = {"append_a": 2, "append_b": 1000} ignore_idx_values = [True, False] for ignore in ignore_idx_values: try: pandas_result = pandas_df.append(data_to_append, ignore_index=ignore) except Exception as e: with pytest.raises(type(e)): modin_df.append(data_to_append, ignore_index=ignore) else: modin_result = modin_df.append(data_to_append, ignore_index=ignore) df_equals(modin_result, pandas_result) try: pandas_result = pandas_df.append(pandas_df.iloc[-1]) except Exception as e: with pytest.raises(type(e)): modin_df.append(modin_df.iloc[-1]) else: modin_result = modin_df.append(modin_df.iloc[-1]) df_equals(modin_result, pandas_result) try: pandas_result = pandas_df.append(list(pandas_df.iloc[-1])) except Exception as e: with pytest.raises(type(e)): modin_df.append(list(modin_df.iloc[-1])) else: modin_result = modin_df.append(list(modin_df.iloc[-1])) df_equals(modin_result, pandas_result) verify_integrity_values = [True, False] for verify_integrity in verify_integrity_values: try: pandas_result = pandas_df.append( [pandas_df, pandas_df], verify_integrity=verify_integrity ) except Exception as e: with pytest.raises(type(e)): modin_df.append( [modin_df, modin_df], verify_integrity=verify_integrity ) else: modin_result = modin_df.append( [modin_df, modin_df], verify_integrity=verify_integrity ) df_equals(modin_result, pandas_result) try: pandas_result = pandas_df.append( pandas_df, verify_integrity=verify_integrity ) except Exception as e: with pytest.raises(type(e)): modin_df.append(modin_df, verify_integrity=verify_integrity) else: modin_result = modin_df.append( modin_df, verify_integrity=verify_integrity ) df_equals(modin_result, pandas_result) @pytest.mark.parametrize("data", test_data_values, ids=test_data_keys) @pytest.mark.parametrize("axis", axis_values, ids=axis_keys) @pytest.mark.parametrize("func", agg_func_values, ids=agg_func_keys) def test_apply(self, request, data, func, axis): modin_df = pd.DataFrame(data) pandas_df = pandas.DataFrame(data) with pytest.raises(TypeError): modin_df.apply({"row": func}, axis=1) try: pandas_result = pandas_df.apply(func, axis) except Exception as e: with pytest.raises(type(e)): modin_df.apply(func, axis) else: modin_result = modin_df.apply(func, axis) df_equals(modin_result, pandas_result) def test_apply_metadata(self): def add(a, b, c): return a + b + c data = {"A": [1, 2, 3], "B": [4, 5, 6], "C": [7, 8, 9]} modin_df = pd.DataFrame(data) modin_df["add"] = modin_df.apply( lambda row: add(row["A"], row["B"], row["C"]), axis=1 ) pandas_df = pandas.DataFrame(data) pandas_df["add"] = pandas_df.apply( lambda row: add(row["A"], row["B"], row["C"]), axis=1 ) df_equals(modin_df, pandas_df) @pytest.mark.parametrize("data", test_data_values, ids=test_data_keys) @pytest.mark.parametrize("func", agg_func_values, ids=agg_func_keys) @pytest.mark.parametrize("axis", axis_values, ids=axis_keys) def test_apply_numeric(self, request, data, func, axis): modin_df = pd.DataFrame(data) pandas_df = pandas.DataFrame(data) if name_contains(request.node.name, numeric_dfs): try: pandas_result = pandas_df.apply(func, axis) except Exception as e: with pytest.raises(type(e)): modin_df.apply(func, axis) else: modin_result = modin_df.apply(func, axis) df_equals(modin_result, pandas_result) if "empty_data" not in request.node.name: key = modin_df.columns[0] modin_result = modin_df.apply(lambda df: df.drop(key), axis=1) pandas_result = pandas_df.apply(lambda df: df.drop(key), axis=1) df_equals(modin_result, pandas_result) def test_as_blocks(self): data = test_data_values[0] with pytest.warns(UserWarning): pd.DataFrame(data).as_blocks() def test_as_matrix(self): test_data = TestData() frame = pd.DataFrame(test_data.frame) mat = frame.as_matrix() frame_columns = frame.columns for i, row in enumerate(mat): for j, value in enumerate(row): col = frame_columns[j] if np.isnan(value): assert np.isnan(frame[col][i]) else: assert value == frame[col][i] # mixed type mat = pd.DataFrame(test_data.mixed_frame).as_matrix(["foo", "A"]) assert mat[0, 0] == "bar" df = pd.DataFrame({"real": [1, 2, 3], "complex": [1j, 2j, 3j]}) mat = df.as_matrix() assert mat[0, 1] == 1j # single block corner case mat = pd.DataFrame(test_data.frame).as_matrix(["A", "B"]) expected = test_data.frame.reindex(columns=["A", "B"]).values tm.assert_almost_equal(mat, expected) def test_to_numpy(self): test_data = TestData() frame = pd.DataFrame(test_data.frame) assert_array_equal(frame.values, test_data.frame.values) def test_partition_to_numpy(self): test_data = TestData() frame = pd.DataFrame(test_data.frame) for ( partition ) in frame._query_compiler._modin_frame._partitions.flatten().tolist(): assert_array_equal(partition.to_pandas().values, partition.to_numpy()) def test_asfreq(self): index = pd.date_range("1/1/2000", periods=4, freq="T") series = pd.Series([0.0, None, 2.0, 3.0], index=index) df = pd.DataFrame({"s": series}) with pytest.warns(UserWarning): # We are only testing that this defaults to pandas, so we will just check for # the warning df.asfreq(freq="30S") def test_asof(self): df = pd.DataFrame( {"a": [10, 20, 30, 40, 50], "b": [None, None, None, None, 500]}, index=pd.DatetimeIndex( [ "2018-02-27 09:01:00", "2018-02-27 09:02:00", "2018-02-27 09:03:00", "2018-02-27 09:04:00", "2018-02-27 09:05:00", ] ), ) with pytest.warns(UserWarning): df.asof(pd.DatetimeIndex(["2018-02-27 09:03:30", "2018-02-27 09:04:30"])) def test_assign(self): data = test_data_values[0] modin_df = pd.DataFrame(data) pandas_df = pandas.DataFrame(data) with pytest.warns(UserWarning): modin_result = modin_df.assign(new_column=pd.Series(modin_df.iloc[:, 0])) pandas_result = pandas_df.assign(new_column=pd.Series(pandas_df.iloc[:, 0])) df_equals(modin_result, pandas_result) def test_astype(self): td = TestData() modin_df = pd.DataFrame( td.frame.values, index=td.frame.index, columns=td.frame.columns ) expected_df = pandas.DataFrame( td.frame.values, index=td.frame.index, columns=td.frame.columns ) modin_df_casted = modin_df.astype(np.int32) expected_df_casted = expected_df.astype(np.int32) df_equals(modin_df_casted, expected_df_casted) modin_df_casted = modin_df.astype(np.float64) expected_df_casted = expected_df.astype(np.float64) df_equals(modin_df_casted, expected_df_casted) modin_df_casted = modin_df.astype(str) expected_df_casted = expected_df.astype(str) df_equals(modin_df_casted, expected_df_casted) modin_df_casted = modin_df.astype("category") expected_df_casted = expected_df.astype("category") df_equals(modin_df_casted, expected_df_casted) dtype_dict = {"A": np.int32, "B": np.int64, "C": str} modin_df_casted = modin_df.astype(dtype_dict) expected_df_casted = expected_df.astype(dtype_dict) df_equals(modin_df_casted, expected_df_casted) # Ignore lint because this is testing bad input bad_dtype_dict = {"B": np.int32, "B": np.int64, "B": str} # noqa F601 modin_df_casted = modin_df.astype(bad_dtype_dict) expected_df_casted = expected_df.astype(bad_dtype_dict) df_equals(modin_df_casted, expected_df_casted) with pytest.raises(KeyError): modin_df.astype({"not_exists": np.uint8}) def test_astype_category(self): modin_df = pd.DataFrame( {"col1": ["A", "A", "B", "B", "A"], "col2": [1, 2, 3, 4, 5]} ) pandas_df = pandas.DataFrame( {"col1": ["A", "A", "B", "B", "A"], "col2": [1, 2, 3, 4, 5]} ) modin_result = modin_df.astype({"col1": "category"}) pandas_result = pandas_df.astype({"col1": "category"}) df_equals(modin_result, pandas_result) assert modin_result.dtypes.equals(pandas_result.dtypes) modin_result = modin_df.astype("category") pandas_result = pandas_df.astype("category") df_equals(modin_result, pandas_result) assert modin_result.dtypes.equals(pandas_result.dtypes) def test_at_time(self): i = pd.date_range("2018-04-09", periods=4, freq="12H") ts = pd.DataFrame({"A": [1, 2, 3, 4]}, index=i) with pytest.warns(UserWarning): ts.at_time("12:00") def test_between_time(self): i = pd.date_range("2018-04-09", periods=4, freq="12H") ts = pd.DataFrame({"A": [1, 2, 3, 4]}, index=i) with pytest.warns(UserWarning): ts.between_time("0:15", "0:45") def test_bfill(self): test_data = TestData() test_data.tsframe["A"][:5] = np.nan test_data.tsframe["A"][-5:] = np.nan modin_df = pd.DataFrame(test_data.tsframe) df_equals(modin_df.bfill(), test_data.tsframe.bfill()) def test_blocks(self): data = test_data_values[0] with pytest.warns(UserWarning): pd.DataFrame(data).blocks @pytest.mark.parametrize("data", test_data_values, ids=test_data_keys) def test_bool(self, data): modin_df = pd.DataFrame(data) pandas_df = pandas.DataFrame(data) # noqa F841 with pytest.raises(ValueError): modin_df.bool() modin_df.__bool__() single_bool_pandas_df = pandas.DataFrame([True]) single_bool_modin_df = pd.DataFrame([True]) assert single_bool_pandas_df.bool() == single_bool_modin_df.bool() with pytest.raises(ValueError): # __bool__ always raises this error for DataFrames single_bool_modin_df.__bool__() @pytest.mark.parametrize("data", test_data_values, ids=test_data_keys) def test_boxplot(self, data): modin_df = pd.DataFrame(data) pandas_df = pandas.DataFrame(data) # noqa F841 assert modin_df.boxplot() == to_pandas(modin_df).boxplot() @pytest.mark.parametrize("data", test_data_values, ids=test_data_keys) @pytest.mark.parametrize("axis", axis_values, ids=axis_keys) def test_clip(self, request, data, axis): modin_df = pd.DataFrame(data) pandas_df = pandas.DataFrame(data) if name_contains(request.node.name, numeric_dfs): ind_len = ( len(modin_df.index) if not pandas.DataFrame()._get_axis_number(axis) else len(modin_df.columns) ) # set bounds lower, upper = np.sort(random_state.random_integers(RAND_LOW, RAND_HIGH, 2)) lower_list = random_state.random_integers(RAND_LOW, RAND_HIGH, ind_len) upper_list = random_state.random_integers(RAND_LOW, RAND_HIGH, ind_len) # test only upper scalar bound modin_result = modin_df.clip(None, upper, axis=axis) pandas_result = pandas_df.clip(None, upper, axis=axis) df_equals(modin_result, pandas_result) # test lower and upper scalar bound modin_result = modin_df.clip(lower, upper, axis=axis) pandas_result = pandas_df.clip(lower, upper, axis=axis) df_equals(modin_result, pandas_result) # test lower and upper list bound on each column modin_result = modin_df.clip(lower_list, upper_list, axis=axis) pandas_result = pandas_df.clip(lower_list, upper_list, axis=axis) df_equals(modin_result, pandas_result) # test only upper list bound on each column modin_result = modin_df.clip(np.nan, upper_list, axis=axis) pandas_result = pandas_df.clip(np.nan, upper_list, axis=axis) df_equals(modin_result, pandas_result) with pytest.raises(ValueError): modin_df.clip(lower=[1, 2, 3], axis=None) @pytest.mark.parametrize("data", test_data_values, ids=test_data_keys) @pytest.mark.parametrize("axis", axis_values, ids=axis_keys) def test_clip_lower(self, request, data, axis): modin_df = pd.DataFrame(data) pandas_df = pandas.DataFrame(data) if name_contains(request.node.name, numeric_dfs): ind_len = ( len(modin_df.index) if not pandas.DataFrame()._get_axis_number(axis) else len(modin_df.columns) ) # set bounds lower = random_state.random_integers(RAND_LOW, RAND_HIGH, 1)[0] lower_list = random_state.random_integers(RAND_LOW, RAND_HIGH, ind_len) # test lower scalar bound pandas_result = pandas_df.clip_lower(lower, axis=axis) modin_result = modin_df.clip_lower(lower, axis=axis) df_equals(modin_result, pandas_result) # test lower list bound on each column pandas_result = pandas_df.clip_lower(lower_list, axis=axis) modin_result = modin_df.clip_lower(lower_list, axis=axis) df_equals(modin_result, pandas_result) @pytest.mark.parametrize("data", test_data_values, ids=test_data_keys) @pytest.mark.parametrize("axis", axis_values, ids=axis_keys) def test_clip_upper(self, request, data, axis): modin_df = pd.DataFrame(data) pandas_df = pandas.DataFrame(data) if name_contains(request.node.name, numeric_dfs): ind_len = ( len(modin_df.index) if not pandas.DataFrame()._get_axis_number(axis) else len(modin_df.columns) ) # set bounds upper = random_state.random_integers(RAND_LOW, RAND_HIGH, 1)[0] upper_list = random_state.random_integers(RAND_LOW, RAND_HIGH, ind_len) # test upper scalar bound modin_result = modin_df.clip_upper(upper, axis=axis) pandas_result = pandas_df.clip_upper(upper, axis=axis) df_equals(modin_result, pandas_result) # test upper list bound on each column modin_result = modin_df.clip_upper(upper_list, axis=axis) pandas_result = pandas_df.clip_upper(upper_list, axis=axis) df_equals(modin_result, pandas_result) def test_combine(self): df1 = pd.DataFrame({"A": [0, 0], "B": [4, 4]}) df2 = pd.DataFrame({"A": [1, 1], "B": [3, 3]}) with pytest.warns(UserWarning): df1.combine(df2, lambda s1, s2: s1 if s1.sum() < s2.sum() else s2) def test_combine_first(self): df1 = pd.DataFrame({"A": [None, 0], "B": [None, 4]}) df2 = pd.DataFrame({"A": [1, 1], "B": [3, 3]}) with pytest.warns(UserWarning): df1.combine_first(df2) def test_compound(self): data = test_data_values[0] with pytest.warns(UserWarning): pd.DataFrame(data).compound() def test_corr(self): data = test_data_values[0] with pytest.warns(UserWarning): pd.DataFrame(data).corr() def test_corrwith(self): data = test_data_values[0] with pytest.warns(UserWarning): pd.DataFrame(data).corrwith(pd.DataFrame(data)) @pytest.mark.parametrize("data", test_data_values, ids=test_data_keys) @pytest.mark.parametrize("axis", axis_values, ids=axis_keys) @pytest.mark.parametrize( "numeric_only", bool_arg_values, ids=arg_keys("numeric_only", bool_arg_keys) ) def test_count(self, request, data, axis, numeric_only): modin_df = pd.DataFrame(data) pandas_df = pandas.DataFrame(data) modin_result = modin_df.count(axis=axis, numeric_only=numeric_only) pandas_result = pandas_df.count(axis=axis, numeric_only=numeric_only) df_equals(modin_result, pandas_result) modin_result = modin_df.T.count(axis=axis, numeric_only=numeric_only) pandas_result = pandas_df.T.count(axis=axis, numeric_only=numeric_only) df_equals(modin_result, pandas_result) # test level modin_df_multi_level = modin_df.copy() pandas_df_multi_level = pandas_df.copy() axis = modin_df._get_axis_number(axis) if axis is not None else 0 levels = 3 axis_names_list = [["a", "b", "c"], None] for axis_names in axis_names_list: if axis == 0: new_idx = pandas.MultiIndex.from_tuples( [(i // 4, i // 2, i) for i in range(len(modin_df.index))], names=axis_names, ) modin_df_multi_level.index = new_idx pandas_df_multi_level.index = new_idx try: # test error pandas_df_multi_level.count( axis=1, numeric_only=numeric_only, level=0 ) except Exception as e: with pytest.raises(type(e)): modin_df_multi_level.count( axis=1, numeric_only=numeric_only, level=0 ) else: new_col = pandas.MultiIndex.from_tuples( [(i // 4, i // 2, i) for i in range(len(modin_df.columns))], names=axis_names, ) modin_df_multi_level.columns = new_col pandas_df_multi_level.columns = new_col try: # test error pandas_df_multi_level.count( axis=0, numeric_only=numeric_only, level=0 ) except Exception as e: with pytest.raises(type(e)): modin_df_multi_level.count( axis=0, numeric_only=numeric_only, level=0 ) for level in list(range(levels)) + (axis_names if axis_names else []): modin_multi_level_result = modin_df_multi_level.count( axis=axis, numeric_only=numeric_only, level=level ) pandas_multi_level_result = pandas_df_multi_level.count( axis=axis, numeric_only=numeric_only, level=level ) df_equals(modin_multi_level_result, pandas_multi_level_result) def test_cov(self): data = test_data_values[0] with pytest.warns(UserWarning): pd.DataFrame(data).cov() @pytest.mark.parametrize("data", test_data_values, ids=test_data_keys) @pytest.mark.parametrize("axis", axis_values, ids=axis_keys) @pytest.mark.parametrize( "skipna", bool_arg_values, ids=arg_keys("skipna", bool_arg_keys) ) def test_cummax(self, request, data, axis, skipna): modin_df = pd.DataFrame(data) pandas_df = pandas.DataFrame(data) try: pandas_result = pandas_df.cummax(axis=axis, skipna=skipna) except Exception as e: with pytest.raises(type(e)): modin_df.cummax(axis=axis, skipna=skipna) else: modin_result = modin_df.cummax(axis=axis, skipna=skipna) df_equals(modin_result, pandas_result) try: pandas_result = pandas_df.T.cummax(axis=axis, skipna=skipna) except Exception as e: with pytest.raises(type(e)): modin_df.T.cummax(axis=axis, skipna=skipna) else: modin_result = modin_df.T.cummax(axis=axis, skipna=skipna) df_equals(modin_result, pandas_result) @pytest.mark.parametrize("data", test_data_values, ids=test_data_keys) @pytest.mark.parametrize("axis", axis_values, ids=axis_keys) @pytest.mark.parametrize( "skipna", bool_arg_values, ids=arg_keys("skipna", bool_arg_keys) ) def test_cummin(self, request, data, axis, skipna): modin_df = pd.DataFrame(data) pandas_df = pandas.DataFrame(data) try: pandas_result = pandas_df.cummin(axis=axis, skipna=skipna) except Exception as e: with pytest.raises(type(e)): modin_df.cummin(axis=axis, skipna=skipna) else: modin_result = modin_df.cummin(axis=axis, skipna=skipna) df_equals(modin_result, pandas_result) try: pandas_result = pandas_df.T.cummin(axis=axis, skipna=skipna) except Exception as e: with pytest.raises(type(e)): modin_df.T.cummin(axis=axis, skipna=skipna) else: modin_result = modin_df.T.cummin(axis=axis, skipna=skipna) df_equals(modin_result, pandas_result) @pytest.mark.parametrize("data", test_data_values, ids=test_data_keys) @pytest.mark.parametrize("axis", axis_values, ids=axis_keys) @pytest.mark.parametrize( "skipna", bool_arg_values, ids=arg_keys("skipna", bool_arg_keys) ) def test_cumprod(self, request, data, axis, skipna): modin_df = pd.DataFrame(data) pandas_df = pandas.DataFrame(data) try: pandas_result = pandas_df.cumprod(axis=axis, skipna=skipna) except Exception as e: with pytest.raises(type(e)): modin_df.cumprod(axis=axis, skipna=skipna) else: modin_result = modin_df.cumprod(axis=axis, skipna=skipna) df_equals(modin_result, pandas_result) try: pandas_result = pandas_df.T.cumprod(axis=axis, skipna=skipna) except Exception as e: with pytest.raises(type(e)): modin_df.T.cumprod(axis=axis, skipna=skipna) else: modin_result = modin_df.T.cumprod(axis=axis, skipna=skipna) df_equals(modin_result, pandas_result) @pytest.mark.parametrize("data", test_data_values, ids=test_data_keys) @pytest.mark.parametrize("axis", axis_values, ids=axis_keys) @pytest.mark.parametrize( "skipna", bool_arg_values, ids=arg_keys("skipna", bool_arg_keys) ) def test_cumsum(self, request, data, axis, skipna): modin_df = pd.DataFrame(data) pandas_df = pandas.DataFrame(data) # pandas exhibits weird behavior for this case # Remove this case when we can pull the error messages from backend if name_contains(request.node.name, ["datetime_timedelta_data"]) and ( axis == 0 or axis == "rows" ): with pytest.raises(TypeError): modin_df.cumsum(axis=axis, skipna=skipna) else: try: pandas_result = pandas_df.cumsum(axis=axis, skipna=skipna) except Exception as e: with pytest.raises(type(e)): modin_df.cumsum(axis=axis, skipna=skipna) else: modin_result = modin_df.cumsum(axis=axis, skipna=skipna) df_equals(modin_result, pandas_result) if name_contains(request.node.name, ["datetime_timedelta_data"]) and ( axis == 0 or axis == "rows" ): with pytest.raises(TypeError): modin_df.T.cumsum(axis=axis, skipna=skipna) else: try: pandas_result = pandas_df.T.cumsum(axis=axis, skipna=skipna) except Exception as e: with pytest.raises(type(e)): modin_df.T.cumsum(axis=axis, skipna=skipna) else: modin_result = modin_df.T.cumsum(axis=axis, skipna=skipna) df_equals(modin_result, pandas_result) @pytest.mark.parametrize("data", test_data_values, ids=test_data_keys) def test_describe(self, data): modin_df = pd.DataFrame(data) pandas_df = pandas.DataFrame(data) df_equals(modin_df.describe(), pandas_df.describe()) percentiles = [0.10, 0.11, 0.44, 0.78, 0.99] df_equals( modin_df.describe(percentiles=percentiles), pandas_df.describe(percentiles=percentiles), ) try: pandas_result = pandas_df.describe(exclude=[np.float64]) except Exception as e: with pytest.raises(type(e)): modin_df.describe(exclude=[np.float64]) else: modin_result = modin_df.describe(exclude=[np.float64]) df_equals(modin_result, pandas_result) try: pandas_result = pandas_df.describe(exclude=np.float64) except Exception as e: with pytest.raises(type(e)): modin_df.describe(exclude=np.float64) else: modin_result = modin_df.describe(exclude=np.float64) df_equals(modin_result, pandas_result) try: pandas_result = pandas_df.describe( include=[np.timedelta64, np.datetime64, np.object, np.bool] ) except Exception as e: with pytest.raises(type(e)): modin_df.describe( include=[np.timedelta64, np.datetime64, np.object, np.bool] ) else: modin_result = modin_df.describe( include=[np.timedelta64, np.datetime64, np.object, np.bool] ) df_equals(modin_result, pandas_result) modin_result = modin_df.describe(include=str(modin_df.dtypes.values[0])) pandas_result = pandas_df.describe(include=str(pandas_df.dtypes.values[0])) df_equals(modin_result, pandas_result) modin_result = modin_df.describe(include=[np.number]) pandas_result = pandas_df.describe(include=[np.number]) df_equals(modin_result, pandas_result) df_equals(modin_df.describe(include="all"), pandas_df.describe(include="all")) modin_df = pd.DataFrame(data).applymap(str) pandas_df = pandas.DataFrame(data).applymap(str) try: df_equals(modin_df.describe(), pandas_df.describe()) except AssertionError: # We have to do this because we choose the highest count slightly differently # than pandas. Because there is no true guarantee which one will be first, # If they don't match, make sure that the `freq` is the same at least. df_equals( modin_df.describe().loc[["count", "unique", "freq"]], pandas_df.describe().loc[["count", "unique", "freq"]], ) def test_describe_dtypes(self): modin_df = pd.DataFrame( { "col1": list("abc"), "col2": list("abc"), "col3": list("abc"), "col4": [1, 2, 3], } ) pandas_df = pandas.DataFrame( { "col1": list("abc"), "col2": list("abc"), "col3": list("abc"), "col4": [1, 2, 3], } ) modin_result = modin_df.describe() pandas_result = pandas_df.describe() df_equals(modin_result, pandas_result) @pytest.mark.parametrize("data", test_data_values, ids=test_data_keys) @pytest.mark.parametrize("axis", axis_values, ids=axis_keys) @pytest.mark.parametrize( "periods", int_arg_values, ids=arg_keys("periods", int_arg_keys) ) def test_diff(self, request, data, axis, periods): modin_df = pd.DataFrame(data) pandas_df = pandas.DataFrame(data) try: pandas_result = pandas_df.diff(axis=axis, periods=periods) except Exception as e: with pytest.raises(type(e)): modin_df.diff(axis=axis, periods=periods) else: modin_result = modin_df.diff(axis=axis, periods=periods) df_equals(modin_result, pandas_result) try: pandas_result = pandas_df.T.diff(axis=axis, periods=periods) except Exception as e: with pytest.raises(type(e)): modin_df.T.diff(axis=axis, periods=periods) else: modin_result = modin_df.T.diff(axis=axis, periods=periods) df_equals(modin_result, pandas_result) def test_drop(self): frame_data = {"A": [1, 2, 3, 4], "B": [0, 1, 2, 3]} simple = pandas.DataFrame(frame_data) modin_simple = pd.DataFrame(frame_data) df_equals(modin_simple.drop("A", axis=1), simple[["B"]]) df_equals(modin_simple.drop(["A", "B"], axis="columns"), simple[[]]) df_equals(modin_simple.drop([0, 1, 3], axis=0), simple.loc[[2], :]) df_equals(modin_simple.drop([0, 3], axis="index"), simple.loc[[1, 2], :]) pytest.raises(ValueError, modin_simple.drop, 5) pytest.raises(ValueError, modin_simple.drop, "C", 1) pytest.raises(ValueError, modin_simple.drop, [1, 5]) pytest.raises(ValueError, modin_simple.drop, ["A", "C"], 1) # errors = 'ignore' df_equals(modin_simple.drop(5, errors="ignore"), simple) df_equals(modin_simple.drop([0, 5], errors="ignore"), simple.loc[[1, 2, 3], :]) df_equals(modin_simple.drop("C", axis=1, errors="ignore"), simple) df_equals(modin_simple.drop(["A", "C"], axis=1, errors="ignore"), simple[["B"]]) # non-unique nu_df = pandas.DataFrame( zip(range(3), range(-3, 1), list("abc")), columns=["a", "a", "b"] ) modin_nu_df = pd.DataFrame(nu_df) df_equals(modin_nu_df.drop("a", axis=1), nu_df[["b"]]) df_equals(modin_nu_df.drop("b", axis="columns"), nu_df["a"]) df_equals(modin_nu_df.drop([]), nu_df) nu_df = nu_df.set_index(pandas.Index(["X", "Y", "X"])) nu_df.columns = list("abc") modin_nu_df = pd.DataFrame(nu_df) df_equals(modin_nu_df.drop("X", axis="rows"), nu_df.loc[["Y"], :]) df_equals(modin_nu_df.drop(["X", "Y"], axis=0), nu_df.loc[[], :]) # inplace cache issue frame_data = random_state.randn(10, 3) df = pandas.DataFrame(frame_data, columns=list("abc")) modin_df = pd.DataFrame(frame_data, columns=list("abc")) expected = df[~(df.b > 0)] modin_df.drop(labels=df[df.b > 0].index, inplace=True) df_equals(modin_df, expected) midx = pd.MultiIndex( levels=[["lama", "cow", "falcon"], ["speed", "weight", "length"]], codes=[[0, 0, 0, 1, 1, 1, 2, 2, 2], [0, 1, 2, 0, 1, 2, 0, 1, 2]], ) df = pd.DataFrame( index=midx, columns=["big", "small"], data=[ [45, 30], [200, 100], [1.5, 1], [30, 20], [250, 150], [1.5, 0.8], [320, 250], [1, 0.8], [0.3, 0.2], ], ) with pytest.warns(UserWarning): df.drop(index="length", level=1) def test_drop_api_equivalence(self): # equivalence of the labels/axis and index/columns API's frame_data = [[1, 2, 3], [3, 4, 5], [5, 6, 7]] modin_df = pd.DataFrame( frame_data, index=["a", "b", "c"], columns=["d", "e", "f"] ) modin_df1 = modin_df.drop("a") modin_df2 = modin_df.drop(index="a") df_equals(modin_df1, modin_df2) modin_df1 = modin_df.drop("d", 1) modin_df2 = modin_df.drop(columns="d") df_equals(modin_df1, modin_df2) modin_df1 = modin_df.drop(labels="e", axis=1) modin_df2 = modin_df.drop(columns="e") df_equals(modin_df1, modin_df2) modin_df1 = modin_df.drop(["a"], axis=0) modin_df2 = modin_df.drop(index=["a"]) df_equals(modin_df1, modin_df2) modin_df1 = modin_df.drop(["a"], axis=0).drop(["d"], axis=1) modin_df2 = modin_df.drop(index=["a"], columns=["d"]) df_equals(modin_df1, modin_df2) with pytest.raises(ValueError): modin_df.drop(labels="a", index="b") with pytest.raises(ValueError): modin_df.drop(labels="a", columns="b") with pytest.raises(ValueError): modin_df.drop(axis=1) @pytest.mark.parametrize("data", test_data_values, ids=test_data_keys) def test_drop_transpose(self, data): modin_df = pd.DataFrame(data) pandas_df = pandas.DataFrame(data) modin_result = modin_df.T.drop(columns=[0, 1, 2]) pandas_result = pandas_df.T.drop(columns=[0, 1, 2]) df_equals(modin_result, pandas_result) modin_result = modin_df.T.drop(index=["col3", "col1"]) pandas_result = pandas_df.T.drop(index=["col3", "col1"]) df_equals(modin_result, pandas_result) modin_result = modin_df.T.drop(columns=[0, 1, 2], index=["col3", "col1"]) pandas_result = pandas_df.T.drop(columns=[0, 1, 2], index=["col3", "col1"]) df_equals(modin_result, pandas_result) def test_droplevel(self): df = ( pd.DataFrame([[1, 2, 3, 4], [5, 6, 7, 8], [9, 10, 11, 12]]) .set_index([0, 1]) .rename_axis(["a", "b"]) ) df.columns = pd.MultiIndex.from_tuples( [("c", "e"), ("d", "f")], names=["level_1", "level_2"] ) with pytest.warns(UserWarning): df.droplevel("a") with pytest.warns(UserWarning): df.droplevel("level_2", axis=1) @pytest.mark.parametrize( "data", test_data_with_duplicates_values, ids=test_data_with_duplicates_keys ) @pytest.mark.parametrize( "keep", ["last", "first", False], ids=["last", "first", "False"] ) @pytest.mark.parametrize( "subset", [None, ["col1", "col3", "col7"]], ids=["None", "subset"] ) def test_drop_duplicates(self, data, keep, subset): modin_df = pd.DataFrame(data) pandas_df = pandas.DataFrame(data) df_equals( modin_df.drop_duplicates(keep=keep, inplace=False, subset=subset), pandas_df.drop_duplicates(keep=keep, inplace=False, subset=subset), ) modin_results = modin_df.drop_duplicates(keep=keep, inplace=True, subset=subset) pandas_results = pandas_df.drop_duplicates( keep=keep, inplace=True, subset=subset ) df_equals(modin_results, pandas_results) def test_drop_duplicates_with_missing_index_values(self): data = { "columns": ["value", "time", "id"], "index": [ 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 20, 21, 22, 23, 24, 25, 26, 27, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, ], "data": [ ["3", 1279213398000.0, 88.0], ["3", 1279204682000.0, 88.0], ["0", 1245772835000.0, 448.0], ["0", 1270564258000.0, 32.0], ["0", 1267106669000.0, 118.0], ["7", 1300621123000.0, 5.0], ["0", 1251130752000.0, 957.0], ["0", 1311683506000.0, 62.0], ["9", 1283692698000.0, 89.0], ["9", 1270234253000.0, 64.0], ["0", 1285088818000.0, 50.0], ["0", 1218212725000.0, 695.0], ["2", 1383933968000.0, 348.0], ["0", 1368227625000.0, 257.0], ["1", 1454514093000.0, 446.0], ["1", 1428497427000.0, 134.0], ["1", 1459184936000.0, 568.0], ["1", 1502293302000.0, 599.0], ["1", 1491833358000.0, 829.0], ["1", 1485431534000.0, 806.0], ["8", 1351800505000.0, 101.0], ["0", 1357247721000.0, 916.0], ["0", 1335804423000.0, 370.0], ["24", 1327547726000.0, 720.0], ["0", 1332334140000.0, 415.0], ["0", 1309543100000.0, 30.0], ["18", 1309541141000.0, 30.0], ["0", 1298979435000.0, 48.0], ["14", 1276098160000.0, 59.0], ["0", 1233936302000.0, 109.0], ], } pandas_df = pandas.DataFrame( data["data"], index=data["index"], columns=data["columns"] ) modin_df = pd.DataFrame( data["data"], index=data["index"], columns=data["columns"] ) modin_result = modin_df.sort_values(["id", "time"]).drop_duplicates(["id"]) pandas_result = pandas_df.sort_values(["id", "time"]).drop_duplicates(["id"]) df_equals(modin_result, pandas_result) def test_drop_duplicates_after_sort(self): data = [ {"value": 1, "time": 2}, {"value": 1, "time": 1}, {"value": 2, "time": 1}, {"value": 2, "time": 2}, ] modin_df = pd.DataFrame(data) pandas_df = pandas.DataFrame(data) modin_result = modin_df.sort_values(["value", "time"]).drop_duplicates( ["value"] ) pandas_result = pandas_df.sort_values(["value", "time"]).drop_duplicates( ["value"] ) df_equals(modin_result, pandas_result) @pytest.mark.parametrize("data", test_data_values, ids=test_data_keys) @pytest.mark.parametrize("axis", axis_values, ids=axis_keys) @pytest.mark.parametrize("how", ["any", "all"], ids=["any", "all"]) def test_dropna(self, data, axis, how): modin_df = pd.DataFrame(data) pandas_df = pandas.DataFrame(data) with pytest.raises(ValueError): modin_df.dropna(axis=axis, how="invalid") with pytest.raises(TypeError): modin_df.dropna(axis=axis, how=None, thresh=None) with pytest.raises(KeyError): modin_df.dropna(axis=axis, subset=["NotExists"], how=how) modin_result = modin_df.dropna(axis=axis, how=how) pandas_result = pandas_df.dropna(axis=axis, how=how) df_equals(modin_result, pandas_result) @pytest.mark.parametrize("data", test_data_values, ids=test_data_keys) def test_dropna_inplace(self, data): modin_df = pd.DataFrame(data) pandas_df = pandas.DataFrame(data) pandas_result = pandas_df.dropna() modin_df.dropna(inplace=True) df_equals(modin_df, pandas_result) modin_df = pd.DataFrame(data) pandas_df = pandas.DataFrame(data) pandas_df.dropna(thresh=2, inplace=True) modin_df.dropna(thresh=2, inplace=True) df_equals(modin_df, pandas_df) modin_df = pd.DataFrame(data) pandas_df = pandas.DataFrame(data) pandas_df.dropna(axis=1, how="any", inplace=True) modin_df.dropna(axis=1, how="any", inplace=True) df_equals(modin_df, pandas_df) @pytest.mark.parametrize("data", test_data_values, ids=test_data_keys) def test_dropna_multiple_axes(self, data): modin_df = pd.DataFrame(data) pandas_df = pandas.DataFrame(data) df_equals( modin_df.dropna(how="all", axis=[0, 1]), pandas_df.dropna(how="all", axis=[0, 1]), ) df_equals( modin_df.dropna(how="all", axis=(0, 1)), pandas_df.dropna(how="all", axis=(0, 1)), ) @pytest.mark.parametrize("data", test_data_values, ids=test_data_keys) def test_dropna_multiple_axes_inplace(self, data): modin_df = pd.DataFrame(data) pandas_df = pandas.DataFrame(data) modin_df_copy = modin_df.copy() pandas_df_copy = pandas_df.copy() modin_df_copy.dropna(how="all", axis=[0, 1], inplace=True) pandas_df_copy.dropna(how="all", axis=[0, 1], inplace=True) df_equals(modin_df_copy, pandas_df_copy) modin_df_copy = modin_df.copy() pandas_df_copy = pandas_df.copy() modin_df_copy.dropna(how="all", axis=(0, 1), inplace=True) pandas_df_copy.dropna(how="all", axis=(0, 1), inplace=True) df_equals(modin_df_copy, pandas_df_copy) @pytest.mark.parametrize("data", test_data_values, ids=test_data_keys) def test_dropna_subset(self, request, data): modin_df = pd.DataFrame(data) pandas_df = pandas.DataFrame(data) if "empty_data" not in request.node.name: column_subset = modin_df.columns[0:2] df_equals( modin_df.dropna(how="all", subset=column_subset), pandas_df.dropna(how="all", subset=column_subset), ) df_equals( modin_df.dropna(how="any", subset=column_subset), pandas_df.dropna(how="any", subset=column_subset), ) row_subset = modin_df.index[0:2] df_equals( modin_df.dropna(how="all", axis=1, subset=row_subset), pandas_df.dropna(how="all", axis=1, subset=row_subset), ) df_equals( modin_df.dropna(how="any", axis=1, subset=row_subset), pandas_df.dropna(how="any", axis=1, subset=row_subset), ) @pytest.mark.parametrize("data", test_data_values, ids=test_data_keys) def test_dropna_subset_error(self, data): modin_df = pd.DataFrame(data) pandas_df = pandas.DataFrame(data) # noqa F841 # pandas_df is unused so there won't be confusing list comprehension # stuff in the pytest.mark.parametrize with pytest.raises(KeyError): modin_df.dropna(subset=list("EF")) if len(modin_df.columns) < 5: with pytest.raises(KeyError): modin_df.dropna(axis=1, subset=[4, 5]) @pytest.mark.parametrize("data", test_data_values, ids=test_data_keys) def test_dot(self, data): modin_df = pd.DataFrame(data) pandas_df = pandas.DataFrame(data) col_len = len(modin_df.columns) # Test list input arr = np.arange(col_len) modin_result = modin_df.dot(arr) pandas_result = pandas_df.dot(arr) df_equals(modin_result, pandas_result) # Test bad dimensions with pytest.raises(ValueError): modin_result = modin_df.dot(np.arange(col_len + 10)) # Test series input modin_series = pd.Series(np.arange(col_len), index=modin_df.columns) pandas_series = pandas.Series(np.arange(col_len), index=modin_df.columns) modin_result = modin_df.dot(modin_series) pandas_result = pandas_df.dot(pandas_series) df_equals(modin_result, pandas_result) # Test when input series index doesn't line up with columns with pytest.raises(ValueError): modin_result = modin_df.dot(pd.Series(np.arange(col_len))) with pytest.warns(UserWarning): modin_df.dot(modin_df.T) @pytest.mark.parametrize("data", test_data_values, ids=test_data_keys) @pytest.mark.parametrize( "keep", ["last", "first", False], ids=["last", "first", "False"] ) def test_duplicated(self, data, keep): modin_df = pd.DataFrame(data) pandas_df = pandas.DataFrame(data) pandas_result = pandas_df.duplicated(keep=keep) modin_result = modin_df.duplicated(keep=keep) df_equals(modin_result, pandas_result) import random subset = random.sample( list(pandas_df.columns), random.randint(1, len(pandas_df.columns)) ) pandas_result = pandas_df.duplicated(keep=keep, subset=subset) modin_result = modin_df.duplicated(keep=keep, subset=subset) df_equals(modin_result, pandas_result) def test_empty_df(self): df = pd.DataFrame(index=["a", "b"]) df_is_empty(df) tm.assert_index_equal(df.index, pd.Index(["a", "b"])) assert len(df.columns) == 0 df = pd.DataFrame(columns=["a", "b"]) df_is_empty(df) assert len(df.index) == 0 tm.assert_index_equal(df.columns, pd.Index(["a", "b"])) df = pd.DataFrame() df_is_empty(df) assert len(df.index) == 0 assert len(df.columns) == 0 df = pd.DataFrame(index=["a", "b"]) df_is_empty(df) tm.assert_index_equal(df.index, pd.Index(["a", "b"])) assert len(df.columns) == 0 df = pd.DataFrame(columns=["a", "b"]) df_is_empty(df) assert len(df.index) == 0 tm.assert_index_equal(df.columns, pd.Index(["a", "b"])) df = pd.DataFrame() df_is_empty(df) assert len(df.index) == 0 assert len(df.columns) == 0 def test_equals(self): frame_data = {"col1": [2.9, 3, 3, 3], "col2": [2, 3, 4, 1]} modin_df1 = pd.DataFrame(frame_data) modin_df2 = pd.DataFrame(frame_data) assert modin_df1.equals(modin_df2) df_equals(modin_df1, modin_df2) df_equals(modin_df1, pd.DataFrame(modin_df1)) frame_data = {"col1": [2.9, 3, 3, 3], "col2": [2, 3, 5, 1]} modin_df3 = pd.DataFrame(frame_data, index=list("abcd")) assert not modin_df1.equals(modin_df3) with pytest.raises(AssertionError): df_equals(modin_df3, modin_df1) with pytest.raises(AssertionError): df_equals(modin_df3, modin_df2) assert modin_df1.equals(modin_df2._query_compiler.to_pandas()) def test_eval_df_use_case(self): frame_data = {"a": random_state.randn(10), "b": random_state.randn(10)} df = pandas.DataFrame(frame_data) modin_df = pd.DataFrame(frame_data) # test eval for series results tmp_pandas = df.eval("arctan2(sin(a), b)", engine="python", parser="pandas") tmp_modin = modin_df.eval( "arctan2(sin(a), b)", engine="python", parser="pandas" ) assert isinstance(tmp_modin, pd.Series) df_equals(tmp_modin, tmp_pandas) # Test not inplace assignments tmp_pandas = df.eval("e = arctan2(sin(a), b)", engine="python", parser="pandas") tmp_modin = modin_df.eval( "e = arctan2(sin(a), b)", engine="python", parser="pandas" ) df_equals(tmp_modin, tmp_pandas) # Test inplace assignments df.eval( "e = arctan2(sin(a), b)", engine="python", parser="pandas", inplace=True ) modin_df.eval( "e = arctan2(sin(a), b)", engine="python", parser="pandas", inplace=True ) # TODO: Use a series equality validator. df_equals(modin_df, df) def test_eval_df_arithmetic_subexpression(self): frame_data = {"a": random_state.randn(10), "b": random_state.randn(10)} df = pandas.DataFrame(frame_data) modin_df = pd.DataFrame(frame_data) df.eval("not_e = sin(a + b)", engine="python", parser="pandas", inplace=True) modin_df.eval( "not_e = sin(a + b)", engine="python", parser="pandas", inplace=True ) # TODO: Use a series equality validator. df_equals(modin_df, df) def test_ewm(self): df = pd.DataFrame({"B": [0, 1, 2, np.nan, 4]}) with pytest.warns(UserWarning): df.ewm(com=0.5).mean() def test_expanding(self): data = test_data_values[0] with pytest.warns(UserWarning): pd.DataFrame(data).expanding() @pytest.mark.parametrize("data", test_data_values, ids=test_data_keys) def test_explode(self, data): modin_df = pd.DataFrame(data) with pytest.warns(UserWarning): modin_df.explode(modin_df.columns[0]) def test_ffill(self): test_data = TestData() test_data.tsframe["A"][:5] = np.nan test_data.tsframe["A"][-5:] = np.nan modin_df = pd.DataFrame(test_data.tsframe) df_equals(modin_df.ffill(), test_data.tsframe.ffill()) @pytest.mark.parametrize("data", test_data_values, ids=test_data_keys) @pytest.mark.parametrize( "method", ["backfill", "bfill", "pad", "ffill", None], ids=["backfill", "bfill", "pad", "ffill", "None"], ) @pytest.mark.parametrize("axis", axis_values, ids=axis_keys) @pytest.mark.parametrize("limit", int_arg_values, ids=int_arg_keys) def test_fillna(self, data, method, axis, limit): # We are not testing when limit is not positive until pandas-27042 gets fixed. # We are not testing when axis is over rows until pandas-17399 gets fixed. if limit > 0 and axis != 1 and axis != "columns": modin_df = pd.DataFrame(data) pandas_df = pandas.DataFrame(data) try: pandas_result = pandas_df.fillna( 0, method=method, axis=axis, limit=limit ) except Exception as e: with pytest.raises(type(e)): modin_df.fillna(0, method=method, axis=axis, limit=limit) else: modin_result = modin_df.fillna(0, method=method, axis=axis, limit=limit) df_equals(modin_result, pandas_result) def test_fillna_sanity(self): test_data = TestData() tf = test_data.tsframe tf.loc[tf.index[:5], "A"] = np.nan tf.loc[tf.index[-5:], "A"] = np.nan zero_filled = test_data.tsframe.fillna(0) modin_df = pd.DataFrame(test_data.tsframe).fillna(0) df_equals(modin_df, zero_filled) padded = test_data.tsframe.fillna(method="pad") modin_df = pd.DataFrame(test_data.tsframe).fillna(method="pad") df_equals(modin_df, padded) # mixed type mf = test_data.mixed_frame mf.loc[mf.index[5:20], "foo"] = np.nan mf.loc[mf.index[-10:], "A"] = np.nan result = test_data.mixed_frame.fillna(value=0) modin_df = pd.DataFrame(test_data.mixed_frame).fillna(value=0) df_equals(modin_df, result) result = test_data.mixed_frame.fillna(method="pad") modin_df = pd.DataFrame(test_data.mixed_frame).fillna(method="pad") df_equals(modin_df, result) pytest.raises(ValueError, test_data.tsframe.fillna) pytest.raises(ValueError, pd.DataFrame(test_data.tsframe).fillna) with pytest.raises(ValueError): pd.DataFrame(test_data.tsframe).fillna(5, method="ffill") # mixed numeric (but no float16) mf = test_data.mixed_float.reindex(columns=["A", "B", "D"]) mf.loc[mf.index[-10:], "A"] = np.nan result = mf.fillna(value=0) modin_df = pd.DataFrame(mf).fillna(value=0) df_equals(modin_df, result) result = mf.fillna(method="pad") modin_df = pd.DataFrame(mf).fillna(method="pad") df_equals(modin_df, result) # TODO: Use this when Arrow issue resolves: # (https://issues.apache.org/jira/browse/ARROW-2122) # empty frame # df = DataFrame(columns=['x']) # for m in ['pad', 'backfill']: # df.x.fillna(method=m, inplace=True) # df.x.fillna(method=m) # with different dtype frame_data = [ ["a", "a", np.nan, "a"], ["b", "b", np.nan, "b"], ["c", "c", np.nan, "c"], ] df = pandas.DataFrame(frame_data) result = df.fillna({2: "foo"}) modin_df = pd.DataFrame(frame_data).fillna({2: "foo"}) df_equals(modin_df, result) modin_df = pd.DataFrame(df) df.fillna({2: "foo"}, inplace=True) modin_df.fillna({2: "foo"}, inplace=True) df_equals(modin_df, result) frame_data = { "Date": [pandas.NaT, pandas.Timestamp("2014-1-1")], "Date2": [pandas.Timestamp("2013-1-1"), pandas.NaT], } df = pandas.DataFrame(frame_data) result = df.fillna(value={"Date": df["Date2"]}) modin_df = pd.DataFrame(frame_data).fillna(value={"Date": df["Date2"]}) df_equals(modin_df, result) # TODO: Use this when Arrow issue resolves: # (https://issues.apache.org/jira/browse/ARROW-2122) # with timezone """ frame_data = {'A': [pandas.Timestamp('2012-11-11 00:00:00+01:00'), pandas.NaT]} df = pandas.DataFrame(frame_data) modin_df = pd.DataFrame(frame_data) df_equals(modin_df.fillna(method='pad'), df.fillna(method='pad')) frame_data = {'A': [pandas.NaT, pandas.Timestamp('2012-11-11 00:00:00+01:00')]} df = pandas.DataFrame(frame_data) modin_df = pd.DataFrame(frame_data).fillna(method='bfill') df_equals(modin_df, df.fillna(method='bfill')) """ def test_fillna_downcast(self): # infer int64 from float64 frame_data = {"a": [1.0, np.nan]} df = pandas.DataFrame(frame_data) result = df.fillna(0, downcast="infer") modin_df = pd.DataFrame(frame_data).fillna(0, downcast="infer") df_equals(modin_df, result) # infer int64 from float64 when fillna value is a dict df = pandas.DataFrame(frame_data) result = df.fillna({"a": 0}, downcast="infer") modin_df = pd.DataFrame(frame_data).fillna({"a": 0}, downcast="infer") df_equals(modin_df, result) def test_ffill2(self): test_data = TestData() test_data.tsframe["A"][:5] = np.nan test_data.tsframe["A"][-5:] = np.nan modin_df = pd.DataFrame(test_data.tsframe) df_equals( modin_df.fillna(method="ffill"), test_data.tsframe.fillna(method="ffill") ) def test_bfill2(self): test_data = TestData() test_data.tsframe["A"][:5] = np.nan test_data.tsframe["A"][-5:] = np.nan modin_df = pd.DataFrame(test_data.tsframe) df_equals( modin_df.fillna(method="bfill"), test_data.tsframe.fillna(method="bfill") ) def test_fillna_inplace(self): frame_data = random_state.randn(10, 4) df = pandas.DataFrame(frame_data) df[1][:4] = np.nan df[3][-4:] = np.nan modin_df = pd.DataFrame(df) df.fillna(value=0, inplace=True) try: df_equals(modin_df, df) except AssertionError: pass else: assert False modin_df.fillna(value=0, inplace=True) df_equals(modin_df, df) modin_df = pd.DataFrame(df).fillna(value={0: 0}, inplace=True) assert modin_df is None df[1][:4] = np.nan df[3][-4:] = np.nan modin_df = pd.DataFrame(df) df.fillna(method="ffill", inplace=True) try: df_equals(modin_df, df) except AssertionError: pass else: assert False modin_df.fillna(method="ffill", inplace=True) df_equals(modin_df, df) @pytest.mark.parametrize("data", test_data_values, ids=test_data_keys) def test_frame_fillna_limit(self, data): pandas_df = pandas.DataFrame(data) index = pandas_df.index result = pandas_df[:2].reindex(index) modin_df = pd.DataFrame(result) df_equals( modin_df.fillna(method="pad", limit=2), result.fillna(method="pad", limit=2) ) result = pandas_df[-2:].reindex(index) modin_df = pd.DataFrame(result) df_equals( modin_df.fillna(method="backfill", limit=2), result.fillna(method="backfill", limit=2), ) @pytest.mark.parametrize("data", test_data_values, ids=test_data_keys) def test_frame_pad_backfill_limit(self, data): pandas_df = pandas.DataFrame(data) index = pandas_df.index result = pandas_df[:2].reindex(index) modin_df = pd.DataFrame(result) df_equals( modin_df.fillna(method="pad", limit=2), result.fillna(method="pad", limit=2) ) result = pandas_df[-2:].reindex(index) modin_df = pd.DataFrame(result) df_equals( modin_df.fillna(method="backfill", limit=2), result.fillna(method="backfill", limit=2), ) def test_fillna_dtype_conversion(self): # make sure that fillna on an empty frame works df = pandas.DataFrame(index=range(3), columns=["A", "B"], dtype="float64") modin_df = pd.DataFrame(index=range(3), columns=["A", "B"], dtype="float64") df_equals(modin_df.fillna("nan"), df.fillna("nan")) frame_data = {"A": [1, np.nan], "B": [1.0, 2.0]} df = pandas.DataFrame(frame_data) modin_df = pd.DataFrame(frame_data) for v in ["", 1, np.nan, 1.0]: df_equals(modin_df.fillna(v), df.fillna(v)) @pytest.mark.parametrize("data", test_data_values, ids=test_data_keys) def test_fillna_skip_certain_blocks(self, data): modin_df = pd.DataFrame(data) pandas_df = pandas.DataFrame(data) # don't try to fill boolean, int blocks df_equals(modin_df.fillna(np.nan), pandas_df.fillna(np.nan)) def test_fillna_dict_series(self): frame_data = { "a": [np.nan, 1, 2, np.nan, np.nan], "b": [1, 2, 3, np.nan, np.nan], "c": [np.nan, 1, 2, 3, 4], } df = pandas.DataFrame(frame_data) modin_df = pd.DataFrame(frame_data) df_equals(modin_df.fillna({"a": 0, "b": 5}), df.fillna({"a": 0, "b": 5})) df_equals( modin_df.fillna({"a": 0, "b": 5, "d": 7}), df.fillna({"a": 0, "b": 5, "d": 7}), ) # Series treated same as dict df_equals(modin_df.fillna(modin_df.max()), df.fillna(df.max())) def test_fillna_dataframe(self): frame_data = { "a": [np.nan, 1, 2, np.nan, np.nan], "b": [1, 2, 3, np.nan, np.nan], "c": [np.nan, 1, 2, 3, 4], } df = pandas.DataFrame(frame_data, index=list("VWXYZ")) modin_df = pd.DataFrame(frame_data, index=list("VWXYZ")) # df2 may have different index and columns df2 = pandas.DataFrame( { "a": [np.nan, 10, 20, 30, 40], "b": [50, 60, 70, 80, 90], "foo": ["bar"] * 5, }, index=list("VWXuZ"), ) modin_df2 = pd.DataFrame(df2) # only those columns and indices which are shared get filled df_equals(modin_df.fillna(modin_df2), df.fillna(df2)) @pytest.mark.parametrize("data", test_data_values, ids=test_data_keys) def test_fillna_columns(self, data): modin_df = pd.DataFrame(data) pandas_df = pandas.DataFrame(data) df_equals( modin_df.fillna(method="ffill", axis=1), pandas_df.fillna(method="ffill", axis=1), ) df_equals( modin_df.fillna(method="ffill", axis=1), pandas_df.fillna(method="ffill", axis=1), ) @pytest.mark.parametrize("data", test_data_values, ids=test_data_keys) def test_fillna_invalid_method(self, data): modin_df = pd.DataFrame(data) pandas_df = pandas.DataFrame(data) # noqa F841 with tm.assert_raises_regex(ValueError, "ffil"): modin_df.fillna(method="ffil") def test_fillna_invalid_value(self): test_data = TestData() modin_df = pd.DataFrame(test_data.frame) # list pytest.raises(TypeError, modin_df.fillna, [1, 2]) # tuple pytest.raises(TypeError, modin_df.fillna, (1, 2)) # frame with series pytest.raises(TypeError, modin_df.iloc[:, 0].fillna, modin_df) @pytest.mark.parametrize("data", test_data_values, ids=test_data_keys) def test_fillna_col_reordering(self, data): modin_df = pd.DataFrame(data) pandas_df = pandas.DataFrame(data) df_equals(modin_df.fillna(method="ffill"), pandas_df.fillna(method="ffill")) """ TODO: Use this when Arrow issue resolves: (https://issues.apache.org/jira/browse/ARROW-2122) def test_fillna_datetime_columns(self): frame_data = {'A': [-1, -2, np.nan], 'B': date_range('20130101', periods=3), 'C': ['foo', 'bar', None], 'D': ['foo2', 'bar2', None]} df = pandas.DataFrame(frame_data, index=date_range('20130110', periods=3)) modin_df = pd.DataFrame(frame_data, index=date_range('20130110', periods=3)) df_equals(modin_df.fillna('?'), df.fillna('?')) frame_data = {'A': [-1, -2, np.nan], 'B': [pandas.Timestamp('2013-01-01'), pandas.Timestamp('2013-01-02'), pandas.NaT], 'C': ['foo', 'bar', None], 'D': ['foo2', 'bar2', None]} df = pandas.DataFrame(frame_data, index=date_range('20130110', periods=3)) modin_df = pd.DataFrame(frame_data, index=date_range('20130110', periods=3)) df_equals(modin_df.fillna('?'), df.fillna('?')) """ @pytest.mark.parametrize("data", test_data_values, ids=test_data_keys) def test_filter(self, data): modin_df = pd.DataFrame(data) pandas_df = pandas.DataFrame(data) by = {"items": ["col1", "col5"], "regex": "4$|3$", "like": "col"} df_equals( modin_df.filter(items=by["items"]), pandas_df.filter(items=by["items"]) ) df_equals( modin_df.filter(regex=by["regex"], axis=0), pandas_df.filter(regex=by["regex"], axis=0), ) df_equals( modin_df.filter(regex=by["regex"], axis=1), pandas_df.filter(regex=by["regex"], axis=1), ) df_equals(modin_df.filter(like=by["like"]), pandas_df.filter(like=by["like"])) with pytest.raises(TypeError): modin_df.filter(items=by["items"], regex=by["regex"]) with pytest.raises(TypeError): modin_df.filter() def test_first(self): i = pd.date_range("2018-04-09", periods=4, freq="2D") ts = pd.DataFrame({"A": [1, 2, 3, 4]}, index=i) with pytest.warns(UserWarning): ts.first("3D") @pytest.mark.parametrize("data", test_data_values, ids=test_data_keys) def test_first_valid_index(self, data): modin_df = pd.DataFrame(data) pandas_df = pandas.DataFrame(data) assert modin_df.first_valid_index() == (pandas_df.first_valid_index()) @pytest.mark.skip(reason="Defaulting to Pandas") @pytest.mark.parametrize("data", test_data_values, ids=test_data_keys) def test_from_dict(self, data): modin_df = pd.DataFrame(data) # noqa F841 pandas_df = pandas.DataFrame(data) # noqa F841 with pytest.raises(NotImplementedError): pd.DataFrame.from_dict(None) @pytest.mark.skip(reason="Defaulting to Pandas") @pytest.mark.parametrize("data", test_data_values, ids=test_data_keys) def test_from_items(self, data): modin_df = pd.DataFrame(data) # noqa F841 pandas_df = pandas.DataFrame(data) # noqa F841 with pytest.raises(NotImplementedError): pd.DataFrame.from_items(None) @pytest.mark.skip(reason="Defaulting to Pandas") @pytest.mark.parametrize("data", test_data_values, ids=test_data_keys) def test_from_records(self, data): modin_df = pd.DataFrame(data) # noqa F841 pandas_df = pandas.DataFrame(data) # noqa F841 with pytest.raises(NotImplementedError): pd.DataFrame.from_records(None) def test_get_value(self): data = test_data_values[0] with pytest.warns(UserWarning): pd.DataFrame(data).get_value(0, "col1") def test_get_values(self): data = test_data_values[0] with pytest.warns(UserWarning): pd.DataFrame(data).get_values() @pytest.mark.parametrize("data", test_data_values, ids=test_data_keys) @pytest.mark.parametrize("n", int_arg_values, ids=arg_keys("n", int_arg_keys)) def test_head(self, data, n): # Test normal dataframe head modin_df = pd.DataFrame(data) pandas_df = pandas.DataFrame(data) df_equals(modin_df.head(n), pandas_df.head(n)) df_equals(modin_df.head(len(modin_df) + 1), pandas_df.head(len(pandas_df) + 1)) # Test head when we call it from a QueryCompilerView modin_result = modin_df.loc[:, ["col1", "col3", "col3"]].head(n) pandas_result = pandas_df.loc[:, ["col1", "col3", "col3"]].head(n) df_equals(modin_result, pandas_result) def test_hist(self): data = test_data_values[0] with pytest.warns(UserWarning): pd.DataFrame(data).hist(None) @pytest.mark.skip(reason="Defaulting to Pandas") @pytest.mark.parametrize("data", test_data_values, ids=test_data_keys) def test_iat(self, data): modin_df = pd.DataFrame(data) pandas_df = pandas.DataFrame(data) # noqa F841 with pytest.raises(NotImplementedError): modin_df.iat() @pytest.mark.parametrize("data", test_data_values, ids=test_data_keys) @pytest.mark.parametrize("axis", axis_values, ids=axis_keys) @pytest.mark.parametrize( "skipna", bool_arg_values, ids=arg_keys("skipna", bool_arg_keys) ) def test_idxmax(self, data, axis, skipna): modin_df = pd.DataFrame(data) pandas_df = pandas.DataFrame(data) pandas_result = pandas_df.idxmax(axis=axis, skipna=skipna) modin_result = modin_df.idxmax(axis=axis, skipna=skipna) df_equals(modin_result, pandas_result) pandas_result = pandas_df.T.idxmax(axis=axis, skipna=skipna) modin_result = modin_df.T.idxmax(axis=axis, skipna=skipna) df_equals(modin_result, pandas_result) @pytest.mark.parametrize("data", test_data_values, ids=test_data_keys) @pytest.mark.parametrize("axis", axis_values, ids=axis_keys) @pytest.mark.parametrize( "skipna", bool_arg_values, ids=arg_keys("skipna", bool_arg_keys) ) def test_idxmin(self, data, axis, skipna): modin_df = pd.DataFrame(data) pandas_df = pandas.DataFrame(data) modin_result = modin_df.idxmin(axis=axis, skipna=skipna) pandas_result = pandas_df.idxmin(axis=axis, skipna=skipna) df_equals(modin_result, pandas_result) modin_result = modin_df.T.idxmin(axis=axis, skipna=skipna) pandas_result = pandas_df.T.idxmin(axis=axis, skipna=skipna) df_equals(modin_result, pandas_result) def test_infer_objects(self): data = test_data_values[0] with pytest.warns(UserWarning): pd.DataFrame(data).infer_objects() @pytest.mark.parametrize("data", test_data_values, ids=test_data_keys) def test_iloc(self, request, data): modin_df = pd.DataFrame(data) pandas_df = pandas.DataFrame(data) if not name_contains(request.node.name, ["empty_data"]): # Scaler np.testing.assert_equal(modin_df.iloc[0, 1], pandas_df.iloc[0, 1]) # Series df_equals(modin_df.iloc[0], pandas_df.iloc[0]) df_equals(modin_df.iloc[1:, 0], pandas_df.iloc[1:, 0]) df_equals(modin_df.iloc[1:2, 0], pandas_df.iloc[1:2, 0]) # DataFrame df_equals(modin_df.iloc[[1, 2]], pandas_df.iloc[[1, 2]]) # See issue #80 # df_equals(modin_df.iloc[[1, 2], [1, 0]], pandas_df.iloc[[1, 2], [1, 0]]) df_equals(modin_df.iloc[1:2, 0:2], pandas_df.iloc[1:2, 0:2]) # Issue #43 modin_df.iloc[0:3, :] # Write Item modin_df.iloc[[1, 2]] = 42 pandas_df.iloc[[1, 2]] = 42 df_equals(modin_df, pandas_df) else: with pytest.raises(IndexError): modin_df.iloc[0, 1] @pytest.mark.parametrize("data", test_data_values, ids=test_data_keys) def test_index(self, data): modin_df = pd.DataFrame(data) pandas_df = pandas.DataFrame(data) df_equals(modin_df.index, pandas_df.index) modin_df_cp = modin_df.copy() pandas_df_cp = pandas_df.copy() modin_df_cp.index = [str(i) for i in modin_df_cp.index] pandas_df_cp.index = [str(i) for i in pandas_df_cp.index] df_equals(modin_df_cp.index, pandas_df_cp.index) @pytest.mark.parametrize("data", test_data_values, ids=test_data_keys) def test_indexing_duplicate_axis(self, data): modin_df = pd.DataFrame(data) pandas_df = pandas.DataFrame(data) modin_df.index = pandas_df.index = [i // 3 for i in range(len(modin_df))] assert any(modin_df.index.duplicated()) assert any(pandas_df.index.duplicated()) df_equals(modin_df.iloc[0], pandas_df.iloc[0]) df_equals(modin_df.loc[0], pandas_df.loc[0]) df_equals(modin_df.iloc[0, 0:4], pandas_df.iloc[0, 0:4]) df_equals( modin_df.loc[0, modin_df.columns[0:4]], pandas_df.loc[0, pandas_df.columns[0:4]], ) def test_info(self): data = test_data_values[0] with pytest.warns(UserWarning): pd.DataFrame(data).info(memory_usage="deep") @pytest.mark.parametrize("data", test_data_values, ids=test_data_keys) @pytest.mark.parametrize("loc", int_arg_values, ids=arg_keys("loc", int_arg_keys)) def test_insert(self, data, loc): modin_df = pd.DataFrame(data) pandas_df = pandas.DataFrame(data) modin_df = modin_df.copy() pandas_df = pandas_df.copy() column = "New Column" value = modin_df.iloc[:, 0] try: pandas_df.insert(loc, column, value) except Exception as e: with pytest.raises(type(e)): modin_df.insert(loc, column, value) else: modin_df.insert(loc, column, value) df_equals(modin_df, pandas_df) with pytest.raises(ValueError): modin_df.insert(0, "Bad Column", modin_df) modin_df = pd.DataFrame(data) pandas_df = pandas.DataFrame(data) modin_df.insert(0, "Duplicate", modin_df[modin_df.columns[0]]) pandas_df.insert(0, "Duplicate", pandas_df[pandas_df.columns[0]]) df_equals(modin_df, pandas_df) modin_df = pd.DataFrame(data) pandas_df = pandas.DataFrame(data) modin_df.insert(0, "Scalar", 