prompt
stringlengths
19
1.03M
completion
stringlengths
4
2.12k
api
stringlengths
8
90
from . import webcat, geo, prices import pandas as pd import aljpy from pathlib import Path DECISIONS = Path('data/decisions.json') CUTS = { 'park': 10, 'town': 10, 'propvalue': 10000, 'friends': 45, 'aerial': 30, 'central': 60} @aljpy.autocache(disk=False, memory=True) def map_layers(): base = webcat.basemap() maps = aljpy.dotdict({ 'park': geo.green_spaces(base), 'town': geo.town_centers(base), 'propvalue': prices.layer(base)}) if geo.LOCATIONS: maps.update({ 'aerial': geo.aggtim(geo.LOCATIONS['aerial'].values(), 'min'), 'central': geo.aggtim(geo.LOCATIONS['central'].values(), 'mean', interval=10), 'friends': geo.aggtim(geo.LOCATIONS['friends'].values(), 'mean', interval=10)}) return maps def dataframe(listings): # Why is the API returning strings sometime? listings['rental_prices.per_month'] = pd.to_numeric(listings['rental_prices.per_month']) listings = (listings .loc[lambda df: pd.to_numeric(df['num_bedrooms']) <= 2] .loc[lambda df:
pd.to_numeric(df['num_bedrooms'])
pandas.to_numeric
from rest_framework import permissions, status from rest_framework.decorators import api_view, authentication_classes, permission_classes from rest_framework.response import Response from rest_framework.views import APIView from datetime import date, datetime, timedelta from django.forms.models import model_to_dict from django.db.models import Q, Count, F, Sum from django.db.models.functions import TruncWeek, TruncMonth, TruncYear from django.apps import apps from django.core.files.storage import default_storage from .serializers import * from .models import * from .content_based_recommender import ContentBasedRecommender from .utils import * from pathlib import Path from google.analytics.data_v1beta import BetaAnalyticsDataClient from google.analytics.data_v1beta.types import DateRange from google.analytics.data_v1beta.types import Dimension from google.analytics.data_v1beta.types import Metric from google.analytics.data_v1beta.types import RunReportRequest from apiclient.discovery import build from oauth2client.service_account import ServiceAccountCredentials from slugify import slugify import pandas as pd import random import json import uuid import os import pydash import urllib3 import dotenv # Read configure file base_dir = Path(__file__).resolve().parent.parent module_dir = os.path.dirname(__file__) mapping_template_file_path = os.path.join(module_dir, 'configuration/mapping_template.json') schema_table_file_path = os.path.join(module_dir, 'configuration/schema_table.json') schema_detail_file_path = os.path.join(module_dir, 'configuration/schema_detail.json') ga4_json = os.path.join(module_dir, 'configuration/ga4.json') ua_json = os.path.join(module_dir, 'configuration/ua.json') # Initialize environment variables dotenv.load_dotenv(os.path.join(base_dir, '.env')) # Global vaos.environrial API_KEY = os.environ['API_KEY'] IP_DOMAIN = os.environ['IP_DOMAIN'] scope = 'https://www.googleapis.com/auth/analytics.readonly' dimensions = ['date', 'eventName', 'pageLocation', 'browser', 'deviceCategory', 'operatingSystem', 'country'] metrics = ['eventCount', 'sessions'] ua_dimensions = ['ga:date', 'ga:eventCategory', 'ga:pagePath', 'ga:browser', 'ga:deviceCategory', 'ga:operatingSystem', 'ga:country'] ua_metrics = ['ga:totalEvents', 'ga:sessions'] @api_view(['GET']) def home(request): try: # Initialize KPI reports web_activity_report = [] event_report = [] product_report = [] traffics = {} # Total number of web activities (interactions) web_activities_file = len(Interaction_f.objects.all()) web_activities_ga = Interaction_ga.objects.all().aggregate(Sum('event_count'))['event_count__sum'] if (web_activities_ga is None): web_activities_ga = 0 web_activities = web_activities_file + web_activities_ga # Total number of sessions (a session includes multiple interactions) sessions_file = len(Interaction_f.objects.values('session_id').distinct()) sessions_ga = Interaction_ga.objects.all().aggregate(Sum('session_count'))['session_count__sum'] if (sessions_ga is None): sessions_ga = 0 sessions = sessions_file + sessions_ga # Total number of web activities by page location pages_file = Interaction_f.objects.all().values('page_location').annotate(total=Count('page_location')) pages_ga = Interaction_ga.objects.all().values('page_location').annotate(total=Sum('event_count')) pages = list(pages_file) + list(pages_ga) if (len(pages)): pages = pd.DataFrame(pages).groupby(['page_location'], as_index=False).sum().to_dict('r') pages = sorted(pages, key=lambda k : k['total'], reverse=True) # Total number of web activities by device categories device_categories_file = Interaction_f.objects.all().values('device_category').annotate(total=Count('device_category')) device_categories_ga = Interaction_ga.objects.all().values('device_category').annotate(total=Sum('event_count')) device_categories = list(device_categories_ga) + list(device_categories_file) for category in list(device_categories): type = category['device_category'] if (type not in traffics): traffics[type] = 0 traffics[type] += category['total'] # Web activities report - Total number of web activities by event name web_activity_data_file = Interaction_f.objects.all().values('event_name').annotate(total=Count('event_name')) web_activity_data_ga = Interaction_ga.objects.all().values('event_name').annotate(total=Sum('event_count')) web_activity_data = list(web_activity_data_file) + list(web_activity_data_ga) if (len(web_activity_data)): web_activity_data = pd.DataFrame(web_activity_data).groupby(['event_name'], as_index=False).sum().to_dict('r') web_activity_report = [(item['event_name'], item['total']) for item in list(web_activity_data)] # Cultural event report - Total number of cultural events by event type event_data = Events.objects.all().values('event_type').annotate(total=Count('event_type')) event_report = [(item['event_type'], item['total']) for item in list(event_data)] # Cutural product report - Total number of cultural products by product type product_data = Products.objects.all().values('product_type').annotate(total=Count('product_type')) product_report = [(item['product_type'], item['total']) for item in list(product_data)] # Add info for report to generate charts reports = [ { 'id': 'activity-chart', 'title': 'Statistiques d’activités Web par types', 'data': web_activity_report, 'type': 'pie', }, { 'id': 'event-chart', 'title': 'Statistiques d’événements par types', 'data': event_report, 'type': 'column' }, { 'id': 'product-chart', 'title': 'Statistiques d’articles par types', 'data': product_report, 'type': 'column' }, ] return Response({'reports': reports, 'sessions': sessions, 'webActivities': web_activities, 'traffic': traffics, 'pages': pages}, status=status.HTTP_200_OK) except Exception as exception: return Response({'message': exception}) class ItemList(APIView): # Get list of items (all rows) from a table def get(self, request, item_type): try: import_id = request.GET.get('importId', None) # Read config file item_list_schema = get_json_info(schema_table_file_path, item_type) # Get info (model_name of item, list required fields to show, ...) model_name = item_list_schema['model_name'] fields = item_list_schema['fields'] view_detail = item_list_schema['view_detail'] Model = apps.get_model(app_label='dimadb', model_name=model_name) if (import_id is not None): items = Model.objects.filter(import_id=import_id).values(*fields) else: items = Model.objects.all().values(*fields) return Response({ 'items': items, 'isViewDetail': view_detail, }, status=status.HTTP_200_OK) except Exception as exception: return Response({'message': exception}) class ItemDetail(APIView): # Get item detail (detail of a row) from a table def get(self, request, item_type, pk, format=None): try: # Read config file item_detail_schema = get_json_info(schema_detail_file_path, item_type) item_detail = get_item_detail_form(pk, item_detail_schema) return Response(item_detail) except Exception as exception: return Response({'message': exception}) # Update info def put(self, request, item_type, pk, format=None): try: item_form = json.loads(request.body) update_item_info(item_form) return Response({'message': 'Update successfully'}, status=status.HTTP_200_OK) except Exception as exception: return Response({'message': exception}) # Delete info def delete(self, request, item_type, pk, format=None): try: item_form = json.loads(request.body) delete_item_info(item_form) return Response({'message': 'Delete successfully'}, status=status.HTTP_200_OK) except Exception as exception: return Response({'message': exception}) # New info def post(self, request, item_type, pk, format=None): try: item_form = json.loads(request.body) update_item_info(item_form) return Response({'message': 'Create successfully'}, status=status.HTTP_200_OK) except Exception as exception: return Response({'message': exception}) # Get data(row) from a table(model) def get_model_object(model_name, pk): if (pk != 'form'): try: Model = apps.get_model(app_label='dimadb', model_name=model_name) event = Model.objects.get(id=pk) return model_to_dict(event) except Model.DoesNotExist: return {} else: return {} # Get all information of an object from several tables (event information coming from event, geolocation, ...) def get_item_detail_form(pk, schema_detail): form_attributes = {} # Get info from schema_detail model_name = schema_detail['model_name'] fields = schema_detail['fields'] m2m_tables = [] o2m_tables = [] if ('m2m_tables' in schema_detail.keys()): m2m_tables = schema_detail['m2m_tables'] if ('o2m_tables' in schema_detail.keys()): o2m_tables = schema_detail['o2m_tables'] # Query item from db Model = apps.get_model(app_label='dimadb', model_name=model_name) obj = get_model_object(model_name, pk) if ('id' in obj.keys()): obj_id = obj['id'] else: obj_id = None # List attributes consists field names in primary table for field in fields: form_attributes[field] = {} attribute_type = Model._meta.get_field(field).get_internal_type() attribute_choices = Model._meta.get_field(field).choices # Assign value for each field of item if (field in obj.keys()): form_attributes[field]['value'] = obj[field] else: form_attributes[field]['value'] = '' # Assign data type for each field of item if (attribute_choices != None): form_attributes[field]['type'] = 'select' form_attributes[field]['choices'] = [ value for (value, name) in attribute_choices] else: if (attribute_type == 'IntegerField'): form_attributes[field]['type'] = 'integer' elif (attribute_type == 'DecimalField'): form_attributes[field]['type'] = 'decimal' elif (attribute_type == 'TextField'): form_attributes[field]['type'] = 'textarea' elif (attribute_type == 'DateTimeField' or attribute_type == 'DateField'): form_attributes[field]['type'] = 'date' if form_attributes[field]['value'] == '' or form_attributes[field]['value'] is None: form_attributes[field]['value'] = '' else: form_attributes[field]['value'] = form_attributes[field]['value'].strftime( "%Y-%m-%d") else: form_attributes[field]['type'] = 'text' # List o2m tables conists additional info of item (geolocation, resource, etc.) # Ex: evet - eventpreference(o2m) for o2m_table in o2m_tables: o2m_display_name = o2m_table['display_name'] connected_field = o2m_table['connected_field'] # Get list of rows in o2m table form_attributes[o2m_display_name] = {} form_attributes[o2m_display_name]['type'] = 'o2m' form_attributes[o2m_display_name]['value'] = get_o2m_items(o2m_table, obj_id) element_attributes = get_item_detail_form('form', o2m_table) element_attributes['connected_field'] = connected_field form_attributes[o2m_display_name]['elementAttributes'] = element_attributes form_info = { 'type': 'object', 'id': uuid.uuid4(), 'attributes': form_attributes, 'removed': False, 'status': 'new' if pk == 'form' else 'created', 'name': model_name } # List m2m tables consists additional info of item (geolocation, resource, etc.) # Ex: event - eventlocation(connected_table, who hold 2 primary keys of two tables) - geolocation(m2m) for m2m_table in m2m_tables: # Get config info m2m_display_name = m2m_table['display_name'] connected_table = m2m_table['connected_table'] connected_field1 = m2m_table['connected_field1'] connected_field2 = m2m_table['connected_field2'] # Get list of rows in m2m table form_attributes[m2m_display_name] = {} form_attributes[m2m_display_name]['type'] = 'm2m' form_attributes[m2m_display_name]['value'] = get_m2m_items(m2m_table, obj_id) # Create an empty form info for m2m table element_attributes = get_item_detail_form('form', m2m_table) element_attributes['connectedAttributes'] = get_item_detail_form('form', connected_table) element_attributes['connectedAttributes']['connected_field1'] = connected_field1 element_attributes['connectedAttributes']['connected_field2'] = connected_field2 form_attributes[m2m_display_name]['elementAttributes'] = element_attributes return form_info # Update item based on form sent from GUI def update_item_info(form_info, connected_field1_id=None): status = form_info['status'] obj_id = form_info['attributes']['id']['value'] obj_info = filter_form_object_info(form_info['attributes']) model_name = form_info['name'] Model = apps.get_model(app_label='dimadb', model_name=model_name) if ('connected_field' in form_info.keys()): connected_field = form_info['connected_field'] obj_info[connected_field] = connected_field1_id if (status == 'new'): # If new info created new_obj = Model(**obj_info) new_obj.save() update_multiple_items('m2m', form_info['attributes'], new_obj.id) update_multiple_items('o2m', form_info['attributes'], new_obj.id) if ('connectedAttributes' in form_info.keys()): connected_field2_id = new_obj.id create_connected_object(form_info['connectedAttributes'], connected_field1_id, connected_field2_id) elif (status == 'created'): # If info updated Model.objects.filter(id=obj_id).update(**obj_info) updated_obj = Model.objects.get(id=obj_id) update_multiple_items('m2m', form_info['attributes'], updated_obj.id) update_multiple_items('o2m', form_info['attributes'], updated_obj.id) if ('connectedAttributes' in form_info.keys()): update_item_info(form_info['connectedAttributes']) else: # If info deleted delete_item_info(form_info) # Delete row from database def delete_item_info(form_info): obj_id = form_info['attributes']['id']['value'] if (id != ''): model_name = form_info['name'] Model = apps.get_model(app_label='dimadb', model_name=model_name) Model.objects.filter(id=obj_id).delete() delete_multiple_items('m2m', form_info['attributes']) delete_multiple_items('o2m', form_info['attributes']) if ('connectedAttributes' in form_info.keys()): delete_item_info(form_info['connectedAttributes']) # Get all items in m2m table def get_m2m_items(m2m_table, connected_field1_id): m2m_forms = [] if connected_field1_id: # Get config info connected_table = m2m_table['connected_table'] connected_field1 = m2m_table['connected_field1'] connected_field2 = m2m_table['connected_field2'] connected_model_name = connected_table['model_name'] # Get connected model objects to query connected_field2_id ConnectedModel = apps.get_model(app_label='dimadb', model_name=connected_model_name) filter_params = {connected_field1: connected_field1_id} connected_objects = list(ConnectedModel.objects.filter(**filter_params)) connected_objects = [model_to_dict(connected_obj) for connected_obj in connected_objects] # For each connected object (row) in connected table, query and create form for that connected object + foreign object for connected_obj in connected_objects: connected_form = get_item_detail_form(connected_obj['id'], connected_table) m2m_form = get_item_detail_form(connected_obj[connected_field2], m2m_table) m2m_form['connectedAttributes'] = connected_form m2m_form['connectedAttributes']['connected_field1'] = connected_field1 m2m_form['connectedAttributes']['connected_field2'] = connected_field2 m2m_forms.append(m2m_form) return m2m_forms # Get all items in o2m table def get_o2m_items(o2m_table, connected_field_id): o2m_forms = [] if connected_field_id: # Get config info o2m_model_name = o2m_table['model_name'] connected_field = o2m_table['connected_field'] # Get o2m model objects O2MModel = apps.get_model(app_label='dimadb', model_name=o2m_model_name) filter_params = {connected_field: connected_field_id} o2m_objects = list(O2MModel.objects.filter(**filter_params)) o2m_objects = [model_to_dict(obj) for obj in o2m_objects] # Create o2m item form (row) for o2m_obj in o2m_objects: o2m_form = get_item_detail_form(o2m_obj['id'], o2m_table) o2m_form['connected_field'] = connected_field o2m_forms.append(o2m_form) return o2m_forms # Update/New alternately items in m2m/o2m table def update_multiple_items(table_type, obj, connected_field1_id=None): for attribute in obj.keys(): if attribute != 'id': if obj[attribute]['type'] == table_type: list_values = obj[attribute]['value'] for value in list_values: update_item_info(value, connected_field1_id) # Delete alternately items in m2m table def delete_multiple_items(table_type, obj): for attribute in obj.keys(): if attribute != 'id': if obj[attribute]['type'] == table_type: list_values = obj[attribute]['value'] for value in list_values: delete_item_info(value) # Create object in connected table (eventlocation, eventresource, etc) def create_connected_object(form_info, connected_field1_id, connected_field2_id): connected_field1 = form_info['connected_field1'] connected_field2 = form_info['connected_field2'] model_name = form_info['name'] obj_info = filter_form_object_info(form_info['attributes']) obj_info[connected_field1] = connected_field1_id obj_info[connected_field2] = connected_field2_id Model = apps.get_model(app_label='dimadb', model_name=model_name) obj = Model(**obj_info) obj.save() #Mapping data in file with data model def mapping_data(data, template, source_name): try: total = 0 # Total object rows in imported data count = 0 # Total object rows saved in database if isinstance(data, list): total = len(data) # Store history of import import_info = ImportInfo(table_name=template['model_name'], source_name=source_name) import_info.save() # Get info from schema_detail model_name = template['model_name'] fields = template['fields'] m2m_tables = [] o2m_tables = [] if ('m2m_tables' in template.keys()): m2m_tables = template['m2m_tables'] if ('o2m_tables' in template.keys()): o2m_tables = template['o2m_tables'] #Mapping for obj in data: obj_info = filter_imported_object_info(fields, obj) if obj_info: # Store obj in primary table obj_info['import_id'] = import_info.id Model = apps.get_model(app_label='dimadb', model_name=model_name) new_obj = Model(**obj_info) new_obj.save() # Store additional objs in m2m tables for m2m_table in m2m_tables: m2m_model_name = m2m_table['model_name'] m2m_sources = m2m_table['sources'] for source in m2m_sources: m2m_objs = [] if 'array' not in source: m2m_objs.append(obj) else: if (pydash.get(obj, source['array'])): m2m_objs = pydash.get(obj, source['array']) for m2m_obj in m2m_objs: m2m_obj_info = filter_imported_object_info(source['fields'], m2m_obj) if (m2m_obj_info): m2m_obj_info['import_id'] = import_info.id M2MModel = apps.get_model(app_label='dimadb', model_name=m2m_model_name) new_m2m_obj = M2MModel(**m2m_obj_info) new_m2m_obj.save() # Store obj in connected table # Read configure info connected_table = source['connected_table'] connected_field1 = source['connected_field1'] connected_field2 = source['connected_field2'] connected_model_name = connected_table['model_name'] connected_obj_info = filter_imported_object_info(connected_table['fields'], m2m_obj) connected_obj_info[connected_field1] = new_obj.id connected_obj_info[connected_field2] = new_m2m_obj.id connected_obj_info['import_id'] = import_info.id ConnectedModel = apps.get_model(app_label='dimadb', model_name=connected_model_name) new_connected_obj = ConnectedModel(**connected_obj_info) new_connected_obj.save() # Store additional objs in o2m tables for o2m_table in o2m_tables: o2m_model_name = o2m_table['model_name'] sources = o2m_table['sources'] for source in sources: o2m_objs = [] if 'array' not in source: o2m_objs.append(obj) else: if (pydash.get(obj, source['array'])): o2m_objs = pydash.get(obj, source['array']) for o2m_obj in o2m_objs: o2m_obj_info = filter_imported_object_info(source['fields'], o2m_obj) if (o2m_obj_info): connected_field = source['connected_field'] o2m_obj_info[connected_field] = new_obj.id o2m_obj_info['import_id'] = import_info.id O2MModel = apps.get_model(app_label='dimadb', model_name=o2m_model_name) new_o2m_obj = O2MModel(**o2m_obj_info) new_o2m_obj.save() count += 1 return {'message': 'Import successfully' + '.\n' + 'Import ' + str(count) + '/' + str(total) + 'object(s).'} else: return {'message': 'Wrong json format'} except Exception as error: return {'message': 'There is an error(duplication, ...).\n' + 'Import ' + str(count) + '/' + str(total) + 'object(s).'} # Some imported json file required to be reformated before mapping def reformated_data(json_data, item_type, template_type): try: reformated_json_data = [] # Each item type & each template type => reformat differently if (item_type == 'web-activity' and template_type == 'default'): list_required_attributes = ['event_date', 'event_timestamp', 'items', 'event_name', 'device', 'geo', 'user_id', 'traffic_source'] list_required_event_params = ['ga_session_id', 'page_title', 'page_location'] for obj in json_data: new_obj = {} for attribute in list_required_attributes: if attribute == 'event_date': date = pydash.get(obj, attribute) format_date = date[:4] + '-' + date[4:6] + '-' + date[6:8] new_obj[attribute] = format_date elif attribute == 'event_timestamp': new_obj[attribute] = int(pydash.get(obj, attribute)) else: new_obj[attribute] = pydash.get(obj, attribute) for param in obj['event_params']: key = param['key'] values = param['value'] if (key in list_required_event_params): for value in values: if values[value] != None: new_obj[key] = values[value] else: continue for item in new_obj['items']: item['item_eventname'] = new_obj['event_name'] reformated_json_data.append(new_obj) elif (item_type == 'google-analytic' and template_type == 'default'): list_required_attributes = ['date', 'eventName', 'deviceCategory', 'country', 'pageLocation', 'eventCount', 'sessions', 'operatingSystem', 'browser'] for obj in json_data: new_obj = {} for attribute in list_required_attributes: if attribute == 'date': date = pydash.get(obj, attribute) format_date = date[:4] + '-' + date[4:6] + '-' + date[6:8] new_obj[attribute] = format_date else: new_obj[attribute] = pydash.get(obj, attribute) reformated_json_data.append(new_obj) return reformated_json_data except Exception as exception: return exception @api_view(['POST']) @authentication_classes([]) @permission_classes([]) def import_json_file(request, item_type): try: # Get request info files = request.FILES.getlist('files[]') file = files[0] json_data = json.load(file) # Get template configuration info template_type = request.POST.get('template') if (template_type is None or template_type == ''): template_type = 'default' template = get_json_info(mapping_template_file_path, item_type + '.' + template_type) is_reformat = template['is_reformat'] # Check reformat if is_reformat: json_data = reformated_data(json_data, item_type, template_type) #Mapping and saving in database mapping_result = mapping_data(json_data, template, file.name) return Response(mapping_result, status=status.HTTP_200_OK) except Exception as error: return Response({'message': error}) @api_view(['GET']) def get_mapping_templates(request, item_type): try: list_templates = [] json_file = open(mapping_template_file_path) json_data = json.load(json_file) json_file.close() list_templates = [key for key in json_data[item_type]] return Response({'listTemplates': list_templates}, status=status.HTTP_200_OK) except Exception as error: return Response({'message': error}) @api_view(['POST']) @authentication_classes([]) @permission_classes([]) def import_api(request, item_type): try: # Get request info request_body = json.loads(request.body) url = request_body['url'] bearer_token = request_body['bearerToken'] template_type = request_body['template'] # Get data from url http = urllib3.PoolManager() header = {'Accept': '*/*'} if (bearer_token != ''): header['Authorization'] = 'Bearer ' + bearer_token if (template_type is None or template_type == ''): template_type = 'default' response = http.request('GET', url, headers=header) response_body = json.loads(response.data) response_data = response_body['data'] # Import mapping_template = get_json_info(mapping_template_file_path, item_type + '.' + template_type) mapping_result = mapping_data(response_data, mapping_template, url) return Response(mapping_result, status=status.HTTP_200_OK) except Exception as error: return Response({'message': error}) @api_view(['GET']) def get_import_info(request, item_type): try: tables = { "event": "events", "article": "products", "web-activity": "interaction_f", "google-analytic-report": "interaction_ga", } snippets = ImportInfo.objects.filter(table_name=tables[item_type]) serializer = ImportInfoSerializer(snippets, many=True) return Response({'items': serializer.data}, status=status.HTTP_200_OK) except Exception as error: return Response({'message': error}) @api_view(['DELETE']) def delete_imported_items(request, item_type, pk): try: tables = { "event": ["events", "businessentity", "entityeventrole", "eventdate"], "article": ["products", "businessentity", "entityproductrole"], "web-activity": ["interaction_f"], "google-analytic-report": ["interaction_ga"] } for table in tables[item_type]: Model = apps.get_model(app_label='dimadb', model_name=table) Model.objects.filter(import_id=pk).delete() ImportInfo.objects.filter(id=pk).delete() return Response({}, status=status.HTTP_200_OK) except Exception as error: return Response({'message': error}) # Generate recommend api to retrieve recommendation def generate_recommend_api(level, item_type, recommend_type, quantity, domain, item_url): api = IP_DOMAIN + '/dimadb/get-list-recommend/?' api += 'itemType=' + item_type api += '&level=' + level api += '&quantity=' + quantity if (recommend_type): api += '&recommendType=' + recommend_type if (domain): api += '&domain=' + domain if (item_url): api += '&itemUrl=' + item_url return api recommend_display_fields = { 'events': ['event_id', 'event_name', 'event_type', 'next_date', 'url', 'img', 'location_name'], 'products': ['product_id', 'product_name', 'product_type', 'url', 'img'] } # Get upcoming recommendation def get_upcoming(table_name, quantity=1, domain=None): Model = apps.get_model(app_label='dimadb', model_name=table_name) display_fields = recommend_display_fields[table_name] list_recommend_items = [] filter_params = {} if (domain is not None): if (table_name == 'events'): filter_params['event_type'] = domain elif (table_name == 'products'): filter_params['product_type'] = domain list_objs = Model.objects.filter(Q(**filter_params)) list_objs = [model_to_dict(obj) for obj in list(list_objs)] if (table_name == 'events'): list_filtered_obj = [] today = datetime.today() EventDateModel = apps.get_model(app_label='dimadb', model_name='eventdate') for obj in list_objs: list_event_dates = EventDateModel.objects.filter(event_id=obj['id'], date__gte=today).order_by('date') list_event_dates = [model_to_dict(obj) for obj in list(list_event_dates)] if (len(list_event_dates)): obj['next_date'] = list_event_dates[0]['date'] list_filtered_obj.append(obj) if (len(list_filtered_obj)): list_objs = sorted(list_filtered_obj, key=lambda x: x['next_date']) else: list_objs = [] for i in range(0, int(quantity)): if (i < len(list_objs)): obj = list_objs[i] recommend_item = {} for field in list(display_fields): recommend_item[field] = obj[field] list_recommend_items.append(recommend_item) return list_recommend_items # Get most popular recommendation def order_by_score(table_name, list_objs): if (len(list_objs)): list_interactions_f = Interaction_f.objects.filter(page_location__in=[obj['url'] for obj in list_objs]) list_interactions_f = [model_to_dict(obj) for obj in list_interactions_f] if (len(list_interactions_f)): list_interactions_f = pd.DataFrame(list_interactions_f).groupby(['page_location', 'event_name'], as_index=False)['id'].count().rename(columns={'id':'event_count'}).to_dict('r') list_interactions_ga = list(Interaction_ga.objects.filter(page_location__in=[obj['url'] for obj in list_objs]).values('page_location', 'event_name', 'event_count')) list_interactions = list_interactions_f + list_interactions_ga if (len(list_interactions)): list_interactions = pd.DataFrame(list_interactions).groupby(['page_location', 'event_name'], as_index=False).sum().to_dict('r') list_objs_weight = {} for interaction in list_interactions: page_location = interaction['page_location'] event_name = interaction['event_name'] event_count = interaction['event_count'] activity_weight = 0 try: activity_type_info = model_to_dict(WebActivityType.objects.get(name=event_name)) activity_weight = activity_type_info['value'] except: activity_weight = 1 if page_location not in list_objs_weight: list_objs_weight[page_location] = 0 list_objs_weight[page_location] += event_count * activity_weight for obj in list_objs: if obj['url'] in list_objs_weight: obj['popular_score'] = list_objs_weight[obj['url']] else: obj['popular_score'] = 0 if (len(list_objs)): list_objs = sorted(list_objs, key=lambda d: d['popular_score'], reverse=True) else: list_objs = [] return list_objs # Get most popular recommendation def get_most_popular(table_name, quantity=1, domain=None): Model = apps.get_model(app_label='dimadb', model_name=table_name) display_fields = recommend_display_fields[table_name] list_recommend_items = [] filter_params = {} list_interactions = [] if (domain is not None): if (table_name == 'events'): filter_params['event_type'] = domain elif (table_name == 'products'): filter_params['product_type'] = domain list_objs = Model.objects.filter(Q(**filter_params)) list_objs = [model_to_dict(obj) for obj in list(list_objs)] # list_objs = order_by_score(table_name, list_objs) if (table_name == 'events'): list_filtered_obj = [] today = datetime.today() EventDateModel = apps.get_model(app_label='dimadb', model_name='eventdate') for obj in list_objs: list_event_dates = EventDateModel.objects.filter(event_id=obj['id'], date__gte=today).order_by('date') list_event_dates = [model_to_dict(obj) for obj in list(list_event_dates)] if (len(list_event_dates)): obj['next_date'] = list_event_dates[0]['date'] list_filtered_obj.append(obj) if (len(list_filtered_obj)): list_objs = sorted(list_filtered_obj, key=lambda x: x['next_date']) else: list_objs = [] list_objs = order_by_score(table_name, list_objs) # if (len(list_objs)): # list_interactions_f = Interaction_f.objects.filter(page_location__in=[obj['url'] for obj in list_objs]) # list_interactions_f = [model_to_dict(obj) for obj in list_interactions_f] # if (len(list_interactions_f)): # list_interactions_f = pd.DataFrame(list_interactions_f).groupby(['page_location', 'event_name'], as_index=False)['id'].count().rename(columns={'id':'event_count'}).to_dict('r') # list_interactions_ga = list(Interaction_ga.objects.filter(page_location__in=[obj['url'] for obj in list_objs]).values('page_location', 'event_name', 'event_count')) # list_interactions = list_interactions_f + list_interactions_ga # if (len(list_interactions)): # list_interactions = pd.DataFrame(list_interactions).groupby(['page_location', 'event_name'], as_index=False).sum().to_dict('r') # list_objs_weight = {} # for interaction in list_interactions: # page_location = interaction['page_location'] # event_name = interaction['event_name'] # event_count = interaction['event_count'] # activity_weight = 0 # try: # activity_type_info = model_to_dict(WebActivityType.objects.get(name=event_name)) # activity_weight = activity_type_info['value'] # except: # activity_weight = 1 # if page_location not in list_objs_weight: # list_objs_weight[page_location] = 0 # list_objs_weight[page_location] += event_count * activity_weight # for obj in list_objs: # if obj['url'] in list_objs_weight: # obj['popular_score'] = list_objs_weight[obj['url']] # else: # obj['popular_score'] = 0 # if (len(list_objs)): # list_objs = sorted(list_objs, key=lambda d: d['popular_score'], reverse=True) # else: # list_objs = [] for i in range(0, int(quantity)): if (i < len(list_objs)): obj = list_objs[i] recommend_item = {} for field in list(display_fields): recommend_item[field] = obj[field] recommend_item['popular_score'] = obj['popular_score'] list_recommend_items.append(recommend_item) if (len(list_recommend_items) == 0): list_recommend_items = get_upcoming(table_name, quantity) return list_recommend_items # Get similarity recommendation def get_similar(table_name, quantity=1, item_url=None, recommend_type=None): Model = apps.get_model(app_label='dimadb', model_name=table_name) display_fields = recommend_display_fields[table_name] list_recommend_items = [] item_id = Model.objects.get(url=item_url).id list_similar_items = ContentBasedRecommender.recommend_items_by_items(table_name=table_name, items_id=item_id) if (table_name == 'events'): list_filtered_obj = [] today = datetime.today() EventDateModel = apps.get_model(app_label='dimadb', model_name='eventdate') for obj in list_similar_items: list_event_dates = EventDateModel.objects.filter(event_id=obj['id'], date__gte=today).order_by('date') list_event_dates = [model_to_dict(obj) for obj in list(list_event_dates)] if (len(list_event_dates)): obj['next_date'] = list_event_dates[0]['date'] list_filtered_obj.append(obj) if (len(list_filtered_obj)): list_similar_items = sorted(list_filtered_obj, key=lambda x: x['similarity_score'], reverse=True) else: list_similar_items = [] if (recommend_type == 'Similar combined with Most popular'): list_similar_items = order_by_score(table_name, list_similar_items) for i in range(0, int(quantity)): if (i < len(list_similar_items)): similar_obj = list_similar_items[i] obj = Model.objects.get(id=similar_obj['id']) obj = model_to_dict(obj) recommend_item = {} for field in list(display_fields): if field in obj: recommend_item[field] = obj[field] if (table_name == 'events'): recommend_item['next_date'] = similar_obj['next_date'] if (recommend_type == 'Similar combined with Most popular'): recommend_item['popular_score'] = similar_obj['popular_score'] recommend_item['similarity_score'] = similar_obj['similarity_score'] list_recommend_items.append(recommend_item) if (len(list_recommend_items) == 0): list_recommend_items = get_upcoming(table_name, quantity) return list_recommend_items # Get list of recommend items def get_recommend_items(level, item_type, recommend_type, quantity, domain, item_url): list_recommend_items = [] if (level == 'Homepage'): if (recommend_type == 'Upcoming'): if (item_type == 'events'): list_recommend_items = get_upcoming(table_name=item_type, quantity=quantity) if (recommend_type == 'Most popular'): if (item_type == 'events'): list_recommend_items = get_most_popular(table_name=item_type, quantity=quantity) elif (item_type == 'products'): list_recommend_items = get_most_popular(table_name=item_type, quantity=quantity) elif (level == 'Domain'): if (recommend_type == 'Upcoming'): if (item_type == 'events'): list_recommend_items = get_upcoming(table_name=item_type, quantity=quantity, domain=domain) if (recommend_type == 'Most popular'): if (item_type == 'events'): list_recommend_items = get_most_popular(table_name=item_type, quantity=quantity, domain=domain) elif (item_type == 'products'): list_recommend_items = get_most_popular(table_name=item_type, quantity=quantity, domain=domain) else: if (item_type == 'events'): list_recommend_items = get_similar(table_name=item_type, quantity=quantity, item_url=item_url, recommend_type=recommend_type) elif (item_type == 'products'): list_recommend_items = get_similar(table_name=item_type, quantity=quantity, item_url=item_url, recommend_type=recommend_type) return list_recommend_items @api_view(['GET']) @authentication_classes([]) @permission_classes([]) def get_list_recommend(request): try: # Authorization bearer_token = request.headers.get('Authorization') if (bearer_token == 'Bearer ' + API_KEY): # Read request info level = request.GET.get('level', None) item_type = request.GET.get('itemType', None) recommend_type = request.GET.get('recommendType', None) quantity = request.GET.get('quantity', None) domain = request.GET.get('domain', None) item_url = request.GET.get('itemUrl', None) list_recommend_items = get_recommend_items(level, item_type, recommend_type, quantity, domain, item_url) return Response({'itemType': item_type, 'recommendType': recommend_type, 'items': list_recommend_items}, status=status.HTTP_200_OK) else: return Response({'message': 'Authorization failed'}, status=status.HTTP_401_UNAUTHORIZED) except Exception as error: return Response({'message': error}) def get_embedded_link(api, recommend_type, is_gui=False): recommendItems = '' if (recommend_type == 'Upcoming'): recommendItems = 'upComingItems' elif (recommend_type == 'Most popular'): recommendItems = 'popularItems' elif (recommend_type == 'Similar'): recommendItems = 'similarItems' elif (recommend_type == 'Similar combined with Most popular'): recommendItems = 'popularSimilarItems' else: recommendItems = 'upComingItems' embedded_link = '' css_link = '<link rel="stylesheet" href="' + IP_DOMAIN + '/static/dimadb/css/recommender.css">' div_link = '<div id="' + recommendItems + '"></div>' js_link = '<script src="' + IP_DOMAIN + '/static/dimadb/js/recommender.js' + '"></script>' recommend_link = '<script>' + '\n' recommend_link += '\tvar ' + recommendItems + ' = getRecommend("' + api + '", "' + API_KEY + '");' + '\n' recommend_link += '\t' + recommendItems +'.then(res => {' + '\n' recommend_link += '\t\t//Handle recommend items here' + '\n' if (is_gui): recommend_link += '\t\t//Below code shows recommendation GUI' + '\n' recommend_link += '\t\tgetListView("' + recommendItems + '", res);' + '\n' else: recommend_link += '\t\t//Below code shows recommendation results' + '\n' recommend_link += '\t\tconsole.log(res);' + '\n' recommend_link += '\t});' + '\n' recommend_link += '</script>' embedded_link = css_link + '\n' + div_link + '\n' + js_link + '\n' + recommend_link return embedded_link @api_view(['POST']) def get_recommend_api(request): try: # Read request info body = json.loads(request.body) level = body['level'] item_type = body['itemType'] recommend_type = body['recommendType'] quantity = body['quantity'] domain = body['domain'] item_url = body['itemUrl'] #Get recommend api + recommend list api = generate_recommend_api(level, item_type, recommend_type, quantity, domain, item_url) list_recommend_items = get_recommend_items(level, item_type, recommend_type, quantity, domain, item_url) embedded_links = [ { "name": "Script dynamique et intégré dans chaque page (sans la génération des interfaces)", "link": get_embedded_link(api, recommend_type, is_gui=False), }, { "name": "Script dynamique et intégré dans chaque page (avec la génération des interfaces)", "link": get_embedded_link(api, recommend_type, is_gui=True), } ] return Response({ 'items': list_recommend_items, 'api': api, 'apiKey': API_KEY, 'embeddedDynamicLinks': embedded_links, }, status=status.HTTP_200_OK) except Exception as error: return Response({'message': error}) @api_view(['POST']) def train_similar_recommend(request): try: # Read request info body = json.loads(request.body) item_type = body['itemType'] # Training ContentBasedRecommender.train_items_by_items(table_name=item_type) # Get similarity recommendation training info similar_train_info = get_similar_train_info() return Response({'similarTrainInfo': similar_train_info}, status=status.HTTP_200_OK) except Exception as error: return Response({'message': error}) @api_view(['GET']) def get_recommend_info(request): try: # Recommend info # recommend_levels = { # "Homepage": ["Upcoming", "Most popular"], # "Domain": ["Upcoming", "Most popular"], # "Item": ["Similar", "Similar combined with Most popular"] # } recommend_types = [ { "name": "Upcoming", "displayName": "À venir" }, { "name": "Most popular", "displayName": "Les plus populaires" }, { "name": "Similar", "displayName": "Produits similaires" }, { "name": "Similar combined with Most popular", "displayName": "Produits similaires combinés avec les plus populaires" } ] recommend_levels = { "Homepage": { "displayName": "Page d'accueil", "algorithms": [recommend_types[0], recommend_types[1]] }, "Domain": { "displayName": "Domaine", "algorithms": [recommend_types[0], recommend_types[1]] }, "Item": { "displayName": "Produit", "algorithms": [recommend_types[2], recommend_types[3]] } } # Get list domain(item_type) event_snippets = Events.objects.all() event_serializer = EventSerializer(event_snippets, many=True) event_types = Events.objects.values('event_type').distinct() event_types = [item['event_type'] for item in list(event_types)] article_snippets = Products.objects.all() article_serializer = ArticleSerializer(article_snippets, many=True) article_types = Products.objects.values('product_type').distinct() article_types = [item['product_type'] for item in list(article_types)] list_item_infos = { "events": { "name": "Événements", "items": event_serializer.data, "types": event_types }, "products": { "name": "Articles", "items": article_serializer.data, "types": article_types } } embedded_links = [ { "name": "Script fixé et intégré dans la page d'accueil (sans la génération des interfaces)", "link": get_embedded_recommendation(is_gui=False), }, { "name": "Script fixé et intégré dans la page d'accueil (avec la génération des interfaces)", "link": get_embedded_recommendation(is_gui=True) } ] return Response({'embeddedFixedLinks': embedded_links, 'recommendLevels': recommend_levels, 'listItemInfos': list_item_infos}, status=status.HTTP_200_OK) except Exception as error: return Response({'message': error}) # Get history of similarity recommendation training def get_similar_train_info(): try: list_item_types = [{'name': 'Événement', 'value': 'events'}, {'name': 'Article', 'value': 'products'}] for item_type in list_item_types: Model = apps.get_model(app_label='dimadb', model_name=item_type['value']) item_type['number_items'] = len(Model.objects.all()) # Get total number of trained items if (LdaSimilarityVersion.objects.filter(item_type=item_type['value']).exists()): obj = LdaSimilarityVersion.objects.filter(item_type=item_type['value']).latest('created_at') item_type['latest_training_at'] = str(obj) item_type['number_trained_items'] = model_to_dict(obj)['n_products'] else: item_type['latest_training_at'] = '' item_type['number_trained_items'] = 0 # Get total number of items Model = apps.get_model(app_label='dimadb', model_name=item_type['value']) item_type['number_items'] = len(Model.objects.all()) return list_item_types except Exception as error: return Response({'message': error}) @api_view(['GET']) def get_configure_info(request): try: similar_train_info = get_similar_train_info() web_activity_types_f = Interaction_f.objects.values('event_name').distinct() web_activity_types_f = [item['event_name'] for item in list(web_activity_types_f)] web_activity_types_ga = Interaction_ga.objects.values('event_name').distinct() web_activity_types_ga = [item['event_name'] for item in list(web_activity_types_ga)] web_activity_types = list(dict.fromkeys(web_activity_types_f + web_activity_types_ga)) existed_web_activity_types = WebActivityType.objects.values('name').distinct() existed_web_activity_types = [item['name'] for item in list(existed_web_activity_types)] web_activity_types = web_activity_types + existed_web_activity_types web_activity_types = list(dict.fromkeys(web_activity_types)) web_activity_types = [type for type in web_activity_types if type in ['user_engagement', 'scroll', 'page_view']] web_activities_info = {} for activity_type in web_activity_types: try: activity_type_obj = WebActivityType.objects.get(name=activity_type) activity_type_obj = model_to_dict(activity_type_obj) web_activities_info[activity_type] = activity_type_obj['value'] except: web_activities_info[activity_type] = 0 return Response({'similarTrainInfo': similar_train_info, 'webActivityInfo': web_activities_info}, status=status.HTTP_200_OK) except Exception as error: return Response({'message': error}) @api_view(['POST']) def update_activity_weight(request): try: # Read requestinfo body = json.loads(request.body) web_activity_types = body['webActivityInfo'] #Update/new web activity type for type in web_activity_types: try: web_activities = list(WebActivityType.objects.filter(name=type)) # Check whether type exists in WebActivityType table if (len(web_activities)): web_activity = web_activities[0] web_activity.value = web_activity_types[type] web_activity.save() else: new_activity_type = WebActivityType(name=type, value=web_activity_types[type]) new_activity_type.save() except: new_activity_type = WebActivityType(name=type, value=web_activity_types[type]) new_activity_type.save() return Response({}, status=status.HTTP_200_OK) except Exception as error: return Response({'message': error}) # Generate report object (info, name, title, data) def create_report(name, title, data, chart_type, is_change): return { 'name': name, 'title': title, 'data': data, 'type': chart_type, 'isChange': is_change, 'random': name + str(random.randint(0, 1000)), } @api_view(['GET']) def get_reports(request): try: start_date = request.GET.get('startDate', date.today()) end_date = request.GET.get('endDate', date.today()) group_type = request.GET.get('groupBy', 'daily') reports = [] #Session if (group_type == 'none'): sessions_file = Interaction_f.objects.filter( visit_date__range=[start_date, end_date]).values('session_id').distinct().count() sessions_ga = Interaction_ga.objects.filter( date__range=[start_date, end_date]).aggregate(Sum('session_count'))['session_count__sum'] or 0 sessions = [{'type': 'all', 'sum': sessions_file + sessions_ga}] elif (group_type == 'daily'): sessions_file = Interaction_f.objects.filter(visit_date__range=[start_date, end_date]).values( day=F('visit_date')).annotate(sum=Count('session_id', distinct=True)) sessions_ga = Interaction_ga.objects.filter(date__range=[start_date, end_date]).values( day=F('date')).annotate(sum=Sum('session_count')) sessions = list(sessions_file) + list(sessions_ga) if (len(sessions)): sessions = pd.DataFrame(sessions).groupby(['day'], as_index=False).sum().to_dict('r') sessions = sorted(sessions, key=lambda k : k['day']) elif (group_type == 'weekly'): sessions_file = Interaction_f.objects.filter(visit_date__range=[start_date, end_date]).annotate( week=TruncWeek('visit_date')).values('week').annotate(sum=Count('session_id', distinct=True)) sessions_ga = Interaction_ga.objects.filter(date__range=[start_date, end_date]).annotate( week=TruncWeek('date')).values('week').annotate(sum=Sum('session_count')) sessions = list(sessions_file) + list(sessions_ga) if (len(sessions)): sessions = pd.DataFrame(sessions).groupby(['week'], as_index=False).sum().to_dict('r') sessions = sorted(sessions, key=lambda k : k['week']) elif (group_type == 'monthly'): sessions_file = Interaction_f.objects.filter(visit_date__range=[start_date, end_date]).annotate( month=TruncMonth('visit_date')).values('month').annotate(sum=Count('session_id', distinct=True)) sessions_ga = Interaction_ga.objects.filter(date__range=[start_date, end_date]).annotate( month=TruncMonth('date')).values('month').annotate(sum=Sum('session_count')) sessions = list(sessions_file) + list(sessions_ga) if (len(sessions)): sessions = pd.DataFrame(sessions).groupby(['month'], as_index=False).sum().to_dict('r') sessions = sorted(sessions, key=lambda k : k['month']) else: sessions_file = Interaction_f.objects.filter(visit_date__range=[start_date, end_date]).annotate( year=TruncYear('visit_date')).values('year').annotate(sum=Count('session_id', distinct=True)) sessions_ga = Interaction_ga.objects.filter(date__range=[start_date, end_date]).annotate( year=TruncYear('date')).values('year').annotate(sum=Sum('session_count')) sessions = list(sessions_file) + list(sessions_ga) if (len(sessions)): sessions = pd.DataFrame(sessions).groupby(['year'], as_index=False).sum().to_dict('r') sessions = sorted(sessions, key=lambda k : k['year']) reports.append(create_report('session_report', 'Statistiques de sessions Web', sessions, 'column', group_type == 'none')) # Web_activities: if (group_type == 'none'): web_activities_file = Interaction_f.objects.filter( visit_date__range=[start_date, end_date]).all().count() web_activities_ga = Interaction_ga.objects.filter( date__range=[start_date, end_date]).aggregate(Sum('event_count'))['event_count__sum'] or 0 web_activities = [{'type': 'all', 'sum': web_activities_file + web_activities_ga}] elif (group_type == 'daily'): web_activities_file = Interaction_f.objects.filter(visit_date__range=[ start_date, end_date]).values(day=F('visit_date')).annotate(sum=Count('id')) web_activities_ga = Interaction_ga.objects.filter(date__range=[ start_date, end_date]).values(day=F('date')).annotate(sum=Sum('event_count')) web_activities = list(web_activities_file) + list(web_activities_ga) if (len(web_activities)): web_activities = pd.DataFrame(web_activities).groupby(['day'], as_index=False).sum().to_dict('r') web_activities = sorted(web_activities, key=lambda k : k['day']) elif (group_type == 'weekly'): web_activities_file = Interaction_f.objects.filter(visit_date__range=[start_date, end_date]).annotate( week=TruncWeek('visit_date')).values('week').annotate(sum=Count('id')) web_activities_ga = Interaction_ga.objects.filter(date__range=[start_date, end_date]).annotate( week=TruncWeek('date')).values('week').annotate(sum=Sum('event_count')) web_activities = list(web_activities_file) + list(web_activities_ga) if (len(web_activities)): web_activities = pd.DataFrame(web_activities).groupby(['week'], as_index=False).sum().to_dict('r') web_activities = sorted(web_activities, key=lambda k : k['week']) elif (group_type == 'monthly'): web_activities_file = Interaction_f.objects.filter(visit_date__range=[start_date, end_date]).annotate( month=TruncMonth('visit_date')).values('month').annotate(sum=Count('id')) web_activities_ga = Interaction_ga.objects.filter(date__range=[start_date, end_date]).annotate( month=TruncMonth('date')).values('month').annotate(sum=Sum('event_count')) web_activities = list(web_activities_file) + list(web_activities_ga) if (len(web_activities)): web_activities = pd.DataFrame(web_activities).groupby(['month'], as_index=False).sum().to_dict('r') web_activities = sorted(web_activities, key=lambda k : k['month']) else: web_activities_file = Interaction_f.objects.filter(visit_date__range=[start_date, end_date]).annotate( year=TruncYear('visit_date')).values('year').annotate(sum=Count('id')) web_activities_ga = Interaction_ga.objects.filter(date__range=[start_date, end_date]).annotate( year=TruncYear('date')).values('year').annotate(sum=Sum('event_count')) web_activities = list(web_activities_file) + list(web_activities_ga) if (len(web_activities)): web_activities = pd.DataFrame(web_activities).groupby(['year'], as_index=False).sum().to_dict('r') web_activities = sorted(web_activities, key=lambda k : k['year']) reports.append(create_report('web_activities_report', 'Statistiques d’activités Web', web_activities, 'column', group_type == 'none')) # Web Activities device_category: if (group_type == 'none'): web_activities_device_file = Interaction_f.objects.filter(visit_date__range=[ start_date, end_date]).values(type=F('device_category')).annotate(sum=Count('id')) web_activities_device_ga = Interaction_ga.objects.filter(date__range=[ start_date, end_date]).values(type=F('device_category')).annotate(sum=Sum('event_count')) web_activities_device = list(web_activities_device_file) + list(web_activities_device_ga) if (len(web_activities_device)): web_activities_device = pd.DataFrame(web_activities_device).groupby(['type'], as_index=False).sum().to_dict('r') elif (group_type == 'daily'): web_activities_device_file = Interaction_f.objects.filter(visit_date__range=[start_date, end_date]).values( day=F('visit_date'), type=F('device_category')).annotate(sum=Count('id')) web_activities_device_ga = Interaction_ga.objects.filter(date__range=[start_date, end_date]).values( day=F('date'), type=F('device_category')).annotate(sum=Sum('event_count')) web_activities_device = list(web_activities_device_file) + list(web_activities_device_ga) if (len(web_activities_device)): web_activities_device = pd.DataFrame(web_activities_device).groupby(['day', 'type'], as_index=False).sum().to_dict('r') web_activities_device = sorted(web_activities_device, key=lambda k : k['day']) elif (group_type == 'weekly'): web_activities_device_file = Interaction_f.objects.filter(visit_date__range=[start_date, end_date]).annotate( week=TruncWeek('visit_date')).values('week', type=F('device_category')).annotate(sum=Count('id')) web_activities_device_ga = Interaction_ga.objects.filter(date__range=[start_date, end_date]).annotate( week=TruncWeek('date')).values('week', type=F('device_category')).annotate(sum=Sum('event_count')) web_activities_device = list(web_activities_device_file) + list(web_activities_device_ga) if (len(web_activities_device)): web_activities_device = pd.DataFrame(web_activities_device).groupby(['week', 'type'], as_index=False).sum().to_dict('r') web_activities_device = sorted(web_activities_device, key=lambda k : k['week']) elif (group_type == 'monthly'): web_activities_device_file = Interaction_f.objects.filter(visit_date__range=[start_date, end_date]).annotate( month=TruncMonth('visit_date')).values('month', type=F('device_category')).annotate(sum=Count('id')) web_activities_device_ga = Interaction_ga.objects.filter(date__range=[start_date, end_date]).annotate( month=TruncMonth('date')).values('month', type=F('device_category')).annotate(sum=Sum('event_count')) web_activities_device = list(web_activities_device_file) + list(web_activities_device_ga) if (len(web_activities_device)): web_activities_device = pd.DataFrame(web_activities_device).groupby(['month', 'type'], as_index=False).sum().to_dict('r') web_activities_device = sorted(web_activities_device, key=lambda k : k['month']) else: web_activities_device_file = Interaction_f.objects.filter(visit_date__range=[start_date, end_date]).annotate( year=TruncYear('visit_date')).values('year', type=F('device_category')).annotate(sum=Count('id')) web_activities_device_ga = Interaction_ga.objects.filter(date__range=[start_date, end_date]).annotate( year=TruncYear('date')).values('year', type=F('device_category')).annotate(sum=Sum('event_count')) web_activities_device = list(web_activities_device_file) + list(web_activities_device_ga) if (len(web_activities_device)): web_activities_device = pd.DataFrame(web_activities_device).groupby(['year', 'type'], as_index=False).sum().to_dict('r') web_activities_device = sorted(web_activities_device, key=lambda k : k['year']) reports.append(create_report('session_device_report', 'Statistiques d’activités Web par types d’appareils', web_activities_device, 'column', group_type == 'none')) # Web Activities browser: if (group_type == 'none'): web_activities_browser_file = Interaction_f.objects.filter(visit_date__range=[ start_date, end_date]).values(type=F('browser')).annotate(sum=Count('id')) web_activities_browser_ga = Interaction_ga.objects.filter(date__range=[ start_date, end_date]).values(type=F('browser')).annotate(sum=Sum('event_count')) web_activities_browser = list(web_activities_browser_file) + list(web_activities_browser_ga) if (len(web_activities_browser)): web_activities_browser = pd.DataFrame(web_activities_browser).groupby(['type'], as_index=False).sum().to_dict('r') elif (group_type == 'daily'): web_activities_browser_file = Interaction_f.objects.filter(visit_date__range=[start_date, end_date]).values( day=F('visit_date'), type=F('browser')).annotate(sum=Count('id')) web_activities_browser_ga = Interaction_ga.objects.filter(date__range=[start_date, end_date]).values( day=F('date'), type=F('browser')).annotate(sum=Sum('event_count')) web_activities_browser = list(web_activities_browser_file) + list(web_activities_browser_ga) if (len(web_activities_browser)): web_activities_browser = pd.DataFrame(web_activities_browser).groupby(['day', 'type'], as_index=False).sum().to_dict('r') web_activities_browser = sorted(web_activities_browser, key=lambda k : k['day']) elif (group_type == 'weekly'): web_activities_browser_file = Interaction_f.objects.filter(visit_date__range=[start_date, end_date]).annotate( week=TruncWeek('visit_date')).values('week', type=F('browser')).annotate(sum=Count('id')) web_activities_browser_ga = Interaction_ga.objects.filter(date__range=[start_date, end_date]).annotate( week=TruncWeek('date')).values('week', type=F('browser')).annotate(sum=Sum('event_count')) web_activities_browser = list(web_activities_browser_file) + list(web_activities_browser_ga) if (len(web_activities_browser)): web_activities_browser = pd.DataFrame(web_activities_browser).groupby(['week', 'type'], as_index=False).sum().to_dict('r') web_activities_browser = sorted(web_activities_browser, key=lambda k : k['week']) elif (group_type == 'monthly'): web_activities_browser_file = Interaction_f.objects.filter(visit_date__range=[start_date, end_date]).annotate( month=TruncMonth('visit_date')).values('month', type=F('browser')).annotate(sum=Count('id')) web_activities_browser_ga = Interaction_ga.objects.filter(date__range=[start_date, end_date]).annotate( month=TruncMonth('date')).values('month', type=F('browser')).annotate(sum=Sum('event_count')) web_activities_browser = list(web_activities_browser_file) + list(web_activities_browser_ga) if (len(web_activities_browser)): web_activities_browser = pd.DataFrame(web_activities_browser).groupby(['month', 'type'], as_index=False).sum().to_dict('r') web_activities_browser = sorted(web_activities_browser, key=lambda k : k['month']) else: web_activities_browser_file = Interaction_f.objects.filter(visit_date__range=[start_date, end_date]).annotate( year=TruncYear('visit_date')).values('year', type=F('browser')).annotate(sum=Count('id')) web_activities_browser_ga = Interaction_ga.objects.filter(date__range=[start_date, end_date]).annotate( year=TruncYear('date')).values('year', type=F('browser')).annotate(sum=Sum('event_count')) web_activities_browser = list(web_activities_browser_file) + list(web_activities_browser_ga) if (len(web_activities_browser)): web_activities_browser = pd.DataFrame(web_activities_browser).groupby(['year', 'type'], as_index=False).sum().to_dict('r') web_activities_browser = sorted(web_activities_browser, key=lambda k : k['year']) reports.append(create_report('session_browser_report', 'Statistiques d’activités Web par navigateurs Web', web_activities_browser, 'column', group_type == 'none')) # Web Activities os: if (group_type == 'none'): web_activities_os_file = Interaction_f.objects.filter(visit_date__range=[ start_date, end_date]).values(type=F('operating_system')).annotate(sum=Count('id')) web_activities_os_ga = Interaction_ga.objects.filter(date__range=[ start_date, end_date]).values(type=F('operating_system')).annotate(sum=Sum('event_count')) web_activities_os = list(web_activities_os_file) + list(web_activities_os_ga) if (len(web_activities_os)): web_activities_os = pd.DataFrame(web_activities_os).groupby(['type'], as_index=False).sum().to_dict('r') elif (group_type == 'daily'): web_activities_os_file = Interaction_f.objects.filter(visit_date__range=[start_date, end_date]).values( day=F('visit_date'), type=F('operating_system')).annotate(sum=Count('id')) web_activities_os_ga = Interaction_ga.objects.filter(date__range=[start_date, end_date]).values( day=F('date'), type=F('operating_system')).annotate(sum=Sum('event_count')) web_activities_os = list(web_activities_os_file) + list(web_activities_os_ga) if (len(web_activities_os)): web_activities_os = pd.DataFrame(web_activities_os).groupby(['day', 'type'], as_index=False).sum().to_dict('r') web_activities_os = sorted(web_activities_os, key=lambda k : k['day']) elif (group_type == 'weekly'): web_activities_os_file = Interaction_f.objects.filter(visit_date__range=[start_date, end_date]).annotate( week=TruncWeek('visit_date')).values('week', type=F('operating_system')).annotate(sum=Count('id')) web_activities_os_ga = Interaction_ga.objects.filter(date__range=[start_date, end_date]).annotate( week=TruncWeek('date')).values('week', type=F('operating_system')).annotate(sum=Sum('event_count')) web_activities_os = list(web_activities_os_file) + list(web_activities_os_ga) if (len(web_activities_os)): web_activities_os = pd.DataFrame(web_activities_os).groupby(['week', 'type'], as_index=False).sum().to_dict('r') web_activities_os = sorted(web_activities_os, key=lambda k : k['week']) elif (group_type == 'monthly'): web_activities_os_file = Interaction_f.objects.filter(visit_date__range=[start_date, end_date]).annotate( month=TruncMonth('visit_date')).values('month', type=F('operating_system')).annotate(sum=Count('id')) web_activities_os_ga = Interaction_ga.objects.filter(date__range=[start_date, end_date]).annotate( month=TruncMonth('date')).values('month', type=F('operating_system')).annotate(sum=Sum('event_count')) web_activities_os = list(web_activities_os_file) + list(web_activities_os_ga) if (len(web_activities_os)): web_activities_os = pd.DataFrame(web_activities_os).groupby(['month', 'type'], as_index=False).sum().to_dict('r') web_activities_os = sorted(web_activities_os, key=lambda k : k['month']) else: web_activities_os_file = Interaction_f.objects.filter(visit_date__range=[start_date, end_date]).annotate( year=TruncYear('visit_date')).values('year', type=F('operating_system')).annotate(sum=Count('id')) web_activities_os_ga = Interaction_ga.objects.filter(date__range=[start_date, end_date]).annotate( year=TruncYear('date')).values('year', type=F('operating_system')).annotate(sum=Sum('event_count')) web_activities_os = list(web_activities_os_file) + list(web_activities_os_ga) if (len(web_activities_os)): web_activities_os = pd.DataFrame(web_activities_os).groupby(['year', 'type'], as_index=False).sum().to_dict('r') web_activities_os = sorted(web_activities_os, key=lambda k : k['year']) reports.append(create_report('session_os_report', 'Statistiques d’activités Web par systèmes d’exploitation', web_activities_os, 'column', group_type == 'none')) # Web Activities type: if (group_type == 'none'): web_activities_type_file = Interaction_f.objects.filter(visit_date__range=[ start_date, end_date]).values(type=F('event_name')).annotate(sum=Count('id')) web_activities_type_ga = Interaction_ga.objects.filter(date__range=[ start_date, end_date]).values(type=F('event_name')).annotate(sum=Sum('event_count')) web_activities_type = list(web_activities_type_file) + list(web_activities_type_ga) if (len(web_activities_type)): web_activities_type = pd.DataFrame(web_activities_type).groupby(['type'], as_index=False).sum().to_dict('r') elif (group_type == 'daily'): web_activities_type_file = Interaction_f.objects.filter(visit_date__range=[start_date, end_date]).values( day=F('visit_date'), type=F('event_name')).annotate(sum=Count('id')) web_activities_type_ga = Interaction_ga.objects.filter(date__range=[start_date, end_date]).values( day=F('date'), type=F('event_name')).annotate(sum=Sum('event_count')) web_activities_type = list(web_activities_type_file) + list(web_activities_type_ga) if (len(web_activities_type)): web_activities_type = pd.DataFrame(web_activities_type).groupby(['day', 'type'], as_index=False).sum().to_dict('r') web_activities_type = sorted(web_activities_type, key=lambda k : k['day']) elif (group_type == 'weekly'): web_activities_type_file = Interaction_f.objects.filter(visit_date__range=[start_date, end_date]).annotate( week=TruncWeek('visit_date')).values('week', type=F('event_name')).annotate(sum=Count('id')) web_activities_type_ga = Interaction_ga.objects.filter(date__range=[start_date, end_date]).annotate( week=TruncWeek('date')).values('week', type=F('event_name')).annotate(sum=Sum('event_count')) web_activities_type = list(web_activities_type_file) + list(web_activities_type_ga) if (len(web_activities_type)): web_activities_type =
pd.DataFrame(web_activities_type)
pandas.DataFrame
import cv2 import numpy as np # linear algebra import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) import os from PIL import Image from skimage.transform import resize from random import shuffle from random import randint import math import random from io import BytesIO import jpeg4py as jpeg # Input data files are available in the "../input/" directory. # For example, running this (by clicking run or pressing Shift+Enter) will list the files in the input directory list_paths = [] for subdir, dirs, files in os.walk("/home/gasimov_aydin/ieee"): for file in files: #print os.path.join(subdir, file) filepath = subdir + os.sep + file list_paths.append(filepath) list_train = [filepath for filepath in list_paths if "train_new/" in filepath] shuffle(list_train) list_test = [filepath for filepath in list_paths if "test/" in filepath] list_train = list_train list_test = list_test index = [os.path.basename(filepath) for filepath in list_test] list_classes = list(set([os.path.dirname(filepath).split(os.sep)[-1] for filepath in list_paths if "train" in filepath])) list_classes = ['Sony-NEX-7', 'Motorola-X', 'HTC-1-M7', 'Samsung-Galaxy-Note3', 'Motorola-Droid-Maxx', 'iPhone-4s', 'iPhone-6', 'LG-Nexus-5x', 'Samsung-Galaxy-S4', 'Motorola-Nexus-6'] img_size_1 = 512 img_size_2 = 512 def get_class_from_path(filepath): return os.path.dirname(filepath).split(os.sep)[-1] MANIPULATIONS = ['jpg70', 'jpg90', 'gamma0.8', 'gamma1.2', 'bicubic0.5', 'bicubic0.8', 'bicubic1.5', 'bicubic2.0'] def random_manipulation(img, manipulation=None): if 1 == 1: manipulation = random.choice(MANIPULATIONS) if manipulation.startswith('jpg'): quality = int(manipulation[3:]) out = BytesIO() im = Image.fromarray(img) im.save(out, format='jpeg', quality=quality) im_decoded = jpeg.JPEG(np.frombuffer(out.getvalue(), dtype=np.uint8)).decode() del out del im elif manipulation.startswith('gamma'): gamma = float(manipulation[5:]) # alternatively use skimage.exposure.adjust_gamma # img = skimage.exposure.adjust_gamma(img, gamma) im_decoded = np.uint8(cv2.pow(img / 255., gamma)*255.) elif manipulation.startswith('bicubic'): scale = float(manipulation[7:]) im_decoded = cv2.resize(img,(0,0), fx=scale, fy=scale, interpolation = cv2.INTER_CUBIC) else: assert False return im_decoded def crop(img): width, height = img.size # Get dimensions left = (width - 128) / 2 top = (height - 128) / 2 right = (width + 128) / 2 bottom = (height + 128) / 2 #center = randint(300, 1200) #left = center - 299 #top = center -299 #right = center + 299 #bottom = center + 299 return np.array(img.crop((left, top, right, bottom))) def get_crop(img, crop_size, random_crop=True): center_x, center_y = img.shape[1] // 2, img.shape[0] // 2 half_crop = crop_size // 2 pad_x = max(0, crop_size - img.shape[1]) pad_y = max(0, crop_size - img.shape[0]) if (pad_x > 0) or (pad_y > 0): img = np.pad(img, ((pad_y//2, pad_y - pad_y//2), (pad_x//2, pad_x - pad_x//2), (0,0)), mode='wrap') center_x, center_y = img.shape[1] // 2, img.shape[0] // 2 if random_crop: freedom_x, freedom_y = img.shape[1] - crop_size, img.shape[0] - crop_size if freedom_x > 0: center_x += np.random.randint(math.ceil(-freedom_x/2), freedom_x - math.floor(freedom_x/2) ) if freedom_y > 0: center_y += np.random.randint(math.ceil(-freedom_y/2), freedom_y - math.floor(freedom_y/2) ) return img[center_y - half_crop : center_y + crop_size - half_crop, center_x - half_crop : center_x + crop_size - half_crop] def read_and_resize(filepath): #im_array = np.array(Image.open(filepath).convert('RGB'), dtype="uint8") im_array = np.array(Image.open(filepath), dtype="uint8") #pil_im = Image.fromarray(im_array) #im_array = np.array(cv2.imread(filepath)) #new_img = pil_im.resize(( , img_size_2)) #w, h = pil_im.size #w, h = pil_im.size #img = pil_im.crop((w // 2 - 128, h // 2 - 128, w // 2 + 128, h // 2 + 128)) #new_array = np.array(crop(pil_im)) #print(new_array.shape) #img = crop_img(pil_im,0,np.random.randint(0, 5)) #img_result = [] #for i in range(0,10): # img_result.append(crop(pil_im)) new_array = np.array(get_crop(im_array ,512,True)) #new_array = np.array(img.resize((img_size_1 , img_size_2))) #new_array = np.array(img) return new_array def read_and_resize_test(filepath): manip = 0 #print(filepath) if ('_manip.tif' in filepath): manip = 1 #print(1) else: manip = 0 #print(0) #im_array = np.array(Image.open(filepath).convert('RGB'), dtype="uint8") im_array = np.array(Image.open(filepath), dtype="uint8") #pil_im = Image.fromarray(im_array) #im_array = np.array(cv2.imread(filepath)) #w, h = pil_im.size #new_img = pil_im.resize(( , img_size_2)) #w, h = pil_im.size if (manip == 1): img2 = random_manipulation(im_array) new_array = np.array(get_crop(img2,512,True)) else: new_array = im_array #np.array(get_crop(im_array,224,True)) #print(new_array.shape) #img2 = img2.crop((w // 2 - 128, h // 2 - 128, w // 2 + 128, h // 2 + 128)) #img = crop_img(pil_im,0,np.random.randint(0, 5)) #new_array = np.array(pil_im.resize((img_size_1 , img_size_2))) #new_array = np.array(get_crop(img2,128,True)) #new_array = np.array(img) #print(new_array.shape) return new_array def label_transform(labels): labels = pd.get_dummies(pd.Series(labels)) label_index = labels.columns.values return labels, label_index #X_train = np.array([read_and_resize(filepath) for filepath in list_train]) #X_test = np.array([read_and_resize_test(filepath) for filepath in list_test]) X_train_data = [] X_test_data = [] X_labels = [] for i in range(0,len(list_train)-14330): #print(list_train[i],' ', len(list_train),' - ', y) xu = read_and_resize(list_train[i]) if (xu.shape == (512,512,3)): X_train_data.append(xu) X_labels.append(get_class_from_path(list_train[i])) #print(xu.shape, '-', get_class_from_path(list_train[i])) #print(np.array(X_train_data).shape, '-', len(list_train)) X_train = np.array(X_train_data) print('Train shape: ', X_train.shape) for i in range(0,len(list_test)-2630): X_test_data.append(read_and_resize_test(str(list_test[i]))) #print(list_test[i],' ', len(list_test),' file: ', filepath) #print(np.array(X_test_data).shape) X_test = np.array(X_test_data) print('Test shape: ', X_test.shape) #labels = [get_class_from_path(filepath) for filepath in list_train] y, label_index = label_transform(X_labels) y = np.array(y) from keras.models import Model from keras.callbacks import ModelCheckpoint, LearningRateScheduler, EarlyStopping, ReduceLROnPlateau, TensorBoard from keras import optimizers, losses, activations, models from keras.layers import Convolution2D, Dense, Input, Flatten, Dropout, MaxPooling2D, BatchNormalization, GlobalMaxPool2D, Concatenate, GlobalMaxPooling2D from keras.applications.xception import Xception from keras.applications.inception_v3 import InceptionV3 from keras.applications.inception_resnet_v2 import InceptionResNetV2 from keras.applications.mobilenet import MobileNet from keras.optimizers import Adam inp = Input(shape=(img_size_1, img_size_2, 3), name="X_1") #(img_size_1, img_size_2, 3) nclass = len(label_index) def get_model(): base_model = InceptionResNetV2(include_top=False, weights='imagenet' , input_tensor=inp, classes=nclass) x = base_model.output x1 = GlobalMaxPooling2D()(x) merge_one = Dense(1024, activation='relu', name='fc2')(x1) merge_one = Dropout(0.5)(merge_one) merge_one = Dense(256, activation='relu', name='fc3')(merge_one) merge_one = Dropout(0.5)(merge_one) predictions = Dense(nclass, activation='softmax')(merge_one) model = Model(input=base_model.input, output=predictions) #model.load_weights('weightsV2.best.hdf5') sgd = Adam(lr=1e-4, decay=1e-5) model.compile(loss='categorical_crossentropy', optimizer=sgd, metrics=['accuracy']) return model model = get_model() #print('Train shape: ',X_train.shape) file_path="weightsV2.best.hdf5" model.summary() model.load_weights('weightsV2.best.hdf5') checkpoint = ModelCheckpoint(file_path, monitor='val_acc', verbose=1, save_best_only=True,mode='max') early = EarlyStopping(monitor="val_loss", patience=15) callbacks_list = [checkpoint, early] #early model.fit(X_train, y, validation_split=0.1, epochs=100, shuffle=True, verbose=1, batch_size = 22, callbacks=callbacks_list) #print(history) #model.save_weights('my_model_weights2.h5') #model.load_weights(file_path) predicts = model.predict(X_test) predicts = np.argmax(predicts, axis=1) predicts = [label_index[p] for p in predicts] df =
pd.DataFrame(columns=['fname', 'camera'])
pandas.DataFrame
import numpy as np from datetime import timedelta from distutils.version import LooseVersion import pandas as pd import pandas.util.testing as tm from pandas import to_timedelta from pandas.util.testing import assert_series_equal, assert_frame_equal from pandas import (Series, Timedelta, DataFrame, Timestamp, TimedeltaIndex, timedelta_range, date_range, DatetimeIndex, Int64Index, _np_version_under1p10, Float64Index, Index, tslib) from pandas.tests.test_base import Ops class TestTimedeltaIndexOps(Ops): def setUp(self): super(TestTimedeltaIndexOps, self).setUp() mask = lambda x: isinstance(x, TimedeltaIndex) self.is_valid_objs = [o for o in self.objs if mask(o)] self.not_valid_objs = [] def test_ops_properties(self): self.check_ops_properties(['days', 'hours', 'minutes', 'seconds', 'milliseconds']) self.check_ops_properties(['microseconds', 'nanoseconds']) def test_asobject_tolist(self): idx = timedelta_range(start='1 days', periods=4, freq='D', name='idx') expected_list = [Timedelta('1 days'), Timedelta('2 days'), Timedelta('3 days'), Timedelta('4 days')] expected = pd.Index(expected_list, dtype=object, name='idx') result = idx.asobject self.assertTrue(isinstance(result, Index)) self.assertEqual(result.dtype, object) self.assert_index_equal(result, expected) self.assertEqual(result.name, expected.name) self.assertEqual(idx.tolist(), expected_list) idx = TimedeltaIndex([timedelta(days=1), timedelta(days=2), pd.NaT, timedelta(days=4)], name='idx') expected_list = [Timedelta('1 days'), Timedelta('2 days'), pd.NaT, Timedelta('4 days')] expected = pd.Index(expected_list, dtype=object, name='idx') result = idx.asobject self.assertTrue(isinstance(result, Index)) self.assertEqual(result.dtype, object) self.assert_index_equal(result, expected) self.assertEqual(result.name, expected.name) self.assertEqual(idx.tolist(), expected_list) def test_minmax(self): # monotonic idx1 = TimedeltaIndex(['1 days', '2 days', '3 days']) self.assertTrue(idx1.is_monotonic) # non-monotonic idx2 = TimedeltaIndex(['1 days', np.nan, '3 days', 'NaT']) self.assertFalse(idx2.is_monotonic) for idx in [idx1, idx2]: self.assertEqual(idx.min(), Timedelta('1 days')), self.assertEqual(idx.max(), Timedelta('3 days')), self.assertEqual(idx.argmin(), 0) self.assertEqual(idx.argmax(), 2) for op in ['min', 'max']: # Return NaT obj = TimedeltaIndex([]) self.assertTrue(pd.isnull(getattr(obj, op)())) obj = TimedeltaIndex([pd.NaT]) self.assertTrue(pd.isnull(getattr(obj, op)())) obj = TimedeltaIndex([pd.NaT, pd.NaT, pd.NaT]) self.assertTrue(pd.isnull(getattr(obj, op)())) def test_numpy_minmax(self): dr = pd.date_range(start='2016-01-15', end='2016-01-20') td = TimedeltaIndex(np.asarray(dr)) self.assertEqual(np.min(td), Timedelta('16815 days')) self.assertEqual(np.max(td), Timedelta('16820 days')) errmsg = "the 'out' parameter is not supported" tm.assertRaisesRegexp(ValueError, errmsg, np.min, td, out=0) tm.assertRaisesRegexp(ValueError, errmsg, np.max, td, out=0) self.assertEqual(np.argmin(td), 0) self.assertEqual(np.argmax(td), 5) if not _np_version_under1p10: errmsg = "the 'out' parameter is not supported" tm.assertRaisesRegexp(ValueError, errmsg, np.argmin, td, out=0) tm.assertRaisesRegexp(ValueError, errmsg, np.argmax, td, out=0) def test_round(self): td = pd.timedelta_range(start='16801 days', periods=5, freq='30Min') elt = td[1] expected_rng = TimedeltaIndex([ Timedelta('16801 days 00:00:00'), Timedelta('16801 days 00:00:00'), Timedelta('16801 days 01:00:00'), Timedelta('16801 days 02:00:00'), Timedelta('16801 days 02:00:00'), ]) expected_elt = expected_rng[1] tm.assert_index_equal(td.round(freq='H'), expected_rng) self.assertEqual(elt.round(freq='H'), expected_elt) msg = pd.tseries.frequencies._INVALID_FREQ_ERROR with self.assertRaisesRegexp(ValueError, msg): td.round(freq='foo') with tm.assertRaisesRegexp(ValueError, msg): elt.round(freq='foo') msg = "<MonthEnd> is a non-fixed frequency" tm.assertRaisesRegexp(ValueError, msg, td.round, freq='M') tm.assertRaisesRegexp(ValueError, msg, elt.round, freq='M') def test_representation(self): idx1 = TimedeltaIndex([], freq='D') idx2 = TimedeltaIndex(['1 days'], freq='D') idx3 = TimedeltaIndex(['1 days', '2 days'], freq='D') idx4 = TimedeltaIndex(['1 days', '2 days', '3 days'], freq='D') idx5 = TimedeltaIndex(['1 days 00:00:01', '2 days', '3 days']) exp1 = """TimedeltaIndex([], dtype='timedelta64[ns]', freq='D')""" exp2 = ("TimedeltaIndex(['1 days'], dtype='timedelta64[ns]', " "freq='D')") exp3 = ("TimedeltaIndex(['1 days', '2 days'], " "dtype='timedelta64[ns]', freq='D')") exp4 = ("TimedeltaIndex(['1 days', '2 days', '3 days'], " "dtype='timedelta64[ns]', freq='D')") exp5 = ("TimedeltaIndex(['1 days 00:00:01', '2 days 00:00:00', " "'3 days 00:00:00'], dtype='timedelta64[ns]', freq=None)") with pd.option_context('display.width', 300): for idx, expected in zip([idx1, idx2, idx3, idx4, idx5], [exp1, exp2, exp3, exp4, exp5]): for func in ['__repr__', '__unicode__', '__str__']: result = getattr(idx, func)() self.assertEqual(result, expected) def test_representation_to_series(self): idx1 = TimedeltaIndex([], freq='D') idx2 = TimedeltaIndex(['1 days'], freq='D') idx3 = TimedeltaIndex(['1 days', '2 days'], freq='D') idx4 = TimedeltaIndex(['1 days', '2 days', '3 days'], freq='D') idx5 = TimedeltaIndex(['1 days 00:00:01', '2 days', '3 days']) exp1 = """Series([], dtype: timedelta64[ns])""" exp2 = """0 1 days dtype: timedelta64[ns]""" exp3 = """0 1 days 1 2 days dtype: timedelta64[ns]""" exp4 = """0 1 days 1 2 days 2 3 days dtype: timedelta64[ns]""" exp5 = """0 1 days 00:00:01 1 2 days 00:00:00 2 3 days 00:00:00 dtype: timedelta64[ns]""" with pd.option_context('display.width', 300): for idx, expected in zip([idx1, idx2, idx3, idx4, idx5], [exp1, exp2, exp3, exp4, exp5]): result = repr(pd.Series(idx)) self.assertEqual(result, expected) def test_summary(self): # GH9116 idx1 = TimedeltaIndex([], freq='D') idx2 = TimedeltaIndex(['1 days'], freq='D') idx3 = TimedeltaIndex(['1 days', '2 days'], freq='D') idx4 = TimedeltaIndex(['1 days', '2 days', '3 days'], freq='D') idx5 = TimedeltaIndex(['1 days 00:00:01', '2 days', '3 days']) exp1 = """TimedeltaIndex: 0 entries Freq: D""" exp2 = """TimedeltaIndex: 1 entries, 1 days to 1 days Freq: D""" exp3 = """TimedeltaIndex: 2 entries, 1 days to 2 days Freq: D""" exp4 = """TimedeltaIndex: 3 entries, 1 days to 3 days Freq: D""" exp5 = ("TimedeltaIndex: 3 entries, 1 days 00:00:01 to 3 days " "00:00:00") for idx, expected in zip([idx1, idx2, idx3, idx4, idx5], [exp1, exp2, exp3, exp4, exp5]): result = idx.summary() self.assertEqual(result, expected) def test_add_iadd(self): # only test adding/sub offsets as + is now numeric # offset offsets = [pd.offsets.Hour(2), timedelta(hours=2), np.timedelta64(2, 'h'), Timedelta(hours=2)] for delta in offsets: rng = timedelta_range('1 days', '10 days') result = rng + delta expected = timedelta_range('1 days 02:00:00', '10 days 02:00:00', freq='D') tm.assert_index_equal(result, expected) rng += delta tm.assert_index_equal(rng, expected) # int rng = timedelta_range('1 days 09:00:00', freq='H', periods=10) result = rng + 1 expected = timedelta_range('1 days 10:00:00', freq='H', periods=10) tm.assert_index_equal(result, expected) rng += 1 tm.assert_index_equal(rng, expected) def test_sub_isub(self): # only test adding/sub offsets as - is now numeric # offset offsets = [pd.offsets.Hour(2), timedelta(hours=2), np.timedelta64(2, 'h'), Timedelta(hours=2)] for delta in offsets: rng = timedelta_range('1 days', '10 days') result = rng - delta expected = timedelta_range('0 days 22:00:00', '9 days 22:00:00') tm.assert_index_equal(result, expected) rng -= delta tm.assert_index_equal(rng, expected) # int rng = timedelta_range('1 days 09:00:00', freq='H', periods=10) result = rng - 1 expected = timedelta_range('1 days 08:00:00', freq='H', periods=10) tm.assert_index_equal(result, expected) rng -= 1 tm.assert_index_equal(rng, expected) idx = TimedeltaIndex(['1 day', '2 day']) msg = "cannot subtract a datelike from a TimedeltaIndex" with tm.assertRaisesRegexp(TypeError, msg): idx - Timestamp('2011-01-01') result = Timestamp('2011-01-01') + idx expected = DatetimeIndex(['2011-01-02', '2011-01-03']) tm.assert_index_equal(result, expected) def test_ops_compat(self): offsets = [pd.offsets.Hour(2), timedelta(hours=2), np.timedelta64(2, 'h'), Timedelta(hours=2)] rng = timedelta_range('1 days', '10 days', name='foo') # multiply for offset in offsets: self.assertRaises(TypeError, lambda: rng * offset) # divide expected = Int64Index((np.arange(10) + 1) * 12, name='foo') for offset in offsets: result = rng / offset tm.assert_index_equal(result, expected, exact=False) # divide with nats rng = TimedeltaIndex(['1 days', pd.NaT, '2 days'], name='foo') expected = Float64Index([12, np.nan, 24], name='foo') for offset in offsets: result = rng / offset tm.assert_index_equal(result, expected) # don't allow division by NaT (make could in the future) self.assertRaises(TypeError, lambda: rng / pd.NaT) def test_subtraction_ops(self): # with datetimes/timedelta and tdi/dti tdi = TimedeltaIndex(['1 days', pd.NaT, '2 days'], name='foo') dti = date_range('20130101', periods=3, name='bar') td = Timedelta('1 days') dt = Timestamp('20130101') self.assertRaises(TypeError, lambda: tdi - dt) self.assertRaises(TypeError, lambda: tdi - dti) self.assertRaises(TypeError, lambda: td - dt) self.assertRaises(TypeError, lambda: td - dti) result = dt - dti expected = TimedeltaIndex(['0 days', '-1 days', '-2 days'], name='bar') tm.assert_index_equal(result, expected) result = dti - dt expected = TimedeltaIndex(['0 days', '1 days', '2 days'], name='bar') tm.assert_index_equal(result, expected) result = tdi - td expected = TimedeltaIndex(['0 days', pd.NaT, '1 days'], name='foo') tm.assert_index_equal(result, expected, check_names=False) result = td - tdi expected = TimedeltaIndex(['0 days', pd.NaT, '-1 days'], name='foo') tm.assert_index_equal(result, expected, check_names=False) result = dti - td expected = DatetimeIndex( ['20121231', '20130101', '20130102'], name='bar') tm.assert_index_equal(result, expected, check_names=False) result = dt - tdi expected = DatetimeIndex(['20121231', pd.NaT, '20121230'], name='foo') tm.assert_index_equal(result, expected) def test_subtraction_ops_with_tz(self): # check that dt/dti subtraction ops with tz are validated dti = date_range('20130101', periods=3) ts = Timestamp('20130101') dt = ts.to_pydatetime() dti_tz = date_range('20130101', periods=3).tz_localize('US/Eastern') ts_tz = Timestamp('20130101').tz_localize('US/Eastern') ts_tz2 = Timestamp('20130101').tz_localize('CET') dt_tz = ts_tz.to_pydatetime() td = Timedelta('1 days') def _check(result, expected): self.assertEqual(result, expected) self.assertIsInstance(result, Timedelta) # scalars result = ts - ts expected = Timedelta('0 days') _check(result, expected) result = dt_tz - ts_tz expected = Timedelta('0 days') _check(result, expected) result = ts_tz - dt_tz expected = Timedelta('0 days') _check(result, expected) # tz mismatches self.assertRaises(TypeError, lambda: dt_tz - ts) self.assertRaises(TypeError, lambda: dt_tz - dt) self.assertRaises(TypeError, lambda: dt_tz - ts_tz2) self.assertRaises(TypeError, lambda: dt - dt_tz) self.assertRaises(TypeError, lambda: ts - dt_tz) self.assertRaises(TypeError, lambda: ts_tz2 - ts) self.assertRaises(TypeError, lambda: ts_tz2 - dt) self.assertRaises(TypeError, lambda: ts_tz - ts_tz2) # with dti self.assertRaises(TypeError, lambda: dti - ts_tz) self.assertRaises(TypeError, lambda: dti_tz - ts) self.assertRaises(TypeError, lambda: dti_tz - ts_tz2) result = dti_tz - dt_tz expected = TimedeltaIndex(['0 days', '1 days', '2 days']) tm.assert_index_equal(result, expected) result = dt_tz - dti_tz expected = TimedeltaIndex(['0 days', '-1 days', '-2 days']) tm.assert_index_equal(result, expected) result = dti_tz - ts_tz expected = TimedeltaIndex(['0 days', '1 days', '2 days']) tm.assert_index_equal(result, expected) result = ts_tz - dti_tz expected = TimedeltaIndex(['0 days', '-1 days', '-2 days']) tm.assert_index_equal(result, expected) result = td - td expected = Timedelta('0 days') _check(result, expected) result = dti_tz - td expected = DatetimeIndex( ['20121231', '20130101', '20130102'], tz='US/Eastern') tm.assert_index_equal(result, expected) def test_dti_tdi_numeric_ops(self): # These are normally union/diff set-like ops tdi = TimedeltaIndex(['1 days', pd.NaT, '2 days'], name='foo') dti = date_range('20130101', periods=3, name='bar') # TODO(wesm): unused? # td = Timedelta('1 days') # dt = Timestamp('20130101') result = tdi - tdi expected = TimedeltaIndex(['0 days', pd.NaT, '0 days'], name='foo') tm.assert_index_equal(result, expected) result = tdi + tdi expected = TimedeltaIndex(['2 days', pd.NaT, '4 days'], name='foo') tm.assert_index_equal(result, expected) result = dti - tdi # name will be reset expected = DatetimeIndex(['20121231', pd.NaT, '20130101']) tm.assert_index_equal(result, expected) def test_sub_period(self): # GH 13078 # not supported, check TypeError p = pd.Period('2011-01-01', freq='D') for freq in [None, 'H']: idx = pd.TimedeltaIndex(['1 hours', '2 hours'], freq=freq) with tm.assertRaises(TypeError): idx - p with tm.assertRaises(TypeError): p - idx def test_addition_ops(self): # with datetimes/timedelta and tdi/dti tdi = TimedeltaIndex(['1 days', pd.NaT, '2 days'], name='foo') dti = date_range('20130101', periods=3, name='bar') td = Timedelta('1 days') dt = Timestamp('20130101') result = tdi + dt expected = DatetimeIndex(['20130102', pd.NaT, '20130103'], name='foo') tm.assert_index_equal(result, expected) result = dt + tdi expected = DatetimeIndex(['20130102', pd.NaT, '20130103'], name='foo') tm.assert_index_equal(result, expected) result = td + tdi expected = TimedeltaIndex(['2 days', pd.NaT, '3 days'], name='foo') tm.assert_index_equal(result, expected) result = tdi + td expected = TimedeltaIndex(['2 days', pd.NaT, '3 days'], name='foo') tm.assert_index_equal(result, expected) # unequal length self.assertRaises(ValueError, lambda: tdi + dti[0:1]) self.assertRaises(ValueError, lambda: tdi[0:1] + dti) # random indexes self.assertRaises(TypeError, lambda: tdi + Int64Index([1, 2, 3])) # this is a union! # self.assertRaises(TypeError, lambda : Int64Index([1,2,3]) + tdi) result = tdi + dti # name will be reset expected = DatetimeIndex(['20130102', pd.NaT, '20130105']) tm.assert_index_equal(result, expected) result = dti + tdi # name will be reset expected = DatetimeIndex(['20130102', pd.NaT, '20130105']) tm.assert_index_equal(result, expected) result = dt + td expected = Timestamp('20130102') self.assertEqual(result, expected) result = td + dt expected = Timestamp('20130102') self.assertEqual(result, expected) def test_comp_nat(self): left = pd.TimedeltaIndex([pd.Timedelta('1 days'), pd.NaT, pd.Timedelta('3 days')]) right = pd.TimedeltaIndex([pd.NaT, pd.NaT, pd.Timedelta('3 days')]) for l, r in [(left, right), (left.asobject, right.asobject)]: result = l == r expected = np.array([False, False, True]) tm.assert_numpy_array_equal(result, expected) result = l != r expected = np.array([True, True, False]) tm.assert_numpy_array_equal(result, expected) expected = np.array([False, False, False]) tm.assert_numpy_array_equal(l == pd.NaT, expected) tm.assert_numpy_array_equal(pd.NaT == r, expected) expected = np.array([True, True, True]) tm.assert_numpy_array_equal(l != pd.NaT, expected) tm.assert_numpy_array_equal(pd.NaT != l, expected) expected = np.array([False, False, False]) tm.assert_numpy_array_equal(l < pd.NaT, expected) tm.assert_numpy_array_equal(pd.NaT > l, expected) def test_value_counts_unique(self): # GH 7735 idx = timedelta_range('1 days 09:00:00', freq='H', periods=10) # create repeated values, 'n'th element is repeated by n+1 times idx = TimedeltaIndex(np.repeat(idx.values, range(1, len(idx) + 1))) exp_idx = timedelta_range('1 days 18:00:00', freq='-1H', periods=10) expected = Series(range(10, 0, -1), index=exp_idx, dtype='int64') for obj in [idx, Series(idx)]: tm.assert_series_equal(obj.value_counts(), expected) expected = timedelta_range('1 days 09:00:00', freq='H', periods=10) tm.assert_index_equal(idx.unique(), expected) idx = TimedeltaIndex(['1 days 09:00:00', '1 days 09:00:00', '1 days 09:00:00', '1 days 08:00:00', '1 days 08:00:00', pd.NaT]) exp_idx = TimedeltaIndex(['1 days 09:00:00', '1 days 08:00:00']) expected = Series([3, 2], index=exp_idx) for obj in [idx, Series(idx)]: tm.assert_series_equal(obj.value_counts(), expected) exp_idx = TimedeltaIndex(['1 days 09:00:00', '1 days 08:00:00', pd.NaT]) expected = Series([3, 2, 1], index=exp_idx) for obj in [idx, Series(idx)]: tm.assert_series_equal(obj.value_counts(dropna=False), expected) tm.assert_index_equal(idx.unique(), exp_idx) def test_nonunique_contains(self): # GH 9512 for idx in map(TimedeltaIndex, ([0, 1, 0], [0, 0, -1], [0, -1, -1], ['00:01:00', '00:01:00', '00:02:00'], ['00:01:00', '00:01:00', '00:00:01'])): tm.assertIn(idx[0], idx) def test_unknown_attribute(self): # GH 9680 tdi = pd.timedelta_range(start=0, periods=10, freq='1s') ts = pd.Series(np.random.normal(size=10), index=tdi) self.assertNotIn('foo', ts.__dict__.keys()) self.assertRaises(AttributeError, lambda: ts.foo) def test_order(self): # GH 10295 idx1 = TimedeltaIndex(['1 day', '2 day', '3 day'], freq='D', name='idx') idx2 = TimedeltaIndex( ['1 hour', '2 hour', '3 hour'], freq='H', name='idx') for idx in [idx1, idx2]: ordered = idx.sort_values() self.assert_index_equal(ordered, idx) self.assertEqual(ordered.freq, idx.freq) ordered = idx.sort_values(ascending=False) expected = idx[::-1] self.assert_index_equal(ordered, expected) self.assertEqual(ordered.freq, expected.freq) self.assertEqual(ordered.freq.n, -1) ordered, indexer = idx.sort_values(return_indexer=True) self.assert_index_equal(ordered, idx) self.assert_numpy_array_equal(indexer, np.array([0, 1, 2]), check_dtype=False) self.assertEqual(ordered.freq, idx.freq) ordered, indexer = idx.sort_values(return_indexer=True, ascending=False) self.assert_index_equal(ordered, idx[::-1]) self.assertEqual(ordered.freq, expected.freq) self.assertEqual(ordered.freq.n, -1) idx1 = TimedeltaIndex(['1 hour', '3 hour', '5 hour', '2 hour ', '1 hour'], name='idx1') exp1 = TimedeltaIndex(['1 hour', '1 hour', '2 hour', '3 hour', '5 hour'], name='idx1') idx2 = TimedeltaIndex(['1 day', '3 day', '5 day', '2 day', '1 day'], name='idx2') # TODO(wesm): unused? # exp2 = TimedeltaIndex(['1 day', '1 day', '2 day', # '3 day', '5 day'], name='idx2') # idx3 = TimedeltaIndex([pd.NaT, '3 minute', '5 minute', # '2 minute', pd.NaT], name='idx3') # exp3 = TimedeltaIndex([pd.NaT, pd.NaT, '2 minute', '3 minute', # '5 minute'], name='idx3') for idx, expected in [(idx1, exp1), (idx1, exp1), (idx1, exp1)]: ordered = idx.sort_values() self.assert_index_equal(ordered, expected) self.assertIsNone(ordered.freq) ordered = idx.sort_values(ascending=False) self.assert_index_equal(ordered, expected[::-1]) self.assertIsNone(ordered.freq) ordered, indexer = idx.sort_values(return_indexer=True) self.assert_index_equal(ordered, expected) exp = np.array([0, 4, 3, 1, 2]) self.assert_numpy_array_equal(indexer, exp, check_dtype=False) self.assertIsNone(ordered.freq) ordered, indexer = idx.sort_values(return_indexer=True, ascending=False) self.assert_index_equal(ordered, expected[::-1]) exp = np.array([2, 1, 3, 4, 0]) self.assert_numpy_array_equal(indexer, exp, check_dtype=False) self.assertIsNone(ordered.freq) def test_getitem(self): idx1 = pd.timedelta_range('1 day', '31 day', freq='D', name='idx') for idx in [idx1]: result = idx[0] self.assertEqual(result, pd.Timedelta('1 day')) result = idx[0:5] expected = pd.timedelta_range('1 day', '5 day', freq='D', name='idx') self.assert_index_equal(result, expected) self.assertEqual(result.freq, expected.freq) result = idx[0:10:2] expected = pd.timedelta_range('1 day', '9 day', freq='2D', name='idx') self.assert_index_equal(result, expected) self.assertEqual(result.freq, expected.freq) result = idx[-20:-5:3] expected = pd.timedelta_range('12 day', '24 day', freq='3D', name='idx') self.assert_index_equal(result, expected) self.assertEqual(result.freq, expected.freq) result = idx[4::-1] expected = TimedeltaIndex(['5 day', '4 day', '3 day', '2 day', '1 day'], freq='-1D', name='idx') self.assert_index_equal(result, expected) self.assertEqual(result.freq, expected.freq) def test_drop_duplicates_metadata(self): # GH 10115 idx = pd.timedelta_range('1 day', '31 day', freq='D', name='idx') result = idx.drop_duplicates() self.assert_index_equal(idx, result) self.assertEqual(idx.freq, result.freq) idx_dup = idx.append(idx) self.assertIsNone(idx_dup.freq) # freq is reset result = idx_dup.drop_duplicates() self.assert_index_equal(idx, result) self.assertIsNone(result.freq) def test_drop_duplicates(self): # to check Index/Series compat base = pd.timedelta_range('1 day', '31 day', freq='D', name='idx') idx = base.append(base[:5]) res = idx.drop_duplicates() tm.assert_index_equal(res, base) res = Series(idx).drop_duplicates() tm.assert_series_equal(res, Series(base)) res = idx.drop_duplicates(keep='last') exp = base[5:].append(base[:5]) tm.assert_index_equal(res, exp) res = Series(idx).drop_duplicates(keep='last') tm.assert_series_equal(res, Series(exp, index=np.arange(5, 36))) res = idx.drop_duplicates(keep=False) tm.assert_index_equal(res, base[5:]) res = Series(idx).drop_duplicates(keep=False) tm.assert_series_equal(res, Series(base[5:], index=np.arange(5, 31))) def test_take(self): # GH 10295 idx1 = pd.timedelta_range('1 day', '31 day', freq='D', name='idx') for idx in [idx1]: result = idx.take([0]) self.assertEqual(result, pd.Timedelta('1 day')) result = idx.take([-1]) self.assertEqual(result, pd.Timedelta('31 day')) result = idx.take([0, 1, 2]) expected = pd.timedelta_range('1 day', '3 day', freq='D', name='idx') self.assert_index_equal(result, expected) self.assertEqual(result.freq, expected.freq) result = idx.take([0, 2, 4]) expected = pd.timedelta_range('1 day', '5 day', freq='2D', name='idx') self.assert_index_equal(result, expected) self.assertEqual(result.freq, expected.freq) result = idx.take([7, 4, 1]) expected = pd.timedelta_range('8 day', '2 day', freq='-3D', name='idx') self.assert_index_equal(result, expected) self.assertEqual(result.freq, expected.freq) result = idx.take([3, 2, 5]) expected = TimedeltaIndex(['4 day', '3 day', '6 day'], name='idx') self.assert_index_equal(result, expected) self.assertIsNone(result.freq) result = idx.take([-3, 2, 5]) expected = TimedeltaIndex(['29 day', '3 day', '6 day'], name='idx') self.assert_index_equal(result, expected) self.assertIsNone(result.freq) def test_take_invalid_kwargs(self): idx = pd.timedelta_range('1 day', '31 day', freq='D', name='idx') indices = [1, 6, 5, 9, 10, 13, 15, 3] msg = r"take\(\) got an unexpected keyword argument 'foo'" tm.assertRaisesRegexp(TypeError, msg, idx.take, indices, foo=2) msg = "the 'out' parameter is not supported" tm.assertRaisesRegexp(ValueError, msg, idx.take, indices, out=indices) msg = "the 'mode' parameter is not supported" tm.assertRaisesRegexp(ValueError, msg, idx.take, indices, mode='clip') def test_infer_freq(self): # GH 11018 for freq in ['D', '3D', '-3D', 'H', '2H', '-2H', 'T', '2T', 'S', '-3S' ]: idx = pd.timedelta_range('1', freq=freq, periods=10) result = pd.TimedeltaIndex(idx.asi8, freq='infer') tm.assert_index_equal(idx, result) self.assertEqual(result.freq, freq) def test_nat_new(self): idx = pd.timedelta_range('1', freq='D', periods=5, name='x') result = idx._nat_new() exp = pd.TimedeltaIndex([pd.NaT] * 5, name='x') tm.assert_index_equal(result, exp) result = idx._nat_new(box=False) exp = np.array([tslib.iNaT] * 5, dtype=np.int64) tm.assert_numpy_array_equal(result, exp) def test_shift(self): # GH 9903 idx = pd.TimedeltaIndex([], name='xxx') tm.assert_index_equal(idx.shift(0, freq='H'), idx) tm.assert_index_equal(idx.shift(3, freq='H'), idx) idx = pd.TimedeltaIndex(['5 hours', '6 hours', '9 hours'], name='xxx') tm.assert_index_equal(idx.shift(0, freq='H'), idx) exp = pd.TimedeltaIndex(['8 hours', '9 hours', '12 hours'], name='xxx') tm.assert_index_equal(idx.shift(3, freq='H'), exp) exp = pd.TimedeltaIndex(['2 hours', '3 hours', '6 hours'], name='xxx') tm.assert_index_equal(idx.shift(-3, freq='H'), exp) tm.assert_index_equal(idx.shift(0, freq='T'), idx) exp = pd.TimedeltaIndex(['05:03:00', '06:03:00', '9:03:00'], name='xxx') tm.assert_index_equal(idx.shift(3, freq='T'), exp) exp = pd.TimedeltaIndex(['04:57:00', '05:57:00', '8:57:00'], name='xxx') tm.assert_index_equal(idx.shift(-3, freq='T'), exp) def test_repeat(self): index = pd.timedelta_range('1 days', periods=2, freq='D') exp = pd.TimedeltaIndex(['1 days', '1 days', '2 days', '2 days']) for res in [index.repeat(2), np.repeat(index, 2)]: tm.assert_index_equal(res, exp) self.assertIsNone(res.freq) index = TimedeltaIndex(['1 days', 'NaT', '3 days']) exp = TimedeltaIndex(['1 days', '1 days', '1 days', 'NaT', 'NaT', 'NaT', '3 days', '3 days', '3 days']) for res in [index.repeat(3), np.repeat(index, 3)]: tm.assert_index_equal(res, exp) self.assertIsNone(res.freq) def test_nat(self): self.assertIs(pd.TimedeltaIndex._na_value, pd.NaT) self.assertIs(pd.TimedeltaIndex([])._na_value, pd.NaT) idx = pd.TimedeltaIndex(['1 days', '2 days']) self.assertTrue(idx._can_hold_na) tm.assert_numpy_array_equal(idx._isnan, np.array([False, False])) self.assertFalse(idx.hasnans) tm.assert_numpy_array_equal(idx._nan_idxs, np.array([], dtype=np.intp)) idx = pd.TimedeltaIndex(['1 days', 'NaT']) self.assertTrue(idx._can_hold_na) tm.assert_numpy_array_equal(idx._isnan, np.array([False, True])) self.assertTrue(idx.hasnans) tm.assert_numpy_array_equal(idx._nan_idxs, np.array([1], dtype=np.intp)) def test_equals(self): # GH 13107 idx = pd.TimedeltaIndex(['1 days', '2 days', 'NaT']) self.assertTrue(idx.equals(idx)) self.assertTrue(idx.equals(idx.copy())) self.assertTrue(idx.equals(idx.asobject)) self.assertTrue(idx.asobject.equals(idx)) self.assertTrue(idx.asobject.equals(idx.asobject)) self.assertFalse(idx.equals(list(idx))) self.assertFalse(idx.equals(pd.Series(idx))) idx2 = pd.TimedeltaIndex(['2 days', '1 days', 'NaT']) self.assertFalse(idx.equals(idx2)) self.assertFalse(idx.equals(idx2.copy())) self.assertFalse(idx.equals(idx2.asobject)) self.assertFalse(idx.asobject.equals(idx2)) self.assertFalse(idx.asobject.equals(idx2.asobject)) self.assertFalse(idx.equals(list(idx2))) self.assertFalse(idx.equals(pd.Series(idx2))) class TestTimedeltas(tm.TestCase): _multiprocess_can_split_ = True def test_ops(self): td = Timedelta(10, unit='d') self.assertEqual(-td, Timedelta(-10, unit='d')) self.assertEqual(+td, Timedelta(10, unit='d')) self.assertEqual(td - td, Timedelta(0, unit='ns')) self.assertTrue((td - pd.NaT) is pd.NaT) self.assertEqual(td + td, Timedelta(20, unit='d')) self.assertTrue((td + pd.NaT) is pd.NaT) self.assertEqual(td * 2, Timedelta(20, unit='d')) self.assertTrue((td * pd.NaT) is pd.NaT) self.assertEqual(td / 2, Timedelta(5, unit='d')) self.assertEqual(abs(td), td) self.assertEqual(abs(-td), td) self.assertEqual(td / td, 1) self.assertTrue((td / pd.NaT) is np.nan) # invert self.assertEqual(-td, Timedelta('-10d')) self.assertEqual(td * -1, Timedelta('-10d')) self.assertEqual(-1 * td, Timedelta('-10d')) self.assertEqual(abs(-td), Timedelta('10d')) # invalid self.assertRaises(TypeError, lambda: Timedelta(11, unit='d') // 2) # invalid multiply with another timedelta self.assertRaises(TypeError, lambda: td * td) # can't operate with integers self.assertRaises(TypeError, lambda: td + 2) self.assertRaises(TypeError, lambda: td - 2) def test_ops_offsets(self): td = Timedelta(10, unit='d') self.assertEqual(Timedelta(241, unit='h'), td + pd.offsets.Hour(1)) self.assertEqual(Timedelta(241, unit='h'), pd.offsets.Hour(1) + td) self.assertEqual(240, td / pd.offsets.Hour(1)) self.assertEqual(1 / 240.0, pd.offsets.Hour(1) / td) self.assertEqual(Timedelta(239, unit='h'), td - pd.offsets.Hour(1)) self.assertEqual(Timedelta(-239, unit='h'), pd.offsets.Hour(1) - td) def test_ops_ndarray(self): td = Timedelta('1 day') # timedelta, timedelta other = pd.to_timedelta(['1 day']).values expected = pd.to_timedelta(['2 days']).values self.assert_numpy_array_equal(td + other, expected) if LooseVersion(np.__version__) >= '1.8': self.assert_numpy_array_equal(other + td, expected) self.assertRaises(TypeError, lambda: td + np.array([1])) self.assertRaises(TypeError, lambda: np.array([1]) + td) expected = pd.to_timedelta(['0 days']).values self.assert_numpy_array_equal(td - other, expected) if LooseVersion(np.__version__) >= '1.8': self.assert_numpy_array_equal(-other + td, expected) self.assertRaises(TypeError, lambda: td - np.array([1])) self.assertRaises(TypeError, lambda: np.array([1]) - td) expected = pd.to_timedelta(['2 days']).values self.assert_numpy_array_equal(td * np.array([2]), expected) self.assert_numpy_array_equal(np.array([2]) * td, expected) self.assertRaises(TypeError, lambda: td * other) self.assertRaises(TypeError, lambda: other * td) self.assert_numpy_array_equal(td / other, np.array([1], dtype=np.float64)) if LooseVersion(np.__version__) >= '1.8': self.assert_numpy_array_equal(other / td, np.array([1], dtype=np.float64)) # timedelta, datetime other = pd.to_datetime(['2000-01-01']).values expected = pd.to_datetime(['2000-01-02']).values self.assert_numpy_array_equal(td + other, expected) if LooseVersion(np.__version__) >= '1.8': self.assert_numpy_array_equal(other + td, expected) expected = pd.to_datetime(['1999-12-31']).values self.assert_numpy_array_equal(-td + other, expected) if LooseVersion(np.__version__) >= '1.8': self.assert_numpy_array_equal(other - td, expected) def test_ops_series(self): # regression test for GH8813 td = Timedelta('1 day') other = pd.Series([1, 2]) expected = pd.Series(pd.to_timedelta(['1 day', '2 days'])) tm.assert_series_equal(expected, td * other) tm.assert_series_equal(expected, other * td) def test_ops_series_object(self): # GH 13043 s = pd.Series([pd.Timestamp('2015-01-01', tz='US/Eastern'), pd.Timestamp('2015-01-01', tz='Asia/Tokyo')], name='xxx') self.assertEqual(s.dtype, object) exp = pd.Series([pd.Timestamp('2015-01-02', tz='US/Eastern'), pd.Timestamp('2015-01-02', tz='Asia/Tokyo')], name='xxx') tm.assert_series_equal(s + pd.Timedelta('1 days'), exp) tm.assert_series_equal(pd.Timedelta('1 days') + s, exp) # object series & object series s2 = pd.Series([pd.Timestamp('2015-01-03', tz='US/Eastern'), pd.Timestamp('2015-01-05', tz='Asia/Tokyo')], name='xxx') self.assertEqual(s2.dtype, object) exp = pd.Series([pd.Timedelta('2 days'), pd.Timedelta('4 days')], name='xxx') tm.assert_series_equal(s2 - s, exp) tm.assert_series_equal(s - s2, -exp) s = pd.Series([pd.Timedelta('01:00:00'), pd.Timedelta('02:00:00')], name='xxx', dtype=object) self.assertEqual(s.dtype, object) exp = pd.Series([pd.Timedelta('01:30:00'), pd.Timedelta('02:30:00')], name='xxx') tm.assert_series_equal(s + pd.Timedelta('00:30:00'), exp) tm.assert_series_equal(pd.Timedelta('00:30:00') + s, exp) def test_ops_notimplemented(self): class Other: pass other = Other() td = Timedelta('1 day') self.assertTrue(td.__add__(other) is NotImplemented) self.assertTrue(td.__sub__(other) is NotImplemented) self.assertTrue(td.__truediv__(other) is NotImplemented) self.assertTrue(td.__mul__(other) is NotImplemented) self.assertTrue(td.__floordiv__(td) is NotImplemented) def test_ops_error_str(self): # GH 13624 tdi = TimedeltaIndex(['1 day', '2 days']) for l, r in [(tdi, 'a'), ('a', tdi)]: with tm.assertRaises(TypeError): l + r with tm.assertRaises(TypeError): l > r with tm.assertRaises(TypeError): l == r with tm.assertRaises(TypeError): l != r def test_timedelta_ops(self): # GH4984 # make sure ops return Timedelta s = Series([Timestamp('20130101') + timedelta(seconds=i * i) for i in range(10)]) td = s.diff() result = td.mean() expected = to_timedelta(timedelta(seconds=9)) self.assertEqual(result, expected) result = td.to_frame().mean() self.assertEqual(result[0], expected) result = td.quantile(.1) expected = Timedelta(np.timedelta64(2600, 'ms')) self.assertEqual(result, expected) result = td.median() expected = to_timedelta('00:00:09') self.assertEqual(result, expected) result = td.to_frame().median() self.assertEqual(result[0], expected) # GH 6462 # consistency in returned values for sum result = td.sum() expected = to_timedelta('00:01:21') self.assertEqual(result, expected) result = td.to_frame().sum() self.assertEqual(result[0], expected) # std result = td.std() expected = to_timedelta(Series(td.dropna().values).std()) self.assertEqual(result, expected) result = td.to_frame().std() self.assertEqual(result[0], expected) # invalid ops for op in ['skew', 'kurt', 'sem', 'prod']: self.assertRaises(TypeError, getattr(td, op)) # GH 10040 # make sure NaT is properly handled by median() s = Series([Timestamp('2015-02-03'), Timestamp('2015-02-07')]) self.assertEqual(s.diff().median(), timedelta(days=4)) s = Series([Timestamp('2015-02-03'), Timestamp('2015-02-07'), Timestamp('2015-02-15')]) self.assertEqual(s.diff().median(), timedelta(days=6)) def test_timedelta_ops_scalar(self): # GH 6808 base = pd.to_datetime('20130101 09:01:12.123456') expected_add = pd.to_datetime('20130101 09:01:22.123456') expected_sub = pd.to_datetime('20130101 09:01:02.123456') for offset in [pd.to_timedelta(10, unit='s'), timedelta(seconds=10), np.timedelta64(10, 's'), np.timedelta64(10000000000, 'ns'), pd.offsets.Second(10)]: result = base + offset self.assertEqual(result, expected_add) result = base - offset self.assertEqual(result, expected_sub) base = pd.to_datetime('20130102 09:01:12.123456') expected_add = pd.to_datetime('20130103 09:01:22.123456') expected_sub = pd.to_datetime('20130101 09:01:02.123456') for offset in [pd.to_timedelta('1 day, 00:00:10'), pd.to_timedelta('1 days, 00:00:10'), timedelta(days=1, seconds=10), np.timedelta64(1, 'D') + np.timedelta64(10, 's'), pd.offsets.Day() + pd.offsets.Second(10)]: result = base + offset self.assertEqual(result, expected_add) result = base - offset self.assertEqual(result, expected_sub) def test_timedelta_ops_with_missing_values(self): # setup s1 = pd.to_timedelta(Series(['00:00:01'])) s2 = pd.to_timedelta(Series(['00:00:02'])) sn = pd.to_timedelta(Series([pd.NaT])) df1 = DataFrame(['00:00:01']).apply(pd.to_timedelta) df2 = DataFrame(['00:00:02']).apply(pd.to_timedelta) dfn = DataFrame([pd.NaT]).apply(pd.to_timedelta) scalar1 = pd.to_timedelta('00:00:01') scalar2 = pd.to_timedelta('00:00:02') timedelta_NaT = pd.to_timedelta('NaT') NA = np.nan actual = scalar1 + scalar1 self.assertEqual(actual, scalar2) actual = scalar2 - scalar1 self.assertEqual(actual, scalar1) actual = s1 + s1 assert_series_equal(actual, s2) actual = s2 - s1 assert_series_equal(actual, s1) actual = s1 + scalar1 assert_series_equal(actual, s2) actual = scalar1 + s1 assert_series_equal(actual, s2) actual = s2 - scalar1 assert_series_equal(actual, s1) actual = -scalar1 + s2 assert_series_equal(actual, s1) actual = s1 + timedelta_NaT assert_series_equal(actual, sn) actual = timedelta_NaT + s1 assert_series_equal(actual, sn) actual = s1 - timedelta_NaT assert_series_equal(actual, sn) actual = -timedelta_NaT + s1 assert_series_equal(actual, sn) actual = s1 + NA assert_series_equal(actual, sn) actual = NA + s1 assert_series_equal(actual, sn) actual = s1 - NA assert_series_equal(actual, sn) actual = -NA + s1 assert_series_equal(actual, sn) actual = s1 + pd.NaT assert_series_equal(actual, sn) actual = s2 - pd.NaT assert_series_equal(actual, sn) actual = s1 + df1 assert_frame_equal(actual, df2) actual = s2 - df1 assert_frame_equal(actual, df1) actual = df1 + s1 assert_frame_equal(actual, df2) actual = df2 - s1 assert_frame_equal(actual, df1) actual = df1 + df1 assert_frame_equal(actual, df2) actual = df2 - df1 assert_frame_equal(actual, df1) actual = df1 + scalar1 assert_frame_equal(actual, df2) actual = df2 - scalar1 assert_frame_equal(actual, df1) actual = df1 + timedelta_NaT assert_frame_equal(actual, dfn) actual = df1 - timedelta_NaT assert_frame_equal(actual, dfn) actual = df1 + NA assert_frame_equal(actual, dfn) actual = df1 - NA assert_frame_equal(actual, dfn) actual = df1 + pd.NaT # NaT is datetime, not timedelta assert_frame_equal(actual, dfn) actual = df1 - pd.NaT assert_frame_equal(actual, dfn) def test_compare_timedelta_series(self): # regresssion test for GH5963 s = pd.Series([timedelta(days=1), timedelta(days=2)]) actual = s > timedelta(days=1) expected = pd.Series([False, True]) tm.assert_series_equal(actual, expected) def test_compare_timedelta_ndarray(self): # GH11835 periods = [Timedelta('0 days 01:00:00'), Timedelta('0 days 01:00:00')] arr = np.array(periods) result = arr[0] > arr expected = np.array([False, False]) self.assert_numpy_array_equal(result, expected) class TestSlicing(tm.TestCase): def test_tdi_ops_attributes(self): rng = timedelta_range('2 days', periods=5, freq='2D', name='x') result = rng + 1 exp = timedelta_range('4 days', periods=5, freq='2D', name='x') tm.assert_index_equal(result, exp) self.assertEqual(result.freq, '2D') result = rng - 2 exp = timedelta_range('-2 days', periods=5, freq='2D', name='x') tm.assert_index_equal(result, exp) self.assertEqual(result.freq, '2D') result = rng * 2 exp = timedelta_range('4 days', periods=5, freq='4D', name='x') tm.assert_index_equal(result, exp) self.assertEqual(result.freq, '4D') result = rng / 2 exp = timedelta_range('1 days', periods=5, freq='D', name='x') tm.assert_index_equal(result, exp) self.assertEqual(result.freq, 'D') result = -rng exp = timedelta_range('-2 days', periods=5, freq='-2D', name='x') tm.assert_index_equal(result, exp) self.assertEqual(result.freq, '-2D') rng = pd.timedelta_range('-2 days', periods=5, freq='D', name='x') result = abs(rng) exp = TimedeltaIndex(['2 days', '1 days', '0 days', '1 days', '2 days'], name='x') tm.assert_index_equal(result, exp) self.assertEqual(result.freq, None) def test_add_overflow(self): # see gh-14068 msg = "too (big|large) to convert" with tm.assertRaisesRegexp(OverflowError, msg): to_timedelta(106580, 'D') + Timestamp('2000') with tm.assertRaisesRegexp(OverflowError, msg): Timestamp('2000') + to_timedelta(106580, 'D') _NaT = int(pd.NaT) + 1 msg = "Overflow in int64 addition" with tm.assertRaisesRegexp(OverflowError, msg): to_timedelta([106580], 'D') + Timestamp('2000') with tm.assertRaisesRegexp(OverflowError, msg): Timestamp('2000') + to_timedelta([106580], 'D') with tm.assertRaisesRegexp(OverflowError, msg): to_timedelta([_NaT]) - Timedelta('1 days') with tm.assertRaisesRegexp(OverflowError, msg): to_timedelta(['5 days', _NaT]) - Timedelta('1 days') with tm.assertRaisesRegexp(OverflowError, msg): (to_timedelta([_NaT, '5 days', '1 hours']) - to_timedelta(['7 seconds', _NaT, '4 hours'])) # These should not overflow! exp = TimedeltaIndex([pd.NaT]) result =
to_timedelta([pd.NaT])
pandas.to_timedelta
# -*- coding: utf-8 -*- """ Created on Tue Aug 28 22:50:43 2018 @author: kennedy """ """ Credit: https://www.quantopian.com/posts/technical-analysis-indicators-without-talib-code Bug Fix by Kennedy: Works fine for library import. returns only column of the indicator result. Can be used as a predictor for for forecasting stock returns using predictive modeling in Machine Learning. I configured it to meet my demand for multiple predictive modelling. """ import pandas as pd import numpy as np class TechnicalIndicators: def moving_average(df, n): """Calculate the moving average for the given data. :param df: pandas.DataFrame :param n: window :return: pandas.DataFrame """ MA = pd.Series(df['Close'].rolling(n, min_periods=n).mean(), name='MA_{}'.format(n)) return MA def exponential_moving_average(df, n): """ :param df: pandas.DataFrame :param n: window of data to take moving exponent mean :return: pandas.DataFrame """ EMA = pd.Series(df['Close'].ewm(span=n, min_periods=n).mean(), name='EMA_' + str(n)) return EMA def momentum(df, n): """ :param df: pandas.DataFrame :param n: data window :return: pandas.DataFrame """ M = pd.Series(df['Close'].diff(n), name='Momentum_' + str(n)) return M def rate_of_change(df, n): """ :param df: pandas.DataFrame :param n: data window :return: pandas.DataFrame """ M = df['Close'].diff(n - 1) N = df['Close'].shift(n - 1) ROC = pd.Series(M / N, name='ROC_' + str(n)) return ROC def average_true_range(df, n): """ :param df: pandas.DataFrame :param n: data window :return: pandas.DataFrame """ i = 0 TR_l = [0] while i < df.index[-1]: TR = max(df.loc[i + 1, 'High'], df.loc[i, 'Close']) - min(df.loc[i + 1, 'Low'], df.loc[i, 'Close']) TR_l.append(TR) i = i + 1 TR_s =
pd.Series(TR_l)
pandas.Series
import pandas as p from pandas import DataFrame as df import matplotlib.pyplot as pl from sklearn.linear_model import LinearRegression data=p.read_csv('cost_revenue_clean.csv') x=
df(data,columns=['production_budget'])
pandas.DataFrame
# %% imports and settings from pandarallel import pandarallel import datar.all as r from datar import f import plotnine as p9 import os import numpy as np import pandas as pd import seaborn as sns sns.set() pd.set_option("max_colwidth", 250) # column最大宽度 pd.set_option("display.width", 250) # dataframe宽度
pd.set_option("display.max_columns", None)
pandas.set_option
# Module: Preprocess # Author: <NAME> <<EMAIL>> # License: MIT import pandas as pd import numpy as np import ipywidgets as wg from IPython.display import display from ipywidgets import Layout from sklearn.base import BaseEstimator, TransformerMixin, ClassifierMixin, clone from sklearn.impute._base import _BaseImputer from sklearn.impute import SimpleImputer from sklearn.preprocessing import StandardScaler from sklearn.preprocessing import MinMaxScaler from sklearn.preprocessing import RobustScaler from sklearn.preprocessing import MaxAbsScaler from sklearn.preprocessing import PowerTransformer from sklearn.preprocessing import QuantileTransformer from sklearn.preprocessing import OneHotEncoder from sklearn.preprocessing import OrdinalEncoder from sklearn.decomposition import PCA from sklearn.decomposition import KernelPCA from sklearn.cross_decomposition import PLSRegression from sklearn.manifold import TSNE from sklearn.decomposition import IncrementalPCA from sklearn.preprocessing import KBinsDiscretizer from pyod.models.knn import KNN from pyod.models.iforest import IForest from pyod.models.pca import PCA as PCA_od from sklearn import cluster from scipy import stats from sklearn.ensemble import RandomForestClassifier as rfc from sklearn.ensemble import RandomForestRegressor as rfr from lightgbm import LGBMClassifier as lgbmc from lightgbm import LGBMRegressor as lgbmr import sys import gc from sklearn.pipeline import Pipeline from sklearn import metrics from datetime import datetime import calendar from sklearn.preprocessing import LabelEncoder from collections import defaultdict from typing import Optional, Union from pycaret.internal.logging import get_logger from pycaret.internal.utils import infer_ml_usecase from sklearn.utils.validation import check_is_fitted, check_X_y, check_random_state from sklearn.utils.validation import _deprecate_positional_args from sklearn.utils import _safe_indexing from sklearn.exceptions import NotFittedError
pd.set_option("display.max_columns", 500)
pandas.set_option
# -*- coding: utf-8 -*- """ Récupérer des mails d'étudiants en pièce jointe (1:1) ===================================================== Récupère des fichiers en pièce jointe provenant d'étudiants comme un rendu de projet. Le programme suppose qu'il n'y en a qu'un par étudiant, que tous les mails ont été archivés dans un répertoire d'une boîte de message, ici :epkg:`gmail`. Il faut supprimer le contenu du répertoire pour mettre à jour l'ensemble des projets. Dans le cas contraire, le code est prévu pour mettre à jour le répertoire à partir des derniers mails recensés dans le fichiers *mails.txt*. La récupération se passe souvent en deux étapes. La prmeière récupère tous les mails et crée un premier archivage sans tenir compte des groupes. On créé alors un fichier :epkg:`Excel` qui ressemble à peu près à ceci : .. runpython:: from pandas import DataFrame df = DataFrame(dict(groupe=[1, 1, 2], mail=['a.a@m', 'b.b@m', 'c.c@m'], sujet=['sub1', 'sub1', 'sub2'])) print(df) On efface tout excepté ce fichier puis on récupère une seconde fois tous les projets afin de ne créer qu'un répertoire par groupe. .. _script-fetch-students-projets-py: """ ######################################### # import import sys import os import pandas import warnings with warnings.catch_warnings(): warnings.simplefilter('ignore', DeprecationWarning) import keyring ################################# # Paramètres de la récupération, # tous les mails doivent être dans le même répertoire # de la boîte de message. server = "imap.gmail.com" school = "ASSAS" date = "1-May-2018" pattern = "Python_{0}_Projet_2018" group_def = "groupes.xlsx" col_subject, col_group, col_mail, col_student = "sujet", "groupe", "mail", "Nom" if school == 'ENSAE': do_mail = True mailfolder = ["ensae/ENSAE_1A"] dest_folder = os.path.normpath(os.path.abspath(os.path.join( *([os.path.dirname(__file__)] + ([".."] * 5) + ["_data", "ecole", "ENSAE", "2017-2018", "1A_projet"])))) print("dest", dest_folder) elif school == 'ASSAS': do_mail = True mailfolder = ["ensae/assas"] dest_folder = os.path.normpath(os.path.abspath(os.path.join( *([os.path.dirname(__file__)] + ([".."] * 5) + ["_data", "ecole", "assas", "2017-2018", "projet"])))) print("dest", dest_folder) else: raise NotImplementedError() ########################### # End of customization. path_df = os.path.join(dest_folder, group_def) if os.path.exists(path_df): df_group = pandas.read_excel(path_df) if col_subject not in df_group.columns: raise Exception('{0} not in {1}'.format( col_subject, list(df_group.columns))) if col_mail not in df_group.columns: raise Exception('{0} not in {1}'.format( col_mail, list(df_group.columns))) if col_group not in df_group.columns: raise Exception('{0} not in {1}'.format( col_group, list(df_group.columns))) else: df_group = None basename = pattern.format(mailfolder[0].split("/")[-1]) filename_zip = os.path.join(dest_folder, basename + ".zip") convert_files = True filename_mails = os.path.join(dest_folder, "emails.txt") filename_excel = os.path.join(dest_folder, basename + ".xlsx") ######################################### # Creates the folder if it does not exist. if not os.path.exists(dest_folder): os.makedirs(dest_folder) ######################################### # Logging et import des fonctions dont on a besoin. from pyquickhelper.loghelper import fLOG # fetch_student_projects_from_gmail fLOG(OutputPrint=True) from ensae_teaching_cs.automation_students import ProjectsRepository, grab_addresses from pyquickhelper.filehelper import encrypt_stream from pymmails import MailBoxImap, EmailMessageRenderer, EmailMessageListRenderer from pymmails.render.email_message_style import template_email_html_short ########### # Identifiants. On utilise :epkg:`keyring` pour récupérer des mots de passe. user = keyring.get_password("gmail", os.environ["COMPUTERNAME"] + "user") pwd = keyring.get_password("gmail", os.environ["COMPUTERNAME"] + "pwd") password = keyring.get_password("enc", os.environ["COMPUTERNAME"] + "pwd") if user is None or pwd is None or password is None: print("ERROR: password or user or crypting password is empty, you should execute:") print( 'keyring.set_password("gmail", os.environ["COMPUTERNAME"] + "user", "..")') print( 'keyring.set_password("gmail", os.environ["COMPUTERNAME"] + "pwd", "..")') print( 'keyring.set_password("enc", os.environ["COMPUTERNAME"] + "pwd", "..")') print("Exit") sys.exit(0) password = bytes(password, "ascii") ########### # Les adresses à éviter... skip_address = { '<EMAIL>', '<EMAIL>', } ############### # Gathers mails and creates a dataframe if it does not exist. fLOG("[fetch_student_projects_from_gmail] start") if df_group is not None: if os.path.exists(filename_mails): with open(filename_mails, "r", encoding="utf8") as f: lines = f.readlines() emails = [l.strip("\r\t\n ") for l in lines] emails = [_ for _ in emails if _ not in skip_address] else: box = MailBoxImap(user, pwd, server, ssl=True, fLOG=fLOG) box.login() emails = grab_addresses(box, mailfolder, date, fLOG=fLOG) box.logout() emails = list(sorted(set([_.strip("<>").lower() for _ in emails if _ not in skip_address]))) with open(filename_mails, "w", encoding="utf8") as f: f.write("\n".join(emails)) else: emails = [_ for _ in df_group[col_mail] if _ not in skip_address] ##################### # Creates a dataframe. if df_group is None: import pandas rows = [{col_mail: mail, col_sujet: "?", col_group: i + 1} for i, mail in enumerate(emails)] df =
pandas.DataFrame(rows)
pandas.DataFrame
# Dependencies import warnings warnings.filterwarnings("ignore") warnings.simplefilter('ignore', UserWarning) import numpy as np import pandas as pd from sklearn.model_selection import StratifiedKFold import sys import argparse from sklearn.model_selection import train_test_split from matplotlib import pyplot as plt import itertools from scipy import stats from sklearn.metrics import auc, accuracy_score, roc_curve, precision_score, recall_score, f1_score, roc_auc_score from lightgbm import LGBMClassifier import lightgbm as lgb import matplotlib.gridspec as gridspec import seaborn as sns import pylab as plot import pandas import time from statsmodels.stats.outliers_influence import variance_inflation_factor from joblib import Parallel, delayed # Function to calculate Variacne Inflation Factor for Pandas dataframe def calculate_vif_(X): variables = [X.columns[i] for i in range(X.shape[1])] dropped=True while dropped: dropped=False print(len(variables)) vif = Parallel(n_jobs=1,verbose=5)(delayed(variance_inflation_factor)(X[variables].values, ix) for ix in range(len(variables))) print(vif) maxloc = vif.index(max(vif)) if max(vif) > thresh: print(time.ctime() + ' dropping \'' + X[variables].columns[maxloc] + '\' at index: ' + str(maxloc)) variables.pop(maxloc) dropped=True print('Remaining variables:') print([variables]) return X[[i for i in variables]] def parse_args(): parser = argparse.ArgumentParser(description = "", epilog = "") parser.add_argument("-df", "--dataFolder", help="Path to where the training data (TCGA, DepMap, Embedding) is stored (REQUIRED).", dest="dataFolder") return parser.parse_args() if __name__ == '__main__': args = parse_args() available_samples = ["s1"] cancer_type_list = ["liver","breast","bladder", "colon", "ovarian", "kidney", "leukemia","pancreatic","lung"] orderFeatures = ["essentiality","mutation","expression", "e0", "e1", "e2", "e3", "e4", "e5", "e6", "e7", "e8", "e9", "e10", "e11", "e12", "e13", "e14", "e15", "e16", "e17", "e18", "e19", "e20", "e21", "e22", "e23", "e24", "e25", "e26", "e27", "e28", "e29", "e30", "e31", "label"] features = ["essentiality","mutation","expression", "e0", "e1", "e2", "e3", "e4", "e5", "e6", "e7", "e8", "e9", "e10", "e11", "e12", "e13", "e14", "e15", "e16", "e17", "e18", "e19", "e20", "e21", "e22", "e23", "e24", "e25", "e26", "e27", "e28", "e29", "e30", "e31"] for cancer_type in cancer_type_list: for inx, sampleNumber in enumerate(available_samples): # Load dataset data = pandas.read_csv(args.dataFolder + cancer_type.capitalize() + "/" + cancer_type + "_training_data_" + sampleNumber + ".dat", header=0, sep=",") data.drop("gene", axis=1, inplace=True) data = data[data['label'] != 2] dataframePositive = data[data['label'] == 1] dataframeNegative = data[data['label'] == 0] positiveSize = dataframePositive.shape[0] negativeSize = dataframeNegative.shape[0] # Set them the same size if(positiveSize > negativeSize): dataframePositive = dataframePositive.head(-(positiveSize-negativeSize)) elif(negativeSize > positiveSize): dataframeNegative = dataframeNegative.head(-(negativeSize-positiveSize)) data = dataframePositive.copy() data =
pd.concat([dataframePositive, dataframeNegative])
pandas.concat
""" A set of classes for aggregation of TERA data sources into common formats. """ from rdflib import Graph, Namespace, Literal, URIRef, BNode from rdflib.namespace import RDF, OWL, RDFS UNIT = Namespace('http://qudt.org/vocab/unit#') import pandas as pd import validators import glob import math from tqdm import tqdm import warnings import copy import tera.utils as ut nan_values = ['nan', float('nan'),'--','-X','NA','NC',-1,'','sp.', -1,'sp,','var.','variant','NR','sp','ssp','ssp.','ssp,'] class DataObject: def __init__(self, namespace = 'http://www.example.org/', verbose = True, name = 'Data Object'): """ Base class for aggregation of data. Parameters ---------- namespace : str Base URI for the data set. verbose : bool """ self.graph = Graph() self.namespace = Namespace(namespace) self.name = name self.verbose = verbose def __add__(self, other): c = copy.deepcopy(self) c.graph += other.graph return c def __str__(self): return self.name def __dict__(self): return { 'namespace':self.namespace, 'num_triples':len(self.graph) } def __del__(self): self.graph = Graph() def save(self, path): """Save graph to file. Parameters ---------- path : str ex: file.nt """ self.graph.serialize(path, format=path.split('.').pop(-1)) def replace(self, converted): """Replace old entities with new in data object. Usefull after converting between datasets. Parameters ---------- converted : list list of (old, new) tuples. """ if len(converted) < 1: warnings.warn('Empty mapping list.') return tmp = set() for old, new in converted: triples = self.graph.triples((old,None,None)) tmp |= set([(new,p,o) for _,p,o in triples]) triples = self.graph.triples((None, None, old)) tmp |= set([(s,p,new) for s,p,_ in triples]) self.graph.remove((old,None,None)) self.graph.remove((None,None,old)) for t in tmp: self.graph.add(t) def apply_func(self, func, dataframe, cols, sub_bar=False): pbar = None if self.verbose and not sub_bar: pbar = tqdm(total=len(dataframe.index),desc=self.name) for row in zip(*[dataframe[c] for c in cols]): func(row) if pbar: pbar.update(1) class Taxonomy(DataObject): def __init__(self, namespace = 'https://www.ncbi.nlm.nih.gov/taxonomy/', name = 'NCBI Taxonomy', verbose = True, directory = None): """ Aggregation of the NCBI Taxonomy. Parameters ---------- directory : str Path to data set. Downloaded from ftp://ftp.ncbi.nlm.nih.gov/pub/taxonomy/new_taxdump/new_taxdump.zip """ super(Taxonomy, self).__init__(namespace, verbose, name) if directory: self._load_ncbi_taxonomy(directory) self.verbose = verbose def _add_subproperties(self, uri, pref = False): self.graph.add((uri,OWL.subPropertyOf,RDFS.label)) if pref: self.graph.add((uri,OWL.subPropertyOf,URIRef('http://www.w3.org/2004/02/skos/core#prefLabel'))) def _load_ncbi_taxonomy(self, directory): self._load_hierarchy(directory+'nodes.dmp') self._load_divisions(directory+'division.dmp') self._load_names(directory+'names.dmp') self._add_domain_and_range_triples() self._add_disjoint_axioms() def _load_hierarchy(self, path): df = pd.read_csv(path, sep='|', usecols=[0,1,2,4], names=['child','parent','rank','division'], na_values = nan_values, dtype = str) df.dropna(inplace=True) df = df.apply(lambda x: x.str.strip()) def func(row): c,p,r,d = row c = self.namespace['taxon/'+str(c)] rc = r r = r.replace(' ','_') if r != 'no_rank': self.graph.add((c, self.namespace['rank'], self.namespace['rank/'+r])) self.graph.add((self.namespace['rank/'+r], RDFS.label, Literal(rc))) self.graph.add((self.namespace['rank/'+r], RDF.type, self.namespace['Rank'])) p = self.namespace['taxon/'+str(p)] d = str(d).replace(' ','_') d = self.namespace['division/'+str(d)] if r == 'species': #species are treated as instances self.graph.add((c,RDF.type, p)) self.graph.add((c, RDF.type, d)) else: self.graph.add((c,RDFS.subClassOf, p)) self.graph.add((c, RDFS.subClassOf, d)) self.apply_func(func, df, ['child','parent','rank','division']) def _load_names(self, path): df = pd.read_csv(path, sep='|', usecols=[0,1,2,3], names=['taxon','name','unique_name','name_type'],na_values = nan_values,dtype = str) df.dropna(inplace=True) df = df.apply(lambda x: x.str.strip()) def func(row): c,n,un,nt = row c = self.namespace['taxon/'+str(c)] n = Literal(n) un = Literal(un) if len(un) > 0: self.graph.add((c, self.namespace['uniqueName'], un)) self._add_subproperties(self.namespace['uniqueName'], pref=True) if len(n) > 0: ntl = Literal(nt) nt = self.namespace[nt.replace(' ','_')] self._add_subproperties(nt,pref=False) self.graph.add((c,nt,n)) self.graph.add((nt,RDFS.label,ntl)) self.graph.add((nt,RDFS.domain,self.namespace['Taxon'])) self.apply_func(func, df, ['taxon','name','unique_name','name_type']) def _load_divisions(self, path): df = pd.read_csv(path, sep='|', usecols=[0,1,2], names=['division','acronym','name'], na_values = nan_values, dtype = str) df.dropna(inplace=True) df = df.apply(lambda x: x.str.strip()) def func(row): d,a,n = row d = self.namespace['division/'+str(d)] self.graph.add((d,RDF.type,self.namespace['Division'])) self.graph.add((d,RDFS.label,Literal(n))) #self.graph.add((d,RDFS.label,Literal(a))) self.apply_func(func, df, ['division','acronym','name']) def _add_domain_and_range_triples(self): self.graph.add((self.namespace['rank'],RDFS.domain,self.namespace['Taxon'])) self.graph.add((self.namespace['rank'],RDFS.range,self.namespace['Rank'])) def _add_disjoint_axioms(self): for d in [self.namespace['division/1'], #Invertebrates self.namespace['division/2'], #Mammals self.namespace['division/4'], #Plants and Fungi self.namespace['division/5'], #Primates self.namespace['division/6'], #Rodents self.namespace['division/9'], #Viruses self.namespace['division/10']]: #Vertebrates self.graph.add((self.namespace['division/0'], #Bacteria OWL.disjoinWith,d)) for d in [self.namespace['division/2'], #Mammals self.namespace['division/4'], #Plants and Fungi self.namespace['division/5'], #Primates self.namespace['division/6'], #Rodents self.namespace['division/9'], #Viruses self.namespace['division/10']]: #Vertebrates self.graph.add((self.namespace['division/1'], #Invertebrates OWL.disjoinWith,d)) for d in [self.namespace['division/4'], #Plants and Fungi self.namespace['division/9'], #Viruses self.namespace['division/10']]: #Vertebrates self.graph.add((self.namespace['division/2'], #Mammals OWL.disjoinWith,d)) for d in [self.namespace['division/2'], #Mammals self.namespace['division/4'], #Plants and Fungi self.namespace['division/5'], #Primates self.namespace['division/6'], #Rodents self.namespace['division/10']]: #Vertebrates self.graph.add((self.namespace['division/3'], #Phages OWL.disjoinWith,d)) for d in [self.namespace['division/2'], #Mammals self.namespace['division/5'], #Primates self.namespace['division/6'], #Rodents self.namespace['division/10']]: #Vertebrates self.graph.add((self.namespace['division/4'], #Plants and Fungi OWL.disjoinWith,d)) for d in [self.namespace['division/1']]: #Invertebrates self.graph.add((self.namespace['division/5'], #Primates OWL.disjoinWith,d)) for d in [self.namespace['division/1']]: #Invertebrates self.graph.add((self.namespace['division/6'], #Rodents OWL.disjoinWith,d)) for d in [self.namespace['division/1'], #Invertebrates self.namespace['division/0'], #Bacteria self.namespace['division/2'], #Mammals self.namespace['division/4'], #Plants and Fungi self.namespace['division/5'], #Primates self.namespace['division/6'], #Rodents self.namespace['division/10']]: #Vertebrates self.graph.add((self.namespace['division/9'], #Viruses OWL.disjoinWith,d)) class Traits(DataObject): def __init__(self, namespace = 'https://eol.org/pages/', name = 'EOL Traits', verbose = True, directory = None): """ Encyclopedia of Life Traits. Parameters ---------- directory : str Path to data set. See https://opendata.eol.org/dataset/all-trait-data-large """ super(Traits, self).__init__(namespace, verbose, name) if directory: self._load_eol_traits(directory) def _load_eol_traits(self, directory): self._load_traits(directory+'trait_bank/traits.csv') self._load_desc(directory+'trait_bank/terms.csv') for f in glob.glob(directory+'eol_rels/*.csv'): self._load_eol_subclasses(f) def _load_traits(self, path): df = pd.read_csv(path, sep=',', usecols=['page_id','predicate','value_uri'], na_values = nan_values, dtype=str) df.dropna(inplace=True) df = df.apply(lambda x: x.str.strip()) def func(row): s,p,o = row s = self.namespace[s] try: val = validators.url(o) o = URIRef(o) except TypeError: o = Literal(o) val = True if validators.url(s) and validators.url(p) and val: self.graph.add((URIRef(s),URIRef(p),o)) self.apply_func(func, df, ['page_id','predicate','value_uri']) def _load_literal_traits(self,path): df = pd.read_csv(path, sep=',', usecols=['page_id','predicate','measurement','units_uri'], na_values = nan_values, dtype=str) df.dropna(inplace=True) df = df.apply(lambda x: x.str.strip()) def func(row): s,p,o,u = row s = self.namespace[s] try: o = Literal(o) u = URIRef(u) bnode = BNode() self.graph.add((bnode,RDF.value,o)) self.graph.add((bnode,UNIT.units,u)) self.graph.add((URIRef(s),URIRef(p),bnode)) except TypeError: pass self.apply_func(func, df, ['page_id','predicate','']) def _load_desc(self, path): df = pd.read_csv(path, sep=',', usecols=['uri','name'], na_values = nan_values, dtype=str) df.dropna(inplace=True) df = df.apply(lambda x: x.str.strip()) def func(row): uri,name = row if validators.url(uri) and name: self.graph.add((URIRef(uri),RDFS.label,Literal(name))) self.apply_func(func, df, ['uri','name']) def _load_eol_subclasses(self, path): try: try: df = pd.read_csv(path,sep=',',usecols=['child','parent'],na_values = nan_values, dtype=str) df.dropna(inplace=True) df = df.apply(lambda x: x.str.strip()) except ValueError: df =
pd.read_csv(path,sep=',',header=None,na_values = nan_values, dtype=str)
pandas.read_csv
#!/usr/bin/env python3 # coding: utf-8 # In[3]: import csv import pandas as pd from connected_component import connected_component_subgraphs as ccs from strongly_connected_component import strongly_connected_components as scc # In[4]: ''' df = pd.read_csv("/root/.encrypted/.pythonSai/moreno_highschool/out.moreno_highschool_highschool", sep=" ", header=None, skiprows=2, names=["ndidfr", "ndidto", "weight"]) df = df[["ndidfr", "ndidto"]].dropna() print(df.head()) ''' # ### Undirected Graph: # In[5]: import networkx as nx import matplotlib.pyplot as plt # In[6]: ''' G=nx.Graph() sdt = [] for index, row in df.iterrows(): if(row['ndidfr'] not in sdt): G.add_node(row['ndidfr']) if(row['ndidto'] not in sdt): G.add_node(row['ndidto']) for index, row in df.iterrows(): G.add_edges_from([(row['ndidfr'],row['ndidto'])]) plt.figure(num=None, figsize=(20, 20), dpi=80) plt.axis('off') fig = plt.figure(1) nx.draw(G, with_labels=True, font_size=12) # plt.savefig("/root/gitlabRepos/python/moreno_highschool/g.pdf", bbox_inches="tight") plt.show() # In[7]: ''' import numpy as np ''' sni = np.zeros(shape=(70,70), dtype=int) for index, row in df.iterrows(): sni[int(row['ndidfr'])-1][int(row['ndidto'])-1] = 1 np.set_printoptions(threshold=np.inf) tni = sni.transpose() print(tni) # In[8]: nnd = [] for i in range(0, len(tni)): tnl = list(tni[i]) for j in range(0, len(tnl)): if(tnl[j]==1): nnd.append([i+1, j+1]) # print(nnd) ndf = pd.DataFrame(data=nnd, columns=['ndideg', 'ndidfr']) print(ndf) # In[9]: G=nx.Graph() sdt = [] for index, row in ndf.iterrows(): if(row['ndideg'] not in sdt): G.add_node(row['ndideg']) if(row['ndidfr'] not in sdt): G.add_node(row['ndidfr']) for index, row in ndf.iterrows(): G.add_edges_from([(row['ndidfr'],row['ndideg'])]) plt.figure(num=None, figsize=(20, 20), dpi=80) plt.axis('off') fig = plt.figure(1) nx.draw(G, with_labels=True, font_size=12) # plt.savefig("C:\\Users\\user\\Documents\\g.pdf", bbox_inches="tight") plt.show() # ##### KCore of graph: # In[10]: for i in range(0, len(G)): graphs = ccs(nx.k_core(G,k=i)) if(graphs is None): break else: for g in graphs: print("This is the " + str(i) + " core of graph") print(g.edges()) SCG=nx.Graph() scs = [] for (i,j) in g.edges(): if(i not in scs): SCG.add_node(i) scs.append(i) if(j not in scs): SCG.add_node(j) scs.append(j) for (i,j) in g.edges(): SCG.add_edges_from([(i,j)]) plt.figure(num=None, figsize=(20, 20), dpi=80) plt.axis('off') fig = plt.figure(1) nx.draw(SCG, with_labels=True, font_size=12) plt.show() # ### Directed Graph: # In[11]: G=nx.DiGraph() sdt = [] for index, row in df.iterrows(): if(row['ndidfr'] not in sdt): G.add_node(row['ndidfr']) if(row['ndidto'] not in sdt): G.add_node(row['ndidto']) for index, row in df.iterrows(): G.add_edges_from([(row['ndidfr'],row['ndidto'])]) plt.figure(num=None, figsize=(20, 20), dpi=80) plt.axis('off') fig = plt.figure(1) nx.draw(G, with_labels=True, font_size=12) #plt.savefig("C:\\Users\\user\\Documents\\g.pdf", bbox_inches="tight") plt.show() # In[12]: import numpy as np sni = np.zeros(shape=(70,70), dtype=int) for index, row in df.iterrows(): sni[int(row['ndidfr'])-1][int(row['ndidto'])-1] = 1 np.set_printoptions(threshold=np.inf) tni = sni.transpose() print(tni) # In[13]: nnd = [] for i in range(0, len(tni)): tnl = list(tni[i]) for j in range(0, len(tnl)): if(tnl[j]==1): nnd.append([i+1, j+1]) # print(nnd) ndf = pd.DataFrame(data=nnd, columns=['ndideg', 'ndidfr']) print(ndf) # In[14]: G=nx.DiGraph() sdt = [] for index, row in ndf.iterrows(): if(row['ndideg'] not in sdt): G.add_node(row['ndideg']) if(row['ndidfr'] not in sdt): G.add_node(row['ndidfr']) for index, row in ndf.iterrows(): G.add_edges_from([(row['ndidfr'],row['ndideg'])]) plt.figure(num=None, figsize=(20, 20), dpi=80) plt.axis('off') fig = plt.figure(1) nx.draw(G, with_labels=True, font_size=12) # plt.savefig("C:\\Users\\user\\Documents\\g.pdf", bbox_inches="tight") plt.show() ''' # #### KCore of directed graph: # In[15]: # Copyright (C) 2004-2019 by # <NAME> <<EMAIL>> # <NAME> <<EMAIL>> # <NAME> <<EMAIL>> # <NAME> <<EMAIL>> # All rights reserved. # BSD license. # # Authors: <NAME> (<EMAIL>) # <NAME> (<EMAIL>) # <NAME> (<EMAIL>) # <NAME> (<EMAIL>) """ Find the k-cores of a graph. The k-core is found by recursively pruning nodes with degrees less than k. See the following references for details: An O(m) Algorithm for Cores Decomposition of Networks <NAME> and <NAME>, 2003. https://arxiv.org/abs/cs.DS/0310049 Generalized Cores <NAME> and <NAME>, 2002. https://arxiv.org/pdf/cs/0202039 For directed graphs a more general notion is that of D-cores which looks at (k, l) restrictions on (in, out) degree. The (k, k) D-core is the k-core. D-cores: Measuring Collaboration of Directed Graphs Based on Degeneracy <NAME>, <NAME>, <NAME>, ICDM 2011. http://www.graphdegeneracy.org/dcores_ICDM_2011.pdf Multi-scale structure and topological anomaly detection via a new network \ statistic: The onion decomposition <NAME>, <NAME>, and <NAME> Scientific Reports 6, 31708 (2016) http://doi.org/10.1038/srep31708 """ #import networkx as nx from networkx.exception import NetworkXError from networkx.utils import not_implemented_for from networkx.algorithms.shortest_paths \ import single_source_shortest_path_length as sp_length __all__ = ['core_number', 'find_cores', 'k_core', 'k_shell', 'k_crust', 'k_corona', 'k_truss', 'onion_layers'] def scc_connected_components(G): preorder={} isconnected = False i=0 # Preorder counter for source in G: if source not in preorder: i=i+1 preorder[source]=i source_nbrs=G[source] isconnected = False else: source_nbrs=G[source] isconnected = True for w in source_nbrs: if w not in preorder: preorder[w]=i return i def strongly_connected_components(G): preorder={} lowlink={} scc_found={} scc_queue = [] i=0 # Preorder counter for source in G: if source not in scc_found: queue=[source] while queue: v=queue[-1] if v not in preorder: i=i+1 preorder[v]=i done=1 v_nbrs=G[v] for w in v_nbrs: if w not in preorder: queue.append(w) done=0 break if done==1: lowlink[v]=preorder[v] for w in v_nbrs: if w not in scc_found: if preorder[w]>preorder[v]: lowlink[v]=min([lowlink[v],lowlink[w]]) else: lowlink[v]=min([lowlink[v],preorder[w]]) queue.pop() if lowlink[v]==preorder[v]: scc_found[v]=True scc=[v] while scc_queue and preorder[scc_queue[-1]]>preorder[v]: k=scc_queue.pop() scc_found[k]=True scc.append(k) yield scc else: scc_queue.append(v) def strongly_connected_components_recursive(G): def visit(v,cnt): root[v]=cnt visited[v]=cnt cnt+=1 stack.append(v) for w in G[v]: if w not in visited: for c in visit(w,cnt): yield c if w not in component: root[v]=min(root[v],root[w]) if root[v]==visited[v]: component[v]=root[v] tmpc=[v] # hold nodes in this component while stack[-1]!=v: w=stack.pop() component[w]=root[v] tmpc.append(w) stack.remove(v) yield tmpc visited={} component={} root={} cnt=0 stack=[] for source in G: if source not in visited: for c in visit(source,cnt): yield c def strongly_connected_component_subgraphs(G, copy=True): for comp in strongly_connected_components(G): if copy: yield G.subgraph(comp).copy() else: yield G.subgraph(comp) def number_strongly_connected_components(G): return scc_connected_components(G) def is_strongly_connected(G): if len(G)==0: raise nx.NetworkXPointlessConcept( """Connectivity is undefined for the null graph.""") return len(list(strongly_connected_components(G))[0])==len(G) def core_number(G): """Returns the core number for each vertex. A k-core is a maximal subgraph that contains nodes of degree k or more. The core number of a node is the largest value k of a k-core containing that node. Parameters ---------- G : NetworkX graph A graph or directed graph Returns ------- core_number : dictionary A dictionary keyed by node to the core number. Raises ------ NetworkXError The k-core is not implemented for graphs with self loops or parallel edges. Notes ----- Not implemented for graphs with parallel edges or self loops. For directed graphs the node degree is defined to be the in-degree + out-degree. References ---------- .. [1] An O(m) Algorithm for Cores Decomposition of Networks <NAME> and <NAME>, 2003. https://arxiv.org/abs/cs.DS/0310049 """ if nx.number_of_selfloops(G) > 0: msg = ('Input graph has self loops which is not permitted; ' 'Consider using G.remove_edges_from(nx.selfloop_edges(G)).') raise NetworkXError(msg) degrees = dict(G.in_degree()) # Sort nodes by degree. nodes = sorted(degrees, key=degrees.get) bin_boundaries = [0] curr_degree = 0 for i, v in enumerate(nodes): if degrees[v] > curr_degree: bin_boundaries.extend([i] * (degrees[v] - curr_degree)) curr_degree = degrees[v] node_pos = {v: pos for pos, v in enumerate(nodes)} # The initial guess for the core number of a node is its degree. core = degrees nbrs = {v: list(G.neighbors(v)) for v in G} # print(nbrs) for v in nodes: for u in nbrs[v]: if core[u] > core[v]: # nbrs[u].remove(v) pos = node_pos[u] bin_start = bin_boundaries[core[u]] node_pos[u] = bin_start node_pos[nodes[bin_start]] = pos nodes[bin_start], nodes[pos] = nodes[pos], nodes[bin_start] bin_boundaries[core[u]] += 1 core[u] -= 1 # print(core) return core find_cores = core_number def _core_subgraph(G, k_filter, k=None, core=None): """Returns the subgraph induced by nodes passing filter `k_filter`. Parameters ---------- G : NetworkX graph The graph or directed graph to process k_filter : filter function This function filters the nodes chosen. It takes three inputs: A node of G, the filter's cutoff, and the core dict of the graph. The function should return a Boolean value. k : int, optional The order of the core. If not specified use the max core number. This value is used as the cutoff for the filter. core : dict, optional Precomputed core numbers keyed by node for the graph `G`. If not specified, the core numbers will be computed from `G`. """ if core is None: core = core_number(G) if k is None: k = max(core.values()) nodes = (v for v in core if k_filter(v, k, core)) return G.subgraph(nodes).copy() def k_core(G, k=None, core_number=None): """Returns the k-core of G. A k-core is a maximal subgraph that contains nodes of degree k or more. Parameters ---------- G : NetworkX graph A graph or directed graph k : int, optional The order of the core. If not specified return the main core. core_number : dictionary, optional Precomputed core numbers for the graph G. Returns ------- G : NetworkX graph The k-core subgraph Raises ------ NetworkXError The k-core is not defined for graphs with self loops or parallel edges. Notes ----- The main core is the core with the largest degree. Not implemented for graphs with parallel edges or self loops. For directed graphs the node degree is defined to be the in-degree + out-degree. Graph, node, and edge attributes are copied to the subgraph. See Also -------- core_number References ---------- .. [1] An O(m) Algorithm for Cores Decomposition of Networks <NAME> and <NAME>, 2003. https://arxiv.org/abs/cs.DS/0310049 """ def k_filter(v, k, c): return c[v] >= k return _core_subgraph(G, k_filter, k, core_number) def k_shell(G, k=None, core_number=None): def k_filter(v, k, c): return c[v] == k return _core_subgraph(G, k_filter, k, core_number) def connected_component_subgraphs(G, copy=True): """Generate connected components as subgraphs. Parameters ---------- G : NetworkX graph An undirected graph. Returns ------- comp : generator A generator of graphs, one for each connected component of G. copy: bool (default=True) If True make a copy of the graph attributes Examples -------- >>> G = nx.path_graph(4) >>> G.add_edge(5,6) >>> graphs = list(nx.connected_component_subgraphs(G)) See Also -------- connected_components Notes ----- For undirected graphs only. Graph, node, and edge attributes are copied to the subgraphs by default. """ for c in scc(G): if copy: yield G.subgraph(c).copy() else: yield G.subgraph(c) def no_connected_components(G): """Returns the number of connected components. Parameters ---------- G : NetworkX graph An undirected graph. Returns ------- n : integer Number of connected components See Also -------- connected_components number_weakly_connected_components number_strongly_connected_components Notes ----- For undirected graphs only. """ return sum(1 for cc in scc(G)) # In[16]: ''' for i in range(0, len(G)): graphs = connected_component_subgraphs(k_core(G,k=i)) if(graphs is None): break else: for g in graphs: if(g.edges): print("This is the " + str(i) + " core of graph") # print(g.edges()) SCG=nx.DiGraph() scs = [] for (r,s) in g.edges(): if(r not in scs): SCG.add_node(r) scs.append(r) if(s not in scs): SCG.add_node(s) scs.append(s) for (u,v) in g.edges(): SCG.add_edges_from([(u,v)]) print("The total no. of vertices of graph is: " + str(len(G.nodes())) + ". \nThe total no. of vertices in core graph is:" + str(len(g.nodes()))) plt.figure(num=None, figsize=(20, 20), dpi=80) plt.axis('off') fig = plt.figure(1) nx.draw(SCG, with_labels=True, font_size=12) plt.show() # ### Sample Dataset: # In[17]: G=nx.Graph() for i in range(1, 22): G.add_node(i) G.add_edges_from([(2,3)]) G.add_edges_from([(3,4)]) G.add_edges_from([(4,5)]) G.add_edges_from([(5,6)]) G.add_edges_from([(6,3)]) G.add_edges_from([(7,8)]) G.add_edges_from([(8,9)]) G.add_edges_from([(8,10)]) G.add_edges_from([(8,11)]) G.add_edges_from([(9,10)]) G.add_edges_from([(10,11)]) G.add_edges_from([(10,12)]) G.add_edges_from([(10,13)]) G.add_edges_from([(10,14)]) G.add_edges_from([(12,13)]) G.add_edges_from([(13,14)]) G.add_edges_from([(12,14)]) G.add_edges_from([(11,15)]) G.add_edges_from([(11,16)]) G.add_edges_from([(11,17)]) G.add_edges_from([(15,16)]) G.add_edges_from([(16,17)]) G.add_edges_from([(15,17)]) G.add_edges_from([(14,18)]) G.add_edges_from([(17,18)]) G.add_edges_from([(14,19)]) G.add_edges_from([(18,19)]) G.add_edges_from([(19,20)]) G.add_edges_from([(19,21)]) plt.figure(num=None, figsize=(20, 20), dpi=80) plt.axis('off') fig = plt.figure(1) nx.draw(G, with_labels=True, font_size=12) # plt.savefig("C:\\Users\\user\\Documents\\g.pdf", bbox_inches="tight") plt.show() # In[18]: for i in range(0, len(G.nodes)-1): graphs = list(ccs(nx.k_core(G,k=i))) if(graphs is None): break else: for g in graphs: print("This is the " + str(i) + " core of graph") print(g.edges()) SCG=nx.Graph() scs = [] for (r,s) in g.edges(): if(r not in scs): SCG.add_node(r) scs.append(r) if(s not in scs): SCG.add_node(s) scs.append(s) for (u,v) in g.edges(): SCG.add_edges_from([(u,v)]) plt.figure(num=None, figsize=(20, 20), dpi=80) plt.axis('off') fig = plt.figure(1) nx.draw(SCG, with_labels=True, font_size=12) plt.show() # In[19]: G=nx.DiGraph() for i in range(1, 22): G.add_node(i) G.add_edges_from([(2,3)]) G.add_edges_from([(3,4)]) G.add_edges_from([(4,5)]) G.add_edges_from([(5,6)]) G.add_edges_from([(6,3)]) G.add_edges_from([(7,8)]) G.add_edges_from([(8,9)]) G.add_edges_from([(8,10)]) G.add_edges_from([(8,11)]) G.add_edges_from([(9,10)]) G.add_edges_from([(10,11)]) G.add_edges_from([(10,12)]) G.add_edges_from([(10,13)]) G.add_edges_from([(10,14)]) G.add_edges_from([(12,13)]) G.add_edges_from([(13,14)]) G.add_edges_from([(12,14)]) G.add_edges_from([(11,15)]) G.add_edges_from([(11,16)]) G.add_edges_from([(11,17)]) G.add_edges_from([(15,16)]) G.add_edges_from([(16,17)]) G.add_edges_from([(15,17)]) G.add_edges_from([(14,18)]) G.add_edges_from([(17,18)]) G.add_edges_from([(14,19)]) G.add_edges_from([(18,19)]) G.add_edges_from([(19,20)]) G.add_edges_from([(19,21)]) plt.figure(num=None, figsize=(20, 20), dpi=80) plt.axis('off') fig = plt.figure(1) nx.draw(G, with_labels=True, font_size=12) # plt.savefig("C:\\Users\\user\\Documents\\g.pdf", bbox_inches="tight") plt.show() ''' # In[ ]: ''' for i in range(0, len(G)): graphs = connected_component_subgraphs(k_core(G,k=i)) if(graphs is None): break else: for g in graphs: if(g.edges): print("This is the " + str(i) + " core of graph") # print(g.edges()) SCG=nx.DiGraph() scs = [] for (r,s) in g.edges(): if(r not in scs): SCG.add_node(r) scs.append(r) if(s not in scs): SCG.add_node(s) scs.append(s) for (u,v) in g.edges(): SCG.add_edges_from([(u,v)]) print("The total no. of vertices of graph is: " + str(len(G.nodes())) + ". \nThe total no. of vertices in core graph is:" + str(len(g.nodes()))) plt.figure(num=None, figsize=(20, 20), dpi=80) plt.axis('off') fig = plt.figure(1) nx.draw(SCG, with_labels=True, font_size=12) plt.show() ''' # ### Real Life Dataset: # In[ ]: #df = pd.read_csv("/root/.encrypted/.pythonSai/ira_tweets_csv_hashed.csv", sep=" ", header=None, skiprows=1, names=["tweetid", "userid"]) #df = df[["tweetid", "userid"]].dropna() #print(df.head()) ''' import csv from itertools import dropwhile, takewhile def getstuff(filename, criterion): with open(filename, "r") as csvfile: datareader = csv.reader(csvfile) yield next(datareader) # yield the header row # first row, plus any subsequent rows that match, then stop # reading altogether # Python 2: use `for row in takewhile(...): yield row` instead # instead of `yield from takewhile(...)`. print(row[18]) print(criterion) yield from takewhile( lambda r: r[18] == criterion, dropwhile(lambda r: r[18] != criterion, datareader)) return def getdata(filename, criteria): for criterion in criteria: for row in getstuff(filename, criterion): print(row[1]) yield row import pdb pdb.set_trace() count = 0 for row in getdata("/root/.encrypted/.pythonSai/ira_tweets_csv_hashed.csv", "TRUE"): count+=1 #print() print(count) ''' def kcoreDirectedGraph(G, k): rrf = False U = G.copy() gil = list(U.in_degree()) if(k>=0 and type(k)==int): for (i,j) in gil: if(j<k): U.remove_node(i) rrf = True if(rrf == True): return kcoreDirectedGraph(U, k) else: S = G.copy() for i in list(S.nodes()): if(not [gni for gni in gil if gni[0]==i]): S.remove_node(i) if(S.nodes() is not None): return S else: print("Err") return None def connected_component_subgraphs(G, copy=True): for c in scc(G): if copy: yield G.subgraph(c).copy() else: yield G.subgraph(c) ''' import pdb #pdb.set_trace() ''' import time import pdb #oba = [] rba = [] aih = False df = pd.read_csv("/root/.encrypted/.pythonSai/ira_tweets_csv_hashed.csv", sep=",", header=None, usecols=[1,18,19], chunksize=2000, skiprows=1, names=["userid","is_retweet","retweet_userid"]) #df.to_csv('my_parsed.csv', mode='a', header=False) df_lst = pd.DataFrame(columns=["tweetid","is_retweet", "retweet_userid"]) pd.set_option('display.max_columns', 100) ''' #Add Retweet Bots to csv file: for df_ in df: #pdb.set_trace() t0 = time.time() #print("hello") #t1 = time.time() #print(t1-t0) #pdb.set_trace() #print(df_) #break #tmp_df = (df_.rename(columns={col: col.lower() for col in df_.columns}).pipe(lambda x: x[x.is_retweet == "TRUE"] )) #for index, row in df.iterrows(): #if(row["is_retweet"]==True): #df_lst = df_lst.append(row, ignore_index=True) #print(df_lst) #print(df_lst) df_lst = df_.loc[df_["is_retweet"].map(lambda x: x==True)] #for index, row in df_lst.iterrows(): # if(row["retweet_userid"] not in rba): # rba.append(row["retweet_userid"]) # oba.append(row["retweet_userid"]) #for bui in oba: #print(type(bui)) # for row in df_.itertuples(): # if(row.userid==bui and bui in oba): # oba.remove(bui) #df_lst.append(row) #df_lst = df[df.columns[df["is_retweet"].isin([True])]] #print(df_lst.loc[df_lst["is_retweet"].isin([True])]) #df_lst.drop(df_lst.columns[[0, 2]], axis=1) #if(aih is False): #df_lst.to_csv('my_parsed3.csv', mode='a', columns=["tweetid","retweet_userid"], header=True) #aih = True #else: df_lst[["userid","retweet_userid"]].to_csv('my_parsed3.csv', mode='a', header=False, index=False) t1 = time.time() #print(t1-t0) ''' ''' def converter(x): if isinstance(x, pd.Series): return str(x.values) else: return x ''' ''' #Add originator bots to csv file: dfa = pd.read_csv("/root/.encrypted/.pythonSai/my_parsed.csv", sep=",", header=None, usecols=[0,1,2,3,4], chunksize=2000, skiprows=1, names=["tweetid","userid","is_retweet","retweet_userid","retweet_tweetid"]) for dfa in df: #t0 = time.time() for df_ in df: #t3 = time.time() df_lst = dfa.loc[dfa["retweet_userid"].map(lambda x: str(x)==df_["userid"].apply(converter).unique().tostring())] df_lst.to_csv('my_parsed1.csv', mode='a', header=False) #t2 = time.time() #print(t2-t3) t1 = time.time() #print(t1-t0) #df_lst.to_csv('my_parsed1.csv', mode='a', header=False) #for df_ in df: # print(type(df_["userid"].apply(converter).unique().tostring())) ''' ''' for bui in oba: for df_ in df: dfa.append(df_.loc[df_["userid"].map(lambda x: x==bui, oba.remove(bui))]) break ''' ''' dfa = pd.read_csv("/root/.encrypted/.pythonSai/my_parsed.csv", sep=",", header=None, usecols=[0,1,18,19,20], chunksize=2000, skiprows=1, names=["tweetid","userid","is_retweet","retweet_userid","retweet_tweetid"]) for dfn in dfa: for df_ in df: dfo = dfn.loc[dfn["retweet_userid"].map(lambda x: )] dfo.to_csv('my_parsed.csv', mode='a', header=False) ''' #Constructing the graph: dfn =
pd.read_csv("/root/.encrypted/.pythonSai/my_parsed3.csv", sep=",", header=None, chunksize=2000, names=["userid","retweet_userid"])
pandas.read_csv
# Copyright 1999-2021 Alibaba Group Holding Ltd. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import os import tempfile import numpy as np import pandas as pd import pytest try: import pyarrow as pa except ImportError: # pragma: no cover pa = None try: import fastparquet as fp except ImportError: # pragma: no cover fp = None from .... import dataframe as md from .... import tensor as mt from ...datasource.read_csv import DataFrameReadCSV from ...datasource.read_sql import DataFrameReadSQL from ...datasource.read_parquet import DataFrameReadParquet @pytest.mark.parametrize('chunk_size', [2, (2, 3)]) def test_set_index(setup, chunk_size): df1 = pd.DataFrame([[1, 3, 3], [4, 2, 6], [7, 8, 9]], index=['a1', 'a2', 'a3'], columns=['x', 'y', 'z']) df2 = md.DataFrame(df1, chunk_size=chunk_size) expected = df1.set_index('y', drop=True) df3 = df2.set_index('y', drop=True) pd.testing.assert_frame_equal( expected, df3.execute().fetch()) expected = df1.set_index('y', drop=False) df4 = df2.set_index('y', drop=False) pd.testing.assert_frame_equal( expected, df4.execute().fetch()) expected = df1.set_index('y') df2.set_index('y', inplace=True) pd.testing.assert_frame_equal( expected, df2.execute().fetch()) def test_iloc_getitem(setup): df1 = pd.DataFrame([[1, 3, 3], [4, 2, 6], [7, 8, 9]], index=['a1', 'a2', 'a3'], columns=['x', 'y', 'z']) df2 = md.DataFrame(df1, chunk_size=2) # plain index expected = df1.iloc[1] df3 = df2.iloc[1] result = df3.execute(extra_config={'check_series_name': False}).fetch() pd.testing.assert_series_equal( expected, result) # plain index on axis 1 expected = df1.iloc[:2, 1] df4 = df2.iloc[:2, 1] pd.testing.assert_series_equal( expected, df4.execute().fetch()) # slice index expected = df1.iloc[:, 2:4] df5 = df2.iloc[:, 2:4] pd.testing.assert_frame_equal( expected, df5.execute().fetch()) # plain fancy index expected = df1.iloc[[0], [0, 1, 2]] df6 = df2.iloc[[0], [0, 1, 2]] pd.testing.assert_frame_equal( expected, df6.execute().fetch()) # plain fancy index with shuffled order expected = df1.iloc[[0], [1, 2, 0]] df7 = df2.iloc[[0], [1, 2, 0]] pd.testing.assert_frame_equal( expected, df7.execute().fetch()) # fancy index expected = df1.iloc[[1, 2], [0, 1, 2]] df8 = df2.iloc[[1, 2], [0, 1, 2]] pd.testing.assert_frame_equal( expected, df8.execute().fetch()) # fancy index with shuffled order expected = df1.iloc[[2, 1], [1, 2, 0]] df9 = df2.iloc[[2, 1], [1, 2, 0]] pd.testing.assert_frame_equal( expected, df9.execute().fetch()) # one fancy index expected = df1.iloc[[2, 1]] df10 = df2.iloc[[2, 1]] pd.testing.assert_frame_equal( expected, df10.execute().fetch()) # plain index expected = df1.iloc[1, 2] df11 = df2.iloc[1, 2] assert expected == df11.execute().fetch() # bool index array expected = df1.iloc[[True, False, True], [2, 1]] df12 = df2.iloc[[True, False, True], [2, 1]] pd.testing.assert_frame_equal( expected, df12.execute().fetch()) # bool index array on axis 1 expected = df1.iloc[[2, 1], [True, False, True]] df14 = df2.iloc[[2, 1], [True, False, True]] pd.testing.assert_frame_equal( expected, df14.execute().fetch()) # bool index expected = df1.iloc[[True, False, True], [2, 1]] df13 = df2.iloc[md.Series([True, False, True], chunk_size=1), [2, 1]] pd.testing.assert_frame_equal( expected, df13.execute().fetch()) # test Series data = pd.Series(np.arange(10)) series = md.Series(data, chunk_size=3).iloc[:3] pd.testing.assert_series_equal( series.execute().fetch(), data.iloc[:3]) series = md.Series(data, chunk_size=3).iloc[4] assert series.execute().fetch() == data.iloc[4] series = md.Series(data, chunk_size=3).iloc[[2, 3, 4, 9]] pd.testing.assert_series_equal( series.execute().fetch(), data.iloc[[2, 3, 4, 9]]) series = md.Series(data, chunk_size=3).iloc[[4, 3, 9, 2]] pd.testing.assert_series_equal( series.execute().fetch(), data.iloc[[4, 3, 9, 2]]) series = md.Series(data).iloc[5:] pd.testing.assert_series_equal( series.execute().fetch(), data.iloc[5:]) # bool index array selection = np.random.RandomState(0).randint(2, size=10, dtype=bool) series = md.Series(data).iloc[selection] pd.testing.assert_series_equal( series.execute().fetch(), data.iloc[selection]) # bool index series = md.Series(data).iloc[md.Series(selection, chunk_size=4)] pd.testing.assert_series_equal( series.execute().fetch(), data.iloc[selection]) # test index data = pd.Index(np.arange(10)) index = md.Index(data, chunk_size=3)[:3] pd.testing.assert_index_equal( index.execute().fetch(), data[:3]) index = md.Index(data, chunk_size=3)[4] assert index.execute().fetch() == data[4] index = md.Index(data, chunk_size=3)[[2, 3, 4, 9]] pd.testing.assert_index_equal( index.execute().fetch(), data[[2, 3, 4, 9]]) index = md.Index(data, chunk_size=3)[[4, 3, 9, 2]] pd.testing.assert_index_equal( index.execute().fetch(), data[[4, 3, 9, 2]]) index = md.Index(data)[5:] pd.testing.assert_index_equal( index.execute().fetch(), data[5:]) # bool index array selection = np.random.RandomState(0).randint(2, size=10, dtype=bool) index = md.Index(data)[selection] pd.testing.assert_index_equal( index.execute().fetch(), data[selection]) index = md.Index(data)[mt.tensor(selection, chunk_size=4)] pd.testing.assert_index_equal( index.execute().fetch(), data[selection]) def test_iloc_setitem(setup): df1 = pd.DataFrame([[1, 3, 3], [4, 2, 6], [7, 8, 9]], index=['a1', 'a2', 'a3'], columns=['x', 'y', 'z']) df2 = md.DataFrame(df1, chunk_size=2) # plain index expected = df1 expected.iloc[1] = 100 df2.iloc[1] = 100 pd.testing.assert_frame_equal( expected, df2.execute().fetch()) # slice index expected.iloc[:, 2:4] = 1111 df2.iloc[:, 2:4] = 1111 pd.testing.assert_frame_equal( expected, df2.execute().fetch()) # plain fancy index expected.iloc[[0], [0, 1, 2]] = 2222 df2.iloc[[0], [0, 1, 2]] = 2222 pd.testing.assert_frame_equal( expected, df2.execute().fetch()) # fancy index expected.iloc[[1, 2], [0, 1, 2]] = 3333 df2.iloc[[1, 2], [0, 1, 2]] = 3333 pd.testing.assert_frame_equal( expected, df2.execute().fetch()) # plain index expected.iloc[1, 2] = 4444 df2.iloc[1, 2] = 4444 pd.testing.assert_frame_equal( expected, df2.execute().fetch()) # test Series data = pd.Series(np.arange(10)) series = md.Series(data, chunk_size=3) series.iloc[:3] = 1 data.iloc[:3] = 1 pd.testing.assert_series_equal( series.execute().fetch(), data) series.iloc[4] = 2 data.iloc[4] = 2 pd.testing.assert_series_equal( series.execute().fetch(), data) series.iloc[[2, 3, 4, 9]] = 3 data.iloc[[2, 3, 4, 9]] = 3 pd.testing.assert_series_equal( series.execute().fetch(), data) series.iloc[5:] = 4 data.iloc[5:] = 4 pd.testing.assert_series_equal( series.execute().fetch(), data) # test Index data = pd.Index(np.arange(10)) index = md.Index(data, chunk_size=3) with pytest.raises(TypeError): index[5:] = 4 def test_loc_getitem(setup): rs = np.random.RandomState(0) # index and columns are labels raw1 = pd.DataFrame(rs.randint(10, size=(5, 4)), index=['a1', 'a2', 'a3', 'a4', 'a5'], columns=['a', 'b', 'c', 'd']) # columns are labels raw2 = raw1.copy() raw2.reset_index(inplace=True, drop=True) # columns are non unique and monotonic raw3 = raw1.copy() raw3.columns = ['a', 'b', 'b', 'd'] # columns are non unique and non monotonic raw4 = raw1.copy() raw4.columns = ['b', 'a', 'b', 'd'] # index that is timestamp raw5 = raw1.copy() raw5.index = pd.date_range('2020-1-1', periods=5) raw6 = raw1[:0] df1 = md.DataFrame(raw1, chunk_size=2) df2 = md.DataFrame(raw2, chunk_size=2) df3 = md.DataFrame(raw3, chunk_size=2) df4 = md.DataFrame(raw4, chunk_size=2) df5 = md.DataFrame(raw5, chunk_size=2) df6 = md.DataFrame(raw6) df = df2.loc[3, 'b'] result = df.execute().fetch() expected = raw2.loc[3, 'b'] assert result == expected df = df1.loc['a3', 'b'] result = df.execute(extra_config={'check_shape': False}).fetch() expected = raw1.loc['a3', 'b'] assert result == expected # test empty list df = df1.loc[[]] result = df.execute().fetch() expected = raw1.loc[[]] pd.testing.assert_frame_equal(result, expected) df = df2.loc[[]] result = df.execute().fetch() expected = raw2.loc[[]] pd.testing.assert_frame_equal(result, expected) df = df2.loc[1:4, 'b':'d'] result = df.execute().fetch() expected = raw2.loc[1:4, 'b': 'd'] pd.testing.assert_frame_equal(result, expected) df = df2.loc[:4, 'b':] result = df.execute().fetch() expected = raw2.loc[:4, 'b':] pd.testing.assert_frame_equal(result, expected) # slice on axis index whose index_value does not have value df = df1.loc['a2':'a4', 'b':] result = df.execute().fetch() expected = raw1.loc['a2':'a4', 'b':] pd.testing.assert_frame_equal(result, expected) df = df2.loc[:, 'b'] result = df.execute().fetch() expected = raw2.loc[:, 'b'] pd.testing.assert_series_equal(result, expected) # 'b' is non-unique df = df3.loc[:, 'b'] result = df.execute().fetch() expected = raw3.loc[:, 'b'] pd.testing.assert_frame_equal(result, expected) # 'b' is non-unique, and non-monotonic df = df4.loc[:, 'b'] result = df.execute().fetch() expected = raw4.loc[:, 'b'] pd.testing.assert_frame_equal(result, expected) # label on axis 0 df = df1.loc['a2', :] result = df.execute().fetch() expected = raw1.loc['a2', :] pd.testing.assert_series_equal(result, expected) # label-based fancy index df = df2.loc[[3, 0, 1], ['c', 'a', 'd']] result = df.execute().fetch() expected = raw2.loc[[3, 0, 1], ['c', 'a', 'd']] pd.testing.assert_frame_equal(result, expected) # label-based fancy index, asc sorted df = df2.loc[[0, 1, 3], ['a', 'c', 'd']] result = df.execute().fetch() expected = raw2.loc[[0, 1, 3], ['a', 'c', 'd']] pd.testing.assert_frame_equal(result, expected) # label-based fancy index in which non-unique exists selection = rs.randint(2, size=(5,), dtype=bool) df = df3.loc[selection, ['b', 'a', 'd']] result = df.execute().fetch() expected = raw3.loc[selection, ['b', 'a', 'd']] pd.testing.assert_frame_equal(result, expected) df = df3.loc[md.Series(selection), ['b', 'a', 'd']] result = df.execute().fetch() expected = raw3.loc[selection, ['b', 'a', 'd']] pd.testing.assert_frame_equal(result, expected) # label-based fancy index on index # whose index_value does not have value df = df1.loc[['a3', 'a1'], ['b', 'a', 'd']] result = df.execute(extra_config={'check_nsplits': False}).fetch() expected = raw1.loc[['a3', 'a1'], ['b', 'a', 'd']] pd.testing.assert_frame_equal(result, expected) # get timestamp by str df = df5.loc['20200101'] result = df.execute(extra_config={'check_series_name': False}).fetch( extra_config={'check_series_name': False}) expected = raw5.loc['20200101'] pd.testing.assert_series_equal(result, expected) # get timestamp by str, return scalar df = df5.loc['2020-1-1', 'c'] result = df.execute().fetch() expected = raw5.loc['2020-1-1', 'c'] assert result == expected # test empty df df = df6.loc[[]] result = df.execute().fetch() expected = raw6.loc[[]] pd.testing.assert_frame_equal(result, expected) def test_dataframe_getitem(setup): data = pd.DataFrame(np.random.rand(10, 5), columns=['c1', 'c2', 'c3', 'c4', 'c5']) df = md.DataFrame(data, chunk_size=2) data2 = data.copy() data2.index = pd.date_range('2020-1-1', periods=10) mdf = md.DataFrame(data2, chunk_size=3) series1 = df['c2'] pd.testing.assert_series_equal( series1.execute().fetch(), data['c2']) series2 = df['c5'] pd.testing.assert_series_equal( series2.execute().fetch(), data['c5']) df1 = df[['c1', 'c2', 'c3']] pd.testing.assert_frame_equal( df1.execute().fetch(), data[['c1', 'c2', 'c3']]) df2 = df[['c3', 'c2', 'c1']] pd.testing.assert_frame_equal( df2.execute().fetch(), data[['c3', 'c2', 'c1']]) df3 = df[['c1']] pd.testing.assert_frame_equal( df3.execute().fetch(), data[['c1']]) df4 = df[['c3', 'c1', 'c2', 'c1']] pd.testing.assert_frame_equal( df4.execute().fetch(), data[['c3', 'c1', 'c2', 'c1']]) df5 = df[np.array(['c1', 'c2', 'c3'])] pd.testing.assert_frame_equal( df5.execute().fetch(), data[['c1', 'c2', 'c3']]) df6 = df[['c3', 'c2', 'c1']] pd.testing.assert_frame_equal( df6.execute().fetch(), data[['c3', 'c2', 'c1']]) df7 = df[1:7:2] pd.testing.assert_frame_equal( df7.execute().fetch(), data[1:7:2]) series3 = df['c1'][0] assert series3.execute().fetch() == data['c1'][0] df8 = mdf[3:7] pd.testing.assert_frame_equal( df8.execute().fetch(), data2[3:7]) df9 = mdf['2020-1-2': '2020-1-5'] pd.testing.assert_frame_equal( df9.execute().fetch(), data2['2020-1-2': '2020-1-5']) def test_dataframe_getitem_bool(setup): data = pd.DataFrame(np.random.rand(10, 5), columns=['c1', 'c2', 'c3', 'c4', 'c5']) df = md.DataFrame(data, chunk_size=2) mask_data = data.c1 > 0.5 mask = md.Series(mask_data, chunk_size=2) # getitem by mars series assert df[mask].execute().fetch().shape == data[mask_data].shape pd.testing.assert_frame_equal( df[mask].execute().fetch(), data[mask_data]) # getitem by pandas series pd.testing.assert_frame_equal( df[mask_data].execute().fetch(), data[mask_data]) # getitem by mars series with alignment but no shuffle mask_data = pd.Series([True, True, True, False, False, True, True, False, False, True], index=range(9, -1, -1)) mask = md.Series(mask_data, chunk_size=2) pd.testing.assert_frame_equal( df[mask].execute().fetch(), data[mask_data]) # getitem by mars series with shuffle alignment mask_data = pd.Series([True, True, True, False, False, True, True, False, False, True], index=[0, 3, 6, 2, 9, 8, 5, 7, 1, 4]) mask = md.Series(mask_data, chunk_size=2) pd.testing.assert_frame_equal( df[mask].execute().fetch().sort_index(), data[mask_data]) # getitem by mars series with shuffle alignment and extra element mask_data = pd.Series([True, True, True, False, False, True, True, False, False, True, False], index=[0, 3, 6, 2, 9, 8, 5, 7, 1, 4, 10]) mask = md.Series(mask_data, chunk_size=2) pd.testing.assert_frame_equal( df[mask].execute().fetch().sort_index(), data[mask_data]) # getitem by DataFrame with all bool columns r = df[df > 0.5] result = r.execute().fetch() pd.testing.assert_frame_equal(result, data[data > 0.5]) # getitem by tensor mask r = df[(df['c1'] > 0.5).to_tensor()] result = r.execute().fetch() pd.testing.assert_frame_equal(result, data[data['c1'] > 0.5]) def test_dataframe_getitem_using_attr(setup): data = pd.DataFrame(np.random.rand(10, 5), columns=['c1', 'c2', 'key', 'dtypes', 'size']) df = md.DataFrame(data, chunk_size=2) series1 = df.c2 pd.testing.assert_series_equal( series1.execute().fetch(), data.c2) # accessing column using attribute shouldn't overwrite existing attributes assert df.key == getattr(getattr(df, '_data'), '_key') assert df.size == data.size pd.testing.assert_series_equal(df.dtypes, data.dtypes) # accessing non-existing attributes should trigger exception with pytest.raises(AttributeError): _ = df.zzz # noqa: F841 def test_series_getitem(setup): data = pd.Series(np.random.rand(10)) series = md.Series(data) assert series[1].execute().fetch() == data[1] data = pd.Series(np.random.rand(10), name='a') series = md.Series(data, chunk_size=4) for i in range(10): series1 = series[i] assert series1.execute().fetch() == data[i] series2 = series[[0, 1, 2, 3, 4]] pd.testing.assert_series_equal( series2.execute().fetch(), data[[0, 1, 2, 3, 4]]) series3 = series[[4, 3, 2, 1, 0]] pd.testing.assert_series_equal( series3.execute().fetch(), data[[4, 3, 2, 1, 0]]) series4 = series[[1, 2, 3, 2, 1, 0]] pd.testing.assert_series_equal( series4.execute().fetch(), data[[1, 2, 3, 2, 1, 0]]) # index = ['i' + str(i) for i in range(20)] data = pd.Series(np.random.rand(20), index=index, name='a') series = md.Series(data, chunk_size=3) for idx in index: series1 = series[idx] assert series1.execute().fetch() == data[idx] selected = ['i1', 'i2', 'i3', 'i4', 'i5'] series2 = series[selected] pd.testing.assert_series_equal( series2.execute().fetch(), data[selected]) selected = ['i4', 'i7', 'i0', 'i1', 'i5'] series3 = series[selected] pd.testing.assert_series_equal( series3.execute().fetch(), data[selected]) selected = ['i0', 'i1', 'i5', 'i4', 'i0', 'i1'] series4 = series[selected] pd.testing.assert_series_equal( series4.execute().fetch(), data[selected]) selected = ['i0'] series5 = series[selected] pd.testing.assert_series_equal( series5.execute().fetch(), data[selected]) data = pd.Series(np.random.rand(10,)) series = md.Series(data, chunk_size=3) selected = series[:2] pd.testing.assert_series_equal( selected.execute().fetch(), data[:2]) selected = series[2:8:2] pd.testing.assert_series_equal( selected.execute().fetch(), data[2:8:2]) data = pd.Series(np.random.rand(9), index=['c' + str(i) for i in range(9)]) series = md.Series(data, chunk_size=3) selected = series[:'c2'] pd.testing.assert_series_equal( selected.execute().fetch(), data[:'c2']) selected = series['c2':'c9'] pd.testing.assert_series_equal( selected.execute().fetch(), data['c2':'c9']) def test_head(setup): data = pd.DataFrame(np.random.rand(10, 5), columns=['c1', 'c2', 'c3', 'c4', 'c5']) df = md.DataFrame(data, chunk_size=2) pd.testing.assert_frame_equal( df.head().execute().fetch(), data.head()) pd.testing.assert_frame_equal( df.head(3).execute().fetch(), data.head(3)) pd.testing.assert_frame_equal( df.head(-3).execute().fetch(), data.head(-3)) pd.testing.assert_frame_equal( df.head(8).execute().fetch(), data.head(8)) pd.testing.assert_frame_equal( df.head(-8).execute().fetch(), data.head(-8)) pd.testing.assert_frame_equal( df.head(13).execute().fetch(), data.head(13)) pd.testing.assert_frame_equal( df.head(-13).execute().fetch(), data.head(-13)) def test_tail(setup): data = pd.DataFrame(np.random.rand(10, 5), columns=['c1', 'c2', 'c3', 'c4', 'c5']) df = md.DataFrame(data, chunk_size=2) pd.testing.assert_frame_equal( df.tail().execute().fetch(), data.tail()) pd.testing.assert_frame_equal( df.tail(3).execute().fetch(), data.tail(3)) pd.testing.assert_frame_equal( df.tail(-3).execute().fetch(), data.tail(-3)) pd.testing.assert_frame_equal( df.tail(8).execute().fetch(), data.tail(8)) pd.testing.assert_frame_equal( df.tail(-8).execute().fetch(), data.tail(-8)) pd.testing.assert_frame_equal( df.tail(13).execute().fetch(), data.tail(13)) pd.testing.assert_frame_equal( df.tail(-13).execute().fetch(), data.tail(-13)) def test_at(setup): data = pd.DataFrame(np.random.rand(10, 5), columns=['c' + str(i) for i in range(5)], index=['i' + str(i) for i in range(10)]) df = md.DataFrame(data, chunk_size=3) data2 = data.copy() data2.index = np.arange(10) df2 = md.DataFrame(data2, chunk_size=3) with pytest.raises(ValueError): _ = df.at[['i3, i4'], 'c1'] result = df.at['i3', 'c1'].execute().fetch() assert result == data.at['i3', 'c1'] result = df['c1'].at['i2'].execute().fetch() assert result == data['c1'].at['i2'] result = df2.at[3, 'c2'].execute().fetch() assert result == data2.at[3, 'c2'] result = df2.loc[3].at['c2'].execute().fetch() assert result == data2.loc[3].at['c2'] def test_iat(setup): data = pd.DataFrame(np.random.rand(10, 5), columns=['c' + str(i) for i in range(5)], index=['i' + str(i) for i in range(10)]) df = md.DataFrame(data, chunk_size=3) with pytest.raises(ValueError): _ = df.iat[[1, 2], 3] result = df.iat[3, 4].execute().fetch() assert result == data.iat[3, 4] result = df.iloc[:, 2].iat[3].execute().fetch() assert result == data.iloc[:, 2].iat[3] def test_setitem(setup): data = pd.DataFrame(np.random.rand(10, 5), columns=['c' + str(i) for i in range(5)], index=['i' + str(i) for i in range(10)]) data2 = np.random.rand(10) data3 = np.random.rand(10, 2) df = md.DataFrame(data, chunk_size=3) df['c3'] = df['c3'] + 1 df['c10'] = 10 df[4] = mt.tensor(data2, chunk_size=4) df['d1'] = df['c4'].mean() df['e1'] = data2 * 2 result = df.execute().fetch() expected = data.copy() expected['c3'] = expected['c3'] + 1 expected['c10'] = 10 expected[4] = data2 expected['d1'] = data['c4'].mean() expected['e1'] = data2 * 2 pd.testing.assert_frame_equal(result, expected) # test set multiple cols with scalar df = md.DataFrame(data, chunk_size=3) df[['c0', 'c2']] = 1 df[['c1', 'c10']] = df['c4'].mean() df[['c11', 'c12']] = mt.tensor(data3, chunk_size=4) result = df.execute().fetch() expected = data.copy() expected[['c0', 'c2']] = 1 expected[['c1', 'c10']] = expected['c4'].mean() expected[['c11', 'c12']] = data3 pd.testing.assert_frame_equal(result, expected) # test set multiple rows df = md.DataFrame(data, chunk_size=3) df[['c1', 'c4', 'c10']] = df[['c2', 'c3', 'c4']] * 2 result = df.execute().fetch() expected = data.copy() expected[['c1', 'c4', 'c10']] = expected[['c2', 'c3', 'c4']] * 2 pd.testing.assert_frame_equal(result, expected) # test setitem into empty DataFrame df = md.DataFrame() df['a'] = md.Series(np.arange(1, 11), chunk_size=3) pd.testing.assert_index_equal(df.index_value.to_pandas(), pd.RangeIndex(10)) result = df.execute().fetch() expected =
pd.DataFrame()
pandas.DataFrame
# -*- coding: utf-8 -*- import pandas as pd import numpy as np import phik import scipy.stats as sstats import warnings class CalidadDatos: def __init__(self, _base, castNumero=False, diccionarioCast=None, errores="ignore", formato_fecha=None): """ Constructor por defecto de la clase CalidadDatos. Esta clase se \ encarga de manejar todas las funciones asociadas a la medición de la \ calidad de los datos en una base de datos :param base: (dataframe) Base de datos de tipo pandas.DataFrame que será analizada por la clase CalidadDatos. :param castNumero: (bool) {True, False}. Valor por defecto: False \ Indica si se desea convertir las columnas de tipos object y \ bool a float, de ser posible :param diccionarioCast: (dict) { {nombre_columna : tipo_columna} } \ Diccionario donde se especifican los tipos a que se desean \ convertir las columnas (string, numerico, booleano, fecha, \ categorico) :param errores: (string) {'ignore', 'coerce', 'raise'}\ Valor por defecto: 'ignore'. Indica qué hacer con las columnas \ cuyo tipo no se puede cambiar al solicitado en 'diccionarioCast' :param formato_fecha: (string). Formato a ser utilizado al hacer cast a variables de fecha. :return: Objeto del tipo de la clase CalidadDatos """ _base = _base.copy() # Pasar los 'objects' a float, si posible if castNumero == True: tipos_columnas = _base.dtypes tipos_object = tipos_columnas[(tipos_columnas == "object") | ( tipos_columnas == "bool")].index.to_list() # Pasar las columnas que se puedan a integer _base[tipos_object] = _base[tipos_object].apply( lambda x: x.astype("int64", errors="ignore"), axis=0) # Pasar las columnas qeu se puedan a float tipos_columnas = _base.dtypes tipos_object = tipos_columnas[(tipos_columnas == "object") | ( tipos_columnas == "bool")].index.to_list() _base[tipos_object] = _base[tipos_object].apply( lambda x: x.astype(float, errors="ignore"), axis=0) elif castNumero == False: pass else: raise ValueError('"castNumero" tiene que ser True o False') # Cambiar los tipos de las variables según el diccionario if isinstance(diccionarioCast, dict): for s in diccionarioCast: if diccionarioCast[s] == "string": _base[s] = _base[s].apply(lambda x: str(x)) elif diccionarioCast[s] == "numerico": _base[s] = pd.to_numeric(_base[s], errors=errores) elif diccionarioCast[s] == "booleano": _base[s] = _base[s].astype("bool") elif diccionarioCast[s] == "fecha": _base[s] = pd.to_datetime( _base[s], format=formato_fecha, errors=errores) elif diccionarioCast[s] == "categorico": _base[s] = pd.Categorical(_base[s]) else: raise ValueError( 'Las llaves de "diccionarioCast" tienen que ser "string", "numerico", "booleano", "fecha" o "categorico" ') elif diccionarioCast is None: pass else: raise ValueError('"diccionario" tiene que ser tipo "dict"') self.base = _base # Tipos de las columnas def TipoColumnas(self, tipoGeneral=True, tipoGeneralPython=True, tipoEspecifico=True): """ Retorna el tipo de dato de cada columna del dataframe. :ref:`Ver ejemplo <calidad_datos.TipoColumnas>` :param tipoGeneral: (bool) {True, False}, valor por defecto: True. \ Incluye el tipo general de cada columna. Los tipos son: numérico,\ texto, booleano, otro :param tipoGeneralPython: (bool) {True, False}, valor por defecto: \ True. Incluye el tipo general de cada columna dado por el método\ 'dtypes' de Python :param tipoEspecifico: (bool) {True, False}, valor por defecto: True.\ Incluye el porcentaje de los tres tipos más frecuentes de cada\ columna. Se aplica la función 'type' de Python para cada \ observación. :return: Dataframe de pandas con los tipos de dato de cada columna. """ # base = self.base.copy() ## Funciones generales # Tipos de columnas según función dtypes tipos_dtypes = self.base.dtypes.apply(str) # Lista de los nombres de las columnas lista_nombres = list(self.base.columns) # numero_columnas_base = self.base.shape[0] ## lista_total = [] # lista_nombres.insert(0, "") lista_total.append([""] + lista_nombres) if tipoGeneral == True: lista_general = [] for s in lista_nombres: # Si solo hay missing values, poner como 'Otro' if self.base[s].isnull().sum() == numero_columnas_base: lista_general.append("Otro") else: tipo_para_object = str( type( self.base[s].mode( dropna=True)[0])) tipo_para_resto = tipos_dtypes[s] if "int" in tipo_para_resto or "float" in tipo_para_resto: lista_general.append("Numérico") elif "str" in tipo_para_object: lista_general.append("Texto") elif "bool" in tipo_para_resto: lista_general.append("Booleano") elif "date" in tipo_para_resto: lista_general.append("Fecha") else: lista_general.append("Otro") lista_general.insert(0, "tipo_general") lista_total.append(lista_general) elif tipoGeneral == False: pass else: raise ValueError('"tipoGeneral" tiene que ser True o False') # TIpo general de Python if tipoGeneralPython == True: lista_python = list(tipos_dtypes.copy()) lista_python.insert(0, "tipo_general_python") lista_total.append(lista_python) elif tipoGeneralPython == False: pass else: raise ValueError('"tipoGeneralPython" tiene que ser True o False') # Tipo específico Python if tipoEspecifico == True: lista_especifico_1 = [] lista_especifico_2 = [] lista_especifico_3 = [] lista_especifico_4 = [] lista_especifico_5 = [] for s in lista_nombres: tip = self.base[s].fillna("nan").apply( lambda x: x if x == "nan" else type(x)).value_counts( normalize=True, dropna=False) tip_1 = "{1}: {0}%".format(round(float(tip.iloc[0] * 100), 2), str(tip.index[0]).replace("<class ", "").replace(">", "")) lista_especifico_1.append(tip_1) try: tip_2 = "{1}: {0}%".format(round(float(tip.iloc[1] * 100), 2), str(tip.index[1]).replace("<class ", "").replace(">", "")) lista_especifico_2.append(tip_2) except BaseException: lista_especifico_2.append("") try: tip_3 = "{1}: {0}%".format(round(float(tip.iloc[2] * 100), 2), str(tip.index[2]).replace("<class ", "").replace(">", "")) lista_especifico_3.append(tip_3) except BaseException: lista_especifico_3.append("") try: tip_4 = "{1}: {0}%".format(round(float(tip.iloc[3] * 100), 2), str(tip.index[3]).replace("<class ", "").replace(">", "")) lista_especifico_4.append(tip_4) except BaseException: lista_especifico_4.append("") try: tip_5 = "{1}: {0}%".format(round(float(tip.iloc[4] * 100), 2), str(tip.index[4]).replace("<class ", "").replace(">", "")) lista_especifico_5.append(tip_5) except BaseException: lista_especifico_5.append("") lista_especifico_1.insert(0, "tipo_especifico_1") lista_total.append(lista_especifico_1) if all(q == "" for q in lista_especifico_2): pass else: lista_especifico_2.insert(0, "tipo_especifico_2") lista_total.append(lista_especifico_2) if all(q == "" for q in lista_especifico_3): pass else: lista_especifico_3.insert(0, "tipo_especifico_3") lista_total.append(lista_especifico_3) if all(q == "" for q in lista_especifico_4): pass else: lista_especifico_4.insert(0, "tipo_especifico_4") lista_total.append(lista_especifico_4) if all(q == "" for q in lista_especifico_5): pass else: lista_especifico_5.insert(0, "tipo_especifico_5") lista_total.append(lista_especifico_5) del tip elif tipoEspecifico == False: pass else: raise ValueError('"tipoEspecifico" tiene que ser True o False') tips = pd.DataFrame(lista_total).T.set_index(keys=0, drop=True) columnas = list(tips.iloc[0]) tips.columns = columnas tips = tips.drop(tips.index[0]) return (tips) # valores únicos en cada columna # sin missing values def ValoresUnicos(self, faltantes=False): """ Calcula la cantidad de valores únicos de cada columna del dataframe. \ :ref:`Ver ejemplo <calidad_datos.ValoresUnicos>` :param faltantes: (bool) {True, False}, valor por defecto: False. \ Indica si desea tener en cuenta los valores faltantes en el \ conteo de valores únicos. :return: serie de pandas con la cantidad de valores únicos de cada columna. """ if faltantes == False: unicos_columnas = self.base.apply( lambda x: len(x.value_counts()), axis=0) elif faltantes == True: unicos_columnas = self.base.apply( lambda x: len(x.value_counts(dropna=False)), axis=0) else: raise ValueError('"faltantes" tiene que ser True o False') return (unicos_columnas) # Missing values def ValoresFaltantes(self, numero=False): """ Calcula el porcentaje/número de valores faltantes de cada columna \ del dataframe. :ref:`Ver ejemplo <calidad_datos.ValoresFaltantes>` :param numero: (bool) {True, False}, valor por defecto: False. Si el \ valor es False el resultado se expresa como un cociente, si el \ valor es True el valor se expresa como una cantidad de \ registros (número entero). :return: serie de pandas con la cantidad/cociente de valores \ faltantes de cada columna. """ base = self.base.copy() if numero == False: missing_columnas = pd.isnull(base).sum() / len(base) elif numero == True: missing_columnas = pd.isnull(base).sum() else: raise ValueError('"cociente" tiene que ser True o False') return (missing_columnas) # Porcentaje y número de filas y columnas no únicas def CantidadDuplicados(self, eje=0, numero=False): """ Retorna el porcentaje/número de \ filas o columnas duplicadas (repetidas) en el dataframe. \ :ref:`Ver ejemplo <calidad_datos.CantidadDuplicados>` :param eje: (int) {1, 0}, valor por defecto: 0. Si el valor \ es 1 la validación se realiza por columnas, si el valor es \ 0 la validación se realiza por filas. :param numero: (bool) {True, False}, valor por defecto: False. Si el \ valor es False el resultado se expresa como un cociente, si el \ valor es True el valor se expresa como una cantidad de \ registros (número entero). :return: (int o float) resultado de unicidad. """ base = self.base.copy() # Revisar si hay columnas con tipos diccionario o lista para # convertirlas a string for s in base.columns: tip = str(type(self.base[s].value_counts(dropna=False).index[0])).replace("<class ", "").replace(">", "").replace( "'", "") if tip == "dict" or tip == "list": base[s] = base[s].apply(str) else: pass # Proporcion (decimal) de columnas repetidas if eje == 1 and numero == False: no_unic_columnas = base.T.duplicated(keep="first") cols = no_unic_columnas[no_unic_columnas].shape[0] / base.shape[1] # Número de columnas repetidas elif eje == 1 and numero == True: no_unic_columnas = base.T.duplicated(keep="first") cols = no_unic_columnas[no_unic_columnas].shape[0] # Proporción de filas repetidas elif eje == 0 and numero == False: no_unic_filas = base.duplicated(keep="first") cols = no_unic_filas[no_unic_filas].shape[0] / base.shape[0] # Número de filas repetidas elif eje == 0 and numero == True: no_unic_filas = base.duplicated(keep="first") cols = no_unic_filas[no_unic_filas].shape[0] else: raise ValueError( '"eje" tiene que ser 1 o 0 y "numero" tiene que ser True o False') return (cols) # Matching de columnas y filas no únicas def EmparejamientoDuplicados(self, col=False): """ Retorna las columnas o filas que presenten valores duplicados del \ dataframe. :ref:`Ver ejemplo <calidad_datos.EmparejamientoDuplicados>` :param col: (bool) {True, False}, valor por defecto: False. Si el valor \ es True la validación se realiza por columnas, si el valor es \ False la validación se realiza por filas. :return: matriz (dataframe) que relaciona las indices de filas/nombre \ de columnas que presentan valores duplicados. """ base = self.base.copy() # Revisar si hay columnas con tipos diccionario o lista para # convertirlas a string for s in base.columns: tip = str(type(self.base[s].value_counts(dropna=False).index[0])).replace("<class ", "").replace(">", "").replace( "'", "") if tip == "dict" or tip == "list": base[s] = base[s].apply(str) else: pass # Obtener todos los duplicados, sin hacer todavía el emparejamiento if col == True: dupli = base.T.duplicated(keep=False) elif col == False: dupli = base.duplicated(keep=False) else: raise ValueError('"col" tiene que ser True o False') # Revisar si hay duplicados o no. Parar si no hay dupli = dupli[dupli] if dupli.sum() == 0: if col == True: print("No hay columnas duplicadas") return elif col == False: print("No hay filas duplicadas") return else: raise ValueError('"col" tiene que ser True o False') else: pass lista_duplicados = [] for s in dupli.index: for ss in dupli.index: if col == True: if base[s].equals(base[ss]) and s != ss: lista_duplicados.append([s, ss]) elif col == False: if base.iloc[s].equals(base.iloc[ss]) and s != ss: lista_duplicados.append([s, ss]) else: pass if col == False: lista_duplicados = sorted(lista_duplicados) else: pass dic = {} for s in dupli.index: dic[s] = [] for s in dupli.index: for i in range(len(lista_duplicados)): if s in lista_duplicados[i]: dic[s].append(lista_duplicados[i]) for s in dic: lista = [q for l in dic[s] for q in l] dic[s] = list(set(lista)) if col == True: lista_listas = [q for q in dic.values()] else: lista_listas = [sorted(q) for q in dic.values()] for i in range(len(lista_listas)): for ii in range(len(lista_listas[i])): lista_listas[i][ii] = str(lista_listas[i][ii]) df = pd.DataFrame( lista_listas).drop_duplicates().reset_index(drop=True) df = df.T if col == True: lista_columnas_df = [ "Columnas iguales {0}".format(q) for q in range( 1, df.shape[1] + 1)] df.columns = lista_columnas_df else: lista_columnas_df = [ "Filas iguales {0}".format(q) for q in range( 1, df.shape[1] + 1)] df.columns = lista_columnas_df # Quitar los 'nan' del df = df.apply(lambda x: x.replace(np.nan, "")) return (df) # CONSISTENCIA. Porcentaje de outliers def ValoresExtremos(self, extremos="ambos", numero=False): """ Calcula el porcentaje o cantidad de outliers de cada columna numérica \ (las columnas con números en formato string se intentarán transformar \ a columnas numéricas). :ref:`Ver ejemplo <calidad_datos.ValoresExtremos>` :param extremos: (str) {'superior', 'inferior', 'ambos'}, valor por \ defecto: 'ambos'. Si el valor es '**inferior**' se tienen en cuenta los \ registros con valor menor al límite inferior calculado por la \ metodología de valor atípico por rango intercuartílico. Si el valor es \ '**superior**' se tienen en cuenta los registros con valor mayor al\ límite superior calculado por la metodología de valor atípico por rango \ intercuartílico. Si el valor es '**ambos**' se tienen en cuenta los \ registros con valor menor al límite inferior calculado por la \ metodología de valor atípico por rango intercuartílico, y también \ aquellos con valor mayor al límite superior calculado por la \ metodología de valor atípico por rango intercuartílico. :param numero: (bool) {True, False}, valor por defecto: False. Si el valor es \ False el resultado se expresa como una proporcion (en decimales), si el valor es True el \ valor se expresa como una cantidad de registros (número entero). :return: serie de pandas con la cantidad/proporcion de valores outliers \ de cada columna. """ col_tipos = self.TipoColumnas( tipoGeneral=True, tipoGeneralPython=False, tipoEspecifico=False).iloc[:, 0] col_num = col_tipos[col_tipos == "Numérico"].index base_num = self.base[col_num] if base_num.shape[1] == 0: print("La base de datos no tiene columnas numéricas") return else: pass percentiles_25 = base_num.apply( lambda x: np.nanpercentile(x, 25), axis=0) percentiles_75 = base_num.apply( lambda x: np.nanpercentile(x, 75), axis=0) iqr = percentiles_75 - percentiles_25 iqr_upper = percentiles_75 + iqr * 1.5 iqr_lower = percentiles_25 - iqr * 1.5 dic_outliers = {} if extremos == "ambos": for i in range(0, len(iqr)): dic_outliers[base_num.columns[i]] = (base_num.iloc[:, i] > iqr_upper[i]) | ( base_num.iloc[:, i] < iqr_lower[i]) elif extremos == "superior": for i in range(0, len(iqr)): dic_outliers[base_num.columns[i]] = ( base_num.iloc[:, i] > iqr_upper[i]) elif extremos == "inferior": for i in range(0, len(iqr)): dic_outliers[base_num.columns[i]] = ( base_num.iloc[:, i] < iqr_lower[i]) else: raise ValueError( '"extremos" tiene que ser "ambos", "superior" o "inferior"') base_outliers =
pd.DataFrame(dic_outliers)
pandas.DataFrame
"""This provides a class for discretizing data in a convienant way that makes sense for our spatially referenced data/models. """ __all__ = [ 'Grid', ] __displayname__ = 'Mesh Tools' import numpy as np import pandas as pd import properties import discretize from .plots import display from .fileio import GridFileIO def get_data_range(data): """Get the data range for a given ndarray""" dmin = np.nanmin(data) dmax = np.nanmax(data) return (dmin, dmax) class Grid(discretize.TensorMesh, GridFileIO): """ A data structure to store a model space discretization and different attributes of that model space. Example: >>> import wtools >>> import numpy as np >>> models = { 'rand': np.random.random(1000).reshape((10,10,10)), 'spatial': np.arange(1000).reshape((10,10,10)), } >>> grid = wtools.Grid(models=models) >>> grid.validate() # Make sure the data object was created successfully True Note: See Jupyter notebooks under the ``examples`` directory """ def __init__(self, h=None, x0=(0.,0.,0.), models=None, **kwargs): if models is not None: self.models = models if h is None: h = [] shp = list(models.values())[0].shape # Now create tensors if not present if len(shp) > 0: h.append(np.ones(shp[0])) if len(shp) > 1: h.append(np.ones(shp[1])) if len(shp) > 2: h.append(np.ones(shp[2])) discretize.TensorMesh.__init__(self, h=h, x0=x0, **kwargs) models = properties.Dictionary( 'The volumetric data as a 3D NumPy arrays in <X,Y,Z> or <i,j,k> ' + 'coordinates. Each key value pair represents a different model for ' + 'the gridded model space. Keys will be treated as the string name of ' + 'the model.', key_prop=properties.String('Model name'), value_prop=properties.Array( 'The volumetric data as a 3D NumPy array in <X,Y,Z> or <i,j,k> coordinates.', shape=('*','*','*')), required=False ) @properties.validator def _validate_models(self): # Check the models if self.models is not None: shp = list(self.models.values())[0].shape for k, d in self.models.items(): if d.shape != shp: raise RuntimeError('Validation Failed: dimesnion mismatch between models.') return True @property def keys(self): """List of the string names for each of the models""" return list(self.models.keys()) @property def shape(self): """3D shape of the grid (number of cells in all three directions)""" return ( self.nCx, self.nCy, self.nCz) @property def bounds(self): """The bounds of the grid""" grid = self.gridN try: x0, x1 = np.min(grid[:,0]), np.max(grid[:,0]) except: x0, x1 = 0., 0. try: y0, y1 = np.min(grid[:,1]), np.max(grid[:,1]) except: y0, y1 = 0., 0. try: z0, z1 = np.min(grid[:,2]), np.max(grid[:,2]) except: z0, z1 = 0., 0. return (x0,x1, y0,y1, z0,z1) def get_data_range(self, key): """Get the data range for a given model""" data = self.models[key] return get_data_range(data) def equal(self, other): """Compare this Grid to another Grid""" return properties.equal(self, other) def __str__(self): """Print this onject as a human readable string""" self.validate() fmt = ["<%s instance>" % (self.__class__.__name__)] fmt.append(" Shape: {}".format(self.shape)) fmt.append(" Origin: {}".format(tuple(self.x0))) bds = self.bounds fmt.append(" X Bounds: {}".format((bds[0], bds[1]))) fmt.append(" Y Bounds: {}".format((bds[2], bds[3]))) fmt.append(" Z Bounds: {}".format((bds[4], bds[5]))) if self.models is not None: fmt.append(" Models: ({})".format(len(self.models.keys()))) for key, val in self.models.items(): dl, dh = self.get_data_range(key) fmt.append(" '{}' ({}): ({:.3e}, {:.3e})".format(key, val.dtype, dl, dh)) return '\n'.join(fmt) def __repr__(self): return self.__str__() def _repr_html_(self): self.validate() fmt = "" if self.models is not None: fmt += "<table>" fmt += "<tr><th>Grid Attributes</th><th>Models</th></tr>" fmt += "<tr><td>" fmt += "\n" fmt += "<table>\n" fmt += "<tr><th>Attribute</th><th>Values</th></tr>\n" row = "<tr><td>{}</td><td>{}</td></tr>\n" fmt += row.format("Shape", self.shape) fmt += row.format('Origin', tuple(self.x0)) bds = self.bounds fmt += row.format("X Bounds", (bds[0], bds[1])) fmt += row.format("Y Bounds", (bds[2], bds[3])) fmt += row.format("Z Bounds", (bds[4], bds[5])) num = 0 if self.models is not None: num = len(self.models.keys()) fmt += row.format("Models", num) fmt += "</table>\n" fmt += "\n" if self.models is not None: fmt += "</td><td>" fmt += "\n" fmt += "<table>\n" row = "<tr><th>{}</th><th>{}</th><th>{}</th><th>{}</th></tr>\n" fmt += row.format("Name", "Type", "Min", "Max") row = "<tr><td>{}</td><td>{}</td><td>{:.3e}</td><td>{:.3e}</td></tr>\n" for key, val in self.models.items(): dl, dh = self.get_data_range(key) fmt += row.format(key, val.dtype, dl, dh) fmt += "</table>\n" fmt += "\n" fmt += "</td></tr> </table>" return fmt def __getitem__(self, key): """Get a model of this grid by its string name""" return self.models[key] def to_data_frame(self, order='C'): """Returns the models in this Grid to a Pandas DataFrame with all arrays flattened in the specified order. A header attribute is added to the DataFrame to specified the grid extents. Much metadata is lost in this conversion. """ self.validate() tits = self.models.keys() data = {k: v.flatten(order=order) for k, v in self.models.items()} df =
pd.DataFrame.from_dict(data)
pandas.DataFrame.from_dict
#!/usr/bin/env python # coding: utf-8 #!/usr/bin/env python2 # -*- coding: utf-8 -*- """Created on Jul 2021. @author: <NAME> This module processes the option 2 of the menuInicial """ import datetime import pandas as pd from getMJ import getMJ class opcao(): def opcao2(placa, dataInicial, dataFinal, tokenMJ, cpf): dataInicio = datetime.datetime.strptime(dataInicial, '%d/%m/%Y') dataFim = datetime.datetime.strptime(dataFinal, '%d/%m/%Y') deltaTime = abs((dataInicio - dataFim).days) df1 = pd.DataFrame() df2 = pd.DataFrame() if deltaTime > 30: dataFimParcial = dataInicio dataInicioParcial = dataInicio controle = 0 while dataFimParcial < dataFim and controle!=1: dataFimParcial = dataInicioParcial + datetime.timedelta(days=30) if dataFimParcial > dataFim: dataFimParcial = dataFim controle = 1 msg, dados = getMJ.getMovimentoPeriodo(placa, dataInicioParcial.strftime("%Y-%m-%dT%H:%M:%S"), dataFimParcial.strftime("%Y-%m-%dT%H:%M:%S"), tokenMJ, cpf) dataInicioParcial = dataFimParcial if msg != '': print('Erro: Erro para busca entre as datas %s e %s' (dataInicioParcial, dataFimParcial)) else: df1 = pd.json_normalize(dados) df2 = df2.append(df1, ignore_index=True) else: msg, dados = getMJ.getMovimentoPeriodo(placa, dataInicio.strftime("%Y-%m-%dT%H:%M:%S"), dataFim.strftime("%Y-%m-%dT%H:%M:%S"), tokenMJ, cpf) if msg != '': print('Erro: Erro para busca entre as datas %s e %s' (dataInicioParcial, dataFimParcial)) else: df1 = pd.json_normalize(dados) df2 = df2.append(df1, ignore_index=True) return(df2) def opcao3(dadosEntrada, dataInicial, dataFinal, tokenMJ, cpf): dataInicio = datetime.datetime.strptime(dataInicial, '%d/%m/%Y %H:%M') dataFim = datetime.datetime.strptime(dataFinal, '%d/%m/%Y %H:%M') deltaTime = abs(((dataInicio - dataFim).days))*24 latitude = dadosEntrada.split(',')[0] longitude = dadosEntrada.split(',')[1] raio = dadosEntrada.split(',')[2] df1 = pd.DataFrame() df2 = pd.DataFrame() msg, listLocal = getMJ.getListaLocal(latitude, longitude, raio, tokenMJ, cpf) localTable = pd.json_normalize(listLocal) if msg != '': print('Erro: ', msg ) df2 = pd.DataFrame() return(df2) if localTable.empty: print('Erro: Lista de local vazia') df2 = pd.DataFrame() return(df2) listaIdLocal = list(localTable['idLocal']) for local in listaIdLocal: if deltaTime > 1: dataFimParcial = dataInicio dataInicioParcial = dataInicio controle = 0 while dataFimParcial < dataFim and controle!=1: dataFimParcial = dataInicioParcial + datetime.timedelta(days=(1/24)) if dataFimParcial > dataFim: dataFimParcial = dataFim controle = 1 msg, dados = getMJ.reqIdLocalPeriodo(local, dataInicioParcial.strftime("%Y-%m-%dT%H:%M:%S"), dataFimParcial.strftime("%Y-%m-%dT%H:%M:%S"), tokenMJ, cpf) dataInicioParcial = dataFimParcial if msg != '': print('Erro: Erro para busca entre as datas %s e %s' (dataInicioParcial, dataFimParcial)) else: df1 = pd.json_normalize(dados) df2 = df2.append(df1, ignore_index=True) else: msg, dados = getMJ.reqIdLocalPeriodo(local, dataInicioParcial.strftime("%Y-%m-%dT%H:%M:%S"), dataFimParcial.strftime("%Y-%m-%dT%H:%M:%S"), tokenMJ, cpf) if msg != '': print('Erro: Erro para busca entre as datas %s e %s' (dataInicioParcial, dataFimParcial)) else: df1 =
pd.json_normalize(dados)
pandas.json_normalize
import os,sys import numpy as np import pandas as pd import re from intervaltree import Interval, IntervalTree from functools import reduce from typing import ( List, Set, Iterable, ) from collections import OrderedDict import viola from viola.core.indexing import Indexer from viola.core.bed import Bed from viola.core.fasta import Fasta from viola.core.bedpe import Bedpe from viola.utils.microhomology import get_microhomology_from_positions from viola.utils.utils import get_inslen_and_insseq_from_alt from viola._typing import ( IntOrStr, StrOrIterableStr, ) from viola._exceptions import ( TableNotFoundError, InfoNotFoundError, ContigNotFoundError, IllegalArgumentError, ) from sklearn.cluster import AgglomerativeClustering class Vcf(Bedpe): """ Relational database-like object containing SV position dataframes, FILTER dataframe, INFO dataframes, FORMAT dataframe, and HEADER dataframes. The instances of this class have information equal to the VCF files. Attributes --------------- sv_count: int Number of SV records table_list List of names of all tables included in the object ids List of all SV id. Parameters ---------- df_svpos: DataFrame DataFrame containing information such as position, strand, svtype, etc. Columns should be following: ['id', 'chrom1', 'pos1', 'chrom2', 'pos2', 'strand1', 'strand2', 'ref', 'alt', 'qual', 'svtype'] Main key is 'id'. The 'chrom1' and 'chrom2' are the foreign key from contigs_meta table. df_filter: DataFrame DataFrame containing FILTER information which locate on the 7th column of the vcf file. Columns of the input DataFrame should be following: ['id', 'filter'] Main Key is the combination of ('id', 'filter'). Each column is the foreign key from df_svpos, and filters_meta table, respectively. odict_df_info: dict[str, DataFrame] OrderedDict of DataFrames which contain additional information on SV record (equivalent to INFO field of vcf). Each item of the dictionary contains single INFO. The dictionary key is the name of each INFO and should be in lowercase. Columns of the DataFrame should be following: ['id', 'value_idx', 'infoname'] The 'value_idx' column contains 0-origin indice of INFO values. This is important when one SV record has multiple values of an INFO (eg. cipos). Main key is the combination of ('id', 'value_idx'), and 'id' is the foreign key coming from df_svpos table. df_formats: DataFrame DataFrame containing FORMAT information of the vcf file. Columns of the DataFrame should be following: ['id', 'sample', 'format', 'value_idx', 'value'] Main key is the combination of ('id', 'sample', 'format'). The ('id', 'sample', 'format') are the foreign key coming from (df_svpos, samples_meta, format_meta) table, respectively. """ _internal_attrs = [ "_df_svpos", "_df_filters", "_odict_df_info", "_df_formats", "_ls_infokeys", "_odict_df_headers", "_metadata", "_odict_alltables", "_repr_config", "_sig_criteria" ] _internal_attrs_set = set(_internal_attrs) _repr_column_names = [ "id", "be1", "be2", "strand", "qual", "svtype", ] _repr_column_names_set = set(_repr_column_names) def __init__(self, df_svpos, df_filters, odict_df_info, df_formats, odict_df_headers = {}, metadata = None): if not isinstance(odict_df_info, OrderedDict): raise TypeError('the type of the argument "odict_df_info" should be collections.OrderedDict') if not isinstance(odict_df_headers, OrderedDict): raise TypeError('the type of the argument "odict_df_headers" should be collections.OrderedDict') df_svpos['alt'] = df_svpos['alt'].astype(str) self._df_svpos = df_svpos self._df_filters = df_filters self._odict_df_info = odict_df_info self._df_formats = df_formats self._odict_df_headers = odict_df_headers self._metadata = metadata self._ls_infokeys = [ x.lower() for x in odict_df_headers['infos_meta']['id'].tolist()] ls_keys = ['positions', 'filters'] + self._ls_infokeys + ['formats'] + \ list(odict_df_headers.keys()) ls_values = [df_svpos, df_filters] + list(odict_df_info.values()) + [df_formats] + list(odict_df_headers.values()) # self._odict_alltables is a {tablename: table} dictionary self._odict_alltables = OrderedDict([(k, v) for k, v in zip(ls_keys, ls_values)]) self._repr_config = { 'info': None, } @property def contigs(self) -> List[str]: """ Return a list of contigs (chromosomes) listed in the header of the VCF file. """ df_contigs_meta = self.get_table('contigs_meta') arr_contigs = df_contigs_meta['id'].unique() return list(arr_contigs) def __repr__(self): return super().__repr__() def __str__(self): return super().__repr__() def view(self, custom_infonames=None, return_as_dataframe=False): """ view(custom_infonames, return_as_dataframe) Quick view function of the Vcf object. Parameters ----------- custom_infonames: list_like or None, default None The names of the INFO to show additionally. return_as_dataframe: bool, default False If true, return as pandas DataFrame. """ df_svpos = self.get_table('positions') ser_id = df_svpos['id'] ser_be1 = df_svpos['chrom1'].astype(str) + ':' + df_svpos['pos1'].astype(str) ser_be2 = df_svpos['chrom2'].astype(str) + ':' + df_svpos['pos2'].astype(str) ser_strand = df_svpos['strand1'] + df_svpos['strand2'] ser_qual = df_svpos['qual'] ser_svtype = df_svpos['svtype'] ls_ser = [ser_id, ser_be1, ser_be2, ser_strand, ser_qual, ser_svtype] ls_key = ['id', 'be1', 'be2', 'strand', 'qual', 'svtype'] dict_ = {k: v for k, v in zip(ls_key, ls_ser)} df_out = pd.DataFrame(dict_) if custom_infonames is not None: df_out = self.append_infos(df_out, ls_tablenames=custom_infonames) str_df_out = str(df_out) str_infokeys = ','.join(list(self._ls_infokeys)) desc_info = 'INFO=' desc_doc = 'Documentation of Vcf object ==> ' doc_link = 'https://dermasugita.github.io/ViolaDocs/docs/html/reference/vcf.html' out = desc_info + str_infokeys + '\n' + desc_doc + doc_link + '\n' + str_df_out if return_as_dataframe: return df_out return str(out) def replace_svid(self, to_replace, value): """ replace_svid(to_replace, value) Renamed specified SV ID. Parameters ---------- to_replace: int or str or List[int or str] SV ID which are replaced. value: int or str or List[int or str] Values of new SV ID. """ if not isinstance(to_replace, list): to_replace = [to_replace] if not isinstance(value, list): value = [value] if len(to_replace) != len(value): raise ValueError('Two arguments should be the same length. {} vs {}'.format(len(to_replace), len(value))) set_table_list = set(self.table_list) set_table_list_header = set(self._odict_df_headers.keys()) set_table_list_without_header = set_table_list - set_table_list_header for rep, val in zip(to_replace, value): for table_name in set_table_list_without_header: df_target = self._odict_alltables[table_name] df_target.loc[df_target['id'] == rep, 'id'] = val self._odict_alltables[table_name] = df_target if table_name in self._ls_infokeys: self._odict_df_info[table_name.upper()] = df_target def add_info_table(self, table_name, table, number, type_, description, source=None, version=None): if table_name in self._ls_infokeys: self.remove_info_table(table_name) self._ls_infokeys += [table_name] self._odict_df_info[table_name.upper()] = table self._odict_alltables[table_name] = table df_meta = self.get_table('infos_meta') df_replace = df_meta.append({'id': table_name.upper(), 'number': number, 'type': type_, 'description': description, 'source': source, 'version': version}, ignore_index=True) self._odict_df_headers['infos_meta'] = df_replace self._odict_alltables['infos_meta'] = df_replace # not beautiful code... def remove_info_table(self, table_name): del self._odict_df_info[table_name.upper()] del self._odict_alltables[table_name] df_replace = self.get_table('infos_meta') df_replace = df_replace.loc[df_replace['id'] != table_name.upper()] self._odict_df_headers['infos_meta'] = df_replace self._odict_alltables['infos_meta'] = df_replace self._ls_infokeys.remove(table_name) def drop_by_id(self, svid): """ drop_by_id(svid) Remove SV records specified in "svid" argument. Parameters ----------- svid: int or str or List[int or str] ID of SV record to be removed. inplace: bool, default False If False, return a copy. Otherwise, dropped SV record of the self and return None. Returns -------- Vcf Return a removed Vcf instance. """ if not isinstance(svid, list): svid = [svid] set_svid = set(svid) set_svid_all = set(self.ids) set_svid_preserved = set_svid_all - set_svid vcf_removed = self.filter_by_id(set_svid_preserved) return vcf_removed def copy(self): """ copy() Return copy of the instance. """ df_svpos = self.get_table('positions') df_filters = self.get_table('filters') odict_df_infos = OrderedDict([(k, self.get_table(k.lower())) for k, v in self._odict_df_info.items()]) df_formats = self.get_table('formats') odict_df_headers = OrderedDict([(k, self.get_table(k)) for k,v in self._odict_df_headers.items()]) metadata = self._metadata return Vcf(df_svpos, df_filters, odict_df_infos, df_formats, odict_df_headers, metadata) def to_vcf_like(self) -> pd.DataFrame: """ to_vcf_like() Return a vcf-formatted DataFrame. Header information will not be reflected. """ df_base_before_position_modification = self.get_table('positions')[['chrom1', 'pos1', 'id', 'ref', 'alt', 'qual', 'svtype', 'strand1']] def _modify_positions(x): svtype = x.name if svtype == 'DUP': x['pos1'] = x['pos1'] - 1 return x elif svtype == 'INV': # if strand1 == '-', subtract 1 from pos1, otherwise subtract 0. if self._metadata.get('variantcaller', None) != 'delly': arr_strand1 = x['strand1'].values arr_num_of_subtraction = np.where(arr_strand1 == '+', 0, 1) x['pos1'] = x['pos1'] - arr_num_of_subtraction return x else: return x df_base = df_base_before_position_modification.groupby('svtype').apply(_modify_positions) df_base = df_base[['chrom1', 'pos1', 'id', 'ref', 'alt', 'qual']] df_base['qual'] = df_base['qual'].fillna('.') ser_id = df_base['id'] ser_filter = pd.Series(["" for i in range(len(ser_id))], index=ser_id) df_filter = self.get_table('filters') def _create_filter_field(x): out = ';'.join(x['filter']) return out ser_filter = df_filter.groupby('id').apply(_create_filter_field) df_filter = ser_filter.reset_index(name='filter') ser_vcfinfo = pd.Series(["" for i in range(len(ser_id))], index=ser_id) def _create_info_field(x, info): if x.iloc[1] > 0: return ',' + str(x.iloc[2]) if type(x.iloc[2]) == bool: return ';' + info.upper() return ';' + info.upper() + '=' + str(x.iloc[2]) for info in self._ls_infokeys: df_info = self.get_table(info) ser_be_appended = df_info.apply(_create_info_field, axis=1, **{'info':info}) if ser_be_appended.empty: continue df_info_appended = df_info.copy() df_info_appended['info'] = ser_be_appended df_vcfinfo = df_info_appended.pivot(index='id', columns='value_idx', values='info') df_vcfinfo = df_vcfinfo.fillna('') ser_vcfinfo_to_append = df_vcfinfo.apply(''.join, axis=1) ser_vcfinfo.loc[ser_vcfinfo_to_append.index] = ser_vcfinfo.loc[ser_vcfinfo_to_append.index] + ser_vcfinfo_to_append ser_vcfinfo.replace("^;", "", regex=True, inplace=True) df_infofield = ser_vcfinfo.reset_index(name='info') df_format = self.get_table('formats') ls_samples = self.get_table('samples_meta')['id'] def _create_format_field(x): arr_format_, ind_format_ = np.unique(x['format'], return_index=True) arr_format_ = arr_format_[np.argsort(ind_format_)] format_ = ':'.join(arr_format_) ls_sample_format_ = [] for sample in ls_samples: ls_sample_values_ = [] for a_format_ in arr_format_: mask = (x['sample'] == sample) & (x['format'] == a_format_) ls_sample_values_.append(','.join(x.loc[mask]['value'].astype(str))) ls_sample_format_.append(':'.join(ls_sample_values_)) out_idx = ['format'] + list(ls_samples) return pd.Series([format_]+ls_sample_format_, index=out_idx) df_formatfield = df_format.groupby('id').apply(_create_format_field).reset_index() df_out = pd.merge(df_base, df_filter) df_out = pd.merge(df_out, df_infofield) df_out = pd.merge(df_out, df_formatfield) return df_out def to_vcf(self, path_or_buf = None, onlyinfo=False) -> str: """ to_vcf(path_or_buf) Return a vcf-formatted String. Header information will not be reflected. return csv file as str class. Parameters ---------- path_or_buf: str, optional File path to save the VCF file. onlyinfo: bool if you only want "info", set this option to True Returns ------- str return vcf file as a string. """ def get_metadata(): metadata = self._metadata out = '' if metadata is None: return out for key, value in metadata.items(): if not isinstance(value, list): value = [value] value = [str(s) for s in value] out += '##' + str(key) + '=' + ','.join(value) + '\n' return out def get_contig(): df_contig = self.get_table('contigs_meta') if df_contig.empty: return '' ser_contig = '##contig=<ID=' + df_contig['id'].astype(str) + ',length=' + df_contig['length'].astype(str) + '>' out = '\n'.join(ser_contig) out += '\n' return out def get_info(): str_info = "" for row in self.get_table("infos_meta").itertuples(): if (row.number == None): str_num = "." elif (row.number == -1): str_num = "A" else: str_num = str(row.number) str_info += "##INFO=<ID={},Number={},Type={},Description=\"{}\">".format(row.id, str_num, row.type,row.description) str_info += "\n" return str_info def get_format(): df_format = self.get_table('formats_meta') if df_format.empty: return '' df_format['number'] = df_format['number'].fillna('.') ser_out = '##FORMAT=<ID=' + df_format['id'].astype(str) + ',Number=' + df_format['number'].astype(str) + \ ',Type=' + df_format['type'].astype(str) + ',Description="' + df_format['description'].astype(str) + '">' out = '\n'.join(ser_out) out += '\n' return out def get_filter(): df_filter = self.get_table('filters_meta') if df_filter.empty: return '' ser_out = '##FILTER=<ID=' + df_filter['id'].astype(str) + ',Description="' + df_filter['description'].astype(str) + '">' out = '\n'.join(ser_out) out += '\n' return out def get_alt(): df_alt = self.get_table('alts_meta') if df_alt.empty: return '' ser_out = '##ALT=<ID=' + df_alt['id'].astype(str) + ',Description="' + df_alt['description'].astype(str) + '">' out = '\n'.join(ser_out) out += '\n' return out str_metadata = get_metadata() str_contig = get_contig() str_info = get_info() str_format = get_format() str_filter = get_filter() str_alt = get_alt() df_vcflike = self.to_vcf_like() str_table = df_vcflike.to_csv(sep='\t', header=False, index=False) ls_header = df_vcflike.columns.tolist() ls_header[0:9] = ['#CHROM', 'POS', 'ID', 'REF', 'ALT', 'QUAL', 'FILTER', 'INFO', 'FORMAT'] str_header = "\t".join(ls_header) str_header += "\n" ls_vcf_data = [str_metadata, str_contig, str_info, str_format, str_filter, str_alt, str_header, str_table] #print(os.getcwd()) if (onlyinfo): ret = str_info else: ret = "".join(ls_vcf_data) if (path_or_buf is not None): f = open(path_or_buf, 'w') f.write(ret) f.close() #return ret def to_bedpe_like( self, custom_infonames: Iterable[str] = [], add_filters: bool = False, add_formats: bool = False, confidence_intervals: bool = False, ) -> pd.DataFrame: """ to_bedpe_like(custom_infonames=[], add_filters, add_formats, confidence_intervals: bool=False) Return a DataFrame in bedpe-like format. When specified, you can add INFOs, FILTERs, and FORMATs as additional columns. Parameters --------------- custom_infonames: list-like[str] The table names of INFOs to append. add_filters: bool, default False sth add_formats: bool, default False sth confidence_intervals: bool, default False Whether or not to consider confidence intervals of the breakpoints. If True, confidence intervals for each breakpoint are represented by [start1, end1) and [start2, end2), respectively. Otherwise, breakpoints are represented by a single-nucleotide resolution. Returns --------------- DataFrame A Dataframe in bedpe-like format. The columns include at least the following: ['chrom1', 'start1', 'end1', 'chrom2', 'start2', 'end2', 'name', 'score', 'strand1', 'strand2'] """ df_out = super().to_bedpe_like(confidence_intervals=confidence_intervals) if len(custom_infonames) != 0: df_out = self.append_infos(df_out, custom_infonames, left_on='name') if add_filters: df_out = self.append_filters(df_out, left_on='name') if add_formats: df_out = self.append_formats(df_out, left_on='name') return df_out def to_bedpe( self, file_or_buf: str, custom_infonames: Iterable[str] = [], add_filters: bool = False, add_formats: bool = False, confidence_intervals: bool = False, ): """ to_bedpe_like(file_or_buf, custom_infonames=[], add_filters, add_formats, confidence_intervals: bool=False) Return a BEDPE file. Parameters --------------- file_or_buf: str File path to save the VCF file. custom_infonames: list-like[str] The table names of INFOs to append. add_filters: bool, default False sth add_formats: bool, default False sth confidence_intervals: bool, default False Whether or not to consider confidence intervals of the breakpoints. If True, confidence intervals for each breakpoint are represented by [start1, end1) and [start2, end2), respectively. Otherwise, breakpoints are represented by a single-nucleotide resolution. """ bedpe = self.to_bedpe_like(custom_infonames=custom_infonames, add_filters=add_filters, add_formats=add_formats, confidence_intervals=confidence_intervals) bedpe.to_csv(file_or_buf, index=None, sep='\t') def append_infos(self, base_df, ls_tablenames, left_on: str = 'id', auto_fillna: bool = True) -> pd.DataFrame: """ append_infos(base_df, ls_tablenames, left_on='id', auto_fillna=True) Append INFO tables to the right of the base_df, based on the SV id columns. If the name of the SV id column in base_df is not 'id', specify column name into left_on argument. Parameters --------------- base_df: DataFrame The DataFrame to which the INFO tables are appended. ls_tablenames: list-like The list of INFO table names to be appended. left_on: str, default 'id' The name of SV id column of base_df auto_fillna: bool, default True If True, use the header information to handle missing values after merging DataFrames. Returns --------------- DataFrame A DataFrame which the INFO tables are added. """ df = base_df.copy() df_infometa = self.get_table('infos_meta') for tablename in ls_tablenames: df_to_append_pre = self.get_table(tablename) df_to_append_pre['new_column_names'] = tablename + '_' + df_to_append_pre['value_idx'].astype(str) df_to_append = df_to_append_pre.pivot(index='id', columns='new_column_names', values=tablename) df = pd.merge(df, df_to_append, how='left', left_on=left_on, right_index=True) info_dtype = df_infometa.loc[df_infometa['id']==tablename.upper(), 'type'].iloc[0] len_info = df_to_append.shape[1] ls_ind_fancy = [tablename + '_' + str(i) for i in range(len_info)] if info_dtype == 'Integer': df[ls_ind_fancy] = df[ls_ind_fancy].fillna(0).astype(int) elif info_dtype == 'Flag': df[ls_ind_fancy] = df[ls_ind_fancy].fillna(False) return df def append_formats(self, base_df, left_on='id'): """ append_formats(base_df, left_on='id') Append formats to the right of the base_df, based on the SV id columns. If the name of the SV id column in base_df is not 'id', specify column name into left_on argument. Parameters --------------- base_df: DataFrame The DataFrame to which the INFO tables are appended. left_on: str, default 'id' The name of SV id column of base_df Returns --------------- DataFrame A DataFrame which the formats tables are added. """ df_format = self.get_table('formats') df_format['format_id'] = df_format['sample'] + '_' + df_format['format'] + '_' + df_format['value_idx'].astype(str) df_format.drop(['sample', 'format', 'value_idx'], axis=1, inplace=True) df_format = df_format.pivot(index='id', columns='format_id', values='value') df_out = pd.merge(base_df, df_format, how='left', left_on=left_on, right_index=True) return df_out def append_filters(self, base_df, left_on='id'): """ append_filters(base_df, left_on='id') Append filters to the right of the base_df, based on the SV id columns. If the name of the SV id column in base_df is not 'id', specify column name into left_on argument. Parameters --------------- base_df: DataFrame The DataFrame to which the INFO tables are appended. left_on: str, default 'id' The name of SV id column of base_df Returns --------------- DataFrame A DataFrame which the filters tables are added. """ df_filters = self.get_table('filters') df_filters_expand = df_filters['filter'].str.get_dummies() df_be_appended = pd.concat([ df_filters['id'], df_filters_expand ], axis=1) df_be_appended = df_be_appended.groupby('id').sum().replace(to_replace={1: True, 0: False}) df_out = pd.merge(base_df, df_be_appended, how='left', left_on=left_on, right_on='id') return df_out def _parse_filter_query(self, q): sq = q.split(' ') # for flag informations and filters if sq[0].startswith('!'): sq0 = sq[0][1:] else: sq0 = sq[0] if sq0.lower() in self._ls_infokeys: df_infometa = self.get_table('infos_meta') row_mask = df_infometa['id'].str.contains(sq0.upper()) sq_dtype = df_infometa.loc[row_mask, 'type'].iloc[0] if sq_dtype == 'Integer': sq[-1] = int(sq[-1]) elif sq_dtype == 'String': sq[-1] = str(sq[-1]) elif sq_dtype =='Flag': if len(sq) == 1: if sq[0].startswith('!'): flag = False else: flag = True else: flag = True if sq[-1] == 'True' else False exclude = not flag set_out = self._filter_infos_flag(sq0, exclude=exclude) # defined in Bedpe return set_out if len(sq) == 3: set_out = self._filter_infos(sq[0], 0, sq[1], sq[2]) # defined in Bedpe else: set_out = self._filter_infos(*sq) # defined in Bedpe #print(set_out) return set_out # is_filter? arr_filters = self.get_table('filters_meta')['id'].values ls_filters = list(arr_filters) + ['PASS'] if sq0 in ls_filters: if len(sq) == 1: if sq[0].startswith('!'): flag = False else: flag = True else: flag = True if sq[-1] == 'True' else False exclude = not flag set_out = self._filter_filters(sq0, exclude=exclude) return set_out # is_format? if sq0 in self.get_table('samples_meta').values: df_formatmeta = self.get_table('formats_meta') row_mask = df_formatmeta['id'].str.contains(sq[1]) sq_dtype = df_formatmeta.loc[row_mask, 'type'].iloc[0] if sq_dtype == 'Integer': sq[-1] = int(sq[-1]) elif sq_dtype == 'String': sq[-1] = str(sq[-1]) if len(sq) == 4: set_out = self._filter_formats(sq[0], sq[1], 0, sq[2], sq[3]) else: sq[2] = int(sq[2]) set_out = self._filter_formats(*sq) return set_out # is_locus? if sq0 in ['be1', 'be2', 'pos1', 'pos2']: split_locus = sq[1].split(':') chrom = split_locus[0] if chrom.startswith('!'): exclude_flag = True chrom = chrom[1:] else: exclude_flag = False if chrom not in self.contigs: raise ContigNotFoundError(chrom) if len(split_locus) == 1: st = None en = None elif len(split_locus) == 2: split_locus_coord = split_locus[1].split('-') if len(split_locus_coord) == 1: st = int(split_locus_coord[0]) en = int(split_locus_coord[0]) + 1 elif len(split_locus_coord) == 2: st = split_locus_coord[0] en = split_locus_coord[1] if st == '': st = None else: st = int(st) if en == '': en = None else: en = int(en) if sq0 in ['be1', 'pos1']: pos_num = 1 elif sq0 in ['be2', 'pos2']: pos_num = 2 args = [pos_num, chrom, st, en] if exclude_flag: return self._filter_by_positions_exclude(*args) return self._filter_by_positions(*args) def filter(self, ls_query, query_logic='and'): """ filter(ls_query, query_logic) Filter Vcf object by the list of queries. Return object is also an instance of the Vcf object """ ### != operation is dangerous if isinstance(ls_query, str): ls_query = [ls_query] if query_logic == 'and': set_result = self.get_ids() for query in ls_query: set_query = self._parse_filter_query(query) set_result = set_result & set_query elif query_logic == 'or': set_result = set() for query in ls_query: set_query = self._parse_filter_query(query) set_result = set_result | set_query else: ls_set_query = [self._parse_filter_query(q) for q in ls_query] pattern = re.compile('([^0-9]*)([0-9]+)([^0-9]*)') target = r"\1ls_set_query[\2]\3" expr = pattern.sub(target, query_logic) set_result = eval(expr) out = self.filter_by_id(set_result) return out def _filter_by_id(self, tablename, arrlike_id): df = self.get_table(tablename) return df.loc[df['id'].isin(arrlike_id)].reset_index(drop=True) def filter_by_id(self, arrlike_id): """ filter_by_id(arrlike_id) Filter Vcf object according to the list of SV ids. Return object is also an instance of the Vcf object Parameters --------------- arrlike_id: list-like SV ids which you would like to keep. Returns --------------- Vcf A Vcf object with the SV id specified in the arrlike_id argument. All records associated with SV ids that are not in the arrlike_id will be discarded. """ out_svpos = self._filter_by_id('positions', arrlike_id) out_filters = self._filter_by_id('filters', arrlike_id) out_odict_df_info = OrderedDict([(k.upper(), self._filter_by_id(k, arrlike_id)) for k in self._ls_infokeys]) out_formats = self._filter_by_id('formats', arrlike_id) out_odict_df_headers = self._odict_df_headers.copy() out_metadata = self._metadata return Vcf(out_svpos, out_filters, out_odict_df_info, out_formats, out_odict_df_headers, out_metadata) def _filter_pos_table(self, item, operator, threshold): df = self.get_table('positions') e = "df.loc[df[item] {0} threshold]['id']".format(operator) return set(eval(e)) def _filter_filters(self, _filter, exclude=False): df = self.get_table('filters') set_out = set(df.loc[df['filter'] == _filter]['id']) if exclude: set_out = self.get_ids() - set_out return set_out def _filter_formats(self, sample, item, item_idx=0, operator=None, threshold=None): df = self.get_table('formats') target_q = (df['sample'] == sample) & (df['format'] == item) & (df['value_idx'] == item_idx) df_target = df.loc[target_q] e = "df_target.loc[df_target['value'] {0} threshold]['id']".format(operator) return set(eval(e)) def _filter_header(self, tablename): pass def annotate_bed(self, bed: Bed, annotation: str, suffix=['left', 'right'], description=None): df_svpos = self.get_table('positions') ls_left = [] ls_right = [] for idx, row in df_svpos.iterrows(): svid = row['id'] chrom1 = row['chrom1'] pos1 = row['pos1'] chrom2 = row['chrom2'] pos2 = row['pos2'] df_bp1 = bed.query(chrom1, pos1) df_bp2 = bed.query(chrom2, pos2) if not df_bp1.empty: ls_left.append([svid, 0, True]) if not df_bp2.empty: ls_right.append([svid, 0, True]) left_name = annotation + suffix[0] right_name = annotation + suffix[1] df_left = pd.DataFrame(ls_left, columns=('id', 'value_idx', left_name)) df_right = pd.DataFrame(ls_right, columns=('id', 'value_idx', right_name)) self.add_info_table(left_name, df_left, 0, type_="Flag", description=description) self.add_info_table(right_name, df_right, 0, type_="Flag", description=description) def breakend2breakpoint(self): """ breakend2breakpoint() Converts a Vcf object into a breakpoint-based Vcf object by integrating the paired breakends (BND) and infering their SVTYPE. Returns -------- Vcf SV records with svtype being BND were integrated into breakpoints, and svtype INFO will be overwritten. """ out = self.copy() if out._metadata['variantcaller'] == 'lumpy': ls_secondary = self.get_table('secondary')['id'].tolist() out = out.drop_by_id(ls_secondary) out.remove_info_table('secondary') df_svpos = out.get_table('positions') df_svtype = out.get_table('svtype') if out._metadata['variantcaller'] == 'delly': df_svpos.loc[df_svpos['svtype'] == 'BND', 'svtype'] = 'TRA' df_svtype.loc[df_svtype['svtype'] == 'BND', 'svtype'] = 'TRA' out._odict_alltables['positions'] = df_svpos out._odict_alltables['svtype'] = df_svtype out._odict_df_info['SVTYPE'] = df_svtype return out df_mateid = out.get_table('mateid') df_bnd = df_svpos[df_svpos['svtype'] == 'BND'] ls_info_breakend_id = [] breakpoint_id_num = 0 if df_bnd.empty: return self arr_skip = np.array([]) for idx, row in df_bnd.iterrows(): svid = row['id'] ser_mateid = df_mateid.loc[df_mateid['id'] == svid, 'mateid'] if ser_mateid.empty: mateid = None else: mateid = ser_mateid.item() if np.isin(svid, arr_skip): continue if mateid is None: svtype = 'BND' elif row['chrom1'] != row['chrom2']: svtype = 'TRA' elif row['strand1'] == row['strand2']: svtype = 'INV' elif get_inslen_and_insseq_from_alt(row['alt'])[0] > abs(row['pos1'] - row['pos2']) * 0.5: svtype = 'INS' elif (row['pos1'] < row['pos2']) & (row['strand1'] == '-') & (row['strand2'] == '+'): svtype = 'DUP' elif (row['pos1'] > row['pos2']) & (row['strand1'] == '+') & (row['strand2'] == '-'): svtype = 'DUP' else: svtype = 'DEL' arr_skip = np.append(arr_skip, mateid) breakpoint_id = 'viola_breakpoint:' + str(breakpoint_id_num) if mateid is not None: ls_info_breakend_id += [[breakpoint_id, 0, svid], [breakpoint_id, 1, mateid]] else: ls_info_breakend_id += [[breakpoint_id, 0, svid]] df_svpos.loc[df_svpos['id'] == svid, ['id', 'svtype']] = [breakpoint_id, svtype] df_svtype.loc[df_svtype['id'] == svid, ['id', 'svtype']] = [breakpoint_id, svtype] out.replace_svid(svid, breakpoint_id) breakpoint_id_num += 1 out._odict_alltables['positions'] = df_svpos out._odict_alltables['svtype'] = df_svtype out._odict_df_info['SVTYPE'] = df_svtype out.remove_info_table('mateid') df_info_breakend_id = pd.DataFrame(ls_info_breakend_id, columns=('id', 'value_idx', 'orgbeid')) out.add_info_table('orgbeid', df_info_breakend_id, type_='String', number=2, description='Breakend ID which were in original VCF file.', source='Python package, Viola-SV.') if out._metadata['variantcaller'] != 'lumpy': out = out.drop_by_id(list(arr_skip)) return out def _get_unique_events_ids(self) -> Set[IntOrStr]: """ now yields errors!!! ATOMAWASHI!!! """ if 'mateid' not in self.table_list: print("Can't find mateid table") return df = self.get_table('mateid') df2 = df.reset_index().set_index('mateid_0').loc[df['id']] arr_mask = df2['index'].values > np.arange(df2.shape[0]) set_to_subtract = set(df2.loc[arr_mask]['id']) set_all_ids = self.get_ids() set_result_ids = set_all_ids - set_to_subtract return set_result_ids def classify_manual_svtype(self, definitions=None, ls_conditions=None, ls_names=None, ls_order=None, return_series=True): """ classify_manual_svtype(definitions, ls_conditions, ls_names, ls_order=None) Classify SV records by user-defined criteria. A new INFO table named 'manual_sv_type' will be created. Parameters ------------ definitions: path_or_buf, default None Path to the file which specifies the definitions of custom SV classification. This argument is disabled when "ls_condition" is not None. If "default" is specified, the simple length-based SV classification will be employed. If "article" is specified, the same definition file which was used in the Viola publication will be reflected. Below is the links to each of definition file you can specify on this method. "default" -> https://github.com/dermasugita/Viola-SV/blob/master/examples/demo_sig/resources/definitions/sv_class_default.txt "article" -> https://github.com/dermasugita/Viola-SV/blob/master/examples/demo_sig/resources/definitions/sv_class_article.txt ls_conditions: List[callable] or List[str], default None List of definitions of custom SV classification. The data type of the elements in the list can be callable or SV ID (str). callable --> Functions that takes a self and returns a list of SV ID that satisfy the conditions of the SV class to be defined. SV ID --> Lists of SV ID that satisfy the conditions of the SV class to be defined. This argument is disabled when "definitions" is not None. ls_names: List[str], default None List of the names of the custom SV class corresponding to the "ls_conditions". This argument is disabled when "definitions" is not None. return_series: bool, default True Return counts of each custom SV class as a pd.Series. Returns --------- pd.Series or None """ set_ids_current = set(self.ids) obj = self ls_ids = [] ls_result_names = [] if definitions is not None: if isinstance(definitions, str): if definitions == "default": d = os.path.dirname(sys.modules["viola"].__file__) definitions = os.path.join(d, "data/sv_class_default.txt") ls_conditions, ls_names = self._parse_signature_definition_file(open(definitions, 'r')) elif definitions == "article": d = os.path.dirname(sys.modules["viola"].__file__) definitions = os.path.join(d, "data/sv_class_article.txt") ls_conditions, ls_names = self._parse_signature_definition_file(open(definitions, 'r')) else: ls_conditions, ls_names = self._parse_signature_definition_file(open(definitions, 'r')) else: ls_conditions, ls_names = self._parse_signature_definition_file(definitions) for cond, name in zip(ls_conditions, ls_names): obj = obj.filter_by_id(set_ids_current) if callable(cond): ids = cond(obj) else: ids = cond set_ids = set(ids) set_ids_intersection = set_ids_current & set_ids ls_ids += list(set_ids_intersection) ls_result_names += [name for i in range(len(set_ids_intersection))] set_ids_current = set_ids_current - set_ids_intersection ls_ids += list(set_ids_current) ls_result_names += ['others' for i in range(len(set_ids_current))] ls_zeros = [0 for i in range(len(self.ids))] df_result = pd.DataFrame({'id': ls_ids, 'value_idx': ls_zeros, 'manual_sv_type': ls_result_names}) self.add_info_table('manual_sv_type', df_result, number=1, type_='String', description='Custom SV class defined by user') if return_series: if ls_order is None: pd_ind_reindex = pd.Index(ls_names + ['others']) else: pd_ind_reindex =