100) pandas_df.insert(0, "Scalar", 100) df_equals(modin_df, pandas_df) with pytest.raises(ValueError): modin_df.insert(0, "Too Short", list(modin_df[modin_df.columns[0]])[:-1]) with pytest.raises(ValueError): modin_df.insert(0, modin_df.columns[0], modin_df[modin_df.columns[0]]) with pytest.raises(IndexError): modin_df.insert(len(modin_df.columns) + 100, "Bad Loc", 100) modin_df = pd.DataFrame(data) pandas_df = pandas.DataFrame(data) modin_result = pd.DataFrame(columns=list("ab")).insert( 0, modin_df.columns[0], modin_df[modin_df.columns[0]] ) pandas_result = pandas.DataFrame(columns=list("ab")).insert( 0, pandas_df.columns[0], pandas_df[pandas_df.columns[0]] ) df_equals(modin_result, pandas_result) modin_df = pd.DataFrame(data) pandas_df = pandas.DataFrame(data) modin_result = pd.DataFrame(index=modin_df.index).insert( 0, modin_df.columns[0], modin_df[modin_df.columns[0]] ) pandas_result = pandas.DataFrame(index=pandas_df.index).insert( 0, pandas_df.columns[0], pandas_df[pandas_df.columns[0]] ) df_equals(modin_result, pandas_result) modin_df = pd.DataFrame(data) pandas_df = pandas.DataFrame(data) modin_result = modin_df.insert( 0, "DataFrame insert", modin_df[[modin_df.columns[0]]] ) pandas_result = pandas_df.insert( 0, "DataFrame insert", pandas_df[[pandas_df.columns[0]]] ) df_equals(modin_result, pandas_result) def test_interpolate(self): data = test_data_values[0] with pytest.warns(UserWarning): pd.DataFrame(data).interpolate() def test_is_copy(self): data = test_data_values[0] with pytest.warns(FutureWarning): assert pd.DataFrame(data).is_copy == pandas.DataFrame(data).is_copy @pytest.mark.parametrize("data", test_data_values, ids=test_data_keys) def test_items(self, data): modin_df = pd.DataFrame(data) pandas_df = pandas.DataFrame(data) modin_items = modin_df.items() pandas_items = pandas_df.items() for modin_item, pandas_item in zip(modin_items, pandas_items): modin_index, modin_series = modin_item pandas_index, pandas_series = pandas_item df_equals(pandas_series, modin_series) assert pandas_index == modin_index @pytest.mark.parametrize("data", test_data_values, ids=test_data_keys) def test_iteritems(self, data): modin_df = pd.DataFrame(data) pandas_df = pandas.DataFrame(data) modin_items = modin_df.iteritems() pandas_items = pandas_df.iteritems() for modin_item, pandas_item in zip(modin_items, pandas_items): modin_index, modin_series = modin_item pandas_index, pandas_series = pandas_item df_equals(pandas_series, modin_series) assert pandas_index == modin_index @pytest.mark.parametrize("data", test_data_values, ids=test_data_keys) def test_iterrows(self, data): modin_df = pd.DataFrame(data) pandas_df = pandas.DataFrame(data) modin_iterrows = modin_df.iterrows() pandas_iterrows = pandas_df.iterrows() for modin_row, pandas_row in zip(modin_iterrows, pandas_iterrows): modin_index, modin_series = modin_row pandas_index, pandas_series = pandas_row df_equals(pandas_series, modin_series) assert pandas_index == modin_index @pytest.mark.parametrize("data", test_data_values, ids=test_data_keys) def test_itertuples(self, data): modin_df = pd.DataFrame(data) pandas_df = pandas.DataFrame(data) # test default modin_it_default = modin_df.itertuples() pandas_it_default = pandas_df.itertuples() for modin_row, pandas_row in zip(modin_it_default, pandas_it_default): np.testing.assert_equal(modin_row, pandas_row) # test all combinations of custom params indices = [True, False] names = [None, "NotPandas", "Pandas"] for index in indices: for name in names: modin_it_custom = modin_df.itertuples(index=index, name=name) pandas_it_custom = pandas_df.itertuples(index=index, name=name) for modin_row, pandas_row in zip(modin_it_custom, pandas_it_custom): np.testing.assert_equal(modin_row, pandas_row) @pytest.mark.parametrize("data", test_data_values, ids=test_data_keys) def test_ix(self, data): modin_df = pd.DataFrame(data) pandas_df = pandas.DataFrame(data) # noqa F841 with pytest.raises(NotImplementedError): modin_df.ix() def test_join(self): frame_data = { "col1": [0, 1, 2, 3], "col2": [4, 5, 6, 7], "col3": [8, 9, 0, 1], "col4": [2, 4, 5, 6], } modin_df = pd.DataFrame(frame_data) pandas_df = pandas.DataFrame(frame_data) frame_data2 = {"col5": [0], "col6": [1]} modin_df2 = pd.DataFrame(frame_data2) pandas_df2 = pandas.DataFrame(frame_data2) join_types = ["left", "right", "outer", "inner"] for how in join_types: modin_join = modin_df.join(modin_df2, how=how) pandas_join = pandas_df.join(pandas_df2, how=how) df_equals(modin_join, pandas_join) frame_data3 = {"col7": [1, 2, 3, 5, 6, 7, 8]} modin_df3 = pd.DataFrame(frame_data3) pandas_df3 = pandas.DataFrame(frame_data3) join_types = ["left", "outer", "inner"] for how in join_types: modin_join = modin_df.join([modin_df2, modin_df3], how=how) pandas_join = pandas_df.join([pandas_df2, pandas_df3], how=how) df_equals(modin_join, pandas_join) @pytest.mark.parametrize("data", test_data_values, ids=test_data_keys) def test_keys(self, data): modin_df = pd.DataFrame(data) pandas_df = pandas.DataFrame(data) df_equals(modin_df.keys(), pandas_df.keys()) def test_kurt(self): data = test_data_values[0] with pytest.warns(UserWarning): pd.DataFrame(data).kurt() def test_kurtosis(self): data = test_data_values[0] with pytest.warns(UserWarning): pd.DataFrame(data).kurtosis() def test_last(self): i = pd.date_range("2018-04-09", periods=4, freq="2D") ts = pd.DataFrame({"A": [1, 2, 3, 4]}, index=i) with pytest.warns(UserWarning): ts.last("3D") @pytest.mark.parametrize("data", test_data_values, ids=test_data_keys) def test_last_valid_index(self, data): modin_df = pd.DataFrame(data) pandas_df = pandas.DataFrame(data) assert modin_df.last_valid_index() == (pandas_df.last_valid_index()) @pytest.mark.parametrize("data", test_data_values, ids=test_data_keys) def test_loc(self, request, data): modin_df = pd.DataFrame(data) pandas_df = pandas.DataFrame(data) # We skip nan datasets because nan != nan if "nan" not in request.node.name: key1 = modin_df.columns[0] key2 = modin_df.columns[1] # Scaler assert modin_df.loc[0, key1] == pandas_df.loc[0, key1] # Series df_equals(modin_df.loc[0], pandas_df.loc[0]) df_equals(modin_df.loc[1:, key1], pandas_df.loc[1:, key1]) df_equals(modin_df.loc[1:2, key1], pandas_df.loc[1:2, key1]) # DataFrame df_equals(modin_df.loc[[1, 2]], pandas_df.loc[[1, 2]]) # List-like of booleans indices = [ True if i % 3 == 0 else False for i in range(len(modin_df.index)) ] columns = [ True if i % 5 == 0 else False for i in range(len(modin_df.columns)) ] modin_result = modin_df.loc[indices, columns] pandas_result = pandas_df.loc[indices, columns] df_equals(modin_result, pandas_result) # See issue #80 # df_equals(modin_df.loc[[1, 2], ['col1']], pandas_df.loc[[1, 2], ['col1']]) df_equals(modin_df.loc[1:2, key1:key2], pandas_df.loc[1:2, key1:key2]) # From issue #421 df_equals(modin_df.loc[:, [key2, key1]], pandas_df.loc[:, [key2, key1]]) df_equals(modin_df.loc[[2, 1], :], pandas_df.loc[[2, 1], :]) # Write Item modin_df_copy = modin_df.copy() pandas_df_copy = pandas_df.copy() modin_df_copy.loc[[1, 2]] = 42 pandas_df_copy.loc[[1, 2]] = 42 df_equals(modin_df_copy, pandas_df_copy) def test_loc_multi_index(self): modin_df = pd.read_csv( "modin/pandas/test/data/blah.csv", header=[0, 1, 2, 3], index_col=0 ) pandas_df = pandas.read_csv( "modin/pandas/test/data/blah.csv", header=[0, 1, 2, 3], index_col=0 ) df_equals(modin_df.loc[1], pandas_df.loc[1]) df_equals(modin_df.loc[1, "Presidents"], pandas_df.loc[1, "Presidents"]) df_equals( modin_df.loc[1, ("Presidents", "Pure mentions")], pandas_df.loc[1, ("Presidents", "Pure mentions")], ) assert ( modin_df.loc[1, ("Presidents", "Pure mentions", "IND", "all")] == pandas_df.loc[1, ("Presidents", "Pure mentions", "IND", "all")] ) df_equals( modin_df.loc[(1, 2), "Presidents"], pandas_df.loc[(1, 2), "Presidents"] ) tuples = [ ("bar", "one"), ("bar", "two"), ("bar", "three"), ("bar", "four"), ("baz", "one"), ("baz", "two"), ("baz", "three"), ("baz", "four"), ("foo", "one"), ("foo", "two"), ("foo", "three"), ("foo", "four"), ("qux", "one"), ("qux", "two"), ("qux", "three"), ("qux", "four"), ] modin_index = pd.MultiIndex.from_tuples(tuples, names=["first", "second"]) pandas_index = pandas.MultiIndex.from_tuples(tuples, names=["first", "second"]) frame_data = np.random.randint(0, 100, size=(16, 100)) modin_df = pd.DataFrame( frame_data, index=modin_index, columns=["col{}".format(i) for i in range(100)], ) pandas_df = pandas.DataFrame( frame_data, index=pandas_index, columns=["col{}".format(i) for i in range(100)], ) df_equals(modin_df.loc["bar", "col1"], pandas_df.loc["bar", "col1"]) assert ( modin_df.loc[("bar", "one"), "col1"] == pandas_df.loc[("bar", "one"), "col1"] ) df_equals( modin_df.loc["bar", ("col1", "col2")], pandas_df.loc["bar", ("col1", "col2")], ) def test_lookup(self): data = test_data_values[0] with pytest.warns(UserWarning): pd.DataFrame(data).lookup([0, 1], ["col1", "col2"]) def test_mad(self): data = test_data_values[0] with pytest.warns(UserWarning): pd.DataFrame(data).mad() def test_mask(self): df = pd.DataFrame(np.arange(10).reshape(-1, 2), columns=["A", "B"]) m = df % 3 == 0 with pytest.warns(UserWarning): try: df.mask(~m, -df) except ValueError: pass @pytest.mark.parametrize("data", test_data_values, ids=test_data_keys) @pytest.mark.parametrize("axis", axis_values, ids=axis_keys) @pytest.mark.parametrize( "skipna", bool_arg_values, ids=arg_keys("skipna", bool_arg_keys) ) @pytest.mark.parametrize( "numeric_only", bool_arg_values, ids=arg_keys("numeric_only", bool_arg_keys) ) def test_max(self, request, data, axis, skipna, numeric_only): modin_df = pd.DataFrame(data) pandas_df = pandas.DataFrame(data) try: pandas_result = pandas_df.max( axis=axis, skipna=skipna, numeric_only=numeric_only ) except Exception: with pytest.raises(TypeError): modin_df.max(axis=axis, skipna=skipna, numeric_only=numeric_only) else: modin_result = modin_df.max( axis=axis, skipna=skipna, numeric_only=numeric_only ) df_equals(modin_result, pandas_result) try: pandas_result = pandas_df.T.max( axis=axis, skipna=skipna, numeric_only=numeric_only ) except Exception: with pytest.raises(TypeError): modin_df.T.max(axis=axis, skipna=skipna, numeric_only=numeric_only) else: modin_result = modin_df.T.max( axis=axis, skipna=skipna, numeric_only=numeric_only ) df_equals(modin_result, pandas_result) @pytest.mark.parametrize("data", test_data_values, ids=test_data_keys) @pytest.mark.parametrize("axis", axis_values, ids=axis_keys) @pytest.mark.parametrize( "skipna", bool_arg_values, ids=arg_keys("skipna", bool_arg_keys) ) @pytest.mark.parametrize( "numeric_only", bool_arg_values, ids=arg_keys("numeric_only", bool_arg_keys) ) def test_mean(self, request, data, axis, skipna, numeric_only): modin_df = pd.DataFrame(data) pandas_df = pandas.DataFrame(data) try: pandas_result = pandas_df.mean( axis=axis, skipna=skipna, numeric_only=numeric_only ) except Exception as e: with pytest.raises(type(e)): modin_df.mean(axis=axis, skipna=skipna, numeric_only=numeric_only) else: modin_result = modin_df.mean( axis=axis, skipna=skipna, numeric_only=numeric_only ) df_equals(modin_result, pandas_result) try: pandas_result = pandas_df.T.mean( axis=axis, skipna=skipna, numeric_only=numeric_only ) except Exception as e: with pytest.raises(type(e)): modin_df.T.mean(axis=axis, skipna=skipna, numeric_only=numeric_only) else: modin_result = modin_df.T.mean( axis=axis, skipna=skipna, numeric_only=numeric_only ) df_equals(modin_result, pandas_result) @pytest.mark.parametrize("data", test_data_values, ids=test_data_keys) @pytest.mark.parametrize("axis", axis_values, ids=axis_keys) @pytest.mark.parametrize( "skipna", bool_arg_values, ids=arg_keys("skipna", bool_arg_keys) ) @pytest.mark.parametrize( "numeric_only", bool_arg_values, ids=arg_keys("numeric_only", bool_arg_keys) ) def test_median(self, request, data, axis, skipna, numeric_only): modin_df = pd.DataFrame(data) pandas_df = pandas.DataFrame(data) try: pandas_result = pandas_df.median( axis=axis, skipna=skipna, numeric_only=numeric_only ) except Exception: with pytest.raises(TypeError): modin_df.median(axis=axis, skipna=skipna, numeric_only=numeric_only) else: modin_result = modin_df.median( axis=axis, skipna=skipna, numeric_only=numeric_only ) df_equals(modin_result, pandas_result) try: pandas_result = pandas_df.T.median( axis=axis, skipna=skipna, numeric_only=numeric_only ) except Exception: with pytest.raises(TypeError): modin_df.T.median(axis=axis, skipna=skipna, numeric_only=numeric_only) else: modin_result = modin_df.T.median( axis=axis, skipna=skipna, numeric_only=numeric_only ) df_equals(modin_result, pandas_result) class TestDFPartTwo: def test_melt(self): data = test_data_values[0] with pytest.warns(UserWarning): pd.DataFrame(data).melt() @pytest.mark.parametrize("data", test_data_values, ids=test_data_keys) @pytest.mark.parametrize( "index", bool_arg_values, ids=arg_keys("index", bool_arg_keys) ) def test_memory_usage(self, data, index): modin_df = pd.DataFrame(data) pandas_df = pandas.DataFrame(data) # noqa F841 modin_result = modin_df.memory_usage(index=index) pandas_result = pandas_df.memory_usage(index=index) df_equals(modin_result, pandas_result) def test_merge(self): frame_data = { "col1": [0, 1, 2, 3], "col2": [4, 5, 6, 7], "col3": [8, 9, 0, 1], "col4": [2, 4, 5, 6], } modin_df = pd.DataFrame(frame_data) pandas_df = pandas.DataFrame(frame_data) frame_data2 = {"col1": [0, 1, 2], "col2": [1, 5, 6]} modin_df2 = pd.DataFrame(frame_data2) pandas_df2 = pandas.DataFrame(frame_data2) join_types = ["outer", "inner"] for how in join_types: # Defaults modin_result = modin_df.merge(modin_df2, how=how) pandas_result = pandas_df.merge(pandas_df2, how=how) df_equals(modin_result, pandas_result) # left_on and right_index modin_result = modin_df.merge( modin_df2, how=how, left_on="col1", right_index=True ) pandas_result = pandas_df.merge( pandas_df2, how=how, left_on="col1", right_index=True ) df_equals(modin_result, pandas_result) # left_index and right_on modin_result = modin_df.merge( modin_df2, how=how, left_index=True, right_on="col1" ) pandas_result = pandas_df.merge( pandas_df2, how=how, left_index=True, right_on="col1" ) df_equals(modin_result, pandas_result) # left_on and right_on col1 modin_result = modin_df.merge( modin_df2, how=how, left_on="col1", right_on="col1" ) pandas_result = pandas_df.merge( pandas_df2, how=how, left_on="col1", right_on="col1" ) df_equals(modin_result, pandas_result) # left_on and right_on col2 modin_result = modin_df.merge( modin_df2, how=how, left_on="col2", right_on="col2" ) pandas_result = pandas_df.merge( pandas_df2, how=how, left_on="col2", right_on="col2" ) df_equals(modin_result, pandas_result) # left_index and right_index modin_result = modin_df.merge( modin_df2, how=how, left_index=True, right_index=True ) pandas_result = pandas_df.merge( pandas_df2, how=how, left_index=True, right_index=True ) df_equals(modin_result, pandas_result) # Named Series promoted to DF s = pd.Series(frame_data2.get("col1")) with pytest.raises(ValueError): modin_df.merge(s) s = pd.Series(frame_data2.get("col1"), name="col1") df_equals(modin_df.merge(s), modin_df.merge(modin_df2[["col1"]])) with pytest.raises(ValueError): modin_df.merge("Non-valid type") @pytest.mark.parametrize("data", test_data_values, ids=test_data_keys) @pytest.mark.parametrize("axis", axis_values, ids=axis_keys) @pytest.mark.parametrize( "skipna", bool_arg_values, ids=arg_keys("skipna", bool_arg_keys) ) @pytest.mark.parametrize( "numeric_only", bool_arg_values, ids=arg_keys("numeric_only", bool_arg_keys) ) def test_min(self, data, axis, skipna, numeric_only): modin_df = pd.DataFrame(data) pandas_df = pandas.DataFrame(data) try: pandas_result = pandas_df.min( axis=axis, skipna=skipna, numeric_only=numeric_only ) except Exception: with pytest.raises(TypeError): modin_df.min(axis=axis, skipna=skipna, numeric_only=numeric_only) else: modin_result = modin_df.min( axis=axis, skipna=skipna, numeric_only=numeric_only ) df_equals(modin_result, pandas_result) try: pandas_result = pandas_df.T.min( axis=axis, skipna=skipna, numeric_only=numeric_only ) except Exception: with pytest.raises(TypeError): modin_df.T.min(axis=axis, skipna=skipna, numeric_only=numeric_only) else: modin_result = modin_df.T.min( axis=axis, skipna=skipna, numeric_only=numeric_only ) df_equals(modin_result, pandas_result) @pytest.mark.parametrize("data", test_data_values, ids=test_data_keys) @pytest.mark.parametrize("axis", axis_values, ids=axis_keys) @pytest.mark.parametrize( "numeric_only", bool_arg_values, ids=arg_keys("numeric_only", bool_arg_keys) ) def test_mode(self, request, data, axis, numeric_only): modin_df = pd.DataFrame(data) pandas_df = pandas.DataFrame(data) try: pandas_result = pandas_df.mode(axis=axis, numeric_only=numeric_only) except Exception: with pytest.raises(TypeError): modin_df.mode(axis=axis, numeric_only=numeric_only) else: modin_result = modin_df.mode(axis=axis, numeric_only=numeric_only) df_equals(modin_result, pandas_result) @pytest.mark.parametrize("data", test_data_values, ids=test_data_keys) def test_ndim(self, data): modin_df = pd.DataFrame(data) pandas_df = pandas.DataFrame(data) assert modin_df.ndim == pandas_df.ndim def test_nlargest(self): df = pd.DataFrame( { "population": [ 59000000, 65000000, 434000, 434000, 434000, 337000, 11300, 11300, 11300, ], "GDP": [1937894, 2583560, 12011, 4520, 12128, 17036, 182, 38, 311], "alpha-2": ["IT", "FR", "MT", "MV", "BN", "IS", "NR", "TV", "AI"], }, index=[ "Italy", "France", "Malta", "Maldives", "Brunei", "Iceland", "Nauru", "Tuvalu", "Anguilla", ], ) with pytest.warns(UserWarning): df.nlargest(3, "population") @pytest.mark.parametrize("data", test_data_values, ids=test_data_keys) def test_notna(self, data): modin_df = pd.DataFrame(data) pandas_df = pandas.DataFrame(data) df_equals(modin_df.notna(), pandas_df.notna()) @pytest.mark.parametrize("data", test_data_values, ids=test_data_keys) def test_notnull(self, data): modin_df = pd.DataFrame(data) pandas_df = pandas.DataFrame(data) df_equals(modin_df.notnull(), pandas_df.notnull()) def test_nsmallest(self): df = pd.DataFrame( { "population": [ 59000000, 65000000, 434000, 434000, 434000, 337000, 11300, 11300, 11300, ], "GDP": [1937894, 2583560, 12011, 4520, 12128, 17036, 182, 38, 311], "alpha-2": ["IT", "FR", "MT", "MV", "BN", "IS", "NR", "TV", "AI"], }, index=[ "Italy", "France", "Malta", "Maldives", "Brunei", "Iceland", "Nauru", "Tuvalu", "Anguilla", ], ) with pytest.warns(UserWarning): df.nsmallest(3, "population") @pytest.mark.parametrize("data", test_data_values, ids=test_data_keys) @pytest.mark.parametrize("axis", axis_values, ids=axis_keys) @pytest.mark.parametrize( "dropna", bool_arg_values, ids=arg_keys("dropna", bool_arg_keys) ) def test_nunique(self, data, axis, dropna): modin_df = pd.DataFrame(data) pandas_df = pandas.DataFrame(data) modin_result = modin_df.nunique(axis=axis, dropna=dropna) pandas_result = pandas_df.nunique(axis=axis, dropna=dropna) df_equals(modin_result, pandas_result) modin_result = modin_df.T.nunique(axis=axis, dropna=dropna) pandas_result = pandas_df.T.nunique(axis=axis, dropna=dropna) df_equals(modin_result, pandas_result) def test_pct_change(self): data = test_data_values[0] with pytest.warns(UserWarning): pd.DataFrame(data).pct_change() @pytest.mark.parametrize("data", test_data_values, ids=test_data_keys) def test_pipe(self, data): modin_df = pd.DataFrame(data) pandas_df = pandas.DataFrame(data) n = len(modin_df.index) a, b, c = 2 % n, 0, 3 % n col = modin_df.columns[3 % len(modin_df.columns)] def h(x): return x.drop(columns=[col]) def g(x, arg1=0): for _ in range(arg1): x = x.append(x) return x def f(x, arg2=0, arg3=0): return x.drop([arg2, arg3]) df_equals( f(g(h(modin_df), arg1=a), arg2=b, arg3=c), (modin_df.pipe(h).pipe(g, arg1=a).pipe(f, arg2=b, arg3=c)), ) df_equals( (modin_df.pipe(h).pipe(g, arg1=a).pipe(f, arg2=b, arg3=c)), (pandas_df.pipe(h).pipe(g, arg1=a).pipe(f, arg2=b, arg3=c)), ) def test_pivot(self): df = pd.DataFrame( { "foo": ["one", "one", "one", "two", "two", "two"], "bar": ["A", "B", "C", "A", "B", "C"], "baz": [1, 2, 3, 4, 5, 6], "zoo": ["x", "y", "z", "q", "w", "t"], } ) with pytest.warns(UserWarning): df.pivot(index="foo", columns="bar", values="baz") def test_pivot_table(self): df = pd.DataFrame( { "A": ["foo", "foo", "foo", "foo", "foo", "bar", "bar", "bar", "bar"], "B": ["one", "one", "one", "two", "two", "one", "one", "two", "two"], "C": [ "small", "large", "large", "small", "small", "large", "small", "small", "large", ], "D": [1, 2, 2, 3, 3, 4, 5, 6, 7], "E": [2, 4, 5, 5, 6, 6, 8, 9, 9], } ) with pytest.warns(UserWarning): df.pivot_table(values="D", index=["A", "B"], columns=["C"], aggfunc=np.sum) @pytest.mark.parametrize("data", test_data_values, ids=test_data_keys) def test_plot(self, request, data): modin_df = pd.DataFrame(data) pandas_df = pandas.DataFrame(data) if name_contains(request.node.name, numeric_dfs): # We have to test this way because equality in plots means same object. zipped_plot_lines = zip(modin_df.plot().lines, pandas_df.plot().lines) for l, r in zipped_plot_lines: if isinstance(l.get_xdata(), np.ma.core.MaskedArray) and isinstance( r.get_xdata(), np.ma.core.MaskedArray ): assert all((l.get_xdata() == r.get_xdata()).data) else: assert np.array_equal(l.get_xdata(), r.get_xdata()) if isinstance(l.get_ydata(), np.ma.core.MaskedArray) and isinstance( r.get_ydata(), np.ma.core.MaskedArray ): assert all((l.get_ydata() == r.get_ydata()).data) else: assert np.array_equal(l.get_xdata(), r.get_xdata()) @pytest.mark.parametrize("data", test_data_values, ids=test_data_keys) def test_pop(self, request, data): modin_df = pd.DataFrame(data) pandas_df = pandas.DataFrame(data) if "empty_data" not in request.node.name: key = modin_df.columns[0] temp_modin_df = modin_df.copy() temp_pandas_df = pandas_df.copy() modin_popped = temp_modin_df.pop(key) pandas_popped = temp_pandas_df.pop(key) df_equals(modin_popped, pandas_popped) df_equals(temp_modin_df, temp_pandas_df) @pytest.mark.parametrize("data", test_data_values, ids=test_data_keys) @pytest.mark.parametrize("axis", axis_values, ids=axis_keys) @pytest.mark.parametrize( "skipna", bool_arg_values, ids=arg_keys("skipna", bool_arg_keys) ) @pytest.mark.parametrize( "numeric_only", bool_arg_values, ids=arg_keys("numeric_only", bool_arg_keys) ) @pytest.mark.parametrize( "min_count", int_arg_values, ids=arg_keys("min_count", int_arg_keys) ) def test_prod(self, request, data, axis, skipna, numeric_only, min_count): modin_df = pd.DataFrame(data) pandas_df = pandas.DataFrame(data) try: pandas_result = pandas_df.prod( axis=axis, skipna=skipna, numeric_only=numeric_only, min_count=min_count ) except Exception: with pytest.raises(TypeError): modin_df.prod( axis=axis, skipna=skipna, numeric_only=numeric_only, min_count=min_count, ) else: modin_result = modin_df.prod( axis=axis, skipna=skipna, numeric_only=numeric_only, min_count=min_count ) df_equals(modin_result, pandas_result) try: pandas_result = pandas_df.T.prod( axis=axis, skipna=skipna, numeric_only=numeric_only, min_count=min_count ) except Exception: with pytest.raises(TypeError): modin_df.T.prod( axis=axis, skipna=skipna, numeric_only=numeric_only, min_count=min_count, ) else: modin_result = modin_df.T.prod( axis=axis, skipna=skipna, numeric_only=numeric_only, min_count=min_count ) df_equals(modin_result, pandas_result) @pytest.mark.parametrize("data", test_data_values, ids=test_data_keys) @pytest.mark.parametrize("axis", axis_values, ids=axis_keys) @pytest.mark.parametrize( "skipna", bool_arg_values, ids=arg_keys("skipna", bool_arg_keys) ) @pytest.mark.parametrize( "numeric_only", bool_arg_values, ids=arg_keys("numeric_only", bool_arg_keys) ) @pytest.mark.parametrize( "min_count", int_arg_values, ids=arg_keys("min_count", int_arg_keys) ) def test_product(self, request, data, axis, skipna, numeric_only, min_count): modin_df = pd.DataFrame(data) pandas_df = pandas.DataFrame(data) try: pandas_result = pandas_df.product( axis=axis, skipna=skipna, numeric_only=numeric_only, min_count=min_count ) except Exception: with pytest.raises(TypeError): modin_df.product( axis=axis, skipna=skipna, numeric_only=numeric_only, min_count=min_count, ) else: modin_result = modin_df.product( axis=axis, skipna=skipna, numeric_only=numeric_only, min_count=min_count ) df_equals(modin_result, pandas_result) @pytest.mark.parametrize("data", test_data_values, ids=test_data_keys) @pytest.mark.parametrize("q", quantiles_values, ids=quantiles_keys) def test_quantile(self, request, data, q): modin_df = pd.DataFrame(data) pandas_df = pandas.DataFrame(data) if not name_contains(request.node.name, no_numeric_dfs): df_equals(modin_df.quantile(q), pandas_df.quantile(q)) df_equals(modin_df.quantile(q, axis=1), pandas_df.quantile(q, axis=1)) try: pandas_result = pandas_df.quantile(q, axis=1, numeric_only=False) except Exception as e: with pytest.raises(type(e)): modin_df.quantile(q, axis=1, numeric_only=False) else: modin_result = modin_df.quantile(q, axis=1, numeric_only=False) df_equals(modin_result, pandas_result) else: with pytest.raises(ValueError): modin_df.quantile(q) if not name_contains(request.node.name, no_numeric_dfs): df_equals(modin_df.T.quantile(q), pandas_df.T.quantile(q)) df_equals(modin_df.T.quantile(q, axis=1), pandas_df.T.quantile(q, axis=1)) try: pandas_result = pandas_df.T.quantile(q, axis=1, numeric_only=False) except Exception as e: with pytest.raises(type(e)): modin_df.T.quantile(q, axis=1, numeric_only=False) else: modin_result = modin_df.T.quantile(q, axis=1, numeric_only=False) df_equals(modin_result, pandas_result) else: with pytest.raises(ValueError): modin_df.T.quantile(q) @pytest.mark.parametrize("data", test_data_values, ids=test_data_keys) @pytest.mark.parametrize("funcs", query_func_values, ids=query_func_keys) def test_query(self, data, funcs): modin_df = pd.DataFrame(data) pandas_df = pandas.DataFrame(data) with pytest.raises(ValueError): modin_df.query("") with pytest.raises(NotImplementedError): x = 2 # noqa F841 modin_df.query("col1 < @x") try: pandas_result = pandas_df.query(funcs) except Exception as e: with pytest.raises(type(e)): modin_df.query(funcs) else: modin_result = modin_df.query(funcs) df_equals(modin_result, pandas_result) def test_query_after_insert(self): modin_df = pd.DataFrame({"x": [-1, 0, 1, None], "y": [1, 2, None, 3]}) modin_df["z"] = modin_df.eval("x / y") modin_df = modin_df.query("z >= 0") modin_result = modin_df.reset_index(drop=True) modin_result.columns = ["a", "b", "c"] pandas_df = pd.DataFrame({"x": [-1, 0, 1, None], "y": [1, 2, None, 3]}) pandas_df["z"] = pandas_df.eval("x / y") pandas_df = pandas_df.query("z >= 0") pandas_result = pandas_df.reset_index(drop=True) pandas_result.columns = ["a", "b", "c"] df_equals(modin_result, pandas_result) df_equals(modin_df, pandas_df) @pytest.mark.parametrize("data", test_data_values, ids=test_data_keys) @pytest.mark.parametrize("axis", axis_values, ids=axis_keys) @pytest.mark.parametrize( "numeric_only", bool_arg_values, ids=arg_keys("numeric_only", bool_arg_keys) ) @pytest.mark.parametrize( "na_option", ["keep", "top", "bottom"], ids=["keep", "top", "bottom"] ) def test_rank(self, data, axis, numeric_only, na_option): modin_df = pd.DataFrame(data) pandas_df = pandas.DataFrame(data) try: pandas_result = pandas_df.rank( axis=axis, numeric_only=numeric_only, na_option=na_option ) except Exception as e: with pytest.raises(type(e)): modin_df.rank(axis=axis, numeric_only=numeric_only, na_option=na_option) else: modin_result = modin_df.rank( axis=axis, numeric_only=numeric_only, na_option=na_option ) df_equals(modin_result, pandas_result) def test_reindex(self): frame_data = { "col1": [0, 1, 2, 3], "col2": [4, 5, 6, 7], "col3": [8, 9, 10, 11], "col4": [12, 13, 14, 15], "col5": [0, 0, 0, 0], } pandas_df = pandas.DataFrame(frame_data) modin_df = pd.DataFrame(frame_data) df_equals(modin_df.reindex([0, 3, 2, 1]), pandas_df.reindex([0, 3, 2, 1])) df_equals(modin_df.reindex([0, 6, 2]), pandas_df.reindex([0, 6, 2])) df_equals( modin_df.reindex(["col1", "col3", "col4", "col2"], axis=1), pandas_df.reindex(["col1", "col3", "col4", "col2"], axis=1), ) df_equals( modin_df.reindex(["col1", "col7", "col4", "col8"], axis=1), pandas_df.reindex(["col1", "col7", "col4", "col8"], axis=1), ) df_equals( modin_df.reindex(index=[0, 1, 5], columns=["col1", "col7", "col4", "col8"]), pandas_df.reindex( index=[0, 1, 5], columns=["col1", "col7", "col4", "col8"] ), ) df_equals( modin_df.T.reindex(["col1", "col7", "col4", "col8"], axis=0), pandas_df.T.reindex(["col1", "col7", "col4", "col8"], axis=0), ) def test_reindex_like(self): df1 = pd.DataFrame( [ [24.3, 75.7, "high"], [31, 87.8, "high"], [22, 71.6, "medium"], [35, 95, "medium"], ], columns=["temp_celsius", "temp_fahrenheit", "windspeed"], index=pd.date_range(start="2014-02-12", end="2014-02-15", freq="D"), ) df2 = pd.DataFrame( [[28, "low"], [30, "low"], [35.1, "medium"]], columns=["temp_celsius", "windspeed"], index=pd.DatetimeIndex(["2014-02-12", "2014-02-13", "2014-02-15"]), ) with pytest.warns(UserWarning): df2.reindex_like(df1) def test_rename_sanity(self): test_data = TestData() mapping = {"A": "a", "B": "b", "C": "c", "D": "d"} modin_df = pd.DataFrame(test_data.frame) df_equals( modin_df.rename(columns=mapping), test_data.frame.rename(columns=mapping) ) renamed2 = test_data.frame.rename(columns=str.lower) df_equals(modin_df.rename(columns=str.lower), renamed2) modin_df = pd.DataFrame(renamed2) df_equals( modin_df.rename(columns=str.upper), renamed2.rename(columns=str.upper) ) # index data = {"A": {"foo": 0, "bar": 1}} # gets sorted alphabetical df = pandas.DataFrame(data) modin_df = pd.DataFrame(data) tm.assert_index_equal( modin_df.rename(index={"foo": "bar", "bar": "foo"}).index, df.rename(index={"foo": "bar", "bar": "foo"}).index, ) tm.assert_index_equal( modin_df.rename(index=str.upper).index, df.rename(index=str.upper).index ) # have to pass something with pytest.raises(TypeError): modin_df.rename() # partial columns renamed = test_data.frame.rename(columns={"C": "foo", "D": "bar"}) modin_df = pd.DataFrame(test_data.frame) tm.assert_index_equal( modin_df.rename(columns={"C": "foo", "D": "bar"}).index, test_data.frame.rename(columns={"C": "foo", "D": "bar"}).index, ) # TODO: Uncomment when transpose works # other axis # renamed = test_data.frame.T.rename(index={'C': 'foo', 'D': 'bar'}) # tm.assert_index_equal( # test_data.frame.T.rename(index={'C': 'foo', 'D': 'bar'}).index, # modin_df.T.rename(index={'C': 'foo', 'D': 'bar'}).index) # index with name index = pandas.Index(["foo", "bar"], name="name") renamer = pandas.DataFrame(data, index=index) modin_df = pd.DataFrame(data, index=index) renamed = renamer.rename(index={"foo": "bar", "bar": "foo"}) modin_renamed = modin_df.rename(index={"foo": "bar", "bar": "foo"}) tm.assert_index_equal(renamed.index, modin_renamed.index) assert renamed.index.name == modin_renamed.index.name def test_rename_multiindex(self): tuples_index = [("foo1", "bar1"), ("foo2", "bar2")] tuples_columns = [("fizz1", "buzz1"), ("fizz2", "buzz2")] index = pandas.MultiIndex.from_tuples(tuples_index, names=["foo", "bar"]) columns = pandas.MultiIndex.from_tuples(tuples_columns, names=["fizz", "buzz"]) frame_data = [(0, 0), (1, 1)] df = pandas.DataFrame(frame_data, index=index, columns=columns) modin_df = pd.DataFrame(frame_data, index=index, columns=columns) # # without specifying level -> accross all levels renamed = df.rename( index={"foo1": "foo3", "bar2": "bar3"}, columns={"fizz1": "fizz3", "buzz2": "buzz3"}, ) modin_renamed = modin_df.rename( index={"foo1": "foo3", "bar2": "bar3"}, columns={"fizz1": "fizz3", "buzz2": "buzz3"}, ) tm.assert_index_equal(renamed.index, modin_renamed.index) renamed = df.rename( index={"foo1": "foo3", "bar2": "bar3"}, columns={"fizz1": "fizz3", "buzz2": "buzz3"}, ) tm.assert_index_equal(renamed.columns, modin_renamed.columns) assert renamed.index.names == modin_renamed.index.names assert renamed.columns.names == modin_renamed.columns.names # # with specifying a level # dict renamed = df.rename(columns={"fizz1": "fizz3", "buzz2": "buzz3"}, level=0) modin_renamed = modin_df.rename( columns={"fizz1": "fizz3", "buzz2": "buzz3"}, level=0 ) tm.assert_index_equal(renamed.columns, modin_renamed.columns) renamed = df.rename(columns={"fizz1": "fizz3", "buzz2": "buzz3"}, level="fizz") modin_renamed = modin_df.rename( columns={"fizz1": "fizz3", "buzz2": "buzz3"}, level="fizz" ) tm.assert_index_equal(renamed.columns, modin_renamed.columns) renamed = df.rename(columns={"fizz1": "fizz3", "buzz2": "buzz3"}, level=1) modin_renamed = modin_df.rename( columns={"fizz1": "fizz3", "buzz2": "buzz3"}, level=1 ) tm.assert_index_equal(renamed.columns, modin_renamed.columns) renamed = df.rename(columns={"fizz1": "fizz3", "buzz2": "buzz3"}, level="buzz") modin_renamed = modin_df.rename( columns={"fizz1": "fizz3", "buzz2": "buzz3"}, level="buzz" ) tm.assert_index_equal(renamed.columns, modin_renamed.columns) # function func = str.upper renamed = df.rename(columns=func, level=0) modin_renamed = modin_df.rename(columns=func, level=0) tm.assert_index_equal(renamed.columns, modin_renamed.columns) renamed = df.rename(columns=func, level="fizz") modin_renamed = modin_df.rename(columns=func, level="fizz") tm.assert_index_equal(renamed.columns, modin_renamed.columns) renamed = df.rename(columns=func, level=1) modin_renamed = modin_df.rename(columns=func, level=1) tm.assert_index_equal(renamed.columns, modin_renamed.columns) renamed = df.rename(columns=func, level="buzz") modin_renamed = modin_df.rename(columns=func, level="buzz") tm.assert_index_equal(renamed.columns, modin_renamed.columns) # index renamed = df.rename(index={"foo1": "foo3", "bar2": "bar3"}, level=0) modin_renamed = modin_df.rename(index={"foo1": "foo3", "bar2": "bar3"}, level=0) tm.assert_index_equal(modin_renamed.index, renamed.index) @pytest.mark.skip(reason="Pandas does not pass this test") def test_rename_nocopy(self): test_data = TestData().frame modin_df = pd.DataFrame(test_data) modin_renamed = modin_df.rename(columns={"C": "foo"}, copy=False) modin_renamed["foo"] = 1 assert (modin_df["C"] == 1).all() def test_rename_inplace(self): test_data = TestData().frame modin_df = pd.DataFrame(test_data) df_equals( modin_df.rename(columns={"C": "foo"}), test_data.rename(columns={"C": "foo"}), ) frame = test_data.copy() modin_frame = modin_df.copy() frame.rename(columns={"C": "foo"}, inplace=True) modin_frame.rename(columns={"C": "foo"}, inplace=True) df_equals(modin_frame, frame) def test_rename_bug(self): # rename set ref_locs, and set_index was not resetting frame_data = {0: ["foo", "bar"], 1: ["bah", "bas"], 2: [1, 2]} df = pandas.DataFrame(frame_data) modin_df = pd.DataFrame(frame_data) df = df.rename(columns={0: "a"}) df = df.rename(columns={1: "b"}) # TODO: Uncomment when set_index is implemented # df = df.set_index(['a', 'b']) # df.columns = ['2001-01-01'] modin_df = modin_df.rename(columns={0: "a"}) modin_df = modin_df.rename(columns={1: "b"}) # TODO: Uncomment when set_index is implemented # modin_df = modin_df.set_index(['a', 'b']) # modin_df.columns = ['2001-01-01'] df_equals(modin_df, df) def test_rename_axis(self): data = {"num_legs": [4, 4, 2], "num_arms": [0, 0, 2]} index = ["dog", "cat", "monkey"] modin_df = pd.DataFrame(data, index) pandas_df = pandas.DataFrame(data, index) df_equals(modin_df.rename_axis("animal"), pandas_df.rename_axis("animal")) df_equals( modin_df.rename_axis("limbs", axis="columns"), pandas_df.rename_axis("limbs", axis="columns"), ) modin_df.rename_axis("limbs", axis="columns", inplace=True) pandas_df.rename_axis("limbs", axis="columns", inplace=True) df_equals(modin_df, pandas_df) new_index = pd.MultiIndex.from_product( [["mammal"], ["dog", "cat", "monkey"]], names=["type", "name"] ) modin_df.index = new_index pandas_df.index = new_index df_equals( modin_df.rename_axis(index={"type": "class"}), pandas_df.rename_axis(index={"type": "class"}), ) df_equals( modin_df.rename_axis(columns=str.upper), pandas_df.rename_axis(columns=str.upper), ) df_equals( modin_df.rename_axis( columns=[str.upper(o) for o in modin_df.columns.names] ), pandas_df.rename_axis( columns=[str.upper(o) for o in pandas_df.columns.names] ), ) with pytest.raises(ValueError): df_equals( modin_df.rename_axis(str.upper, axis=1), pandas_df.rename_axis(str.upper, axis=1), ) def test_rename_axis_inplace(self): test_frame = TestData().frame modin_df = pd.DataFrame(test_frame) result = test_frame.copy() modin_result = modin_df.copy() no_return = result.rename_axis("foo", inplace=True) modin_no_return = modin_result.rename_axis("foo", inplace=True) assert no_return is modin_no_return df_equals(modin_result, result) result = test_frame.copy() modin_result = modin_df.copy() no_return = result.rename_axis("bar", axis=1, inplace=True) modin_no_return = modin_result.rename_axis("bar", axis=1, inplace=True) assert no_return is modin_no_return df_equals(modin_result, result) def test_reorder_levels(self): df = pd.DataFrame( index=pd.MultiIndex.from_tuples( [ (num, letter, color) for num in range(1, 3) for letter in ["a", "b", "c"] for color in ["Red", "Green"] ], names=["Number", "Letter", "Color"], ) ) df["Value"] = np.random.randint(1, 100, len(df)) with pytest.warns(UserWarning): df.reorder_levels(["Letter", "Color", "Number"]) def test_replace(self): data = test_data_values[0] with pytest.warns(UserWarning): pd.DataFrame(data).replace() def test_resample(self): d = dict( { "price": [10, 11, 9, 13, 14, 18, 17, 19], "volume": [50, 60, 40, 100, 50, 100, 40, 50], } ) df = pd.DataFrame(d) df["week_starting"] = pd.date_range("01/01/2018", periods=8, freq="W") with pytest.warns(UserWarning): df.resample("M", on="week_starting") @pytest.mark.parametrize("data", test_data_values, ids=test_data_keys) def test_reset_index(self, data): modin_df = pd.DataFrame(data) pandas_df = pandas.DataFrame(data) modin_result = modin_df.reset_index(inplace=False) pandas_result = pandas_df.reset_index(inplace=False) df_equals(modin_result, pandas_result) modin_df_cp = modin_df.copy() pd_df_cp = pandas_df.copy() modin_df_cp.reset_index(inplace=True) pd_df_cp.reset_index(inplace=True) df_equals(modin_df_cp, pd_df_cp) def test_rolling(self): df = pd.DataFrame({"B": [0, 1, 2, np.nan, 4]}) with pytest.warns(UserWarning): df.rolling(2, win_type="triang") @pytest.mark.parametrize("data", test_data_values, ids=test_data_keys) def test_round(self, data): modin_df = pd.DataFrame(data) pandas_df = pandas.DataFrame(data) df_equals(modin_df.round(), pandas_df.round()) df_equals(modin_df.round(1), pandas_df.round(1)) @pytest.mark.parametrize("data", test_data_values, ids=test_data_keys) @pytest.mark.parametrize("axis", axis_values, ids=axis_keys) def test_sample(self, data, axis): modin_df = pd.DataFrame(data) pandas_df = pandas.DataFrame(data) with pytest.raises(ValueError): modin_df.sample(n=3, frac=0.4, axis=axis) with pytest.raises(KeyError): modin_df.sample(frac=0.5, weights="CoLuMn_No_ExIsT", axis=0) with pytest.raises(ValueError): modin_df.sample(frac=0.5, weights=modin_df.columns[0], axis=1) with pytest.raises(ValueError): modin_df.sample( frac=0.5, weights=[0.5 for _ in range(len(modin_df.index[:-1]))], axis=0 ) with pytest.raises(ValueError): modin_df.sample( frac=0.5, weights=[0.5 for _ in range(len(modin_df.columns[:-1]))], axis=1, ) with pytest.raises(ValueError): modin_df.sample(n=-3, axis=axis) with pytest.raises(ValueError): modin_df.sample(frac=0.2, weights=pandas.Series(), axis=axis) if isinstance(axis, str): num_axis = pandas.DataFrame()._get_axis_number(axis) else: num_axis = axis # weights that sum to 1 sums = sum(i % 2 for i in range(len(modin_df.axes[num_axis]))) weights = [i % 2 / sums for i in range(len(modin_df.axes[num_axis]))] modin_result = modin_df.sample( frac=0.5, random_state=42, weights=weights, axis=axis ) pandas_result = pandas_df.sample( frac=0.5, random_state=42, weights=weights, axis=axis ) df_equals(modin_result, pandas_result) # weights that don't sum to 1 weights = [i % 2 for i in range(len(modin_df.axes[num_axis]))] modin_result = modin_df.sample( frac=0.5, random_state=42, weights=weights, axis=axis ) pandas_result = pandas_df.sample( frac=0.5, random_state=42, weights=weights, axis=axis ) df_equals(modin_result, pandas_result) modin_result = modin_df.sample(n=0, axis=axis) pandas_result = pandas_df.sample(n=0, axis=axis) df_equals(modin_result, pandas_result) modin_result = modin_df.sample(frac=0.5, random_state=42, axis=axis) pandas_result = pandas_df.sample(frac=0.5, random_state=42, axis=axis) df_equals(modin_result, pandas_result) modin_result = modin_df.sample(n=2, random_state=42, axis=axis) pandas_result = pandas_df.sample(n=2, random_state=42, axis=axis) df_equals(modin_result, pandas_result) def test_select_dtypes(self): frame_data = { "test1": list("abc"), "test2": np.arange(3, 6).astype("u1"), "test3": np.arange(8.0, 11.0, dtype="float64"), "test4": [True, False, True], "test5": pandas.date_range("now", periods=3).values, "test6": list(range(5, 8)), } df = pandas.DataFrame(frame_data) rd = pd.DataFrame(frame_data) include = np.float, "integer" exclude = (np.bool_,) r = rd.select_dtypes(include=include, exclude=exclude) e = df[["test2", "test3", "test6"]] df_equals(r, e) r = rd.select_dtypes(include=np.bool_) e = df[["test4"]] df_equals(r, e) r = rd.select_dtypes(exclude=np.bool_) e = df[["test1", "test2", "test3", "test5", "test6"]] df_equals(r, e) try: pd.DataFrame().select_dtypes() assert False except ValueError: assert True def test_sem(self): data = test_data_values[0] with pytest.warns(UserWarning): pd.DataFrame(data).sem() @pytest.mark.parametrize("data", test_data_values, ids=test_data_keys) @pytest.mark.parametrize("axis", axis_values, ids=axis_keys) def test_set_axis(self, data, axis): modin_df = pd.DataFrame(data) pandas_df = pandas.DataFrame(data) x = pandas.DataFrame()._get_axis_number(axis) index = modin_df.columns if x else modin_df.index labels = ["{0}_{1}".format(index[i], i) for i in range(modin_df.shape[x])] modin_result = modin_df.set_axis(labels, axis=axis, inplace=False) pandas_result = pandas_df.set_axis(labels, axis=axis, inplace=False) df_equals(modin_result, pandas_result) with pytest.warns(FutureWarning): modin_df.set_axis(axis, labels, inplace=False) modin_df_copy = modin_df.copy() modin_df.set_axis(labels, axis=axis, inplace=True) # Check that the copy and original are different try: df_equals(modin_df, modin_df_copy) except AssertionError: assert True else: assert False pandas_df.set_axis(labels, axis=axis, inplace=True) df_equals(modin_df, pandas_df) with pytest.warns(FutureWarning): modin_df.set_axis(labels, axis=axis, inplace=None) @pytest.mark.parametrize("data", test_data_values, ids=test_data_keys) @pytest.mark.parametrize( "drop", bool_arg_values, ids=arg_keys("drop", bool_arg_keys) ) @pytest.mark.parametrize( "append", bool_arg_values, ids=arg_keys("append", bool_arg_keys) ) def test_set_index(self, request, data, drop, append): modin_df = pd.DataFrame(data) pandas_df = pandas.DataFrame(data) if "empty_data" not in request.node.name: key = modin_df.columns[0] modin_result = modin_df.set_index( key, drop=drop, append=append, inplace=False ) pandas_result = pandas_df.set_index( key, drop=drop, append=append, inplace=False ) df_equals(modin_result, pandas_result) modin_df_copy = modin_df.copy() modin_df.set_index(key, drop=drop, append=append, inplace=True) # Check that the copy and original are different try: df_equals(modin_df, modin_df_copy) except AssertionError: assert True else: assert False pandas_df.set_index(key, drop=drop, append=append, inplace=True) df_equals(modin_df, pandas_df) def test_set_value(self): data = test_data_values[0] with pytest.warns(UserWarning): pd.DataFrame(data).set_value(0, 0, 0) @pytest.mark.parametrize("data", test_data_values, ids=test_data_keys) def test_shape(self, data): modin_df = pd.DataFrame(data) pandas_df = pandas.DataFrame(data) assert modin_df.shape == pandas_df.shape def test_shift(self): data = test_data_values[0] with pytest.warns(UserWarning): pd.DataFrame(data).shift() @pytest.mark.parametrize("data", test_data_values, ids=test_data_keys) def test_size(self, data): modin_df = pd.DataFrame(data) pandas_df = pandas.DataFrame(data) assert modin_df.size == pandas_df.size @pytest.mark.parametrize("data", test_data_values, ids=test_data_keys) @pytest.mark.parametrize("axis", axis_values, ids=axis_keys) @pytest.mark.parametrize( "skipna", bool_arg_values, ids=arg_keys("skipna", bool_arg_keys) ) @pytest.mark.parametrize( "numeric_only", bool_arg_values, ids=arg_keys("numeric_only", bool_arg_keys) ) def test_skew(self, request, data, axis, skipna, numeric_only): modin_df = pd.DataFrame(data) pandas_df = pandas.DataFrame(data) try: pandas_result = pandas_df.skew( axis=axis, skipna=skipna, numeric_only=numeric_only ) except Exception: with pytest.raises(TypeError): modin_df.skew(axis=axis, skipna=skipna, numeric_only=numeric_only) else: modin_result = modin_df.skew( axis=axis, skipna=skipna, numeric_only=numeric_only ) df_equals(modin_result, pandas_result) try: pandas_result = pandas_df.T.skew( axis=axis, skipna=skipna, numeric_only=numeric_only ) except Exception: with pytest.raises(TypeError): modin_df.T.skew(axis=axis, skipna=skipna, numeric_only=numeric_only) else: modin_result = modin_df.T.skew( axis=axis, skipna=skipna, numeric_only=numeric_only ) df_equals(modin_result, pandas_result) def test_slice_shift(self): data = test_data_values[0] with pytest.warns(UserWarning): pd.DataFrame(data).slice_shift() @pytest.mark.parametrize("data", test_data_values, ids=test_data_keys) @pytest.mark.parametrize("axis", axis_values, ids=axis_keys) @pytest.mark.parametrize( "ascending", bool_arg_values, ids=arg_keys("ascending", bool_arg_keys) ) @pytest.mark.parametrize("na_position", ["first", "last"], ids=["first", "last"]) @pytest.mark.parametrize( "sort_remaining", bool_arg_values, ids=arg_keys("sort_remaining", bool_arg_keys) ) def test_sort_index(self, data, axis, ascending, na_position, sort_remaining): modin_df = pd.DataFrame(data) pandas_df = pandas.DataFrame(data) # Change index value so sorting will actually make a difference if axis == "rows" or axis == 0: length = len(modin_df.index) modin_df.index = [(i - length / 2) % length for i in range(length)] pandas_df.index = [(i - length / 2) % length for i in range(length)] # Add NaNs to sorted index if axis == "rows" or axis == 0: length = len(modin_df.index) modin_df.index = [ np.nan if i % 2 == 0 else modin_df.index[i] for i in range(length) ] pandas_df.index = [ np.nan if i % 2 == 0 else pandas_df.index[i] for i in range(length) ] else: length = len(modin_df.columns) modin_df.columns = [ np.nan if i % 2 == 0 else modin_df.columns[i] for i in range(length) ] pandas_df.columns = [ np.nan if i % 2 == 0 else pandas_df.columns[i] for i in range(length) ] modin_result = modin_df.sort_index( axis=axis, ascending=ascending, na_position=na_position, inplace=False ) pandas_result = pandas_df.sort_index( axis=axis, ascending=ascending, na_position=na_position, inplace=False ) df_equals(modin_result, pandas_result) modin_df_cp = modin_df.copy() pandas_df_cp = pandas_df.copy() modin_df_cp.sort_index( axis=axis, ascending=ascending, na_position=na_position, inplace=True ) pandas_df_cp.sort_index( axis=axis, ascending=ascending, na_position=na_position, inplace=True ) df_equals(modin_df_cp, pandas_df_cp) # MultiIndex modin_df = pd.DataFrame(data) pandas_df = pandas.DataFrame(data) modin_df.index = pd.MultiIndex.from_tuples( [(i // 10, i // 5, i) for i in range(len(modin_df))] ) pandas_df.index = pandas.MultiIndex.from_tuples( [(i // 10, i // 5, i) for i in range(len(pandas_df))] ) with pytest.warns(UserWarning): df_equals(modin_df.sort_index(level=0), pandas_df.sort_index(level=0)) with pytest.warns(UserWarning): df_equals(modin_df.sort_index(axis=0), pandas_df.sort_index(axis=0)) @pytest.mark.parametrize("data", test_data_values, ids=test_data_keys) @pytest.mark.parametrize("axis", axis_values, ids=axis_keys) @pytest.mark.parametrize( "ascending", bool_arg_values, ids=arg_keys("ascending", bool_arg_keys) ) @pytest.mark.parametrize("na_position", ["first", "last"], ids=["first", "last"]) def test_sort_values(self, request, data, axis, ascending, na_position): modin_df = pd.DataFrame(data) pandas_df = pandas.DataFrame(data) if "empty_data" not in request.node.name and ( (axis == 0 or axis == "over rows") or name_contains(request.node.name, numeric_dfs) ): index = ( modin_df.index if axis == 1 or axis == "columns" else modin_df.columns ) key = index[0] modin_result = modin_df.sort_values( key, axis=axis, ascending=ascending, na_position=na_position, inplace=False, ) pandas_result = pandas_df.sort_values( key, axis=axis, ascending=ascending, na_position=na_position, inplace=False, ) df_equals(modin_result, pandas_result) modin_df_cp = modin_df.copy() pandas_df_cp = pandas_df.copy() modin_df_cp.sort_values( key, axis=axis, ascending=ascending, na_position=na_position, inplace=True, ) pandas_df_cp.sort_values( key, axis=axis, ascending=ascending, na_position=na_position, inplace=True, ) df_equals(modin_df_cp, pandas_df_cp) keys = [key, index[-1]] modin_result = modin_df.sort_values( keys, axis=axis, ascending=ascending, na_position=na_position, inplace=False, ) pandas_result = pandas_df.sort_values( keys, axis=axis, ascending=ascending, na_position=na_position, inplace=False, ) df_equals(modin_result, pandas_result) modin_df_cp = modin_df.copy() pandas_df_cp = pandas_df.copy() modin_df_cp.sort_values( keys, axis=axis, ascending=ascending, na_position=na_position, inplace=True, ) pandas_df_cp.sort_values( keys, axis=axis, ascending=ascending, na_position=na_position, inplace=True, ) df_equals(modin_df_cp, pandas_df_cp) def test_squeeze(self): frame_data = { "col1": [0, 1, 2, 3], "col2": [4, 5, 6, 7], "col3": [8, 9, 10, 11], "col4": [12, 13, 14, 15], "col5": [0, 0, 0, 0], } frame_data_2 = {"col1": [0, 1, 2, 3]} frame_data_3 = { "col1": [0], "col2": [4], "col3": [8], "col4": [12], "col5": [0], } frame_data_4 = {"col1": [2]} frame_data_5 = {"col1": ["string"]} # Different data for different cases pandas_df = pandas.DataFrame(frame_data).squeeze() ray_df = pd.DataFrame(frame_data).squeeze() df_equals(ray_df, pandas_df) pandas_df_2 = pandas.DataFrame(frame_data_2).squeeze() ray_df_2 = pd.DataFrame(frame_data_2).squeeze() df_equals(ray_df_2, pandas_df_2) pandas_df_3 = pandas.DataFrame(frame_data_3).squeeze() ray_df_3 = pd.DataFrame(frame_data_3).squeeze() df_equals(ray_df_3, pandas_df_3) pandas_df_4 = pandas.DataFrame(frame_data_4).squeeze() ray_df_4 = pd.DataFrame(frame_data_4).squeeze() df_equals(ray_df_4, pandas_df_4) pandas_df_5 = pandas.DataFrame(frame_data_5).squeeze() ray_df_5 = pd.DataFrame(frame_data_5).squeeze() df_equals(ray_df_5, pandas_df_5) data = [ [ pd.Timestamp("2019-01-02"), pd.Timestamp("2019-01-03"), pd.Timestamp("2019-01-04"), pd.Timestamp("2019-01-05"), ], [1, 1, 1, 2], ] df = pd.DataFrame(data, index=["date", "value"]).T pf = pandas.DataFrame(data, index=["date", "value"]).T df.set_index("date", inplace=True) pf.set_index("date", inplace=True) df_equals(df.iloc[0], pf.iloc[0]) def test_stack(self): data = test_data_values[0] with pytest.warns(UserWarning): pd.DataFrame(data).stack() @pytest.mark.parametrize("data", test_data_values, ids=test_data_keys) @pytest.mark.parametrize("axis", axis_values, ids=axis_keys) @pytest.mark.parametrize( "skipna", bool_arg_values, ids=arg_keys("skipna", bool_arg_keys) ) @pytest.mark.parametrize( "numeric_only", bool_arg_values, ids=arg_keys("numeric_only", bool_arg_keys) ) @pytest.mark.parametrize("ddof", int_arg_values, ids=arg_keys("ddof", int_arg_keys)) def test_std(self, request, data, axis, skipna, numeric_only, ddof): modin_df = pd.DataFrame(data) pandas_df = pandas.DataFrame(data) try: pandas_result = pandas_df.std( axis=axis, skipna=skipna, numeric_only=numeric_only, ddof=ddof ) except Exception as e: with pytest.raises(type(e)): modin_df.std( axis=axis, skipna=skipna, numeric_only=numeric_only, ddof=ddof ) else: modin_result = modin_df.std( axis=axis, skipna=skipna, numeric_only=numeric_only, ddof=ddof ) df_equals(modin_result, pandas_result) try: pandas_result = pandas_df.T.std( axis=axis, skipna=skipna, numeric_only=numeric_only, ddof=ddof ) except Exception as e: with pytest.raises(type(e)): modin_df.T.std( axis=axis, skipna=skipna, numeric_only=numeric_only, ddof=ddof ) else: modin_result = modin_df.T.std( axis=axis, skipna=skipna, numeric_only=numeric_only, ddof=ddof ) df_equals(modin_result, pandas_result) def test_style(self): data = test_data_values[0] with pytest.warns(UserWarning): pd.DataFrame(data).style @pytest.mark.parametrize("data", test_data_values, ids=test_data_keys) @pytest.mark.parametrize("axis", axis_values, ids=axis_keys) @pytest.mark.parametrize( "skipna", bool_arg_values, ids=arg_keys("skipna", bool_arg_keys) ) @pytest.mark.parametrize( "numeric_only", bool_arg_values, ids=arg_keys("numeric_only", bool_arg_keys) ) @pytest.mark.parametrize( "min_count", int_arg_values, ids=arg_keys("min_count", int_arg_keys) ) def test_sum(self, request, data, axis, skipna, numeric_only, min_count): modin_df = pd.DataFrame(data) pandas_df = pandas.DataFrame(data) try: pandas_result = pandas_df.sum( axis=axis, skipna=skipna, numeric_only=numeric_only, min_count=min_count ) except Exception: with pytest.raises(TypeError): modin_df.sum( axis=axis, skipna=skipna, numeric_only=numeric_only, min_count=min_count, ) else: modin_result = modin_df.sum( axis=axis, skipna=skipna, numeric_only=numeric_only, min_count=min_count ) df_equals(modin_result, pandas_result) try: pandas_result = pandas_df.T.sum( axis=axis, skipna=skipna, numeric_only=numeric_only, min_count=min_count ) except Exception: with pytest.raises(TypeError): modin_df.T.sum( axis=axis, skipna=skipna, numeric_only=numeric_only, min_count=min_count, ) else: modin_result = modin_df.T.sum( axis=axis, skipna=skipna, numeric_only=numeric_only, min_count=min_count ) df_equals(modin_result, pandas_result) @pytest.mark.parametrize("data", test_data_values, ids=test_data_keys) def test_sum_single_column(self, data): modin_df = pd.DataFrame(data).iloc[:, [0]] pandas_df = pandas.DataFrame(data).iloc[:, [0]] df_equals(modin_df.sum(), pandas_df.sum()) df_equals(modin_df.sum(axis=1), pandas_df.sum(axis=1)) def test_swapaxes(self): data = test_data_values[0] with pytest.warns(UserWarning): pd.DataFrame(data).swapaxes(0, 1) def test_swaplevel(self): df = pd.DataFrame( index=pd.MultiIndex.from_tuples( [ (num, letter, color) for num in range(1, 3) for letter in ["a", "b", "c"] for color in ["Red", "Green"] ], names=["Number", "Letter", "Color"], ) ) df["Value"] = np.random.randint(1, 100, len(df)) with pytest.warns(UserWarning): df.swaplevel("Number", "Color") @pytest.mark.parametrize("data", test_data_values, ids=test_data_keys) @pytest.mark.parametrize("n", int_arg_values, ids=arg_keys("n", int_arg_keys)) def test_tail(self, data, n): modin_df = pd.DataFrame(data) pandas_df = pandas.DataFrame(data) df_equals(modin_df.tail(n), pandas_df.tail(n)) df_equals(modin_df.tail(len(modin_df)), pandas_df.tail(len(pandas_df))) def test_take(self): df = pd.DataFrame( [ ("falcon", "bird", 389.0), ("parrot", "bird", 24.0), ("lion", "mammal", 80.5), ("monkey", "mammal", np.nan), ], columns=["name", "class", "max_speed"], index=[0, 2, 3, 1], ) with pytest.warns(UserWarning): df.take([0, 3]) @pytest.mark.parametrize("data", test_data_values, ids=test_data_keys) def test_to_records(self, request, data): modin_df = pd.DataFrame(data) pandas_df = pandas.DataFrame(data) # Skips nan because only difference is nan instead of NaN if not name_contains(request.node.name, ["nan"]): assert np.array_equal(modin_df.to_records(), pandas_df.to_records()) def test_to_sparse(self): data = test_data_values[0] with pytest.warns(UserWarning): pd.DataFrame(data).to_sparse() @pytest.mark.parametrize("data", test_data_values, ids=test_data_keys) def test_to_string(self, request, data): modin_df = pd.DataFrame(data) pandas_df = pandas.DataFrame(data) # noqa F841 # Skips nan because only difference is nan instead of NaN if not name_contains(request.node.name, ["nan"]): assert modin_df.to_string() == to_pandas(modin_df).to_string() def test_to_timestamp(self): idx = pd.date_range("1/1/2012", periods=5, freq="M") df = pd.DataFrame(np.random.randint(0, 100, size=(len(idx), 4)), index=idx) with pytest.warns(UserWarning): df.to_period().to_timestamp() def test_to_xarray(self): data = test_data_values[0] with pytest.warns(UserWarning): pd.DataFrame(data).to_xarray() @pytest.mark.parametrize("data", test_data_values, ids=test_data_keys) @pytest.mark.parametrize("func", agg_func_values, ids=agg_func_keys) def test_transform(self, request, data, func): modin_df = pd.DataFrame(data) pandas_df = pandas.DataFrame(data) try: pandas_result = pandas_df.transform(func) except Exception as e: with pytest.raises(type(e)): modin_df.transform(func) else: modin_result = modin_df.transform(func) df_equals(modin_result, pandas_result) @pytest.mark.parametrize("data", test_data_values, ids=test_data_keys) @pytest.mark.parametrize("func", agg_func_values, ids=agg_func_keys) def test_transform_numeric(self, request, data, func): if name_contains(request.node.name, numeric_agg_funcs) and name_contains( request.node.name, numeric_dfs ): modin_df = pd.DataFrame(data) pandas_df = pandas.DataFrame(data) try: pandas_result = pandas_df.transform(func) except Exception as e: with pytest.raises(type(e)): modin_df.transform(func) else: modin_result = modin_df.transform(func) df_equals(modin_result, pandas_result) @pytest.mark.parametrize("data", test_data_values, ids=test_data_keys) def test_transpose(self, data): modin_df = pd.DataFrame(data) pandas_df = pandas.DataFrame(data) df_equals(modin_df.T, pandas_df.T) df_equals(modin_df.transpose(), pandas_df.transpose()) # Uncomment below once #165 is merged # Test for map across full axis for select indices # df_equals(modin_df.T.dropna(), pandas_df.T.dropna()) # Test for map across full axis # df_equals(modin_df.T.nunique(), pandas_df.T.nunique()) # Test for map across blocks # df_equals(modin_df.T.notna(), pandas_df.T.notna()) def test_truncate(self): data = test_data_values[0] with pytest.warns(UserWarning): pd.DataFrame(data).truncate() def test_tshift(self): idx = pd.date_range("1/1/2012", periods=5, freq="M") df = pd.DataFrame(np.random.randint(0, 100, size=(len(idx), 4)), index=idx) with pytest.warns(UserWarning): df.to_period().tshift() def test_tz_convert(self): idx = pd.date_range("1/1/2012", periods=5, freq="M") df = pd.DataFrame(np.random.randint(0, 100, size=(len(idx), 4)), index=idx) with pytest.warns(UserWarning): df.tz_localize("America/Los_Angeles").tz_convert("America/Los_Angeles") def test_tz_localize(self): idx = pd.date_range("1/1/2012", periods=5, freq="M") df = pd.DataFrame(np.random.randint(0, 100, size=(len(idx), 4)), index=idx) with pytest.warns(UserWarning): df.tz_localize("America/Los_Angeles") def test_unstack(self): data = test_data_values[0] with pytest.warns(UserWarning): pd.DataFrame(data).unstack() def test_update(self): df = pd.DataFrame( [[1.5, np.nan, 3.0], [1.5, np.nan, 3.0], [1.5, np.nan, 3], [1.5, np.nan, 3]] ) other = pd.DataFrame([[3.6, 2.0, np.nan], [np.nan, np.nan, 7]], index=[1, 3]) df.update(other) expected = pd.DataFrame( [[1.5, np.nan, 3], [3.6, 2, 3], [1.5, np.nan, 3], [1.5, np.nan, 7.0]] ) df_equals(df, expected) @pytest.mark.parametrize("data", test_data_values, ids=test_data_keys) def test_values(self, data): modin_df = pd.DataFrame(data) pandas_df = pandas.DataFrame(data) np.testing.assert_equal(modin_df.values, pandas_df.values) @pytest.mark.parametrize("data", test_data_values, ids=test_data_keys) @pytest.mark.parametrize("axis", axis_values, ids=axis_keys) @pytest.mark.parametrize( "skipna", bool_arg_values, ids=arg_keys("skipna", bool_arg_keys) ) @pytest.mark.parametrize( "numeric_only", bool_arg_values, ids=arg_keys("numeric_only", bool_arg_keys) ) @pytest.mark.parametrize("ddof", int_arg_values, ids=arg_keys("ddof", int_arg_keys)) def test_var(self, request, data, axis, skipna, numeric_only, ddof): modin_df = pd.DataFrame(data) pandas_df = pandas.DataFrame(data) try: pandas_result = pandas_df.var( axis=axis, skipna=skipna, numeric_only=numeric_only, ddof=ddof ) except Exception: with pytest.raises(TypeError): modin_df.var( axis=axis, skipna=skipna, numeric_only=numeric_only, ddof=ddof ) else: modin_result = modin_df.var( axis=axis, skipna=skipna, numeric_only=numeric_only, ddof=ddof ) df_equals(modin_result, pandas_result) try: pandas_result = pandas_df.T.var( axis=axis, skipna=skipna, numeric_only=numeric_only, ddof=ddof ) except Exception: with pytest.raises(TypeError): modin_df.T.var( axis=axis, skipna=skipna, numeric_only=numeric_only, ddof=ddof ) else: modin_result = modin_df.T.var( axis=axis, skipna=skipna, numeric_only=numeric_only, ddof=ddof ) df_equals(modin_result, pandas_result) def test_where(self): frame_data = random_state.randn(100, 10) pandas_df = pandas.DataFrame(frame_data, columns=list("abcdefghij")) modin_df = pd.DataFrame(frame_data, columns=list("abcdefghij")) pandas_cond_df = pandas_df % 5 < 2 modin_cond_df = modin_df % 5 < 2 pandas_result = pandas_df.where(pandas_cond_df, -pandas_df) modin_result = modin_df.where(modin_cond_df, -modin_df) assert all((to_pandas(modin_result) == pandas_result).all()) other = pandas_df.loc[3] pandas_result = pandas_df.where(pandas_cond_df, other, axis=1) modin_result = modin_df.where(modin_cond_df, other, axis=1) assert all((to_pandas(modin_result) == pandas_result).all()) other = pandas_df["e"] pandas_result = pandas_df.where(pandas_cond_df, other, axis=0) modin_result = modin_df.where(modin_cond_df, other, axis=0) assert all((to_pandas(modin_result) == pandas_result).all()) pandas_result = pandas_df.where(pandas_df < 2, True) modin_result = modin_df.where(modin_df < 2, True) assert all((to_pandas(modin_result) == pandas_result).all()) def test_xs(self): d = { "num_legs": [4, 4, 2, 2], "num_wings": [0, 0, 2, 2], "class": ["mammal", "mammal", "mammal", "bird"], "animal": ["cat", "dog", "bat", "penguin"], "locomotion": ["walks", "walks", "flies", "walks"], } df = pd.DataFrame(data=d) df = df.set_index(["class", "animal", "locomotion"]) with pytest.warns(UserWarning): df.xs("mammal") @pytest.mark.parametrize("data", test_data_values, ids=test_data_keys) def test___getitem__(self, data): modin_df = pd.DataFrame(data) pandas_df = pandas.DataFrame(data) key = modin_df.columns[0] modin_col = modin_df.