pd.Index(ls_order)
pandas.Index
# IMPORTATION STANDARD import os # IMPORTATION THIRDPARTY import pandas as pd import pytest # IMPORTATION INTERNAL from gamestonk_terminal.stocks.due_diligence import dd_controller # pylint: disable=E1101 # pylint: disable=W0603 first_call = True @pytest.mark.block_network @pytest.mark.record_stdout def test_menu_quick_exit(mocker): mocker.patch("builtins.input", return_value="quit") mocker.patch("gamestonk_terminal.stocks.due_diligence.dd_controller.session") mocker.patch( "gamestonk_terminal.stocks.due_diligence.dd_controller.session.prompt", return_value="quit", ) stock = pd.DataFrame() dd_controller.menu( ticker="TSLA", start="10/25/2021", interval="1440min", stock=stock ) @pytest.mark.block_network @pytest.mark.record_stdout def test_menu_system_exit(mocker): global first_call first_call = True def side_effect(arg): global first_call if first_call: first_call = False raise SystemExit() return arg m = mocker.Mock(return_value="quit", side_effect=side_effect) mocker.patch("builtins.input", return_value="quit") mocker.patch("gamestonk_terminal.stocks.due_diligence.dd_controller.session") mocker.patch( "gamestonk_terminal.stocks.due_diligence.dd_controller.session.prompt", return_value="quit", ) mocker.patch( "gamestonk_terminal.stocks.due_diligence.dd_controller.DueDiligenceController.switch", new=m, ) stock = pd.DataFrame() dd_controller.menu( ticker="TSLA", start="10/25/2021", interval="1440min", stock=stock ) @pytest.mark.block_network @pytest.mark.record_stdout def test_print_help(): dd = dd_controller.DueDiligenceController( ticker="", start="", interval="", stock=pd.DataFrame() ) dd.print_help() @pytest.mark.block_network def test_switch_empty(): dd = dd_controller.DueDiligenceController( ticker="", start="", interval="", stock=
pd.DataFrame()
pandas.DataFrame
""" Download, transform and simulate various binary datasets. """ # Author: <NAME> <<EMAIL>> # <NAME> <<EMAIL>> # License: MIT from re import sub from collections import Counter from itertools import product from urllib.parse import urljoin from string import ascii_lowercase from zipfile import ZipFile from io import BytesIO, StringIO import requests import numpy as np import pandas as pd from sklearn.utils import check_X_y from imblearn.datasets import make_imbalance from .base import Datasets, FETCH_URLS, RANDOM_STATE class ImbalancedBinaryDatasets(Datasets): """Class to download, transform and save binary class imbalanced datasets.""" MULTIPLICATION_FACTORS = [2, 3] @staticmethod def _calculate_ratio(multiplication_factor, y): """Calculate ratio based on IRs multiplication factor.""" ratio = Counter(y).copy() ratio[1] = int(ratio[1] / multiplication_factor) return ratio def _make_imbalance(self, data, multiplication_factor): """Undersample the minority class.""" X_columns = [col for col in data.columns if col != "target"] X, y = check_X_y(data.loc[:, X_columns], data.target) if multiplication_factor > 1.0: sampling_strategy = self._calculate_ratio(multiplication_factor, y) X, y = make_imbalance( X, y, sampling_strategy=sampling_strategy, random_state=RANDOM_STATE ) data = pd.DataFrame(np.column_stack((X, y))) data.iloc[:, -1] = data.iloc[:, -1].astype(int) return data def download(self): """Download the datasets and append undersampled versions of them.""" super(ImbalancedBinaryDatasets, self).download() undersampled_datasets = [] for (name, data), factor in list( product(self.content_, self.MULTIPLICATION_FACTORS) ): ratio = self._calculate_ratio(factor, data.target) if ratio[1] >= 15: data = self._make_imbalance(data, factor) undersampled_datasets.append((f"{name} ({factor})", data)) self.content_ += undersampled_datasets return self def fetch_breast_tissue(self): """Download and transform the Breast Tissue Data Set. The minority class is identified as the `car` and `fad` labels and the majority class as the rest of the labels. http://archive.ics.uci.edu/ml/datasets/breast+tissue """ data = pd.read_excel(FETCH_URLS["breast_tissue"], sheet_name="Data") data = data.drop(columns="Case #").rename(columns={"Class": "target"}) data["target"] = data["target"].isin(["car", "fad"]).astype(int) return data def fetch_ecoli(self): """Download and transform the Ecoli Data Set. The minority class is identified as the `pp` label and the majority class as the rest of the labels. https://archive.ics.uci.edu/ml/datasets/ecoli """ data = pd.read_csv(FETCH_URLS["ecoli"], header=None, delim_whitespace=True) data = data.drop(columns=0).rename(columns={8: "target"}) data["target"] = data["target"].isin(["pp"]).astype(int) return data def fetch_eucalyptus(self): """Download and transform the Eucalyptus Data Set. The minority class is identified as the `best` label and the majority class as the rest of the labels. https://www.openml.org/d/188 """ data = pd.read_csv(FETCH_URLS["eucalyptus"]) data = data.iloc[:, -9:].rename(columns={"Utility": "target"}) data = data[data != "?"].dropna() data["target"] = data["target"].isin(["best"]).astype(int) return data def fetch_glass(self): """Download and transform the Glass Identification Data Set. The minority class is identified as the `1` label and the majority class as the rest of the labels. https://archive.ics.uci.edu/ml/datasets/glass+identification """ data = pd.read_csv(FETCH_URLS["glass"], header=None) data = data.drop(columns=0).rename(columns={10: "target"}) data["target"] = data["target"].isin([1]).astype(int) return data def fetch_haberman(self): """Download and transform the Haberman's Survival Data Set. The minority class is identified as the `1` label and the majority class as the `0` label. https://archive.ics.uci.edu/ml/datasets/Haberman's+Survival """ data = pd.read_csv(FETCH_URLS["haberman"], header=None) data.rename(columns={3: "target"}, inplace=True) data["target"] = data["target"].isin([2]).astype(int) return data def fetch_heart(self): """Download and transform the Heart Data Set. The minority class is identified as the `2` label and the majority class as the `1` label. http://archive.ics.uci.edu/ml/datasets/statlog+(heart) """ data = pd.read_csv(FETCH_URLS["heart"], header=None, delim_whitespace=True) data.rename(columns={13: "target"}, inplace=True) data["target"] = data["target"].isin([2]).astype(int) return data def fetch_iris(self): """Download and transform the Iris Data Set. The minority class is identified as the `1` label and the majority class as the rest of the labels. https://archive.ics.uci.edu/ml/datasets/iris """ data = pd.read_csv(FETCH_URLS["iris"], header=None) data.rename(columns={4: "target"}, inplace=True) data["target"] = data["target"].isin(["Iris-setosa"]).astype(int) return data def fetch_libras(self): """Download and transform the Libras Movement Data Set. The minority class is identified as the `1` label and the majority class as the rest of the labels. https://archive.ics.uci.edu/ml/datasets/Libras+Movement """ data = pd.read_csv(FETCH_URLS["libras"], header=None) data.rename(columns={90: "target"}, inplace=True) data["target"] = data["target"].isin([1]).astype(int) return data def fetch_liver(self): """Download and transform the Liver Disorders Data Set. The minority class is identified as the `1` label and the majority class as the '2' label. https://archive.ics.uci.edu/ml/datasets/liver+disorders """ data = pd.read_csv(FETCH_URLS["liver"], header=None) data.rename(columns={6: "target"}, inplace=True) data["target"] = data["target"].isin([1]).astype(int) return data def fetch_pima(self): """Download and transform the Pima Indians Diabetes Data Set. The minority class is identified as the `1` label and the majority class as the '0' label. https://www.kaggle.com/uciml/pima-indians-diabetes-database """ data = pd.read_csv(FETCH_URLS["pima"], header=None, skiprows=9) data.rename(columns={8: "target"}, inplace=True) return data def fetch_vehicle(self): """Download and transform the Vehicle Silhouettes Data Set. The minority class is identified as the `1` label and the majority class as the rest of the labels. https://archive.ics.uci.edu/ml/datasets/Statlog+(Vehicle+Silhouettes) """ data = pd.DataFrame() for letter in ascii_lowercase[0:9]: partial_data = pd.read_csv( urljoin(FETCH_URLS["vehicle"], "xa%s.dat" % letter), header=None, delim_whitespace=True, ) partial_data = partial_data.rename(columns={18: "target"}) partial_data["target"] = partial_data["target"].isin(["van"]).astype(int) data = data.append(partial_data) return data def fetch_wine(self): """Download and transform the Wine Data Set. The minority class is identified as the `2` label and the majority class as the rest of the labels. https://archive.ics.uci.edu/ml/datasets/wine """ data = pd.read_csv(FETCH_URLS["wine"], header=None) data.rename(columns={0: "target"}, inplace=True) data["target"] = data["target"].isin([2]).astype(int) return data def fetch_new_thyroid_1(self): """Download and transform the Thyroid Disease Data Set. The minority class is identified as the `positive` label and the majority class as the `negative` label. .. note:: The positive class was originally label 2. https://archive.ics.uci.edu/ml/datasets/Thyroid+Disease """ data = pd.read_csv( FETCH_URLS["new_thyroid"], header=None, ) data.rename(columns={0: "target"}, inplace=True) data["target"] = (data["target"] == 2).astype(int) return data def fetch_new_thyroid_2(self): """Download and transform the Thyroid Disease Data Set. The minority class is identified as the `positive` label and the majority class as the `negative` label. .. note:: The positive class was originally label 3. https://archive.ics.uci.edu/ml/datasets/Thyroid+Disease """ data = pd.read_csv( FETCH_URLS["new_thyroid"], header=None, ) data.rename(columns={0: "target"}, inplace=True) data["target"] = (data["target"] == 3).astype(int) return data def fetch_cleveland(self): """Download and transform the Heart Disease Cleveland Data Set. The minority class is identified as the `positive` label and the majority class as the `negative` label. https://archive.ics.uci.edu/ml/datasets/heart+disease """ data = pd.read_csv(FETCH_URLS["cleveland"], header=None) data.rename(columns={13: "target"}, inplace=True) data["target"] = (data["target"] == 1).astype(int) return data def fetch_dermatology(self): """Download and transform the Dermatology Data Set. The minority class is identified as the `positive` label and the majority class as the `negative` label. https://archive.ics.uci.edu/ml/datasets/Dermatology """ data = pd.read_csv(FETCH_URLS["dermatology"], header=None) data.rename(columns={34: "target"}, inplace=True) data.drop(columns=33, inplace=True) data["target"] = (data.target == 6).astype(int) return data def fetch_led(self): """Download and transform the LED Display Domain Data Set. The minority class is identified as the `positive` label and the majority class as the `negative` label. https://www.openml.org/d/40496 """ data = pd.read_csv(FETCH_URLS["led"]) data.rename(columns={"Class": "target"}, inplace=True) data["target"] = (data.target == 1).astype(int) return data def fetch_page_blocks(self): """Download and transform the Page Blocks Data Set. The minority class is identified as the `positive` label and the majority class as the `negative` label. https://www.openml.org/d/1021 """ data = pd.read_csv(FETCH_URLS["page_blocks"]) data.rename(columns={"class": "target"}, inplace=True) data["target"] = (data.target != 1).astype(int) return data def fetch_vowel(self): """Download and transform the Vowel Recognition Data Set. The minority class is identified as the `positive` label and the majority class as the `negative` label. https://www.openml.org/d/375 """ data = pd.read_csv(FETCH_URLS["vowels"]) data.rename(columns={"speaker": "target"}, inplace=True) data.drop(columns=["utterance", "frame"], inplace=True) data["target"] = (data["target"] == 1).astype(int) return data def fetch_yeast(self): """Download and transform the Yeast Data Set. The minority class is identified as the `positive` label and the majority class as the `negative` label. https://archive.ics.uci.edu/ml/datasets/Yeast """ data = pd.read_csv(FETCH_URLS["yeast"], header=None) data = pd.DataFrame( [ [val for val in row.split(" ") if len(val) != 0] for row in data[0].tolist() ] ) data.drop(columns=0, inplace=True) data.rename(columns={9: "target"}, inplace=True) data["target"] = (data["target"] == "MIT").astype(int) return data class BinaryDatasets(Datasets): """Class to download, transform and save binary class datasets.""" def fetch_banknote_authentication(self): """Download and transform the Banknote Authentication Data Set. https://archive.ics.uci.edu/ml/datasets/banknote+authentication """ data = pd.read_csv(FETCH_URLS["banknote_authentication"], header=None) data.rename(columns={4: "target"}, inplace=True) return data def fetch_arcene(self): """Download and transform the Arcene Data Set. https://archive.ics.uci.edu/ml/datasets/Arcene """ url = FETCH_URLS["arcene"] data, labels = [], [] for data_type in ("train", "valid"): data.append( pd.read_csv( urljoin(url, f"ARCENE/arcene_{data_type}.data"), header=None, sep=" ", ).drop(columns=list(range(1998, 10001))) ) labels.append( pd.read_csv( urljoin( url, ("ARCENE/" if data_type == "train" else "") + f"arcene_{data_type}.labels", ), header=None, ).rename(columns={0: "target"}) ) data = pd.concat(data, ignore_index=True) labels = pd.concat(labels, ignore_index=True) data = pd.concat([data, labels], axis=1) data["target"] = data["target"].isin([1]).astype(int) return data def fetch_audit(self): """Download and transform the Audit Data Set. https://archive.ics.uci.edu/ml/datasets/Audit+Data """ zipped_data = requests.get(FETCH_URLS["audit"]).content unzipped_data = ( ZipFile(BytesIO(zipped_data)) .read("audit_data/audit_risk.csv") .decode("utf-8") ) data = pd.read_csv(StringIO(sub(r"@.+\n+", "", unzipped_data)), engine="python") data = ( data.drop(columns=["LOCATION_ID"]) .rename(columns={"Risk": "target"}) .dropna() ) return data def fetch_spambase(self): """Download and transform the Spambase Data Set. https://archive.ics.uci.edu/ml/datasets/Spambase """ data =
pd.read_csv(FETCH_URLS["spambase"], header=None)
pandas.read_csv
from __future__ import print_function import collections import os import sys import numpy as np import pandas as pd try: from sklearn.impute import SimpleImputer as Imputer except ImportError: from sklearn.preprocessing import Imputer from sklearn.preprocessing import StandardScaler, MinMaxScaler, MaxAbsScaler file_path = os.path.dirname(os.path.realpath(__file__)) lib_path = os.path.abspath(os.path.join(file_path, '..', '..', 'common')) sys.path.append(lib_path) import candle global_cache = {} SEED = 2017 P1B3_URL = 'http://ftp.mcs.anl.gov/pub/candle/public/benchmarks/P1B3/' DATA_URL = 'http://ftp.mcs.anl.gov/pub/candle/public/benchmarks/Pilot1/combo/' def get_file(url): return candle.fetch_file(url, 'Pilot1') def impute_and_scale(df, scaling='std', keepcols=None): """Impute missing values with mean and scale data included in pandas dataframe. Parameters ---------- df : pandas dataframe dataframe to impute and scale scaling : 'maxabs' [-1,1], 'minmax' [0,1], 'std', or None, optional (default 'std') type of scaling to apply """ if keepcols is None: df = df.dropna(axis=1, how='all') else: df = df[keepcols].copy() all_na_cols = df.columns[df.isna().all()] df[all_na_cols] = 0 imputer = Imputer(strategy='mean') mat = imputer.fit_transform(df) if scaling is None or scaling.lower() == 'none': return pd.DataFrame(mat, columns=df.columns) if scaling == 'maxabs': scaler = MaxAbsScaler() elif scaling == 'minmax': scaler = MinMaxScaler() else: scaler = StandardScaler() mat = scaler.fit_transform(mat) df =
pd.DataFrame(mat, columns=df.columns)
pandas.DataFrame
import pandas as pd import sys from datetime import datetime from pytz import timezone, utc def str_list(s_cd): cds = [] if type(s_cd) == str: cds = [] cds.append(s_cd) else: cds = s_cd return cds def today_yymmdd(): d = pd.Timestamp.today().date().strftime('%y%m%d') return d def present_date(): d = pd.Timestamp.today().strftime('%Y-%m-%d') return d def a_week_ago(): tmp =
pd.Timestamp.today()
pandas.Timestamp.today
from datetime import datetime import pandas as pd import os import re from .transformers_map import transformers_map def build_data_frame(backtest: dict, csv_path: str): """Creates a Pandas DataFame with the provided backtest. Used when providing a CSV as the datafile Parameters ---------- backtest: dict, provides instructions on how to build the dataframe csv_path: string, absolute path of where to find the data file Returns ------- object, A Pandas DataFrame indexed buy date """ df = load_basic_df_from_csv(csv_path) if df.empty: raise Exception("Dataframe is empty. Check the start and end dates") df = prepare_df(df, backtest) return df def load_basic_df_from_csv(csv_path: str): """Loads a dataframe from a csv Parameters ---------- csv_path: string, path to the csv so it can be read Returns df, A basic dataframe with the data from the csv """ if not os.path.isfile(csv_path): raise Exception(f"File not found: {csv_path}") df = pd.read_csv(csv_path, header=0) df = standardize_df(df) return df def prepare_df(df: pd.DataFrame, backtest: dict): """Prepares the provided dataframe for a backtest by applying the datapoints and splicing based on the given backtest. Useful when loading an existing dataframe (ex. from a cache). Parameters ---------- df: DataFrame, should have all the open, high, low, close, volume data set as headers and indexed by date backtest: dict, provides instructions on how to build the dataframe Returns ------ df: DataFrame, with all the datapoints as column headers and trimmed to the provided time frames """ datapoints = backtest.get("datapoints", []) df = apply_transformers_to_dataframe(df, datapoints) trailing_stop_loss = backtest.get("trailing_stop_loss", 0) if trailing_stop_loss: df["trailing_stop_loss"] = df["close"].cummax() * ( 1 - float(trailing_stop_loss) ) chart_period = backtest.get("chart_period", "1Min") start_time = backtest.get("start") stop_time = backtest.get("stop") df = apply_charting_to_df(df, chart_period, start_time, stop_time) return df def apply_charting_to_df( df: pd.DataFrame, chart_period: str, start_time: str, stop_time: str ): """Modifies the dataframe based on the chart_period, start dates and end dates Parameters ---------- df: dataframe with data loaded chart_period: string, describes how often to sample data, default is '1Min' (1 minute) see https://pandas.pydata.org/pandas-docs/stable/user_guide/timeseries.html#dateoffset-objects start_time: datestring in YYYY-MM-DD HH:MM (ex. 2020-08-31 04:00) of when to begin the backtest stop_time: datestring of YYYY-MM-DD HH:MM when to stop the backtest Returns DataFrame, a sorted dataframe ready for consumption by run_backtest """ if df.index.dtype != "datetime64[ns]": headers = df.columns.values.tolist() headers.extend([df.index.name]) if "date" not in headers: raise Exception( "Data does not have a date column. Headers must include date, open, high, low, close, volume." ) time_unit = detect_time_unit(df.date[1]) df.date = pd.to_datetime(df.date, unit=time_unit) df.set_index("date", inplace=True) if start_time: if isinstance(start_time, datetime) or type(start_time) is int: time_unit = detect_time_unit(start_time) start_time = pd.to_datetime(start_time, unit=time_unit) start_time = start_time.strftime("%Y-%m-%d %H:%M:%S") if stop_time: if isinstance(stop_time, datetime) or type(stop_time) is int: time_unit = detect_time_unit(stop_time) stop_time = pd.to_datetime(stop_time, unit=time_unit) stop_time = stop_time.strftime("%Y-%m-%d %H:%M:%S") df = df.resample(chart_period).first() if start_time and stop_time: df = df[start_time:stop_time] # noqa elif start_time and not stop_time: df = df[start_time:] # noqa elif not start_time and stop_time: df = df[:stop_time] return df def apply_transformers_to_dataframe(df: pd.DataFrame, datapoints: list): """Applies indications from the backtest to the dataframe Parameters ---------- df: dataframe loaded with data datapoints: list of indictors as dictionary objects transformer detail: { "transformer": "", string, actual function to be called MUST be in the datapoints "name": "", string, name of the transformer, becomes a column on the dataframe "args": [], list arguments to pass the the function } Returns ------- df, a modified dataframe with all the datapoints calculated as columns """ for ind in datapoints: transformer = ind.get("transformer") field_name = ind.get("name") if len(ind.get("args", [])): args = ind.get("args") # df[field_name] = datapoints[transformer](df, *args) trans_res = transformers_map[transformer](df, *args) else: trans_res = transformers_map[transformer](df) if isinstance(trans_res, pd.DataFrame): df = process_res_df(df, ind, trans_res) if isinstance(trans_res, pd.Series): df[field_name] = trans_res return df def process_res_df(df, ind, trans_res): """handle if a transformer returns multiple columns To manage this, we just add the name of column in a clean way, removing periods and lowercasing it. Parameters ---------- df, dataframe, current dataframe ind, indicator object trans_res, result from the transformer function Returns ------- df, dataframe, updated dataframe with the new columns """ for key in trans_res.keys().values: i_name = ind.get("name") clean_key = key.lower() clean_key = clean_key.replace(".", "") clean_key = clean_key.replace(" ", "_") df_key = f"{i_name}_{clean_key}" df[df_key] = trans_res[key] return df def detect_time_unit(str_or_int: str or int): """Determines a if a timestamp is really a timestamp and if it matches is in seconds or milliseconds Parameters ---------- str_or_int: string or int of the timestamp to detect against Returns ------- string of "s" or "ms", or None if nothing detected """ str_or_int = str(str_or_int) regex1 = r"^(\d{10})$" regex2 = r"^(\d{13})$" if re.match(regex1, str_or_int): return "s" if re.match(regex2, str_or_int): return "ms" def standardize_df(df: pd.DataFrame): """Standardizes a dataframe with the basic features used throughout the project. Parameters ---------- df: A pandas dataframe (probably one just created) with at least the required columns of: date, open, close, high, low, volume. Returns ------- A new pandas dataframe of with all the data in the expected types. """ new_df = df.copy() if "date" in new_df.columns: new_df = new_df.set_index("date") ts = str(new_df.index[0]) time_unit = detect_time_unit(ts) new_df.index = pd.to_datetime(new_df.index, unit=time_unit) new_df = new_df[~new_df.index.duplicated(keep="first")] new_df = new_df.sort_index() columns_to_drop = ["ignore", "date"] new_df.drop(columns=columns_to_drop, errors="ignore") new_df.open = pd.to_numeric(new_df.open) new_df.close = pd.to_numeric(new_df.close) new_df.high = pd.to_numeric(new_df.high) new_df.low =
pd.to_numeric(new_df.low)
pandas.to_numeric
import warnings warnings.filterwarnings("ignore") import pickle import json import pandas as pd import numpy as np from pathlib import Path from process_functions import adjust_names, aggregate_countries, moving_average, write_log from pickle_functions import picklify, unpicklify ###################################### # Retrieve data ###################################### # Paths path_UN = Path.cwd() / 'input' / 'world_population_2020.csv' path_confirmed = Path.cwd() / 'input' / 'df_confirmed.csv' path_deaths = Path.cwd() / 'input' / 'df_deaths.csv' path_policy = Path.cwd() / 'input' / 'df_policy.csv' #path_geo = Path.cwd() / 'input'/ 'countries.geojson' # get data directly from github. The data source provided by Johns Hopkins University. url_confirmed = 'https://raw.githubusercontent.com/CSSEGISandData/COVID-19/master/csse_covid_19_data/csse_covid_19_time_series/time_series_covid19_confirmed_global.csv' url_deaths = 'https://raw.githubusercontent.com/CSSEGISandData/COVID-19/master/csse_covid_19_data/csse_covid_19_time_series/time_series_covid19_deaths_global.csv' url_policy = 'https://raw.githubusercontent.com/OxCGRT/covid-policy-tracker/master/data/OxCGRT_latest.csv' #df.to_csv(r'C:/Users/John\Desktop/export_dataframe.csv', index = None) pop = pd.read_csv(path_UN) #load old data df_confirmed_backup = pd.read_csv(path_confirmed) old_df_confirmed = df_confirmed_backup[['Province/State','Country/Region']] df_deaths_backup = pd.read_csv(path_deaths) old_df_deaths = df_deaths_backup[['Province/State','Country/Region']] df_policy_backup =
pd.read_csv(path_policy)
pandas.read_csv
from baseq.utils.file_reader import read_file_by_lines import pandas as pd pd.set_option('precision', 3) def fastq_basecontent_quality(sample, fastq_path, maxLines = 10000): """ Generate the basic quality stats of the fastq file Return: dataframe: A/T/C/G/quality; base content figure in base64; base quality figure in base64; """ import matplotlib as mpl mpl.use('Agg') import matplotlib.pyplot as plt inlines = read_file_by_lines(fastq_path, maxLines, 4) seqs = [] quals = [] content = {} for line in inlines: seqs.append(line[1].strip()) quals.append(line[3].strip()) seqlen = len(seqs[0]) quality = [0] * seqlen bases = ['A', 'T', 'C', 'G'] for base in bases: content[base] = [0] * seqlen #count bases for seq in seqs: for idx, base in enumerate(seq): if base in ['A', 'T', 'C', 'G'] and idx < seqlen: content[base][idx] += 1 #count quality for qual in quals: for idx, base in enumerate(qual): if idx < seqlen: if not (ord(base) - 33): print(ord(base) - 33) quality[idx] += ord(base) - 33 #high_bias_pos: position where one base exceed 50% of all coverage; high_bias_pos = 0 for base in ['A', 'T', 'C', 'G']: content[base] = [float(x) / len(seqs) for x in content[base]] high_bias_pos += sum([1 for x in content[base] if x>=0.5]) #quality and mean quality of all bases... content['quality'] = [q / len(seqs) for q in quality] mean_quality= round(sum(content['quality'])/len(content['quality']), 2) #plot basecontent... plt.figure(figsize=(4, 2)) plt.plot(range(1, seqlen+1), content['A']) plt.ylim((0, 1)) plt.savefig("./{}_basecontent.png".format(sample)) #plot quality plt.figure(figsize=(4, 2)) plt.plot(range(1, seqlen+1), content['quality']) plt.savefig("./{}_basequality.png".format(sample))
pd.DataFrame(content, columns=['A', 'T', 'C', 'G', 'quality'])
pandas.DataFrame
#!/usr/bin/env python # coding: utf-8 ## python 3.7.7, pandas 1.1.3, numpy 1.19.2 # # In[1]: import numpy as np import pandas as pd import os import re import sys import argparse import warnings warnings.filterwarnings('ignore') ## want to avoid print warnings with pandas merges that can be ignored parser = argparse.ArgumentParser() parser.add_argument('--version', action='version', version='1.0 (initial release)') parser.add_argument('--fargene', help='full path to fARGene output, if included') parser.add_argument('--shortbred', help='full path to shortBRED output (tsv), if included') parser.add_argument('--shortbred_map', help='full path to shortBRED mapping file, if included and not using default') parser.add_argument('--abx_map', help='full path to Abx:drug class mapping file, if included') parser.add_argument('--db_files', help='Path to ontology index files, exclude "/" on end of path ', default= "./db_files") parser.add_argument('--AMR_key', help='full path to key with known AMR phenotypes, REQUIRED', required = True) parser.add_argument('--name', help='an identifier for this analysis run, REQUIRED', required = True) parser.add_argument('--ham_out', help='output file from hAMRonization (tsv), REQUIRED', required = True) ## pull args args = parser.parse_args() ##Emily's Point To Files for Github ## read in card ontologies as new key card_key = pd.read_csv(f"{args.db_files}/aro_categories_index.tsv", sep='\t') ## read in drug class key data if args.abx_map: abx_key_name = args.AMR_key abx_key = pd.read_csv(abx_key_name) else: abx_key = pd.read_csv(f"{args.db_files}/cleaned_drug_class_key.csv") # point to known data if args.AMR_key: mock_name = args.AMR_key mock = pd.read_csv(mock_name) # point to observed data, e.g. hAMRonization output raw_name = args.ham_out raw_ham = pd.read_csv(raw_name, error_bad_lines=False, sep = "\t") ## get ham sum and add fargene and shortbred #resx = ["res_5x/", "res_50x/", "res_100x/"] this_run_res = args.name res_name = args.name outdir = str(args.name) + "/" dir_cmd = "mkdir " + outdir os.system(dir_cmd) ## read in shortbred if args.shortbred: shortbred_path = args.shortbred shortbred = pd.read_csv(shortbred_path, sep = "\t") ## hits only greater than zero shortbred = shortbred[shortbred['Hits'] > 0] shortbred['analysis_software_name'] = "shortbred" shortbred['gene_symbol'] = shortbred['Family'] ## merge "family" with gene symbol as closest match ## give meaning to shortbred family if args.shortbred_map: shortmap_name = args.shortbred_map shortmap = pd.csv_csv(shortmap_name, sep = "\t") else: shortmap =pd.read_csv(f'{args.db_files}/ShortBRED_ABR_Metadata.tab', sep = "\t") shortbred = shortbred.merge(shortmap, how = "left") shortbred['drug_class'] = shortbred['Merged.ID'] ## merge shortbred and rawham results raw_ham = raw_ham.append(shortbred,ignore_index = True) ### integrate fargene results # note there there is a discrepancy in that the results folder has mixed caps and lower case # so run "find . -depth | xargs -n 1 rename 's/(.*)\/([^\/]*)/$1\/\L$2/' {} \;" in the command line to fix it beta_lactam_models = ['class_a', 'class_b_1_2', 'class_b_3', 'class_c', 'class_d_1', 'class_d_2' ] subdirs = ['class_a', 'class_b_1_2', 'class_b_3', 'class_c', 'class_d_1', 'class_d_2', 'qnr', 'tet_efflux', 'tet_rpg', 'tet_enzyme'] if args.fargene: for model in subdirs: #for res in resx: fpath = str(args.fargene + model + "/hmmsearchresults/contigs-" + model + "-hmmsearched.out") #"/home/ewissel/amr-benchmarking/mock_2/" + res + "fargene_out_fa_2/" + model + "/hmmsearchresults/contigs-" + model + "-hmmsearched.out" #print(path) f = pd.read_csv(fpath, engine='python', sep = "\t", header = 1, skipfooter = 9) ## filter to just what this iteration is #if res == this_run_res: repi = len(f) #print(res, "\t", model, "\t", len(f)) if model in beta_lactam_models: resistance = "BETA-LACTAM" elif "tet" in model: resistance = "tetracycline" elif model =="qnr": resistance = "QUINOLONE" #print("fARGene\t", resistance) df = pd.DataFrame({'analysis_software_name': 'fARGene', 'drug_class':[resistance]}) newdf = pd.DataFrame(np.repeat(df.values,repi,axis=0)) newdf.columns = df.columns # print(newdf) raw_ham = raw_ham.append(newdf,ignore_index = True) ############################## ## now fargene and shortbred have been added to the raw_ham table # This was initially a manual cleaning process, but after pouring through the results at one resolution (20x), here is the closest code version of the manual cleaning process. Basically, we want to default to CARD drug classes for accession number. Then, give all the genes with the same gene name the CARD drug class (overriding the HAM drug class). Fill in NAs with the HAM drug class. ## read in above card_key['AMR Gene Family'] = card_key['AMR Gene Family'].str.lower() ## have top fill in protein accession NAs with 0.00 so that join works card_key['Protein Accession'] = card_key['Protein Accession'].fillna(101010) card_key.head() card = card_key.melt(id_vars=['AMR Gene Family', 'Drug Class', 'Resistance Mechanism'], value_vars=['Protein Accession', 'DNA Accession'], var_name = "accession_source", value_name = "accession") card['drug_class_card'] = card['Drug Class'] ## merge raw ham and card on accession / reference_accession salted_ham = raw_ham.merge(card, left_on = "reference_accession", right_on = "accession", how = "left") ## if gene_sumbol and drug class card NaN, filter out smol_gene = salted_ham[['gene_symbol','drug_class_card']].drop_duplicates().dropna(thresh=2) smol_dict = pd.Series(smol_gene.drug_class_card.values, index=smol_gene.gene_symbol).to_dict() ## make def to apply dict to fill in NAs def curedThatHam(x): var = '' if pd.isnull(x['drug_class_card']): ## if there is no card match from accession gene = x['gene_symbol'] try: var = smol_dict[gene] except KeyError: var = x['drug_class_card'] return var # apply salted_ham['drug_class_card'] = salted_ham.apply(lambda x: curedThatHam(x),axis = 1) ## override OG col because check confirmed it was ok salted_ham.analysis_software_name.unique() salted_ham['drug_class_ham'] = salted_ham['drug_class'] ## There are 9 tools in out salted ham. This is correct. We can now covert salted ham to cured ham cured_ham = pd.DataFrame(salted_ham) ## import the Resfinder results ##### this code block is outdated because I did this with the hamronizer tool; leaving for future ref tho ## had to run on web bc the docker version was broke AF #resfinder_results = pd.read_csv("../mock_2/resfinder/new_resfinder_webpage_results/resfinder_out.tsv", sep = "\t") #resfinder_results['analysis_software_name'] = "resfinder4_online" #cured_ham = cured_ham.append(resfinder_results, ignore_index= True) ### for each row ### if drug_class_card is not empty take value ## elif drug_class_card is empty and drug_class_ham is not empty, take drug_class_ham ## else: (if both columns for drug class are empty) add to counter as lost rows def simplify_drug_class(dat): drug_class = "" if not pd.isna(dat.drug_class_card): drug_class = str(dat['drug_class_card']) elif not pd.isna(dat.drug_class_ham): drug_class = str( dat['drug_class_ham']) elif not pd.isna(dat['Drug Class']): drug_class = dat['Drug Class'] # from shortbred else: drug_class = str("unknown") dat['drug_class'] = drug_class return dat import re cured_ham = cured_ham.apply(lambda x: simplify_drug_class(x), axis = 1) cured_ham['drug_class'] = cured_ham['drug_class'].str.lower() cured_ham['drug_class'] = cured_ham['drug_class'].apply(lambda x: (re.split(r";|, |: | and ", x ))) ####### has the generic abx names to drug class abx_key['abx_class'] = (abx_key['drug_class'] .apply(lambda x: x if type(x)== str else "") .apply(lambda x: ''.join(e for e in x if e.isalnum()))) abx_melted = abx_key.melt(value_vars=['Generic name', 'Brand names'], id_vars=['abx_class'], var_name = "abx_type", value_name = "abx") ## currently this is only adding generic names column #abx_melted[abx_melted['abx_type']=="Brand names"] # In[1392]: abx_melted['abx'] = abx_melted['abx'].str.lower().str.strip() #abx_melted[abx_melted['abx']=='tazobactam'] ## next combine the drug clas to the antibiotic in the mock community mock['Abx_split'] = mock['Abx'].apply(lambda x: x.split('-') if "-" in x else x) mock['Abx'] = (mock['Abx'] .apply(lambda x: x if type(x)== str else "") .apply(lambda x: ''.join(e for e in x if e.isalnum()))) mock = mock.explode('Abx_split') mock['Abx_split'] = mock['Abx_split'].str.lower() merged = mock.merge(abx_melted, left_on = 'Abx_split', right_on='abx', how='left') merged['abx_class'] = merged['abx_class'].str.lower() merged['Abx_split'][merged['abx_class'].isna()].unique() ## need to go make data tidy for this to work sucessfully # Now we have clean data! Now we want to create true +/- and false +/- in `cured_ham`. ## first filter merged so it is only the resistant ones resistant_mock = merged[merged['classification']=="resistant"] len(resistant_mock['abx'].unique()) # number if resustant antibiotuics len(resistant_mock['abx_class'].unique()) # number drug classes resistant sus_mock = merged[merged['classification']=="susceptible"] boolean_list = ~sus_mock.Abx.isin(resistant_mock['Abx']) filtered_sus = sus_mock[boolean_list] filtered_sus.abx.unique() ## only 6 antibiotics that are susceptible in the entire mock community filtered_sus.abx_class.unique() ## filter filtered sus so that drug classes are unique to sus, not in resistant group ## prior had to filter by antibiotic tested bc only know at drug level, not drug class. boolean2 = ~filtered_sus.abx_class.isin(resistant_mock['abx_class']) smol_sus = filtered_sus[boolean2] smol_sus.abx_class.unique() ## only 2 drug classes are KNOWN negatives in entire mock cured_ham = pd.DataFrame( cured_ham.explode('drug_class')) cured_ham['drug_class'] = (cured_ham['drug_class'] .apply(lambda x: x if type(x)== str else "") .apply(lambda x: ''.join(e for e in x if e.isalnum()))) #cured_ham['drug_class'].unique() #cured_ham.head() #cured_ham.shape ## jumps to over 2000 long # Now we have the `cured_ham` dataset, which contains all our observations and is cleaned so that every gene observation has a drug class assigned to it (unless the drug class is unknown). # Now we want to assign those true/false -/+ values. # In[1400]: ## give false + / - values ref_abx = resistant_mock['abx_class'].str.lower() ref_sus_abx = smol_sus['abx_class'].str.lower() ref_abx_df = resistant_mock def get_posneg(row): if row['drug_class'] in ref_abx: return "true_positive" elif row['drug_class'] in resistant_mock['Abx_split']: # I would rather explicitly have it search that it is not here return "true_positive" elif row['drug_class'] in ref_sus_abx: return "false_positive" else: return 'unknown' return #print(cured_ham.info()) #print(ref_sus_abx.describe()) cured_ham['True_Positive'] = (cured_ham .apply(lambda x: x['drug_class'] in ref_abx, axis = 1)) #cured_ham['False_Positive'] = (cured_ham # .apply(lambda x: x['drug_class'] in ref_sus_abx, axis=1)) #ref_abx_df['False_Negative'] = (ref_abx_df.apply(lambda x: x['abx_class'] not in cured_ham['drug_class'], axis=1)) #ref_abx_df['False_Negative'].unique() cured_ham_dc = pd.DataFrame(cured_ham['drug_class']) false_negatives = ref_abx_df[~(ref_abx_df['abx_class'] .isin(cured_ham_dc['drug_class']))] abx_melted['abx_class'] = abx_melted['abx_class'].str.lower() false_negatives = cured_ham_dc[~(cured_ham_dc['drug_class'] .isin(ref_abx_df['abx_class']))] #false_negatives.shape ## precursor to smol_sus; using smol_sus moving forward ## sorry that the variables make less sense as I add things. this is directly related to my sleep quality ## and how much I would like to be done with this project. # This is where <NAME> did some data cleaning in R. So I exported the above, and read in the results from her cleaning below. SHould probs rewrite what she did in python :,( # The following code block is originally written by Brooke in R, I have rewritten it in python so that we can use one script to do everything. # ## R to Python: Drug Class Cleaning ## based on brooke r code #Summarizing values ## R code #HAM$drug_class <- str_remove(HAM$drug_class, "antibiotic") #HAM$drug_class <- str_remove(HAM$drug_class, "resistant") #HAM$drug_class <- str_remove(HAM$drug_class, "resistance") ## python cured_ham['drugclass_new'] = cured_ham.drug_class.str.replace('antibiotic' , '') cured_ham['drugclass_new'] = cured_ham.drugclass_new.str.replace('resistant' , '') cured_ham['drugclass_new'] = cured_ham.drugclass_new.str.replace('resistance' , '') ### R code #HAM <- HAM %>% mutate(class_new = case_when(drug_class %in% c("amikacin", "kanamycin", "streptomycin","tobramycin", "kanamycin","spectinomycin", "gentamicin", "aminoglycoside") ~ "Aminoglycoside", # drug_class %in% c("phenicol", "chloramphenicol") ~ "Phenicol", # drug_class %in% c("quinolone", "fluoroquinolone", "ciprofloxacinir", "fluoroquinolones") ~ "Quinolones and Fluoroquinolones", # drug_class %in% c("macrolide", "erythromycin", "mls", "azithromycin", "telythromycin") ~ "Macrolide", # drug_class %in% c("tetracycline", "glycylcycline") ~ "Tetracycline", # drug_class %in% c("ampicillin", "methicillin", "penicillin", "amoxicillinclavulanicacid") ~ "Penicillin", # drug_class %in% c("colistin", "polymyxin", "bacitracin", "bicyclomycin") ~ "Polypeptides", # drug_class %in% c("cephalosporin", "cefoxatin", "ceftriaxone") ~ "Cephalosporin", # drug_class %in% c("carbapenem", "penem", "meropenem") ~ "Carbapenem", # drug_class %in% c("unclassified", "efflux", "acid", "unknown", "multidrug", "multidrugputative", "mutationsonrrnagene16s") ~ "Unclassified", # drug_class %in% c("linezolid", "oxazolidinone") ~ "Oxazolidinone", # drug_class %in% c("betalactam", "penam", "betalactamase") ~ "Unspecified Betalactam", # drug_class %in% c("acridinedye") ~ "Acridine dye", # drug_class %in% c("antibacterialfreefattyacids") ~ "Free fatty acids", # drug_class %in% c("benzalkoniumchloride", "quaternaryammonium") ~ "Benzalkonium chlorides", # drug_class %in% c("peptide") ~ "Unspecified peptide", # drug_class %in% c("nucleoside") ~ "Unspecified nucleoside", # drug_class %in% c("fusidicacid") ~ "Fucidic acid", # drug_class %in% c("sulfonamides", "sulfisoxazole", "sulfonamide") ~ "Sufonamides", ## drug_class %in% c("coppersilver") ~ "copper,silver", # drug_class %in% c("phenicolquinolone") ~ "phenicol,quinolone", TRUE ~ drug_class)) %>% # separate(class_new, into = c("d1", "d2"), sep = "([;,/])") ### python ## make new dict with drug class:drug coding that brooke implemented cleaning_class = {"Aminoglycoside": ["amikacin", "kanamycin", "streptomycin","tobramycin", "kanamycin","spectinomycin", "gentamicin", "aminoglycoside",'aminocoumarin'], "Phenicol" : ["phenicol", "chloramphenicol"], "Quinolones and Fluoroquinolones" : ["quinolone", "fluoroquinolone", "ciprofloxacinir", "fluoroquinolones"], "Macrolide" : ["macrolide", "erythromycin", "mls", "azithromycin", "telythromycin"], "Tetracycline" : ["tetracycline", "glycylcycline"], "Penicillin" : ["ampicillin", "methicillin", "penicillin", "amoxicillinclavulanicacid"], "Polypeptides" : ["colistin", "polymyxin", "bacitracin", "bicyclomycin"], "Cephalosporin" : ["cephalosporin", "cefoxatin", "ceftriaxone"], "Carbapenem" : ["carbapenem", "penem", "meropenem"], "Unclassified" : ["unclassified", "efflux", "acid", "unknown", "multidrug", "multidrugputative", "mutationsonrrnagene16s", 'warning', 'geneismissingfromnotesfilepleaseinformcurator', ## clean up mess from split 'ant2ia', 'aph6id', 'monobactam', 'shv52a', 'rblatem1'], # again, mess from split "Oxazolidinone" : ["linezolid", "oxazolidinone"], "Betalactam": ["betalactam", "penam", "betalactamase"], ## no need to be "unspecificed" to removed that string "Acridine dye" : ["acridinedye"], "Free fatty acids" : ["antibacterialfreefattyacids"], "Benzalkonium chlorides": ["benzalkoniumchloride", "quaternaryammonium"], "Unspecified peptide" : ["peptide"], "Unspecified nucleoside" : ["nucleoside"], "Fucidic acid" : ["fusidicacid"], "Sufonamides" : ["sulfonamides", "sulfisoxazole", "sulfonamide"], "copper,silver" : ["coppersilver", 'copper, silver'], "phenicol,quinolone" : ["phenicolquinolone"], "penicillin" : ['amoxicillin/clavulanicacid'] } ## invert dictionary so the value is the new value, key is old value new_d = {vi: k for k, v in cleaning_class.items() for vi in v} ## replace key value in column with value from dict (drug class new) cooked_ham = cured_ham.replace({"drugclass_new": new_d}) ## deep down, i am crying, because new_d worked partially but not completely ## i thought I took care of you, new_d, how could you do me like this #### R code: this part did not need to be copied to python; the R version made some duplicate rows from the transofrmation but the python version doesn't do this #Rearranging rows that needed to be transposed #Dups1 <- HAM %>% filter(drug_class %in% c("coppersilver","phenicolquinolone")) %>% # select(-d2) %>% rename(class_new = d1) #Dups2 <- HAM %>% filter(drug_class %in% c("coppersilver","phenicolquinolone")) %>% # select(-d1) %>% rename(class_new = d2) #dupout <- HAM %>% filter(is.na(d2)) %>% select(-d2) %>% rename(class_new = d1) # ## Back to the OG Python Script #cooked_ham = cooked_ham.append(resfinder_results, ignore_index = True) cooked_ham['drugclass_new'] = cooked_ham['drugclass_new'].str.lower() ### remove those with Unclassified drug class to_drop = ['unclassified', 'unknown', 'other', 'multidrug', '', 'target', 'efflux', # some of these are artifacts of cleaning/split 'mutationsonproteingene', 'mfsefflux', 'genemodulating', 'mateefflux', 'rndefflux','chloramphenicolacetyltransferasecat', 'abcefflux', 'otherarg', 'genemodulatingefflux', 'rrnamethyltransferase'] cooked_ham = cooked_ham[~cooked_ham['drugclass_new'].isin(to_drop)] ## remove unspecified string bewcause it will mess up matching cooked_ham['drugclass_new'] = cooked_ham['drugclass_new'].astype(str) cooked_ham['drugclass_new'] = cooked_ham['drugclass_new'].map(lambda x: x.replace('unspecified ', "")) cooked_ham['drugclass_new'] = cooked_ham['drugclass_new'].map(lambda x: x.replace('quinolones and fluoroquinolones', "quinolone")) ## some individual abx made it to drug class col, changing manually to drug class. cooked_ham['drugclass_new'] = cooked_ham['drugclass_new'].map(lambda x: x.replace('telithromycin', "macrolide")) cooked_ham['drugclass_new'] = cooked_ham['drugclass_new'].map(lambda x: x.replace('daptomycin', "lipopeptide")) cooked_ham['drugclass_new'] = cooked_ham['drugclass_new'].map(lambda x: x.replace('cefoxitin', "cephalosporin")) cooked_ham['drugclass_new'] = cooked_ham['drugclass_new'].map(lambda x: x.replace('classcbetalactamase', 'betalactam')) cooked_ham['drugclass_new'] = cooked_ham['drugclass_new'].map(lambda x: x.replace('classabetalactamase', 'betalactam')) cooked_ham['drugclass_new'] = cooked_ham['drugclass_new'].map(lambda x: x.replace('classbbetalactamase', 'betalactam')) cooked_ham['drugclass_new'] = cooked_ham['drugclass_new'].map(lambda x: x.replace('classdbetalactamase', 'betalactam')) cooked_ham['drugclass_new'] = cooked_ham['drugclass_new'].map(lambda x: x.replace('betalactamalternatename', 'betalactam')) #aminoglycosideaminocoumarin cooked_ham['drugclass_new'] = cooked_ham['drugclass_new'].map(lambda x: x.replace('aminoglycosideaminocoumarin', 'aminoglycoside')) cooked_ham['drugclass_new'] = cooked_ham['drugclass_new'].map(lambda x: x.replace('aminoglycosidealternatename', 'aminoglycoside')) cooked_ham['drugclass_new'] = cooked_ham['drugclass_new'].map(lambda x: x.replace('aminoglycosidephosphotransferase', 'aminoglycoside')) ## phosphotransferase would be filtered out as other drug class, so ignore here cooked_ham['drugclass_new'] = cooked_ham['drugclass_new'].map(lambda x: x.replace('aminoglycosidenucleotidyltransferase', 'aminoglycoside')) ## same w nucleo... cooked_ham['drugclass_new'] = cooked_ham['drugclass_new'].map(lambda x: x.replace('aminoglycosideacetyltransferase', 'aminoglycoside')) ## same w acetyl.. #cooked_ham['drugclass_new'] = cooked_ham['drugclass_new'].map(lambda x: x.replace('aminoglycosideaminocoumarin', 'aminoglycoside')) ## same w acetyl.. cooked_ham['drugclass_new'] = cooked_ham['drugclass_new'].map(lambda x: x.replace('tetracyclineefflux', 'tetracycline')) ## ## those that fall into "other" drug class are left as the abx # we can keep triclosan bc some abx map to triclosan ## inspect that it worked in interactive #cooked_ham['drugclass_new'].unique() #cooked_ham.shape ## shorter than above. bc drops those with unclassified / unknown def assign_true_pos(x): if x in(ref_abx.unique()): return "true_positive" elif x in(smol_sus['abx_class'].unique()): return "false_positive" else: return "unknown" cooked_ham['true_positive'] = cooked_ham['drugclass_new'].apply(lambda x: assign_true_pos(x)) # true is true pos, false is false neg combo_counts = cooked_ham.true_positive.value_counts() combo_name = outdir + "combo_counts_" + res_name + ".txt" combo_counts.to_csv(combo_name) print("\n") # first need to do some grouping by tool in cooked_ham grouped_ham = cooked_ham.groupby(['analysis_software_name']) ham_name = outdir + "cooked_ham_w_true_pos_" + res_name + ".csv" cooked_ham.to_csv(ham_name) # Analysis below grp_abx_results = grouped_ham['drugclass_new'].value_counts().to_frame() name_grp_results = outdir + "grouped_by_tool_drug_class" + res_name + ".csv" grp_abx_results.to_csv(name_grp_results) #grp_abx_results pos_count = grouped_ham['true_positive'].value_counts().to_frame().unstack(1, fill_value = 0) #pos_count.columns = ['analysis_software_name', 'positive_classification', 'count'] ### get false neg dataset abx_melted['abx_class'] = abx_melted['abx_class'].str.lower() # copied above but def need here ## drop other from abx_meltered because we excluded unknowns abx_melted = abx_melted[abx_melted.abx_class != 'other'] ## get true abx not in our sample not_in_mock = abx_melted[~abx_melted['abx_class'].isin(ref_abx)] not_in_mock['abx_class'].unique() mock_negatives = not_in_mock['abx_class'].unique() # list of what would be true negative values ## use smol_sus for only what is KNOWN as negative def fetch_negatives(df, tool): df = df[df.analysis_software_name == tool] ## filter for the tool not_in_ham = abx_melted[~abx_melted['abx_class'].isin(df['drugclass_new'])] return not_in_ham['abx_class'].unique() tool_list = list(cooked_ham['analysis_software_name'].unique()) negs = {} total_negatives = [] for i in tool_list: intermediate = fetch_negatives(cooked_ham, i) # print(i, "\n",len(intermediate)) # print(intermediate) ## these appear to be real true negatives - these Abx classes exist, and they are not in any of the hams name = str(i ) # join whats not in ham and not in mock for true neg negs[name] = intermediate for n in intermediate: if n not in total_negatives and n not in cooked_ham['drugclass_new']: total_negatives.append(n) all_pos_abx = resistant_mock['abx_class'].unique() neg_abx = smol_sus.abx_class.unique() neg_count = pd.DataFrame(columns=['tool', "false-neg", "true-neg"]) for tool in negs: tool_falseneg_count = 0 tool_trueneg_count = 0 negatives = negs[tool] for n in negatives: #print(tool, n, "\n") #print([n]) if n in neg_abx: #neg_abx for known negative, mock_negatives for negative results including unknown susceptibility #print("true_negative: ", tool, n) tool_trueneg_count += 1 elif n in all_pos_abx: #print("false negative: ", tool, n) tool_falseneg_count += 1 df2 = {'tool': tool, 'false-neg': tool_falseneg_count, 'true-neg': tool_trueneg_count} neg_count = neg_count.append(df2, ignore_index = True) print("False negatives from ", tool, ": ", tool_falseneg_count) print("True negatives from ", tool, ": ", tool_trueneg_count) print("\n\n") counts = pd.merge(pos_count, neg_count, right_on = "tool", how = "outer",left_index=True, right_index=False) #counts ## this spits out an error, but we can ignore it bc it's due to the double labels from pos counts ## what re counts if we merge all results pos_count_total = cooked_ham['true_positive'].value_counts().to_frame().unstack(1, fill_value = 0) #pos_count.columns = ['analysis_software_name', 'positive_classification', 'count']\ ## negs ## drugs not detected but that exist in the world not_in_ham = ref_abx[~ref_abx.isin(cooked_ham['drugclass_new'])] #not_in_ham negs_in_ham = cooked_ham['drugclass_new'][~cooked_ham['drugclass_new'].isin(ref_abx)] #negs_in_ham.unique() cooked_ham[cooked_ham['drugclass_new'].isin(neg_abx)] ## all false positives are nitro for oqxB/A gene ## get false/true negs tot_trueneg_count = 0 tot_falseneg_count = 0 for n in total_negatives: #print(tool, n, "\n") # print([n]) if n in neg_abx: #neg_abx for known negative, mock_negatives for negative results including unknown susceptibility #print("true_negative: ", tool, n) if n not in cooked_ham['drugclass_new']: tot_trueneg_count += 1 #print("true neg: ", n) elif n in all_pos_abx: #print("false negative: ", tool, n) if n not in cooked_ham['drugclass_new']: tot_falseneg_count += 1 #print('false_neg:', n) #print("False negatives: ", tot_falseneg_count) #print("True negatives: ", tot_trueneg_count) ## write in a check for the cols we expect if ('true_positive','false_positive') in counts.columns: pass else: counts[('true_positive', 'false_positive') ] = int(0) if ('true_positive','unknown') in counts.columns: pass else: counts[('true_positive', 'unknown') ] = int(0) # # <NAME> # # The following table is what all this code is for. ## sensitivity / specificity analysis ## sensitivity = true_positives / (true_positives + false_negatives) try: counts['sensitivity'] = counts[('true_positive', 'true_positive')] / (counts[('true_positive','true_positive')] + counts['false-neg']) except ZeroDivisionError: print('can\'t calculate sensitivity because no values detected. Are you sure your data looks right?') # precision = true positives / false_positives + true_positives counts['precision'] = counts[('true_positive', 'true_positive')] / ( counts['true_positive', 'false_positive'] + counts[('true_positive', 'true_positive')] ) ## specificity = true_negative / (true_negative + false_positi try: counts['specificity'] = counts['true-neg'] / (counts['true-neg'] + counts[('true_positive', 'false_positive')]) except ZeroDivisionError: print("Can't calculate specificity because there are no observed true negatives or false positives.") counts['specificity'] = int(0) ## accuracy = (true_positive + true_negative) / (true_positive + false_positive + true_negative + false_negative) counts['accuracy'] = (counts[('true_positive', 'true_positive')] + counts['true-neg']) / (counts[('true_positive', 'true_positive')] + counts['true_positive','false_positive'] + counts['true-neg'] + counts['false-neg'] ) ## recall = true pos / (true pos + false neg) #### since sensitivity and recall are functionally the same, removing recall #counts['recall'] = counts[('true_positive', 'true_positive')] / (counts[('true_positive', 'true_positive')] + counts['false-neg']) #counts['recall'] = pd.to_numeric(counts['recall']) # F1 currently faulty (returning values outside expected range) so removing from the pipeline ## 2 * (precision * recall) / (precision + recall) #counts['F1'] = 2 * ( (counts['precision'] * counts['recall']) / (counts['precision'] + counts['recall']) ) #except ZeroDivisionError: # counts['F1'] = 0 counts['percent_unclassified'] = counts[('true_positive', 'unknown')] / (counts[('true_positive', 'true_positive')] + counts[('true_positive', 'false_positive')] + counts[('true_positive', 'unknown')]) #print("<NAME>, ", this_run_res, ": ") name = outdir + "thanksgiving_ham_" + res_name + ".csv" counts.to_csv(name) #print(counts) ## print out if interactive; does nothing if command line print("\nYou have new results! Check it out in ", name, "\n") # # Canned Ham # condensing the results # note that these aren't particularly informative. it's here in case reviewers really want it. cooked_ham = cooked_ham.assign(condensed_gene = cooked_ham.groupby('analysis_software_name')['input_gene_start'].shift(-1)) def condense_results(df): start_col = df['input_gene_start'] stop_col = df['input_gene_stop'] next_row = df['condensed_gene'] keep_val = "" condense_val = "" unconclusive_val = "" if next_row < stop_col: # if the start of the next gene overlaps with the end of THIS gene condense_val = "condense" elif stop_col < next_row: keep_val = "keep" else: unconclusive_val = "unconclusive" message = str( condense_val + keep_val + unconclusive_val) return(message) cooked_ham['condense_action'] = cooked_ham.apply(lambda x: condense_results(x), axis=1) ## does this need to be grouped by analysis software name ? #cooked_ham['condense_action'].describe() ## looks like there are 1811 instances where AMR genes overlap. Lets remove these and see what happens. canned_ham = cooked_ham[cooked_ham['condense_action'] != "condense"] ## i am very proud of myself for this name ## its the little things in life that bring me smiles ## positives grouped_can = canned_ham.groupby(['analysis_software_name']) pos_count2 = grouped_can['true_positive'].value_counts().to_frame().unstack(1, fill_value = 0) ## add negatives negs2={} for i in tool_list: intermediate = fetch_negatives(canned_ham, i) #print(i, "\n",len(intermediate)) ## these appear to be real true negatives - these Abx classes exist, and they are not in any of the hams name = str(i ) # join whats not in ham and not in mock for true neg negs2[name] = intermediate ## negative counts neg_count2 = pd.DataFrame(columns=['tool', "false-neg", "true-neg"]) for tool in negs2: tool_falseneg_count = 0 tool_trueneg_count = 0 negatives = negs2[tool] for n in negatives: # print(tool, n, "\n") #print([n]) if n in neg_abx: #print("true_negative: ", tool, n) tool_trueneg_count += 1 elif n in neg_abx: ## only things that are known to be negative #print("false negative: ", tool, n) tool_falseneg_count += 1 df3 = {'tool': tool, 'false-neg': tool_falseneg_count, 'true-neg': tool_trueneg_count} neg_count2 = neg_count2.append(df3, ignore_index = True) #print("False negatives from ", tool, ": ", tool_falseneg_count) #print("Truenegatives from ", tool, ": ", tool_trueneg_count) ## merge this all together counts2 =
pd.merge(pos_count2, neg_count2, right_on = "tool", how = "outer",left_index=True, right_index=False)
pandas.merge
import numpy as np import pandas as pd import pickle from pathlib import Path import covid19 from COVID19.model import AgeGroupEnum, EVENT_TYPES, TransmissionTypeEnum from COVID19.model import Model, Parameters, ModelParameterException import COVID19.simulation as simulation from analysis_utils import ranker_I, check_fn_I, ranker_IR, check_fn_IR, roc_curve, events_list from abm_utils import status_to_state, listofhouses, dummy_logger, quarantine_households #import sib #import greedy_Rank def loop_abm(params, inference_algo, logger = dummy_logger(), input_parameter_file = "./abm_params/baseline_parameters.csv", household_demographics_file = "./abm_params/baseline_household_demographics.csv", parameter_line_number = 1, seed=1, initial_steps = 0, num_test_random = 50, num_test_algo = 50, fraction_SM_obs = 0.2, fraction_SS_obs = 1, quarantine_HH = False, test_HH = False, name_file_res = "res", output_dir = "./output/", save_every_iter = 5, stop_zero_I = True, adoption_fraction = 1.0, fp_rate = 0.0, fn_rate = 0.0, smartphone_users_abm = False, # if True use app users fraction from OpenABM model callback = lambda x : None, data = {} ): ''' Simulate interventions strategy on the openABM epidemic simulation. input ----- params: Dict Dictonary with openABM to set inference_algo: Class (rank_template) Class for order the nodes according to the prob to be infected logger = logger for printing intermediate steps results: print on file true configurations and transmission ''' params_model = Parameters(input_parameter_file, parameter_line_number, output_dir, household_demographics_file) ### create output_dir if missing fold_out = Path(output_dir) if not fold_out.exists(): fold_out.mkdir(parents=True) ### initialize a separate random stream rng = np.random.RandomState() rng.seed(seed) ### initialize ABM model for k, val in params.items(): params_model.set_param(k, val) model = Model(params_model) model = simulation.COVID19IBM(model=model) T = params_model.get_param("end_time") N = params_model.get_param("n_total") sim = simulation.Simulation(env=model, end_time=T, verbose=False) house = covid19.get_house(model.model.c_model) housedict = listofhouses(house) has_app = covid19.get_app_users(model.model.c_model) if smartphone_users_abm else np.ones(N,dtype = int) has_app &= (rng.random(N) <= adoption_fraction) ### init data and data_states data_states = {} data_states["true_conf"] = np.zeros((T,N)) data_states["statuses"] = np.zeros((T,N)) data_states["tested_algo"] = [] data_states["tested_random"] = [] data_states["tested_SS"] = [] data_states["tested_SM"] = [] for name in ["num_quarantined", "q_SS", "q_SM", "q_algo", "q_random", "q_all", "infected_free", "S", "I", "R", "IR", "aurI", "prec1%", "prec5%", "test_+", "test_-", "test_f+", "test_f-"]: data[name] = np.full(T,np.nan) data["logger"] = logger ### init inference algo inference_algo.init(N, T) ### running variables indices = np.arange(N, dtype=int) excluded = np.zeros(N, dtype=bool) daily_obs = [] all_obs = [] all_quarantined = [] freebirds = 0 num_quarantined = 0 fp_num = 0 fn_num = 0 p_num = 0 n_num = 0 noise_SM = rng.random(N) nfree = params_model.get_param("n_seed_infection") for t in range(T): ### advance one time step sim.steps(1) status = np.array(covid19.get_state(model.model.c_model)) state = status_to_state(status) data_states["true_conf"][t] = state nS, nI, nR = (state == 0).sum(), (state == 1).sum(), (state == 2).sum() if nI == 0 and stop_zero_I: logger.info("stopping simulation as there are no more infected individuals") break if t == initial_steps: logger.info("\nobservation-based inference algorithm starts now\n") logger.info(f'time:{t}') ### extract contacts daily_contacts = covid19.get_contacts_daily(model.model.c_model, t) logger.info(f"number of unique contacts: {len(daily_contacts)}") ### compute potential test results for all if fp_rate or fn_rate: noise = rng.random(N) f_state = (state==1)*(noise > fn_rate) + (state==0)*(noise < fp_rate) + 2*(state==2) else: f_state = state to_quarantine = [] all_test = [] excluded_now = excluded.copy() fp_num_today = 0 fn_num_today = 0 p_num_today = 0 n_num_today = 0 def test_and_quarantine(rank, num): nonlocal to_quarantine, excluded_now, all_test, fp_num_today, fn_num_today, p_num_today, n_num_today test_rank = [] for i in rank: if len(test_rank) == num: break; if excluded_now[i]: continue test_rank += [i] if f_state[i] == 1: p_num_today += 1 if state[i] != 1: fp_num_today += 1 q = housedict[house[i]] if quarantine_HH else [i] excluded_now[q] = True to_quarantine += q excluded[q] = True if test_HH: all_test += q else: all_test += [i] else: n_num_today += 1 if state[i] == 1: fn_num_today += 1 excluded_now[i] = True all_test += [i] return test_rank ### compute rank from algorithm num_test_algo_today = num_test_algo if t < initial_steps: daily_obs = [] num_test_algo_today = 0 weighted_contacts = [(c[0], c[1], c[2], 2.0 if c[3] == 0 else 1.0) for c in daily_contacts if (has_app[c[0]] and has_app[c[1]])] if nfree == 0 and quarantine_HH: print("faster end") rank_algo = np.zeros((N,2)) rank_algo[:, 0]=np.arange(N) rank_algo[:, 1]=np.random.rand(N) else: rank_algo = inference_algo.rank(t, weighted_contacts, daily_obs, data) rank = np.array(sorted(rank_algo, key= lambda tup: tup[1], reverse=True)) rank = [int(tup[0]) for tup in rank] ### test num_test_algo_today individuals test_algo = test_and_quarantine(rank, num_test_algo_today) ### compute roc now, only excluding past tests eventsI = events_list(t, [(i,1,t) for (i,tf) in enumerate(excluded) if tf], data_states["true_conf"], check_fn = check_fn_I) xI, yI, aurI, sortlI = roc_curve(dict(rank_algo), eventsI, lambda x: x) ### test all SS SS = test_and_quarantine(indices[status == 4], N) ### test a fraction of SM SM = indices[(status == 5) & (noise_SM < fraction_SM_obs)] SM = test_and_quarantine(SM, len(SM)) ### do num_test_random extra random tests test_random = test_and_quarantine(rng.permutation(N), num_test_random) ### quarantine infected individuals num_quarantined += len(to_quarantine) covid19.intervention_quarantine_list(model.model.c_model, to_quarantine, T+1) ### update observations daily_obs = [(int(i), int(f_state[i]), int(t)) for i in all_test] all_obs += daily_obs ### exclude forever nodes that are observed recovered rec = [i[0] for i in daily_obs if f_state[i[0]] == 2] excluded[rec] = True ### update data data_states["tested_algo"].append(test_algo) data_states["tested_random"].append(test_random) data_states["tested_SS"].append(SS) data_states["tested_SM"].append(SM) data_states["statuses"][t] = status data["S"][t] = nS data["I"][t] = nI data["R"][t] = nR data["IR"][t] = nR+nI data["aurI"][t] = aurI prec = lambda f: yI[int(f/100*len(yI))]/int(f/100*len(yI)) if len(yI) else np.nan ninfq = sum(state[to_quarantine]>0) nfree = int(nI - sum(excluded[state == 1])) data["aurI"][t] = aurI data["prec1%"][t] = prec(1) data["prec5%"][t] = prec(5) data["num_quarantined"][t] = num_quarantined data["test_+"][t] = p_num data["test_-"][t] = n_num data["test_f+"][t] = fp_num data["test_f-"][t] = fn_num data["q_SS"][t] = len(SS) data["q_SM"][t] = len(SM) sus_test_algo = sum(state[test_algo]==0) inf_test_algo = sum(state[test_algo]==1) rec_test_algo = sum(state[test_algo]==2) inf_test_random = sum(state[test_random]==1) data["q_algo"][t] = inf_test_algo data["q_random"][t] = sum(state[test_random]==1) data["infected_free"][t] = nfree asbirds = 'a bird' if nfree == 1 else 'birds' fp_num += fp_num_today fn_num += fn_num_today n_num += n_num_today p_num += p_num_today ### show output logger.info(f"True : (S,I,R): ({nS:.1f}, {nI:.1f}, {nR:.1f})") logger.info(f"AUR_I : {aurI:.3f}, prec(1% of {len(yI)}): {prec(1):.2f}, prec5%: {prec(5):.2f}") logger.info(f"SS: {len(SS)}, SM: {len(SM)}, results test algo (S,I,R): ({sus_test_algo},{inf_test_algo},{rec_test_algo}), infected test random: {inf_test_random}/{num_test_random}") logger.info(f"false+: {fp_num} (+{fp_num_today}), false-: {fn_num} (+{fn_num_today})") logger.info(f"...quarantining {len(to_quarantine)} guys -> got {ninfq} infected, {nfree} free as {asbirds} ({nfree-freebirds:+d})") freebirds = nfree ### callback callback(data) if t % save_every_iter == 0: df_save = pd.DataFrame.from_records(data, exclude=["logger"]) df_save.to_csv(output_dir + name_file_res + "_res.gz") # save files df_save = pd.DataFrame.from_records(data, exclude=["logger"]) df_save.to_csv(output_dir + name_file_res + "_res.gz") with open(output_dir + name_file_res + "_states.pkl", mode="wb") as f_states: pickle.dump(data_states, f_states) sim.env.model.write_individual_file() df_indiv = pd.read_csv(output_dir+"individual_file_Run1.csv", skipinitialspace = True) df_indiv.to_csv(output_dir+name_file_res+"_individuals.gz") sim.env.model.write_transmissions() df_trans =
pd.read_csv(output_dir+"transmission_Run1.csv")
pandas.read_csv
# Credit card fruad transaction data # Undersampling - logistic regression - bagging import pandas as pd import numpy as np import matplotlib.pyplot as plt from sklearn.ensemble import RandomForestClassifier from sklearn.cross_validation import train_test_split from sklearn import metrics from sklearn.cross_validation import cross_val_score from sklearn.metrics import precision_recall_curve from sklearn.metrics import average_precision_score def data_out(o): import csv with open("output-RanFor.csv", "w") as f: writer = csv.writer(f) writer.writerows(o) def play(N,n,d): print("N=",N) print("n=",n) df =
pd.read_csv('./trainccard.csv')
pandas.read_csv
""" Authors: <NAME> and <NAME> """ from bloomberg import BBG import pandas as pd from sklearn import preprocessing import numpy as np import matplotlib.pyplot as plt bbg = BBG() # Brazil FGV Consumer Confidence Index SA Sep 2005=100 # Original Date: '30-sep-2005' start_date =
pd.to_datetime('01-jan-2010')
pandas.to_datetime
""" This script cleans the data """ import json import lightgbm as lgb import numpy as np import pandas as pd from scipy.signal import savgol_filter as sg from sklearn.feature_selection import RFECV from sklearn.metrics import make_scorer from sklearn.model_selection import GridSearchCV import shap from auxiliary import week_of_month, BlockingTimeSeriesSplit from config import DATA_CONSUMPTION_PROCESSED_FILE, INTERVENTION_CALENDAR, \ DATA_WEATHER_PROCESSED_FILE, BEST_FEATURES_FILE, ALL_NUMERICAL_FEATURES,ALL_CATEGORICAL_FEATURES, \ DATA_VACATIONS_INTERVENTION_FILE, DATA_METADATA_PROCESSED_FILE, DATA_HOLIDAYS_PROCESSED_FILE, \ DATA_ISO_CONSUMPTION_PROCESSED_FILE, DATA_ENTHALPY_GRADIENTS_PROCESSED_FILE, DATA_VACATIONS_FILE, \ DATA_SOLAR_GAINS_PROCESSED_FILE, DYNAMIC_SPACE, EXPERIMENTS, CONTROL_GROUPS, BEST_PARAMETERS_FILE from custom_scorer_module import scorer_quantile, scorer_rmse def lgbm_regression_efecto_acumulado_con_linea_base_del_experimento(alpha, data_mean, get_best_parameters=False, get_best_features=False, use_best_features=False): # INITIALIZE NEW FIELDS numerical_features_list = ALL_NUMERICAL_FEATURES categorical_features_list = ALL_CATEGORICAL_FEATURES new_field = "GBM_consumption_kWh_" + alpha data_mean[new_field] = 0.0 for experiment, control in zip(EXPERIMENTS, CONTROL_GROUPS): # GET DATA ABOUT PERIODS OF INTERVENTION OF THE EXPERIMENTAL PERIOD intervention_data = INTERVENTION_CALENDAR[experiment] pre_period = intervention_data[1] post_period = intervention_data[2] range_pre_intervention_period = pd.date_range(start=pre_period[0], end=pre_period[1], freq='D') range_post_intervention_period = pd.date_range(start=post_period[0], end=post_period[1], freq='D') if use_best_features: best_features = open_best_features() features = best_features[alpha][str(experiment)] categorical_features_list = [x for x in categorical_features_list if x in features] numerical_features_list = [x for x in numerical_features_list if x in features] # GET TRAINING AND VALIDATION SET X, y = get_training_validation_set(CONTROL_GROUPS, data_mean, range_pre_intervention_period, categorical_features_list, numerical_features_list, experiment, "CONSUMPTION_kWh", get_best_parameters, get_best_features) if get_best_parameters and get_best_features: best_parameters = open_best_parameters() best_features = open_best_features() best_parameters[alpha][str(experiment)], best_features[alpha][ str(experiment)] = get_best_params_and_features(X, y, float(alpha)) save_best_parameters(best_parameters) save_best_features(best_features) elif get_best_parameters: best_parameters = open_best_parameters() best_parameters[alpha][str(experiment)] = get_best_params(X, y, float(alpha)) save_best_parameters(best_parameters) elif get_best_features: best_parameters = open_best_parameters() params = best_parameters[alpha][str(experiment)] params['alpha'] = float(alpha) trained_model = lgb.train(params, lgb.Dataset(X, y, categorical_feature=categorical_features_list) ) explainer = shap.TreeExplainer(trained_model) shap_values = explainer.shap_values(X) shap_sum = np.abs(shap_values).mean(axis=0) best_features = open_best_features() best_features[alpha][str(experiment)] = [f for f, s in zip(X.columns.tolist(), shap_sum.tolist()) if s >= 0.005] save_best_features(best_features) importance_df = pd.DataFrame([X.columns.tolist(), shap_sum.tolist()]).T importance_df.columns = ['column_name', 'shap_importance'] importance_df = importance_df.sort_values('shap_importance', ascending=False) print(importance_df) else: print('training experiment {}, with alpha {}, with control {}'.format(experiment, alpha, control)) best_parameters = open_best_parameters() params = best_parameters[alpha][str(experiment)] params['alpha'] = float(alpha) trained_model = lgb.train(params, lgb.Dataset(X, y, categorical_feature=categorical_features_list) ) # explainer = shap.TreeExplainer(trained_model) # shap_values = explainer.shap_values(X) # shap_sum = np.abs(shap_values).mean(axis=0) # importance_df = pd.DataFrame([X.columns.tolist(), shap_sum.tolist()]).T # importance_df.columns = ['column_name', 'shap_importance'] # importance_df = importance_df.sort_values('shap_importance', ascending=False) # print(importance_df) # fold_importance_df = pd.DataFrame() # fold_importance_df["feature"] = X.columns # fold_importance_df["importance"] = trained_model.feature_importance() # fold_importance_df = fold_importance_df.sort_values(by="importance", ascending=False) # print(fold_importance_df) # visualize the first prediction's explanation (use matplotlib=True to avoid Javascript) # shap.summary_plot(shap_values, X, plot_type="bar") data_mean = predict(new_field, data_mean, trained_model, experiment, numerical_features_list, categorical_features_list, range_post_intervention_period, range_pre_intervention_period) print("SUCCESS!") return data_mean def open_best_parameters(): with open(BEST_PARAMETERS_FILE, 'r') as fp: data = json.load(fp) return data def open_best_features(): with open(BEST_FEATURES_FILE, 'r') as fp: data = json.load(fp) return data def save_best_parameters(best_parameters): with open(BEST_PARAMETERS_FILE, 'w') as fp: json.dump(best_parameters, fp) def save_best_features(best_parameters): with open(BEST_FEATURES_FILE, 'w') as fp: json.dump(best_parameters, fp) def predict(new_field, data_mean, final_model, experiment, numerical_features_list, categorical_features_list, range_post_intervention_period, range_pre_intervention_period): # GET ALL FEATURES features = numerical_features_list + categorical_features_list # ADOPT CATEGORICAL FEATURES SO THEY WORK AS EXPECTED for c in categorical_features_list: data_mean[c] = data_mean[c].astype('category') # PREDICT FOR PREINTERVENTION data_pre = data_mean[(data_mean.timestamp.isin(range_pre_intervention_period)) & (data_mean.EXPERIMENT == experiment)] data_mean.loc[data_mean['timestamp'].isin(range_pre_intervention_period) & (data_mean.EXPERIMENT == experiment), new_field] = np.exp(final_model.predict(data_pre[features])) # PREDICT FOR POSTINTERVENTION data_post = data_mean[(data_mean.timestamp.isin(range_post_intervention_period)) & (data_mean.EXPERIMENT == experiment)] data_mean.loc[data_mean['timestamp'].isin(range_post_intervention_period) & (data_mean.EXPERIMENT == experiment), new_field] = np.exp( final_model.predict(data_post[features])) return data_mean def get_training_validation_set(control, data_mean, range_pre_intervention_period, categorical_features_list, numerical_features_list, experiment, target_feature_name, get_best_parameters, get_best_features): df = data_mean.copy() # GET TRAINING DATA if get_best_parameters or get_best_features: array = df[df.timestamp.isin(range_pre_intervention_period) | (df.INTERVENTION.isin(control)) & (data_mean.EXPERIMENT == experiment)].values columns = df.columns data_train = pd.DataFrame(array, index=array[:, 0], columns=columns) data_train = data_train.reset_index(drop=True) else: array = df[df.timestamp.isin(range_pre_intervention_period) | (df.INTERVENTION.isin(control)) & (data_mean.EXPERIMENT == experiment)].values # array = df[df.timestamp.isin(range_pre_intervention_period) & (df.EXPERIMENT == experiment)].values columns = df.columns data_train = pd.DataFrame(array, index=array[:, 0], columns=columns) data_train = data_train.reset_index(drop=True) # TRANSFORM INTO APPROPIATE VALUES for c in categorical_features_list: data_train[c] = data_train[c].astype('category') for c in numerical_features_list + [target_feature_name]: data_train[c] = data_train[c].astype('float32') # TRANSFORM IT TO LOG1P domain data_train[target_feature_name] = np.log(data_train[target_feature_name].astype('float')) # SPPLIT FINALLY features_list = numerical_features_list + categorical_features_list X = data_train[features_list] y = data_train[target_feature_name] return X, y def get_best_params(X, y, alpha): grid_params = DYNAMIC_SPACE scoring = make_scorer(scorer_rmse, greater_is_better=False)#, quantile=alpha) regressor = lgb.LGBMRegressor(n_jobs=1, metric='quantile', objective='quantile') grid = GridSearchCV(estimator=regressor, param_grid=grid_params, verbose=1, cv=BlockingTimeSeriesSplit(n_splits=5), n_jobs=-1, scoring=scoring) grid.fit(X, y) return grid.best_params_ def get_best_params_and_features(X, y, alpha): scoring = make_scorer(scorer_rmse, greater_is_better=False)#, quantile=alpha) regressor = lgb.LGBMRegressor(n_jobs=1, metric='quantile', objective='quantile') # selecf best features and then pass to the grid search selector = RFECV(estimator=regressor, step=1, cv=BlockingTimeSeriesSplit(n_splits=5), scoring=scoring) # pipeline = Pipeline([("selector", selector), ("regressor",regressor)]) grid_params = {} for name, space in DYNAMIC_SPACE.items(): grid_params["estimator__" + name] = space grid = GridSearchCV(estimator=selector, param_grid=grid_params, verbose=1, cv=BlockingTimeSeriesSplit(n_splits=5), n_jobs=-1, scoring=scoring) grid.fit(X, y) features = [f for f, s in zip(X.columns, grid.best_estimator_.support_) if s] final_grid_params = {} for name, space in grid.best_params_.items(): final_grid_params[name.split("__")[-1]] = space return final_grid_params, features def data_preprocessing_interventions(): real_consumption_df = pd.read_csv(DATA_CONSUMPTION_PROCESSED_FILE) real_consumption_df['timestamp'] = pd.to_datetime(real_consumption_df['timestamp']) vacations_data_df = pd.read_csv(DATA_VACATIONS_INTERVENTION_FILE) vacations_data_df['timestamp'] = pd.to_datetime(vacations_data_df['timestamp']) vacations_data_smapee_df = pd.read_csv(DATA_VACATIONS_FILE) vacations_data_smapee_df['timestamp'] = pd.to_datetime(vacations_data_smapee_df['timestamp']) weather_data_df = pd.read_csv(DATA_WEATHER_PROCESSED_FILE) weather_data_df['timestamp'] = pd.to_datetime(weather_data_df['timestamp']) metadata_df = pd.read_excel(DATA_METADATA_PROCESSED_FILE, sheets='SENSORS')[['smapee', 'ID_CEA', 'INTERVENTION', 'EXPERIMENT', 'GFA_m2', 'INCOME', 'BEDROOMS']] holidays_df = pd.read_csv(DATA_HOLIDAYS_PROCESSED_FILE) holidays_df['timestamp'] = pd.to_datetime(holidays_df['timestamp']) gradients_df = pd.read_csv(DATA_ENTHALPY_GRADIENTS_PROCESSED_FILE) gradients_df['timestamp'] = pd.to_datetime(gradients_df['timestamp']) solar_gains_df = pd.read_csv(DATA_SOLAR_GAINS_PROCESSED_FILE) solar_gains_df['timestamp'] = pd.to_datetime(solar_gains_df['timestamp']) iso_consumption_df =
pd.read_csv(DATA_ISO_CONSUMPTION_PROCESSED_FILE)
pandas.read_csv
#### Filename: Connection.py #### Version: v1.0 #### Author: <NAME> #### Date: March 4, 2019 #### Description: Connect to database and get atalaia dataframe. import psycopg2 import sys import os import pandas as pd import logging from configparser import ConfigParser from resqdb.CheckData import CheckData import numpy as np import time from multiprocessing import Process, Pool from threading import Thread import collections import datetime import csv from dateutil.relativedelta import relativedelta import json class Connection(): """ The class connecting to the database and exporting the data for the Slovakia. :param nprocess: number of processes :type nprocess: int :param data: the name of data (resq or atalaia) :type data: str """ def __init__(self, nprocess=1, data='resq'): start = time.time() # Create log file in the working folder debug = 'debug_' + datetime.datetime.now().strftime('%d-%m-%Y') + '.log' log_file = os.path.join(os.getcwd(), debug) logging.basicConfig(filename=log_file, filemode='a', format='%(asctime)s,%(msecs)d %(name)s %(levelname)s %(message)s', datefmt='%H:%M:%S', level=logging.DEBUG) logging.info('Connecting to datamix database!') # Get absolute path path = os.path.dirname(__file__) self.database_ini = os.path.join(path, 'database.ini') # Read temporary csv file with CZ report names and Angels Awards report names path = os.path.join(os.path.dirname(__file__), 'tmp', 'czech_mapping.json') with open(path, 'r', encoding='utf-8') as json_file: cz_names_dict = json.load(json_file) # Set section datamix = 'datamix-backup' # datamix = 'datamix' # Check which data should be exported if data == 'resq': # Create empty dictionary # self.sqls = ['SELECT * from resq_mix', 'SELECT * from ivttby_mix', 'SELECT * from thailand', 'SELECT * from resq_ivttby_mix'] self.sqls = ['SELECT * from resq_mix', 'SELECT * from ivttby_mix', 'SELECT * from thailand'] # List of dataframe names self.names = ['resq', 'ivttby', 'thailand'] elif data == 'atalaia': self.sqls = ['SELECT * from atalaia_mix'] self.names = [] elif data == 'qasc': self.sqls = ['SELECT * FROM qasc_mix'] self.names = [] elif data == 'africa': self.sqls = ['SELECT * FROM africa_mix'] self.names = [] # Dictionary initialization - db dataframes self.dictdb_df = {} # Dictioanry initialization - prepared dataframes self.dict_df = {} if nprocess == 1: if data == 'resq': for i in range(0, len(self.names)): df_name = self.names[i] self.connect(self.sqls[i], datamix, nprocess, df_name=df_name) # self.connect(self.sqls[2], datamix, nprocess, df_name='resq_ivttby_mix') # self.resq_ivttby_mix = self.dictdb_df['resq_ivttby_mix'] # self.dictdb_df['resq_ivttby_mix'].to_csv('resq_ivttby_mix.csv', sep=',', index=False) # if 'resq_ivttby_mix' in self.dictdb_df.keys(): # del self.dictdb_df['resq_ivttby_mix'] for k, v in self.dictdb_df.items(): self.prepare_df(df=v, name=k) self.df = pd.DataFrame() for i in range(0, len(self.names)): self.df = self.df.append(self.dict_df[self.names[i]], sort=False) logging.info("Connection: {0} dataframe has been appended to the resulting dataframe!".format(self.names[i])) # Get all country code in dataframe self.countries = self._get_countries(df=self.df) # Get preprocessed data self.preprocessed_data = self.check_data(df=self.df, nprocess=1) self.preprocessed_data['RES-Q reports name'] = self.preprocessed_data.apply(lambda x: cz_names_dict[x['Protocol ID']]['report_name'] if 'Czech Republic' in x['Country'] and x['Protocol ID'] in cz_names_dict.keys() else x['Site Name'], axis=1) self.preprocessed_data['ESO Angels name'] = self.preprocessed_data.apply(lambda x: cz_names_dict[x['Protocol ID']]['angels_name'] if 'Czech Republic' in x['Country'] and x['Protocol ID'] in cz_names_dict.keys() else x['Site Name'], axis=1) ############## # ONSET TIME # ############## self.preprocessed_data['HOSPITAL_TIME'] = pd.to_datetime(self.preprocessed_data['HOSPITAL_TIME'], format='%H:%M:%S').dt.time try: self.preprocessed_data['HOSPITAL_TIMESTAMP'] = self.preprocessed_data.apply(lambda x: datetime.datetime.combine(x['HOSPITAL_DATE'], x['HOSPITAL_TIME']) if not pd.isnull(x['HOSPITAL_TIME']) and not pd.isnull(x['HOSPITAL_DATE']) else None, axis=1) #self.preprocessed_data['HOSPITAL_TIMESTAMP'] = pd.to_datetime(self.preprocessed_data['HOSPITAL_DATE'] + ' ' + self.preprocessed_data['HOSPITAL_TIME']) except ValueError as error: logging.error("Error occured when converting hospital date and time into timestamp object - {}.".format(error)) self.preprocessed_data['VISIT_DATE'] = self.preprocessed_data.apply(lambda x: self.fix_date(x['VISIT_DATE'], x['HOSPITAL_DATE']), axis=1) self.preprocessed_data['VISIT_TIME'] = pd.to_datetime(self.preprocessed_data['VISIT_TIME'], format='%H:%M:%S').dt.time try: self.preprocessed_data['VISIT_TIMESTAMP'] = self.preprocessed_data.apply(lambda x: datetime.datetime.combine(x['VISIT_DATE'], x['VISIT_TIME']) if not pd.isnull(x['VISIT_TIME']) and not pd.isnull(x['VISIT_DATE']) else None, axis=1) #self.preprocessed_data['VISIT_TIMESTAMP'] = pd.to_datetime(self.preprocessed_data['VISIT_DATE'] + ' ' + self.preprocessed_data['VISIT_TIME']) except ValueError as error: logging.error("Error occured when converting visit date and time into timestamp object - {}.".format(error)) # Get difference in minutes between hospitalization and last visit self.preprocessed_data['LAST_SEEN_NORMAL'] = self.preprocessed_data.apply(lambda x: self.time_diff(x['VISIT_TIMESTAMP'], x['HOSPITAL_TIMESTAMP']), axis=1) self.preprocessed_data['LAST_SEEN_NORMAL'].fillna(0, inplace=True) # Create new column to set if patient has stroke in hospital and recanalization procedures were entered in timestamps self.preprocessed_data['HOSPITAL_STROKE_IVT_TIMESTAMPS'] = np.nan self.preprocessed_data.loc[ (self.preprocessed_data['HOSPITAL_STROKE'] == 1) & ((self.preprocessed_data['IVT_ONLY'] == 2) | (self.preprocessed_data['IVT_TBY'] == 2) | (self.preprocessed_data['IVT_TBY_REFER'] == 2)), 'HOSPITAL_STROKE_IVT_TIMESTAMPS'] = 1 self.preprocessed_data['HOSPITAL_STROKE_TBY_TIMESTAMPS'] = np.nan self.preprocessed_data.loc[ (self.preprocessed_data['HOSPITAL_STROKE'] == 1) & ((self.preprocessed_data['IVT_TBY'] == 2) | (self.preprocessed_data['TBY_ONLY'] == 2) | (self.preprocessed_data['TBY_REFER_LIM'] == 2) | (self.preprocessed_data['TBY_REFER_ALL'] == 2)), 'HOSPITAL_STROKE_TBY_TIMESTAMPS'] = 1 elif data == 'atalaia': self.connect(self.sqls[0], datamix, nprocess, df_name='atalaia_mix') self.atalaiadb_df = self.dictdb_df['atalaia_mix'] #self.atalaia_preprocessed_data = self.prepare_atalaia_df(self.atalaiadb_df) self.atalaia_preprocessed_data = self.atalaiadb_df.copy() del self.dictdb_df['atalaia_mix'] elif data == 'qasc': self.__get_qasc_df(datamix, nprocess) elif data == 'africa': self.__get_africa_df(datamix, nprocess) else: if data == 'resq': threads = [] for i in range(0, len(self.names)): df_name = self.names[i] process = Thread(target=self.connect(self.sqls[i], datamix, i, df_name=df_name)) process.start() threads.append(process) # logging.info('The process with id {0} is running.'.format(process)) process = Thread(target=self.connect(self.sqls[2], datamix, 1, df_name='resq_ivttby_mix')) process.start() threads.append(process) for process in threads: process.join() end = time.time() tdelta = (end-start)/60 logging.info('The database data were exported in {0} minutes.'.format(tdelta)) # self.dictdb_df['resq_ivttby_mix'].to_csv('resq_ivttby_mix.csv', sep=',', index=False) if 'resq_ivttby_mix' in self.dictdb_df.keys(): del self.dictdb_df['resq_ivttby_mix'] treads = [] for i in range(0, len(self.names)): df_name = self.names[i] process = Thread(target=self.prepare_df(df=self.dictdb_df[df_name], name=df_name)) process.start() threads.append(process) for process in threads: process.join() end = time.time() tdelta = (end-start)/60 logging.info('The database data were prepared in {0} minutes.'.format(tdelta)) self.df = pd.DataFrame() for i in range(0, len(self.names)): self.df = self.df.append(self.dict_df[self.names[i]], sort=False) logging.info("Connection: {0} dataframe has been appended to the resulting dataframe!.".format(self.names[i])) subject_ids = self.df['Subject ID'].tolist() duplicates = [item for item, count in collections.Counter(subject_ids).items() if count > 1] for i in duplicates: duplicates_rows = self.df[(self.df['Subject ID'] == i) & (~pd.isnull(self.df['crf_parent_name']))] set_tmp = set(duplicates_rows['Protocol ID']) if len(set_tmp) == 1: crfs = duplicates_rows['crf_parent_name'].tolist() #print(duplicates_rows[['Subject ID', 'Protocol ID']]) for i in crfs: if 'RESQV12' in i: keep_crf = i if 'RESQV20' in i: keep_crf = i if 'IVT_TBY' in i and 'DEVCZ10' not in i: keep_crf = i index = duplicates_rows.index[duplicates_rows['crf_parent_name'] != keep_crf].tolist() self.df.drop(index, inplace=True) #print(duplicates_rows['crf_parent_name']) #print("Keep form: {0}, deleted row: {1}".format(keep_crf, index)) # Get all country code in dataframe self.countries = self._get_countries(df=self.df) # Cal check data function self.preprocessed_data = self.check_data(self.df, nprocess=nprocess) #self.preprocessed_data = self.check_data(self.df, nprocess=None) self.preprocessed_data['RES-Q reports name'] = self.preprocessed_data.apply(lambda x: cz_names_dict[x['Protocol ID']]['report_name'] if 'Czech Republic' in x['Country'] and x['Protocol ID'] in cz_names_dict.keys() else x['Site Name'], axis=1) self.preprocessed_data['ESO Angels name'] = self.preprocessed_data.apply(lambda x: cz_names_dict[x['Protocol ID']]['angels_name'] if 'Czech Republic' in x['Country'] and x['Protocol ID'] in cz_names_dict.keys() else x['Site Name'], axis=1) ############## # ONSET TIME # ############## self.preprocessed_data['HOSPITAL_TIME'] = pd.to_datetime(self.preprocessed_data['HOSPITAL_TIME'], format='%H:%M:%S').dt.time try: self.preprocessed_data['HOSPITAL_TIMESTAMP'] = self.preprocessed_data.apply(lambda x: datetime.datetime.combine(x['HOSPITAL_DATE'], x['HOSPITAL_TIME']) if not pd.isnull(x['HOSPITAL_TIME']) and not pd.isnull(x['HOSPITAL_DATE']) else None, axis=1) #self.preprocessed_data['HOSPITAL_TIMESTAMP'] = pd.to_datetime(self.preprocessed_data['HOSPITAL_DATE'] + ' ' + self.preprocessed_data['HOSPITAL_TIME']) except ValueError as error: logging.error("Error occured when converting hospital date and time into timestamp object - {}.".format(error)) self.preprocessed_data['VISIT_DATE'] = self.preprocessed_data.apply(lambda x: self.fix_date(x['VISIT_DATE'], x['HOSPITAL_DATE']), axis=1) self.preprocessed_data['VISIT_TIME'] =
pd.to_datetime(self.preprocessed_data['VISIT_TIME'], format='%H:%M:%S')
pandas.to_datetime
from os import listdir import os from os.path import isfile, join import csv import matplotlib.pyplot as plt from configparser import ConfigParser import sweetviz import pandas as pd import numpy as np from joblib import dump, load from sklearn import metrics from termcolor import colored from sklearn.ensemble import RandomForestClassifier from sklearn.model_selection import train_test_split PROYECT_PATH=os.getcwd() config = ConfigParser() config.read('config.cfg') DATA_PATH = config['DEFAULT']['data_path'] MODEL_PATH = config['DEFAULT']['model_path'] TARGET = config['DEFAULT']['target'] FORMAT = config['DEFAULT']['format'] TEST_SIZE=float(config['DEFAULT']['test_size']) VALIDATION_SIZE=int(config['DEFAULT']['validation_size']) COLUMNS_TO_DROP=config['DEFAULT']['columns_to_drop'] COLUMNS_TO_DROP_FUTURE=config['DEFAULT']['columns_to_drop_future'] DENDROMETER_AJUST_VALUE=int(config['DEFAULT']['dendrometer_ajust_value']) TREE_MAX_DEPTH=int(config['DEFAULT']['tree_max_depth']) ANOMALY_TCB_POSITIVE=int(config['DEFAULT']['anomaly_TCB_positive']) ANOMALY_TCB_NEGATIVE=float(config['DEFAULT']['anomaly_TCB_negative']) ANOMALY_HUMB=int(config['DEFAULT']['anomaly_HUMB']) ANOMALY_TD=int(config['DEFAULT']['anomaly_TD']) DEBUG_SENSORS=eval(config['DEFAULT']['debug_sensors']) model_name='{}{}{}'.format(MODEL_PATH,TARGET,'.joblib') def from_str_to_array(future): if(future==0): return COLUMNS_TO_DROP.split(',') else: return COLUMNS_TO_DROP_FUTURE.split(',') def get_files_with_data(): return [f for f in listdir(DATA_PATH) if (FORMAT in f and not 'lock.' in f)] def dendrometer_and_battery_cleaner(df,future): df.drop(from_str_to_array(future), axis = 1, inplace = True) df=df[df['TD'].notna()] df['TD']=df['TD'].apply(dendrometer_ajust) return df def generate_decision_tree(df,df_columns): feature_cols = [a for a in df_columns if a not in [TARGET]] X = df[feature_cols] y = df[TARGET] X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=TEST_SIZE, random_state=1) clf = RandomForestClassifier(max_depth=TREE_MAX_DEPTH,random_state=0) return clf.fit(X_train,y_train.astype('int')),X_train,X_test,y_train.astype('int'),y_test.astype('int') def generate_reports(X_train,X_test): report = sweetviz.compare([X_train, "Train"], [X_test, "Test"], X_train.columns[0]) report.show_html("informe_datos.html",open_browser=False) def generate_validation_data(df,df_columns): df_validation=df.sample(n = VALIDATION_SIZE, replace = False) feature_cols = [a for a in df_columns if a not in [TARGET]] df_validation_X = df[feature_cols] df_validation_y = df[TARGET].astype('int') anomaly_detector(df_validation_X,'Training: ') anomaly_detector(df_validation,'Prediction: ') return df.drop(df_validation.index),df_validation_X,df_validation_y def dendrometer_ajust(dendrometer_value): return int(str(dendrometer_value)[:DENDROMETER_AJUST_VALUE]) def prepare_dataset(data_block,future=0): file_path='{}{}{}'.format(PROYECT_PATH,'/data/',data_block) df=pd.read_excel(file_path, skiprows=1) df=dendrometer_and_battery_cleaner(df,future) df=categorization(df) return ajust_columns(df,future) def ajust_columns(df,future): df_columns=df.columns if(future==1): df_columns=df_columns.drop(labels=['FECHA']) df[df_columns] = df[df_columns].apply(pd.to_numeric) return df,df_columns def get_predictions(clf,X_test,df_validation_X,y_test,df_validation_y): y_pred = clf.predict(X_test) print(colored("Test_Accuracy:",'green'),metrics.accuracy_score(y_test, y_pred)) val_pred = clf.predict(df_validation_X) print(colored("Validation_Accuracy:",'yellow'),metrics.accuracy_score(df_validation_y, val_pred)) dump(clf, model_name) def get_predictions_from_saved_model(val): target_name=model_name.replace('.joblib','').split('_')[1] dataframe = pd.DataFrame(val, index=[0]) dataframe.drop(target_name, axis = 1, inplace = True) clf = load(model_name) y_pred = clf.predict(dataframe) return y_pred def anomaly_detector(df,phase): errors_data=[] sensor_error_default_text='Error detected on sensor ' arr_options=["TCB","HUMB", "TD"] if(TARGET not in arr_options): errors_dict= { "TCB": 0, "HUMB": 0, "TD": 0 } for index, row in df.iterrows(): if(row['TCB']>ANOMALY_TCB_POSITIVE or float(row['TCB'])<ANOMALY_TCB_NEGATIVE): sensor_error_TCB='{}{}{}{}{}{}{}{}{}{}'.format(phase,sensor_error_default_text,'TCB on index ',str(index),'.Range should to be between ',ANOMALY_TCB_POSITIVE,' and ',ANOMALY_TCB_NEGATIVE,' but output equals to ',row['TCB']) errors_dict['TCB']+=1 errors_data.append([index,'TCB',row['TCB']]) print(colored(sensor_error_TCB,'yellow')) if(DEBUG_SENSORS==True) else None if(row['HUMB']>ANOMALY_HUMB): sensor_error_HUMB='{}{}{}{}{}{}{}{}'.format(phase,sensor_error_default_text,'HUMB on index ',str(index),'.Range should be under ',ANOMALY_HUMB,' but is ',row['HUMB']) errors_dict['HUMB']+=1 errors_data.append([index,'HUMB',row['HUMB']]) print(colored(sensor_error_HUMB,'yellow')) if(DEBUG_SENSORS==True) else None if(ANOMALY_TD>row['TD'] or row['TD']==''): sensor_error_TD='{}{}{}{}{}{}{}{}'.format(phase,sensor_error_default_text,'TD on index ',str(index),'.Range should be over ',ANOMALY_TD,' but is ',row['TD']) errors_dict['TD']+=1 errors_data.append([index,'TD',row['TD']]) print(colored(sensor_error_TD,'yellow')) if(DEBUG_SENSORS==True) else None print(colored('{}{}{}'.format(phase,'Total errors from the device equals to ',str(errors_dict)),'red')) df_errors=
pd.DataFrame(errors_data,columns = ['Index', 'Error_Type','Value'])
pandas.DataFrame
# -*- coding: utf-8 -*- """Naive_Bayes_Classifier.ipynb Automatically generated by Colaboratory. Original file is located at https://colab.research.google.com/drive/1JZwLGwBxEjnbv_8UTqEmmbDgFy_7Te2r <div class="alert alert-block alert-info" > <h1>Naive Bayes Classifier </h1> ## Build a spam classifier using Naive Bayes """ #Headers import pandas as pd import numpy as np import matplotlib.pyplot as plt import seaborn as sns import sklearn """## Step 1:- Load your data #### There are three datasets for training: TrainDataset1.csv, TrainDataset2.csv and TrainDataset3.txt. Each dataset contains short messages with the labels (ham or spam). Load the dataset using pandas. """ #Load your dataset in this cell def loadData(): #your code data1=pd.read_csv(r'TrainDataset1.csv') data2=pd.read_csv(r'TrainDataset2.csv') data3 =
pd.read_csv('TrainDataset3.txt', delimiter='\t')
pandas.read_csv
# 1584927559 import task_submit # import task_submit_optimus import task_submit_raw from task_submit_raw import VGGTask,RESTask,RETask,DENTask,XCETask import random import kubernetes import influxdb import kubernetes import signal from TimeoutException import TimeoutError,Myhandler import yaml import requests from multiprocessing import Process import multiprocessing import urllib import urllib3 import time import operator import numpy as np # from utils import Timer from sklearn.externals import joblib from sklearn.ensemble import GradientBoostingRegressor,RandomForestRegressor import time ''' 修改: 1.不用给出调度策略 2.初始资源分配不准确 3.初始设置PS和Worker数量随机设置 4资源不调整,节点也不调整了 5.修改缓冲区策略 ''' # from sklearn.preprocessing import MinMaxScaler np.set_printoptions(suppress=True) #设置print选项的参数 import os import json import math import pandas as pd import argparse import random import multiprocessing import time from pytz import UTC from dateutil import parser from datetime import datetime import psutil import socket from max_heap import MaxHeap import worker_queue # from worker_queue import value_free_load,value_weight_load from Global_client import Global_Influx aToken = '<KEY>' aTokenw = '<KEY>' LOSSHOST = '192.168.128.5' LOSSPORT = 12527 DNA_SIZE = 4 XBOUND = [0.8,2] XBOUND2 = [0.5,0.95] YBOUND2 = [0.65,0.95] YBOUND = [1,3] CROSSOVER_RATE = 0.8 POP_SIZE = 16 N_GENERATIONS = 8 def load_config(config_file): # # json串是一个字符串 # f = open('product.json', encoding='utf-8') # res = f.read() # product_dic = json.loads(res) # 把json串,变成python的数据类型,只能转换json串内容 # print(product_dic) # print(product_dic['iphone']) # # t = json.load(f) # # print(t) #传一个文件对象,它会帮你直接读json文件,并转换成python数据 # # print(t['iphone']) # f.close() f = open(config_file,encoding='utf-8') res = f.read() config_content = json.loads(res) f.close() return config_content def save_config(config,filename): config_content = {} for key,value in config.items(): # if key != 'job' and key != 'ns': config_content[key] = value # task_content['task_id'] = tasks['task_id'] fw = open(filename, 'w', encoding='utf-8') # ensure_ascii:默认值True,如果dict内含有non-ASCII的字符,则会类似\uXXXX的显示数据,设置成False后,就能正常显示 dic_json = json.dumps(config_content, ensure_ascii=False, indent=4) # 字典转成json,字典转成字符串 fw.write(dic_json) fw.close() def deletehelp(delete_job_name,v1): try: v1.delete_namespace(delete_job_name) except Exception as eeeeee: print(eeeeee) command0 = "kubectl get namespace " + delete_job_name + " -o json > /tfdata/tfcnn/deletebuf/" + delete_job_name + ".json" os.system(command0) tmp = load_config("/tfdata/tfcnn/deletebuf/" + delete_job_name + ".json") tmp["spec"]["finalizers"] = [] save_config(tmp, "/tfdata/tfcnn/deletebuf/" + delete_job_name + ".json") try: command1 = 'curl -k -H "Content-Type: application/json" -X PUT --data-binary @/tfdata/tfcnn/deletebuf/' + delete_job_name + '.json http://127.0.0.1:8081/api/v1/namespaces/'+delete_job_name+'/finalize' os.system(command1) except Exception as helpe: print(helpe) commandopen = 'kubectl proxy --port=8081' os.system(commandopen) os.system(command1) def deletehelp2(delete_job_name,v1): v1.delete_namespace(delete_job_name) command0 = "kubectl get namespace " + delete_job_name + " -o json > /tfdata/tfcnn/deletebuf/" + delete_job_name + ".json" os.system(command0) tmp = load_config("/tfdata/tfcnn/deletebuf/" + delete_job_name + ".json") tmp["spec"]["finalizers"] = [] save_config(tmp, "/tfdata/tfcnn/deletebuf/" + delete_job_name + ".json") try: command1 = 'curl -k -H "Content-Type: application/json" -X PUT --data-binary @/tfdata/tfcnn/deletebuf/' + delete_job_name + '.json http://127.0.0.1:8081/api/v1/namespaces/' + delete_job_name + '/finalize' os.system(command1) except Exception as helpe: print(helpe) commandopen = 'kubectl proxy --port=8081' os.system(commandopen) os.system(command1) def parse(): parser = argparse.ArgumentParser(description="Node Monitor") parser.add_argument('--save_path', default='/tfdata/nodedata', help='save path') parser.add_argument('--database',default="NODEMESSAGE",help="save database") parser.add_argument('--derivation',default=10,help='sampling rate') parser.add_argument('--measurement',default="NODEMESSAGE",help="save measurement") # parser.add_argument('--train_pg', action='store_true', help='whether train policy gradient') # parser.add_argument('--train_dqn', action='store_true', help='whether train DQN') # parser.add_argument('--test_pg', action='store_true', help='whether test policy gradient') # parser.add_argument('--test_dqn', action='store_true', help='whether test DQN') args = parser.parse_args() return args def update_token(): cacheData = os.popen( "echo $(kubectl describe secret $(kubectl get secret -n kube-system | grep ^admin-user | awk '{print $1}') -n kube-system | grep -E '^token'| awk '{print $2}')").read() cacheToken = cacheData[:-1] newToken = str(cacheToken) return newToken def make_headers(Token): text = 'Bearer ' + Token headers = {'Authorization': text} return headers def catch_message(url): global aToken aToken = update_token() headers = make_headers(aToken) response = requests.get(url,headers=headers,verify=False) res_json = response.json() return res_json def database_create(databasename): database_list = Global_Influx.Client_all.get_list_database() creating = True for db in database_list: dbl = list(db.values()) if databasename in dbl: creating = False break if creating: Global_Influx.Client_all.create_database(databasename) # Global_Influx.Client_all.create_database(databasename) def tongji_adjust_number(aim_list): tongji_wenjian = load_config('modnum.json') aim_key_lists = list(tongji_wenjian.keys()) for i in aim_list: if i in aim_key_lists: tongji_wenjian[i]+=1 else: tongji_wenjian[i]=1 save_config(tongji_wenjian,'modnum.json') def tongji_waiting_queue(submit_job_name,time_submit_now): waiting_time = load_config('waiting_time.json') waited = list(waiting_time.keys()) if submit_job_name not in waiting_time: waiting_time[submit_job_name] = time_submit_now save_config(waiting_time,'waiting_time.json') def match_cpu(raw_data): cache = raw_data[:-1] matched_data = math.ceil(int(cache)/1e6) return matched_data def match_memory(raw_data): cache = raw_data[:-2] matched_data = math.ceil(int(cache)/1024) return matched_data def match_timestamp(raw_data): EPOCH = UTC.localize(datetime.utcfromtimestamp(0)) timestamp = parser.parse(raw_data) if not timestamp.tzinfo: print("XXX") timestamp = UTC.localize(timestamp) s = (timestamp - EPOCH).total_seconds() return int(s) def generate_item(response,measurement): node_cpu = {} node_cpu['k8s-master'] = 64000 - 8000 node_cpu['k8s-worker0'] = 24000 - 400 node_cpu['k8s-worker2'] = 24000 - 400 node_cpu['k8sworker1'] = 16000 - 520 node_cpu['k8s-worker3'] = 24000 - 150 node_cpu['k8s-worker4'] = 24000 - 150 node_cpu['k8s-worker5'] = 24000 - 150 node_cpu['k8s-worker6'] = 16000 - 150 node_cpu['k8s-worker7'] = 16000 - 150 node_cpu['k8s-worker8'] = 16000 - 150 node_cpu['k8s-worker9'] = 16000 - 150 node_cpu['k8s-worker10'] = 16000 - 150 node_cpu['k8s-worker11'] = 24000 - 300 node_cpu['k8s-worker12'] = 16000 - 150 node_cpu['k8s-worker13'] = 16000 - 150 node_cpu['k8s-worker14'] = 16000 - 150 node_cpu['k8s-worker15'] = 16000 - 150 node_cpu['k8s-worker16'] = 16000 - 150 node_cpu['k8s-worker17'] = 24000 - 150 node_cpu['k8s-worker18'] = 16000 - 150 node_cpu['k8s-worker19'] = 32000 - 150 node_cpu['k8s-worker20'] = 24000 - 150 node_memory = {} node_memory['k8s-master'] = float(251 * 1024 - 32000) node_memory['k8s-worker0'] = float(94 * 1024 - 4000) node_memory['k8s-worker2'] = float(94 * 1024 - 3000) node_memory['k8sworker1'] = float(125 * 1024 - 4500) node_memory['k8s-worker3'] = float(94 * 1024 - 2200) node_memory['k8s-worker4'] = float(188 * 1024 - 2200) node_memory['k8s-worker5'] = float(94 * 1024 - 2200) node_memory['k8s-worker6'] = float(62 * 1024 - 2000) node_memory['k8s-worker7'] = float(62 * 1024 - 2000) node_memory['k8s-worker8'] = float(62 * 1024 - 2000) node_memory['k8s-worker9'] = float(62 * 1024 - 2000) node_memory['k8s-worker10'] = float(62 * 1024 - 2000) node_memory['k8s-worker11'] = float(94 * 1024 - 2200) node_memory['k8s-worker12'] = float(62 * 1024 - 2000) node_memory['k8s-worker13'] = float(62 * 1024 - 2000) node_memory['k8s-worker14'] = float(62 * 1024 - 2000) node_memory['k8s-worker15'] = float(62 * 1024 - 2000) node_memory['k8s-worker16'] = float(62 * 1024 - 2000) node_memory['k8s-worker17'] = float(94 * 1024 - 2000) node_memory['k8s-worker18'] = float(62 * 1024 - 2000) node_memory['k8s-worker19'] = float(125 * 1024 - 2000) node_memory['k8s-worker20'] = float(94 * 1024 - 2000) points = [] # content = {} timestamp = response['items'][0]['metadata']['creationTimestamp'] for item in response['items']: content = { 'measurement': measurement, 'tags':{ "nodes": item['metadata']['name'] }, 'fields': { 'cpu': match_cpu(item['usage']['cpu']), 'memory': match_memory(item['usage']['memory']), 'cpu_percent': float(match_cpu(item['usage']['cpu'])/node_cpu[item['metadata']['name']]), 'memory_percent': float(match_memory(item['usage']['memory']) / node_memory[item['metadata']['name']]) }, 'time': match_timestamp(timestamp) } points.append(content) return points def DeletefromDB(Client,DatabaseName): databases = Client.get_list_database() for Cn in databases: if DatabaseName in Cn.values(): Client.drop_database(DatabaseName) break class Node_mess(multiprocessing.Process): def __init__(self,url,args,tasks,v1): multiprocessing.Process.__init__(self) self.url = url self.args = args self.derivation = args.derivation self.time_mess = {} self.cpu_mess = {} self.memory_mess = {} self.cpu_per = {} self.memory_per = {} self.node_cpu = {} self.node_cpu['k8s-master'] = 64000 - 8000 self.node_cpu['k8s-worker0'] = 24000 - 400 self.node_cpu['k8s-worker2'] = 24000 - 400 self.node_cpu['k8sworker1'] = 16000 - 520 self.node_cpu['k8s-worker3'] = 24000 - 150 self.node_cpu['k8s-worker4'] = 24000 - 150 self.node_cpu['k8s-worker5'] = 24000 - 150 self.node_cpu['k8s-worker6'] = 16000 - 150 self.node_cpu['k8s-worker7'] = 16000 - 150 self.node_cpu['k8s-worker8'] = 16000 - 150 self.node_cpu['k8s-worker9'] = 16000 - 150 self.node_cpu['k8s-worker10'] = 16000 - 150 self.node_cpu['k8s-worker11'] = 24000 - 300 self.node_cpu['k8s-worker12'] = 16000 - 150 self.node_cpu['k8s-worker13'] = 16000 - 150 self.node_cpu['k8s-worker14'] = 16000 - 150 self.node_cpu['k8s-worker15'] = 16000 - 150 self.node_cpu['k8s-worker16'] = 16000 - 150 self.node_cpu['k8s-worker17'] = 24000 - 150 self.node_cpu['k8s-worker18'] = 16000 - 150 self.node_cpu['k8s-worker19'] = 32000 - 150 self.node_cpu['k8s-worker20'] = 24000 - 150 self.node_memory = {} self.node_memory['k8s-master'] = float(251 * 1024 - 32000) self.node_memory['k8s-worker0'] = float(94 * 1024 - 4000) self.node_memory['k8s-worker2'] = float(94 * 1024 - 3000) self.node_memory['k8sworker1'] = float(125 * 1024 - 4500) self.node_memory['k8s-worker3'] = float(94 * 1024 - 2200) self.node_memory['k8s-worker4'] = float(188 * 1024 - 2200) self.node_memory['k8s-worker5'] = float(94 * 1024 - 2200) self.node_memory['k8s-worker6'] = float(62 * 1024 - 2000) self.node_memory['k8s-worker7'] = float(62 * 1024 - 2000) self.node_memory['k8s-worker8'] = float(62 * 1024 - 2000) self.node_memory['k8s-worker9'] = float(62 * 1024 - 2000) self.node_memory['k8s-worker10'] = float(62 * 1024 - 2000) self.node_memory['k8s-worker11'] = float(94 * 1024 - 2200) self.node_memory['k8s-worker12'] = float(62 * 1024 - 2000) self.node_memory['k8s-worker13'] = float(62 * 1024 - 2000) self.node_memory['k8s-worker14'] = float(62 * 1024 - 2000) self.node_memory['k8s-worker15'] = float(62 * 1024 - 2000) self.node_memory['k8s-worker16'] = float(62 * 1024 - 2000) self.node_memory['k8s-worker17'] = float(94 * 1024 - 2000) self.node_memory['k8s-worker18'] = float(62 * 1024 - 2000) self.node_memory['k8s-worker19'] = float(125 * 1024 - 2000) self.node_memory['k8s-worker20'] = float(94 * 1024 - 2000) # self.derivation = derivation self.arg = args self.tasks = tasks self.v1 = v1 self.database = args.database self.measurement = args.measurement self.save_path = args.save_path if not os.path.exists(self.arg.save_path): os.makedirs(self.arg.save_path) database_create(self.database) self.client = influxdb.InfluxDBClient('192.168.128.10',port=8086,username='admin',password='<PASSWORD>',database=self.database) #derivation # def node_measurement(self,node_list): # # Global_Influx.Client_all.get_list_measurements() def run(self): print(multiprocessing.current_process().pid) print(os.getpid()) response = catch_message(self.url) self.time_mess['creation'] = [response['items'][0]['metadata']['creationTimestamp']] self.cpu_mess['creation'] = [response['items'][0]['metadata']['creationTimestamp']] self.memory_mess['creation'] = [response['items'][0]['metadata']['creationTimestamp']] self.cpu_per['creation'] = [response['items'][0]['metadata']['creationTimestamp']] self.memory_per['creation'] = [response['items'][0]['metadata']['creationTimestamp']] for item in response['items']: self.time_mess[item['metadata']['name']] = [item['timestamp']] self.cpu_mess[item['metadata']['name']] = [match_cpu(item['usage']['cpu'])] self.memory_mess[item['metadata']['name']] = [match_memory(item['usage']['memory'])] self.cpu_per[item['metadata']['name']] = [float(match_cpu(item['usage']['cpu'])/self.node_cpu[item['metadata']['name']])] self.memory_per[item['metadata']['name']] = [float(match_memory(item['usage']['memory']) / self.node_memory[item['metadata']['name']])] self.client.write_points(generate_item(response,self.measurement),'s',database=self.database) time.sleep(self.derivation) while True: response = catch_message(self.url) self.time_mess['creation'].append(response['items'][0]['metadata']['creationTimestamp']) self.cpu_mess['creation'].append(response['items'][0]['metadata']['creationTimestamp']) self.memory_mess['creation'].append(response['items'][0]['metadata']['creationTimestamp']) self.cpu_per['creation'].append(response['items'][0]['metadata']['creationTimestamp']) self.memory_per['creation'].append(response['items'][0]['metadata']['creationTimestamp']) for item in response['items']: self.time_mess[item['metadata']['name']].append(item['timestamp']) self.cpu_mess[item['metadata']['name']].append(match_cpu(item['usage']['cpu'])) self.memory_mess[item['metadata']['name']].append(match_memory(item['usage']['memory'])) self.cpu_per[item['metadata']['name']].append(float(match_cpu(item['usage']['cpu'])/self.node_cpu[item['metadata']['name']])) self.memory_per[item['metadata']['name']].append(float(match_memory(item['usage']['memory']) / self.node_memory[item['metadata']['name']])) self.client.write_points(generate_item(response, self.measurement), 's', database=self.database) if len(self.time_mess['creation'])%30==0 and len(self.time_mess['creation']) > 0: data_frame = pd.DataFrame(self.time_mess) data_frame.to_csv(self.save_path + '/' + 'struct.csv', mode='a+', index=False, sep=',') print(self.cpu_mess) print(len(self.cpu_mess)) for keyss in self.cpu_mess: print(keyss+": "+str(len(self.cpu_mess[keyss]))) data_frame2 = pd.DataFrame(self.cpu_mess) data_frame2.to_csv(self.save_path + '/' + 'node_cpu.csv', mode='a+', index=False, sep=',') data_frame3 = pd.DataFrame(self.memory_mess) data_frame3.to_csv(self.save_path + '/' + 'node_memory.csv', mode='a+', index=False, sep=',') data_frame4 = pd.DataFrame(self.cpu_per) data_frame4.to_csv(self.save_path + '/' + 'node_cpu_per.csv', mode='a+', index=False, sep=',') data_frame5 = pd.DataFrame(self.memory_per) data_frame5.to_csv(self.save_path + '/' + 'node_memory_per.csv', mode='a+', index=False, sep=',') f1 = open('/tfdata/nodedata/node.json', 'r', encoding='utf-8') res = f1.read() a = json.loads(res) f1.close() node_layout = {} node_list = [i.metadata.name for i in self.v1.list_node().items] for node in node_list: node_layout[node] = [] for ns in tasks['ns']: tmp_layout = tasks['nslayout'] if tmp_layout[ns]: pod_list = [i for i in self.v1.list_namespaced_pod(ns).items] for pod in pod_list: try: node_layout[pod.spec.node_name].append(pod.metadata.name) except Exception as e0: print(e0) a.append(node_layout) f2 = open('/tfdata/nodedata/node.json', 'w', encoding='utf-8') node_json = json.dumps(a, ensure_ascii=False, indent=4) # list转成json,字典转成字符串 f2.write(node_json) f2.close() for key in self.time_mess: self.time_mess[key] = [] self.cpu_mess[key] = [] self.memory_mess[key] = [] self.memory_per[key] = [] self.cpu_per[key] = [] time.sleep(self.derivation) def get_ns(v1): ns_list = [] for i in v1.list_namespace().items: ns_list.append(i.metadata.name) return ns_list # def get_layout(): # def get_remain(): def Monitor_job(tasks,lock,v1,jobs): time.sleep(10) while True: if tasks['start'] == False: break ns_list = get_ns(v1) # print(ns_list) if tasks['start'] == True and tasks['count'] == 0: time.sleep(30) pass else: for ns in tasks['ns']: # print(ns+'If in list:'+str(ns in ns_list)) if ns not in ns_list and ns not in tasks['retry'] and not tasks['modulate']: try_times = 5 while try_times > 0: time.sleep(float(random.randint(3, 5))) ns_list = get_ns(v1) if ns in ns_list: break try_times=try_times-1 if try_times <=0 : lock.acquire() ns_tmp = tasks['ns'] if ns in ns_tmp: ns_tmp.remove(ns) tasks['ns'] = ns_tmp is_layout = tasks['nslayout'] is_layout_keys = list(is_layout.keys()) if ns in is_layout_keys: is_layout.pop(ns) tasks['nslayout'] = is_layout count_tmp = len(ns_tmp) tasks['count'] = count_tmp lock.release() def make_time_query(time_base,mode=0): if mode == 0: time_query = (math.floor(time_base-1)) time_query_str = str(time_query)+'000000000' else: time_query = (math.ceil(time_base+1)) time_query_str = str(time_query)+'000000000' return time_query_str def catch_node_step_msg(jobs,job_name,tasks,lock,batch,flops,params,mode): node_influx_client = influxdb.InfluxDBClient(host='192.168.128.10',username='admin',password='<PASSWORD>',database='NODEMESSAGE') step_influx_client = influxdb.InfluxDBClient(host='192.168.128.10',username='admin',password='<PASSWORD>',database='PREDICT') jieshu = False kankan = False lock.acquire() for jo in jobs: if jo == job_name: job = reload_jobs(job_name,-3) kankan = True print('reload job success!') break lock.release() if kankan: job_measure = job.measure else: return print("job measure: %s" % job.measure) pre_list = job_measure.split(' ') measure_s = pre_list[0] + 'S' + pre_list[-1] measure_load = pre_list[0] + 'L' + pre_list[-1] measure_t = pre_list[0] + 'T' + pre_list[-1] count = 0 count2 = 0 count111 = 0 while True: pod_status = [i.status.phase for i in job.v1.list_namespaced_pod(job.name).items] run_result = pd.value_counts(pod_status) run_result_dict = dict(run_result) print(run_result_dict) if 'Running' in pod_status and run_result_dict['Running'] == (job.ps_replicas + job.worker_replicas): time.sleep(10) lock.acquire() print("Select the loayout!") tmp_layout = tasks['nslayout'] tmp_keys = list(tmp_layout.keys()) if job_name in tmp_keys and tmp_layout[job_name] == False: tmp_layout_config = {} for i in job.v1.list_namespaced_pod(job_name).items: tmp_layout_config[i.metadata.name] = i.spec.node_name fp = open('/tfdata/k8snfs/' + job_name + '/layout.json', 'w', encoding='utf-8') # ensure_ascii:默认值True,如果dict内含有non-ASCII的字符,则会类似\uXXXX的显示数据,设置成False后,就能正常显示 dicc_json = json.dumps(tmp_layout_config, ensure_ascii=False, indent=4) # 字典转成json,字典转成字符串 fp.write(dicc_json) fp.close() tmp_layout[job_name] = True tasks['nslayout'] = tmp_layout lock.release() break # elif 'Running' in pod_status: elif 'Succeeded' in pod_status or 'Failed' in pod_status: jieshu = True print("Exception exit! Pending Problem!") lock.acquire() tmp_reload_ns = tasks['retry'] lock.release() print("Retrying jobs is:") print(tmp_reload_ns) print(not tasks['modulate']) print(job.name not in tmp_reload_ns and not tasks['modulate']) try: save_res_path = '/tfdata/k8snfs/%s/%s_res.json' % (job.name, job.name) res_job_config = load_config(save_res_path) res_job_config_keys = list(res_job_config.keys()) if 'endtimeraw' not in res_job_config_keys: res_job_config['endtimeraw'] = time.time() - 10 save_config(res_job_config, save_res_path) print("save end time success!!") except Exception as eee: print("Delete Problem:") print(eee) time.sleep(3) if job.name not in tmp_reload_ns and not tasks['modulate']: time.sleep(5) try: exit_reason = [i.status.container_statuses[0].state.terminated.reason for i in v1.list_namespaced_pod(job.name).items] print(exit_reason) exit_ict = {'reasons': exit_reason} exit_path = '/tfdata/k8snfs/%s/exit_reason.json' % job.name exit_json = json.dumps(exit_ict, ensure_ascii=False, indent=4) fw_exit = open(exit_path, 'w', encoding='utf-8') fw_exit.write(exit_json) fw_exit.close() except Exception as e: print(e) time.sleep(3) # if 'Failed' in pod_status: # break lock.acquire() command = 'kubectl delete -f /tfdata/tfcnn/expjobraw/' + job.name + '.yaml' os.system(command) try: deletehelp2(job.name, v1) except Exception as we0: print(we0) # v1.delete_namespace(job.name) ns_tmp = tasks['ns'] ns_tmp.remove(job.name) tasks['ns'] = ns_tmp is_layout = tasks['nslayout'] is_layout.pop(job.name) for i in range(len(jobs)): if jobs[i] == job.name: jobs.pop(i) break tasks['nslayout'] = is_layout tasks['count'] -= 1 # jobs_tmp = jobs # jobs_tmp.remove(job.name) # jobs = jobs_tmp if 'Failed' in pod_status: fails = tasks['fail'] fails.append(job.name) tasks['fail'] = fails finishes = tasks['finish'] finishes.append(job.name) tasks['finish'] = finishes print("finish remove %s from jobs!" % job.name) lock.release() return else: time.sleep(10) elif 'Pending' in pod_status: # pod_status = [i.status.phase for i in job.v1.list_namespaced_pod(job_name).items] tmp_layout = tasks['nslayout'] tmp_keys = list(tmp_layout.keys()) if job_name in tmp_keys: tmp_layout_config = {} for i in job.v1.list_namespaced_pod(job_name).items: if i.status.phase == 'Running': tmp_layout_config[i.metadata.name] = i.spec.node_name if tmp_layout_config: fp = open('/tfdata/k8snfs/' + job_name + '/layout.json', 'w', encoding='utf-8') # ensure_ascii:默认值True,如果dict内含有non-ASCII的字符,则会类似\uXXXX的显示数据,设置成False后,就能正常显示 dicc_json = json.dumps(tmp_layout_config, ensure_ascii=False, indent=4) # 字典转成json,字典转成字符串 fp.write(dicc_json) fp.close() save_res_path = '/tfdata/k8snfs/%s/%s_res.json' % (job.name, job.name) res_config = load_config(save_res_path) keys_res = res_config.keys() if 'reloadtime' not in keys_res: res_config['reloadtime'] = [] if (job.worker_replicas>0 and job.ps_replicas>0): if count2 >= 5: aim_steps = step_influx_client.query( "select training_step from " + measure_t + " order by desc limit 1") aim_key = aim_steps.keys() result_inter = aim_steps[aim_key[0]] result_items = list(result_inter) aim_step = int(result_items[0]['training_step']) print(aim_step) save_job_change_layout(job.name, 1, 1, aim_step, mode=1) lock.acquire() command = 'kubectl delete -f /tfdata/tfcnn/expjobraw/' + job.name + '.yaml' os.system(command) try: deletehelp2(job.name,v1) except Exception as we0: print(we0) # v1.delete_namespace(job.name) ns_tmp = tasks['ns'] ns_tmp.remove(job.name) tasks['ns'] = ns_tmp is_layout = tasks['nslayout'] is_layout.pop(job.name) for i in range(len(jobs)): if jobs[i] == job.name: jobs.pop(i) break tasks['nslayout'] = is_layout tasks['count'] -= 1 tmp_next = tasks['next'] tmp_next.append(job.name) tmp_next_time_config = tasks['nexttimes'] tmp_next_time_config[job.name] = 0 tasks['nexttimes'] = tmp_next_time_config tasks['next'] = tmp_next lock.release() time.sleep(15) jieshu = True print("Exception exit! Pending Problem!") count2+=1 return else: count2 +=1 time.sleep(21.5) elif not run_result_dict: ceshi_tmp_ns = tasks['ns'] if job.name not in ceshi_tmp_ns: if count111 <= 4: count111 += 1 time.sleep(22) else: return if count >= 8: jieshu = True print("Exception exit! Creating Problem!") save_res_path = '/tfdata/k8snfs/%s/%s_res.json' % (job.name, job.name) res_job_config = load_config(save_res_path) res_job_config['errtime'] = time.time() - 5 save_config(res_job_config, save_res_path) lock.acquire() try: deletehelp2(job.name, v1) except Exception as we0: print(we0) # v1.delete_namespace(job.name) ns_tmp = tasks['ns'] ns_tmp.remove(job.name) tasks['ns'] = ns_tmp is_layout = tasks['nslayout'] is_layout.pop(job.name) for i in range(len(jobs)): if jobs[i] == job.name: jobs.pop(i) break tasks['nslayout'] = is_layout # job_tmp.pop(ns) # tasks['job'] = job_tmp tasks['count'] -= 1 lock.release() return count+=1 time.sleep(21.5) else: time.sleep(21.5) count11 = 0 count22 = 0 count111 = 0 while True: # print(b[0].status.container_statuses[0].state.terminated.reason) # lock.acquire() tmp_retrys = tasks['retry'] # tmp_reload_ns = tasks['retry'] tmp_retry_solution = tasks['solution'] # lock.release() solution_keys = list(tmp_retry_solution.keys()) if job.name in tmp_retrys and job.name in solution_keys: lock.acquire() tmp_layout = tasks['nslayout'] tmp_layout[job.name] = False tasks['nslayout'] = tmp_layout lock.release() solution = tmp_retry_solution[job.name] pod_status = [i.status.phase for i in v1.list_namespaced_pod(job.name).items] save_res_path = '/tfdata/k8snfs/%s/%s_res.json' % (job.name, job.name) res_job_config = load_config(save_res_path) res_job_config_keys = list(res_job_config.keys()) if (not pod_status) or 'Succeeded' in pod_status or 'Failed' in pod_status: lock.acquire() tmp_retry_job = tasks['retry'] tmp_retry_job.remove(job.name) tasks['retry'] = tmp_retry_job tmp_retry_solution3 = tasks['solution'] tmp_retry_solution3.pop(job.name) tasks['solution'] = tmp_retry_solution3 lock.release() else: if int(solution['type']) == 1: save_res_path = '/tfdata/k8snfs/%s/%s_res.json' % (job.name, job.name) res_config = load_config(save_res_path) keys_res = res_config.keys() if 'reloadtime' not in keys_res: res_config['reloadtime'] = [] tmp_replicas = job.worker_replicas aim_steps = step_influx_client.query( "select training_step from " + measure_t + " order by desc limit 1") aim_key = aim_steps.keys() result_inter = aim_steps[aim_key[0]] result_items = list(result_inter) aim_step = int(result_items[0]['training_step']) print(aim_step) aim_worker_replicas = job.worker_replicas + int(solution['worker']) if aim_worker_replicas <= 0: aim_worker_replicas = 1 aim_step = math.ceil((aim_step * tmp_replicas) / (aim_worker_replicas)) aim_ps_replicas = job.ps_replicas + int(solution['ps']) if aim_ps_replicas <= 0: aim_ps_replicas = 1 if aim_worker_replicas <= 0: aim_worker_replicas = 1 save_job_change_layout(job.name, aim_ps_replicas, aim_worker_replicas, aim_step, mode=1) lock.acquire() # method1 = {'type': 1, 'ps': 0, 'worker': 1} time1 = time.time() job.retry_tf(job.cpu_allocate, job.memory_allocate, aim_step, aim_worker_replicas, aim_ps_replicas) time2 = time.time() tmp_retry_job = tasks['retry'] tmp_retry_job.remove(job.name) tasks['retry'] = tmp_retry_job tmp_retry_solution3 = tasks['solution'] tmp_retry_solution3.pop(job.name) tasks['solution'] = tmp_retry_solution3 time.sleep(4) lock.release() tmp_reload = res_config['reloadtime'] tmp_reload.append((time2 - time1)) res_config['reloadtime'] = tmp_reload save_config(res_config, save_res_path) time.sleep(4.2) count33 = 0 while count33 < 15: pod_status3 = [i.status.phase for i in v1.list_namespaced_pod(job.name).items] run_result3 = pd.value_counts(pod_status3) run_result_dict3 = dict(run_result3) print("Retry assignmenting for pods:") print(run_result_dict3) if 'Running' in pod_status3 and run_result_dict3['Running'] == ( job.ps_replicas + job.worker_replicas): break else: count33+=1 time.sleep(5.6) job.write_retry(mode=0) else: pod_status2 = [i.status.phase for i in v1.list_namespaced_pod(job.name).items] run_result2 = pd.value_counts(pod_status2) run_result_dict2 = dict(run_result2) print(run_result_dict2) if 'Running' in pod_status2 and run_result_dict2['Running'] == (job.ps_replicas + job.worker_replicas): time.sleep(6) lock.acquire() print("Select the loayout!") tmp_layout = tasks['nslayout'] lock.release() tmp_keys = list(tmp_layout.keys()) if job_name in tmp_keys and tmp_layout[job_name] == False: tmp_layout_config = {} for i in job.v1.list_namespaced_pod(job_name).items: tmp_layout_config[i.metadata.name] = i.spec.node_name fp = open('/tfdata/k8snfs/' + job_name + '/layout.json', 'w', encoding='utf-8') # ensure_ascii:默认值True,如果dict内含有non-ASCII的字符,则会类似\uXXXX的显示数据,设置成False后,就能正常显示 dicc_json = json.dumps(tmp_layout_config, ensure_ascii=False, indent=4) # 字典转成json,字典转成字符串 fp.write(dicc_json) fp.close() tmp_layout[job_name] = True lock.acquire() tasks['nslayout'] = tmp_layout lock.release() else: time.sleep(10) elif ('Succeeded' in pod_status2 or 'Failed' in pod_status2): # # print(b[0].status.container_statuses[0].state.terminated.reason) # pod_status = [i.status.phase for i in v1.list_namespaced_pod(ns).items] # ['OOMKilled'] save_res_path = '/tfdata/k8snfs/%s/%s_res.json' % (job.name, job.name) res_job_config = load_config(save_res_path) res_job_config_keys = list(res_job_config.keys()) if 'endtimeraw' not in res_job_config_keys: res_job_config['endtimeraw'] = time.time() - 10 save_config(res_job_config, save_res_path) time.sleep(3) if (job.name not in tmp_retrys) and not tasks['modulate']: try: exit_reason = [i.status.container_statuses[0].state.terminated.reason for i in v1.list_namespaced_pod(job.name).items] print(exit_reason) exit_ict = {'reasons': exit_reason} exit_path = '/tfdata/k8snfs/%s/exit_reason.json' % job.name exit_json = json.dumps(exit_ict, ensure_ascii=False, indent=4) fw_exit = open(exit_path, 'w', encoding='utf-8') fw_exit.write(exit_json) fw_exit.close() except Exception as e: print(e) time.sleep(5) lock.acquire() command = 'kubectl delete -f /tfdata/tfcnn/expjobraw/' + job.name + '.yaml' os.system(command) print("delete this job %s!!!" % job.name) try: deletehelp2(job.name,v1) except Exception as we0: print(we0) # v1.delete_namespace(job.name) ns_tmp = tasks['ns'] ns_tmp.remove(job.name) tasks['ns'] = ns_tmp is_layout = tasks['nslayout'] is_layout.pop(job.name) for i in range(len(jobs)): if jobs[i] == job.name: jobs.pop(i) break tasks['nslayout'] = is_layout tasks['count'] -= 1 if 'Failed' in pod_status2: fails = tasks['fail'] fails.append(job.name) tasks['fail'] = fails finishes = tasks['finish'] finishes.append(job.name) tasks['finish'] = finishes lock.release() break elif 'Pending' in pod_status2: # pod_status = [i.status.phase for i in job.v1.list_namespaced_pod(job_name).items] tmp_layout = tasks['nslayout'] tmp_keys = list(tmp_layout.keys()) if job_name in tmp_keys: tmp_layout_config = {} for i in job.v1.list_namespaced_pod(job_name).items: if i.status.phase == 'Running': tmp_layout_config[i.metadata.name] = i.spec.node_name if tmp_layout_config: fp = open('/tfdata/k8snfs/' + job_name + '/layout.json', 'w', encoding='utf-8') # ensure_ascii:默认值True,如果dict内含有non-ASCII的字符,则会类似\uXXXX的显示数据,设置成False后,就能正常显示 dicc_json = json.dumps(tmp_layout_config, ensure_ascii=False, indent=4) # 字典转成json,字典转成字符串 fp.write(dicc_json) fp.close() save_res_path = '/tfdata/k8snfs/%s/%s_res.json' % (job.name, job.name) res_config = load_config(save_res_path) keys_res = res_config.keys() if 'reloadtime' not in keys_res: res_config['reloadtime'] = [] if (job.worker_replicas>0 and job.ps_replicas>0): if count22 >= 5: aim_steps = step_influx_client.query( "select training_step from " + measure_t + " order by desc limit 1") aim_key = aim_steps.keys() result_inter = aim_steps[aim_key[0]] result_items = list(result_inter) aim_step = int(result_items[0]['training_step']) print(aim_step) save_job_change_layout(job.name, 1, 1, aim_step, mode=1) lock.acquire() command = 'kubectl delete -f /tfdata/tfcnn/expjobraw/' + job.name + '.yaml' os.system(command) try: deletehelp2(job.name, v1) except Exception as we0: print(we0) # v1.delete_namespace(job.name) ns_tmp = tasks['ns'] ns_tmp.remove(job.name) tasks['ns'] = ns_tmp is_layout = tasks['nslayout'] is_layout.pop(job.name) for i in range(len(jobs)): if jobs[i] == job.name: jobs.pop(i) break tasks['nslayout'] = is_layout tasks['count'] -= 1 tmp_next = tasks['next'] tmp_next.append(job.name) tmp_next_time_config = tasks['nexttimes'] tmp_next_time_config[job.name] = 0 tasks['nexttimes'] = tmp_next_time_config tasks['next'] = tmp_next lock.release() time.sleep(15) jieshu = True print("Exception exit! Pending Problem!") count22+=1 return else: count22 += 1 time.sleep(21.5) elif not run_result_dict2: ceshi_tmp_ns = tasks['ns'] if job.name not in ceshi_tmp_ns: if count111 <= 5: count111 += 1 time.sleep(15) else: return if count11 >= 8: jieshu = True print("Exception exit! Creating Problem!") save_res_path = '/tfdata/k8snfs/%s/%s_res.json' % (job.name, job.name) res_job_config = load_config(save_res_path) res_job_config['errtime'] = time.time() - 5 save_config(res_job_config, save_res_path) lock.acquire() command = 'kubectl delete -f /tfdata/tfcnn/expjobraw/' + job.name + '.yaml' os.system(command) try: deletehelp2(job.name,v1) except Exception as we0: print(we0) # v1.delete_namespace(job.name) ns_tmp = tasks['ns'] ns_tmp.remove(job.name) tasks['ns'] = ns_tmp is_layout = tasks['nslayout'] is_layout.pop(job.name) for i in range(len(jobs)): if jobs[i] == job.name: jobs.pop(i) break tasks['nslayout'] = is_layout # job_tmp.pop(ns) # tasks['job'] = job_tmp tasks['count'] -= 1 lock.release() return count11 += 1 time.sleep(21) else: time.sleep(15) # 1580976233000000000 def get_load_value(node_index,cpu_base,memory_base,total_cpu_base,total_memory_base): keys = node_index.keys() alpha = 0.78 cpu_score = 0 memory_score = 0 node_use = [] node_cpu = [] node_mem = [] for key in keys: if node_index[key] <=12: node_use.append(key) for key in node_use: cpu_score+= cpu_base[key] node_cpu.append(cpu_base[key]) memory_score+= memory_base[key] node_mem.append(memory_base[key]) cpu_score = cpu_score/len(node_use) memory_score = memory_score/len(node_use) cpu_score = alpha*cpu_score+(1-alpha)*total_cpu_base memory_score = alpha*memory_score+(1-alpha)*total_memory_base return cpu_score,memory_score,node_cpu,node_mem def check_path(name): train_dir = os.path.join('/tfdata/k8snfs/', name) print(train_dir) if not os.path.exists(train_dir): os.makedirs(train_dir) return train_dir def write_step_meg(job_name): job = reload_jobs(job_name,-3) measure = job.measure client_pre = influxdb.InfluxDBClient(host=job.dbhost, port=8086, username='admin', password='<PASSWORD>', database="PREDICT") pre_list = measure.split(" ") # measure_s = pre_list[0] + 'S' + pre_list[-1] measure_t = pre_list[0] + 'T' + pre_list[-1] step_items = [ { 'measurement': measure_t, 'tags': { 'task': job.task_id, 'runtimes': job.rtimes, 'retry': job.retry }, 'fields': { 'training_step': job.training_step, 'worker': job.worker_replicas, 'ps': job.ps_replicas } } ] client_pre.write_points(step_items, time_precision="ms", database="PREDICT") print('write initial measure_t success!!') job.write_retry(mode=0) def loss_server_conn(ADDR,measure): loss_client = socket.socket(socket.AF_INET, socket.SOCK_STREAM) loss_client.connect(ADDR) loss_client.send(bytes(measure, 'utf-8')) connect_try = 5 try_times = 1 connected = False while True: if try_times > connect_try: break msg_from_server = loss_client.recv(4096) if not msg_from_server: break msg_from_server_str = str(msg_from_server.decode('utf-8')) msg_from_server_list = msg_from_server_str.split(" ") if msg_from_server_list[0] == '400': connected = True break loss_client.send(bytes(measure, 'utf-8')) try_times = try_times + 1 return connected def Submit_job(tasks,lock,v1,jobs): try: rfr = joblib.load('rfr_batch.pkl') except Exception as e0: print(e0) # est_mem = joblib.load('est_mem.pkl') # est_cpu = joblib.load('est_cpu.pkl') print('start to reload') print(jobs) global LOSSHOST,LOSSPORT ADDR = (LOSSHOST,LOSSPORT) PREHOST = '192.168.128.5' PREPORT = 12529 ADDR2 = (PREHOST,PREPORT) max_buffer_size = 5 job_basic = reload_jobs(tasks['last'],-1) max_free_heap = MaxHeap(max_size=max_buffer_size,fn=worker_queue.value_free_load) max_wight_heap = MaxHeap(max_size=max_buffer_size,fn=worker_queue.value_weight_load) worker_buffer = tasks['buffer'] first_reload = False time.sleep(20) if worker_buffer: first_reload = True pool = multiprocessing.Pool(processes=38) for job0 in jobs: save_res_path = '/tfdata/k8snfs/%s/%s_res.json' % (job0, job0) res_config = load_config(save_res_path) batch_res = res_config['batch_res'] flops_res = res_config['flops_res'] params_res = res_config['params_res'] job01 = reload_jobs(job0,-3) # catch_node_step_msg(jobs=,job_name=,tasks=,lock=,batch=,flops=,params=,mode=) # loss_server_conn(ADDR,job01.measure) pool.apply_async(catch_node_step_msg,args=(jobs,job0,tasks,lock,batch_res,flops_res,params_res,-1)) global_count = 1 while True: print("Global Count is :%d" % global_count) if tasks['start']==False: break tmp_aim_set = tasks['aim'] tmp_next_set = tasks['next'] tmp_ns_set = tasks['ns'] # tmp_buffer_set = tasks if not tmp_aim_set and not tmp_next_set and tasks['buffercount'] <= 0: if not tmp_ns_set: break if global_count >4 and global_count%10 != 0: lock.acquire() counts = tasks['count'] bufer_count = tasks['buffercount'] lock.release() print(bufer_count) if tasks['next'] and counts < tasks['size']: print("panduan tasks in next") lock.acquire() tmp_next = tasks['next'] job_name = tmp_next.pop(0) job_next_time = tasks['nexttimes'][job_name] job_next_time+=1 tasks['nexttimes'][job_name] = job_next_time tasks['next'] = tmp_next lock.release() job = reload_jobs(job_name, -3) print("%s in next reload!" % job_name) node_index, cpu_nodes, memory_nodes, total_cpu_use, total_mem_use = job_basic.schedule_base() # mem_need = job.total_mem * total_mem_use + job.worker_replicas * job.memory_allocate + 2048 * job.ps_replicas # cpu_need = job.total_cpu * total_cpu_use + job.worker_replicas * job.cpu_allocate + 1000 * job.ps_replicas catch_worker = 0 catch_ps = 0 node_keys = cpu_nodes.keys() for key in node_keys: catch_ps_c = 0 catch_ps_m = 0 catch_worker_c = 0 catch_worker_m = 0 can_use_cpu = job.node_cpu[key] * (1 - cpu_nodes[key]) can_use_mem = job.node_memory[key] * (1 - memory_nodes[key]) first_try = True endcpu = False endmem = False count_trys = 0 while (not endcpu) or (not endmem): if first_try: if can_use_cpu - 600 > 0: catch_ps_c += 1 can_use_cpu = can_use_cpu - 600 else: if can_use_cpu - job.cpu_allocate > 0: catch_worker_c += 1 can_use_cpu = can_use_cpu - job.cpu_allocate if can_use_mem - 2048 > 0: catch_ps_m += 1 can_use_mem = can_use_mem - 2048 else: if can_use_mem - job.memory_allocate > 0: catch_worker_m += 1 can_use_mem = can_use_mem - job.memory_allocate first_try = False else: if can_use_cpu - job.cpu_allocate > 0: catch_worker_c += 1 can_use_cpu = can_use_cpu - job.cpu_allocate else: if can_use_cpu - 600 > 0: catch_ps_c += 1 can_use_cpu = can_use_cpu - 600 else: endcpu = True if can_use_mem - job.memory_allocate > 0: catch_worker_m += 1 can_use_mem = can_use_mem - job.memory_allocate else: if can_use_mem - 2048 > 0: catch_ps_m += 1 can_use_mem = can_use_mem - 2048 else: endmem = True if catch_worker_c < catch_worker_m: catch_worker += catch_worker_c else: catch_worker += catch_worker_m if catch_ps_c < catch_ps_m: catch_ps += catch_ps_c else: catch_ps += catch_ps_m if catch_ps >= 1 and catch_worker >= 1: break print("In next catch ps: %d,worker:%d" % (catch_ps, catch_worker)) if catch_ps > 0 and catch_worker > 0: lock.acquire() job.update_step() print("in next update step success!!") write_step_meg(job.name) submit_time_now = time.time() tongji_waiting_queue(job.name, submit_time_now) job.create_tf() ns_tmp = tasks['ns'] ns_tmp.append(job.name) tasks['ns'] = ns_tmp is_layout = tasks['nslayout'] is_layout[job.name] = False tasks['nslayout'] = is_layout jobs.append(job.name) tasks['count'] += 1 save_res_path = '/tfdata/k8snfs/%s/%s_res.json' % (job.name, job.name) res_config = load_config(save_res_path) batch_res = res_config['batch_res'] flops_res = res_config['flops_res'] params_res = res_config['params_res'] pool.apply_async(catch_node_step_msg, args=(jobs, job.name, tasks, lock, batch_res, flops_res, params_res, 1)) # tasks['next'] = '' lock.release() else: lock.acquire() tmp_buffer_count0 = tasks['buffercount'] if tasks['nexttimes'][job.name] >=3 and tmp_buffer_count0 < max_buffer_size: tmp_buffer_pool = tasks['buffer'] tmp_buffer_pool.append(job.name) tasks['buffer'] = tmp_buffer_pool tmp_buffer_count0+=1 tasks['buffercount'] = tmp_buffer_count0 tmp_next_time_config = tasks['nexttimes'] tmp_next_time_config.pop(job.name) tasks['nexttimes'] = tmp_next_time_config else: tmp_next = tasks['next'] tmp_next.append(job.name) tasks['next'] = tmp_next save_res_path = '/tfdata/k8snfs/%s/%s_res.json' % (job.name, job.name) # save_res_path = '/tfdata/tfcnn' res_config = load_config(save_res_path) lock.release() time.sleep(30) elif counts < tasks['size'] and bufer_count>0: lock.acquire() tmp_buffer_count = tasks['buffercount'] worker_buffer = tasks['buffer'] lock.release() node_index, cpu_nodes, memory_nodes, total_cpu_use, total_mem_use = job_basic.schedule_base() cpu_value, mem_value, cpu_node_value, mem_node_value = get_load_value(node_index=node_index, cpu_base=cpu_nodes, memory_base=memory_nodes, total_cpu_base=total_cpu_use, total_memory_base=total_mem_use) if cpu_value < 0.4: selected_job_name = worker_buffer[0] print(selected_job_name) ceshi_name = worker_buffer.pop(0) print(ceshi_name) # worker_buffer = max_free_heap.items print(worker_buffer) tasks['buffer'] = worker_buffer[:] tmp_buffer_count = tmp_buffer_count - 1 tasks['buffercount'] = tmp_buffer_count else: selected_job_name = worker_buffer[0] print(selected_job_name) ceshi_name = worker_buffer.pop(0) print(ceshi_name) # worker_buffer = max_free_heap.items print(worker_buffer) tasks['buffer'] = worker_buffer[:] tmp_buffer_count = tmp_buffer_count - 1 tasks['buffercount'] = tmp_buffer_count job = reload_jobs(selected_job_name, -3) tmp_ps_replicas = job.ps_replicas tmp_worker_replicas = job.worker_replicas pre_list = job.measure.split(" ") measure_s = pre_list[0] + 'S' + pre_list[-1] measure_t = pre_list[0] + 'T' + pre_list[-1] influx_client = influxdb.InfluxDBClient(host='192.168.128.10', port=8086, username='admin', password='<PASSWORD>', database="PREDICT") result = influx_client.query("select * from " + measure_t + " order by asc limit 1") key = result.keys() print(key) result_inter = result[key[0]] result_items = list(result_inter) print(result_items) trains_step = int(result_items[0]['training_step']) tmp_worker_replicas = int(result_items[0]['worker']) job.training_step = math.ceil( trains_step * tmp_worker_replicas / job.worker_replicas) save_job_change_layout(job.name, job.ps_replicas, job.worker_replicas, job.training_step) mem_need = job.total_mem * total_mem_use + job.worker_replicas * job.memory_allocate + 2048 * job.ps_replicas cpu_need = job.total_cpu * total_cpu_use + job.worker_replicas * job.cpu_allocate + 750 * job.ps_replicas catch_worker = 0 catch_ps = 0 node_keys = cpu_nodes.keys() reach_ps = False reach_worker = False for key in node_keys: catch_ps_c = 0 catch_ps_m = 0 catch_worker_c = 0 catch_worker_m = 0 can_use_cpu = job.node_cpu[key] * (1 - cpu_nodes[key]) can_use_mem = job.node_memory[key] * (1 - memory_nodes[key]) first_try = True endcpu = False endmem = False while (not endcpu) or (not endmem): if first_try: if can_use_cpu - 600 > 0 and not reach_ps: catch_ps_c += 1 can_use_cpu = can_use_cpu - 600 else: if can_use_cpu - job.cpu_allocate > 0 and not reach_worker: catch_worker_c += 1 can_use_cpu = can_use_cpu - job.cpu_allocate if can_use_mem - 2048 > 0 and not reach_ps: catch_ps_m += 1 can_use_mem = can_use_mem - 2048 else: if can_use_mem - job.memory_allocate > 0 and not reach_worker: catch_worker_m += 1 can_use_mem = can_use_mem - job.memory_allocate first_try = False else: if can_use_cpu - job.cpu_allocate > 0 and not reach_worker: catch_worker_c += 1 can_use_cpu = can_use_cpu - job.cpu_allocate else: if can_use_cpu - 600 > 0 and not reach_ps: catch_ps_c += 1 can_use_cpu = can_use_cpu - 600 else: endcpu = True if can_use_mem - job.memory_allocate > 0 and not reach_worker: catch_worker_m += 1 can_use_mem = can_use_mem - job.memory_allocate else: if can_use_mem - 2048 > 0 and not reach_ps: catch_ps_m += 1 can_use_mem = can_use_mem - 2048 else: endmem = True if catch_worker_c < catch_worker_m: catch_worker += catch_worker_c else: catch_worker += catch_worker_m if catch_ps_c < catch_ps_m: catch_ps += catch_ps_c else: catch_ps += catch_ps_m if catch_ps >= job.ps_replicas: reach_ps = True if catch_worker >= job.worker_replicas: reach_worker = True if catch_ps >= job.ps_replicas and catch_worker >= job.worker_replicas: break print("catch_ps: %d catch_worker: %d" % (catch_ps, catch_worker)) if catch_ps < job.ps_replicas or catch_worker < job.worker_replicas: tmp_ps = job.ps_replicas tmp_worker = job.worker_replicas if catch_ps > 0 and catch_worker > 0: if catch_worker > aim_job.worker_replicas: catch_worker = aim_job.worker_replicas if catch_ps > aim_job.ps_replicas: catch_ps = aim_job.ps_replicas aim_job.ps_replicas = catch_ps aim_job.worker_replicas = catch_worker aim_job.training_step = math.ceil(aim_job.training_step * tmp_worker / aim_job.worker_replicas) save_job_change_layout(aim_job.name, catch_ps, catch_worker, aim_job.training_step) aim_job.update_step() write_step_meg(aim_job.name) lock.acquire() submit_time_now = time.time() tongji_waiting_queue(aim_job.name, submit_time_now) aim_job.create_tf() ns_tmp = tasks['ns'] ns_tmp.append(aim_job.name) tasks['ns'] = ns_tmp is_layout = tasks['nslayout'] is_layout[aim_job.name] = False tasks['nslayout'] = is_layout jobs.append(aim_job.name) tasks['count'] += 1 lock.release() save_res_path = '/tfdata/k8snfs/%s/%s_res.json' % (aim_job.name, aim_job.name) res_config = load_config(save_res_path) batch_res = res_config['batch_res'] flops_res = res_config['flops_res'] params_res = res_config['params_res'] pool.apply_async(catch_node_step_msg, args=( jobs, aim_job.name, tasks, lock, batch_res, flops_res, params_res, 1)) else: job.ps_replicas = 1 job.worker_replicas = 1 job.training_step = math.ceil(job.training_step * tmp_worker) save_job_change_layout(job.name, 1, 1, training_step=job.training_step) lock.acquire() tmp_next = tasks['next'] tmp_next.append(job.name) tmp_next_time_config = tasks['nexttimes'] tmp_next_time_config[job.name] = 0 tasks['nexttimes'] = tmp_next_time_config tasks['next'] = tmp_next lock.release() else: lock.acquire() job.update_step() write_step_meg(job.name) submit_time_now = time.time() tongji_waiting_queue(job.name, submit_time_now) job.create_tf() # lock.acquire() ns_tmp = tasks['ns'] ns_tmp.append(job.name) tasks['ns'] = ns_tmp is_layout = tasks['nslayout'] is_layout[job.name] = False tasks['nslayout'] = is_layout jobs.append(job.name) tasks['count'] += 1 save_res_path = '/tfdata/k8snfs/%s/%s_res.json' % (job.name, job.name) res_config = load_config(save_res_path) batch_res = res_config['batch_res'] flops_res = res_config['flops_res'] params_res = res_config['params_res'] pool.apply_async(catch_node_step_msg, args=( jobs, job.name, tasks, lock, batch_res, flops_res, params_res, 1)) lock.release() global_count+=1 time.sleep((83.3/3)*1.1) if global_count % 10 == 0 or global_count<=4: print('start to submit a job!!') tmp_jobs0 = tasks['aim'] if not tmp_jobs0: global_count+=1 continue for _ in range(10): lock.acquire() counts = tasks['count'] bufer_count = tasks['buffercount'] lock.release() if (counts >= tasks['size']) and (bufer_count >= max_buffer_size): time.sleep(float(random.randint(7,9))) pass else: print('select a job!!') time.sleep(40) if tasks['aim']: tmp_jobs = tasks['aim'] aim_job0 = tmp_jobs[0] tmp_jobs.pop(0) tasks['aim'] = tmp_jobs aim_job = reload_jobs(aim_job0,-1) aim_job.retry = aim_job.retry+1 save_job_path = '/tfdata/k8snfs/%s/%s.json' % (aim_job.name, aim_job.name) aim_job_config = load_config(save_job_path) aim_job_config['retry'] = aim_job.retry save_config(aim_job_config,save_job_path) pre_list = aim_job.measure.split(" ") measure_s = pre_list[0] + 'S' + pre_list[-1] measure_t = pre_list[0] + 'T' + pre_list[-1] measure_write = pre_list[0] + 'W' + pre_list[-1] measure_up = pre_list[0] + 'U' + pre_list[-1] # ps_r = random.randint(1, 3) # worker_r = random.randint(1, 4) allow_read = {} allow_read['OK'] = True allow_read['retry'] = aim_job.retry # allow_p = check_path(measure_t) allow_path = '/tfdata/k8snfs/%s/%s3.json' % (aim_job.name, measure_t) save_config(allow_read, allow_path) lock.acquire() tasks['base'] = aim_job.name lock.release() # template_id = random.randint(1,4) else: break lock.acquire() if tasks['count'] < tasks['size'] or tasks['buffercount'] < max_buffer_size: # loss_client = socket.socket(socket.AF_INET,socket.SOCK_STREAM) # loss_client.connect(ADDR) client_pre = influxdb.InfluxDBClient(host=aim_job.dbhost, port=8086, username='admin', password='<PASSWORD>', database="PREDICT") save_config_dir = task_submit.check_path(aim_job.name) save_job_path = '/tfdata/k8snfs/%s/%s.json' % (aim_job.name, aim_job.name) save_res_path = '/tfdata/k8snfs/%s/%s_res.json' % (aim_job.name, aim_job.name) aim_res_config = load_config(save_res_path) pre_client = socket.socket(socket.AF_INET, socket.SOCK_STREAM) pre_client.connect(ADDR2) pre_client.send(bytes(aim_job.measure, 'utf-8')) connect_try = 5 try_times = 1 connected = False msg_from_server_str = '' start_time = '%.3f' % time.time() start_time = float(start_time) if aim_job.template_id == 1: dict0 = {'batch': aim_job.batch_size, 'channel1': aim_job.channel1, 'channel2': aim_job.channel2, 'channel3': aim_job.channel3, 'channel4': aim_job.channel4, 'channel5': aim_job.channel5, 'num_layer1': aim_job.num_layer1, 'num_layer2': aim_job.num_layer2, 'num_layer3': aim_job.num_layer3, 'num_layer4': aim_job.num_layer4, 'num_layer5': aim_job.num_layer5} elif aim_job.template_id == 2: dict0 = {'batch': aim_job.batch_size, 'channel1': aim_job.channel1, 'channel2': aim_job.channel2, 'channel3': aim_job.channel3, 'channel4': aim_job.channel4, 'layer1': aim_job.layer1, 'layer2': aim_job.layer2, 'layer3': aim_job.layer3, 'layer4': aim_job.layer4, 'bottle': aim_job.bottle} elif aim_job.template_id == 3: dict0 = {'batch': aim_job.batch_size, 'channel1': aim_job.channel1, 'channel2': aim_job.channel2, 'channel3': aim_job.channel3, 'channel4': aim_job.channel4, 'stack_num': aim_job.stack} elif aim_job.template_id == 4: dict0 = {'batch':aim_job.batch_size, 'channel1': aim_job.channel1, 'channel2': aim_job.channel2, 'channel3': aim_job.channel3, 'channel4': aim_job.channel4, 'channel5': aim_job.channel5, 'channel6': aim_job.channel6, 'channel7': aim_job.channel7, 'channel8': aim_job.channel8, 'repeat': aim_job.repeat} else: dict0 = {'batch': aim_job.batch_size, 'BC': aim_job.BC, 'k': aim_job.k, 'L':aim_job.L, 'num_classes': 10} while True: if try_times > connect_try: break msg_from_server = pre_client.recv(4096) if not msg_from_server: break msg_from_server_str = str(msg_from_server.decode('utf-8')) msg_from_server_list = msg_from_server_str.split(" ") if msg_from_server_list[0] == '400': connected = True break pre_client.send(bytes(aim_job.measure, 'utf-8')) try_times = try_times + 1 if not connected: print("Connected or send message error!") pre_client.close() lock.release() continue print(msg_from_server_str) print("connected success!") dict_json = json.dumps(dict0) pre_client.send(bytes(dict_json, 'utf-8')) ress = pre_client.recv(4096) ress_str = str(ress.decode('utf-8')) ress_lists = ress_str.split(' ') if ress_lists[0] == '400': batch_res = int(ress_lists[1]) flops_res = int(ress_lists[2]) params_res = int(ress_lists[3]) cpu_predict = float(ress_lists[-2]) cpu_base = math.ceil(1.12 * cpu_predict) mem_predict = float(ress_lists[-1]) mem_base = math.ceil(1.35 * mem_predict) res_to_server = '1' pre_client.send(bytes(res_to_server, 'utf-8')) else: res_to_server = '0' pre_client.send(bytes(res_to_server, 'utf-8')) print("send response success!!") time.sleep(6) pre_client.close() print("some time later to try again!!") lock.release() time.sleep(60) continue pre_client.close() tmp_reload = tasks['reload'] if tmp_reload == 0: # alpha = 1 # beta = 1 alpha = random.randint(1, 14) * 0.1 + 0.6 beta = random.randint(2, 16) * 0.1 + 0.625 else: alpha = random.randint(1, 14) * 0.1 + 0.6 beta = random.randint(2, 16) * 0.1 + 0.625 # alpha = 1 # beta = 1 aim_job.set_resource(cpu_source=(math.ceil(aim_res_config['cpu_high'] * alpha)), mem_source=(math.ceil(aim_res_config['memory_base'] * beta))) deadline = float(aim_res_config['deadline']) print(deadline) print(type(deadline)) # deadline = random.randint(3600, 18000) aim_job.set_deadline(deadline=deadline, start_time=start_time) aim_res_config['deadline'] = aim_job.deadline aim_res_config['start_time3'] = aim_job.starttime aim_res_config['cpu_source'] = aim_job.cpu_allocate aim_res_config['mem_source'] = aim_job.memory_allocate save_config_dir = task_submit_raw.check_path(aim_job.name) # save_job_path = '/tfdata/k8snfs/%s/%s.json' % (job.name, job.name) save_res_path = '/tfdata/k8snfs/%s/%s_res.json' % (aim_job.name, aim_job.name) # save_config(job_config, save_job_path) save_config(aim_res_config, save_res_path) if tasks['count'] < tasks['size'] and tasks['buffercount'] == 0: node_index, cpu_nodes, memory_nodes, total_cpu_use, total_mem_use = job_basic.schedule_base() cpu_value, mem_value, cpu_node_value, mem_node_value = get_load_value(node_index=node_index, cpu_base=cpu_nodes, memory_base=memory_nodes, total_cpu_base=total_cpu_use, total_memory_base=total_mem_use) aim_job.worker_replicas = random.randint(1,6) aim_job.ps_replicas = random.randint(1,4) influx_client = influxdb.InfluxDBClient(host='192.168.128.10', port=8086, username='admin', password='<PASSWORD>', database="PREDICT") result = influx_client.query("select * from " + measure_t + " order by asc limit 1") key = result.keys() print(key) result_inter = result[key[0]] result_items = list(result_inter) print(result_items) trains_step = int(result_items[0]['training_step']) tmp_worker_replicas = int(result_items[0]['worker']) aim_job.training_step = math.ceil(trains_step * tmp_worker_replicas / aim_job.worker_replicas) save_job_change_layout(aim_job.name, aim_job.ps_replicas, aim_job.worker_replicas, aim_job.training_step) mem_need = aim_job.total_mem * total_mem_use + aim_job.worker_replicas * aim_job.memory_allocate + 2048 * aim_job.ps_replicas cpu_need = aim_job.total_cpu * total_cpu_use + aim_job.worker_replicas * aim_job.cpu_allocate + 750 * aim_job.ps_replicas catch_worker = 0 catch_ps = 0 node_keys = cpu_nodes.keys() reach_ps = False reach_worker = False for key in node_keys: catch_ps_c = 0 catch_ps_m = 0 catch_worker_c = 0 catch_worker_m = 0 can_use_cpu = aim_job.node_cpu[key] * (1 - cpu_nodes[key]) can_use_mem = aim_job.node_memory[key] * (1 - memory_nodes[key]) first_try = True endcpu = False endmem = False while (not endcpu) or (not endmem): if first_try: if can_use_cpu - 600> 0 and not reach_ps: catch_ps_c += 1 can_use_cpu = can_use_cpu - 600 else: if can_use_cpu - aim_job.cpu_allocate > 0 and not reach_worker: catch_worker_c += 1 can_use_cpu = can_use_cpu - aim_job.cpu_allocate if can_use_mem - 2048 > 0 and not reach_ps: catch_ps_m += 1 can_use_mem = can_use_mem - 2048 else: if can_use_mem - aim_job.memory_allocate > 0 and not reach_worker: catch_worker_m += 1 can_use_mem = can_use_mem - aim_job.memory_allocate first_try = False else: if can_use_cpu - aim_job.cpu_allocate > 0 and not reach_worker: catch_worker_c += 1 can_use_cpu = can_use_cpu - aim_job.cpu_allocate else: if can_use_cpu - 600 > 0 and not reach_ps: catch_ps_c += 1 can_use_cpu = can_use_cpu - 600 else: endcpu = True if can_use_mem - aim_job.memory_allocate > 0 and not reach_worker: catch_worker_m += 1 can_use_mem = can_use_mem - aim_job.memory_allocate else: if can_use_mem - 2048 > 0 and not reach_ps: catch_ps_m += 1 can_use_mem = can_use_mem - 2048 else: endmem = True if catch_worker_c < catch_worker_m: catch_worker += catch_worker_c else: catch_worker += catch_worker_m if catch_ps_c < catch_ps_m: catch_ps += catch_ps_c else: catch_ps += catch_ps_m if catch_ps >= aim_job.ps_replicas: reach_ps = True if catch_worker >= aim_job.worker_replicas: reach_worker = True if catch_ps >= aim_job.ps_replicas and catch_worker >= aim_job.worker_replicas: break print("catch_ps: %d catch_worker: %d" % (catch_ps, catch_worker)) if catch_ps < aim_job.ps_replicas or catch_worker < aim_job.worker_replicas: tmp_ps = aim_job.ps_replicas tmp_worker = aim_job.worker_replicas if catch_ps > 0 and catch_worker > 0: if catch_worker > aim_job.worker_replicas: catch_worker = aim_job.worker_replicas if catch_ps > aim_job.ps_replicas: catch_ps = aim_job.ps_replicas aim_job.ps_replicas = catch_ps aim_job.worker_replicas = catch_worker aim_job.training_step = math.ceil(aim_job.training_step * tmp_worker / aim_job.worker_replicas) save_job_change_layout(aim_job.name, catch_ps, catch_worker, aim_job.training_step) aim_job.update_step() write_step_meg(aim_job.name) submit_time_now = time.time() tongji_waiting_queue(aim_job.name, submit_time_now) aim_job.create_tf() ns_tmp = tasks['ns'] ns_tmp.append(aim_job.name) tasks['ns'] = ns_tmp is_layout = tasks['nslayout'] is_layout[aim_job.name] = False tasks['nslayout'] = is_layout jobs.append(aim_job.name) tasks['count'] += 1 save_res_path = '/tfdata/k8snfs/%s/%s_res.json' % (aim_job.name, aim_job.name) res_config = load_config(save_res_path) batch_res = res_config['batch_res'] flops_res = res_config['flops_res'] params_res = res_config['params_res'] pool.apply_async(catch_node_step_msg, args=( jobs, aim_job.name, tasks, lock, batch_res, flops_res, params_res, 1)) else: aim_job.ps_replicas = 1 aim_job.worker_replicas = 1 aim_job.training_step = aim_job.training_step * tmp_worker save_job_change_layout(aim_job.name, 1, 1, aim_job.training_step) # lock.acquire() tmp_next = tasks['next'] tmp_next.append(aim_job.name) tmp_next_time_config = tasks['nexttimes'] tmp_next_time_config[aim_job.name] = 0 tasks['nexttimes'] = tmp_next_time_config tasks['next'] = tmp_next else: aim_job.update_step() write_step_meg(aim_job.name) submit_time_now = time.time() tongji_waiting_queue(aim_job.name, submit_time_now) aim_job.create_tf() ns_tmp = tasks['ns'] ns_tmp.append(aim_job.name) tasks['ns'] = ns_tmp is_layout = tasks['nslayout'] is_layout[aim_job.name] = False tasks['nslayout'] = is_layout jobs.append(aim_job.name) tasks['count'] += 1 save_res_path = '/tfdata/k8snfs/%s/%s_res.json' % (aim_job.name, aim_job.name) res_config = load_config(save_res_path) batch_res = res_config['batch_res'] flops_res = res_config['flops_res'] params_res = res_config['params_res'] pool.apply_async(catch_node_step_msg, args=( jobs, aim_job.name, tasks, lock, batch_res, flops_res, params_res, 1)) elif tasks['count'] >= tasks['size']: worker_buffer = tasks['buffer'] worker_buffer.append(aim_job.name) tasks['buffer'] = worker_buffer tmp_buffer_count = tasks['buffercount'] tmp_buffer_count = tmp_buffer_count + 1 tasks['buffercount'] = tmp_buffer_count else: worker_buffer = tasks['buffer'] worker_buffer.append(aim_job.name) tmp_buffer_count = tasks['buffercount'] tmp_buffer_count = tmp_buffer_count + 1 tasks['buffercount'] = tmp_buffer_count node_index, cpu_nodes, memory_nodes, total_cpu_use, total_mem_use = job_basic.schedule_base() cpu_value, mem_value, cpu_node_value, mem_node_value = get_load_value(node_index=node_index, cpu_base=cpu_nodes, memory_base=memory_nodes, total_cpu_base=total_cpu_use, total_memory_base=total_mem_use) if cpu_value < 0.4: tmp_buffers = tasks['buffer'] selected_job_name = tmp_buffers[0] print(selected_job_name) # worker_buffer = max_free_heap.items print(worker_buffer) ceshi_name = worker_buffer.pop(0) print(ceshi_name) tasks['buffer'] = worker_buffer[:] tmp_buffer_count = tmp_buffer_count - 1 tasks['buffercount'] = tmp_buffer_count else: selected_job_name = worker_buffer[0] ceshi_name = worker_buffer.pop(0) print(ceshi_name) print(worker_buffer) print(selected_job_name) tasks['buffer'] = worker_buffer[:] tmp_buffer_count = tmp_buffer_count - 1 tasks['buffercount'] = tmp_buffer_count job = reload_jobs(selected_job_name, -3) tmp_ps_replicas = job.ps_replicas tmp_worker_replicas = job.worker_replicas pre_list = job.measure.split(" ") measure_s = pre_list[0] + 'S' + pre_list[-1] measure_t = pre_list[0] + 'T' + pre_list[-1] influx_client = influxdb.InfluxDBClient(host='192.168.128.10', port=8086, username='admin', password='<PASSWORD>', database="PREDICT") result = influx_client.query("select * from " + measure_t + " order by asc limit 1") key = result.keys() print(key) result_inter = result[key[0]] result_items = list(result_inter) print(result_items) trains_step = int(result_items[0]['training_step']) tmp_worker_replicas = int(result_items[0]['worker']) job.training_step = math.ceil( trains_step * tmp_worker_replicas / job.worker_replicas) save_job_change_layout(job.name, job.ps_replicas, job.worker_replicas, job.training_step) mem_need = job.total_mem * total_mem_use + job.worker_replicas * job.memory_allocate + 2048 * job.ps_replicas cpu_need = job.total_cpu * total_cpu_use + job.worker_replicas * job.cpu_allocate + 750 * job.ps_replicas catch_worker = 0 catch_ps = 0 node_keys = cpu_nodes.keys() reach_ps = False reach_worker = False for key in node_keys: catch_ps_c = 0 catch_ps_m = 0 catch_worker_c = 0 catch_worker_m = 0 can_use_cpu = job.node_cpu[key] * (1 - cpu_nodes[key]) can_use_mem = job.node_memory[key] * (1 - memory_nodes[key]) first_try = True endcpu = False endmem = False while (not endcpu) or (not endmem): if first_try: if can_use_cpu - 600 > 0 and not reach_ps: catch_ps_c += 1 can_use_cpu = can_use_cpu - 600 else: if can_use_cpu - job.cpu_allocate > 0 and not reach_worker: catch_worker_c += 1 can_use_cpu = can_use_cpu - job.cpu_allocate if can_use_mem - 2048 > 0 and not reach_ps: catch_ps_m += 1 can_use_mem = can_use_mem - 2048 else: if can_use_mem - job.memory_allocate > 0 and not reach_worker: catch_worker_m += 1 can_use_mem = can_use_mem - job.memory_allocate first_try = False else: if can_use_cpu - job.cpu_allocate > 0 and not reach_worker: catch_worker_c += 1 can_use_cpu = can_use_cpu - job.cpu_allocate else: if can_use_cpu - 600 > 0 and not reach_ps: catch_ps_c += 1 can_use_cpu = can_use_cpu - 600 else: endcpu = True if can_use_mem - job.memory_allocate > 0 and not reach_worker: catch_worker_m += 1 can_use_mem = can_use_mem - job.memory_allocate else: if can_use_mem - 2048 > 0 and not reach_ps: catch_ps_m += 1 can_use_mem = can_use_mem - 2048 else: endmem = True if catch_worker_c < catch_worker_m: catch_worker += catch_worker_c else: catch_worker += catch_worker_m if catch_ps_c < catch_ps_m: catch_ps += catch_ps_c else: catch_ps += catch_ps_m if catch_ps >= job.ps_replicas: reach_ps = True if catch_worker >= job.worker_replicas: reach_worker = True if catch_ps >= job.ps_replicas and catch_worker >= job.worker_replicas: break print("catch_ps: %d catch_worker: %d" % (catch_ps, catch_worker)) if catch_ps < job.ps_replicas or catch_worker < job.worker_replicas: tmp_ps = job.ps_replicas tmp_worker = job.worker_replicas if catch_ps > 0 and catch_worker > 0: if catch_worker > job.worker_replicas: catch_worker = job.worker_replicas if catch_ps > job.ps_replicas: catch_ps = job.ps_replicas job.ps_replicas = catch_ps job.worker_replicas = catch_worker job.training_step = math.ceil(job.training_step * tmp_worker / job.worker_replicas) save_job_change_layout(job.name, catch_ps, catch_worker, job.training_step) job.update_step() write_step_meg(job.name) submit_time_now = time.time() tongji_waiting_queue(job.name, submit_time_now) job.create_tf() ns_tmp = tasks['ns'] ns_tmp.append(job.name) tasks['ns'] = ns_tmp is_layout = tasks['nslayout'] is_layout[job.name] = False tasks['nslayout'] = is_layout jobs.append(job.name) tasks['count'] += 1 save_res_path = '/tfdata/k8snfs/%s/%s_res.json' % (job.name, job.name) res_config = load_config(save_res_path) batch_res = res_config['batch_res'] flops_res = res_config['flops_res'] params_res = res_config['params_res'] pool.apply_async(catch_node_step_msg, args=( jobs, job.name, tasks, lock, batch_res, flops_res, params_res, 1)) else: job.ps_replicas = 1 job.worker_replicas = 1 job.training_step = job.training_step = math.ceil(job.training_step * tmp_worker) save_job_change_layout(job.name, 1, 1, training_step=job.training_step) tmp_next = tasks['next'] tmp_next.append(job.name) tmp_next_time_config = tasks['nexttimes'] tmp_next_time_config[job.name] = 0 tasks['nexttimes'] = tmp_next_time_config tasks['next'] = tmp_next # lock.release() else: job.update_step() write_step_meg(job.name) submit_time_now = time.time() tongji_waiting_queue(job.name, submit_time_now) job.create_tf() ns_tmp = tasks['ns'] ns_tmp.append(job.name) tasks['ns'] = ns_tmp is_layout = tasks['nslayout'] is_layout[job.name] = False tasks['nslayout'] = is_layout jobs.append(job.name) tasks['count'] += 1 save_res_path = '/tfdata/k8snfs/%s/%s_res.json' % (job.name, job.name) res_config = load_config(save_res_path) batch_res = res_config['batch_res'] flops_res = res_config['flops_res'] params_res = res_config['params_res'] pool.apply_async(catch_node_step_msg, args=( jobs, job.name, tasks, lock, batch_res, flops_res, params_res, 1)) tmp_reload = tasks['reload'] tmp_reload = 0 tasks['reload'] = tmp_reload lock.release() break global_count += 1 def jiance(tasks,lock,v1): try: task2 = load_config('through.json') # aa = 0 except Exception as eee: print(eee) # aa = 0 while True: if tasks['start']==True: time.sleep(120) lock.acquire() tmp_count1 = 0 for ns in tasks['ns']: nss = get_ns(v1) if ns not in nss: continue pod_status2 = [i.status.phase for i in v1.list_namespaced_pod(ns).items] save_path = '/tfdata/k8snfs/%s/%s.json' % (ns,ns) ns_config = load_config(save_path) run_result2 =
pd.value_counts(pod_status2)
pandas.value_counts
#Merges two CSV files and saves the final result import pandas as pd import sys df1 =
pd.read_csv(sys.argv[1])
pandas.read_csv
import json from datetime import datetime import pandas as pd from autogluon import TabularPrediction as task data_path = "./data/plasma/plasma" label_column = "RETPLASMA" fold1 = pd.read_csv(data_path + "-fold1.csv") fold2 = pd.read_csv(data_path + "-fold2.csv") fold3 =
pd.read_csv(data_path + "-fold3.csv")
pandas.read_csv
#!/usr/bin/env python3 # -*- coding: utf-8 -*- """ Created on Mon Mar 23 08:48:39 2020 @author: cclark2 """ import numpy as np import math from scipy.interpolate import interp2d from scipy.optimize import fsolve import pandas as pd import os import struct import multiprocessing #import Pool from itertools import repeat import dill import mpi4py.MPI as MPI from mpi4py.futures import MPIPoolExecutor #executor map MPI.pickle.__init__(dill.dumps, dill.loads) num_cores = multiprocessing.cpu_count() #%% READ BINARY FILES AND CONCATENATE SEEDS class Surrogate(): """ Base drivetrain class that calculates forces and L10 lifetime for planet bearings. """ def __init__(self, FF_timestep, m_c, d_c, m_s, m_p, N, g, beta, L_c, L_s, L_p, rho, C, e, N_r, N_p, omega): '''Instantiate LayoutOptimization object and parameter values.''' self.FF_timestep = FF_timestep # FAST.Farm timestep for outputs self.m_c = m_c # carrier mass self.d_c = d_c # center distance self.m_s = m_s # shaft mass self.m_p = m_p # planet bearing mass self.N = N # number of planet bearings self.g = g # gravitational force self.beta = beta # mounting angle self.L_c = L_c # distance from main bearing to the carrier's center of gravity self.L_s = L_s # distance from main bearing to the main shaft's center of gravity self.L_p = L_p # distance from main bearing to the planet bearing's center of gravity self.rho = rho # bedplate tilting angle (if don't want to include, set to 0 degrees) self.C = C # bearing basic dynamic load rating or capacity, N (the load that a bearing can carry for 1 million inner-race revolutions with a 90% probability of survival) self.e = e # constant for roller bearings self.N_r = N_r # ring gear teeth (#) self.N_p = N_p # planet gear teeth (#) self.omega = omega # bearing mount def fread(self, fid, n, type): fmt, nbytes = {'uint8': ('B', 1), 'int16':('h', 2), 'int32':('i', 4), 'float32':('f', 4), 'float64':('d', 8)}[type] return struct.unpack(fmt * n, fid.read(nbytes * n)) def load_binary_output(self, filename): '''Ported from ReadFASTbinary.m by <NAME>, DTU Wind Info about ReadFASTbinary.m: % Author: <NAME>, National Renewable Energy Laboratory % (c) 2012, National Renewable Energy Laboratory % % Edited for FAST v7.02.00b-bjj 22-Oct-2012 ''' FileFmtID_WithTime = 1 # File identifiers used in FAST LenName = 10 # number of characters per channel name LenUnit = 10 # number of characters per unit name with open(filename, 'rb') as fid: FileID = self.fread(fid, 1, 'int16') # FAST output file format, INT(2) NumOutChans = self.fread(fid, 1, 'int32')[0] # The number of output channels, INT(4) NT = self.fread(fid, 1, 'int32')[0] # The number of time steps, INT(4) if FileID == FileFmtID_WithTime: TimeScl = self.fread(fid, 1, 'float64') # The time slopes for scaling, REAL(8) TimeOff = self.fread(fid, 1, 'float64') # The time offsets for scaling, REAL(8) else: TimeOut1 = self.fread(fid, 1, 'float64') # The first time in the time series, REAL(8) TimeIncr = self.fread(fid, 1, 'float64') # The time increment, REAL(8) ColScl = self.fread(fid, NumOutChans, 'float32') # The channel slopes for scaling, REAL(4) ColOff = self.fread(fid, NumOutChans, 'float32') # The channel offsets for scaling, REAL(4) LenDesc = self.fread(fid, 1, 'int32')[0] # The number of characters in the description string, INT(4) DescStrASCII = self.fread(fid, LenDesc, 'uint8') # DescStr converted to ASCII DescStr = "".join(map(chr, DescStrASCII)).strip() ChanName = [] # initialize the ChanName cell array for iChan in range(NumOutChans + 1): ChanNameASCII = self.fread(fid, LenName, 'uint8') # ChanName converted to numeric ASCII ChanName.append("".join(map(chr, ChanNameASCII)).strip()) ChanUnit = [] # initialize the ChanUnit cell array for iChan in range(NumOutChans + 1): ChanUnitASCII = self.fread(fid, LenUnit, 'uint8') # ChanUnit converted to numeric ASCII ChanUnit.append("".join(map(chr, ChanUnitASCII)).strip()[1:-1]) # Get the channel time series nPts = NT * NumOutChans # number of data points in the file if FileID == FileFmtID_WithTime: PackedTime = self.fread(fid, NT, 'int32') # read the time data cnt = len(PackedTime) if cnt < NT: raise Exception('Could not read entire %s file: read %d of %d time values' % (filename, cnt, NT)) PackedData = self.fread(fid, nPts, 'int16') # read the channel data cnt = len(PackedData) if cnt < nPts: raise Exception('Could not read entire %s file: read %d of %d values' % (filename, cnt, nPts)) # Scale the packed binary to real data data = np.array(PackedData).reshape(NT, NumOutChans) data = (data - ColOff) / ColScl if FileID == FileFmtID_WithTime: time = (np.array(PackedTime) - TimeOff) / TimeScl; else: time = TimeOut1 + TimeIncr * np.arange(NT) data = np.concatenate([time.reshape(NT, 1), data], 1) info = {'name': os.path.splitext(os.path.basename(filename))[0], 'description': DescStr, 'attribute_names': ChanName, 'attribute_units': ChanUnit} return data, ChanName #data, info def concatenate_seeds(self, inflow, case, seeds, turbine, outfile): '''Concatenate seeds data from FAST.Farm into a single dataframe.''' if outfile == "BINARY": data = [] for seed in seeds: file = '/projects/windse/kshaler/SystemsEngineering/GriddedDatabase/FFarm/NewCases/{0}/{1}/{2}/FFarm_mod.{3}.outb'.format(inflow, case, seed, turbine) temp_data, channel = self.load_binary_output(file) print(str(seed) + 'temp_data size:' + print(temp_data.size)) data.append(temp_data) concatenated_data = np.concatenate(data) frame = pd.DataFrame(concatenated_data, columns = channel) elif outfile == "ASCII": result_files = ['/projects/windse/kshaler/SystemsEngineering/GriddedDatabase/FFarm/NewCases/{0}/{1}/{2}/FFarm_mod.{3}.out'.format(inflow, case, seed, turbine) for seed in seeds] df_list = [
pd.read_csv(file, delim_whitespace=True, header = [0,1], skiprows=6, error_bad_lines=False)
pandas.read_csv
# Libraries import pandas as pd from alpha_vantage.timeseries import TimeSeries from time import sleep def fetch_stock_data(stocks): """ Fetches stock data (per min) for last 14 days. INPUT: List of stocks OUTPUT: CSV files generated in data folder for all the stocks """ cnt=0 for stock in stocks: time=TimeSeries(key="Enter alphavantage key",output_format='pandas') data=time.get_intraday(symbol=stock,interval='1min',outputsize="full") stock_df=data[0] stock_df.to_csv("../data/Historical_Data/"+stock+".csv") ## API can only fetch data for 5 stocks in a minute cnt+=1 if cnt==4: cnt=0 sleep(60) def stock_data_daily(stocks,date): """ Updates the csv files with the current date's data INPUT: List of stocks and today's date OUTPUT: CSV files generated in data folder for all the stocks Simulation Data consists of last trading day and Historical Data consists of stock data before that day. """ cnt=0 for stock in stocks: df=
pd.read_csv("../data/Historical_Data/"+stock+".csv",index_col=0)
pandas.read_csv
import numpy as np import mxnet as mx import pdb np.seterr(divide='ignore', invalid='ignore') ## for saving import pandas as pd import os def COR(label, pred): label_demeaned = label - label.mean(0) label_sumsquares = np.sum(np.square(label_demeaned), 0) pred_demeaned = pred - pred.mean(0) pred_sumsquares = np.sum(np.square(pred_demeaned), 0) cor_coef = np.diagonal(np.dot(label_demeaned.T, pred_demeaned)) / \ np.sqrt(label_sumsquares * pred_sumsquares) return np.nanmean(cor_coef) def write_eval(pred, label, save_dir, mode, epoch): if not os.path.exists(save_dir): os.makedirs(save_dir) pred_df = pd.DataFrame(pred) label_df =
pd.DataFrame(label)
pandas.DataFrame
#!/data7/cschoi/anaconda3/bin/python # to fine newly discoverd sne from http://www.rochesterastronomy.org/snimages/ import requests import re from urllib.request import urlopen from bs4 import BeautifulSoup import pandas as pd from html_table_parser import parser_functions as parser import astropy.io.ascii as ascii import os import sys from astropy.table import Table, Column import astropy.coordinates as coord from astropy.time import Time import astropy.units as u import numpy as np from astropy.coordinates import Angle from astropy.coordinates import ICRS from astropy.coordinates import SkyCoord import pandas as pd from datetime import datetime os.chdir('/data7/cschoi/sngal/recent-sne-check/rochester-list') #datetime.today().strftime("%Y%m%d%H%M%S") # YYYYmmddHHMMSS 형태의 시간 출력 #datetime.today().strftime("%Y/%m/%d %H:%M:%S") # YYYY/mm/dd HH:MM:SS 형태의 시간 출력 today=datetime.today() today=datetime.today().strftime("%Y%m%d %H:%M:%S")[:8] print(today) radius=10.0 # 30 arcmin = 0.5 deg print ('Radius '+str(radius)+' arcmin') # print ('Reading recentsnelist.txt file ...') # colnames=['Ra','Dec','EarliestObs','Host','Type','Last','Max','Link','Discoverer'] # latestsnelist=pd.read_table('recentsnelist.txt') # latestsnelist=pd.read_table('recentlist.txt') #,names=colnames,data_start=1,guess='False') # latestsnelist=ascii.read('recentsnelist.txt',delimiter='\t') #,names=colnames,data_start=1,guess='False') imsnglist=ascii.read('/data7/cschoi/IMSNG/target/alltarget.dat') urlall="http://www.RochesterAstronomy.org/snimages/sndateall.html" # sn date all url='http://www.rochesterastronomy.org/snimages/sndate.html' # sndate print ('getting table data from web page from',url) response=requests.get(url) print('Done, table data is obtained') soup = BeautifulSoup(response.content, 'html.parser') tbl=soup.find_all('table') soup.find_all('table')[1].find_all('th') html_table = parser.make2d(tbl[1]) df=
pd.DataFrame(html_table[1:], columns=html_table[0])
pandas.DataFrame
import sys import os from flask import Flask, escape, request, send_from_directory, redirect, url_for import flask import json from flask_cors import CORS import copy import pandas as pd import time sys.path.append(os.path.abspath('../falx')) from falx.interface import FalxInterface from falx.utils import vis_utils def infer_dtype(values): return pd.api.types.infer_dtype(values, skipna=True) def try_infer_string_type(values): """try to infer datatype from values """ dtype = pd.api.types.infer_dtype(values, skipna=False) ty_func = lambda l: pd.to_numeric(l) try: values = ty_func(values) dtype =
pd.api.types.infer_dtype(values, skipna=False)
pandas.api.types.infer_dtype
import pandas as pd import numpy as np import warnings import sklearn.metrics as mt from sklearn.impute import SimpleImputer from sklearn.preprocessing import LabelEncoder from sklearn.neighbors import KNeighborsClassifier from sklearn.linear_model import LogisticRegression from sklearn.model_selection import train_test_split # To avoid warnings warnings.filterwarnings('ignore') def read_data(path): """Read and return data.""" data = pd.read_csv(path) return data def data_prepare(dataset): """Puts data in order in a few steps. 1. Delete unused columns 2. Replace NaN's with means and most frequent 3. Replace str values with ints 4. Depersonalization of some data, bringing them to a vector form Returns prepared dataset. """ # Delete unused columns unused_columns = ['PassengerId', 'Name', 'Ticket', 'Cabin', 'Fare'] data = dataset.drop(unused_columns, axis=1) # Replace NaN's with means... feature_list_1 = ['Age'] imputer = SimpleImputer(missing_values=np.nan, strategy='mean') data[feature_list_1] = imputer.fit_transform(data[feature_list_1].astype('float64')) # ...and most frequent feature_list_2 = ['Survived', 'Pclass', 'SibSp', 'Parch'] imputer = SimpleImputer(missing_values=np.nan, strategy='most_frequent') data[feature_list_2] = imputer.fit_transform(data[feature_list_2].astype('float64')) # Replace str values with ints label_encoder_sex = LabelEncoder() data['Sex'] = label_encoder_sex.fit_transform(data['Sex'].astype(str)) label_encoder_embarked = LabelEncoder() data['Embarked'] = label_encoder_embarked.fit_transform(data['Embarked'].astype(str)) # Depersonalization of some data, bringing them to a vector form # e.g. for Sex column will be created Sex_0 and Sex_1 columns categorical_feature_list = ['Sex', 'Embarked', 'Pclass'] for feature in categorical_feature_list: data[feature] = pd.Categorical(data[feature]) data_dummies =
pd.get_dummies(data[feature], prefix=feature)
pandas.get_dummies
import pyspark from pyspark.sql import SQLContext import pandas as pd import csv import os def load_states(): # read US states f = open('states.txt', 'r') states = set() for line in f.readlines(): l = line.strip('\n') if l != '': states.add(l) return states def validate2(states, bt): #sqlContext = SQLContext(sc) for state in states: if not os.path.exists("US/" + state): continue """ Train """ train_prefix = "US/" + state + '/' + bt + "/train/" + state + "_train_" business_train_fname = train_prefix + 'yelp_academic_dataset_business.csv' business_train_fname2 = train_prefix + 'yelp_academic_dataset_business2.csv' review_train_fname = train_prefix + 'yelp_academic_dataset_review.csv' checkins_train_fname = train_prefix + 'yelp_academic_dataset_checkin.csv' tip_train_fname = train_prefix + 'yelp_academic_dataset_tip.csv' user_train_fname = train_prefix + 'yelp_academic_dataset_user.csv' df_business_train = pd.read_csv(business_train_fname) df_review_train = pd.read_csv(review_train_fname) df_checkins_train = pd.read_csv(checkins_train_fname) df_tip_train = pd.read_csv(tip_train_fname) df_user_train = pd.read_csv(user_train_fname) count_business_train = df_business_train.shape[0] count_review_train = df_review_train.shape[0] count_checkins_train = df_checkins_train.shape[0] count_tip_train = df_tip_train.shape[0] count_user_train = df_user_train.shape[0] df_train_busi_review_count = df_review_train.groupby(['business_id']).agg(['count']) dict_train_busi_review_count = df_train_busi_review_count['review_id'].apply(list).to_dict()['count'] new_pdf_train_busi_review_count = pd.DataFrame.from_dict(dict_train_busi_review_count, orient='index').reset_index() new_pdf_train_busi_review_count.columns = ['business_id', 'review_count2'] df_business_train = df_business_train.join(new_pdf_train_busi_review_count.set_index('business_id'), on='business_id') df_business_train.to_csv(business_train_fname2, index=False) """ Test """ valid_prefix = "US/" + state + '/' + bt + "/valid/" + state + "_valid_" business_valid_fname = valid_prefix + 'yelp_academic_dataset_business.csv' business_valid_fname2 = valid_prefix + 'yelp_academic_dataset_business2.csv' review_valid_fname = valid_prefix + 'yelp_academic_dataset_review.csv' checkins_valid_fname = valid_prefix + 'yelp_academic_dataset_checkin.csv' tip_valid_fname = valid_prefix + 'yelp_academic_dataset_tip.csv' user_valid_fname = valid_prefix + 'yelp_academic_dataset_user.csv' df_business_valid = pd.read_csv(business_valid_fname) df_review_valid = pd.read_csv(review_valid_fname) df_checkins_valid = pd.read_csv(checkins_valid_fname) df_tip_valid = pd.read_csv(tip_valid_fname) df_user_valid = pd.read_csv(user_valid_fname) count_business_valid = df_business_valid.shape[0] count_review_valid = df_review_valid.shape[0] count_checkins_valid = df_checkins_valid.shape[0] count_tip_valid = df_tip_valid.shape[0] count_user_valid = df_user_valid.shape[0] df_valid_busi_review_count = df_review_valid.groupby(['business_id']).agg(['count']) dict_valid_busi_review_count = df_valid_busi_review_count['review_id'].apply(list).to_dict()['count'] new_pdf_valid_busi_review_count = pd.DataFrame.from_dict(dict_valid_busi_review_count, orient='index').reset_index() new_pdf_valid_busi_review_count.columns = ['business_id', 'review_count2'] df_business_valid = df_business_valid.join(new_pdf_valid_busi_review_count.set_index('business_id'), on='business_id') df_business_valid.to_csv(business_valid_fname2, index=False) """ Test """ test_prefix = "US/" + state + '/' + bt + "/test/" + state + "_test_" business_test_fname = test_prefix + 'yelp_academic_dataset_business.csv' business_test_fname2 = test_prefix + 'yelp_academic_dataset_business2.csv' review_test_fname = test_prefix + 'yelp_academic_dataset_review.csv' checkins_test_fname = test_prefix + 'yelp_academic_dataset_checkin.csv' tip_test_fname = test_prefix + 'yelp_academic_dataset_tip.csv' user_test_fname = test_prefix + 'yelp_academic_dataset_user.csv' df_business_test = pd.read_csv(business_test_fname) df_review_test = pd.read_csv(review_test_fname) df_checkins_test = pd.read_csv(checkins_test_fname) df_tip_test = pd.read_csv(tip_test_fname) df_user_test = pd.read_csv(user_test_fname) count_business_test = df_business_test.shape[0] count_review_test = df_review_test.shape[0] count_checkins_test = df_checkins_test.shape[0] count_tip_test = df_tip_test.shape[0] count_user_test = df_user_test.shape[0] df_test_busi_review_count = df_review_test.groupby(['business_id']).agg(['count']) dict_test_busi_review_count = df_test_busi_review_count['review_id'].apply(list).to_dict()['count'] new_pdf_test_busi_review_count = pd.DataFrame.from_dict(dict_test_busi_review_count, orient='index').reset_index() new_pdf_test_busi_review_count.columns = ['business_id', 'review_count2'] df_business_test = df_business_test.join(new_pdf_test_busi_review_count.set_index('business_id'), on='business_id') df_business_test.to_csv(business_test_fname2, index=False) # write other info to csv with open("US/" + state + '/' + bt + '/' + state + '_stats.csv', mode='wb') as f: writer = csv.writer(f) writer.writerow(["Business Train Count", count_business_train]) writer.writerow(["Review Train Count", count_review_train]) writer.writerow(["Check-in Train Count", count_checkins_train]) writer.writerow(["Tip Train Count", count_tip_train]) writer.writerow(["User Train Count", count_user_train]) writer.writerow(["Business valid Count", count_business_valid]) writer.writerow(["Review valid Count", count_review_valid]) writer.writerow(["Check-in valid Count", count_checkins_valid]) writer.writerow(["Tip valid Count", count_tip_valid]) writer.writerow(["User valid Count", count_user_valid]) writer.writerow(["Business Test Count", count_business_test]) writer.writerow(["Review Test Count", count_review_test]) writer.writerow(["Check-in Test Count", count_checkins_test]) writer.writerow(["Tip Test Count", count_tip_test]) writer.writerow(["User Test Count", count_user_test]) return def validate(states): # sqlContext = SQLContext(sc) for state in states: if not os.path.exists("US/" + state): continue """ Train """ train_prefix = "US/" + state + "/train/" + state + "_train_" business_train_fname = train_prefix + 'yelp_academic_dataset_business.csv' business_train_fname2 = train_prefix + 'yelp_academic_dataset_business2.csv' review_train_fname = train_prefix + 'yelp_academic_dataset_review.csv' checkins_train_fname = train_prefix + 'yelp_academic_dataset_checkin.csv' tip_train_fname = train_prefix + 'yelp_academic_dataset_tip.csv' user_train_fname = train_prefix + 'yelp_academic_dataset_user.csv' df_business_train = pd.read_csv(business_train_fname) df_review_train = pd.read_csv(review_train_fname) df_checkins_train = pd.read_csv(checkins_train_fname) df_tip_train = pd.read_csv(tip_train_fname) df_user_train =
pd.read_csv(user_train_fname)
pandas.read_csv
import collections import ixmp import itertools import warnings import pandas as pd import numpy as np from ixmp.utils import pd_read, pd_write from message_ix.utils import isscalar, logger def _init_scenario(s, commit=False): """Initialize a MESSAGEix Scenario object with default values""" inits = ( # { # 'test': False # some test, # 'exec': [(pass, {'args': ()}), ], # }, ) pass_idx = [i for i, init in enumerate(inits) if init['test']] if len(pass_idx) == 0: return # leave early, all init tests pass if commit: s.check_out() for idx in pass_idx: for exec_info in inits[idx]['exec']: func = exec_info[0] args = exec_info[1].pop('args', tuple()) kwargs = exec_info[1].pop('kwargs', dict()) func(*args, **kwargs) if commit: s.commit('Initialized wtih standard sets and params') class Scenario(ixmp.Scenario): def __init__(self, mp, model, scenario=None, version=None, annotation=None, cache=False, clone=None, **kwargs): """Initialize a new message_ix.Scenario (structured input data and solution) or get an existing scenario from the ixmp database instance Parameters ---------- mp : ixmp.Platform model : string model name scenario : string scenario name version : string or integer initialize a new scenario (if version == 'new'), or load a specific version from the database (if version is integer) annotation : string a short annotation/comment (when initializing a new scenario) cache : boolean keep all dataframes in memory after first query (default: False) clone : Scenario, optional make a clone of an existing scenario """ if 'scen' in kwargs: warnings.warn( '`scen` is deprecated and will be removed in the next' + ' release, please use `scenario`') scenario = kwargs.pop('scen') if version is not None and clone is not None: raise ValueError( 'Can not provide both version and clone as arguments') if clone is not None: jscen = clone._jobj.clone(model, scenario, annotation, clone._keep_sol, clone._first_model_year) elif version == 'new': scheme = 'MESSAGE' jscen = mp._jobj.newScenario(model, scenario, scheme, annotation) elif isinstance(version, int): jscen = mp._jobj.getScenario(model, scenario, version) else: jscen = mp._jobj.getScenario(model, scenario) self.is_message_scheme = True super(Scenario, self).__init__(mp, model, scenario, jscen, cache=cache) if not self.has_solution(): _init_scenario(self, commit=version != 'new') def cat_list(self, name): """return a list of all categories for a set Parameters ---------- name : string name of the set """ return ixmp.to_pylist(self._jobj.getTypeList(name)) def add_cat(self, name, cat, keys, is_unique=False): """add a set element key to the respective category mapping Parameters ---------- name : string name of the set cat : string name of the category keys : list of strings element keys to be added to the category mapping """ self._jobj.addCatEle(name, str(cat), ixmp.to_jlist(keys), is_unique) def cat(self, name, cat): """return a list of all set elements mapped to a category Parameters ---------- name : string name of the set cat : string name of the category """ return ixmp.to_pylist(self._jobj.getCatEle(name, cat)) def has_solution(self): """Returns True if scenario currently has a solution""" try: return not np.isnan(self.var('OBJ')['lvl']) except Exception: return False def add_spatial_sets(self, data): """Add sets related to spatial dimensions of the model Parameters ---------- data : dict or other Examples -------- data = {'country': 'Austria'} data = {'country': ['Austria', 'Germany']} data = {'country': {'Austria': {'state': ['Vienna', 'Lower Austria']}}} """ nodes = [] levels = [] hierarchy = [] def recurse(k, v, parent='World'): if isinstance(v, collections.Mapping): for _parent, _data in v.items(): for _k, _v in _data.items(): recurse(_k, _v, parent=_parent) level = k children = [v] if isscalar(v) else v for child in children: hierarchy.append([level, child, parent]) nodes.append(child) levels.append(level) for k, v in data.items(): recurse(k, v) self.add_set("node", nodes) self.add_set("lvl_spatial", levels) self.add_set("map_spatial_hierarchy", hierarchy) def add_horizon(scenario, data): """Add sets related to temporal dimensions of the model Parameters ---------- scenario : ixmp.Scenario data : dict or other Examples -------- data = {'year': [2010, 2020]} data = {'year': [2010, 2020], 'firstmodelyear': 2020} """ if 'year' not in data: raise ValueError('"year" must be in temporal sets') horizon = data['year'] scenario.add_set("year", horizon) first = data['firstmodelyear'] if 'firstmodelyear'\ in data else horizon[0] scenario.add_cat("year", "firstmodelyear", first, is_unique=True) def vintage_and_active_years(self, ya_args=None, in_horizon=True): """Return a 2-tuple of valid pairs of vintage years and active years for use with data input. A valid year-vintage, year-active pair is one in which: - year-vintage <= year-active - both within the model's 'year' set - year-active >= the model's first year *or* within ixmp.Scenario.years_active() for a given node, technology and vintage (optional) Parameters ---------- ya_args : arguments to ixmp.Scenario.years_active(), optional in_horizon : restrict years returned to be within the current model horizon, optional, default: True """ horizon = self.set('year') first = self.cat('year', 'firstmodelyear')[0] or horizon[0] if ya_args: if len(ya_args) != 3: raise ValueError('3 arguments are required if using `ya_args`') years_active = self.years_active(*ya_args) combos = itertools.product([ya_args[2]], years_active) else: combos = itertools.product(horizon, horizon) # TODO: casting to int here is probably bad, but necessary for now first = int(first) combos = [(int(y1), int(y2)) for y1, y2 in combos] def valid(y_v, y_a): # TODO: casting to int here is probably bad ret = y_v <= y_a if in_horizon: ret &= y_a >= first return ret year_pairs = [(y_v, y_a) for y_v, y_a in combos if valid(y_v, y_a)] v_years, a_years = zip(*year_pairs) return pd.DataFrame({'year_vtg': v_years, 'year_act': a_years}) def solve(self, model='MESSAGE', **kwargs): """Solve a MESSAGE Scenario. See ixmp.Scenario.solve() for arguments. The default model is 'MESSAGE', but can be overwritten with, e.g., `message_ix.Scenario.solve(model='MESSAGE-MACRO')`. """ return super(Scenario, self).solve(model=model, **kwargs) def clone(self, model=None, scenario=None, annotation=None, keep_solution=True, first_model_year=None, **kwargs): """clone the current scenario and return the new scenario Parameters ---------- model : string new model name scenario : string new scenario name annotation : string explanatory comment (optional) keep_solution : boolean, default, True indicator whether to include an existing solution in the cloned scenario first_model_year: int, default None new first model year in cloned scenario ('slicing', only available for MESSAGE-scheme scenarios) """ if 'keep_sol' in kwargs: warnings.warn( '`keep_sol` is deprecated and will be removed in the next' + ' release, please use `keep_solution`') keep_solution = kwargs.pop('keep_sol') if 'scen' in kwargs: warnings.warn( '`scen` is deprecated and will be removed in the next' + ' release, please use `scenario`') scenario = kwargs.pop('scen') self._keep_sol = keep_solution self._first_model_year = first_model_year or 0 model = self.model if not model else model scenario = self.scenario if not scenario else scenario return Scenario(self.platform, model, scenario, annotation=annotation, cache=self._cache, clone=self) def rename(self, name, mapping, keep=False): """Rename an element in a set Parameters ---------- name : str name of the set to change (e.g., 'technology') mapping : str mapping of old (current) to new set element names keep : bool, optional, default: False keep the old values in the model """ try: self.check_out() commit = True except: commit = False keys = list(mapping.keys()) values = list(mapping.values()) # search for from_tech in sets and replace for item in self.set_list(): ix_set = self.set(item) if isinstance(ix_set, pd.DataFrame): if name in ix_set.columns and not ix_set.empty: for key, value in mapping.items(): df = ix_set[ix_set[name] == key] if not df.empty: df[name] = value self.add_set(item, df) elif ix_set.isin(keys).any(): # ix_set is pd.Series for key, value in mapping.items(): if ix_set.isin([key]).any(): self.add_set(item, value) # search for from_tech in pars and replace for item in self.par_list(): if name not in self.idx_names(item): continue for key, value in mapping.items(): df = self.par(item, filters={name: [key]}) if not df.empty: df[name] = value self.add_par(item, df) # this removes all instances of from_tech in the model if not keep: for key in keys: self.remove_set(name, key) # commit if commit: self.commit('Renamed {} using mapping {}'.format(name, mapping)) def to_excel(self, fname): """Save a scenario as an Excel file. NOTE: Cannot export solution currently (only model data) due to limitations in excel sheet names (cannot have multiple sheet names which are identical except for upper/lower case). Parameters ---------- fname : string path to file """ funcs = { 'set': (self.set_list, self.set), 'par': (self.par_list, self.par), } ix_name_map = {} dfs = {} for ix_type, (list_func, get_func) in funcs.items(): for item in list_func(): df = get_func(item) df =
pd.Series(df)
pandas.Series
import numpy as np import pandas as pd from sklearn.model_selection import train_test_split from utils import binary_sampler def data_loader(data_name, miss_rate, target_column=None): """Loads datasets and introduce missingness. Args: - data_name: letter, spam, or mnist - miss_rate: the probability of missing components Returns: data_x: original data miss_data_x: data with missing values data_m: indicator matrix for missing components """ file_name = 'data/' + data_name + '.csv' print(file_name) data_x =
pd.read_csv(file_name, delimiter=',')
pandas.read_csv
import unittest import pandas as pd import numpy as np from pandas.testing import assert_frame_equal, assert_series_equal from zenml.preprocessing import (add_prefix, add_suffix, strip_whitespace, string_to_float, remove_string, replace_string_with_nan, replace_nan_with_string, like_float_to_int) class TestText(unittest.TestCase): def test_add_prefix(self): df = pd.DataFrame({'male_names': ['Bobby', 'John']}) result = pd.DataFrame({'male_names': ['mr_Bobby', 'mr_John']}).male_names assert_series_equal(add_prefix('mr_', df.male_names), result, check_dtype=True) def test_add_suffix(self): df = pd.DataFrame({'male_names': ['Bobby', 'John']}) result = pd.DataFrame({'male_names': ['Bobby-male', 'John-male']}).male_names assert_series_equal(add_suffix('-male', df.male_names), result, check_dtype=True) def test_strip_whitespace(self): df = pd.DataFrame({'description': [' circus at the whitehouse ', 'politics suck ']}) result = pd.DataFrame({'description': ['circus at the whitehouse', 'politics suck']}).description assert_series_equal(strip_whitespace(df.description), result, check_dtype=True) def test_string_to_float(self): df =
pd.DataFrame({'probs': ['0.3', '0.8', 2]})
pandas.DataFrame
#!/usr/bin/env python3 # -*- coding: utf-8 -*- """ Created on Thu Nov 21 14:08:43 2019 to produce X and y use combine_pos_neg_from_nc_file or prepare_X_y_for_holdout_test @author: ziskin """ from PW_paths import savefig_path from PW_paths import work_yuval from pathlib import Path cwd = Path().cwd() hydro_path = work_yuval / 'hydro' axis_path = work_yuval/'axis' gis_path = work_yuval / 'gis' ims_path = work_yuval / 'IMS_T' hydro_ml_path = hydro_path / 'hydro_ML' gnss_path = work_yuval / 'GNSS_stations' # 'tela': 17135 hydro_pw_dict = {'nizn': 25191, 'klhv': 21105, 'yrcm': 55165, 'ramo': 56140, 'drag': 48125, 'dsea': 48192, 'spir': 56150, 'nrif': 60105, 'elat': 60190 } hydro_st_name_dict = {25191: 'Lavan - new nizana road', 21105: 'Shikma - Tel milcha', 55165: 'Mamsheet', 56140: 'Ramon', 48125: 'Draga', 48192: 'Chiemar - down the cliff', 46150: 'Nekrot - Top', 60105: 'Yaelon - Kibutz Yahel', 60190: 'Solomon - Eilat'} best_hp_models_dict = {'SVC': {'kernel': 'rbf', 'C': 1.0, 'gamma': 0.02, 'coef0': 0.0, 'degree': 1}, 'RF': {'max_depth': 5, 'max_features': 'auto', 'min_samples_leaf': 1, 'min_samples_split': 2, 'n_estimators': 400}, 'MLP': {'alpha': 0.1, 'activation': 'relu', 'hidden_layer_sizes': (10,10,10), 'learning_rate': 'constant', 'solver': 'lbfgs'}} scorer_order = ['precision', 'recall', 'f1', 'accuracy', 'tss', 'hss'] tsafit_dict = {'lat': 30.985556, 'lon': 35.263056, 'alt': -35.75, 'dt_utc': '2018-04-26T10:15:00'} axis_southern_stations = ['Dimo', 'Ohad', 'Ddse', 'Yotv', 'Elat', 'Raha', 'Yaha'] soi_axis_dict = {'yrcm': 'Dimo', 'slom': 'Ohad', 'dsea': 'Ddse', 'nrif': 'Yotv', 'elat': 'Elat', 'klhv': 'Raha', 'spir': 'Yaha'} def plot_mean_abs_shap_values_features(SV, fix_xticklabels=True): import matplotlib.pyplot as plt import numpy as np import seaborn as sns from natsort import natsorted features = ['pwv', 'pressure', 'DOY'] # sns.set_palette('Dark2', 6) sns.set_theme(style='ticks', font_scale=1.5) # sns.set_style('whitegrid') # sns.set_style('ticks') sv = np.abs(SV).mean('sample').sel(clas=0).reset_coords(drop=True) gr_spec = [20, 20, 1] fig, axes = plt.subplots(1, 3, sharey=True, figsize=(17, 5), gridspec_kw={'width_ratios': gr_spec}) try: axes.flatten() except AttributeError: axes = [axes] for i, f in enumerate(features): fe = [x for x in sv['feature'].values if f in x] dsf = sv.sel(feature=fe).reset_coords(drop=True).to_dataframe() title = '{}'.format(f.upper()) dsf.plot.bar(ax=axes[i], title=title, rot=0, legend=False, zorder=20, width=.8, color='k', alpha=0.8) axes[i].set_title(title) dsf_sum = dsf.sum().tolist() handles, labels = axes[i].get_legend_handles_labels() labels = [ '{} ({:.1f} %)'.format( x, y) for x, y in zip( labels, dsf_sum)] # axes[i].legend(handles=handles, labels=labels, prop={'size': fontsize-3}, loc='upper center') axes[i].set_ylabel('mean(|SHAP value|)\n(average impact\non model output magnitude)') axes[i].grid(axis='y', zorder=1) if fix_xticklabels: # n = sum(['pwv' in x for x in sv.feature.values]) axes[2].xaxis.set_ticklabels('') axes[2].set_xlabel('') hrs = np.arange(-1, -25, -1) axes[0].set_xticklabels(hrs, rotation=30, ha="center", fontsize=12) axes[1].set_xticklabels(hrs, rotation=30, ha="center", fontsize=12) axes[2].tick_params() axes[0].set_xlabel('Hours prior to flood') axes[1].set_xlabel('Hours prior to flood') fig.tight_layout() filename = 'RF_shap_values_{}.png'.format('+'.join(features)) plt.savefig(savefig_path / filename, bbox_inches='tight') return fig def read_binary_classification_shap_values_to_pandas(shap_values, X): import xarray as xr SV0 = X.copy(data=shap_values[0]) SV1 = X.copy(data=shap_values[1]) SV = xr.concat([SV0, SV1], dim='clas') SV['clas'] = [0, 1] return SV def get_shap_values_RF_classifier(plot=True): import shap X, y = combine_pos_neg_from_nc_file() ml = ML_Classifier_Switcher() rf = ml.pick_model('RF') rf.set_params(**best_hp_models_dict['RF']) X = select_doy_from_feature_list(X, features=['pwv', 'pressure', 'doy']) rf.fit(X, y) explainer = shap.TreeExplainer(rf) shap_values = explainer.shap_values(X.values) if plot: shap.summary_plot(shap_values, X, feature_names=[ x for x in X.feature.values], max_display=49, sort=False) return shap_values def interpolate_pwv_to_tsafit_event(path=work_yuval, savepath=work_yuval): import pandas as pd import xarray as xr from PW_stations import produce_geo_gnss_solved_stations from interpolation_routines import interpolate_var_ds_at_multiple_dts from aux_gps import save_ncfile # get gnss soi-apn pwv data and geo-meta data: geo_df = produce_geo_gnss_solved_stations(plot=False) pw = xr.load_dataset(work_yuval/'GNSS_PW_thresh_50.nc') pw = pw[[x for x in pw if '_error' not in x]] pw = pw.sel(time=slice('2018-04-25', '2018-04-26')) pw = pw.drop_vars(['elat', 'elro', 'csar', 'slom']) # get tsafit data: predict_df = pd.DataFrame(tsafit_dict, index=['tsafit']) df_inter = interpolate_var_ds_at_multiple_dts(pw, geo_df, predict_df) da=df_inter['interpolated_lr_fixed'].to_xarray() da.name = 'pwv' da.attrs['operation'] = 'interploated from SOI-APN PWV data' da.attrs['WV scale height'] = 'variable from SOI-APN data' da.attrs.update(**tsafit_dict) if savepath is not None: filename = 'Tsafit_PWV_event.nc' save_ncfile(da, savepath, filename) return da def plot_tsafit_event(path=work_yuval): import xarray as xr import pandas as pd import matplotlib.pyplot as plt import seaborn as sns sns.set_theme(style='ticks', font_scale=1.5) da = xr.load_dataarray(path / 'Tsafit_PWV_event.nc') fig, ax = plt.subplots(figsize=(11, 8)) da_sliced = da.sel(time=slice('2018-04-26T00:00:00', '2018-04-26T12:00:00')) # da_sliced.name = 'PWV [mm]' da_sliced = da_sliced.rename({'time': 'Time [UTC]'}) da_sliced.to_dataframe().plot(ax=ax, ylabel='PWV [mm]', linewidth=2, marker='o', legend=False) dt = pd.to_datetime(da.attrs['dt_utc']) ax.axvline(dt, color='r', linestyle='--', linewidth=2, label='T') handles, labels = ax.get_legend_handles_labels() plt.legend(handles=handles, labels=['PWV', 'Tsafit Flood Event']) ax.grid(True) # ax.set_xlabel('Time [UTC]') fig.tight_layout() fig.suptitle('PWV from SOI-APN over Tsafit area on 2018-04-26') fig.subplots_adjust(top=0.941) return fig # TODO: treat all pwv from events as follows: # For each station: # 0) rolling mean to all pwv 1 hour # 1) take 288 points before events, if < 144 gone then drop # 2) interpolate them 12H using spline/other # 3) then, check if dts coinside 1 day before, if not concat all dts+pwv for each station # 4) prepare features, such as pressure, doy, try to get pressure near the stations and remove the longterm hour dayofyear # pressure in BD anoms is highly correlated with SEDOM (0.9) and ELAT (0.88) so no need for local pressure features # fixed filling with jerusalem centre since 2 drag events dropped due to lack of data 2018-11 2019-02 in pressure # 5) feature addition: should be like pwv steps 1-3, # 6) negative events should be sampled separtely, for # 7) now prepare pwv and pressure to single ds with 1 hourly sample rate # 8) produce positives and save them to file! # 9) produce a way to get negatives considering the positives # maybe implement permutaion importance to pwv ? see what is more important to # the model in 24 hours ? only on SVC and MLP ? # implemetn TSS and HSS scores and test them (make_scorer from confusion matrix) # redo results but with inner and outer splits of 4, 4 # plot and see best_score per refit-scorrer - this is the best score of GridSearchCV on the entire # train/validation subset per each outerfold - basically see if the test_metric increased after the gridsearchcv as it should # use holdout set # implement repeatedstratifiedkfold and run it... # check for stability of the gridsearch CV...also run with 4-folds ? # finalize the permutation_importances and permutation_test_scores def prepare_tide_events_GNSS_dataset(hydro_path=hydro_path): import xarray as xr import pandas as pd import numpy as np from aux_gps import xr_reindex_with_date_range feats = xr.load_dataset( hydro_path/'hydro_tides_hourly_features_with_positives.nc') ds = feats['Tides'].to_dataset('GNSS').rename({'tide_event': 'time'}) da_list = [] for da in ds: time = ds[da].dropna('time') daa = time.copy(data=np.ones(time.shape)) daa['time'] = pd.to_datetime(time.values) daa.name = time.name + '_tide' da_list.append(daa) ds = xr.merge(da_list) li = [xr_reindex_with_date_range(ds[x], freq='H') for x in ds] ds = xr.merge(li) return ds def select_features_from_X(X, features='pwv'): if isinstance(features, str): f = [x for x in X.feature.values if features in x] X = X.sel(feature=f) elif isinstance(features, list): fs = [] for f in features: fs += [x for x in X.feature.values if f in x] X = X.sel(feature=fs) return X def combine_pos_neg_from_nc_file(hydro_path=hydro_path, negative_sample_num=1, seed=1, std=True): from aux_gps import path_glob from sklearn.utils import resample import xarray as xr import numpy as np # import pandas as pd if std: file = path_glob( hydro_path, 'hydro_tides_hourly_features_with_positives_negatives_std*.nc')[-1] else: file = path_glob( hydro_path, 'hydro_tides_hourly_features_with_positives_negatives_*.nc')[-1] ds = xr.open_dataset(file) # get the positive features and produce target: X_pos = ds['X_pos'].rename({'positive_sample': 'sample'}) y_pos = xr.DataArray(np.ones(X_pos['sample'].shape), dims=['sample']) y_pos['sample'] = X_pos['sample'] # choose at random y_pos size of negative class: X_neg = ds['X_neg'].rename({'negative_sample': 'sample'}) pos_size = y_pos['sample'].size np.random.seed(seed) # negatives = [] for n_samples in [x for x in range(negative_sample_num)]: # dts = np.random.choice(X_neg['sample'], size=y_pos['sample'].size, # replace=False) # print(np.unique(dts).shape) # negatives.append(X_neg.sel(sample=dts)) negative = resample(X_neg, replace=False, n_samples=pos_size * negative_sample_num, random_state=seed) negatives = np.split(negative, negative_sample_num, axis=0) Xs = [] ys = [] for X_negative in negatives: y_neg = xr.DataArray(np.zeros(X_negative['sample'].shape), dims=['sample']) y_neg['sample'] = X_negative['sample'] # now concat all X's and y's: X = xr.concat([X_pos, X_negative], 'sample') y = xr.concat([y_pos, y_neg], 'sample') X.name = 'X' Xs.append(X) ys.append(y) if len(negatives) == 1: return Xs[0], ys[0] else: return Xs, ys def drop_hours_in_pwv_pressure_features(X, last_hours=7, verbose=True): import numpy as np Xcopy = X.copy() pwvs_to_drop = ['pwv_{}'.format(x) for x in np.arange(24-last_hours + 1, 25)] if set(pwvs_to_drop).issubset(set(X.feature.values)): if verbose: print('dropping {} from X.'.format(', '.join(pwvs_to_drop))) Xcopy = Xcopy.drop_sel(feature=pwvs_to_drop) pressures_to_drop = ['pressure_{}'.format(x) for x in np.arange(24-last_hours + 1, 25)] if set(pressures_to_drop).issubset(set(X.feature.values)): if verbose: print('dropping {} from X.'