__getitem__(key) assert isinstance(modin_col, pd.Series) pd_col = pandas_df[key] df_equals(pd_col, modin_col) slices = [ (None, -1), (-1, None), (1, 2), (1, None), (None, 1), (1, -1), (-3, -1), (1, -1, 2), ] # slice test for slice_param in slices: s = slice(*slice_param) df_equals(modin_df[s], pandas_df[s]) # Test empty df_equals(pd.DataFrame([])[:10], pandas.DataFrame([])[:10]) def test_getitem_empty_mask(self): # modin-project/modin#517 modin_frames = [] pandas_frames = [] data1 = np.random.randint(0, 100, size=(100, 4)) mdf1 = pd.DataFrame(data1, columns=list("ABCD")) pdf1 = pandas.DataFrame(data1, columns=list("ABCD")) modin_frames.append(mdf1) pandas_frames.append(pdf1) data2 = np.random.randint(0, 100, size=(100, 4)) mdf2 = pd.DataFrame(data2, columns=list("ABCD")) pdf2 = pandas.DataFrame(data2, columns=list("ABCD")) modin_frames.append(mdf2) pandas_frames.append(pdf2) data3 = np.random.randint(0, 100, size=(100, 4)) mdf3 = pd.DataFrame(data3, columns=list("ABCD")) pdf3 = pandas.DataFrame(data3, columns=list("ABCD")) modin_frames.append(mdf3) pandas_frames.append(pdf3) modin_data = pd.concat(modin_frames) pandas_data = pandas.concat(pandas_frames) df_equals( modin_data[[False for _ in modin_data.index]], pandas_data[[False for _ in modin_data.index]], ) def test_getitem_datetime_slice(self): data = {"data": range(1000)} index = pd.date_range("2017/1/4", periods=1000) modin_df = pd.DataFrame(data=data, index=index) pandas_df = pandas.DataFrame(data=data, index=index) s = slice("2017-01-06", "2017-01-09") df_equals(modin_df[s], pandas_df[s]) @pytest.mark.parametrize("data", test_data_values, ids=test_data_keys) def test___getattr__(self, request, data): modin_df = pd.DataFrame(data) pandas_df = pandas.DataFrame(data) # noqa F841 if "empty_data" not in request.node.name: key = modin_df.columns[0] col = modin_df.__getattr__(key) col = modin_df.__getattr__("col1") assert isinstance(col, pd.Series) col = getattr(modin_df, "col1") assert isinstance(col, pd.Series) # Check that lookup in column doesn't override other attributes df2 = modin_df.rename(index=str, columns={key: "columns"}) assert isinstance(df2.columns, pandas.Index) @pytest.mark.parametrize("data", test_data_values, ids=test_data_keys) def test___setitem__(self, data): modin_df = pd.DataFrame(data) pandas_df = pandas.DataFrame(data) modin_df.__setitem__(modin_df.columns[-1], 1) pandas_df.__setitem__(pandas_df.columns[-1], 1) df_equals(modin_df, pandas_df) modin_df = pd.DataFrame(data) pandas_df = pandas.DataFrame(data) modin_df[modin_df.columns[-1]] = pd.DataFrame(modin_df[modin_df.columns[0]]) pandas_df[pandas_df.columns[-1]] = pandas.DataFrame( pandas_df[pandas_df.columns[0]] ) df_equals(modin_df, pandas_df) modin_df = pd.DataFrame(data) pandas_df = pandas.DataFrame(data) rows = len(modin_df) arr = np.arange(rows * 2).reshape(-1, 2) modin_df[modin_df.columns[-1]] = arr pandas_df[pandas_df.columns[-1]] = arr df_equals(pandas_df, modin_df) with pytest.raises(ValueError, match=r"Wrong number of items passed"): modin_df["___NON EXISTENT COLUMN"] = arr modin_df[modin_df.columns[0]] = np.arange(len(modin_df)) pandas_df[pandas_df.columns[0]] = np.arange(len(pandas_df)) df_equals(modin_df, pandas_df) modin_df = pd.DataFrame(columns=modin_df.columns) pandas_df = pandas.DataFrame(columns=pandas_df.columns) for col in modin_df.columns: modin_df[col] = np.arange(1000) for col in pandas_df.columns: pandas_df[col] = np.arange(1000) df_equals(modin_df, pandas_df) # Test series assignment to column modin_df = pd.DataFrame(columns=modin_df.columns) pandas_df = pandas.DataFrame(columns=pandas_df.columns) modin_df[modin_df.columns[-1]] = modin_df[modin_df.columns[0]] pandas_df[pandas_df.columns[-1]] = pandas_df[pandas_df.columns[0]] df_equals(modin_df, pandas_df) # Transpose test modin_df = pd.DataFrame(data).T pandas_df = pandas.DataFrame(data).T # We default to pandas on non-string column names if not all(isinstance(c, str) for c in modin_df.columns): with pytest.warns(UserWarning): modin_df[modin_df.columns[0]] = 0 else: modin_df[modin_df.columns[0]] = 0 pandas_df[pandas_df.columns[0]] = 0 df_equals(modin_df, pandas_df) modin_df.columns = [str(i) for i in modin_df.columns] pandas_df.columns = [str(i) for i in pandas_df.columns] modin_df[modin_df.columns[0]] = 0 pandas_df[pandas_df.columns[0]] = 0 df_equals(modin_df, pandas_df) @pytest.mark.parametrize("data", test_data_values, ids=test_data_keys) def test___len__(self, data): modin_df = pd.DataFrame(data) pandas_df = pandas.DataFrame(data) assert len(modin_df) == len(pandas_df) @pytest.mark.parametrize("data", test_data_values, ids=test_data_keys) def test___neg__(self, request, data): modin_df = pd.DataFrame(data) pandas_df = pandas.DataFrame(data) try: pandas_result = pandas_df.__neg__() except Exception as e: with pytest.raises(type(e)): modin_df.__neg__() else: modin_result = modin_df.__neg__() df_equals(modin_result, pandas_result) @pytest.mark.parametrize("data", test_data_values, ids=test_data_keys) def test___invert__(self, data): modin_df = pd.DataFrame(data) pandas_df = pandas.DataFrame(data) try: pandas_result = ~pandas_df except Exception as e: with pytest.raises(type(e)): repr(~modin_df) else: modin_result = ~modin_df df_equals(modin_result, pandas_result) def test___hash__(self): data = test_data_values[0] with pytest.warns(UserWarning): try: pd.DataFrame(data).__hash__() except TypeError: pass @pytest.mark.parametrize("data", test_data_values, ids=test_data_keys) def test___iter__(self, data): modin_df = pd.DataFrame(data) pandas_df = pandas.DataFrame(data) modin_iterator = modin_df.__iter__() # Check that modin_iterator implements the iterator interface assert hasattr(modin_iterator, "__iter__") assert hasattr(modin_iterator, "next") or hasattr(modin_iterator, "__next__") pd_iterator = pandas_df.__iter__() assert list(modin_iterator) == list(pd_iterator) @pytest.mark.parametrize("data", test_data_values, ids=test_data_keys) def test___contains__(self, request, data): modin_df = pd.DataFrame(data) pandas_df = pandas.DataFrame(data) result = False key = "Not Exist" assert result == modin_df.__contains__(key) assert result == (key in modin_df) if "empty_data" not in request.node.name: result = True key = pandas_df.columns[0] assert result == modin_df.__contains__(key) assert result == (key in modin_df) @pytest.mark.parametrize("data", test_data_values, ids=test_data_keys) def test___nonzero__(self, data): modin_df = pd.DataFrame(data) pandas_df = pandas.DataFrame(data) # noqa F841 with pytest.raises(ValueError): # Always raises ValueError modin_df.__nonzero__() @pytest.mark.parametrize("data", test_data_values, ids=test_data_keys) def test___abs__(self, request, data): modin_df = pd.DataFrame(data) pandas_df = pandas.DataFrame(data) try: pandas_result = abs(pandas_df) except Exception as e: with pytest.raises(type(e)): abs(modin_df) else: modin_result = abs(modin_df) df_equals(modin_result, pandas_result) def test___round__(self): data = test_data_values[0] with pytest.warns(UserWarning): pd.DataFrame(data).__round__() @pytest.mark.parametrize("data", test_data_values, ids=test_data_keys) def test___array__(self, data): modin_df = pd.DataFrame(data) pandas_df = pandas.DataFrame(data) assert_array_equal(modin_df.__array__(), pandas_df.__array__()) @pytest.mark.parametrize("data", test_data_values, ids=test_data_keys) def test___bool__(self, data): modin_df = pd.DataFrame(data) pandas_df = pandas.DataFrame(data) try: pandas_result = pandas_df.__bool__() except Exception as e: with pytest.raises(type(e)): modin_df.__bool__() else: modin_result = modin_df.__bool__() df_equals(modin_result, pandas_result) def test___getstate__(self): data = test_data_values[0] with pytest.warns(UserWarning): pd.DataFrame(data).__getstate__() def test___setstate__(self): data = test_data_values[0] with pytest.warns(UserWarning): try: pd.DataFrame(data).__setstate__(None) except TypeError: pass @pytest.mark.parametrize("data", test_data_values, ids=test_data_keys) def test___delitem__(self, request, data): modin_df = pd.DataFrame(data) pandas_df = pandas.DataFrame(data) if "empty_data" not in request.node.name: key = pandas_df.columns[0] modin_df = modin_df.copy() pandas_df = pandas_df.copy() modin_df.__delitem__(key) pandas_df.__delitem__(key) df_equals(modin_df, pandas_df) # Issue 2027 last_label = pandas_df.iloc[:, -1].name modin_df.__delitem__(last_label) pandas_df.__delitem__(last_label) df_equals(modin_df, pandas_df) def test__options_display(self): frame_data = random_state.randint(RAND_LOW, RAND_HIGH, size=(1000, 102)) pandas_df =
pandas.DataFrame(frame_data)
pandas.DataFrame
#!/usr/bin/env python # coding: utf-8 # # Discriminator Model Performance # This notebook is designed to analyze the discriminator model's performance. Once the generative model labels our data, the discriminator model takes those labels and improves on predictions. For this notebook we are using a generative model trained on Compound treats Disease label functions to predict Compound treats Disease sentences. Performance for each model is reported in area under the receiver operating curve (AUROC) and area under the precision recall curve (AUPR). # In[1]: import glob import os import pandas as pd import plotnine as p9 import scipy.stats as ss from sklearn.metrics import auc, precision_recall_curve, roc_curve, precision_recall_fscore_support # # Tune Set # ## Performance of Disc model vs Gen model for each Label Sample # In[2]: dev_labels = pd.read_csv("input/ctd_dev_labels.tsv", sep="\t") dev_labels.head() # In[3]: candidate_df = ( pd.read_excel("../data/sentences/sentence_labels_dev.xlsx") .sort_values("candidate_id") .query("curated_ctd.notnull()") ) candidate_df.head() # In[4]: gen_model_results_dev_df = pd.read_csv( "../label_sampling_experiment/results/CtD/results/dev_sampled_results.tsv", sep="\t" ) # In[5]: disc_model_dict = {} for value in gen_model_results_dev_df.lf_num.unique(): disc_model_dict[value] = ( pd.read_csv(f"input/disc_model_run/{value}/tune.tsv", sep="\t") ) # In[6]: def get_au_performance(predictions, gold_labels): fpr, tpr, _ = roc_curve( gold_labels, predictions ) precision, recall, _ = precision_recall_curve( gold_labels, predictions ) return auc(fpr, tpr), auc(recall, precision) # In[7]: records = [] for sample in disc_model_dict: for column in disc_model_dict[sample].drop("candidate_id", axis=1).columns: aucs = get_au_performance( disc_model_dict[sample][column], candidate_df .query(f"candidate_id in {disc_model_dict[value].candidate_id.values.tolist()}") .curated_ctd .values ) records.append({ "model": "disc_model", "lf_num": int(sample), "auroc": aucs[0], "aupr": aucs[1] }) dev_set_df = (
pd.DataFrame.from_records(records)
pandas.DataFrame.from_records
import logging from enum import Enum from pathlib import Path from typing import Any, Dict, Optional, Tuple, Union import pandas as pd from pydantic import Field from typing_extensions import Literal from feaflow.abstracts import FeaflowImmutableModel, Source, SourceConfig logger = logging.getLogger(__name__) class PandasDataFrameSourceSupportedFileTypes(str, Enum): PICKLE = "pickle" CSV = "csv" JSON = "json" PARQUET = "parquet" ORC = "orc" class PandasDataFrameSourceFileConfig(FeaflowImmutableModel): _template_attrs: Tuple[str] = ("path", "args") type: PandasDataFrameSourceSupportedFileTypes path: Union[str, Path] args: Dict[str, Any] = {} class PandasDataFrameSourceConfig(SourceConfig): _template_attrs: Tuple[str] = ("file",) type: Literal["pandas"] = "pandas" dict_: Optional[Dict[str, Any]] = Field(alias="dict", default=None) file: Optional[PandasDataFrameSourceFileConfig] = None def __init__(self, **data): assert "dict" in data or "file" in data super().__init__(**data) class PandasDataFrameSource(Source): def __init__(self, config: PandasDataFrameSourceConfig): logger.info("Constructing PandasDataFrameSource") logger.debug("With config %s", config) assert isinstance(config, PandasDataFrameSourceConfig) super().__init__(config) def get_dataframe( self, template_context: Optional[Dict[str, Any]] = None ) -> pd.DataFrame: config: PandasDataFrameSourceConfig = self.get_config( template_context=template_context ) if config.dict_ is not None: logger.info("Constructing a Pandas DataFrame from a Dict") return
pd.DataFrame(config.dict_)
pandas.DataFrame
import pandas as pd import seaborn as sns import matplotlib.pyplot as plt from somecode import stopword import pretty as pretty def cooc_plot(data,stop_words=""): pretty.warnings() tweet_text = data.text.str.replace('[^A-Za-z0-9@#]+', " ") words_keyword = pd.Series(' '.join(tweet_text).lower().split()) words_keyword = [line.decode('utf-8').strip() for line in words_keyword] words_keyword = pd.Series(words_keyword).replace('[^A-Za-z0-9#]+', " ") ## MODULE FOR KEYWORD ANALYSIS l = [] for word in words_keyword: if word not in stop_words: if word not in stopword.stopword(): if len(word) > 2: l.append(word) l =
pd.Series(l)
pandas.Series
from copy import deepcopy import numpy as np import pandas as pd from .base import BaseJpegImageDataset class PairOfAnchorPositivieNegativeDataset(BaseJpegImageDataset): def __init__( self, csv_filename, input_column, target_column=None, input_dir="../data/input", extension=".jpg", target_unique_values=None, num_classes=None, enable_load=True, images_dir="", split="train", transform=None, fold_column="Fold", num_fold=5, idx_fold=0, label_smoothing=0, return_input_as_x=True, csv_input_dir=None, # for contrastive learning num_negatives=1, **params, ): super().__init__( csv_filename=csv_filename, input_column=input_column, target_column=target_column, input_dir=input_dir, extension=extension, target_unique_values=target_unique_values, num_classes=num_classes, enable_load=enable_load, images_dir=images_dir, split=split, transform=transform, fold_column=fold_column, num_fold=num_fold, idx_fold=idx_fold, label_smoothing=label_smoothing, return_input_as_x=return_input_as_x, csv_input_dir=csv_input_dir, ) self.num_negatives = num_negatives # Inputs which the target appears only once are not suitable # for train data because positive samples cannot be sampled. self.all_inputs = deepcopy(self.inputs) self.all_targets = deepcopy(self.targets) self.inputs =
pd.Series(self.inputs)
pandas.Series
import argparse import logging from typing import Any, Dict, List, Optional import pandas import annofabcli import annofabcli.common.cli from annofabcli import AnnofabApiFacade from annofabcli.common.cli import AbstractCommandLineInterface, ArgumentParser, build_annofabapi_resource_and_login from annofabcli.common.utils import isoduration_to_hour logger = logging.getLogger(__name__) class LaborTimePerUser(AbstractCommandLineInterface): """ メンバ別の作業時間を出力する。 """ def get_labor_time_per_user(self, project_id: str) -> List[Dict[str, Any]]: """ メンバ別の作業時間をCSVに出力するための dict 配列を作成する。 Args: project_id: Returns: メンバ別の作業時間をCSVに出力するための dict 配列 """ account_statistics = self.service.wrapper.get_account_statistics(project_id) row_list: List[Dict[str, Any]] = [] for stat_by_user in account_statistics: account_id = stat_by_user["account_id"] member = self.facade.get_project_member_from_account_id(project_id, account_id) histories = stat_by_user["histories"] for stat in histories: stat["account_id"] = account_id stat["user_id"] = member["user_id"] if member is not None else None stat["username"] = member["username"] if member is not None else None stat["biography"] = member["biography"] if member is not None else None stat["worktime_hour"] = isoduration_to_hour(stat["worktime"]) row_list.extend(histories) return row_list def list_cumulative_labor_time(self, project_id: str) -> None: super().validate_project(project_id, project_member_roles=None) account_stat_list = self.get_labor_time_per_user(project_id) df =
pandas.DataFrame(account_stat_list)
pandas.DataFrame
#!/usr/bin/env python3 # -*- coding: utf-8 -*- """ Created on Sun Apr 19 2020 @author: <NAME> (@SergioMinuto90) """ from pandas.io.json import json_normalize from abc import ABC, abstractmethod import socceraction.vaep as vaep import pandas as pd import warnings import os warnings.simplefilter(action='ignore', category=pd.errors.PerformanceWarning) from processing import PassingNetworkBuilder from utils import read_json class StatsBombPassingNetwork(PassingNetworkBuilder, ABC): def __init__(self, args): self.plot_type = args.plot_type self.team_name = args.team_name self.match_id = args.match_id self.plot_name = None self.df_events = None self.plot_title = None self.names_dict = None self.plot_legend = None self.num_minutes = None self.player_position = None self.pair_pass_value = None self.pair_pass_count = None self.player_pass_value = None self.player_pass_count = None def read_data(self): """ Read StatsBomb eventing data of the selected 'match_id', generating a pandas DataFrame with the events and a dictionary of player names and nicknames. """ # Player name translation dict lineups = read_json("data/eventing/lineups/{0}.json".format(self.match_id)) self.names_dict = {player["player_name"]: player["player_nickname"] for team in lineups for player in team["lineup"]} # Pandas dataframe containing the events of the match events = read_json("data/eventing/events/{0}.json".format(self.match_id)) self.df_events = json_normalize(events, sep="_").assign(match_id=self.match_id) def compute_total_minutes(self): """ Compute the maximum number of minutes that are used for the passing network. The idea is not to have more/less than 11 players in the team because of substitutions or red cards. """ first_red_card_minute = self.df_events[self.df_events.foul_committed_card_name.isin(["Second Yellow", "Red Card"])].minute.min() first_substitution_minute = self.df_events[self.df_events.type_name == "Substitution"].minute.min() max_minute = self.df_events.minute.max() self.num_minutes = min(first_substitution_minute, first_red_card_minute, max_minute) def set_text_info(self): """ Set the plot's name, title and legend information based on the customization chosen with the command line arguments. """ # Name of the .PNG in the plots/ folder self.plot_name = "statsbomb_match{0}_{1}_{2}".format(self.match_id, self.team_name, self.plot_type) # Title of the plot opponent_team = [x for x in self.df_events.team_name.unique() if x != self.team_name][0] self.plot_title ="{0}'s passing network against {1} (StatsBomb eventing data)".format(self.team_name, opponent_team) # Information in the legend color_meaning = "pass value (VAEP)" if self.plot_type == "pass_value" else "number of passes" self.plot_legend = "Location: pass origin\nSize: number of passes\nColor: {0}".format(color_meaning) @abstractmethod def prepare_data(self): pass @staticmethod def _statsbomb_to_point(location, max_width=120, max_height=80): ''' Convert a point's coordinates from a StatsBomb's range to 0-1 range. ''' return location[0] / max_width, 1-(location[1] / max_height) class StatsBombBasicPassingNetwork(StatsBombPassingNetwork): def __init__(self, args): super(StatsBombBasicPassingNetwork, self).__init__(args) def prepare_data(self): """ Prepares the five pandas DataFrames that 'draw_pass_map' needs. """ # We select all successful passes done by the selected team before the minute # of the first substitution or red card. df_passes = self.df_events[(self.df_events.type_name == "Pass") & (self.df_events.pass_outcome_name.isna()) & (self.df_events.team_name == self.team_name) & (self.df_events.minute < self.num_minutes)].copy() # If available, use player's nickname instead of full name to optimize space in plot df_passes["pass_recipient_name"] = df_passes.pass_recipient_name.apply(lambda x: self.names_dict[x] if self.names_dict[x] else x) df_passes["player_name"] = df_passes.player_name.apply(lambda x: self.names_dict[x] if self.names_dict[x] else x) # In this type of plot, both the size and color (i.e. value) mean the same: number of passes self.player_pass_count = df_passes.groupby("player_name").size().to_frame("num_passes") self.player_pass_value = df_passes.groupby("player_name").size().to_frame("pass_value") # 'pair_key' combines the names of the passer and receiver of each pass (sorted alphabetically) df_passes["pair_key"] = df_passes.apply(lambda x: "_".join(sorted([x["player_name"], x["pass_recipient_name"]])), axis=1) self.pair_pass_count = df_passes.groupby("pair_key").size().to_frame("num_passes") self.pair_pass_value = df_passes.groupby("pair_key").size().to_frame("pass_value") # Average pass origin's coordinates for each player df_passes["origin_pos_x"] = df_passes.location.apply(lambda x: self._statsbomb_to_point(x)[0]) df_passes["origin_pos_y"] = df_passes.location.apply(lambda x: self._statsbomb_to_point(x)[1]) self.player_position = df_passes.groupby("player_name").agg({"origin_pos_x": "median", "origin_pos_y": "median"}) class StatsBombValuePassingNetwork(StatsBombPassingNetwork): def __init__(self, args): super(StatsBombValuePassingNetwork, self).__init__(args) # This data must be prepared on advance by running the 'predict_vaep.py' script self.predictions_h5 = os.path.join("data/eventing", "predictions.h5") spadl_h5 = os.path.join("data/eventing", "spadl-statsbomb.h5") self.actiontypes = pd.read_hdf(spadl_h5, "actiontypes") self.bodyparts = pd.read_hdf(spadl_h5, "bodyparts") self.results = pd.read_hdf(spadl_h5, "results") self.players = pd.read_hdf(spadl_h5, "players") self.teams = pd.read_hdf(spadl_h5, "teams") self.actions = pd.read_hdf(spadl_h5, "actions/game_{0}".format(self.match_id)) def prepare_data(self): """ Prepares the five pandas DataFrames that 'draw_pass_map' needs. """ # We select all successful passes done by the selected team before the minute # of the first substitution or red card. df_passes = self.df_events[(self.df_events.type_name == "Pass") & (self.df_events.pass_outcome_name.isna()) & (self.df_events.team_name == self.team_name) & (self.df_events.minute < self.num_minutes)].copy() # If available, use player's nickname instead of full name to optimize space in plot df_passes["pass_recipient_name"] = df_passes.pass_recipient_name.apply(lambda x: self.names_dict[x] if self.names_dict[x] else x) df_passes["player_name"] = df_passes.player_name.apply(lambda x: self.names_dict[x] if self.names_dict[x] else x) # Set the VAEP metric to each pass actions = ( self.actions.merge(self.actiontypes,how="left") .merge(self.results,how="left") .merge(self.bodyparts,how="left") .merge(self.players,how="left") .merge(self.teams,how="left") ) preds = pd.read_hdf(self.predictions_h5, "game_{0}".format(self.match_id)) values = vaep.value(actions, preds.scores, preds.concedes) df_vaep =
pd.concat([actions, preds, values], axis=1)
pandas.concat
# Arithmetic tests for DataFrame/Series/Index/Array classes that should # behave identically. # Specifically for datetime64 and datetime64tz dtypes from datetime import ( datetime, time, timedelta, ) from itertools import ( product, starmap, ) import operator import warnings import numpy as np import pytest import pytz from pandas._libs.tslibs.conversion import localize_pydatetime from pandas._libs.tslibs.offsets import shift_months from pandas.errors import PerformanceWarning import pandas as pd from pandas import ( DateOffset, DatetimeIndex, NaT, Period, Series, Timedelta, TimedeltaIndex, Timestamp, date_range, ) import pandas._testing as tm from pandas.core.arrays import ( DatetimeArray, TimedeltaArray, ) from pandas.core.ops import roperator from pandas.tests.arithmetic.common import ( assert_cannot_add, assert_invalid_addsub_type, assert_invalid_comparison, get_upcast_box, ) # ------------------------------------------------------------------ # Comparisons class TestDatetime64ArrayLikeComparisons: # Comparison tests for datetime64 vectors fully parametrized over # DataFrame/Series/DatetimeIndex/DatetimeArray. Ideally all comparison # tests will eventually end up here. def test_compare_zerodim(self, tz_naive_fixture, box_with_array): # Test comparison with zero-dimensional array is unboxed tz = tz_naive_fixture box = box_with_array dti = date_range("20130101", periods=3, tz=tz) other = np.array(dti.to_numpy()[0]) dtarr = tm.box_expected(dti, box) xbox = get_upcast_box(dtarr, other, True) result = dtarr <= other expected = np.array([True, False, False]) expected = tm.box_expected(expected, xbox) tm.assert_equal(result, expected) @pytest.mark.parametrize( "other", [ "foo", -1, 99, 4.0, object(), timedelta(days=2), # GH#19800, GH#19301 datetime.date comparison raises to # match DatetimeIndex/Timestamp. This also matches the behavior # of stdlib datetime.datetime datetime(2001, 1, 1).date(), # GH#19301 None and NaN are *not* cast to NaT for comparisons None, np.nan, ], ) def test_dt64arr_cmp_scalar_invalid(self, other, tz_naive_fixture, box_with_array): # GH#22074, GH#15966 tz = tz_naive_fixture rng = date_range("1/1/2000", periods=10, tz=tz) dtarr = tm.box_expected(rng, box_with_array) assert_invalid_comparison(dtarr, other, box_with_array) @pytest.mark.parametrize( "other", [ # GH#4968 invalid date/int comparisons list(range(10)), np.arange(10), np.arange(10).astype(np.float32), np.arange(10).astype(object), pd.timedelta_range("1ns", periods=10).array, np.array(pd.timedelta_range("1ns", periods=10)), list(pd.timedelta_range("1ns", periods=10)), pd.timedelta_range("1 Day", periods=10).astype(object), pd.period_range("1971-01-01", freq="D", periods=10).array, pd.period_range("1971-01-01", freq="D", periods=10).astype(object), ], ) def test_dt64arr_cmp_arraylike_invalid( self, other, tz_naive_fixture, box_with_array ): tz = tz_naive_fixture dta = date_range("1970-01-01", freq="ns", periods=10, tz=tz)._data obj = tm.box_expected(dta, box_with_array) assert_invalid_comparison(obj, other, box_with_array) def test_dt64arr_cmp_mixed_invalid(self, tz_naive_fixture): tz = tz_naive_fixture dta = date_range("1970-01-01", freq="h", periods=5, tz=tz)._data other = np.array([0, 1, 2, dta[3], Timedelta(days=1)]) result = dta == other expected = np.array([False, False, False, True, False]) tm.assert_numpy_array_equal(result, expected) result = dta != other tm.assert_numpy_array_equal(result, ~expected) msg = "Invalid comparison between|Cannot compare type|not supported between" with pytest.raises(TypeError, match=msg): dta < other with pytest.raises(TypeError, match=msg): dta > other with pytest.raises(TypeError, match=msg): dta <= other with pytest.raises(TypeError, match=msg): dta >= other def test_dt64arr_nat_comparison(self, tz_naive_fixture, box_with_array): # GH#22242, GH#22163 DataFrame considered NaT == ts incorrectly tz = tz_naive_fixture box = box_with_array ts = Timestamp("2021-01-01", tz=tz) ser = Series([ts, NaT]) obj = tm.box_expected(ser, box) xbox = get_upcast_box(obj, ts, True) expected = Series([True, False], dtype=np.bool_) expected = tm.box_expected(expected, xbox) result = obj == ts tm.assert_equal(result, expected) class TestDatetime64SeriesComparison: # TODO: moved from tests.series.test_operators; needs cleanup @pytest.mark.parametrize( "pair", [ ( [Timestamp("2011-01-01"), NaT, Timestamp("2011-01-03")], [NaT, NaT, Timestamp("2011-01-03")], ), ( [Timedelta("1 days"), NaT, Timedelta("3 days")], [NaT, NaT, Timedelta("3 days")], ), ( [Period("2011-01", freq="M"), NaT, Period("2011-03", freq="M")], [NaT, NaT, Period("2011-03", freq="M")], ), ], ) @pytest.mark.parametrize("reverse", [True, False]) @pytest.mark.parametrize("dtype", [None, object]) @pytest.mark.parametrize( "op, expected", [ (operator.eq, Series([False, False, True])), (operator.ne, Series([True, True, False])), (operator.lt, Series([False, False, False])), (operator.gt, Series([False, False, False])), (operator.ge, Series([False, False, True])), (operator.le, Series([False, False, True])), ], ) def test_nat_comparisons( self, dtype, index_or_series, reverse, pair, op, expected, ): box = index_or_series l, r = pair if reverse: # add lhs / rhs switched data l, r = r, l left = Series(l, dtype=dtype) right = box(r, dtype=dtype) result = op(left, right) tm.assert_series_equal(result, expected) @pytest.mark.parametrize( "data", [ [
Timestamp("2011-01-01")
pandas.Timestamp
import numpy as np from sklearn.metrics import precision_recall_fscore_support import numpy as np import pandas as pd from sklearn.metrics import confusion_matrix def predictAll(test_X, batch_size=100): predict_value_list = [] for i in range(0, len(test_X), batch_size): selected_X = test_X[i: i + batch_size] predict_value = session.run(predict_Y, {X_holder:selected_X}) predict_value_list.extend(predict_value) return np.array(predict_value_list) Y = predictAll(test_X) y = np.argmax(Y, axis=1) predict_label_list = labelEncoder.inverse_transform(y) pd.DataFrame(confusion_matrix(test_label_list, predict_label_list), columns=labelEncoder.classes_, index=labelEncoder.classes_ ) def eval_model(y_true, y_pred, labels): # 计算每个分类的Precision, Recall, f1, support p, r, f1, s = precision_recall_fscore_support(y_true, y_pred) # 计算总体的平均Precision, Recall, f1, support tot_p = np.average(p, weights=s) tot_r = np.average(r, weights=s) tot_f1 = np.average(f1, weights=s) tot_s = np.sum(s) res1 = pd.DataFrame({ u'Label': labels, u'Precision': p, u'Recall': r, u'F1': f1, u'Support': s }) res2 = pd.DataFrame({ u'Label': ['总体'], u'Precision': [tot_p], u'Recall': [tot_r], u'F1': [tot_f1], u'Support': [tot_s] }) res2.index = [999] res =
pd.concat([res1, res2])
pandas.concat
import unittest import dolphindb as ddb import numpy as np import pandas as pd from setup import HOST, PORT, WORK_DIR, DATA_DIR from numpy.testing import assert_array_equal, assert_array_almost_equal from pandas.testing import assert_series_equal from pandas.testing import assert_frame_equal class TestBasicDataTypes(unittest.TestCase): @classmethod def setUp(cls): cls.s = ddb.session() cls.s.connect(HOST, PORT, "admin", "123456") @classmethod def tearDownClass(cls): pass def test_int_scalar(self): re = self.s.run("100") self.assertEqual(re, 100) re = self.s.run("int()") self.assertIsNone(re) def test_bool_scalar(self): re = self.s.run("true") self.assertEqual(re, True) re = self.s.run("bool()") self.assertIsNone(re) def test_char_scalar(self): re = self.s.run("'a'") self.assertEqual(re, 97) re = self.s.run("char()") self.assertIsNone(re) def test_short_scalar(self): re = self.s.run("112h") self.assertEqual(re, 112) re = self.s.run("short()") self.assertIsNone(re) def test_long_scalar(self): re = self.s.run("22l") self.assertEqual(re, 22) re = self.s.run("long()") self.assertIsNone(re) def test_date_scalar(self): re = self.s.run("2012.06.12") self.assertEqual(re, np.datetime64('2012-06-12')) re = self.s.run("date()") self.assertIsNone(re) def test_month_scalar(self): re = self.s.run("2012.06M") self.assertEqual(re, np.datetime64('2012-06')) re = self.s.run("month()") self.assertIsNone(re) def test_time_scalar(self): re = self.s.run("12:30:00.008") self.assertEqual(re, np.datetime64('1970-01-01T12:30:00.008')) re = self.s.run("time()") self.assertIsNone(re) def test_minute_scalar(self): re = self.s.run("12:30m") self.assertEqual(re, np.datetime64('1970-01-01T12:30')) re = self.s.run("minute()") self.assertIsNone(re) def test_second_scalar(self): re = self.s.run("12:30:10") self.assertEqual(re, np.datetime64('1970-01-01T12:30:10')) re = self.s.run("second()") self.assertIsNone(re) def test_datetime_scalar(self): re = self.s.run('2012.06.13 13:30:10') self.assertEqual(re, np.datetime64('2012-06-13T13:30:10')) re = self.s.run("datetime()") self.assertIsNone(re) def test_timestamp_scalar(self): re = self.s.run('2012.06.13 13:30:10.008') self.assertEqual(re, np.datetime64('2012-06-13T13:30:10.008')) re = self.s.run("timestamp()") self.assertIsNone(re) def test_nanotime_scalar(self): re = self.s.run('13:30:10.008007006') self.assertEqual(re, np.datetime64('1970-01-01T13:30:10.008007006')) re = self.s.run("nanotime()") self.assertIsNone(re) def test_nanotimestamp_scalar(self): re = self.s.run('2012.06.13 13:30:10.008007006') self.assertEqual(re, np.datetime64('2012-06-13T13:30:10.008007006')) re = self.s.run("nanotimestamp()") self.assertIsNone(re) def test_float_scalar(self): re = self.s.run('2.1f') self.assertEqual(round(re), 2) re = self.s.run("float()") self.assertIsNone(re) def test_double_scalar(self): re = self.s.run('2.1') self.assertEqual(re, 2.1) re = self.s.run("double()") self.assertIsNone(re) def test_string_scalar(self): re = self.s.run('"abc"') self.assertEqual(re, 'abc') re = self.s.run("string()") self.assertIsNone(re) def test_uuid_scalar(self): re = self.s.run("uuid('5d212a78-cc48-e3b1-4235-b4d91473ee87')") self.assertEqual(re, '5d212a78-cc48-e3b1-4235-b4d91473ee87') re = self.s.run("uuid()") self.assertIsNone(re) def test_ipaddr_sclar(self): re = self.s.run("ipaddr('192.168.1.135')") self.assertEqual(re, '192.168.1.135') re = self.s.run("ipaddr()") self.assertIsNone(re) def test_int128_scalar(self): re = self.s.run("int128('e1671797c52e15f763380b45e841ec32')") self.assertEqual(re, 'e1671797c52e15f763380b45e841ec32') re = self.s.run("int128()") self.assertIsNone(re) def test_python_datetime64_dolphindb_date_scalar(self): ts = np.datetime64('2019-01-01T20:01:01.1223461') self.assertEqual(self.s.run('date', ts), np.datetime64('2019-01-01')) def test_python_datetime64_dolphindb_month_scalar(self): ts = np.datetime64('2019-01-01T20:01:01.1223461') self.assertEqual(self.s.run('month', ts), np.datetime64('2019-01')) def test_python_datetime64_dolphindb_time_scalar(self): ts = np.datetime64('2019-01-01T20:01:01.1223461') self.assertEqual(self.s.run('time', ts), np.datetime64('1970-01-01T20:01:01.122')) def test_python_datetime64_dolphindb_minute_scalar(self): ts = np.datetime64('2019-01-01T20:01:01.1223461') self.assertEqual(self.s.run('minute', ts), np.datetime64('1970-01-01T20:01')) def test_python_datetime64_dolphindb_second_scalar(self): ts = np.datetime64('2019-01-01T20:01:01.1223461') self.assertEqual(self.s.run('second', ts), np.datetime64('1970-01-01T20:01:01')) def test_python_datetime64_dolphindb_datetime_scalar(self): ts = np.datetime64('2019-01-01T20:01:01.1223461') self.assertEqual(self.s.run('datetime', ts), np.datetime64('2019-01-01T20:01:01')) def test_python_datetime64_dolphindb_timestamp_scalar(self): ts = np.datetime64('2019-01-01T20:01:01.1223461') self.assertEqual(self.s.run('timestamp', ts), np.datetime64('2019-01-01T20:01:01.122')) def test_python_datetime64_dolphindb_nanotime_scalar(self): ts = np.datetime64('2019-01-01T20:01:01.1223461') self.assertEqual(self.s.run('nanotime', ts), np.datetime64('1970-01-01T20:01:01.122346100')) def test_python_datetime64_dolphindb_nanotimestamp_scalar(self): ts = np.datetime64('2019-01-01T20:01:01.1223461') self.assertEqual(self.s.run('nanotimestamp', ts), np.datetime64('2019-01-01T20:01:01.122346100')) def test_string_vector(self): re = self.s.run("`IBM`GOOG`YHOO") self.assertEqual((re == ['IBM', 'GOOG', 'YHOO']).all(), True) re = self.s.run("['IBM', string(), 'GOOG']") self.assertEqual((re==['IBM', '', 'GOOG']).all(), True) re = self.s.run("[string(), string(), string()]") self.assertEqual((re==['','','']).all(), True) def test_function_def(self): re = self.s.run("def f(a,b){return a+b}") re = self.s.run("f(1, 2)") self.assertEqual(re, 3) def test_symbol_vector(self): re = self.s.run("symbol(`IBM`MSFT`GOOG`BIDU)") self.assertEqual((re == ['IBM', 'MSFT', 'GOOG', 'BIDU']).all(), True) re = self.s.run("symbol(['IBM', '', 'GOOG'])") self.assertEqual((re==['IBM', '', 'GOOG']).all(), True) re = self.s.run("symbol(['', '', ''])") self.assertEqual((re==['', '', '']).all(), True) def test_char_vector(self): re = self.s.run("['a', 'b', 'c']") expected = [97, 98, 99] self.assertEqual((re==expected).all(), True) re = self.s.run("['a', char(), 'c']") expected = [97.0, np.nan, 99.0] assert_array_almost_equal(re, expected) def test_bool_vector(self): re = self.s.run("[true, false, true]") expected = [True, False, True] assert_array_equal(re, expected) re = self.s.run("[true, false, bool()]") assert_array_equal(re[0:2], [True, False]) self.assertTrue(np.isnan(re[2])) re = self.s.run("[bool(), bool(), bool()]") self.assertTrue(np.isnan(re[0])) self.assertTrue(np.isnan(re[1])) self.assertTrue(np.isnan(re[2])) def test_int_vector(self): re = self.s.run("2938 2920 54938 1999 2333") self.assertEqual((re == [2938, 2920, 54938, 1999, 2333]).all(), True) re = self.s.run("[2938, int(), 6552]") expected = [2938.0, np.nan, 6552.0] assert_array_almost_equal(re, expected, 1) re = self.s.run("[int(), int(), int()]") expected = [np.nan, np.nan, np.nan] assert_array_almost_equal(re, expected) def test_short_vector(self): re = self.s.run("[10h, 11h, 12h]") expected = [10, 11, 12] assert_array_equal(re, expected) re = self.s.run("[10h, short(), 12h]") expected = [10.0, np.nan, 12.0] assert_array_almost_equal(re, expected) re = self.s.run("[short(), short(), short()]") expected = [np.nan, np.nan, np.nan] assert_array_almost_equal(re, expected) def test_long_vector(self): re = self.s.run("[10l, 11l, 12l]") expected = [10, 11, 12] assert_array_equal(re, expected) re = self.s.run("[10l, long(), 12l]") expected = [10.0, np.nan, 12.0] assert_array_almost_equal(re, expected) re = self.s.run("[long(), long(), long()]") expected = [np.nan, np.nan, np.nan] assert_array_almost_equal(re, expected) def test_double_vector(self): re = self.s.run("rand(10.0,10)") self.assertEqual(len(re), 10) re = self.s.run("[12.5, 26.0, double()]") expected = [12.5, 26.0, np.nan] assert_array_almost_equal(re, expected) re = self.s.run("[double(), double(), double()]") expected = [np.nan, np.nan, np.nan] assert_array_almost_equal(re, expected) def test_float_vector(self): re = self.s.run("[12.5f, 26.34f, 25.896f]") expected = [12.5, 26.34, 25.896] assert_array_almost_equal(re, expected, 3) re = self.s.run("[12.5f, float(), 25.896f]") expected = [12.5, np.nan, 25.896] assert_array_almost_equal(re, expected, 3) re = self.s.run("[float(), float(), float()]") expected = [np.nan, np.nan, np.nan] assert_array_almost_equal(re, expected) def test_date_vector(self): re = self.s.run("2012.10.01 +1..3") expected = np.array(['2012-10-02','2012-10-03','2012-10-04'], dtype="datetime64") self.assertEqual((re == expected).all(), True) re = self.s.run("[2012.06.01, date(), 2012.06.03]") expected = np.array(['2012-06-01', 'NaT', '2012-06-03'], dtype="datetime64") assert_array_equal(re, expected) re = self.s.run("[date(), date(), date()]") expected = [np.datetime64('NaT'), np.datetime64('NaT'), np.datetime64('NaT')] assert_array_equal(re, expected) def test_month_vector(self): re = self.s.run("[2012.06M, 2012.07M, 2012.08M]") expected = [np.datetime64('2012-06'), np.datetime64('2012-07'), np.datetime64('2012-08')] assert_array_equal(re, expected) re = self.s.run("[2012.06M, month(), 2012.08M]") expected = [np.datetime64('2012-06'), np.datetime64('NaT'), np.datetime64('2012-08')] assert_array_equal(re, expected) re = self.s.run("take(month(), 3)") expected = [np.datetime64('NaT'), np.datetime64('NaT'), np.datetime64('NaT')] assert_array_equal(re, expected) def test_time_vector(self): re = self.s.run("[12:30:10.008, 12:30:10.009, 12:30:10.010]") expected = [np.datetime64('1970-01-01T12:30:10.008'), np.datetime64('1970-01-01T12:30:10.009'), np.datetime64('1970-01-01T12:30:10.010')] assert_array_equal(re, expected) re = self.s.run("[12:30:10.008, NULL, 12:30:10.010]") expected = [np.datetime64('1970-01-01T12:30:10.008'), np.datetime64('NaT'), np.datetime64('1970-01-01T12:30:10.010')] assert_array_equal(re, expected) re = self.s.run("take(time(), 3)") expected = [np.datetime64('NaT'), np.datetime64('NaT'), np.datetime64('NaT')] assert_array_equal(re, expected) def test_minute_vector(self): re = self.s.run("[13:30m, 13:34m, 13:35m]") expected = [np.datetime64('1970-01-01T13:30'), np.datetime64('1970-01-01T13:34'), np.datetime64('1970-01-01T13:35')] assert_array_equal(re, expected) re = self.s.run("[13:30m, minute(), 13:35m]") expected = [np.datetime64('1970-01-01T13:30'), np.datetime64('NaT'), np.datetime64('1970-01-01T13:35')] assert_array_equal(re, expected) re = self.s.run("take(minute(), 3)") expected = [np.datetime64('NaT'), np.datetime64('NaT'), np.datetime64('NaT')] assert_array_equal(re, expected) def test_second_vector(self): re = self.s.run("[13:30:10, 13:30:11, 13:30:12]") expected = [np.datetime64('1970-01-01T13:30:10'), np.datetime64('1970-01-01T13:30:11'), np.datetime64('1970-01-01T13:30:12')] assert_array_equal(re, expected) re = self.s.run("[13:30:10, second(), 13:30:12]") expected = [np.datetime64('1970-01-01T13:30:10'), np.datetime64('NaT'), np.datetime64('1970-01-01T13:30:12')] assert_array_equal(re, expected) re = self.s.run("take(second(), 3)") expected = [np.datetime64('NaT'), np.datetime64('NaT'), np.datetime64('NaT')] assert_array_equal(re, expected) def test_datetime_vector(self): re = self.s.run("2012.10.01T15:00:04 + 2009..2011") expected = np.array(['2012-10-01T15:33:33', '2012-10-01T15:33:34', '2012-10-01T15:33:35'], dtype="datetime64") self.assertEqual((re == expected).all(), True) re = self.s.run("[2012.06.01T12:30:00, datetime(), 2012.06.02T12:30:00]") expected = np.array(['2012-06-01T12:30:00', 'NaT', '2012-06-02T12:30:00'], dtype="datetime64") assert_array_equal(re, expected) def test_timestamp_vector(self): re = self.s.run("[2012.06.13T13:30:10.008, 2012.06.13T13:30:10.009, 2012.06.13T13:30:10.010]") expected = [np.datetime64('2012-06-13T13:30:10.008'), np.datetime64('2012-06-13T13:30:10.009'), np.datetime64('2012-06-13T13:30:10.010')] assert_array_equal(re, expected) re = self.s.run("[2012.06.13T13:30:10.008, NULL, 2012.06.13T13:30:10.010]") expected = [np.datetime64('2012-06-13T13:30:10.008'), np.datetime64('NaT'), np.datetime64('2012-06-13T13:30:10.010')] assert_array_equal(re, expected) re = self.s.run("take(timestamp(), 3)") expected = [np.datetime64('NaT'), np.datetime64('NaT'), np.datetime64('NaT')] assert_array_equal(re, expected) def test_nanotime_vector(self): re = self.s.run("[13:30:10.008007006, 13:30:10.008007007, 13:30:10.008007008]") expected = [np.datetime64('1970-01-01T13:30:10.008007006'), np.datetime64('1970-01-01T13:30:10.008007007'), np.datetime64('1970-01-01T13:30:10.008007008')] assert_array_equal(re, expected) re = self.s.run("[13:30:10.008007006, NULL, 13:30:10.008007008]") expected = [np.datetime64('1970-01-01T13:30:10.008007006'), np.datetime64('NaT'), np.datetime64('1970-01-01T13:30:10.008007008')] assert_array_equal(re, expected) re = self.s.run("take(nanotime(), 3)") expected = [np.datetime64('NaT'), np.datetime64('NaT'), np.datetime64('NaT')] assert_array_equal(re, expected) def test_nanotimestamp_vector(self): re = self.s.run("[2012.06.13T13:30:10.008007006, 2012.06.13T13:30:10.008007007, 2012.06.13T13:30:10.008007008]") expected = [np.datetime64('2012-06-13T13:30:10.008007006'), np.datetime64('2012-06-13T13:30:10.008007007'), np.datetime64('2012-06-13T13:30:10.008007008')] assert_array_equal(re, expected) re = self.s.run("[2012.06.13T13:30:10.008007006, NULL, 2012.06.13T13:30:10.008007008]") expected = [np.datetime64('2012-06-13T13:30:10.008007006'), np.datetime64('NaT'), np.datetime64('2012-06-13T13:30:10.008007008')] assert_array_equal(re, expected) re = self.s.run("take(nanotimestamp(), 3)") expected = [np.datetime64('NaT'), np.datetime64('NaT'), np.datetime64('NaT')] assert_array_equal(re, expected) def test_uuid_vector(self): re = self.s.run("uuid(['5d212a78-cc48-e3b1-4235-b4d91473ee87', '5d212a78-cc48-e3b1-4235-b4d91473ee88', '5d212a78-cc48-e3b1-4235-b4d91473ee89'])") expected = ['5d212a78-cc48-e3b1-4235-b4d91473ee87', '5d212a78-cc48-e3b1-4235-b4d91473ee88', '5d212a78-cc48-e3b1-4235-b4d91473ee89'] assert_array_equal(re, expected) re = self.s.run("uuid(['5d212a78-cc48-e3b1-4235-b4d91473ee87', '', '5d212a78-cc48-e3b1-4235-b4d91473ee89'])") expected = ['5d212a78-cc48-e3b1-4235-b4d91473ee87', '00000000-0000-0000-0000-000000000000', '5d212a78-cc48-e3b1-4235-b4d91473ee89'] assert_array_equal(re, expected) re = self.s.run("uuid(['', '', ''])") expected = ['00000000-0000-0000-0000-000000000000', '00000000-0000-0000-0000-000000000000', '00000000-0000-0000-0000-000000000000'] assert_array_equal(re, expected) def test_ipaddr_vector(self): re = self.s.run("ipaddr(['192.168.1.135', '192.168.1.124', '192.168.1.14'])") expected = ['192.168.1.135', '192.168.1.124', '192.168.1.14'] assert_array_equal(re, expected) re = self.s.run("ipaddr(['192.168.1.135', '', '192.168.1.14'])") expected = ['192.168.1.135', '0.0.0.0', '192.168.1.14'] assert_array_equal(re, expected) re = self.s.run("ipaddr(['', '', ''])") expected = ['0.0.0.0', '0.0.0.0', '0.0.0.0'] assert_array_equal(re, expected) def test_int128_vector(self): re = self.s.run("int128(['e1671797c52e15f763380b45e841ec32', 'e1671797c52e15f763380b45e841ec33', 'e1671797c52e15f763380b45e841ec34'])") expected = ['e1671797c52e15f763380b45e841ec32', 'e1671797c52e15f763380b45e841ec33', 'e1671797c52e15f763380b45e841ec34'] assert_array_equal(re, expected) re = self.s.run("int128(['e1671797c52e15f763380b45e841ec32', '', 'e1671797c52e15f763380b45e841ec34'])") expected = ['e1671797c52e15f763380b45e841ec32', '00000000000000000000000000000000', 'e1671797c52e15f763380b45e841ec34'] assert_array_equal(re, expected) re = self.s.run("int128(['', '', ''])") expected = ['00000000000000000000000000000000', '00000000000000000000000000000000', '00000000000000000000000000000000'] assert_array_equal(re, expected) def test_int_matrix(self): re = self.s.run("1..6$3:2") expected = np.array([[1, 4], [2, 5], [3, 6]]) assert_array_equal(re[0], expected) self.assertIsNone(re[1]) self.assertIsNone(re[2]) def test_short_matrix(self): re = self.s.run("short(1..6)$3:2") expected = np.array([[1, 4], [2, 5], [3, 6]]) assert_array_equal(re[0], expected) self.assertIsNone(re[1]) self.assertIsNone(re[2]) def test_long_matrix(self): re = self.s.run("long(1..6)$3:2") expected = np.array([[1, 4], [2, 5], [3, 6]]) assert_array_equal(re[0], expected) self.assertIsNone(re[1]) self.assertIsNone(re[2]) def test_double_matrix(self): re = self.s.run("[1.1, 1.2, 1.3, 1.4, 1.5, 1.6]$3:2") expected = [[1.1, 1.4], [1.2, 1.5], [1.3, 1.6]] assert_array_almost_equal(re[0], expected) self.assertIsNone(re[1]) self.assertIsNone(re[2]) def test_float_matrix(self): re = self.s.run("[1.1f, 1.2f, 1.3f, 1.4f, 1.5f, 1.6f]$3:2") expected = [[1.1, 1.4], [1.2, 1.5], [1.3, 1.6]] assert_array_almost_equal(re[0], expected) self.assertIsNone(re[1]) self.assertIsNone(re[2]) def test_symbol_matrix(self): re = self.s.run('symbol("A"+string(1..9))$3:3') expected = np.array([["A1","A4","A7"], ["A2","A5","A8"], ["A3","A6","A9"]]) assert_array_equal(re[0], expected) self.assertIsNone(re[1]) self.assertIsNone(re[2]) def test_huge_matrix(self): re = self.s.run('matrix(loop(take{, 3000}, 1..3000))') expected = np.arange(1, 3001) for i in np.arange(0, 3000): assert_array_equal(re[0][i], expected) self.assertIsNone(re[1]) self.assertIsNone(re[2]) def test_one_column_matrix(self): re = self.s.run('matrix(1..3000000)') for i in np.arange(0, 3000000): assert_array_equal(re[0][i], [i+1]) self.assertIsNone(re[1]) self.assertIsNone(re[2]) def test_one_row_matrix(self): re = self.s.run("matrix(take(1, 5000)).transpose()") assert_array_equal(re[0], [np.repeat(1, 5000)]) self.assertIsNone(re[1]) self.assertIsNone(re[2]) def test_zero_column_matrix(self): re = self.s.run("matrix(INT, 3, 0)") expected = [[] for i in range(3)] assert_array_equal(re[0], expected) re = self.s.run("matrix(BOOL,3,0)") assert_array_equal(re[0], expected) self.assertEqual(re[0].dtype,bool ) re = self.s.run("matrix(CHAR,3,0)") assert_array_equal(re[0], expected) self.assertEqual(re[0].dtype,'int8') re = self.s.run("matrix(SHORT,3,0)") assert_array_equal(re[0], expected) self.assertEqual(re[0].dtype,'int16') re = self.s.run("matrix(LONG,3,0)") assert_array_equal(re[0], expected) self.assertEqual(re[0].dtype,'int64') re = self.s.run("matrix(DATE,3,0)") expected = np.empty((3,0),dtype="datetime64[ns]") assert_array_equal(re[0], expected) self.assertEqual(re[0].dtype,'datetime64[ns]') re = self.s.run("matrix(MONTH,3,0)") expected = np.empty((3,0),dtype="datetime64[M]") assert_array_equal(re[0], expected) self.assertEqual(re[0].dtype,'datetime64[M]') re = self.s.run("matrix(TIME,3,0)") expected = np.empty((3,0),dtype="datetime64[ns]") assert_array_equal(re[0], expected) self.assertEqual(re[0].dtype,'datetime64[ns]') re = self.s.run("matrix(MINUTE,3,0)") expected = np.empty((3,0),dtype="datetime64[ns]") assert_array_equal(re[0], expected) self.assertEqual(re[0].dtype,'datetime64[ns]') re = self.s.run("matrix(SECOND,3,0)") expected = np.empty((3,0),dtype="datetime64[ns]") assert_array_equal(re[0], expected) re = self.s.run("matrix(DATETIME,3,0)") expected = np.empty((3,0),dtype="datetime64[ns]") assert_array_equal(re[0], expected) self.assertEqual(re[0].dtype,'datetime64[ns]') re = self.s.run("matrix(TIMESTAMP,3,0)") assert_array_equal(re[0], expected) self.assertEqual(re[0].dtype,'datetime64[ns]') re = self.s.run("matrix(NANOTIME,3,0)") assert_array_equal(re[0], expected) re = self.s.run("matrix(NANOTIMESTAMP,3,0)") assert_array_equal(re[0], expected) re = self.s.run("matrix(FLOAT,3,0)") expected = np.empty((3,0),dtype="float32") assert_array_equal(re[0], expected) re = self.s.run("matrix(DOUBLE,3,0)") assert_array_equal(re[0], expected) self.assertEqual(re[0].dtype,"float64") re = self.s.run("matrix(SYMBOL,3,0)") assert_array_equal(re[0], expected) def test_zero_row_matrix(self): re = self.s.run("matrix(INT, 0, 3)") expected = np.empty((0,3),dtype="int32") assert_array_equal(re[0], expected) re = self.s.run("matrix(BOOL,0,3)") expected = np.empty((0,3),dtype="bool") assert_array_equal(re[0], expected) re = self.s.run("matrix(CHAR,0,3)") assert_array_equal(re[0], expected) re = self.s.run("matrix(SHORT,0,3)") assert_array_equal(re[0], expected) re = self.s.run("matrix(LONG,0,3)") assert_array_equal(re[0], expected) re = self.s.run("matrix(DATE,0,3)") expected = np.empty((0,3),dtype="datetime64[ns]") assert_array_equal(re[0], expected) re = self.s.run("matrix(MONTH,0,3)") assert_array_equal(re[0], expected) re = self.s.run("matrix(TIME,0,3)") assert_array_equal(re[0], expected) re = self.s.run("matrix(MINUTE,0,3)") assert_array_equal(re[0], expected) re = self.s.run("matrix(SECOND,0,3)") assert_array_equal(re[0], expected) re = self.s.run("matrix(DATETIME,0,3)") assert_array_equal(re[0], expected) re = self.s.run("matrix(TIMESTAMP,0,3)") assert_array_equal(re[0], expected) re = self.s.run("matrix(NANOTIME,0,3)") assert_array_equal(re[0], expected) re = self.s.run("matrix(NANOTIMESTAMP,0,3)") assert_array_equal(re[0], expected) re = self.s.run("matrix(FLOAT,0,3)") expected = np.empty((0,3),dtype="float32") assert_array_equal(re[0], expected) re = self.s.run("matrix(DOUBLE,0,3)") assert_array_equal(re[0], expected) re = self.s.run("matrix(SYMBOL,0,3)") assert_array_equal(re[0], expected) def test_all_null_matrix(self): re = self.s.run("take(int(), 12)$3:4") expected=[[np.NaN, np.NaN, np.NaN, np.NaN], [np.NaN, np.NaN, np.NaN, np.NaN], [np.NaN, np.NaN, np.NaN, np.NaN]] assert_array_equal(re[0], expected) re = self.s.run("[1, 2, NULL, 3, NULL, 4]$2:3") expected=[[1, np.NaN, np.NaN], [2., 3., 4.]] assert_array_equal(re[0], expected) re = self.s.run("symbol(take(string(), 12))$3:4") assert_array_equal(re[0][0], ['','','','']) assert_array_equal(re[0][1], ['','','','']) assert_array_equal(re[0][2], ['','','','']) re = self.s.run("symbol(['AA', 'BB', NULL, 'CC', NULL, 'DD'])$2:3") assert_array_equal(re[0][0], ['AA','','']) assert_array_equal(re[0][1], ['BB','CC','DD']) def test_huge_symbol_matrix(self): re = self.s.run("m = symbol(string(1..1000000))$200:5000;m.rename!