.format(', '.join(pressures_to_drop))) Xcopy = Xcopy.drop_sel(feature=pressures_to_drop) return Xcopy def check_if_negatives_are_within_positives(neg_da, hydro_path=hydro_path): import xarray as xr import pandas as pd pos_da = xr.open_dataset( hydro_path / 'hydro_tides_hourly_features_with_positives.nc')['X'] dt_pos = pos_da.sample.to_dataframe() dt_neg = neg_da.sample.to_dataframe() dt_all = dt_pos.index.union(dt_neg.index) dff = pd.DataFrame(dt_all, index=dt_all) dff = dff.sort_index() samples_within = dff[(dff.diff()['sample'] <= pd.Timedelta(1, unit='D'))] num = samples_within.size print('samples that are within a day of each other: {}'.format(num)) print('samples are: {}'.format(samples_within)) return dff def produce_negatives_events_from_feature_file(hydro_path=hydro_path, seed=42, batches=1, verbose=1, std=True): # do the same thing for pressure (as for pwv), but not for import xarray as xr import numpy as np import pandas as pd from aux_gps import save_ncfile feats = xr.load_dataset(hydro_path / 'hydro_tides_hourly_features.nc') feats = feats.rename({'doy': 'DOY'}) if std: pos_filename = 'hydro_tides_hourly_features_with_positives_std.nc' else: pos_filename = 'hydro_tides_hourly_features_with_positives.nc' all_tides = xr.open_dataset( hydro_path / pos_filename)['X_pos'] # pos_tides = xr.open_dataset(hydro_path / 'hydro_tides_hourly_features_with_positives.nc')['tide_datetimes'] tides = xr.open_dataset( hydro_path / pos_filename)['Tides'] # get the positives (tide events) for each station: df_stns = tides.to_dataset('GNSS').to_dataframe() # get all positives (tide events) for all stations: df = all_tides.positive_sample.to_dataframe()['positive_sample'] df.columns = ['sample'] stns = [x for x in hydro_pw_dict.keys()] other_feats = ['DOY', 'doy_sin', 'doy_cos'] # main stns df features (pwv) pwv_df = feats[stns].to_dataframe() pressure = feats['bet-dagan'].to_dataframe()['bet-dagan'] # define the initial no_choice_dt_range from the positive dt_range: no_choice_dt_range = [pd.date_range( start=dt, periods=48, freq='H') for dt in df] no_choice_dt_range = pd.DatetimeIndex( np.unique(np.hstack(no_choice_dt_range))) dts_to_choose_from = pwv_df.index.difference(no_choice_dt_range) # dts_to_choose_from_pressure = pwv_df.index.difference(no_choice_dt_range) # loop over all stns and produce negative events: np.random.seed(seed) neg_batches = [] for i in np.arange(1, batches + 1): if verbose >= 0: print('preparing batch {}:'.format(i)) neg_stns = [] for stn in stns: dts_df = df_stns[stn].dropna() pwv = pwv_df[stn].dropna() # loop over all events in on stn: negatives = [] negatives_pressure = [] # neg_samples = [] if verbose >= 1: print('finding negatives for station {}, events={}'.format( stn, len(dts_df))) # print('finding negatives for station {}, dt={}'.format(stn, dt.strftime('%Y-%m-%d %H:%M'))) cnt = 0 while cnt < len(dts_df): # get random number from each stn pwv: # r = np.random.randint(low=0, high=len(pwv.index)) # random_dt = pwv.index[r] random_dt = np.random.choice(dts_to_choose_from) negative_dt_range = pd.date_range( start=random_dt, periods=24, freq='H') if not (no_choice_dt_range.intersection(negative_dt_range)).empty: # print('#') if verbose >= 2: print('Overlap!') continue # get the actual pwv and check it is full (24hours): negative = pwv.loc[pwv.index.intersection(negative_dt_range)] neg_pressure = pressure.loc[pwv.index.intersection( negative_dt_range)] if len(negative.dropna()) != 24 or len(neg_pressure.dropna()) != 24: # print('!') if verbose >= 2: print('NaNs!') continue if verbose >= 2: print('number of dts that are already chosen: {}'.format( len(no_choice_dt_range))) negatives.append(negative) negatives_pressure.append(neg_pressure) # now add to the no_choice_dt_range the negative dt_range we just aquired: negative_dt_range_with_padding = pd.date_range( start=random_dt-pd.Timedelta(24, unit='H'), end=random_dt+pd.Timedelta(23, unit='H'), freq='H') no_choice_dt_range = pd.DatetimeIndex( np.unique(np.hstack([no_choice_dt_range, negative_dt_range_with_padding]))) dts_to_choose_from = dts_to_choose_from.difference( no_choice_dt_range) if verbose >= 2: print('number of dts to choose from: {}'.format( len(dts_to_choose_from))) cnt += 1 neg_da = xr.DataArray(negatives, dims=['sample', 'feature']) neg_da['feature'] = ['{}_{}'.format( 'pwv', x) for x in np.arange(1, 25)] neg_samples = [x.index[0] for x in negatives] neg_da['sample'] = neg_samples neg_pre_da = xr.DataArray( negatives_pressure, dims=['sample', 'feature']) neg_pre_da['feature'] = ['{}_{}'.format( 'pressure', x) for x in np.arange(1, 25)] neg_pre_samples = [x.index[0] for x in negatives_pressure] neg_pre_da['sample'] = neg_pre_samples neg_da = xr.concat([neg_da, neg_pre_da], 'feature') neg_da = neg_da.sortby('sample') neg_stns.append(neg_da) da_stns = xr.concat(neg_stns, 'sample') da_stns = da_stns.sortby('sample') # now loop over the remaining features (which are stns agnostic) # and add them with the same negative datetimes of the pwv already aquired: dts = [pd.date_range(x.item(), periods=24, freq='H') for x in da_stns['sample']] dts_samples = [x[0] for x in dts] other_feat_list = [] for feat in feats[other_feats]: # other_feat_sample_list = [] da_other = xr.DataArray(feats[feat].sel(time=dts_samples).values, dims=['sample']) # for dt in dts_samples: # da_other = xr.DataArray(feats[feat].sel( # time=dt).values, dims=['feature']) da_other['sample'] = dts_samples other_feat_list.append(da_other) # other_feat_da = xr.concat(other_feat_sample_list, 'feature') da_other_feats = xr.concat(other_feat_list, 'feature') da_other_feats['feature'] = other_feats da_stns = xr.concat([da_stns, da_other_feats], 'feature') neg_batches.append(da_stns) neg_batch_da = xr.concat(neg_batches, 'sample') # neg_batch_da['batch'] = np.arange(1, batches + 1) neg_batch_da.name = 'X_neg' feats['X_neg'] = neg_batch_da feats['X_pos'] = all_tides feats['X_pwv_stns'] = tides # feats['tide_datetimes'] = pos_tides feats = feats.rename({'sample': 'negative_sample'}) if std: filename = 'hydro_tides_hourly_features_with_positives_negatives_std_{}.nc'.format( batches) else: filename = 'hydro_tides_hourly_features_with_positives_negatives_{}.nc'.format( batches) save_ncfile(feats, hydro_path, filename) return neg_batch_da def produce_positives_from_feature_file(hydro_path=hydro_path, std=True): import xarray as xr import pandas as pd import numpy as np from aux_gps import save_ncfile # load features: if std: file = hydro_path / 'hydro_tides_hourly_features_std.nc' else: file = hydro_path / 'hydro_tides_hourly_features.nc' feats = xr.load_dataset(file) feats = feats.rename({'doy': 'DOY'}) # load positive event for each station: dfs = [read_station_from_tide_database(hydro_pw_dict.get( x), rounding='1H') for x in hydro_pw_dict.keys()] dfs = check_if_tide_events_from_stations_are_within_time_window( dfs, days=1, rounding=None, return_hs_list=True) da_list = [] positives_per_station = [] for i, feat in enumerate(feats): try: _, _, pr = produce_pwv_days_before_tide_events(feats[feat], dfs[i], plot=False, rolling=None, days_prior=1, drop_thresh=0.75, max_gap='6H', verbose=0) print('getting positives from station {}'.format(feat)) positives = [pd.to_datetime( (x[-1].time + pd.Timedelta(1, unit='H')).item()) for x in pr] da = xr.DataArray(pr, dims=['sample', 'feature']) da['sample'] = positives positives_per_station.append(positives) da['feature'] = ['pwv_{}'.format(x) for x in np.arange(1, 25)] da_list.append(da) except IndexError: continue da_pwv = xr.concat(da_list, 'sample') da_pwv = da_pwv.sortby('sample') # now add more features: da_list = [] for feat in ['bet-dagan']: print('getting positives from feature {}'.format(feat)) positives = [] for dt_end in da_pwv.sample: dt_st = pd.to_datetime(dt_end.item()) - pd.Timedelta(24, unit='H') dt_end_end = pd.to_datetime( dt_end.item()) - pd.Timedelta(1, unit='H') positive = feats[feat].sel(time=slice(dt_st, dt_end_end)) positives.append(positive) da = xr.DataArray(positives, dims=['sample', 'feature']) da['sample'] = da_pwv.sample if feat == 'bet-dagan': feat_name = 'pressure' else: feat_name = feat da['feature'] = ['{}_{}'.format(feat_name, x) for x in np.arange(1, 25)] da_list.append(da) da_f = xr.concat(da_list, 'feature') da_list = [] for feat in ['DOY', 'doy_sin', 'doy_cos']: print('getting positives from feature {}'.format(feat)) positives = [] for dt in da_pwv.sample: positive = feats[feat].sel(time=dt) positives.append(positive) da = xr.DataArray(positives, dims=['sample']) da['sample'] = da_pwv.sample # da['feature'] = feat da_list.append(da) da_ff = xr.concat(da_list, 'feature') da_ff['feature'] = ['DOY', 'doy_sin', 'doy_cos'] da = xr.concat([da_pwv, da_f, da_ff], 'feature') if std: filename = 'hydro_tides_hourly_features_with_positives_std.nc' else: filename = 'hydro_tides_hourly_features_with_positives.nc' feats['X_pos'] = da # now add positives per stations: pdf = pd.DataFrame(positives_per_station).T pdf.index.name = 'tide_event' pos_da = pdf.to_xarray().to_array('GNSS') pos_da['GNSS'] = [x for x in hydro_pw_dict.keys()] pos_da.attrs['info'] = 'contains the datetimes of the tide events per GNSS station.' feats['Tides'] = pos_da # rename sample to positive sample: feats = feats.rename({'sample': 'positive_sample'}) save_ncfile(feats, hydro_path, filename) return feats def prepare_features_and_save_hourly(work_path=work_yuval, ims_path=ims_path, savepath=hydro_path, std=True): import xarray as xr from aux_gps import save_ncfile import numpy as np # pwv = xr.load_dataset( if std: pwv_filename = 'GNSS_PW_thresh_0_hour_dayofyear_anoms_sd.nc' pre_filename = 'IMS_BD_hourly_anoms_std_ps_1964-2020.nc' else: pwv_filename = 'GNSS_PW_thresh_0_hour_dayofyear_anoms.nc' pre_filename = 'IMS_BD_hourly_anoms_ps_1964-2020.nc' # work_path / 'GNSS_PW_thresh_0_hour_dayofyear_anoms.nc') pwv = xr.load_dataset(work_path / pwv_filename) pwv_stations = [x for x in hydro_pw_dict.keys()] pwv = pwv[pwv_stations] # pwv = pwv.rolling(time=12, keep_attrs=True).mean(keep_attrs=True) pwv = pwv.resample(time='1H', keep_attrs=True).mean(keep_attrs=True) # bd = xr.load_dataset(ims_path / 'IMS_BD_anoms_5min_ps_1964-2020.nc') bd = xr.load_dataset(ims_path / pre_filename) # min_time = pwv.dropna('time')['time'].min() # bd = bd.sel(time=slice('1996', None)).resample(time='1H').mean() bd = bd.sel(time=slice('1996', None)) pressure = bd['bet-dagan'] doy = pwv['time'].copy(data=pwv['time'].dt.dayofyear) doy.name = 'doy' doy_sin = np.sin(doy * np.pi / 183) doy_sin.name = 'doy_sin' doy_cos = np.cos(doy * np.pi / 183) doy_cos.name = 'doy_cos' ds = xr.merge([pwv, pressure, doy, doy_sin, doy_cos]) if std: filename = 'hydro_tides_hourly_features_std.nc' else: filename = 'hydro_tides_hourly_features.nc' save_ncfile(ds, savepath, filename) return ds def plot_all_decompositions(X, y, n=2): import xarray as xr models = [ 'PCA', 'LDA', 'ISO_MAP', 'LLE', 'LLE-modified', 'LLE-hessian', 'LLE-ltsa', 'MDA', 'RTE', 'SE', 'TSNE', 'NCA'] names = [ 'Principal Components', 'Linear Discriminant', 'Isomap', 'Locally Linear Embedding', 'Modified LLE', 'Hessian LLE', 'Local Tangent Space Alignment', 'MDS embedding', 'Random forest', 'Spectral embedding', 't-SNE', 'NCA embedding'] name_dict = dict(zip(models, names)) da = xr.DataArray(models, dims=['model']) da['model'] = models fg = xr.plot.FacetGrid(da, col='model', col_wrap=4, sharex=False, sharey=False) for model_str, ax in zip(da['model'].values, fg.axes.flatten()): model = model_str.split('-')[0] method = model_str.split('-')[-1] if model == method: method = None try: ax = scikit_decompose(X, y, model=model, n=n, method=method, ax=ax) except ValueError: pass ax.set_title(name_dict[model_str]) ax.set_xlabel('') ax.set_ylabel('') fg.fig.suptitle('various decomposition projections (n={})'.format(n)) return def scikit_decompose(X, y, model='PCA', n=2, method=None, ax=None): from sklearn import (manifold, decomposition, ensemble, discriminant_analysis, neighbors) import matplotlib.pyplot as plt import pandas as pd # from mpl_toolkits.mplot3d import Axes3D n_neighbors = 30 if model == 'PCA': X_decomp = decomposition.TruncatedSVD(n_components=n).fit_transform(X) elif model == 'LDA': X2 = X.copy() X2.values.flat[::X.shape[1] + 1] += 0.01 X_decomp = discriminant_analysis.LinearDiscriminantAnalysis(n_components=n ).fit_transform(X2, y) elif model == 'ISO_MAP': X_decomp = manifold.Isomap( n_neighbors, n_components=n).fit_transform(X) elif model == 'LLE': # method = 'standard', 'modified', 'hessian' 'ltsa' if method is None: method = 'standard' clf = manifold.LocallyLinearEmbedding(n_neighbors, n_components=2, method=method) X_decomp = clf.fit_transform(X) elif model == 'MDA': clf = manifold.MDS(n_components=n, n_init=1, max_iter=100) X_decomp = clf.fit_transform(X) elif model == 'RTE': hasher = ensemble.RandomTreesEmbedding(n_estimators=200, random_state=0, max_depth=5) X_transformed = hasher.fit_transform(X) pca = decomposition.TruncatedSVD(n_components=n) X_decomp = pca.fit_transform(X_transformed) elif model == 'SE': embedder = manifold.SpectralEmbedding(n_components=n, random_state=0, eigen_solver="arpack") X_decomp = embedder.fit_transform(X) elif model == 'TSNE': tsne = manifold.TSNE(n_components=n, init='pca', random_state=0) X_decomp = tsne.fit_transform(X) elif model == 'NCA': nca = neighbors.NeighborhoodComponentsAnalysis(init='random', n_components=n, random_state=0) X_decomp = nca.fit_transform(X, y) df = pd.DataFrame(X_decomp) df.columns = [ '{}_{}'.format( model, x + 1) for x in range( X_decomp.shape[1])] df['flood'] = y df['flood'] = df['flood'].astype(int) df_1 = df[df['flood'] == 1] df_0 = df[df['flood'] == 0] if X_decomp.shape[1] == 1: if ax is not None: df_1.plot.scatter(ax=ax, x='{}_1'.format(model), y='{}_1'.format(model), color='b', marker='s', alpha=0.3, label='1', s=50) else: ax = df_1.plot.scatter( x='{}_1'.format(model), y='{}_1'.format(model), color='b', label='1', s=50) df_0.plot.scatter( ax=ax, x='{}_1'.format(model), y='{}_1'.format(model), color='r', marker='x', label='0', s=50) elif X_decomp.shape[1] == 2: if ax is not None: df_1.plot.scatter(ax=ax, x='{}_1'.format(model), y='{}_2'.format(model), color='b', marker='s', alpha=0.3, label='1', s=50) else: ax = df_1.plot.scatter( x='{}_1'.format(model), y='{}_2'.format(model), color='b', label='1', s=50) df_0.plot.scatter( ax=ax, x='{}_1'.format(model), y='{}_2'.format(model), color='r', label='0', s=50) elif X_decomp.shape[1] == 3: ax = plt.figure().gca(projection='3d') # df_1.plot.scatter(x='{}_1'.format(model), y='{}_2'.format(model), z='{}_3'.format(model), color='b', label='1', s=50, ax=threedee) ax.scatter(df_1['{}_1'.format(model)], df_1['{}_2'.format(model)], df_1['{}_3'.format(model)], color='b', label='1', s=50) ax.scatter(df_0['{}_1'.format(model)], df_0['{}_2'.format(model)], df_0['{}_3'.format(model)], color='r', label='0', s=50) ax.set_xlabel('{}_1'.format(model)) ax.set_ylabel('{}_2'.format(model)) ax.set_zlabel('{}_3'.format(model)) return ax def permutation_scikit(X, y, cv=False, plot=True): import matplotlib.pyplot as plt from sklearn.svm import SVC from sklearn.discriminant_analysis import LinearDiscriminantAnalysis from sklearn.model_selection import KFold from sklearn.model_selection import StratifiedKFold from sklearn.model_selection import GridSearchCV from sklearn.model_selection import permutation_test_score from sklearn.model_selection import train_test_split from sklearn.metrics import classification_report, confusion_matrix import numpy as np if not cv: clf = SVC(C=0.01, break_ties=False, cache_size=200, class_weight=None, coef0=0.0, decision_function_shape='ovr', degree=3, gamma=0.032374575428176434, kernel='poly', max_iter=-1, probability=False, random_state=None, shrinking=True, tol=0.001, verbose=False) clf = SVC(kernel='linear') # clf = LinearDiscriminantAnalysis() cv = StratifiedKFold(4, shuffle=True) # cv = KFold(4, shuffle=True) n_classes = 2 score, permutation_scores, pvalue = permutation_test_score( clf, X, y, scoring="f1", cv=cv, n_permutations=1000, n_jobs=-1, verbose=2) print("Classification score %s (pvalue : %s)" % (score, pvalue)) plt.hist(permutation_scores, 20, label='Permutation scores', edgecolor='black') ylim = plt.ylim() plt.plot(2 * [score], ylim, '--g', linewidth=3, label='Classification Score' ' (pvalue %s)' % pvalue) plt.plot(2 * [1. / n_classes], ylim, '--k', linewidth=3, label='Luck') plt.ylim(ylim) plt.legend() plt.xlabel('Score') plt.show() else: X_train, X_test, y_train, y_test = train_test_split( X, y, test_size=0.2, shuffle=True, random_state=42) param_grid = { 'C': np.logspace(-2, 3, 50), 'gamma': np.logspace(-2, 3, 50), 'kernel': ['rbf', 'poly', 'sigmoid']} grid = GridSearchCV(SVC(), param_grid, refit=True, verbose=2) grid.fit(X_train, y_train) print(grid.best_estimator_) grid_predictions = grid.predict(X_test) print(confusion_matrix(y_test, grid_predictions)) print(classification_report(y_test, grid_predictions)) return def grab_y_true_and_predict_from_sklearn_model(model, X, y, cv, kfold_name='inner_kfold'): from sklearn.model_selection import GridSearchCV import xarray as xr import numpy as np if isinstance(model, GridSearchCV): model = model.best_estimator_ ds_list = [] for i, (train, val) in enumerate(cv.split(X, y)): model.fit(X[train], y[train]) y_true = y[val] y_pred = model.predict(X[val]) try: lr_probs = model.predict_proba(X[val]) # keep probabilities for the positive outcome only lr_probs = lr_probs[:, 1] except AttributeError: lr_probs = model.decision_function(X[val]) y_true_da = xr.DataArray(y_true, dims=['sample']) y_pred_da = xr.DataArray(y_pred, dims=['sample']) y_prob_da = xr.DataArray(lr_probs, dims=['sample']) ds = xr.Dataset() ds['y_true'] = y_true_da ds['y_pred'] = y_pred_da ds['y_prob'] = y_prob_da ds['sample'] = np.arange(0, len(X[val])) ds_list.append(ds) ds = xr.concat(ds_list, kfold_name) ds[kfold_name] = np.arange(1, cv.n_splits + 1) return ds def produce_ROC_curves_from_model(model, X, y, cv, kfold_name='inner_kfold'): import numpy as np import xarray as xr from sklearn.metrics import roc_curve from sklearn.metrics import roc_auc_score from sklearn.model_selection import GridSearchCV from sklearn.metrics import precision_recall_curve from sklearn.metrics import average_precision_score # TODO: collect all predictions and y_tests from this, also predict_proba # and save, then calculte everything elsewhere. if isinstance(model, GridSearchCV): model = model.best_estimator_ tprs = [] aucs = [] pr = [] pr_aucs = [] mean_fpr = np.linspace(0, 1, 100) for i, (train, val) in enumerate(cv.split(X, y)): model.fit(X[train], y[train]) y_pred = model.predict(X[val]) try: lr_probs = model.predict_proba(X[val]) # keep probabilities for the positive outcome only lr_probs = lr_probs[:, 1] except AttributeError: lr_probs = model.decision_function(X[val]) fpr, tpr, _ = roc_curve(y[val], y_pred) interp_tpr = np.interp(mean_fpr, fpr, tpr) interp_tpr[0] = 0.0 tprs.append(interp_tpr) aucs.append(roc_auc_score(y[val], y_pred)) precision, recall, _ = precision_recall_curve(y[val], lr_probs) pr.append(recall) average_precision = average_precision_score(y[val], y_pred) pr_aucs.append(average_precision) # mean_tpr = np.mean(tprs, axis=0) # mean_tpr[-1] = 1.0 # mean_auc = auc(mean_fpr, mean_tpr) # std_auc = np.std(aucs) # std_tpr = np.std(tprs, axis=0) tpr_da = xr.DataArray(tprs, dims=[kfold_name, 'fpr']) auc_da = xr.DataArray(aucs, dims=[kfold_name]) ds = xr.Dataset() ds['TPR'] = tpr_da ds['AUC'] = auc_da ds['fpr'] = mean_fpr ds[kfold_name] = np.arange(1, cv.n_splits + 1) # variability for each tpr is ds['TPR'].std('kfold') return ds def cross_validation_with_holdout(X, y, model_name='SVC', features='pwv', n_splits=3, test_ratio=0.25, scorers=['f1', 'recall', 'tss', 'hss', 'precision', 'accuracy'], seed=42, savepath=None, verbose=0, param_grid='normal', n_jobs=-1, n_repeats=None): # from sklearn.model_selection import cross_validate from sklearn.model_selection import StratifiedKFold from sklearn.model_selection import RepeatedStratifiedKFold from sklearn.model_selection import GridSearchCV from sklearn.model_selection import train_test_split from sklearn.metrics import make_scorer # from string import digits import numpy as np # import xarray as xr scores_dict = {s: s for s in scorers} if 'tss' in scorers: scores_dict['tss'] = make_scorer(tss_score) if 'hss' in scorers: scores_dict['hss'] = make_scorer(hss_score) X = select_doy_from_feature_list(X, model_name, features) if param_grid == 'light': print(np.unique(X.feature.values)) # first take out the hold-out set: X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=test_ratio, random_state=seed, stratify=y) if n_repeats is None: # configure the cross-validation procedure cv = StratifiedKFold(n_splits=n_splits, shuffle=True, random_state=seed) print('CV StratifiedKfolds of {}.'.format(n_splits)) # define the model and search space: else: cv = RepeatedStratifiedKFold(n_splits=n_splits, n_repeats=n_repeats, random_state=seed) print('CV RepeatedStratifiedKFold of {} with {} repeats.'.format(n_splits, n_repeats)) ml = ML_Classifier_Switcher() print('param grid group is set to {}.'.format(param_grid)) sk_model = ml.pick_model(model_name, pgrid=param_grid) search_space = ml.param_grid # define search gr_search = GridSearchCV(estimator=sk_model, param_grid=search_space, cv=cv, n_jobs=n_jobs, scoring=scores_dict, verbose=verbose, refit=False, return_train_score=True) gr_search.fit(X, y) if isinstance(features, str): features = [features] if savepath is not None: filename = 'GRSRCHCV_holdout_{}_{}_{}_{}_{}_{}_{}.pkl'.format( model_name, '+'.join(features), '+'.join(scorers), n_splits, int(test_ratio*100), param_grid, seed) save_gridsearchcv_object(gr_search, savepath, filename) # gr, _ = process_gridsearch_results( # gr_search, model_name, split_dim='kfold', features=X.feature.values) # remove_digits = str.maketrans('', '', digits) # features = list(set([x.translate(remove_digits).split('_')[0] # for x in X.feature.values])) # # add more attrs, features etc: # gr.attrs['features'] = features return gr_search def select_doy_from_feature_list(X, model_name='RF', features='pwv'): # first if RF chosen, replace the cyclic coords of DOY (sin and cos) with # the DOY itself. if isinstance(features, list): feats = features.copy() else: feats = features if model_name == 'RF' and 'doy' in features: if isinstance(features, list): feats.remove('doy') feats.append('DOY') elif isinstance(features, str): feats = 'DOY' elif model_name != 'RF' and 'doy' in features: if isinstance(features, list): feats.remove('doy') feats.append('doy_sin') feats.append('doy_cos') elif isinstance(features, str): feats = ['doy_sin'] feats.append('doy_cos') X = select_features_from_X(X, feats) return X def single_cross_validation(X_val, y_val, model_name='SVC', features='pwv', n_splits=4, scorers=['f1', 'recall', 'tss', 'hss', 'precision', 'accuracy'], seed=42, savepath=None, verbose=0, param_grid='normal', n_jobs=-1, n_repeats=None, outer_split='1-1'): # from sklearn.model_selection import cross_validate from sklearn.model_selection import StratifiedKFold from sklearn.model_selection import RepeatedStratifiedKFold from sklearn.model_selection import GridSearchCV # from sklearn.model_selection import train_test_split from sklearn.metrics import make_scorer # from string import digits import numpy as np # import xarray as xr scores_dict = {s: s for s in scorers} if 'tss' in scorers: scores_dict['tss'] = make_scorer(tss_score) if 'hss' in scorers: scores_dict['hss'] = make_scorer(hss_score) X = select_doy_from_feature_list(X_val, model_name, features) y = y_val if param_grid == 'light': print(np.unique(X.feature.values)) if n_repeats is None: # configure the cross-validation procedure cv = StratifiedKFold(n_splits=n_splits, shuffle=True, random_state=seed) print('CV StratifiedKfolds of {}.'.format(n_splits)) # define the model and search space: else: cv = RepeatedStratifiedKFold(n_splits=n_splits, n_repeats=n_repeats, random_state=seed) print('CV RepeatedStratifiedKFold of {} with {} repeats.'.format( n_splits, n_repeats)) ml = ML_Classifier_Switcher() print('param grid group is set to {}.'.format(param_grid)) if outer_split == '1-1': cv_type = 'holdout' print('holdout cv is selected.') else: cv_type = 'nested' print('nested cv {} out of {}.'.format( outer_split.split('-')[0], outer_split.split('-')[1])) sk_model = ml.pick_model(model_name, pgrid=param_grid) search_space = ml.param_grid # define search gr_search = GridSearchCV(estimator=sk_model, param_grid=search_space, cv=cv, n_jobs=n_jobs, scoring=scores_dict, verbose=verbose, refit=False, return_train_score=True) gr_search.fit(X, y) if isinstance(features, str): features = [features] if savepath is not None: filename = 'GRSRCHCV_{}_{}_{}_{}_{}_{}_{}_{}.pkl'.format(cv_type, model_name, '+'.join(features), '+'.join( scorers), n_splits, outer_split, param_grid, seed) save_gridsearchcv_object(gr_search, savepath, filename) return gr_search def save_cv_params_to_file(cv_obj, path, name): import pandas as pd di = vars(cv_obj) splitter_type = cv_obj.__repr__().split('(')[0] di['splitter_type'] = splitter_type (pd.DataFrame.from_dict(data=di, orient='index') .to_csv(path / '{}.csv'.format(name), header=False)) print('{}.csv saved to {}.'.format(name, path)) return def read_cv_params_and_instantiate(filepath): import pandas as pd from sklearn.model_selection import StratifiedKFold df = pd.read_csv(filepath, header=None, index_col=0) d = {} for row in df.iterrows(): dd =
pd.to_numeric(row[1], errors='ignore')
pandas.to_numeric
import copy from datetime import datetime import warnings import numpy as np from numpy.random import randn import pytest import pandas.util._test_decorators as td import pandas as pd from pandas import DataFrame, DatetimeIndex, Index, Series, isna, notna import pandas._testing as tm from pandas.core.window.common import _flex_binary_moment from pandas.tests.window.common import ( Base, check_pairwise_moment, moments_consistency_cov_data, moments_consistency_is_constant, moments_consistency_mock_mean, moments_consistency_series_data, moments_consistency_std_data, moments_consistency_var_data, moments_consistency_var_debiasing_factors, ) import pandas.tseries.offsets as offsets @pytest.mark.filterwarnings("ignore:can't resolve package:ImportWarning") class TestMoments(Base): def setup_method(self, method): self._create_data() def test_centered_axis_validation(self): # ok Series(np.ones(10)).rolling(window=3, center=True, axis=0).mean() # bad axis with pytest.raises(ValueError): Series(np.ones(10)).rolling(window=3, center=True, axis=1).mean() # ok ok DataFrame(np.ones((10, 10))).rolling(window=3, center=True, axis=0).mean() DataFrame(np.ones((10, 10))).rolling(window=3, center=True, axis=1).mean() # bad axis with pytest.raises(ValueError): (DataFrame(np.ones((10, 10))).rolling(window=3, center=True, axis=2).mean()) def test_rolling_sum(self, raw): self._check_moment_func( np.nansum, name="sum", zero_min_periods_equal=False, raw=raw ) def test_rolling_count(self, raw): counter = lambda x: np.isfinite(x).astype(float).sum() self._check_moment_func( counter, name="count", has_min_periods=False, fill_value=0, raw=raw ) def test_rolling_mean(self, raw): self._check_moment_func(np.mean, name="mean", raw=raw) @td.skip_if_no_scipy def test_cmov_mean(self): # GH 8238 vals = np.array( [6.95, 15.21, 4.72, 9.12, 13.81, 13.49, 16.68, 9.48, 10.63, 14.48] ) result = Series(vals).rolling(5, center=True).mean() expected = Series( [ np.nan, np.nan, 9.962, 11.27, 11.564, 12.516, 12.818, 12.952, np.nan, np.nan, ] ) tm.assert_series_equal(expected, result) @td.skip_if_no_scipy def test_cmov_window(self): # GH 8238 vals = np.array( [6.95, 15.21, 4.72, 9.12, 13.81, 13.49, 16.68, 9.48, 10.63, 14.48] ) result = Series(vals).rolling(5, win_type="boxcar", center=True).mean() expected = Series( [ np.nan, np.nan, 9.962, 11.27, 11.564, 12.516, 12.818, 12.952, np.nan, np.nan, ] ) tm.assert_series_equal(expected, result) @td.skip_if_no_scipy def test_cmov_window_corner(self): # GH 8238 # all nan vals = pd.Series([np.nan] * 10) result = vals.rolling(5, center=True, win_type="boxcar").mean() assert np.isnan(result).all() # empty vals = pd.Series([], dtype=object) result = vals.rolling(5, center=True, win_type="boxcar").mean() assert len(result) == 0 # shorter than window vals = pd.Series(np.random.randn(5)) result = vals.rolling(10, win_type="boxcar").mean() assert np.isnan(result).all() assert len(result) == 5 @td.skip_if_no_scipy @pytest.mark.parametrize( "f,xp", [ ( "mean", [ [np.nan, np.nan], [np.nan, np.nan], [9.252, 9.392], [8.644, 9.906], [8.87, 10.208], [6.81, 8.588], [7.792, 8.644], [9.05, 7.824], [np.nan, np.nan], [np.nan, np.nan], ], ), ( "std", [ [np.nan, np.nan], [np.nan, np.nan], [3.789706, 4.068313], [3.429232, 3.237411], [3.589269, 3.220810], [3.405195, 2.380655], [3.281839, 2.369869], [3.676846, 1.801799], [np.nan, np.nan], [np.nan, np.nan], ], ), ( "var", [ [np.nan, np.nan], [np.nan, np.nan], [14.36187, 16.55117], [11.75963, 10.48083], [12.88285, 10.37362], [11.59535, 5.66752], [10.77047, 5.61628], [13.51920, 3.24648], [np.nan, np.nan], [np.nan, np.nan], ], ), ( "sum", [ [np.nan, np.nan], [np.nan, np.nan], [46.26, 46.96], [43.22, 49.53], [44.35, 51.04], [34.05, 42.94], [38.96, 43.22], [45.25, 39.12], [np.nan, np.nan], [np.nan, np.nan], ], ), ], ) def test_cmov_window_frame(self, f, xp): # Gh 8238 df = DataFrame( np.array( [ [12.18, 3.64], [10.18, 9.16], [13.24, 14.61], [4.51, 8.11], [6.15, 11.44], [9.14, 6.21], [11.31, 10.67], [2.94, 6.51], [9.42, 8.39], [12.44, 7.34], ] ) ) xp = DataFrame(np.array(xp)) roll = df.rolling(5, win_type="boxcar", center=True) rs = getattr(roll, f)() tm.assert_frame_equal(xp, rs) @td.skip_if_no_scipy def test_cmov_window_na_min_periods(self): # min_periods vals = Series(np.random.randn(10)) vals[4] = np.nan vals[8] = np.nan xp = vals.rolling(5, min_periods=4, center=True).mean() rs = vals.rolling(5, win_type="boxcar", min_periods=4, center=True).mean() tm.assert_series_equal(xp, rs) @td.skip_if_no_scipy def test_cmov_window_regular(self, win_types): # GH 8238 vals = np.array( [6.95, 15.21, 4.72, 9.12, 13.81, 13.49, 16.68, 9.48, 10.63, 14.48] ) xps = { "hamming": [ np.nan, np.nan, 8.71384, 9.56348, 12.38009, 14.03687, 13.8567, 11.81473, np.nan, np.nan, ], "triang": [ np.nan, np.nan, 9.28667, 10.34667, 12.00556, 13.33889, 13.38, 12.33667, np.nan, np.nan, ], "barthann": [ np.nan, np.nan, 8.4425, 9.1925, 12.5575, 14.3675, 14.0825, 11.5675, np.nan, np.nan, ], "bohman": [ np.nan, np.nan, 7.61599, 9.1764, 12.83559, 14.17267, 14.65923, 11.10401, np.nan, np.nan, ], "blackmanharris": [ np.nan, np.nan, 6.97691, 9.16438, 13.05052, 14.02156, 15.10512, 10.74574, np.nan, np.nan, ], "nuttall": [ np.nan, np.nan, 7.04618, 9.16786, 13.02671, 14.03559, 15.05657, 10.78514, np.nan, np.nan, ], "blackman": [ np.nan, np.nan, 7.73345, 9.17869, 12.79607, 14.20036, 14.57726, 11.16988, np.nan, np.nan, ], "bartlett": [ np.nan, np.nan, 8.4425, 9.1925, 12.5575, 14.3675, 14.0825, 11.5675, np.nan, np.nan, ], } xp = Series(xps[win_types]) rs = Series(vals).rolling(5, win_type=win_types, center=True).mean() tm.assert_series_equal(xp, rs) @td.skip_if_no_scipy def test_cmov_window_regular_linear_range(self, win_types): # GH 8238 vals = np.array(range(10), dtype=np.float) xp = vals.copy() xp[:2] = np.nan xp[-2:] = np.nan xp = Series(xp) rs = Series(vals).rolling(5, win_type=win_types, center=True).mean() tm.assert_series_equal(xp, rs) @td.skip_if_no_scipy def test_cmov_window_regular_missing_data(self, win_types): # GH 8238 vals = np.array( [6.95, 15.21, 4.72, 9.12, 13.81, 13.49, 16.68, np.nan, 10.63, 14.48] ) xps = { "bartlett": [ np.nan, np.nan, 9.70333, 10.5225, 8.4425, 9.1925, 12.5575, 14.3675, 15.61667, 13.655, ], "blackman": [ np.nan, np.nan, 9.04582, 11.41536, 7.73345, 9.17869, 12.79607, 14.20036, 15.8706, 13.655, ], "barthann": [ np.nan, np.nan, 9.70333, 10.5225, 8.4425, 9.1925, 12.5575, 14.3675, 15.61667, 13.655, ], "bohman": [ np.nan, np.nan, 8.9444, 11.56327, 7.61599, 9.1764, 12.83559, 14.17267, 15.90976, 13.655, ], "hamming": [ np.nan, np.nan, 9.59321, 10.29694, 8.71384, 9.56348, 12.38009, 14.20565, 15.24694, 13.69758, ], "nuttall": [ np.nan, np.nan, 8.47693, 12.2821, 7.04618, 9.16786, 13.02671, 14.03673, 16.08759, 13.65553, ], "triang": [ np.nan, np.nan, 9.33167, 9.76125, 9.28667, 10.34667, 12.00556, 13.82125, 14.49429, 13.765, ], "blackmanharris": [ np.nan, np.nan, 8.42526, 12.36824, 6.97691, 9.16438, 13.05052, 14.02175, 16.1098, 13.65509, ], } xp = Series(xps[win_types]) rs = Series(vals).rolling(5, win_type=win_types, min_periods=3).mean() tm.assert_series_equal(xp, rs) @td.skip_if_no_scipy def test_cmov_window_special(self, win_types_special): # GH 8238 kwds = { "kaiser": {"beta": 1.0}, "gaussian": {"std": 1.0}, "general_gaussian": {"power": 2.0, "width": 2.0}, "exponential": {"tau": 10}, } vals = np.array( [6.95, 15.21, 4.72, 9.12, 13.81, 13.49, 16.68, 9.48, 10.63, 14.48] ) xps = { "gaussian": [ np.nan, np.nan, 8.97297, 9.76077, 12.24763, 13.89053, 13.65671, 12.01002, np.nan, np.nan, ], "general_gaussian": [ np.nan, np.nan, 9.85011, 10.71589, 11.73161, 13.08516, 12.95111, 12.74577, np.nan, np.nan, ], "kaiser": [ np.nan, np.nan, 9.86851, 11.02969, 11.65161, 12.75129, 12.90702, 12.83757, np.nan, np.nan, ], "exponential": [ np.nan, np.nan, 9.83364, 11.10472, 11.64551, 12.66138, 12.92379, 12.83770, np.nan, np.nan, ], } xp = Series(xps[win_types_special]) rs = ( Series(vals) .rolling(5, win_type=win_types_special, center=True) .mean(**kwds[win_types_special]) ) tm.assert_series_equal(xp, rs) @td.skip_if_no_scipy def test_cmov_window_special_linear_range(self, win_types_special): # GH 8238 kwds = { "kaiser": {"beta": 1.0}, "gaussian": {"std": 1.0}, "general_gaussian": {"power": 2.0, "width": 2.0}, "slepian": {"width": 0.5}, "exponential": {"tau": 10}, } vals = np.array(range(10), dtype=np.float) xp = vals.copy() xp[:2] = np.nan xp[-2:] = np.nan xp = Series(xp) rs = ( Series(vals) .rolling(5, win_type=win_types_special, center=True) .mean(**kwds[win_types_special]) ) tm.assert_series_equal(xp, rs) def test_rolling_median(self, raw): self._check_moment_func(np.median, name="median", raw=raw) def test_rolling_min(self, raw): self._check_moment_func(np.min, name="min", raw=raw) a = pd.Series([1, 2, 3, 4, 5]) result = a.rolling(window=100, min_periods=1).min() expected = pd.Series(np.ones(len(a))) tm.assert_series_equal(result, expected) with pytest.raises(ValueError): pd.Series([1, 2, 3]).rolling(window=3, min_periods=5).min() def test_rolling_max(self, raw): self._check_moment_func(np.max, name="max", raw=raw) a = pd.Series([1, 2, 3, 4, 5], dtype=np.float64) b = a.rolling(window=100, min_periods=1).max() tm.assert_almost_equal(a, b) with pytest.raises(ValueError): pd.Series([1, 2, 3]).rolling(window=3, min_periods=5).max() @pytest.mark.parametrize("q", [0.0, 0.1, 0.5, 0.9, 1.0]) def test_rolling_quantile(self, q, raw): def scoreatpercentile(a, per): values = np.sort(a, axis=0) idx = int(per / 1.0 * (values.shape[0] - 1)) if idx == values.shape[0] - 1: retval = values[-1] else: qlow = float(idx) / float(values.shape[0] - 1) qhig = float(idx + 1) / float(values.shape[0] - 1) vlow = values[idx] vhig = values[idx + 1] retval = vlow + (vhig - vlow) * (per - qlow) / (qhig - qlow) return retval def quantile_func(x): return scoreatpercentile(x, q) self._check_moment_func(quantile_func, name="quantile", quantile=q, raw=raw) def test_rolling_quantile_np_percentile(self): # #9413: Tests that rolling window's quantile default behavior # is analogous to Numpy's percentile row = 10 col = 5 idx = pd.date_range("20100101", periods=row, freq="B") df = DataFrame(np.random.rand(row * col).reshape((row, -1)), index=idx) df_quantile = df.quantile([0.25, 0.5, 0.75], axis=0) np_percentile = np.percentile(df, [25, 50, 75], axis=0) tm.assert_almost_equal(df_quantile.values, np.array(np_percentile)) @pytest.mark.parametrize("quantile", [0.0, 0.1, 0.45, 0.5, 1]) @pytest.mark.parametrize( "interpolation", ["linear", "lower", "higher", "nearest", "midpoint"] ) @pytest.mark.parametrize( "data", [ [1.0, 2.0, 3.0, 4.0, 5.0, 6.0, 7.0], [8.0, 1.0, 3.0, 4.0, 5.0, 2.0, 6.0, 7.0], [0.0, np.nan, 0.2, np.nan, 0.4], [np.nan, np.nan, np.nan, np.nan], [np.nan, 0.1, np.nan, 0.3, 0.4, 0.5], [0.5], [np.nan, 0.7, 0.6], ], ) def test_rolling_quantile_interpolation_options( self, quantile, interpolation, data ): # Tests that rolling window's quantile behavior is analogous to # Series' quantile for each interpolation option s = Series(data) q1 = s.quantile(quantile, interpolation) q2 = s.expanding(min_periods=1).quantile(quantile, interpolation).iloc[-1] if np.isnan(q1): assert np.isnan(q2) else: assert q1 == q2 def test_invalid_quantile_value(self): data = np.arange(5) s = Series(data) msg = "Interpolation 'invalid' is not supported" with pytest.raises(ValueError, match=msg): s.rolling(len(data), min_periods=1).quantile(0.5, interpolation="invalid") def test_rolling_quantile_param(self): ser = Series([0.0, 0.1, 0.5, 0.9, 1.0]) with pytest.raises(ValueError): ser.rolling(3).quantile(-0.1) with pytest.raises(ValueError): ser.rolling(3).quantile(10.0) with pytest.raises(TypeError): ser.rolling(3).quantile("foo") def test_rolling_apply(self, raw): # suppress warnings about empty slices, as we are deliberately testing # with a 0-length Series def f(x): with warnings.catch_warnings(): warnings.filterwarnings( "ignore", message=".*(empty slice|0 for slice).*", category=RuntimeWarning, ) return x[np.isfinite(x)].mean() self._check_moment_func(np.mean, name="apply", func=f, raw=raw) def test_rolling_std(self, raw): self._check_moment_func(lambda x: np.std(x, ddof=1), name="std", raw=raw) self._check_moment_func( lambda x: np.std(x, ddof=0), name="std", ddof=0, raw=raw ) def test_rolling_std_1obs(self): vals = pd.Series([1.0, 2.0, 3.0, 4.0, 5.0]) result = vals.rolling(1, min_periods=1).std() expected = pd.Series([np.nan] * 5) tm.assert_series_equal(result, expected) result = vals.rolling(1, min_periods=1).std(ddof=0) expected = pd.Series([0.0] * 5) tm.assert_series_equal(result, expected) result = pd.Series([np.nan, np.nan, 3, 4, 5]).rolling(3, min_periods=2).std() assert np.isnan(result[2]) def test_rolling_std_neg_sqrt(self): # unit test from Bottleneck # Test move_nanstd for neg sqrt. a = pd.Series( [ 0.0011448196318903589, 0.00028718669878572767, 0.00028718669878572767, 0.00028718669878572767, 0.00028718669878572767, ] ) b = a.rolling(window=3).std() assert np.isfinite(b[2:]).all() b = a.ewm(span=3).std() assert np.isfinite(b[2:]).all() def test_rolling_var(self, raw): self._check_moment_func(lambda x: np.var(x, ddof=1), name="var", raw=raw) self._check_moment_func( lambda x: np.var(x, ddof=0), name="var", ddof=0, raw=raw ) @td.skip_if_no_scipy def test_rolling_skew(self, raw): from scipy.stats import skew self._check_moment_func(lambda x: skew(x, bias=False), name="skew", raw=raw) @td.skip_if_no_scipy def test_rolling_kurt(self, raw): from scipy.stats import kurtosis self._check_moment_func(lambda x: kurtosis(x, bias=False), name="kurt", raw=raw) def _check_moment_func( self, static_comp, name, raw, has_min_periods=True, has_center=True, has_time_rule=True, fill_value=None, zero_min_periods_equal=True, **kwargs, ): # inject raw if name == "apply": kwargs = copy.copy(kwargs) kwargs["raw"] = raw def get_result(obj, window, min_periods=None, center=False): r = obj.rolling(window=window, min_periods=min_periods, center=center) return getattr(r, name)(**kwargs) series_result = get_result(self.series, window=50) assert isinstance(series_result, Series) tm.assert_almost_equal(series_result.iloc[-1], static_comp(self.series[-50:])) frame_result = get_result(self.frame, window=50) assert isinstance(frame_result, DataFrame) tm.assert_series_equal( frame_result.iloc[-1, :], self.frame.iloc[-50:, :].apply(static_comp, axis=0, raw=raw), check_names=False, ) # check time_rule works if has_time_rule: win = 25 minp = 10 series = self.series[::2].resample("B").mean() frame = self.frame[::2].resample("B").mean() if has_min_periods: series_result = get_result(series, window=win, min_periods=minp) frame_result = get_result(frame, window=win, min_periods=minp) else: series_result = get_result(series, window=win, min_periods=0) frame_result = get_result(frame, window=win, min_periods=0) last_date = series_result.index[-1] prev_date = last_date - 24 * offsets.BDay() trunc_series = self.series[::2].truncate(prev_date, last_date) trunc_frame = self.frame[::2].truncate(prev_date, last_date) tm.assert_almost_equal(series_result[-1], static_comp(trunc_series)) tm.assert_series_equal( frame_result.xs(last_date), trunc_frame.apply(static_comp, raw=raw), check_names=False, ) # excluding NaNs correctly obj = Series(randn(50)) obj[:10] = np.NaN obj[-10:] = np.NaN if has_min_periods: result = get_result(obj, 50, min_periods=30) tm.assert_almost_equal(result.iloc[-1], static_comp(obj[10:-10])) # min_periods is working correctly result = get_result(obj, 20, min_periods=15) assert isna(result.iloc[23]) assert not isna(result.iloc[24]) assert not isna(result.iloc[-6]) assert isna(result.iloc[-5]) obj2 = Series(randn(20)) result = get_result(obj2, 10, min_periods=5) assert isna(result.iloc[3]) assert notna(result.iloc[4]) if zero_min_periods_equal: # min_periods=0 may be equivalent to min_periods=1 result0 = get_result(obj, 20, min_periods=0) result1 = get_result(obj, 20, min_periods=1) tm.assert_almost_equal(result0, result1) else: result = get_result(obj, 50) tm.assert_almost_equal(result.iloc[-1], static_comp(obj[10:-10])) # window larger than series length (#7297) if has_min_periods: for minp in (0, len(self.series) - 1, len(self.series)): result = get_result(self.series, len(self.series) + 1, min_periods=minp) expected = get_result(self.series, len(self.series), min_periods=minp) nan_mask = isna(result) tm.assert_series_equal(nan_mask, isna(expected)) nan_mask = ~nan_mask tm.assert_almost_equal(result[nan_mask], expected[nan_mask]) else: result = get_result(self.series, len(self.series) + 1, min_periods=0) expected = get_result(self.series, len(self.series), min_periods=0) nan_mask = isna(result) tm.assert_series_equal(nan_mask, isna(expected)) nan_mask = ~nan_mask tm.assert_almost_equal(result[nan_mask], expected[nan_mask]) # check center=True if has_center: if has_min_periods: result = get_result(obj, 20, min_periods=15, center=True) expected = get_result( pd.concat([obj, Series([np.NaN] * 9)]), 20, min_periods=15 )[9:].reset_index(drop=True) else: result = get_result(obj, 20, min_periods=0, center=True) print(result) expected = get_result( pd.concat([obj, Series([np.NaN] * 9)]), 20, min_periods=0 )[9:].reset_index(drop=True) tm.assert_series_equal(result, expected) # shifter index s = [f"x{x:d}" for x in range(12)] if has_min_periods: minp = 10 series_xp = ( get_result( self.series.reindex(list(self.series.index) + s), window=25, min_periods=minp, ) .shift(-12) .reindex(self.series.index) ) frame_xp = ( get_result( self.frame.reindex(list(self.frame.index) + s), window=25, min_periods=minp, ) .shift(-12) .reindex(self.frame.index) ) series_rs = get_result( self.series, window=25, min_periods=minp, center=True ) frame_rs = get_result( self.frame, window=25, min_periods=minp, center=True ) else: series_xp = ( get_result( self.series.reindex(list(self.series.index) + s), window=25, min_periods=0, ) .shift(-12) .reindex(self.series.index) ) frame_xp = ( get_result( self.frame.reindex(list(self.frame.index) + s), window=25, min_periods=0, ) .shift(-12) .reindex(self.frame.index) ) series_rs = get_result( self.series, window=25, min_periods=0, center=True ) frame_rs = get_result(self.frame, window=25, min_periods=0, center=True) if fill_value is not None: series_xp = series_xp.fillna(fill_value) frame_xp = frame_xp.fillna(fill_value) tm.assert_series_equal(series_xp, series_rs) tm.assert_frame_equal(frame_xp, frame_rs) def _rolling_consistency_cases(): for window in [1, 2, 3, 10, 20]: for min_periods in {0, 1, 2, 3, 4, window}: if min_periods and (min_periods > window): continue for center in [False, True]: yield window, min_periods, center class TestRollingMomentsConsistency(Base): def setup_method(self, method): self._create_data() # binary moments def test_rolling_cov(self): A = self.series B = A + randn(len(A)) result = A.rolling(window=50, min_periods=25).cov(B) tm.assert_almost_equal(result[-1], np.cov(A[-50:], B[-50:])[0, 1]) def test_rolling_corr(self): A = self.series B = A + randn(len(A)) result = A.rolling(window=50, min_periods=25).corr(B) tm.assert_almost_equal(result[-1], np.corrcoef(A[-50:], B[-50:])[0, 1]) # test for correct bias correction a = tm.makeTimeSeries() b = tm.makeTimeSeries() a[:5] = np.nan b[:10] = np.nan result = a.rolling(window=len(a), min_periods=1).corr(b) tm.assert_almost_equal(result[-1], a.corr(b)) @pytest.mark.parametrize("func", ["cov", "corr"]) def test_rolling_pairwise_cov_corr(self, func): check_pairwise_moment(self.frame, "rolling", func, window=10, min_periods=5) @pytest.mark.parametrize("method", ["corr", "cov"]) def test_flex_binary_frame(self, method): series = self.frame[1] res = getattr(series.rolling(window=10), method)(self.frame) res2 = getattr(self.frame.rolling(window=10), method)(series) exp = self.frame.apply(lambda x: getattr(series.rolling(window=10), method)(x)) tm.assert_frame_equal(res, exp) tm.assert_frame_equal(res2, exp) frame2 = self.frame.copy() frame2.values[:] = np.random.randn(*frame2.shape) res3 = getattr(self.frame.rolling(window=10), method)(frame2) exp = DataFrame( { k: getattr(self.frame[k].rolling(window=10), method)(frame2[k]) for k in self.frame } ) tm.assert_frame_equal(res3, exp) @pytest.mark.slow @pytest.mark.parametrize( "window,min_periods,center", list(_rolling_consistency_cases()) ) def test_rolling_apply_consistency( consistency_data, base_functions, no_nan_functions, window, min_periods, center ): x, is_constant, no_nans = consistency_data with warnings.catch_warnings(): warnings.filterwarnings( "ignore", message=".*(empty slice|0 for slice).*", category=RuntimeWarning, ) # test consistency between rolling_xyz() and either (a) # rolling_apply of Series.xyz(), or (b) rolling_apply of # np.nanxyz() functions = base_functions # GH 8269 if no_nans: functions = no_nan_functions + base_functions for (f, require_min_periods, name) in functions: rolling_f = getattr( x.rolling(window=window, center=center, min_periods=min_periods), name, ) if ( require_min_periods and (min_periods is not None) and (min_periods < require_min_periods) ): continue if name == "count": rolling_f_result = rolling_f() rolling_apply_f_result = x.rolling( window=window, min_periods=min_periods, center=center ).apply(func=f, raw=True) else: if name in ["cov", "corr"]: rolling_f_result = rolling_f(pairwise=False) else: rolling_f_result = rolling_f() rolling_apply_f_result = x.rolling( window=window, min_periods=min_periods, center=center ).apply(func=f, raw=True) # GH 9422 if name in ["sum", "prod"]: tm.assert_equal(rolling_f_result, rolling_apply_f_result) @pytest.mark.parametrize("window", range(7)) def test_rolling_corr_with_zero_variance(window): # GH 18430 s = pd.Series(np.zeros(20)) other = pd.Series(np.arange(20)) assert s.rolling(window=window).corr(other=other).isna().all() def test_flex_binary_moment(): # GH3155 # don't blow the stack msg = "arguments to moment function must be of type np.ndarray/Series/DataFrame" with pytest.raises(TypeError, match=msg): _flex_binary_moment(5, 6, None) def test_corr_sanity(): # GH 3155 df = DataFrame( np.array( [ [0.87024726, 0.18505595], [0.64355431, 0.3091617], [0.92372966, 0.50552513], [0.00203756, 0.04520709], [0.84780328, 0.33394331], [0.78369152, 0.63919667], ] ) ) res = df[0].rolling(5, center=True).corr(df[1]) assert all(np.abs(np.nan_to_num(x)) <= 1 for x in res) # and some fuzzing for _ in range(10): df = DataFrame(np.random.rand(30, 2)) res = df[0].rolling(5, center=True).corr(df[1]) try: assert all(np.abs(np.nan_to_num(x)) <= 1 for x in res) except AssertionError: print(res) def test_rolling_cov_diff_length(): # GH 7512 s1 = Series([1, 2, 3], index=[0, 1, 2]) s2 = Series([1, 3], index=[0, 2]) result = s1.rolling(window=3, min_periods=2).cov(s2) expected = Series([None, None, 2.0]) tm.assert_series_equal(result, expected) s2a = Series([1, None, 3], index=[0, 1, 2]) result = s1.rolling(window=3, min_periods=2).cov(s2a) tm.assert_series_equal(result, expected) def test_rolling_corr_diff_length(): # GH 7512 s1 = Series([1, 2, 3], index=[0, 1, 2]) s2 = Series([1, 3], index=[0, 2]) result = s1.rolling(window=3, min_periods=2).corr(s2) expected = Series([None, None, 1.0]) tm.assert_series_equal(result, expected) s2a = Series([1, None, 3], index=[0, 1, 2]) result = s1.rolling(window=3, min_periods=2).corr(s2a) tm.assert_series_equal(result, expected) @pytest.mark.parametrize( "f", [ lambda x: x.rolling(window=10, min_periods=5).cov(x, pairwise=False), lambda x: x.rolling(window=10, min_periods=5).corr(x, pairwise=False), lambda x: x.rolling(window=10, min_periods=5).max(), lambda x: x.rolling(window=10, min_periods=5).min(), lambda x: x.rolling(window=10, min_periods=5).sum(), lambda x: x.rolling(window=10, min_periods=5).mean(), lambda x: x.rolling(window=10, min_periods=5).std(), lambda x: x.rolling(window=10, min_periods=5).var(), lambda x: x.rolling(window=10, min_periods=5).skew(), lambda x: x.rolling(window=10, min_periods=5).kurt(), lambda x: x.rolling(window=10, min_periods=5).quantile(quantile=0.5), lambda x: x.rolling(window=10, min_periods=5).median(), lambda x: x.rolling(window=10, min_periods=5).apply(sum, raw=False), lambda x: x.rolling(window=10, min_periods=5).apply(sum, raw=True), lambda x: x.rolling(win_type="boxcar", window=10, min_periods=5).mean(), ], ) @td.skip_if_no_scipy def test_rolling_functions_window_non_shrinkage(f): # GH 7764 s = Series(range(4)) s_expected = Series(np.nan, index=s.index) df = DataFrame([[1, 5], [3, 2], [3, 9], [-1, 0]], columns=["A", "B"]) df_expected = DataFrame(np.nan, index=df.index, columns=df.columns) s_result = f(s) tm.assert_series_equal(s_result, s_expected) df_result = f(df) tm.assert_frame_equal(df_result, df_expected) def test_rolling_functions_window_non_shrinkage_binary(): # corr/cov return a MI DataFrame df = DataFrame( [[1, 5], [3, 2], [3, 9], [-1, 0]], columns=Index(["A", "B"], name="foo"), index=Index(range(4), name="bar"), ) df_expected = DataFrame( columns=Index(["A", "B"], name="foo"), index=pd.MultiIndex.from_product([df.index, df.columns], names=["bar", "foo"]), dtype="float64", ) functions = [ lambda x: (x.rolling(window=10, min_periods=5).cov(x, pairwise=True)), lambda x: (x.rolling(window=10, min_periods=5).corr(x, pairwise=True)), ] for f in functions: df_result = f(df) tm.assert_frame_equal(df_result, df_expected) def test_rolling_skew_edge_cases(): all_nan = Series([np.NaN] * 5) # yields all NaN (0 variance) d = Series([1] * 5) x = d.rolling(window=5).skew() tm.assert_series_equal(all_nan, x) # yields all NaN (window too small) d = Series(np.random.randn(5)) x = d.rolling(window=2).skew() tm.assert_series_equal(all_nan, x) # yields [NaN, NaN, NaN, 0.177994, 1.548824] d = Series([-1.50837035, -0.1297039, 0.19501095, 1.73508164, 0.41941401]) expected = Series([np.NaN, np.NaN, np.NaN, 0.177994, 1.548824]) x = d.rolling(window=4).skew() tm.assert_series_equal(expected, x) def test_rolling_kurt_edge_cases(): all_nan = Series([np.NaN] * 5) # yields all NaN (0 variance) d = Series([1] * 5) x = d.rolling(window=5).kurt() tm.assert_series_equal(all_nan, x) # yields all NaN (window too small) d = Series(np.random.randn(5)) x = d.rolling(window=3).kurt() tm.assert_series_equal(all_nan, x) # yields [NaN, NaN, NaN, 1.224307, 2.671499] d = Series([-1.50837035, -0.1297039, 0.19501095, 1.73508164, 0.41941401]) expected = Series([np.NaN, np.NaN, np.NaN, 1.224307, 2.671499]) x = d.rolling(window=4).kurt() tm.assert_series_equal(expected, x) def test_rolling_skew_eq_value_fperr(): # #18804 all rolling skew for all equal values should return Nan a = Series([1.1] * 15).rolling(window=10).skew() assert np.isnan(a).all() def test_rolling_kurt_eq_value_fperr(): # #18804 all rolling kurt for all equal values should return Nan a = Series([1.1] * 15).rolling(window=10).kurt() assert np.isnan(a).all() def test_rolling_max_gh6297(): """Replicate result expected in GH #6297""" indices = [datetime(1975, 1, i) for i in range(1, 6)] # So that we can have 2 datapoints on one of the days indices.append(datetime(1975, 1, 3, 6, 0)) series = Series(range(1, 7), index=indices) # Use floats instead of ints as values series = series.map(lambda x: float(x)) # Sort chronologically series = series.sort_index() expected = Series( [1.0, 2.0, 6.0, 4.0, 5.0], index=DatetimeIndex([datetime(1975, 1, i, 0) for i in range(1, 6)], freq="D"), ) x = series.resample("D").max().rolling(window=1).max() tm.assert_series_equal(expected, x) def test_rolling_max_resample(): indices = [datetime(1975, 1, i) for i in range(1, 6)] # So that we can have 3 datapoints on last day (4, 10, and 20) indices.append(datetime(1975, 1, 5, 1)) indices.append(datetime(1975, 1, 5, 2)) series = Series(list(range(0, 5)) + [10, 20], index=indices) # Use floats instead of ints as values series = series.map(lambda x: float(x)) # Sort chronologically series = series.sort_index() # Default how should be max expected = Series( [0.0, 1.0, 2.0, 3.0, 20.0], index=DatetimeIndex([datetime(1975, 1, i, 0) for i in range(1, 6)], freq="D"), ) x = series.resample("D").max().rolling(window=1).max() tm.assert_series_equal(expected, x) # Now specify median (10.0) expected = Series( [0.0, 1.0, 2.0, 3.0, 10.0], index=DatetimeIndex([datetime(1975, 1, i, 0) for i in range(1, 6)], freq="D"), ) x = series.resample("D").median().rolling(window=1).max() tm.assert_series_equal(expected, x) # Now specify mean (4+10+20)/3 v = (4.0 + 10.0 + 20.0) / 3.0 expected = Series( [0.0, 1.0, 2.0, 3.0, v], index=DatetimeIndex([datetime(1975, 1, i, 0) for i in range(1, 6)], freq="D"), ) x = series.resample("D").mean().rolling(window=1).max() tm.assert_series_equal(expected, x) def test_rolling_min_resample(): indices = [datetime(1975, 1, i) for i in range(1, 6)] # So that we can have 3 datapoints on last day (4, 10, and 20) indices.append(datetime(1975, 1, 5, 1)) indices.append(datetime(1975, 1, 5, 2)) series = Series(list(range(0, 5)) + [10, 20], index=indices) # Use floats instead of ints as values series = series.map(lambda x: float(x)) # Sort chronologically series = series.sort_index() # Default how should be min expected = Series( [0.0, 1.0, 2.0, 3.0, 4.0], index=DatetimeIndex([datetime(1975, 1, i, 0) for i in range(1, 6)], freq="D"), ) r = series.resample("D").min().rolling(window=1) tm.assert_series_equal(expected, r.min()) def test_rolling_median_resample(): indices = [datetime(1975, 1, i) for i in range(1, 6)] # So that we can have 3 datapoints on last day (4, 10, and 20) indices.append(datetime(1975, 1, 5, 1)) indices.append(datetime(1975, 1, 5, 2)) series = Series(list(range(0, 5)) + [10, 20], index=indices) # Use floats instead of ints as values series = series.map(lambda x: float(x)) # Sort chronologically series = series.sort_index() # Default how should be median expected = Series( [0.0, 1.0, 2.0, 3.0, 10], index=DatetimeIndex([datetime(1975, 1, i, 0) for i in range(1, 6)], freq="D"), ) x = series.resample("D").median().rolling(window=1).median() tm.assert_series_equal(expected, x) def test_rolling_median_memory_error(): # GH11722 n = 20000 Series(np.random.randn(n)).rolling(window=2, center=False).median() Series(np.random.randn(n)).rolling(window=2, center=False).median() def test_rolling_min_max_numeric_types(): # GH12373 types_test = [np.dtype(f"f{width}") for width in [4, 8]] types_test.extend( [np.dtype(f"{sign}{width}") for width in [1, 2, 4, 8] for sign in "ui"] ) for data_type in types_test: # Just testing that these don't throw exceptions and that # the return type is float64. Other tests will cover quantitative # correctness result = DataFrame(np.arange(20, dtype=data_type)).rolling(window=5).max() assert result.dtypes[0] == np.dtype("f8") result = DataFrame(np.arange(20, dtype=data_type)).rolling(window=5).min() assert result.dtypes[0] == np.dtype("f8") def test_moment_functions_zero_length(): # GH 8056 s = Series(dtype=np.float64) s_expected = s df1 = DataFrame() df1_expected = df1 df2 = DataFrame(columns=["a"]) df2["a"] = df2["a"].astype("float64") df2_expected = df2 functions = [ lambda x: x.rolling(window=10).count(), lambda x: x.rolling(window=10, min_periods=5).cov(x, pairwise=False), lambda x: x.rolling(window=10, min_periods=5).corr(x, pairwise=False), lambda x: x.rolling(window=10, min_periods=5).max(), lambda x: x.rolling(window=10, min_periods=5).min(), lambda x: x.rolling(window=10, min_periods=5).sum(), lambda x: x.rolling(window=10, min_periods=5).mean(), lambda x: x.rolling(window=10, min_periods=5).std(), lambda x: x.rolling(window=10, min_periods=5).var(), lambda x: x.rolling(window=10, min_periods=5).skew(), lambda x: x.rolling(window=10, min_periods=5).kurt(), lambda x: x.rolling(window=10, min_periods=5).quantile(0.5), lambda x: x.rolling(window=10, min_periods=5).median(), lambda x: x.rolling(window=10, min_periods=5).apply(sum, raw=False), lambda x: x.rolling(window=10, min_periods=5).apply(sum, raw=True), lambda x: x.rolling(win_type="boxcar", window=10, min_periods=5).mean(), ] for f in functions: try: s_result = f(s) tm.assert_series_equal(s_result, s_expected) df1_result = f(df1) tm.assert_frame_equal(df1_result, df1_expected) df2_result = f(df2) tm.assert_frame_equal(df2_result, df2_expected) except (ImportError): # scipy needed for rolling_window continue def test_moment_functions_zero_length_pairwise(): df1 = DataFrame() df2 = DataFrame(columns=Index(["a"], name="foo"), index=Index([], name="bar")) df2["a"] = df2["a"].astype("float64") df1_expected = DataFrame( index=pd.MultiIndex.from_product([df1.index, df1.columns]), columns=Index([]), ) df2_expected = DataFrame( index=pd.MultiIndex.from_product( [df2.index, df2.columns], names=["bar", "foo"] ), columns=Index(["a"], name="foo"), dtype="float64", ) functions = [ lambda x: (x.rolling(window=10, min_periods=5).cov(x, pairwise=True)), lambda x: (x.rolling(window=10, min_periods=5).corr(x, pairwise=True)), ] for f in functions: df1_result = f(df1) tm.assert_frame_equal(df1_result, df1_expected) df2_result = f(df2)
tm.assert_frame_equal(df2_result, df2_expected)
pandas._testing.assert_frame_equal
import re import numpy as np import pandas as pd import random as rd from sklearn import preprocessing from sklearn.cluster import KMeans from sklearn.ensemble import RandomForestRegressor from sklearn.decomposition import PCA # Print options np.set_printoptions(precision=4, threshold=10000, linewidth=160, edgeitems=999, suppress=True) pd.set_option('display.max_columns', None) pd.set_option('display.max_rows', None) pd.set_option('display.width', 160) pd.set_option('expand_frame_repr', False) pd.set_option('precision', 4) # constructing binary features def process_embarked(): global df_titanic_data # replacing the missing values with the most commmon value in the variable df_titanic_data.Embarked[df_titanic_data.Embarked.isnull()] = df_titanic_data.Embarked.dropna().mode().values # converting the values into numbers df_titanic_data['Embarked'] = pd.factorize(df_titanic_data['Embarked'])[0] # binarizing the constructed features if keep_binary: df_titanic_data = pd.concat([df_titanic_data, pd.get_dummies(df_titanic_data['Embarked']).rename( columns=lambda x: 'Embarked_' + str(x))], axis=1) # Define a helper function that can use RandomForestClassifier for handling the missing values of the age variable def set_missing_ages(): global df_titanic_data age_data = df_titanic_data[ ['Age', 'Embarked', 'Fare', 'Parch', 'SibSp', 'Title_id', 'Pclass', 'Names', 'CabinLetter']] input_values_RF = age_data.loc[(df_titanic_data.Age.notnull())].values[:, 1::] target_values_RF = age_data.loc[(df_titanic_data.Age.notnull())].values[:, 0] # Creating an object from the random forest regression function of sklearn<use the documentation for more details> regressor = RandomForestRegressor(n_estimators=2000, n_jobs=-1) # building the model based on the input values and target values above regressor.fit(input_values_RF, target_values_RF) # using the trained model to predict the missing values predicted_ages = regressor.predict(age_data.loc[(df_titanic_data.Age.isnull())].values[:, 1::]) # Filling the predicted ages in the origial titanic dataframe age_data.loc[(age_data.Age.isnull()), 'Age'] = predicted_ages # Helper function for constructing features from the age variable def process_age(): global df_titanic_data # calling the set_missing_ages helper function to use random forest regression for predicting missing values of age set_missing_ages() # # scale the age variable by centering it around the mean with a unit variance # if keep_scaled: # scaler_preprocessing = preprocessing.StandardScaler() # df_titanic_data['Age_scaled'] = scaler_preprocessing.fit_transform(df_titanic_data.Age.reshape(-1, 1)) # construct a feature for children df_titanic_data['isChild'] = np.where(df_titanic_data.Age < 13, 1, 0) # bin into quartiles and create binary features df_titanic_data['Age_bin'] = pd.qcut(df_titanic_data['Age'], 4) if keep_binary: df_titanic_data = pd.concat( [df_titanic_data, pd.get_dummies(df_titanic_data['Age_bin']).rename(columns=lambda y: 'Age_' + str(y))], axis=1) if keep_bins: df_titanic_data['Age_bin_id'] = pd.factorize(df_titanic_data['Age_bin'])[0] + 1 if keep_bins and keep_scaled: scaler_processing = preprocessing.StandardScaler() df_titanic_data['Age_bin_id_scaled'] = scaler_processing.fit_transform( df_titanic_data.Age_bin_id.reshape(-1, 1)) if not keep_strings: df_titanic_data.drop('Age_bin', axis=1, inplace=True) # Helper function for constructing features from the passengers/crew names def process_name(): global df_titanic_data # getting the different names in the names variable df_titanic_data['Names'] = df_titanic_data['Name'].map(lambda y: len(re.split(' ', y))) # Getting titles for each person df_titanic_data['Title'] = df_titanic_data['Name'].map(lambda y: re.compile(", (.*?)\.").findall(y)[0]) # handling the low occuring titles df_titanic_data['Title'][df_titanic_data.Title == 'Jonkheer'] = 'Master' df_titanic_data['Title'][df_titanic_data.Title.isin(['Ms', 'Mlle'])] = 'Miss' df_titanic_data['Title'][df_titanic_data.Title == 'Mme'] = 'Mrs' df_titanic_data['Title'][df_titanic_data.Title.isin(['Capt', 'Don', 'Major', 'Col', 'Sir'])] = 'Sir' df_titanic_data['Title'][df_titanic_data.Title.isin(['Dona', 'Lady', 'the Countess'])] = 'Lady' # binarizing all the features if keep_binary: df_titanic_data = pd.concat( [df_titanic_data, pd.get_dummies(df_titanic_data['Title']).rename(columns=lambda x: 'Title_' + str(x))], axis=1) # scalling if keep_scaled: scaler_preprocessing = preprocessing.StandardScaler() df_titanic_data['Names_scaled'] = scaler_preprocessing.fit_transform(df_titanic_data.Names.reshape(-1, 1)) # binning if keep_bins: df_titanic_data['Title_id'] = pd.factorize(df_titanic_data['Title'])[0] + 1 if keep_bins and keep_scaled: scaler = preprocessing.StandardScaler() df_titanic_data['Title_id_scaled'] = scaler.fit_transform(df_titanic_data.Title_id.reshape(-1, 1)) # Generate features from the cabin input variable def process_cabin(): # refering to the global variable that contains the titanic examples global df_titanic_data # repllacing the missing value in cabin variable "U0" df_titanic_data['Cabin'][df_titanic_data.Cabin.isnull()] = 'U0' # the cabin number is a sequence of of alphanumerical digits, so we are going to create some features # from the alphabetical part of it df_titanic_data['CabinLetter'] = df_titanic_data['Cabin'].map(lambda l: get_cabin_letter(l)) df_titanic_data['CabinLetter'] = pd.factorize(df_titanic_data['CabinLetter'])[0] # binarizing the cabin letters features if keep_binary: cletters = pd.get_dummies(df_titanic_data['CabinLetter']).rename(columns=lambda x: 'CabinLetter_' + str(x)) df_titanic_data = pd.concat([df_titanic_data, cletters], axis=1) # creating features from the numerical side of the cabin df_titanic_data['CabinNumber'] = df_titanic_data['Cabin'].map(lambda x: get_cabin_num(x)).astype(int) + 1 # scaling the feature if keep_scaled: scaler_processing = preprocessing.StandardScaler() df_titanic_data['CabinNumber_scaled'] = scaler_processing.fit_transform(df_titanic_data.CabinNumber.reshape(-1, 1)) def get_cabin_letter(cabin_value): # searching for the letters in the cabin alphanumerical value letter_match = re.compile("([a-zA-Z]+)").search(cabin_value) if letter_match: return letter_match.group() else: return 'U' def get_cabin_num(cabin_value): # searching for the numbers in the cabin alphanumerical value number_match = re.compile("([0-9]+)").search(cabin_value) if number_match: return number_match.group() else: return 0 # helper function for constructing features from the ticket fare variable def process_fare(): global df_titanic_data # handling the missing values by replacing it with the median feare df_titanic_data['Fare'][np.isnan(df_titanic_data['Fare'])] = df_titanic_data['Fare'].median() # zeros in the fare will cause some division problems so we are going to set them to 1/10th of the lowest fare df_titanic_data['Fare'][np.where(df_titanic_data['Fare'] == 0)[0]] = df_titanic_data['Fare'][ df_titanic_data['Fare'].nonzero()[ 0]].min() / 10 # Binarizing the features by binning them into quantiles df_titanic_data['Fare_bin'] = pd.qcut(df_titanic_data['Fare'], 4) if keep_binary: df_titanic_data = pd.concat( [df_titanic_data,
pd.get_dummies(df_titanic_data['Fare_bin'])
pandas.get_dummies
""" this is compilation of useful functions that might be helpful to analyse BEAM-related data """ import matplotlib.pyplot as plt import numpy as np import time import urllib import pandas as pd import re import statistics from urllib.error import HTTPError from urllib import request def get_output_path_from_s3_url(s3_url): """ transform s3 output path (from beam runs spreadsheet) into path to s3 output that may be used as part of path to the file. s3path = get_output_path_from_s3_url(s3url) beam_log_path = s3path + '/beamLog.out' """ return s3_url \ .strip() \ .replace("s3.us-east-2.amazonaws.com/beam-outputs/index.html#", "beam-outputs.s3.amazonaws.com/") def grep_beamlog(s3url, keywords): """ look for keywords in beamLog.out file of specified run found rows with keywords will be printed out """ s3path = get_output_path_from_s3_url(s3url) url = s3path + "/beamLog.out" file = urllib.request.urlopen(url) for b_line in file.readlines(): line = b_line.decode("utf-8") for keyword in keywords: if keyword in line: print(line) def parse_config(s3url, complain=True): """ parse beam config of beam run. :param s3url: url to s3 output :param complain: it will complain if there are many config values found with the same name :return: dictionary config key -> config value """ s3path = get_output_path_from_s3_url(s3url) url = s3path + "/fullBeamConfig.conf" config = urllib.request.urlopen(url) config_keys = ["flowCapacityFactor", "speedScalingFactor", "quick_fix_minCarSpeedInMetersPerSecond", "activitySimEnabled", "transitCapacity", "minimumRoadSpeedInMetersPerSecond", "fractionOfInitialVehicleFleet", "agentSampleSizeAsFractionOfPopulation", "simulationName", "directory", "generate_secondary_activities", "lastIteration", "fractionOfPeopleWithBicycle", "parkingStallCountScalingFactor", "parkingPriceMultiplier", "parkingCostScalingFactor", "queryDate", "transitPrice", "transit_crowding", "transit_crowding_percentile", "maxLinkLengthToApplySpeedScalingFactor", "max_destination_distance_meters", "max_destination_choice_set_size", "transit_crowding_VOT_multiplier", "transit_crowding_VOT_threshold", "activity_file_path", "intercept_file_path", "additional_trip_utility", "ModuleProbability_1", "ModuleProbability_2", "ModuleProbability_3", "ModuleProbability_4", "BUS-DEFAULT", "RAIL-DEFAULT", "SUBWAY-DEFAULT"] intercept_keys = ["bike_intercept", "car_intercept", "drive_transit_intercept", "ride_hail_intercept", "ride_hail_pooled_intercept", "ride_hail_transit_intercept", "walk_intercept", "walk_transit_intercept", "transfer"] config_map = {} default_value = "" for conf_key in config_keys: config_map[conf_key] = default_value def set_value(key, line_value): value = line_value.strip().replace("\"", "") if key not in config_map: config_map[key] = value else: old_val = config_map[key] if old_val == default_value or old_val.strip() == value.strip(): config_map[key] = value else: if complain: print("an attempt to rewrite config value with key:", key) print(" value in the map \t", old_val) print(" new rejected value\t", value) physsim_names = ['JDEQSim', 'BPRSim', 'PARBPRSim', 'CCHRoutingAssignment'] def look_for_physsim_type(config_line): for physsim_name in physsim_names: if 'name={}'.format(physsim_name) in config_line: set_value("physsim_type", "physsim_type = {}".format(physsim_name)) for b_line in config.readlines(): line = b_line.decode("utf-8").strip() look_for_physsim_type(line) for ckey in config_keys: if ckey + "=" in line or ckey + "\"=" in line or '"' + ckey + ":" in line: set_value(ckey, line) for ikey in intercept_keys: if ikey in line: set_value(ikey, line) return config_map def get_calibration_text_data(s3url, commit=""): """ calculate the csv row with values for pasting them into spreadsheet with beam runs :param s3url: url to beam run :param commit: git commit to insert into resulting csv string :return: the csv string """ def get_realized_modes_as_str(full_path, data_file_name='referenceRealizedModeChoice.csv'): if data_file_name not in full_path: path = get_output_path_from_s3_url(full_path) + "/" + data_file_name else: path = get_output_path_from_s3_url(full_path) df = pd.read_csv(path, names=['bike', 'car', 'cav', 'drive_transit', 'ride_hail', 'ride_hail_pooled', 'ride_hail_transit', 'walk', 'walk_transit']) last_row = df.tail(1) car = float(last_row['car']) walk = float(last_row['walk']) bike = float(last_row['bike']) ride_hail = float(last_row['ride_hail']) ride_hail_transit = float(last_row['ride_hail_transit']) walk_transit = float(last_row['walk_transit']) drive_transit = float(last_row['drive_transit']) ride_hail_pooled = float(last_row['ride_hail_pooled']) # car walk bike ride_hail ride_hail_transit walk_transit drive_transit ride_hail_pooled result = "%f,%f,%f,%f,%f,%f,%f,%f" % ( car, walk, bike, ride_hail, ride_hail_transit, walk_transit, drive_transit, ride_hail_pooled) return result print("order: car | walk | bike | ride_hail | ride_hail_transit | walk_transit | drive_transit | ride_hail_pooled") print("") print('ordered realized mode choice:') print('ordered commute realized mode choice:') modes_section = get_realized_modes_as_str(s3url) print(modes_section) print(get_realized_modes_as_str(s3url, 'referenceRealizedModeChoice_commute.csv')) print("") config = parse_config(s3url) def get_config_value(conf_value_name): return config.get(conf_value_name, '=default').split('=')[-1] intercepts = ["car_intercept", "walk_intercept", "bike_intercept", "ride_hail_intercept", "ride_hail_transit_intercept", "walk_transit_intercept", "drive_transit_intercept", "ride_hail_pooled_intercept", "transfer"] print('order of intercepts:', "\n\t\t ".join(intercepts)) intercepts_sections = ', '.join(get_config_value(x) for x in intercepts) print(intercepts_sections) print("") config_ordered = ["lastIteration", "agentSampleSizeAsFractionOfPopulation", "flowCapacityFactor", "speedScalingFactor", "quick_fix_minCarSpeedInMetersPerSecond", "minimumRoadSpeedInMetersPerSecond", "fractionOfInitialVehicleFleet", "transitCapacity", "fractionOfPeopleWithBicycle", "parkingStallCountScalingFactor", "transitPrice", "transit_crowding_VOT_multiplier", "transit_crowding_VOT_threshold", "additional_trip_utility"] print('order of config values:', "\n\t\t ".join(config_ordered)) config_section = ','.join(get_config_value(x) for x in config_ordered) print(config_section) print("") print('the rest of configuration:') for key, value in config.items(): if 'intercept' not in key and key not in config_ordered: print(value) print("") grep_beamlog(s3url, ["Total number of links", "Number of persons:"]) return "{}, ,{},{}, , ,{}, ,{}".format(config_section, commit, s3url, modes_section, intercepts_sections) def plot_simulation_vs_google_speed_comparison(s3url, iteration, compare_vs_3am, title=""): """ if google requests was enabled for specified run for specified iteration, then plots comparison of google speeds vs simulation speeds for the same set of routes :param iteration: iteration of simulation :param s3url: url to s3 output :param compare_vs_3am: if comparison should be done vs google 3am speeds (relaxed speed) instead of regular route time :param title: main title for all plotted graphs. useful for future copy-paste to distinguish different simulations """ s3path = get_output_path_from_s3_url(s3url) google_tt = pd.read_csv(s3path + "/ITERS/it.{0}/{0}.googleTravelTimeEstimation.csv".format(iteration)) google_tt_3am = google_tt[google_tt['departureTime'] == 3 * 60 * 60].copy() google_tt_rest = google_tt[ (google_tt['departureTime'] != 3 * 60 * 60) & (google_tt['departureTime'] < 24 * 60 * 60)].copy() google_tt_column = 'googleTravelTimeWithTraffic' google_tt_column3am = 'googleTravelTimeWithTraffic' def get_speed(distance, travel_time): # travel time may be -1 for some google requests because of some google errors if travel_time <= 0: return 0 else: return distance / travel_time def get_uid(row): return "{}:{}:{}:{}:{}".format(row['vehicleId'], row['originLat'], row['originLng'], row['destLat'], row['destLng']) if compare_vs_3am: google_tt_3am['googleDistance3am'] = google_tt_3am['googleDistance'] google_tt_3am['google_api_speed_3am'] = google_tt_3am.apply( lambda row: (get_speed(row['googleDistance'], row[google_tt_column3am])), axis=1) google_tt_3am['uid'] = google_tt_3am.apply(get_uid, axis=1) google_tt_3am = google_tt_3am.groupby('uid')['uid', 'google_api_speed_3am', 'googleDistance3am'] \ .agg(['min', 'mean', 'max']).copy() google_tt_3am.reset_index(inplace=True) google_tt_rest['google_api_speed'] = google_tt_rest.apply( lambda row: (get_speed(row['googleDistance'], row[google_tt_column])), axis=1) google_tt_rest['sim_speed'] = google_tt_rest.apply(lambda row: (get_speed(row['legLength'], row['simTravelTime'])), axis=1) google_tt_rest['uid'] = google_tt_rest.apply(get_uid, axis=1) df = google_tt_rest \ .groupby(['uid', 'departureTime'])[[google_tt_column, 'googleDistance', 'google_api_speed', 'sim_speed']] \ .agg({google_tt_column: ['min', 'mean', 'max'], 'googleDistance': ['min', 'mean', 'max'], 'google_api_speed': ['min', 'mean', 'max'], 'sim_speed': ['min']}) \ .copy() df.reset_index(inplace=True) if compare_vs_3am: df = df.join(google_tt_3am.set_index('uid'), on='uid') df['departure_hour'] = df['departureTime'] // 3600 df.columns = ['{}_{}'.format(x[0], x[1]) for x in df.columns] df['sim_speed'] = df['sim_speed_min'] fig, (ax0, ax1) = plt.subplots(1, 2, figsize=(22, 5)) fig.tight_layout(pad=0.1) fig.subplots_adjust(wspace=0.15, hspace=0.1) fig.suptitle(title, y=1.11) title0 = "Trip-by-trip speed comparison" title1 = "Hour-by-hour average speed comparison" if compare_vs_3am: title0 = title0 + " at 3am" title1 = title1 + " at 3am" def plot_hist(google_column_name, label): df[label] = df['sim_speed'] - df[google_column_name] df[label].plot.kde(bw_method=0.2, ax=ax0) if compare_vs_3am: plot_hist('google_api_speed_3am_max', 'Maximum estimate') else: plot_hist('google_api_speed_max', 'Maximum estimate') plot_hist('google_api_speed_mean', 'Mean estimate') plot_hist('google_api_speed_min', 'Minimum estimate') ax0.axvline(0, color="black", linestyle="--") ax0.set_title(title0) ax0.legend(loc='upper left') ax0.set_xlabel('Difference in speed (m/s)') ax0.set_ylabel('Density') to_plot_df_speed_0 = df.groupby(['departure_hour_']).mean() to_plot_df_speed_0['departure_hour_'] = to_plot_df_speed_0.index if compare_vs_3am: to_plot_df_speed_0.plot(x='departure_hour_', y='google_api_speed_3am_min', label='Minimum estimate 3am', ax=ax1) to_plot_df_speed_0.plot(x='departure_hour_', y='google_api_speed_3am_mean', label='Mean estimate 3am', ax=ax1) to_plot_df_speed_0.plot(x='departure_hour_', y='google_api_speed_3am_max', label='Maximum estimate 3am', ax=ax1) else: to_plot_df_speed_0.plot(x='departure_hour_', y='google_api_speed_min', label='Minimum estimate', ax=ax1) to_plot_df_speed_0.plot(x='departure_hour_', y='google_api_speed_mean', label='Mean estimate', ax=ax1) to_plot_df_speed_0.plot(x='departure_hour_', y='google_api_speed_max', label='Maximum estimate', ax=ax1) to_plot_df_speed_0.plot(x='departure_hour_', y='sim_speed', label='Simulated Speed', ax=ax1) ax1.legend(loc='upper right') ax1.set_title(title1) ax1.set_xlabel('Hour of day') ax1.set_ylabel('Speed (m/s)') def print_spreadsheet_rows(s3urls, commit, iteration): calibration_text = [] for s3url in s3urls: main_text = get_calibration_text_data(s3url, commit=commit) fake_walkers_file_name = "{}.fake_real_walkers.csv.gz".format(iteration) fake_walkers = get_from_s3(s3url, fake_walkers_file_name) s3path = get_output_path_from_s3_url(s3url) replanning_path = s3path + "/ITERS/it.{0}/{0}.replanningEventReason.csv".format(iteration) replanning_reasons = pd.read_csv(replanning_path) print('\nreplanning_reasons:\n', replanning_reasons, '\n\n') walk_transit_exhausted = \ replanning_reasons[replanning_reasons['ReplanningReason'] == 'ResourceCapacityExhausted WALK_TRANSIT'][ 'Count'].values[0] calibration_text.append((main_text, fake_walkers, walk_transit_exhausted)) print("\n\nspreadsheet text:") for (text, _, _) in calibration_text: print(text) print("\n") print("\n\nfake walkers:") for (_, fake_walkers, _) in calibration_text: if fake_walkers is None: print("Not Available") else: print(fake_walkers['fake_walkers_ratio'].values[0] * 100) print("\n") print("\n\nResourceCapacityExhausted WALK_TRANSIT:") for (_, _, text) in calibration_text: print(text) print("\n") def plot_fake_real_walkers(title, fake_walkers, real_walkers, threshold): fig, axs = plt.subplots(2, 2, figsize=(24, 4 * 2)) fig.tight_layout() fig.subplots_adjust(wspace=0.05, hspace=0.2) fig.suptitle(title, y=1.11) ax1 = axs[0, 0] ax2 = axs[0, 1] fake_walkers['length'].hist(bins=50, ax=ax1, alpha=0.3, label='fake walkers') real_walkers['length'].hist(bins=50, ax=ax1, alpha=0.3, label='real walkers') ax1.legend(loc='upper right', prop={'size': 10}) ax1.set_title("Trip length histogram. Fake vs Real walkers. Min length of trip is {0}".format(threshold)) ax1.axvline(5000, color="black", linestyle="--") fake_walkers['length'].hist(bins=50, ax=ax2, log=True, alpha=0.3, label='fake walkers') real_walkers['length'].hist(bins=50, ax=ax2, log=True, alpha=0.3, label='real walkers') ax2.legend(loc='upper right', prop={'size': 10}) ax2.set_title( "Trip length histogram. Fake vs Real walkers. Logarithmic scale. Min length of trip is {0}".format(threshold)) ax2.axvline(5000, color="black", linestyle="--") ax1 = axs[1, 0] ax2 = axs[1, 1] long_real_walkers = real_walkers[real_walkers['length'] >= threshold] number_of_top_alternatives = 5 walkers_by_alternative = long_real_walkers.groupby('availableAlternatives')['length'].count().sort_values( ascending=False) top_alternatives = set( walkers_by_alternative.reset_index()['availableAlternatives'].head(number_of_top_alternatives)) for alternative in top_alternatives: label = str(list(set(alternative.split(':')))).replace('\'', '')[1:-1] selected = long_real_walkers[long_real_walkers['availableAlternatives'] == alternative]['length'] selected.hist(bins=50, ax=ax1, alpha=0.4, linewidth=4, label=label) selected.hist(bins=20, ax=ax2, log=True, histtype='step', linewidth=4, label=label) ax1.set_title("Length histogram of top {} alternatives of real walkers".format(number_of_top_alternatives)) ax1.legend(loc='upper right', prop={'size': 10}) ax2.set_title( "Length histogram of top {} alternatives of real walkers. Logarithmic scale".format(number_of_top_alternatives)) ax2.legend(loc='upper right', prop={'size': 10}) def get_fake_real_walkers(s3url, iteration, threshold=2000): s3path = get_output_path_from_s3_url(s3url) events_file_path = s3path + "/ITERS/it.{0}/{0}.events.csv.gz".format(iteration) start_time = time.time() modechoice = pd.concat([df[(df['type'] == 'ModeChoice') | (df['type'] == 'Replanning')] for df in
pd.read_csv(events_file_path, low_memory=False, chunksize=100000)
pandas.read_csv
# -*- coding: utf-8 -*- from __future__ import unicode_literals import re import os import six import json import shutil import sqlite3 import pandas as pd import gramex.cache from io import BytesIO from lxml import etree from nose.tools import eq_, ok_ from gramex import conf from gramex.http import BAD_REQUEST, FOUND from gramex.config import variables, objectpath, merge from orderedattrdict import AttrDict, DefaultAttrDict from pandas.util.testing import assert_frame_equal as afe from . import folder, TestGramex, dbutils, tempfiles xlsx_mime_type = 'application/vnd.openxmlformats-officedocument.spreadsheetml.sheet' class TestFormHandler(TestGramex): sales = gramex.cache.open(os.path.join(folder, 'sales.xlsx'), 'xlsx') @classmethod def setUpClass(cls): dbutils.sqlite_create_db('formhandler.db', sales=cls.sales) @classmethod def tearDownClass(cls): try: dbutils.sqlite_drop_db('formhandler.db') except OSError: pass def check_filter(self, url, df=None, na_position='last', key=None): # Modelled on testlib.test_data.TestFilter.check_filter def eq(args, expected): result = self.get(url, params=args).json() actual = pd.DataFrame(result[key] if key else result) expected.index = actual.index if len(expected) > 0: afe(actual, expected, check_like=True) sales = self.sales if df is None else df eq({}, sales) eq({'देश': ['भारत']}, sales[sales['देश'] == 'भारत']) eq({'city': ['Hyderabad', 'Coimbatore']}, sales[sales['city'].isin(['Hyderabad', 'Coimbatore'])]) eq({'product!': ['Biscuit', 'Crème']}, sales[~sales['product'].isin(['Biscuit', 'Crème'])]) eq({'city>': ['Bangalore'], 'city<': ['Singapore']}, sales[(sales['city'] > 'Bangalore') & (sales['city'] < 'Singapore')]) eq({'city>~': ['Bangalore'], 'city<~': ['Singapore']}, sales[(sales['city'] >= 'Bangalore') & (sales['city'] <= 'Singapore')]) eq({'city~': ['ore']}, sales[sales['city'].str.contains('ore')]) eq({'product': ['Biscuit'], 'city': ['Bangalore'], 'देश': ['भारत']}, sales[(sales['product'] == 'Biscuit') & (sales['city'] == 'Bangalore') & (sales['देश'] == 'भारत')]) eq({'city!~': ['ore']}, sales[~sales['city'].str.contains('ore')]) eq({'sales>': ['100'], 'sales<': ['1000']}, sales[(sales['sales'] > 100) & (sales['sales'] < 1000)]) eq({'growth<': [0.5]}, sales[sales['growth'] < 0.5]) eq({'sales>': ['100'], 'sales<': ['1000'], 'growth<': ['0.5']}, sales[(sales['sales'] > 100) & (sales['sales'] < 1000) & (sales['growth'] < 0.5)]) eq({'देश': ['भारत'], '_sort': ['sales']}, sales[sales['देश'] == 'भारत'].sort_values('sales', na_position=na_position)) eq({'product<~': ['Biscuit'], '_sort': ['-देश', '-growth']}, sales[sales['product'] == 'Biscuit'].sort_values( ['देश', 'growth'], ascending=[False, False], na_position=na_position)) eq({'देश': ['भारत'], '_offset': ['4'], '_limit': ['8']}, sales[sales['देश'] == 'भारत'].iloc[4:12]) cols = ['product', 'city', 'sales'] eq({'देश': ['भारत'], '_c': cols}, sales[sales['देश'] == 'भारत'][cols]) ignore_cols = ['product', 'city'] eq({'देश': ['भारत'], '_c': ['-' + c for c in ignore_cols]}, sales[sales['देश'] == 'भारत'][[c for c in sales.columns if c not in ignore_cols]]) # Non-existent column does not raise an error for any operation for op in ['', '~', '!', '>', '<', '<~', '>', '>~']: eq({'nonexistent' + op: ['']}, sales) # Non-existent sorts do not raise an error eq({'_sort': ['nonexistent', 'sales']}, sales.sort_values('sales', na_position=na_position)) # Non-existent _c does not raise an error eq({'_c': ['nonexistent', 'sales']}, sales[['sales']]) # Invalid limit or offset raise an error eq_(self.get(url, params={'_limit': ['abc']}).status_code, BAD_REQUEST) eq_(self.get(url, params={'_offset': ['abc']}).status_code, BAD_REQUEST) # Check if metadata is returned properly def meta_headers(url, params): r = self.get(url, params=params) result = DefaultAttrDict(AttrDict) for header_name, value in r.headers.items(): name = header_name.lower() if name.startswith('fh-'): parts = name.split('-') dataset_name, key = '-'.join(parts[1:-1]), parts[-1] result[dataset_name][key] = json.loads(value) return result header_key = 'data' if key is None else key headers = meta_headers(url, {'_meta': 'y'})[header_key] eq_(headers.offset, 0) eq_(headers.limit, conf.handlers.FormHandler.default._limit) # There may be some default items pass as ignored or sort or filter. # Just check that this is a list ok_(isinstance(headers.filters, list)) ok_(isinstance(headers.ignored, list)) ok_(isinstance(headers.sort, list)) if 'count' in headers: eq_(headers.count, len(sales)) headers = meta_headers(url, { '_meta': 'y', 'देश': 'USA', 'c': ['city', 'product', 'sales'], '_sort': '-sales', '_limit': 10, '_offset': 3 })[header_key] ok_(['देश', '', ['USA']] in headers.filters) ok_(['c', ['city', 'product', 'sales']] in headers.ignored) ok_(['sales', False] in headers.sort) ok_(headers.offset, 3) ok_(headers.limit, 10) if 'count' in headers: eq_(headers.count, (sales['देश'] == 'USA').sum()) def eq(self, url, expected): out = self.get(url).content actual = pd.read_csv(BytesIO(out), encoding='utf-8') expected.index = range(len(expected)) afe(actual, expected, check_column_type=six.PY3) def test_file(self): self.check_filter('/formhandler/file', na_position='last') self.check_filter('/formhandler/url', na_position='last') self.check_filter('/formhandler/file-multi', na_position='last', key='big', df=self.sales[self.sales['sales'] > 100]) self.check_filter('/formhandler/file-multi', na_position='last', key='by-growth', df=self.sales.sort_values('growth')) def test_sqlite(self): self.check_filter('/formhandler/sqlite', na_position='first') self.check_filter('/formhandler/sqlite-multi', na_position='last', key='big', df=self.sales[self.sales['sales'] > 100]) self.check_filter('/formhandler/sqlite-multi', na_position='last', key='by-growth', df=self.sales.sort_values('growth')) self.check_filter('/formhandler/sqlite-multi', na_position='last', key='big-by-growth', df=self.sales[self.sales['sales'] > 100].sort_values('growth')) self.check_filter('/formhandler/sqlite-queryfunction', na_position='last') self.check_filter('/formhandler/sqlite-queryfunction?ct=Hyderabad&ct=Coimbatore', na_position='last', df=self.sales[self.sales['city'].isin(['Hyderabad', 'Coimbatore'])]) def test_mysql(self): dbutils.mysql_create_db(variables.MYSQL_SERVER, 'test_formhandler', sales=self.sales) try: self.check_filter('/formhandler/mysql', na_position='first') finally: dbutils.mysql_drop_db(variables.MYSQL_SERVER, 'test_formhandler') def test_postgres(self): dbutils.postgres_create_db(variables.POSTGRES_SERVER, 'test_formhandler', sales=self.sales) try: self.check_filter('/formhandler/postgres', na_position='last') finally: dbutils.postgres_drop_db(variables.POSTGRES_SERVER, 'test_formhandler') def test_default(self): cutoff, limit = 50, 2 self.eq('/formhandler/default', self.sales[self.sales['sales'] > cutoff].head(limit)) def test_function(self): self.eq('/formhandler/file-function?col=sales&_format=csv', self.sales[['sales']]) self.eq('/formhandler/file-function?col=देश&col=product&_format=csv', self.sales[['देश', 'product']]) def test_modify(self): self.eq('/formhandler/modify', self.sales.sum(numeric_only=True).to_frame().T) def test_modify_multi(self): city = self.sales.groupby('city')['sales'].sum().reset_index() city['rank'] = city['sales'].rank() big = self.sales[self.sales['sales'] > 100] self.eq('/formhandler/modify-multi', big.merge(city, on='city')) def test_prepare(self): self.eq('/formhandler/prepare', self.sales[self.sales['product'] == 'Biscuit']) def test_download(self): # Modelled on testlib.test_data.TestDownload big = self.sales[self.sales['sales'] > 100] by_growth = self.sales.sort_values('growth') big.index = range(len(big)) by_growth.index = range(len(by_growth)) out = self.get('/formhandler/file?_format=html') # Note: In Python 2, pd.read_html returns .columns.inferred_type=mixed # instead of unicde. So check column type only in PY3 not PY2 afe(pd.read_html(out.content, encoding='utf-8')[0], self.sales, check_column_type=six.PY3) eq_(out.headers['Content-Type'], 'text/html;charset=UTF-8') eq_(out.headers.get('Content-Disposition'), None) out = self.get('/formhandler/file-multi?_format=html') result = pd.read_html(BytesIO(out.content), encoding='utf-8') afe(result[0], big, check_column_type=six.PY3) afe(result[1], by_growth, check_column_type=six.PY3) eq_(out.headers['Content-Type'], 'text/html;charset=UTF-8') eq_(out.headers.get('Content-Disposition'), None) out = self.get('/formhandler/file?_format=xlsx') afe(pd.read_excel(BytesIO(out.content)), self.sales) eq_(out.headers['Content-Type'], xlsx_mime_type) eq_(out.headers['Content-Disposition'], 'attachment;filename=data.xlsx') out = self.get('/formhandler/file-multi?_format=xlsx') result = pd.read_excel(BytesIO(out.content), sheet_name=None) afe(result['big'], big) afe(result['by-growth'], by_growth) eq_(out.headers['Content-Type'], xlsx_mime_type) eq_(out.headers['Content-Disposition'], 'attachment;filename=data.xlsx') out = self.get('/formhandler/file?_format=csv') ok_(out.content.startswith(''.encode('utf-8-sig'))) afe(pd.read_csv(BytesIO(out.content), encoding='utf-8'), self.sales) eq_(out.headers['Content-Type'], 'text/csv;charset=UTF-8') eq_(out.headers['Content-Disposition'], 'attachment;filename=data.csv') out = self.get('/formhandler/file-multi?_format=csv') lines = out.content.splitlines(True) eq_(lines[0], 'big\n'.encode('utf-8-sig')) actual = pd.read_csv(BytesIO(b''.join(lines[1:len(big) + 2])), encoding='utf-8') afe(actual, big) eq_(lines[len(big) + 3], 'by-growth\n'.encode('utf-8')) actual = pd.read_csv(BytesIO(b''.join(lines[len(big) + 4:])), encoding='utf-8') afe(actual, by_growth) eq_(out.headers['Content-Type'], 'text/csv;charset=UTF-8') eq_(out.headers['Content-Disposition'], 'attachment;filename=data.csv') for fmt in ['csv', 'html', 'json', 'xlsx']: out = self.get('/formhandler/file?_format=%s&_download=test.%s' % (fmt, fmt)) eq_(out.headers['Content-Disposition'], 'attachment;filename=test.%s' % fmt) out = self.get('/formhandler/file-multi?_format=%s&_download=test.%s' % (fmt, fmt)) eq_(out.headers['Content-Disposition'], 'attachment;filename=test.%s' % fmt) @staticmethod def copy_file(source, target): target = os.path.join(folder, target) source = os.path.join(folder, source) shutil.copyfile(source, target) tempfiles[target] = target return target def call(self, url, args, method, headers): r = self.check('/formhandler/edits-' + url, data=args, method=method, headers=headers) meta = r.json() # meta has 'ignored' with list of ignored columns ok_(['x', args.get('x', [1])] in objectpath(meta, 'data.ignored')) # meta has 'filters' for PUT and DELETE. It is empty for post if method.lower() == 'post': eq_(objectpath(meta, 'data.filters'), []) else: ok_(isinstance(objectpath(meta, 'data.filters'), list)) return r def check_edit(self, method, source, args, count): # Edits the correct count of records, returns empty value and saves to file target = self.copy_file('sales.xlsx', 'sales-edits.xlsx') self.call('xlsx-' + source, args, method, {'Count-Data': str(count)}) result = gramex.cache.open(target) # Check result. TODO: check that the values are correctly added if method == 'delete': eq_(len(result), len(self.sales) - count) elif method == 'post': eq_(len(result), len(self.sales) + count) elif method == 'put': eq_(len(result), len(self.sales)) target = os.path.join(folder, 'formhandler-edits.db') dbutils.sqlite_create_db(target, sales=self.sales) tempfiles[target] = target self.call('sqlite-' + source, args, method, {'Count-Data': str(count)}) # Check result. TODO: check that the values are correctly added con = sqlite3.connect(target) result = pd.read_sql('SELECT * FROM sales', con) # TODO: check that the values are correctly added if method == 'delete': eq_(len(result), len(self.sales) - count) elif method == 'post': eq_(len(result), len(self.sales) + count) elif method == 'put': eq_(len(result), len(self.sales)) def test_invalid_edit(self): self.copy_file('sales.xlsx', 'sales-edits.xlsx') for method in ['delete', 'put']: # Editing with no ID columns defined raises an error self.check('/formhandler/file?city=A&product=B', method=method, code=400) # Edit record without ID columns in args raises an error self.check('/formhandler/edits-xlsx-multikey', method=method, code=400) self.check('/formhandler/edits-xlsx-singlekey', method=method, code=400) def test_edit_singlekey(self): # Operations with a single key works self.check_edit('post', 'singlekey', { 'देश': ['भारत'], 'city': ['Bangalore'], 'product': ['Crème'], 'sales': ['100'], 'growth': ['0.32'], }, count=1) self.check_edit('put', 'singlekey', { 'sales': ['513.7'], 'city': [123], 'product': ['abc'], }, count=1) # Delete with single ID as primary key works self.check_edit('delete', 'singlekey', { 'sales': ['513.7'] }, count=1) def test_edit_multikey_single_value(self): # POST single value self.check_edit('post', 'multikey', { 'देश': ['भारत'], 'city': ['Bangalore'], 'product': ['Alpha'], 'sales': ['100'], }, count=1) self.check_edit('put', 'multikey', { 'देश': ['भारत'], 'city': ['Bangalore'], 'product': ['Eggs'], 'sales': ['100'], 'growth': ['0.32'], }, count=1) self.check_edit('delete', 'multikey', { 'देश': ['भारत'], 'city': ['Bangalore'], 'product': ['Crème'], }, count=1) def test_edit_multikey_multi_value(self): self.check_edit('post', 'multikey', { 'देश': ['भारत', 'भारत', 'भारत'], 'city': ['Bangalore', 'Bangalore', 'Bangalore'], 'product': ['Alpha', 'Beta', 'Gamma'], 'sales': ['100', '', '300'], 'growth': ['0.32', '0.50', '0.12'], # There is a default ?x=1. Override that temporarily 'x': ['', '', ''] }, count=3) # NOTE: PUT behaviour for multi-value is undefined self.check_edit('delete', 'multikey', { 'देश': ['भारत', 'भारत', 'भारत', 'invalid'], 'city': ['Bangalore', 'Bangalore', 'Bangalore', 'invalid'], 'product': ['芯片', 'Eggs', 'Biscuit', 'invalid'], }, count=3) def test_edit_redirect(self): self.copy_file('sales.xlsx', 'sales-edits.xlsx') # redirect: affects POST, PUT and DELETE for method in ['post', 'put', 'delete']: r = self.get('/formhandler/edits-xlsx-redirect', method=method, data={ 'देश': ['भारत'], 'city': ['Bangalore'], 'product': ['Eggs'], 'sales': ['100'], }, allow_redirects=False) eq_(r.status_code, FOUND) ok_('Count-Data' in r.headers) # Any value is fine, we're not checking that eq_(r.headers['Location'], '/redirected') # GET is not redirected r = self.get('/formhandler/edits-xlsx-redirect', allow_redirects=False) ok_('Location' not in r.headers) def test_edit_multidata(self): csv_path = os.path.join(folder, 'sales-edits.csv') self.sales.to_csv(csv_path, index=False, encoding='utf-8') tempfiles[csv_path] = csv_path dbutils.mysql_create_db(variables.MYSQL_SERVER, 'test_formhandler', sales=self.sales) try: row = {'देश': 'भारत', 'city': 'X', 'product': 'Q', 'growth': None} self.check('/formhandler/edits-multidata', method='post', data={ 'csv:देश': ['भारत'], 'csv:city': ['X'], 'csv:product': ['Q'], 'csv:sales': ['10'], 'sql:देश': ['भारत'], 'sql:city': ['X'], 'sql:product': ['Q'], 'sql:sales': ['20'], }, headers={ 'count-csv': '1', 'count-sql': '1', }) data = self.check('/formhandler/edits-multidata').json() eq_(data['csv'][-1], merge(row, {'sales': 10})) eq_(data['sql'][-1], merge(row, {'sales': 20})) eq_(len(data['csv']), len(self.sales) + 1) eq_(len(data['sql']), len(self.sales) + 1) self.check('/formhandler/edits-multidata', method='put', data={ 'csv:city': ['X'], 'csv:product': ['Q'], 'csv:sales': ['30'], 'sql:city': ['X'], 'sql:product': ['Q'], 'sql:sales': ['40'], }, headers={ 'count-csv': '1', 'count-sql': '1', }) data = self.check('/formhandler/edits-multidata').json() eq_(data['csv'][-1], merge(row, {'sales': 30})) eq_(data['sql'][-1], merge(row, {'sales': 40})) eq_(len(data['csv']), len(self.sales) + 1) eq_(len(data['sql']), len(self.sales) + 1) self.check('/formhandler/edits-multidata', method='delete', data={ 'csv:city': ['X'], 'csv:product': ['Q'], 'sql:city': ['X'], 'sql:product': ['Q'], }, headers={ 'count-csv': '1', 'count-sql': '1', }) data = self.check('/formhandler/edits-multidata').json() eq_(len(data['csv']), len(self.sales)) eq_(len(data['sql']), len(self.sales)) finally: dbutils.mysql_drop_db(variables.MYSQL_SERVER, 'test_formhandler') def test_edit_multidata_modify(self): csv_path = os.path.join(folder, 'sales-edits.csv') self.sales.to_csv(csv_path, index=False, encoding='utf-8') tempfiles[csv_path] = csv_path dbutils.mysql_create_db(variables.MYSQL_SERVER, 'test_formhandler', sales=self.sales) try: row = {'देश': 'भारत', 'city': 'X', 'product': 'Q', 'growth': None} result = self.check('/formhandler/edits-multidata-modify', method='post', data={ 'csv:देश': ['भारत'], 'csv:city': ['X'], 'csv:product': ['Q'], 'csv:sales': ['10'], 'sql:देश': ['भारत'], 'sql:city': ['X'], 'sql:product': ['Q'], 'sql:sales': ['20'], }, headers={ 'count-csv': '1', 'count-sql': '1', }).json() eq_(result['csv']['modify'], 8) eq_(result['modify'], 8) data = self.check('/formhandler/edits-multidata').json() eq_(data['csv'][-1], merge(row, {'sales': 10})) eq_(data['sql'][-1], merge(row, {'sales': 20})) eq_(len(data['csv']), len(self.sales) + 1) eq_(len(data['sql']), len(self.sales) + 1) finally: dbutils.mysql_drop_db(variables.MYSQL_SERVER, 'test_formhandler') def test_edit_json(self): target = self.copy_file('sales.xlsx', 'sales-edits.xlsx') target = os.path.join(folder, 'formhandler-edits.db') dbutils.sqlite_create_db(target, sales=self.sales) tempfiles[target] = target for fmt in ('xlsx', 'sqlite'): kwargs = { 'url': '/formhandler/edits-%s-multikey' % fmt, 'request_headers': {'Content-Type': 'application/json'}, } # POST 2 records. Check that 2 records where added self.check(method='post', data=json.dumps({ 'देश': ['भारत', 'USA'], 'city': ['HYD', 'NJ'], 'product': ['खुश', 'खुश'], 'sales': [100, 200], }), headers={'Count-Data': '2'}, **kwargs) eq_(self.get(kwargs['url'], params={'product': 'खुश'}).json(), [ {'देश': 'भारत', 'city': 'HYD', 'product': 'खुश', 'sales': 100.0, 'growth': None}, {'देश': 'USA', 'city': 'NJ', 'product': 'खुश', 'sales': 200.0, 'growth': None}, ]) # PUT a record. Check that the record was changed self.check(method='put', data=json.dumps({ 'city': ['HYD'], 'product': ['खुश'], 'sales': [300], 'growth': [0.3], }), headers={'Count-Data': '1'}, **kwargs) eq_(self.get(kwargs['url'], params={'city': 'HYD', 'product': 'खुश'}).json(), [ {'देश': 'भारत', 'city': 'HYD', 'product': 'खुश', 'sales': 300.0, 'growth': 0.3}, ]) # DELETE 2 records one by one. Check that 2 records were deleted self.check(method='delete', data=json.dumps({ 'city': ['HYD'], 'product': ['खुश'], }), headers={'Count-Data': '1'}, **kwargs) self.check(method='delete', data=json.dumps({ 'city': ['NJ'], 'product': ['खुश'], }), headers={'Count-Data': '1'}, **kwargs) eq_(self.get(kwargs['url'], params={'product': 'खुश'}).json(), []) def test_chart(self): r = self.get('/formhandler/chart', data={ '_format': 'svg', 'chart': 'barplot', 'x': 'देश', 'y': 'sales', 'dpi': 72, 'width': 500, 'height': 300, }) tree = etree.fromstring(r.text.encode('utf-8')) eq_(tree.get('viewBox'), '0 0 500 300') # TODO: expand on test cases # Check spec, data for vega, vega-lite, vegam formats base = '/formhandler/chart?_format={}' data = pd.DataFrame(self.get(base.format('json')).json()) for fmt in {'vega', 'vega-lite', 'vegam'}: r = self.get(base.format(fmt)) var = json.loads(re.findall(r'}\)\((.*?)}\)', r.text)[-1] + '}') var = var['spec'] if 'fromjson' in var: df = var['fromjson'][0]['data'] var['fromjson'][0]['data'] = '__DATA__' else: df = var.pop('data') df = (df[0] if isinstance(df, list) else df)['values'] yaml_path = os.path.join(folder, '{}.yaml'.format(fmt)) spec = gramex.cache.open(yaml_path, 'yaml') afe(pd.DataFrame(df), data) self.assertDictEqual(var, spec) def test_headers(self): self.check('/formhandler/headers', headers={ 'X-JSON': 'ok', 'X-Base': 'ok', 'X-Root': 'ok' }) def test_args(self): # url: and sheet_name: accepts query formatting for files url = '/formhandler/arg-url?path=sales&sheet=sales&ext=excel' afe(pd.DataFrame(self.get(url).json()), self.sales, check_like=True) url = '/formhandler/arg-url?path=sales&sheet=census' census = gramex.cache.open(os.path.join(folder, 'sales.xlsx'), sheet_name='census') afe(pd.DataFrame(self.get(url).json()), census, check_like=True) # url: and table: accept query formatting for SQLAlchemy url = '/formhandler/arg-table?db=formhandler&table=sales' afe(pd.DataFrame(self.get(url).json()), self.sales, check_like=True) # url: and table: accept query formatting for SQLAlchemy # TODO: In Python 2, unicode keys don't work well on Tornado. So use safe keys key, val = ('product', '芯片') if six.PY2 else ('देश', 'भारत') url = '/formhandler/arg-query?db=formhandler&col=%s&val=%s' % (key, val) actual = pd.DataFrame(self.get(url).json()) expected = self.sales[self.sales[key] == val] expected.index = actual.index afe(actual, expected, check_like=True) # Files with ../ etc should be skipped self.check('/formhandler/arg-url?path=../sales', code=500, text='KeyError') # Test that the ?skip= parameter is used to find the table. self.check('/formhandler/arg-table?db=formhandler&table=sales&skip=ab', code=500, text='NoSuchTableError') # Spaces are ignored in SQLAlchemy query. So ?skip= will be a missing key self.check('/formhandler/arg-table?db=formhandler&table=sales&skip=a b', code=500, text='KeyError') def test_path_arg(self): url = '/formhandler/%s/formhandler/sales?group=product&col=city&val=Bangalore' for sub_url in ['path_arg', 'path_kwarg']: actual = pd.DataFrame(self.get(url % sub_url).json()) expected = self.sales[self.sales['city'] == 'Bangalore'].groupby('product') expected = expected['sales'].sum().reset_index()
afe(actual, expected, check_like=True)
pandas.util.testing.assert_frame_equal
import matplotlib.pyplot as plt # from sklearn import metrics from sklearn.metrics import roc_curve, auc, confusion_matrix from sklearn import preprocessing import tensorflow as tf import pandas as pd import numpy as np import pickle import matplotlib.pyplot as plt def compute_rates(y_test, y_pred, pos_label=1): fpr = dict() tpr = dict() roc_auc = dict() n_classes = 1 for i in range(n_classes): fpr[i], tpr[i], _ = roc_curve(y_test[:, i], y_pred[:, i], pos_label=pos_label) roc_auc[i] = auc(fpr[i], tpr[i]) fpr["micro"], tpr["micro"], _ = roc_curve(y_test.ravel(), y_pred.ravel()) roc_auc["micro"] = auc(fpr["micro"], tpr["micro"]) return fpr, tpr, roc_auc def get_data_28_svm(): file = "uscecchini28.csv" df = pd.read_csv(file) y = df['misstate'] y = preprocessing.label_binarize(y, classes=[0, 1]) n_classes = y.shape[1] x = df.iloc[:, 9:37]#.values x = x.values #returns a numpy array min_max_scaler = preprocessing.MinMaxScaler() x_scaled = min_max_scaler.fit_transform(x) x = pd.DataFrame(x_scaled) print(x.shape, y.shape) return x, y def adjust_pred(y_pred): # return np.sqrt((y_pred - np.mean(y_pred))**2) return y_pred fraud_data =
pd.read_csv("fraud_acc.csv")
pandas.read_csv
from datetime import datetime from collections import Counter from functools import partial import pandas as pd import mongoengine import xlrd import os import re def create_regex(s: str, initials: bool = True) -> str: """ Given a string representation of either a channel or marker, generate a standard regex string to be used in a panel template Parameters ---------- s: str String value of channel or marker to generate regex term for initials: bool, (default=True) If True, account for use of initials to represent a marker/channel name Returns ------- str Formatted regex string """ def has_numbers(inputString): return any(char.isdigit() for char in inputString) s = [i for ls in [_.split('-') for _ in s.split(' ')] for i in ls] s = [i for ls in [_.split('.') for _ in s] for i in ls] s = [i for ls in [_.split('/') for _ in s] for i in ls] new_string = list() for i in s: if not has_numbers(i) and len(i) > 2 and initials: new_string.append(f'{i[0]}({i[1:]})*') else: new_string.append(i) new_string = '[\s.-]+'.join(new_string) new_string = '<*\s*' + new_string + '\s*>*' return new_string def create_template(channel_mappings: list, file_name: str, case_sensitive: bool = False, initials: bool = True): """ Given a list of channel mappings from an fcs file, create an excel template for Panel creation. Parameters ---------- channel_mappings: list List of channel mappings (list of dictionaries) file_name: str File name for saving excel template case_sensitive: bool, (default=False) If True, search terms for channels/markers will be case sensitive initials: bool, (default=True) If True, search terms for channels/markers will account for the use of initials of channels/markers Returns ------- None """ try: assert file_name.split('.')[1] == 'xlsx', 'Invalid file name, must be of format "NAME.xlsx"' except IndexError: raise Exception('Invalid file name, must be of format "NAME.xlsx"') mappings = pd.DataFrame() mappings['channel'] = [cm['channel'] for cm in channel_mappings] mappings['marker'] = [cm['marker'] for cm in channel_mappings] nomenclature = pd.DataFrame() names = mappings['channel'].tolist() + mappings['marker'].tolist() nomenclature['name'] = [n for n in names if n] f = partial(create_regex, initials=initials) nomenclature['regex'] = nomenclature['name'].apply(f) nomenclature['case'] = case_sensitive nomenclature['permutations'] = None writer =
pd.ExcelWriter(file_name, engine='xlsxwriter')
pandas.ExcelWriter
import pandas as pd import seaborn as sns import matplotlib.pyplot as plt import numpy as np from datetime import datetime, timedelta from scipy.special import gamma,gammainc,gammaincc from scipy.stats import norm from scipy.optimize import minimize,root_scalar import networkx as nx from operator import itemgetter ep = 1e-80 #For preventing overflow errors in norm.cdf tref = pd.to_datetime('2020-01-01') #Reference time for converting dates to numbers ################# FORMATTING ######################## def format_JH(url,drop_list,columns): data = pd.read_csv(url) if len(columns) == 2: data[columns[1]] = data[columns[1]].fillna(value='NaN') data = data.T.drop(drop_list).T.set_index(columns).T data.index = pd.to_datetime(data.index,format='%m/%d/%y') return data def format_kaggle(folder,metric): data_full = pd.read_csv(folder+'train.csv') data = data_full.pivot_table(index='Date',columns=['Country_Region','Province_State'],values=metric) data.index = pd.to_datetime(data.index,format='%Y-%m-%d') return data def format_predictions(path): pred = pd.read_csv(path).fillna(value='NaN').set_index(['Country/Region','Province/State']) for item in ['Nmax','Nmax_low','Nmax_high','sigma','sigma_low','sigma_high']: pred[item] = pd.to_numeric(pred[item]) for item in ['th','th_low','th_high']: pred[item] = pd.to_datetime(pred[item],format='%Y-%m-%d') return pred def load_sim(path): data = pd.read_csv(path,index_col=0,header=[0,1]) data.index = pd.to_datetime(data.index,format='%Y-%m-%d') for item in data.keys(): data[item] = pd.to_numeric(data[item]) return data ################# ESTIMATING PARAMETER VALUES ############### def cbarr(t): return 1/(np.sqrt(2*np.pi)*(1-norm.cdf(t)+ep)) def tmean(tf,params): th,sigma = params tau = (tf-th)/sigma return -sigma*cbarr(-tau)*np.exp(-tau**2/2)+th def tvar(tf,params): th,sigma = params tau = (tf-th)/sigma return sigma**2*cbarr(-tau)*(np.sqrt(np.pi/2)*(1+np.sign(tau)*gammaincc(3/2,tau**2/2))-cbarr(-tau)*np.exp(-tau**2/2)) def cost_init(params,data,tf): th,sigma = params tmean_sample = (data.index.values*data.values).sum()/data.values.sum() tvar_sample = (((data.index.values-tmean_sample)**2)*data.values).sum()/data.values.sum() return (tmean_sample-tmean(tf,params))**2 + (tvar_sample-tvar(tf,params))**2 ################### COST FUNCTIONs ################# def cost_p(params,data,prior): th,logK,sigma = params t = data.index.values tau = (t-th)/sigma if prior is not None: mean_sigma, var_sigma = prior penalty = (sigma-mean_sigma)**2/(2*var_sigma) else: penalty = 0 prediction = logK+np.log((norm.cdf(tau)+ep)) return ((np.log(data.values)-prediction)**2).sum()/2 + penalty def jac_p(params,data,prior): th,logK,sigma = params t = data.index.values tau = (t-th)/sigma if prior is not None: mean_sigma, var_sigma = prior dpenalty = (sigma-mean_sigma)/var_sigma else: dpenalty = 0 prediction = logK+np.log((norm.cdf(tau)+ep)) err = np.log(data.values)-prediction dlogNdt = np.exp(-tau**2/2)/(np.sqrt(2*np.pi)*sigma*(norm.cdf(tau)+ep)) return np.asarray([(dlogNdt*err).sum(),-err.sum(),(tau*dlogNdt*err).sum()])+np.asarray([0,0,dpenalty]) def hess_p(params,data,prior): th,logK,sigma = params t = data.index.values tau = (t-th)/sigma if prior is not None: mean_sigma, var_sigma = prior d2penalty = 1/var_sigma else: d2penalty = 0 prediction = logK+np.log((norm.cdf(tau)+ep)) err = np.log(data.values)-prediction dlogNdt_s = np.exp(-tau**2/2)/(np.sqrt(2*np.pi)*(norm.cdf(tau)+ep)) dlogNdth = -dlogNdt_s/sigma dlogNdlogK = np.ones(len(t)) dlogNdsig = -tau*dlogNdt_s/sigma d2Ndth2_N = -tau*dlogNdt_s/sigma**2 d2Ndsig2_N = 2*tau*(1-tau**2/2)*dlogNdt_s/(sigma**2) d2Ndsigdth_N = (1-2*tau**2/2)*dlogNdt_s/sigma**2 term1 = np.asarray([[((-d2Ndth2_N+dlogNdth**2)*err).sum(), 0, ((-d2Ndsigdth_N+dlogNdth*dlogNdsig)*err).sum()], [0, 0, 0], [((-d2Ndsigdth_N+dlogNdth*dlogNdsig)*err).sum(), 0, ((-d2Ndsig2_N+dlogNdsig**2)*err).sum()]]) term2 = np.asarray([[(dlogNdth**2).sum(), (dlogNdth*dlogNdlogK).sum(), (dlogNdth*dlogNdsig).sum()], [(dlogNdth*dlogNdlogK).sum(), (dlogNdlogK**2).sum(), (dlogNdsig*dlogNdlogK).sum()], [(dlogNdth*dlogNdsig).sum(), (dlogNdsig*dlogNdlogK).sum(), (dlogNdsig**2).sum()]]) term3 = np.zeros((3,3)) term3[2,2] = d2penalty return term1 + term2+ term3 def th_err(th,data,sigma,tf): tmean_sample = (data.index.values*data.values).sum()/data.values.sum() tau = (tf-th)/sigma tmean = -sigma*cbarr(-tau)*np.exp(-tau**2/2)+th return tmean_sample-tmean def cost_p_sig(params,data,sigma): th,logK = params t = data.index.values tau = (t-th)/sigma prediction = logK+np.log((norm.cdf(tau)+ep)) return 0.5*((np.log(data.values)-prediction)**2).sum() def jac_p_sig(params,data,sigma): th,logK = params t = data.index.values tau = (t-th)/sigma prediction = logK+np.log((norm.cdf(tau)+ep)) err = np.log(data.values)-prediction dlogNdt = np.exp(-tau**2/2)/(np.sqrt(np.pi*2)*sigma*(norm.cdf(tau)+ep)) return np.asarray([(dlogNdt*err).sum(), -err.sum()]) ################## FITTING ##################### def fit_erf_sig(data,p0=5e2,sigma=7): #Get initial conditions train = data.loc[data>0].diff().iloc[1:] t = (train.index-tref)/timedelta(days=1) train.index = t train = pd.to_numeric(train) th0 = (t.values*train.values).sum()/train.values.sum() out = root_scalar(th_err,args=(train,sigma,t[-1]),x0=th0,x1=th0+10) th0 = out.root tau0 = (t[-1]-th0)/sigma logK0 = np.log(data.iloc[-1]/(norm.cdf(tau0)+ep)) params = [th0,logK0,sigma] #Train the model train = data.loc[data>p0] t = (train.index-tref)/timedelta(days=1) train.index = t train = pd.to_numeric(train) out = minimize(cost_p_sig,[th0,logK0],args=(train,sigma),jac=jac_p_sig,method='BFGS') params = list(out.x)+[sigma,2*out.fun/len(train)] return params def fit_erf(data,p0=5e2,verbose=False,prior=None): #Get initial conditions train = data.loc[data>0].diff().iloc[1:] t = (train.index-tref)/timedelta(days=1) train.index = t train = pd.to_numeric(train) th0 = (t.values*train.values).sum()/train.values.sum() sig0 = np.sqrt(((t-th0).values**2*train.values).sum()/train.values.sum()) tf = t[-1] if prior is not None: mean_sigma, var_sigma = prior lb = mean_sigma-2*np.sqrt(var_sigma) ub = mean_sigma+2*np.sqrt(var_sigma) else: lb = None ub = None out = minimize(cost_init,[th0,sig0],args=(train,tf),bounds=((None,None),(lb,ub))) th0,sig0 = out.x tau0 = (tf-th0)/sig0 logK0 = np.log(data.iloc[-1]/(norm.cdf(tau0)+ep)) #Fit the curve train = data.loc[data>p0] t = (train.index-tref)/timedelta(days=1) train.index = t train =
pd.to_numeric(train)
pandas.to_numeric
import pytest import numpy as np import pandas import pandas.util.testing as tm from pandas.tests.frame.common import TestData import matplotlib import modin.pandas as pd from modin.pandas.utils import to_pandas from numpy.testing import assert_array_equal from .utils import ( random_state, RAND_LOW, RAND_HIGH, df_equals, df_is_empty, arg_keys, name_contains, test_data_values, test_data_keys, test_data_with_duplicates_values, test_data_with_duplicates_keys, numeric_dfs, no_numeric_dfs, test_func_keys, test_func_values, query_func_keys, query_func_values, agg_func_keys, agg_func_values, numeric_agg_funcs, quantiles_keys, quantiles_values, indices_keys, indices_values, axis_keys, axis_values, bool_arg_keys, bool_arg_values, int_arg_keys, int_arg_values, ) # TODO remove once modin-project/modin#469 is resolved agg_func_keys.remove("str") agg_func_values.remove(str) pd.DEFAULT_NPARTITIONS = 4 # Force matplotlib to not use any Xwindows backend. matplotlib.use("Agg") class TestDFPartOne: # Test inter df math functions def inter_df_math_helper(self, modin_df, pandas_df, op): # Test dataframe to datframe try: pandas_result = getattr(pandas_df, op)(pandas_df) except Exception as e: with pytest.raises(type(e)): getattr(modin_df, op)(modin_df) else: modin_result = getattr(modin_df, op)(modin_df) df_equals(modin_result, pandas_result) # Test dataframe to int try: pandas_result = getattr(pandas_df, op)(4) except Exception as e: with pytest.raises(type(e)): getattr(modin_df, op)(4) else: modin_result = getattr(modin_df, op)(4) df_equals(modin_result, pandas_result) # Test dataframe to float try: pandas_result = getattr(pandas_df, op)(4.0) except Exception as e: with pytest.raises(type(e)): getattr(modin_df, op)(4.0) else: modin_result = getattr(modin_df, op)(4.0) df_equals(modin_result, pandas_result) # Test transposed dataframes to float try: pandas_result = getattr(pandas_df.T, op)(4.0) except Exception as e: with pytest.raises(type(e)): getattr(modin_df.T, op)(4.0) else: modin_result = getattr(modin_df.T, op)(4.0) df_equals(modin_result, pandas_result) frame_data = { "{}_other".format(modin_df.columns[0]): [0, 2], modin_df.columns[0]: [0, 19], modin_df.columns[1]: [1, 1], } modin_df2 = pd.DataFrame(frame_data) pandas_df2 = pandas.DataFrame(frame_data) # Test dataframe to different dataframe shape try: pandas_result = getattr(pandas_df, op)(pandas_df2) except Exception as e: with pytest.raises(type(e)): getattr(modin_df, op)(modin_df2) else: modin_result = getattr(modin_df, op)(modin_df2) df_equals(modin_result, pandas_result) # Test dataframe to list list_test = random_state.randint(RAND_LOW, RAND_HIGH, size=(modin_df.shape[1])) try: pandas_result = getattr(pandas_df, op)(list_test, axis=1) except Exception as e: with pytest.raises(type(e)): getattr(modin_df, op)(list_test, axis=1) else: modin_result = getattr(modin_df, op)(list_test, axis=1) df_equals(modin_result, pandas_result) # Test dataframe to series series_test_modin = modin_df[modin_df.columns[0]] series_test_pandas = pandas_df[pandas_df.columns[0]] try: pandas_result = getattr(pandas_df, op)(series_test_pandas, axis=0) except Exception as e: with pytest.raises(type(e)): getattr(modin_df, op)(series_test_modin, axis=0) else: modin_result = getattr(modin_df, op)(series_test_modin, axis=0) df_equals(modin_result, pandas_result) # Test dataframe to series with different index series_test_modin = modin_df[modin_df.columns[0]].reset_index(drop=True) series_test_pandas = pandas_df[pandas_df.columns[0]].reset_index(drop=True) try: pandas_result = getattr(pandas_df, op)(series_test_pandas, axis=0) except Exception as e: with pytest.raises(type(e)): getattr(modin_df, op)(series_test_modin, axis=0) else: modin_result = getattr(modin_df, op)(series_test_modin, axis=0) df_equals(modin_result, pandas_result) # Level test new_idx = pandas.MultiIndex.from_tuples( [(i // 4, i // 2, i) for i in modin_df.index] ) modin_df_multi_level = modin_df.copy() modin_df_multi_level.index = new_idx # Defaults to pandas with pytest.warns(UserWarning): # Operation against self for sanity check getattr(modin_df_multi_level, op)(modin_df_multi_level, axis=0, level=1) @pytest.mark.parametrize("data", test_data_values, ids=test_data_keys) def test_add(self, data): modin_df = pd.DataFrame(data) pandas_df = pandas.DataFrame(data) self.inter_df_math_helper(modin_df, pandas_df, "add") @pytest.mark.parametrize("data", test_data_values, ids=test_data_keys) def test_div(self, data): modin_df = pd.DataFrame(data) pandas_df = pandas.DataFrame(data) self.inter_df_math_helper(modin_df, pandas_df, "div") @pytest.mark.parametrize("data", test_data_values, ids=test_data_keys) def test_divide(self, data): modin_df = pd.DataFrame(data) pandas_df = pandas.DataFrame(data) self.inter_df_math_helper(modin_df, pandas_df, "divide") @pytest.mark.parametrize("data", test_data_values, ids=test_data_keys) def test_floordiv(self, data): modin_df = pd.DataFrame(data) pandas_df = pandas.DataFrame(data) self.inter_df_math_helper(modin_df, pandas_df, "floordiv") @pytest.mark.parametrize("data", test_data_values, ids=test_data_keys) def test_mod(self, data): modin_df = pd.DataFrame(data) pandas_df = pandas.DataFrame(data) self.inter_df_math_helper(modin_df, pandas_df, "mod") @pytest.mark.parametrize("data", test_data_values, ids=test_data_keys) def test_mul(self, data): modin_df = pd.DataFrame(data) pandas_df = pandas.DataFrame(data) self.inter_df_math_helper(modin_df, pandas_df, "mul") @pytest.mark.parametrize("data", test_data_values, ids=test_data_keys) def test_multiply(self, data): modin_df = pd.DataFrame(data) pandas_df = pandas.DataFrame(data) self.inter_df_math_helper(modin_df, pandas_df, "multiply") @pytest.mark.parametrize("data", test_data_values, ids=test_data_keys) def test_pow(self, data): modin_df = pd.DataFrame(data) pandas_df = pandas.DataFrame(data) # TODO: Revert to others once we have an efficient way of preprocessing for positive # values try: pandas_df = pandas_df.abs() except Exception: pass else: modin_df = modin_df.abs() self.inter_df_math_helper(modin_df, pandas_df, "pow") @pytest.mark.parametrize("data", test_data_values, ids=test_data_keys) def test_sub(self, data): modin_df = pd.DataFrame(data) pandas_df = pandas.DataFrame(data) self.inter_df_math_helper(modin_df, pandas_df, "sub") @pytest.mark.parametrize("data", test_data_values, ids=test_data_keys) def test_subtract(self, data): modin_df = pd.DataFrame(data) pandas_df = pandas.DataFrame(data) self.inter_df_math_helper(modin_df, pandas_df, "subtract") @pytest.mark.parametrize("data", test_data_values, ids=test_data_keys) def test_truediv(self, data): modin_df = pd.DataFrame(data) pandas_df = pandas.DataFrame(data) self.inter_df_math_helper(modin_df, pandas_df, "truediv") @pytest.mark.parametrize("data", test_data_values, ids=test_data_keys) def test___div__(self, data): modin_df = pd.DataFrame(data) pandas_df = pandas.DataFrame(data) self.inter_df_math_helper(modin_df, pandas_df, "__div__") @pytest.mark.parametrize("data", test_data_values, ids=test_data_keys) def test___add__(self, data): modin_df = pd.DataFrame(data) pandas_df = pandas.DataFrame(data) self.inter_df_math_helper(modin_df, pandas_df, "__add__") @pytest.mark.parametrize("data", test_data_values, ids=test_data_keys) def test___radd__(self, data): modin_df = pd.DataFrame(data) pandas_df = pandas.DataFrame(data) self.inter_df_math_helper(modin_df, pandas_df, "__radd__") @pytest.mark.parametrize("data", test_data_values, ids=test_data_keys) def test___mul__(self, data): modin_df = pd.DataFrame(data) pandas_df = pandas.DataFrame(data) self.inter_df_math_helper(modin_df, pandas_df, "__mul__") @pytest.mark.parametrize("data", test_data_values, ids=test_data_keys) def test___rmul__(self, data): modin_df = pd.DataFrame(data) pandas_df = pandas.DataFrame(data) self.inter_df_math_helper(modin_df, pandas_df, "__rmul__") @pytest.mark.parametrize("data", test_data_values, ids=test_data_keys) def test___pow__(self, data): modin_df = pd.DataFrame(data) pandas_df = pandas.DataFrame(data) self.inter_df_math_helper(modin_df, pandas_df, "__pow__") @pytest.mark.parametrize("data", test_data_values, ids=test_data_keys) def test___rpow__(self, data): modin_df = pd.DataFrame(data) pandas_df = pandas.DataFrame(data) self.inter_df_math_helper(modin_df, pandas_df, "__rpow__") @pytest.mark.parametrize("data", test_data_values, ids=test_data_keys) def test___sub__(self, data): modin_df = pd.DataFrame(data) pandas_df = pandas.DataFrame(data) self.inter_df_math_helper(modin_df, pandas_df, "__sub__") @pytest.mark.parametrize("data", test_data_values, ids=test_data_keys) def test___floordiv__(self, data): modin_df = pd.DataFrame(data) pandas_df = pandas.DataFrame(data) self.inter_df_math_helper(modin_df, pandas_df, "__floordiv__") @pytest.mark.parametrize("data", test_data_values, ids=test_data_keys) def test___rfloordiv__(self, data): modin_df = pd.DataFrame(data) pandas_df = pandas.DataFrame(data) self.inter_df_math_helper(modin_df, pandas_df, "__rfloordiv__") @pytest.mark.parametrize("data", test_data_values, ids=test_data_keys) def test___truediv__(self, data): modin_df = pd.DataFrame(data) pandas_df = pandas.DataFrame(data) self.inter_df_math_helper(modin_df, pandas_df, "__truediv__") @pytest.mark.parametrize("data", test_data_values, ids=test_data_keys) def test___rtruediv__(self, data): modin_df = pd.DataFrame(data) pandas_df = pandas.DataFrame(data) self.inter_df_math_helper(modin_df, pandas_df, "__rtruediv__") @pytest.mark.parametrize("data", test_data_values, ids=test_data_keys) def test___mod__(self, data): modin_df = pd.DataFrame(data) pandas_df = pandas.DataFrame(data) self.inter_df_math_helper(modin_df, pandas_df, "__mod__") @pytest.mark.parametrize("data", test_data_values, ids=test_data_keys) def test___rmod__(self, data): modin_df = pd.DataFrame(data) pandas_df = pandas.DataFrame(data) self.inter_df_math_helper(modin_df, pandas_df, "__rmod__") @pytest.mark.parametrize("data", test_data_values, ids=test_data_keys) def test___rdiv__(self, data): modin_df = pd.DataFrame(data) pandas_df = pandas.DataFrame(data) self.inter_df_math_helper(modin_df, pandas_df, "__rdiv__") # END test inter df math functions # Test comparison of inter operation functions def comparison_inter_ops_helper(self, modin_df, pandas_df, op): try: pandas_result = getattr(pandas_df, op)(pandas_df) except Exception as e: with pytest.raises(type(e)): getattr(modin_df, op)(modin_df) else: modin_result = getattr(modin_df, op)(modin_df) df_equals(modin_result, pandas_result) try: pandas_result = getattr(pandas_df, op)(4) except TypeError: with pytest.raises(TypeError): getattr(modin_df, op)(4) else: modin_result = getattr(modin_df, op)(4) df_equals(modin_result, pandas_result) try: pandas_result = getattr(pandas_df, op)(4.0) except TypeError: with pytest.raises(TypeError): getattr(modin_df, op)(4.0) else: modin_result = getattr(modin_df, op)(4.0) df_equals(modin_result, pandas_result) try: pandas_result = getattr(pandas_df, op)("a") except TypeError: with pytest.raises(TypeError): repr(getattr(modin_df, op)("a")) else: modin_result = getattr(modin_df, op)("a") df_equals(modin_result, pandas_result) frame_data = { "{}_other".format(modin_df.columns[0]): [0, 2], modin_df.columns[0]: [0, 19], modin_df.columns[1]: [1, 1], } modin_df2 = pd.DataFrame(frame_data) pandas_df2 = pandas.DataFrame(frame_data) try: pandas_result = getattr(pandas_df, op)(pandas_df2) except Exception as e: with pytest.raises(type(e)): getattr(modin_df, op)(modin_df2) else: modin_result = getattr(modin_df, op)(modin_df2) df_equals(modin_result, pandas_result) new_idx = pandas.MultiIndex.from_tuples( [(i // 4, i // 2, i) for i in modin_df.index] ) modin_df_multi_level = modin_df.copy() modin_df_multi_level.index = new_idx # Defaults to pandas with pytest.warns(UserWarning): # Operation against self for sanity check getattr(modin_df_multi_level, op)(modin_df_multi_level, axis=0, level=1) @pytest.mark.parametrize("data", test_data_values, ids=test_data_keys) def test_eq(self, data): modin_df = pd.DataFrame(data) pandas_df = pandas.DataFrame(data) self.comparison_inter_ops_helper(modin_df, pandas_df, "eq") @pytest.mark.parametrize("data", test_data_values, ids=test_data_keys) def test_ge(self, data): modin_df = pd.DataFrame(data) pandas_df = pandas.DataFrame(data) self.comparison_inter_ops_helper(modin_df, pandas_df, "ge") @pytest.mark.parametrize("data", test_data_values, ids=test_data_keys) def test_gt(self, data): modin_df = pd.DataFrame(data) pandas_df = pandas.DataFrame(data) self.comparison_inter_ops_helper(modin_df, pandas_df, "gt") @pytest.mark.parametrize("data", test_data_values, ids=test_data_keys) def test_le(self, data): modin_df = pd.DataFrame(data) pandas_df = pandas.DataFrame(data) self.comparison_inter_ops_helper(modin_df, pandas_df, "le") @pytest.mark.parametrize("data", test_data_values, ids=test_data_keys) def test_lt(self, data): modin_df = pd.DataFrame(data) pandas_df = pandas.DataFrame(data) self.comparison_inter_ops_helper(modin_df, pandas_df, "lt") @pytest.mark.parametrize("data", test_data_values, ids=test_data_keys) def test_ne(self, data): modin_df = pd.DataFrame(data) pandas_df = pandas.DataFrame(data) self.comparison_inter_ops_helper(modin_df, pandas_df, "ne") # END test comparison of inter operation functions # Test dataframe right operations def inter_df_math_right_ops_helper(self, modin_df, pandas_df, op): try: pandas_result = getattr(pandas_df, op)(4) except Exception as e: with pytest.raises(type(e)): getattr(modin_df, op)(4) else: modin_result = getattr(modin_df, op)(4) df_equals(modin_result, pandas_result) try: pandas_result = getattr(pandas_df, op)(4.0) except Exception as e: with pytest.raises(type(e)): getattr(modin_df, op)(4.0) else: modin_result = getattr(modin_df, op)(4.0) df_equals(modin_result, pandas_result) new_idx = pandas.MultiIndex.from_tuples( [(i // 4, i // 2, i) for i in modin_df.index] ) modin_df_multi_level = modin_df.copy() modin_df_multi_level.index = new_idx # Defaults to pandas with pytest.warns(UserWarning): # Operation against self for sanity check getattr(modin_df_multi_level, op)(modin_df_multi_level, axis=0, level=1) @pytest.mark.parametrize("data", test_data_values, ids=test_data_keys) def test_radd(self, data): modin_df = pd.DataFrame(data) pandas_df = pandas.DataFrame(data) self.inter_df_math_right_ops_helper(modin_df, pandas_df, "radd") @pytest.mark.parametrize("data", test_data_values, ids=test_data_keys) def test_rdiv(self, data): modin_df = pd.DataFrame(data) pandas_df =
pandas.DataFrame(data)
pandas.DataFrame
import numpy as np import pandas as pd from lifelines import KaplanMeierFitter, NelsonAalenFitter from lifelines import KaplanMeierFitter from lifelines.plotting import add_at_risk_counts def plot_kaplanmeier(outcomes, groups=None, plot_counts=False, **kwargs): """Plot a Kaplan-Meier Survival Estimator stratified by groups. Parameters ---------- outcomes: pandas.DataFrame a pandas dataframe containing the survival outcomes. The index of the dataframe should be the same as the index of the features dataframe. Should contain a column named 'time' that contains the survival time and a column named 'event' that contains the censoring status. \( \delta_i = 1 \) if the event is observed. groups: pandas.Series a pandas series containing the groups to stratify the Kaplan-Meier estimates by. plot_counts: bool if True, plot the number of at risk and censored individuals in each group. """ if groups is None: groups = np.array([1]*len(outcomes)) curves = {} from matplotlib import pyplot as plt ax = plt.subplot(111) for group in sorted(set(groups)): if pd.isna(group): continue curves[group] = KaplanMeierFitter().fit(outcomes[groups==group]['time'], outcomes[groups==group]['event']) ax = curves[group].plot(label=group, ax=ax, **kwargs) if plot_counts: add_at_risk_counts(iter([curves[group] for group in curves]), ax=ax) return ax def plot_nelsonaalen(outcomes, groups=None, **kwargs): """Plot a Nelson-Aalen Survival Estimator stratified by groups. Parameters ---------- outcomes: pandas.DataFrame a pandas dataframe containing the survival outcomes. The index of the dataframe should be the same as the index of the features dataframe. Should contain a column named 'time' that contains the survival time and a column named 'event' that contains the censoring status. \( \delta_i = 1 \) if the event is observed. groups: pandas.Series a pandas series containing the groups to stratify the Kaplan-Meier estimates by. """ if groups is None: groups = np.array([1]*len(outcomes)) for group in sorted(set(groups)): if
pd.isna(group)
pandas.isna
import pandas as pd import pandas_datareader as pdr ##### Naver Finance에서 KOSPI 가져오기 ##### kospi_total_url = 'https://finance.naver.com/sise/sise_index_day.nhn?code=KOSPI' # 일자 데이터를 담을 df라는 DataFrame 정의 kospi_total_df =
pd.DataFrame()
pandas.DataFrame
import time import pandas as pd import numpy as np CITY_DATA = { 'chicago': 'chicago.csv', 'new york city': 'new_york_city.csv', 'washington': 'washington.csv' } cities=('chicago','new york city','washington') months=('january','february','march','april','may','june', 'all') days=('sunday','monday','tuesday','wednesday','thursday','friday','saturday','all') def get_filters(): """ Asks user to specify a city, month, and day to analyze. Returns: (str) city - name of the city to analyze (str) month - name of the month to filter by, or "all" to apply no month filter (str) day - name of the day of week to filter by, or "all" to apply no day filter """ print('Hello! Let\'s explore some US bikeshare data!') # get user input for city (chicago, new york city, washington). HINT: Use a while loop to handle invalid inputs while True: city=input('Enter a city from those cities (Chicago,New York City,Washington) \n').lower() if city not in cities: #check if the input is valid print('This input is invalid please enter a valid one') continue else: break # get user input for month (all, january, february, ... , june) while True: month=input('Enter a month from January to June or type all to view all months \n').lower() if month not in months: #check if the input is valid print('This input is invalid please enter a valid one') continue else: break #get user input for day of week (all, monday, tuesday, ... sunday) while True: day=input('Enter a day from Monday to Sunday or type all to view all weeks \n').lower() if day not in days: #check if the input is valid print('This input is invalid please enter a valid one') continue else: break print('-'*40) return city, month, day def load_data(city, month, day): """ Loads data for the specified city and filters by month and day if applicable. Args: (str) city - name of the city to analyze (str) month - name of the month to filter by, or "all" to apply no month filter (str) day - name of the day of week to filter by, or "all" to apply no day filter Returns: df - Pandas DataFrame containing city data filtered by month and day """ #we will load the data into a dataframe df=pd.read_csv(CITY_DATA[city]) #to convert the start time column to datetime df['Start Time']=
pd.to_datetime(df['Start Time'])
pandas.to_datetime
# Copyright (C) 2022 National Center for Atmospheric Research and National Oceanic and Atmospheric Administration # SPDX-License-Identifier: Apache-2.0 # """ This is the overall control file. It will drive the entire analysis package""" import monetio as mio import monet as m import os import xarray as xr import pandas as pd import numpy as np import datetime # from util import write_ncf __all__ = ( "pair", "observation", "model", "analysis", ) class pair: """The pair class. The pair class pairs model data directly with observational data along time and space. """ def __init__(self): """Initialize a :class:`pair` object. Returns ------- pair """ self.type = 'pt_sfc' self.radius_of_influence = 1e6 self.obs = None self.model = None self.model_vars = None self.obs_vars = None self.filename = None def __repr__(self): return ( f"{type(self).__name__}(\n" f" type={self.type!r},\n" f" radius_of_influence={self.radius_of_influence!r},\n" f" obs={self.obs!r},\n" f" model={self.model!r},\n" f" model_vars={self.model_vars!r},\n" f" obs_vars={self.obs_vars!r},\n" f" filename={self.filename!r},\n" ")" ) def fix_paired_xarray(self, dset): """Reformat the paired dataset. Parameters ---------- dset : xarray.Dataset Returns ------- xarray.Dataset Reformatted paired dataset. """ # first convert to dataframe df = dset.to_dataframe().reset_index(drop=True) # now get just the single site index dfpsite = df.rename({'siteid': 'x'}, axis=1).drop_duplicates(subset=['x']) columns = dfpsite.columns # all columns site_columns = [ 'latitude', 'longitude', 'x', 'site', 'msa_code', 'cmsa_name', 'epa_region', 'state_name', 'msa_name', 'site', 'utcoffset', ] # only columns for single site identificaiton # site only xarray obj (no time dependence) dfps = dfpsite.loc[:, columns[columns.isin(site_columns)]].set_index(['x']).to_xarray() # single column index # now pivot df and convert back to xarray using only non site_columns site_columns.remove('x') # need to keep x to merge later dfx = df.loc[:, df.columns[~df.columns.isin(site_columns)]].rename({'siteid': 'x'}, axis=1).set_index(['time', 'x']).to_xarray() # merge the time dependent and time independent out = xr.merge([dfx, dfps]) # reset x index and add siteid back to the xarray object if ~pd.api.types.is_numeric_dtype(out.x): siteid = out.x.values out['x'] = range(len(siteid)) out['siteid'] = (('x'), siteid) return out class observation: """The observation class. A class with information and data from an observational dataset. """ def __init__(self): """Initialize an :class:`observation` object. Returns ------- observation """ self.obs = None self.label = None self.file = None self.obj = None """The data object (:class:`pandas.DataFrame` or :class:`xarray.Dataset`).""" self.type = 'pt_src' self.variable_dict = None def __repr__(self): return ( f"{type(self).__name__}(\n" f" obs={self.obs!r},\n" f" label={self.label!r},\n" f" file={self.file!r},\n" f" obj={repr(self.obj) if self.obj is None else '...'},\n" f" type={self.type!r},\n" f" variable_dict={self.variable_dict!r},\n" ")" ) def open_obs(self): """Open the observational data, store data in observation pair, and apply mask and scaling. Returns ------- None """ from glob import glob from numpy import sort from . import tutorial if self.file.startswith("example:"): example_id = ":".join(s.strip() for s in self.file.split(":")[1:]) files = [tutorial.fetch_example(example_id)] else: files = sort(glob(self.file)) assert len(files) >= 1, "need at least one" _, extension = os.path.splitext(files[0]) try: if extension in {'.nc', '.ncf', '.netcdf', '.nc4'}: if len(files) > 1: self.obj = xr.open_mfdataset(files) else: self.obj = xr.open_dataset(files[0]) elif extension in ['.ict', '.icarrt']: assert len(files) == 1, "monetio.icarrt.add_data can only read one file" self.obj = mio.icarrt.add_data(files[0]) else: raise ValueError(f'extension {extension!r} currently unsupported') except Exception as e: print('something happened opening file:', e) return self.mask_and_scale() # mask and scale values from the control values def mask_and_scale(self): """Mask and scale observations, including unit conversions and setting detection limits. Returns ------- None """ vars = self.obj.data_vars if self.variable_dict is not None: for v in vars: if v in self.variable_dict: d = self.variable_dict[v] # Apply removal of min, max, and nan on the units in the obs file first. if 'obs_min' in d: self.obj[v].data = self.obj[v].where(self.obj[v] >= d['obs_min']) if 'obs_max' in d: self.obj[v].data = self.obj[v].where(self.obj[v] <= d['obs_max']) if 'nan_value' in d: self.obj[v].data = self.obj[v].where(self.obj[v] != d['nan_value']) # Then apply a correction if needed for the units. if 'unit_scale' in d: scale = d['unit_scale'] else: scale = 1 if 'unit_scale_method' in d: if d['unit_scale_method'] == '*': self.obj[v].data *= scale elif d['unit_scale_method'] == '/': self.obj[v].data /= scale elif d['unit_scale_method'] == '+': self.obj[v].data += scale elif d['unit_scale_method'] == '-': self.obj[v].data += -1 * scale def obs_to_df(self): """Convert and reformat observation object (:attr:`obj`) to dataframe. Returns ------- None """ self.obj = self.obj.to_dataframe().reset_index().drop(['x', 'y'], axis=1) class model: """The model class. A class with information and data from model results. """ def __init__(self): """Initialize a :class:`model` object. Returns ------- model """ self.model = None self.radius_of_influence = None self.mod_kwargs = {} self.file_str = None self.files = None self.file_vert_str = None self.files_vert = None self.file_surf_str = None self.files_surf = None self.file_pm25_str = None self.files_pm25 = None self.label = None self.obj = None self.mapping = None self.variable_dict = None self.plot_kwargs = None def __repr__(self): return ( f"{type(self).__name__}(\n" f" model={self.model!r},\n" f" radius_of_influence={self.radius_of_influence!r},\n" f" mod_kwargs={self.mod_kwargs!r},\n" f" file_str={self.file_str!r},\n" f" label={self.label!r},\n" f" obj={repr(self.obj) if self.obj is None else '...'},\n" f" mapping={self.mapping!r},\n" f" label={self.label!r},\n" " ...\n" ")" ) def glob_files(self): """Convert the model file location string read in by the yaml file into a list of files containing all model data. Returns ------- None """ from numpy import sort # TODO: maybe use `sorted` for this from glob import glob from . import tutorial print(self.file_str) if self.file_str.startswith("example:"): example_id = ":".join(s.strip() for s in self.file_str.split(":")[1:]) self.files = [tutorial.fetch_example(example_id)] else: self.files = sort(glob(self.file_str)) if self.file_vert_str is not None: self.files_vert = sort(glob(self.file_vert_str)) if self.file_surf_str is not None: self.files_surf = sort(glob(self.file_surf_str)) if self.file_pm25_str is not None: self.files_pm25 = sort(glob(self.file_pm25_str)) def open_model_files(self): """Open the model files, store data in :class:`model` instance attributes, and apply mask and scaling. Models supported are cmaq, wrfchem, rrfs, and gsdchem. If a model is not supported, MELODIES-MONET will try to open the model data using a generic reader. If you wish to include new models, add the new model option to this module. Returns ------- None """ self.glob_files() # Calculate species to input into MONET, so works for all mechanisms in wrfchem # I want to expand this for the other models too when add aircraft data. list_input_var = [] for obs_map in self.mapping: list_input_var = list_input_var + list(set(self.mapping[obs_map].keys()) - set(list_input_var)) #Only certain models need this option for speeding up i/o. if 'cmaq' in self.model.lower(): print('**** Reading CMAQ model output...') self.mod_kwargs.update({'var_list' : list_input_var}) if self.files_vert is not None: self.mod_kwargs.update({'fname_vert' : self.files_vert}) if self.files_surf is not None: self.mod_kwargs.update({'fname_surf' : self.files_surf}) if len(self.files) > 1: self.mod_kwargs.update({'concatenate_forecasts' : True}) self.obj = mio.models._cmaq_mm.open_mfdataset(self.files,**self.mod_kwargs) elif 'wrfchem' in self.model.lower(): print('**** Reading WRF-Chem model output...') self.mod_kwargs.update({'var_list' : list_input_var}) self.obj = mio.models._wrfchem_mm.open_mfdataset(self.files,**self.mod_kwargs) elif 'rrfs' in self.model.lower(): print('**** Reading RRFS-CMAQ model output...') if self.files_pm25 is not None: self.mod_kwargs.update({'fname_pm25' : self.files_pm25}) self.mod_kwargs.update({'var_list' : list_input_var}) self.obj = mio.models._rrfs_cmaq_mm.open_mfdataset(self.files,**self.mod_kwargs) elif 'gsdchem' in self.model.lower(): print('**** Reading GSD-Chem model output...') if len(self.files) > 1: self.obj = mio.fv3chem.open_mfdataset(self.files,**self.mod_kwargs) else: self.obj = mio.fv3chem.open_dataset(self.files,**self.mod_kwargs) elif 'cesm_fv' in self.model.lower(): print('**** Reading CESM FV model output...') self.mod_kwargs.update({'var_list' : list_input_var}) self.obj = mio.models._cesm_fv_mm.open_mfdataset(self.files,**self.mod_kwargs) # CAM-chem-SE grid or MUSICAv0 elif 'cesm_se' in self.model.lower(): from .new_monetio import read_cesm_se self.mod_kwargs.update({'var_list' : list_input_var}) self.mod_kwargs.update({'scrip_file' : self.scrip_file}) print('**** Reading CESM SE model output...') self.obj = read_cesm_se.open_mfdataset(self.files,**self.mod_kwargs) #self.obj, self.obj_scrip = read_cesm_se.open_mfdataset(self.files,**self.mod_kwargs) #self.obj.monet.scrip = self.obj_scrip else: print('**** Reading Unspecified model output. Take Caution...') if len(self.files) > 1: self.obj = xr.open_mfdataset(self.files,**self.mod_kwargs) else: self.obj = xr.open_dataset(self.files[0],**self.mod_kwargs) self.mask_and_scale() def mask_and_scale(self): """Mask and scale observations including unit conversions and setting detection limits. Returns ------- None """ vars = self.obj.data_vars if self.variable_dict is not None: for v in vars: if v in self.variable_dict: d = self.variable_dict[v] if 'unit_scale' in d: scale = d['unit_scale'] else: scale = 1 if 'unit_scale_method' in d: if d['unit_scale_method'] == '*': self.obj[v].data *= scale elif d['unit_scale_method'] == '/': self.obj[v].data /= scale elif d['unit_scale_method'] == '+': self.obj[v].data += scale elif d['unit_scale_method'] == '-': self.obj[v].data += -1 * scale class analysis: """The analysis class. The analysis class is the highest level class and stores all information about the analysis. It reads and stores information from the input yaml file and defines overarching analysis information like the start and end time, which models and observations to pair, etc. """ def __init__(self): """Initialize the :class:`analysis` object. Returns ------- analysis """ self.control = 'control.yaml' self.control_dict = None self.models = {} """dict : Models, set by :meth:`open_models`.""" self.obs = {} """dict : Observations, set by :meth:`open_obs`.""" self.paired = {} """dict : Paired data, set by :meth:`pair_data`.""" self.start_time = None self.end_time = None self.download_maps = True # Default to True self.output_dir = None self.debug = False def __repr__(self): return ( f"{type(self).__name__}(\n" f" control={self.control!r},\n" f" control_dict={repr(self.control_dict) if self.control_dict is None else '...'},\n" f" models={self.models!r},\n" f" obs={self.obs!r},\n" f" paired={self.paired!r},\n" f" start_time={self.start_time!r},\n" f" end_time={self.end_time!r},\n" f" download_maps={self.download_maps!r},\n" f" output_dir={self.output_dir!r},\n" f" debug={self.debug!r},\n" ")" ) def read_control(self, control=None): """Read the input yaml file, updating various :class:`analysis` instance attributes. Parameters ---------- control : str Input yaml file path. If provided, :attr:`control` will be set to this value. Returns ------- None """ import yaml if control is not None: self.control = control with open(self.control, 'r') as stream: self.control_dict = yaml.safe_load(stream) # set analysis time self.start_time =
pd.Timestamp(self.control_dict['analysis']['start_time'])
pandas.Timestamp
import numpy as np import pandas as pd from scipy import sparse import scanpy as sc from sklearn.linear_model import LinearRegression from scIB.utils import checkAdata, checkBatch def pcr_comparison( adata_pre, adata_post, covariate, embed=None, n_comps=50, scale=True, verbose=False ): """ Compare the effect before and after integration Return either the difference of variance contribution before and after integration or a score between 0 and 1 (`scaled=True`) with 0 if the variance contribution hasn't changed. The larger the score, the more different the variance contributions are before and after integration. params: adata_pre: uncorrected adata adata_post: integrated adata embed : if `embed=None`, use the full expression matrix (`adata.X`), otherwise use the embedding provided in `adata_post.obsm[embed]` scale: if True, return scaled score return: difference of R2Var value of PCR """ if embed == 'X_pca': embed = None pcr_before = pcr(adata_pre, covariate=covariate, recompute_pca=True, n_comps=n_comps, verbose=verbose) pcr_after = pcr(adata_post, covariate=covariate, embed=embed, recompute_pca=True, n_comps=n_comps, verbose=verbose) if scale: score = (pcr_before - pcr_after) / pcr_before if score < 0: print("Variance contribution increased after integration!") print("Setting PCR comparison score to 0.") score = 0 return score else: return pcr_after - pcr_before def pcr( adata, covariate, embed=None, n_comps=50, recompute_pca=True, verbose=False ): """ PCR for Adata object Checks whether to + compute PCA on embedding or expression data (set `embed` to name of embedding matrix e.g. `embed='X_emb'`) + use existing PCA (only if PCA entry exists) + recompute PCA on expression matrix (default) params: adata: Anndata object embed : if `embed=None`, use the full expression matrix (`adata.X`), otherwise use the embedding provided in `adata_post.obsm[embed]` n_comps: number of PCs if PCA should be computed covariate: key for adata.obs column to regress against return: R2Var of PCR """ checkAdata(adata) checkBatch(covariate, adata.obs) if verbose: print(f"covariate: {covariate}") covariate_values = adata.obs[covariate] # use embedding for PCA if (embed is not None) and (embed in adata.obsm): if verbose: print(f"compute PCR on embedding n_comps: {n_comps}") return pc_regression(adata.obsm[embed], covariate_values, n_comps=n_comps) # use existing PCA computation elif (recompute_pca == False) and ('X_pca' in adata.obsm) and ('pca' in adata.uns): if verbose: print("using existing PCA") return pc_regression(adata.obsm['X_pca'], covariate_values, pca_var=adata.uns['pca']['variance']) # recompute PCA else: if verbose: print(f"compute PCA n_comps: {n_comps}") return pc_regression(adata.X, covariate_values, n_comps=n_comps) def pc_regression( data, covariate, pca_var=None, n_comps=50, svd_solver='arpack', verbose=False ): """ params: data: expression or PCA matrix. Will be assumed to be PCA values, if pca_sd is given covariate: series or list of batch assignments n_comps: number of PCA components for computing PCA, only when pca_sd is not given. If no pca_sd is given and n_comps=None, comute PCA and don't reduce data pca_var: iterable of variances for `n_comps` components. If `pca_sd` is not `None`, it is assumed that the matrix contains PCA values, else PCA is computed PCA is only computed, if variance contribution is not given (pca_sd). """ if isinstance(data, (np.ndarray, sparse.csr_matrix, sparse.csc_matrix)): matrix = data else: raise TypeError(f'invalid type: {data.__class__} is not a numpy array or sparse matrix') # perform PCA if no variance contributions are given if pca_var is None: if n_comps is None or n_comps > min(matrix.shape): n_comps = min(matrix.shape) if n_comps == min(matrix.shape): svd_solver = 'full' if verbose: print("compute PCA") pca = sc.tl.pca(matrix, n_comps=n_comps, use_highly_variable=False, return_info=True, svd_solver=svd_solver, copy=True) X_pca = pca[0].copy() pca_var = pca[3].copy() del pca else: X_pca = matrix n_comps = matrix.shape[1] ## PC Regression if verbose: print("fit regression on PCs") # handle categorical values if
pd.api.types.is_numeric_dtype(covariate)
pandas.api.types.is_numeric_dtype
#!/usr/bin/env python # coding: utf-8 # In[2]: from pathlib import Path import numpy as np import pandas as pd train = pd.read_csv("corpus/imdb/labeledTrainData.tsv", header=0, delimiter="\t", quoting=3) test = pd.read_csv("corpus/imdb/testData.tsv", header=0, delimiter="\t", quoting=3) train_texts = train["review"].tolist() train_labels = train["sentiment"].tolist() test_texts = test["review"].tolist() from sklearn.model_selection import train_test_split train_texts, val_texts, train_labels, val_labels = train_test_split(train_texts, train_labels, test_size=.2) from transformers import DistilBertTokenizerFast tokenizer = DistilBertTokenizerFast.from_pretrained('distilbert-base-uncased') train_encodings = tokenizer(train_texts, truncation=True, padding=True) val_encodings = tokenizer(val_texts, truncation=True, padding=True) test_encodings = tokenizer(test_texts, truncation=True, padding=True) import tensorflow as tf train_dataset = tf.data.Dataset.from_tensor_slices(( dict(train_encodings), train_labels )) val_dataset = tf.data.Dataset.from_tensor_slices(( dict(val_encodings), val_labels )) # test_labels = [1]*len(test1) test_dataset = tf.data.Dataset.from_tensor_slices(( dict(test_encodings) )) from transformers import TFDistilBertForSequenceClassification model = TFDistilBertForSequenceClassification.from_pretrained('distilbert-base-uncased') # In[3]: optimizer = tf.keras.optimizers.Adam(learning_rate=5e-5) model.compile(optimizer=optimizer, loss=model.compute_loss) # can also use any keras loss fn # In[4]: history = model.fit(train_dataset.batch(5), epochs=5) # In[5]: model.evaluate(val_dataset.batch(5)) # In[6]: labels_pred = model.predict(test_dataset.batch(5)) # In[9]: from matplotlib import pyplot as plt plt.plot(history.history['acc']) plt.title('Model accuracy') plt.ylabel('Accuracy') plt.xlabel('Epoch') plt.legend(['Train', 'Test'], loc='upper left') plt.show() # 绘制训练 & 验证的损失值 plt.plot(history.history['loss']) plt.title('Model loss') plt.ylabel('Loss') plt.xlabel('Epoch') plt.legend(['Train', 'Test'], loc='upper left') plt.show() # In[10]: y = labels_pred.logits y_pred = np.argmax(y,axis = 1) # In[15]: y # In[12]: y_pred # In[13]: result_output =
pd.DataFrame(data={"id": test["id"], "sentiment": y_pred})
pandas.DataFrame
import pandas as pd import shutil import os import time import re import datetime from functools import partial def append_csvs_to_csv(csv_filepath_list, outpath=None): """ Appends csvs into a single csv. Is memory efficient by only keeping the current processed file in memory. However still keeps track of changing columns to ensure data is correctly aligned. :param csv_filepath_list: :param outpath: :return: """ outpath, df_of_headers = _get_outpath_and_df_of_headers(outpath) all_columns = [col for col in df_of_headers.columns] for file in csv_filepath_list: df_for_append = pd.read_csv(file) #load new data df_of_headers, all_columns = _append_df_to_csv(df_for_append, df_of_headers, outpath, all_columns) def append_csv_to_csv(inpath, outpath): return append_csvs_to_csv([inpath], outpath) def append_csvs_to_monthly_csv_of_first_date(csv_filepath_list, rootname): [append_csv_to_monthly_csv_of_first_date(inpath, rootname) for inpath in csv_filepath_list] def append_csv_to_monthly_csv_of_first_date(inpath, rootname): df_for_append =
pd.read_csv(inpath)
pandas.read_csv
from pdpbox.info_plots import target_plot import pandas as pd import numpy as np from pandas.testing import assert_frame_equal from pandas.testing import assert_series_equal def test_binary(titanic_data, titanic_target): fig, axes, summary_df = target_plot(df=titanic_data, feature='Sex', feature_name='Sex', target=titanic_target) expected = pd.DataFrame( {'x': {0: 0, 1: 1}, 'display_column': {0: 'Sex_0', 1: 'Sex_1'}, 'count': {0: 314, 1: 577}, 'Survived': {0: 0.7420382165605095, 1: 0.18890814558058924}} ) assert_frame_equal(expected, summary_df, check_like=True) def test_onehot(titanic_data, titanic_target): fig, axes, summary_df = target_plot(df=titanic_data, feature=['Embarked_C', 'Embarked_Q', 'Embarked_S'], feature_name='Embarked', target=titanic_target) expected = pd.DataFrame( {'x': {0: 0, 1: 1, 2: 2}, 'display_column': {0: 'Embarked_C', 1: 'Embarked_Q', 2: 'Embarked_S'}, 'count': {0: 168, 1: 77, 2: 646}, 'Survived': {0: 0.5535714285714286, 1: 0.38961038961038963, 2: 0.33900928792569657}} ) assert_frame_equal(expected, summary_df, check_like=True) def test_numeric(titanic_data, titanic_target): fig, axes, summary_df = target_plot(df=titanic_data, feature='Fare', feature_name='Fare', target=titanic_target) expected = pd.DataFrame( {'x': {0: 0, 4: 4, 7: 7}, 'display_column': {0: '[0, 7.73)', 4: '[13, 16.7)', 7: '[35.11, 73.5)'}, 'value_lower': {0: 0.0, 4: 13.0, 7: 35.111111111111086}, 'value_upper': {0: 7.732844444444444, 4: 16.7, 7: 73.5}, 'count': {0: 99, 4: 108, 7: 96}, 'Survived': {0: 0.1414141414141414, 4: 0.37037037037037035, 7: 0.5104166666666666}} ) assert_frame_equal(expected, summary_df.loc[[0, 4, 7], :], check_like=True) assert len(summary_df) == 9 def test_endpoint(titanic_data, titanic_target): """ test endpoint==False (last point should't be included) """ fig, axes, summary_df = target_plot(df=titanic_data, feature='Fare', feature_name='Fare', target=titanic_target, endpoint=False) expected = pd.DataFrame( {'x': {0: 0, 8: 8, 9: 9}, 'display_column': {0: '[0, 7.73)', 8: '[73.5, 512.33)', 9: '>= 512.33'}, 'value_lower': {0: 0.0, 8: 73.5, 9: 512.3292}, 'value_upper': {0: 7.732844444444444, 8: 512.3292, 9: np.nan}, 'count': {0: 99, 8: 99, 9: 3}, 'Survived': {0: 0.1414141414141414, 8: 0.7171717171717171, 9: 1.0}} ) assert_frame_equal(expected, summary_df.loc[[0, 8, 9], :], check_like=True) assert len(summary_df) == 10 def test_num_grid_points(titanic_data, titanic_target): fig, axes, summary_df = target_plot(df=titanic_data, feature='Fare', feature_name='Fare', target=titanic_target, num_grid_points=20) expected = pd.DataFrame( {'x': {0: 0, 9: 9, 18: 18}, 'display_column': {0: '[0, 7.22)', 9: '[13, 15.5)', 18: '[110.88, 512.33]'}, 'value_lower': {0: 0.0, 9: 13.0, 18: 110.8833}, 'value_upper': {0: 7.225, 9: 15.5, 18: 512.3292}, 'count': {0: 43, 9: 80, 18: 49}, 'Survived': {0: 0.06976744186046512, 9: 0.3375, 18: 0.7551020408163265}} ) assert_frame_equal(expected, summary_df.loc[[0, 9, 18], :], check_like=True) assert len(summary_df) == 19 def test_grid_type(titanic_data, titanic_target): fig, axes, summary_df = target_plot(df=titanic_data, feature='Fare', feature_name='Fare', target=titanic_target, grid_type='equal') expected = pd.DataFrame( {'x': {1: 1, 6: 6, 8: 8}, 'display_column': {1: '[56.93, 113.85)', 6: '[341.55, 398.48)', 8: '[455.4, 512.33]'}, 'value_lower': {1: 56.925466666666665, 6: 341.5528, 8: 455.4037333333333}, 'value_upper': {1: 113.85093333333333, 6: 398.4782666666666, 8: 512.3292}, 'count': {1: 87.0, 6: 0.0, 8: 3.0}, 'Survived': {1: 0.6551724137931034, 6: np.nan, 8: 1.0}} ) assert_frame_equal(expected, summary_df.loc[[1, 6, 8], :], check_like=True) assert len(summary_df) == 9 def test_grid_range(titanic_data, titanic_target): """ grid_range, need to set grid_type='equal' """ fig, axes, summary_df = target_plot(df=titanic_data, feature='Fare', feature_name='Fare', target=titanic_target, grid_type='equal', grid_range=(5, 100)) expected = pd.DataFrame( {'x': {0: 0, 4: 4, 8: 8}, 'display_column': {0: '[5, 15.56)', 4: '[47.22, 57.78)', 8: '[89.44, 100]'}, 'value_lower': {0: 5.0, 4: 47.22222222222222, 8: 89.44444444444444}, 'value_upper': {0: 15.555555555555555, 4: 57.77777777777778, 8: 100.0}, 'count': {0: 459, 4: 39, 8: 8}, 'Survived': {0: 0.25925925925925924, 4: 0.6666666666666666, 8: 0.875}} ) assert_frame_equal(expected, summary_df.loc[[0, 4, 8], :], check_like=True) assert len(summary_df) == 9 def test_grid_range_outliers(titanic_data, titanic_target): """ show_outliers with grid_range defined grid_range, need to set grid_type='equal' """ fig, axes, summary_df = target_plot(df=titanic_data, feature='Fare', feature_name='Fare', target=titanic_target, grid_range=(0, 100), grid_type='equal', show_outliers=True) expected = pd.DataFrame( {'x': {0: 0, 8: 8, 9: 9}, 'display_column': {0: '[0, 11.11)', 8: '[88.89, 100]', 9: '> 100'}, 'value_lower': {0: 0.0, 8: 88.88888888888889, 9: 100.0}, 'value_upper': {0: 11.11111111111111, 8: 100.0, 9: np.nan}, 'count': {0: 364, 8: 10, 9: 53}, 'Survived': {0: 0.2087912087912088, 8: 0.9, 9: 0.7358490566037735}} ) assert_frame_equal(expected, summary_df.loc[[0, 8, 9], :], check_like=True) assert len(summary_df) == 10 def test_grid_range_outliers_endpoint(titanic_data, titanic_target): """ show_outliers with grid_range defined and endpoint==False grid_range, need to set grid_type='equal' """ fig, axes, summary_df = target_plot(df=titanic_data, feature='Fare', feature_name='Fare', target=titanic_target, grid_range=(0, 100), grid_type='equal', show_outliers=True, endpoint=False) expected = pd.DataFrame( {'x': {0: 0, 8: 8, 9: 9}, 'display_column': {0: '[0, 11.11)', 8: '[88.89, 100)', 9: '>= 100'}, 'value_lower': {0: 0.0, 8: 88.88888888888889, 9: 100.0}, 'value_upper': {0: 11.11111111111111, 8: 100.0, 9: np.nan}, 'count': {0: 364, 8: 10, 9: 53}, 'Survived': {0: 0.2087912087912088, 8: 0.9, 9: 0.7358490566037735}} ) assert_frame_equal(expected, summary_df.loc[[0, 8, 9], :], check_like=True) assert len(summary_df) == 10 def test_cust_grid_points(titanic_data, titanic_target): fig, axes, summary_df = target_plot(df=titanic_data, feature='Fare', feature_name='Fare', target=titanic_target, cust_grid_points=range(0, 100, 10)) expected = pd.DataFrame( {'x': {0: 0, 4: 4, 8: 8}, 'display_column': {0: '[0, 10)', 4: '[40, 50)', 8: '[80, 90]'}, 'value_lower': {0: 0.0, 4: 40.0, 8: 80.0}, 'value_upper': {0: 10.0, 4: 50.0, 8: 90.0}, 'count': {0: 336, 4: 15, 8: 19}, 'Survived': {0: 0.19940476190476192, 4: 0.26666666666666666, 8: 0.8421052631578947}} )
assert_frame_equal(expected, summary_df.loc[[0, 4, 8], :], check_like=True)
pandas.testing.assert_frame_equal
""" Zonal Statistics Vector-Raster Analysis Modified by <NAME> from 2013 <NAME> and AsgerPetersen: usage: generate_twi_per_basin.py [-h] [--output flag [--buffer distance] [--nodata value] [-f FORMAT] catchments twi_raster slope_raster outputfolder_twi positional arguments: namest HUC Number catchments hydrofabrics catchment time_to_stream_raster Time to stream in minutes - generated with workflow_hand_twi_giuh.sh outputfolder_giuh Output folder optional arguments: -h, --help show this help message and exit --output flag 0-Only generates the param file, 1- generates the cfe config file --buffer distance Buffer geometry by this distance before calculation --nodata value Use this nodata value instead of value from raster --preload Preload entire raster into memory instead of a read per vector feature """ from osgeo import gdal, ogr from osgeo.gdalconst import * import numpy as np import sys import argparse import matplotlib.pyplot as plt import pandas as pd import matplotlib import os import json gdal.PushErrorHandler('CPLQuietErrorHandler') ogr.UseExceptions() def bbox_to_pixel_offsets(gt, bbox): originX = gt[0] originY = gt[3] pixel_width = gt[1] pixel_height = gt[5] x1 = int((bbox[0] - originX) / pixel_width) x2 = int((bbox[1] - originX) / pixel_width) #x2 = int((bbox[1] - originX) / pixel_width) + 1 y1 = int((bbox[3] - originY) / pixel_height) y2 = int((bbox[2] - originY) / pixel_height) #y2 = int((bbox[2] - originY) / pixel_height) + 1 xsize = x2 - x1 ysize = y2 - y1 return (x1, y1, xsize, ysize) # namest='020302' # catchments='/home/west/Projects/hydrofabrics/20210511/catchments_wgs84.geojson' # time_to_stream_raster='/home/west/Projects/IUH_TWI/HAND_10m//020302/020302dsave1_cr.tif' # outputfolder_giuh='/home/west/Projects/hydrofabrics/20210511//GIUH_10m_1/' # nodata_value = -999 # buffer_distance = 0.001 # output_flag = 1 # global_src_extent = 0 def generate_giuh_per_basin(namestr,catchments, time_to_stream_raster, outputfolder_giuh, output_flag=1, nodata_value=None, global_src_extent=False, buffer_distance=0.001): outputfolder_giuh_param_file=outputfolder_giuh+"/width_function/" if not os.path.exists(outputfolder_giuh_param_file): os.mkdir(outputfolder_giuh_param_file) if(output_flag==1): outputfolder_giuh_config_file=outputfolder_giuh+"/CFE_config_file/" if not os.path.exists(outputfolder_giuh_config_file): os.mkdir(outputfolder_giuh_config_file) rds = gdal.Open(time_to_stream_raster, GA_ReadOnly) assert rds, "Could not open raster" +time_to_stream_raster rb = rds.GetRasterBand(1) rgt = rds.GetGeoTransform() if nodata_value: # Override with user specified nodata nodata_value = float(nodata_value) rb.SetNoDataValue(nodata_value) else: # Use nodata from band nodata_value = float(rb.GetNoDataValue()) # Warn if nodata is NaN as this will not work with the mask (as NaN != NaN) assert nodata_value == nodata_value, "Cannot handle NaN nodata value" if buffer_distance: buffer_distance = float(buffer_distance) vds = ogr.Open(catchments, GA_ReadOnly) assert(vds) vlyr = vds.GetLayer(0) # vdefn = vlyr.GetLayerDefn() # Calculate (potentially buffered) vector layer extent vlyr_extent = vlyr.GetExtent() if buffer_distance: expand_by = [-buffer_distance, buffer_distance, -buffer_distance, buffer_distance] vlyr_extent = [a + b for a, b in zip(vlyr_extent, expand_by)] # create an in-memory numpy array of the source raster data # covering the whole extent of the vector layer if global_src_extent: # use global source extent # useful only when disk IO or raster scanning inefficiencies are your limiting factor # advantage: reads raster data in one pass # disadvantage: large vector extents may have big memory requirements src_offset = bbox_to_pixel_offsets(rgt, vlyr_extent) #print (str(src_offset)) src_array = rb.ReadAsArray(*src_offset) # calculate new geotransform of the layer subset new_gt = ( (rgt[0] + (src_offset[0] * rgt[1])), rgt[1], 0.0, (rgt[3] + (src_offset[1] * rgt[5])), 0.0, rgt[5] ) mem_drv = ogr.GetDriverByName('Memory') driver = gdal.GetDriverByName('MEM') skippednulgeoms = False total = vlyr.GetFeatureCount(force = 0) vlyr.ResetReading() count = 0 feat = vlyr.GetNextFeature() while feat is not None: cat = feat.GetField('ID') count = count + 1 #print (str(cat)) if count % 100 == 0: sys.stdout.write("\r{0} of {1}".format(count, total)) sys.stdout.flush() if feat.GetGeometryRef() is None: # Null geometry. Write to dst and continue if not skippednulgeoms: print ("\nWarning: Skipping nullgeoms\n") skippednulgeoms = True feat = vlyr.GetNextFeature() continue mem_feat = feat.Clone() mem_type = mem_feat.GetGeometryRef().GetGeometryType() if buffer_distance: mem_type = ogr.wkbPolygon mem_feat.SetGeometryDirectly( mem_feat.GetGeometryRef().Buffer(buffer_distance) ) if not global_src_extent: # use local source extent # fastest option when you have fast disks and well indexed raster (ie tiled Geotiff) # advantage: each feature uses the smallest raster chunk # disadvantage: lots of reads on the source raster src_offset = bbox_to_pixel_offsets(rgt, mem_feat.geometry().GetEnvelope()) #print (str(src_offset)) src_array = rb.ReadAsArray(*src_offset) # calculate new geotransform of the feature subset new_gt = ( (rgt[0] + (src_offset[0] * rgt[1])), rgt[1], 0.0, (rgt[3] + (src_offset[1] * rgt[5])), 0.0, rgt[5] ) if not src_array is None: #print ("src_array") #print (src_array) # Create a temporary vector layer in memory mem_ds = mem_drv.CreateDataSource('out') mem_layer = mem_ds.CreateLayer('mem_lyr', None, mem_type) mem_layer.CreateFeature(mem_feat) # Rasterize it rvds = driver.Create('', src_offset[2], src_offset[3], 1, gdal.GDT_Byte) rvds.SetGeoTransform(new_gt) gdal.RasterizeLayer(rvds, [1], mem_layer, burn_values=[1]) rv_array = rvds.ReadAsArray() # Mask basin area masked_basin = np.ma.MaskedArray( src_array, mask=np.logical_not(rv_array) ) all_values_in_basin=((masked_basin.mask==False)).sum() # False where the basin is, not sure why. So counting pixels in the basin # Also remove missing data - keep only valid values masked = np.ma.MaskedArray( src_array, mask=np.logical_or( src_array == nodata_value, np.logical_not(rv_array) # remove this since it was creating issues with 1 ) ) all_valid_values_in_basin=((masked.mask==False)).sum() Check=100*all_valid_values_in_basin/all_values_in_basin # Porcentage of valid numbers in the polygone if(Check>80): #Create a 1-d array - include nan for points outside of the polygone maskedArray=np.ma.filled(masked.astype(float), np.nan).flatten() #remove all values outside of the polygone which are marked as nan maskedArray2=maskedArray[(maskedArray!=nodata_value) & (~np.isnan(maskedArray)) & (maskedArray>=0)] # Values covered by the polygon # Due to incompatibilities with hydrofabrics sorted_array = np.sort(maskedArray2) if(len(np.unique(sorted_array))>5): Per5=np.percentile(sorted_array,10) Per95=np.percentile(sorted_array,95) sorted_array=sorted_array[(sorted_array>=Per5) & (sorted_array<=Per95)] sorted_array=(sorted_array-min(sorted_array)) else: sorted_array=np.zeros(20)+3600. Per5=np.percentile(sorted_array,5) Per95=np.percentile(sorted_array,95) if(len(np.unique(sorted_array))>10): sorted_array=sorted_array[(sorted_array>=Per5) & (sorted_array<=Per95)] sorted_array=(sorted_array-min(sorted_array))/60. AllData =
pd.DataFrame(columns=['TravelTimeHour'], data=sorted_array)
pandas.DataFrame
import numpy as np import os import matplotlib.pyplot as plt import seaborn as sns import pandas as pd from _imports import * os.system('cls') remove_duplicates = ask_for_user_preference('Czy usunąć duplikaty projektów wygenerowanych przez algorytmy?') verify_designs = ask_for_user_preference('Czy symulacyjnie zweryfikować własności najlepszych projektów?') # procedury pomocnicze def show_geometry_preview(settings_sim, pattern, scale_geometries = 3): courant_number = settings_sim['basic']['courant_number'] basic_element_dimensions = settings_sim['diffuser_geometry']['basic_element_dimensions'] fs = settings_sim['basic']['fs'] T_air_C = settings_sim['propagation_medium']['T_air_C'] p_air_hPa = settings_sim['propagation_medium']['p_air_hPa'] RH = settings_sim['propagation_medium']['RH'] c, Z_air = get_air_properties(T_air_C, p_air_hPa, RH) T = 1/fs # [s] X = c*T/courant_number # [m] num_element_height_levels = settings_sim['diffuser_geometry']['num_element_height_levels'] diffuser_depth = settings_sim['diffuser_geometry']['diffuser_depth'] shape_skyline = generate_2D_Skyline_diffuser( pattern, element_seg_depth=cont2disc(diffuser_depth*scale_geometries/num_element_height_levels,X), element_size=cont2disc(basic_element_dimensions*scale_geometries,X)) show_shape(shape_skyline) def verify_scattering_properties(settings_sim, pattern, reference_data): mean_coeff = evaluate_design(settings_sim, pattern, reference_data) print('średnia dyfuzja: ', mean_coeff) # print (mean_coeff) # draw_subband_polar_response(settings_sim, imp_res_object[0]) # plt.title('xy') # draw_subband_polar_response(settings_sim, imp_res_object[1]) # plt.title('yz') def remove_duplicate_designs(patterns, diffusions): filtered_patterns = [] filtered_diffusions = [] def pattern_in_list(pattern, list): list_of_comparisons = [] for element in list: list_of_comparisons.append(np.array_equal(pattern,element)) return np.any(list_of_comparisons) already_existing_patterns = [] for pattern, diffusion in zip(patterns, diffusions): if not pattern_in_list(pattern, already_existing_patterns): filtered_patterns.append(pattern) already_existing_patterns.append(pattern) filtered_diffusions.append(diffusion) return filtered_patterns, filtered_diffusions # konfiguracja procedur bazujących na AI CONFIG_PATH_AI = '_settings/ai_default.ini' CONFIG_PATH_SIM = '_settings/sim_default.ini' settings_ai = read_config(CONFIG_PATH_AI) settings_sim = read_config(CONFIG_PATH_SIM) algenet_outcomes_dir = '../_joint_algenet_results' file_save_dir = settings_sim['basic']['file_save_dir'] reference_file_path = os.path.join(file_save_dir,'reference.npy') # odczyt danych referencyjnych do pomiaru dyfuzora try: print('obliczanie danych referencyjnych:') reference_data = np.load(reference_file_path, allow_pickle=True).item() except: print(f'odczyt plik z danymi referencyjnymi ({reference_file_path}) nie powiódł się, rreferencja zostanie obliczona automatycznie') imp_res_set_empty, imp_res_set_plate, _ = run_simulation_for_pattern(None,settings_sim, mode='reference_only') reference_data = { 'plate':imp_res_set_plate, 'room':imp_res_set_empty, 'num_element_height_levels':settings_sim['diffuser_geometry']['num_element_height_levels'], 'diffuser_depth':settings_sim['diffuser_geometry']['diffuser_depth'], 'basic_element_dimensions':settings_sim['diffuser_geometry']['basic_element_dimensions'], 'fs':settings_sim['basic']['fs']} # Zapis wyników obliczeń na dysk. np.save(reference_file_path,reference_data) # odczyt postępu algorytmu genetycznego algenet_diffusions = [] algenet_patterns = [] algenet_gen_nums = [] if os.path.isdir(algenet_outcomes_dir): for fname in os.listdir(algenet_outcomes_dir): _, ext = os.path.splitext(fname) if ext != '.npy': continue fdata = np.load(os.path.join(algenet_outcomes_dir,fname), allow_pickle=True) for item in fdata: algenet_diffusions.append(item['diffusion']) algenet_patterns.append(item['pattern']) algenet_gen_nums.append(item['generation_number']) best_dif_argmax = np.argmax(algenet_diffusions) pattern = algenet_patterns[best_dif_argmax] dif = algenet_diffusions[best_dif_argmax] if remove_duplicates: algenet_patterns, algenet_diffusions = remove_duplicate_designs(algenet_patterns, algenet_diffusions) algenet_best_pattern_idx = np.argmax(algenet_diffusions) # odczyt danych dla poszukiwania losowego _, consolidated_data = obtain_replay_folder_contents(settings_ai) random_diffusions = [] random_patterns = [] for entry in consolidated_data: if 'input_pattern_generation' in list(entry.keys()): if entry['input_pattern_generation'] != 'random': continue random_pattern = entry['replay_transitions'][0]['current_pattern'] random_diffusion = entry['episode_diffusions'][0] - entry['episode_rewards'][0] random_diffusions.append(random_diffusion) random_patterns.append(random_pattern) if remove_duplicates: random_patterns, random_diffusions = remove_duplicate_designs(random_patterns, random_diffusions) random_diffusions = np.array(random_diffusions) random_best_pattern_idx = np.argmax(random_diffusions) # odczyt danych dla głębokiego gradientu strategii agent_diffusions_rnd = [] agent_diffusions_bst = [] agent_patterns_rnd = [] agent_patterns_bst = [] for entry in consolidated_data: episode_diffusions_argmax = np.argmax(entry['episode_diffusions']) best_pattern = entry['replay_transitions'][episode_diffusions_argmax]['new_pattern'] if 'input_pattern_generation' in list(entry.keys()): if entry['input_pattern_generation'] != 'random': agent_diffusions_bst.append(np.max(entry['episode_diffusions'])) agent_patterns_bst.append(best_pattern) continue agent_diffusions_rnd.append(np.max(entry['episode_diffusions'])) agent_patterns_rnd.append(best_pattern) if remove_duplicates: agent_patterns_rnd, agent_diffusions_rnd = remove_duplicate_designs(agent_patterns_rnd, agent_diffusions_rnd) agent_patterns_bst, agent_diffusions_bst = remove_duplicate_designs(agent_patterns_bst, agent_diffusions_bst) dpg_best_pattern_bst_idx = np.argmax(agent_diffusions_bst) dpg_best_pattern_rnd_idx = np.argmax(agent_diffusions_rnd) print() print(f'random - num designs: {len(random_diffusions)}') print(f'genetic alg. - num designs: {len(algenet_diffusions)}') print(f'deep policy gradient (random input) - num designs: {len(agent_diffusions_rnd)}') print(f'deep policy gradient (best 10 input) - num designs: {len(agent_diffusions_bst)}') print() print() print(f'best pattern random choice') print(random_patterns[random_best_pattern_idx]) print(f'provided diffusion: {random_diffusions[random_best_pattern_idx]}') if os.path.isdir(algenet_outcomes_dir): print() print(f'best pattern by genetic algorithm (generation no {algenet_gen_nums[algenet_best_pattern_idx]})') print(algenet_patterns[algenet_best_pattern_idx]) print(f'provided diffusion: {algenet_diffusions[algenet_best_pattern_idx]}') print() print(f'best pattern by deep policy gradient (random input)') print(agent_patterns_rnd[dpg_best_pattern_rnd_idx]) print(f'provided diffusion: {agent_diffusions_rnd[dpg_best_pattern_rnd_idx]}') print() print(f'best pattern by deep policy gradient (best 10 input)') print(agent_patterns_bst[dpg_best_pattern_bst_idx]) print(f'provided diffusion: {agent_diffusions_bst[dpg_best_pattern_bst_idx]}') print() # Wykreślenie estymat gęstości prawdopodobieństwa random_diffusions_df = pd.DataFrame() random_diffusions_df = random_diffusions_df.assign(**{'mean diffusion coefficient':random_diffusions}) random_diffusions_df = random_diffusions_df.assign(**{'algorithm type':'random'}) agent_diffusions_rnd_df = pd.DataFrame() agent_diffusions_rnd_df = agent_diffusions_rnd_df.assign(**{'mean diffusion coefficient':agent_diffusions_rnd}) agent_diffusions_rnd_df = agent_diffusions_rnd_df.assign(**{'algorithm type':'deep policy gradient (random input)'}) agent_diffusions_bst_df = pd.DataFrame() agent_diffusions_bst_df = agent_diffusions_bst_df.assign(**{'mean diffusion coefficient':agent_diffusions_bst}) agent_diffusions_bst_df = agent_diffusions_bst_df.assign(**{'algorithm type':'deep policy gradient (best input)'}) algenet_diffusions_df = pd.DataFrame() if os.path.isdir(algenet_outcomes_dir): algenet_diffusions_df = algenet_diffusions_df.assign(**{'mean diffusion coefficient':algenet_diffusions}) algenet_diffusions_df = algenet_diffusions_df.assign(**{'algorithm type':'genetic algorithm'}) joint_df =
pd.concat([random_diffusions_df,agent_diffusions_rnd_df,agent_diffusions_bst_df,algenet_diffusions_df])
pandas.concat
from calendar import monthrange from datetime import datetime import pandas as pd from flask import Blueprint, jsonify, abort, g from gatekeeping.api.budget import get_budget from gatekeeping.api.position import get_positions from gatekeeping.api.function import get_functions, get_function from gatekeeping.api.user import get_user_function def get_line_chart(function=None): positions = get_positions(check_submitter=False) budget = get_budget() columns = [row.keys() for row in positions] positions = pd.DataFrame(positions, columns=columns[0]) budget = pd.DataFrame(budget, columns=columns[0]) if function: if function != 'All': positions = positions.loc[positions['function'] == function] budget = budget.loc[budget['function'] == function] if g.user['type'] != 'ADMIN' and function == 'All': functions = get_user_function(g.user['id']) function_names = [get_function(function['function_id'])['name'] for function in functions] positions = positions.loc[positions['function'].isin(function_names)] budget = budget.loc[budget['function'].isin(function_names)] positions['FTE'] = pd.to_numeric(positions['hours'], errors='coerce') / 40 budget['FTE'] = pd.to_numeric(budget['hours'], errors='coerce') / 40 positions['salary'] = pd.to_numeric(positions['salary'], errors='coerce') positions['fringe_benefit'] = pd.to_numeric(positions['fringe_benefit'], errors='coerce') positions['social_security_contribution'] = pd.to_numeric(positions['social_security_contribution'], errors='coerce') budget['salary'] = pd.to_numeric(budget['salary'], errors='coerce') budget['fringe_benefit'] = pd.to_numeric(budget['fringe_benefit'], errors='coerce') budget['social_security_contribution'] = pd.to_numeric(budget['social_security_contribution'], errors='coerce') positions['total_cost'] = positions['salary'].add(positions['fringe_benefit'], fill_value=0).add(positions['social_security_contribution'], fill_value=0) budget['total_cost'] = budget['salary'].add(budget['fringe_benefit'], fill_value=0).add(budget['social_security_contribution'], fill_value=0) positions['start_date'] = pd.to_datetime(positions['start_date'], errors='coerce') positions['end_date'] = pd.to_datetime(positions['end_date'], errors='coerce') budget['start_date'] = pd.to_datetime(budget['start_date'], errors='coerce') budget['end_date'] = pd.to_datetime(budget['end_date'], errors='coerce') year = datetime.now().year months = {1:'January', 2:'February', 3:'March', 4:'April', 5:'May', 6:'June', 7:'July', 8:'August', 9:'September', 10:'October', 11:'November', 12:'December'} index=['January', 'February', 'March', 'April', 'May', 'June', 'July', 'August', 'September', 'October', 'November', 'December'] headcount_2018 = pd.Series(index=index) budgeted_headcount_2018 = pd.Series(index=index) headcount_cost_2018 = pd.Series(index=index) budgeted_headcount_cost_2018 = pd.Series(index=index) total_proposed_increase = 0 proposed_monthly_increase = budget.loc[budget['recruitment_status'].isin(['Proposed', 'Approved'])]['FTE'].sum()/12 for month in range(1,13): total_proposed_increase += proposed_monthly_increase hc = budget.loc[budget['recruitment_status'].isin(['On-Board', 'Contracted'])]['FTE'].sum() budgeted_headcount_2018[months[month]] = pd.Series(hc + total_proposed_increase) for month in range(1,13): total_proposed_increase += proposed_monthly_increase hc = budget.loc[budget['recruitment_status'].isin(['On-Board', 'Contracted'])]['total_cost'].sum() budgeted_headcount_cost_2018[months[month]] =
pd.Series(hc + total_proposed_increase)
pandas.Series
# -*- coding: utf-8 -*- # # License: This module is released under the terms of the LICENSE file # contained within this applications INSTALL directory """ Utility functions for model generation """ # -- Coding Conventions # http://www.python.org/dev/peps/pep-0008/ - Use the Python style guide # http://sphinx.pocoo.org/rest.html - Use Restructured Text for # docstrings # -- Public Imports import logging import math import numpy as np import pandas as pd from datetime import datetime # -- Private Imports # -- Globals logger = logging.getLogger(__name__) dict_wday_name = { 0: 'W-MON', 1: 'W-TUE', 2: 'W-WED', 3: 'W-THU', 4: 'W-FRI', 5: 'W-SAT', 6: 'W-SUN', } # -- Exception classes # -- Functions def logger_info(msg, data): # Convenience function for easier log typing logger.info(msg + '\n%s', data) def array_transpose(a): """ Transpose a 1-D numpy array :param a: An array with shape (n,) :type a: numpy.Array :return: The original array, with shape (n,1) :rtype: numpy.Array """ return a[np.newaxis, :].T # TODO: rework to support model composition def model_requires_scaling(model): """ Given a :py:class:`anticipy.forecast_models.ForecastModel` return True if the function requires scaling a_x :param model: A get_model_<modeltype> function from :py:mod:`anticipy.model.periodic_models` or :py:mod:`anticipy.model.aperiodic_models` :type model: function :return: True if function is logistic or sigmoidal :rtype: bool """ requires_scaling = model is not None and model.name in [ 'logistic', 'sigmoid' ] return requires_scaling def apply_a_x_scaling(a_x, model=None, scaling_factor=100.0): """ Modify a_x for forecast_models that require it :param a_x: x axis of time series :type a_x: numpy array :param model: a :py:class:`anticipy.forecast_models.ForecastModel` :type model: function or None :param scaling_factor: Value used for scaling t_values for logistic models :type scaling_factor: float :return: a_x with scaling applied, if required :rtype: numpy array """ if model_requires_scaling(model): # todo: check that this is still useful a_x = a_x / scaling_factor return a_x dict_freq_units_per_year = dict( A=1.0, Y=1.0, D=365.0, W=52.0, M=12, Q=4, H=24 * 365.0 ) dict_dateoffset_input = dict( Y='years', A='years', M='months', W='weeks', D='days', H='hours' ) def get_normalized_x_from_date(s_date): """Get column of days since Monday of first date""" date_start = s_date.iloc[0] # Convert to Monday date_start = date_start - pd.to_timedelta(date_start.weekday(), unit='D') s_x = (s_date - date_start).dt.days return s_x def get_s_x_extrapolate( date_start_actuals, date_end_actuals, model=None, freq=None, extrapolate_years=2.5, scaling_factor=100.0, x_start_actuals=0.): """ Return a_x series with DateTimeIndex, covering the date range for the actuals, plus a forecast period. :param date_start_actuals: date or numeric index for first actuals sample :type date_start_actuals: str, datetime, int or float :param date_end_actuals: date or numeric index for last actuals sample :type date_end_actuals: str, datetime, int or float :param extrapolate_years: :type extrapolate_years: float :param model: :type model: function :param freq: Time unit between samples. Supported units are 'W' for weekly samples, or 'D' for daily samples. (untested) Any date unit or time unit accepted by numpy should also work, see https://docs.scipy.org/doc/numpy-1.13.0/reference/arrays.datetime.html#arrays-dtypes-dateunits # noqa :type freq: basestring :param shifted_origin: Offset to apply to a_x :type shifted_origin: int :param scaling_factor: Value used for scaling a_x for certain model functions :type scaling_factor: float :param x_start_actuals: numeric index for the first actuals sample :type x_start_actuals: int :return: Series of floats with DateTimeIndex. To be used as (a_date, a_x) input for a model function. :rtype: pandas.Series The returned series covers the actuals time domain plus a forecast period lasting extrapolate_years, in years. The number of additional samples for the forecast period is time_resolution * extrapolate_years, rounded down """ if isinstance(date_start_actuals, str) or \ isinstance(date_start_actuals, datetime): # Use dates if available date_start_actuals = pd.to_datetime(date_start_actuals) date_end_actuals = pd.to_datetime(date_end_actuals) weekday_adjustment = date_start_actuals.weekday() expected_freq = dict_wday_name.get(weekday_adjustment) if freq is None: # Default frequency freq = expected_freq else: if freq.startswith('W'): assert expected_freq == freq, \ 'Error: with weekly frequency, freq ' \ 'parameter must match weekday of date_start_actuals:' \ ' {} - {} , {}' \ .format(freq, expected_freq, date_start_actuals) freq_short = freq[0:1] # Changes e.g. W-MON to W # freq_units_per_year = 52.0 if freq_short=='W' else 365.0 # Todo: change to dict to support more frequencies freq_units_per_year = dict_freq_units_per_year.get(freq_short, 365.0) extrapolate_units = extrapolate_years * freq_units_per_year offset_input = {dict_dateoffset_input.get(freq_short): extrapolate_units} date_end_forecast = date_end_actuals + \ pd.DateOffset(**offset_input) i_date = pd.date_range( date_start_actuals, date_end_forecast, freq=freq, name='date') s_date = pd.Series(i_date) # Get days passed since date_start, then add x_start_actuals s_x = (s_date - date_start_actuals).dt.days + x_start_actuals s_x.index = i_date else: # Otherwise, use numeric index # we extrapolate future samples equal to 100*extrapolate_years index = pd.Index( np.arange( date_start_actuals, date_end_actuals + 100 * extrapolate_years)) s_x = pd.Series( index=index, data=np.arange( x_start_actuals, x_start_actuals + index.size)) + x_start_actuals if model_requires_scaling(model): s_x = s_x / scaling_factor return s_x # Forecast Selection Functions def get_aic_c(fit_error, n, n_params): """ This function implements the corrected Akaike Information Criterion (AICc) taking as input a given fit error and data/model degrees of freedom. We assume that the residuals of the candidate model are distributed according to independent identical normal distributions with zero mean. Hence, we can use define the AICc as .. math:: AICc = AIC + \\frac{2k(k+1)}{n-k-1} = 2k + n \\log\\left(\\frac{E}{n}\\right) + \\frac{2k(k+1)}{n-k-1}, where :math:`k` and :math:`n` denotes the model and data degrees of freedom respectively, and :math:`E` denotes the residual error of the fit. :param fit_error: Residual error of the fit :type fit_error: float :param n: Data degrees of freedom :type n: int :param n_params: Model degrees of freedom :type n_params: int :return: Corrected Akaike Information Criterion (AICc) :rtype: float Note: - see AIC in `Wikipedia article on the AIC <https://en.wikipedia.org/wiki/Akaike_information_criterion>`_. """ # First, deal with corner cases that can blow things up with division by # zero if (n <= n_params + 1) or (n == 0): aux = n - n_params - 1 raise ValueError( 'ERROR: Time series too short for AIC_C: (n = ' + str(n) + ', n - n_params - 1 = ' + str(aux) + ')') elif fit_error == 0.0: if n_params == 1: aicc = -float("inf") else: # This can lead to suboptimal model selection when we have # multiple perfect fits - we use a patch instead # aicc = -float("inf") fit_error = 10 ** -320 aicc = n * math.log(fit_error / n) + 2 * n_params + \ (2 * n_params * (n_params + 1) / (n - n_params - 1)) else: # Actual calculation of the AICc aicc = n * math.log(fit_error / n) + 2 * n_params + \ (2 * n_params * (n_params + 1) / (n - n_params - 1)) return aicc def get_s_aic_c_best_result_key(s_aic_c): # Required because aic_c can be -inf, that value is not compatible with # pd.Series.argmin() if s_aic_c.empty or s_aic_c.isnull().all(): return None if (s_aic_c.values == -np.inf).any(): (key_best_result,) = (s_aic_c == -np.inf).to_numpy().nonzero()[0] key_best_result = s_aic_c.index[key_best_result.min()] else: key_best_result = s_aic_c.argmin() return key_best_result def detect_freq(a_date): if isinstance(a_date, pd.DataFrame): if 'date' not in a_date.columns: return None else: a_date = a_date.date s_date = pd.Series(a_date).sort_values().drop_duplicates() min_date_delta = s_date.diff().min() if pd.isnull(min_date_delta): return None elif min_date_delta == pd.Timedelta(1, unit='h'): return 'H' elif min_date_delta == pd.Timedelta(7, unit='D'): # Weekly seasonality - need to determine day of week min_date_wday = s_date.min().weekday() return dict_wday_name.get(min_date_wday, 'W') elif min_date_delta >= pd.Timedelta(28, unit='d') and \ min_date_delta <= pd.Timedelta(31, unit='d'): # MS is month start, M is month end. We use MS if all dates match first # of month if s_date.dt.day.max() == 1: return 'MS' else: return 'M' elif min_date_delta >= pd.Timedelta(89, unit='d') and \ min_date_delta <= pd.Timedelta(92, unit='d'): return 'Q' elif min_date_delta >= pd.Timedelta(365, unit='d') and \ min_date_delta <=
pd.Timedelta(366, unit='d')
pandas.Timedelta
import numpy as np import pandas as pd from .base_test_class import DartsBaseTestClass from ..models.kalman_filter import KalmanFilter from ..models.filtering_model import MovingAverage from ..timeseries import TimeSeries from ..utils import timeseries_generation as tg class KalmanFilterTestCase(DartsBaseTestClass): def test_kalman(self): """ KalmanFilter test. Creates an increasing sequence of numbers, adds noise and assumes the kalman filter predicts values closer to real values """ testing_signal = np.arange(1, 5, 0.1) noise = np.random.normal(0, 0.7, testing_signal.shape) testing_signal_with_noise = testing_signal + noise df =
pd.DataFrame(data=testing_signal_with_noise, columns=['signal'])
pandas.DataFrame
# coding: utf-8 # In[1]: #IMPORT REQUISTITE LIBRARIES from datadownloader.MeetupClients import MeetUpClients import json import pandas as pd from datadownloader.Utils.Logging import LoggingUtil from datetime import datetime import multiprocessing as mp from functools import partial import numpy as np import sys import timeit import pickle cores=mp.cpu_count()-1 #opfolder='/media/oldmonk/SAMSUNG/DATA_ABHISHEK/MEETUP_PROJECT/techall/' opfolder='deep-learning/' print(str(datetime.now())) logfile=LoggingUtil(opfolder+'Logs/','CHECK_FILTER'+str(datetime.now())+'.txt') # In[2]: #FILTE GROUPS ON SO TAGS #group_pd=pd.read_csv('Data/Groups/Tech_Groups.csv') sotags=pd.read_csv(opfolder+'Data/SOTags/ALL.csv') filterlist=['software development'] cattofind="34" #topic='None' topic='deep-learning' group_pd=pd.read_csv(opfolder+"Data/Groups/"+cattofind+'_'+topic+'_Groups.csv') #filterlist=['open-source'] #filterlist=['software development'] filterlist=[str(tg).lower() for tg in sotags['TagName'].tolist()] logstr="Loaded stackoveflow tags :::" + str(len(filterlist)) logfile.Log(logstr) print(logstr) topicsmeetup=[] topicsmeetup_intersect=[] ''' def CheckSOTags(topics): if(type(topics)==str): topics=eval(topics) if(len(topics)==0): return False else: try: for topic_str in topics: #SAVE ORG TOPIC NAME IN MEETUP topicsmeetup.append(topic_str['name']) #CHECK IF ORG TOPIC STRING IN SO TAGS WHEN CONVERTED TO LOWER CASE if(topic_str['name'].lower() in filterlist): if(topic_str['name'].lower() not in topicsmeetup_intersect): topicsmeetup_intersect.append(topic_str['name'].lower()) return True #Check if Original Topic when converrted to SOFormat in SO Tags tpcs=topic_str['name'].split() tpcs_so_format=("-".join(tpcs)).lower() if(tpcs_so_format in filterlist): if(tpcs_so_format not in topicsmeetup_intersect): topicsmeetup_intersect.append(tpcs_so_format) return True ##heck if Original Topic when words in Topics Considered to SOFormat in SO Tags for t in tpcs: if(t.lower() in filterlist): if(t.lower() not in topicsmeetup_intersect): topicsmeetup_intersect.append(t.lower()) return True return False except : print(" Exception Occured " + str(sys.exc_info()[0])) return False ''' def CheckSOTags(topics): if(type(topics)==str): topics=eval(topics) if(len(topics)==0): return (False,"No topics attached to this group ",None) else: try: for topic_str in topics: #SAVE ORG TOPIC NAME IN MEETUP #topicsmeetup.append(topic_str['name']) #CHECK IF ORG TOPIC STRING IN SO TAGS WHEN CONVERTED TO LOWER CASE if(topic_str['name'].lower() in filterlist): #if(topic_str['name'].lower() not in topicsmeetup_intersect): # topicsmeetup_intersect.append(topic_str['name'].lower()) return (True,topic_str['name'],topic_str['name'].lower()) #Check if Original Topic when converrted to SOFormat in SO Tags tpcs=topic_str['name'].split() tpcs_so_format=("-".join(tpcs)).lower() if(tpcs_so_format in filterlist): #if(tpcs_so_format not in topicsmeetup_intersect): # topicsmeetup_intersect.append(tpcs_so_format) return (True,topic_str['name'],tpcs_so_format) ##heck if Original Topic when words in Topics Considered to SOFormat in SO Tags for t in tpcs: if(t.lower() in filterlist): #if(t.lower() not in topicsmeetup_intersect): # topicsmeetup_intersect.append(t.lower()) return (True,topic_str['name'],t.lower()) return (False,topic_str['name'],None) except : print(" Exception Occured " + str(sys.exc_info()[0])) return (False,topic_str['name'],None) def ProcessChunk(df): df_so=df['topics'].apply(CheckSOTags) return df_so def SWTag(topics,filterlist): if(type(topics)==str): topics=eval(topics) if(len(topics)==0): return (False,"No topics attached to this group ",None) else: try: for topic_str in topics: if(topic_str['name'].lower() in filterlist): return (True,topic_str['name'],topic_str['name'].lower()) return (False,topic_str['name'],None) except : print(" Exception Occured " + str(sys.exc_info()[0])) return (False,topic_str['name'],None) def ProcessChunkSW(df): df_so=df['topics'].apply(CheckSWTag,['Software Development']) return df_so #group_pd_software=group_pd['topics'].apply(CheckSOTags) #group_pd['topics'] # In[3]: #Filter Grousp By Prescence of Software Development cores=mp.cpu_count()-1 def ParallelApply(df,func): chunks=np.array_split(df,cores) parpool=mp.Pool(cores) changed_df=pd.concat(parpool.map(ProcessChunk,chunks)) parpool.close() parpool.join() return changed_df def ParallelApplySW(df,func): chunks=np.array_split(df,cores) parpool=mp.Pool(cores) changed_df=pd.concat(parpool.map(ProcessChunkSW,chunks)) parpool.close() parpool.join() return changed_df ''' logstr= " filtering groups which contain Software Development Tag " logfile.Log(logstr) print(logstr) softwar_filter=ParallelApplySW(group_pd,ParallelApplySW) group_pd_software=group_pd[pd.Series([i[0] for i in softwar_filter])] group_pd_software.to_csv(opfolder+"Data/Groups/"+cattofind+'_Groups_FilteredSSW.csv',index=False) logstr= str(group_pd_software.shape[0]) +" groups found which contain Software Development Tag" logfile.Log(logstr) print(logstr) so_software_filter=ParallelApply(group_pd_software,ParallelApply) topicsmeetup=set(i[1] for i in softwar_filter) topicsmeetup_intersect=set([i[2] for i in list(softwar_filter) if i[2] is not None]) group_pd_so_software=group_pd_software[pd.Series([i[0] for i in so_software_filter])] group_pd_so_software.to_csv(opfolder+"Data/Groups/"+cattofind+'_Groups_FilteredSO_SW.csv',index=False) logstr= str(group_pd_software.shape[0]) +" groups found which contain Stack Overflow Tag and Softwar Development Tag" logfile.Log(logstr) print(logstr) ''' logstr= " filtering groups which contain Stack OVerflow Tag " logfile.Log(logstr) print(logstr) softwar_filter=ParallelApply(group_pd,ParallelApply) topicsmeetup=set(i[1] for i in softwar_filter) topicsmeetup_intersect=set([i[2] for i in list(softwar_filter) if i[2] is not None]) group_pd_software=group_pd[pd.Series([i[0] for i in softwar_filter])] #group_pd_software.shape group_pd_software.to_csv(opfolder+"Data/Groups/"+cattofind+'_Groups_FilteredSO.csv',index=False) logstr= str(group_pd_software.shape[0]) +" groups found which contain Stack OVerflow Tag" logfile.Log(logstr) print(logstr) pickle.dump(group_pd_software,open(opfolder+'Data/Pickle/group_pd_software.p','wb')) # In[4]: #FILTER GROUPS ON MEMBERS #group_pd_software=pd.read_csv('Data/Groups/Tech_Groups_FilteredSO.csv') #group_pd=pd.read_csv('Data/Groups/Tech_Groups.csv') group_pd_grtr_10=group_pd_software[group_pd['members']>=10] logstr="Groups which have atelast 10 members :::" + str(group_pd_grtr_10.shape[0]) logfile.Log(logstr) print(logstr) # In[5]: import pandas as pd group_event_counts=pd.read_csv(opfolder+'Data/events.csv',names=['groupid','EventCount']) event_count_Final=pd.DataFrame() try: event_count_failed_rep=pd.read_csv(opfolder+'Data/events_count_failed.csv',names=['groupid','EventCount']) event_count_Final=group_event_counts[group_event_counts['EventCount']!=-1]['groupid'].tolist()+event_count_failed_rep['groupid'].tolist() except: event_count_Final=group_event_counts[group_event_counts['EventCount']!=-1] #event_count_Final_df=group_event_counts[group_event_counts['EventCount']!=-1]+event_count_failed_rep groups_filtered_events_rej=
pd.concat([group_event_counts[group_event_counts['EventCount']!=-1],event_count_failed_rep])
pandas.concat
#!/usr/bin/env python # coding: utf-8 # # Analysis of Cryptocurrency Investments # # In this analysis report, I will perform exploratory data analysis and build machine learning models to predict market prices in future 30 days for the above 7 cryptocurrencies. # [1. Prepare Data Set](#1) # - [Load Python Packages](#1-1) # - [Load and Prepare Data Set](#1-2) # # [2. Data Quality Assessment](#2) # - [Check Missing Values](#2-1) # - [Check Duplicated Values](#2-2) # # [3. Exploratory Data Analysis and Feature Engineering](#3) # - [1.Market Capitalization and Transaction Volume](#3-1) # - [2.Price Fluctuation of Cryptocurrencies](#3-2) # - [3.Moving Averages and Price Trend](#3-3) # - [4.Market Prices of Cryptocurrencies](#3-4) # - [5.Return Ratio](#3-5) # - [6.Candlestick Charts Using Plotly (BitCoin)](#3-6) # # [4. Building Models - Predicting Price for Cryptocurrencies](#4) # - [Prepare Data for Models](#4-1) # - [Applying Machine Learning Models](#4-2) # - [Prices Prediction](#4-3) # # [5. Conclusion - Investment Suggestion](#5) # # [6. Future Work](#6) # # [7. Reference](#7) # # *** # ## 1. Prepare Data Set<a id="1"></a> # ### Load Python Packages<a id="1-1"></a> import numpy as np import pandas as pd import datetime as dt import statsmodels.api as sm from statsmodels.tsa.seasonal import seasonal_decompose from statsmodels.tsa.stattools import adfuller import matplotlib.pyplot as plt import seaborn as sns; sns.set_style("whitegrid") from plotly import tools import plotly.offline as py import plotly.io as io #py.init_notebook_mode(connected=True) import plotly.graph_objs as go from sklearn import preprocessing from sklearn.model_selection import train_test_split from sklearn.ensemble import RandomForestRegressor, GradientBoostingRegressor, ExtraTreesRegressor from sklearn.linear_model import BayesianRidge, ElasticNetCV from sklearn.metrics import r2_score, mean_absolute_error, mean_squared_error import sys dir=sys.argv[1]; datafile=sys.argv[2]; # ### Load and Prepare Data Set<a id="1-2"></a> # load data set data = pd.read_csv(datafile, parse_dates=['date'],index_col='date') # current_date = data.index[len(data)-1]; print("current date : " + str(current_date)) title_tstamp = ( " \n[ updated on " + str(current_date) + " ]"); # display appointment data set data.head(); data = data[data.symbol.isin(['BTC','SNM', 'GNT', 'RLC'])] # display total number of records for the 7 cryptocurrencies data.name.value_counts() # display data volumn and types data.info() # ## 2. Data Quality Assessment<a id="2"></a> # ### Check Missing Values<a id="2-1"></a> # check if data set contains missing values print(data.isnull().sum()) # assert that there are no missing values assert data.notnull().all().all() # No missing value exist in this data set. # ### Check Duplicated Values<a id="2-2"></a> # check if data set contains duplicated records print(data.duplicated().sum()) # There is no duplicated appointments record in this data set. The data is clean. # ## 3. Exploratory Data Analysis and Feature Engineering<a id="3"></a> # ### Market Capitalization and Transaction Volume<a id="3-1"></a> # Check market capitalization and transaction volume for each cryptocurrency we choose. # plot market capitalization rlc = data[data['symbol']=='RLC'] gnt = data[data['symbol']=='GNT'] snm = data[data['symbol']=='SNM'] plt.figure(figsize=(15,8)) #(bitcoin['market']/1000000).plot(color='darkorange', label='Bitcoin') (rlc['market']/1000000).plot(color='darkorange', label='iExec') (gnt['market']/1000000).plot(color='grey', label='GOLEM') (snm['market']/1000000).plot(color='blue', label='sonM') plt.legend() plt.xlabel('date') plt.ylabel('Market cap in Million US Dollar') plt.title('Cloud Computing Cryptocurrency Market Cap)' + title_tstamp) plt.savefig(dir + "Cryptocurrency_Market_Cap") ## volume 2019 data_m = data['2019-01-01':'2019-04-15'] rlc = data_m[data_m['symbol']=='RLC'] gnt = data_m[data_m['symbol']=='GNT'] snm = data_m[data_m['symbol']=='SNM'] plt.figure(figsize=(15,8)) (rlc['market']/1000000).plot(color='darkorange', label='iExec') (gnt['market']/1000000).plot(color='grey', label='GOLEM') (snm['market']/1000000).plot(color='blue', label='sonM') #plt.axvline(dt.datetime(2019, 12, 12),color='black') plt.legend() plt.xlabel('time') plt.title('Cryptocurrency Transaction Volume (Million) in 2019' + title_tstamp) #plt.show() plt.savefig(dir + 'Cryptocurrency_Transaction_Volume_in_2019') data = data['2019-01-01':] # Check opening, closing, highest, and lowest price for each of the cryptocurrency. data['oc_diff']=data['close']-data['open'] data.head() # Difference between opening and closing price data['oc_diff']=data['close']-data['open'] rlc = data[data['symbol']=='RLC'] gnt = data[data['symbol']=='GNT'] snm = data[data['symbol']=='SNM'] plt.figure(figsize=(15,8)) (rlc['oc_diff']).plot(color='darkorange', label='RLC') (gnt['oc_diff']).plot(color='grey', label='GNT') (snm['oc_diff']).plot(color='blue', label='SNM') plt.text(20,0.05,'test',verticalalignment='bottom', horizontalalignment='center', fontsize=15) plt.xlabel('time') plt.ylabel('price in USD') plt.title('Historical difference between daily opening price and daily closing price of the 3 cloud Cryptocurrencies since 2019' + title_tstamp) plt.legend() #plt.show() plt.savefig(dir + 'Historical_difference_between_opening_price_and_closing_price_of_cloud_Crypto_since_2019') # Average difference for each cryptocurrency ave_diff={'rlc':[(rlc['oc_diff']).mean()], 'gnt':[(gnt['oc_diff']).mean()], 'snm':[(snm['oc_diff']).mean()]} pd.DataFrame(ave_diff, index=['avg.diff']) # To get a better understanding of difference between daily opening and closing price, # we calculated the average difference as well as daily price spread for each cryptocurrency. # Differences of daily highest price and lowest price plt.figure(figsize=(15,8)) (rlc['spread']).plot(color='grey', label='RLC') (gnt['spread']).plot(color='blue', label='GNT') (snm['spread']).plot(color='green', label='SNM') plt.xlabel('time') plt.ylabel('price in USD') plt.title('Historical daily price spread of cloud Crypto,\n indicator of value variation' + title_tstamp) plt.legend() #plt.show() plt.savefig(dir + 'Historical_price_spread_of_cloud_Crypto') # By plotting the spread (difference) between daily highest and lowest price, we found that: # Average spread for each cryptocurrency ave_spread={'rlc':[(rlc['spread']).mean()], 'gnt':[(gnt['spread']).mean()], 'snm':[(snm['spread']).mean()]} pd.DataFrame(ave_spread, index=['avg.spread']) # calculate 5-day moving averages _rlc = rlc[['close']] _rlc.columns = ['RLC'] rlc_ma=_rlc.rolling(window=5).mean() _gnt = gnt[['close']] _gnt.columns = ['GNT'] gnt_ma=_gnt.rolling(window=5).mean() _snm = snm[['close']] _snm.columns = ['SNM'] snm_ma=_snm.rolling(window=5).mean() # create matrix of close price only for later use close = pd.concat([_rlc,_gnt,_snm], axis=1) close_ma = pd.concat([rlc_ma,gnt_ma,snm_ma], axis=1) close_ma.tail() # plot moving average for closing price for cryptocurrencies close_ma.plot(figsize=(15,8)) plt.title('5-Day Moving Average on Daily Closing Price, fluctuation indicator' + title_tstamp) plt.xlabel('time') plt.ylabel('price in USD') plt.savefig(dir + '5-Day_Moving_Average_on_Daily_Closing_Price') # calculate daily average price data['daily_avg'] = (data['open'] + data['high'] + data['low'] + data['close']) / 4 bitcoin = data[data['symbol']=='BTC'] rlc = data[data['symbol']=='RLC'] gnt = data[data['symbol']=='GNT'] snm = data[data['symbol']=='SNM'] plt.figure(figsize=(15,8)) #(bitcoin['daily_avg']).plot(color='brown', label='btc') (rlc['daily_avg']).plot(color='grey', label='rlc') (gnt['daily_avg']).plot(color='blue', label='gnt') (snm['daily_avg']).plot(color='yellow', label='snm') plt.xlabel('time') plt.ylabel('price in USD') plt.title('Historical daily average price of cloud Crypto,\n (open+high+low+close)/4' + title_tstamp) plt.legend() #plt.show() plt.savefig(dir + 'Historical_daily_average_price_of_cloud_Crypto_since_2019') # #### Plot individual daily open, high, low, close prices plt.figure(figsize=(15, 12)) plt.subplot(4,1,1) plt.plot(bitcoin[['open','high','low','close']]) plt.ylabel('price in USD') plt.title('Historical daily average price of BitCoin since 2019'+ title_tstamp) plt.legend(['open','high','low','close']) plt.subplot(4,1,2) plt.plot(rlc[['open','high','low','close']]) plt.ylabel('price in USD') plt.title('Historical daily average price of RLC since 2019'+ title_tstamp) plt.legend(['open','high','low','close']) plt.subplot(4,1,3) plt.plot(gnt[['open','high','low','close']]) plt.ylabel('price in USD') plt.title('Historical daily average price of GNT since 2019'+ title_tstamp) plt.legend(['open','high','low','close']) plt.subplot(4,1,4) plt.plot(snm[['open','high','low','close']]) plt.ylabel('price in USD') plt.title('Historical daily average price of SNM since 2019'+ title_tstamp) plt.legend(['open','high','low','close']) #plt.show() plt.savefig(dir + "Plot_individual_daily_open_high_low_close_prices") # #### Check Pearson correlation coefficient to prove if BitCoin price influences price of other cryptocurrencies plt.figure(figsize=(12,6)) sns.heatmap(close.corr(),vmin=0, vmax=1, cmap='coolwarm', annot=True) plt.title('Correlation Heatmap between RLC, SNT, GNT'+ title_tstamp) #plt.show() plt.savefig(dir + 'Correlation_Heatmap') # return ratio = current value of the cryptocurrency / initial value of the cryptocurrency returns = close.apply(lambda x: x/x[0]) returns.plot(figsize=(12,6)) plt.ylabel('Return ration') plt.xlabel('time') plt.title('Return of each Cryptocurrencies\n return ratio = current value of the cryptocurrency / initial value of the cryptocurrency' + title_tstamp) plt.savefig(dir + 'Return_of_each_Cryptocurrencies') # ### Candlestick Charts Using Plotly (BitCoin)<a id="3-6"></a> # A candlestick chart (also called Japanese candlestick chart) is a style of financial chart used #to describe price movements of a security, derivative, or currency. # Each "candlestick" typically shows one day; so for example a one-month chart may show the 20 trading days as 20 "candlesticks". # We choose to plot a cancdlestick chart for BitCoin # since everyone's super curious on whether BitCoin is going to be economic bubble or it's still something that worth to invest in. increasing_color = '#17BECF' decreasing_color = '#7F7F7F' data_plotly = [] layout = { 'xaxis': { 'rangeselector': { 'visible': True } }, # Adding a volume bar chart for candlesticks is a good practice usually 'yaxis': { 'domain': [0, 0.2], 'showticklabels': False }, 'yaxis2': { 'domain': [0.2, 0.8] }, 'legend': { 'orientation': 'h', 'y': 0.9, 'yanchor': 'bottom' }, 'margin': { 't': 40, 'b': 40, 'r': 40, 'l': 40 } } # Defining main chart trace0 = go.Candlestick( x=rlc.index, open=rlc['open'], high=rlc['high'], low=rlc['low'], close=rlc['close'], yaxis='y2', name='rlc', increasing=dict(line=dict(color=increasing_color)), decreasing=dict(line=dict(color=decreasing_color)), ) data_plotly.append(trace0) # Adding some range buttons to interact rangeselector = { 'visible': True, 'x': 0, 'y': 0.8, 'buttons': [ {'count': 1, 'label': 'reset', 'step': 'all'}, {'count': 6, 'label': '6 mo', 'step': 'month', 'stepmode': 'backward'}, {'count': 3, 'label': '3 mo', 'step': 'month', 'stepmode': 'backward'}, {'count': 1, 'label': '1 mo', 'step': 'month', 'stepmode': 'backward'}, ] } layout['xaxis'].update(rangeselector=rangeselector) # Setting volume bar chart colors colors = [] for i, _ in enumerate(rlc.index): if i != 0: if rlc['close'].iloc[i] > rlc['close'].iloc[i-1]: colors.append(increasing_color) else: colors.append(decreasing_color) else: colors.append(decreasing_color) trace1 = go.Bar( x=rlc.index, y=rlc['volume'], marker=dict(color=colors), yaxis='y', name='Volume' ) data_plotly.append(trace1) # Adding Moving Average def moving_average(interval, window_size=10): window = np.ones(int(window_size)) / float(window_size) return np.convolve(interval, window, 'same') trace2 = go.Scatter( x=rlc.index[5:-5], y=moving_average(rlc['close'])[5:-5], yaxis='y2', name='Moving Average', line=dict(width=1) ) data_plotly.append(trace2) # Adding boilinger bands def bollinger_bands(price, window_size=10, num_of_std=5): rolling_mean = price.rolling(10).mean() rolling_std = price.rolling(10).std() upper_band = rolling_mean + (rolling_std * 5) lower_band = rolling_mean - (rolling_std * 5) return upper_band, lower_band bb_upper, bb_lower = bollinger_bands(rlc['close']) trace3 = go.Scatter( x=rlc.index, y=bb_upper, yaxis='y2', line=dict(width=1), marker=dict(color='#ccc'), hoverinfo='none', name='Bollinger Bands', legendgroup='Bollinger Bands' ) data_plotly.append(trace3) trace4 = go.Scatter( x=rlc.index, y=bb_lower, yaxis='y2', line=dict(width=1), marker=dict(color='#ccc'), hoverinfo='none', name='Bollinger Bands', showlegend=False, legendgroup='Bollinger Bands' ) data_plotly.append(trace4) fig = go.Figure(data=data_plotly, layout=layout) py.iplot(fig, filename='rlc-candlestick') io.orca.config io.orca.status io.write_image(fig, dir + 'cancdlestick_chart_for_rlc.png') # How to read the candlestick chart: # <img src='http://www.greenboxmarkets.com/wp-content/uploads/2016/08/japanese-candlesticks-chart-introduction-1.jpg'> # 1. Blue colored candlestick means if the price of bitcoin is increasing for that day compares to previous day, while the grey candlestick means the price is decreasing. # 2. The red trend line is indicating the moving average of 10 days. # 3. Bollinger Bands consist of: an N-period moving average (MA) an upper band at K times an N-period standard deviation above the moving average (MA + Kσ) a lower band at K times an N-period standard deviation below the moving average (MA − Kσ). # 4. The bottom chart is the time range. # 5. Each candlestick gives 4 daily values: open, high, low, and close. (If there's less value, that means two or more of the value is the same) # 6. Based on the chart, and based onthe last candlestick, we can infer from its large body but short wick that the price might keep dropping after February 22nd. # ## 4. Building Models - Predicting Price for Cryptocurrencies<a id="4"></a> # ### Prepare Data for Models<a id="4-1"></a> # I will separate the data set and build model on each cryptocurrencie type. # # For data preparation, I will follow below steps: # 1. remove 'slug', 'name', 'symbol' and ''ranknow' from data set # 2. move all 'daily_avg' values 30 lines up in our last cell(one month lag) and define a new column, 'daily_avg_After_Month' # 3. choose 'daily_avg_After_Month' as target and all other variables as predictors # 4. create train and test data by splitting the data set to 80-20 # 5. create 'X_forecast' using all predictors with NA 'daily_avg_After_Month' (to predict price in next 30 days) # In[29]: # droping 'slug' and 'name' as we can just use 'symbol', and droping 'ranknow'. data=data.drop(['slug', 'name', 'ranknow'], axis=1) # Bitcoin (BTC) BTC = data[data.symbol == 'BTC'].copy() BTC['daily_avg_After_Month']=BTC['daily_avg'].shift(-30) X_BTC = BTC.dropna().drop(['daily_avg_After_Month','symbol','daily_avg'], axis=1) y_BTC = BTC.dropna()['daily_avg_After_Month'] X_train_BTC, X_test_BTC, y_train_BTC, y_test_BTC = train_test_split(X_BTC, y_BTC, test_size=0.2, random_state=43) X_forecast_BTC = BTC.tail(30).drop(['daily_avg_After_Month','symbol','daily_avg'], axis=1) # rlc RLC = data[data.symbol == 'RLC'].copy() RLC['daily_avg_After_Month']=RLC['daily_avg'].shift(-30) X_RLC = RLC.dropna().drop(['daily_avg_After_Month','symbol','daily_avg'], axis=1) y_RLC = RLC.dropna()['daily_avg_After_Month'] X_train_RLC, X_test_RLC, y_train_RLC, y_test_RLC = train_test_split(X_RLC, y_RLC, test_size=0.2, random_state=43) X_forecast_RLC = RLC.tail(30).drop(['daily_avg_After_Month','symbol','daily_avg'], axis=1) # gnt GNT = data[data.symbol == 'GNT'].copy() GNT['daily_avg_After_Month']=GNT['daily_avg'].shift(-30) X_GNT = GNT.dropna().drop(['daily_avg_After_Month','symbol','daily_avg'], axis=1) y_GNT = GNT.dropna()['daily_avg_After_Month'] X_train_GNT, X_test_GNT, y_train_GNT, y_test_GNT = train_test_split(X_GNT, y_GNT, test_size=0.2, random_state=43) X_forecast_GNT = GNT.tail(30).drop(['daily_avg_After_Month','symbol','daily_avg'], axis=1) # snm SNM = data[data.symbol == 'SNM'].copy() SNM['daily_avg_After_Month']=SNM['daily_avg'].shift(-30) X_SNM = SNM.dropna().drop(['daily_avg_After_Month','symbol','daily_avg'], axis=1) y_SNM = SNM.dropna()['daily_avg_After_Month'] X_train_SNM, X_test_SNM, y_train_SNM, y_test_SNM = train_test_split(X_SNM, y_SNM, test_size=0.2, random_state=43) X_forecast_SNM = SNM.tail(30).drop(['daily_avg_After_Month','symbol','daily_avg'], axis=1) # ### Applying Machine Learning Models<a id="4-2"></a> # define regression function def regression(X_train, X_test, y_train, y_test): Regressor = { 'Random Forest Regressor': RandomForestRegressor(n_estimators=200), 'Gradient Boosting Regressor': GradientBoostingRegressor(n_estimators=500), 'ExtraTrees Regressor': ExtraTreesRegressor(n_estimators=500, min_samples_split=5), 'Bayesian Ridge': BayesianRidge(), 'Elastic Net CV': ElasticNetCV() } for name, clf in Regressor.items(): print(name) clf.fit(X_train, y_train) print('R2: {' + str(r2_score(y_test, clf.predict(X_test))) + '}') print('MAE: {' + str(mean_absolute_error(y_test, clf.predict(X_test))) + '}') print('MSE: {' + str(mean_squared_error(y_test, clf.predict(X_test))) + '}') # Bitcoin (BTC) print('Bitcoin (BTC):') regression(X_train_BTC, X_test_BTC, y_train_BTC, y_test_BTC) # Bitcoin (BTC) print('iExec (RLC):') regression(X_train_RLC, X_test_RLC, y_train_RLC, y_test_RLC) # GNT (GNT) print('GNT (GNT):') regression(X_train_GNT, X_test_GNT, y_train_GNT, y_test_GNT) # SNM print('sonm (SNM):') regression(X_train_SNM, X_test_SNM, y_train_SNM, y_test_SNM) # As for all the five algorithms, I will end up taking Extra Trees Regressor for all cryptos # but XRP and LTC, since this algorithm perform better than all other algorithms in all indicators(R2, MAE and MSE). # For XRP and LTC, the Random Forest Regressor perform distinctly better than all other algorithms. # ### Prices Prediction<a id="4-3"></a> # define prediction function def prediction(name, X, y, X_forecast): if name in ['XRP', 'LTC']: model = RandomForestRegressor(n_estimators=200) else: model = ExtraTreesRegressor(n_estimators=500, min_samples_split=5) model.fit(X, y) target = model.predict(X_forecast) return target # calculate forecasted prices for next 30 days forecasted_BTC = prediction('BTC', X_BTC, y_BTC, X_forecast_BTC) forecasted_RLC = prediction('RLC', X_RLC, y_RLC, X_forecast_RLC) forecasted_GNT = prediction('GNT', X_GNT, y_GNT, X_forecast_GNT) forecasted_SNM = prediction('SNM', X_SNM, y_SNM, X_forecast_SNM) # define index for next 30 days last_date=data.iloc[-1].name modified_date = last_date + dt.timedelta(days=1) new_date = pd.date_range(modified_date,periods=30,freq='D') # assign prediction to newly defined index forecasted_BTC =
pd.DataFrame(forecasted_BTC, columns=['daily_avg'], index=new_date)
pandas.DataFrame
# Copyright 1999-2020 Alibaba Group Holding Ltd. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import itertools import operator import functools from contextlib import contextmanager from numbers import Integral import numpy as np import pandas as pd from pandas.api.types import is_string_dtype from pandas.core.dtypes.cast import find_common_type try: import pyarrow as pa except ImportError: # pragma: no cover pass from ..core import Entity, ExecutableTuple from ..lib.mmh3 import hash as mmh_hash from ..tensor.utils import dictify_chunk_size, normalize_chunk_sizes from ..utils import tokenize, sbytes def hash_index(index, size): def func(x, size): return mmh_hash(sbytes(x)) % size f = functools.partial(func, size=size) idx_to_grouped = index.groupby(index.map(f)) return [idx_to_grouped.get(i, list()) for i in range(size)] def hash_dataframe_on(df, on, size, level=None): if on is None: idx = df.index if level is not None: idx = idx.to_frame(False)[level] hashed_label = pd.util.hash_pandas_object(idx, categorize=False) elif callable(on): # todo optimization can be added, if ``on`` is a numpy ufunc or sth can be vectorized hashed_label = pd.util.hash_pandas_object(df.index.map(on), categorize=False) else: if isinstance(on, list): to_concat = [] for v in on: if isinstance(v, pd.Series): to_concat.append(v) else: to_concat.append(df[v]) data = pd.concat(to_concat, axis=1) else: data = df[on] hashed_label = pd.util.hash_pandas_object(data, index=False, categorize=False) idx_to_grouped = df.index.groupby(hashed_label % size) return [idx_to_grouped.get(i, pd.Index([])).unique() for i in range(size)] def hash_dtypes(dtypes, size): hashed_indexes = hash_index(dtypes.index, size) return [dtypes[index] for index in hashed_indexes] def sort_dataframe_inplace(df, *axis): for ax in axis: df.sort_index(axis=ax, inplace=True) return df def _get_range_index_start(pd_range_index): try: return pd_range_index.start except AttributeError: # pragma: no cover return pd_range_index._start def _get_range_index_stop(pd_range_index): try: return pd_range_index.stop except AttributeError: # pragma: no cover return pd_range_index._stop def _get_range_index_step(pd_range_index): try: return pd_range_index.step except AttributeError: # pragma: no cover return pd_range_index._step def is_pd_range_empty(pd_range_index): start, stop, step = _get_range_index_start(pd_range_index), \ _get_range_index_stop(pd_range_index), \ _get_range_index_step(pd_range_index) return (start >= stop and step >= 0) or (start <= stop and step < 0) def decide_dataframe_chunk_sizes(shape, chunk_size, memory_usage): """ Decide how a given DataFrame can be split into chunk. :param shape: DataFrame's shape :param chunk_size: if dict provided, it's dimension id to chunk size; if provided, it's the chunk size for each dimension. :param memory_usage: pandas Series in which each column's memory usage :type memory_usage: pandas.Series :return: the calculated chunk size for each dimension :rtype: tuple """ from ..config import options chunk_size = dictify_chunk_size(shape, chunk_size) average_memory_usage = memory_usage / shape[0] nleft = len(shape) - len(chunk_size) if nleft < 0: raise ValueError("chunks have more than two dimensions") if nleft == 0: return normalize_chunk_sizes(shape, tuple(chunk_size[j] for j in range(len(shape)))) max_chunk_size = options.chunk_store_limit # for the row side, along axis 0 if 0 not in chunk_size: row_chunk_size = [] row_left_size = shape[0] else: row_chunk_size = normalize_chunk_sizes((shape[0],), (chunk_size[0],))[0] row_left_size = -1 # for the column side, along axis 1 if 1 not in chunk_size: col_chunk_size = [] col_chunk_store = [] col_left_size = shape[1] else: col_chunk_size = normalize_chunk_sizes((shape[1],), (chunk_size[1],))[0] acc = [0] + np.cumsum(col_chunk_size).tolist() col_chunk_store = [average_memory_usage[acc[i]: acc[i + 1]].sum() for i in range(len(col_chunk_size))] col_left_size = -1 while True: nbytes_occupied = np.prod([max(it) for it in (row_chunk_size, col_chunk_store) if it]) dim_size = np.maximum(int(np.power(max_chunk_size / nbytes_occupied, 1 / float(nleft))), 1) if col_left_size == 0: col_chunk_size.append(0) if row_left_size == 0: row_chunk_size.append(0) # check col first if col_left_size > 0: cs = min(col_left_size, dim_size) col_chunk_size.append(cs) start = int(np.sum(col_chunk_size[:-1])) col_chunk_store.append(average_memory_usage.iloc[start: start + cs].sum()) col_left_size -= cs if row_left_size > 0: max_col_chunk_store = max(col_chunk_store) cs = min(row_left_size, int(max_chunk_size / max_col_chunk_store)) row_chunk_size.append(cs) row_left_size -= cs if col_left_size <= 0 and row_left_size <= 0: break return tuple(row_chunk_size), tuple(col_chunk_size) def decide_series_chunk_size(shape, chunk_size, memory_usage): from ..config import options chunk_size = dictify_chunk_size(shape, chunk_size) average_memory_usage = memory_usage / shape[0] if shape[0] != 0 else memory_usage if len(chunk_size) == len(shape): return normalize_chunk_sizes(shape, chunk_size[0]) max_chunk_size = options.chunk_store_limit series_chunk_size = max_chunk_size / average_memory_usage return normalize_chunk_sizes(shape, int(series_chunk_size)) def parse_index(index_value, *args, store_data=False, key=None): from .core import IndexValue def _extract_property(index, tp, ret_data): kw = { '_min_val': _get_index_min(index), '_max_val': _get_index_max(index), '_min_val_close': True, '_max_val_close': True, '_key': key or _tokenize_index(index, *args), } if ret_data: kw['_data'] = index.values for field in tp._FIELDS: if field in kw or field == '_data': continue val = getattr(index, field.lstrip('_'), None) if val is not None: kw[field] = val return kw def _tokenize_index(index, *token_objects): if not index.empty: return tokenize(index) else: return tokenize(index, *token_objects) def _get_index_min(index): try: return index.min() except ValueError: if isinstance(index, pd.IntervalIndex): return None raise except TypeError: return None def _get_index_max(index): try: return index.max() except ValueError: if isinstance(index, pd.IntervalIndex): return None raise except TypeError: return None def _serialize_index(index): tp = getattr(IndexValue, type(index).__name__) properties = _extract_property(index, tp, store_data) return tp(**properties) def _serialize_range_index(index): if is_pd_range_empty(index): properties = { '_is_monotonic_increasing': True, '_is_monotonic_decreasing': False, '_is_unique': True, '_min_val': _get_index_min(index), '_max_val': _get_index_max(index), '_min_val_close': True, '_max_val_close': False, '_key': key or _tokenize_index(index, *args), '_name': index.name, '_dtype': index.dtype, } else: properties = _extract_property(index, IndexValue.RangeIndex, False) return IndexValue.RangeIndex(_slice=slice(_get_range_index_start(index), _get_range_index_stop(index), _get_range_index_step(index)), **properties) def _serialize_multi_index(index): kw = _extract_property(index, IndexValue.MultiIndex, store_data) kw['_sortorder'] = index.sortorder kw['_dtypes'] = [lev.dtype for lev in index.levels] return IndexValue.MultiIndex(**kw) if index_value is None: return IndexValue(_index_value=IndexValue.Index( _is_monotonic_increasing=False, _is_monotonic_decreasing=False, _is_unique=False, _min_val=None, _max_val=None, _min_val_close=True, _max_val_close=True, _key=key or tokenize(*args), )) if isinstance(index_value, pd.RangeIndex): return IndexValue(_index_value=_serialize_range_index(index_value)) elif isinstance(index_value, pd.MultiIndex): return IndexValue(_index_value=_serialize_multi_index(index_value)) else: return IndexValue(_index_value=_serialize_index(index_value)) def gen_unknown_index_value(index_value, *args): pd_index = index_value.to_pandas() if isinstance(pd_index, pd.RangeIndex): return parse_index(pd.RangeIndex(-1), *args) elif not isinstance(pd_index, pd.MultiIndex): return parse_index(pd.Index([], dtype=pd_index.dtype), *args) else: i = pd.MultiIndex.from_arrays([c[:0] for c in pd_index.levels], names=pd_index.names) return parse_index(i, *args) def split_monotonic_index_min_max(left_min_max, left_increase, right_min_max, right_increase): """ Split the original two min_max into new min_max. Each min_max should be a list in which each item should be a 4-tuple indicates that this chunk's min value, whether the min value is close, the max value, and whether the max value is close. The return value would be a nested list, each item is a list indicates that how this chunk should be split into. :param left_min_max: the left min_max :param left_increase: if the original data of left is increased :param right_min_max: the right min_max :param right_increase: if the original data of right is increased :return: nested list in which each item indicates how min_max is split >>> left_min_max = [(0, True, 3, True), (4, True, 8, True), (12, True, 18, True), ... (20, True, 22, True)] >>> right_min_max = [(2, True, 6, True), (7, True, 9, True), (10, True, 14, True), ... (18, True, 19, True)] >>> l, r = split_monotonic_index_min_max(left_min_max, True, right_min_max, True) >>> l [[(0, True, 2, False), (2, True, 3, True)], [(3, False, 4, False), (4, True, 6, True), (6, False, 7, False), (7, True, 8, True)], [(8, False, 9, True), (10, True, 12, False), (12, True, 14, True), (14, False, 18, False), (18, True, 18, True)], [(18, False, 19, True), [20, True, 22, True]]] >>> r [[(0, True, 2, False), (2, True, 3, True), (3, False, 4, False), (4, True, 6, True)], [(6, False, 7, False), (7, True, 8, True), (8, False, 9, True)], [(10, True, 12, False), (12, True, 14, True)], [(14, False, 18, False), (18, True, 18, True), (18, False, 19, True), [20, True, 22, True]]] """ left_idx_to_min_max = [[] for _ in left_min_max] right_idx_to_min_max = [[] for _ in right_min_max] left_curr_min_max = list(left_min_max[0]) right_curr_min_max = list(right_min_max[0]) left_curr_idx = right_curr_idx = 0 left_terminate = right_terminate = False while not left_terminate or not right_terminate: if left_terminate: left_idx_to_min_max[left_curr_idx].append(tuple(right_curr_min_max)) right_idx_to_min_max[right_curr_idx].append(tuple(right_curr_min_max)) if right_curr_idx + 1 >= len(right_min_max): right_terminate = True else: right_curr_idx += 1 right_curr_min_max = list(right_min_max[right_curr_idx]) elif right_terminate: right_idx_to_min_max[right_curr_idx].append(tuple(left_curr_min_max)) left_idx_to_min_max[left_curr_idx].append(tuple(left_curr_min_max)) if left_curr_idx + 1 >= len(left_min_max): left_terminate = True else: left_curr_idx += 1 left_curr_min_max = list(left_min_max[left_curr_idx]) elif left_curr_min_max[0] < right_curr_min_max[0]: # left min < right min right_min = [right_curr_min_max[0], not right_curr_min_max[1]] max_val = min(left_curr_min_max[2:], right_min) assert len(max_val) == 2 min_max = (left_curr_min_max[0], left_curr_min_max[1], max_val[0], max_val[1]) left_idx_to_min_max[left_curr_idx].append(min_max) right_idx_to_min_max[right_curr_idx].append(min_max) if left_curr_min_max[2:] == max_val: # left max < right min if left_curr_idx + 1 >= len(left_min_max): left_terminate = True else: left_curr_idx += 1 left_curr_min_max = list(left_min_max[left_curr_idx]) else: # from left min(left min close) to right min(exclude right min close) left_curr_min_max[:2] = right_curr_min_max[:2] elif left_curr_min_max[0] > right_curr_min_max[0]: # left min > right min left_min = [left_curr_min_max[0], not left_curr_min_max[1]] max_val = min(right_curr_min_max[2:], left_min) min_max = (right_curr_min_max[0], right_curr_min_max[1], max_val[0], max_val[1]) left_idx_to_min_max[left_curr_idx].append(min_max) right_idx_to_min_max[right_curr_idx].append(min_max) if right_curr_min_max[2:] == max_val: # right max < left min if right_curr_idx + 1 >= len(right_min_max): right_terminate = True else: right_curr_idx += 1 right_curr_min_max = list(right_min_max[right_curr_idx]) else: # from left min(left min close) to right min(exclude right min close) right_curr_min_max[:2] = left_curr_min_max[:2] else: # left min == right min max_val = min(left_curr_min_max[2:], right_curr_min_max[2:]) assert len(max_val) == 2 min_max = (left_curr_min_max[0], left_curr_min_max[1], max_val[0], max_val[1]) left_idx_to_min_max[left_curr_idx].append(min_max) right_idx_to_min_max[right_curr_idx].append(min_max) if max_val == left_curr_min_max[2:]: if left_curr_idx + 1 >= len(left_min_max): left_terminate = True else: left_curr_idx += 1 left_curr_min_max = list(left_min_max[left_curr_idx]) else: left_curr_min_max[:2] = max_val[0], not max_val[1] if max_val == right_curr_min_max[2:]: if right_curr_idx + 1 >= len(right_min_max): right_terminate = True else: right_curr_idx += 1 right_curr_min_max = list(right_min_max[right_curr_idx]) else: right_curr_min_max[:2] = max_val[0], not max_val[1] if left_increase is False: left_idx_to_min_max = list(reversed(left_idx_to_min_max)) if right_increase is False: right_idx_to_min_max = list(reversed(right_idx_to_min_max)) return left_idx_to_min_max, right_idx_to_min_max def build_split_idx_to_origin_idx(splits, increase=True): # splits' len is equal to the original chunk size on a specified axis, # splits is sth like [[(0, True, 2, True), (2, False, 3, True)]] # which means there is one input chunk, and will be split into 2 out chunks # in this function, we want to build a new dict from the out chunk index to # the original chunk index and the inner position, like {0: (0, 0), 1: (0, 1)} if increase is False: splits = list(reversed(splits)) out_idx = itertools.count(0) res = dict() for origin_idx, _ in enumerate(splits): for pos in range(len(splits[origin_idx])): if increase is False: o_idx = len(splits) - origin_idx - 1 else: o_idx = origin_idx res[next(out_idx)] = o_idx, pos return res def _generate_value(dtype, fill_value): # special handle for datetime64 and timedelta64 dispatch = { np.datetime64: pd.Timestamp, np.timedelta64: pd.Timedelta, pd.CategoricalDtype.type: lambda x: pd.CategoricalDtype([x]), # for object, we do not know the actual dtype, # just convert to str for common usage np.object_: lambda x: str(fill_value), } # otherwise, just use dtype.type itself to convert convert = dispatch.get(dtype.type, dtype.type) return convert(fill_value) def build_empty_df(dtypes, index=None): columns = dtypes.index # duplicate column may exist, # so use RangeIndex first df = pd.DataFrame(columns=pd.RangeIndex(len(columns)), index=index) length = len(index) if index is not None else 0 for i, d in enumerate(dtypes): df[i] = pd.Series([_generate_value(d, 1) for _ in range(length)], dtype=d, index=index) df.columns = columns return df def build_df(df_obj, fill_value=1, size=1): empty_df = build_empty_df(df_obj.dtypes, index=df_obj.index_value.to_pandas()[:0]) dtypes = empty_df.dtypes record = [_generate_value(dtype, fill_value) for dtype in dtypes] if isinstance(empty_df.index, pd.MultiIndex): index = tuple(_generate_value(level.dtype, fill_value) for level in empty_df.index.levels) empty_df = empty_df.reindex( index=pd.MultiIndex.from_tuples([index], names=empty_df.index.names)) empty_df.iloc[0] = record else: index = _generate_value(empty_df.index.dtype, fill_value) empty_df.loc[index] = record empty_df = pd.concat([empty_df] * size) # make sure dtypes correct for MultiIndex for i, dtype in enumerate(dtypes.tolist()): s = empty_df.iloc[:, i] if not pd.api.types.is_dtype_equal(s.dtype, dtype): empty_df.iloc[:, i] = s.astype(dtype) return empty_df def build_empty_series(dtype, index=None, name=None): length = len(index) if index is not None else 0 return pd.Series([_generate_value(dtype, 1) for _ in range(length)], dtype=dtype, index=index, name=name) def build_series(series_obj, fill_value=1, size=1, name=None): empty_series = build_empty_series(series_obj.dtype, name=name, index=series_obj.index_value.to_pandas()[:0]) record = _generate_value(series_obj.dtype, fill_value) if isinstance(empty_series.index, pd.MultiIndex): index = tuple(_generate_value(level.dtype, fill_value) for level in empty_series.index.levels) empty_series = empty_series.reindex( index=pd.MultiIndex.from_tuples([index], names=empty_series.index.names)) empty_series.iloc[0] = record else: if isinstance(empty_series.index.dtype, pd.CategoricalDtype): index = None else: index = _generate_value(empty_series.index.dtype, fill_value) empty_series.loc[index] = record empty_series = pd.concat([empty_series] * size) # make sure dtype correct for MultiIndex empty_series = empty_series.astype(series_obj.dtype, copy=False) return empty_series def concat_index_value(index_values, store_data=False): result = pd.Index([]) if not isinstance(index_values, (list, tuple)): index_values = [index_values] for index_value in index_values: if isinstance(index_value, pd.Index): result = result.append(index_value) else: result = result.append(index_value.to_pandas()) return parse_index(result, store_data=store_data) def build_concatenated_rows_frame(df): from ..core import OutputType from .merge.concat import DataFrameConcat # When the df isn't splitted along the column axis, return the df directly. if df.chunk_shape[1] == 1: return df columns = concat_index_value([df.cix[0, idx].columns_value for idx in range(df.chunk_shape[1])], store_data=True) columns_size = columns.to_pandas().size out_chunks = [] for idx in range(df.chunk_shape[0]): out_chunk = DataFrameConcat(axis=1, output_types=[OutputType.dataframe]).new_chunk( [df.cix[idx, k] for k in range(df.chunk_shape[1])], index=(idx, 0), shape=(df.cix[idx, 0].shape[0], columns_size), dtypes=df.dtypes, index_value=df.cix[idx, 0].index_value, columns_value=columns) out_chunks.append(out_chunk) return DataFrameConcat(axis=1, output_types=[OutputType.dataframe]).new_dataframe( [df], chunks=out_chunks, nsplits=((chunk.shape[0] for chunk in out_chunks), (df.shape[1],)), shape=df.shape, dtypes=df.dtypes, index_value=df.index_value, columns_value=df.columns_value) def _filter_range_index(pd_range_index, min_val, min_val_close, max_val, max_val_close): if is_pd_range_empty(pd_range_index): return pd_range_index raw_min, raw_max, step = pd_range_index.min(), pd_range_index.max(), _get_range_index_step(pd_range_index) # seek min range greater_func = operator.gt if min_val_close else operator.ge actual_min = raw_min while greater_func(min_val, actual_min): actual_min += abs(step) if step < 0: actual_min += step # on the right side # seek max range less_func = operator.lt if max_val_close else operator.le actual_max = raw_max while less_func(max_val, actual_max): actual_max -= abs(step) if step > 0: actual_max += step # on the right side if step > 0: return pd.RangeIndex(actual_min, actual_max, step) return
pd.RangeIndex(actual_max, actual_min, step)