(1..200,1..5000);m") assert_array_equal(re[1], np.arange(1, 201)) assert_array_equal(re[2], np.arange(1, 5001)) re = self.s.run("m = symbol(string(1..1000000))$200:5000;m.rename!(1..200,1..5000);table(m.rowNames() as label, m)") assert_array_equal(re["label"], np.arange(1, 201)) j=1 for i in np.arange(1, 5001): assert_series_equal(re.iloc[:,i], pd.Series([str(x) for x in np.arange(j, j+200)], index=np.arange(0, 200)),check_names=False) j+=200 def test_int_matrix_with_label(self): re = self.s.run("cross(add,1..5,1..10)") expected = np.array( [[2, 3, 4, 5, 6, 7, 8, 9, 10, 11], [3, 4, 5, 6, 7, 8, 9, 10, 11, 12], [4, 5, 6, 7, 8, 9, 10, 11, 12, 13], [5, 6, 7, 8, 9, 10, 11, 12, 13, 14], [6, 7, 8, 9, 10, 11, 12, 13, 14, 15]]) #self.assertEqual((re == expected).all(), True) assert_array_equal(re[0], expected) assert_array_equal(re[1], np.array([1, 2, 3, 4, 5])) assert_array_equal(re[2], np.array([1, 2, 3, 4, 5, 6, 7, 8, 9, 10])) def test_matrix_only_with_row_label(self): re = self.s.run("m=1..6$3:2;m.rename!([0, 1, 2],);m") expected = [[1, 4], [2, 5], [3, 6]] assert_array_equal(re[0], expected) assert_array_equal(re[1], [0, 1, 2]) self.assertIsNone(re[2]) def test_matrix_only_with_col_label(self): re = self.s.run("m=1..6$3:2;m.rename!([0, 1]);m") expected = [[1, 4], [2, 5], [3, 6]] assert_array_equal(re[0], expected) self.assertIsNone(re[1]) assert_array_equal(re[2], [0, 1]) def test_matrix_label_date_symbol(self): script=''' m=matrix([2200, 1300, 2500, 8800], [6800, 5400, NULL, NULL], [1900, 2100, 3200, NULL]).rename!(2012.01.01..2012.01.04, symbol(`C`IBM`MS)); m ''' re = self.s.run(script) expected=[[2200., 6800.,1900.],[1300.,5400.,2100.],[2500.,np.NaN,3200.],[8800.,np.NaN, np.NaN]] assert_array_almost_equal(re[0], expected) assert_array_equal(re[1], np.array(['2012-01-01T00:00:00.000000000', '2012-01-02T00:00:00.000000000','2012-01-03T00:00:00.000000000', '2012-01-04T00:00:00.000000000'], dtype="datetime64")) assert_array_equal(re[2], ['C', 'IBM', 'MS']) def test_matrix_label_second_symbol(self): script=''' m=matrix([2200, 1300, 2500, 8800], [6800, 5400, NULL, NULL], [1900, 2100, 3200, NULL]).rename!([09:30:00, 10:00:00, 10:30:00, 11:00:00], `C`IBM`MS) m ''' re = self.s.run(script) expected=[[2200., 6800.,1900.],[1300.,5400.,2100.],[2500.,np.NaN,3200.],[8800.,np.NaN, np.NaN]] assert_array_almost_equal(re[0], expected) assert_array_equal(re[1], np.array(['1970-01-01T09:30:00.000000000', '1970-01-01T10:00:00.000000000','1970-01-01T10:30:00.000000000', '1970-01-01T11:00:00.000000000'], dtype="datetime64")) assert_array_equal(re[2], ['C', 'IBM', 'MS']) def test_matrix_label_symbol_date(self): script=''' m=matrix([2200, 1300, 2500, 8800], [6800, 5400, NULL, NULL], [1900, 2100, 3200, NULL]).rename!(`C`IBM`MS`ZZ, 2012.01.01..2012.01.03) m ''' re = self.s.run(script) expected=[[2200., 6800.,1900.],[1300.,5400.,2100.],[2500.,np.NaN,3200.],[8800.,np.NaN, np.NaN]] assert_array_almost_equal(re[0], expected) assert_array_equal(re[1], ['C', 'IBM', 'MS', 'ZZ']) assert_array_equal(re[2], np.array(['2012-01-01T00:00:00.000000000', '2012-01-02T00:00:00.000000000', '2012-01-03T00:00:00.000000000'],dtype="datetime64")) def test_table(self): script = '''n=20; syms=`IBM`C`MS`MSFT`JPM`ORCL`BIDU`SOHU`GE`EBAY`GOOG`FORD`GS`PEP`USO`GLD`GDX`EEM`FXI`SLV`SINA`BAC`AAPL`PALL`YHOO`KOH`TSLA`CS`CISO`SUN; mytrades=table(09:30:00+rand(18000,n) as timestamp,rand(syms,n) as sym, 10*(1+rand(100,n)) as qty,5.0+rand(100.0,n) as price); select qty,price from mytrades where sym==`IBM;''' re = self.s.run(script) self.assertEqual(re.shape[1], 2) def test_dictionary(self): script = '''dict(1 2 3,`IBM`MSFT`GOOG)''' re = self.s.run(script) expected = {2: 'MSFT', 3: 'GOOG', 1: 'IBM'} self.assertDictEqual(re, expected) def test_any_vector(self): re = self.s.run("([1], [2],[1,3, 5],[0.9, 0.8])") self.assertEqual((re[0] == [1]).all(), True) self.assertEqual((re[1] == [2]).all(), True) self.assertEqual((re[2] == [1, 3, 5]).all(), True) def test_set(self): re = self.s.run("set(1+3*1..3)") self.assertSetEqual(re, {10, 4, 7}) def test_pair(self): re = self.s.run("3:4") self.assertListEqual(re, list([3, 4])) def test_any_dictionary(self): re = self.s.run("{a:1,b:2}") expected = {'a': 1, 'b': 2} self.assertDictEqual(re, expected) def test_upload_matrix(self): a = self.s.run("cross(+, 1..5, 1..5)") b = self.s.run("1..25$5:5") self.s.upload({'a': a, 'b': b}) re = self.s.run('a+b') # print(re) # self.assertEqual((re[0] == [3, 9, 15, 21, 27]).all(), True) # self.assertEqual((re[1] == [5, 11, 17, 23, 29]).all(), True) # self.assertEqual((re[2] == [7, 13, 19, 25, 31]).all(), True) # self.assertEqual((re[3] == [9, 15, 21, 27, 33]).all(), True) # self.assertEqual((re[4] == [11, 17, 23, 29, 35]).all(), True) def test_run_plot(self): script = ''' x=1..10 t = table(x as sin, x+100 as cos) plot(t) ''' re = self.s.run(script) assert_array_equal(re['data'][0], np.array([[1, 101], [2, 102], [3, 103], [4, 104], [5, 105], [6, 106], [7, 107], [8, 108], [9, 109], [10, 110]])) self.assertIsNone(re['data'][1]) assert_array_equal(re['data'][2], np.array(['sin', 'cos'])) assert_array_equal(re['title'], np.array(['', '', ''])) def test_table_datatypes(self): script=''' n = 200 a = 100 v1 = string(1..n) v2 = string(1..n) v3 = take(int128("fcc69bca9885b51962660c23d08c124a"),n-a).join(take(int128("a428d55098d8e41e8adc4b7d04d8ede1"),a)) v4 = take(uuid("407c628e-d319-25c1-17ee-e5a73500a010"),n-a).join(take(uuid("d7a39280-1b18-8f56-160c-beabd428c934"),a)) v5 = take(ipaddr("fd00:a516:7c1b:17cd:6d81:2137:bd2a:2c5b"),n-a).join(take(ipaddr("fc00:db20:35b:7399::5"),a)) t = table(n:n,`val1`val2`val3`val4`val5,[SYMBOL,STRING,INT128,UUID,IPADDR]) t[`val1] = v1 t[`val2] = v2 t[`val3] = v3 t[`val4] = v4 t[`val5] = v5 ''' self.s.run(script) df1 = self.s.run("select val1 from t") df2 = self.s.run("select val2 from t") df3 = self.s.run("select val3 from t") df4 = self.s.run("select val4 from t") df5 = self.s.run("select val5 from t") df = self.s.run("select * from t") n = 200 a = 100 data1 = np.array(range(1,n+1),dtype="str") data2 = np.append(np.repeat("fcc69bca9885b51962660c23d08c124a",n-a),np.repeat("a428d55098d8e41e8adc4b7d04d8ede1",a)) data3 = np.append(np.repeat("407c628e-d319-25c1-17ee-e5a73500a010",n-a),np.repeat("d7a39280-1b18-8f56-160c-beabd428c934",a)) data4 = np.append(np.repeat("fd00:a516:7c1b:17cd:6d81:2137:bd2a:2c5b",n-a),np.repeat("3fd00:a516:7c1b:17cd:6d81:2137:bd2a:2c5b",a)) ex1 = pd.DataFrame({"val1":data1}) ex2 = pd.DataFrame({"val2":data1}) ex3 = pd.DataFrame({"val3":data2}) ex4 = pd.DataFrame({"val4":data3}) ex5 = pd.DataFrame({"val5":data4}) ex = pd.DataFrame({"val1":data1,"val2":data1,"val3":data2,"val4":data3,"val5":data4}) assert_frame_equal(df1, ex1) assert_frame_equal(df2, ex2) assert_frame_equal(df3, ex3) assert_frame_equal(df4, ex4) assert_frame_equal(df5, ex5) assert_frame_equal(df, ex) def test_table_datatypes_with_null(self): script=''' n = 100 a = 50 v1=string(1..(n-a)).join(take(string(),a)) v2 = v1 v3 = take(int128("fcc69bca9885b51962660c23d08c124a"),n-a).join(take(int128(),a)) v4 = take(uuid("407c628e-d319-25c1-17ee-e5a73500a010"),n-a).join(take(uuid(),a)) v5 = take(ipaddr("fd00:a516:7c1b:17cd:6d81:2137:bd2a:2c5b"),n-a).join(take(ipaddr(),a)) t = table(n:n,`val1`val2`val3`val4`val5,[SYMBOL,STRING,INT128,UUID,IPADDR]) t[`val1] = v1 t[`val2] = v2 t[`val3] = v3 t[`val4] = v4 t[`val5] = v5 ''' self.s.run(script) df1 = self.s.run("select val1 from t") df2 = self.s.run("select val2 from t") df3 = self.s.run("select val3 from t") df4 = self.s.run("select val4 from t") df5 = self.s.run("select val5 from t") df = self.s.run("select * from t") n = 100 a = 50 arr1 = np.append(np.array(range(1,n-a+1),dtype="str"),np.repeat("",a)) arr2 = np.append(np.repeat("fcc69bca9885b51962660c23d08c124a",n-a),np.repeat("00000000000000000000000000000000",a)) arr3 = np.append(np.repeat("407c628e-d319-25c1-17ee-e5a73500a010",n-a),np.repeat("00000000-0000-0000-0000-000000000000",a)) arr4 = np.append(np.repeat("4fd00:c2b6:b24b:be67:2827:688d:e6a1:6a3b",n-a),np.repeat("0.0.0.0",a)) ex1 = pd.DataFrame(arr1,columns=["val1"]) ex2 = pd.DataFrame(arr1,columns=["val2"]) ex3 =
pd.DataFrame(arr2,columns=["val3"])
pandas.DataFrame
import sys from typing import List import pandas as pd # Note: must mark "common" as "Sources Root" in PyCharm to have visibility from common_paths import * from utilities_cbc import read_excel_or_csv_path, debug_write_raw_text, circle_abbrev_from_path from text_extractor import TextExtractorFactory from input_files_context import InputFilesContext from text_transform import pre_process_line, secondary_species_processing from local_translation_context import LocalTranslationContext from taxonomy import Taxonomy # from nlp_context import NLPContext from parameters import Parameters from taxonomy_token_identify import TaxonomyTokenIdentify from spacy.tokens import Span from spacy.util import filter_spans from spacy_extra import filter_to_possibles, \ write_visualization from write_final_checklist import write_local_checklist_with_group, \ write_final_checklist_spreadsheet from write_categorized_lines import write_categorized_lines_spreadsheet from write_basic_spreadsheet import write_basic_spreadsheet # 🧭 U+1F9ED Compass Emoji (use for ranged) # 🎂 U+1F382 Birthday Cake (use for Adult/Immature) sys.path.append('common') sys.path.append('textextractor') sys.path.append('taxonomy') emoji_compass = '\U0001f9ed' emoji_birthday_cake = '\U0001f382' def load_rarities_text(rarities_path: Path) -> List[str]: # Check for a rarities list rare_species = [] if rarities_path.exists(): with open(rarities_path, 'r') as fp: lines = fp.read() rare_species = lines.split('\n') return rare_species def process_rarities(checklist: pd.DataFrame, rare_species: List[str]) -> pd.DataFrame: # Mark rarities if rare_species: rare_idxs = checklist.index[checklist['CommonName'].isin(rare_species)] if len(rare_idxs): checklist.at[rare_idxs, 'Rare'] = 'X' return checklist def process_annotations(checklist: pd.DataFrame, annotations_path: Path) -> pd.DataFrame: # The set operations below are because not all annotations files will have all columns annotations = load_annotations(annotations_path) if not annotations.empty: # rare_mask = [xs == 'X' for xs in annotations['Rare'].values] # rare_species = list(annotations[rare_mask].CommonName.values) # if rare_species: # rare_idxs = local_checklist.index[local_checklist['CommonName'].isin(rare_species)] # if len(rare_idxs): # local_checklist.at[rare_idxs, 'Rare'] = 'X' emd_cols = {'Easy', 'Marginal', 'Difficult'} & set(annotations.columns) if any([[xs == 'X' for xs in annotations[col].values] for col in emd_cols]): checklist['D'] = '' annotations_effort = {} for ix, row in annotations.iterrows(): annotations_effort[row['CommonName']] = row['Difficulty'] difficulty = [annotations_effort.get(cn, '') for cn in checklist.CommonName] checklist['Difficulty'] = difficulty # Add new annotation columns to local_checklist adim_cols = {'Adult', 'Immature', 'W-morph', 'B-Morph', 'CountSpecial'} & set(annotations.columns) for col in adim_cols: if any([xs == 'X' for xs in annotations[col].values]): checklist[col] = '' checklist['Ad'] = '' checklist['Im'] = '' checklist['CountSpecial'] = '' rare_adim_cols = {'Rare', 'Adult', 'Immature', 'W-morph', 'B-Morph', 'CountSpecial'} & set(annotations.columns) for col in rare_adim_cols: mask = [xs == 'X' for xs in annotations[col].values] related_species = list(annotations[mask].CommonName.values) if related_species: species_idxs = checklist.index[ checklist['CommonName'].isin(related_species)] if len(species_idxs): checklist.at[species_idxs, col] = 'X' # Overload the Difficulty field with the ranging field if 'Ranging' in annotations.columns: mask = [xs == 'X' for xs in annotations['Ranging'].values] related_species = list(annotations[mask].CommonName.values) if related_species: species_idxs = checklist.index[ checklist['CommonName'].isin(related_species)] if len(species_idxs): checklist.at[species_idxs, 'D'] = emoji_compass return checklist def process_annotations_or_rarities(checklist: pd.DataFrame, checklist_path: Path, circle_prefix: str) -> pd.DataFrame: """ Look for Annotations or Rarities files and mark the 'Rare' column in checklist with an 'X' Annotations.xlsx must have these columns: Rarities.xlsx (or CSV) requires 'CommonName' and 'Rare' columns Rarities.txt is just a text list of rare species :param circle_prefix: :param checklist: :param checklist_path: full path for checklist. Used to construct names for inputs :return: checklist with 'Rare' column set to 'X' if species is rare """ # Process annotations. The XXXX-LocalAnnotations.xlsx file will be preferred over # the rarities list if it exists annotations_dir = checklist_path.parent annotations_path = annotations_dir / f'{circle_prefix}Annotations.xlsx' print(f'Annotations path: {annotations_path}') if annotations_path.exists(): return process_annotations(checklist, annotations_path) for ext in ['xlsx', 'csv', 'txt']: rarities_path = annotations_dir / f'{circle_prefix}Rarities.{ext}' if not rarities_path.exists(): continue if ext == 'txt': rare_species = load_rarities_text(rarities_path) else: rarities_df = read_excel_or_csv_path(rarities_path) rare_species = list(rarities_df[rarities_df.Rare == 'X'].CommonName.values) checklist = process_rarities(checklist, rare_species) break return checklist def process_exceptions(candidate_names: List[str], checklist_path: Path, circle_prefix: str) -> List[str]: # checklist_path = inputs_parse_path / 'CAPA-checklist.xlsx' # only care about path and prefix exceptions_dir = checklist_path.parent exceptions_path = exceptions_dir / f'{circle_prefix}Exceptions.xlsx' print(f'Exceptions path: {exceptions_path}') if not exceptions_path.exists(): return candidate_names print(f'Exceptions: {exceptions_path}') exceptions_df = read_excel_or_csv_path(exceptions_path) if exceptions_df.empty: return candidate_names mask_add = exceptions_df.Add == 'X' mask_sub = exceptions_df.Subtract == 'X' additions = set(exceptions_df[mask_add].CommonName.values) subtractions = set(exceptions_df[mask_sub].CommonName.values) addstr = ', '.join(additions) subst = ', '.join(subtractions) print(f'Additions: {addstr}\nSubtractions: {subst}') local_names = list((set(candidate_names) | additions) - subtractions) return local_names def build_full_tally_sheet(double_translated, fpath: Path, taxonomy: Taxonomy, parameters: Parameters, circle_prefix: str): candidate_names = [x for x, y in double_translated] local_names = process_exceptions(candidate_names, fpath, circle_prefix) # if issf etc in list, then base species must be also issfs = taxonomy.filter_issf(local_names) for cn in issfs: base_species = taxonomy.report_as(cn) if base_species: local_names.append(base_species) entries = [] for local_name in local_names: # common_name, taxon_order, species_group, NACC_SORT_ORDER record = taxonomy.find_local_name_row(local_name) if record is not None: # e.g. ('White-throated Sparrow', 31943, 'New World Sparrows', 1848.0) entry = (record.comName, record.TAXON_ORDER, record.SPECIES_GROUP, record.NACC_SORT_ORDER, record.ABA_SORT_ORDER, '', 0) # append 'Rare', 'Total' entries.append(entry) df = pd.DataFrame(entries, columns=['CommonName', 'TaxonOrder', 'Group', 'NACC_SORT_ORDER', 'ABA_SORT_ORDER', 'Rare', 'Total']) # Re-order cols = ['Group', 'CommonName', 'Rare', 'Total', 'TaxonOrder', 'NACC_SORT_ORDER', 'ABA_SORT_ORDER'] local_checklist = df[cols] local_checklist.sort_values(by='TaxonOrder', inplace=True) # local_checklist.shape # double_translated may have duplicates local_checklist = local_checklist[ ~local_checklist.duplicated(subset=['CommonName'], keep='first')] local_checklist = process_annotations_or_rarities(local_checklist, fpath, circle_prefix) # Re-order columns preferred_order = ['Group', 'CommonName', 'Rare', 'D', 'Total', 'Ad', 'Im', 'TaxonOrder', 'NACC_SORT_ORDER', 'ABA_SORT_ORDER', 'Difficulty', 'Adult', 'Immature', 'W-morph', 'B-Morph', 'CountSpecial'] newcols = [col for col in preferred_order if col in local_checklist.columns] local_checklist = local_checklist[newcols] # Write out full tally sheet # circle_code = circle_prefix[0:4] # double_path = outputs_path / f'{circle_code}-DoubleX.xlsx' # write_local_checklist_with_group(local_checklist, double_path, parameters.parameters) return local_checklist def strip_off_scientific_names(text_list: List[str], taxonomy: Taxonomy) -> List[str]: # The CAMP-2020 checklist has <Common Name> <Scientific Name> # Assume all scientific names are two words and drop stripped_text_list = [] for line in text_list: line = line.strip() # e.g. line = 'California Quail Callipepla californica' words = line.split(' ') if len(words) > 2: sci_name = ' '.join(words[-2:]).lower() row = taxonomy.find_scientific_name_row(sci_name) if row is not None: line = ' '.join(words[:-2]) #.lower() stripped_text_list.append(line) return stripped_text_list def process_checklist(checklist_path: Path, output_dir: Path, taxonomy: Taxonomy, local_translation_context: LocalTranslationContext, parameters: Parameters, circle_prefix: str ): """ - Extract text """ # Use circle_abbrev as a prefix to distinguish output for multiple checklists # Extract text from file and do basic text preprocessing text_extractor = TextExtractorFactory().create(checklist_path) text = text_extractor.extract() debug_write_raw_text(text, checklist_path, debug_path) text_list = sorted(list(set(text.split('\n')))) # skip tertiary_transformation() for now text_list = [secondary_species_processing(pre_process_line(line)) for line in text_list] # text_list = [tertiary_transformation(secondary_species_processing(pre_process_line(line))) \ # for line in text_list] text_list = strip_off_scientific_names(text_list, taxonomy) # print(text_list) text_list = sorted(list(set(text_list))) # Processing 1 checklist here tti = TaxonomyTokenIdentify(taxonomy, cache_path) # use text_list from above text_list_lower = [x.lower() for x in text_list] possibles = filter_to_possibles(tti, text_list_lower) print(f'Possible species lines: {len(possibles)} (based on word intersections)') # Double translate # print('Doing double translation') # Can take a while translated = [] for line in text_list_lower: # was: possibles txline = local_translation_context.apply_translations(line.lower(), True) translated.append(txline) double_translated = [] for line, _ in translated: txline2 = local_translation_context.apply_translations(line.lower(), True) double_translated.append(txline2) # Write Spacy visualization write_visualization(list(set([x[0] for x in double_translated])), checklist_path, debug_path, taxonomy, tti) # ------- local_checklist = build_full_tally_sheet(double_translated, checklist_path, taxonomy, parameters, circle_prefix) cols_to_hide = ['Rare', 'Adult', 'Immature', 'W-morph', 'B-Morph', 'Difficulty', 'CountSpecial'] # The first checklist we write has a single column for group and is # used as the template for the Service-ProcessEBird phase # don't use circle_prefix here circle_abbrev = circle_abbrev_from_path(checklist_path) single_path = output_dir / f'{circle_abbrev}-Single.xlsx' write_final_checklist_spreadsheet(local_checklist, single_path, parameters.parameters, additional_sheets=None, cols_to_hide=cols_to_hide, cols_to_highlight=['Total']) # Write out an empty annotations file if none exists annotations_path = inputs_parse_path / f'{circle_prefix}Annotations.xlsx' if not annotations_path.exists(): print(f'Creating empty annotations file: {annotations_path.as_posix()}') annotations = local_checklist.copy() for col in ['Rare', 'Adult', 'Immature', 'Easy', 'Marginal', 'Difficult']: annotations[col] = '' write_final_checklist_spreadsheet(annotations, annotations_path, parameters.parameters, additional_sheets=None, cols_to_hide=None, cols_to_highlight=None) exceptions_path = inputs_parse_path / f'{circle_prefix}Exceptions.xlsx' if not exceptions_path.exists(): print(f'Creating empty exceptions file: {exceptions_path.as_posix()}') empty_exceptions = pd.DataFrame( {'CommonName': '', 'Add': '', 'Subtract': '', 'Comments': ''}, index=range(20)) # Adding rows to a table is a pain in Excel, give some room write_basic_spreadsheet(empty_exceptions, exceptions_path, column_widths={'CommonName': 30, 'Add': 11, 'Subtract': 11, 'Comments': 50}, columns_to_center=['Add', 'Subtract']) double_path = output_dir / f'{circle_abbrev}-Double.xlsx' write_local_checklist_with_group(local_checklist, double_path, parameters.parameters) ground_truths_df = ground_truth_for_code(circle_abbrev) if not ground_truths_df.empty: _ = check_against_ground_truth(local_checklist, ground_truths_df) categorized_lines = categorize_lines(circle_abbrev, text_list, local_translation_context, tti) write_categorized_lines_spreadsheet(categorized_lines, debug_path / f'{circle_abbrev}-categorized_lines.xlsx', col_widths=[40, 40, 11, 16], col_align=['left', 'left', 'center', 'center'], sheet_name='Categorized Lines', ) return text_list, double_translated, local_checklist # ------------------------------------------------------------------------------------------ def process_checklists(checklists_path: Path, output_dir: Path, taxonomy: Taxonomy, local_translation_context: LocalTranslationContext, parameters: Parameters, circle_prefix: str # e.g. 'CACR-2020-' ): # Return parameters useful when debugging single list # parsable_filetypes = TextExtractorFactory().formats() ifc = InputFilesContext(checklists_path, ['.xlsx', '.csv', '.pdf']) checklist_paths = ifc.allowable_files(f'{circle_prefix}checklist') print(f'Path: {checklists_path}') # - Extract text from tally sheet (checklist) # - Make LocalTranslationContext and TaxonomyTokenIdentify objects # - Do a double translation (should be idempotent) text_list = [] double_translated = [] local_checklist =
pd.DataFrame()
pandas.DataFrame
import time import requests import json import re import pandas as pd from selenium import webdriver from bs4 import BeautifulSoup from fake_useragent import UserAgent # 判断是不是正确的json格式数据 def is_json(html): try: json.loads(html) except ValueError: return False return True # 模拟谷歌浏览器 def get_html(url): ua = UserAgent() # 调用UserAgent库生成ua对象 header = { 'accept': 'text/html,application/xhtml+xml,application/xml;q=0.9,image/web,image/png,*/*;q=0.8', 'user-agent': ua.random, } try: r = requests.get(url, timeout=30, headers=header) r.raise_for_status() r.encoding = r.apparent_encoding # 指定编码形式 return r.text except: return "please inspect your url or setup" URL_list = [] driver = webdriver.Chrome() def connent_url(location): time.sleep(3) url = 'https://las.cnas.org.cn/LAS/publish/externalQueryL1.jsp' driver.get(url) orgAddress = driver.find_elements_by_id('orgAddress') orgAddress[0].send_keys(location) btn = driver.find_element_by_class_name('btn') btn.click() time.sleep(5) accept = False while not accept: try: pirlbutton1 = driver.find_element_by_xpath('//*[@id="pirlbutton1"]') print('Login') pirlbutton1.click() time.sleep(3) flag_str = driver.find_element_by_id('pirlAuthInterceptDiv_c').is_displayed() print(flag_str) if not flag_str: break except ValueError: accept = False time.sleep(3) flag_str = driver.find_element_by_xpath('/html/body/div[7]/div[1]/div[1]').is_displayed() if not flag_str: maxpage = int(driver.find_element_by_id('yui-pg0-0-totalPages-span').text) for page in range(maxpage): html = driver.page_source soup = BeautifulSoup(html, 'html.parser') tbody_all = soup.find_all('tbody') for url in tbody_all[1].find_all('a'): str1 = str(url) str2 = "https://las.cnas.org.cn" + str1[48:117] if len(str2) == 92: URL_list.append(str2) if page <= maxpage-2: print(page) page_next = driver.find_element_by_xpath('/html/body/div[6]/table/tbody/tr/td[4]/a/img') page_next.click() time.sleep(3) accept = False while not accept: try: pirlbutton1 = driver.find_element_by_xpath('//*[@id="pirlbutton1"]') pirlbutton1.click() time.sleep(3) flag_str = driver.find_element_by_id('pirlAuthInterceptDiv_c').is_displayed() if not flag_str: break except UnicodeDecodeError: accept = False time.sleep(3) # 解析目标网页的html First_url_Json = [] Second_url_Json = [] Third_url_Json = [] Forth_url_Json = [] Datalist = [] def get_information_from_url(url): text = get_html(url) soup = BeautifulSoup(text, "html.parser") # 解析text中的HTML first_url_Json = [] second_url_Json = [] third_url_Json = [] forth_url_Json = [] for a_data in soup.find_all('a'): a_data = str(a_data) onclick_list = re.findall(".*onclick=(.*)'/LAS.*", a_data) onclick_str = '' for onclick in onclick_list: onclick_str = onclick_str + onclick onclick_str = onclick_str[1:-1] type_data1 = a_data[205:207] type_data2 = a_data[201:203] if type_data1 == "L1" or type_data2 == "L1": if onclick_str == "_showTop": id_list = re.findall(".*evaluateId=(.*)&amp;labType.*", a_data) id_str = '' for id in id_list: id_str = id_str + id first_url = 'https://las.cnas.org.cn/LAS/publish/queryPublishKeyBranchY.action?&asstId=' + id_str second_url = 'https://las.cnas.org.cn/LAS/publish/queryPublishSignatoryY.action?&evaluateId=' + id_str third_url = 'https://las.cnas.org.cn/LAS/publish/queryPublishLCheckObjY.action?&evaluateId=' \ + id_str + '&type=L1' if len(first_url_Json) == 0: first_url_Json.append(first_url) if len(second_url_Json) == 0: second_url_Json.append(second_url) if len(third_url_Json) == 0: third_url_Json.append(third_url) elif onclick_str == "_showdown": id_list = re.findall(".*baseInfoId=(.*)&amp;labType.*", a_data) id_str = '' for id in id_list: id_str = id_str + id first_url = 'https://las.cnas.org.cn/LAS/publish/queryPublishKeyBranch.action?&asstId=' + id_str second_url = 'https://las.cnas.org.cn/LAS/publish/queryPublishSignatory.action?&baseinfoId=' + id_str third_url = 'https://las.cnas.org.cn/LAS/publish/queryPublishLCheckObj.action?&baseinfoId=' \ + id_str + '&type=L1' if len(first_url_Json) == 0: first_url_Json.append(first_url) if len(second_url_Json) == 0: second_url_Json.append(second_url) if len(third_url_Json) == 0: third_url_Json.append(third_url) elif type_data1 == "L2" or type_data2 == "L2": if onclick_str == '_showTop' and (len(a_data and "L1") > 0): id_list = re.findall(".*evaluateId=(.*)&amp;labType.*", a_data) id_str = '' for id in id_list: id_str = id_str + id first_url = 'https://las.cnas.org.cn/LAS/publish/queryPublishKeyBranchY.action?&asstId=' + id_str second_url = 'https://las.cnas.org.cn/LAS/publish/queryPublishSignatoryY.action?&evaluateId=' + id_str third_url = 'https://las.cnas.org.cn/LAS/publish/queryPublishLCheckObjY.action?&evaluateId=' \ + id_str + '&type=L1' forth_url = 'https://las.cnas.org.cn/LAS/publish/queryPublishLCailObjY.action?&evaluateId=' \ + id_str + '&type=L2' if len(first_url_Json) == 0: first_url_Json.append(first_url) if len(second_url_Json) == 0: second_url_Json.append(second_url) if len(third_url_Json) == 0: third_url_Json.append(third_url) if len(forth_url_Json) == 0: forth_url_Json.append(forth_url) elif onclick_str == '_showdown': id_list = re.findall(".*baseInfoId=(.*)&amp;labType.*", a_data) id_str = '' for id in id_list: id_str = id_str + id first_url = 'https://las.cnas.org.cn/LAS/publish/queryPublishKeyBranch.action?&asstId=' + id_str second_url = 'https://las.cnas.org.cn/LAS/publish/queryPublishSignatory.action?&baseinfoId=' + id_str third_url = 'https://las.cnas.org.cn/LAS/publish/queryPublishLCailObj.action?&baseinfoId=' \ + id_str + '&type=L2' if len(first_url_Json) == 0: first_url_Json.append(first_url) if len(second_url_Json) == 0: second_url_Json.append(second_url) if len(third_url_Json) == 0: third_url_Json.append(third_url) data = [] div_data = [div.get_text().strip().replace('\r', '').replace('\t', '').replace('\n', '').replace('\x1b', '') for div in soup.find_all('div', class_='T1')] for colomns_data in div_data: # 遍历机构名称 first_url_Json.append(colomns_data) second_url_Json.append(colomns_data) third_url_Json.append(colomns_data) forth_url_Json.append(colomns_data) data.append(colomns_data) for tr_data in soup.find_all('tr'): for span_data in tr_data.find_all('span', class_='clabel'): span_data = span_data.get_text().strip().replace('\x1b', '') # 抽取表格内的数据 data.append(span_data) if len(data) < 13: data_len = 13 - len(data) for num in range(data_len): data.append('') elif len(data) > 13: # 删除非当前表格内的数据 data_len = len(data) - 13 for num in range(data_len): data.pop(-1) # 从list尾部删除 Datalist.append(data) if len(data) >= 9: span_str = str(data[10]+' - '+data[11]).replace('\r', '').replace('\n', '').replace('\t', '') # 认证日期时间段 else: span_str = '' first_url_Json.append(span_str) second_url_Json.append(span_str) third_url_Json.append(span_str) forth_url_Json.append(span_str) if len(first_url_Json[0]) > 100: First_url_Json.append(first_url_Json) if len(second_url_Json[0]) > 100: Second_url_Json.append(second_url_Json) if len(third_url_Json[0]) > 100: Third_url_Json.append(third_url_Json) if len(forth_url_Json[0]) > 100: Forth_url_Json.append(forth_url_Json) First_Data = [] def get_first_data(url): text = get_html(url[0]) soup = BeautifulSoup(text, "html.parser") # 解析text中的HTML html = soup.text flag_str = is_json(html) if flag_str is True: json_data = json.loads(html) else: json_data = {"data": []} infos = json_data['data'] for info in infos: try: if len(url) == 3: zuzhi_name = str(url[1]).strip() date_str = str(url[2]).strip() else: zuzhi_name = str(url[2]).strip() date_str = str(url[3]).strip() data_list = [] data_list.append(zuzhi_name) data_list.append(date_str) # 地址代码 try: keyNum = chr(info['keyNum'] + 64) except: keyNum = "" if keyNum is not None: data_list.append(keyNum) else: data_list.append('') # 地址 try: addCn = info['addCn'].strip().replace('\r', '').replace('\n', '').replace('\t', '').replace('\x1b', '') except: addCn = '' if addCn is not None: data_list.append(addCn) else: data_list.append('') # 邮编 try: postCode = info['postCode'].strip().replace('\x1b', '') except: postCode = "" if postCode is not None: data_list.append(postCode) else: data_list.append('') # 设施特点labFeatureJson try: labFeatureJson = str(info['labFeatureJson'].replace('\x1b', '')) except: labFeatureJson = "" labFeatureJson = json.loads(labFeatureJson) feature_str = "" for feature_json in labFeatureJson: feature_str = feature_str + feature_json['feature'] + ',' feature_str = feature_str[:-1] data_list.append(feature_str) # 主要活动mainactivity try: mainactivity = info['mainactivity'].strip().replace('\x1b', '') except: mainactivity = "" if mainactivity is not None: data_list.append(mainactivity) else: data_list.append('') #说明remark try: remark = info['remark'].strip().replace('\x1b','') except: remark = "" if remark is None: data_list.append('') else: data_list.append(remark) # 是否推荐primaryRecommend try: primaryRecommend = info['primaryRecommend'].replace('\x1b', '') except: primaryRecommend = "" if primaryRecommend == '1': data_list.append('是') else: data_list.append('') # 状态bstatus try: isModify = info['isModify'].replace('\x1b', '') except: isModify = "" if isModify == '1': data_list.append("新增") else: data_list.append("有效") First_Data.append(data_list) except: sss = '本次爬取信息失败' print(sss) pass Second_Data = [] def get_second_data(url): text = get_html(url[0]) soup = BeautifulSoup(text, "html.parser") # 解析text中的HTML html = soup.text flag_str = is_json(html) if flag_str is True: json_data = json.loads(html) else: json_data = {"data": []} infos = json_data['data'] for info in infos: try: if len(url) == 3: zuzhi_name = str(url[1]).strip() date_str = str(url[2]).strip() else: zuzhi_name = str(url[2]).strip() date_str = str(url[3]).strip() data_list = [] data_list.append(zuzhi_name) data_list.append(date_str) # 序号 try: num = info['num'] except: num = "" if num is not None: data_list.append(num) else: data_list.append('') # 姓名 try: nameCh = info['nameCh'].strip().replace('\x1b', '') except: nameCh = '' if nameCh is not None: data_list.append(nameCh) else: data_list.append('') # 授权签字领域 try: authorizedFieldCh = info['authorizedFieldCh'].strip().replace('\x1b', '') except: authorizedFieldCh = "" if authorizedFieldCh != None: data_list.append(authorizedFieldCh) else: data_list.append('') # 说明 try: note = info['note'].strip().replace('\r', '').replace('\n', '').replace('\t', '').replace('\x1b', '') except: note = '' if note is None: data_list.append('') data_list.append(note) #是否推荐recommend try: recommend = info['recommend'].replace('\x1b', '') except: recommend = "" if recommend == '1': data_list.append('是') else: data_list.append('') # 状态bstatus try: isModify = info['isModify'].replace('\x1b', '') except: isModify = "" if isModify == '1': data_list.append("新增") else: data_list.append("有效") Second_Data.append(data_list) except: sss = '本次爬取信息失败' print(sss) pass Third_Data = [] def get_third_data(url): text = get_html(url[0]) soup = BeautifulSoup(text, "html.parser") # 解析text中的HTML html = soup.text flag_str = is_json(html) if flag_str is True: json_data = json.loads(html) else: json_data = {"data": []} infos = json_data['data'] for info in infos: try: if len(url) == 3: zuzhi_name = str(url[1]).strip() date_str = str(url[2]).strip() else: zuzhi_name = str(url[2]).strip() date_str = str(url[3]).strip() data_list = [] data_list.append(zuzhi_name) data_list.append(date_str) # 分组名称 try: typeName = info['typeName'] except: typeName = "" if typeName is None: typeName = '未分组' typeName.strip() data_list.append(typeName) # 检验对象序号 try: num = info['num'] except: num = "" if num is not None: data_list.append(str(num)) else: data_list.append('') #检验对象 try: objCh = info['objCh'].strip().replace('\r', '').replace('\n', '').replace('\t', '').replace('\x1b', '') except: objCh = '' if objCh is not None: data_list.append(objCh) else: data_list.append('') # 检验项目名称序号 try: paramNum = info['paramNum'] except: paramNum = " " if paramNum is not None: data_list.append(str(paramNum)) else: data_list.append('') # 检验项目名称 try: paramCh = info['paramCh'].strip().replace('\r', '').replace('\n', '').replace('\t', '').replace('\x1b', '') except: paramCh = "" if paramCh is not None: data_list.append(paramCh) else: data_list.append('') # 依据的检测标准 try: stdAllDesc = info['stdAllDesc'].strip().replace('\x1b', '') except: stdAllDesc = "" if stdAllDesc is not None: data_list.append(stdAllDesc) else: data_list.append('') #说明 try: limitCh = info['limitCh'].strip().replace('\r', '').replace('\n', '').replace('\t', '').replace('\x1b', '') except: limitCh = '' if limitCh is None: data_list.append('') data_list.append(limitCh) # 状态stdStatus try: stdStatus = info['stdStatus'].strip().replace('\x1b', '') except: stdStatus = '' if stdStatus == '0': stdStatus = "有效" else: stdStatus = "新增" data_list.append(stdStatus) Third_Data.append(data_list) except: sss = '本次爬取信息失败' print(sss) pass Forth_Data = [] def get_forth_data(url): text = get_html(url[0]) soup = BeautifulSoup(text, "html.parser") # 解析text中的HTML html = soup.text flag_str = is_json(html) if flag_str is True: json_data = json.loads(html) else: json_data = {"data": []} infos = json_data['data'] for info in infos: try: if len(url) == 3: zuzhi_name = str(url[1]).strip() date_str = str(url[2]).strip() else: zuzhi_name = str(url[2]).strip() date_str = str(url[3]).strip() data_list = [] data_list.append(zuzhi_name) data_list.append(date_str) # 分组名称 try: typeName = info['typeName'] except: typeName = "" if typeName is None: typeName = '未分组' typeName.strip() data_list.append(typeName) # 序号objNum try: objNum = info['objNum'] except: objNum = "" if objNum is not None: data_list.append(str(objNum)) else: data_list.append('') # 测量仪器名称objCh try: objCh = info['objCh'].strip().replace('\r', '').replace('\n', '').replace('\t', '').replace('\x1b', '') except: objCh = '' if objCh is not None: data_list.append(objCh) else: data_list.append('') # 被测量项目名称paramCh try: paramCh = info['paramCh'].strip().replace('\x1b','') except: paramCh = "" if paramCh is not None: data_list.append(paramCh) else: data_list.append('') # 校准范围standardCodeStr try: standardCodeStr = info['standardCodeStr'].strip().replace('\x1b', '') except: standardCodeStr = "" if standardCodeStr is not None: data_list.append(standardCodeStr) else: data_list.append('') # 测量范围testCh try: testCh = info['testCh'].strip().replace('\x1b', '') except: testCh = '' if testCh is not None: data_list.append(testCh) else: data_list.append('') # 扩展不确度kvalueTag kvalueCh try: kvalueTag = info['kvalueTag'].strip().replace('\x1b', '') kvalueCh = info['kvalueCh'].strip().replace('\x1b', '') except: kvalueTag = '' kvalueCh = '' if kvalueTag is not None or kvalueCh is not None: data_list.append(kvalueTag + "=" + kvalueCh) else: data_list.append('') # 说明limitCh try: limitCh = info['limitCh'].strip().replace('\r', '').replace('\n', '').replace('\t', '').replace('\x1b', '') except: limitCh = '' if limitCh is None: data_list.append('') data_list.append(limitCh) # 状态status try: status = info['status'].strip().replace('\x1b','') except: status = '' if status == '0': status = "有效" else: status = "新增" data_list.append(status) Forth_Data.append(data_list) except: sss = '本次爬取信息失败' print(sss) pass if __name__ == '__main__': df = pd.read_excel('E:\\Pycharm_xjf\\JiGou_PaChong\\Biaozhun_Data\\机构地址.xlsx', sheet_name='Sheet1') data = df['机构地址'] i = 1 for key in data: connent_url(str(key)) i = i + 1 driver.close() driver.quit() df_Sheet1 =
pd.DataFrame(URL_list, columns=['url'])
pandas.DataFrame
#!/usr/bin/env python # -*- coding: utf-8 -*- import mock import pytest import collections import json import pandas as pd from pandas.util.testing import assert_frame_equal from nbformat.v4 import new_notebook, new_code_cell, new_markdown_cell, new_output from . import get_notebook_path, get_notebook_dir from .. import read_notebook, utils from ..models import Notebook from ..exceptions import ScrapbookException try: FileNotFoundError except NameError: FileNotFoundError = IOError @pytest.fixture(scope='session', autouse=True) def kernel_mock(): """Mocks the kernel to capture warnings during testing""" with mock.patch.object(utils, 'is_kernel') as _fixture: yield _fixture class AnyDict(object): def __eq__(self, other): return isinstance(other, dict) @pytest.fixture def notebook_result(): path = get_notebook_path("collection/result1.ipynb") return read_notebook(path) @pytest.fixture def notebook_backwards_result(): path = get_notebook_path("record.ipynb") return read_notebook(path) def test_bad_path(): with pytest.raises(FileNotFoundError): Notebook("not/a/valid/path.ipynb") def test_bad_ext(): with pytest.raises(Warning): Notebook("not/a/valid/extension.py") @mock.patch("papermill.iorw.papermill_io.read") def test_good_ext_for_url(mock_read): sample_output = { "cells": [{ "cell_type": "code", "execution_count": 1, "metadata": {}, "outputs": [], "source": [] }] } mock_read.return_value = json.dumps(sample_output) params = "?sig=some-unique-secret-token" url = "abs://mystorage.blob.core.windows.net/my-actual-notebook.ipynb" + params Notebook(url) mock_read.assert_called_once() def test_bad_ext_for_url(): with pytest.raises(Warning): params = "?sig=some-unique-secret-token" url = "abs://mystorage.blob.core.windows.net/my-actual-notebook.txt" + params Notebook(url) def test_filename(notebook_result): assert notebook_result.filename == "result1.ipynb" def test_directory(notebook_result): assert notebook_result.directory == get_notebook_dir("collection/result1.ipynb") def test_parameters(notebook_result): assert notebook_result.parameters == dict(foo=1, bar="hello") def test_data_scraps(notebook_result): assert notebook_result.scraps.data_dict == { "dict": {u"a": 1, u"b": 2}, "list": [1, 2, 3], "number": 1, "one": 1, } def test_display_scraps(notebook_result): assert notebook_result.scraps.display_dict == { "output": { "data": {"text/plain": "'Hello World!'"}, "metadata": { "scrapbook": { "name": "output", "data": False, "display": True, } }, "output_type": "display_data", }, "one_only": { "data": {"text/plain": "'Just here!'"}, "metadata": { "scrapbook": {"name": "one_only", "data": False, "display": True} }, "output_type": "display_data", }, } def test_scraps_collection_dataframe(notebook_result): expected_df = pd.DataFrame( [ ("one", 1, "json", None), ("number", 1, "json", None), ("list", [1, 2, 3], "json", None), ("dict", {u"a": 1, u"b": 2}, "json", None), ("output", None, "display", AnyDict()), ("one_only", None, "display", AnyDict()), ], columns=["name", "data", "encoder", "display"], )
assert_frame_equal(notebook_result.scraps.dataframe, expected_df, check_exact=True)
pandas.util.testing.assert_frame_equal
from sklearn.model_selection import ShuffleSplit, learning_curve import numpy as np import pandas as pd import seaborn as sns def plot_learning_curves( model, X, y, n_repeats=1, train_sizes=np.linspace(0.1, 1.0, 5), cv=None, scoring=None, title=None, **kwargs ): if cv is None and n_repeats > 1: cv = ShuffleSplit(n_splits=n_repeats) train_sizes, train_scores, test_scores = learning_curve( model, X, y, train_sizes=train_sizes, cv=cv, scoring=scoring ) lc_df =
pd.DataFrame(columns=['size', 'score', 'traintest'])
pandas.DataFrame
import duckdb import pandas as pd import numpy import pytest def check_category_equal(category): df_in = pd.DataFrame({ 'x': pd.Categorical(category, ordered=True), }) df_out = duckdb.query_df(df_in, "data", "SELECT * FROM data").df() assert df_in.equals(df_out) def check_create_table(category): conn = duckdb.connect() conn.execute ("PRAGMA enable_verification") df_in = pd.DataFrame({ 'x': pd.Categorical(category, ordered=True), 'y': pd.Categorical(category, ordered=True) }) df_out = duckdb.query_df(df_in, "data", "SELECT * FROM data").df() assert df_in.equals(df_out) conn.execute("CREATE TABLE t1 AS SELECT * FROM df_in") conn.execute("CREATE TABLE t2 AS SELECT * FROM df_in") # Do a insert to trigger string -> cat conn.execute("INSERT INTO t1 VALUES ('2','2')") res = conn.execute("SELECT x FROM t1 where x = '1'").fetchall() assert res == [('1',)] res = conn.execute("SELECT t1.x FROM t1 inner join t2 on (t1.x = t2.x)").fetchall() assert res == conn.execute("SELECT x FROM t1").fetchall() # Can't compare different ENUMs with pytest.raises(Exception): conn.execute("SELECT * FROM t1 inner join t2 on (t1.x = t2.y)").fetchall() assert res == conn.execute("SELECT x FROM t1").fetchall() # Triggering the cast with ENUM as a src conn.execute("ALTER TABLE t1 ALTER x SET DATA TYPE VARCHAR") class TestCategory(object): def test_category_simple(self, duckdb_cursor): df_in = pd.DataFrame({ 'float': [1.0, 2.0, 1.0], 'int': pd.Series([1, 2, 1], dtype="category") }) df_out = duckdb.query_df(df_in, "data", "SELECT * FROM data").df() print (duckdb.query_df(df_in, "data", "SELECT * FROM data").fetchall()) print (df_out['int']) assert numpy.all(df_out['float'] == numpy.array([1.0, 2.0, 1.0])) assert numpy.all(df_out['int'] == numpy.array([1, 2, 1])) def test_category_nulls(self, duckdb_cursor): df_in = pd.DataFrame({ 'int': pd.Series([1, 2, None], dtype="category") }) df_out = duckdb.query_df(df_in, "data", "SELECT * FROM data").df() print (duckdb.query_df(df_in, "data", "SELECT * FROM data").fetchall()) assert df_out['int'][0] == 1 assert df_out['int'][1] == 2 assert numpy.isnan(df_out['int'][2]) def test_category_string(self, duckdb_cursor): check_category_equal(['foo','bla','zoo', 'foo', 'foo', 'bla']) def test_category_string_null(self, duckdb_cursor): check_category_equal(['foo','bla',None,'zoo', 'foo', 'foo',None, 'bla']) def test_categorical_fetchall(self, duckdb_cursor): df_in = pd.DataFrame({ 'x': pd.Categorical(['foo','bla',None,'zoo', 'foo', 'foo',None, 'bla'], ordered=True), }) assert duckdb.query_df(df_in, "data", "SELECT * FROM data").fetchall() == [('foo',), ('bla',), (None,), ('zoo',), ('foo',), ('foo',), (None,), ('bla',)] def test_category_string_uint8(self, duckdb_cursor): category = [] for i in range (10): category.append(str(i)) check_create_table(category) def test_category_fetch_df_chunk(self, duckdb_cursor): con = duckdb.connect() categories = ['foo','bla',None,'zoo', 'foo', 'foo',None, 'bla'] result = categories*128 categories = result * 2 df_result = pd.DataFrame({ 'x': pd.Categorical(result, ordered=True), }) df_in = pd.DataFrame({ 'x': pd.Categorical(categories, ordered=True), }) con.register("data", df_in) query = con.execute("SELECT * FROM data") cur_chunk = query.fetch_df_chunk() assert(cur_chunk.equals(df_result)) cur_chunk = query.fetch_df_chunk() assert(cur_chunk.equals(df_result)) cur_chunk = query.fetch_df_chunk() assert(cur_chunk.empty) def test_category_mix(self, duckdb_cursor): df_in = pd.DataFrame({ 'float': [1.0, 2.0, 1.0, 2.0, 1.0, 2.0, 1.0, 0.0], 'x':
pd.Categorical(['foo','bla',None,'zoo', 'foo', 'foo',None, 'bla'], ordered=True)
pandas.Categorical
# Copyright 2018 <NAME> <EMAIL> # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # http://www.apache.org/licenses/LICENSE-2.0 # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import pandas as pd import numpy as np import os import warnings import datetime from .dataset import Dataset from .dataframe_tools import * from .exceptions import FailedReindexWarning, PublicationEmbargoWarning, ReindexMapError, InvalidParameterError class UcecConf(Dataset): def __init__(self, version="latest", no_internet=False): """Load all of the dataframes as values in the self._data dict variable, with names as keys, and format them properly. Parameters: version (str, optional): The version number to load, or the string "latest" to just load the latest building. Default is "latest". no_internet (bool, optional): Whether to skip the index update step because it requires an internet connection. This will be skipped automatically if there is no internet at all, but you may want to manually skip it if you have a spotty internet connection. Default is False. """ # Set some needed variables, and pass them to the parent Dataset class __init__ function # This keeps a record of all versions that the code is equipped to handle. That way, if there's a new data release but they didn't update their package, it won't try to parse the new data version it isn't equipped to handle. valid_versions = ["1.0", "1.1", "1.2", "2.0", "2.0.1"] data_files = { "1.0": [ "UCEC_confirmatory_acetyl_gene_ratio_median_polishing_log2_tumor_normal_v1.0.cct.gz", "UCEC_confirmatory_acetyl_site_ratio_median_polishing_log22_tumor_normal_v1.0.cct.gz", #"UCEC_confirmatory_Direct_SRM_tumor_v1.0.cct.gz", #SRM not to be included in 1.0 #"UCEC_confirmatory_IMAC_SRM_tumor_v1.0.cct.gz", "UCEC_confirmatory_meta_table_v1.0.xlsx", "UCEC_confirmatory_methylation_gene_level_beta_value_tumor_v1.0.cct.gz", "UCEC_confirmatory_miRNAseq_miRNA_TPM_log2(x+1)_tumor_normal_v1.0.cct.gz", #"UCEC_confirmatory_nglycoform-site_ratio_median_polishing_log2_tumor_normal_v1.0.cct.gz", "UCEC_confirmatory_phospho_gene_ratio_median_polishing_log22_tumor_normal_v1.0.cct.gz", "UCEC_confirmatory_phospho_site_ratio_median_polishing_log22_tumor_normal_v1.0.cct.gz", "UCEC_confirmatory_proteomics_ratio_median_polishing_log22_tumor_normal_v1.0.cct.gz", "UCEC_confirmatory_RNAseq_circRNA_RSEM_UQ_log2(x+1)_tumor_normal_v1.0.cct.gz", "UCEC_confirmatory_RNAseq_gene_fusion_tumor_v1.0.txt.gz", "UCEC_confirmatory_RNAseq_gene_RSEM_removed_circRNA_UQ_log2(x+1)_tumor_normal_v1.0.cct.gz", #"UCEC_confirmatory_RNAseq_isoform_FPKM_removed_circRNA_log2(x+1)_tumor_normal_v1.0.cct.gz", "UCEC_confirmatory_WES_cnv_gistic_thresholded_tumor_v1.0.cct.gz", "UCEC_confirmatory_WES_cnv_log2_ratio_tumor_v1.0.cct.gz", "UCEC_confirmatory_WES_somatic_mutation_gene_level_V1.0.cbt.gz", "UCEC_confirmatory_WES_somatic_mutation_v1.0.maf.gz", #"UCEC_confirmatory_WGS_SV_tumor_v1.0.txt.gz" #structural_variation - not to be included in 1.0 ], "1.1": [ "UCEC_confirmatory_acetyl_gene_ratio_median_polishing_log2_tumor_normal_v1.1.cct.gz", "UCEC_confirmatory_acetyl_site_ratio_median_polishing_log2_tumor_normal_v1.1.cct.gz", "UCEC_confirmatory_meta_table_v1.1.xlsx", "UCEC_confirmatory_methylation_gene_level_beta_value_tumor_v1.1.cct.gz", "UCEC_confirmatory_miRNAseq_miRNA_TPM_log2(x+1)_tumor_normal_v1.1.cct.gz", "UCEC_confirmatory_phospho_gene_ratio_median_polishing_log2_tumor_normal_v1.1.cct.gz", "UCEC_confirmatory_phospho_site_ratio_median_polishing_log2_tumor_normal_v1.1.cct.gz", "UCEC_confirmatory_proteomics_ratio_median_polishing_log2_tumor_normal_v1.1.cct.gz", "UCEC_confirmatory_RNAseq_circRNA_RSEM_UQ_log2(x+1)_tumor_normal_v1.1.cct.gz", "UCEC_confirmatory_RNAseq_gene_fusion_tumor_v1.1.txt.gz", "UCEC_confirmatory_RNAseq_gene_RSEM_removed_circRNA_UQ_log2(x+1)_tumor_normal_v1.1.cct.gz", "UCEC_confirmatory_SRM_Direct_tumor_v1.1.cct.gz", "UCEC_confirmatory_SRM_IMAC_tumor_v1.1.cct.gz", "UCEC_confirmatory_SRM_PRISM_tumor_v1.1.cct.gz", "UCEC_confirmatory_WES_cnv_gistic_thresholded_tumor_v1.1.cct.gz", "UCEC_confirmatory_WES_cnv_log2_ratio_tumor_v1.1.cct.gz", "UCEC_confirmatory_WES_somatic_mutation_gene_level_V1.1.cbt.gz", "UCEC_confirmatory_WES_somatic_mutation_v1.1.maf.gz", ], "1.2": [ "UCEC_confirmatory_meta_table_v1.2.xlsx", "UCEC_confirmatory_SRM_Direct_tumor_v1.2.cct.gz", "UCEC_confirmatory_SRM_IMAC_tumor_v1.2.cct.gz", "UCEC_confirmatory_SRM_PRISM_tumor_v1.2.cct.gz", "UCEC_confirmatory_RNAseq_circRNA_RSEM_UQ_log2(x+1)_tumor_normal_v1.2.cct.gz", "UCEC_confirmatory_RNAseq_gene_RSEM_removed_circRNA_UQ_log2(x+1)_tumor_normal_v1.2.cct.gz", "UCEC_confirmatory_RNAseq_gene_fusion_tumor_v1.2.txt.gz", # "UCEC_confirmatory_RNAseq_isoform_FPKM_removed_circRNA_log2(x+1)_tumor_normal_v1.2.cct.gz", "UCEC_confirmatory_WGS_cnv_gistic_thresholded_tumor_v1.2.cct.gz", "UCEC_confirmatory_WGS_cnv_log2_ratio_tumor_v1.2.cct.gz", "UCEC_confirmatory_WES_somatic_mutation_gene_level_V1.2.cbt.gz", "UCEC_confirmatory_WES_somatic_mutation_v1.2.maf.gz", # "UCEC_confirmatory_WGS_SV_tumor_v1.2.txt.gz", "UCEC_confirmatory_acetyl_gene_ratio_median_polishing_log2_tumor_normal_v1.2.cct.gz", "UCEC_confirmatory_acetyl_site_ratio_median_polishing_log2_tumor_normal_v1.2.cct.gz", "UCEC_confirmatory_methylation_gene_level_beta_value_tumor_v1.2.cct.gz", "UCEC_confirmatory_miRNAseq_miRNA_TPM_log2(x+1)_tumor_normal_v1.2.cct.gz", # "UCEC_confirmatory_nglycoform-site_ratio_median_polishing_log2_tumor_normal_v1.2.cct.gz", "UCEC_confirmatory_phospho_gene_ratio_median_polishing_log2_tumor_normal_v1.2.cct.gz", "UCEC_confirmatory_phospho_site_ratio_median_polishing_log2_tumor_normal_v1.2.cct.gz", "UCEC_confirmatory_proteomics_ratio_median_polishing_log2_tumor_normal_v1.2.cct.gz", ], "2.0": [ "UCEC_confirmatory_acetyl_gene_ratio_median_polishing_log2_tumor_normal_v2.0.cct.gz", "UCEC_confirmatory_acetyl_site_ratio_median_polishing_log2_tumor_normal_v2.0.cct.gz", "UCEC_confirmatory_meta_table_v2.0.xlsx", "UCEC_confirmatory_methylation_gene_level_beta_value_tumor_v2.0.cct.gz", "UCEC_confirmatory_miRNAseq_miRNA_TPM_log2(x+1)_tumor_normal_v2.0.cct.gz", "UCEC_confirmatory_phospho_gene_ratio_median_polishing_log2_tumor_normal_v2.0.cct.gz", "UCEC_confirmatory_phospho_site_ratio_median_polishing_log2_tumor_normal_v2.0.cct.gz", "UCEC_confirmatory_proteomics_ratio_median_polishing_log2_tumor_normal_v2.0.cct.gz", "UCEC_confirmatory_RNAseq_circRNA_RSEM_UQ_log2(x+1)_tumor_normal_v2.0.cct.gz", "UCEC_confirmatory_RNAseq_gene_fusion_tumor_v2.0.txt.gz", "UCEC_confirmatory_RNAseq_gene_RSEM_removed_circRNA_UQ_log2(x+1)_tumor_normal_v2.0.cct.gz", "UCEC_confirmatory_SRM_Direct_tumor_v2.0.cct.gz", "UCEC_confirmatory_SRM_IMAC_tumor_v2.0.cct.gz", "UCEC_confirmatory_SRM_PRISM_tumor_v2.0.cct.gz", # "UCEC_confirmatory_WES_somatic_mutation_category_level_V1.2.txt.gz", "UCEC_confirmatory_WES_somatic_mutation_gene_level_V1.2.cbt.gz", "UCEC_confirmatory_WES_somatic_mutation_v2.0.maf.gz", "UCEC_confirmatory_WGS_cnv_gistic_thresholded_tumor_v2.0.cct.gz", "UCEC_confirmatory_WGS_cnv_log2_ratio_tumor_v2.0.cct.gz", # "UCEC_confirmatory_WGS_SV_tumor_v2.0.txt.gz", ], "2.0.1": [ "UCEC_confirmatory_acetyl_gene_ratio_median_polishing_log2_tumor_normal_v2.0.cct.gz", "UCEC_confirmatory_acetyl_site_ratio_median_polishing_log2_tumor_normal_v2.0.cct.gz", "UCEC_confirmatory_meta_table_v2.0.1.xlsx", "UCEC_confirmatory_methylation_gene_level_beta_value_tumor_v2.0.cct.gz", "UCEC_confirmatory_miRNAseq_miRNA_TPM_log2(x+1)_tumor_normal_v2.0.cct.gz", "UCEC_confirmatory_phospho_gene_ratio_median_polishing_log2_tumor_normal_v2.0.cct.gz", "UCEC_confirmatory_phospho_site_ratio_median_polishing_log2_tumor_normal_v2.0.cct.gz", "UCEC_confirmatory_proteomics_ratio_median_polishing_log2_tumor_normal_v2.0.cct.gz", "UCEC_confirmatory_RNAseq_circRNA_RSEM_UQ_log2(x+1)_tumor_normal_v2.0.cct.gz", "UCEC_confirmatory_RNAseq_gene_fusion_tumor_v2.0.txt.gz", "UCEC_confirmatory_RNAseq_gene_RSEM_removed_circRNA_UQ_log2(x+1)_tumor_normal_v2.0.cct.gz", "UCEC_confirmatory_SRM_Direct_tumor_v2.0.cct.gz", "UCEC_confirmatory_SRM_IMAC_tumor_v2.0.cct.gz", "UCEC_confirmatory_SRM_PRISM_tumor_v2.0.cct.gz", "UCEC_confirmatory_WES_somatic_mutation_gene_level_V1.2.cbt.gz", "UCEC_confirmatory_WES_somatic_mutation_v2.0.maf.gz", "UCEC_confirmatory_WGS_cnv_gistic_thresholded_tumor_v2.0.cct.gz", "UCEC_confirmatory_WGS_cnv_log2_ratio_tumor_v2.0.cct.gz", ], } # Call the parent class __init__ function super().