pandas.RangeIndex
""" Created on Sat Sep 18 23:11:22 2021 @author: datakind """ import logging import os import sys import typing as T from functools import reduce from pathlib import Path import pandas as pd import requests from matplotlib import collections from matplotlib import pyplot as plt from analysis.acs_correlation import correlation_analysis from analysis.acs_data import get_acs_data from analysis.housing_loss_summary import summarize_housing_loss from analysis.timeseries import create_timeseries from collection.address_cleaning import remove_special_chars from collection.address_geocoding import find_state_county_city, geocode_input_data from collection.address_validation import ( standardize_input_addresses, validate_address_data, verify_input_directory, ) from collection.tigerweb_api import ( create_tigerweb_query, get_input_data_geometry, jprint, rename_baseline, ) from const import ( ACS_DATA_DICT_FILENAME, GEOCODED_EVICTIONS_FILENAME, GEOCODED_FORECLOSURES_FILENAME, GEOCODED_TAX_LIENS_FILENAME, GIS_IMPORT_FILENAME, HOUSING_LOSS_SUMMARY_FILENAME, HOUSING_LOSS_TIMESERIES_FILENAME, MAX_YEAR, MIN_YEAR, OUTPUT_ALL_HOUSING_LOSS_PLOTS, OUTPUT_EVICTION_PLOTS, OUTPUT_FORECLOSURE_PLOTS, OUTPUT_PATH_GEOCODED_DATA, OUTPUT_PATH_GEOCODER_CACHE, OUTPUT_PATH_MAPS, OUTPUT_PATH_PLOTS, OUTPUT_PATH_PLOTS_DETAIL, OUTPUT_PATH_SUMMARIES, TRACT_BOUNDARY_FILENAME, ) def load_data(sub_directories: T.List, data_category) -> pd.DataFrame: """Load evictions data from csv template Inputs ------ sub_directories: list of sub-directories data_category: 'evictions', 'mortgage_foreclosures', 'tax_lien_foreclosures' parameters: If necessary, parameters to determine narrow down timeframe or columns of evictions data to return Outputs ------- cleaned_df: Processed pandas dataframe for next step of geo matching """ for data_dir in sub_directories: # If this sub directory does not match the data_category, skip it: if data_category not in str(data_dir): continue # If this is right subdirectory, list the files in the directory data_files = os.listdir(data_dir) # Alert user if there are no files in the relevant subdirectory if len(data_files) == 0: print('\n\u2326', 'Empty sub directory ', data_dir, ' - nothing to process') return None else: print( '\nSubdirectory of ', data_dir, ' has ', len(data_files), ' files in it: ', data_files, ) data =
pd.DataFrame()
pandas.DataFrame
import numpy as np import pandas as pd import pandas_datareader.data as web import datetime as dt import requests import io import zipfile from kungfu.series import FinancialSeries from kungfu.frame import FinancialDataFrame def download_factor_data(freq='D'): ''' Downloads factor data from Kenneth French's website and returns dataframe. freq can be either 'D' (daily) or 'M' (monthly). ''' if freq is 'D': # Download Carhartt 4 Factors factors_daily = web.DataReader("F-F_Research_Data_Factors_daily", "famafrench", start='1/1/1900')[0] mom = web.DataReader('F-F_Momentum_Factor_daily', 'famafrench', start='1/1/1900')[0] factors_daily = factors_daily.join(mom) factors_daily = factors_daily[['Mkt-RF','SMB','HML','Mom ','RF']] factors_daily.columns = ['Mkt-RF','SMB','HML','Mom','RF'] return FinancialDataFrame(factors_daily) elif freq is 'M': # Download Carhartt 4 Factors factors_monthly = web.DataReader("F-F_Research_Data_Factors", "famafrench", start='1/1/1900')[0] # mom = web.DataReader('F-F_Momentum_Factor', 'famafrench', start='1/1/1900')[0] #There seems to be a problem with the data file, fix if mom is needed # factors_monthly = factors_monthly.join(mom) # factors_monthly = factors_monthly[['Mkt-RF','SMB','HML','Mom ','RF']] factors_monthly.index = factors_monthly.index.to_timestamp() # factors_monthly.columns = ['Mkt-RF','SMB','HML','Mom','RF'] factors_monthly.columns = ['Mkt-RF','SMB','HML','RF'] factors_monthly.index = factors_monthly.index+pd.tseries.offsets.MonthEnd(0) return FinancialDataFrame(factors_monthly) def download_industry_data(freq='D', excessreturns = True): ''' Downloads industry data from <NAME>'s website and returns dataframe. freq can be either 'D' (daily) or 'M' (monthly). excessreturns is a boolean to define if the the function should return excess returns. ''' if freq is 'D': # Download Fama/French 49 Industries industries_daily = web.DataReader("49_Industry_Portfolios_Daily", "famafrench", start='1/1/1900')[0] industries_daily[(industries_daily <= -99.99) | (industries_daily == -999)] = np.nan #set missing data to NaN industries_daily = industries_daily.rename_axis('Industry', axis='columns') if excessreturns is True: factors_daily = web.DataReader("F-F_Research_Data_Factors_daily", "famafrench", start='1/1/1900')[0] industries_daily = industries_daily.subtract(factors_daily['RF'], axis=0) #transform into excess returns return industries_daily elif freq is 'M': # Download Fama/French 49 Industries industries_monthly = web.DataReader("49_Industry_Portfolios", "famafrench", start='1/1/1900')[0] industries_monthly[(industries_monthly <= -99.99) | (industries_monthly == -999)] = np.nan #set missing data to NaN industries_monthly = industries_monthly.rename_axis('Industry', axis='columns') industries_monthly.index = industries_monthly.index.to_timestamp() if excessreturns is True: factors_monthly = web.DataReader("F-F_Research_Data_Factors", "famafrench", start='1/1/1900')[0] factors_monthly.index = factors_monthly.index.to_timestamp() industries_monthly = industries_monthly.subtract(factors_monthly['RF'], axis=0) #transform into excess returns industries_monthly.index = industries_monthly.index+pd.tseries.offsets.MonthEnd(0) return industries_monthly def download_25portfolios_data(freq='D', excessreturns = True): ''' Downloads 25 portfolios data from Kenneth French's website and returns dataframe. freq can be either 'D' (daily) or 'M' (monthly). excessreturns is a boolean to define if the the function should return excess returns. ''' if freq is 'D': # Download Fama/French 25 portfolios portfolios_daily = web.DataReader("25_Portfolios_5x5_CSV", "famafrench", start='1/1/1900')[0] portfolios_daily[(portfolios_daily <= -99.99) | (portfolios_daily == -999)] = np.nan #set missing data to NaN if excessreturns is True: factors_daily = web.DataReader("F-F_Research_Data_Factors_daily", "famafrench", start='1/1/1900')[0] portfolios_daily = portfolios_daily.subtract(factors_daily['RF'], axis=0) #transform into excess returns return portfolios_daily elif freq is 'M': # Download Fama/French 25 portfolios portfolios_monthly = web.DataReader("25_Portfolios_5x5_Daily_CSV", "famafrench", start='1/1/1900')[0] portfolios_monthly[(industries_monthly <= -99.99) | (industries_monthly == -999)] = np.nan #set missing data to NaN portfolios_monthly.index = portfolios_monthly.index.to_timestamp() if excessreturns is True: factors_monthly = web.DataReader("F-F_Research_Data_Factors", "famafrench", start='1/1/1900')[0] factors_monthly.index = factors_monthly.index.to_timestamp() portfolios_monthly = portfolios_monthly.subtract(factors_monthly['RF'], axis=0) #transform into excess returns return portfolios_monthly def download_recessions_data(freq='M', startdate='1/1/1900', enddate=dt.datetime.today()): ''' Downloads NBER recessions from FRED and returns series. freq can be either 'D' (daily) or 'M' (monthly). startdate and enddate define the length of the timeseries. ''' USREC_monthly = web.DataReader('USREC', 'fred',start = startdate, end=enddate) if freq is 'M': return USREC_monthly if freq is 'D': first_day = USREC_monthly.index.min() - pd.DateOffset(day=1) last_day = USREC_monthly.index.max() + pd.DateOffset(day=31) dayindex = pd.date_range(first_day, last_day, freq='D') dayindex.name = 'DATE' USREC_daily = USREC_monthly.reindex(dayindex, method='ffill') return USREC_daily def download_jpy_usd_data(): ''' Downloads USD/JPY exchange rate data from FRED and returns series. ''' jpy = web.DataReader('DEXJPUS', 'fred', start = '1900-01-01') return jpy def download_cad_usd_data(): ''' Downloads USD/CAD exchange rate data from FRED and returns series. ''' cad = web.DataReader('DEXCAUS', 'fred', start = '1900-01-01') return cad def download_vix_data(): ''' Downloads VIX index data from FRED and returns series. ''' vix = web.DataReader('VIXCLS', 'fred', start = '1900-01-01') return vix def download_goyal_welch_svar(): ''' Downloads Goyal/Welch SVAR data from Amit Goyal's website and returns DataFrame. ''' url = 'http://www.hec.unil.ch/agoyal/docs/PredictorData2017.xlsx' sheet =
pd.read_excel(url, sheet_name='Monthly')
pandas.read_excel
import torch import torch.nn as nn import torch.nn.parallel import torch.optim as optim import torch.utils.data as Data # 里面有minibatch实现所需要的DataLoader from torch.autograd import Variable from sklearn.utils import shuffle from argparse import ArgumentParser, FileType, ArgumentDefaultsHelpFormatter import sys import numpy as np from sklearn import preprocessing from BiNE_graph_utils import GraphUtils import random import math import os import pandas as pd from sklearn import metrics from sklearn.linear_model import LogisticRegression from sklearn.metrics import average_precision_score, auc, precision_recall_fscore_support from copy import deepcopy from data import * from prediction import * from evaluation import * from UBCF_implicit import * from UBCF_explicit import * from PhysRec import * from FunkSVD import * from PMF import * from SAE import * from NCF import * from FM2 import * from BiNE_graph import * from BiNE_graph_utils import * from BiNE_lsh import * from TransE import * from TryOne import * # import surprise # 一个专门的 recommender system 包 # import xlearn # 一个专门的 FM 家族的包 def OverallAverage_main(): total_rating = 0.0 count_train = 0.0 for row in train_dataset.iloc(): total_rating += row['rating'] count_train += 1.0 overall_avg = total_rating/count_train total_MAE = 0.0 total_RMSE = 0.0 count_test = 0.0 for row in test_dataset.iloc(): total_MAE += abs(row['rating'] - overall_avg) total_RMSE += (row['rating'] - overall_avg)**2 count_test += 1.0 MAE = total_MAE / count_test RMSE = math.sqrt(total_MAE / count_test) print('MAE:', MAE, 'RMSE:', RMSE) def UBCF_explicit_main(K): train_dataset_rating_matrix = data_ratings.GET_TRAIN_RATING_MATRIX(train_dataset) ubcf = UBCF_explicit("pearsonr" , train_dataset_rating_matrix, K) similarity_matrix = ubcf.similarity_matrix() similarity_matrix[similarity_matrix < 0] = 0 # 因为后面计算评分时,分母必须是相似性绝对值的和(注意,分子的相对程度不是奥!),所以这里要么转换为绝对值,要么将负的视为0(源代码用的后面这个方法) estimated_rating_matrix = ubcf.prediction(similarity_matrix) # 这里的estimated_rating_matrix还没有进行-9999处理 for row in train_dataset.iloc(): estimated_rating_matrix.loc[row['user'], row['item']] = -9999 valid_items = estimated_rating_matrix.columns all_recommendation_list = {} for i in range(estimated_rating_matrix.shape[0]): row = estimated_rating_matrix.iloc[i] user_id = row.name items = row.sort_values(ascending=False).index all_recommendation_list[user_id] = items prediction = PREDICTION(train_dataset) for recommendation_size in range(10, 60, 10): recommendation_list = prediction.GET_RECOMMENDATION_LIST(recommendation_size, all_recommendation_list) evaluation = EVALUATION(estimated_rating_matrix, recommendation_size, recommendation_list, train_dataset, valid_items, test_dataset) Precision, HR, NDCG, MAE, RMSE = evaluation.MERICS_01() print(Precision, '\t',HR, '\t', NDCG, '\t', MAE, '\t', RMSE) del recommendation_list def IBCF_explicit_main(K): train_dataset_rating_matrix = data_ratings.GET_TRAIN_RATING_MATRIX(train_dataset) train_dataset_rating_matrix_T = pd.DataFrame(train_dataset_rating_matrix.values.T,index=train_dataset_rating_matrix.columns.values,columns=train_dataset_rating_matrix.index.values) ibcf = UBCF_explicit("pearsonr", train_dataset_rating_matrix_T, K) similarity_matrix = ibcf.similarity_matrix() similarity_matrix[similarity_matrix < 0] = 0 # 再算评分矩阵 estimated_rating_matrix_T = ibcf.prediction(similarity_matrix) estimated_rating_matrix = pd.DataFrame(estimated_rating_matrix_T.values.T,index=estimated_rating_matrix_T.columns.values,columns=estimated_rating_matrix_T.index.values) for row in train_dataset.iloc(): estimated_rating_matrix.loc[row['user'], row['item']] = -9999 valid_items = estimated_rating_matrix.columns all_recommendation_list = {} for i in range(estimated_rating_matrix.shape[0]): row = estimated_rating_matrix.iloc[i] user_id = row.name items = row.sort_values(ascending=False).index all_recommendation_list[user_id] = items prediction = PREDICTION(train_dataset) for recommendation_size in range(10, 60, 10): recommendation_list = prediction.GET_RECOMMENDATION_LIST(recommendation_size, all_recommendation_list) evaluation = EVALUATION(estimated_rating_matrix, recommendation_size, recommendation_list, train_dataset,valid_items, test_dataset) Precision, HR, NDCG, MAE, RMSE = evaluation.MERICS_01() print(Precision, '\t', HR, '\t', NDCG, '\t', MAE, '\t', RMSE) del recommendation_list def Hybrid_explicit_main(K): train_dataset_rating_matrix = data_ratings.GET_TRAIN_RATING_MATRIX(train_dataset) train_dataset_rating_matrix_T = pd.DataFrame(train_dataset_rating_matrix.values.T,index = train_dataset_rating_matrix.columns.values, columns = train_dataset_rating_matrix.index.values) ubcf = UBCF_explicit("pearsonr", train_dataset_rating_matrix, K) similarity_matrix_ubcf = ubcf.similarity_matrix() similarity_matrix_ubcf[similarity_matrix_ubcf < 0] = 0 estimated_rating_matrix_ubcf = ubcf.prediction(similarity_matrix_ubcf) ibcf = UBCF_explicit("pearsonr", train_dataset_rating_matrix_T, K) similarity_matrix_ibcf = ibcf.similarity_matrix() similarity_matrix_ibcf[similarity_matrix_ibcf < 0] = 0 estimated_rating_matrix_ibcf_T = ibcf.prediction(similarity_matrix_ibcf) estimated_rating_matrix_ibcf = pd.DataFrame(estimated_rating_matrix_ibcf_T.values.T,index=estimated_rating_matrix_ibcf_T.columns.values,columns=estimated_rating_matrix_ibcf_T.index.values) estimated_rating_matrix = (estimated_rating_matrix_ubcf + estimated_rating_matrix_ibcf)/2 for row in train_dataset.iloc(): estimated_rating_matrix.loc[row['user'], row['item']] = -9999 valid_items = estimated_rating_matrix.columns all_recommendation_list = {} for i in range(estimated_rating_matrix.shape[0]): row = estimated_rating_matrix.iloc[i] user_id = row.name items = row.sort_values(ascending=False).index all_recommendation_list[user_id] = items prediction = PREDICTION(train_dataset) for recommendation_size in range(10, 60, 10): recommendation_list = prediction.GET_RECOMMENDATION_LIST(recommendation_size, all_recommendation_list) evaluation = EVALUATION(estimated_rating_matrix, recommendation_size, recommendation_list, train_dataset, valid_items, test_dataset) Precision, HR, NDCG, MAE, RMSE = evaluation.MERICS_01() print(Precision, '\t',HR, '\t', NDCG, '\t', MAE, '\t', RMSE) del recommendation_list def UBCF_implicit_main(K): train_dataset_rating_matrix = data_ratings.GET_TRAIN_RATING_MATRIX(train_dataset) ubcf = UBCF_implicit("pearsonr", train_dataset_rating_matrix, K) similarity_matrix = ubcf.similarity_matrix() similarity_matrix[similarity_matrix < 0] = 0 estimated_rating_matrix = ubcf.prediction(similarity_matrix) for row in train_dataset.iloc(): estimated_rating_matrix.loc[row['user'], row['item']] = -9999 valid_items = estimated_rating_matrix.columns all_recommendation_list = {} for i in range(estimated_rating_matrix.shape[0]): row = estimated_rating_matrix.iloc[i] user_id = row.name items = row.sort_values(ascending=False).index all_recommendation_list[user_id] = items prediction = PREDICTION(train_dataset) for recommendation_size in range(10, 60, 10): recommendation_list = prediction.GET_RECOMMENDATION_LIST(recommendation_size, all_recommendation_list) evaluation = EVALUATION(estimated_rating_matrix, recommendation_size, recommendation_list, train_dataset, valid_items, test_dataset) Precision, HR, NDCG, MAE, RMSE = evaluation.MERICS_01() print(Precision, '\t',HR, '\t', NDCG, '\t', MAE, '\t', RMSE) del recommendation_list # IBCF直接继承UBCF,只不过输入转置一下,输出再转置回去 def IBCF_implicit_main(K): train_dataset_rating_matrix = data_ratings.GET_TRAIN_RATING_MATRIX(train_dataset) train_dataset_rating_matrix_T = pd.DataFrame(train_dataset_rating_matrix.values.T,index=train_dataset_rating_matrix.columns.values,columns=train_dataset_rating_matrix.index.values) ibcf = UBCF_implicit("pearsonr", train_dataset_rating_matrix_T, K) similarity_matrix = ibcf.similarity_matrix() similarity_matrix[similarity_matrix < 0] = 0 estimated_rating_matrix_T = ibcf.prediction(similarity_matrix) estimated_rating_matrix = pd.DataFrame(estimated_rating_matrix_T.values.T,index=estimated_rating_matrix_T.columns.values,columns=estimated_rating_matrix_T.index.values) for row in train_dataset.iloc(): estimated_rating_matrix.loc[row['user'], row['item']] = -9999 valid_items = estimated_rating_matrix.columns all_recommendation_list = {} for i in range(estimated_rating_matrix.shape[0]): row = estimated_rating_matrix.iloc[i] user_id = row.name items = row.sort_values(ascending=False).index all_recommendation_list[user_id] = items prediction = PREDICTION(train_dataset) for recommendation_size in range(10, 60, 10): recommendation_list = prediction.GET_RECOMMENDATION_LIST(recommendation_size, all_recommendation_list) evaluation = EVALUATION(estimated_rating_matrix, recommendation_size, recommendation_list, train_dataset, valid_items, test_dataset) Precision, HR, NDCG, MAE, RMSE = evaluation.MERICS_01() print(Precision, '\t', HR, '\t', NDCG, '\t', MAE, '\t', RMSE) del recommendation_list # 源代码就是用UBCF和IBCF的结果求和后除以2 def Hybrid_implicit_main(K): train_dataset_rating_matrix = data_ratings.GET_TRAIN_RATING_MATRIX(train_dataset) train_dataset_rating_matrix_T = pd.DataFrame(train_dataset_rating_matrix.values.T,index = train_dataset_rating_matrix.columns.values, columns = train_dataset_rating_matrix.index.values) ubcf = UBCF_implicit("pearsonr", train_dataset_rating_matrix, K) similarity_matrix_ubcf = ubcf.similarity_matrix() similarity_matrix_ubcf[similarity_matrix_ubcf < 0] = 0 estimated_rating_matrix_ubcf = ubcf.prediction(similarity_matrix_ubcf) ibcf = UBCF_implicit("pearsonr", train_dataset_rating_matrix_T, K) similarity_matrix_ibcf = ibcf.similarity_matrix() similarity_matrix_ibcf[similarity_matrix_ibcf < 0] = 0 estimated_rating_matrix_ibcf_T = ibcf.prediction(similarity_matrix_ibcf) estimated_rating_matrix_ibcf = pd.DataFrame(estimated_rating_matrix_ibcf_T.values.T,index=estimated_rating_matrix_ibcf_T.columns.values,columns=estimated_rating_matrix_ibcf_T.index.values) estimated_rating_matrix = (estimated_rating_matrix_ubcf + estimated_rating_matrix_ibcf)/2 for row in train_dataset.iloc(): estimated_rating_matrix.loc[row['user'], row['item']] = -9999 valid_items = estimated_rating_matrix.columns all_recommendation_list = {} for i in range(estimated_rating_matrix.shape[0]): row = estimated_rating_matrix.iloc[i] user_id = row.name items = row.sort_values(ascending=False).index all_recommendation_list[user_id] = items prediction = PREDICTION(train_dataset) for recommendation_size in range(10, 60, 10): recommendation_list = prediction.GET_RECOMMENDATION_LIST(recommendation_size, all_recommendation_list) evaluation = EVALUATION(estimated_rating_matrix, recommendation_size, recommendation_list, train_dataset, valid_items, test_dataset) Precision, HR, NDCG, MAE, RMSE = evaluation.MERICS_01() print(Precision, '\t',HR, '\t', NDCG, '\t', MAE, '\t', RMSE) del recommendation_list def HC_main(): train_dataset_rating_matrix = data_ratings.GET_TRAIN_RATING_MATRIX(train_dataset) physrec = PhysRS(train_dataset_rating_matrix) estimated_rating_matrix = physrec.HC_propogation() # 这里返回的已经是一个DataFrame类型了 for row in train_dataset.iloc(): estimated_rating_matrix.loc[row['user'], row['item']] = -9999 valid_items = estimated_rating_matrix.columns all_recommendation_list = {} for i in range(estimated_rating_matrix.shape[0]): row = estimated_rating_matrix.iloc[i] user_id = row.name items = row.sort_values(ascending=False).index all_recommendation_list[user_id] = items prediction = PREDICTION(train_dataset) for recommendation_size in range(10, 60, 10): recommendation_list = prediction.GET_RECOMMENDATION_LIST(recommendation_size, all_recommendation_list) evaluation = EVALUATION(estimated_rating_matrix, recommendation_size, recommendation_list, train_dataset, valid_items, test_dataset) Precision, HR, NDCG, MAE, RMSE = evaluation.MERICS_01() print(Precision, '\t',HR, '\t', NDCG, '\t', MAE, '\t', RMSE) del recommendation_list def MD_main(): train_dataset_rating_matrix = data_ratings.GET_TRAIN_RATING_MATRIX(train_dataset) physrec = PhysRS(train_dataset_rating_matrix) estimated_rating_matrix = physrec.MD_propogation() # 这里返回的已经是一个DataFrame类型了 for row in train_dataset.iloc(): estimated_rating_matrix.loc[row['user'], row['item']] = -9999 valid_items = estimated_rating_matrix.columns all_recommendation_list = {} for i in range(estimated_rating_matrix.shape[0]): row = estimated_rating_matrix.iloc[i] user_id = row.name items = row.sort_values(ascending=False).index all_recommendation_list[user_id] = items prediction = PREDICTION(train_dataset) for recommendation_size in range(10, 60, 10): recommendation_list = prediction.GET_RECOMMENDATION_LIST(recommendation_size, all_recommendation_list) evaluation = EVALUATION(estimated_rating_matrix, recommendation_size, recommendation_list, train_dataset,valid_items, test_dataset) Precision, HR, NDCG, MAE, RMSE = evaluation.MERICS_01() print(Precision, '\t',HR, '\t', NDCG, '\t', MAE, '\t', RMSE) del recommendation_list def HC_MD_main(): train_dataset_rating_matrix = data_ratings.GET_TRAIN_RATING_MATRIX(train_dataset) physrec = PhysRS(train_dataset_rating_matrix) estimated_rating_matrix = physrec.HC_MD_propogation(0.5) # 这里的融合参数lambda是针对HC和MD模型中的两个k(item)而言的 for row in train_dataset.iloc(): estimated_rating_matrix.loc[row['user'], row['item']] = -9999 valid_items = estimated_rating_matrix.columns all_recommendation_list = {} for i in range(estimated_rating_matrix.shape[0]): row = estimated_rating_matrix.iloc[i] user_id = row.name items = row.sort_values(ascending = False).index all_recommendation_list[user_id] = items prediction = PREDICTION(train_dataset) for recommendation_size in range(10, 60, 10): recommendation_list = prediction.GET_RECOMMENDATION_LIST(recommendation_size, all_recommendation_list) evaluation = EVALUATION(estimated_rating_matrix, recommendation_size, recommendation_list, train_dataset,valid_items, test_dataset) Precision, HR, NDCG, MAE, RMSE = evaluation.MERICS_01() print(Precision, '\t',HR, '\t', NDCG, '\t', MAE, '\t', RMSE) del recommendation_list # 这里为FunkSVD使用"早停法"防止过拟合 def FunkSVD_main(max_epoch, early_stopping,learning_rate): funksvd = FunkSVD(true_train_dataset, validation_dataset, user_embeddings, item_embeddings, n_latent, max_epoch,learning_rate) best_user_embeddings, best_item_embeddings, best_epoch = funksvd.train(early_stopping) # 预测 prediction = PREDICTION(true_train_dataset) estimated_rating_matrix = prediction.GET_ESTIMATED_RATING_MATRIX(best_user_embeddings, best_item_embeddings) valid_items = estimated_rating_matrix.columns # 获取DataFrame列名(这里也就是item的标签) all_recommendation_list = {} for i in range(estimated_rating_matrix.shape[0]): # 返回行数 row = estimated_rating_matrix.iloc[i] # 遍历行,按列输出其Name(即索引)所对应的 列名(号) 和 元素值,这样一来就成为了Series类型。特别注意,将行号(从0开始)与索引区分开,每个行号对应着一个索引 user_id = row.name # Series.name读取其在DataFrame相应位置中的index items = row.sort_values(ascending=False).index # 对Series按从高到低的顺序排序,这样就能获取其对应的索引了,返回索引和值,最后.index提取其中的索引 all_recommendation_list[user_id] = items # 评测 print(best_epoch) for recommendation_size in range(10, 60, 10): recommendation_list = prediction.GET_RECOMMENDATION_LIST(recommendation_size, all_recommendation_list) evaluation = EVALUATION(estimated_rating_matrix, recommendation_size, recommendation_list, true_train_dataset,valid_items, test_dataset) Precision, HR, NDCG, MAE, RMSE = evaluation.MERICS_01() print(Precision, '\t', HR, '\t' ,NDCG, '\t' ,MAE, '\t' ,RMSE) del recommendation_list def TryOne_main(max_epoch, early_stopping, learning_rate): tryone = TryOne(true_train_dataset, validation_dataset, user_embeddings, n_latent, max_epoch,learning_rate,R) best_user_embeddings, best_epoch = tryone.train(early_stopping) print(best_epoch) for recommendation_size in range(10, 60, 10): recommendation_list = prediction.GET_RECOMMENDATION_LIST(recommendation_size, all_recommendation_list) evaluation = EVALUATION(estimated_rating_matrix, recommendation_size, recommendation_list, true_train_dataset,valid_items, test_dataset) Precision, HR, NDCG, MAE, RMSE = evaluation.MERICS_01() print(Precision, '\t', HR, '\t', NDCG, '\t', MAE, '\t', RMSE) del recommendation_list # 这里为PMF借助贝叶斯先验来确定正则化系数以防止过拟合 def PMF_main(max_epoch, early_stopping,learning_rate): pmf = PMF(true_train_dataset, validation_dataset, user_embeddings, item_embeddings, n_latent, max_epoch,learning_rate) best_user_embeddings, best_item_embeddings, best_epoch = pmf.train(early_stopping) # 进行预测 prediction = PREDICTION(true_train_dataset) estimated_rating_matrix = prediction.GET_ESTIMATED_RATING_MATRIX(best_user_embeddings, best_item_embeddings) valid_items = estimated_rating_matrix.columns # 获取DataFrame列名(这里也就是item的标签) all_recommendation_list = {} for i in range(estimated_rating_matrix.shape[0]): # 返回行数 row = estimated_rating_matrix.iloc[i] # 遍历行,按列输出其Name(即索引)所对应的 列名(号) 和 元素值,这样一来就成为了Series类型。特别注意,将行号(从0开始)与索引区分开,每个行号对应着一个索引 user_id = row.name # Series.name读取其在DataFrame相应位置中的index items = row.sort_values(ascending=False).index # 对Series按从高到低的顺序排序,这样就能获取其对应的索引了,返回索引和值,最后.index提取其中的索引 all_recommendation_list[user_id] = items # 评测 print(best_epoch) for recommendation_size in range(10, 60, 10): recommendation_list = prediction.GET_RECOMMENDATION_LIST(recommendation_size, all_recommendation_list) evaluation = EVALUATION(estimated_rating_matrix, recommendation_size, recommendation_list, true_train_dataset,valid_items, test_dataset) Precision, HR, NDCG, MAE, RMSE = evaluation.MERICS_01() print(Precision, '\t', HR, '\t' ,NDCG, '\t' ,MAE, '\t' ,RMSE) del recommendation_list def FM2_main(max_epoch, early_stopping,learning_rate): fm2 = FM2(true_train_dataset, validation_dataset, user_embeddings, item_embeddings, n_latent, max_epoch,learning_rate) best_w0, best_w_user, best_w_item, best_user_embeddings, best_item_embeddings, best_epoch = fm2.train(early_stopping) # 准备预测评分矩阵 max_user = max(true_train_dataset['user']) max_item = max(true_train_dataset['item']) estimated_rating_matrix = pd.DataFrame(np.zeros((max_user + 1, max_item + 1))) for row in true_train_dataset.iloc(): estimated_rating_matrix.loc[row['user'], row['item']] = -9999 estimated_rating_matrix = estimated_rating_matrix.loc[~(estimated_rating_matrix == 0).all(axis=1)] estimated_rating_matrix = estimated_rating_matrix.loc[:, (estimated_rating_matrix != 0).any(axis=0)] # 计算预测评分矩阵 for user_index, user_embedding in best_user_embeddings.items(): for item_index, item_embedding in best_item_embeddings.items(): if estimated_rating_matrix.loc[user_index, item_index] != -9999: interaction_1 = user_embedding + item_embedding interaction_2 = np.multiply(user_embedding, user_embedding) + np.multiply(item_embedding,item_embedding) interaction = np.sum(np.multiply(interaction_1, interaction_1) - interaction_2) / 2 y = best_w0 + (best_w_user[int(user_index)] + best_w_item[int(item_index)]) + interaction estimated_rating_matrix.loc[user_index, item_index] = y valid_items = estimated_rating_matrix.columns # 获取DataFrame列名(这里也就是item的标签) all_recommendation_list = {} for i in range(estimated_rating_matrix.shape[0]): # 返回行数 row = estimated_rating_matrix.iloc[i] # 遍历行,按列输出其Name(即索引)所对应的 列名(号) 和 元素值,这样一来就成为了Series类型。特别注意,将行号(从0开始)与索引区分开,每个行号对应着一个索引 user_id = row.name # Series.name读取其在DataFrame相应位置中的index items = row.sort_values(ascending=False).index # 对Series按从高到低的顺序排序,这样就能获取其对应的索引了,返回索引和值,最后.index提取其中的索引 all_recommendation_list[user_id] = items # 评测 prediction = PREDICTION(true_train_dataset) print(best_epoch) for recommendation_size in range(10, 60, 10): recommendation_list = prediction.GET_RECOMMENDATION_LIST(recommendation_size, all_recommendation_list) evaluation = EVALUATION(estimated_rating_matrix, recommendation_size, recommendation_list, true_train_dataset,valid_items, test_dataset) Precision, HR, NDCG, MAE, RMSE = evaluation.MERICS_01() print(Precision, '\t', HR, '\t' ,NDCG, '\t' ,MAE, '\t' ,RMSE) del recommendation_list def SAE_main(max_epoch, early_stopping,learning_rate): # 只关注target>0的,训练集中等于0的那些不能看,参见矩阵分解方法就一目了然了! sae = SAE(item_size, n_latent) criterion = nn.MSELoss() # MSE是均方误差,RMSE是均方根误差 optimizer = optim.RMSprop(sae.parameters(), lr = learning_rate,weight_decay = 0) # 全称为root mean square prop,是AdaGrad算法的一种改进。weight_decay是一种防止过拟合的手段,和momentum作用的位置一样 # 训练模型 min_validation_error = np.inf best_epoch = 0 error_counter = 0 for _ in range(max_epoch): error_counter += 1 output_train = sae(input_train) output_train[target_train == 0] = 0 output_train_new = output_train[target_train != 0] target_train_new = target_train[target_train != 0] sae.zero_grad() train_loss = criterion(output_train_new, target_train_new) # 不能用总数做分母,否则Loss总体偏小,会极大影响迭代收敛方向的 train_loss.backward() # 这里使用了optimizer.zero_grad() 反而收敛更慢,并且增大lr会在大误差下震荡,why??? optimizer.step() sae.eval() output_validation = sae(input_validation) output_validation[target_validation ==0] = 0 output_validation_new = output_validation[target_validation != 0 ] target_validation_new = target_validation[target_validation != 0 ] validation_loss = criterion(output_validation_new, target_validation_new) #print('Training loss:', train_loss.item(), 'Validation loss', validation_loss.item()) if validation_loss.item() < min_validation_error: min_validation_error = validation_loss.item() torch.save(sae, 'best_sae_model.pkl') best_epoch = _ error_counter = 0 if error_counter >= early_stopping: break best_sae = torch.load('best_sae_model.pkl') best_sae.eval() estimated_rating_matrix = deepcopy(true_train_dataset_rating_matrix) for row in estimated_rating_matrix.iloc(): input = torch.tensor(row.values, dtype = torch.float32) output = best_sae(input).detach().numpy() estimated_rating_matrix.loc[row.name] = output for row in train_dataset.iloc(): estimated_rating_matrix.loc[row['user'], row['item']] = -9999 valid_items = estimated_rating_matrix.columns all_recommendation_list = {} for i in range(estimated_rating_matrix.shape[0]): # .shape[0]是输出行数,而.shape[1]是输出列数 row = estimated_rating_matrix.iloc[i] user_id = row.name items = row.sort_values(ascending=False).index all_recommendation_list[user_id] = items prediction = PREDICTION(train_dataset) print(best_epoch) for recommendation_size in range(10, 60, 10): recommendation_list = prediction.GET_RECOMMENDATION_LIST(recommendation_size, all_recommendation_list) evaluation = EVALUATION(estimated_rating_matrix, recommendation_size, recommendation_list, train_dataset,valid_items, test_dataset) Precision, HR, NDCG, MAE, RMSE = evaluation.MERICS_01() print(Precision, '\t', HR, '\t' ,NDCG, '\t' ,MAE, '\t' ,RMSE) del recommendation_list # 不设置负样本的话,结果数据很难看 def GMF_main(max_epoch, early_stopping,learning_rate): GMF_model = NCF(user_num, item_num, n_latent, 'GMF') criterion = nn.BCEWithLogitsLoss() optimizer = optim.Adam(GMF_model.parameters(), lr=learning_rate) min_validation_error = np.inf best_epoch = 0 error_counter = 0 for _ in range(max_epoch): error_counter += 1 output_train = GMF_model(user_train, item_train).unsqueeze(1) # 可以用.size()输出维度,如果不加,则为[x]而非[x,1]! train_loss = criterion(output_train,target_train) GMF_model.zero_grad() # 在使用.backward()之前要将梯度清零,否则会得到累加值。但之前的SAE和FM并没有这样,如果不这样,发散的话会更快,数字更大! train_loss.backward() # 这里是整体输入的,所以就要像原代码那样train_loss += loss, count 啥的了,那时一条条记录挨个输入的做法! optimizer.step() GMF_model.eval() # 验证集时要关掉dropout output_validation = GMF_model(user_validation, item_validation).unsqueeze(1) validation_loss = criterion(output_validation, target_validation) # 注意防止的顺序,否则会出现负值 #print('Training loss:', train_loss.item(), 'Validation loss:', validation_loss.item()) if validation_loss.item() < min_validation_error: min_validation_error = validation_loss.item() torch.save(GMF_model, 'best_GMF_model.pkl') best_epoch = _ error_counter = 0 if error_counter>= early_stopping: break best_GMF_model = torch.load('best_GMF_model.pkl') best_GMF_model.eval() # 下面是算每个用户对每个物品的预测得分,实现细节上我灵机一动,一改以往的挨个元素遍历,借助tensor快速批处理的优势,以向量为单位的视角进行输入!啊!我真是个小天才! estimated_rating_matrix = data_ratings.GET_TRAIN_RATING_MATRIX(true_train_dataset) row_size = estimated_rating_matrix.shape[0] user_rc = torch.tensor(estimated_rating_matrix.index.values.tolist()).unsqueeze(1).long() # 准备着与item_rc呼应,同时作为模型的批量输入 prediction = PREDICTION(true_train_dataset) columns_set = estimated_rating_matrix.columns.values.tolist() for i in range(len(columns_set)): # 这里选择以列为单位,因为更新列比较容易一些 item_rc = torch.tensor([columns_set[i] for size in range(row_size)]).unsqueeze(1) pred = best_GMF_model(user_rc, item_rc).tolist() estimated_rating_matrix[columns_set[i]] = pred # 最后进行一下排序前的-9999处理,这里或许还有除了挨个遍历外更好的方法(这一部分始终有些耗时间哦) for row in true_train_dataset.iloc(): estimated_rating_matrix.loc[row['user'], row['item']] = -9999 valid_items = estimated_rating_matrix.columns # 获取DataFrame列名(这里也就是item的标签) all_recommendation_list = {} for i in range(estimated_rating_matrix.shape[0]): # 返回行数 row = estimated_rating_matrix.iloc[i] # 遍历行,按列输出其Name(即索引)所对应的 列名(号) 和 元素值,这样一来就成为了Series类型。特别注意,将行号(从0开始)与索引区分开,每个行号对应着一个索引 user_id = row.name # Series.name读取其在DataFrame相应位置中的index items = row.sort_values(ascending=False).index # 对Series按从高到低的顺序排序,这样就能获取其对应的索引了,返回索引和值,最后.index提取其中的索引 all_recommendation_list[user_id] = items print(best_epoch) # 评测 for recommendation_size in range(10, 60, 10): recommendation_list = prediction.GET_RECOMMENDATION_LIST(recommendation_size, all_recommendation_list) evaluation = EVALUATION(estimated_rating_matrix, recommendation_size, recommendation_list, true_train_dataset,valid_items, test_dataset) Precision, HR, NDCG, MAE, RMSE = evaluation.MERICS_01() print(Precision, '\t', HR, '\t' ,NDCG, '\t' ,MAE, '\t' ,RMSE) del recommendation_list # 由于之前将MLP放到CPU上跑会卡机,因此这里放到GPU上跑 def MLP_main(max_epoch, early_stopping,learning_rate): MLP_model = NCF(user_num, item_num, n_latent, 'MLP') criterion = nn.BCEWithLogitsLoss() optimizer = optim.Adam(MLP_model.parameters(), lr=learning_rate) min_validation_error = np.inf best_epoch = 0 error_counter = 0 for _ in range(max_epoch): error_counter += 1 output_train = MLP_model(user_train, item_train).unsqueeze(1) train_loss = criterion(output_train, target_train) MLP_model.zero_grad() train_loss.backward() optimizer.step() MLP_model.eval() output_validation = MLP_model(user_validation, item_validation).unsqueeze(1) validation_loss = criterion(output_validation, target_validation) # print('Training loss:', train_loss.item(), 'Validation loss:', validation_loss.item()) if validation_loss.item() < min_validation_error: min_validation_error = validation_loss.item() torch.save(MLP_model, 'best_MLP_model.pkl') best_epoch = _ error_counter = 0 if error_counter >= early_stopping: break best_MLP_model = torch.load('best_MLP_model.pkl') best_MLP_model.eval() # 下面是算每个用户对每个物品的预测得分,实现细节上我灵机一动,一改以往的挨个元素遍历,借助tensor快速批处理的优势,以向量为单位的视角进行输入!啊!我真是个小天才! estimated_rating_matrix = data_ratings.GET_TRAIN_RATING_MATRIX(true_train_dataset) row_size = estimated_rating_matrix.shape[0] user_rc = torch.tensor(estimated_rating_matrix.index.values.tolist()).unsqueeze(1).long() prediction = PREDICTION(true_train_dataset) columns_set = estimated_rating_matrix.columns.values.tolist() for i in range(len(columns_set)): item_rc = torch.tensor([columns_set[i] for size in range(row_size)]).unsqueeze(1) pred = best_MLP_model(user_rc, item_rc).tolist() estimated_rating_matrix[columns_set[i]] = pred # 最后进行一下排序前的-9999处理,这里或许还有除了挨个遍历外更好的方法(这一部分始终有些耗时间哦) for row in true_train_dataset.iloc(): estimated_rating_matrix.loc[row['user'], row['item']] = -9999 valid_items = estimated_rating_matrix.columns all_recommendation_list = {} for i in range(estimated_rating_matrix.shape[0]): row = estimated_rating_matrix.iloc[i] user_id = row.name items = row.sort_values(ascending=False).index all_recommendation_list[user_id] = items print(best_epoch) # 评测 for recommendation_size in range(10, 60, 10): recommendation_list = prediction.GET_RECOMMENDATION_LIST(recommendation_size, all_recommendation_list) evaluation = EVALUATION(estimated_rating_matrix, recommendation_size, recommendation_list, true_train_dataset,valid_items, test_dataset) Precision, HR, NDCG, MAE, RMSE = evaluation.MERICS_01() print(Precision, '\t', HR, '\t' ,NDCG, '\t' ,MAE, '\t' ,RMSE) del recommendation_list # 本地跑这个模型,n_latent = 32或许就是极限了,内存爆表! def NeuMF_main(max_epoch, early_stopping,learning_rate): # GMF模型预训练 GMF_model = NCF(user_num, item_num, n_latent, 'GMF') criterion = nn.BCEWithLogitsLoss() optimizer = optim.Adam(GMF_model.parameters(), lr=0.01) min_validation_error = np.inf error_counter = 0 GMF_pretrain_best_epoch = 0 for _ in range(max_epoch): error_counter += 1 output_train = GMF_model(user_train, item_train).unsqueeze(1) train_loss = criterion(output_train, target_train) GMF_model.zero_grad() train_loss.backward() optimizer.step() GMF_model.eval() output_validation = GMF_model(user_validation, item_validation).unsqueeze(1) validation_loss = criterion(output_validation, target_validation) # print('Pre-Train GMF loss:', train_loss.item(), 'Validation loss:', validation_loss.item()) if validation_loss.item() < min_validation_error: min_validation_error = validation_loss.item() torch.save(GMF_model, 'best_GMF_model.pkl') GMF_pretrain_best_epoch = _ error_counter = 0 if error_counter >= early_stopping: break best_GMF_model = torch.load('best_GMF_model.pkl') best_GMF_model.eval() # MLP模型预训练 MLP_model = NCF(user_num, item_num, n_latent, 'MLP') criterion = nn.BCEWithLogitsLoss() optimizer = optim.Adam(MLP_model.parameters(), lr=0.01) min_validation_error = np.inf error_counter = 0 MLP_pretrain_best_epoch = 0 for _ in range(max_epoch): error_counter += 1 output_train = MLP_model(user_train, item_train).unsqueeze(1) train_loss = criterion(output_train, target_train) MLP_model.zero_grad() train_loss.backward() optimizer.step() MLP_model.eval() output_validation = MLP_model(user_validation, item_validation).unsqueeze(1) validation_loss = criterion(output_validation, target_validation) # print('Pre-Train MLP loss:', train_loss.item(), 'Validation loss:', validation_loss.item()) if validation_loss.item() < min_validation_error: min_validation_error = validation_loss.item() torch.save(MLP_model, 'best_MLP_model.pkl') MLP_pretrain_best_epoch = _ error_counter = 0 if error_counter >= early_stopping: break best_MLP_model = torch.load('best_MLP_model.pkl') best_MLP_model.eval() # 开始最终的NeuMF模型训练 NeuMF_model = NCF(user_num, item_num, n_latent, 'NeuMF', best_GMF_model, best_MLP_model) criterion = nn.BCEWithLogitsLoss() optimizer = optim.SGD(NeuMF_model.parameters(), lr=learning_rate) min_validation_error = np.inf NCF_best_epoch = 0 error_counter = 0 for _ in range(max_epoch): error_counter += 1 output_train = NeuMF_model(user_train, item_train).unsqueeze(1) train_loss = criterion(output_train, target_train) NeuMF_model.zero_grad() train_loss.backward() optimizer.step() NeuMF_model.eval() output_validation = NeuMF_model(user_validation, item_validation).unsqueeze(1) validation_loss = criterion(output_validation, target_validation) # print('Training loss:', train_loss.item(), 'Validation loss:', validation_loss.item()) if validation_loss.item() < min_validation_error: min_validation_error = validation_loss.item() torch.save(NeuMF_model, 'best_NeuMF_model.pkl') NCF_best_epoch = _ error_counter = 0 if error_counter >= early_stopping: break best_NeuMF_model = torch.load('best_NeuMF_model.pkl') best_NeuMF_model.eval() # 做预测算指标咯 estimated_rating_matrix = data_ratings.GET_TRAIN_RATING_MATRIX(true_train_dataset) row_size = estimated_rating_matrix.shape[0] user_rc = torch.tensor(estimated_rating_matrix.index.values.tolist()).unsqueeze(1).long() prediction = PREDICTION(true_train_dataset) columns_set = estimated_rating_matrix.columns.values.tolist() for i in range(len(columns_set)): item_rc = torch.tensor([columns_set[i] for size in range(row_size)]).unsqueeze(1) pred = best_NeuMF_model(user_rc, item_rc).tolist() estimated_rating_matrix[columns_set[i]] = pred for row in true_train_dataset.iloc(): estimated_rating_matrix.loc[row['user'], row['item']] = -9999 valid_items = estimated_rating_matrix.columns all_recommendation_list = {} for i in range(estimated_rating_matrix.shape[0]): row = estimated_rating_matrix.iloc[i] user_id = row.name items = row.sort_values(ascending=False).index all_recommendation_list[user_id] = items print(GMF_pretrain_best_epoch, '\t' , MLP_pretrain_best_epoch, '\t' ,NCF_best_epoch) for recommendation_size in range(10, 60, 10): recommendation_list = prediction.GET_RECOMMENDATION_LIST(recommendation_size, all_recommendation_list) evaluation = EVALUATION(estimated_rating_matrix, recommendation_size, recommendation_list, true_train_dataset,valid_items, test_dataset) Precision, HR, NDCG, MAE, RMSE = evaluation.MERICS_01() print(Precision, '\t', HR, '\t' ,NDCG, '\t' ,MAE, '\t' ,RMSE) del recommendation_list def TransE_main(max_epoch, early_stopping,learning_rate): transE = TransE(user_list, item_list, relation_list, triplet_list, 1 , n_latent,learning_rate) # 倒数第二个参数是 margin transE.initialize() best_user_embeddings, best_item_embeddings, best_epoch = transE.transE(max_epoch,early_stopping, validation_dataset) # 预测,因为对两两user-item对求距离是个双for循环,很耗时,所以这里转换为矩阵运算,也类似于FM中将一个双for转换为多个单for的技巧 prediction = PREDICTION(true_train_dataset) user_embeddings_matrix = pd.DataFrame.from_dict(best_user_embeddings,orient='index') item_embeddings_matrix = pd.DataFrame.from_dict(best_item_embeddings) estimated_rating_matrix = user_embeddings_matrix.dot(item_embeddings_matrix) user_square = deepcopy(estimated_rating_matrix) for user in user_square.index.values: user_square.loc[user,:] = sum([i**2 for i in best_user_embeddings[user]]) item_square = deepcopy(estimated_rating_matrix) for item in item_square.columns.values: item_square.loc[:,item] = sum([i**2 for i in best_item_embeddings[item]]) estimated_rating_matrix = -2 * estimated_rating_matrix + user_square + item_square for row in true_train_dataset.iloc(): estimated_rating_matrix.loc[row['user'], row['item']] = 9999 valid_items = estimated_rating_matrix.columns all_recommendation_list = {} for i in range(estimated_rating_matrix.shape[0]): row = estimated_rating_matrix.iloc[i] user_id = row.name items = row.sort_values(ascending=True).index # 这里也要改一下!因为TransE背景下距离越小,节点越相似哦! all_recommendation_list[user_id] = items # 评测 print(best_epoch) for recommendation_size in range(10, 60, 10): recommendation_list = prediction.GET_RECOMMENDATION_LIST(recommendation_size, all_recommendation_list) evaluation = EVALUATION(estimated_rating_matrix, recommendation_size, recommendation_list, true_train_dataset,valid_items, test_dataset) Precision, HR, NDCG, MAE, RMSE = evaluation.MERICS_01() print(Precision, '\t', HR, '\t', NDCG, '\t', MAE, '\t', RMSE) del recommendation_list def BiNE_walk_generator(gul,args): print("calculate centrality...") gul.calculate_centrality(args.mode) # mode默认是hits,得到的是gul中的private parameters(字典) 即 self.authority_u 和 self.authority_v = {}, {} if args.large == 0: # 默认为.large = 0 gul.homogeneous_graph_random_walks(percentage = args.p, maxT = args.maxT, minT = args.minT) elif args.large == 1: gul.homogeneous_graph_random_walks_for_large_bipartite_graph(percentage = args.p, maxT = args.maxT, minT = args.minT) elif args.large == 2: gul.homogeneous_graph_random_walks_for_large_bipartite_graph_without_generating(datafile = args.train_data, percentage = args.p, maxT = args.maxT, minT = args.minT) return gul def BiNE_get_context_and_negative_samples(gul, args): if args.large == 0: # 默认为0 neg_dict_u, neg_dict_v = gul.get_negs(args.ns) # ns是 number of negative samples. print("negative samples is ok.....") # 返回的也是嵌套dict,具体细节有些没搞明白,尤其是那个哈希?但可以先不管 # ws 表示 window size,ns 表示 number of negative samples,G_u表示只包含user的同构图 context_dict_u, neg_dict_u = gul.get_context_and_negatives(gul.G_u, gul.walks_u, args.ws, args.ns, neg_dict_u) context_dict_v, neg_dict_v = gul.get_context_and_negatives(gul.G_v, gul.walks_v, args.ws, args.ns, neg_dict_v) else: neg_dict_u, neg_dict_v = gul.get_negs(args.ns) print("negative samples is ok.....") context_dict_u, neg_dict_u = gul.get_context_and_negatives(gul.node_u, gul.walks_u, args.ws, args.ns, neg_dict_u) context_dict_v, neg_dict_v = gul.get_context_and_negatives(gul.node_v, gul.walks_v, args.ws, args.ns, neg_dict_v) return context_dict_u, neg_dict_u, context_dict_v, neg_dict_v, gul.node_u, gul.node_v # gul.node_u 和 gul.node_v 是list类型的数据 def BiNE_init_embedding_vectors(node_u, node_v, node_list_u, node_list_v, args): for i in node_u: vectors = np.random.random([1, args.d]) # 表示生成1行、d列的随机浮点数,其范围在(0,1)之间,其中d是embedding size,默认为128 help_vectors = np.random.random([1, args.d]) node_list_u[i] = {} # node_list_u 是一个嵌套dict,因为你每个node有embedding vectors和context vectors # preprocessing是sklearn的函数,norm可以为为l1(样本各个特征值除以各个特征值的绝对值之和)、l2(样本各个特征值除以各个特征值的平方之和)或max(样本各个特征值除以样本中特征值最大的值),默认为l2 node_list_u[i]['embedding_vectors'] = preprocessing.normalize(vectors, norm = 'l2') node_list_u[i]['context_vectors'] = preprocessing.normalize(help_vectors, norm = 'l2') for i in node_v: vectors = np.random.random([1, args.d]) help_vectors = np.random.random([1, args.d]) node_list_v[i] = {} node_list_v[i]['embedding_vectors'] = preprocessing.normalize(vectors, norm = 'l2') node_list_v[i]['context_vectors'] = preprocessing.normalize(help_vectors, norm = 'l2') return node_list_u, node_list_v def BiNE_skip_gram(center, contexts, negs, node_list, lam, pa): # 分别对应:u, z, neg_u, node_list_u, lam, alpha, 其中z是context_u中一个一个进行输入的,对items训练也类似 loss = 0 I_z = {center: 1} # indication function for node in negs: I_z[node] = 0 V = np.array(node_list[contexts]['embedding_vectors']) update = [[0] * V.size] for u in I_z.keys(): if node_list.get(u) is None: pass Theta = np.array(node_list[u]['context_vectors']) X = float(V.dot(Theta.T)) sigmod = 1.0 / (1 + (math.exp(-X * 1.0))) update += pa * lam * (I_z[u] - sigmod) * Theta node_list[u]['context_vectors'] += pa * lam * (I_z[u] - sigmod) * V try: loss += pa * (I_z[u] * math.log(sigmod) + (1 - I_z[u]) * math.log(1 - sigmod)) except: pass return update, loss def BiNE_KL_divergence(edge_dict_u, u, v, node_list_u, node_list_v, lam, gamma): loss = 0 e_ij = edge_dict_u[u][v] update_u = 0 update_v = 0 U = np.array(node_list_u[u]['embedding_vectors']) V = np.array(node_list_v[v]['embedding_vectors']) X = float(U.dot(V.T)) sigmod = 1.0 / (1 + (math.exp(-X * 1.0))) update_u += gamma * lam * ((e_ij * (1 - sigmod)) * 1.0 / math.log(math.e, math.e)) * V update_v += gamma * lam * ((e_ij * (1 - sigmod)) * 1.0 / math.log(math.e, math.e)) * U try: loss += gamma * e_ij * math.log(sigmod) except: pass return update_u, update_v, loss def BiNE_train_by_sampling(train_dataset,test_dataset,args): print('======== experiment settings =========') alpha, beta, gamma, lam = args.alpha, args.beta, args.gamma, args.lam print("constructing graph....") gul = GraphUtils() gul.construct_training_graph(train_dataset) # 这里创建的是二部图 edge_dict_u = gul.edge_dict_u # 一个二层嵌套dict,可以通过dixt[user][item]检索出其对应的rating edge_list = gul.edge_list # 即[(user, item, rating), ...] BiNE_walk_generator(gul, args) # 这里应该返回个gul吧?之前源代码木有gul =,(想想看其实这里也不用返回吧,因为所有的更改,尤其是gul中对象walks的生成,直接就存储进去了) print("getting context and negative samples....") context_dict_u, neg_dict_u, context_dict_v, neg_dict_v, node_u, node_v = BiNE_get_context_and_negative_samples(gul, args) print("============== training ==============") for i, n_latent in enumerate([4, 8, 16, 32, 64, 128]): print('BiNE', 'n_latent=', n_latent) args.max_iter = 200 args.d = n_latent node_list_u, node_list_v = {}, {} node_list_u, node_list_v = BiNE_init_embedding_vectors(node_u, node_v, node_list_u, node_list_v, args) last_loss, count, epsilon = 0, 0, 1e-3 for iter in range(0, args.max_iter): # s1 = "\r[%s%s]%0.2f%%" % ("*" * iter, " " * (args.max_iter - iter), iter * 100.0 / (args.max_iter - 1))# 这里实际上是要输出进度条 loss = 0 visited_u = dict(zip(node_list_u.keys(), [0] * len(node_list_u.keys()))) # node_list_u和node_list_v存储着每个user和item的embedding vectors visited_v = dict(zip(node_list_v.keys(), [0] * len(node_list_v.keys()))) # 这里的visited_u的输出是个字典,形如{u1:0, ...},visited_v也是这样,每次迭代时字典的values清零 random.shuffle(edge_list) # 即gul中的一个对象,存储着edge_list_u_v的三元组 for i in range(len(edge_list)): # 对每条边都进行, u, v, w = edge_list[i] # 对users的embeddings进行训练 length = len(context_dict_u[u]) random.shuffle(context_dict_u[u]) if visited_u.get(u) < length: index_list = list(range(visited_u.get(u), min(visited_u.get(u) + 1,length))) # range(start, stop)但不包含stop,这里看样子就是输出的visited_u.get(u)这一个位置的index for index in index_list: context_u = context_dict_u[u][index] neg_u = neg_dict_u[u][index] for z in context_u: tmp_z, tmp_loss = BiNE_skip_gram(u, z, neg_u, node_list_u, lam, alpha) node_list_u[z]['embedding_vectors'] += tmp_z # 这里嵌套字典的Key可以是字符串名 loss += tmp_loss visited_u[u] = index_list[-1] + 3 # 本轮结束后光标移动到的位置 # 对items的embeddings进行训练 length = len(context_dict_v[v]) random.shuffle(context_dict_v[v]) if visited_v.get(v) < length: index_list = list(range(visited_v.get(v), min(visited_v.get(v) + 1, length))) for index in index_list: context_v = context_dict_v[v][index] neg_v = neg_dict_v[v][index] for z in context_v: tmp_z, tmp_loss = BiNE_skip_gram(v, z, neg_v, node_list_v, lam, beta) node_list_v[z]['embedding_vectors'] += tmp_z # 这也是skip_gram的方法,对它们进行求和 loss += tmp_loss visited_v[v] = index_list[-1] + 3 update_u, update_v, tmp_loss = BiNE_KL_divergence(edge_dict_u, u, v, node_list_u, node_list_v, lam, gamma) loss += tmp_loss node_list_u[u]['embedding_vectors'] += update_u node_list_v[v]['embedding_vectors'] += update_v delta_loss = abs(loss - last_loss) if last_loss > loss: lam *= 1.05 else: lam *= 0.95 last_loss = loss if delta_loss < epsilon: break # sys.stdout.write(s1) # sys.stdout.flush() # save_to_file(node_list_u, node_list_v, args) # 最终要得到的其实就是users和items的embedding vectors 和 context vectors print("") # 之后在推荐过程中就是将对应的user和item的embedding vectors做点积,就得到了将用于推荐排序的预测评分 # 预测 best_user_embeddings = {} best_item_embeddings = {} for key, value in node_list_u.items(): best_user_embeddings[int(key[1:])] = value['embedding_vectors'].squeeze() # 这里要对numpy数组压缩一个维度奥! for key, value in node_list_v.items(): best_item_embeddings[int(key[1:])] = value['embedding_vectors'].squeeze() prediction = PREDICTION(train_dataset) estimated_rating_matrix = prediction.GET_ESTIMATED_RATING_MATRIX(best_user_embeddings, best_item_embeddings) valid_items = estimated_rating_matrix.columns all_recommendation_list = {} for i in range(estimated_rating_matrix.shape[0]): row = estimated_rating_matrix.iloc[i] user_id = row.name items = row.sort_values(ascending=False).index all_recommendation_list[user_id] = items for recommendation_size in range(10, 60, 10): recommendation_list = prediction.GET_RECOMMENDATION_LIST(recommendation_size, all_recommendation_list) evaluation = EVALUATION(estimated_rating_matrix, recommendation_size, recommendation_list, train_dataset, valid_items, test_dataset) Precision, HR, NDCG, MAE, RMSE = evaluation.MERICS_01() print(Precision, '\t', HR, '\t', NDCG, '\t', MAE, '\t', RMSE) del recommendation_list def BiNE_main(max_epoch, early_stopping): parser = ArgumentParser("BiNE", formatter_class=ArgumentDefaultsHelpFormatter, conflict_handler='resolve') # 'BiNE'是程序的名称;formatter_class用于自定义帮助文档输出格式的类,其中ArgumentDefaultsHelpFormatter表示自动添加默认的值的信息到每一个帮助信息的参数中; # conflict_handler解决冲突选项的策略(通常是不必要的),其中 'resolve' 值可以提供给 ArgumentParser 的 conflict_handler= 参数 parser.add_argument('--train-data', default='rating_train.csv',help='Input graph file.') # 当用户请求帮助时(一般是通过在命令行中使用 -h 或 --help 的方式),这些 help 描述将随每个参数一同显示 parser.add_argument('--test-data', default='rating_test.csv') # 对于name,在声明时最前方要加上--,而后面在调用时就像其他类那样用.即可 parser.add_argument('--model-name', default='default', help='name of model.') parser.add_argument('--vectors-u', default='vectors_u.dat', help="file of embedding vectors of U") parser.add_argument('--vectors-v', default='vectors_v.dat', help="file of embedding vectors of V") parser.add_argument('--case-train', default='case_train.dat', help="file of training data for LR") parser.add_argument('--case-test', default='case_test.dat', help="file of testing data for LR") parser.add_argument('--ws', default=5, type=int,help='window size.') # 因为parser会默认将传入的选项当做字符串,所以这里想要整型,则必须为它指定为int的type parser.add_argument('--ns', default=4, type=int, help='number of negative samples.') parser.add_argument('--d', default=128, type=int, help='embedding size.') # 向量维度如果后面需要迭代,可以修改 parser.add_argument('--maxT', default=32, type=int, help='maximal walks per vertex.') parser.add_argument('--minT', default=1, type=int, help='minimal walks per vertex.') parser.add_argument('--p', default=0.15, type=float, help='walk stopping probability.') parser.add_argument('--alpha', default=0.01, type=float, help='trade-off parameter alpha.') parser.add_argument('--beta', default=0.01, type=float, help='trade-off parameter beta.') parser.add_argument('--gamma', default=0.1, type=float, help='trade-off parameter gamma.') parser.add_argument('--lam', default=0.01, type=float, help='learning rate lambda.') parser.add_argument('--max-iter', default=max_epoch, type=int, help='maximal number of iterations.') parser.add_argument('--stop', default=early_stopping, type=int, help='early stopping number of iterations.') parser.add_argument('--top-n', default=10, type=int, help='recommend top-n items for each user.') parser.add_argument('--rec', default=1, type=int, help='calculate the recommendation metrics.') parser.add_argument('--lip', default=0, type=int, help='calculate the link prediction metrics.') parser.add_argument('--large', default=0, type=int,help='for large bipartite, 1 do not generate homogeneous graph file; 2 do not generate homogeneous graph, 这里的备注有问题') parser.add_argument('--mode', default='hits', type=str, help='metrics of centrality') args = parser.parse_args() # 将参数字符串转换为对象并将其设为命名空间的属性。 返回带有成员的命名空间 BiNE_train_by_sampling(true_train_dataset,test_dataset,args) # 将命名空间中的参数全部进行传入 def construct_smples_for_GMF_MLP_NCF(): validation_samples = validation_dataset # 这些放在最外面,因为每次用到的都是一样的,以免重复操作 user_validation = torch.tensor(validation_samples['user'].tolist()).unsqueeze(1).long() item_validation = torch.tensor(validation_samples['item'].tolist()).unsqueeze(1).long() target_validation = torch.tensor(validation_samples['rating'].tolist()).unsqueeze(1).float() user_num = max(train_dataset['user']) + 1 item_num = max(train_dataset['item']) + 1 true_train_samples =
pd.concat([true_train_dataset, negative_samples])
pandas.concat
import torch from pathlib import Path import librosa import numpy as np from torch.utils.data import Dataset, DataLoader import json import pandas as pd import os import math from PIL import Image import warnings from helpers.audio_utils import * from dataloaders.imbalanced_dataset_sampler import ImbalancedDatasetSampler warnings.filterwarnings("ignore") class AudioDatasetV2(Dataset): def __init__(self, root_dir, csv_dir, conf, bird_code, inv_ebird_label, background_audio_dir=None, xeno_csv=None, xeno_dir=None, file_type="ogg", num_splits=5, apply_mixer = False, isTraining=True, transform=None): self.root_dir = root_dir df = pd.read_csv(csv_dir) df.secondary_labels = df.secondary_labels.apply(eval) df["xeno_source"] = False self.transform = transform self.conf = conf self.num_splits = num_splits self.isTraining = isTraining self.apply_mixer = apply_mixerz self.bird_code = bird_code self.inv_ebird_label = inv_ebird_label self.file_type = file_type self.additional_loader_params = { "worker_init_fn": self.init_workers_fn } self.sampler = ImbalancedDatasetSampler if xeno_csv is not None: self.xeno_dir = xeno_dir df_xeno =
pd.read_csv(xeno_csv)
pandas.read_csv
import requests import re from bs4 import BeautifulSoup import pandas as pd import sys from PyQt4.QtGui import QApplication from PyQt4.QtCore import QUrl from PyQt4.QtWebKit import QWebPage import bs4 as bs import urllib.request import os import datetime ############################################################### path_of_brandwise = 'C:\\LavaWebScraper\\BrandWiseFiles\\' ############################################################### base_url = 'http://www.infocusindia.co.in/mobile-phones/' #ur='https://www.nokia.com/en_int/phones/' country = 'USA' company = 'INFOCUS' model_list = [] usp = [] display_list = [] memory_list = [] processor_list = [] camera_list = [] battery_list = [] thickness_list = [] extras_links = [] records = [] href = [] st_list_heads=[] st_list_dets=[] hr=[] spec_url=[] r=requests.get(base_url) soup=BeautifulSoup(r.text,'html.parser') results=soup.find_all('div',attrs={'class':'row'}) for i in range(len(results)): sa=results[i].find_all('div',attrs={'class':'col-md-3 col-sm-6'}) for a in range(len(sa)): sb=sa[a].find_all('h2') for b in range(len(sb)): href.append(sb[b].find('a')['href']) model_list.append(sb[b].text.strip()) sc=sa[a].find_all('table',attrs={'class':'product-carousel-price'}) for c in range(len(sc)): u='' sd=sc[c].find_all('td') for d in range(len(sd)): se=sd[d].find_all('li') for e in range(len(se)): u=u+se[e].text.replace('•',' ').strip()+' || ' usp.append(u) for i in range(len(href)): p1='' m1='' c1='' d1='' r=requests.get(href[i]) soup=BeautifulSoup(r.text,'html.parser') results=soup.find_all('div',attrs={'class':'col-sm-8 left'}) #print(len(results)) for a in range(len(results)): sa=results[a].find_all('div',attrs={'class':'figure'}) if len(sa)!=0: for b in range(len(sa)): sb=sa[b].find_all('div',attrs={'class':'heading'}) for c in range(len(sb)): if 'outward appearance' in sb[c].text.lower(): sc=sa[b].find_all('table') for d in range(len(sc)): sd=sc[d].find_all('tr') for e in range(len(sd)): se=sd[e].find_all('th') sf=sd[e].find_all('td') for f in range(len(se)): if 'dimension' in se[f].text.lower(): thickness_list.append(sf[f].text) if 'processor' in sb[c].text.lower(): sc=sa[b].find_all('table') for d in range(len(sc)): sd=sc[d].find_all('tr') for e in range(len(sd)): se=sd[e].find_all('th') sf=sd[e].find_all('td') for f in range(len(se)): if 'model' in se[f].text.lower() or 'core' in se[f].text.lower(): p1=p1+(se[f].text+':-'+sf[f].text+' || ') if 'display' in sb[c].text.lower(): sc=sa[b].find_all('table') for d in range(len(sc)): sd=sc[d].find_all('tr') for e in range(len(sd)): se=sd[e].find_all('th') sf=sd[e].find_all('td') for f in range(len(se)): if 'dimension' in se[f].text.lower() or 'material' in se[f].text.lower(): d1=d1+(se[f].text+':-'+sf[f].text+' || ') if 'battery' in sb[c].text.lower(): sc=sa[b].find_all('table') for d in range(len(sc)): sd=sc[d].find_all('tr') for e in range(len(sd)): se=sd[e].find_all('th') sf=sd[e].find_all('td') for f in range(len(se)): if 'capacity' in se[f].text.lower(): battery_list.append(sf[f].text) if 'storage' in sb[c].text.lower(): sc=sa[b].find_all('table') for d in range(len(sc)): sd=sc[d].find_all('tr') for e in range(len(sd)): se=sd[e].find_all('th') sf=sd[e].find_all('td') for f in range(len(se)): if ('ram storage' in se[f].text.lower() or 'rom storage' in se[f].text.lower()) and('material' not in se[f].text.lower()): m1=m1+(se[f].text+':-'+sf[f].text+' || ') if 'camera' in sb[c].text.lower(): sc=sa[b].find_all('table') for d in range(len(sc)): sd=sc[d].find_all('tr') for e in range(len(sd)): se=sd[e].find_all('th') sf=sd[e].find_all('td') for f in range(len(se)): if 'pixels' in se[f].text.lower() or 'material' in se[f].text.lower(): c1=c1+(sb[c].text.strip().replace('\n',' ')+':-'+sf[f].text.strip().replace('\n',' ')+' || ') else: sb=results[a].find_all('div',attrs={'class':'feature-icon'}) for b in range(len(sb)): sc=sb[b].find_all('li') for c in range(len(sc)): sd=sc[c].find_all('p') for d in range(len(sd)): if 'GB' in sd[d].text: m1=m1+sd[d].text+' || ' if 'mAh' in sd[d].text: battery_list.append(sd[d].text) if 'pixel' in sd[d].text.lower(): camera_list.append(sd[d].text) if 'thickness' in sd[d].text.lower(): thickness_list.append(sd[d].text) if 'cm' in sd[d].text or 'inch' in sd[d].text: display_list.append(sd[d].text) if p1!='': processor_list.append(p1) if c1!='': camera_list.append(c1) if d1!='': display_list.append(d1) if m1!='': memory_list.append(m1) if len(battery_list)==i: battery_list.append('Not Available') if len(memory_list)==i: memory_list.append('Not Available') if len(processor_list)==i: processor_list.append('Not Available') if len(display_list)==i: display_list.append('Not Available') if len(thickness_list)==i: thickness_list.append('Not Available') if len(camera_list)==i: camera_list.append('Not Available') if len(usp)==i: usp.append('Not Available') print(len(model_list)) print(len(usp)) print(len(thickness_list)) print(len(processor_list)) print(len(memory_list)) print(len(battery_list)) print(len(display_list)) print(len(camera_list)) extras_links = href for i in range(len(model_list)): records.append((country, company, model_list[i], usp[i], display_list[i], camera_list[i], memory_list[i], battery_list[i], thickness_list[i], processor_list[i], extras_links[i])) df =
pd.DataFrame(records, columns = ['COUNTRY', 'COMPANY', 'MODEL', 'USP', 'DISPLAY', 'CAMERA', 'MEMORY', 'BATTERY', 'THICKNESS', 'PROCESSOR', 'EXTRAS/ LINKS'])
pandas.DataFrame
import pandas as pd import results from phrasegeo import Matcher, MatcherPipeline from time import time # load up the db db_name = 'GNAF_VIC' DB = f"postgresql:///{db_name}" db = results.db(DB) # set up the matchers matcher1 = Matcher(db, how='standard') matcher2 = Matcher(db, how='slow') matcher3 = Matcher(db, how='trigram') # pipeline setup pipeline = MatcherPipeline([matcher1, matcher2, matcher3]) # load up the test addresses df = pd.read_csv('phrasegeo/datasets/addresses1.csv') addresslist = list(df['ADDRESS'].values) # another set of test addresses df =
pd.read_csv('phrasegeo/datasets/nab_atm_vic.csv')
pandas.read_csv
""" Target Problem: --------------- * To train a model to predict the brain connectivity for the next time point given the brain connectivity at current time point. Proposed Solution (Machine Learning Pipeline): ---------------------------------------------- * K-NN Input to Proposed Solution: --------------------------- * Directories of training and testing data in csv file format * These two types of data should be stored in n x m pattern in csv file format. Typical Example: ---------------- n x m samples in training csv file (Explain n and m) k x s samples in testing csv file (Explain k and s Output of Proposed Solution: ---------------------------- * Predictions generated by learning model for testing set * They are stored in "results_team12.csv" file. (Change the name file if needed) Code Owner: ----------- * Copyright © Team 12. All rights reserved. * Copyright © Istanbul Technical University, Learning From Data Spring/Fall 2020. All rights reserved. """ import pandas as pd from sklearn.model_selection import KFold import numpy as np from sklearn.metrics import mean_squared_error, mean_absolute_error from sklearn.neighbors import NearestNeighbors from scipy.stats.stats import pearsonr import random as r r.seed(1) np.random.seed(1) import warnings warnings.filterwarnings('ignore') def load_data(csv): """ The method reads train and test data from their dataset files. Then, it splits train data into features and labels. Parameters ---------- train_file: directory of the file in which train data set is located test_file: directory of the file in which test data set is located """ # reading the data from the csv files df = pd.read_csv(csv, sep=',') # ignoring the index column of the data (0,...,149 or 0,...,79) df = df.drop(columns=['ID']) df_np = df.to_numpy() return df_np def train_model(train_t0, neighbourCount): """ The method creates a learning model and trains it by using training data. Parameters ---------- train_t0: x neighbourCount: number of neigbours in KNN """ nbrs = [] train_t0_single = np.transpose(train_t0) for i in range(train_t0_single.shape[0]): nbrs.append(NearestNeighbors(n_neighbors=neighbourCount, algorithm='ball_tree').fit(train_t0_single[i].reshape(-1,1))) return nbrs def predict(train_t0, train_t1, test_t0, nbrs): """ The method makes predictions for testing data samples by using trained learning model. Parameters ---------- train_t0: x train_t1: y test_t0: x_test nbrs: Nearest Neigbors model for each feature """ train_t0_single = np.transpose(train_t0) train_t1_single = np.transpose(train_t1) test_t0_single = np.transpose(test_t0) prediction = np.zeros_like(test_t0) for i in range(train_t0_single.shape[0]): distances, indices = nbrs[i].kneighbors(test_t0_single[i].reshape(-1,1)) distances = np.ones_like(distances)* 0.7 - distances mul = np.multiply(distances, train_t1_single[i,indices]) pred = np.divide(np.mean(mul, axis =1), np.mean(distances, axis = 1)) prediction[:,i] = pred.reshape(-1) nanLocations = np.isnan(prediction) prediction[nanLocations] = 0 return prediction def cv5(data_t0, data_t1, neighbourCount): kf = KFold(n_splits=5 , shuffle = True, random_state=1) prediction_all = np.zeros_like(data_t1) mses= [] maes = [] pears = [] for trainIndex, testIndex in kf.split(data_t0): train_t0, test_t0 = data_t0[trainIndex], data_t0[testIndex] #Split Data into train and test sets train_t1, test_t1 = data_t1[trainIndex], data_t1[testIndex] train_t0_single = np.transpose(train_t0) # Use features as rows and subjects as columns train_t1_single = np.transpose(train_t1) test_t0_single = np.transpose(test_t0) prediction = np.zeros_like(test_t0) preds = [] for i in range(train_t0_single.shape[0]): #Loop through each feature nbrs = NearestNeighbors(n_neighbors= neighbourCount, algorithm='ball_tree').fit(train_t0_single[i].reshape(-1,1)) distances, indices = nbrs.kneighbors(test_t0_single[i].reshape(-1,1))# Calculate the distances and indices of K closest neighbours of test subjects and train subjects in t0 distances = np.ones_like(distances)* 0.7 - distances # Set distances to (0.7 - d). Neighbours with low distance get larger values and vice versa mul = np.multiply(distances, train_t1_single[i,indices]) # Use the changed distances as weights and multiply the corresponding t1 of the neighbours pred = np.divide(np.mean(mul,axis =1),np.mean(distances, axis = 1)) #Take the mean of the weighted t1's and divide by the mean of distances to normalize prediction[:,i] = pred.reshape(-1) #This is the prediction for this feature acroos all test subjects preds.append(pred.reshape(-1)) nanLocations = np.isnan(prediction) prediction[nanLocations] = 0 # Set nan locations to 0 preds = np.asarray(preds) preds = np.transpose(preds) mses.append( mean_squared_error(preds, test_t1) ) maes.append( mean_absolute_error(preds, test_t1) ) pears.append(pearsonr(preds.flatten(), test_t1.flatten())[0] ) prediction_all[testIndex] = prediction # Put all predictions for each CV fold into prediction_all mse_error = mean_squared_error(data_t1, prediction_all) mae_error = mean_absolute_error(data_t1, prediction_all) print("mses: ", mses) print("maes: ", maes) print("pears", pears) print("Average error of five fold cross validation MSE:", np.sum(mses) / 5) print("Average error of five fold cross validation MAE:", np.sum(maes) / 5) print("Average error of five fold cross validation pearson:", np.sum(pears) / 5) print(" std of five fold cross validation MSE:", np.std(mses)) print(" std of five fold cross validation MAE:", np.std(maes)) print(" std of five fold cross validation pearson:", np.std(pears)) return mae_error, mse_error, prediction_all def write_output(filename, predictions): test_df =
pd.DataFrame(predictions)
pandas.DataFrame
import matplotlib matplotlib.use("Agg") import matplotlib.pyplot as plt import spacepy.plot as splot import datetime as dt import matplotlib.dates as mdates import pandas as pd import statsmodels.api as sm from scipy.interpolate import interp1d from scipy import array import numpy as np import analysis as ala import get_sd_data as gsd np.random.seed(0) splot.style("spacepy_altgrid") fontT = {"family": "serif", "color": "k", "weight": "normal", "size": 8} font = {"family": "serif", "color": "black", "weight": "normal", "size": 10} from matplotlib import font_manager ticks_font = font_manager.FontProperties(family="serif", size=10, weight="normal") matplotlib.rcParams["xtick.color"] = "k" matplotlib.rcParams["ytick.color"] = "k" matplotlib.rcParams["xtick.labelsize"] = 10 matplotlib.rcParams["ytick.labelsize"] = 10 matplotlib.rcParams["mathtext.default"] = "default" def extrap1d(x,y,kind="linear"): """ This method is used to extrapolate 1D paramteres """ interpolator = interp1d(x,y,kind=kind) xs = interpolator.x ys = interpolator.y def pointwise(x): if x < xs[0]: return ys[0]+(x-xs[0])*(ys[1]-ys[0])/(xs[1]-xs[0]) elif x > xs[-1]: return ys[-1]+(x-xs[-1])*(ys[-1]-ys[-2])/(xs[-1]-xs[-2]) else: return interpolator(x) def ufunclike(xs): return array(list(map(pointwise, array(xs)))) return ufunclike def coloring_axes(ax, atype="left", col="red"): ax.spines[atype].set_color(col) ax.tick_params(axis="y", which="both", colors=col) ax.yaxis.label.set_color(col) fmt = matplotlib.dates.DateFormatter("%H%M") ax.xaxis.set_major_formatter(fmt) ax.xaxis.set_major_locator(mdates.MinuteLocator(interval=5)) return ax def coloring_twaxes(ax, atype="left", col="red", twcol="k"): ax.spines[atype].set_color(col) ax.tick_params(axis="y", which="both", colors=twcol) ax.yaxis.label.set_color(twcol) fmt = matplotlib.dates.DateFormatter("%H%M") ax.xaxis.set_major_formatter(fmt) ax.xaxis.set_major_locator(mdates.MinuteLocator(interval=5)) return ax def example_riom_plot(ev=dt.datetime(2015,3,11,16,22), stn="ott", start=dt.datetime(2015,3,11,16,10), end=dt.datetime(2015,3,11,16,30)): riom = ala.Riometer(ev, stn).fetch() gos = ala.GOES(ev).fetch() fig, axes = plt.subplots(figsize=(9,3),nrows=1,ncols=3,dpi=120) fig.subplots_adjust(wspace=.1) col = "red" ax = coloring_axes(axes[0]) font["color"] = col ax.semilogy(gos.times,gos.b_flux,col,linewidth=0.75) ax.axvline(gos.set_index("times").b_flux.idxmax(), color=col, linewidth=0.6) ax.set_ylim(1e-6,1e-3) ax.set_ylabel("solar flux\n"+r"($wm^{-2}$)",fontdict=font) font["color"] = "k" ax.set_xlabel("time (ut)",fontdict=font) ax = coloring_twaxes(ax.twinx()) ax.plot(riom.times, riom.absorption,"ko", markersize=1) ax.axvline(riom.set_index("times").absorption.idxmax(), color="k", linewidth=0.6) ax.grid(false) ax.set_xlim(start,end) ax.set_ylim(-.1, 3.) dx = (riom.set_index("times").absorption.idxmax()-gos.set_index("times").b_flux.idxmax()).total_seconds() ax.text(0.54,0.3,r"$\bar{\delta}$=%ds"%(dx),horizontalalignment="center", verticalalignment="center", transform=ax.transaxes,fontdict=fontt, rotation=90) ax.set_yticklabels([]) font["color"] = "darkgreen" ax.text(0.7,1.05,"station - ott, 11 march 2015, universal time",horizontalalignment="center", verticalalignment="center", transform=ax.transaxes,fontdict=font) font["color"] = "k" ax.text(.9,.9,"(a)",horizontalalignment="center",verticalalignment="center", transform=ax.transaxes,fontdict=fontt) fslope = ala.slope_analysis(np.log10(gos.B_FLUX),gos.times.tolist()) rslope = ala.slope_analysis(riom.absorption.tolist(), riom.times.tolist(), xT=120) ax = coloring_axes(axes[1]) ax.semilogy(gos.times,gos.B_FLUX,col,linewidth=0.75) ax.axvline(fslope, color=col, linewidth=0.6, ls="--") ax.set_ylim(1e-6,1e-3) ax.set_yticklabels([]) ax.set_xlabel("Time (UT)",fontdict=font) ax = coloring_twaxes(ax.twinx()) ax.plot(riom.times, riom.absorption,"ko", markersize=1) ax.grid(False) ax.set_xlim(start,end) ax.set_ylim(-.1, 3.) ax.axvline(rslope, color="k", linewidth=0.6, linestyle="--") ax.set_yticklabels([]) dy = (rslope-fslope).total_seconds() ax.text(0.27,0.8,r"$\bar{\delta}_s$=%ds"%(dy),horizontalalignment="center", verticalalignment="center", transform=ax.transAxes,fontdict=fontT, rotation=90) ax.text(.9,.9,"(b)",horizontalalignment="center",verticalalignment="center", transform=ax.transAxes,fontdict=fontT) dx=40 ax = coloring_axes(axes[2]) ax.semilogy(gos.times,gos.B_FLUX,col,linewidth=0.75) ax.semilogy(gos.times,np.roll(gos.B_FLUX,dx),"r-.") ax.set_ylim(1e-6,1e-3) ax.set_yticklabels([]) ax.set_xlabel("Time (UT)",fontdict=font) ax = coloring_twaxes(ax.twinx()) ax.plot(riom.times, riom.absorption,"ko", markersize=1) ax.grid(False) ax.set_xlim(start,end) ax.set_ylim(-.1, 3.) ax.set_ylabel(r"Absorption [$\beta$]" + "\n(in dB)",fontdict=font) ax.text(0.2,0.9,r"$\bar{\delta}_c$=%ds"%(2*dx),horizontalalignment="center", verticalalignment="center", transform=ax.transAxes,fontdict=fontT) ax.text(0.2,0.83,r"$\rho$=%.2f"%.93,horizontalalignment="center", verticalalignment="center", transform=ax.transAxes,fontdict=fontT) ax.text(.9,.9,"(c)",horizontalalignment="center",verticalalignment="center", transform=ax.transAxes,fontdict=fontT) fig.autofmt_xdate(rotation=30,ha="center") fig.savefig("images/example.png",bbox_inches="tight") return def example_rad_plot(ev=dt.datetime(2015,3,11,16,22), stn="bks", start=dt.datetime(2015,3,11,16,10), end=dt.datetime(2015,3,11,16,30)): sdr = gsd._fetch_sd_(ev, stn, start, end) gos = ala.GOES(ev).fetch() fig, axes = plt.subplots(figsize=(3,3),nrows=1,ncols=1,dpi=120) fmt = matplotlib.dates.DateFormatter("%H%M") dx = 25 fslope = ala.slope_analysis(np.log10(gos.B_FLUX),gos.times.tolist()) col = "red" ax = axes ax.spines["left"].set_color(col) ax.tick_params(axis="y", which="both", colors=col) ax.yaxis.label.set_color(col) font["color"] = col ax.xaxis.set_major_formatter(fmt) ax.semilogy(gos.times,gos.B_FLUX,col,linewidth=0.75) ax.semilogy(gos.times,np.roll(gos.B_FLUX,dx),"r-.") ax.axvline(fslope, color=col, linewidth=0.6, ls="--") ax.set_ylim(1e-6,1e-3) ax.set_ylabel("Solar Flux\n"+r"($Wm^{-2}$)",fontdict=font) font["color"] = "k" ax.set_xlabel("Time (UT)",fontdict=font) rslope = ala.slope_analysis(sdr.me,sdr.time.tolist()) ax = coloring_twaxes(ax.twinx()) ax.plot(sdr.time, sdr.me, "k-") ax.set_xlim(start,end) ax.axvline(rslope, color="k", linewidth=0.6, linestyle="--") ax.set_ylabel(r"Inverse #-GS",fontdict=font) ax.grid(False) ax.set_xlim(start,end) ax.set_ylim(-.1, 20.) dy = (rslope-fslope).total_seconds() ax.text(0.38,0.8,r"$\bar{\delta}_s$=%ds"%(dy),horizontalalignment="center", verticalalignment="center", transform=ax.transAxes,fontdict=fontT, rotation=90) ax.text(0.2,0.9,r"$\bar{\delta}_c$=%ds"%(2*dx),horizontalalignment="center", verticalalignment="center", transform=ax.transAxes,fontdict=fontT) ax.text(0.2,0.83,r"$\rho$=%.2f"%.56,horizontalalignment="center", verticalalignment="center", transform=ax.transAxes,fontdict=fontT) ax.text(0.78,0.9,"Station - BKS",horizontalalignment="center", verticalalignment="center", transform=ax.transAxes,fontdict=fontT) fig.autofmt_xdate(rotation=30,ha="center") fig.savefig("images/example_sd.png",bbox_inches="tight") return def example_hrx_plot(ev=dt.datetime(2015,3,11,16,22), stn="ott", start=dt.datetime(2015,3,11,16,10), end=dt.datetime(2015,3,11,16,30)): riom = ala.Riometer(ev, stn).fetch() gos = ala.GOES(ev).fetch() fig, axes = plt.subplots(figsize=(3,6),nrows=2,ncols=1,dpi=120) fig.subplots_adjust(hspace=0.1) fmt = matplotlib.dates.DateFormatter("%H%M") fslope = ala.slope_analysis(np.log10(gos.B_FLUX),gos.times.tolist()) col = "red" ax = coloring_axes(axes[0]) font["color"] = col ax.semilogy(gos.times,gos.B_FLUX,col,linewidth=0.75) ax.axvline(gos.set_index("times").B_FLUX.idxmax(), color=col, linewidth=0.6) ax.axvline(fslope, color=col, linewidth=0.6, ls="--") ax.set_ylim(1e-8,1e-3) ax.set_ylabel("Soft X-ray [0.1-0.8 nm]\n"+r"($Wm^{-2}$)",fontdict=font) font["color"] = "k" ax.set_xlabel("Time (UT)",fontdict=font) ax = coloring_twaxes(ax.twinx()) rslope = ala.slope_analysis(riom.absorption.tolist(), riom.times.tolist(), xT=120) ax.plot(riom.times, riom.absorption,"ko", markersize=1) ax.axvline(riom.set_index("times").absorption.idxmax(), color="k", linewidth=0.6) ax.grid(False) ax.set_xlim(start,end) ax.set_ylim(-.1, 3.) ax.axvline(rslope, color="k", linewidth=0.6, linestyle="--") ax.set_ylabel(r"Absorption [$\beta$]" + "\n(in dB)",fontdict=font) ax.set_ylim(-.1, 3.) dx = (riom.set_index("times").absorption.idxmax()-gos.set_index("times").B_FLUX.idxmax()).total_seconds() dy = (rslope-fslope).total_seconds() ax.text(0.36,0.85,r"$\bar{\delta}_s$=%ds"%(dy),horizontalalignment="center", verticalalignment="center", transform=ax.transAxes,fontdict=fontT, rotation=90) ax.text(0.68,0.25,r"$\bar{\delta}$=%ds"%(dx),horizontalalignment="center", verticalalignment="center", transform=ax.transAxes,fontdict=fontT, rotation=90) ax.text(0.8,0.9,"Station - OTT",horizontalalignment="center", verticalalignment="center", transform=ax.transAxes,fontdict=fontT) fslope = ala.slope_analysis(np.log10(gos.A_FLUX),gos.times.tolist()) col = "blue" ax = coloring_axes(axes[1]) font["color"] = col ax.semilogy(gos.times,gos.A_FLUX,col,linewidth=0.75) ax.axvline(gos.set_index("times").A_FLUX.idxmax(), color=col, linewidth=0.6) ax.axvline(fslope, color=col, linewidth=0.6, ls="--") ax.set_ylim(1e-8,1e-3) ax.set_ylabel("Hard X-ray [0.05-0.4 nm]\n"+r"($Wm^{-2}$)",fontdict=font) font["color"] = "k" ax.set_xlabel("Time (UT)",fontdict=font) ax = coloring_twaxes(ax.twinx()) rslope = ala.slope_analysis(riom.absorption.tolist(), riom.times.tolist(), xT=120) ax.plot(riom.times, riom.absorption,"ko", markersize=1) ax.axvline(riom.set_index("times").absorption.idxmax(), color="k", linewidth=0.6) ax.grid(False) ax.set_xlim(start,end) ax.set_ylim(-.1, 3.) ax.axvline(rslope, color="k", linewidth=0.6, linestyle="--") ax.set_ylabel(r"Absorption [$\beta$]" + "\n(in dB)",fontdict=font) ax.set_ylim(-.1, 3.) dx = (riom.set_index("times").absorption.idxmax()-gos.set_index("times").A_FLUX.idxmax()).total_seconds() dy = (rslope-fslope).total_seconds() ax.text(0.36,0.85,r"$\bar{\delta}_s$=%ds"%(dy),horizontalalignment="center", verticalalignment="center", transform=ax.transAxes,fontdict=fontT, rotation=90) ax.text(0.68,0.25,r"$\bar{\delta}$=%ds"%(dx),horizontalalignment="center", verticalalignment="center", transform=ax.transAxes,fontdict=fontT, rotation=90) ax.text(0.8,0.9,"Station - OTT",horizontalalignment="center", verticalalignment="center", transform=ax.transAxes,fontdict=fontT) ax.text(0.1,0.9,"(b)",horizontalalignment="center", verticalalignment="center", transform=ax.transAxes,fontdict=fontT) ax = axes[0] ax.axvline(fslope, color="b", linewidth=0.6, linestyle="--",clip_on=False,ymin=-.2) ax.axvline(gos.set_index("times").A_FLUX.idxmax(), color="b", linewidth=0.6,clip_on=False,ymin=-.2) ax.text(0.1,0.9,"(a)",horizontalalignment="center", verticalalignment="center", transform=ax.transAxes,fontdict=fontT) fig.autofmt_xdate(rotation=30,ha="center") fig.savefig("images/example_hrx.png",bbox_inches="tight") return class Statistics(object): def __init__(self, args): if args.acase == 0 and not args.rad: fname = "csv/rio_c0.csv" self.fname = "images/stat_rio_c0.png" if args.acase == 1 and not args.rad: fname = "csv/rio_c1.csv" self.fname = "images/stat_rio_c1.png" self.tail = "s" if args.acase == 2 and not args.rad: fname = "csv/rio_c2.csv" self.fname = "images/stat_rio_c2.png" self.tail = "c" if args.acase == 1 and args.rad: fname = "csv/rad_c1.csv" self.fname = "images/stat_rad_c1.png" self.tail = "s" if args.acase == 2 and args.rad: fname = "csv/rad_c2.csv" self.fname = "images/stat_rad_c2.png" self.tail = "c" self.dat = pd.read_csv(fname) self.args = args return def _model_(self, X, y, family=sm.families.NegativeBinomial()): model = sm.GLM(y, X, family=family) response = model.fit() return response def getpval(self, x, y, family=sm.families.NegativeBinomial()): model = sm.GLM(y, x, family=family) response = model.fit() print(response.summary()) return def _create_x_(self, cossza, lat, logfmax, lt, lp="cossza"): _o = pd.DataFrame() if lp == "cossza": L = len(cossza) _o["cossza"], _o["lat"], _o["lt"], _o["logfmax"] = cossza, [lat]*L, [lt]*L, [logfmax]*L if lp == "lat": L = len(lat) _o["cossza"], _o["lat"], _o["lt"], _o["logfmax"] = [cossza]*L, lat, [lt]*L, [logfmax]*L if lp == "logfmax": L = len(logfmax) _o["cossza"], _o["lat"], _o["lt"], _o["logfmax"] = [cossza]*L, [lat]*L, [lt]*L, logfmax if lp == "lt": L = len(lt) _o["cossza"], _o["lat"], _o["lt"], _o["logfmax"] = [cossza]*L, [lat]*L, lt, [logfmax]*L return _o def _image_(self): def get_bin_mean(dfx, b_start, b_end, param="sza", prcntile=50.): dt = dfx[(dfx[param]>=b_start) & (dfx[param]<b_end)].dt mean_val = np.mean(dt) if len(dt)>0: percentile = np.percentile(dt, prcntile) else: percentile = np.nan mad = np.median(np.abs(dt-mean_val)) return [mean_val, percentile, mad] def to_bin(dfx, bins, param): binned_data = [] for n in range(0, len(bins)-1): b_start = bins[n] b_end = bins[n+1] binned_data.append(get_bin_mean(dfx, b_start, b_end, param=param)) binned_data = np.array(binned_data) return binned_data def cfit(xdat, ydat, xn, crv=lambda u, a, b: u*a+b): from scipy.optimize import curve_fit fd =
pd.DataFrame()
pandas.DataFrame
# Multiscale sampling (MSS) with VASP and LAMMPS # <NAME> # Getman Research Group # Mar 5, 2020 import sys,os import pandas as pd import solvent class ReadInput(object): def __init__(self, poscar_file, mss_input): self.readPOSCAR(poscar_file) self.readMSSinput(mss_input) self.groupAtom() def readPOSCAR(self, poscar_file): """ read VASP POSCAR/CONTCAR file """ self.elem = {} # vac or solvated poscar atoms (pt+ads+h2o), set in readPOSCAR() self.cell_vec = [] # set in readposcar() self.old_coords = [] # set in readposcar() with open(poscar_file) as f: flag = False for i, line in enumerate(f): if len(line.strip().split()) == 0: break if i == 0: title = line.strip().split() # better make this title as the element list elif i == 1: self.multiplier = float(line.strip().split()[0]) elif 2 <= i < 5: self.cell_vec.append([float(j) for j in line.strip().split()]) elif i == 5: if line.strip().split()[0].isdigit(): # check if provide element name self.elem['elem'] = title self.elem['num'] = [int(j) for j in line.strip().split()] else: self.elem['elem'] = line.strip().split() self.elem['num'] = [int(j) for j in next(f).strip().split()] pattern = next(f).strip().split()[0] if pattern.lower().startswith('s'):# check if this line is Selective Dyanmics self.coord_type = next(f).strip().split()[0] else: self.coord_type = pattern if self.coord_type[0].lower() not in ['c', 'd']: # check if cartesian or direct sys.exit('\nERROR READING POSCAR: please check coordinate type\n') flag = True #################################### elif flag and len(line.strip().split()) > 0: self.old_coords.append(line.strip().split()) def readMSSinput(self, mss_input): """ read MSS modeling input file """ self.elem_surface = {'elem':[], 'num':[]} self.elem_ads = {'elem':[], 'num':[]} self.elem_sol = {'elem':[], 'num':[]} self.atom =
pd.DataFrame()
pandas.DataFrame
import numpy as np import pytest import pandas as pd from pandas import ( DataFrame, Index, Series, concat, date_range, ) import pandas._testing as tm class TestEmptyConcat: def test_handle_empty_objects(self, sort): df = DataFrame(np.random.randn(10, 4), columns=list("abcd")) baz = df[:5].copy() baz["foo"] = "bar" empty = df[5:5] frames = [baz, empty, empty, df[5:]] concatted = concat(frames, axis=0, sort=sort) expected = df.reindex(columns=["a", "b", "c", "d", "foo"]) expected["foo"] = expected["foo"].astype("O") expected.loc[0:4, "foo"] = "bar" tm.assert_frame_equal(concatted, expected) # empty as first element with time series # GH3259 df = DataFrame( {"A": range(10000)}, index=date_range("20130101", periods=10000, freq="s") ) empty = DataFrame() result = concat([df, empty], axis=1) tm.assert_frame_equal(result, df) result = concat([empty, df], axis=1) tm.assert_frame_equal(result, df) result = concat([df, empty]) tm.assert_frame_equal(result, df) result = concat([empty, df]) tm.assert_frame_equal(result, df) def test_concat_empty_series(self): # GH 11082 s1 = Series([1, 2, 3], name="x") s2 = Series(name="y", dtype="float64") res = concat([s1, s2], axis=1) exp = DataFrame( {"x": [1, 2, 3], "y": [np.nan, np.nan, np.nan]}, index=Index([0, 1, 2], dtype="O"), ) tm.assert_frame_equal(res, exp) s1 = Series([1, 2, 3], name="x") s2 = Series(name="y", dtype="float64") res = concat([s1, s2], axis=0) # name will be reset exp = Series([1, 2, 3]) tm.assert_series_equal(res, exp) # empty Series with no name s1 = Series([1, 2, 3], name="x") s2 = Series(name=None, dtype="float64") res = concat([s1, s2], axis=1) exp = DataFrame( {"x": [1, 2, 3], 0: [np.nan, np.nan, np.nan]}, columns=["x", 0], index=Index([0, 1, 2], dtype="O"), ) tm.assert_frame_equal(res, exp) @pytest.mark.parametrize("tz", [None, "UTC"]) @pytest.mark.parametrize("values", [[], [1, 2, 3]]) def test_concat_empty_series_timelike(self, tz, values): # GH 18447 first = Series([], dtype="M8[ns]").dt.tz_localize(tz) dtype = None if values else np.float64 second = Series(values, dtype=dtype) expected = DataFrame( { 0: Series([pd.NaT] * len(values), dtype="M8[ns]").dt.tz_localize(tz), 1: values, } ) result = concat([first, second], axis=1) tm.assert_frame_equal(result, expected) @pytest.mark.parametrize( "left,right,expected", [ # booleans (np.bool_, np.int32, np.int32), (np.bool_, np.float32, np.object_), # datetime-like ("m8[ns]", np.bool_, np.object_), ("m8[ns]", np.int64, np.object_), ("M8[ns]", np.bool_, np.object_), ("M8[ns]", np.int64, np.object_), # categorical ("category", "category", "category"), ("category", "object", "object"), ], ) def test_concat_empty_series_dtypes(self, left, right, expected): result = concat([Series(dtype=left), Series(dtype=right)]) assert result.dtype == expected @pytest.mark.parametrize( "dtype", ["float64", "int8", "uint8", "bool", "m8[ns]", "M8[ns]"] ) def test_concat_empty_series_dtypes_match_roundtrips(self, dtype): dtype = np.dtype(dtype) result = concat([Series(dtype=dtype)]) assert result.dtype == dtype result = concat([Series(dtype=dtype), Series(dtype=dtype)]) assert result.dtype == dtype def test_concat_empty_series_dtypes_roundtrips(self): # round-tripping with self & like self dtypes = map(np.dtype, ["float64", "int8", "uint8", "bool", "m8[ns]", "M8[ns]"]) def int_result_type(dtype, dtype2): typs = {dtype.kind, dtype2.kind} if not len(typs - {"i", "u", "b"}) and ( dtype.kind == "i" or dtype2.kind == "i" ): return "i" elif not len(typs - {"u", "b"}) and ( dtype.kind == "u" or dtype2.kind == "u" ): return "u" return None def float_result_type(dtype, dtype2): typs = {dtype.kind, dtype2.kind} if not len(typs - {"f", "i", "u"}) and ( dtype.kind == "f" or dtype2.kind == "f" ): return "f" return None def get_result_type(dtype, dtype2): result = float_result_type(dtype, dtype2) if result is not None: return result result = int_result_type(dtype, dtype2) if result is not None: return result return "O" for dtype in dtypes: for dtype2 in dtypes: if dtype == dtype2: continue expected = get_result_type(dtype, dtype2) result = concat([Series(dtype=dtype), Series(dtype=dtype2)]).dtype assert result.kind == expected def test_concat_empty_series_dtypes_triple(self): assert ( concat( [Series(dtype="M8[ns]"), Series(dtype=np.bool_), Series(dtype=np.int64)] ).dtype == np.object_ ) def test_concat_empty_series_dtype_category_with_array(self): # GH#18515 assert ( concat( [Series(np.array([]), dtype="category"), Series(dtype="float64")] ).dtype == "float64" ) def test_concat_empty_series_dtypes_sparse(self): result = concat( [ Series(dtype="float64").astype("Sparse"), Series(dtype="float64").astype("Sparse"), ] ) assert result.dtype == "Sparse[float64]" result = concat( [Series(dtype="float64").astype("Sparse"), Series(dtype="float64")] ) expected = pd.SparseDtype(np.float64) assert result.dtype == expected result = concat( [Series(dtype="float64").astype("Sparse"), Series(dtype="object")] ) expected = pd.SparseDtype("object") assert result.dtype == expected def test_concat_empty_df_object_dtype(self): # GH 9149 df_1 = DataFrame({"Row": [0, 1, 1], "EmptyCol": np.nan, "NumberCol": [1, 2, 3]}) df_2 = DataFrame(columns=df_1.columns) result = concat([df_1, df_2], axis=0) expected = df_1.astype(object) tm.assert_frame_equal(result, expected) def test_concat_empty_dataframe_dtypes(self): df = DataFrame(columns=list("abc")) df["a"] = df["a"].astype(np.bool_) df["b"] = df["b"].astype(np.int32) df["c"] = df["c"].astype(np.float64) result = concat([df, df]) assert result["a"].dtype == np.bool_ assert result["b"].dtype == np.int32 assert result["c"].dtype == np.float64 result = concat([df, df.astype(np.float64)]) assert result["a"].dtype == np.object_ assert result["b"].dtype == np.float64 assert result["c"].dtype == np.float64 def test_concat_inner_join_empty(self): # GH 15328 df_empty = DataFrame() df_a = DataFrame({"a": [1, 2]}, index=[0, 1], dtype="int64") df_expected = DataFrame({"a": []}, index=[], dtype="int64") for how, expected in [("inner", df_expected), ("outer", df_a)]: result = concat([df_a, df_empty], axis=1, join=how) tm.assert_frame_equal(result, expected) def test_empty_dtype_coerce(self): # xref to #12411 # xref to #12045 # xref to #11594 # see below # 10571 df1 = DataFrame(data=[[1, None], [2, None]], columns=["a", "b"]) df2 = DataFrame(data=[[3, None], [4, None]], columns=["a", "b"]) result = concat([df1, df2]) expected = df1.dtypes tm.assert_series_equal(result.dtypes, expected) def test_concat_empty_dataframe(self): # 39037 df1 = DataFrame(columns=["a", "b"]) df2 = DataFrame(columns=["b", "c"]) result = concat([df1, df2, df1]) expected =
DataFrame(columns=["a", "b", "c"])
pandas.DataFrame
from ctypes import sizeof import traceback from matplotlib.pyplot import axis import pandas as pd import numpy as np from datetime import datetime from time import sleep from tqdm import tqdm import random import warnings from sklearn.metrics import accuracy_score from sklearn.metrics import mean_squared_error from sklearn.model_selection import train_test_split from sklearn import svm from sklearn.datasets import load_linnerud, make_multilabel_classification from sklearn.multioutput import MultiOutputClassifier, MultiOutputRegressor from sklearn.linear_model import Ridge from sklearn.ensemble import RandomForestRegressor, RandomForestClassifier from sklearn.neighbors import KNeighborsRegressor from sklearn.svm import LinearSVR from sklearn.neural_network import MLPRegressor, MLPClassifier # Functions # ====================================================================== def getClassificationModelType(class_model_type, **kwargs): if class_model_type == "svm": return MultiOutputClassifier(svm.SVC(kernel='rbf', **kwargs)) # binary classification model if class_model_type == "random_forest": return RandomForestClassifier(max_depth=2, random_state=0, **kwargs) # binary classification model if class_model_type == "ann": return MultiOutputClassifier(MLPClassifier(solver='adam', alpha=1e-5, hidden_layer_sizes=(8, 8), random_state=1, max_iter=10000, **kwargs)) def getColDataTypes(data_df, discrete_info_df): return [col for col in data_df if discrete_info_df[col]['discrete']], [col for col in data_df if not discrete_info_df[col]['discrete']] def getEdgeData(data_df, cols): return data_df[cols] def getHeartData(): df = pd.read_csv("data/heart.csv") df.set_index(keys='ID', inplace=True) return df def getHeartInfo(): df = pd.read_csv("data/heart.info") df.set_index(keys='info', inplace=True) return df def getMeanSquaredError(y_pred_df, y_df): return round(mean_squared_error(y_pred=y_pred_df, y_true=y_df), 7) def getModelAccuracy(y_pred_df, y_df): return accuracy_score(y_true=y_df, y_pred=y_pred_df) def getRegressionModelType(reg_model_type, **kwargs): if reg_model_type == "ridge": return MultiOutputRegressor(Ridge(random_state=123, **kwargs)) if reg_model_type == "random_forest": return RandomForestRegressor(max_depth=2, random_state=0, **kwargs) if reg_model_type == "k_neighbors": return KNeighborsRegressor(n_neighbors=2, **kwargs) if reg_model_type == "svr": return MultiOutputRegressor(LinearSVR(random_state=0, tol=1e-05, max_iter=100000, **kwargs)) if reg_model_type == "ann": return MLPRegressor(solver='adam', alpha=1e-5, hidden_layer_sizes=(10, 10), random_state=1, max_iter=100000, **kwargs) def getSampleData(data_df): # n = 62,500 # training: 50,000 # testing: 12,500 return data_df.sample(n=62500, random_state=random.randint(a=0, b=2e9)) def main(): # run_simulation(5) data_collected_1_df = pd.read_csv('data/data_collection_1.csv', index_col=['ID']) data_collected_1_df.drop(columns=['chest'], inplace=True) data_collected_2_df = pd.read_csv('data/data_collection_2.csv', index_col=['ID']) data_collected_2_df.drop(columns=['chest'], inplace=True) data_prediction([data_collected_1_df, data_collected_2_df]) def modelFit(model, X, y): try: # print("Fitting model...") with warnings.catch_warnings(): warnings.filterwarnings("ignore", "") model.fit(X, y) except Exception: print(traceback.print_exc) # print("Fitting model using ravel()...") # print(y.ravel()) model.fit(X, y.ravel()) def fitClassificationFeatures(X, y): # edge features models = [] y_dfs = [] # model_data_type = 'classification' # print("Fitting", model_data_type, "models...") for model_name in ['svm', 'random_forest', 'ann']: y_temp = y # print("Fitting", model_name, "...") if model_name=='ann': model = getClassificationModelType(model_name) else: if model_name=='svm': # pseudo-classification model = getRegressionModelType('svr') elif model_name=='random_forest': # pseudo-classification model = getRegressionModelType(model_name) y_df = pd.DataFrame(y) y_dum_df = pd.get_dummies(y_df, columns=y.columns, prefix=y.columns) y = y_dum_df # print(y.head()) y_dfs.append(y) modelFit(model, X, y) models.append(model) y = y_temp # print("Finished edge features classification model fitting...") return models, y_dfs # fitted classfication models of edge features def predictClassificationFeatures(models, X, y, discrete_cols, results_cols): results_df = pd.DataFrame() gen_cols = [] # edge features generating discrete features model_data_type ='classification' # print("Predicting", model_data_type, "models...") model_names = ['svm', 'random_forest', 'ann'] for i in range(len(model_names)): model_name = model_names[i] # print("Predicting", model_name, "...") model = models[i] # print(model) y_cols = pd.get_dummies(y, columns=y.columns, prefix=y.columns).columns \ if model_name=='svm' or model_name=='random_forest' else y.columns heart_gen_prime_df = pd.DataFrame(model.predict(X), columns=y_cols, index=y.index) if model_name=='svm' or model_name=='random_forest': # binary for y_col in discrete_cols: y_pred_cols = [y_pred_col for y_pred_col in heart_gen_prime_df.columns if y_pred_col.startswith(y_col+"_")] y_pred_cols_df = heart_gen_prime_df[y_pred_cols] y_pred_cols_df.columns = [y_pred_col.split(y_col+"_", 1)[1] for y_pred_col in y_pred_cols] heart_gen_prime_df[y_col] = y_pred_cols_df[y_pred_cols_df.columns].idxmax(axis=1) heart_gen_prime_df.drop(columns=y_pred_cols, inplace=True) gen_cols.append(heart_gen_prime_df) # UNCOMMENT # print('expected') # print(y[discrete_cols].head(10)) # print([len(y[col].unique()) for col in discrete_cols]) # print('predicted') # print(heart_gen_prime_df.head(10)) # print([len(heart_gen_prime_df[col].unique()) for col in heart_gen_prime_df.columns]) if isinstance(heart_gen_prime_df, object): # and isinstance(y, np.int64): # print('convert y_pred_df int64') heart_gen_prime_df = heart_gen_prime_df.astype('int64') if isinstance(heart_gen_prime_df, np.int32) and isinstance(y, np.float64): # print('convert y_pred_df float') heart_gen_prime_df = heart_gen_prime_df.astype('float64') accuracy = [getModelAccuracy(y_pred_df=heart_gen_prime_df[col], y_df=y[col]) for col in y.columns] results_df = results_df.append(pd.DataFrame([model_data_type, model_name, accuracy]).transpose()) results_df.reset_index(drop=True, inplace=True) results_df.columns = results_cols # print("gen_class_cols_results_df:") # print(results_df) return gen_cols def fitRegressionFeatures(X, y): # edge features models = [] y_dfs = [] # model_data_type = 'regression' # print("Fitting", model_data_type, "models...") for model_name in ['ridge', 'random_forest', 'svr', 'ann']: # print("Fitting", model_name, "...") model = getRegressionModelType(model_name) y_dfs.append(y) modelFit(model, X, y) models.append(model) # print("Finished edge features regression model fitting...") return models # fitted regression models of edge features def predictRegressionFeatures(models, X, y, results_cols): results_df = pd.DataFrame() gen_cols = [] # edge features generating continuous features model_data_type ='regression' # print("Predicting", model_data_type, "models...") model_names = ['ridge', 'random_forest', 'svr', 'ann'] for i in range(len(model_names)): model_name = model_names[i] # print("Predicting", model_name, "...") model = models[i] heart_gen_prime_df = pd.DataFrame(model.predict(X), columns=y.columns, index=y.index) mse = [getMeanSquaredError(y_pred_df=heart_gen_prime_df[col], y_df=y[col]) for col in y.columns] results_df = results_df.append(pd.DataFrame([model_data_type, model_name, mse]).transpose()) gen_cols.append(heart_gen_prime_df) results_df.reset_index(drop=True, inplace=True) results_df.columns = results_cols # print("gen_reg_cols_results_df:") # print(results_df) return gen_cols def fitAllFeatures(X, y): # all 13 features models = [] # model_data_type = 'classification' # print("Fitting", "models...") for model in ['svm', 'random_forest', 'ann']: # print("Fitting", model, "...") model = getClassificationModelType(model) modelFit(model, X, y) models.append(model) # print("Finished all features classification model fitting...") return models # fitted classification models of all 13 features def predictAllFeatures(models, X, y, results_cols): results_df = pd.DataFrame() # all 13 features model_data_type ='classification' # print("Predicting", model_data_type, "models...") model_names = ['svm', 'random_forest', 'ann'] for i in range(len(model_names)): model_name = model_names[i] # print("Predicting", model_name, "...") model = models[i] y_prime_df = pd.DataFrame(model.predict(X), index=y.index) accuracy = getModelAccuracy(y_pred_df=y_prime_df, y_df=y) results_df = results_df.append(pd.DataFrame([model_data_type, model_name, accuracy]).transpose()) results_df.reset_index(drop=True, inplace=True) results_df.columns = results_cols # print("results_df:") # print(results_df) return results_df def data_prediction(data_collected_dfs): heart_data_df = getSampleData(getHeartData()) heart_label_df = pd.DataFrame(heart_data_df['class']) heart_info_df = getHeartInfo() for df in [heart_data_df, heart_info_df]: df.drop(columns=['class'], inplace=True) discrete_cols, continuous_cols = getColDataTypes(data_df=heart_data_df, discrete_info_df=heart_info_df) heart_data_continuous_df = heart_data_df[continuous_cols] heart_data_discrete_df = heart_data_df[discrete_cols] # normalizes continuous features heart_data_continuous_df = (heart_data_continuous_df-heart_data_continuous_df.min())/(heart_data_continuous_df.max()-heart_data_continuous_df.min()) # recombines normalized continuous features with regression features heart_data_df = pd.concat([heart_data_continuous_df, heart_data_discrete_df], axis=1) # splits data into training and testing dataframes X_heart_train_df, X_heart_test_df, y_heart_train_df, y_heart_test_df = train_test_split(heart_data_df, heart_label_df, test_size = 0.2, random_state=random.randint(a=0, b=2e9), shuffle=True) # fits on training data and all 13 features models_all_feat = fitAllFeatures(X=X_heart_train_df, y=y_heart_train_df) edge_cols = ['age', 'sex', 'resting_blood_pressure', 'fasting_blood_sugar', 'resting_electrocardiographic_results', 'maximum_heart_rate_achieved', 'exercise_induced_angina'] # edge data collection heart_edge_train_df = getEdgeData(data_df=X_heart_train_df, cols=edge_cols) heart_edge_test_df = getEdgeData(data_df=X_heart_test_df, cols=edge_cols) # expected generated columns heart_gen_train_df = X_heart_train_df.drop(columns=edge_cols) heart_gen_test_df = X_heart_test_df.drop(columns=edge_cols) discrete_cols, continuous_cols = getColDataTypes(data_df=heart_gen_test_df, discrete_info_df=heart_info_df) y = heart_gen_train_df[discrete_cols] # combine dataframes data_collected_df = pd.concat(data_collected_dfs, axis=0) # generates discrete features using classification models models_class_feat_gen, y = fitClassificationFeatures(X=heart_edge_train_df, y=y) heart_gen_class_cols = predictClassificationFeatures(models=models_class_feat_gen, X=heart_edge_test_df, y=heart_gen_test_df[discrete_cols], discrete_cols=discrete_cols, results_cols=['model_type', 'model', 'accuracy']) arrays = [['', '', '', '', '', '', '', ''], edge_cols] tuples = list(zip(*arrays)) multi_index = pd.MultiIndex.from_tuples(tuples, names=["model_name", "predicted_cols"]) results_df = data_collected_df results_df.columns = multi_index class_gen_cols = [] model_data_type = 'classification' model_names = ['svm', 'random_forest', 'ann'] for i in range(len(model_names)): model_name = model_names[i] model = models_class_feat_gen[i] y = heart_gen_test_df[discrete_cols] arrays = [[model_names[i], model_names[i], model_names[i]], discrete_cols] tuples = list(zip(*arrays)) multi_index = pd.MultiIndex.from_tuples(tuples, names=["model_name", "predicted_cols"]) y_cols = pd.get_dummies(y, columns=y.columns, prefix=y.columns).columns \ if model_name=='svm' or model_name=='random_forest' else y.columns y_prime_class_df = pd.DataFrame(model.predict(data_collected_df), columns=y_cols, index=data_collected_df.index) if model_name=='svm' or model_name=='random_forest': # binary for y_col in discrete_cols: y_pred_cols = [y_pred_col for y_pred_col in y_prime_class_df.columns if y_pred_col.startswith(y_col+"_")] y_pred_cols_df = y_prime_class_df[y_pred_cols] y_pred_cols_df.columns = [y_pred_col.split(y_col+"_", 1)[1] for y_pred_col in y_pred_cols] y_prime_class_df[y_col] = y_pred_cols_df[y_pred_cols_df.columns].idxmax(axis=1) y_prime_class_df.drop(columns=y_pred_cols, inplace=True) class_gen_cols.append(y_prime_class_df) y_prime_class_df.columns = multi_index results_df = pd.concat([results_df, y_prime_class_df], axis=1) results_df = pd.DataFrame(results_df, index=results_df.index, columns=pd.MultiIndex.from_tuples(results_df.columns)) # print(results_df) results_df.to_csv('results/gen_class_cols.csv') # generates continuous features using regression models models_reg_feat_gen = fitRegressionFeatures(X=heart_edge_train_df, y=heart_gen_train_df[continuous_cols]) heart_gen_reg_cols = predictRegressionFeatures(models=models_reg_feat_gen, X=heart_edge_test_df, y=heart_gen_test_df[continuous_cols], results_cols=['model_type', 'model', 'MSE']) arrays = [['', '', '', '', '', '', '', ''], edge_cols] tuples = list(zip(*arrays)) multi_index = pd.MultiIndex.from_tuples(tuples, names=["model_name", "predicted_cols"]) results_df = data_collected_df reg_gen_cols = [] model_data_type = 'regression' model_names = ['ridge', 'random_forest', 'svr', 'ann'] for i in range(len(model_names)): model_name = model_names[i] arrays = [[model_names[i]]*len(continuous_cols), continuous_cols] tuples = list(zip(*arrays)) multi_index = pd.MultiIndex.from_tuples(tuples, names=["model_name", "predicted_cols"]) model = models_reg_feat_gen[i] y_prime_reg_df = pd.DataFrame(model.predict(data_collected_df)) y_prime_reg_df.columns = multi_index results_df = pd.concat([results_df, y_prime_reg_df], axis=1) # print(model_data_type, model_name) reg_gen_cols.append(y_prime_class_df) results_df = pd.DataFrame(results_df, index=results_df.index, columns=pd.MultiIndex.from_tuples(results_df.columns)) results_df.index.name = 'ID' results_df.to_csv('results/gen_reg_cols.csv') # predict all 13 features using edge features combined with generated columns from above results_df = pd.DataFrame() for c in range(len(heart_gen_class_cols)): for r in range(len(heart_gen_reg_cols)): class_models = ['svm', 'random_forest', 'ann'] reg_models = ['ridge', 'random_forest', 'svr', 'ann'] X_heart_test_prime_df = pd.concat([data_collected_df, class_gen_cols[c], reg_gen_cols[r]], axis=1) # all 13 features model_data_type ='classification' # print("Predicting", model_data_type, "models...") model_names = ['svm', 'random_forest', 'ann'] for i in range(len(model_names)): model_name = model_names[i] arrays = [([model_names[i]], [class_models[c]], [reg_models[r]])] tuples = [(model_names[i], class_models[c], reg_models[r])] multi_index = pd.MultiIndex.from_tuples(tuples, names=["all_feat_model", "gen_class_model", "gen_reg_model"]) model = models_all_feat[i] y_prime_df = pd.DataFrame(model.predict(X_heart_test_prime_df), index=data_collected_df.index, columns=[(model_names[i], class_models[c], reg_models[r])]) # print(y_prime_df) results_df = pd.concat([results_df, y_prime_df], axis=1) # print(results_df) results_df.to_csv('results/predicted_results_collected.csv') def run_simulation(num_runs): final_results_df = pd.DataFrame(columns=['model_type', 'model', 'accuracy', 'class_gen_model', 'reg_gen_model']) current_date_time = datetime.now().strftime('%Y%m%d-%H%M%S') final_results_file_name = 'results/results_{}.csv'.format(current_date_time) for _ in tqdm(range(num_runs)): sim_results_df = simulation_instance() final_results_df = pd.concat([final_results_df, sim_results_df], axis=0) # reorder columns final_results_df = final_results_df[['class_gen_model', 'reg_gen_model', 'model', 'accuracy']].convert_dtypes() final_results_df.to_csv(final_results_file_name) # final_results_df = final_results_df.groupby(['model', 'class_gen_model', 'reg_gen_model'])['accuracy'].mean() # final_results_df.to_csv('results/results_{}.csv'.format(current_date_time)) print() print(final_results_df) simulation_summary(final_results_file_name, current_date_time) def simulation_summary(final_results_file_name, current_date_time): simulation_results_df = pd.read_csv(final_results_file_name) simulation_results_df.columns = ['idx', 'model', 'class_gen_model', 'reg_gen_model', 'accuracy'] simulation_results_df = simulation_results_df[['model', 'class_gen_model', 'reg_gen_model', 'accuracy']] # print(simulation_results_df) simulation_results_avg = simulation_results_df.groupby(['model', 'class_gen_model', 'reg_gen_model'])['accuracy'].mean() simulation_results_avg_df = pd.DataFrame(simulation_results_avg.values, columns=['avg_accuracy'], index=simulation_results_avg.index) # print(simulation_results_avg_df) simulation_results_max = simulation_results_df.groupby(['model', 'class_gen_model', 'reg_gen_model'])['accuracy'].max() simulation_results_max_df = pd.DataFrame(simulation_results_max.values, columns=['max_accuracy'], index=simulation_results_max.index) # print(simulation_results_max_df) simulation_results_min = simulation_results_df.groupby(['model', 'class_gen_model', 'reg_gen_model'])['accuracy'].min() simulation_results_min_df = pd.DataFrame(simulation_results_min.values, columns=['min_accuracy'], index=simulation_results_min.index) # print(simulation_results_min_df) # combine average, maximum, and minimum dataframes final_simulation_results_df = pd.concat([simulation_results_avg_df, simulation_results_max_df, simulation_results_min_df], axis=1) print(final_simulation_results_df) final_simulation_results_df.to_csv('results/simulation_results_{}.csv'.format(current_date_time)) def simulation_instance(): heart_data_df = getSampleData(getHeartData()) heart_label_df = pd.DataFrame(heart_data_df['class']) heart_info_df = getHeartInfo() for df in [heart_data_df, heart_info_df]: df.drop(columns=['class'], inplace=True) discrete_cols, continuous_cols = getColDataTypes(data_df=heart_data_df, discrete_info_df=heart_info_df) heart_data_continuous_df = heart_data_df[continuous_cols] heart_data_discrete_df = heart_data_df[discrete_cols] # normalizes continuous features heart_data_continuous_df = (heart_data_continuous_df-heart_data_continuous_df.min())/(heart_data_continuous_df.max()-heart_data_continuous_df.min()) # recombines normalized continuous features with regression features heart_data_df = pd.concat([heart_data_continuous_df, heart_data_discrete_df], axis=1) # splits data into training and testing dataframes X_heart_train_df, X_heart_test_df, y_heart_train_df, y_heart_test_df = train_test_split(heart_data_df, heart_label_df, test_size = 0.2, random_state=random.randint(a=0, b=2e9), shuffle=True) # fits on training data and all 13 features models_all_feat = fitAllFeatures(X=X_heart_train_df, y=y_heart_train_df) edge_cols = ['age', 'sex', 'resting_blood_pressure', 'fasting_blood_sugar', 'resting_electrocardiographic_results', 'maximum_heart_rate_achieved', 'exercise_induced_angina'] # edge data collection heart_edge_train_df = getEdgeData(data_df=X_heart_train_df, cols=edge_cols) heart_edge_test_df = getEdgeData(data_df=X_heart_test_df, cols=edge_cols) # expected generated columns heart_gen_train_df = X_heart_train_df.drop(columns=edge_cols) heart_gen_test_df = X_heart_test_df.drop(columns=edge_cols) discrete_cols, continuous_cols = getColDataTypes(data_df=heart_gen_test_df, discrete_info_df=heart_info_df) y = heart_gen_train_df[discrete_cols] # generates discrete features using classification models models_class_feat_gen, y = fitClassificationFeatures(X=heart_edge_train_df, y=y) heart_gen_class_cols = predictClassificationFeatures(models=models_class_feat_gen, X=heart_edge_test_df, y=heart_gen_test_df[discrete_cols], discrete_cols=discrete_cols, results_cols=['model_type', 'model', 'accuracy']) # generates continuous features using regression models models_reg_feat_gen = fitRegressionFeatures(X=heart_edge_train_df, y=heart_gen_train_df[continuous_cols]) heart_gen_reg_cols = predictRegressionFeatures(models=models_reg_feat_gen, X=heart_edge_test_df, y=heart_gen_test_df[continuous_cols], results_cols=['model_type', 'model', 'MSE']) # predict all 13 features using test data predictAllFeatures(models=models_all_feat, X=X_heart_test_df, y=y_heart_test_df, results_cols=['model_type', 'model', 'accuracy']) # predict all 13 features using edge features combined with generated columns from above simulation_result_df = pd.DataFrame(columns=['model_type', 'model', 'accuracy', 'class_gen_model', 'reg_gen_model']) for c in range(len(heart_gen_class_cols)): for r in range(len(heart_gen_reg_cols)): class_models = ['svm', 'random_forest', 'ann'] reg_models = ['ridge', 'random_forest', 'svr', 'ann'] X_heart_test_prime_df = pd.concat([heart_edge_test_df, heart_gen_class_cols[c], heart_gen_reg_cols[r]], axis=1) results_df = predictAllFeatures(models=models_all_feat, X=X_heart_test_prime_df, y=y_heart_test_df, results_cols=['model_type', 'model', 'accuracy']) results_df = pd.concat([results_df,