__init__(cancer_type="ucecconf", version=version, valid_versions=valid_versions, data_files=data_files, no_internet=no_internet) # Load the data into dataframes in the self._data dict loading_msg = f"Loading {self.get_cancer_type()} v{self.version()}" for file_path in self._data_files_paths: # Loops through files variable # Print a loading message. We add a dot every time, so the user knows it's not frozen. loading_msg = loading_msg + "." print(loading_msg, end='\r') path_elements = file_path.split(os.sep) # Get a list of the levels of the path file_name = path_elements[-1] # The last element will be the name of the file. We'll use this to identify files for parsing in the if/elif statements below if file_name in ["UCEC_confirmatory_acetyl_gene_ratio_median_polishing_log2_tumor_normal_v1.0.cct.gz", "UCEC_confirmatory_acetyl_gene_ratio_median_polishing_log2_tumor_normal_v1.1.cct.gz", "UCEC_confirmatory_acetyl_gene_ratio_median_polishing_log2_tumor_normal_v1.2.cct.gz", "UCEC_confirmatory_acetyl_gene_ratio_median_polishing_log2_tumor_normal_v2.0.cct.gz",]: df = pd.read_csv(file_path, sep='\t', index_col=0) df = df.transpose() df = df.sort_index() df.index.name = "Patient_ID" df.columns.name = "Name" self._data["acetylproteomics_gene"] = df elif file_name in ["UCEC_confirmatory_acetyl_site_ratio_median_polishing_log22_tumor_normal_v1.0.cct.gz", "UCEC_confirmatory_acetyl_site_ratio_median_polishing_log2_tumor_normal_v1.1.cct.gz", "UCEC_confirmatory_acetyl_site_ratio_median_polishing_log2_tumor_normal_v1.2.cct.gz", "UCEC_confirmatory_acetyl_site_ratio_median_polishing_log2_tumor_normal_v2.0.cct.gz",]: df = pd.read_csv(file_path, sep='\t', index_col=0) df = df.reset_index() df[['Name','Database_ID','Site']] = df.idx.str.split("@", expand=True) df['Site'] = df['Site'].str.rsplit('-',1,expand=True)[1] df = df.set_index(["Name", "Site", "Database_ID"]) df = df.drop(columns=["idx"]) df = df.transpose() df = df.sort_index() df.index.name = "Patient_ID" self._data["acetylproteomics"] = df elif file_name in ["UCEC_confirmatory_meta_table_v1.0.xlsx", "UCEC_confirmatory_meta_table_v1.1.xlsx", "UCEC_confirmatory_meta_table_v1.2.xlsx", "UCEC_confirmatory_meta_table_v2.0.xlsx", "UCEC_confirmatory_meta_table_v2.0.1.xlsx"]: df = pd.read_excel(file_path) df.insert(6, "Proteomics_Tumor_Normal", df["Group"]) df.loc[df['Group'] == 'Enriched_Normal', 'Idx'] = df['Idx'] + '.N' df.loc[df['Group'] == 'Adjacent_normal', 'Idx'] = df['Idx'].str[:-2] + '.N' df = df.set_index("Idx") df.loc[df['Group'] != 'Tumor', 'Group'] = 'Normal' df = df.rename({'Group': 'Sample_Tumor_Normal'}, axis=1) df.index.name = "Patient_ID" df.columns.name = "Name" self._data["clinical"] = df elif file_name in ["UCEC_confirmatory_methylation_gene_level_beta_value_tumor_v1.0.cct.gz", "UCEC_confirmatory_methylation_gene_level_beta_value_tumor_v1.1.cct.gz", "UCEC_confirmatory_methylation_gene_level_beta_value_tumor_v1.2.cct.gz", "UCEC_confirmatory_methylation_gene_level_beta_value_tumor_v2.0.cct.gz",]: df = pd.read_csv(file_path, sep='\t', index_col=0, na_values=' NA') df = df.transpose() df.index.name = "Patient_ID" df.columns.name = "Name" self._data["methylation"] = df elif file_name in ["UCEC_confirmatory_miRNAseq_miRNA_TPM_log2(x+1)_tumor_normal_v1.0.cct.gz", "UCEC_confirmatory_miRNAseq_miRNA_TPM_log2(x+1)_tumor_normal_v1.1.cct.gz", "UCEC_confirmatory_miRNAseq_miRNA_TPM_log2(x+1)_tumor_normal_v1.2.cct.gz", "UCEC_confirmatory_miRNAseq_miRNA_TPM_log2(x+1)_tumor_normal_v2.0.cct.gz",]: df = pd.read_csv(file_path, sep='\t', index_col=0) df = df.transpose() df = df.sort_index() df.index.name = "Patient_ID" df.columns.name = "Name" self._data["miRNA"] = df elif file_name in ["UCEC_confirmatory_phospho_gene_ratio_median_polishing_log22_tumor_normal_v1.0.cct.gz", "UCEC_confirmatory_phospho_gene_ratio_median_polishing_log2_tumor_normal_v1.1.cct.gz", "UCEC_confirmatory_phospho_gene_ratio_median_polishing_log2_tumor_normal_v1.2.cct.gz", "UCEC_confirmatory_phospho_gene_ratio_median_polishing_log2_tumor_normal_v2.0.cct.gz",]: df = pd.read_csv(file_path, sep='\t', index_col=0) df = df.transpose() df = df.sort_index() df.index.name = "Patient_ID" df.columns.name = "Name" self._data["phosphoproteomics_gene"] = df elif file_name in ["UCEC_confirmatory_phospho_site_ratio_median_polishing_log22_tumor_normal_v1.0.cct.gz", "UCEC_confirmatory_phospho_site_ratio_median_polishing_log2_tumor_normal_v1.1.cct.gz", "UCEC_confirmatory_phospho_site_ratio_median_polishing_log2_tumor_normal_v1.2.cct.gz", "UCEC_confirmatory_phospho_site_ratio_median_polishing_log2_tumor_normal_v2.0.cct.gz",]: df = pd.read_csv(file_path, sep='\t', index_col=0) df = df.reset_index() df[['Name','Database_ID','Site']] = df.idx.str.split("@", expand=True) df['Site'] = df['Site'].str.rsplit('-',1,expand=True)[1] df = df.set_index(["Name", "Site", "Database_ID"]) df = df.drop(columns=["idx"]) df = df.transpose() df = df.sort_index() df.index.name = "Patient_ID" self._data["phosphoproteomics"] = df elif file_name in ["UCEC_confirmatory_proteomics_ratio_median_polishing_log22_tumor_normal_v1.0.cct.gz", "UCEC_confirmatory_proteomics_ratio_median_polishing_log2_tumor_normal_v1.1.cct.gz", "UCEC_confirmatory_proteomics_ratio_median_polishing_log2_tumor_normal_v1.2.cct.gz", "UCEC_confirmatory_proteomics_ratio_median_polishing_log2_tumor_normal_v2.0.cct.gz",]: df = pd.read_csv(file_path, sep='\t', index_col=0) df = df.transpose() df = df.sort_index() df.index.name = "Patient_ID" df.columns.name = "Name" self._data["proteomics"] = df elif file_name in ["UCEC_confirmatory_RNAseq_circRNA_RSEM_UQ_log2(x+1)_tumor_normal_v1.0.cct.gz", "UCEC_confirmatory_RNAseq_circRNA_RSEM_UQ_log2(x+1)_tumor_normal_v1.1.cct.gz", "UCEC_confirmatory_RNAseq_circRNA_RSEM_UQ_log2(x+1)_tumor_normal_v1.2.cct.gz", "UCEC_confirmatory_RNAseq_circRNA_RSEM_UQ_log2(x+1)_tumor_normal_v2.0.cct.gz",]: df = pd.read_csv(file_path, sep='\t', index_col=0) df = df.transpose() df.index.name = "Patient_ID" df.columns.name = "Name" self._data["circular_RNA"] = df elif file_name in ["UCEC_confirmatory_RNAseq_gene_fusion_tumor_v1.0.txt.gz", "UCEC_confirmatory_RNAseq_gene_fusion_tumor_v1.1.txt.gz", "UCEC_confirmatory_RNAseq_gene_fusion_tumor_v1.2.txt.gz", "UCEC_confirmatory_RNAseq_gene_fusion_tumor_v2.0.txt.gz",]: df = pd.read_csv(file_path, sep='\t', index_col=0) df = df.reset_index() df = df.set_index("Sample") df.index.name = "Patient_ID" df.columns.name = "Name" self._data["gene_fusion"] = df elif file_name in ["UCEC_confirmatory_RNAseq_gene_RSEM_removed_circRNA_UQ_log2(x+1)_tumor_normal_v1.0.cct.gz", "UCEC_confirmatory_RNAseq_gene_RSEM_removed_circRNA_UQ_log2(x+1)_tumor_normal_v1.1.cct.gz", "UCEC_confirmatory_RNAseq_gene_RSEM_removed_circRNA_UQ_log2(x+1)_tumor_normal_v1.2.cct.gz", "UCEC_confirmatory_RNAseq_gene_RSEM_removed_circRNA_UQ_log2(x+1)_tumor_normal_v2.0.cct.gz",]: df = pd.read_csv(file_path, sep='\t', index_col=0) df = df.transpose() df = df.sort_index() df.index.name = "Patient_ID" df.columns.name = "Name" self._data["transcriptomics"] = df # Targeted proteomics is the direct and PRISM SRM data elif file_name in ["UCEC_confirmatory_SRM_Direct_tumor_v1.1.cct.gz", "UCEC_confirmatory_SRM_Direct_tumor_v1.2.cct.gz", "UCEC_confirmatory_SRM_Direct_tumor_v2.0.cct.gz",]: df_direct = pd.read_csv(file_path, sep='\t') df_direct[['Name','Peptide']] = df_direct['idx'].str.rsplit("-", 1, expand=True) df_direct = df_direct.set_index(["Name", "Peptide"]) df_direct = df_direct.drop(columns=["idx"]) df_direct = df_direct.transpose() df_direct = df_direct.sort_index() df_direct.index.name = "Patient_ID" # Merge if we have both if "targeted_proteomics" in self._data: df_prism = self._data["targeted_proteomics"] df_combined = pd.concat([df_direct, df_prism]) df_combined.index.name = "Patient_ID" df_combined.columns.name = "Name" self._data["targeted_proteomics"] = df_combined else: self._data["targeted_proteomics"] = df_direct elif file_name in ["UCEC_confirmatory_SRM_PRISM_tumor_v1.1.cct.gz", "UCEC_confirmatory_SRM_PRISM_tumor_v1.2.cct.gz", "UCEC_confirmatory_SRM_PRISM_tumor_v2.0.cct.gz",]: df_prism = pd.read_csv(file_path, sep='\t') df_prism[['Name','Peptide']] = df_prism['idx'].str.rsplit("-", 1, expand=True) df_prism = df_prism.set_index(["Name", "Peptide"]) df_prism = df_prism.drop(columns=["idx"]) df_prism = df_prism.transpose() df_prism = df_prism.sort_index() df_prism.index.name = "Patient_ID" # Merge if we have both if "targeted_proteomics" in self._data: df_direct = self._data["targeted_proteomics"] df_combined = pd.concat([df_direct, df_prism]) df_combined.index.name = "Patient_ID" df_combined.columns.name = "Name" self._data["targeted_proteomics"] = df_combined else: self._data["targeted_proteomics"] = df_prism elif file_name in ["UCEC_confirmatory_SRM_IMAC_tumor_v1.1.cct.gz", "UCEC_confirmatory_SRM_IMAC_tumor_v1.2.cct.gz", "UCEC_confirmatory_SRM_IMAC_tumor_v2.0.cct.gz",]: df = pd.read_csv(file_path, sep='\t') df.at[0,'idx'] = "FPSS[+80]PLRIPGGNIY[+80]ISPLK" df['Name'] = "RB1" df = df.rename(columns={"idx":"Peptide"}) df = df.set_index(["Name", "Peptide"]) df = df.transpose() df = df.sort_index() df.columns.name = "Name" df.index.name = "Patient_ID" self._data["targeted_phosphoproteomics"] = df elif file_name in ["UCEC_confirmatory_WES_cnv_gistic_thresholded_tumor_v1.0.cct.gz", "UCEC_confirmatory_WES_cnv_gistic_thresholded_tumor_v1.1.cct.gz", "UCEC_confirmatory_WGS_cnv_gistic_thresholded_tumor_v1.2.cct.gz", "UCEC_confirmatory_WGS_cnv_gistic_thresholded_tumor_v2.0.cct.gz",]: df = pd.read_csv(file_path, sep='\t') df[['Name','Chromosome']] = df.idx.str.split("|", expand=True) df = df.set_index(["Name"]) df = df.drop(columns=["idx", "Chromosome"]) df = df.transpose() df = df.sort_index() df.index.name = "Patient_ID" self._data["CNV_gistic"] = df elif file_name in ["UCEC_confirmatory_WES_cnv_log2_ratio_tumor_v1.0.cct.gz", "UCEC_confirmatory_WES_cnv_log2_ratio_tumor_v1.1.cct.gz", "UCEC_confirmatory_WGS_cnv_log2_ratio_tumor_v1.2.cct.gz", "UCEC_confirmatory_WGS_cnv_log2_ratio_tumor_v2.0.cct.gz",]: df = pd.read_csv(file_path, sep='\t') df[['Name','Chromosome']] = df.idx.str.split("|", expand=True) df = df.set_index(["Name"]) df = df.drop(columns=["idx", "Chromosome"]) df = df.transpose() df = df.sort_index() df.index.name = "Patient_ID" self._data["CNV_log2ratio"] = df elif file_name in ["UCEC_confirmatory_WES_somatic_mutation_gene_level_V1.0.cbt.gz", "UCEC_confirmatory_WES_somatic_mutation_gene_level_V1.1.cbt.gz", "UCEC_confirmatory_WES_somatic_mutation_gene_level_V1.2.cbt.gz"]: df = pd.read_csv(file_path, sep='\t', index_col=0) df = df.transpose() df.index.name = "Patient_ID" df.columns.name = "Name" self._data["somatic_mutation_binary"] = df elif file_name in ["UCEC_confirmatory_WES_somatic_mutation_v1.0.maf.gz", "UCEC_confirmatory_WES_somatic_mutation_v1.1.maf.gz", "UCEC_confirmatory_WES_somatic_mutation_v1.2.maf.gz", "UCEC_confirmatory_WES_somatic_mutation_v2.0.maf.gz",]: df =
pd.read_csv(file_path, sep='\t', dtype={88:object})
pandas.read_csv
# Copyright 2019-2020 The ASReview Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import json import os import pickle import logging from pathlib import Path import numpy as np import pandas as pd from asreview import __version__ as asreview_version from asreview.config import LABEL_NA from asreview.data import ASReviewData from asreview.webapp.utils.paths import get_data_file_path from asreview.webapp.utils.paths import get_labeled_path from asreview.webapp.utils.paths import get_pool_path from asreview.webapp.utils.paths import get_proba_path from asreview.webapp.utils.paths import get_project_path class CacheDataError(Exception): pass def _get_cache_data_path(project_id): fp_data = get_data_file_path(project_id) return get_data_file_path(project_id) \ .with_suffix(fp_data.suffix + ".pickle") def _read_data_from_cache(project_id, version_check=True): fp_data_pickle = _get_cache_data_path(project_id) try: # get the pickle data with open(fp_data_pickle, 'rb') as f_pickle_read: data_obj, data_obj_version = pickle.load(f_pickle_read) # validate data object if not isinstance(data_obj.df, pd.DataFrame): raise ValueError() # drop cache files generated by older versions if (not version_check) or (asreview_version == data_obj_version): return data_obj except FileNotFoundError: # file not available pass except Exception as err: # problem loading pickle file or outdated # remove the pickle file logging.error(f"Error reading cache file: {err}") try: os.remove(fp_data_pickle) except FileNotFoundError: pass raise CacheDataError() def _write_data_to_cache(project_id, data_obj): fp_data_pickle = _get_cache_data_path(project_id) logging.info("Store a copy of the data in a pickle file.") with open(fp_data_pickle, 'wb') as f_pickle: pickle.dump((data_obj, asreview_version), f_pickle) def read_data(project_id, use_cache=True, save_cache=True): """Get ASReviewData object from file. Parameters ---------- project_id: str, iterable The project identifier. use_cache: bool Use the pickle file if available. save_cache: bool Save the file to a pickle file if not available. Returns ------- ASReviewData: The data object for internal use in ASReview. """ # use cache file if use_cache: try: return _read_data_from_cache(project_id) except CacheDataError: pass # load from file fp_data = get_data_file_path(project_id) data_obj = ASReviewData.from_file(fp_data) # save a pickle version if save_cache: _write_data_to_cache(project_id, data_obj) return data_obj def read_pool(project_id): pool_fp = get_pool_path(project_id) try: with open(pool_fp, "r") as f: pool = json.load(f) pool = [int(x) for x in pool] except FileNotFoundError: pool = None return pool def write_pool(project_id, pool): pool_fp = get_pool_path(project_id) with open(pool_fp, "w") as f: json.dump(pool, f) def read_proba_legacy(project_id): """Read a project <0.15 proba values""" # get the old json project file path proba_fp = Path(get_project_path(project_id), "proba.json") with open(proba_fp, "r") as f: # read the JSON file and make a list of the proba's proba = json.load(f) proba = [float(x) for x in proba] # make a dataframe that looks like the new structure as_data = read_data(project_id) proba = pd.DataFrame( { "proba": [float(x) for x in proba] }, index=as_data.record_ids ) proba.index.name = "record_id" return proba def read_proba(project_id): proba_fp = get_proba_path(project_id) try: return
pd.read_csv(proba_fp, index_col="record_id")
pandas.read_csv
from flask import Flask, render_template, request, redirect, url_for, session import pandas as pd import pymysql import os import io #from werkzeug.utils import secure_filename from pulp import * import numpy as np import pymysql import pymysql.cursors from pandas.io import sql #from sqlalchemy import create_engine import pandas as pd import numpy as np #import io import statsmodels.formula.api as smf import statsmodels.api as sm import scipy.optimize as optimize import matplotlib.mlab as mlab import matplotlib.pyplot as plt #from flask import Flask, render_template, request, redirect, url_for, session, g from sklearn.linear_model import LogisticRegression from math import sin, cos, sqrt, atan2, radians from statsmodels.tsa.arima_model import ARIMA #from sqlalchemy import create_engine from collections import defaultdict from sklearn import linear_model import statsmodels.api as sm import scipy.stats as st import pandas as pd import numpy as np from pulp import * import pymysql import math app = Flask(__name__) app.secret_key = os.urandom(24) localaddress="D:\\home\\site\\wwwroot" localpath=localaddress os.chdir(localaddress) @app.route('/') def index(): return redirect(url_for('home')) @app.route('/home') def home(): return render_template('home.html') @app.route('/demandplanning') def demandplanning(): return render_template("Demand_Planning.html") @app.route("/elasticopt",methods = ['GET','POST']) def elasticopt(): if request.method== 'POST': start_date =request.form['from'] end_date=request.form['to'] prdct_name=request.form['typedf'] # connection = pymysql.connect(host='localhost', # user='user', # password='', # db='test', # charset='utf8mb4', # cursorclass=pymysql.cursors.DictCursor) # # x=connection.cursor() # x.execute("select * from `transcdata`") # connection.commit() # datass=pd.DataFrame(x.fetchall()) datass = pd.read_csv("C:\\Users\\1026819\\Downloads\\optimizdata.csv") # datas = datass[(datass['Week']>=start_date) & (datass['Week']<=end_date )] datas=datass df = datas[datas['Product'] == prdct_name] df=datass changeData=pd.concat([df['Product_Price'],df['Product_Qty']],axis=1) changep=[] changed=[] for i in range(0,len(changeData)-1): changep.append(changeData['Product_Price'].iloc[i]-changeData['Product_Price'].iloc[i+1]) changed.append(changeData['Product_Qty'].iloc[1]-changeData['Product_Qty'].iloc[i+1]) cpd=pd.concat([pd.DataFrame(changep),pd.DataFrame(changed)],axis=1) cpd.columns=['Product_Price','Product_Qty'] sortedpricedata=df.sort_values(['Product_Price'], ascending=[True]) spq=pd.concat([sortedpricedata['Product_Price'],sortedpricedata['Product_Qty']],axis=1).reset_index(drop=True) pint=[] dint=[] x = spq['Product_Price'] num_bins = 5 # n, pint, patches = plt.hist(x, num_bins, facecolor='blue', alpha=0.5) y = spq['Product_Qty'] num_bins = 5 # n, dint, patches = plt.hist(y, num_bins, facecolor='blue', alpha=0.5) arr= np.zeros(shape=(len(pint),len(dint))) count=0 for i in range(0, len(pint)): lbp=pint[i] if i==len(pint)-1: ubp=pint[i]+1 else: ubp=pint[i+1] for j in range(0, len(dint)): lbd=dint[j] if j==len(dint)-1: ubd=dint[j]+1 else: ubd=dint[j+1] print(lbd,ubd) for k in range(0, len(spq)): if (spq['Product_Price'].iloc[k]>=lbp\ and spq['Product_Price'].iloc[k]<ubp): if(spq['Product_Qty'].iloc[k]>=lbd\ and spq['Product_Qty'].iloc[k]<ubd): count+=1 arr[i][j]+=1 price_range=np.zeros(shape=(len(pint),2)) for j in range(0,len(pint)): lbp=pint[j] price_range[j][0]=lbp if j==len(pint)-1: ubp=pint[j]+1 price_range[j][1]=ubp else: ubp=pint[j+1] price_range[j][1]=ubp demand_range=np.zeros(shape=(len(dint),2)) for j in range(0,len(dint)): lbd=dint[j] demand_range[j][0]=lbd if j==len(dint)-1: ubd=dint[j]+1 demand_range[j][1]=ubd else: ubd=dint[j+1] demand_range[j][1]=ubd pr=pd.DataFrame(price_range) pr.columns=['Price','Demand'] dr=pd.DataFrame(demand_range) dr.columns=['Price','Demand'] priceranges=pr.Price.astype(str).str.cat(pr.Demand.astype(str), sep='-') demandranges=dr.Price.astype(str).str.cat(dr.Demand.astype(str), sep='-') price=pd.DataFrame(arr) price.columns=demandranges price.index=priceranges pp=price.reset_index() global data data=pd.concat([df['Week'],df['Product_Qty'],df['Product_Price'],df['Comp_Prod_Price'],df['Promo1'],df['Promo2'],df['overallsale']],axis=1) return render_template('dataview.html',cpd=cpd.values,pp=pp.to_html(index=False),data=data.to_html(index=False),graphdata=data.values,ss=1) return render_template('dataview.html') @app.route('/priceelasticity',methods = ['GET','POST']) def priceelasticity(): return render_template('Optimisation_heatmap_revenue.html') @app.route("/elasticity",methods = ['GET','POST']) def elasticity(): if request.method== 'POST': Price=0 Average_Price=0 Promotions=0 Promotionss=0 if request.form.get('Price'): Price=1 if request.form.get('Average_Price'): Average_Price=1 if request.form.get('Promotion_1'): Promotions=1 if request.form.get('Promotion_2'): Promotionss=1 Modeldata=pd.DataFrame() Modeldata['Product_Qty']=data.Product_Qty lst=[] for row in data.index: lst.append(row+1) Modeldata['Week']=np.log(lst) if Price == 1: Modeldata['Product_Price']=data['Product_Price'] if Price == 0: Modeldata['Product_Price']=0 if Average_Price==1: Modeldata['Comp_Prod_Price']=data['Comp_Prod_Price'] if Average_Price==0: Modeldata['Comp_Prod_Price']=0 if Promotions==1: Modeldata['Promo1']=data['Promo1'] if Promotions==0: Modeldata['Promo1']=0 if Promotionss==1: Modeldata['Promo2']=data['Promo2'] if Promotionss==0: Modeldata['Promo2']=0 diffpriceprodvscomp= (Modeldata['Product_Price']-Modeldata['Comp_Prod_Price']) promo1=Modeldata.Promo1 promo2=Modeldata.Promo2 week=Modeldata.Week quantityproduct=Modeldata.Product_Qty df=pd.concat([quantityproduct,diffpriceprodvscomp,promo1,promo2,week],axis=1) df.columns=['quantityproduct','diffpriceprodvscomp','promo1','promo2','week'] Model = smf.ols(formula='df.quantityproduct ~ df.diffpriceprodvscomp + df.promo1 + df.promo2 + df.week', data=df) res = Model.fit() global intercept,diffpriceprodvscomp_param,promo1_param,promo2_param,week_param intercept=res.params[0] diffpriceprodvscomp_param=res.params[1] promo1_param=res.params[2] promo2_param=res.params[3] week_param=res.params[4] Product_Price_min=0 maxvalue_of_price=int(Modeldata['Product_Price'].max()) Product_Price_max=int(Modeldata['Product_Price'].max()) if maxvalue_of_price==0: Product_Price_max=1 maxfunction=[] pricev=[] weeks=[] dd=[] ddl=[] for vatr in range(0,len(Modeldata)): weeks.append(lst[vatr]) for Product_Price in range(Product_Price_min,Product_Price_max+1): function=0 function=(intercept+(Modeldata['Promo1'].iloc[vatr]*promo1_param)+(Modeldata['Promo2'].iloc[vatr]*promo2_param) + (diffpriceprodvscomp_param*(Product_Price-Modeldata['Comp_Prod_Price'].iloc[vatr]))+(Modeldata['Week'].iloc[vatr]*lst[vatr])) maxfunction.append(function) dd.append(Product_Price) ddl.append(vatr) for Product_Price in range(Product_Price_min,Product_Price_max+1): pricev.append(Product_Price) df1=pd.DataFrame(maxfunction) df2=pd.DataFrame(dd) df3=pd.DataFrame(ddl) dfo=pd.concat([df3,df2,df1],axis=1) dfo.columns=['weeks','prices','Demandfunctions'] demand=[] for rows in dfo.values: w=int(rows[0]) p=int(rows[1]) d=int(rows[2]) demand.append([w,p,d]) Co_eff=pd.DataFrame(res.params.values)#intercept standard_error=pd.DataFrame(res.bse.values)#standard error p_values=pd.DataFrame(res.pvalues.values) conf_lower =pd.DataFrame(res.conf_int()[0].values) conf_higher =pd.DataFrame(res.conf_int()[1].values) R_square=res.rsquared atr=['Intercept','DeltaPrice','Promo1','Promo2','Week'] atribute=pd.DataFrame(atr) SummaryTable=pd.concat([atribute,Co_eff,standard_error,p_values,conf_lower,conf_higher],axis=1) SummaryTable.columns=['Atributes','Co_eff','Standard_error','P_values','conf_lower','conf_higher'] reshapedf=df1.values.reshape(len(Modeldata),(-Product_Price_min+(Product_Price_max+1))) dataofmas=pd.DataFrame(reshapedf) maxv=dataofmas.apply( max, axis=1 ) minv=dataofmas.apply(min,axis=1) avgv=dataofmas.sum(axis=1)/(-Product_Price_min+(Product_Price_max+1)) wks=pd.DataFrame(weeks) ddofs=pd.concat([wks,minv,avgv,maxv],axis=1) dataofmas=pd.DataFrame(reshapedf) kk=pd.DataFrame() sums=0 for i in range(0,len(dataofmas.columns)): sums=sums+i vv=i*dataofmas[[i]] kk=pd.concat([kk,vv],axis=1) dfr=pd.DataFrame(kk) mrevenue=dfr.apply( max, axis=1 ) prices=dfr.idxmax(axis=1) wks=pd.DataFrame(weeks) revenuedf=pd.concat([wks,mrevenue,prices],axis=1) return render_template('Optimisation_heatmap_revenue.html',revenuedf=revenuedf.values,ddofs=ddofs.values,SummaryTable=SummaryTable.to_html(index=False),ss=1,weeks=weeks,demand=demand,pricev=pricev,R_square=R_square) @app.route('/inputtomaxm',methods=["GET","POST"]) def inputtomaxm(): return render_template("Optimize.html") @app.route("/maxm",methods=["GET","POST"]) def maxm(): if request.method=="POST": week=request.form['TimePeriod'] price_low=request.form['Price_Lower'] price_max=request.form['Price_Upper'] promofirst=request.form['Promotion_1'] promosecond=request.form['Promotion_2'] # week=24 # price_low=6 # price_max=20 # promofirst=1 # promosecond=0 # # time_period=24 # # global a # a=243.226225 # global b # b=-9.699634 # global d # d=1.671505 # global pr1 # pr1=21.866260 # global pr2 # pr2=-0.511606 # global cm # cm=-14.559594 # global s_0 # s_0= 2000 # promo1=1 # promo2=0 time_period=int(week) global a a=intercept global b b=diffpriceprodvscomp_param global d d=week_param global pr1 pr1=promo1_param global pr2 pr2=promo2_param global s_0 s_0= 2000 promo1=int(promofirst) promo2=int(promosecond) global comp comp=np.random.randint(7,15,time_period) def demand(p, a=a, b=b, d=d, promo1=promo1,promo2_param=promo2,comp=comp, t=np.linspace(1,time_period,time_period)): """ Return demand given an array of prices p for times t (see equation 5 above)""" return a+(b*(p-comp))+(d*t)+(promo1*pr1)+(promo2*pr2) def objective(p_t, a, b, d,promo1,promo2, comp, t=np.linspace(1,time_period,time_period)): return -1.0 * np.sum( p_t * demand(p_t, a, b, d,promo1,promo2, comp, t) ) def constraint_1(p_t, s_0, a, b, d, promo1,promo2, comp, t=np.linspace(1,time_period,time_period)): """ Inventory constraint. s_0 - np.sum(x_t) >= 0. This is an inequality constraint. See more below. """ return s_0 - np.sum(demand(p_t, a, b, d,promo1,promo2, comp, t)) def constraint_2(p_t): #""" Positive demand. Another inequality constraint x_t >= 0 """ return p_t t = np.linspace(1,time_period,time_period) # Starting values : b_min=int(price_low) p_start = b_min * np.ones(len(t)) # bounds on the values : bmax=int(price_max) bounds = tuple((0,bmax) for x in p_start) import scipy.optimize as optimize # Constraints : constraints = ({'type': 'ineq', 'fun': lambda x, s_0=s_0: constraint_1(x,s_0, a, b, d,promo1,promo2, comp, t=t)}, {'type': 'ineq', 'fun': lambda x: constraint_2(x)} ) opt_results = optimize.minimize(objective, p_start, args=(a, b, d,promo1,promo2, comp, t), method='SLSQP', bounds=bounds, constraints=constraints) np.sum(opt_results['x']) opt_price=opt_results['x'] opt_demand=demand(opt_results['x'], a, b, d, promo1,promo2_param, comp, t=t) weeks=[] for row in range(1,len(opt_price)+1): weeks.append(row) d=pd.DataFrame(weeks).astype(int) dd=pd.DataFrame(opt_price) optimumumprice_perweek=pd.concat([d,dd,pd.DataFrame(opt_demand).astype(int)],axis=1) optimumumprice_perweek.columns=['Week','Price','Demand'] dataval=optimumumprice_perweek diff=[] diffs=[] for i in range(0,len(opt_demand)-1): valss=opt_demand[i]-opt_demand[i+1] diff.append(valss) diffs.append(i+1) differenceofdemand_df=pd.concat([pd.DataFrame(diffs),pd.DataFrame(diff)],axis=1) MP=round(optimumumprice_perweek.loc[optimumumprice_perweek['Price'].idxmin()],1) minimumprice=pd.DataFrame(MP).T MaxP=round(optimumumprice_perweek.loc[optimumumprice_perweek['Price'].idxmax()],1) maximumprice=pd.DataFrame(MaxP).T averageprice=round((optimumumprice_perweek['Price'].sum()/len(optimumumprice_perweek)),2) MD=round(optimumumprice_perweek.loc[optimumumprice_perweek['Demand'].idxmin()],0) minimumDemand=pd.DataFrame(MD).T MaxD=round(optimumumprice_perweek.loc[optimumumprice_perweek['Demand'].idxmax()],0) maximumDemand=pd.DataFrame(MaxD).T averageDemand=round((optimumumprice_perweek['Demand'].sum()/len(optimumumprice_perweek)),0) totaldemand=round(optimumumprice_perweek['Demand'].sum(),0) return render_template("Optimize.html",totaldemand=totaldemand,averageDemand=averageDemand,maximumDemand=maximumDemand.values,minimumDemand=minimumDemand.values,averageprice=averageprice,maximumprice=maximumprice.values,minimumprice=minimumprice.values,dataval=dataval.values,differenceofdemand_df=differenceofdemand_df.values,optimumumprice_perweek=optimumumprice_perweek.to_html(index=False),ll=1) @app.route("/Inventorymanagment",methods=["GET","POST"]) def Inventorymanagment(): return render_template("Inventory_Management.html") @app.route("/DISTRIBUTION_NETWORK_OPT",methods=["GET","POST"]) def DISTRIBUTION_NETWORK_OPT(): return render_template("DISTRIBUTION_NETWORK_OPTIMIZATION.html") @app.route("/Procurement_Plan",methods=["GET","POST"]) def Procurement_Plan(): return render_template("Procurement_Planning.html") #<NAME> @app.route("/fleetallocation") def fleetallocation(): return render_template('fleetallocation.html') @app.route("/reset") def reset(): conn = pymysql.connect(host='localhost',user='root',password='',db='inventory_management',charset='utf8mb4',cursorclass=pymysql.cursors.DictCursor) cur = conn.cursor() cur.execute("DELETE FROM `input`") cur.execute("DELETE FROM `output`") cur.execute("DELETE FROM `Scenario`") conn.commit() conn.close() open(localaddress+'\\static\\demodata.txt', 'w').close() return render_template('fleetallocation.html') @app.route("/dalink",methods = ['GET','POST']) def dalink(): sql = "INSERT INTO `input` (`Route`,`SLoc`,`Ship-to Abb`,`Primary Equipment`,`Batch`,`Prod Dt`,`SW`,`Met Held`,`Heat No`,`Delivery Qty`,`Width`,`Length`,`Test Cut`,`Customer Priority`) VALUES( %s,%s,%s,%s,%s,%s,%s,%s,%s,%s,%s,%s,%s,%s)" conn = pymysql.connect(host='localhost',user='root',password='',db='inventory_management',charset='utf8mb4',cursorclass=pymysql.cursors.DictCursor) cur = conn.cursor() if request.method == 'POST': typ = request.form.get('type') frm = request.form.get('from') to = request.form.get('to') if typ and frm and to: conn = pymysql.connect(host='localhost',user='root',password='',db='inventory_management',charset='utf8mb4',cursorclass=pymysql.cursors.DictCursor) cur = conn.cursor() curr = conn.cursor() cur.execute("SELECT * FROM `inventory_data` WHERE `Primary Equipment` = '" + typ + "' AND `Prod Dt` BETWEEN '" + frm + "' AND '" + to + "'") res = cur.fetchall() if len(res)==0: conn.close() return render_template('fleetallocation.html',alert='No data available') sfile = pd.DataFrame(res) df1 = pd.DataFrame(sfile) df1['Prod Dt'] =df1['Prod Dt'].astype(object) for index, i in df1.iterrows(): data = (i['Route'],i['SLoc'],i['Ship-to Abb'],i['Primary Equipment'],i['Batch'],i['Prod Dt'],i['SW'],i['Met Held'],i['Heat No'],i['Delivery Qty'],i['Width'],i['Length'],i['Test Cut'],i['Customer Priority']) curr.execute(sql,data) conn.commit() conn.close() return render_template('fleetallocation.html',typ=" Equipment type: "+typ,frm="From: "+frm,to=" To:"+to,data = sfile.to_html(index=False)) else: return render_template('fleetallocation.html',alert ='All input fields are required') return render_template('fleetallocation.html') @app.route('/optimise', methods=['GET', 'POST']) def optimise(): open(localaddress+'\\static\\demodata.txt', 'w').close() conn = pymysql.connect(host='localhost',user='root',password='',db='inventory_management',charset='utf8mb4',cursorclass=pymysql.cursors.DictCursor) cur = conn.cursor() curr = conn.cursor() cur.execute("DELETE FROM `output`") conn.commit() os.system('python optimising.py') sa=1 cur.execute("SELECT * FROM `output`") result = cur.fetchall() if len(result)==0: say=0 else: say=1 curr.execute("SELECT * FROM `input`") sfile = curr.fetchall() if len(sfile)==0: conn.close() return render_template('fleetallocation.html',say=say,sa=sa,alert='No data available') sfile = pd.DataFrame(sfile) conn.close() with open(localaddress+"\\static\\demodata.txt", "r") as f: content = f.read() return render_template('fleetallocation.html',say=say,sa=sa,data = sfile.to_html(index=False),content=content) @app.route("/scenario") def scenario(): return render_template('scenario.html') @app.route("/scenario_insert", methods=['GET','POST']) def scenario_insert(): if request.method == 'POST': scenario = request.form.getlist("scenario[]") customer_priority = request.form.getlist("customer_priority[]") oldest_sw = request.form.getlist("oldest_sw[]") production_date = request.form.getlist("production_date[]") met_held_group = request.form.getlist("met_held_group[]") test_cut_group = request.form.getlist("test_cut_group[]") sub_grouping_rules = request.form.getlist("sub_grouping_rules[]") load_lower_bounds = request.form.getlist("load_lower_bounds[]") load_upper_bounds = request.form.getlist("load_upper_bounds[]") width_bounds = request.form.getlist("width_bounds[]") length_bounds = request.form.getlist("length_bounds[]") description = request.form.getlist("description[]") conn = pymysql.connect(host='localhost',user='root',password='',db='inventory_management',charset='utf8mb4',cursorclass=pymysql.cursors.DictCursor) cur = conn.cursor() curr = conn.cursor() lngth = len(scenario) curr.execute("DELETE FROM `scenario`") if scenario and customer_priority and oldest_sw and production_date and met_held_group and test_cut_group and sub_grouping_rules and load_lower_bounds and load_upper_bounds and width_bounds and length_bounds and description: say=0 for i in range(lngth): scenario_clean = scenario[i] customer_priority_clean = customer_priority[i] oldest_sw_clean = oldest_sw[i] production_date_clean = production_date[i] met_held_group_clean = met_held_group[i] test_cut_group_clean = test_cut_group[i] sub_grouping_rules_clean = sub_grouping_rules[i] load_lower_bounds_clean = load_lower_bounds[i] load_upper_bounds_clean = load_upper_bounds[i] width_bounds_clean = width_bounds[i] length_bounds_clean = length_bounds[i] description_clean = description[i] if scenario_clean and customer_priority_clean and oldest_sw_clean and production_date_clean and met_held_group_clean and test_cut_group_clean and sub_grouping_rules_clean and load_lower_bounds_clean and load_upper_bounds_clean and width_bounds_clean and length_bounds_clean: cur.execute("INSERT INTO `scenario`(scenario, customer_priority, oldest_sw, production_date, met_held_group, test_cut_group, sub_grouping_rules, load_lower_bounds, load_upper_bounds, width_bounds, length_bounds, description) VALUES('"+scenario_clean+"' ,'"+customer_priority_clean+"','"+oldest_sw_clean+"','"+production_date_clean+"','"+met_held_group_clean+"','"+test_cut_group_clean+"', '"+sub_grouping_rules_clean+"','"+load_lower_bounds_clean+"', '"+load_upper_bounds_clean+"','"+width_bounds_clean+"','"+length_bounds_clean+"','"+description_clean+"')") else: say = 1 conn.commit() if(say==0): alert='All Scenarios inserted' else: alert='Some scenarios were not inserted' return (alert) conn.close() return ('All fields are required!') return ('Failed!!!') @app.route("/fetch", methods=['GET','POST']) def fetch(): if request.method == 'POST': conn = pymysql.connect(host='localhost',user='root',password='',db='inventory_management',charset='utf8mb4',cursorclass=pymysql.cursors.DictCursor) cur = conn.cursor() cur.execute("SELECT * FROM scenario") result = cur.fetchall() if len(result)==0: conn.close() return render_template('scenario.html',alert1='No scenarios Available') result1 = pd.DataFrame(result) result1 = result1.drop('Sub-grouping rules', axis=1) conn.close() return render_template('scenario.html',sdata = result1.to_html(index=False)) return ("Error") @app.route("/delete", methods=['GET','POST']) def delete(): if request.method == 'POST': conn = pymysql.connect(host='localhost',user='root',password='',db='inventory_management',charset='utf8mb4',cursorclass=pymysql.cursors.DictCursor) cur = conn.cursor() cur.execute("DELETE FROM scenario") conn.commit() conn.close() return render_template('scenario.html',alert1="All the scenerios were dropped!") return ("Error") @app.route('/papadashboard', methods=['GET', 'POST']) def papadashboard(): sql1 = "SELECT `Scenario`, MAX(`Wagon-No`) AS 'Wagon Used', COUNT(`Batch`) AS 'Products Allocated', SUM(`Delivery Qty`) AS 'Total Product Allocated', SUM(`Delivery Qty`)/(MAX(`Wagon-No`)) AS 'Average Load Carried', SUM(`Width`)/(MAX(`Wagon-No`)) AS 'Average Width Used' FROM `output` WHERE `Wagon-No`>0 GROUP BY `Scenario`" conn = pymysql.connect(host='localhost',user='root',password='',db='inventory_management',charset='utf8mb4',cursorclass=pymysql.cursors.DictCursor) curs = conn.cursor() curs.execute("SELECT `scenario` FROM `scenario`") sdata = curs.fetchall() if len(sdata)==0: conn.close() return render_template('warning.html',alert='No data available') cur1 = conn.cursor() cur1.execute(sql1) data1 = cur1.fetchall() if len(data1)==0: conn.close() return render_template('warning.html',alert='Infeasible to due Insufficient Load') cu = conn.cursor() cu.execute("SELECT `length_bounds`,`width_bounds`,`load_lower_bounds`,`load_upper_bounds` FROM `scenario`") sdaa = cu.fetchall() sdaa = pd.DataFrame(sdaa) asa=list() for index, i in sdaa.iterrows(): hover = "Length Bound:"+str(i['length_bounds'])+", Width Bound:"+str(i['width_bounds'])+", Load Upper Bound:"+str(i['load_upper_bounds'])+", Load Lower Bound:"+str(i['load_lower_bounds']) asa.append(hover) asa=pd.DataFrame(asa) asa.columns=['Details'] data1 = pd.DataFrame(data1) data1['Average Width Used'] = data1['Average Width Used'].astype(int) data1['Total Product Allocated'] = data1['Total Product Allocated'].astype(int) data1['Average Load Carried'] = data1['Average Load Carried'].astype(float) data1['Average Load Carried'] = round(data1['Average Load Carried'],2) data1['Average Load Carried'] = data1['Average Load Carried'].astype(str) fdata = pd.DataFrame(columns=['Scenario','Wagon Used','Products Allocated','Total Product Allocated','Average Load Carried','Average Width Used','Details']) fdata[['Scenario','Wagon Used','Products Allocated','Total Product Allocated','Average Load Carried','Average Width Used']] = data1[['Scenario','Wagon Used','Products Allocated','Total Product Allocated','Average Load Carried','Average Width Used']] fdata['Details'] = asa['Details'] fdata = fdata.values sql11 = "SELECT `Scenario`, SUM(`Delivery Qty`)/(MAX(`Wagon-No`)) AS 'Average Load Carried', COUNT(`Batch`) AS 'Allocated', SUM(`Delivery Qty`) AS 'Load Allocated' FROM `output`WHERE `Wagon-No`>0 GROUP BY `Scenario`" sql21 = "SELECT COUNT(`Batch`) AS 'Total Allocated' FROM `output` GROUP BY `Scenario`" sql31 = "SELECT `load_upper_bounds` FROM `scenario`" conn1 = pymysql.connect(host='localhost',user='root',password='',db='inventory_management',charset='utf8mb4',cursorclass=pymysql.cursors.DictCursor) cur11 = conn1.cursor() cur21 = conn1.cursor() cur31 = conn1.cursor() cur11.execute(sql11) data11 = cur11.fetchall() data11 = pd.DataFrame(data11) cur21.execute(sql21) data21 = cur21.fetchall() data21 = pd.DataFrame(data21) cur31.execute(sql31) data31 = cur31.fetchall() data31 = pd.DataFrame(data31) data11['Average Load Carried']=data11['Average Load Carried'].astype(float) fdata1 = pd.DataFrame(columns=['Scenario','Utilisation Percent','Allocation Percent','Total Load Allocated']) fdata1['Utilisation Percent'] = round(100*(data11['Average Load Carried']/data31['load_upper_bounds']),2) data11['Load Allocated']=data11['Load Allocated'].astype(int) fdata1[['Scenario','Total Load Allocated']]=data11[['Scenario','Load Allocated']] data11['Allocated']=data11['Allocated'].astype(float) data21['Total Allocated']=data21['Total Allocated'].astype(float) fdata1['Allocation Percent'] = round(100*(data11['Allocated']/data21['Total Allocated']),2) fdata1['Allocation Percent'] = fdata1['Allocation Percent'].astype(str) fdat1 = fdata1.values conn1.close() if request.method == 'POST': conn2 = pymysql.connect(host='localhost',user='root',password='',db='inventory_management',charset='utf8mb4',cursorclass=pymysql.cursors.DictCursor) cur = conn2.cursor() ata = request.form['name'] cur.execute("SELECT * FROM `output` WHERE `Scenario` = '"+ata+"' ") ssdata = cur.fetchall() datasss = pd.DataFrame(ssdata) data=datasss.replace("Not Allocated", 0) df=data[['Delivery Qty','Wagon-No','Width','Group-Number']] df['Wagon-No']=df['Wagon-No'].astype(int) a=df['Wagon-No'].max() ##bar1 result_array = np.array([]) for i in range (a): data_i = df[df['Wagon-No'] == i+1] del_sum_i = data_i['Delivery Qty'].sum() per_i=[((del_sum_i)/(205000)*100)] result_array = np.append(result_array, per_i) result_array1 = np.array([]) for j in range (a): data_j = df[df['Wagon-No'] == j+1] del_sum_j = data_j['Width'].sum() per_util_j=[((del_sum_j)/(370)*100)] result_array1 = np.append(result_array1, per_util_j) ##pie1 df112 = df[df['Wagon-No'] == 0] pie1 = df112 ['Width'].sum() df221 = df[df['Wagon-No'] > 0] pie11 = df221['Width'].sum() df1=data[['SW','Group-Number']] dff1 = df1[data['Wagon-No'] == 0] da1 =dff1.groupby(['SW']).count() re11 = np.array([]) res12 = np.append(re11,da1) da1['SW'] = da1.index r1 = np.array([]) r12 = np.append(r1, da1['SW']) df0=data[['Group-Number','Route','SLoc','Ship-to Abb','Wagon-No','Primary Equipment']] df1=df0.replace("Not Allocated", 0) f2 = pd.DataFrame(df1) f2['Wagon-No']=f2['Wagon-No'].astype(int) ####Not-Allocated f2['Group']=data['Group-Number'] df=f2[['Group','Wagon-No']] dee = df[df['Wagon-No'] == 0] deer =dee.groupby(['Group']).count()##Not Allocated deer['Group'] = deer.index ##Total-Data f2['Group1']=data['Group-Number'] dfc=f2[['Group1','Wagon-No']] dfa=pd.DataFrame(dfc) der = dfa[dfa['Wagon-No'] >= 0] dear =der.groupby(['Group1']).count()##Wagons >1 dear['Group1'] = dear.index dear.rename(columns={'Wagon-No': 'Allocated'}, inplace=True) result = pd.concat([deer, dear], axis=1, join_axes=[dear.index]) resu=result[['Group1','Wagon-No','Allocated']] result1=resu.fillna(00) r5 = np.array([]) r6 = np.append(r5, result1['Wagon-No']) r66=r6[0:73]###Not Allocated r7 = np.append(r5, result1['Allocated']) r77=r7[0:73]####total r8 = np.append(r5, result1['Group1']) r88=r8[0:73]###group conn2.close() return render_template('papadashboard.html',say=1,data=fdata,data1=fdat1,ata=ata,bar1=result_array,bar11=result_array1,pie11=pie1,pie111=pie11,x=r12,y=res12,xname=r88, bar7=r77,bar8=r66) conn.close() return render_template('papadashboard.html',data=fdata,data1=fdat1) @app.route('/facilityallocation') def facilityallocation(): return render_template('facilityhome.html') @app.route('/dataimport') def dataimport(): return render_template('facilityimport.html') @app.route('/dataimport1') def dataimport1(): return redirect(url_for('dataimport')) @app.route('/facility_location') def facility_location(): return render_template('facility_location.html') @app.route('/facility') def facility(): return redirect(url_for('facilityallocation')) @app.route("/imprt", methods=['GET','POST']) def imprt(): global customerdata global factorydata global Facyy global Custo customerfile = request.files['CustomerData'].read() factoryfile = request.files['FactoryData'].read() if len(customerfile)==0 or len(factoryfile)==0: return render_template('facilityhome.html',warning='Data Invalid') cdat=pd.read_csv(io.StringIO(customerfile.decode('utf-8'))) customerdata=pd.DataFrame(cdat) fdat=pd.read_csv(io.StringIO(factoryfile.decode('utf-8'))) factorydata=pd.DataFrame(fdat) Custo=customerdata.drop(['Lat','Long'],axis=1) Facyy=factorydata.drop(['Lat','Long'],axis=1) return render_template('facilityimport1.html',loc1=factorydata.values,loc2=customerdata.values,factory=Facyy.to_html(index=False),customer=Custo.to_html(index=False)) @app.route("/gmap") def gmap(): custdata=customerdata Factorydata=factorydata price=1 #to get distance beetween customer and factory #first get the Dimension #get no of factories Numberoffact=len(Factorydata) #get Number of Customer Numberofcust=len(custdata) #Get The dist/unit cost cost=price #def function for distance calculation # approximate radius of earth in km def dist(lati1,long1,lati2,long2,cost): R = 6373.0 lat1 = radians(lati1) lon1 = radians(long1) lat2 = radians(lati2) lon2 = radians(long2) dlon = lon2 - lon1 dlat = lat2 - lat1 a = sin(dlat / 2)**2 + cos(lat1) * cos(lat2) * sin(dlon / 2)**2 c = 2 * atan2(sqrt(a), sqrt(1 - a)) distance =round(R * c,2) return distance*cost #Create a list for customer and factory def costtable(custdata,Factorydata): distance=list() for lat1,long1 in zip(custdata.Lat, custdata.Long): for lat2,long2 in zip(Factorydata.Lat, Factorydata.Long): distance.append(dist(lat1,long1,lat2,long2,cost)) distable=np.reshape(distance, (Numberofcust,Numberoffact)).T tab=pd.DataFrame(distable,index=[Factorydata.Factory],columns=[custdata.Customer]) return tab DelCost=costtable(custdata,Factorydata)#return cost table of the customer and factoery #creating Demand Table demand=np.array(custdata.Demand) col1=np.array(custdata.Customer) Demand=pd.DataFrame(demand,col1).T cols=sorted(col1) #Creating capacity table fact=np.array(Factorydata.Capacity) col2=np.array(Factorydata.Factory) Capacity=pd.DataFrame(fact,index=col2).T colo=sorted(col2) #creating Fixed cost table fixed_c=np.array(Factorydata.FixedCost) col3=np.array(Factorydata.Factory) FixedCost= pd.DataFrame(fixed_c,index=col3) # Create the 'prob' variable to contain the problem data model = LpProblem("Min Cost Facility Location problem",LpMinimize) production = pulp.LpVariable.dicts("Production", ((factory, cust) for factory in Capacity for cust in Demand), lowBound=0, cat='Integer') factory_status =pulp.LpVariable.dicts("factory_status", (factory for factory in Capacity), cat='Binary') cap_slack =pulp.LpVariable.dicts("capslack", (cust for cust in Demand), lowBound=0, cat='Integer') model += pulp.lpSum( [DelCost.loc[factory, cust] * production[factory, cust] for factory in Capacity for cust in Demand] + [FixedCost.loc[factory] * factory_status[factory] for factory in Capacity] + 5000000*cap_slack[cust] for cust in Demand) for cust in Demand: model += pulp.lpSum(production[factory, cust] for factory in Capacity)+cap_slack[cust] == Demand[cust] for factory in Capacity: model += pulp.lpSum(production[factory, cust] for cust in Demand) <= Capacity[factory]*factory_status[factory] model.solve() print("Status:", LpStatus[model.status]) for v in model.variables(): print(v.name, "=", v.varValue) print("Total Cost of Ingredients per can = ", value(model.objective)) # Getting the table for the Factorywise Allocation def factoryalloc(model,Numberoffact,Numberofcust,listoffac,listofcus): listj=list() listk=list() listcaps=list() for v in model.variables(): listj.append(v.varValue) customer=listj[(len(listj)-Numberofcust-Numberoffact):(len(listj)-Numberoffact)] del listj[(len(listj)-Numberoffact-Numberofcust):len(listj)] for row in listj: if row==0: listk.append(0) else: listk.append(1) x=np.reshape(listj,(Numberoffact,Numberofcust)) y=np.reshape(listk,(Numberoffact,Numberofcust)) FactoryAlloc_table=pd.DataFrame(x,index=listoffac,columns=listofcus) Factorystatus=pd.DataFrame(y,index=listoffac,columns=listofcus) return FactoryAlloc_table,Factorystatus,customer Alltable,FactorystatusTable,ded=factoryalloc(model,Numberoffact,Numberofcust,colo,cols) Allstatus=list() dede=pd.DataFrame(ded,columns=['UnSatisfied']) finaldede=dede[dede.UnSatisfied != 0] colss=pd.DataFrame(cols,columns=['CustomerLocation']) fina=pd.concat([colss,finaldede],axis=1, join='inner') print(fina) for i in range(len(Alltable)): for j in range(len(Alltable.columns)): if (Alltable.loc[Alltable.index[i], Alltable.columns[j]]>0): all=[Alltable.index[i], Alltable.columns[j], Alltable.loc[Alltable.index[i], Alltable.columns[j]]] Allstatus.append(all) Status=pd.DataFrame(Allstatus,columns=['Factory','Customer','Allocation']).astype(str) #To get the Factory Data con = pymysql.connect(host='localhost',user='root',password='',db='inventory_management',charset='utf8mb4',cursorclass=pymysql.cursors.DictCursor) #Making Connection to the Database cur = con.cursor() engine = create_engine("mysql+pymysql://{user}:{pw}@localhost/{db}".format(user="root",pw="",db="inventory_management")) Status.to_sql(con=engine, name='facilityallocation',index=False, if_exists='replace') cur = con.cursor() cur1 = con.cursor() cur.execute("SELECT * FROM `facilityallocation`") file=cur.fetchall() dat=pd.DataFrame(file) lst=dat[['Factory','Customer']] mlst=[] names=lst['Factory'].unique().tolist() for name in names: lsty=lst.loc[lst.Factory==name] mlst.append(lsty.values) data=dat[['Factory','Customer','Allocation']] sql="SELECT SUM(`Allocation`) AS 'UseCapacity', `Factory` FROM `facilityallocation` GROUP BY `Factory`" cur1.execute(sql) file2=cur1.fetchall() udata=pd.DataFrame(file2) bdata=factorydata.sort_values(by=['Factory']) adata=bdata['Capacity'] con.close() infdata=dat[['Customer','Factory','Allocation']] infodata=infdata.sort_values(by=['Customer']) namess=infodata.Customer.unique() lstyy=[] for nam in namess: bb=infodata[infodata.Customer==nam] comment=bb['Factory']+":"+bb['Allocation'] prin=[nam,str(comment.values).strip('[]')] lstyy.append(prin) return render_template('facilityoptimise.html',say=1,lstyy=lstyy,x1=adata.values,x2=udata.values,dat=mlst,loc1=factorydata.values, loc2=customerdata.values,factory=Facyy.to_html(index=False),customer=Custo.to_html(index=False),summary=data.to_html(index=False)) #Demand Forecast @app.route('/demandforecast') def demandforecast(): return render_template('demandforecast.html') @app.route("/demandforecastdataimport",methods = ['GET','POST']) def demandforecastdataimport(): if request.method== 'POST': global actualforecastdata flat=request.files['flat'].read() if len(flat)==0: return('No Data Selected') cdat=pd.read_csv(io.StringIO(flat.decode('utf-8'))) actualforecastdata=pd.DataFrame(cdat) return render_template('demandforecast.html',data=actualforecastdata.to_html(index=False)) @app.route('/demandforecastinput', methods = ['GET', 'POST']) def demandforecastinput(): if request.method=='POST': global demandforecastfrm global demandforecasttoo global demandforecastinputdata demandforecastfrm=request.form['from'] demandforecasttoo=request.form['to'] value=request.form['typedf'] demandforecastinputdata=actualforecastdata[(actualforecastdata['Date'] >= demandforecastfrm) & (actualforecastdata['Date'] <= demandforecasttoo)] if value=='monthly': ##monthly engine = create_engine("mysql+pymysql://{user}:{pw}@localhost/{db}".format(user="root",pw="",db="inventory_management")) demandforecastinputdata.to_sql(con=engine, name='demandforecastinputdata', index=False,if_exists='replace') return redirect(url_for('monthlyforecast')) if value=='quarterly': ##quarterly global Quaterdata dated2 = demandforecastinputdata['Date'] nlst=[] for var in dated2: var1 = int(var[5:7]) if var1 >=1 and var1 <4: varr=var[:4]+'-01-01' elif var1 >=4 and var1 <7: varr=var[:4]+'-04-01' elif var1 >=7 and var1 <10: varr=var[:4]+'-07-01' else: varr=var[:4]+'-10-01' nlst.append(varr) nwlst=pd.DataFrame(nlst,columns=['Newyear']) demandforecastinputdata=demandforecastinputdata.reset_index() demandforecastinputdata['Date']=nwlst['Newyear'] Quaterdata=demandforecastinputdata.groupby(['Date']).sum() Quaterdata=Quaterdata.reset_index() Quaterdata=Quaterdata.drop('index',axis=1) engine = create_engine("mysql+pymysql://{user}:{pw}@localhost/{db}".format(user="root",pw="",db="inventory_management")) Quaterdata.to_sql(con=engine, name='demandforecastinputdata', index=False,if_exists='replace') return redirect(url_for('quarterlyforecast')) if value=='yearly': ##yearly global Yeardata #copydata=demandforecastinputdata dated1 = demandforecastinputdata['Date'] lst=[] for var in dated1: var1 = var[:4]+'-01-01' lst.append(var1) newlst=pd.DataFrame(lst,columns=['NewYear']) demandforecastinputdata=demandforecastinputdata.reset_index() demandforecastinputdata['Date']=newlst['NewYear'] Yeardata=demandforecastinputdata.groupby(['Date']).sum() Yeardata=Yeardata.reset_index() Yeardata=Yeardata.drop('index',axis=1) engine = create_engine("mysql+pymysql://{user}:{pw}@localhost/{db}".format(user="root",pw="",db="inventory_management")) Yeardata.to_sql(con=engine, name='demandforecastinputdata', index=False,if_exists='replace') return redirect(url_for('yearlyforecast')) #if value=='weakly': ##weakly # return redirect(url_for('output4')) return render_template('demandforecast.html') @app.route("/monthlyforecast",methods = ['GET','POST']) def monthlyforecast(): data = pd.DataFrame(demandforecastinputdata) # container1 a1=data.sort_values(['GDP','TotalDemand'], ascending=[True,True]) # container2 a2=data.sort_values(['Pi_Exports','TotalDemand'], ascending=[True,True]) # container3 a3=data.sort_values(['Market_Share','TotalDemand'], ascending=[True,True]) # container4 a4=data.sort_values(['Advertisement_Expense','TotalDemand'], ascending=[True,True]) # container1 df=a1[['GDP']] re11 = np.array([]) res11 = np.append(re11,df) df1=a1[['TotalDemand']] r1 = np.array([]) r11 = np.append(r1, df1) # top graph tdf=data['Date'].astype(str) tre11 = np.array([]) tres11 = np.append(tre11,tdf) tr1 = np.array([]) tr11 = np.append(tr1, df1) # container2 udf=a2[['Pi_Exports']] ure11 = np.array([]) ures11 = np.append(ure11,udf) ur1 = np.array([]) ur11 = np.append(ur1, df1) # container3 vdf=a3[['Market_Share']] vre11 = np.array([]) vres11 = np.append(vre11,vdf) vr1 = np.array([]) vr11 = np.append(vr1, df1) # container4 wdf=a4[['Advertisement_Expense']] wre11 = np.array([]) wres11 = np.append(wre11,wdf) wr1 = np.array([]) wr11 = np.append(wr1, df1) if request.method == 'POST': mov=0 exp=0 reg=0 ari=0 arx=0 till = request.form.get('till') if request.form.get('moving'): mov=1 if request.form.get('ESPO'): exp=1 if request.form.get('regression'): reg=1 if request.form.get('ARIMA'): ari=1 if request.form.get('ARIMAX'): arx=1 con = pymysql.connect(host='localhost',user='root',password='',db='inventory_management',charset='utf8mb4',cursorclass=pymysql.cursors.DictCursor) cur = con.cursor() cur.execute("CREATE TABLE IF NOT EXISTS `ftech` (`mov` VARCHAR(1),`exp` VARCHAR(1), `reg` VARCHAR(1),`ari` VARCHAR(1),`arx` VARCHAR(1),`till` VARCHAR(10))") cur.execute("DELETE FROM `ftech`") con.commit() cur.execute("INSERT INTO `ftech` VALUES('"+str(mov)+"','"+str(exp)+"','"+str(reg)+"','"+str(ari)+"','"+str(arx)+"','"+str(till)+"')") con.commit() cur.execute("CREATE TABLE IF NOT EXISTS `forecastoutput`(`Model` VARCHAR(25),`Date` VARCHAR(10),`TotalDemand` VARCHAR(10),`RatioIncrease` VARCHAR(10),`Spain` VARCHAR(10),`Austria` VARCHAR(10),`Japan` VARCHAR(10),`Hungary` VARCHAR(10),`Germany` VARCHAR(10),`Polland` VARCHAR(10),`UK` VARCHAR(10),`France` VARCHAR(10),`Romania` VARCHAR(10),`Italy` VARCHAR(10),`Greece` VARCHAR(10),`Crotia` VARCHAR(10),`Holland` VARCHAR(10),`Finland` VARCHAR(10),`Hongkong` VARCHAR(10))") con.commit() cur.execute("DELETE FROM `forecastoutput`") con.commit() sql = "INSERT INTO `forecastoutput` (`Model`,`Date`,`TotalDemand`,`RatioIncrease`,`Spain`,`Austria`,`Japan`,`Hungary`,`Germany`,`Polland`,`UK`,`France`,`Romania`,`Italy`,`Greece`,`Crotia`,`Holland`,`Finland`,`Hongkong`) VALUES (%s,%s,%s,%s,%s,%s,%s,%s,%s,%s,%s,%s,%s,%s,%s,%s,%s,%s,%s)" #read the monthly file and index that with time df=data.set_index('Date') split_point =int(0.7*len(df)) D, V = df[0:split_point],df[split_point:] data=pd.DataFrame(D) #Functions for ME, MAE, MAPE #ME def ME(y_true, y_pred): y_true, y_pred = np.array(y_true), np.array(y_pred) return np.mean(y_true - y_pred) #MAE def MAE(y_true, y_pred): y_true, y_pred = np.array(y_true), np.array(y_pred) return np.mean(np.abs(y_true - y_pred)) #MAPE def MAPE(y_true, y_pred): y_true, y_pred = np.array(y_true), np.array(y_pred) return np.mean(np.abs((y_true - y_pred) / y_pred)) * 100 cur1=con.cursor() cur1.execute("SELECT * FROM `ftech`") ftech=pd.DataFrame(cur1.fetchall()) ari=int(ftech['ari']) arx=int(ftech['arx']) exp=int(ftech['exp']) mov=int(ftech['mov']) reg=int(ftech['reg']) start_index1=str(D['GDP'].index[-1]) end_index1=str(ftech['till'][0]) #end_index1=indx[:4] df2 = pd.DataFrame(data=0,index=["ME","MAE","MAPE"],columns=["Moving Average","ARIMA","Exponential Smoothing","Regression"]) if mov==1: #2---------------simple moving average------------------------- #################################MovingAverage####################### list1=list() def mavg(data): m=len(data.columns.tolist()) for i in range(0,m-5): #Arima Model Fitting model1=ARIMA(data[data.columns.tolist()[i]].astype(float), order=(0,0,1)) results_ARIMA1=model1.fit(disp=0) # start_index1 = '2017-01-01' # end_index1 = '2022-01-01' #4 year forecast ARIMA_fit1= results_ARIMA1.fittedvalues forecast2=results_ARIMA1.predict(start=start_index1, end=end_index1) list1.append(forecast2) if(i==0): #ME s=ME(data['TotalDemand'],ARIMA_fit1) #MAE so=MAE(data['TotalDemand'],ARIMA_fit1) #MAPE son=MAPE(data['TotalDemand'],ARIMA_fit1) df2["Moving Average"].iloc[0]=s df2["Moving Average"].iloc[1]=so df2["Moving Average"].iloc[2]=son s=pd.DataFrame(forecast2) ratio_inc=[] ratio_inc.append(0) for j in range(2,len(s)+1): a=s.iloc[j-2] b=s.iloc[j-1] ratio_inc.append(int(((b-a)/a)*100)) return list1,ratio_inc print(data) Ma_Out,ratio_incma=mavg(data) dfs=pd.DataFrame(Ma_Out) tdfs=dfs.T print(tdfs) tdfs.columns=["TotalDemand","Spain","Austria","Japan","Hungary","Germany","Polland","UK","France","Romania","Italy","Greece","Crotia","Holland","Finland","Hongkong"] tdfs['Model']='Moving Average' tdfs['RatioIncrease']=ratio_incma tdfs['Date']=(tdfs.index).strftime("20%y-%m-%d") tdfs.astype(str) for index, i in tdfs.iterrows(): dat = (i['Model'],i['Date'],i['TotalDemand'],i['RatioIncrease'],i['Spain'],i['Austria'],i['Japan'],i['Hungary'],i['Germany'],i['Polland'],i['UK'],i['France'],i['Romania'],i['Italy'],i['Greece'],i['Crotia'],i['Holland'],i['Finland'],i['Hongkong']) cur.execute(sql,dat) con.commit() if ari==1: ##--------------min errors--ARIMA (1,0,0)----------------------------- ############################for Total Demand Monthly#################################### list2=list() def AutoRimavg(data): m=len(data.columns.tolist()) for i in range(0,m-5): #Arima Model Fitting model1=ARIMA(data[data.columns.tolist()[i]].astype(float), order=(1,0,0)) results_ARIMA1=model1.fit(disp=0) ARIMA_fit1= results_ARIMA1.fittedvalues forecast2=results_ARIMA1.predict(start=start_index1, end=end_index1) list2.append(forecast2) if(i==0): #ME s=ME(data['TotalDemand'],ARIMA_fit1) #MAE so=MAE(data['TotalDemand'],ARIMA_fit1) #MAPE son=MAPE(data['TotalDemand'],ARIMA_fit1) df2["ARIMA"].iloc[0]=s df2["ARIMA"].iloc[1]=so df2["ARIMA"].iloc[2]=son Ars=pd.DataFrame(forecast2) ratio_inc=[] ratio_inc.append(0) for j in range(2,len(Ars)+1): As=(Ars.iloc[j-2]) bs=(Ars.iloc[j-1]) ratio_inc.append(int(((As-bs)/As)*100)) return list1,ratio_inc Arimamodel,ratio_inc=AutoRimavg(data) Amodel=pd.DataFrame(Arimamodel) Results=Amodel.T Results.astype(str) Results.columns=["TotalDemand","Spain","Austria","Japan","Hungary","Germany","Polland","UK","France","Romania","Italy","Greece","Crotia","Holland","Finland","Hongkong"] Results['Model']="ARIMA" Results['RatioIncrease']=ratio_inc Results['Date']=Results.index.astype(str) for index, i in Results.iterrows(): dat = (i['Model'],i['Date'],i['TotalDemand'],i['RatioIncrease'],i['Spain'],i['Austria'],i['Japan'],i['Hungary'],i['Germany'],i['Polland'],i['UK'],i['France'],i['Romania'],i['Italy'],i['Greece'],i['Crotia'],i['Holland'],i['Finland'],i['Hongkong']) cur.execute(sql,dat) con.commit() if reg==1: #Linear Regression #Regression Modeling dates=pd.date_range(start_index1,end_index1,freq='M') lprd=len(dates) dateofterms= pd.PeriodIndex(freq='M', start=start_index1, periods=lprd+1) dofterm=dateofterms.strftime("20%y-%m-%d") Rdate=pd.DataFrame(dofterm) noofterms=len(dofterm) def regression(data,V,noofterms): #Getting length of Data Frame lenofdf=len(data.columns.tolist()) #Getting List Of Atributes in Data Frame listofatr=list() listofatr=data.columns.tolist() #making list of pred pred=pd.DataFrame() #now riun for each row for i in range(0,(lenofdf)-5): df=pd.DataFrame(data[data.columns.tolist()[i]].reset_index()) xvar=list() for row in df[listofatr[i]]: xvar.append(row) df5=pd.DataFrame(xvar) yvar=list() for j in range(0,len(df[listofatr[i]])): yvar.append(j) dfss=pd.DataFrame(yvar) clf = linear_model.LinearRegression() clf.fit(dfss,df5) # Make predictions using the testing set dfv=pd.DataFrame(V[V.columns.tolist()[i]].reset_index()) k=list() for l in range(len(df[listofatr[i]]),len(df[listofatr[i]])+len(dfv)): k.append(l) ks=pd.DataFrame(k) #Future prediction predlist=list() for j in range(len(df[listofatr[i]]),len(df[listofatr[i]])+noofterms): predlist.append(j) dataframeoflenofpred=pd.DataFrame(predlist) dateframeofpred=pd.DataFrame(clf.predict(dataframeoflenofpred)) pred=pd.concat([pred,dateframeofpred],axis=1) #Accuracy Of the mODEL y_pred = clf.predict(ks) if(i==0): meanerror=ME(dfv[listofatr[i]], y_pred) mae=MAE(dfv[listofatr[i]], y_pred) mape=MAPE(dfv[listofatr[i]],y_pred) df2["Regression"].iloc[0]=meanerror df2["Regression"].iloc[1]=mae df2["Regression"].iloc[2]=mape regp=pd.DataFrame(pred) ratio_incrr=[] ratio_incrr.append(0) for j in range(2,len(regp)+1): Ra=regp.iloc[j-2] Rb=regp.iloc[j-1] ratio_incrr.append(int(((Rb-Ra)/Ra)*100)) return pred,ratio_incrr monthlyRegression,ratio_incrr=regression(data,V,noofterms) r=pd.DataFrame(monthlyRegression) r.columns=["TotalDemand","Spain","Austria","Japan","Hungary","Germany","Polland","UK","France","Romania","Italy","Greece","Crotia","Holland","Finland","Hongkong"] r['Model']="Regression" r['Date']=Rdate r['RatioIncrease']=ratio_incrr r.astype(str) for index, i in r.iterrows(): dat = (i['Model'],i['Date'],i['TotalDemand'],i['RatioIncrease'],i['Spain'],i['Austria'],i['Japan'],i['Hungary'],i['Germany'],i['Polland'],i['UK'],i['France'],i['Romania'],i['Italy'],i['Greece'],i['Crotia'],i['Holland'],i['Finland'],i['Hongkong']) cur.execute(sql,dat) con.commit() if exp==1: #Exponential Smoothing dates=pd.date_range(start_index1,end_index1,freq='M') lengthofprd=len(dates) dateofterm= pd.PeriodIndex(freq='M', start=start_index1, periods=lengthofprd+1) dateofterms=dateofterm.strftime("20%y-%m-%d") Edate=
pd.DataFrame(dateofterms)
pandas.DataFrame
import pandas as pd import numpy as np import matplotlib.pyplot as plt from ..._plotting._scatter._ScatterPlot_Module import ScatterPlot def _calculate_LFC(df, condition, control): """ df ResultsDict["lognorm_counts"] type: pandas DataFrame\ condition control """ lfc = df[condition] - df[control] return lfc def _get_conditions(lfc_df): return pd.Series(lfc_df.columns).str.split(" Rep", expand=True)[0] def _calculate_multiLFC(df, conditions, controls): LFCDict = {} for i in range(len(conditions)): LFCDict[conditions[i] + " LFC"] = _calculate_LFC( df, condition=conditions[i], control=controls[i], ) lfc_df =
pd.DataFrame.from_dict(LFCDict)
pandas.DataFrame.from_dict
import pandas as pd tmtids = pd.read_csv('tmtids.csv') tmtvac =
pd.read_csv('tmt_speedvac_group.csv')
pandas.read_csv
import unittest import maccorcyclingdata.testdata as testdata import os import pytest import pandas as pd from pandas._testing import assert_frame_equal expath = "example_data/" exmult = "example_data/multiple_csv/" exfile = "testdata_errors.csv" def test_import_maccor_data_BadIn(): expath1 = 1 with pytest.raises(TypeError): testdata.import_maccor_data(expath1, exfile) exfile1 = 0 with pytest.raises(TypeError): testdata.import_maccor_data(expath, exfile1) header1 = '' with pytest.raises(TypeError): testdata.import_maccor_data(expath, exfile, header1) exfile2 = 'false_df.csv' with pytest.raises(NotADirectoryError): testdata.import_maccor_data(expath, exfile2) return def test_import_multiple_csv_BadIn(): expath1 = 1 with pytest.raises(TypeError): testdata.import_multiple_csv_data(expath1) expath2 = 'false_path/' with pytest.raises(NotADirectoryError): testdata.import_multiple_csv_data(expath2) return def test_clean_maccor_df_BadIn(): df = 'not dataframe' with pytest.raises(TypeError): testdata.clean_maccor_df(df) df_cols = pd.DataFrame(columns=[1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16]) with pytest.raises(IndexError): testdata.clean_maccor_df(df_cols) return def test_delete_cycle_steps_BadIn(): steps_to_delete = [] df = pd.DataFrame() df1 = 'not dataframe' with pytest.raises(TypeError): testdata.delete_cycle_steps(df1) steps_to_delete1 = "not list" with pytest.raises(TypeError): testdata.delete_cycle_steps(df, steps_to_delete1) decrement = "not boolean" with pytest.raises(TypeError): testdata.delete_cycle_steps(df, steps_to_delete, decrement) df2 = pd.DataFrame(columns=[1,2,3,4,5,6,7,8,9,10]) with pytest.raises(IndexError): testdata.delete_cycle_steps(df2, steps_to_delete) df3 = pd.DataFrame(columns=[1,2,3,4,5,6,7,8,9,10, 11]) with pytest.raises(IndexError): testdata.delete_cycle_steps(df3, steps_to_delete) return def test_get_index_range_BadIn(): cyc_range = [] df = pd.DataFrame() df1 = 'not dataframe' with pytest.raises(TypeError): testdata.get_index_range(df1, cyc_range) cyc_range1 = "not list" with pytest.raises(TypeError): testdata.get_index_range(df, cyc_range1) cycle_steps_idx1 = "not list" with pytest.raises(TypeError): testdata.get_index_range(df, cyc_range, cycle_steps_idx1) df2 = pd.DataFrame(columns=[1,2,3,4,5,6,7,8,9,10]) with pytest.raises(IndexError): testdata.get_index_range(df2, cyc_range) df3 = pd.DataFrame(columns=[1,2,3,4,5,6,7,8,9,10, 11]) with pytest.raises(IndexError): testdata.get_index_range(df3, cyc_range) return def test_get_cycle_data_BadIn(): headings = [] cyc_range = [] df = pd.DataFrame() df1 = 'not dataframe' with pytest.raises(TypeError): testdata.get_cycle_data(df1, headings, cyc_range) cyc_range1 = "not list" with pytest.raises(TypeError): testdata.get_cycle_data(df, headings, cyc_range1) cycle_steps_idx1 = "not list" with pytest.raises(TypeError): testdata.get_cycle_data(df, headings, cyc_range, cycle_steps_idx1) headings1 = "not list" with pytest.raises(TypeError): testdata.get_cycle_data(df, headings1, cyc_range) df2 = pd.DataFrame(columns=[1,2,3,4,5,6,7,8,9,10]) with pytest.raises(IndexError): testdata.get_cycle_data(df2, headings, cyc_range) df3 = pd.DataFrame(columns=[1,2,3,4,5,6,7,8,9,10, 11]) with pytest.raises(IndexError): testdata.get_cycle_data(df3, headings, cyc_range) return def test_num_cycles_BadIn(): df = pd.DataFrame() df1='not dataframe' with pytest.raises(TypeError): testdata.get_num_cycles(df1) df2 =
pd.DataFrame(columns=[1,2,3,4,5,6,7,8,9,10])
pandas.DataFrame
from copy import deepcopy import pytest from pandas import DataFrame from omniqubo.converters.converter import interpret from omniqubo.converters.ineq_to_eq import IneqToEq from omniqubo.models.sympyopt.constraints import ( INEQ_GEQ_SENSE, INEQ_LEQ_SENSE, ConstraintEq, ConstraintIneq, ) from omniqubo.models.sympyopt.converters import convert from omniqubo.models.sympyopt.sympyopt import SympyOpt class TestIneqToEq: def test_convert(self): sympyopt = SympyOpt() x = sympyopt.int_var(name="x", lb=0, ub=2) y = sympyopt.int_var(lb=-2, ub=3, name="y") sympyopt.minimize(2 * x - 3 * y + 2) sympyopt.add_constraint(ConstraintIneq(2 * x - 3 * y, 3, INEQ_GEQ_SENSE), name="constr1") sympyopt.add_constraint( ConstraintIneq(2 * x ** 2 - 3 * y, 0, INEQ_LEQ_SENSE), name="constr2" ) sympyopt.add_constraint( ConstraintIneq(2 * x ** 2 - 3 * y ** 3, 0, INEQ_LEQ_SENSE), name="constr3" ) conv1 = IneqToEq("constr1", False, check_slack=False) conv2 = IneqToEq("constr2", False, check_slack=False) conv3 = IneqToEq("constr3", False, check_slack=False) sympyopt = convert(sympyopt, conv1) sympyopt = convert(sympyopt, conv2) sympyopt = convert(sympyopt, conv3) assert sympyopt.variables["constr1___slack"].get_lb() == 0 assert sympyopt.variables["constr1___slack"].get_ub() == 7 assert sympyopt.variables["constr2___slack"].get_lb() == 0 assert sympyopt.variables["constr2___slack"].get_ub() == 9 assert sympyopt.variables["constr3___slack"].get_lb() == 0 assert sympyopt.variables["constr3___slack"].get_ub() == 81 sympyopt3 = deepcopy(sympyopt) sympyopt3 = convert(sympyopt, IneqToEq("constr1", True, check_slack=False)) assert sympyopt3 == sympyopt sympyopt2 = SympyOpt() x = sympyopt2.int_var(name="x", lb=0, ub=2) y = sympyopt2.int_var(lb=-2, ub=3, name="y") xi1 = sympyopt2.int_var(lb=0, ub=7, name="constr1___slack") xi2 = sympyopt2.int_var(lb=0, ub=9, name="constr2___slack") xi3 = sympyopt2.int_var(lb=0, ub=81, name="constr3___slack") sympyopt2.minimize(2 * x - 3 * y + 2) sympyopt2.add_constraint(ConstraintEq(2 * x - 3 * y - xi1, 3), name="constr1") sympyopt2.add_constraint(ConstraintEq(2 * x ** 2 - 3 * y + xi2, 0), name="constr2") sympyopt2.add_constraint(ConstraintEq(2 * x ** 2 - 3 * y ** 3 + xi3, 0), name="constr3") assert sympyopt2 == sympyopt def test_zero_slack_geq(self): # geq sympyopt = SympyOpt() x = sympyopt.int_var(name="x", lb=0, ub=2) y = sympyopt.int_var(lb=-2, ub=3, name="y") sympyopt.add_constraint(ConstraintIneq(2 * x - 3 * y, 10, INEQ_GEQ_SENSE), name="c1") conv = IneqToEq(".*", True, check_slack=False) sympyopt = convert(sympyopt, conv) sympyopt2 = SympyOpt() x = sympyopt2.int_var(name="x", lb=0, ub=2) y = sympyopt2.int_var(lb=-2, ub=3, name="y") sympyopt2.add_constraint(ConstraintEq(2 * x - 3 * y, 10), name="c1") assert sympyopt2 == sympyopt samples1 = DataFrame({"x": [2], "y": [-2], "feasible": [True]}) samples2 = DataFrame({"x": [1], "y": [0], "feasible": [True]}) assert interpret(samples1, conv)["feasible"][0] assert not interpret(samples2, conv)["feasible"][0] # leq sympyopt = SympyOpt() x = sympyopt.int_var(name="x", lb=0, ub=2) y = sympyopt.int_var(lb=-2, ub=3, name="y") sympyopt.add_constraint(ConstraintIneq(2 * x + y, -2, INEQ_LEQ_SENSE), name="c2") conv = IneqToEq(".*", True, check_slack=False) sympyopt = convert(sympyopt, conv) sympyopt2 = SympyOpt() x = sympyopt2.int_var(name="x", lb=0, ub=2) y = sympyopt2.int_var(lb=-2, ub=3, name="y") sympyopt2.add_constraint(ConstraintEq(2 * x + y, -2), name="c2") assert sympyopt2 == sympyopt samples1 = DataFrame({"x": [0], "y": [-2], "feasible": [True]}) samples2 =
DataFrame({"x": [1], "y": [3], "feasible": [True]})
pandas.DataFrame
#!/usr/bin/env python # -*- coding:utf-8 -*- # @Time : 2022/1/8 4:54 下午 # @Author: zhoumengjie # @File : BondUtils.py import json import logging import random import time import urllib import pandas as pd import requests from wxcloudrun.common import akclient header = {'Accept': '*/*', 'Connection': 'keep-alive', 'Content-type': 'application/json;charset=utf-8', 'User-Agent': 'Mozilla/5.0 (Macintosh; Intel Mac OS X 10_15_7) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/97.0.4692.71 Safari/537.36' } cookie = requests.cookies.RequestsCookieJar() cookie.set('kbzw__user_login', '7Obd08_P1ebax9aXzaPEpdCYrqXR0dTn8OTb3crUja2aqtqr2cPSkavfqKHcnKiYppOprtXdxtPGqqyon7ClmJ2j1uDb0dWMppOkqqefmqekt7e_1KLA59vZzeDapJ6nnJeKw8La4OHs0OPJr5m-1-3R44LDwtqXwsuByIGlqdSarsuui5ai5-ff3bjVw7_i6Ziun66QqZeXn77Atb2toJnh0uTRl6nbxOLmnJik2NPj5tqYsqSlkqSVrqyrppmggcfa28rr1aaXqZilqqk.;') cookie.set('kbz_newcookie', '1;') cookie.set('kbzw_r_uname', 'VANDY;') cookie.set('kbzw__Session', 'fcqdk3pa4tlatoh6c338e19ju2;') log = logging.getLogger('log') jisilu_host = 'https://www.jisilu.cn' cninfo_webapi_host = 'http://webapi.cninfo.com.cn' east_host = 'https://emweb.securities.eastmoney.com' zsxg_host = 'https://zsxg.cn' cninfo_host = 'http://www.cninfo.com.cn' cninfo_static_host = 'http://static.cninfo.com.cn/' image_host = 'https://dficimage.toutiao.com' code_suff_cache = {} def format_func(num): return '{:g}'.format(float(num)) class Crawler: def __init__(self, timeout=10): self.__timeout = timeout def query_list(self): r""" 查询待发可转债列表 :return: """ # 时间戳 now = time.time() # 原始时间数据 timestamp = int(round(now * 1000)) param = {"___jsl": "LST___t=" + str(timestamp)} r = requests.post(jisilu_host + "/data/cbnew/pre_list/", params=param, headers=header, cookies=cookie) if r.status_code != 200: log.info("查询待发可转债列表失败:status_code = " + str(r.status_code)) return None return r.json()['rows'] def user_info(self): r = requests.post(jisilu_host + '/webapi/account/userinfo/', headers=header, cookies=cookie) if r.status_code != 200: print("查询集思录用户信息失败:status_code = " + str(r.status_code)) return False data = r.json() return data['code'] == 200 and data['data'] is not None def login(self): h = { 'Content-Type': 'application/x-www-form-urlencoded; charset=UTF-8', 'X-Requested-With': 'XMLHttpRequest', 'User-Agent': 'Mozilla/5.0 (Macintosh; Intel Mac OS X 10_15_7) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/96.0.4664.110 Safari/537.36' } data = 'return_url=' + 'https://www.jisilu.cn/web/data/cb/list' + '&user_name=<PASSWORD>&password=<PASSWORD>&net_auto_login=1&agreement_chk=agree&_post_type=ajax&aes=1' r = requests.post(jisilu_host + '/account/ajax/login_process/', data=data, headers=h, cookies=cookie) if r.status_code != 200: log.info("登录失败:status_code = " + str(r.status_code)) return False # 重新设置cookies cookies = r.cookies.get_dict() for key in cookies.keys(): cookie.set(key, cookies[key]) # refer h = { 'Accept': 'text/html,application/xhtml+xml,application/xml;q=0.9,image/avif,image/webp,image/apng,*/*;q=0.8,application/signed-exchange;v=b3;q=0.9', 'User-Agent': 'Mozilla/5.0 (Macintosh; Intel Mac OS X 10_15_7) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/96.0.4664.110 Safari/537.36' } r = requests.get(jisilu_host + '/', cookies=cookie, headers=h) if r.status_code != 200: log.info("登录重定向失败:status_code = " + str(r.status_code)) return False cookies = r.cookies.get_dict() for key in cookies.keys(): cookie.set(key, cookies[key]) return True def query_all_bond_list(self) -> pd.DataFrame: r""" 查询所有已经上市的可转债 :return: """ # 先判断是否登录,如果没有则登录 is_login = self.user_info() if not is_login: print('jisilu no login...') is_login = self.login() print('jisilu login result:{}'.format(is_login)) h = { 'Content-Type': 'application/json; charset=utf-8', 'Init': '1', 'Referer': 'https://www.jisilu.cn/web/data/cb/list', 'Columns': '1,70,2,3,5,6,11,12,14,15,16,29,30,32,34,35,75,44,46,47,52,53,54,56,57,58,59,60,62,63,67', 'User-Agent': 'Mozilla/5.0 (Macintosh; Intel Mac OS X 10_15_7) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/100.0.4896.75 Safari/537.36' } # data = 'btype=C&listed=Y&qflag=N' r = requests.get(jisilu_host + "/webapi/cb/list_new/", headers=h, cookies=cookie) if r.status_code != 200: print("查询所有可转债列表失败:status_code = " + str(r.status_code)) return None rows = r.json()['data'] df =
pd.DataFrame(rows)
pandas.DataFrame
# -*- coding: utf-8 -*- """ PEP 8 -- Style Guide for Python Code https://www.python.org/dev/peps/pep-0008/ @author: visintin without classes and methods """ import pandas as pd import numpy as np import matplotlib.pyplot as plt import sub.algs as myAlgs plt.close('all') # close all the figures that might still be open from previous runs x=
pd.read_csv("data/parkinsons_updrs.csv")
pandas.read_csv
from data_cleanup import data_clean from data_cleanup import split_data from csv_import import descriptive import matplotlib.pyplot as plt from sklearn.linear_model import LogisticRegression from sklearn.metrics import classification_report from sklearn.metrics import roc_curve from sklearn.metrics import roc_auc_score from sklearn.metrics import precision_recall_fscore_support import pandas as pd import numpy as np # This function creates dataframe with dummies replacing object variables def dummied_data(df): # Separate the numeric columns cdata_num = df.select_dtypes(exclude=['object']) # Separate object columns cdata_cat = df.select_dtypes(include=['object']) # One-hot encode the object columns only cdata_cat_onehot =
pd.get_dummies(cdata_cat)
pandas.get_dummies
import logging import os import re import pandas as pd import numpy as np from pandas import DataFrame from tqdm import tqdm from joblib import dump, load from nltk.tokenize import word_tokenize from nltk import pos_tag from ..MyMertrics import * from pprint import pformat from util.file_manager import remake_dir def feature_filter(features_list): res = [] for feature in features_list: if len(feature) < 2: res.append(feature) return res def merge_similar_feature(data, features): column = data[features].sum(axis=1) df =
pd.DataFrame(data=column, columns=[features[0]])
pandas.DataFrame
import argparse from pathlib import Path import graphviz import matplotlib.pyplot as plt import numpy as np import pandas as pd import seaborn as sns from sklearn import tree from..utils import STATUS_ARROW, search_runs def main(): parser = argparse.ArgumentParser( "qTable inspector", description="Inspect the Q-Learning results" ) parser.add_argument('path', help='Path of qTable csv') args, _ = parser.parse_known_args() df = pd.read_csv(args.path) filename = Path(args.path) actions = [column for column in df.columns if column.find("Action") != -1] state_features = [ column for column in df.columns if column.find("Action") == -1 ] df['best'] = df[actions].idxmax(axis=1) df['explored'] = df[actions].apply( lambda row: not all([val == 0. for val in row]), axis=1 ) df_dtree_X = df[df.explored][state_features].copy() for column in state_features: cur_column = df_dtree_X[column] new_type = pd.to_numeric(cur_column[cur_column != "max"]).dtype if new_type == np.float64: df_dtree_X[column].replace(to_replace={ # 'max': np.finfo(np.float32).max 'max': float(np.iinfo(np.int32).max) # 'max': -1. }, inplace=True) df_dtree_X[column] =
pd.to_numeric(df_dtree_X[column])
pandas.to_numeric
#!/usr/bin/env python3 import pandas as pd import numpy as np import os import argparse def get_header_size(pir_file): """ Get size of header (lines) """ with open (pir_file, 'r') as f: line = f.readline() return int(line.split(' ')[1])+1 def get_header(pir_file): """ Get header from PIR file """ n = get_header_size(pir_file) with open(pir_file) as f: header = ''.join([next(f) for _ in range(n)]) return header, n def check_headers(pir_files): """ Check whether headers have same size """ s = [get_header_size(f) for f in pir_files] if len(np.unique(s))!=1: raise ValueError('Header sizes do not match: {}'.format(s)) def concatenate_pir_files(pir_files, output_pir): """ Concatenate PIR files to 'output_pir'. All files must have the same header """ check_headers(pir_files) header, header_lines = get_header(pir_files[0]) with open(output_pir, 'w') as out: out.write(header) # write header once for pir_file in pir_files: with open(pir_file) as f: for _ in range(header_lines): # skip header next(f) for line in f: out.write(line) if __name__=='__main__': parser = argparse.ArgumentParser(description='Combine output from extractPIRs run on individual samples. Equivalent to running extractPIRs on multiple samples.') parser.add_argument('pir_files_tsv', help='TSV containing paths to PIR files, in the format: [[bam1_chr1, ..., bam1_chrN], ..., [bamM_chr1, ..., bamM_chrN]].\ \nPIR file names must be in the format <sample_id>.<chr>.pir') parser.add_argument('chr_list', help='File listing chromosomes to process.') parser.add_argument('prefix', help='Prefix for output files: <prefix>.<chr>.pir') parser.add_argument('-o', '--output_dir', help='Output directory') args = parser.parse_args() with open(args.chr_list) as f: chr_order = f.read().strip().split('\n') print('Sorting PIR files by chromosome.', flush=True) pir_files_df = pd.read_csv(args.pir_files_tsv, header=None, sep='\t') pir_files = pir_files_df.values.tolist() # sort by chromosome order sorted_pir_files = [] for p in pir_files: pir_dict = {os.path.split(i)[1].split('.')[1]:i for i in p} sorted_pir_files.append([pir_dict[i] for i in chr_order]) pir_files_df =
pd.DataFrame(sorted_pir_files, columns=chr_order)
pandas.DataFrame
import pandas as pd import numpy as np import requests import matplotlib.pyplot as plt from math import floor from termcolor import colored as cl plt.style.use('fivethirtyeight') plt.rcParams['figure.figsize'] = (20,10) def get_historical_data(symbol, start_date): api_key = 'YOUR API KEY' api_url = f'https://api.twelvedata.com/time_series?symbol={symbol}&interval=1day&outputsize=5000&apikey={api_key}' raw_df = requests.get(api_url).json() df = pd.DataFrame(raw_df['values']).iloc[::-1].set_index('datetime').astype(float) df = df[df.index >= start_date] df.index = pd.to_datetime(df.index) return df aapl = get_historical_data('AAPL', '2020-01-01') aapl def get_adx(high, low, close, lookback): plus_dm = high.diff() minus_dm = low.diff() plus_dm[plus_dm < 0] = 0 minus_dm[minus_dm > 0] = 0 tr1 = pd.DataFrame(high - low) tr2 = pd.DataFrame(abs(high - close.shift(1))) tr3 = pd.DataFrame(abs(low - close.shift(1))) frames = [tr1, tr2, tr3] tr = pd.concat(frames, axis = 1, join = 'inner').max(axis = 1) atr = tr.rolling(lookback).mean() plus_di = 100 * (plus_dm.ewm(alpha = 1/lookback).mean() / atr) minus_di = abs(100 * (minus_dm.ewm(alpha = 1/lookback).mean() / atr)) dx = (abs(plus_di - minus_di) / abs(plus_di + minus_di)) * 100 adx = ((dx.shift(1) * (lookback - 1)) + dx) / lookback adx_smooth = adx.ewm(alpha = 1/lookback).mean() return plus_di, minus_di, adx_smooth aapl['plus_di'] = pd.DataFrame(get_adx(aapl['high'], aapl['low'], aapl['close'], 14)[0]).rename(columns = {0:'plus_di'}) aapl['minus_di'] = pd.DataFrame(get_adx(aapl['high'], aapl['low'], aapl['close'], 14)[1]).rename(columns = {0:'minus_di'}) aapl['adx'] = pd.DataFrame(get_adx(aapl['high'], aapl['low'], aapl['close'], 14)[2]).rename(columns = {0:'adx'}) aapl = aapl.dropna() aapl.tail() ax1 = plt.subplot2grid((11,1), (0,0), rowspan = 5, colspan = 1) ax2 = plt.subplot2grid((11,1), (6,0), rowspan = 5, colspan = 1) ax1.plot(aapl['close'], linewidth = 2, color = '#ff9800') ax1.set_title('AAPL CLOSING PRICE') ax2.plot(aapl['plus_di'], color = '#26a69a', label = '+ DI 14', linewidth = 3, alpha = 0.3) ax2.plot(aapl['minus_di'], color = '#f44336', label = '- DI 14', linewidth = 3, alpha = 0.3) ax2.plot(aapl['adx'], color = '#2196f3', label = 'ADX 14', linewidth = 3) ax2.axhline(25, color = 'grey', linewidth = 2, linestyle = '--') ax2.legend() ax2.set_title('AAPL ADX 14') plt.show() def implement_adx_strategy(prices, pdi, ndi, adx): buy_price = [] sell_price = [] adx_signal = [] signal = 0 for i in range(len(prices)): if adx[i-1] < 25 and adx[i] > 25 and pdi[i] > ndi[i]: if signal != 1: buy_price.append(prices[i]) sell_price.append(np.nan) signal = 1 adx_signal.append(signal) else: buy_price.append(np.nan) sell_price.append(np.nan) adx_signal.append(0) elif adx[i-1] < 25 and adx[i] > 25 and ndi[i] > pdi[i]: if signal != -1: buy_price.append(np.nan) sell_price.append(prices[i]) signal = -1 adx_signal.append(signal) else: buy_price.append(np.nan) sell_price.append(np.nan) adx_signal.append(0) else: buy_price.append(np.nan) sell_price.append(np.nan) adx_signal.append(0) return buy_price, sell_price, adx_signal buy_price, sell_price, adx_signal = implement_adx_strategy(aapl['close'], aapl['plus_di'], aapl['minus_di'], aapl['adx']) ax1 = plt.subplot2grid((11,1), (0,0), rowspan = 5, colspan = 1) ax2 = plt.subplot2grid((11,1), (6,0), rowspan = 5, colspan = 1) ax1.plot(aapl['close'], linewidth = 3, color = '#ff9800', alpha = 0.6) ax1.set_title('AAPL CLOSING PRICE') ax1.plot(aapl.index, buy_price, marker = '^', color = '#26a69a', markersize = 14, linewidth = 0, label = 'BUY SIGNAL') ax1.plot(aapl.index, sell_price, marker = 'v', color = '#f44336', markersize = 14, linewidth = 0, label = 'SELL SIGNAL') ax2.plot(aapl['plus_di'], color = '#26a69a', label = '+ DI 14', linewidth = 3, alpha = 0.3) ax2.plot(aapl['minus_di'], color = '#f44336', label = '- DI 14', linewidth = 3, alpha = 0.3) ax2.plot(aapl['adx'], color = '#2196f3', label = 'ADX 14', linewidth = 3) ax2.axhline(25, color = 'grey', linewidth = 2, linestyle = '--') ax2.legend() ax2.set_title('AAPL ADX 14') plt.show() position = [] for i in range(len(adx_signal)): if adx_signal[i] > 1: position.append(0) else: position.append(1) for i in range(len(aapl['close'])): if adx_signal[i] == 1: position[i] = 1 elif adx_signal[i] == -1: position[i] = 0 else: position[i] = position[i-1] close_price = aapl['close'] plus_di = aapl['plus_di'] minus_di = aapl['minus_di'] adx = aapl['adx'] adx_signal = pd.DataFrame(adx_signal).rename(columns = {0:'adx_signal'}).set_index(aapl.index) position =
pd.DataFrame(position)
pandas.DataFrame
#!/usr/bin/env python3 import re import warnings warnings.simplefilter(action='ignore', category=UserWarning) import numpy as np import pandas as pd import pyranges as pr from src import logger from src.query import bam __all__ = ["Interval", "Regions"] tag_parser = re.compile(r"(?P<chrom>chr.{1,2}):(?P<start>\d*)-(?P<end>\d*)_?(?P<strand>[+-]?)") #--------------------------------------------------------------------------------------------------# class Interval: """Class for performing basic queries and manipulations on a single `Interval`.""" def __init__(self, chrom, start, end, strand=None, name=None): self.chrom = chrom if chrom.startswith("chr") else f"chr{chrom}" self.start = int(start) self.end = int(end) self.strand = strand self.name = self.tag if name is None else name self._validate() self.is_stranded = self.strand == "+" or self.strand == "-" # position at genomic features self.mid = (self.start + self.end) // 2 if self.is_stranded: self.tss = self.start if self.strand == "+" else self.end self.tes = self.start if self.strand == "-" else self.end def _validate(self): """Check validity of constructor arguments.""" assert self.end > self.start assert self.strand in ["+", "-", ".", None] # TODO: check bounds are within chromosome sizes @classmethod def load_tag(cls, tag): parsed_tag = tag_parser.match(tag).groupdict() parsed_tag["start"], parsed_tag["end"] = int(parsed_tag["start"]), int(parsed_tag["end"]) if parsed_tag["strand"] == "": parsed_tag["strand"] = None return cls(**parsed_tag) @classmethod def load_ensg(cls, gene): from src.load import aals assert gene in aals.gene_coords.index chrom, start, end, strand = aals.gene_coords.loc[gene] return cls(chrom, start, end, strand, name=gene) @classmethod def load(cls, *args): """Lazy loading.""" if len(args) == 1 and isinstance(args[0], Interval): return args[0] elif len(args) == 1 and isinstance(args[0], str): if args[0].startswith("chr"): return cls.load_tag(args[0]) elif args[0].startswith("ENSG"): return cls.load_ensg(args[0]) else: raise ValueError("Could not load Interval.") elif len(args) == 1 and isinstance(args[0], pd.Series): return cls(**args[0], name=args[0].name) else: return cls(*args[0]) #----------------------------------------------------------------------------------------------------# # Access genomic features as `Interval` objects #----------------------------------------------------------------------------------------------------# @property def as_start(self): return Interval(self.chrom, self.start, self.start+1, self.strand) @property def as_end(self): return Interval(self.chrom, self.end-1, self.end, self.strand) @property def as_mid(self): return Interval(self.chrom, self.mid, self.mid+1, self.strand) @property def as_tss(self): return Interval(self.chrom, self.tss, self.tss+1, self.strand) @property def as_tes(self): return Interval(self.chrom, self.tes-1, self.tes, self.strand) def get_pos(self, gf): """Access position by string or returns default genomic feature.""" if gf == "ref": gf = "tss" if self.is_stranded else "mid" return getattr(self, f"{gf}") #----------------------------------------------------------------------------------------------------# # Operations to generate new `Interval` instances relative to `self` #----------------------------------------------------------------------------------------------------# def widen(self, w): return Interval(self.chrom, self.start-w, self.end+w, self.strand) def slide(self, s, wrt_strand=None): if self.is_stranded and s != 0 and wrt_strand is None: raise ValueError("`wrt_strand` must be explicit if `Interval` is stranded.") if wrt_strand and self.strand == "-": s = -s return Interval(self.chrom, self.start+s, self.end+s, self.strand) def transform(self, w=0, s=0, wrt_strand=None): """Expand the region by `window`, shift the region downstream (3' direction) by `shift`. """ return self.widen(w=w).slide(s=s, wrt_strand=wrt_strand) #----------------------------------------------------------------------------------------------------# # Queries #----------------------------------------------------------------------------------------------------# def get_genotypes(self): from src.analysis import vcf return vcf.query_interval(self.chrom, self.start, self.end) def get_rna_coverages(self): coverages = self.as_Regions().get_rna_coverages() return coverages.iloc[0] def get_atac_coverages(self): coverages = self.as_Regions().get_atac_coverages() return coverages.iloc[0] def get_pileups(self): # TODO # get_pileups_in_interval pass #----------------------------------------------------------------------------------------------------# # Output formats #----------------------------------------------------------------------------------------------------# @property def tag(self): return coords_to_tag(self.chrom, self.start, self.end) def unstrand(self): if self.is_stranded: return Interval(self.chrom, self.start, self.end, name=self.name) else: return Interval(self.chrom, self.start, self.end) def as_tuple3(self): return self.chrom, self.start, self.end def as_tuple(self): return self.chrom, self.start, self.end, self.strand def as_dict(self): return {"chrom": self.chrom, "start": self.start, "end": self.end, "strand": self.strand} def as_Regions(self): interval_s = pd.Series(self.dict, name=self.tag) return Regions(interval_s.to_frame().T) def __repr__(self): if self.is_stranded: return f"{self.tag}_{self.strand}" else: return self.tag def length(self): return self.end - self.start # class Peak(Interval): # def __init__(self, peak_id): # parsed_tag = tag_parser.match(peak_id).groupdict() # chrom, start, end = parsed_tag["chrom"], int(parsed_tag["start"]), int(parsed_tag["end"]) # super().__init__(chrom, start, end) # class Gene(Interval): # def __init__(self, gene_id): # coords = aals.gene_coords.loc[gene_id] # super().__init__(**coords) #----------------------------------------------------------------------------------------------------# # Regions subclass #----------------------------------------------------------------------------------------------------# class Regions(pd.DataFrame): _df,_pr = None,None @property def _constructor(self): # return Regions if "chrom" in self.columns and "start" in self.columns and "end" in self.columns: return Regions else: logger.update("Not formatted as `Regions`. Falling back to dataframe.") return pd.DataFrame @property def is_stranded(self): return "strand" in self.columns @property def is_sorted(self): shifted = self.shift(fill_value=0) return ((self["start"] > shifted["start"]) | (self["chrom"] != shifted["chrom"])).all() #----------------------------------------------------------------------------------------------------# # Queries #----------------------------------------------------------------------------------------------------# def get_rna_coverages(self, max_size=10): return bam.get_coverages_in_regions(aals.rna_bams, self) def get_atac_coverages(self, max_size=10): return bam.get_coverages_in_regions(aals.atac_bams, self) #----------------------------------------------------------------------------------------------------# # Intersect with other regions #----------------------------------------------------------------------------------------------------# def in_interval(self, chrom, start, end): return self[(self["chrom"] == "chrom") & (self["end"] > start) & (self["start"] < end)] def overlap_with(self, other): """Reports features that overlap with other.""" other = _format_input_as_pyranges(other) overlap_idx = self.pr.overlap(other).__getattr__(self.index.name) return self.reindex(overlap_idx) def overlapping_idx(self, other, col_names=None, **kwargs): """Reports indices of overlapping intervals in self and other.""" return _get_overlapping_regions(self, other, col_names=col_names) def adjacent_idx(self, hops): """Reports pairs indices of adjacent intervals. Distance is set by `hops`.""" assert isinstance(hops, int) and hops != 0 pos_hops = abs(hops) chrom_vals = self["chrom"].values chroms_1, chroms_2 = chrom_vals[:-pos_hops], chrom_vals[pos_hops:] same_chrom = chroms_1 == chroms_2 names = self.index.name, f"{hops}_hop" if hops > 0: return pd.DataFrame((row[:2] for row in zip(self.index[:-pos_hops], self.index[pos_hops:], same_chrom) if row[2]), columns=names) else: return pd.DataFrame((row[:2] for row in zip(self.index[pos_hops:], self.index[:-pos_hops], same_chrom) if row[2]), columns=names) def k_adjacent(self, interval, k=5, gf=None, report_distance=True): """Gets the k nearest intervals in either direction.""" interval = unpack_interval_arg(interval) contig_features = self[self["chrom"] == interval.chrom] nearest_feature = contig_features.k_nearest(interval, k=1, gf=gf, report_distance=False).index[0] nearest_idx = np.where(contig_features.index == nearest_feature)[0][0] lower_idx, upper_idx = max(nearest_idx-k, 0), min(nearest_idx+k, len(contig_features)) regions = contig_features.iloc[lower_idx:upper_idx] if report_distance: regions = regions.assign(distance=self.distances_from_interval(interval, gf=gf)) return regions def k_nearest(self, interval, k=10, gf=None, report_distance=True): """Gets k nearest features by absolute distance.""" interval = unpack_interval_arg(interval) distances = self.distances_from_interval(interval, gf=gf) regions = self.reindex(distances.abs().sort_values()[:k].index).sort() if report_distance: regions = regions.assign(distance=self.distances_from_interval(interval, gf=gf)) return regions def previous_feature(self, interval, n=1, gf=None, report_distance=True): """Gets k nearest features by absolute distance.""" interval = unpack_interval_arg(interval) adjacent_intervals = self.k_adjacent(interval, k=1, gf=gf, report_distance=False) return Interval.load(adjacent_intervals.iloc[0]) #----------------------------------------------------------------------------------------------------# # Converters and I/O #----------------------------------------------------------------------------------------------------# @property def annotate(self): # if self.omic == "rna": # return self.assign(symbol=self["gene_id"].map(data.ensg)) pass @property def pr(self): if self._pr is None: self._pr = df_to_pr(self.df) return self._pr def bed(self, strand_fill="."): """Convert `Regions` object to BED format.""" pass @property def df(self): if self._df is None: self._df = pd.DataFrame(self) return self._df def write_bed(self, path): # TODO pass #----------------------------------------------------------------------------------------------------# # Utility methods #----------------------------------------------------------------------------------------------------# @property def tags(self): return self["chrom"] + ":" + self["start"].astype(str) + "-" + self["end"].astype(str) def set_index_to_tags(self, name="peak_id"): new_regions = self.copy() new_regions.index = self.tags new_regions.index.name = name return new_regions def sort(self): return sort_regions(self) #----------------------------------------------------------------------------------------------------# # Constructors #----------------------------------------------------------------------------------------------------# def unstrand(self): return self.drop(columns=["strand"], errors="ignore") def widen(self, w): """Expand region by w.""" new_regions = self.copy() new_regions["start"] -= w new_regions["end"] += w return new_regions def slide(self, s): """Slide region by s.""" new_regions = self.copy() if self.is_stranded: s = self["strand"].replace({"+":s, "-":-s}) new_regions["start"] += s new_regions["end"] += s return new_regions def transform(self, w=0, s=0): new_regions = self.copy() if self.is_stranded: s = self["strand"].replace({"+":s, "-":-s}) new_regions["start"] += s - w new_regions["end"] += s + w return new_regions #----------------------------------------------------------------------------------------------------# # Access positions #----------------------------------------------------------------------------------------------------# @property def start(self): new_regions = self.copy() new_regions["end"] = new_regions["start"] + 1 return new_regions @property def end(self): new_regions = self.copy() new_regions["start"] = new_regions["end"] - 1 return new_regions @property def mid(self): new_regions = self.copy() new_regions["start"] = (new_regions["start"] + new_regions["end"]) // 2 new_regions["end"] = new_regions["start"] return new_regions @property def tss(self): new_regions = self.copy() new_regions["start"] = np.where(new_regions["strand"] == "+", new_regions["start"], new_regions["end"]-1) new_regions["end"] = new_regions["start"] + 1 return new_regions @property def tes(self): new_regions = self.copy() new_regions["start"] = np.where(new_regions["strand"] == "-", new_regions["start"], new_regions["end"]-1) new_regions["end"] = new_regions["start"] + 1 return new_regions @property def start_pos(self): return self["start"].copy() @property def end_pos(self): return self["end"].copy() @property def mid_pos(self): return ((self["start"] + self["end"]) // 2).rename("mid") @property def tss_pos(self): tss_pos = np.where(self["strand"] == "+", self["start"], self["end"]) return pd.Series(data=tss_pos, index=self.index, name="tss") @property def tes_pos(self): tes_pos = np.where(self["strand"] == "-", self["start"], self["end"]) return
pd.Series(data=tes_pos, index=self.index, name="tes")
pandas.Series
import pandas as pd import collections import numpy as np import cvxopt as opt from cvxopt import blas, solvers from pandas.plotting import register_matplotlib_converters import datetime
register_matplotlib_converters()
pandas.plotting.register_matplotlib_converters
import os, sys, json, warnings, logging as log import pandas as pd, tqdm, dpath import annotate, collect from pprint import pprint def make_items(iter_labeled_meta, iter_all_meta, n_unlabeled, read_rows): '''Generate metadata from gold-standard and unlabled''' labeled_items = [(meta, read_rows(meta['url'])) for meta in iter_labeled_meta] annotated_table_urls = set([meta['url'] for meta, _ in labeled_items]) unlabeled_meta = [] for meta in iter_all_meta: if (n_unlabeled is not None) and len(unlabeled_meta) >= n_unlabeled: break if meta['url'] not in annotated_table_urls: unlabeled_meta.append(meta) unlabeled_items = [(meta, read_rows(meta['url'])) for meta in unlabeled_meta] return labeled_items, unlabeled_items def make_labelquery(args): querytype, template, slots, value, templates, namespace, kbdomain, name = args return querytype, name, annotate.make_labelquery(*args) def parallel_query(labelqueries, templates, namespace, kbdomain, max_workers=1): import tqdm, multiprocessing with multiprocessing.Pool(max_workers) as p: stream_args = [(q['label'], q['template'], q['slots'], q['value'], templates, namespace, kbdomain, name) for name, q in labelqueries.items()] t = len(stream_args) # yield from tqdm.tqdm(p.imap_unordered(make_labelquery, stream_args), total=t) yield from p.imap_unordered(make_labelquery, stream_args) def cache_labelquery_results(modeldir, namespace, kbdomain, selected_queries=[], results_fname=None, parallel=False, verbose=False): labelqueries, templates = annotate.load_labelqueries_templates(modeldir) if not results_fname: os.makedirs(os.path.join(modeldir, 'labelqueries', 'cache'), exist_ok=True) results_fname = os.path.join(modeldir, 'labelqueries', 'cache', 'results.json') labelquery_results = load_labelquery_results(modeldir, results_fname=results_fname) l = len(labelqueries) if parallel: if selected_queries: labelqueries = { name: q for name, q in labelqueries.items() if name in selected_queries } lqs = parallel_query(labelqueries, templates, namespace, kbdomain, max_workers=parallel) for qt, name, lq in lqs: labelquery_results.setdefault(qt, {})[name] = lq else: for i, (name, q) in enumerate(labelqueries.items()): if selected_queries and (name not in selected_queries): continue lq = annotate.make_labelquery(q['label'], q['template'], q['slots'], q['value'], templates, namespace, kbdomain=kbdomain, name=name) if verbose: print(len(lq.transformations), 'results') labelquery_results.setdefault(q['label'], {})[name] = lq with open(results_fname, 'w') as fw: results_json = { label: {name: vars(lq) for name, lq in lqs.items()} for label, lqs in labelquery_results.items() } json.dump(results_json, fw, indent=2) with open(results_fname.replace('.json', '.stats.json'), 'w') as fw: results_json = { name: len(lq.transformations) for label, lqs in labelquery_results.items() for name, lq in lqs.items() } json.dump(results_json, fw, indent=2) return labelquery_results def load_labelquery_results(modeldir, results_fname=None): typed_labelqueries = {} if not results_fname: os.makedirs(os.path.join(modeldir, 'labelqueries', 'cache'), exist_ok=True) results_fname = os.path.join(modeldir, 'labelqueries', 'cache', 'results.json') if os.path.exists(results_fname): typed_labelqueries = json.load(open(results_fname)) for lq_type, labelqueries in typed_labelqueries.items(): for name, lq_params in labelqueries.items(): labelqueries[name] = annotate.LabelQuery(**lq_params) return typed_labelqueries def transform_all(labelqueries, unlabeled_items, model, **kwargs): with warnings.catch_warnings(): warnings.simplefilter("ignore", category=RuntimeWarning) id_items = {m['@id']: (m, r) for m, r in unlabeled_items} lX = [] lq_labels = {} l = len(labelqueries) for i, (name, lq) in enumerate(labelqueries.items()): print(f'Transforming using query {name:>4s} [{i+1:3d}/{l:3d}] ...', end='\r', file=sys.stderr) # Get corresponding metadata for query results selected_items = [ id_items[i] for i in lq.transformations if i in id_items ] transformed_items = tuple( zip(*[(lq.transform(m, r, **kwargs), r) for m, r in selected_items])) if transformed_items: recs = tuple( zip(*model.__class__.make_records(*transformed_items))) if recs: qlX, qly = recs qlX = pd.DataFrame.from_records(list(qlX)).set_index('@id') lX.append(qlX) lq_labels[name] = pd.Series(qly, index=qlX.index) print(file=sys.stderr) lX = pd.concat(lX).drop_duplicates().replace([pd.np.nan], 0) L = pd.DataFrame(index=lX.index) # rows: n_labelqueries x cols: labels for lqname, qly in lq_labels.items(): L[lqname] = qly return lX, L def get_query_labelings(labeled_metas, labelqueries): item_query_label = {} for meta in labeled_metas: for qid, lq in labelqueries.items(): for p, v in lq.transformations.get(meta['@id'], {}).items(): if v: item_query_label.setdefault((meta['url'], p), {})[qid] = v L = pd.DataFrame.from_dict(item_query_label, orient='index') return L def get_true_labelings(labeled_metas, eval_path): item_truelabel = {} for meta in labeled_metas: for p, v in dpath.util.search(meta, eval_path, yielded=True): if not meta.get('karma:isBad'): item_truelabel[(meta['url'], p)] = v or None return
pd.Series(item_truelabel)
pandas.Series
#!/usr/bin/env python3 import pandas as pd import numpy as np import itertools import requests import re import os import json from altair import * from fileops import save from collections import Counter data = { "NVIDIA": { "url": "https://en.wikipedia.org/wiki/List_of_Nvidia_graphics_processing_units" }, "AMD": { "url": "https://en.wikipedia.org/wiki/List_of_AMD_graphics_processing_units", }, } referencesAtEnd = r"(?:\s*\[\d+\])+(?:\d+,)?(?:\d+)?$" for vendor in ["NVIDIA", "AMD"]: # requests.get handles https html = requests.get(data[vendor]["url"]).text # oddly, some dates look like: # <td><span class="sortkey" style="display:none;speak:none">000000002010-02-25-0000</span><span style="white-space:nowrap">Feb 25, 2010</span></td> html = re.sub(r'<span [^>]*style="display:none[^>]*>([^<]+)</span>', "", html) html = re.sub(r"<span[^>]*>([^<]+)</span>", r"\1", html) # someone writes "1234" as "1&nbsp;234", sigh html = re.sub(r"(\d)&#160;(\d)", r"\1\2", html) html = re.sub(r"&thinsp;", "", html) # delete thin space (thousands sep) html = re.sub(r"&#8201;", "", html) # delete thin space (thousands sep) html = re.sub("\xa0", " ", html) # non-breaking space -> ' ' html = re.sub(r"&#160;", " ", html) # non-breaking space -> ' ' html = re.sub(r"&nbsp;", " ", html) # non-breaking space -> ' ' html = re.sub(r"<br />", " ", html) # breaking space -> ' ' html = re.sub("\u2012", "-", html) # figure dash -> '-' html = re.sub("\u2013", "-", html) # en-dash -> '-' html = re.sub(r"mm<sup>2</sup>", "mm2", html) # mm^2 -> mm2 html = re.sub("\u00d710<sup>6</sup>", "\u00d7106", html) # 10^6 -> 106 html = re.sub("\u00d710<sup>9</sup>", "\u00d7109", html) # 10^9 -> 109 html = re.sub(r"<sup>\d+</sup>", "", html) # delete footnotes # with open('/tmp/%s.html' % vendor, 'wb') as f: # f.write(html.encode('utf8')) dfs = pd.read_html( html, match=re.compile("Launch|Release Date & Price"), parse_dates=True ) for idx, df in enumerate(dfs): # Multi-index to index # column names that are duplicated should be unduplicated # 'Launch Launch' -> 'Launch' # TODO do this # ' '.join(a for a, b in itertools.zip_longest(my_list, my_list[1:]) if a != b)` # print(df.columns.values) df.columns = [ " ".join( a for a, b in itertools.zip_longest(col, col[1:]) if (a != b and not a.startswith("Unnamed: ")) ).strip() for col in df.columns.values ] # df.columns = [' '.join(col).strip() for col in df.columns.values] # TODO this next one disappears # Get rid of 'Unnamed' column names # df.columns = [re.sub(' Unnamed: [0-9]+_level_[0-9]+', '', col) # for col in df.columns.values] # If a column-name word ends in a number or number,comma,number, delete # it df.columns = [ " ".join([re.sub("[\d,]+$", "", word) for word in col.split()]) for col in df.columns.values ] # If a column-name word ends with one or more '[x]', # where 'x' is an upper- or lower-case letter or number, delete it df.columns = [ " ".join( [re.sub(r"(?:\[[a-zA-Z0-9]+\])+$", "", word) for word in col.split()] ) for col in df.columns.values ] # Get rid of hyphenation in column names df.columns = [col.replace("- ", "") for col in df.columns.values] # Get rid of space after slash in column names df.columns = [col.replace("/ ", "/") for col in df.columns.values] # Get rid of trailing space in column names df.columns = df.columns.str.strip() df["Vendor"] = vendor if ("Launch" not in df.columns.values) and ( "Release Date & Price" in df.columns.values ): # take everything up to #### df["Launch"] = df["Release Date & Price"].str.extract( r"^(.*\d\d\d\d)", expand=False ) df["Release Price (USD)"] = df["Release Date & Price"].str.extract( r"\$([\d,]+)", expand=False ) # make sure Launch is a string (dtype=object) before parsing it df["Launch"] = df["Launch"].apply(lambda x: str(x)) df["Launch"] = df["Launch"].str.replace(referencesAtEnd, "") df["Launch"] = df["Launch"].apply( lambda x: pd.to_datetime(x, infer_datetime_format=True, errors="coerce") ) # if we have duplicate column names, we will see them here # pd.concat will fail if so if [c for c in Counter(df.columns).items() if c[1] > 1]: # so remove them # https://stackoverflow.com/questions/14984119/python-pandas-remove-duplicate-columns df = df.loc[:, ~df.columns.duplicated()] # this assignment is because I don't have a way to do the above line # in-place dfs[idx] = df data[vendor]["dfs"] = dfs df = pd.concat( data["NVIDIA"]["dfs"] + data["AMD"]["dfs"], sort=False, ignore_index=True ) # print all columns # print(list(df)) def merge(df, dst, src, replaceNoWithNaN=False, delete=True): if replaceNoWithNaN: df[src] = df[src].replace("No", np.nan) df[dst] = df[dst].fillna(df[src]) if delete: df.drop(src, axis=1, inplace=True) return df # merge related columns df = merge(df, "Model", "Model Units") df = merge( df, "Processing power (GFLOPS) Single precision", "Processing power (GFLOPS)" ) df = merge( df, "Processing power (GFLOPS) Single precision", "Processing power (GFLOPS) Single precision (MAD+MUL)", replaceNoWithNaN=True, ) df = merge( df, "Processing power (GFLOPS) Single precision", "Processing power (GFLOPS) Single precision (MAD or FMA)", replaceNoWithNaN=True, ) df = merge( df, "Processing power (GFLOPS) Double precision", "Processing power (GFLOPS) Double precision (FMA)", replaceNoWithNaN=True, ) df = merge(df, "Memory Bandwidth (GB/s)", "Memory configuration Bandwidth (GB/s)") df = merge(df, "TDP (Watts)", "TDP (Watts) Max.") df = merge(df, "TDP (Watts)", "TBP (W)") # get only the number out of TBP # TODO this doesn't work - these numbers don't appear df["TBP"] = df["TBP"].str.extract(r"([\d]+)", expand=False) df = merge(df, "TDP (Watts)", "TBP") df = merge(df, "TDP (Watts)", "TBP (Watts)") # fix up watts? # df['TDP (Watts)'] = df['TDP (Watts)'].str.extract(r'<([\d\.]+)', expand=False) df = merge(df, "Model", "Model (Codename)") df = merge(df, "Model", "Model (codename)") # df = merge(df, 'Model', 'Chip (Device)') # replace when AMD page updated df = merge(df, "Model", "Model: Mobility Radeon") df = merge(df, "Core clock (MHz)", "Clock rate Base (MHz)") df = merge(df, "Core clock (MHz)", "Clock speeds Base core clock (MHz)") df = merge(df, "Core clock (MHz)", "Core Clock (MHz)") df = merge(df, "Core clock (MHz)", "Clock rate Core (MHz)") df = merge(df, "Core clock (MHz)", "Clock speed Core (MHz)") df = merge(df, "Core clock (MHz)", "Clock speed Average (MHz)") df = merge(df, "Core clock (MHz)", "Core Clock rate (MHz)") df = merge(df, "Core clock (MHz)", "Clock rate (MHz) Core (MHz)") df = merge(df, "Core config", "Core Config") df = merge(df, "Transistors Die Size", "Transistors & Die Size") df = merge(df, "Memory Bus type", "Memory RAM type") df = merge(df, "Memory Bus type", "Memory Type") df = merge(df, "Memory Bus type", "Memory configuration DRAM type") df = merge(df, "Memory Bus width (bit)", "Memory configuration Bus width (bit)") df = merge(df, "Release Price (USD)", "Release price (USD)") df = merge(df, "Release Price (USD)", "Release price (USD) MSRP") # filter out {Chips, Code name, Core config}: '^[2-9]\u00d7' df = df[~df["Chips"].str.contains(r"^[2-9]\u00d7", re.UNICODE, na=False)] df = df[~df["Code name"].str.contains(r"^[2-9]\u00d7", re.UNICODE, na=False)] df = df[~df["Core config"].str.contains(r"^[2-9]\u00d7", re.UNICODE, na=False)] # filter out if Model ends in [xX]2 df = df[~df["Model"].str.contains("[xX]2$", na=False)] # filter out {transistors, die size} that end in x2 df = df[ ~df["Transistors (million)"].str.contains(r"\u00d7[2-9]$", re.UNICODE, na=False) ] df = df[~df["Die size (mm2)"].str.contains(r"\u00d7[2-9]$", re.UNICODE, na=False)] for prec in ["Single", "Double", "Half"]: col = f"Processing power (TFLOPS) {prec} precision" destcol = f"Processing power (GFLOPS) {prec} precision" df[col] = df[col].astype(str) df[col] = df[col].str.replace(",", "") # get rid of commas df[col] = df[col].str.extract(r"^([\d\.]+)", expand=False) df[col] = pd.to_numeric(df[col]) * 1000.0 # change to GFLOPS df = merge(df, destcol, col) # merge GFLOPS columns with "Boost" column headers and rename for prec in ["Single", "Double", "Half"]: # single before others for '1/16 SP' col = "Processing power (GFLOPS) %s precision" % prec spcol = "%s-precision GFLOPS" % "Single" # if prec != 'Half': # df = merge( # df, col, 'Processing power (GFLOPS) %s precision Base Core (Base Boost) (Max Boost 2.0)' % prec) for ( srccol ) in [ # 'Processing power (GFLOPS) %s precision Base Core (Base Boost) (Max Boost 3.0)', # 'Processing power (GFLOPS) %s precision R/F.E Base Core Reference (Base Boost) F.E. (Base Boost) R/F.E. (Max Boost 4.0)', "Processing power (GFLOPS) %s" ]: df = merge(df, col, srccol % prec) # handle weird references to single-precision column if prec != "Single": df.loc[df[col] == "1/16 SP", col] = pd.to_numeric(df[spcol]) / 16 df.loc[df[col] == "2x SP", col] = pd.to_numeric(df[spcol]) * 2 # pick the first number we see as the actual number df[col] = df[col].astype(str) df[col] = df[col].str.replace(",", "") # get rid of commas df[col] = df[col].str.extract(r"^([\d\.]+)", expand=False) # convert TFLOPS to GFLOPS # tomerge = 'Processing power (TFLOPS) %s Prec.' % prec # df[col] = df[col].fillna( # pd.to_numeric(df[tomerge].str.split(' ').str[0], errors='coerce') * 1000.0) # df.drop(tomerge, axis=1, inplace=True) df = df.rename(columns={col: "%s-precision GFLOPS" % prec}) # split out 'transistors die size' # example: u'292\u00d7106 59 mm2' for exponent in ["\u00d7106", "\u00d7109", "B"]: dftds = df["Transistors Die Size"].str.extract( "^([\d\.]+)%s (\d+) mm2" % exponent, expand=True ) if exponent == "\u00d7106": df["Transistors (million)"] = df["Transistors (million)"].fillna( pd.to_numeric(dftds[0], errors="coerce") ) if exponent == "\u00d7109" or exponent == "B": df["Transistors (billion)"] = df["Transistors (billion)"].fillna( pd.to_numeric(dftds[0], errors="coerce") ) df["Die size (mm2)"] = df["Die size (mm2)"].fillna(
pd.to_numeric(dftds[1], errors="coerce")
pandas.to_numeric
from sqlalchemy import create_engine import pandas as pd import os from dotenv import load_dotenv import numpy as np import re from geopy.geocoders import Nominatim from geopy.extra.rate_limiter import RateLimiter import json import missingno as msno class Marketplace(): """ Clean provided dataset and prepare for ML Process: - Check for existing downloaded data - download if not present - import from csv if present - Remove N/A records - Split Category and Product_name data - store each subsection in its own column - Remove currency symbols - Replace categories with numbers - Get longitude and latitude from location text - Export new data to csv and categories to json Args: - None Returns: - None """ def __init__(self): """ Initialise new Marketplace object """ pass def not_already_downloaded(self) -> bool: """ Checks for presence of csv file of already processed data Args: - None Returns: - Bool: True if no csv is present """ if os.path.exists('data/cleaned.csv'): print("Existing data found") return False else: print("No csv present") return True def load_all_existing_data_to_dfs(self): """ If csv information available, loads it to num_df Args: - None Returns: - None """ self.num_df = pd.read_csv( 'data/cleaned.csv', header=0, delimiter=",", engine='python') with open('data/category.json', 'r') as jf: self.cat_headings = dict(json.load(jf)) with open('data/minor_category.json', 'r') as jf: self.minor_cat_headings = dict(json.load(jf)) with open('data/sub_category.json', 'r') as jf: self.sub_cat_headings = dict(json.load(jf)) def connect_to_RDS_engine(self): """ When there's no csv, we go online to get the data. Args: - None Returns: - None """ load_dotenv() DATABASE_TYPE = os.environ.get('DATABASE_TYPE') DBAPI = os.environ.get('DBAPI') ENDPOINT = os.environ.get('ENDPOINT') DBUSER = os.environ.get('DBUSER') DBPASSWORD = os.environ.get('DBPASSWORD') PORT = 5432 DATABASE = os.environ.get('DATABASE') engine = create_engine(f"{DATABASE_TYPE}+{DBAPI}://{DBUSER}:" f"{DBPASSWORD}@{ENDPOINT}:" f"{PORT}/{DATABASE}") engine.connect() main_df = pd.read_sql_table( 'products', self.engine, columns=["id", "product_name", "category", "product_description", "price", "location", "page_id", "create_time"]) return main_df def remove_n_a_records(self, column: str): """ Scan the column for records with all N/As. Get rid of them Args: column (str): The column currently being scanned. """ # Swap N/A for the pandas nan, so we can drop them temp_df = self.main_df[column].replace('N/A', np.nan) temp_df = temp_df.dropna() # Create a new df with only the records without the nans clean_df = pd.merge(temp_df, self.main_df, left_index=True, right_index=True) # The merge creates a duplicate column. Remove it. clean_df.drop(column + '_x', inplace=True, axis=1) # Rename the remaining category column clean_df.rename(columns={column + '_y': column}, inplace=True) # Commit the cleansed data to the dataframe self.main_df = clean_df def split_heirarchies(self, col: str, character: str, no_cols: int): """ Takes in a column name and splits data to columns based on sep. char. Args: col (str): _description_ character (str): _description_ no_cols (int): _description_ """ self.main_df[[col+str(i) for i in range(no_cols)]] = ( self.main_df[col].str.split(character, expand=True)) self.main_df = self.main_df.drop(col, axis=1) if col == 'category': for i in range(no_cols): if i > 2: self.main_df = self.main_df.drop(col+str(i), axis=1) def clean_columns(self, num: int): """ Removes unnecessary columns generated by split_heirarchies func. Renames product_name and category columns accordingly Args: num (int): The number of columns to keep """ # categories - remove anything after category_2 cols = [('product_name' + str(i)) for i in range(1, (num))] for column in cols: self.main_df = self.main_df.drop(column, axis=1) self.main_df = self.main_df.rename( columns={'product_name0': 'product_name', 'category0': 'category', 'category1': 'sub_category', 'category2': 'minor_category'}) self.main_df['category'] = self.main_df['category'].apply( lambda x: x.strip(' |') if not(pd.isnull(x)) else x) self.main_df['sub_category'] = self.main_df['sub_category'].apply( lambda x: x.strip(' |') if not(pd.isnull(x)) else x) self.main_df['minor_category'] = self.main_df['minor_category'].apply( lambda x: x.strip(' |') if not(pd.isnull(x)) else x) self.main_df['product_name'] = self.main_df['product_name'].apply( lambda x: x.strip(' |') if not(
pd.isnull(x)
pandas.isnull
from io import StringIO import subprocess import pandas as pd import os # Time columns in job records # If we exclude PENDING jobs (that we do in slurm_raw_processing), all time columns should have a time stamp, # except RUNNING jobs that do not have the 'End' stamp. time_columns = ['Eligible','Submit','Start','End'] # Define what constitutes a duplicate job duplicate_job_def = ['JobID','Submit','Start'] def sacct_jobs(account_query, d_from, d_to='', debugging=False, serialize_frame='', slurm_names=False): """Ingest job record information from slurm via sacct and return DataFrame. Parameters ------- account_query: str String query to be sent to sacct via -A flag. d_from: date str Beginning of the query period, e.g. '2019-04-01T00:00:00 debugging: boolean, optional Boolean for reporting progress to stdout. Default False. sacct_file: str, optional Loads a raw query from file. If empty, query is rerun. Defaults to the empty string. serialize_frame: str, optional Pickle the resulting DataFrame. If empty, pickling is skipped. Defaults to the empty string. slurm_names: str, optional Keep slurm's sacct column names instead of shorthands. Defaults to False. Returns ------- DataFrame Returns a standard pandas DataFrame, or an empty dataframe if no jobs are found. """ raw_frame = _get_slurm_records(pd.to_datetime(d_from)) out_frame = _slurm_raw_processing(raw_frame, slurm_names) # Legacy/consistency check: # Protect end time for jobs that are still currently running out_frame['end'] = out_frame['end'].replace({pd.NaT:
pd.to_datetime(d_to)
pandas.to_datetime
# # Copyright (c) 2020 IBM Corp. # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # import pandas as pd import os import tempfile import unittest # noinspection PyPackageRequirements import pytest from pandas.tests.extension import base from text_extensions_for_pandas.array.test_span import ArrayTestBase from text_extensions_for_pandas.array.span import * from text_extensions_for_pandas.array.token_span import * class TokenSpanTest(ArrayTestBase): def test_create(self): toks = self._make_spans_of_tokens() s1 = TokenSpan(toks, 0, 1) self.assertEqual(s1.covered_text, "This") # Begin too small with self.assertRaises(ValueError): TokenSpan(toks, -2, 4) # End too small with self.assertRaises(ValueError): TokenSpan(toks, 1, -1) # End too big with self.assertRaises(ValueError): TokenSpan(toks, 1, 10) # Begin null, end not null with self.assertRaises(ValueError): TokenSpan(toks, TokenSpan.NULL_OFFSET_VALUE, 0) def test_repr(self): toks = self._make_spans_of_tokens() s1 = TokenSpan(toks, 0, 2) self.assertEqual(repr(s1), "[0, 7): 'This is'") toks2 = SpanArray( "This is a really really really really really really really really " "really long string.", np.array([0, 5, 8, 10, 17, 24, 31, 38, 45, 52, 59, 66, 73, 78, 84]), np.array([4, 7, 9, 16, 23, 30, 37, 44, 51, 58, 65, 72, 77, 84, 85]), ) self._assertArrayEquals( toks2.covered_text, [ "This", "is", "a", "really", "really", "really", "really", "really", "really", "really", "really", "really", "long", "string", ".", ], ) s2 = TokenSpan(toks2, 0, 4) self.assertEqual(repr(s2), "[0, 16): 'This is a really'") s2 = TokenSpan(toks2, 0, 15) self.assertEqual( repr(s2), "[0, 85): 'This is a really really really really really really " "really really really [...]'" ) def test_equals(self): toks = self._make_spans_of_tokens() other_toks = toks[:-1].copy() s1 = TokenSpan(toks, 0, 2) s2 = TokenSpan(toks, 0, 2) s3 = TokenSpan(toks, 0, 3) s4 = TokenSpan(other_toks, 0, 2) s5 = Span(toks.target_text, s4.begin, s4.end) s6 = Span(toks.target_text, s4.begin, s4.end + 1) self.assertEqual(s1, s2) self.assertNotEqual(s1, s3) self.assertEqual(s1, s4) self.assertEqual(s1, s5) self.assertEqual(s5, s1) self.assertNotEqual(s1, s6) def test_less_than(self): toks = self._make_spans_of_tokens() s1 = TokenSpan(toks, 0, 3) s2 = TokenSpan(toks, 2, 3) s3 = TokenSpan(toks, 3, 4) self.assertLess(s1, s3) self.assertLessEqual(s1, s3) self.assertFalse(s1 < s2) def test_add(self): toks = self._make_spans_of_tokens() s1 = TokenSpan(toks, 0, 3) s2 = TokenSpan(toks, 2, 3) s3 = TokenSpan(toks, 3, 4) char_s1 = Span(s1.target_text, s1.begin, s1.end) char_s2 = Span(s2.target_text, s2.begin, s2.end) self.assertEqual(s1 + s2, s1) self.assertEqual(char_s1 + s2, char_s1) self.assertEqual(s2 + char_s1, char_s1) self.assertEqual(char_s2 + char_s1, char_s1) self.assertEqual(s2 + s3, TokenSpan(toks, 2, 4)) def test_hash(self): toks = self._make_spans_of_tokens() s1 = TokenSpan(toks, 0, 3) s2 = TokenSpan(toks, 0, 3) s3 = TokenSpan(toks, 3, 4) d = {s1: "foo"} self.assertEqual(d[s1], "foo") self.assertEqual(d[s2], "foo") d[s2] = "bar" d[s3] = "fab" self.assertEqual(d[s1], "bar") self.assertEqual(d[s2], "bar") self.assertEqual(d[s3], "fab") class TokenSpanArrayTest(ArrayTestBase): def _make_spans(self): toks = self._make_spans_of_tokens() return TokenSpanArray(toks, [0, 1, 2, 3, 0, 2, 0], [1, 2, 3, 4, 2, 4, 4]) def test_create(self): arr = self._make_spans() self._assertArrayEquals( arr.covered_text, ["This", "is", "a", "test", "This is", "a test", "This is a test"], ) with self.assertRaises(TypeError): TokenSpanArray(self._make_spans_of_tokens(), "Not a valid begins list", [42]) def test_dtype(self): arr = self._make_spans() self.assertTrue(isinstance(arr.dtype, TokenSpanDtype)) def test_len(self): self.assertEqual(len(self._make_spans()), 7) def test_getitem(self): arr = self._make_spans() self.assertEqual(arr[2].covered_text, "a") self._assertArrayEquals(arr[2:4].covered_text, ["a", "test"]) def test_setitem(self): arr = self._make_spans() arr[1] = arr[2] self._assertArrayEquals(arr.covered_text[0:4], ["This", "a", "a", "test"]) arr[3] = None self._assertArrayEquals(arr.covered_text[0:4], ["This", "a", "a", None]) with self.assertRaises(ValueError): arr[0] = "Invalid argument for __setitem__()" arr[0:2] = arr[0] self._assertArrayEquals(arr.covered_text[0:4], ["This", "This", "a", None]) arr[[0, 1, 3]] = None self._assertArrayEquals(arr.covered_text[0:4], [None, None, "a", None]) arr[[2, 1, 3]] = arr[[4, 5, 6]] self._assertArrayEquals( arr.covered_text[0:4], [None, "a test", "This is", "This is a test"] ) def test_equals(self): arr = self._make_spans() self._assertArrayEquals(arr[0:4] == arr[1], [False, True, False, False]) arr2 = self._make_spans() self._assertArrayEquals(arr == arr, [True] * 7) self._assertArrayEquals(arr == arr2, [True] * 7) self._assertArrayEquals(arr[0:3] == arr[3:6], [False, False, False]) arr3 = SpanArray(arr.target_text, arr.begin, arr.end) self._assertArrayEquals(arr == arr3, [True] * 7) self._assertArrayEquals(arr3 == arr, [True] * 7) def test_not_equals(self): arr = self._make_spans() arr2 = self._make_spans() self._assertArrayEquals(arr[0:4] != arr[1], [True, False, True, True]) self._assertArrayEquals(arr != arr2, [False] * 7) self._assertArrayEquals(arr[0:3] != arr[3:6], [True, True, True]) def test_concat_same_type(self): arr = self._make_spans() arr2 = self._make_spans() # Type: TokenSpanArray arr3 = TokenSpanArray._concat_same_type((arr, arr2)) self._assertArrayEquals(arr3.covered_text, np.tile(arr2.covered_text, 2)) def test_from_factorized(self): arr = self._make_spans() spans_list = [arr[i] for i in range(len(arr))] arr2 = TokenSpanArray._from_factorized(spans_list, arr) self._assertArrayEquals(arr.covered_text, arr2.covered_text) def test_from_sequence(self): arr = self._make_spans() spans_list = [arr[i] for i in range(len(arr))] arr2 = TokenSpanArray._from_sequence(spans_list) self._assertArrayEquals(arr.covered_text, arr2.covered_text) def test_nulls(self): arr = self._make_spans() self._assertArrayEquals(arr.isna(), [False] * 7) self.assertFalse(arr.have_nulls) arr[2] = TokenSpan.make_null(arr.tokens) self.assertIsNone(arr.covered_text[2]) self._assertArrayEquals(arr[0:4].covered_text, ["This", "is", None, "test"]) self._assertArrayEquals(arr[0:4].isna(), [False, False, True, False]) self.assertTrue(arr.have_nulls) def test_copy(self): arr = self._make_spans() arr2 = arr.copy() self._assertArrayEquals(arr.covered_text, arr2.covered_text) self.assertEqual(arr[1], arr2[1]) arr[1] = TokenSpan.make_null(arr.tokens) self.assertNotEqual(arr[1], arr2[1]) # Double underscore because you can't call a test case "test_take" def test_take(self): arr = self._make_spans() arr2 = arr.take([1, 1, 2, 3, 5, -1]) self._assertArrayEquals( arr2.covered_text, ["is", "is", "a", "test", "a test", "This is a test"] ) arr3 = arr.take([1, 1, 2, 3, 5, -1], allow_fill=True) self._assertArrayEquals( arr3.covered_text, ["is", "is", "a", "test", "a test", None] ) def test_less_than(self): tokens = self._make_spans_of_tokens() arr1 = TokenSpanArray(tokens, [0, 2], [4, 3]) s1 = TokenSpan(tokens, 0, 1) s2 = TokenSpan(tokens, 3, 4) arr2 = TokenSpanArray(tokens, [0, 3], [0, 4]) self._assertArrayEquals(s1 < arr1, [False, True]) self._assertArrayEquals(s2 > arr1, [False, True]) self._assertArrayEquals(arr1 < s1, [False, False]) self._assertArrayEquals(arr1 < arr2, [False, True]) def test_add(self): toks = self._make_spans_of_tokens() s1 = TokenSpan(toks, 0, 3) s2 = TokenSpan(toks, 2, 3) s3 = TokenSpan(toks, 3, 4) s4 = TokenSpan(toks, 2, 4) s5 = TokenSpan(toks, 0, 3) char_s1 = Span(s1.target_text, s1.begin, s1.end) char_s2 = Span(s2.target_text, s2.begin, s2.end) char_s3 = Span(s3.target_text, s3.begin, s3.end) char_s4 = Span(s4.target_text, s4.begin, s4.end) char_s5 = Span(s5.target_text, s5.begin, s5.end) # TokenSpanArray + TokenSpanArray self._assertArrayEquals( TokenSpanArray._from_sequence([s1, s2, s3]) + TokenSpanArray._from_sequence([s2, s3, s3]), TokenSpanArray._from_sequence([s1, s4, s3]), ) # SpanArray + TokenSpanArray self._assertArrayEquals( SpanArray._from_sequence([char_s1, char_s2, char_s3]) + TokenSpanArray._from_sequence([s2, s3, s3]), SpanArray._from_sequence([char_s1, char_s4, char_s3]), ) # TokenSpanArray + SpanArray self._assertArrayEquals( TokenSpanArray._from_sequence([s1, s2, s3]) + SpanArray._from_sequence([char_s2, char_s3, char_s3]), SpanArray._from_sequence([char_s1, char_s4, char_s3]), ) # TokenSpanArray + TokenSpan self._assertArrayEquals( TokenSpanArray._from_sequence([s1, s2, s3]) + s2, TokenSpanArray._from_sequence([s5, s2, s4]), ) # TokenSpan + TokenSpanArray self._assertArrayEquals( s2 + TokenSpanArray._from_sequence([s1, s2, s3]), TokenSpanArray._from_sequence([s5, s2, s4]), ) # TokenSpanArray + Span self._assertArrayEquals( TokenSpanArray._from_sequence([s1, s2, s3]) + char_s2, SpanArray._from_sequence([char_s5, char_s2, char_s4]), ) # Span + SpanArray self._assertArrayEquals( char_s2 + SpanArray._from_sequence([char_s1, char_s2, char_s3]), SpanArray._from_sequence([char_s5, char_s2, char_s4]), ) def test_reduce(self): arr = self._make_spans() self.assertEqual(arr._reduce("sum"), TokenSpan(arr.tokens, 0, 4)) # Remind ourselves to modify this test after implementing min and max with self.assertRaises(TypeError): arr._reduce("min") def test_make_array(self): arr = self._make_spans() arr_series = pd.Series(arr) toks_list = [arr[0], arr[1], arr[2], arr[3]] self._assertArrayEquals( TokenSpanArray.make_array(arr).covered_text, ["This", "is", "a", "test", "This is", "a test", "This is a test"], ) self._assertArrayEquals( TokenSpanArray.make_array(arr_series).covered_text, ["This", "is", "a", "test", "This is", "a test", "This is a test"], ) self._assertArrayEquals( TokenSpanArray.make_array(toks_list).covered_text, ["This", "is", "a", "test"], ) def test_begin_and_end(self): arr = self._make_spans() self._assertArrayEquals(arr.begin, [0, 5, 8, 10, 0, 8, 0]) self._assertArrayEquals(arr.end, [4, 7, 9, 14, 7, 14, 14]) def test_normalized_covered_text(self): arr = self._make_spans() self._assertArrayEquals( arr.normalized_covered_text, ["this", "is", "a", "test", "this is", "a test", "this is a test"], ) def test_as_frame(self): arr = self._make_spans() df = arr.as_frame() self._assertArrayEquals( df.columns, ["begin", "end", "begin_token", "end_token", "covered_text"] ) self.assertEqual(len(df), len(arr)) class TokenSpanArrayIOTests(ArrayTestBase): def do_roundtrip(self, df): with tempfile.TemporaryDirectory() as dirpath: filename = os.path.join(dirpath, 'token_span_array_test.feather') df.to_feather(filename) df_read = pd.read_feather(filename) pd.testing.assert_frame_equal(df, df_read) def test_feather(self): toks = self._make_spans_of_tokens() # Equal token spans to tokens ts1 = TokenSpanArray(toks, np.arange(len(toks)), np.arange(len(toks)) + 1) df1 = pd.DataFrame({"ts1": ts1}) self.do_roundtrip(df1) # More token spans than tokens ts2 = TokenSpanArray(toks, [0, 1, 2, 3, 0, 2, 0], [1, 2, 3, 4, 2, 4, 4]) df2 =
pd.DataFrame({"ts2": ts2})
pandas.DataFrame
import os import sys import pandas as pd from sklearn.model_selection import train_test_split from sklearn.linear_model import Ridge data = pd.read_csv("insurance.csv", usecols=["age", "sex", "bmi", "children", "smoker", "charges"]) data['smoker'] = data['smoker'].replace(to_replace = "yes", value = 1) data['smoker'] = data['smoker'].replace(to_replace = "no", value = 0) data['sex'] = data['sex'].replace("male", value = 1) data['sex'] = data['sex'].replace("female", value = 0) data = data.join(
pd.get_dummies(data['sex'])
pandas.get_dummies
#!/usr/bin/env python # -*- coding: utf-8 -*- # System libs import json import numpy import pandas from pandas.io.json import json_normalize import plotly.graph_objs as go import plotly.offline as plotly def load_data(path): with open(path, 'r') as f: data = json.load(f) return json_normalize(data) def prepare(path, times, is_pref): data = load_data(path) data = data.loc[(data['args.use_p_ref'] == is_pref) & (data['discr_order'] == 1) & (data['solver_info.final_res_norm'] < 1e-10) & (data['num_flipped'] == 0) & (data['solver_info.num_iterations'] > 0) & (data['solver_info.num_iterations'] < 1000)] data = data[["args.mesh", "time_assembling_stiffness_mat", "time_assigning_rhs", "time_building_basis", "time_solving", "num_vertices"]] data["args.mesh"] = data["args.mesh"].str.replace("/scratch/yh1998/polyfem300_mesh/", "") data["args.mesh"] = data["args.mesh"].str.replace("/scratch/yh1998/polyfem30k/", "") data["args.mesh"] = data["args.mesh"].str.replace("/beegfs/work/panozzo/p_ref/tetmesh_mesh/", "") data["args.mesh"] = data["args.mesh"].str.replace("/beegfs/work/panozzo/p_ref/polyfem300_mesh/", "") data["args.mesh"] = data["args.mesh"].str.replace("_tetmesh.msh.mesh", "") data["args.mesh"] = data["args.mesh"].str.replace("_polyfem300.msh.mesh", "") data =
pandas.merge(data, times, left_on="args.mesh", right_on="mesh_id")
pandas.merge
# -*- coding: utf-8 -*- """ This module is EXPERIMENTAL, that means that tests are missing. The reason is that the coastdat2 dataset is deprecated and will be replaced by the OpenFred dataset from Helmholtz-Zentrum Geesthacht. It should work though. This module is designed for the use with the coastdat2 weather data set of the Helmholtz-Zentrum Geesthacht. A description of the coastdat2 data set can be found here: https://www.earth-syst-sci-data.net/6/147/2014/ SPDX-FileCopyrightText: 2016-2019 <NAME> <<EMAIL>> SPDX-License-Identifier: MIT """ __copyright__ = "<NAME> <<EMAIL>>" __license__ = "MIT" # Python libraries import os import datetime import logging from collections import namedtuple import calendar # External libraries import requests import pandas as pd import pvlib from shapely.geometry import Point from windpowerlib.wind_turbine import WindTurbine # Internal modules from reegis import tools from reegis import feedin from reegis import config as cfg from reegis import powerplants as powerplants from reegis import geometries from reegis import bmwi def download_coastdat_data(filename=None, year=None, url=None, test_only=False, overwrite=True): """ Download coastdat data set from internet source. Parameters ---------- filename : str Full path with the filename, where the downloaded file will be stored. year : int or None Year of the weather data set. If a url is passed this value will be ignored because it is used to create the default url. url : str or None Own url can be used if the default url does not work an one found an alternative valid url. test_only : bool If True the the url is tested but the file will not be downloaded (default: False). overwrite : bool If True the file will be downloaded even if it already exist. (default: True) Returns ------- str or None : If the url is valid the filename is returned otherwise None. Examples -------- >>> download_coastdat_data(year=2014, test_only=True) 'coastDat2_de_2014.h5' >>> print(download_coastdat_data(url='https://osf.io/url', test_only=True)) None >>> download_coastdat_data(filename='w14.hd5', year=2014) # doctest: +SKIP """ if url is None: url_ids = cfg.get_dict("coastdat_url_id") url_id = url_ids.get(str(year), None) if url_id is not None: url = cfg.get("coastdat", "basic_url").format(url_id=url_id) if url is not None and not test_only: response = requests.get(url, stream=True) if response.status_code == 200: msg = "Downloading the coastdat2 file of {0} from {1} ..." logging.info(msg.format(year, url)) if filename is None: headers = response.headers["Content-Disposition"] filename = ( headers.split("; ")[1].split("=")[1].replace('"', "") ) tools.download_file(filename, url, overwrite=overwrite) return filename else: raise ValueError("URL not valid: {0}".format(url)) elif url is not None and test_only: response = requests.get(url, stream=True) if response.status_code == 200: headers = response.headers["Content-Disposition"] filename = headers.split("; ")[1].split("=")[1].replace('"', "") else: filename = None return filename else: raise ValueError("No URL found for {0}".format(year)) def fetch_id_by_coordinates(latitude, longitude): """ Get nearest weather data set to a given location. Parameters ---------- latitude : float longitude : float Returns ------- int : coastdat id Examples -------- >>> fetch_id_by_coordinates(53.655119, 11.181475) 1132101 """ coastdat_polygons = geometries.load( cfg.get("paths", "geometry"), cfg.get("coastdat", "coastdatgrid_polygon"), ) location = Point(longitude, latitude) cid = coastdat_polygons[coastdat_polygons.contains(location)].index if len(cid) == 0: msg = "No id found for latitude {0} and longitude {1}." logging.warning(msg.format(latitude, longitude)) return None elif len(cid) == 1: return cid[0] def fetch_data_coordinates_by_id(coastdat_id): """ Returns the coordinates of the weather data set. Parameters ---------- coastdat_id : int or str ID of the coastdat weather data set Returns ------- namedtuple : Fields are latitude and longitude Examples -------- >>> location=fetch_data_coordinates_by_id(1132101) >>> round(location.latitude, 3) 53.692 >>> round(location.longitude, 3) 11.351 """ coord = namedtuple("weather_location", "latitude, longitude") coastdat_polygons = geometries.load( cfg.get("paths", "geometry"), cfg.get("coastdat", "coastdatgrid_polygon"), ) c = coastdat_polygons.loc[int(coastdat_id)].geometry.centroid return coord(latitude=c.y, longitude=c.x) def fetch_coastdat_weather(year, coastdat_id): """ Fetch weather one coastdat weather data set. Parameters ---------- year : int Year of the weather data set coastdat_id : numeric ID of the coastdat data set. Returns ------- pd.DataFrame : Weather data set. Examples -------- >>> coastdat_id=fetch_id_by_coordinates(53.655119, 11.181475) >>> fetch_coastdat_weather(2014, coastdat_id)['v_wind'].mean().round(2) 4.39 """ weather_file_name = os.path.join( cfg.get("paths", "coastdat"), cfg.get("coastdat", "file_pattern").format(year=year), ) if not os.path.isfile(weather_file_name): download_coastdat_data(filename=weather_file_name, year=year) key = "/A{0}".format(int(coastdat_id)) return pd.DataFrame(pd.read_hdf(weather_file_name, key)) def adapt_coastdat_weather_to_pvlib(weather, loc): """ Adapt the coastdat weather data sets to the needs of the pvlib. Parameters ---------- weather : pandas.DataFrame Coastdat2 weather data set. loc : pvlib.location.Location The coordinates of the weather data point. Returns ------- pandas.DataFrame : Adapted weather data set. Examples -------- >>> cd_id=1132101 >>> cd_weather=fetch_coastdat_weather(2014, cd_id) >>> c=fetch_data_coordinates_by_id(cd_id) >>> location=pvlib.location.Location(**getattr(c, '_asdict')()) >>> pv_weather=adapt_coastdat_weather_to_pvlib(cd_weather, location) >>> 'ghi' in cd_weather.columns False >>> 'ghi' in pv_weather.columns True """ w = pd.DataFrame(weather.copy()) w["temp_air"] = w.temp_air - 273.15 w["ghi"] = w.dirhi + w.dhi clearskydni = loc.get_clearsky(w.index).dni w["dni"] = pvlib.irradiance.dni( w["ghi"], w["dhi"], pvlib.solarposition.get_solarposition( w.index, loc.latitude, loc.longitude ).zenith, clearsky_dni=clearskydni, ) return w def adapt_coastdat_weather_to_windpowerlib(weather, data_height): """ Adapt the coastdat weather data sets to the needs of the pvlib. Parameters ---------- weather : pandas.DataFrame Coastdat2 weather data set. data_height : dict The data height for each weather data column. Returns ------- pandas.DataFrame : Adapted weather data set. Examples -------- >>> cd_id=1132101 >>> cd_weather=fetch_coastdat_weather(2014, cd_id) >>> data_height=cfg.get_dict('coastdat_data_height') >>> wind_weather=adapt_coastdat_weather_to_windpowerlib( ... cd_weather, data_height) >>> cd_weather.columns.nlevels 1 >>> wind_weather.columns.nlevels 2 """ weather = pd.DataFrame(weather.copy()) cols = { "v_wind": "wind_speed", "z0": "roughness_length", "temp_air": "temperature", } weather.rename(columns=cols, inplace=True) dh = [(key, data_height[key]) for key in weather.columns] weather.columns = pd.MultiIndex.from_tuples(dh) return weather def normalised_feedin_for_each_data_set( year, wind=True, solar=True, overwrite=False ): """ Loop over all weather data sets (regions) and calculate a normalised time series for each data set with the given parameters of the power plants. This file could be more elegant and shorter but it will be rewritten soon with the new feedinlib features. year : int The year of the weather data set to use. wind : boolean Set to True if you want to create wind feed-in time series. solar : boolean Set to True if you want to create solar feed-in time series. Returns ------- """ # Get coordinates of the coastdat data points. data_points = pd.read_csv( os.path.join( cfg.get("paths", "geometry"), cfg.get("coastdat", "coastdatgrid_centroid"), ), index_col="gid", ) pv_sets = None wind_sets = None # Open coastdat-weather data hdf5 file for the given year or try to # download it if the file is not found. weather_file_name = os.path.join( cfg.get("paths", "coastdat"), cfg.get("coastdat", "file_pattern").format(year=year), ) if not os.path.isfile(weather_file_name): download_coastdat_data(year=year, filename=weather_file_name) weather = pd.HDFStore(weather_file_name, mode="r") # Fetch coastdat data heights from ini file. data_height = cfg.get_dict("coastdat_data_height") # Create basic file and path pattern for the resulting files coastdat_path = os.path.join(cfg.get("paths_pattern", "coastdat")) feedin_file = os.path.join( coastdat_path, cfg.get("feedin", "file_pattern") ) # Fetch coastdat region-keys from weather file. key_file_path = coastdat_path.format(year="", type="")[:-2] key_file = os.path.join(key_file_path, "coastdat_keys.csv") if not os.path.isfile(key_file): coastdat_keys = weather.keys() if not os.path.isdir(key_file_path): os.makedirs(key_file_path) pd.Series(coastdat_keys).to_csv(key_file) else: coastdat_keys = pd.read_csv( key_file, index_col=[0], squeeze=True, header=None ) txt_create = "Creating normalised {0} feedin time series for {1}." hdf = {"wind": {}, "solar": {}} if solar: logging.info(txt_create.format("solar", year)) # Add directory if not present os.makedirs( coastdat_path.format(year=year, type="solar"), exist_ok=True ) # Create the pv-sets defined in the solar.ini pv_sets = feedin.create_pvlib_sets() # Open a file for each main set (subsets are stored in columns) for pv_key, pv_set in pv_sets.items(): filename = feedin_file.format( type="solar", year=year, set_name=pv_key ) if not os.path.isfile(filename) or overwrite: hdf["solar"][pv_key] = pd.HDFStore(filename, mode="w") if wind: logging.info(txt_create.format("wind", year)) # Add directory if not present os.makedirs( coastdat_path.format(year=year, type="wind"), exist_ok=True ) # Create the pv-sets defined in the wind.ini wind_sets = feedin.create_windpowerlib_sets() # Open a file for each main set (subsets are stored in columns) for wind_key, wind_set in wind_sets.items(): for subset_key, subset in wind_set.items(): wind_sets[wind_key][subset_key] = WindTurbine(**subset) filename = feedin_file.format( type="wind", year=year, set_name=wind_key ) if not os.path.isfile(filename) or overwrite: hdf["wind"][wind_key] = pd.HDFStore(filename, mode="w") # Define basic variables for time logging remain = len(coastdat_keys) done = 0 start = datetime.datetime.now() # Loop over all regions for coastdat_key in coastdat_keys: # Get weather data set for one location local_weather = weather[coastdat_key] # Adapt the coastdat weather format to the needs of pvlib. # The expression "len(list(hdf['solar'].keys()))" returns the number # of open hdf5 files. If no file is open, there is nothing to do. if solar and len(list(hdf["solar"].keys())) > 0: # Get coordinates for the weather location local_point = data_points.loc[int(coastdat_key[2:])] # Create a pvlib Location object location = pvlib.location.Location( latitude=local_point["lat"], longitude=local_point["lon"] ) # Adapt weather data to the needs of the pvlib local_weather_pv = adapt_coastdat_weather_to_pvlib( local_weather, location ) # Create one DataFrame for each pv-set and store into the file for pv_key, pv_set in pv_sets.items(): if pv_key in hdf["solar"]: hdf["solar"][pv_key][coastdat_key] = feedin.feedin_pv_sets( local_weather_pv, location, pv_set ) # Create one DataFrame for each wind-set and store into the file if wind and len(list(hdf["wind"].keys())) > 0: local_weather_wind = adapt_coastdat_weather_to_windpowerlib( local_weather, data_height ) for wind_key, wind_set in wind_sets.items(): if wind_key in hdf["wind"]: hdf["wind"][wind_key][ coastdat_key ] = feedin.feedin_wind_sets(local_weather_wind, wind_set) # Start- time logging ******* remain -= 1 done += 1 if divmod(remain, 10)[1] == 0: elapsed_time = (datetime.datetime.now() - start).seconds remain_time = elapsed_time / done * remain end_time = datetime.datetime.now() + datetime.timedelta( seconds=remain_time ) msg = "Actual time: {:%H:%M}, estimated end time: {:%H:%M}, " msg += "done: {0}, remain: {1}".format(done, remain) logging.info(msg.format(datetime.datetime.now(), end_time)) # End - time logging ******** for k1 in hdf.keys(): for k2 in hdf[k1].keys(): hdf[k1][k2].close() weather.close() logging.info( "All feedin time series for {0} are stored in {1}".format( year, coastdat_path.format(year=year, type="") ) ) def store_average_weather( data_type, weather_path=None, years=None, keys=None, out_file_pattern="average_data_{data_type}.csv", ): """ Get average wind speed over all years for each weather region. This can be used to select the appropriate wind turbine for each region (strong/low wind turbines). Parameters ---------- data_type : str The data_type of the coastdat weather data: 'dhi', 'dirhi', 'pressure', 'temp_air', 'v_wind', 'z0'. keys : list or None List of coastdat keys. If None all available keys will be used. years : list or None List of one or more years to calculate the average data from. You have to make sure that the weather data files for the given years exist in the weather path. weather_path : str Path to folder that contains all needed files. If None the default path defined in the config file will be used. out_file_pattern : str or None Name of the results file with a placeholder for the data type e.g. ``average_data_{data_type}.csv``). If None no file will be written. Examples -------- >>> store_average_weather('temp_air', years=[2014, 2013]) # doctest: +SKIP >>> v=store_average_weather('v_wind', years=[2014], ... out_file_pattern=None, keys=[1132101]) >>> float(v.loc[1132101].round(2)) 4.39 """ logging.info("Calculating the average wind speed...") weather_pattern = cfg.get("coastdat", "file_pattern") if weather_path is None: weather_path = cfg.get("paths", "coastdat") # Finding existing weather files. data_files = os.listdir(weather_path) # Possible time range for coastdat data set (reegis: 1998-2014). check = True if years is None: years = range(1948, 2017) check = False used_years = [] for year in years: if weather_pattern.format(year=year) in data_files: used_years.append(year) elif check is True: msg = "File not found".format(weather_pattern.format(year=year)) raise FileNotFoundError(msg) # Loading coastdat-grid as shapely geometries. coastdat_polygons = pd.DataFrame( geometries.load( cfg.get("paths", "geometry"), cfg.get("coastdat", "coastdatgrid_polygon"), ) ) coastdat_polygons.drop("geometry", axis=1, inplace=True) # Opening all weather files weather = dict() # open hdf files for year in used_years: weather[year] = pd.HDFStore( os.path.join(weather_path, weather_pattern.format(year=year)), mode="r", ) if keys is None: keys = coastdat_polygons.index n = len(list(keys)) logging.info("Remaining: {0}".format(n)) for key in keys: data_type_avg = pd.Series() n -= 1 if n % 100 == 0: logging.info("Remaining: {0}".format(n)) hdf_id = "/A{0}".format(key) for year in used_years: ws = weather[year][hdf_id][data_type] data_type_avg = data_type_avg.append(ws, verify_integrity=True) # calculate the average wind speed for one grid item coastdat_polygons.loc[ key, "{0}_avg".format(data_type) ] = data_type_avg.mean() # Close hdf files for year in used_years: weather[year].close() if keys is not None: coastdat_polygons.dropna(inplace=True) # write results to csv file if out_file_pattern is not None: filename = out_file_pattern.format(data_type=data_type) fn = os.path.join(weather_path, filename) logging.info("Average temperature saved to {0}".format(fn)) coastdat_polygons.to_csv(fn) return coastdat_polygons def spatial_average_weather( year, geo, parameter, name, outpath=None, outfile=None ): """ Calculate the mean value of a parameter over all data sets within each region for one year. Parameters ---------- year : int Select the year you want to calculate the average temperature for. geo : geometries.Geometry object Polygons to calculate the average parameter for. outpath : str Place to store the outputfile. outfile : str Set your own name for the outputfile. parameter : str Name of the item (temperature, wind speed,... of the weather data set. name : str Name of the regions table to be used as a column name. Returns ------- str : Full file name of the created file. Example ------- >>> germany_geo=geometries.load( ... cfg.get('paths', 'geometry'), ... cfg.get('geometry', 'germany_polygon')) >>> fn=spatial_average_weather(2012, germany_geo, 'temp_air', 'deTemp', ... outpath=os.path.expanduser('~') ... )# doctest: +SKIP >>> temp=pd.read_csv(fn, index_col=[0], parse_dates=True, squeeze=True ... )# doctest: +SKIP >>> round(temp.mean() - 273.15, 2)# doctest: +SKIP 8.28 >>> os.remove(fn)# doctest: +SKIP """ logging.info( "Getting average {0} for {1} in {2} from coastdat2.".format( parameter, name, year ) ) name = name.replace(" ", "_") # Create a Geometry object for the coastdat centroids. coastdat_geo = geometries.load( cfg.get("paths", "geometry"), cfg.get("coastdat", "coastdatgrid_polygon"), ) coastdat_geo["geometry"] = coastdat_geo.centroid # Join the tables to create a list of coastdat id's for each region. coastdat_geo = geometries.spatial_join_with_buffer( coastdat_geo, geo, name=name, limit=0 ) # Fix regions with no matches (no matches if a region ist too small). fix = {} for reg in set(geo.index) - set(coastdat_geo[name].unique()): reg_point = geo.representative_point().loc[reg] coastdat_poly = geometries.load( cfg.get("paths", "geometry"), cfg.get("coastdat", "coastdatgrid_polygon"), ) fix[reg] = coastdat_poly.loc[ coastdat_poly.intersects(reg_point) ].index[0] # Open the weather file weather_file = os.path.join( cfg.get("paths", "coastdat"), cfg.get("coastdat", "file_pattern").format(year=year), ) if not os.path.isfile(weather_file): download_coastdat_data(year=year, filename=weather_file) weather = pd.HDFStore(weather_file, mode="r") # Calculate the average temperature for each region with more than one id. avg_value = pd.DataFrame() for region in geo.index: cd_ids = coastdat_geo[coastdat_geo[name] == region].index number_of_sets = len(cd_ids) tmp = pd.DataFrame() logging.debug((region, len(cd_ids))) for cid in cd_ids: try: cid = int(cid) except ValueError: pass if isinstance(cid, int): key = "A" + str(cid) else: key = cid tmp[cid] = weather[key][parameter] if len(cd_ids) < 1: key = "A" + str(fix[region]) avg_value[region] = weather[key][parameter] else: avg_value[region] = tmp.sum(1).div(number_of_sets) weather.close() # Create the name an write to file regions = sorted(geo.index) if outfile is None: out_name = "{0}_{1}".format(regions[0], regions[-1]) outfile = os.path.join( outpath, "average_{parameter}_{type}_{year}.csv".format( year=year, type=out_name, parameter=parameter ), ) avg_value.to_csv(outfile) logging.info("Average temperature saved to {0}".format(outfile)) return outfile def federal_state_average_weather(year, parameter): """ Example for spatial_average_weather() with federal states polygons. Parameters ---------- year parameter Returns ------- """ federal_states = geometries.get_federal_states_polygon() filename = os.path.join( cfg.get("paths", "coastdat"), "average_{0}_BB_TH_{1}.csv".format(parameter, year), ) if not os.path.isfile(filename): spatial_average_weather( year, federal_states, parameter, "federal_states", outfile=filename ) return pd.read_csv( filename, index_col=[0], parse_dates=True, date_parser=lambda col: pd.to_datetime(col, utc=True), ) def aggregate_by_region_coastdat_feedin( pp, regions, year, category, outfile, weather_year=None ): """ Aggregate wind and pv feedin time series for each region defined by a geoDataFrame with region polygons. Parameters ---------- pp : pd.DataFrame Power plant table. regions : geopandas.geoDataFrame Table with the polygons. year : int Year for the power plants and for the weather data if weather_year is None. category : str Feed-in category: 'wind' or 'solar' outfile : str Name of the output file. weather_year : int or None If None the year parameter will be used for the weather year. """ cat = category.lower() logging.info("Aggregating {0} feed-in for {1}...".format(cat, year)) if weather_year is None: weather_year = year weather_year_str = "" else: logging.info("Weather data taken from {0}.".format(weather_year)) weather_year_str = " (weather: {0})".format(weather_year) # Define the path for the input files. coastdat_path = os.path.join(cfg.get("paths_pattern", "coastdat")).format( year=weather_year, type=cat ) # Do normalized timeseries exist? If not, create if os.path.isdir(coastdat_path): if len(os.listdir(coastdat_path)) == 0: normalised_feedin_for_each_data_set(weather_year) else: normalised_feedin_for_each_data_set(weather_year) # Prepare the lists for the loops set_names = [] set_name = None pwr = dict() columns = dict() replace_str = "coastdat_{0}_{1}_".format(weather_year, category) for file in os.listdir(coastdat_path): if file[-2:] == "h5": set_name = file[:-3].replace(replace_str, "") set_names.append(set_name) pwr[set_name] = pd.HDFStore(os.path.join(coastdat_path, file)) columns[set_name] = pwr[set_name]["/A1129087"].columns # Create DataFrame with MultiColumns to take the results my_index = pwr[set_name]["/A1129087"].index my_cols = pd.MultiIndex( levels=[[], [], []], codes=[[], [], []], names=["region", "set", "subset"], ) feed_in = pd.DataFrame(index=my_index, columns=my_cols) # Loop over all aggregation regions # Sum up time series for one region and divide it by the # capacity of the region to get a normalised time series. for region in regions: try: coastdat_ids = pp.loc[(category, region)].index except KeyError: coastdat_ids = [] number_of_coastdat_ids = len(coastdat_ids) logging.info( "{0}{3} - {1} ({2})".format( year, region, number_of_coastdat_ids, weather_year_str ) ) logging.debug("{0}".format(coastdat_ids)) # Loop over all sets that have been found in the coastdat path if number_of_coastdat_ids > 0: for name in set_names: # Loop over all sub-sets that have been found within each file. for col in columns[name]: temp = pd.DataFrame(index=my_index) # Loop over all coastdat ids, that intersect with the # actual region. for coastdat_id in coastdat_ids: # Create a tmp table for each coastdat id. coastdat_key = "/A{0}".format(int(coastdat_id)) pp_inst = float( pp.loc[ (category, region, coastdat_id), "capacity_{0}".format(year), ] ) temp[coastdat_key] = pwr[name][coastdat_key][col][ :8760 ].multiply(pp_inst) # Sum up all coastdat columns to one region column colname = "_".join(col.split("_")[-3:]) feed_in[region, name, colname] = temp.sum(axis=1).divide( float( pp.loc[ (category, region), "capacity_{0}".format(year) ].sum() ) ) feed_in.to_csv(outfile) for name_of_set in set_names: pwr[name_of_set].close() def aggregate_by_region_hydro(pp, regions, year, outfile_name): """Aggregate hydro power plants by region.""" hydro = bmwi.bmwi_re_energy_capacity()["water"] hydro_capacity = pp.loc["Hydro", "capacity_{0}".format(year)].sum() full_load_hours = hydro.loc[year, "energy"] / hydro_capacity * 1000 hydro_path = os.path.abspath(os.path.join(*outfile_name.split("/")[:-1])) if not os.path.isdir(hydro_path): os.makedirs(hydro_path) idx = pd.date_range( start="{0}-01-01 00:00".format(year), end="{0}-12-31 23:00".format(year), freq="H", tz="Europe/Berlin", ) feed_in = pd.DataFrame(columns=regions, index=idx) feed_in[feed_in.columns] = full_load_hours / len(feed_in) feed_in.to_csv(outfile_name) # https://shop.dena.de/fileadmin/denashop/media/Downloads_Dateien/esd/ # 9112_Pumpspeicherstudie.pdf # S. 110ff def aggregate_by_region_geothermal(regions, year, outfile_name): """Aggregate hydro power plants by region.""" full_load_hours = cfg.get("feedin", "geothermal_full_load_hours") hydro_path = os.path.abspath(os.path.join(*outfile_name.split("/")[:-1])) if not os.path.isdir(hydro_path): os.makedirs(hydro_path) idx = pd.date_range( start="{0}-01-01 00:00".format(year), end="{0}-12-31 23:00".format(year), freq="H", tz="Europe/Berlin", ) feed_in =
pd.DataFrame(columns=regions, index=idx)
pandas.DataFrame
from flask import Response, url_for, current_app, request from flask_restful import Resource, reqparse import pandas as pd import os from pathlib import Path from flask_mysqldb import MySQL from datetime import datetime import random import string from flask_mail import Mail, Message db = MySQL() parser = reqparse.RequestParser() class ApproveCovid(Resource): def approve(self, update_id, aid): cur = db.connection.cursor() cur.execute( """ INSERT INTO Administrator_approved_covid_update (Update_id, AID) VALUES (%s, %s); """, (update_id, aid) ) db.connection.commit() def getUpdate(self, update_id): cur = db.connection.cursor() cur.execute( """ Select * from Covid_update where Update_id = %s """, (update_id,) ) data = cur.fetchall() return data[0] def post(self): params = ['update_id', 'aid', 'approve'] for elem in params: parser.add_argument(elem) args = parser.parse_args() print(args['update_id'], args['aid']) _, recovered, death, confirmed, _, countie = self.getUpdate(args['update_id']) self.approve(args['update_id'], args['aid']) print(confirmed, death, recovered, countie) if (args['approve']): cur = db.connection.cursor() cur.execute( """ UPDATE covid_data SET Confirmed = %s, Deaths = %s, Recovered = %s where Admin2 = %s; """, (confirmed, death, recovered, countie) ) db.connection.commit() print(cur.rowcount) if cur.rowcount > 0: return Response("Record Sucessfully updated", status=200) else: return Response("Update failed", status=500) else: return Response("Update Sucessfully Denied", status=500) class CovidUpdates(Resource): def administratorExist(self, aid): cur = db.connection.cursor() cur.execute( """ Select * from Administrators where AID = %s """, (aid) ) return True if cur.rowcount > 0 else False def get(self): parser.add_argument('aid') args = parser.parse_args() if self.administratorExist(args['aid']) == False: return Response("Administrators does not exist", 400) cur = db.connection.cursor() cur.execute( """ Select * from Covid_update where Update_id not in ( Select Update_id from Administrator_approved_covid_update ); """ ) data = cur.fetchall() row_headers=[x[0] for x in cur.description] json_data=[] for result in data: json_data.append(dict(zip(row_headers,result))) cur.close() df =
pd.DataFrame(json_data)
pandas.DataFrame
""" Copyright (c) 2018 The Regents of the University of Michigan Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated documentation files (the "Software"), to deal in the Software without restriction, including without limitation the rights to use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of the Software, and to permit persons to whom the Software is furnished to do so, subject to the following conditions: The above copyright notice and this permission notice shall be included in all copies or substantial portions of the Software. THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. Train a model (LSTM, RNN, HMM, SVM, Logistic Regression) to predict student's dropout behavior in MOOCs. Or test a trained_model by providing predict labels and predict probabilities for given test data. Take csv files with students' weekly features as input and return a trained LSTM model (Keras). Each weekly csv is a list of users (rows), with columns corresponding to the features for that week. Features come from table 1, pg 123, of the paper ("Temporal predication of dropouts in MOOCs: Reaching the low hanging fruit through stacking generalization", Xing et al. 2016) These models are generally a replication of the models in the paper ("Temporal Models for Predicting Student Dropout in Massive Open Online Courses", Fei and Yeung 2015) The output model is saved in HDF5 format and will contain the architecture, weights, training figuration and states of the optimizer (allowing to resume training exactly where you left off), you can load it by: from keras.models import load_model model = load_model('my_model.h5') Usage: python3 train_lstm.py \ -i /raw_data/path/to/feature_data.csv \ -l /raw_data/path/to/label_data.csv \ -f number of features per week \ -s hidden layer size \ -d definition of droupout, take in {1,2,3} \ -k an integer for number of folds in cross validation \ -o /output_file/path/to/my_output \ -m train, validation or test \ -t the name of the method you want to use (LSTM, RNN, SVM_RBF, SVM_LINEAR, LR) \ -a /trained_model/path/to/method.h5 (required only in test mode) On Yuming's local environment Train mode: python train_lstm.py \ -i C:\\Users\\Umean\\Desktop\\MOOC\\vaccines_002_features.csv \ -l C:\\Users\\Umean\\Desktop\\MOOC\\vaccines_002_labels.csv \ -f 7 \ -o lstm.h5 \ -m train \ -t lstm Test(prediction) mode: python train_lstm.py \ -i C:\\Users\\Umean\\Desktop\\MOOC\\vaccines_002_features.csv \ -f 7 \ -a lstm.h5 \ -o lstm_predictions \ -m test \ -t lstm Validation(CV) mode: python train_lstm.py \ -i C:\\Users\\Umean\\Desktop\\MOOC\\vaccines_002_features.csv \ -l C:\\Users\\Umean\\Desktop\\MOOC\\vaccines_002_labels.csv \ -f 7 \ -k 5 \ -o auc_result \ -m validation \ -t lstm \ """ import argparse from keras import regularizers from keras.models import Sequential from keras.models import clone_model from keras.layers import Dense from keras.layers import Dropout from keras.layers import SimpleRNN from keras.layers import LSTM from keras.models import load_model import random from sklearn.dummy import DummyClassifier from sklearn.externals import joblib from sklearn.metrics import roc_auc_score from sklearn.linear_model import LogisticRegressionCV from sklearn.svm import SVC from sklearn.model_selection import GridSearchCV from sklearn.preprocessing import scale from sklearn.model_selection import StratifiedKFold from sklearn.utils import check_X_y import pandas as pd import numpy as np EPOCHS = 100 BATCH_SIZE = 128 HIDDEN_SIZE = 20 NUM_FOLD = 5 RBF_SVM_MAX_N = 30000 LINEAR_SVM_MAX_N = 30000 CV_SUBSAMPLING_TYPE = 1 PARAMETER_SET_SIZE_THRESHOLD = 1500 KERAS_MODELS = ("LSTM", "LSTM_DROPOUT", "LSTM_L1REG", "RNN") NON_KERAS_MODELS = ("LR", "SVM_RBF", "SVM_LINEAR") def extract_XY(feature_data, label_data, n_feature, mode): """ Extract well-shaped scaled feature and label tensors (X and y) from raw data in train and validation mode. Extract well-shaped scaled feature tensors and user_id arrays from raw data in test mode. Seperate features by weeks in raw data. :param feature_data: a pandas.Dataframe with columns for userID, features in different weeks. :param label_data: a pandas.Dataframe with columns for userID and label. None if in test mode. :param n_feature: an integer of the number of features per week. :param mode: a string indicates the purpose (train or test) :return: tuples of array (X, y), where X has shape ( , n_week, n_feature), y has shape ( ,1) and y are ids in test mode """ N = feature_data.shape[0] if mode == "train" or mode == "validation": try: assert 'label_value' not in feature_data.columns, "Feature data shouldn't include labels in test mode" except AssertionError: print("[WARNING] Feature data shouldn't include labels in test mode") feature_data = feature_data.drop('label_value', 1) assert (feature_data.shape[1] - 1) % n_feature == 0, "Wrong input data shape" # check input data shape; if dimensions don't match, try filtering the feature data # (this exception occurs when the feature extraction pulls from non-clickstream data sources; # users without any clickstream entries are not counted in dropout labels) try: assert feature_data.shape[0] == label_data.shape[0], "userID doesn't match" except AssertionError: # filter feature data to only include users in label_data print("[WARNING] userID columns in feature and label data do not match; attempting to filter feature data") feature_data = feature_data[feature_data.userID.isin(label_data.userID)] N = feature_data.shape[0] n_week = int((feature_data.shape[1] - 1) / n_feature) X = np.array(feature_data.drop('userID', 1)) X = scale(X) merged_data = pd.merge(feature_data, label_data, on='userID') y = np.array(merged_data["label_value"], dtype="int").reshape(N, 1) if mode == "test": try: assert 'label_value' not in feature_data.columns, "Feature data shouldn't include labels in test mode" except AssertionError: print("[WARNING] Feature data shouldn't include labels in test mode") feature_data = feature_data.drop('label_value', 1) assert (feature_data.shape[1] - 1) % n_feature == 0, "Wrong input data shape" n_week = int((feature_data.shape[1] - 1) / n_feature) X = np.array(feature_data.iloc[:, 1:]) X = scale(X) y = feature_data.iloc[:, 0] X = X.reshape(N, n_week, n_feature) return X, y def downsample_xy_to_n(X, y, n = 30000): """ If X, y contain more than n samples, return a random subsample of size n. :param X: a numpy array of features, has shape ( , n_week, n_feature) :param y: a numpy array of labels, has shape (N,1) :param n: integer. :return: tuples of array (X, y), where X has shape ( , n_week, n_feature), y has shape ( ,1) and y are ids in test mode """ assert X.shape[0] == y.shape[0], "feature and label vectors must be of same length" num_obs = X.shape[0] if num_obs > n: print("[INFO] downsampling data from size {} to size {}".format(num_obs, n)) subsample_ix = random.sample(range(0, num_obs), n) X = X[subsample_ix,] y = y[subsample_ix,] return X, y def droprate_lstm_train(X, y, hidden_size=HIDDEN_SIZE): """ Construct a LSTM model to predict the type I dropout rate (See paper) from features in every week. Fit the model with train data. :param X: a numpy array of features, has shape ( , n_week, n_feature) :param y: a numpy array of labels, has shape (N,1) :param hidden_size: an integer of hidden layer size. :return: model: a fitted LSTM model as keras.models.Sequential """ model = Sequential() model.add(LSTM(hidden_size, input_shape=(X.shape[1], X.shape[2]))) model.add(Dense(1, activation='sigmoid')) model.compile(loss='binary_crossentropy', optimizer='sgd', metrics=['accuracy']) print(model.summary()) model.fit(X, y, epochs=EPOCHS, batch_size=BATCH_SIZE) return model def droprate_lstm_dropout_train(X, y, hidden_size=HIDDEN_SIZE): """ Construct a LSTM model with a single dropout layer after input later to predict the type I dropout rate (See paper) from features in every week. Fit the model with train data. :param X: a numpy array of features, has shape ( , n_week, n_feature) :param y: a numpy array of labels, has shape (N,1) :param hidden_size: an integer of hidden layer size. :return: model: a fitted LSTM model as keras.models.Sequential """ model = Sequential() model.add(Droput(0.2, input_shape=(X.shape[1], X.shape[2]))) model.add(LSTM(hidden_size)) model.add(Dense(1, activation='sigmoid')) model.compile(loss='binary_crossentropy', optimizer='sgd', metrics=['accuracy']) print(model.summary()) model.fit(X, y, epochs=EPOCHS, batch_size=BATCH_SIZE) return model def droprate_lstm_l1reg_train(X, y, hidden_size=HIDDEN_SIZE, l1_lambda=0.01): """ Construct a LSTM model with a single dropout layer after input later to predict the type I dropout rate (See paper) from features in every week. Fit the model with train data. :param X: a numpy array of features, has shape ( , n_week, n_feature) :param y: a numpy array of labels, has shape (N,1) :param hidden_size: an integer of hidden layer size. :return: model: a fitted LSTM model as keras.models.Sequential """ model = Sequential() model.add(LSTM(hidden_size, input_shape=(X.shape[1], X.shape[2]), kernel_regularizer=regularizers.l1(l1_lambda), activity_regularizer=regularizers.l1(l1_lambda))) model.add(Dense(1, activation='sigmoid')) model.compile(loss='binary_crossentropy', optimizer='sgd', metrics=['accuracy']) print(model.summary()) model.fit(X, y, epochs=EPOCHS, batch_size=BATCH_SIZE) return model def droprate_rnn_train(X, y, hidden_size=HIDDEN_SIZE): """ Construct a RNN model to predict the type I dropout rate (See paper) from features in every week. Fit the model with train data. :param X: a numpy array of features, has shape ( , n_week, n_feature) :param y: a numpy array of labels, has shape (N,1) :param hidden_size: an integer of hidden layer size. :return: model: a fitted RNN model as keras.models.Sequential """ model = Sequential() model.add(SimpleRNN(hidden_size, input_shape=(X.shape[1], X.shape[2],))) model.add(Dense(1, activation='sigmoid')) model.compile(loss='binary_crossentropy', optimizer='sgd', metrics=['accuracy']) print(model.summary()) model.fit(X, y, epochs=EPOCHS, batch_size=BATCH_SIZE) return model def droprate_lr_train(X, y, k=NUM_FOLD): """ Construct a Logistic Regression model to predict the type I dropout rate (See paper) from features in every week. Fit the model with train data and use Cross Validation to choose best C. :param X: a numpy array of features, has shape ( , n_week, n_feature) :param y: a numpy array of labels, has shape (N,1) :param k: an interger of number of folds in cross validation for choosing C :return: logistic_classifier: a fitted Logistic Regression model as sklearn.LogisticRegressionCV """ Cs = np.logspace(-1, 6, 8) X = X.reshape(X.shape[0], X.shape[1]*X.shape[2]) y = np.ravel(y) print("[INFO] Select tuning parameters for LR") logistic_classifier = LogisticRegressionCV(Cs=Cs, cv=k, scoring="roc_auc") print("[INFO] Training logistic regression model") logistic_classifier.fit(X, y) print("[INFO] Best parameter: ", logistic_classifier.C_, " out of ", logistic_classifier.Cs_) print("[INFO] Accuracy:", logistic_classifier.score(X, y)) return logistic_classifier def droprate_svm_rbf_train(X, y, k=NUM_FOLD): """ Construct a RBF kernel SVM classifier to predict the type I dropout rate (See paper) from features in every week. Fit the model with train data and use Cross Validation to choose best C and gamma. :param X: a numpy array of features, has shape ( , n_week, n_feature) :param y: a numpy array of labels, has shape (N,1) :param k: an interger of number of folds in cross validation for choosing C :return: svm_classifier: a fitted RBF kernel SVM classifier as sklearn.GridSearchCV """ if X.shape[0] <= PARAMETER_SET_SIZE_THRESHOLD: C_RANGE = np.logspace(-1, 2, 4) GAMMA_RANGE = np.logspace(-1, 1, 3) print("[INFO] Large Parameters Set") else: C_RANGE = np.logspace(-1, 0, 2) GAMMA_RANGE = np.logspace(-2, -1, 2) print("[INFO] Small Parameters Set") X = X.reshape(X.shape[0], X.shape[1] * X.shape[2]) y = np.ravel(y) param_grid = dict(gamma=GAMMA_RANGE, C=C_RANGE) cv = StratifiedKFold(n_splits=k) print("[INFO] Select tuning parameters for RBF SVM") svm_classifier = GridSearchCV(SVC(probability=True), param_grid=param_grid, cv=cv, scoring="roc_auc") print("[INFO] Training RBF SVM model") svm_classifier.fit(X, y) print("[INFO] Best parameter: ", svm_classifier.best_params_) #print("Accuracy:", svm_classifier.score(X, y)) return svm_classifier def droprate_svm_linear_train(X, y, k=NUM_FOLD): """ Construct a linear kernel SVM classifier to predict the type I dropout rate (See paper) from features in every week. Fit the model with train data and use Cross Validation to choose best C and gamma. :param X: a numpy array of features, has shape ( , n_week, n_feature) :param y: a numpy array of labels, has shape (N,1) :param k: an interger of number of folds in cross validation for choosing C :return: svm_classifier: a fitted linear kernel SVM classifier as sklearn.GridSearchCV """ if X.shape[0] <= PARAMETER_SET_SIZE_THRESHOLD: C_RANGE = np.logspace(-1, 2, 4) print("[INFO] Large Parameters Set") else: C_RANGE = np.logspace(-1, 0, 2) print("[INFO] Small Parameters Set") X = X.reshape(X.shape[0], X.shape[1] * X.shape[2]) y = np.ravel(y) param_grid = dict(C=C_RANGE) cv = StratifiedKFold(n_splits=k) print("[INFO] Select tuning parameters for linear SVM") linear_svm_classifier = GridSearchCV(SVC(kernel='linear', probability=True), param_grid=param_grid, cv=cv, scoring="roc_auc") print("[INFO] Training linear SVM model") linear_svm_classifier.fit(X, y) print("[INFO] Best parameter: ", linear_svm_classifier.best_params_) # print("Accuracy:", svm_classifier.score(X, y)) return linear_svm_classifier def split_indices(y, num_fold): """ Provide sets of train-test indices to split the raw data into several stratified folds :param y: labels of the raw_data, shape (N, 1) :param num_fold: an interger of the number of folds in Cross Validation. :return: a list of tuples (train_index, test_index) of length num_fold train_index: index of train data in each train-test set test_index: index of test data in each train-test set """ skf = StratifiedKFold(n_splits=num_fold) N = y.shape[0] # np.set_printoptions(threshold=np.nan) indices = skf.split(np.zeros(N), y.flatten()) return indices def model_validation(train_func, model_type, X, y, num_fold): """ Calculate the model's ROC_AUC score by Stratified K-Folds Cross Validation on whole input data. :param train_func: train function of certain type of model :param model_type: model type :param X: a numpy array of features, has shape ( , n_week, n_feature) :param y: a numpy array of labels, has shape (N, 1) :param num_fold: an interger of the number of folds in Cross Validation :return: a real value represents the AUC score """ num_obs = X.shape[0] indices = split_indices(y, num_fold) cv_AUC = [] cv_id = 1 print("[INFO] Begin CV") for train_index, test_index in indices: print("[INFO] Fold %d" % cv_id) num_train_obs = len(train_index) if CV_SUBSAMPLING_TYPE == 2 and model_type == 'SVM' and num_train_obs > RBF_SVM_MAX_N: # Second type of downsampling in CV: (when num_train_obs > RBF_SVM_MAX_N) # In every fold process, randomly choose RBF_SVM_MAX_N samples to train SVM and predict on all the rest # Then repeat this process num_fold times and average the AUC train_index = random.sample(set(train_index), RBF_SVM_MAX_N) print("[INFO] downsampling data from size {} to size {}".format(num_train_obs, len(train_index))) test_index = list(set(range(0, num_obs)) - set(train_index)) model = train_func(X[train_index], y[train_index]) if model_type in ["LR", "SVM_RBF", 'SVM_LINEAR']: X_test = X[test_index] X_test = X_test.reshape(X_test.shape[0], X_test.shape[1] * X_test.shape[2]) y_pred = model.predict_proba(X_test)[:, 1] if model_type in ["LSTM", "RNN"]: y_pred = model.predict_proba(X[test_index]) cv_AUC.append(roc_auc_score(y[test_index], y_pred)) cv_id += 1 scores = np.mean(np.array(cv_AUC)) print("[INFO] AUC: %.2f%%" % (scores * 100)) return scores def model_evaluate(model_type, raw_data, n_feature, num_fold, hidden_size=20): """ Evaluate the LSTM or rnn model by Stratified K-Folds Cross Validation. :param model_type: model type :param raw_data: a pandas.Dataframe with columns for userID, features in different weeks and label :param n_feature: an integer of the number of features per week :param num_fold: an interger of the number of folds in Cross Validation :param hidden_size: an integer of hidden layer size. :return: a real value represents the accuracy. """ X, y = extract_XY(raw_data, n_feature, "train") model_unfitted = Sequential() if model_type == "RNN": model_unfitted.add(SimpleRNN(hidden_size, input_shape=(X.shape[1], X.shape[2],))) if model_type == "LSTM": model_unfitted.add(LSTM(hidden_size, input_shape=(X.shape[1], X.shape[2],))) model_unfitted.add(Dense(1, activation='sigmoid')) model_unfitted.compile(loss='binary_crossentropy', optimizer='sgd', metrics=['accuracy']) indices = split_indices(y, num_fold) cv_AUC = [] for train_index, test_index in indices: model = clone_model(model_unfitted) model.compile(loss='binary_crossentropy', optimizer='sgd', metrics=['accuracy']) model.fit(X[train_index], y[train_index], epochs=EPOCHS, batch_size=BATCH_SIZE) y_pred = model.predict_proba(X[test_index]) cv_AUC.append(roc_auc_score(y[test_index], y_pred)) scores = np.mean(np.array(cv_AUC)) print("AUC: %.2f%%" % (scores * 100)) return scores def lr_svm_predict(model, X, user_id): """ Do predictions based on the given trained LR or SVM model and the data features. :param model: the trained sklearn model :param X: a numpy array of features, has shape ( , n_week, n_feature) :param user_id: an array of the user_ids :return: a pandas DataFrame of user_ids, predict probabilities and predict labels. """ N = X.shape[0] X = X.reshape(X.shape[0], X.shape[1] * X.shape[2]) print("[INFO] Predicting") y_prob = model.predict_proba(X)[:, 1].reshape(N) y_pred = model.predict(X).reshape(N) predictions =
pd.DataFrame({'userID': user_id, 'prob': y_prob, 'pred': y_pred})
pandas.DataFrame
# -*- coding: utf-8 -*- """ checkEuroClassesValid createEFTInput getProportions readFleetProps specifyBusCoach specifyEuroProportions SpecifyWeight Created on Fri Apr 20 14:51:30 2018 @author: edward.barratt """ import re import inspect import numpy as np import pandas as pd import pywintypes import xlrd from EFT_Tools import (availableRoadTypes, euroClassNameVariations, euroClassNameVariationsAll, euroClassNameVariationsIgnore, euroSearchTerms, euroTechs, getLogger, logprint, techVehs, VehSplits, weightClassNameVariations) def checkEuroClassesValid(workBook, vehRowStarts, vehRowEnds, EuroClassNameColumns, Type=99, logger=None): """ Check that all of the available euro classes are specified. """ parentFrame = inspect.currentframe().f_back (filename, xa, xb, xc, xd) = inspect.getframeinfo(parentFrame) # Get the logging details. loggerM = getLogger(logger, 'checkEuroClassesValid') if Type == 1: logprint(loggerM, "Checking all motorcycle euro class names are understood.") elif Type == 2: logprint(loggerM, "Checking all hybrid bus euro class names are understood.") elif Type == 0: logprint(loggerM, "Checking all other euro class names are understood.") else: logprint(loggerM, "Checking all euro class names are understood.") ws_euro = workBook.Worksheets("UserEuro") for [vi, vehRowStart] in enumerate(vehRowStarts): vehRowEnd = vehRowEnds[vi] for [ci, euroNameCol] in enumerate(EuroClassNameColumns): euroClassRange = "{col}{rstart}:{col}{rend}".format(col=euroNameCol, rstart=vehRowStart, rend=vehRowEnd) euroClassesAvailable = ws_euro.Range(euroClassRange).Value for ecn in euroClassesAvailable: ecn = ecn[0] if ecn is None: continue if ecn not in euroClassNameVariationsAll: if ecn not in euroClassNameVariationsIgnore: raise ValueError('Unrecognized Euro Class Name: "{}".'.format(ecn)) def createEFTInput(vBreakdown='Detailed Option 2', speeds=[5,6,7,8,9,10,12,14,16,18,20,25,30,35,40, 45,50,60,70,80,90,100,110,120,130,140], roadTypes=availableRoadTypes, vehiclesToSkip=['Taxi (black cab)'], vehiclesToInclude=None, tech='All', logger=None): """ vehiclesToInclude trumps (and overwrites) vehiclesToSkip """ # Get the logging details. # Get the logging details. loggerM = getLogger(logger, 'createEFTInput') logprint(loggerM, 'Creating EFT input.', level='debug') logprint(loggerM, 'Initial vehiclesToSkip: {}'.format(', '.join(vehiclesToSkip)), level='debug') logprint(loggerM, 'Initial vehiclesToInclude: {}'.format(', '.join(vehiclesToInclude)), level='debug') VehSplit = VehSplits[vBreakdown] logprint(loggerM, 'VehSplit: {}'.format(', '.join(VehSplit)), level='debug') if vehiclesToInclude is not None: # Populate vehiclesToSkip with those vehicles that are not included. vehiclesToSkip = [] for veh in VehSplit: if veh not in vehiclesToInclude: vehiclesToSkip.append(veh) logprint(loggerM, 'Intermediate vehiclesToSkip: {}'.format(', '.join(vehiclesToSkip)), level='debug') #RoadTypes = ['Urban (not London)', 'Rural (not London)', 'Motorway (not London)'] if tech != 'All': # Add vehicles to vehiclesToSkip that are irrelevant for the chosen technology. for veh in VehSplit: if veh not in techVehs[tech]: vehiclesToSkip.append(veh) vehiclesToSkip = list(set(vehiclesToSkip)) logprint(loggerM, 'Final vehiclesToSkip: {}'.format(', '.join(vehiclesToSkip)), level='debug') if type(roadTypes) is str: if roadTypes in ['all', 'All', 'ALL']: roadTypes = availableRoadTypes else: roadTypes = [roadTypes] if vBreakdown == 'Basic Split': numRows = 2*len(roadTypes)*len(speeds) else: numRows = len(roadTypes)*len(speeds)*(len(VehSplit)-len(vehiclesToSkip)) numCols = 6 + len(VehSplit) inputDF = pd.DataFrame(index=range(numRows), columns=range(numCols)) ri = -1 for rT in roadTypes: logprint(loggerM, 'roadType - {}'.format(rT), level='debug') for sp in speeds: logprint(loggerM, ' speed - {}'.format(sp), level='debug') for veh in VehSplit: logprint(loggerM, ' vehicle - {}'.format(veh), level='debug') #print(' veh - {}'.format(veh)) if vBreakdown == 'Basic Split': ri += 2 #inputDF.set_value(ri-1, 0, 'S{} - LDV - {}'.format(sp, rT)) inputDF.iat[ri-1, 0] = 'S{} - LDV - {}'.format(sp, rT) inputDF.iat[ri-1, 1] = rT inputDF.iat[ri-1, 2] = 1 inputDF.iat[ri-1, 3] = 0 inputDF.iat[ri-1, 4] = sp inputDF.iat[ri-1, 5] = 1 inputDF.iat[ri-1, 6] = 1 inputDF.iat[ri, 0] = 'S{} - HDV - {}'.format(sp, rT) inputDF.iat[ri, 1] = rT inputDF.iat[ri, 2] = 1 inputDF.iat[ri, 3] = 100 inputDF.iat[ri, 4] = sp inputDF.iat[ri, 5] = 1 inputDF.iat[ri, 6] = 1 else: if veh in vehiclesToSkip: logprint(loggerM, ' skipped', level='debug') pass else: logprint(loggerM, ' including', level='debug') ri += 1 inputDF.iat[ri, 0] = 'S{} - {} - {}'.format(sp, veh, rT) inputDF.iat[ri, 1] = rT inputDF.iat[ri, 2] = 1 for vehi, vehb in enumerate(VehSplit): if vehb == veh: inputDF.iat[ri, 3+vehi] = 100 else: inputDF.iat[ri, 3+vehi] = 0 inputDF.iat[ri, len(VehSplit)+3] = sp inputDF.iat[ri, len(VehSplit)+4] = 1 # 1 hour. Not neccesary for g/km output. inputDF.iat[ri, len(VehSplit)+5] = 1 # 1 km. Not neccesary either. logprint(loggerM, ' done', level='debug') inputData = inputDF.as_matrix() inputShape = np.shape(inputData) logprint(loggerM, 'input created with dimensions {} by {}.'.format(inputShape[0], inputShape[1]), level='debug') return inputData def getProportions(ws, ColName, ColProp, ColUser, vehRowStarts, vehRowEnds, mode='Most Vehicles', logger=None): # Get the logging details. loggerM = getLogger(logger, 'getProportions') # Start a pandas dateframe. df = pd.DataFrame(columns=['vehicle', 'euroname', 'euroclass', 'technology', 'proportion', 'sourceCell', 'userCell']) for vehi in range(len(vehRowStarts)): starow = vehRowStarts[vehi] endrow = vehRowEnds[vehi] if mode == 'Most Vehicles': vehName = ws.Range("{}{}".format(ColName, starow-1)).Value while vehName is None: vehName = ws.Range("{}{}".format(ColName, starow)).Value starow += 1 elif mode == 'Motorcycles': stroke_ = ws.Range("A{}".format(starow)).Value weight_ = ws.Range("A{}".format(starow+1)).Value if stroke_ == '0-50cc': vehName = 'Motorcycle - 0-50cc' else: vehName = 'Motorcycle - {} - {}'.format(stroke_, weight_) elif mode == 'Hybrid Buses': decker_ = ws.Range("A{}".format(starow)).Value vehName = 'Hybrid Buses - {}'.format(decker_) starow += 1 # Grrrrr. Poor formatting in the EFT endrow += 1 elif mode == 'Weights': vehName = ws.Range("{}{}".format(ColName, starow-1)).Value else: raise ValueError("mode '{}' is not recognised.".format(mode)) for row in range(starow, endrow+1): euroName = ws.Range("{}{}".format(ColName, row)).Value if euroName is not None: sourceCell = "{}{}".format(ColProp, row) userCell = "{}{}".format(ColUser, row) proportion = ws.Range(sourceCell).Value if not isinstance(proportion, float): logprint(loggerM, 'Bad proportion value "{}" for veh {}, euro {}.'.format(proportion, vehName, euroName), level='info') sourceCell = "{}{}".format(ColUser, row) proportion = ws.Range(sourceCell).Value if not isinstance(proportion, float): #print(proportion) raise ValueError('Proportion must be a float.') else: logprint(loggerM, 'Fixed. Proportion value {}.'.format(proportion), level='info') logprint(loggerM, 'vehName: {}, euroName: {}, proportion: {}'.format(vehName, euroName, proportion), level='debug') got = False if mode == 'Weights': euroName = weightClassNameVariations[euroName] df1 = pd.DataFrame([[vehName, euroName, -99, '--', proportion, sourceCell, userCell]], columns=['vehicle', 'euroname', 'euroclass', 'technology', 'proportion', 'sourceCell', 'userCell']) df = df.append(df1, 1) continue for euroI, euronames in euroClassNameVariations.items(): if euroI == 99: continue if euroName in euronames['All']: got = True tech = 'Standard' for techname, euronamestechs in euronames.items(): if techname == 'All': continue if euroName in euronamestechs: tech = techname break df1 = pd.DataFrame([[vehName, euroName, euroI, tech, proportion, sourceCell, userCell]], columns=['vehicle', 'euroname', 'euroclass', 'technology', 'proportion', 'sourceCell', 'userCell']) df = df.append(df1, 1) if not got: raise ValueError("Can't identify euro class from {}.".format(euroName)) if mode == 'Weights': df = df.rename(columns={'euroname': 'weightclass'}) df = df.drop('euroclass', 1) df = df.drop('technology', 1) #print(df.head()) return df def readFleetProps(fname, sites=[]): """ Read the fleet proportion file and return a dictionary with cell references and proportions to set. """ props = {} if fname is None: return props try: # Assume excel document like the template. workbook = xlrd.open_workbook(fname) sheet = workbook.sheet_by_index(0) mode = 1 except xlrd.biffh.XLRDError: # Is it a csv? sheet =
pd.read_csv(fname)
pandas.read_csv
''' Preprocessing Tranformers Based on sci-kit's API By <NAME> Created on June 12, 2017 ''' import copy import pandas as pd import numpy as np import transforms3d as t3d import scipy.ndimage.filters as filters from sklearn.base import BaseEstimator, TransformerMixin from analysis.pymo.rotation_tools import Rotation, euler2expmap, euler2expmap2, expmap2euler, euler_reorder, unroll from analysis.pymo.Quaternions import Quaternions from analysis.pymo.Pivots import Pivots class MocapParameterizer(BaseEstimator, TransformerMixin): def __init__(self, param_type = 'euler'): ''' param_type = {'euler', 'quat', 'expmap', 'position', 'expmap2pos'} ''' self.param_type = param_type def fit(self, X, y=None): return self def transform(self, X, y=None): print("MocapParameterizer: " + self.param_type) if self.param_type == 'euler': return X elif self.param_type == 'expmap': return self._to_expmap(X) elif self.param_type == 'quat': return X elif self.param_type == 'position': return self._to_pos(X) elif self.param_type == 'expmap2pos': return self._expmap_to_pos(X) else: raise 'param types: euler, quat, expmap, position, expmap2pos' # return X def inverse_transform(self, X, copy=None): if self.param_type == 'euler': return X elif self.param_type == 'expmap': return self._expmap_to_euler(X) elif self.param_type == 'quat': raise 'quat2euler is not supported' elif self.param_type == 'position': # raise 'positions 2 eulers is not supported' print('positions 2 eulers is not supported') return X else: raise 'param types: euler, quat, expmap, position' def _to_pos(self, X): '''Converts joints rotations in Euler angles to joint positions''' Q = [] for track in X: channels = [] titles = [] euler_df = track.values # Create a new DataFrame to store the exponential map rep pos_df = pd.DataFrame(index=euler_df.index) # Copy the root rotations into the new DataFrame # rxp = '%s_Xrotation'%track.root_name # ryp = '%s_Yrotation'%track.root_name # rzp = '%s_Zrotation'%track.root_name # pos_df[rxp] = pd.Series(data=euler_df[rxp], index=pos_df.index) # pos_df[ryp] = pd.Series(data=euler_df[ryp], index=pos_df.index) # pos_df[rzp] = pd.Series(data=euler_df[rzp], index=pos_df.index) # List the columns that contain rotation channels rot_cols = [c for c in euler_df.columns if ('rotation' in c)] # List the columns that contain position channels pos_cols = [c for c in euler_df.columns if ('position' in c)] # List the joints that are not end sites, i.e., have channels joints = (joint for joint in track.skeleton) tree_data = {} for joint in track.traverse(): parent = track.skeleton[joint]['parent'] rot_order = track.skeleton[joint]['order'] #print("rot_order:" + joint + " :" + rot_order) # Get the rotation columns that belong to this joint rc = euler_df[[c for c in rot_cols if joint in c]] # Get the position columns that belong to this joint pc = euler_df[[c for c in pos_cols if joint in c]] # Make sure the columns are organized in xyz order if rc.shape[1] < 3: euler_values = np.zeros((euler_df.shape[0], 3)) rot_order = "XYZ" else: euler_values = np.pi/180.0*np.transpose(np.array([track.values['%s_%srotation'%(joint, rot_order[0])], track.values['%s_%srotation'%(joint, rot_order[1])], track.values['%s_%srotation'%(joint, rot_order[2])]])) if pc.shape[1] < 3: pos_values = np.asarray([[0,0,0] for f in pc.iterrows()]) else: pos_values =np.asarray([[f[1]['%s_Xposition'%joint], f[1]['%s_Yposition'%joint], f[1]['%s_Zposition'%joint]] for f in pc.iterrows()]) quats = Quaternions.from_euler(np.asarray(euler_values), order=rot_order.lower(), world=False) tree_data[joint]=[ [], # to store the rotation matrix [] # to store the calculated position ] if track.root_name == joint: tree_data[joint][0] = quats#rotmats # tree_data[joint][1] = np.add(pos_values, track.skeleton[joint]['offsets']) tree_data[joint][1] = pos_values else: # for every frame i, multiply this joint's rotmat to the rotmat of its parent tree_data[joint][0] = tree_data[parent][0]*quats# np.matmul(rotmats, tree_data[parent][0]) # add the position channel to the offset and store it in k, for every frame i k = pos_values + np.asarray(track.skeleton[joint]['offsets']) # multiply k to the rotmat of the parent for every frame i q = tree_data[parent][0]*k #np.matmul(k.reshape(k.shape[0],1,3), tree_data[parent][0]) # add q to the position of the parent, for every frame i tree_data[joint][1] = tree_data[parent][1] + q #q.reshape(k.shape[0],3) + tree_data[parent][1] # Create the corresponding columns in the new DataFrame pos_df['%s_Xposition'%joint] = pd.Series(data=[e[0] for e in tree_data[joint][1]], index=pos_df.index) pos_df['%s_Yposition'%joint] = pd.Series(data=[e[1] for e in tree_data[joint][1]], index=pos_df.index) pos_df['%s_Zposition'%joint] = pd.Series(data=[e[2] for e in tree_data[joint][1]], index=pos_df.index) new_track = track.clone() new_track.values = pos_df Q.append(new_track) return Q def _expmap2rot(self, expmap): theta = np.linalg.norm(expmap, axis=1, keepdims=True) nz = np.nonzero(theta)[0] expmap[nz,:] = expmap[nz,:]/theta[nz] nrows=expmap.shape[0] x = expmap[:,0] y = expmap[:,1] z = expmap[:,2] s = np.sin(theta*0.5).reshape(nrows) c = np.cos(theta*0.5).reshape(nrows) rotmats = np.zeros((nrows, 3, 3)) rotmats[:,0,0] = 2*(x*x-1)*s*s+1 rotmats[:,0,1] = 2*x*y*s*s-2*z*c*s rotmats[:,0,2] = 2*x*z*s*s+2*y*c*s rotmats[:,1,0] = 2*x*y*s*s+2*z*c*s rotmats[:,1,1] = 2*(y*y-1)*s*s+1 rotmats[:,1,2] = 2*y*z*s*s-2*x*c*s rotmats[:,2,0] = 2*x*z*s*s-2*y*c*s rotmats[:,2,1] = 2*y*z*s*s+2*x*c*s rotmats[:,2,2] = 2*(z*z-1)*s*s+1 return rotmats def _expmap_to_pos(self, X): '''Converts joints rotations in expmap notation to joint positions''' Q = [] for track in X: channels = [] titles = [] exp_df = track.values # Create a new DataFrame to store the exponential map rep pos_df = pd.DataFrame(index=exp_df.index) # Copy the root rotations into the new DataFrame # rxp = '%s_Xrotation'%track.root_name # ryp = '%s_Yrotation'%track.root_name # rzp = '%s_Zrotation'%track.root_name # pos_df[rxp] = pd.Series(data=euler_df[rxp], index=pos_df.index) # pos_df[ryp] = pd.Series(data=euler_df[ryp], index=pos_df.index) # pos_df[rzp] = pd.Series(data=euler_df[rzp], index=pos_df.index) # List the columns that contain rotation channels exp_params = [c for c in exp_df.columns if ( any(p in c for p in ['alpha', 'beta','gamma']) and 'Nub' not in c)] # List the joints that are not end sites, i.e., have channels joints = (joint for joint in track.skeleton) tree_data = {} for joint in track.traverse(): parent = track.skeleton[joint]['parent'] if 'Nub' not in joint: r = exp_df[[c for c in exp_params if joint in c]] # Get the columns that belong to this joint expmap = r.values #expmap = [[f[1]['%s_alpha'%joint], f[1]['%s_beta'%joint], f[1]['%s_gamma'%joint]] for f in r.iterrows()] else: expmap = np.zeros((exp_df.shape[0], 3)) # Convert the eulers to rotation matrices #rotmats = np.asarray([Rotation(f, 'expmap').rotmat for f in expmap]) #angs = np.linalg.norm(expmap,axis=1, keepdims=True) rotmats = self._expmap2rot(expmap) tree_data[joint]=[ [], # to store the rotation matrix [] # to store the calculated position ] pos_values = np.zeros((exp_df.shape[0], 3)) if track.root_name == joint: tree_data[joint][0] = rotmats # tree_data[joint][1] = np.add(pos_values, track.skeleton[joint]['offsets']) tree_data[joint][1] = pos_values else: # for every frame i, multiply this joint's rotmat to the rotmat of its parent tree_data[joint][0] = np.matmul(rotmats, tree_data[parent][0]) # add the position channel to the offset and store it in k, for every frame i k = pos_values + track.skeleton[joint]['offsets'] # multiply k to the rotmat of the parent for every frame i q = np.matmul(k.reshape(k.shape[0],1,3), tree_data[parent][0]) # add q to the position of the parent, for every frame i tree_data[joint][1] = q.reshape(k.shape[0],3) + tree_data[parent][1] # Create the corresponding columns in the new DataFrame pos_df['%s_Xposition'%joint] = pd.Series(data=tree_data[joint][1][:,0], index=pos_df.index) pos_df['%s_Yposition'%joint] = pd.Series(data=tree_data[joint][1][:,1], index=pos_df.index) pos_df['%s_Zposition'%joint] = pd.Series(data=tree_data[joint][1][:,2], index=pos_df.index) new_track = track.clone() new_track.values = pos_df Q.append(new_track) return Q def _to_expmap(self, X): '''Converts Euler angles to Exponential Maps''' Q = [] for track in X: channels = [] titles = [] euler_df = track.values # Create a new DataFrame to store the exponential map rep exp_df = euler_df.copy()# pd.DataFrame(index=euler_df.index) # Copy the root positions into the new DataFrame #rxp = '%s_Xposition'%track.root_name #ryp = '%s_Yposition'%track.root_name #rzp = '%s_Zposition'%track.root_name #exp_df[rxp] = pd.Series(data=euler_df[rxp], index=exp_df.index) #exp_df[ryp] = pd.Series(data=euler_df[ryp], index=exp_df.index) #exp_df[rzp] = pd.Series(data=euler_df[rzp], index=exp_df.index) # List the columns that contain rotation channels rots = [c for c in euler_df.columns if ('rotation' in c and 'Nub' not in c)] # List the joints that are not end sites, i.e., have channels joints = (joint for joint in track.skeleton if 'Nub' not in joint) for joint in joints: #print(joint) r = euler_df[[c for c in rots if joint in c]] # Get the columns that belong to this joint rot_order = track.skeleton[joint]['order'] r1_col = '%s_%srotation'%(joint, rot_order[0]) r2_col = '%s_%srotation'%(joint, rot_order[1]) r3_col = '%s_%srotation'%(joint, rot_order[2]) exp_df.drop([r1_col, r2_col, r3_col], axis=1, inplace=True) euler = [[f[1][r1_col], f[1][r2_col], f[1][r3_col]] for f in r.iterrows()] #exps = [Rotation(f, 'euler', from_deg=True, order=rot_order).to_expmap() for f in euler] # Convert the eulers to exp maps exps = unroll(np.array([euler2expmap(f, rot_order, True) for f in euler])) # Convert the exp maps to eulers # exps = np.array([euler2expmap(f, rot_order, True) for f in euler]) # Convert the exp maps to eulers #exps = euler2expmap2(euler, rot_order, True) # Convert the eulers to exp maps # Create the corresponding columns in the new DataFrame exp_df.insert(loc=0, column='%s_gamma'%joint, value=pd.Series(data=[e[2] for e in exps], index=exp_df.index)) exp_df.insert(loc=0, column='%s_beta'%joint, value=pd.Series(data=[e[1] for e in exps], index=exp_df.index)) exp_df.insert(loc=0, column='%s_alpha'%joint, value=pd.Series(data=[e[0] for e in exps], index=exp_df.index)) #print(exp_df.columns) new_track = track.clone() new_track.values = exp_df Q.append(new_track) return Q def _expmap_to_euler(self, X): Q = [] for track in X: channels = [] titles = [] exp_df = track.values # Create a new DataFrame to store the exponential map rep #euler_df = pd.DataFrame(index=exp_df.index) euler_df = exp_df.copy() # Copy the root positions into the new DataFrame #rxp = '%s_Xposition'%track.root_name #ryp = '%s_Yposition'%track.root_name #rzp = '%s_Zposition'%track.root_name #euler_df[rxp] = pd.Series(data=exp_df[rxp], index=euler_df.index) #euler_df[ryp] = pd.Series(data=exp_df[ryp], index=euler_df.index) #euler_df[rzp] = pd.Series(data=exp_df[rzp], index=euler_df.index) # List the columns that contain rotation channels exp_params = [c for c in exp_df.columns if ( any(p in c for p in ['alpha', 'beta','gamma']) and 'Nub' not in c)] # List the joints that are not end sites, i.e., have channels joints = (joint for joint in track.skeleton if 'Nub' not in joint) for joint in joints: r = exp_df[[c for c in exp_params if joint in c]] # Get the columns that belong to this joint euler_df.drop(['%s_alpha'%joint, '%s_beta'%joint, '%s_gamma'%joint], axis=1, inplace=True) expmap = [[f[1]['%s_alpha'%joint], f[1]['%s_beta'%joint], f[1]['%s_gamma'%joint]] for f in r.iterrows()] # Make sure the columsn are organized in xyz order rot_order = track.skeleton[joint]['order'] #euler_rots = [Rotation(f, 'expmap').to_euler(True, rot_order) for f in expmap] # Convert the exp maps to eulers euler_rots = [expmap2euler(f, rot_order, True) for f in expmap] # Convert the exp maps to eulers # Create the corresponding columns in the new DataFrame euler_df['%s_%srotation'%(joint, rot_order[0])] = pd.Series(data=[e[0] for e in euler_rots], index=euler_df.index) euler_df['%s_%srotation'%(joint, rot_order[1])] = pd.Series(data=[e[1] for e in euler_rots], index=euler_df.index) euler_df['%s_%srotation'%(joint, rot_order[2])] = pd.Series(data=[e[2] for e in euler_rots], index=euler_df.index) new_track = track.clone() new_track.values = euler_df Q.append(new_track) return Q class Mirror(BaseEstimator, TransformerMixin): def __init__(self, axis="X", append=True): """ Mirrors the data """ self.axis = axis self.append = append def fit(self, X, y=None): return self def transform(self, X, y=None): print("Mirror: " + self.axis) Q = [] if self.append: for track in X: Q.append(track) for track in X: channels = [] titles = [] if self.axis == "X": signs = np.array([1,-1,-1]) if self.axis == "Y": signs = np.array([-1,1,-1]) if self.axis == "Z": signs = np.array([-1,-1,1]) euler_df = track.values # Create a new DataFrame to store the exponential map rep new_df = pd.DataFrame(index=euler_df.index) # Copy the root positions into the new DataFrame rxp = '%s_Xposition'%track.root_name ryp = '%s_Yposition'%track.root_name rzp = '%s_Zposition'%track.root_name new_df[rxp] = pd.Series(data=-signs[0]*euler_df[rxp], index=new_df.index) new_df[ryp] = pd.Series(data=-signs[1]*euler_df[ryp], index=new_df.index) new_df[rzp] = pd.Series(data=-signs[2]*euler_df[rzp], index=new_df.index) # List the columns that contain rotation channels rots = [c for c in euler_df.columns if ('rotation' in c and 'Nub' not in c)] #lft_rots = [c for c in euler_df.columns if ('Left' in c and 'rotation' in c and 'Nub' not in c)] #rgt_rots = [c for c in euler_df.columns if ('Right' in c and 'rotation' in c and 'Nub' not in c)] lft_joints = (joint for joint in track.skeleton if 'Left' in joint and 'Nub' not in joint) rgt_joints = (joint for joint in track.skeleton if 'Right' in joint and 'Nub' not in joint) new_track = track.clone() for lft_joint in lft_joints: #lr = euler_df[[c for c in rots if lft_joint + "_" in c]] #rot_order = track.skeleton[lft_joint]['order'] #lft_eulers = [[f[1]['%s_Xrotation'%lft_joint], f[1]['%s_Yrotation'%lft_joint], f[1]['%s_Zrotation'%lft_joint]] for f in lr.iterrows()] rgt_joint = lft_joint.replace('Left', 'Right') #rr = euler_df[[c for c in rots if rgt_joint + "_" in c]] #rot_order = track.skeleton[rgt_joint]['order'] # rgt_eulers = [[f[1]['%s_Xrotation'%rgt_joint], f[1]['%s_Yrotation'%rgt_joint], f[1]['%s_Zrotation'%rgt_joint]] for f in rr.iterrows()] # Create the corresponding columns in the new DataFrame new_df['%s_Xrotation'%lft_joint] = pd.Series(data=signs[0]*track.values['%s_Xrotation'%rgt_joint], index=new_df.index) new_df['%s_Yrotation'%lft_joint] = pd.Series(data=signs[1]*track.values['%s_Yrotation'%rgt_joint], index=new_df.index) new_df['%s_Zrotation'%lft_joint] = pd.Series(data=signs[2]*track.values['%s_Zrotation'%rgt_joint], index=new_df.index) new_df['%s_Xrotation'%rgt_joint] = pd.Series(data=signs[0]*track.values['%s_Xrotation'%lft_joint], index=new_df.index) new_df['%s_Yrotation'%rgt_joint] = pd.Series(data=signs[1]*track.values['%s_Yrotation'%lft_joint], index=new_df.index) new_df['%s_Zrotation'%rgt_joint] = pd.Series(data=signs[2]*track.values['%s_Zrotation'%lft_joint], index=new_df.index) # List the joints that are not left or right, i.e. are on the trunk joints = (joint for joint in track.skeleton if 'Nub' not in joint and 'Left' not in joint and 'Right' not in joint) for joint in joints: #r = euler_df[[c for c in rots if joint in c]] # Get the columns that belong to this joint #rot_order = track.skeleton[joint]['order'] #eulers = [[f[1]['%s_Xrotation'%joint], f[1]['%s_Yrotation'%joint], f[1]['%s_Zrotation'%joint]] for f in r.iterrows()] # Create the corresponding columns in the new DataFrame new_df['%s_Xrotation'%joint] = pd.Series(data=signs[0]*track.values['%s_Xrotation'%joint], index=new_df.index) new_df['%s_Yrotation'%joint] = pd.Series(data=signs[1]*track.values['%s_Yrotation'%joint], index=new_df.index) new_df['%s_Zrotation'%joint] = pd.Series(data=signs[2]*track.values['%s_Zrotation'%joint], index=new_df.index) new_track.values = new_df Q.append(new_track) return Q def inverse_transform(self, X, copy=None, start_pos=None): return X class EulerReorder(BaseEstimator, TransformerMixin): def __init__(self, new_order): """ Add a """ self.new_order = new_order def fit(self, X, y=None): self.orig_skeleton = copy.deepcopy(X[0].skeleton) print(self.orig_skeleton) return self def transform(self, X, y=None): Q = [] for track in X: channels = [] titles = [] euler_df = track.values # Create a new DataFrame to store the exponential map rep new_df = pd.DataFrame(index=euler_df.index) # Copy the root positions into the new DataFrame rxp = '%s_Xposition'%track.root_name ryp = '%s_Yposition'%track.root_name rzp = '%s_Zposition'%track.root_name new_df[rxp] = pd.Series(data=euler_df[rxp], index=new_df.index) new_df[ryp] = pd.Series(data=euler_df[ryp], index=new_df.index) new_df[rzp] = pd.Series(data=euler_df[rzp], index=new_df.index) # List the columns that contain rotation channels rots = [c for c in euler_df.columns if ('rotation' in c and 'Nub' not in c)] # List the joints that are not end sites, i.e., have channels joints = (joint for joint in track.skeleton if 'Nub' not in joint) new_track = track.clone() for joint in joints: r = euler_df[[c for c in rots if joint in c]] # Get the columns that belong to this joint rot_order = track.skeleton[joint]['order'] euler = [[f[1]['%s_Xrotation'%(joint)], f[1]['%s_Yrotation'%(joint)], f[1]['%s_Zrotation'%(joint)]] for f in r.iterrows()] new_euler = [euler_reorder(f, rot_order, self.new_order, True) for f in euler] #new_euler = euler_reorder2(np.array(euler), rot_order, self.new_order, True) # Create the corresponding columns in the new DataFrame new_df['%s_%srotation'%(joint, self.new_order[0])] = pd.Series(data=[e[0] for e in new_euler], index=new_df.index) new_df['%s_%srotation'%(joint, self.new_order[1])] = pd.Series(data=[e[1] for e in new_euler], index=new_df.index) new_df['%s_%srotation'%(joint, self.new_order[2])] = pd.Series(data=[e[2] for e in new_euler], index=new_df.index) new_track.skeleton[joint]['order'] = self.new_order new_track.values = new_df Q.append(new_track) return Q def inverse_transform(self, X, copy=None, start_pos=None): return X # Q = [] # # for track in X: # channels = [] # titles = [] # euler_df = track.values # # # Create a new DataFrame to store the exponential map rep # new_df = pd.DataFrame(index=euler_df.index) # # # Copy the root positions into the new DataFrame # rxp = '%s_Xposition'%track.root_name # ryp = '%s_Yposition'%track.root_name # rzp = '%s_Zposition'%track.root_name # new_df[rxp] = pd.Series(data=euler_df[rxp], index=new_df.index) # new_df[ryp] = pd.Series(data=euler_df[ryp], index=new_df.index) # new_df[rzp] = pd.Series(data=euler_df[rzp], index=new_df.index) # # # List the columns that contain rotation channels # rots = [c for c in euler_df.columns if ('rotation' in c and 'Nub' not in c)] # # # List the joints that are not end sites, i.e., have channels # joints = (joint for joint in track.skeleton if 'Nub' not in joint) # # new_track = track.clone() # for joint in joints: # r = euler_df[[c for c in rots if joint in c]] # Get the columns that belong to this joint # rot_order = track.skeleton[joint]['order'] # new_order = self.orig_skeleton[joint]['order'] # print("rot_order:" + str(rot_order)) # print("new_order:" + str(new_order)) # # euler = [[f[1]['%s_%srotation'%(joint, rot_order[0])], f[1]['%s_%srotation'%(joint, rot_order[1])], f[1]['%s_%srotation'%(joint, rot_order[2])]] for f in r.iterrows()] # #new_euler = [euler_reorder(f, rot_order, new_order, True) for f in euler] # new_euler = euler_reorder2(np.array(euler), rot_order, self.new_order, True) # # # Create the corresponding columns in the new DataFrame # new_df['%s_%srotation'%(joint, new_order[0])] = pd.Series(data=[e[0] for e in new_euler], index=new_df.index) # new_df['%s_%srotation'%(joint, new_order[1])] = pd.Series(data=[e[1] for e in new_euler], index=new_df.index) # new_df['%s_%srotation'%(joint, new_order[2])] = pd.Series(data=[e[2] for e in new_euler], index=new_df.index) # # new_track.skeleton[joint]['order'] = new_order # # new_track.values = new_df # Q.append(new_track) # return Q class JointSelector(BaseEstimator, TransformerMixin): ''' Allows for filtering the mocap data to include only the selected joints ''' def __init__(self, joints, include_root=False): self.joints = joints self.include_root = include_root def fit(self, X, y=None): selected_joints = [] selected_channels = [] if self.include_root: selected_joints.append(X[0].root_name) selected_joints.extend(self.joints) for joint_name in selected_joints: selected_channels.extend([o for o in X[0].values.columns if (joint_name + "_") in o and 'Nub' not in o]) self.selected_joints = selected_joints self.selected_channels = selected_channels self.not_selected = X[0].values.columns.difference(selected_channels) self.not_selected_values = {c:X[0].values[c].values[0] for c in self.not_selected} self.orig_skeleton = X[0].skeleton return self def transform(self, X, y=None): print("JointSelector") Q = [] for track in X: t2 = track.clone() for key in track.skeleton.keys(): if key not in self.selected_joints: parent = t2.skeleton[key]['parent'] if parent in t2.skeleton: t2.skeleton[parent]['children'].remove(key) t2.skeleton.pop(key) t2.values = track.values[self.selected_channels] Q.append(t2) return Q def inverse_transform(self, X, copy=None): Q = [] for track in X: t2 = track.clone() t2.skeleton = self.orig_skeleton for d in self.not_selected: t2.values[d] = self.not_selected_values[d] Q.append(t2) return Q class Numpyfier(BaseEstimator, TransformerMixin): ''' Just converts the values in a MocapData object into a numpy array Useful for the final stage of a pipeline before training ''' def __init__(self): pass def fit(self, X, y=None): self.org_mocap_ = X[0].clone() self.org_mocap_.values.drop(self.org_mocap_.values.index, inplace=True) return self def transform(self, X, y=None): print("Numpyfier") Q = [] for track in X: Q.append(track.values.values) #print("Numpyfier:" + str(track.values.columns)) return np.array(Q) def inverse_transform(self, X, copy=None): Q = [] for track in X: new_mocap = self.org_mocap_.clone() time_index = pd.to_timedelta([f for f in range(track.shape[0])], unit='s') # print(self.org_mocap_.values.columns) # import pdb;pdb.set_trace() new_df = pd.DataFrame(data=track, index=time_index, columns=self.org_mocap_.values.columns) new_mocap.values = new_df Q.append(new_mocap) return Q class Slicer(BaseEstimator, TransformerMixin): ''' Slice the data into intervals of equal size ''' def __init__(self, window_size, overlap=0.5): self.window_size = window_size self.overlap = overlap pass def fit(self, X, y=None): self.org_mocap_ = X[0].clone() self.org_mocap_.values.drop(self.org_mocap_.values.index, inplace=True) return self def transform(self, X, y=None): print("Slicer") Q = [] for track in X: vals = track.values.values nframes = vals.shape[0] overlap_frames = (int)(self.overlap*self.window_size) n_sequences = (nframes-overlap_frames)//(self.window_size-overlap_frames) if n_sequences>0: y = np.zeros((n_sequences, self.window_size, vals.shape[1])) # extract sequences from the input data for i in range(0,n_sequences): frameIdx = (self.window_size-overlap_frames) * i Q.append(vals[frameIdx:frameIdx+self.window_size,:]) return np.array(Q) def inverse_transform(self, X, copy=None): Q = [] for track in X: new_mocap = self.org_mocap_.clone() time_index = pd.to_timedelta([f for f in range(track.shape[0])], unit='s') new_df = pd.DataFrame(data=track, index=time_index, columns=self.org_mocap_.values.columns) new_mocap.values = new_df Q.append(new_mocap) return Q class RootTransformer(BaseEstimator, TransformerMixin): def __init__(self, method, position_smoothing=0, rotation_smoothing=0): """ Accepted methods: abdolute_translation_deltas pos_rot_deltas """ self.method = method self.position_smoothing=position_smoothing self.rotation_smoothing=rotation_smoothing def fit(self, X, y=None): return self def transform(self, X, y=None): print("RootTransformer") Q = [] for track in X: if self.method == 'abdolute_translation_deltas': new_df = track.values.copy() xpcol = '%s_Xposition'%track.root_name ypcol = '%s_Yposition'%track.root_name zpcol = '%s_Zposition'%track.root_name dxpcol = '%s_dXposition'%track.root_name dzpcol = '%s_dZposition'%track.root_name x=track.values[xpcol].copy() z=track.values[zpcol].copy() if self.position_smoothing>0: x_sm = filters.gaussian_filter1d(x, self.position_smoothing, axis=0, mode='nearest') z_sm = filters.gaussian_filter1d(z, self.position_smoothing, axis=0, mode='nearest') dx = pd.Series(data=x_sm, index=new_df.index).diff() dz = pd.Series(data=z_sm, index=new_df.index).diff() new_df[xpcol] = x-x_sm new_df[zpcol] = z-z_sm else: dx = x.diff() dz = z.diff() new_df.drop([xpcol, zpcol], axis=1, inplace=True) dx[0] = dx[1] dz[0] = dz[1] new_df[dxpcol] = dx new_df[dzpcol] = dz new_track = track.clone() new_track.values = new_df # end of abdolute_translation_deltas elif self.method == 'pos_rot_deltas': new_track = track.clone() # Absolute columns xp_col = '%s_Xposition'%track.root_name yp_col = '%s_Yposition'%track.root_name zp_col = '%s_Zposition'%track.root_name #rot_order = track.skeleton[track.root_name]['order'] #%(joint, rot_order[0]) rot_order = track.skeleton[track.root_name]['order'] r1_col = '%s_%srotation'%(track.root_name, rot_order[0]) r2_col = '%s_%srotation'%(track.root_name, rot_order[1]) r3_col = '%s_%srotation'%(track.root_name, rot_order[2]) # Delta columns dxp_col = '%s_dXposition'%track.root_name dzp_col = '%s_dZposition'%track.root_name dxr_col = '%s_dXrotation'%track.root_name dyr_col = '%s_dYrotation'%track.root_name dzr_col = '%s_dZrotation'%track.root_name positions = np.transpose(np.array([track.values[xp_col], track.values[yp_col], track.values[zp_col]])) rotations = np.pi/180.0*np.transpose(np.array([track.values[r1_col], track.values[r2_col], track.values[r3_col]])) """ Get Trajectory and smooth it""" trajectory_filterwidth = self.position_smoothing reference = positions.copy()*np.array([1,0,1]) if trajectory_filterwidth>0: reference = filters.gaussian_filter1d(reference, trajectory_filterwidth, axis=0, mode='nearest') """ Get Root Velocity """ velocity = np.diff(reference, axis=0) velocity = np.vstack((velocity[0,:], velocity)) """ Remove Root Translation """ positions = positions-reference """ Get Forward Direction along the x-z plane, assuming character is facig z-forward """ #forward = [Rotation(f, 'euler', from_deg=True, order=rot_order).rotmat[:,2] for f in rotations] # get the z-axis of the rotation matrix, assuming character is facig z-forward #print("order:" + rot_order.lower()) quats = Quaternions.from_euler(rotations, order=rot_order.lower(), world=False) forward = quats*np.array([[0,0,1]]) forward[:,1] = 0 """ Smooth Forward Direction """ direction_filterwidth = self.rotation_smoothing if direction_filterwidth>0: forward = filters.gaussian_filter1d(forward, direction_filterwidth, axis=0, mode='nearest') forward = forward / np.sqrt((forward**2).sum(axis=-1))[...,np.newaxis] """ Remove Y Rotation """ target = np.array([[0,0,1]]).repeat(len(forward), axis=0) rotation = Quaternions.between(target, forward)[:,np.newaxis] positions = (-rotation[:,0]) * positions new_rotations = (-rotation[:,0]) * quats velocity = (-rotation[:,0]) * velocity """ Get Root Rotation """ #print(rotation[:,0]) rvelocity = Pivots.from_quaternions(rotation[1:] * -rotation[:-1]).ps rvelocity = np.vstack((rvelocity[0], rvelocity)) eulers = np.array([t3d.euler.quat2euler(q, axes=('s'+rot_order.lower()[::-1]))[::-1] for q in new_rotations])*180.0/np.pi new_df = track.values.copy() root_pos_x = pd.Series(data=positions[:,0], index=new_df.index) root_pos_y = pd.Series(data=positions[:,1], index=new_df.index) root_pos_z = pd.Series(data=positions[:,2], index=new_df.index) root_pos_x_diff =
pd.Series(data=velocity[:,0], index=new_df.index)
pandas.Series
import numpy as np import pandas as pd ################################################### ## Building Relational tables ################################################### # Population (in millions) population_dict = {'California': 38, 'Texas': 26, 'New York': 20, 'Florida': 19, 'Illinois': 13} # Area in square kilometers area_dict = {'California': 423967, 'Texas': 695662, 'New York': 141297, 'Florida': 170312, 'Illinois': 149995} largestcity_dict = {'California': 'Los Angeles', 'Texas': 'Houston', 'New York': 'New York', 'Florida': 'Jacksonville', 'Illinois': 'Chicago'} # Just one column in a table print('************** JUST 1 COLUMN ****************') population = pd.Series(population_dict) print(population) print(population['California':'New York']) print('************** WIDER DATAFRAME ****************') # Combine DataFrame from several Series area = pd.Series(area_dict) city = pd.Series(largestcity_dict) USStateDF = pd.DataFrame({'population': population, 'area': area, 'city':city}) print(USStateDF) print('************** GENERATED DATAFRAME ****************') data = [{'a': i, 'b': 2 * i} for i in range(5)] numberDF = pd.DataFrame(data) print(numberDF) ######################################################## ## Project operation ######################################################## print('************** BEFORE PROJECT ****************') print(USStateDF) print('************** AFTER PROJECT ****************') ProjectedDF = USStateDF[['population', 'city']] print(ProjectedDF) ######################################################## ## Union of two dataframes ######################################################## print('************** UNION ****************') ser1 =
pd.Series(['A', 'B', 'C'], index=[1, 2, 3])
pandas.Series
""" Tests for CBMonthEnd CBMonthBegin, SemiMonthEnd, and SemiMonthBegin in offsets """ from datetime import ( date, datetime, ) import numpy as np import pytest from pandas._libs.tslibs import Timestamp from pandas._libs.tslibs.offsets import ( CBMonthBegin, CBMonthEnd, CDay, SemiMonthBegin, SemiMonthEnd, ) from pandas import ( DatetimeIndex, Series, _testing as tm, date_range, ) from pandas.tests.tseries.offsets.common import ( Base, assert_is_on_offset, assert_offset_equal, ) from pandas.tests.tseries.offsets.test_offsets import _ApplyCases from pandas.tseries import offsets as offsets from pandas.tseries.holiday import USFederalHolidayCalendar class CustomBusinessMonthBase: def setup_method(self, method): self.d = datetime(2008, 1, 1) self.offset = self._offset() self.offset1 = self.offset self.offset2 = self._offset(2) def test_eq(self): assert self.offset2 == self.offset2 def test_mul(self): pass def test_hash(self): assert hash(self.offset2) == hash(self.offset2) def test_roundtrip_pickle(self): def _check_roundtrip(obj): unpickled = tm.round_trip_pickle(obj) assert unpickled == obj _check_roundtrip(self._offset()) _check_roundtrip(self._offset(2)) _check_roundtrip(self._offset() * 2) def test_copy(self): # GH 17452 off = self._offset(weekmask="Mon Wed Fri") assert off == off.copy() class TestCustomBusinessMonthEnd(CustomBusinessMonthBase, Base): _offset = CBMonthEnd def test_different_normalize_equals(self): # GH#21404 changed __eq__ to return False when `normalize` does not match offset = self._offset() offset2 = self._offset(normalize=True) assert offset != offset2 def test_repr(self): assert repr(self.offset) == "<CustomBusinessMonthEnd>" assert repr(self.offset2) == "<2 * CustomBusinessMonthEnds>" def test_call(self): with tm.assert_produces_warning(FutureWarning): # GH#34171 DateOffset.__call__ is deprecated assert self.offset2(self.d) == datetime(2008, 2, 29) def testRollback1(self): assert CDay(10).rollback(datetime(2007, 12, 31)) == datetime(2007, 12, 31) def testRollback2(self): assert CBMonthEnd(10).rollback(self.d) == datetime(2007, 12, 31) def testRollforward1(self): assert CBMonthEnd(10).rollforward(self.d) == datetime(2008, 1, 31) def test_roll_date_object(self): offset = CBMonthEnd() dt = date(2012, 9, 15) result = offset.rollback(dt) assert result == datetime(2012, 8, 31) result = offset.rollforward(dt) assert result == datetime(2012, 9, 28) offset = offsets.Day() result = offset.rollback(dt) assert result == datetime(2012, 9, 15) result = offset.rollforward(dt) assert result == datetime(2012, 9, 15) on_offset_cases = [ (CBMonthEnd(), datetime(2008, 1, 31), True), (CBMonthEnd(), datetime(2008, 1, 1), False), ] @pytest.mark.parametrize("case", on_offset_cases) def test_is_on_offset(self, case): offset, d, expected = case assert_is_on_offset(offset, d, expected) apply_cases: _ApplyCases = [ ( CBMonthEnd(), { datetime(2008, 1, 1): datetime(2008, 1, 31), datetime(2008, 2, 7): datetime(2008, 2, 29), }, ), ( 2 * CBMonthEnd(), { datetime(2008, 1, 1): datetime(2008, 2, 29), datetime(2008, 2, 7): datetime(2008, 3, 31), }, ), ( -CBMonthEnd(), { datetime(2008, 1, 1): datetime(2007, 12, 31), datetime(2008, 2, 8): datetime(2008, 1, 31), }, ), ( -2 * CBMonthEnd(), { datetime(2008, 1, 1): datetime(2007, 11, 30), datetime(2008, 2, 9): datetime(2007, 12, 31), }, ), ( CBMonthEnd(0), { datetime(2008, 1, 1): datetime(2008, 1, 31), datetime(2008, 2, 7): datetime(2008, 2, 29), }, ), ] @pytest.mark.parametrize("case", apply_cases) def test_apply(self, case): offset, cases = case for base, expected in cases.items(): assert_offset_equal(offset, base, expected) def test_apply_large_n(self): dt = datetime(2012, 10, 23) result = dt + CBMonthEnd(10) assert result == datetime(2013, 7, 31) result = dt + CDay(100) - CDay(100) assert result == dt off = CBMonthEnd() * 6 rs = datetime(2012, 1, 1) - off xp = datetime(2011, 7, 29) assert rs == xp st = datetime(2011, 12, 18) rs = st + off xp = datetime(2012, 5, 31) assert rs == xp def test_holidays(self): # Define a TradingDay offset holidays = ["2012-01-31", datetime(2012, 2, 28), np.datetime64("2012-02-29")] bm_offset = CBMonthEnd(holidays=holidays) dt = datetime(2012, 1, 1) assert dt + bm_offset == datetime(2012, 1, 30) assert dt + 2 * bm_offset == datetime(2012, 2, 27) @pytest.mark.filterwarnings("ignore:Non:pandas.errors.PerformanceWarning") def test_datetimeindex(self): from pandas.tseries.holiday import USFederalHolidayCalendar hcal = USFederalHolidayCalendar() freq = CBMonthEnd(calendar=hcal) assert date_range(start="20120101", end="20130101", freq=freq).tolist()[ 0 ] == datetime(2012, 1, 31) class TestCustomBusinessMonthBegin(CustomBusinessMonthBase, Base): _offset = CBMonthBegin def test_different_normalize_equals(self): # GH#21404 changed __eq__ to return False when `normalize` does not match offset = self._offset() offset2 = self._offset(normalize=True) assert offset != offset2 def test_repr(self): assert repr(self.offset) == "<CustomBusinessMonthBegin>" assert repr(self.offset2) == "<2 * CustomBusinessMonthBegins>" def test_call(self): with tm.assert_produces_warning(FutureWarning): # GH#34171 DateOffset.__call__ is deprecated assert self.offset2(self.d) == datetime(2008, 3, 3) def testRollback1(self): assert CDay(10).rollback(datetime(2007, 12, 31)) == datetime(2007, 12, 31) def testRollback2(self): assert CBMonthBegin(10).rollback(self.d) == datetime(2008, 1, 1) def testRollforward1(self): assert CBMonthBegin(10).rollforward(self.d) == datetime(2008, 1, 1) def test_roll_date_object(self): offset = CBMonthBegin() dt = date(2012, 9, 15) result = offset.rollback(dt) assert result == datetime(2012, 9, 3) result = offset.rollforward(dt) assert result == datetime(2012, 10, 1) offset = offsets.Day() result = offset.rollback(dt) assert result == datetime(2012, 9, 15) result = offset.rollforward(dt) assert result == datetime(2012, 9, 15) on_offset_cases = [ (CBMonthBegin(), datetime(2008, 1, 1), True), (CBMonthBegin(), datetime(2008, 1, 31), False), ] @pytest.mark.parametrize("case", on_offset_cases) def test_is_on_offset(self, case): offset, dt, expected = case assert_is_on_offset(offset, dt, expected) apply_cases: _ApplyCases = [ ( CBMonthBegin(), { datetime(2008, 1, 1): datetime(2008, 2, 1), datetime(2008, 2, 7): datetime(2008, 3, 3), }, ), ( 2 * CBMonthBegin(), { datetime(2008, 1, 1): datetime(2008, 3, 3), datetime(2008, 2, 7): datetime(2008, 4, 1), }, ), ( -CBMonthBegin(), { datetime(2008, 1, 1): datetime(2007, 12, 3), datetime(2008, 2, 8): datetime(2008, 2, 1), }, ), ( -2 * CBMonthBegin(), { datetime(2008, 1, 1): datetime(2007, 11, 1), datetime(2008, 2, 9): datetime(2008, 1, 1), }, ), ( CBMonthBegin(0), { datetime(2008, 1, 1): datetime(2008, 1, 1), datetime(2008, 1, 7): datetime(2008, 2, 1), }, ), ] @pytest.mark.parametrize("case", apply_cases) def test_apply(self, case): offset, cases = case for base, expected in cases.items(): assert_offset_equal(offset, base, expected) def test_apply_large_n(self): dt = datetime(2012, 10, 23) result = dt + CBMonthBegin(10) assert result == datetime(2013, 8, 1) result = dt + CDay(100) - CDay(100) assert result == dt off = CBMonthBegin() * 6 rs = datetime(2012, 1, 1) - off xp = datetime(2011, 7, 1) assert rs == xp st = datetime(2011, 12, 18) rs = st + off xp = datetime(2012, 6, 1) assert rs == xp def test_holidays(self): # Define a TradingDay offset holidays = ["2012-02-01", datetime(2012, 2, 2), np.datetime64("2012-03-01")] bm_offset = CBMonthBegin(holidays=holidays) dt = datetime(2012, 1, 1) assert dt + bm_offset == datetime(2012, 1, 2) assert dt + 2 * bm_offset == datetime(2012, 2, 3) @pytest.mark.filterwarnings("ignore:Non:pandas.errors.PerformanceWarning") def test_datetimeindex(self): hcal = USFederalHolidayCalendar() cbmb = CBMonthBegin(calendar=hcal) assert date_range(start="20120101", end="20130101", freq=cbmb).tolist()[ 0 ] == datetime(2012, 1, 3) class TestSemiMonthEnd(Base): _offset = SemiMonthEnd offset1 = _offset() offset2 = _offset(2) def test_offset_whole_year(self): dates = ( datetime(2007, 12, 31), datetime(2008, 1, 15), datetime(2008, 1, 31), datetime(2008, 2, 15), datetime(2008, 2, 29), datetime(2008, 3, 15), datetime(2008, 3, 31), datetime(2008, 4, 15), datetime(2008, 4, 30), datetime(2008, 5, 15), datetime(2008, 5, 31), datetime(2008, 6, 15), datetime(2008, 6, 30), datetime(2008, 7, 15), datetime(2008, 7, 31), datetime(2008, 8, 15), datetime(2008, 8, 31), datetime(2008, 9, 15), datetime(2008, 9, 30), datetime(2008, 10, 15), datetime(2008, 10, 31), datetime(2008, 11, 15), datetime(2008, 11, 30), datetime(2008, 12, 15), datetime(2008, 12, 31), ) for base, exp_date in zip(dates[:-1], dates[1:]): assert_offset_equal(SemiMonthEnd(), base, exp_date) # ensure .apply_index works as expected s = DatetimeIndex(dates[:-1]) with tm.assert_produces_warning(None): # GH#22535 check that we don't get a FutureWarning from adding # an integer array to PeriodIndex result = SemiMonthEnd() + s exp = DatetimeIndex(dates[1:]) tm.assert_index_equal(result, exp) # ensure generating a range with DatetimeIndex gives same result result = date_range(start=dates[0], end=dates[-1], freq="SM") exp = DatetimeIndex(dates, freq="SM") tm.assert_index_equal(result, exp) offset_cases = [] offset_cases.append( ( SemiMonthEnd(), { datetime(2008, 1, 1): datetime(2008, 1, 15), datetime(2008, 1, 15): datetime(2008, 1, 31), datetime(2008, 1, 31): datetime(2008, 2, 15), datetime(2006, 12, 14): datetime(2006, 12, 15), datetime(2006, 12, 29): datetime(2006, 12, 31), datetime(2006, 12, 31): datetime(2007, 1, 15), datetime(2007, 1, 1): datetime(2007, 1, 15), datetime(2006, 12, 1): datetime(2006, 12, 15), datetime(2006, 12, 15): datetime(2006, 12, 31), }, ) ) offset_cases.append( ( SemiMonthEnd(day_of_month=20), { datetime(2008, 1, 1): datetime(2008, 1, 20), datetime(2008, 1, 15): datetime(2008, 1, 20), datetime(2008, 1, 21): datetime(2008, 1, 31), datetime(2008, 1, 31): datetime(2008, 2, 20), datetime(2006, 12, 14): datetime(2006, 12, 20), datetime(2006, 12, 29): datetime(2006, 12, 31), datetime(2006, 12, 31): datetime(2007, 1, 20), datetime(2007, 1, 1): datetime(2007, 1, 20), datetime(2006, 12, 1): datetime(2006, 12, 20), datetime(2006, 12, 15): datetime(2006, 12, 20), }, ) ) offset_cases.append( ( SemiMonthEnd(0), { datetime(2008, 1, 1): datetime(2008, 1, 15), datetime(2008, 1, 16): datetime(2008, 1, 31), datetime(2008, 1, 15): datetime(2008, 1, 15), datetime(2008, 1, 31): datetime(2008, 1, 31), datetime(2006, 12, 29): datetime(2006, 12, 31), datetime(2006, 12, 31): datetime(2006, 12, 31), datetime(2007, 1, 1): datetime(2007, 1, 15), }, ) ) offset_cases.append( ( SemiMonthEnd(0, day_of_month=16), { datetime(2008, 1, 1): datetime(2008, 1, 16), datetime(2008, 1, 16): datetime(2008, 1, 16), datetime(2008, 1, 15): datetime(2008, 1, 16), datetime(2008, 1, 31): datetime(2008, 1, 31), datetime(2006, 12, 29): datetime(2006, 12, 31), datetime(2006, 12, 31): datetime(2006, 12, 31), datetime(2007, 1, 1): datetime(2007, 1, 16), }, ) ) offset_cases.append( ( SemiMonthEnd(2), { datetime(2008, 1, 1): datetime(2008, 1, 31), datetime(2008, 1, 31): datetime(2008, 2, 29), datetime(2006, 12, 29): datetime(2007, 1, 15), datetime(2006, 12, 31): datetime(2007, 1, 31), datetime(2007, 1, 1): datetime(2007, 1, 31), datetime(2007, 1, 16): datetime(2007, 2, 15), datetime(2006, 11, 1): datetime(2006, 11, 30), }, ) ) offset_cases.append( ( SemiMonthEnd(-1), { datetime(2007, 1, 1): datetime(2006, 12, 31), datetime(2008, 6, 30): datetime(2008, 6, 15), datetime(2008, 12, 31): datetime(2008, 12, 15), datetime(2006, 12, 29): datetime(2006, 12, 15), datetime(2006, 12, 30): datetime(2006, 12, 15), datetime(2007, 1, 1): datetime(2006, 12, 31), }, ) ) offset_cases.append( ( SemiMonthEnd(-1, day_of_month=4), { datetime(2007, 1, 1): datetime(2006, 12, 31), datetime(2007, 1, 4): datetime(2006, 12, 31), datetime(2008, 6, 30): datetime(2008, 6, 4), datetime(2008, 12, 31): datetime(2008, 12, 4), datetime(2006, 12, 5): datetime(2006, 12, 4), datetime(2006, 12, 30): datetime(2006, 12, 4), datetime(2007, 1, 1): datetime(2006, 12, 31), }, ) ) offset_cases.append( ( SemiMonthEnd(-2), { datetime(2007, 1, 1): datetime(2006, 12, 15), datetime(2008, 6, 30): datetime(2008, 5, 31), datetime(2008, 3, 15): datetime(2008, 2, 15), datetime(2008, 12, 31): datetime(2008, 11, 30), datetime(2006, 12, 29): datetime(2006, 11, 30), datetime(2006, 12, 14): datetime(2006, 11, 15), datetime(2007, 1, 1): datetime(2006, 12, 15), }, ) ) @pytest.mark.parametrize("case", offset_cases) def test_offset(self, case): offset, cases = case for base, expected in cases.items(): assert_offset_equal(offset, base, expected) @pytest.mark.parametrize("case", offset_cases) def test_apply_index(self, case): # https://github.com/pandas-dev/pandas/issues/34580 offset, cases = case s = DatetimeIndex(cases.keys()) exp = DatetimeIndex(cases.values()) with tm.assert_produces_warning(None): # GH#22535 check that we don't get a FutureWarning from adding # an integer array to PeriodIndex result = offset + s tm.assert_index_equal(result, exp) with tm.assert_produces_warning(FutureWarning): result = offset.apply_index(s)
tm.assert_index_equal(result, exp)
pandas._testing.assert_index_equal
import numpy as np import pytest import pandas._libs.index as _index from pandas.errors import PerformanceWarning import pandas as pd from pandas import DataFrame, Index, MultiIndex, Series import pandas._testing as tm class TestMultiIndexBasic: def test_multiindex_perf_warn(self): df = DataFrame( { "jim": [0, 0, 1, 1], "joe": ["x", "x", "z", "y"], "jolie": np.random.rand(4), } ).set_index(["jim", "joe"]) with tm.assert_produces_warning(PerformanceWarning): df.loc[(1, "z")] df = df.iloc[[2, 1, 3, 0]] with tm.assert_produces_warning(PerformanceWarning): df.loc[(0,)] def test_indexing_over_hashtable_size_cutoff(self): n = 10000 old_cutoff = _index._SIZE_CUTOFF _index._SIZE_CUTOFF = 20000 s = Series(np.arange(n), MultiIndex.from_arrays((["a"] * n, np.arange(n)))) # hai it works! assert s[("a", 5)] == 5 assert s[("a", 6)] == 6 assert s[("a", 7)] == 7 _index._SIZE_CUTOFF = old_cutoff def test_multi_nan_indexing(self): # GH 3588 df = DataFrame( { "a": ["R1", "R2", np.nan, "R4"], "b": ["C1", "C2", "C3", "C4"], "c": [10, 15, np.nan, 20], } ) result = df.set_index(["a", "b"], drop=False) expected = DataFrame( { "a": ["R1", "R2", np.nan, "R4"], "b": ["C1", "C2", "C3", "C4"], "c": [10, 15, np.nan, 20], }, index=[
Index(["R1", "R2", np.nan, "R4"], name="a")
pandas.Index