pd.DataFrame([[class_models[c], reg_models[r]]]*3)
pandas.DataFrame
#!/usr/bin/env python3 import numpy as np import pandas as pd import json import os import sys import subprocess from configparser import ConfigParser from tqdm import tqdm from nltk import sent_tokenize from sklearn.metrics import accuracy_score, classification_report from sklearn.feature_extraction.text import TfidfVectorizer from sklearn.metrics.pairwise import cosine_similarity def retrieve_cosine_similarity(X, Y): #print(X.shape) #print(Y.shape) #print(cosine_similarity(X, Y).shape) sim_scores = cosine_similarity(X, Y).squeeze(0) return sim_scores.tolist() def load_articles(dataset_path, articles_path): with open(os.path.join(dataset_path, 'train.json')) as f_obj: train_records = json.load(f_obj) with open(os.path.join(dataset_path, 'valid.json')) as f_obj: valid_records = json.load(f_obj) with open(os.path.join(dataset_path, 'test.json')) as f_obj: test_records = json.load(f_obj) all_records = train_records + valid_records + test_records relevant_article_paths = [] review_article_paths = [] for record in all_records: review_article_json_path = record["label"]["review_article_json_path"] assert os.path.isfile(review_article_json_path) == True, f"Error! Review article json file does not exists: {review_article_json_path}" review_article_paths.append(review_article_json_path) for item in record['metadata']['relevant_articles']: for _, article_path in item.items(): if isinstance(article_path, list): article_path = article_path[1] relevant_article_paths.append(article_path) rel_article_path_to_sents = {} all_rel_sentences = [] for rel_article_path in tqdm(relevant_article_paths): with open(rel_article_path) as f_obj: article_sentences = json.load(f_obj) rel_article_path_to_sents[rel_article_path] = article_sentences all_rel_sentences.extend(article_sentences) rev_article_path_to_sents = {} all_rev_sentences = [] for rev_article_path in tqdm(review_article_paths): with open(rev_article_path) as f_obj: article_sentences = json.load(f_obj) rev_article_path_to_sents[rev_article_path] = article_sentences all_rev_sentences.extend(article_sentences) return rel_article_path_to_sents, all_rel_sentences, rev_article_path_to_sents, all_rev_sentences def load_data_w_rel(dataset_path, article_path_to_sents, tfidf_vectorizer): with open(os.path.join(dataset_path, 'train.json')) as f_obj: train_records = json.load(f_obj) train = [] for record in tqdm(train_records): train_item = {} train_item["claim_id"] = record['metadata']['id'] if record['metadata']['claimant'] is not None: train_item['text'] = record['metadata']['claim'].strip() + ' ' + record['metadata']['claimant'].strip() train_item['text'] = train_item['text'].strip() else: train_item['text'] = record['metadata']['claim'].strip() X = tfidf_vectorizer.transform([train_item['text']]) evidence_sentences = [] evidence_scores = [] for item in record['metadata']['relevant_articles']: for _, article_path in item.items(): if isinstance(article_path, list): article_path = article_path[1] else: continue if article_path not in article_path_to_sents: continue article_sentences = [sent.strip() for sent in article_path_to_sents[article_path] if sent.strip() != ''] if len(article_sentences) == 0: continue Y = tfidf_vectorizer.transform(article_sentences) sim_scores = retrieve_cosine_similarity(X, Y) assert len(sim_scores) == len(article_sentences), f"Error! Count mismatch between similarity scores ({len(sim_scores)}) and article senctences ({len(article_sentences)})!" evidence_sentences.append(article_sentences) evidence_scores.append(sim_scores) # Skip if no evidence sentences are available if len(evidence_sentences) == 0: continue #print(train_item['text']) #print('Top 10 evidence sentences') #for index in range(10): # print(evidence_sentences[similar_indices[index]]) #ranked_evidence = [evidence_sentences[sim_index] for sim_index in similar_indices] train_item['evidence_sents'] = evidence_sentences train_item['tfidf_scores'] = evidence_scores train_item['rating'] = record['label']['rating'] if record['metadata']['claim_date'] is not None: train_item['date'] = record['metadata']['claim_date'] else: train_item['date'] = record['metadata']['review_date'] train.append(train_item) train_df =
pd.DataFrame.from_records(train)
pandas.DataFrame.from_records
import json import logging import datetime from pathlib import Path import branca.colormap as cm import fiona import folium import geopandas as gpd import numpy as np import pandas as pd import rasterio from folium import plugins from rasterstats import zonal_stats from shapely import geometry as sgeom from shapely.geometry import shape from config.constants import SHAPEFILES_ADEC_DEP_POL from config.logging_conf import GOES_LOGGER_NAME from plotters_lib.isobands_gdal import isobands from wrf_api.goes_api_ingest import post_img_to_api logger = logging.getLogger(GOES_LOGGER_NAME) ESCALA_HELADAS = cm.linear.viridis.scale(-10.0, 0.0).to_step(5) def isvalid(geom): """ Verfica la validez de la geometría. Devuelve 1 si es válido, 0 si no. geom: geometría a verificar. """ try: shape(geom) return 1 except Exception: return 0 def color_pedanias(x): """ Define los colores para los distintos niveles de heladas según la pedanía. Si el valor de temperatura es nulo, o nan, devuelve transparente. Si el valor es mayor a 0 grados, devuelve blanco. Si pasa las dos condiciones, devuelve el color correspondiente a la escala 'escala_heladas'. """ if x['properties']['LST_mean'] is None: color = 'transparent' elif x['properties']['LST_mean'] > 0.0: color = 'white' else: color = ESCALA_HELADAS(x['properties']['LST_mean']) return color def highlight_function(feature): """ Define los parámetros visuales cuando el cursor se encuentra sobre la geometría (función de destaque visual). """ return { 'fillColor': color_isotermas(feature), 'color': 'white', 'weight': 3, 'dashArray': '5, 5' } def color_isotermas(x): """ Define los colores para los distintos niveles de temperaturas según el vector de isotermas generado. Si el valor de isoterma es nulo, o nan, devuelve transparente. Si el valor es menor a 6 grados, devuelve el color del valor mínimo (-10 grados). Si pasa las dos condiciones, devuelve el color correspondiente a la escala 'escala_isotermas'. """ if x['properties']['t'] is None: color = 'transparent' elif x['properties']['t'] <= -10.0: color = '#AD1457' else: color = ESCALA_HELADAS(x['properties']['t']) return color def obtener_estadisticas(shpfile, raster_entrada, archivo_salida, tipo_salida='shp'): """ Calcula estadisticas locales (mínima, máxima y promedio) del raster ingresado en el area del shapefile indicado. Las estadísticas pueden ser expresadas en formato shapefile o csv. shpfile: ruta del shapefile. (str) raster_entrada: ruta del raster a analizar. (str) archivo_salida: archivo donde se guardan los resultados (str) tipo_salida: tipo del archivo de salida. Shapefile ('shp') o CSV ('csv'). Por defecto 'shp'. (str) """ # Defino path del shapefile, lo abro con librería fiona y guardo en geometries los shapes correspondientes with fiona.open(shpfile) as records: geometries = [sgeom.shape(shp['geometry']) for shp in records] # Calculo las estadísticas de valores mínimos, máximos y promedios zs = zonal_stats(geometries, raster_entrada) # Abro el shapefile usando la librería GeoPandas tabla_shape = gpd.read_file(shpfile) # Creo un Dataframe con los valores estadísticos obtenidos goesstats_df = pd.DataFrame(zs) # Renombro las columnas goesstats_df.rename(columns={'min': 'LST_min', 'mean': 'LST_mean', 'max': 'LST_max'}, inplace=True) # Concateno las dos tablas tabla_shape = pd.concat([tabla_shape, goesstats_df], axis=1) # Escribo los resultados al disco if tipo_salida == 'csv': tabla_shape.drop('geometry', axis=1).to_csv(archivo_salida) else: tabla_shape.to_file(archivo_salida) return def minimo_folium(path_minimo_shp: str, path_folium_temp_min: Path) -> bool: """ Genera el HTML con las estadísticas del promedio de la mínima registrada por departamento/partido, junto con las isotermas correspondientes. """ m = folium.Map(location=[-32.1, -64], zoom_start=6.5, control_scale=True, tiles=None) tile = 'https://ide.ign.gob.ar/geoservicios/rest/services/Mapas_IGN/mapa_topografico/MapServer/tile/{z}/{y}/{x}' attribute = 'Mapa del <a href="http://www.ign.gob.ar">Instituto Geográfico Nacional</a>, ' + \ 'capa de calles por colaboradores de &copy; <a href="http://openstreetmap.org">OpenStreetMap</a>' folium.TileLayer(tiles=tile, attr=attribute, name='IGN ').add_to(m) tile = 'http://wms.ign.gob.ar/geoserver/gwc/service/tms/1.0.0/capabaseargenmap@EPSG:3857@png/{z}/{x}/{-y}.png' attribute = "Argenmap v2 - Instituto Geográfico Nacional" folium.TileLayer(tiles=tile, attr=attribute, name='IGN Argenmap v2').add_to(m) folium.TileLayer(tiles='openstreetmap', name='OSM').add_to(m) collection = list(fiona.open(path_minimo_shp, 'r')) df1 =
pd.DataFrame(collection)
pandas.DataFrame
# -*- coding: utf-8 -*- # Copyright (c) 2015-2020, Exa Analytics Development Team # Distributed under the terms of the Apache License 2.0 #import os import numpy as np import pandas as pd from unittest import TestCase from exatomic import gaussian from exatomic.base import resource from exatomic.gaussian import Output, Fchk class TestFchk(TestCase): def setUp(self): self.mam1 = Fchk(resource('g09-ch3nh2-631g.fchk')) self.mam2 = Fchk(resource('g09-ch3nh2-augccpvdz.fchk')) self.mam3 = Fchk(resource('g16-methyloxirane-def2tzvp-freq.fchk')) self.mam4 = Fchk(resource('g16-h2o2-def2tzvp-freq.fchk')) self.nitro_nmr = Fchk(resource('g16-nitromalonamide-6-31++g-nmr.fchk')) def test_parse_atom(self): self.mam1.parse_atom() self.assertEqual(self.mam1.atom.shape[0], 7) self.assertTrue(np.all(pd.notnull(pd.DataFrame(self.mam1.atom)))) self.mam2.parse_atom() self.assertEqual(self.mam2.atom.shape[0], 7) self.assertTrue(np.all(pd.notnull(pd.DataFrame(self.mam2.atom)))) def test_parse_basis_set(self): self.mam1.parse_basis_set() self.assertEqual(self.mam1.basis_set.shape[0], 32) self.assertTrue(np.all(pd.notnull(pd.DataFrame(self.mam1.basis_set)))) self.mam2.parse_basis_set() self.assertEqual(self.mam2.basis_set.shape[0], 53) self.assertTrue(np.all(pd.notnull(
pd.DataFrame(self.mam2.basis_set)
pandas.DataFrame
# coding:utf-8 import os from pathlib import Path import sys import argparse import pdb import numpy as np # linear algebra import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) from tqdm import tqdm import pickle import time from datetime import datetime, timedelta from sklearn.metrics import confusion_matrix from functools import partial import scipy as sp import matplotlib.pyplot as plt #from matplotlib_venn import venn2 import lightgbm as lgb from sklearn import preprocessing import seaborn as sns import gc import psutil import os from IPython.display import FileLink import statistics import json import ast from sklearn.model_selection import StratifiedKFold from sklearn.model_selection import cross_validate import collections import random import functools from sklearn.metrics import roc_curve,auc,accuracy_score,confusion_matrix,f1_score,classification_report from sklearn.metrics import mean_squared_error # The metric in question from sklearn.metrics import cohen_kappa_score import copy from sklearn.model_selection import StratifiedKFold, KFold, train_test_split import itertools from sklearn.ensemble import RandomForestClassifier from sklearn.preprocessing import StandardScaler from distutils.util import strtobool import math from scipy.sparse import csr_matrix, save_npz, load_npz from typing import Union from sklearn.decomposition import PCA #import dask.dataframe as dd import re from sklearn.cluster import KMeans from contextlib import contextmanager from collections import deque #import eli5 #from eli5.sklearn import PermutationImportance import shutil import array #import sqlite3 #from tsfresh.utilities.dataframe_functions import roll_time_series #from tsfresh import extract_features SEED_NUMBER=2020 def set_seed(seed): random.seed(seed) np.random.seed(seed) os.environ['PYTHONHASHSEED'] = str(seed) set_seed(SEED_NUMBER) pd.set_option('display.max_columns', 5000) pd.set_option('display.max_rows', 1000) EMPTY_NUM=-999 # https://github.com/lopuhin/kaggle-imet-2019/blob/master/imet/utils.py#L17 ON_KAGGLE = False#'KAGGLE_URL_BASE'in os.environ #print(" os.environ :", os.environ) print("ON_KAGGLE:", ON_KAGGLE) if not ON_KAGGLE: #import slackweb try: import wandb from wandb.lightgbm import wandb_callback except: print(f"error : cannot import wandb") else: import warnings warnings.simplefilter('ignore') PROJECT_NAME = "probspace_kiva" INPUT_DIR = Path("../data/raw") PROC_DIR = Path("../data/proc") LOG_DIR = Path("../data/log") OUTPUT_DIR = Path("../data/submission") PATH_TO_GRAPH_DIR=Path("../data/graph") PATH_TO_MODEL_DIR=Path("../data/model") PATH_TO_UPLOAD_MODEL_PARENT_DIR=Path("../data/model") PATH_TO_FEATURES_DIR=Path("../data/features") class Colors: """Defining Color Codes to color the text displayed on terminal. """ blue = "\033[94m" green = "\033[92m" yellow = "\033[93m" red = "\033[91m" end = "\033[0m" def color(string: str, color: Colors = Colors.yellow) -> str: return f"{color}{string}{Colors.end}" @contextmanager def timer2(label: str) -> None: """compute the time the code block takes to run. """ p = psutil.Process(os.getpid()) start = time.time() # Setup - __enter__ m0 = p.memory_info()[0] / 2. ** 30 print(color(f"{label}: Start at {start}; RAM USAGE AT START {m0}")) try: yield # yield to body of `with` statement finally: # Teardown - __exit__ m1 = p.memory_info()[0] / 2. ** 30 delta = m1 - m0 sign = '+' if delta >= 0 else '-' delta = math.fabs(delta) end = time.time() print(color(f"{label}: End at {end} ({end - start}[s] elapsed); RAM USAGE AT END {m1:.2f}GB ({sign}{delta:.2f}GB)", color=Colors.red)) @contextmanager def trace(title): t0 = time.time() p = psutil.Process(os.getpid()) m0 = p.memory_info()[0] / 2. ** 30 yield m1 = p.memory_info()[0] / 2. ** 30 delta = m1 - m0 sign = '+' if delta >= 0 else '-' delta = math.fabs(delta) print(f"[{m1:.1f}GB({sign}{delta:.1f}GB):{time.time() - t0:.1f}sec] {title} ", file=sys.stderr) def cpu_dict(my_dictionary, text=None): size = sys.getsizeof(json.dumps(my_dictionary)) #size += sum(map(sys.getsizeof, my_dictionary.values())) + sum(map(sys.getsizeof, my_dictionary.keys())) print(f"{text} size : {size}") def cpu_stats(text=None): #if not ON_KAGGLE: pid = os.getpid() py = psutil.Process(pid) memory_use = py.memory_info()[0] / 2. ** 30 print('{} memory GB:'.format(text) + str(memory_use))#str(np.round(memory_use, 2))) def reduce_mem_Series(se, verbose=True, categories=False): numeric2reduce = ["int16", "int32", "int64", "float64"] col_type = se.dtype best_type = None if (categories==True) & (col_type == "object"): se = se.astype("category") best_type = "category" elif col_type in numeric2reduce: downcast = "integer" if "int" in str(col_type) else "float" se = pd.to_numeric(se, downcast=downcast) best_type = se.dtype.name if verbose and best_type is not None and best_type != str(col_type): print(f"Series '{se.index}' converted from {col_type} to {best_type}") return se def reduce_mem_usage(df, verbose=True, categories=False): # All types that we want to change for "lighter" ones. # int8 and float16 are not include because we cannot reduce # those data types. # float32 is not include because float16 has too low precision. numeric2reduce = ["int16", "int32", "int64", "float64"] start_mem = 0 if verbose: start_mem = df.memory_usage().sum() / 1024**2 #start_mem = memory_usage_mb(df, deep=deep) for col, col_type in df.dtypes.iteritems(): best_type = None if (categories==True) & (col_type == "object"): df[col] = df[col].astype("category") best_type = "category" elif col_type in numeric2reduce: downcast = "integer" if "int" in str(col_type) else "float" df[col] = pd.to_numeric(df[col], downcast=downcast) best_type = df[col].dtype.name # Log the conversion performed. if verbose and best_type is not None and best_type != str(col_type): print(f"Column '{col}' converted from {col_type} to {best_type}") if verbose: #end_mem = memory_usage_mb(df, deep=deep) end_mem = df.memory_usage().sum() / 1024**2 diff_mem = start_mem - end_mem percent_mem = 100 * diff_mem / start_mem print(f"Memory usage decreased from" f" {start_mem:.2f}MB to {end_mem:.2f}MB" f" ({diff_mem:.2f}MB, {percent_mem:.2f}% reduction)") return df @contextmanager def timer(name): t0 = time.time() yield print(f'[{name}] done in {time.time() - t0:.6f} s') def normal_sampling(mean, label_k, std=2, under_limit=1e-15): val = math.exp(-(label_k-mean)**2/(2*std**2))/(math.sqrt(2*math.pi)*std) if val < under_limit: val = under_limit return val def compHist(np_oof, np_y_pred, np_y_true, title_str): np_list = [np_oof, np_y_true, np_y_pred] label_list = ["oof", "true", "pred"] color_list = ['red', 'blue', 'green'] for np_data, label, color in zip(np_list, label_list, color_list): sns.distplot( np_data, #bins=sturges(len(data)), color=color, kde=True, label=label ) plt.savefig(str(PATH_TO_GRAPH_DIR / f"{title_str}_compHist.png")) plt.close() def compPredTarget(y_pred, y_true, index_list, title_str, lm_flag=False): df_total = pd.DataFrame({"Prediction" : y_pred.flatten(), "Target" : y_true.flatten(), "Difference" : y_true.flatten() -y_pred.flatten() #"type" : np.full(len(y_pred), "oof") }, index=index_list) print(df_total) print("Difference > 0.1 : ", df_total[np.abs(df_total["Difference"]) > 0.1].Difference.count()) #print(df_total[df_total["type"]=="valid_train"].Difference) fig = plt.figure() sns.displot(df_total.Difference,bins=10) plt.savefig(str(PATH_TO_GRAPH_DIR / f"{title_str}_oof_diff_distplot.png")) plt.close() #pdb.set_trace() if lm_flag: plt.figure() fig2 = sns.lmplot(x="Target", y="Prediction", data=df_total, palette="Set1") #fig.set_axis_labels('target', 'pred') plt.title(title_str) plt.tight_layout() plt.savefig(str(PATH_TO_GRAPH_DIR / f"{title_str}_oof_true_lm.png")) plt.close() def dimensionReductionPCA(df, _n_components, prefix="PCA_"): pca = PCA(n_components=_n_components) pca.fit(df) reduced_feature = pca.transform(df) df_reduced = pd.DataFrame(reduced_feature, columns=[f"{prefix}{x + 1}" for x in range(_n_components)], index=df.index) print(f"df_reduced:{df_reduced}") df_tmp = pd.DataFrame(pca.explained_variance_ratio_, index=[f"{prefix}{x + 1}" for x in range(_n_components)]) print(df_tmp) import matplotlib.ticker as ticker plt.gca().get_xaxis().set_major_locator(ticker.MaxNLocator(integer=True)) plt.plot([0] + list( np.cumsum(pca.explained_variance_ratio_)), "-o") plt.xlabel("Number of principal components") plt.ylabel("Cumulative contribution rate") plt.grid() path_to_save = os.path.join(str(PATH_TO_GRAPH_DIR), datetime.now().strftime("%Y%m%d%H%M%S") + "_PCA.png") #print("save: ", path_to_save) plt.savefig(path_to_save) plt.show(block=False) plt.close() # df_comp = pd.DataFrame(pca.components_, columns=df.columns, index=[f"{prefix}{x + 1}" for x in range(_n_components)]) # print(df_comp) # plt.figure(figsize=(6, 6)) # for x, y, name in zip(pca.components_[0], pca.components_[1], df.columns): # plt.text(x, y, name) # plt.scatter(pca.components_[0], pca.components_[1], alpha=0.8) # plt.grid() # plt.xlabel("PC1") # plt.ylabel("PC2") # path_to_save = os.path.join(str(PATH_TO_GRAPH_DIR), datetime.now().strftime("%Y%m%d%H%M%S") + "_PCA_scatter.png") # #print("save: ", path_to_save) # plt.savefig(path_to_save) # plt.show(block=False) # plt.close() return df_reduced def addNanPos(df, cols_list:list, suffix="nan_pos"): for col in cols_list: if df[col].isnull().any(): df["{}_{}".format(col, suffix)] = df[col].map(lambda x: 1 if pd.isna(x) else 0) return df def get_feature_importances(X, y, shuffle=False): # 必要ならば目的変数をシャッフル if shuffle: y = np.random.permutation(y) # モデルの学習 clf = RandomForestClassifier(random_state=42) clf.fit(X, y) # 特徴量の重要度を含むデータフレームを作成 imp_df = pd.DataFrame() imp_df["feature"] = X.columns imp_df["importance"] = clf.feature_importances_ return imp_df.sort_values("importance", ascending=False) def nullImporcance(df_train_X, df_train_y, th=80, n_runs=100): # 実際の目的変数でモデルを学習し、特徴量の重要度を含むデータフレームを作成 actual_imp_df = get_feature_importances(df_train_X, df_train_y, shuffle=False) # 目的変数をシャッフルした状態でモデルを学習し、特徴量の重要度を含むデータフレームを作成 N_RUNS = n_runs null_imp_df = pd.DataFrame() for i in range(N_RUNS): print("run : {}".format(i)) imp_df = get_feature_importances(df_train_X, df_train_y, shuffle=True) imp_df["run"] = i + 1 null_imp_df =
pd.concat([null_imp_df, imp_df])
pandas.concat
# Import required modules import requests import pandas as pd import json import subprocess from tqdm import tqdm import re # Set pandas to show full rows and columns pd.set_option('display.max_rows', None)
pd.set_option('display.max_columns', None)
pandas.set_option
import numpy as np import pandas as pd from numba import njit, typeof from numba.typed import List from datetime import datetime, timedelta import pytest from copy import deepcopy import vectorbt as vbt from vectorbt.portfolio.enums import * from vectorbt.generic.enums import drawdown_dt from vectorbt.utils.random_ import set_seed from vectorbt.portfolio import nb from tests.utils import record_arrays_close seed = 42 day_dt = np.timedelta64(86400000000000) price = pd.Series([1., 2., 3., 4., 5.], index=pd.Index([ datetime(2020, 1, 1), datetime(2020, 1, 2), datetime(2020, 1, 3), datetime(2020, 1, 4), datetime(2020, 1, 5) ])) price_wide = price.vbt.tile(3, keys=['a', 'b', 'c']) big_price = pd.DataFrame(np.random.uniform(size=(1000,))) big_price.index = [datetime(2018, 1, 1) + timedelta(days=i) for i in range(1000)] big_price_wide = big_price.vbt.tile(1000) # ############# Global ############# # def setup_module(): vbt.settings.numba['check_func_suffix'] = True vbt.settings.portfolio['attach_call_seq'] = True vbt.settings.caching.enabled = False vbt.settings.caching.whitelist = [] vbt.settings.caching.blacklist = [] def teardown_module(): vbt.settings.reset() # ############# nb ############# # def assert_same_tuple(tup1, tup2): for i in range(len(tup1)): assert tup1[i] == tup2[i] or np.isnan(tup1[i]) and np.isnan(tup2[i]) def test_execute_order_nb(): # Errors, ignored and rejected orders with pytest.raises(Exception): _ = nb.execute_order_nb( ProcessOrderState(-100., 100., 0., 100., 10., 1100., 0, 0), nb.order_nb(10, 10)) with pytest.raises(Exception): _ = nb.execute_order_nb( ProcessOrderState(np.nan, 100., 0., 100., 10., 1100., 0, 0), nb.order_nb(10, 10)) with pytest.raises(Exception): _ = nb.execute_order_nb( ProcessOrderState(100., np.inf, 0., 100., 10., 1100., 0, 0), nb.order_nb(10, 10)) with pytest.raises(Exception): _ = nb.execute_order_nb( ProcessOrderState(100., np.nan, 0., 100., 10., 1100., 0, 0), nb.order_nb(10, 10)) with pytest.raises(Exception): _ = nb.execute_order_nb( ProcessOrderState(100., 100., np.nan, 100., 10., 1100., 0, 0), nb.order_nb(10, 10)) with pytest.raises(Exception): _ = nb.execute_order_nb( ProcessOrderState(100., 100., -10., 100., 10., 1100., 0, 0), nb.order_nb(10, 10)) with pytest.raises(Exception): _ = nb.execute_order_nb( ProcessOrderState(100., 100., 0., np.nan, 10., 1100., 0, 0), nb.order_nb(10, 10)) with pytest.raises(Exception): _ = nb.execute_order_nb( ProcessOrderState(100., 100., 0., 100., 10., 1100., 0, 0), nb.order_nb(10, 10, size_type=-2)) with pytest.raises(Exception): _ = nb.execute_order_nb( ProcessOrderState(100., 100., 0., 100., 10., 1100., 0, 0), nb.order_nb(10, 10, size_type=20)) with pytest.raises(Exception): _ = nb.execute_order_nb( ProcessOrderState(100., 100., 0., 100., 10., 1100., 0, 0), nb.order_nb(10, 10, direction=-2)) with pytest.raises(Exception): _ = nb.execute_order_nb( ProcessOrderState(100., 100., 0., 100., 10., 1100., 0, 0), nb.order_nb(10, 10, direction=20)) with pytest.raises(Exception): _ = nb.execute_order_nb( ProcessOrderState(100., -100., 0., 100., 10., 1100., 0, 0), nb.order_nb(10, 10, direction=Direction.LongOnly)) with pytest.raises(Exception): _ = nb.execute_order_nb( ProcessOrderState(100., 100., 0., 100., 10., 1100., 0, 0), nb.order_nb(10, 10, direction=Direction.ShortOnly)) with pytest.raises(Exception): _ = nb.execute_order_nb( ProcessOrderState(100., 100., 0., 100., 10., 1100., 0, 0), nb.order_nb(10, np.inf)) with pytest.raises(Exception): _ = nb.execute_order_nb( ProcessOrderState(100., 100., 0., 100., 10., 1100., 0, 0), nb.order_nb(10, -10)) with pytest.raises(Exception): _ = nb.execute_order_nb( ProcessOrderState(100., 100., 0., 100., 10., 1100., 0, 0), nb.order_nb(10, 10, fees=np.inf)) with pytest.raises(Exception): _ = nb.execute_order_nb( ProcessOrderState(100., 100., 0., 100., 10., 1100., 0, 0), nb.order_nb(10, 10, fees=-1)) with pytest.raises(Exception): _ = nb.execute_order_nb( ProcessOrderState(100., 100., 0., 100., 10., 1100., 0, 0), nb.order_nb(10, 10, fixed_fees=np.inf)) with pytest.raises(Exception): _ = nb.execute_order_nb( ProcessOrderState(100., 100., 0., 100., 10., 1100., 0, 0), nb.order_nb(10, 10, fixed_fees=-1)) with pytest.raises(Exception): _ = nb.execute_order_nb( ProcessOrderState(100., 100., 0., 100., 10., 1100., 0, 0), nb.order_nb(10, 10, slippage=np.inf)) with pytest.raises(Exception): _ = nb.execute_order_nb( ProcessOrderState(100., 100., 0., 100., 10., 1100., 0, 0), nb.order_nb(10, 10, slippage=-1)) with pytest.raises(Exception): _ = nb.execute_order_nb( ProcessOrderState(100., 100., 0., 100., 10., 1100., 0, 0), nb.order_nb(10, 10, min_size=np.inf)) with pytest.raises(Exception): _ = nb.execute_order_nb( ProcessOrderState(100., 100., 0., 100., 10., 1100., 0, 0), nb.order_nb(10, 10, min_size=-1)) with pytest.raises(Exception): _ = nb.execute_order_nb( ProcessOrderState(100., 100., 0., 100., 10., 1100., 0, 0), nb.order_nb(10, 10, max_size=0)) with pytest.raises(Exception): _ = nb.execute_order_nb( ProcessOrderState(100., 100., 0., 100., 10., 1100., 0, 0), nb.order_nb(10, 10, max_size=-10)) with pytest.raises(Exception): _ = nb.execute_order_nb( ProcessOrderState(100., 100., 0., 100., 10., 1100., 0, 0), nb.order_nb(10, 10, reject_prob=np.nan)) with pytest.raises(Exception): _ = nb.execute_order_nb( ProcessOrderState(100., 100., 0., 100., 10., 1100., 0, 0), nb.order_nb(10, 10, reject_prob=-1)) with pytest.raises(Exception): _ = nb.execute_order_nb( ProcessOrderState(100., 100., 0., 100., 10., 1100., 0, 0), nb.order_nb(10, 10, reject_prob=2)) exec_state, order_result = nb.execute_order_nb( ProcessOrderState(100., 100., 0., 100., 10., np.nan, 0, 0), nb.order_nb(1, 10, size_type=SizeType.TargetPercent)) assert exec_state == ExecuteOrderState(cash=100.0, position=100.0, debt=0.0, free_cash=100.0) assert_same_tuple(order_result, OrderResult( size=np.nan, price=np.nan, fees=np.nan, side=-1, status=1, status_info=3)) exec_state, order_result = nb.execute_order_nb( ProcessOrderState(100., 100., 0., 100., 10., -10., 0, 0), nb.order_nb(1, 10, size_type=SizeType.TargetPercent)) assert exec_state == ExecuteOrderState(cash=100.0, position=100.0, debt=0.0, free_cash=100.0) assert_same_tuple(order_result, OrderResult( size=np.nan, price=np.nan, fees=np.nan, side=-1, status=2, status_info=4)) with pytest.raises(Exception): _ = nb.execute_order_nb( ProcessOrderState(100., 100., 0., 100., np.inf, 1100., 0, 0), nb.order_nb(10, 10, size_type=SizeType.Value)) with pytest.raises(Exception): _ = nb.execute_order_nb( ProcessOrderState(100., 100., 0., 100., -10., 1100, 0, 0), nb.order_nb(10, 10, size_type=SizeType.Value)) exec_state, order_result = nb.execute_order_nb( ProcessOrderState(100., 100., 0., 100., np.nan, 1100., 0, 0), nb.order_nb(10, 10, size_type=SizeType.Value)) assert exec_state == ExecuteOrderState(cash=100.0, position=100.0, debt=0.0, free_cash=100.0) with pytest.raises(Exception): _ = nb.execute_order_nb( ProcessOrderState(100., 100., 0., 100., np.inf, 1100., 0, 0), nb.order_nb(10, 10, size_type=SizeType.TargetValue)) with pytest.raises(Exception): _ = nb.execute_order_nb( ProcessOrderState(100., 100., 0., 100., -10., 1100, 0, 0), nb.order_nb(10, 10, size_type=SizeType.TargetValue)) exec_state, order_result = nb.execute_order_nb( ProcessOrderState(100., 100., 0., 100., np.nan, 1100., 0, 0), nb.order_nb(10, 10, size_type=SizeType.TargetValue)) assert exec_state == ExecuteOrderState(cash=100.0, position=100.0, debt=0.0, free_cash=100.0) assert_same_tuple(order_result, OrderResult( size=np.nan, price=np.nan, fees=np.nan, side=-1, status=1, status_info=2)) exec_state, order_result = nb.execute_order_nb( ProcessOrderState(100., -10., 0., 100., 10., 1100., 0, 0), nb.order_nb(np.inf, 10, direction=Direction.ShortOnly)) assert exec_state == ExecuteOrderState(cash=200.0, position=-20.0, debt=100.0, free_cash=0.0) assert_same_tuple(order_result, OrderResult( size=10.0, price=10.0, fees=0.0, side=1, status=0, status_info=-1)) exec_state, order_result = nb.execute_order_nb( ProcessOrderState(100., -10., 0., 100., 10., 1100., 0, 0), nb.order_nb(-np.inf, 10, direction=Direction.Both)) assert exec_state == ExecuteOrderState(cash=200.0, position=-20.0, debt=100.0, free_cash=0.0) assert_same_tuple(order_result, OrderResult( size=10.0, price=10.0, fees=0.0, side=1, status=0, status_info=-1)) exec_state, order_result = nb.execute_order_nb( ProcessOrderState(100., 10., 0., 100., 10., 1100., 0, 0), nb.order_nb(0, 10)) assert exec_state == ExecuteOrderState(cash=100.0, position=10.0, debt=0.0, free_cash=100.0) assert_same_tuple(order_result, OrderResult( size=np.nan, price=np.nan, fees=np.nan, side=-1, status=1, status_info=5)) exec_state, order_result = nb.execute_order_nb( ProcessOrderState(100., 100., 0., 100., 10., 1100., 0, 0), nb.order_nb(15, 10, max_size=10, allow_partial=False)) assert exec_state == ExecuteOrderState(cash=100.0, position=100.0, debt=0.0, free_cash=100.0) assert_same_tuple(order_result, OrderResult( size=np.nan, price=np.nan, fees=np.nan, side=-1, status=2, status_info=9)) exec_state, order_result = nb.execute_order_nb( ProcessOrderState(100., 100., 0., 100., 10., 1100., 0, 0), nb.order_nb(10, 10, reject_prob=1.)) assert exec_state == ExecuteOrderState(cash=100.0, position=100.0, debt=0.0, free_cash=100.0) assert_same_tuple(order_result, OrderResult( size=np.nan, price=np.nan, fees=np.nan, side=-1, status=2, status_info=10)) exec_state, order_result = nb.execute_order_nb( ProcessOrderState(0., 100., 0., 0., 10., 1100., 0, 0), nb.order_nb(10, 10, direction=Direction.LongOnly)) assert exec_state == ExecuteOrderState(cash=0.0, position=100.0, debt=0.0, free_cash=0.0) assert_same_tuple(order_result, OrderResult( size=np.nan, price=np.nan, fees=np.nan, side=-1, status=2, status_info=7)) exec_state, order_result = nb.execute_order_nb( ProcessOrderState(0., 100., 0., 0., 10., 1100., 0, 0), nb.order_nb(10, 10, direction=Direction.Both)) assert exec_state == ExecuteOrderState(cash=0.0, position=100.0, debt=0.0, free_cash=0.0) assert_same_tuple(order_result, OrderResult( size=np.nan, price=np.nan, fees=np.nan, side=-1, status=2, status_info=7)) with pytest.raises(Exception): _ = nb.execute_order_nb( ProcessOrderState(np.inf, 100, 0., np.inf, np.nan, 1100., 0, 0), nb.order_nb(np.inf, 10, direction=Direction.LongOnly)) with pytest.raises(Exception): _ = nb.execute_order_nb( ProcessOrderState(np.inf, 100., 0., np.inf, 10., 1100., 0, 0), nb.order_nb(np.inf, 10, direction=Direction.Both)) exec_state, order_result = nb.execute_order_nb( ProcessOrderState(100., 0., 0., 100., 10., 1100., 0, 0), nb.order_nb(-10, 10, direction=Direction.ShortOnly)) assert exec_state == ExecuteOrderState(cash=100.0, position=0.0, debt=0.0, free_cash=100.0) assert_same_tuple(order_result, OrderResult( size=np.nan, price=np.nan, fees=np.nan, side=-1, status=2, status_info=8)) with pytest.raises(Exception): _ = nb.execute_order_nb( ProcessOrderState(np.inf, 100., 0., np.inf, 10., 1100., 0, 0), nb.order_nb(-np.inf, 10, direction=Direction.ShortOnly)) with pytest.raises(Exception): _ = nb.execute_order_nb( ProcessOrderState(np.inf, 100., 0., np.inf, 10., 1100., 0, 0), nb.order_nb(-np.inf, 10, direction=Direction.Both)) exec_state, order_result = nb.execute_order_nb( ProcessOrderState(100., 0., 0., 100., 10., 1100., 0, 0), nb.order_nb(-10, 10, direction=Direction.LongOnly)) assert exec_state == ExecuteOrderState(cash=100.0, position=0.0, debt=0.0, free_cash=100.0) assert_same_tuple(order_result, OrderResult( size=np.nan, price=np.nan, fees=np.nan, side=-1, status=2, status_info=8)) exec_state, order_result = nb.execute_order_nb( ProcessOrderState(100., 100., 0., 100., 10., 1100., 0, 0), nb.order_nb(10, 10, fixed_fees=100)) assert exec_state == ExecuteOrderState(cash=100.0, position=100.0, debt=0.0, free_cash=100.0) assert_same_tuple(order_result, OrderResult( size=np.nan, price=np.nan, fees=np.nan, side=-1, status=2, status_info=11)) exec_state, order_result = nb.execute_order_nb( ProcessOrderState(100., 100., 0., 100., 10., 1100., 0, 0), nb.order_nb(10, 10, min_size=100)) assert exec_state == ExecuteOrderState(cash=100.0, position=100.0, debt=0.0, free_cash=100.0) assert_same_tuple(order_result, OrderResult( size=np.nan, price=np.nan, fees=np.nan, side=-1, status=2, status_info=12)) exec_state, order_result = nb.execute_order_nb( ProcessOrderState(100., 100., 0., 100., 10., 1100., 0, 0), nb.order_nb(100, 10, allow_partial=False)) assert exec_state == ExecuteOrderState(cash=100.0, position=100.0, debt=0.0, free_cash=100.0) assert_same_tuple(order_result, OrderResult( size=np.nan, price=np.nan, fees=np.nan, side=-1, status=2, status_info=13)) exec_state, order_result = nb.execute_order_nb( ProcessOrderState(100., 100., 0., 100., 10., 1100., 0, 0), nb.order_nb(-10, 10, min_size=100)) assert exec_state == ExecuteOrderState(cash=100.0, position=100.0, debt=0.0, free_cash=100.0) assert_same_tuple(order_result, OrderResult( size=np.nan, price=np.nan, fees=np.nan, side=-1, status=2, status_info=12)) exec_state, order_result = nb.execute_order_nb( ProcessOrderState(100., 100., 0., 100., 10., 1100., 0, 0), nb.order_nb(-200, 10, direction=Direction.LongOnly, allow_partial=False)) assert exec_state == ExecuteOrderState(cash=100.0, position=100.0, debt=0.0, free_cash=100.0) assert_same_tuple(order_result, OrderResult( size=np.nan, price=np.nan, fees=np.nan, side=-1, status=2, status_info=13)) exec_state, order_result = nb.execute_order_nb( ProcessOrderState(100., 100., 0., 100., 10., 1100., 0, 0), nb.order_nb(-10, 10, fixed_fees=1000)) assert exec_state == ExecuteOrderState(cash=100.0, position=100.0, debt=0.0, free_cash=100.0) assert_same_tuple(order_result, OrderResult( size=np.nan, price=np.nan, fees=np.nan, side=-1, status=2, status_info=11)) # Calculations exec_state, order_result = nb.execute_order_nb( ProcessOrderState(100., 0., 0., 100., 10., 100., 0, 0), nb.order_nb(10, 10, fees=0.1, fixed_fees=1, slippage=0.1)) assert exec_state == ExecuteOrderState(cash=0.0, position=8.18181818181818, debt=0.0, free_cash=0.0) assert_same_tuple(order_result, OrderResult( size=8.18181818181818, price=11.0, fees=10.000000000000014, side=0, status=0, status_info=-1)) exec_state, order_result = nb.execute_order_nb( ProcessOrderState(100., 0., 0., 100., 10., 100., 0, 0), nb.order_nb(100, 10, fees=0.1, fixed_fees=1, slippage=0.1)) assert exec_state == ExecuteOrderState(cash=0.0, position=8.18181818181818, debt=0.0, free_cash=0.0) assert_same_tuple(order_result, OrderResult( size=8.18181818181818, price=11.0, fees=10.000000000000014, side=0, status=0, status_info=-1)) exec_state, order_result = nb.execute_order_nb( ProcessOrderState(100., 0., 0., 100., 10., 100., 0, 0), nb.order_nb(-10, 10, fees=0.1, fixed_fees=1, slippage=0.1)) assert exec_state == ExecuteOrderState(cash=180.0, position=-10.0, debt=90.0, free_cash=0.0) assert_same_tuple(order_result, OrderResult( size=10.0, price=9.0, fees=10.0, side=1, status=0, status_info=-1)) exec_state, order_result = nb.execute_order_nb( ProcessOrderState(100., 0., 0., 100., 10., 100., 0, 0), nb.order_nb(-100, 10, fees=0.1, fixed_fees=1, slippage=0.1)) assert exec_state == ExecuteOrderState(cash=909.0, position=-100.0, debt=900.0, free_cash=-891.0) assert_same_tuple(order_result, OrderResult( size=100.0, price=9.0, fees=91.0, side=1, status=0, status_info=-1)) exec_state, order_result = nb.execute_order_nb( ProcessOrderState(100., 0., 0., 100., 10., 100., 0, 0), nb.order_nb(10, 10, size_type=SizeType.TargetAmount)) assert exec_state == ExecuteOrderState(cash=0.0, position=10.0, debt=0.0, free_cash=0.0) assert_same_tuple(order_result, OrderResult( size=10., price=10.0, fees=0., side=0, status=0, status_info=-1)) exec_state, order_result = nb.execute_order_nb( ProcessOrderState(100., 0., 0., 100., 10., 100., 0, 0), nb.order_nb(-10, 10, size_type=SizeType.TargetAmount)) assert exec_state == ExecuteOrderState(cash=200.0, position=-10.0, debt=100.0, free_cash=0.0) assert_same_tuple(order_result, OrderResult( size=10., price=10.0, fees=0., side=1, status=0, status_info=-1)) exec_state, order_result = nb.execute_order_nb( ProcessOrderState(100., 0., 0., 100., 10., 100., 0, 0), nb.order_nb(100, 10, size_type=SizeType.Value)) assert exec_state == ExecuteOrderState(cash=0.0, position=10.0, debt=0.0, free_cash=0.0) assert_same_tuple(order_result, OrderResult( size=10., price=10.0, fees=0., side=0, status=0, status_info=-1)) exec_state, order_result = nb.execute_order_nb( ProcessOrderState(100., 0., 0., 100., 10., 100., 0, 0), nb.order_nb(-100, 10, size_type=SizeType.Value)) assert exec_state == ExecuteOrderState(cash=200.0, position=-10.0, debt=100.0, free_cash=0.0) assert_same_tuple(order_result, OrderResult( size=10., price=10.0, fees=0., side=1, status=0, status_info=-1)) exec_state, order_result = nb.execute_order_nb( ProcessOrderState(100., 0., 0., 100., 10., 100., 0, 0), nb.order_nb(100, 10, size_type=SizeType.TargetValue)) assert exec_state == ExecuteOrderState(cash=0.0, position=10.0, debt=0.0, free_cash=0.0) assert_same_tuple(order_result, OrderResult( size=10., price=10.0, fees=0., side=0, status=0, status_info=-1)) exec_state, order_result = nb.execute_order_nb( ProcessOrderState(100., 0., 0., 100., 10., 100., 0, 0), nb.order_nb(-100, 10, size_type=SizeType.TargetValue)) assert exec_state == ExecuteOrderState(cash=200.0, position=-10.0, debt=100.0, free_cash=0.0) assert_same_tuple(order_result, OrderResult( size=10., price=10.0, fees=0., side=1, status=0, status_info=-1)) exec_state, order_result = nb.execute_order_nb( ProcessOrderState(100., 0., 0., 100., 10., 100., 0, 0), nb.order_nb(1, 10, size_type=SizeType.TargetPercent)) assert exec_state == ExecuteOrderState(cash=0.0, position=10.0, debt=0.0, free_cash=0.0) assert_same_tuple(order_result, OrderResult( size=10., price=10.0, fees=0., side=0, status=0, status_info=-1)) exec_state, order_result = nb.execute_order_nb( ProcessOrderState(100., 0., 0., 100., 10., 100., 0, 0), nb.order_nb(-1, 10, size_type=SizeType.TargetPercent)) assert exec_state == ExecuteOrderState(cash=200.0, position=-10.0, debt=100.0, free_cash=0.0) assert_same_tuple(order_result, OrderResult( size=10., price=10.0, fees=0., side=1, status=0, status_info=-1)) exec_state, order_result = nb.execute_order_nb( ProcessOrderState(50., 5., 0., 50., 10., 100., 0, 0), nb.order_nb(1, 10, size_type=SizeType.Percent)) assert exec_state == ExecuteOrderState(cash=0.0, position=10.0, debt=0.0, free_cash=0.0) assert_same_tuple(order_result, OrderResult( size=5.0, price=10.0, fees=0.0, side=0, status=0, status_info=-1)) exec_state, order_result = nb.execute_order_nb( ProcessOrderState(50., 5., 0., 50., 10., 100., 0, 0), nb.order_nb(0.5, 10, size_type=SizeType.Percent)) assert exec_state == ExecuteOrderState(cash=25.0, position=7.5, debt=0.0, free_cash=25.0) assert_same_tuple(order_result, OrderResult( size=2.5, price=10.0, fees=0.0, side=0, status=0, status_info=-1)) exec_state, order_result = nb.execute_order_nb( ProcessOrderState(50., 5., 0., 50., 10., 100., 0, 0), nb.order_nb(-0.5, 10, size_type=SizeType.Percent)) assert exec_state == ExecuteOrderState(cash=125.0, position=-2.5, debt=25.0, free_cash=75.0) assert_same_tuple(order_result, OrderResult( size=7.5, price=10.0, fees=0.0, side=1, status=0, status_info=-1)) exec_state, order_result = nb.execute_order_nb( ProcessOrderState(50., 5., 0., 50., 10., 100., 0, 0), nb.order_nb(-1, 10, size_type=SizeType.Percent)) assert exec_state == ExecuteOrderState(cash=200.0, position=-10.0, debt=100.0, free_cash=0.0) assert_same_tuple(order_result, OrderResult( size=15.0, price=10.0, fees=0.0, side=1, status=0, status_info=-1)) exec_state, order_result = nb.execute_order_nb( ProcessOrderState(50., 0., 0., 50., 10., 100., 0, 0), nb.order_nb(1, 10, size_type=SizeType.Percent)) assert exec_state == ExecuteOrderState(cash=0.0, position=5.0, debt=0.0, free_cash=0.0) assert_same_tuple(order_result, OrderResult( size=5.0, price=10.0, fees=0.0, side=0, status=0, status_info=-1)) exec_state, order_result = nb.execute_order_nb( ProcessOrderState(50., 0., 0., 50., 10., 100., 0, 0), nb.order_nb(0.5, 10, size_type=SizeType.Percent)) assert exec_state == ExecuteOrderState(cash=25.0, position=2.5, debt=0.0, free_cash=25.0) assert_same_tuple(order_result, OrderResult( size=2.5, price=10.0, fees=0.0, side=0, status=0, status_info=-1)) exec_state, order_result = nb.execute_order_nb( ProcessOrderState(50., 0., 0., 50., 10., 100., 0, 0), nb.order_nb(-0.5, 10, size_type=SizeType.Percent)) assert exec_state == ExecuteOrderState(cash=75.0, position=-2.5, debt=25.0, free_cash=25.0) assert_same_tuple(order_result, OrderResult( size=2.5, price=10.0, fees=0.0, side=1, status=0, status_info=-1)) exec_state, order_result = nb.execute_order_nb( ProcessOrderState(50., 0., 0., 50., 10., 100., 0, 0), nb.order_nb(-1, 10, size_type=SizeType.Percent)) assert exec_state == ExecuteOrderState(cash=100.0, position=-5.0, debt=50.0, free_cash=0.0) assert_same_tuple(order_result, OrderResult( size=5.0, price=10.0, fees=0.0, side=1, status=0, status_info=-1)) exec_state, order_result = nb.execute_order_nb( ProcessOrderState(50., -5., 0., 50., 10., 100., 0, 0), nb.order_nb(1, 10, size_type=SizeType.Percent)) assert exec_state == ExecuteOrderState(cash=0.0, position=0.0, debt=0.0, free_cash=0.0) assert_same_tuple(order_result, OrderResult( size=5.0, price=10.0, fees=0.0, side=0, status=0, status_info=-1)) exec_state, order_result = nb.execute_order_nb( ProcessOrderState(50., -5., 0., 50., 10., 100., 0, 0), nb.order_nb(0.5, 10, size_type=SizeType.Percent)) assert exec_state == ExecuteOrderState(cash=25.0, position=-2.5, debt=0.0, free_cash=25.0) assert_same_tuple(order_result, OrderResult( size=2.5, price=10.0, fees=0.0, side=0, status=0, status_info=-1)) exec_state, order_result = nb.execute_order_nb( ProcessOrderState(50., -5., 0., 50., 10., 100., 0, 0), nb.order_nb(-0.5, 10, size_type=SizeType.Percent)) assert exec_state == ExecuteOrderState(cash=75.0, position=-7.5, debt=25.0, free_cash=25.0) assert_same_tuple(order_result, OrderResult( size=2.5, price=10.0, fees=0.0, side=1, status=0, status_info=-1)) exec_state, order_result = nb.execute_order_nb( ProcessOrderState(50., -5., 0., 50., 10., 100., 0, 0), nb.order_nb(-1, 10, size_type=SizeType.Percent)) assert exec_state == ExecuteOrderState(cash=100.0, position=-10.0, debt=50.0, free_cash=0.0) assert_same_tuple(order_result, OrderResult( size=5.0, price=10.0, fees=0.0, side=1, status=0, status_info=-1)) exec_state, order_result = nb.execute_order_nb( ProcessOrderState(100., 0., 0., 100., 10., 100., 0, 0), nb.order_nb(np.inf, 10)) assert exec_state == ExecuteOrderState(cash=0.0, position=10.0, debt=0.0, free_cash=0.0) assert_same_tuple(order_result, OrderResult( size=10., price=10.0, fees=0., side=0, status=0, status_info=-1)) exec_state, order_result = nb.execute_order_nb( ProcessOrderState(100., -5., 0., 100., 10., 100., 0, 0), nb.order_nb(np.inf, 10)) assert exec_state == ExecuteOrderState(cash=0.0, position=5.0, debt=0.0, free_cash=0.0) assert_same_tuple(order_result, OrderResult( size=10., price=10.0, fees=0., side=0, status=0, status_info=-1)) exec_state, order_result = nb.execute_order_nb( ProcessOrderState(100., 0., 0., 100., 10., 100., 0, 0), nb.order_nb(-np.inf, 10)) assert exec_state == ExecuteOrderState(cash=200.0, position=-10.0, debt=100.0, free_cash=0.0) assert_same_tuple(order_result, OrderResult( size=10., price=10.0, fees=0., side=1, status=0, status_info=-1)) exec_state, order_result = nb.execute_order_nb( ProcessOrderState(150., -5., 0., 150., 10., 100., 0, 0), nb.order_nb(-np.inf, 10)) assert exec_state == ExecuteOrderState(cash=300.0, position=-20.0, debt=150.0, free_cash=0.0) assert_same_tuple(order_result, OrderResult( size=15.0, price=10.0, fees=0.0, side=1, status=0, status_info=-1)) exec_state, order_result = nb.execute_order_nb( ProcessOrderState(100., 0., 0., 50., 10., 100., 0, 0), nb.order_nb(10, 10, lock_cash=True)) assert exec_state == ExecuteOrderState(cash=50.0, position=5.0, debt=0.0, free_cash=0.0) assert_same_tuple(order_result, OrderResult( size=5.0, price=10.0, fees=0.0, side=0, status=0, status_info=-1)) exec_state, order_result = nb.execute_order_nb( ProcessOrderState(1000., -5., 50., 50., 10., 100., 0, 0), nb.order_nb(10, 17.5, lock_cash=True)) assert exec_state == ExecuteOrderState(cash=850.0, position=3.571428571428571, debt=0.0, free_cash=0.0) assert_same_tuple(order_result, OrderResult( size=8.571428571428571, price=17.5, fees=0.0, side=0, status=0, status_info=-1)) exec_state, order_result = nb.execute_order_nb( ProcessOrderState(100., -5., 50., 50., 10., 100., 0, 0), nb.order_nb(10, 100, lock_cash=True)) assert exec_state == ExecuteOrderState(cash=37.5, position=-4.375, debt=43.75, free_cash=0.0) assert_same_tuple(order_result, OrderResult( size=0.625, price=100.0, fees=0.0, side=0, status=0, status_info=-1)) exec_state, order_result = nb.execute_order_nb( ProcessOrderState(0., 10., 0., -50., 10., 100., 0, 0), nb.order_nb(-20, 10, lock_cash=True)) assert exec_state == ExecuteOrderState(cash=150.0, position=-5.0, debt=50.0, free_cash=0.0) assert_same_tuple(order_result, OrderResult( size=15.0, price=10.0, fees=0.0, side=1, status=0, status_info=-1)) exec_state, order_result = nb.execute_order_nb( ProcessOrderState(0., 1., 0., -50., 10., 100., 0, 0), nb.order_nb(-10, 10, lock_cash=True)) assert exec_state == ExecuteOrderState(cash=10.0, position=0.0, debt=0.0, free_cash=-40.0) assert_same_tuple(order_result, OrderResult( size=1.0, price=10.0, fees=0.0, side=1, status=0, status_info=-1)) exec_state, order_result = nb.execute_order_nb( ProcessOrderState(0., 0., 0., -100., 10., 100., 0, 0), nb.order_nb(-10, 10, lock_cash=True)) assert exec_state == ExecuteOrderState(cash=0.0, position=0.0, debt=0.0, free_cash=-100.0) assert_same_tuple(order_result, OrderResult( size=np.nan, price=np.nan, fees=np.nan, side=-1, status=2, status_info=6)) exec_state, order_result = nb.execute_order_nb( ProcessOrderState(0., 0., 0., 100., 10., 100., 0, 0), nb.order_nb(-20, 10, fees=0.1, slippage=0.1, fixed_fees=1., lock_cash=True)) assert exec_state == ExecuteOrderState(cash=80.0, position=-10.0, debt=90.0, free_cash=0.0) assert_same_tuple(order_result, OrderResult( size=10.0, price=9.0, fees=10.0, side=1, status=0, status_info=-1)) def test_build_call_seq_nb(): group_lens = np.array([1, 2, 3, 4]) np.testing.assert_array_equal( nb.build_call_seq_nb((10, 10), group_lens, CallSeqType.Default), nb.build_call_seq((10, 10), group_lens, CallSeqType.Default) ) np.testing.assert_array_equal( nb.build_call_seq_nb((10, 10), group_lens, CallSeqType.Reversed), nb.build_call_seq((10, 10), group_lens, CallSeqType.Reversed) ) set_seed(seed) out1 = nb.build_call_seq_nb((10, 10), group_lens, CallSeqType.Random) set_seed(seed) out2 = nb.build_call_seq((10, 10), group_lens, CallSeqType.Random) np.testing.assert_array_equal(out1, out2) # ############# from_orders ############# # order_size = pd.Series([np.inf, -np.inf, np.nan, np.inf, -np.inf], index=price.index) order_size_wide = order_size.vbt.tile(3, keys=['a', 'b', 'c']) order_size_one = pd.Series([1, -1, np.nan, 1, -1], index=price.index) def from_orders_both(close=price, size=order_size, **kwargs): return vbt.Portfolio.from_orders(close, size, direction='both', **kwargs) def from_orders_longonly(close=price, size=order_size, **kwargs): return vbt.Portfolio.from_orders(close, size, direction='longonly', **kwargs) def from_orders_shortonly(close=price, size=order_size, **kwargs): return vbt.Portfolio.from_orders(close, size, direction='shortonly', **kwargs) class TestFromOrders: def test_one_column(self): record_arrays_close( from_orders_both().order_records, np.array([ (0, 0, 0, 100.0, 1.0, 0.0, 0), (1, 0, 1, 200.0, 2.0, 0.0, 1), (2, 0, 3, 100.0, 4.0, 0.0, 0) ], dtype=order_dt) ) record_arrays_close( from_orders_longonly().order_records, np.array([ (0, 0, 0, 100.0, 1.0, 0.0, 0), (1, 0, 1, 100.0, 2.0, 0.0, 1), (2, 0, 3, 50.0, 4.0, 0.0, 0), (3, 0, 4, 50.0, 5.0, 0.0, 1) ], dtype=order_dt) ) record_arrays_close( from_orders_shortonly().order_records, np.array([ (0, 0, 0, 100.0, 1.0, 0.0, 1), (1, 0, 1, 100.0, 2.0, 0.0, 0) ], dtype=order_dt) ) pf = from_orders_both() pd.testing.assert_index_equal( pf.wrapper.index, pd.DatetimeIndex(['2020-01-01', '2020-01-02', '2020-01-03', '2020-01-04', '2020-01-05']) ) pd.testing.assert_index_equal( pf.wrapper.columns, pd.Int64Index([0], dtype='int64') ) assert pf.wrapper.ndim == 1 assert pf.wrapper.freq == day_dt assert pf.wrapper.grouper.group_by is None def test_multiple_columns(self): record_arrays_close( from_orders_both(close=price_wide).order_records, np.array([ (0, 0, 0, 100.0, 1.0, 0.0, 0), (1, 0, 1, 200.0, 2.0, 0.0, 1), (2, 0, 3, 100.0, 4.0, 0.0, 0), (3, 1, 0, 100.0, 1.0, 0.0, 0), (4, 1, 1, 200.0, 2.0, 0.0, 1), (5, 1, 3, 100.0, 4.0, 0.0, 0), (6, 2, 0, 100.0, 1.0, 0.0, 0), (7, 2, 1, 200.0, 2.0, 0.0, 1), (8, 2, 3, 100.0, 4.0, 0.0, 0) ], dtype=order_dt) ) record_arrays_close( from_orders_longonly(close=price_wide).order_records, np.array([ (0, 0, 0, 100.0, 1.0, 0.0, 0), (1, 0, 1, 100.0, 2.0, 0.0, 1), (2, 0, 3, 50.0, 4.0, 0.0, 0), (3, 0, 4, 50.0, 5.0, 0.0, 1), (4, 1, 0, 100.0, 1.0, 0.0, 0), (5, 1, 1, 100.0, 2.0, 0.0, 1), (6, 1, 3, 50.0, 4.0, 0.0, 0), (7, 1, 4, 50.0, 5.0, 0.0, 1), (8, 2, 0, 100.0, 1.0, 0.0, 0), (9, 2, 1, 100.0, 2.0, 0.0, 1), (10, 2, 3, 50.0, 4.0, 0.0, 0), (11, 2, 4, 50.0, 5.0, 0.0, 1) ], dtype=order_dt) ) record_arrays_close( from_orders_shortonly(close=price_wide).order_records, np.array([ (0, 0, 0, 100.0, 1.0, 0.0, 1), (1, 0, 1, 100.0, 2.0, 0.0, 0), (2, 1, 0, 100.0, 1.0, 0.0, 1), (3, 1, 1, 100.0, 2.0, 0.0, 0), (4, 2, 0, 100.0, 1.0, 0.0, 1), (5, 2, 1, 100.0, 2.0, 0.0, 0) ], dtype=order_dt) ) pf = from_orders_both(close=price_wide) pd.testing.assert_index_equal( pf.wrapper.index, pd.DatetimeIndex(['2020-01-01', '2020-01-02', '2020-01-03', '2020-01-04', '2020-01-05']) ) pd.testing.assert_index_equal( pf.wrapper.columns, pd.Index(['a', 'b', 'c'], dtype='object') ) assert pf.wrapper.ndim == 2 assert pf.wrapper.freq == day_dt assert pf.wrapper.grouper.group_by is None def test_size_inf(self): record_arrays_close( from_orders_both(size=[[np.inf, -np.inf]]).order_records, np.array([ (0, 0, 0, 100.0, 1.0, 0.0, 0), (1, 1, 0, 100.0, 1.0, 0.0, 1) ], dtype=order_dt) ) record_arrays_close( from_orders_longonly(size=[[np.inf, -np.inf]]).order_records, np.array([ (0, 0, 0, 100.0, 1.0, 0.0, 0) ], dtype=order_dt) ) record_arrays_close( from_orders_shortonly(size=[[np.inf, -np.inf]]).order_records, np.array([ (0, 0, 0, 100.0, 1.0, 0.0, 1) ], dtype=order_dt) ) def test_price(self): record_arrays_close( from_orders_both(price=price * 1.01).order_records, np.array([ (0, 0, 0, 99.00990099009901, 1.01, 0.0, 0), (1, 0, 1, 198.01980198019803, 2.02, 0.0, 1), (2, 0, 3, 99.00990099009901, 4.04, 0.0, 0) ], dtype=order_dt) ) record_arrays_close( from_orders_longonly(price=price * 1.01).order_records, np.array([ (0, 0, 0, 99.00990099009901, 1.01, 0.0, 0), (1, 0, 1, 99.00990099009901, 2.02, 0.0, 1), (2, 0, 3, 49.504950495049506, 4.04, 0.0, 0), (3, 0, 4, 49.504950495049506, 5.05, 0.0, 1) ], dtype=order_dt) ) record_arrays_close( from_orders_shortonly(price=price * 1.01).order_records, np.array([ (0, 0, 0, 99.00990099009901, 1.01, 0.0, 1), (1, 0, 1, 99.00990099009901, 2.02, 0.0, 0) ], dtype=order_dt) ) record_arrays_close( from_orders_both(price=np.inf).order_records, np.array([ (0, 0, 0, 100.0, 1.0, 0.0, 0), (1, 0, 1, 200.0, 2.0, 0.0, 1), (2, 0, 3, 100.0, 4.0, 0.0, 0) ], dtype=order_dt) ) record_arrays_close( from_orders_longonly(price=np.inf).order_records, np.array([ (0, 0, 0, 100.0, 1.0, 0.0, 0), (1, 0, 1, 100.0, 2.0, 0.0, 1), (2, 0, 3, 50.0, 4.0, 0.0, 0), (3, 0, 4, 50.0, 5.0, 0.0, 1) ], dtype=order_dt) ) record_arrays_close( from_orders_shortonly(price=np.inf).order_records, np.array([ (0, 0, 0, 100.0, 1.0, 0.0, 1), (1, 0, 1, 100.0, 2.0, 0.0, 0) ], dtype=order_dt) ) record_arrays_close( from_orders_both(price=-np.inf).order_records, np.array([ (0, 0, 1, 100.0, 1.0, 0.0, 1), (1, 0, 3, 66.66666666666667, 3.0, 0.0, 0) ], dtype=order_dt) ) record_arrays_close( from_orders_longonly(price=-np.inf).order_records, np.array([ (0, 0, 3, 33.333333333333336, 3.0, 0.0, 0), (1, 0, 4, 33.333333333333336, 4.0, 0.0, 1) ], dtype=order_dt) ) record_arrays_close( from_orders_shortonly(price=-np.inf).order_records, np.array([ (0, 0, 3, 33.333333333333336, 3.0, 0.0, 1), (1, 0, 4, 33.333333333333336, 4.0, 0.0, 0) ], dtype=order_dt) ) def test_val_price(self): price_nan = pd.Series([1, 2, np.nan, 4, 5], index=price.index) record_arrays_close( from_orders_both(close=price_nan, size=order_size_one, val_price=np.inf, size_type='value').order_records, from_orders_both(close=price_nan, size=order_size_one, val_price=price, size_type='value').order_records ) record_arrays_close( from_orders_longonly(close=price_nan, size=order_size_one, val_price=np.inf, size_type='value').order_records, from_orders_longonly(close=price_nan, size=order_size_one, val_price=price, size_type='value').order_records ) record_arrays_close( from_orders_shortonly(close=price_nan, size=order_size_one, val_price=np.inf, size_type='value').order_records, from_orders_shortonly(close=price_nan, size=order_size_one, val_price=price, size_type='value').order_records ) shift_price = price_nan.ffill().shift(1) record_arrays_close( from_orders_both(close=price_nan, size=order_size_one, val_price=-np.inf, size_type='value').order_records, from_orders_both(close=price_nan, size=order_size_one, val_price=shift_price, size_type='value').order_records ) record_arrays_close( from_orders_longonly(close=price_nan, size=order_size_one, val_price=-np.inf, size_type='value').order_records, from_orders_longonly(close=price_nan, size=order_size_one, val_price=shift_price, size_type='value').order_records ) record_arrays_close( from_orders_shortonly(close=price_nan, size=order_size_one, val_price=-np.inf, size_type='value').order_records, from_orders_shortonly(close=price_nan, size=order_size_one, val_price=shift_price, size_type='value').order_records ) record_arrays_close( from_orders_both(close=price_nan, size=order_size_one, val_price=np.inf, size_type='value', ffill_val_price=False).order_records, from_orders_both(close=price_nan, size=order_size_one, val_price=price_nan, size_type='value', ffill_val_price=False).order_records ) record_arrays_close( from_orders_longonly(close=price_nan, size=order_size_one, val_price=np.inf, size_type='value', ffill_val_price=False).order_records, from_orders_longonly(close=price_nan, size=order_size_one, val_price=price_nan, size_type='value', ffill_val_price=False).order_records ) record_arrays_close( from_orders_shortonly(close=price_nan, size=order_size_one, val_price=np.inf, size_type='value', ffill_val_price=False).order_records, from_orders_shortonly(close=price_nan, size=order_size_one, val_price=price_nan, size_type='value', ffill_val_price=False).order_records ) shift_price_nan = price_nan.shift(1) record_arrays_close( from_orders_both(close=price_nan, size=order_size_one, val_price=-np.inf, size_type='value', ffill_val_price=False).order_records, from_orders_both(close=price_nan, size=order_size_one, val_price=shift_price_nan, size_type='value', ffill_val_price=False).order_records ) record_arrays_close( from_orders_longonly(close=price_nan, size=order_size_one, val_price=-np.inf, size_type='value', ffill_val_price=False).order_records, from_orders_longonly(close=price_nan, size=order_size_one, val_price=shift_price_nan, size_type='value', ffill_val_price=False).order_records ) record_arrays_close( from_orders_shortonly(close=price_nan, size=order_size_one, val_price=-np.inf, size_type='value', ffill_val_price=False).order_records, from_orders_shortonly(close=price_nan, size=order_size_one, val_price=shift_price_nan, size_type='value', ffill_val_price=False).order_records ) def test_fees(self): record_arrays_close( from_orders_both(size=order_size_one, fees=[[0., 0.1, 1.]]).order_records, np.array([ (0, 0, 0, 1.0, 1.0, 0.0, 0), (1, 0, 1, 1.0, 2.0, 0.0, 1), (2, 0, 3, 1.0, 4.0, 0.0, 0), (3, 0, 4, 1.0, 5.0, 0.0, 1), (4, 1, 0, 1.0, 1.0, 0.1, 0), (5, 1, 1, 1.0, 2.0, 0.2, 1), (6, 1, 3, 1.0, 4.0, 0.4, 0), (7, 1, 4, 1.0, 5.0, 0.5, 1), (8, 2, 0, 1.0, 1.0, 1.0, 0), (9, 2, 1, 1.0, 2.0, 2.0, 1), (10, 2, 3, 1.0, 4.0, 4.0, 0), (11, 2, 4, 1.0, 5.0, 5.0, 1) ], dtype=order_dt) ) record_arrays_close( from_orders_longonly(size=order_size_one, fees=[[0., 0.1, 1.]]).order_records, np.array([ (0, 0, 0, 1.0, 1.0, 0.0, 0), (1, 0, 1, 1.0, 2.0, 0.0, 1), (2, 0, 3, 1.0, 4.0, 0.0, 0), (3, 0, 4, 1.0, 5.0, 0.0, 1), (4, 1, 0, 1.0, 1.0, 0.1, 0), (5, 1, 1, 1.0, 2.0, 0.2, 1), (6, 1, 3, 1.0, 4.0, 0.4, 0), (7, 1, 4, 1.0, 5.0, 0.5, 1), (8, 2, 0, 1.0, 1.0, 1.0, 0), (9, 2, 1, 1.0, 2.0, 2.0, 1), (10, 2, 3, 1.0, 4.0, 4.0, 0), (11, 2, 4, 1.0, 5.0, 5.0, 1) ], dtype=order_dt) ) record_arrays_close( from_orders_shortonly(size=order_size_one, fees=[[0., 0.1, 1.]]).order_records, np.array([ (0, 0, 0, 1.0, 1.0, 0.0, 1), (1, 0, 1, 1.0, 2.0, 0.0, 0), (2, 0, 3, 1.0, 4.0, 0.0, 1), (3, 0, 4, 1.0, 5.0, 0.0, 0), (4, 1, 0, 1.0, 1.0, 0.1, 1), (5, 1, 1, 1.0, 2.0, 0.2, 0), (6, 1, 3, 1.0, 4.0, 0.4, 1), (7, 1, 4, 1.0, 5.0, 0.5, 0), (8, 2, 0, 1.0, 1.0, 1.0, 1), (9, 2, 1, 1.0, 2.0, 2.0, 0), (10, 2, 3, 1.0, 4.0, 4.0, 1), (11, 2, 4, 1.0, 5.0, 5.0, 0) ], dtype=order_dt) ) def test_fixed_fees(self): record_arrays_close( from_orders_both(size=order_size_one, fixed_fees=[[0., 0.1, 1.]]).order_records, np.array([ (0, 0, 0, 1.0, 1.0, 0.0, 0), (1, 0, 1, 1.0, 2.0, 0.0, 1), (2, 0, 3, 1.0, 4.0, 0.0, 0), (3, 0, 4, 1.0, 5.0, 0.0, 1), (4, 1, 0, 1.0, 1.0, 0.1, 0), (5, 1, 1, 1.0, 2.0, 0.1, 1), (6, 1, 3, 1.0, 4.0, 0.1, 0), (7, 1, 4, 1.0, 5.0, 0.1, 1), (8, 2, 0, 1.0, 1.0, 1.0, 0), (9, 2, 1, 1.0, 2.0, 1.0, 1), (10, 2, 3, 1.0, 4.0, 1.0, 0), (11, 2, 4, 1.0, 5.0, 1.0, 1) ], dtype=order_dt) ) record_arrays_close( from_orders_longonly(size=order_size_one, fixed_fees=[[0., 0.1, 1.]]).order_records, np.array([ (0, 0, 0, 1.0, 1.0, 0.0, 0), (1, 0, 1, 1.0, 2.0, 0.0, 1), (2, 0, 3, 1.0, 4.0, 0.0, 0), (3, 0, 4, 1.0, 5.0, 0.0, 1), (4, 1, 0, 1.0, 1.0, 0.1, 0), (5, 1, 1, 1.0, 2.0, 0.1, 1), (6, 1, 3, 1.0, 4.0, 0.1, 0), (7, 1, 4, 1.0, 5.0, 0.1, 1), (8, 2, 0, 1.0, 1.0, 1.0, 0), (9, 2, 1, 1.0, 2.0, 1.0, 1), (10, 2, 3, 1.0, 4.0, 1.0, 0), (11, 2, 4, 1.0, 5.0, 1.0, 1) ], dtype=order_dt) ) record_arrays_close( from_orders_shortonly(size=order_size_one, fixed_fees=[[0., 0.1, 1.]]).order_records, np.array([ (0, 0, 0, 1.0, 1.0, 0.0, 1), (1, 0, 1, 1.0, 2.0, 0.0, 0), (2, 0, 3, 1.0, 4.0, 0.0, 1), (3, 0, 4, 1.0, 5.0, 0.0, 0), (4, 1, 0, 1.0, 1.0, 0.1, 1), (5, 1, 1, 1.0, 2.0, 0.1, 0), (6, 1, 3, 1.0, 4.0, 0.1, 1), (7, 1, 4, 1.0, 5.0, 0.1, 0), (8, 2, 0, 1.0, 1.0, 1.0, 1), (9, 2, 1, 1.0, 2.0, 1.0, 0), (10, 2, 3, 1.0, 4.0, 1.0, 1), (11, 2, 4, 1.0, 5.0, 1.0, 0) ], dtype=order_dt) ) def test_slippage(self): record_arrays_close( from_orders_both(size=order_size_one, slippage=[[0., 0.1, 1.]]).order_records, np.array([ (0, 0, 0, 1.0, 1.0, 0.0, 0), (1, 0, 1, 1.0, 2.0, 0.0, 1), (2, 0, 3, 1.0, 4.0, 0.0, 0), (3, 0, 4, 1.0, 5.0, 0.0, 1), (4, 1, 0, 1.0, 1.1, 0.0, 0), (5, 1, 1, 1.0, 1.8, 0.0, 1), (6, 1, 3, 1.0, 4.4, 0.0, 0), (7, 1, 4, 1.0, 4.5, 0.0, 1), (8, 2, 0, 1.0, 2.0, 0.0, 0), (9, 2, 1, 1.0, 0.0, 0.0, 1), (10, 2, 3, 1.0, 8.0, 0.0, 0), (11, 2, 4, 1.0, 0.0, 0.0, 1) ], dtype=order_dt) ) record_arrays_close( from_orders_longonly(size=order_size_one, slippage=[[0., 0.1, 1.]]).order_records, np.array([ (0, 0, 0, 1.0, 1.0, 0.0, 0), (1, 0, 1, 1.0, 2.0, 0.0, 1), (2, 0, 3, 1.0, 4.0, 0.0, 0), (3, 0, 4, 1.0, 5.0, 0.0, 1), (4, 1, 0, 1.0, 1.1, 0.0, 0), (5, 1, 1, 1.0, 1.8, 0.0, 1), (6, 1, 3, 1.0, 4.4, 0.0, 0), (7, 1, 4, 1.0, 4.5, 0.0, 1), (8, 2, 0, 1.0, 2.0, 0.0, 0), (9, 2, 1, 1.0, 0.0, 0.0, 1), (10, 2, 3, 1.0, 8.0, 0.0, 0), (11, 2, 4, 1.0, 0.0, 0.0, 1) ], dtype=order_dt) ) record_arrays_close( from_orders_shortonly(size=order_size_one, slippage=[[0., 0.1, 1.]]).order_records, np.array([ (0, 0, 0, 1.0, 1.0, 0.0, 1), (1, 0, 1, 1.0, 2.0, 0.0, 0), (2, 0, 3, 1.0, 4.0, 0.0, 1), (3, 0, 4, 1.0, 5.0, 0.0, 0), (4, 1, 0, 1.0, 0.9, 0.0, 1), (5, 1, 1, 1.0, 2.2, 0.0, 0), (6, 1, 3, 1.0, 3.6, 0.0, 1), (7, 1, 4, 1.0, 5.5, 0.0, 0), (8, 2, 0, 1.0, 0.0, 0.0, 1), (9, 2, 1, 1.0, 4.0, 0.0, 0), (10, 2, 3, 1.0, 0.0, 0.0, 1), (11, 2, 4, 1.0, 10.0, 0.0, 0) ], dtype=order_dt) ) def test_min_size(self): record_arrays_close( from_orders_both(size=order_size_one, min_size=[[0., 1., 2.]]).order_records, np.array([ (0, 0, 0, 1.0, 1.0, 0.0, 0), (1, 0, 1, 1.0, 2.0, 0.0, 1), (2, 0, 3, 1.0, 4.0, 0.0, 0), (3, 0, 4, 1.0, 5.0, 0.0, 1), (4, 1, 0, 1.0, 1.0, 0.0, 0), (5, 1, 1, 1.0, 2.0, 0.0, 1), (6, 1, 3, 1.0, 4.0, 0.0, 0), (7, 1, 4, 1.0, 5.0, 0.0, 1) ], dtype=order_dt) ) record_arrays_close( from_orders_longonly(size=order_size_one, min_size=[[0., 1., 2.]]).order_records, np.array([ (0, 0, 0, 1.0, 1.0, 0.0, 0), (1, 0, 1, 1.0, 2.0, 0.0, 1), (2, 0, 3, 1.0, 4.0, 0.0, 0), (3, 0, 4, 1.0, 5.0, 0.0, 1), (4, 1, 0, 1.0, 1.0, 0.0, 0), (5, 1, 1, 1.0, 2.0, 0.0, 1), (6, 1, 3, 1.0, 4.0, 0.0, 0), (7, 1, 4, 1.0, 5.0, 0.0, 1) ], dtype=order_dt) ) record_arrays_close( from_orders_shortonly(size=order_size_one, min_size=[[0., 1., 2.]]).order_records, np.array([ (0, 0, 0, 1.0, 1.0, 0.0, 1), (1, 0, 1, 1.0, 2.0, 0.0, 0), (2, 0, 3, 1.0, 4.0, 0.0, 1), (3, 0, 4, 1.0, 5.0, 0.0, 0), (4, 1, 0, 1.0, 1.0, 0.0, 1), (5, 1, 1, 1.0, 2.0, 0.0, 0), (6, 1, 3, 1.0, 4.0, 0.0, 1), (7, 1, 4, 1.0, 5.0, 0.0, 0) ], dtype=order_dt) ) def test_max_size(self): record_arrays_close( from_orders_both(size=order_size_one, max_size=[[0.5, 1., np.inf]]).order_records, np.array([ (0, 0, 0, 0.5, 1.0, 0.0, 0), (1, 0, 1, 0.5, 2.0, 0.0, 1), (2, 0, 3, 0.5, 4.0, 0.0, 0), (3, 0, 4, 0.5, 5.0, 0.0, 1), (4, 1, 0, 1.0, 1.0, 0.0, 0), (5, 1, 1, 1.0, 2.0, 0.0, 1), (6, 1, 3, 1.0, 4.0, 0.0, 0), (7, 1, 4, 1.0, 5.0, 0.0, 1), (8, 2, 0, 1.0, 1.0, 0.0, 0), (9, 2, 1, 1.0, 2.0, 0.0, 1), (10, 2, 3, 1.0, 4.0, 0.0, 0), (11, 2, 4, 1.0, 5.0, 0.0, 1) ], dtype=order_dt) ) record_arrays_close( from_orders_longonly(size=order_size_one, max_size=[[0.5, 1., np.inf]]).order_records, np.array([ (0, 0, 0, 0.5, 1.0, 0.0, 0), (1, 0, 1, 0.5, 2.0, 0.0, 1), (2, 0, 3, 0.5, 4.0, 0.0, 0), (3, 0, 4, 0.5, 5.0, 0.0, 1), (4, 1, 0, 1.0, 1.0, 0.0, 0), (5, 1, 1, 1.0, 2.0, 0.0, 1), (6, 1, 3, 1.0, 4.0, 0.0, 0), (7, 1, 4, 1.0, 5.0, 0.0, 1), (8, 2, 0, 1.0, 1.0, 0.0, 0), (9, 2, 1, 1.0, 2.0, 0.0, 1), (10, 2, 3, 1.0, 4.0, 0.0, 0), (11, 2, 4, 1.0, 5.0, 0.0, 1) ], dtype=order_dt) ) record_arrays_close( from_orders_shortonly(size=order_size_one, max_size=[[0.5, 1., np.inf]]).order_records, np.array([ (0, 0, 0, 0.5, 1.0, 0.0, 1), (1, 0, 1, 0.5, 2.0, 0.0, 0), (2, 0, 3, 0.5, 4.0, 0.0, 1), (3, 0, 4, 0.5, 5.0, 0.0, 0), (4, 1, 0, 1.0, 1.0, 0.0, 1), (5, 1, 1, 1.0, 2.0, 0.0, 0), (6, 1, 3, 1.0, 4.0, 0.0, 1), (7, 1, 4, 1.0, 5.0, 0.0, 0), (8, 2, 0, 1.0, 1.0, 0.0, 1), (9, 2, 1, 1.0, 2.0, 0.0, 0), (10, 2, 3, 1.0, 4.0, 0.0, 1), (11, 2, 4, 1.0, 5.0, 0.0, 0) ], dtype=order_dt) ) def test_reject_prob(self): record_arrays_close( from_orders_both(size=order_size_one, reject_prob=[[0., 0.5, 1.]], seed=42).order_records, np.array([ (0, 0, 0, 1.0, 1.0, 0.0, 0), (1, 0, 1, 1.0, 2.0, 0.0, 1), (2, 0, 3, 1.0, 4.0, 0.0, 0), (3, 0, 4, 1.0, 5.0, 0.0, 1), (4, 1, 1, 1.0, 2.0, 0.0, 1), (5, 1, 3, 1.0, 4.0, 0.0, 0), (6, 1, 4, 1.0, 5.0, 0.0, 1) ], dtype=order_dt) ) record_arrays_close( from_orders_longonly(size=order_size_one, reject_prob=[[0., 0.5, 1.]], seed=42).order_records, np.array([ (0, 0, 0, 1.0, 1.0, 0.0, 0), (1, 0, 1, 1.0, 2.0, 0.0, 1), (2, 0, 3, 1.0, 4.0, 0.0, 0), (3, 0, 4, 1.0, 5.0, 0.0, 1), (4, 1, 3, 1.0, 4.0, 0.0, 0), (5, 1, 4, 1.0, 5.0, 0.0, 1) ], dtype=order_dt) ) record_arrays_close( from_orders_shortonly(size=order_size_one, reject_prob=[[0., 0.5, 1.]], seed=42).order_records, np.array([ (0, 0, 0, 1.0, 1.0, 0.0, 1), (1, 0, 1, 1.0, 2.0, 0.0, 0), (2, 0, 3, 1.0, 4.0, 0.0, 1), (3, 0, 4, 1.0, 5.0, 0.0, 0), (4, 1, 3, 1.0, 4.0, 0.0, 1), (5, 1, 4, 1.0, 5.0, 0.0, 0) ], dtype=order_dt) ) def test_lock_cash(self): pf = vbt.Portfolio.from_orders( pd.Series([1, 1]), pd.DataFrame([[-25, -25], [np.inf, np.inf]]), group_by=True, cash_sharing=True, lock_cash=False, fees=0.01, fixed_fees=1., slippage=0.01) np.testing.assert_array_equal( pf.asset_flow().values, np.array([ [-25.0, -25.0], [143.12812469365747, 0.0] ]) ) np.testing.assert_array_equal( pf.cash(group_by=False, in_sim_order=True).values, np.array([ [123.5025, 147.005], [0.0, 0.0] ]) ) np.testing.assert_array_equal( pf.cash(group_by=False, in_sim_order=True, free=True).values, np.array([ [74.0025, 48.004999999999995], [-49.5, -49.5] ]) ) pf = vbt.Portfolio.from_orders( pd.Series([1, 1]), pd.DataFrame([[-25, -25], [np.inf, np.inf]]), group_by=True, cash_sharing=True, lock_cash=True, fees=0.01, fixed_fees=1., slippage=0.01) np.testing.assert_array_equal( pf.asset_flow().values, np.array([ [-25.0, -25.0], [94.6034702480149, 47.54435839623566] ]) ) np.testing.assert_array_equal( pf.cash(group_by=False, in_sim_order=True).values, np.array([ [123.5025, 147.005], [49.5, 0.0] ]) ) np.testing.assert_array_equal( pf.cash(group_by=False, in_sim_order=True, free=True).values, np.array([ [74.0025, 48.004999999999995], [0.0, 0.0] ]) ) pf = vbt.Portfolio.from_orders( pd.Series([1, 100]), pd.DataFrame([[-25, -25], [np.inf, np.inf]]), group_by=True, cash_sharing=True, lock_cash=False, fees=0.01, fixed_fees=1., slippage=0.01) np.testing.assert_array_equal( pf.asset_flow().values, np.array([ [-25.0, -25.0], [1.4312812469365748, 0.0] ]) ) np.testing.assert_array_equal( pf.cash(group_by=False, in_sim_order=True).values, np.array([ [123.5025, 147.005], [0.0, 0.0] ]) ) np.testing.assert_array_equal( pf.cash(group_by=False, in_sim_order=True, free=True).values, np.array([ [74.0025, 48.004999999999995], [-96.16606313106556, -96.16606313106556] ]) ) pf = vbt.Portfolio.from_orders( pd.Series([1, 100]), pd.DataFrame([[-25, -25], [np.inf, np.inf]]), group_by=True, cash_sharing=True, lock_cash=True, fees=0.01, fixed_fees=1., slippage=0.01) np.testing.assert_array_equal( pf.asset_flow().values, np.array([ [-25.0, -25.0], [0.4699090272918124, 0.0] ]) ) np.testing.assert_array_equal( pf.cash(group_by=False, in_sim_order=True).values, np.array([ [123.5025, 147.005], [98.06958012596222, 98.06958012596222] ]) ) np.testing.assert_array_equal( pf.cash(group_by=False, in_sim_order=True, free=True).values, np.array([ [74.0025, 48.004999999999995], [0.0, 0.0] ]) ) pf = from_orders_both(size=order_size_one * 1000, lock_cash=[[False, True]]) record_arrays_close( pf.order_records, np.array([ (0, 0, 0, 100., 1., 0., 0), (1, 0, 1, 1000., 2., 0., 1), (2, 0, 3, 500., 4., 0., 0), (3, 0, 4, 1000., 5., 0., 1), (4, 1, 0, 100., 1., 0., 0), (5, 1, 1, 200., 2., 0., 1), (6, 1, 3, 100., 4., 0., 0) ], dtype=order_dt) ) np.testing.assert_array_equal( pf.cash(free=True).values, np.array([ [0.0, 0.0], [-1600.0, 0.0], [-1600.0, 0.0], [-1600.0, 0.0], [-6600.0, 0.0] ]) ) pf = from_orders_longonly(size=order_size_one * 1000, lock_cash=[[False, True]]) record_arrays_close( pf.order_records, np.array([ (0, 0, 0, 100., 1., 0., 0), (1, 0, 1, 100., 2., 0., 1), (2, 0, 3, 50., 4., 0., 0), (3, 0, 4, 50., 5., 0., 1), (4, 1, 0, 100., 1., 0., 0), (5, 1, 1, 100., 2., 0., 1), (6, 1, 3, 50., 4., 0., 0), (7, 1, 4, 50., 5., 0., 1) ], dtype=order_dt) ) np.testing.assert_array_equal( pf.cash(free=True).values, np.array([ [0.0, 0.0], [200.0, 200.0], [200.0, 200.0], [0.0, 0.0], [250.0, 250.0] ]) ) pf = from_orders_shortonly(size=order_size_one * 1000, lock_cash=[[False, True]]) record_arrays_close( pf.order_records, np.array([ (0, 0, 0, 1000., 1., 0., 1), (1, 0, 1, 550., 2., 0., 0), (2, 0, 3, 1000., 4., 0., 1), (3, 0, 4, 800., 5., 0., 0), (4, 1, 0, 100., 1., 0., 1), (5, 1, 1, 100., 2., 0., 0) ], dtype=order_dt) ) np.testing.assert_array_equal( pf.cash(free=True).values, np.array([ [-900.0, 0.0], [-900.0, 0.0], [-900.0, 0.0], [-4900.0, 0.0], [-3989.6551724137926, 0.0] ]) ) def test_allow_partial(self): record_arrays_close( from_orders_both(size=order_size_one * 1000, allow_partial=[[True, False]]).order_records, np.array([ (0, 0, 0, 100.0, 1.0, 0.0, 0), (1, 0, 1, 1000.0, 2.0, 0.0, 1), (2, 0, 3, 500.0, 4.0, 0.0, 0), (3, 0, 4, 1000.0, 5.0, 0.0, 1), (4, 1, 1, 1000.0, 2.0, 0.0, 1), (5, 1, 4, 1000.0, 5.0, 0.0, 1) ], dtype=order_dt) ) record_arrays_close( from_orders_longonly(size=order_size_one * 1000, allow_partial=[[True, False]]).order_records, np.array([ (0, 0, 0, 100.0, 1.0, 0.0, 0), (1, 0, 1, 100.0, 2.0, 0.0, 1), (2, 0, 3, 50.0, 4.0, 0.0, 0), (3, 0, 4, 50.0, 5.0, 0.0, 1) ], dtype=order_dt) ) record_arrays_close( from_orders_shortonly(size=order_size_one * 1000, allow_partial=[[True, False]]).order_records, np.array([ (0, 0, 0, 1000.0, 1.0, 0.0, 1), (1, 0, 1, 550.0, 2.0, 0.0, 0), (2, 0, 3, 1000.0, 4.0, 0.0, 1), (3, 0, 4, 800.0, 5.0, 0.0, 0), (4, 1, 0, 1000.0, 1.0, 0.0, 1), (5, 1, 3, 1000.0, 4.0, 0.0, 1), (6, 1, 4, 1000.0, 5.0, 0.0, 0) ], dtype=order_dt) ) record_arrays_close( from_orders_both(size=order_size, allow_partial=[[True, False]]).order_records, np.array([ (0, 0, 0, 100.0, 1.0, 0.0, 0), (1, 0, 1, 200.0, 2.0, 0.0, 1), (2, 0, 3, 100.0, 4.0, 0.0, 0), (3, 1, 0, 100.0, 1.0, 0.0, 0), (4, 1, 1, 200.0, 2.0, 0.0, 1), (5, 1, 3, 100.0, 4.0, 0.0, 0) ], dtype=order_dt) ) record_arrays_close( from_orders_longonly(size=order_size, allow_partial=[[True, False]]).order_records, np.array([ (0, 0, 0, 100.0, 1.0, 0.0, 0), (1, 0, 1, 100.0, 2.0, 0.0, 1), (2, 0, 3, 50.0, 4.0, 0.0, 0), (3, 0, 4, 50.0, 5.0, 0.0, 1), (4, 1, 0, 100.0, 1.0, 0.0, 0), (5, 1, 1, 100.0, 2.0, 0.0, 1), (6, 1, 3, 50.0, 4.0, 0.0, 0), (7, 1, 4, 50.0, 5.0, 0.0, 1) ], dtype=order_dt) ) record_arrays_close( from_orders_shortonly(size=order_size, allow_partial=[[True, False]]).order_records, np.array([ (0, 0, 0, 100.0, 1.0, 0.0, 1), (1, 0, 1, 100.0, 2.0, 0.0, 0), (2, 1, 0, 100.0, 1.0, 0.0, 1), (3, 1, 1, 100.0, 2.0, 0.0, 0) ], dtype=order_dt) ) def test_raise_reject(self): record_arrays_close( from_orders_both(size=order_size_one * 1000, allow_partial=True, raise_reject=True).order_records, np.array([ (0, 0, 0, 100.0, 1.0, 0.0, 0), (1, 0, 1, 1000.0, 2.0, 0.0, 1), (2, 0, 3, 500.0, 4.0, 0.0, 0), (3, 0, 4, 1000.0, 5.0, 0.0, 1) ], dtype=order_dt) ) record_arrays_close( from_orders_longonly(size=order_size_one * 1000, allow_partial=True, raise_reject=True).order_records, np.array([ (0, 0, 0, 100.0, 1.0, 0.0, 0), (1, 0, 1, 100.0, 2.0, 0.0, 1), (2, 0, 3, 50.0, 4.0, 0.0, 0), (3, 0, 4, 50.0, 5.0, 0.0, 1) ], dtype=order_dt) ) record_arrays_close( from_orders_shortonly(size=order_size_one * 1000, allow_partial=True, raise_reject=True).order_records, np.array([ (0, 0, 0, 1000.0, 1.0, 0.0, 1), (1, 0, 1, 550.0, 2.0, 0.0, 0), (2, 0, 3, 1000.0, 4.0, 0.0, 1), (3, 0, 4, 800.0, 5.0, 0.0, 0) ], dtype=order_dt) ) with pytest.raises(Exception): _ = from_orders_both(size=order_size_one * 1000, allow_partial=False, raise_reject=True).order_records with pytest.raises(Exception): _ = from_orders_longonly(size=order_size_one * 1000, allow_partial=False, raise_reject=True).order_records with pytest.raises(Exception): _ = from_orders_shortonly(size=order_size_one * 1000, allow_partial=False, raise_reject=True).order_records def test_log(self): record_arrays_close( from_orders_both(log=True).log_records, np.array([ (0, 0, 0, 0, 100.0, 0.0, 0.0, 100.0, 1.0, 100.0, np.inf, 1.0, 0, 2, 0.0, 0.0, 0.0, 1e-08, np.inf, 0.0, False, True, False, True, 0.0, 100.0, 0.0, 0.0, 1.0, 100.0, 100.0, 1.0, 0.0, 0, 0, -1, 0), (1, 0, 0, 1, 0.0, 100.0, 0.0, 0.0, 2.0, 200.0, -np.inf, 2.0, 0, 2, 0.0, 0.0, 0.0, 1e-08, np.inf, 0.0, False, True, False, True, 400.0, -100.0, 200.0, 0.0, 2.0, 200.0, 200.0, 2.0, 0.0, 1, 0, -1, 1), (2, 0, 0, 2, 400.0, -100.0, 200.0, 0.0, 3.0, 100.0, np.nan, 3.0, 0, 2, 0.0, 0.0, 0.0, 1e-08, np.inf, 0.0, False, True, False, True, 400.0, -100.0, 200.0, 0.0, 3.0, 100.0, np.nan, np.nan, np.nan, -1, 1, 0, -1), (3, 0, 0, 3, 400.0, -100.0, 200.0, 0.0, 4.0, 0.0, np.inf, 4.0, 0, 2, 0.0, 0.0, 0.0, 1e-08, np.inf, 0.0, False, True, False, True, 0.0, 0.0, 0.0, 0.0, 4.0, 0.0, 100.0, 4.0, 0.0, 0, 0, -1, 2), (4, 0, 0, 4, 0.0, 0.0, 0.0, 0.0, 5.0, 0.0, -np.inf, 5.0, 0, 2, 0.0, 0.0, 0.0, 1e-08, np.inf, 0.0, False, True, False, True, 0.0, 0.0, 0.0, 0.0, 5.0, 0.0, np.nan, np.nan, np.nan, -1, 2, 6, -1) ], dtype=log_dt) ) def test_group_by(self): pf = from_orders_both(close=price_wide, group_by=np.array([0, 0, 1])) record_arrays_close( pf.order_records, np.array([ (0, 0, 0, 100.0, 1.0, 0.0, 0), (1, 0, 1, 200.0, 2.0, 0.0, 1), (2, 0, 3, 100.0, 4.0, 0.0, 0), (3, 1, 0, 100.0, 1.0, 0.0, 0), (4, 1, 1, 200.0, 2.0, 0.0, 1), (5, 1, 3, 100.0, 4.0, 0.0, 0), (6, 2, 0, 100.0, 1.0, 0.0, 0), (7, 2, 1, 200.0, 2.0, 0.0, 1), (8, 2, 3, 100.0, 4.0, 0.0, 0) ], dtype=order_dt) ) pd.testing.assert_index_equal( pf.wrapper.grouper.group_by, pd.Int64Index([0, 0, 1], dtype='int64') ) pd.testing.assert_series_equal( pf.init_cash, pd.Series([200., 100.], index=pd.Int64Index([0, 1], dtype='int64')).rename('init_cash') ) assert not pf.cash_sharing def test_cash_sharing(self): pf = from_orders_both(close=price_wide, group_by=np.array([0, 0, 1]), cash_sharing=True) record_arrays_close( pf.order_records, np.array([ (0, 0, 0, 100., 1., 0., 0), (1, 0, 1, 200., 2., 0., 1), (2, 0, 3, 100., 4., 0., 0), (3, 2, 0, 100., 1., 0., 0), (4, 2, 1, 200., 2., 0., 1), (5, 2, 3, 100., 4., 0., 0) ], dtype=order_dt) ) pd.testing.assert_index_equal( pf.wrapper.grouper.group_by, pd.Int64Index([0, 0, 1], dtype='int64') ) pd.testing.assert_series_equal( pf.init_cash, pd.Series([100., 100.], index=pd.Int64Index([0, 1], dtype='int64')).rename('init_cash') ) assert pf.cash_sharing with pytest.raises(Exception): _ = pf.regroup(group_by=False) def test_call_seq(self): pf = from_orders_both(close=price_wide, group_by=np.array([0, 0, 1]), cash_sharing=True) record_arrays_close( pf.order_records, np.array([ (0, 0, 0, 100., 1., 0., 0), (1, 0, 1, 200., 2., 0., 1), (2, 0, 3, 100., 4., 0., 0), (3, 2, 0, 100., 1., 0., 0), (4, 2, 1, 200., 2., 0., 1), (5, 2, 3, 100., 4., 0., 0) ], dtype=order_dt) ) np.testing.assert_array_equal( pf.call_seq.values, np.array([ [0, 1, 0], [0, 1, 0], [0, 1, 0], [0, 1, 0], [0, 1, 0] ]) ) pf = from_orders_both( close=price_wide, group_by=np.array([0, 0, 1]), cash_sharing=True, call_seq='reversed') record_arrays_close( pf.order_records, np.array([ (0, 1, 0, 100., 1., 0., 0), (1, 1, 1, 200., 2., 0., 1), (2, 1, 3, 100., 4., 0., 0), (3, 2, 0, 100., 1., 0., 0), (4, 2, 1, 200., 2., 0., 1), (5, 2, 3, 100., 4., 0., 0) ], dtype=order_dt) ) np.testing.assert_array_equal( pf.call_seq.values, np.array([ [1, 0, 0], [1, 0, 0], [1, 0, 0], [1, 0, 0], [1, 0, 0] ]) ) pf = from_orders_both( close=price_wide, group_by=np.array([0, 0, 1]), cash_sharing=True, call_seq='random', seed=seed) record_arrays_close( pf.order_records, np.array([ (0, 1, 0, 100., 1., 0., 0), (1, 1, 1, 200., 2., 0., 1), (2, 1, 3, 100., 4., 0., 0), (3, 2, 0, 100., 1., 0., 0), (4, 2, 1, 200., 2., 0., 1), (5, 2, 3, 100., 4., 0., 0) ], dtype=order_dt) ) np.testing.assert_array_equal( pf.call_seq.values, np.array([ [1, 0, 0], [0, 1, 0], [1, 0, 0], [1, 0, 0], [1, 0, 0] ]) ) kwargs = dict( close=1., size=pd.DataFrame([ [0., 0., np.inf], [0., np.inf, -np.inf], [np.inf, -np.inf, 0.], [-np.inf, 0., np.inf], [0., np.inf, -np.inf], ]), group_by=np.array([0, 0, 0]), cash_sharing=True, call_seq='auto' ) pf = from_orders_both(**kwargs) record_arrays_close( pf.order_records, np.array([ (0, 2, 0, 100., 1., 0., 0), (1, 2, 1, 200., 1., 0., 1), (2, 1, 1, 200., 1., 0., 0), (3, 1, 2, 200., 1., 0., 1), (4, 0, 2, 200., 1., 0., 0), (5, 0, 3, 200., 1., 0., 1), (6, 2, 3, 200., 1., 0., 0), (7, 2, 4, 200., 1., 0., 1), (8, 1, 4, 200., 1., 0., 0) ], dtype=order_dt) ) np.testing.assert_array_equal( pf.call_seq.values, np.array([ [0, 1, 2], [2, 0, 1], [1, 2, 0], [0, 1, 2], [2, 0, 1] ]) ) pf = from_orders_longonly(**kwargs) record_arrays_close( pf.order_records, np.array([ (0, 2, 0, 100., 1., 0., 0), (1, 2, 1, 100., 1., 0., 1), (2, 1, 1, 100., 1., 0., 0), (3, 1, 2, 100., 1., 0., 1), (4, 0, 2, 100., 1., 0., 0), (5, 0, 3, 100., 1., 0., 1), (6, 2, 3, 100., 1., 0., 0), (7, 2, 4, 100., 1., 0., 1), (8, 1, 4, 100., 1., 0., 0) ], dtype=order_dt) ) np.testing.assert_array_equal( pf.call_seq.values, np.array([ [0, 1, 2], [2, 0, 1], [1, 2, 0], [0, 1, 2], [2, 0, 1] ]) ) pf = from_orders_shortonly(**kwargs) record_arrays_close( pf.order_records, np.array([ (0, 2, 0, 100., 1., 0., 1), (1, 2, 1, 100., 1., 0., 0), (2, 0, 2, 100., 1., 0., 1), (3, 0, 3, 100., 1., 0., 0), (4, 1, 4, 100., 1., 0., 1) ], dtype=order_dt) ) np.testing.assert_array_equal( pf.call_seq.values, np.array([ [2, 0, 1], [1, 0, 2], [0, 2, 1], [2, 1, 0], [1, 0, 2] ]) ) def test_value(self): record_arrays_close( from_orders_both(size=order_size_one, size_type='value').order_records, np.array([ (0, 0, 0, 1.0, 1.0, 0.0, 0), (1, 0, 1, 0.5, 2.0, 0.0, 1), (2, 0, 3, 0.25, 4.0, 0.0, 0), (3, 0, 4, 0.2, 5.0, 0.0, 1) ], dtype=order_dt) ) record_arrays_close( from_orders_longonly(size=order_size_one, size_type='value').order_records, np.array([ (0, 0, 0, 1.0, 1.0, 0.0, 0), (1, 0, 1, 0.5, 2.0, 0.0, 1), (2, 0, 3, 0.25, 4.0, 0.0, 0), (3, 0, 4, 0.2, 5.0, 0.0, 1) ], dtype=order_dt) ) record_arrays_close( from_orders_shortonly(size=order_size_one, size_type='value').order_records, np.array([ (0, 0, 0, 1.0, 1.0, 0.0, 1), (1, 0, 1, 0.5, 2.0, 0.0, 0), (2, 0, 3, 0.25, 4.0, 0.0, 1), (3, 0, 4, 0.2, 5.0, 0.0, 0) ], dtype=order_dt) ) def test_target_amount(self): record_arrays_close( from_orders_both(size=[[75., -75.]], size_type='targetamount').order_records, np.array([ (0, 0, 0, 75.0, 1.0, 0.0, 0), (1, 1, 0, 75.0, 1.0, 0.0, 1) ], dtype=order_dt) ) record_arrays_close( from_orders_longonly(size=[[75., -75.]], size_type='targetamount').order_records, np.array([ (0, 0, 0, 75.0, 1.0, 0.0, 0) ], dtype=order_dt) ) record_arrays_close( from_orders_shortonly(size=[[75., -75.]], size_type='targetamount').order_records, np.array([ (0, 0, 0, 75.0, 1.0, 0.0, 1) ], dtype=order_dt) ) record_arrays_close( from_orders_both( close=price_wide, size=75., size_type='targetamount', group_by=np.array([0, 0, 0]), cash_sharing=True).order_records, np.array([ (0, 0, 0, 75.0, 1.0, 0.0, 0), (1, 1, 0, 25.0, 1.0, 0.0, 0) ], dtype=order_dt) ) def test_target_value(self): record_arrays_close( from_orders_both(size=[[50., -50.]], size_type='targetvalue').order_records, np.array([ (0, 0, 0, 50.0, 1.0, 0.0, 0), (1, 0, 1, 25.0, 2.0, 0.0, 1), (2, 0, 2, 8.333333333333332, 3.0, 0.0, 1), (3, 0, 3, 4.166666666666668, 4.0, 0.0, 1), (4, 0, 4, 2.5, 5.0, 0.0, 1), (5, 1, 0, 50.0, 1.0, 0.0, 1), (6, 1, 1, 25.0, 2.0, 0.0, 0), (7, 1, 2, 8.333333333333332, 3.0, 0.0, 0), (8, 1, 3, 4.166666666666668, 4.0, 0.0, 0), (9, 1, 4, 2.5, 5.0, 0.0, 0) ], dtype=order_dt) ) record_arrays_close( from_orders_longonly(size=[[50., -50.]], size_type='targetvalue').order_records, np.array([ (0, 0, 0, 50.0, 1.0, 0.0, 0), (1, 0, 1, 25.0, 2.0, 0.0, 1), (2, 0, 2, 8.333333333333332, 3.0, 0.0, 1), (3, 0, 3, 4.166666666666668, 4.0, 0.0, 1), (4, 0, 4, 2.5, 5.0, 0.0, 1) ], dtype=order_dt) ) record_arrays_close( from_orders_shortonly(size=[[50., -50.]], size_type='targetvalue').order_records, np.array([ (0, 0, 0, 50.0, 1.0, 0.0, 1), (1, 0, 1, 25.0, 2.0, 0.0, 0), (2, 0, 2, 8.333333333333332, 3.0, 0.0, 0), (3, 0, 3, 4.166666666666668, 4.0, 0.0, 0), (4, 0, 4, 2.5, 5.0, 0.0, 0) ], dtype=order_dt) ) record_arrays_close( from_orders_both( close=price_wide, size=50., size_type='targetvalue', group_by=np.array([0, 0, 0]), cash_sharing=True).order_records, np.array([ (0, 0, 0, 50.0, 1.0, 0.0, 0), (1, 1, 0, 50.0, 1.0, 0.0, 0), (2, 0, 1, 25.0, 2.0, 0.0, 1), (3, 1, 1, 25.0, 2.0, 0.0, 1), (4, 2, 1, 25.0, 2.0, 0.0, 0), (5, 0, 2, 8.333333333333332, 3.0, 0.0, 1), (6, 1, 2, 8.333333333333332, 3.0, 0.0, 1), (7, 2, 2, 8.333333333333332, 3.0, 0.0, 1), (8, 0, 3, 4.166666666666668, 4.0, 0.0, 1), (9, 1, 3, 4.166666666666668, 4.0, 0.0, 1), (10, 2, 3, 4.166666666666668, 4.0, 0.0, 1), (11, 0, 4, 2.5, 5.0, 0.0, 1), (12, 1, 4, 2.5, 5.0, 0.0, 1), (13, 2, 4, 2.5, 5.0, 0.0, 1) ], dtype=order_dt) ) def test_target_percent(self): record_arrays_close( from_orders_both(size=[[0.5, -0.5]], size_type='targetpercent').order_records, np.array([ (0, 0, 0, 50.0, 1.0, 0.0, 0), (1, 0, 1, 12.5, 2.0, 0.0, 1), (2, 0, 2, 6.25, 3.0, 0.0, 1), (3, 0, 3, 3.90625, 4.0, 0.0, 1), (4, 0, 4, 2.734375, 5.0, 0.0, 1), (5, 1, 0, 50.0, 1.0, 0.0, 1), (6, 1, 1, 37.5, 2.0, 0.0, 0), (7, 1, 2, 6.25, 3.0, 0.0, 0), (8, 1, 3, 2.34375, 4.0, 0.0, 0), (9, 1, 4, 1.171875, 5.0, 0.0, 0) ], dtype=order_dt) ) record_arrays_close( from_orders_longonly(size=[[0.5, -0.5]], size_type='targetpercent').order_records, np.array([ (0, 0, 0, 50.0, 1.0, 0.0, 0), (1, 0, 1, 12.5, 2.0, 0.0, 1), (2, 0, 2, 6.25, 3.0, 0.0, 1), (3, 0, 3, 3.90625, 4.0, 0.0, 1), (4, 0, 4, 2.734375, 5.0, 0.0, 1) ], dtype=order_dt) ) record_arrays_close( from_orders_shortonly(size=[[0.5, -0.5]], size_type='targetpercent').order_records, np.array([ (0, 0, 0, 50.0, 1.0, 0.0, 1), (1, 0, 1, 37.5, 2.0, 0.0, 0), (2, 0, 2, 6.25, 3.0, 0.0, 0), (3, 0, 3, 2.34375, 4.0, 0.0, 0), (4, 0, 4, 1.171875, 5.0, 0.0, 0) ], dtype=order_dt) ) record_arrays_close( from_orders_both( close=price_wide, size=0.5, size_type='targetpercent', group_by=np.array([0, 0, 0]), cash_sharing=True).order_records, np.array([ (0, 0, 0, 50.0, 1.0, 0.0, 0), (1, 1, 0, 50.0, 1.0, 0.0, 0) ], dtype=order_dt) ) def test_update_value(self): record_arrays_close( from_orders_both(size=0.5, size_type='targetpercent', fees=0.01, slippage=0.01, update_value=False).order_records, from_orders_both(size=0.5, size_type='targetpercent', fees=0.01, slippage=0.01, update_value=True).order_records ) record_arrays_close( from_orders_both( close=price_wide, size=0.5, size_type='targetpercent', fees=0.01, slippage=0.01, group_by=np.array([0, 0, 0]), cash_sharing=True, update_value=False).order_records, np.array([ (0, 0, 0, 50.0, 1.01, 0.505, 0), (1, 1, 0, 48.02960494069208, 1.01, 0.485099009900992, 0), (2, 0, 1, 0.9851975296539592, 1.98, 0.019506911087148394, 1), (3, 1, 1, 0.9465661198057499, 2.02, 0.019120635620076154, 0), (4, 0, 2, 0.019315704924103727, 2.9699999999999998, 0.0005736764362458806, 1), (5, 1, 2, 0.018558300554959377, 3.0300000000000002, 0.0005623165068152705, 0), (6, 0, 3, 0.00037870218456959037, 3.96, 1.4996606508955778e-05, 1), (7, 1, 3, 0.0003638525743521767, 4.04, 1.4699644003827875e-05, 0), (8, 0, 4, 7.424805112066224e-06, 4.95, 3.675278530472781e-07, 1), (9, 1, 4, 7.133664827307231e-06, 5.05, 3.6025007377901643e-07, 0) ], dtype=order_dt) ) record_arrays_close( from_orders_both( close=price_wide, size=0.5, size_type='targetpercent', fees=0.01, slippage=0.01, group_by=np.array([0, 0, 0]), cash_sharing=True, update_value=True).order_records, np.array([ (0, 0, 0, 50.0, 1.01, 0.505, 0), (1, 1, 0, 48.02960494069208, 1.01, 0.485099009900992, 0), (2, 0, 1, 0.9851975296539592, 1.98, 0.019506911087148394, 1), (3, 1, 1, 0.7303208018821721, 2.02, 0.014752480198019875, 0), (4, 2, 1, 0.21624531792357785, 2.02, 0.0043681554220562635, 0), (5, 0, 2, 0.019315704924103727, 2.9699999999999998, 0.0005736764362458806, 1), (6, 1, 2, 0.009608602243410758, 2.9699999999999998, 0.00028537548662929945, 1), (7, 2, 2, 0.02779013180558861, 3.0300000000000002, 0.0008420409937093393, 0), (8, 0, 3, 0.0005670876809631409, 3.96, 2.2456672166140378e-05, 1), (9, 1, 3, 0.00037770350099464167, 3.96, 1.4957058639387809e-05, 1), (10, 2, 3, 0.0009077441794302741, 4.04, 3.6672864848982974e-05, 0), (11, 0, 4, 1.8523501267964093e-05, 4.95, 9.169133127642227e-07, 1), (12, 1, 4, 1.2972670177191503e-05, 4.95, 6.421471737709794e-07, 1), (13, 2, 4, 3.0261148547590434e-05, 5.05, 1.5281880016533242e-06, 0) ], dtype=order_dt) ) def test_percent(self): record_arrays_close( from_orders_both(size=[[0.5, -0.5]], size_type='percent').order_records, np.array([ (0, 0, 0, 50., 1., 0., 0), (1, 0, 1, 12.5, 2., 0., 0), (2, 0, 2, 4.16666667, 3., 0., 0), (3, 0, 3, 1.5625, 4., 0., 0), (4, 0, 4, 0.625, 5., 0., 0), (5, 1, 0, 50., 1., 0., 1), (6, 1, 1, 12.5, 2., 0., 1), (7, 1, 2, 4.16666667, 3., 0., 1), (8, 1, 3, 1.5625, 4., 0., 1), (9, 1, 4, 0.625, 5., 0., 1) ], dtype=order_dt) ) record_arrays_close( from_orders_longonly(size=[[0.5, -0.5]], size_type='percent').order_records, np.array([ (0, 0, 0, 50., 1., 0., 0), (1, 0, 1, 12.5, 2., 0., 0), (2, 0, 2, 4.16666667, 3., 0., 0), (3, 0, 3, 1.5625, 4., 0., 0), (4, 0, 4, 0.625, 5., 0., 0) ], dtype=order_dt) ) record_arrays_close( from_orders_shortonly(size=[[0.5, -0.5]], size_type='percent').order_records, np.array([ (0, 0, 0, 50., 1., 0., 1), (1, 0, 1, 12.5, 2., 0., 1), (2, 0, 2, 4.16666667, 3., 0., 1), (3, 0, 3, 1.5625, 4., 0., 1), (4, 0, 4, 0.625, 5., 0., 1) ], dtype=order_dt) ) record_arrays_close( from_orders_both( close=price_wide, size=0.5, size_type='percent', group_by=np.array([0, 0, 0]), cash_sharing=True).order_records, np.array([ (0, 0, 0, 5.00000000e+01, 1., 0., 0), (1, 1, 0, 2.50000000e+01, 1., 0., 0), (2, 2, 0, 1.25000000e+01, 1., 0., 0), (3, 0, 1, 3.12500000e+00, 2., 0., 0), (4, 1, 1, 1.56250000e+00, 2., 0., 0), (5, 2, 1, 7.81250000e-01, 2., 0., 0), (6, 0, 2, 2.60416667e-01, 3., 0., 0), (7, 1, 2, 1.30208333e-01, 3., 0., 0), (8, 2, 2, 6.51041667e-02, 3., 0., 0), (9, 0, 3, 2.44140625e-02, 4., 0., 0), (10, 1, 3, 1.22070312e-02, 4., 0., 0), (11, 2, 3, 6.10351562e-03, 4., 0., 0), (12, 0, 4, 2.44140625e-03, 5., 0., 0), (13, 1, 4, 1.22070312e-03, 5., 0., 0), (14, 2, 4, 6.10351562e-04, 5., 0., 0) ], dtype=order_dt) ) def test_auto_seq(self): target_hold_value = pd.DataFrame({ 'a': [0., 70., 30., 0., 70.], 'b': [30., 0., 70., 30., 30.], 'c': [70., 30., 0., 70., 0.] }, index=price.index) pd.testing.assert_frame_equal( from_orders_both( close=1., size=target_hold_value, size_type='targetvalue', group_by=np.array([0, 0, 0]), cash_sharing=True, call_seq='auto').asset_value(group_by=False), target_hold_value ) pd.testing.assert_frame_equal( from_orders_both( close=1., size=target_hold_value / 100, size_type='targetpercent', group_by=np.array([0, 0, 0]), cash_sharing=True, call_seq='auto').asset_value(group_by=False), target_hold_value ) def test_max_orders(self): _ = from_orders_both(close=price_wide) _ = from_orders_both(close=price_wide, max_orders=9) with pytest.raises(Exception): _ = from_orders_both(close=price_wide, max_orders=8) def test_max_logs(self): _ = from_orders_both(close=price_wide, log=True) _ = from_orders_both(close=price_wide, log=True, max_logs=15) with pytest.raises(Exception): _ = from_orders_both(close=price_wide, log=True, max_logs=14) # ############# from_signals ############# # entries = pd.Series([True, True, True, False, False], index=price.index) entries_wide = entries.vbt.tile(3, keys=['a', 'b', 'c']) exits = pd.Series([False, False, True, True, True], index=price.index) exits_wide = exits.vbt.tile(3, keys=['a', 'b', 'c']) def from_signals_both(close=price, entries=entries, exits=exits, **kwargs): return vbt.Portfolio.from_signals(close, entries, exits, direction='both', **kwargs) def from_signals_longonly(close=price, entries=entries, exits=exits, **kwargs): return vbt.Portfolio.from_signals(close, entries, exits, direction='longonly', **kwargs) def from_signals_shortonly(close=price, entries=entries, exits=exits, **kwargs): return vbt.Portfolio.from_signals(close, entries, exits, direction='shortonly', **kwargs) def from_ls_signals_both(close=price, entries=entries, exits=exits, **kwargs): return vbt.Portfolio.from_signals(close, entries, False, exits, False, **kwargs) def from_ls_signals_longonly(close=price, entries=entries, exits=exits, **kwargs): return vbt.Portfolio.from_signals(close, entries, exits, False, False, **kwargs) def from_ls_signals_shortonly(close=price, entries=entries, exits=exits, **kwargs): return vbt.Portfolio.from_signals(close, False, False, entries, exits, **kwargs) class TestFromSignals: @pytest.mark.parametrize( "test_ls", [False, True], ) def test_one_column(self, test_ls): _from_signals_both = from_ls_signals_both if test_ls else from_signals_both _from_signals_longonly = from_ls_signals_longonly if test_ls else from_signals_longonly _from_signals_shortonly = from_ls_signals_shortonly if test_ls else from_signals_shortonly record_arrays_close( _from_signals_both().order_records, np.array([ (0, 0, 0, 100., 1., 0., 0), (1, 0, 3, 200., 4., 0., 1) ], dtype=order_dt) ) record_arrays_close( _from_signals_longonly().order_records, np.array([ (0, 0, 0, 100., 1., 0., 0), (1, 0, 3, 100., 4., 0., 1) ], dtype=order_dt) ) record_arrays_close( _from_signals_shortonly().order_records, np.array([ (0, 0, 0, 100., 1., 0., 1), (1, 0, 3, 50., 4., 0., 0) ], dtype=order_dt) ) pf = _from_signals_both() pd.testing.assert_index_equal( pf.wrapper.index, pd.DatetimeIndex(['2020-01-01', '2020-01-02', '2020-01-03', '2020-01-04', '2020-01-05']) ) pd.testing.assert_index_equal( pf.wrapper.columns, pd.Int64Index([0], dtype='int64') ) assert pf.wrapper.ndim == 1 assert pf.wrapper.freq == day_dt assert pf.wrapper.grouper.group_by is None @pytest.mark.parametrize( "test_ls", [False, True], ) def test_multiple_columns(self, test_ls): _from_signals_both = from_ls_signals_both if test_ls else from_signals_both _from_signals_longonly = from_ls_signals_longonly if test_ls else from_signals_longonly _from_signals_shortonly = from_ls_signals_shortonly if test_ls else from_signals_shortonly record_arrays_close( _from_signals_both(close=price_wide).order_records, np.array([ (0, 0, 0, 100., 1., 0., 0), (1, 0, 3, 200., 4., 0., 1), (2, 1, 0, 100., 1., 0., 0), (3, 1, 3, 200., 4., 0., 1), (4, 2, 0, 100., 1., 0., 0), (5, 2, 3, 200., 4., 0., 1) ], dtype=order_dt) ) record_arrays_close( _from_signals_longonly(close=price_wide).order_records, np.array([ (0, 0, 0, 100., 1., 0., 0), (1, 0, 3, 100., 4., 0., 1), (2, 1, 0, 100., 1., 0., 0), (3, 1, 3, 100., 4., 0., 1), (4, 2, 0, 100., 1., 0., 0), (5, 2, 3, 100., 4., 0., 1) ], dtype=order_dt) ) record_arrays_close( _from_signals_shortonly(close=price_wide).order_records, np.array([ (0, 0, 0, 100., 1., 0., 1), (1, 0, 3, 50., 4., 0., 0), (2, 1, 0, 100., 1., 0., 1), (3, 1, 3, 50., 4., 0., 0), (4, 2, 0, 100., 1., 0., 1), (5, 2, 3, 50., 4., 0., 0) ], dtype=order_dt) ) pf = _from_signals_both(close=price_wide) pd.testing.assert_index_equal( pf.wrapper.index, pd.DatetimeIndex(['2020-01-01', '2020-01-02', '2020-01-03', '2020-01-04', '2020-01-05']) ) pd.testing.assert_index_equal( pf.wrapper.columns, pd.Index(['a', 'b', 'c'], dtype='object') ) assert pf.wrapper.ndim == 2 assert pf.wrapper.freq == day_dt assert pf.wrapper.grouper.group_by is None def test_custom_signal_func(self): @njit def signal_func_nb(c, long_num_arr, short_num_arr): long_num = nb.get_elem_nb(c, long_num_arr) short_num = nb.get_elem_nb(c, short_num_arr) is_long_entry = long_num > 0 is_long_exit = long_num < 0 is_short_entry = short_num > 0 is_short_exit = short_num < 0 return is_long_entry, is_long_exit, is_short_entry, is_short_exit pf_base = vbt.Portfolio.from_signals( pd.Series([1, 2, 3, 4, 5]), entries=pd.Series([True, False, False, False, False]), exits=pd.Series([False, False, True, False, False]), short_entries=pd.Series([False, True, False, True, False]), short_exits=pd.Series([False, False, False, False, True]), size=1, upon_opposite_entry='ignore' ) pf = vbt.Portfolio.from_signals( pd.Series([1, 2, 3, 4, 5]), signal_func_nb=signal_func_nb, signal_args=(vbt.Rep('long_num_arr'), vbt.Rep('short_num_arr')), broadcast_named_args=dict( long_num_arr=pd.Series([1, 0, -1, 0, 0]), short_num_arr=pd.Series([0, 1, 0, 1, -1]) ), size=1, upon_opposite_entry='ignore' ) record_arrays_close( pf_base.order_records, pf.order_records ) def test_amount(self): record_arrays_close( from_signals_both(size=[[0, 1, np.inf]], size_type='amount').order_records, np.array([ (0, 1, 0, 1.0, 1.0, 0.0, 0), (1, 1, 3, 2.0, 4.0, 0.0, 1), (2, 2, 0, 100.0, 1.0, 0.0, 0), (3, 2, 3, 200.0, 4.0, 0.0, 1) ], dtype=order_dt) ) record_arrays_close( from_signals_longonly(size=[[0, 1, np.inf]], size_type='amount').order_records, np.array([ (0, 1, 0, 1.0, 1.0, 0.0, 0), (1, 1, 3, 1.0, 4.0, 0.0, 1), (2, 2, 0, 100.0, 1.0, 0.0, 0), (3, 2, 3, 100.0, 4.0, 0.0, 1) ], dtype=order_dt) ) record_arrays_close( from_signals_shortonly(size=[[0, 1, np.inf]], size_type='amount').order_records, np.array([ (0, 1, 0, 1.0, 1.0, 0.0, 1), (1, 1, 3, 1.0, 4.0, 0.0, 0), (2, 2, 0, 100.0, 1.0, 0.0, 1), (3, 2, 3, 50.0, 4.0, 0.0, 0) ], dtype=order_dt) ) def test_value(self): record_arrays_close( from_signals_both(size=[[0, 1, np.inf]], size_type='value').order_records, np.array([ (0, 1, 0, 1.0, 1.0, 0.0, 0), (1, 1, 3, 0.3125, 4.0, 0.0, 1), (2, 1, 4, 0.1775, 5.0, 0.0, 1), (3, 2, 0, 100.0, 1.0, 0.0, 0), (4, 2, 3, 200.0, 4.0, 0.0, 1) ], dtype=order_dt) ) record_arrays_close( from_signals_longonly(size=[[0, 1, np.inf]], size_type='value').order_records, np.array([ (0, 1, 0, 1.0, 1.0, 0.0, 0), (1, 1, 3, 1.0, 4.0, 0.0, 1), (2, 2, 0, 100.0, 1.0, 0.0, 0), (3, 2, 3, 100.0, 4.0, 0.0, 1) ], dtype=order_dt) ) record_arrays_close( from_signals_shortonly(size=[[0, 1, np.inf]], size_type='value').order_records, np.array([ (0, 1, 0, 1.0, 1.0, 0.0, 1), (1, 1, 3, 1.0, 4.0, 0.0, 0), (2, 2, 0, 100.0, 1.0, 0.0, 1), (3, 2, 3, 50.0, 4.0, 0.0, 0) ], dtype=order_dt) ) def test_percent(self): with pytest.raises(Exception): _ = from_signals_both(size=0.5, size_type='percent') record_arrays_close( from_signals_both(size=0.5, size_type='percent', upon_opposite_entry='close').order_records, np.array([ (0, 0, 0, 50., 1., 0., 0), (1, 0, 3, 50., 4., 0., 1), (2, 0, 4, 25., 5., 0., 1) ], dtype=order_dt) ) record_arrays_close( from_signals_both(size=0.5, size_type='percent', upon_opposite_entry='close', accumulate=True).order_records, np.array([ (0, 0, 0, 50.0, 1.0, 0.0, 0), (1, 0, 1, 12.5, 2.0, 0.0, 0), (2, 0, 3, 62.5, 4.0, 0.0, 1), (3, 0, 4, 27.5, 5.0, 0.0, 1) ], dtype=order_dt) ) record_arrays_close( from_signals_longonly(size=0.5, size_type='percent').order_records, np.array([ (0, 0, 0, 50., 1., 0., 0), (1, 0, 3, 50., 4., 0., 1) ], dtype=order_dt) ) record_arrays_close( from_signals_shortonly(size=0.5, size_type='percent').order_records, np.array([ (0, 0, 0, 50., 1., 0., 1), (1, 0, 3, 37.5, 4., 0., 0) ], dtype=order_dt) ) record_arrays_close( from_signals_longonly( close=price_wide, size=0.5, size_type='percent', group_by=np.array([0, 0, 0]), cash_sharing=True).order_records, np.array([ (0, 0, 0, 50., 1., 0., 0), (1, 1, 0, 25., 1., 0., 0), (2, 2, 0, 12.5, 1., 0., 0), (3, 0, 3, 50., 4., 0., 1), (4, 1, 3, 25., 4., 0., 1), (5, 2, 3, 12.5, 4., 0., 1) ], dtype=order_dt) ) def test_price(self): record_arrays_close( from_signals_both(price=price * 1.01).order_records, np.array([ (0, 0, 0, 99.00990099009901, 1.01, 0.0, 0), (1, 0, 3, 198.01980198019803, 4.04, 0.0, 1) ], dtype=order_dt) ) record_arrays_close( from_signals_longonly(price=price * 1.01).order_records, np.array([ (0, 0, 0, 99.00990099, 1.01, 0., 0), (1, 0, 3, 99.00990099, 4.04, 0., 1) ], dtype=order_dt) ) record_arrays_close( from_signals_shortonly(price=price * 1.01).order_records, np.array([ (0, 0, 0, 99.00990099009901, 1.01, 0.0, 1), (1, 0, 3, 49.504950495049506, 4.04, 0.0, 0) ], dtype=order_dt) ) record_arrays_close( from_signals_both(price=np.inf).order_records, np.array([ (0, 0, 0, 100.0, 1.0, 0.0, 0), (1, 0, 3, 200.0, 4.0, 0.0, 1) ], dtype=order_dt) ) record_arrays_close( from_signals_longonly(price=np.inf).order_records, np.array([ (0, 0, 0, 100.0, 1.0, 0.0, 0), (1, 0, 3, 100.0, 4.0, 0.0, 1) ], dtype=order_dt) ) record_arrays_close( from_signals_shortonly(price=np.inf).order_records, np.array([ (0, 0, 0, 100.0, 1.0, 0.0, 1), (1, 0, 3, 50.0, 4.0, 0.0, 0) ], dtype=order_dt) ) record_arrays_close( from_signals_both(price=-np.inf).order_records, np.array([ (0, 0, 1, 100.0, 1.0, 0.0, 0), (1, 0, 3, 200.0, 3.0, 0.0, 1) ], dtype=order_dt) ) record_arrays_close( from_signals_longonly(price=-np.inf).order_records, np.array([ (0, 0, 1, 100.0, 1.0, 0.0, 0), (1, 0, 3, 100.0, 3.0, 0.0, 1) ], dtype=order_dt) ) record_arrays_close( from_signals_shortonly(price=-np.inf).order_records, np.array([ (0, 0, 1, 100.0, 1.0, 0.0, 1), (1, 0, 3, 66.66666666666667, 3.0, 0.0, 0) ], dtype=order_dt) ) def test_val_price(self): price_nan = pd.Series([1, 2, np.nan, 4, 5], index=price.index) record_arrays_close( from_signals_both(close=price_nan, size=1, val_price=np.inf, size_type='value').order_records, from_signals_both(close=price_nan, size=1, val_price=price, size_type='value').order_records ) record_arrays_close( from_signals_longonly(close=price_nan, size=1, val_price=np.inf, size_type='value').order_records, from_signals_longonly(close=price_nan, size=1, val_price=price, size_type='value').order_records ) record_arrays_close( from_signals_shortonly(close=price_nan, size=1, val_price=np.inf, size_type='value').order_records, from_signals_shortonly(close=price_nan, size=1, val_price=price, size_type='value').order_records ) shift_price = price_nan.ffill().shift(1) record_arrays_close( from_signals_both(close=price_nan, size=1, val_price=-np.inf, size_type='value').order_records, from_signals_both(close=price_nan, size=1, val_price=shift_price, size_type='value').order_records ) record_arrays_close( from_signals_longonly(close=price_nan, size=1, val_price=-np.inf, size_type='value').order_records, from_signals_longonly(close=price_nan, size=1, val_price=shift_price, size_type='value').order_records ) record_arrays_close( from_signals_shortonly(close=price_nan, size=1, val_price=-np.inf, size_type='value').order_records, from_signals_shortonly(close=price_nan, size=1, val_price=shift_price, size_type='value').order_records ) record_arrays_close( from_signals_both(close=price_nan, size=1, val_price=np.inf, size_type='value', ffill_val_price=False).order_records, from_signals_both(close=price_nan, size=1, val_price=price_nan, size_type='value', ffill_val_price=False).order_records ) record_arrays_close( from_signals_longonly(close=price_nan, size=1, val_price=np.inf, size_type='value', ffill_val_price=False).order_records, from_signals_longonly(close=price_nan, size=1, val_price=price_nan, size_type='value', ffill_val_price=False).order_records ) record_arrays_close( from_signals_shortonly(close=price_nan, size=1, val_price=np.inf, size_type='value', ffill_val_price=False).order_records, from_signals_shortonly(close=price_nan, size=1, val_price=price_nan, size_type='value', ffill_val_price=False).order_records ) shift_price_nan = price_nan.shift(1) record_arrays_close( from_signals_both(close=price_nan, size=1, val_price=-np.inf, size_type='value', ffill_val_price=False).order_records, from_signals_both(close=price_nan, size=1, val_price=shift_price_nan, size_type='value', ffill_val_price=False).order_records ) record_arrays_close( from_signals_longonly(close=price_nan, size=1, val_price=-np.inf, size_type='value', ffill_val_price=False).order_records, from_signals_longonly(close=price_nan, size=1, val_price=shift_price_nan, size_type='value', ffill_val_price=False).order_records ) record_arrays_close( from_signals_shortonly(close=price_nan, size=1, val_price=-np.inf, size_type='value', ffill_val_price=False).order_records, from_signals_shortonly(close=price_nan, size=1, val_price=shift_price_nan, size_type='value', ffill_val_price=False).order_records ) def test_fees(self): record_arrays_close( from_signals_both(size=1, fees=[[0., 0.1, 1.]]).order_records, np.array([ (0, 0, 0, 1.0, 1.0, 0.0, 0), (1, 0, 3, 2.0, 4.0, 0.0, 1), (2, 1, 0, 1.0, 1.0, 0.1, 0), (3, 1, 3, 2.0, 4.0, 0.8, 1), (4, 2, 0, 1.0, 1.0, 1.0, 0), (5, 2, 3, 2.0, 4.0, 8.0, 1) ], dtype=order_dt) ) record_arrays_close( from_signals_longonly(size=1, fees=[[0., 0.1, 1.]]).order_records, np.array([ (0, 0, 0, 1.0, 1.0, 0.0, 0), (1, 0, 3, 1.0, 4.0, 0.0, 1), (2, 1, 0, 1.0, 1.0, 0.1, 0), (3, 1, 3, 1.0, 4.0, 0.4, 1), (4, 2, 0, 1.0, 1.0, 1.0, 0), (5, 2, 3, 1.0, 4.0, 4.0, 1) ], dtype=order_dt) ) record_arrays_close( from_signals_shortonly(size=1, fees=[[0., 0.1, 1.]]).order_records, np.array([ (0, 0, 0, 1.0, 1.0, 0.0, 1), (1, 0, 3, 1.0, 4.0, 0.0, 0), (2, 1, 0, 1.0, 1.0, 0.1, 1), (3, 1, 3, 1.0, 4.0, 0.4, 0), (4, 2, 0, 1.0, 1.0, 1.0, 1), (5, 2, 3, 1.0, 4.0, 4.0, 0) ], dtype=order_dt) ) def test_fixed_fees(self): record_arrays_close( from_signals_both(size=1, fixed_fees=[[0., 0.1, 1.]]).order_records, np.array([ (0, 0, 0, 1.0, 1.0, 0.0, 0), (1, 0, 3, 2.0, 4.0, 0.0, 1), (2, 1, 0, 1.0, 1.0, 0.1, 0), (3, 1, 3, 2.0, 4.0, 0.1, 1), (4, 2, 0, 1.0, 1.0, 1.0, 0), (5, 2, 3, 2.0, 4.0, 1.0, 1) ], dtype=order_dt) ) record_arrays_close( from_signals_longonly(size=1, fixed_fees=[[0., 0.1, 1.]]).order_records, np.array([ (0, 0, 0, 1.0, 1.0, 0.0, 0), (1, 0, 3, 1.0, 4.0, 0.0, 1), (2, 1, 0, 1.0, 1.0, 0.1, 0), (3, 1, 3, 1.0, 4.0, 0.1, 1), (4, 2, 0, 1.0, 1.0, 1.0, 0), (5, 2, 3, 1.0, 4.0, 1.0, 1) ], dtype=order_dt) ) record_arrays_close( from_signals_shortonly(size=1, fixed_fees=[[0., 0.1, 1.]]).order_records, np.array([ (0, 0, 0, 1.0, 1.0, 0.0, 1), (1, 0, 3, 1.0, 4.0, 0.0, 0), (2, 1, 0, 1.0, 1.0, 0.1, 1), (3, 1, 3, 1.0, 4.0, 0.1, 0), (4, 2, 0, 1.0, 1.0, 1.0, 1), (5, 2, 3, 1.0, 4.0, 1.0, 0) ], dtype=order_dt) ) def test_slippage(self): record_arrays_close( from_signals_both(size=1, slippage=[[0., 0.1, 1.]]).order_records, np.array([ (0, 0, 0, 1.0, 1.0, 0.0, 0), (1, 0, 3, 2.0, 4.0, 0.0, 1), (2, 1, 0, 1.0, 1.1, 0.0, 0), (3, 1, 3, 2.0, 3.6, 0.0, 1), (4, 2, 0, 1.0, 2.0, 0.0, 0), (5, 2, 3, 2.0, 0.0, 0.0, 1) ], dtype=order_dt) ) record_arrays_close( from_signals_longonly(size=1, slippage=[[0., 0.1, 1.]]).order_records, np.array([ (0, 0, 0, 1.0, 1.0, 0.0, 0), (1, 0, 3, 1.0, 4.0, 0.0, 1), (2, 1, 0, 1.0, 1.1, 0.0, 0), (3, 1, 3, 1.0, 3.6, 0.0, 1), (4, 2, 0, 1.0, 2.0, 0.0, 0), (5, 2, 3, 1.0, 0.0, 0.0, 1) ], dtype=order_dt) ) record_arrays_close( from_signals_shortonly(size=1, slippage=[[0., 0.1, 1.]]).order_records, np.array([ (0, 0, 0, 1.0, 1.0, 0.0, 1), (1, 0, 3, 1.0, 4.0, 0.0, 0), (2, 1, 0, 1.0, 0.9, 0.0, 1), (3, 1, 3, 1.0, 4.4, 0.0, 0), (4, 2, 0, 1.0, 0.0, 0.0, 1), (5, 2, 3, 1.0, 8.0, 0.0, 0) ], dtype=order_dt) ) def test_min_size(self): record_arrays_close( from_signals_both(size=1, min_size=[[0., 1., 2.]]).order_records, np.array([ (0, 0, 0, 1.0, 1.0, 0.0, 0), (1, 0, 3, 2.0, 4.0, 0.0, 1), (2, 1, 0, 1.0, 1.0, 0.0, 0), (3, 1, 3, 2.0, 4.0, 0.0, 1) ], dtype=order_dt) ) record_arrays_close( from_signals_longonly(size=1, min_size=[[0., 1., 2.]]).order_records, np.array([ (0, 0, 0, 1.0, 1.0, 0.0, 0), (1, 0, 3, 1.0, 4.0, 0.0, 1), (2, 1, 0, 1.0, 1.0, 0.0, 0), (3, 1, 3, 1.0, 4.0, 0.0, 1) ], dtype=order_dt) ) record_arrays_close( from_signals_shortonly(size=1, min_size=[[0., 1., 2.]]).order_records, np.array([ (0, 0, 0, 1.0, 1.0, 0.0, 1), (1, 0, 3, 1.0, 4.0, 0.0, 0), (2, 1, 0, 1.0, 1.0, 0.0, 1), (3, 1, 3, 1.0, 4.0, 0.0, 0) ], dtype=order_dt) ) def test_max_size(self): record_arrays_close( from_signals_both(size=1, max_size=[[0.5, 1., np.inf]]).order_records, np.array([ (0, 0, 0, 0.5, 1.0, 0.0, 0), (1, 0, 3, 0.5, 4.0, 0.0, 1), (2, 0, 4, 0.5, 5.0, 0.0, 1), (3, 1, 0, 1.0, 1.0, 0.0, 0), (4, 1, 3, 1.0, 4.0, 0.0, 1), (5, 1, 4, 1.0, 5.0, 0.0, 1), (6, 2, 0, 1.0, 1.0, 0.0, 0), (7, 2, 3, 2.0, 4.0, 0.0, 1) ], dtype=order_dt) ) record_arrays_close( from_signals_longonly(size=1, max_size=[[0.5, 1., np.inf]]).order_records, np.array([ (0, 0, 0, 0.5, 1.0, 0.0, 0), (1, 0, 3, 0.5, 4.0, 0.0, 1), (2, 1, 0, 1.0, 1.0, 0.0, 0), (3, 1, 3, 1.0, 4.0, 0.0, 1), (4, 2, 0, 1.0, 1.0, 0.0, 0), (5, 2, 3, 1.0, 4.0, 0.0, 1) ], dtype=order_dt) ) record_arrays_close( from_signals_shortonly(size=1, max_size=[[0.5, 1., np.inf]]).order_records, np.array([ (0, 0, 0, 0.5, 1.0, 0.0, 1), (1, 0, 3, 0.5, 4.0, 0.0, 0), (2, 1, 0, 1.0, 1.0, 0.0, 1), (3, 1, 3, 1.0, 4.0, 0.0, 0), (4, 2, 0, 1.0, 1.0, 0.0, 1), (5, 2, 3, 1.0, 4.0, 0.0, 0) ], dtype=order_dt) ) def test_reject_prob(self): record_arrays_close( from_signals_both(size=1., reject_prob=[[0., 0.5, 1.]], seed=42).order_records, np.array([ (0, 0, 0, 1.0, 1.0, 0.0, 0), (1, 0, 3, 2.0, 4.0, 0.0, 1), (2, 1, 1, 1.0, 2.0, 0.0, 0), (3, 1, 3, 2.0, 4.0, 0.0, 1) ], dtype=order_dt) ) record_arrays_close( from_signals_longonly(size=1., reject_prob=[[0., 0.5, 1.]], seed=42).order_records, np.array([ (0, 0, 0, 1.0, 1.0, 0.0, 0), (1, 0, 3, 1.0, 4.0, 0.0, 1), (2, 1, 1, 1.0, 2.0, 0.0, 0), (3, 1, 3, 1.0, 4.0, 0.0, 1) ], dtype=order_dt) ) record_arrays_close( from_signals_shortonly(size=1., reject_prob=[[0., 0.5, 1.]], seed=42).order_records, np.array([ (0, 0, 0, 1.0, 1.0, 0.0, 1), (1, 0, 3, 1.0, 4.0, 0.0, 0), (2, 1, 1, 1.0, 2.0, 0.0, 1), (3, 1, 3, 1.0, 4.0, 0.0, 0) ], dtype=order_dt) ) def test_allow_partial(self): record_arrays_close( from_signals_both(size=1000, allow_partial=[[True, False]]).order_records, np.array([ (0, 0, 0, 100.0, 1.0, 0.0, 0), (1, 0, 3, 1100.0, 4.0, 0.0, 1), (2, 1, 3, 1000.0, 4.0, 0.0, 1) ], dtype=order_dt) ) record_arrays_close( from_signals_longonly(size=1000, allow_partial=[[True, False]]).order_records, np.array([ (0, 0, 0, 100.0, 1.0, 0.0, 0), (1, 0, 3, 100.0, 4.0, 0.0, 1) ], dtype=order_dt) ) record_arrays_close( from_signals_shortonly(size=1000, allow_partial=[[True, False]]).order_records, np.array([ (0, 0, 0, 1000.0, 1.0, 0.0, 1), (1, 0, 3, 275.0, 4.0, 0.0, 0), (2, 1, 0, 1000.0, 1.0, 0.0, 1) ], dtype=order_dt) ) record_arrays_close( from_signals_both(size=np.inf, allow_partial=[[True, False]]).order_records, np.array([ (0, 0, 0, 100.0, 1.0, 0.0, 0), (1, 0, 3, 200.0, 4.0, 0.0, 1), (2, 1, 0, 100.0, 1.0, 0.0, 0), (3, 1, 3, 200.0, 4.0, 0.0, 1) ], dtype=order_dt) ) record_arrays_close( from_signals_longonly(size=np.inf, allow_partial=[[True, False]]).order_records, np.array([ (0, 0, 0, 100.0, 1.0, 0.0, 0), (1, 0, 3, 100.0, 4.0, 0.0, 1), (2, 1, 0, 100.0, 1.0, 0.0, 0), (3, 1, 3, 100.0, 4.0, 0.0, 1) ], dtype=order_dt) ) record_arrays_close( from_signals_shortonly(size=np.inf, allow_partial=[[True, False]]).order_records, np.array([ (0, 0, 0, 100.0, 1.0, 0.0, 1), (1, 0, 3, 50.0, 4.0, 0.0, 0), (2, 1, 0, 100.0, 1.0, 0.0, 1) ], dtype=order_dt) ) def test_raise_reject(self): record_arrays_close( from_signals_both(size=1000, allow_partial=True, raise_reject=True).order_records, np.array([ (0, 0, 0, 100.0, 1.0, 0.0, 0), (1, 0, 3, 1100.0, 4.0, 0.0, 1) ], dtype=order_dt) ) record_arrays_close( from_signals_longonly(size=1000, allow_partial=True, raise_reject=True).order_records, np.array([ (0, 0, 0, 100.0, 1.0, 0.0, 0), (1, 0, 3, 100.0, 4.0, 0.0, 1) ], dtype=order_dt) ) with pytest.raises(Exception): _ = from_signals_shortonly(size=1000, allow_partial=True, raise_reject=True).order_records with pytest.raises(Exception): _ = from_signals_both(size=1000, allow_partial=False, raise_reject=True).order_records with pytest.raises(Exception): _ = from_signals_longonly(size=1000, allow_partial=False, raise_reject=True).order_records with pytest.raises(Exception): _ = from_signals_shortonly(size=1000, allow_partial=False, raise_reject=True).order_records def test_log(self): record_arrays_close( from_signals_both(log=True).log_records, np.array([ (0, 0, 0, 0, 100.0, 0.0, 0.0, 100.0, 1.0, 100.0, np.inf, 1.0, 0, 2, 0.0, 0.0, 0.0, 1e-08, np.inf, 0.0, False, True, False, True, 0.0, 100.0, 0.0, 0.0, 1.0, 100.0, 100.0, 1.0, 0.0, 0, 0, -1, 0), (1, 0, 0, 3, 0.0, 100.0, 0.0, 0.0, 4.0, 400.0, -np.inf, 4.0, 0, 2, 0.0, 0.0, 0.0, 1e-08, np.inf, 0.0, False, True, False, True, 800.0, -100.0, 400.0, 0.0, 4.0, 400.0, 200.0, 4.0, 0.0, 1, 0, -1, 1) ], dtype=log_dt) ) def test_accumulate(self): record_arrays_close( from_signals_both(size=1, accumulate=[['disabled', 'addonly', 'removeonly', 'both']]).order_records, np.array([ (0, 0, 0, 1.0, 1.0, 0.0, 0), (1, 0, 3, 2.0, 4.0, 0.0, 1), (2, 1, 0, 1.0, 1.0, 0.0, 0), (3, 1, 1, 1.0, 2.0, 0.0, 0), (4, 1, 3, 3.0, 4.0, 0.0, 1), (5, 1, 4, 1.0, 5.0, 0.0, 1), (6, 2, 0, 1.0, 1.0, 0.0, 0), (7, 2, 3, 1.0, 4.0, 0.0, 1), (8, 2, 4, 1.0, 5.0, 0.0, 1), (9, 3, 0, 1.0, 1.0, 0.0, 0), (10, 3, 1, 1.0, 2.0, 0.0, 0), (11, 3, 3, 1.0, 4.0, 0.0, 1), (12, 3, 4, 1.0, 5.0, 0.0, 1) ], dtype=order_dt) ) record_arrays_close( from_signals_longonly(size=1, accumulate=[['disabled', 'addonly', 'removeonly', 'both']]).order_records, np.array([ (0, 0, 0, 1.0, 1.0, 0.0, 0), (1, 0, 3, 1.0, 4.0, 0.0, 1), (2, 1, 0, 1.0, 1.0, 0.0, 0), (3, 1, 1, 1.0, 2.0, 0.0, 0), (4, 1, 3, 2.0, 4.0, 0.0, 1), (5, 2, 0, 1.0, 1.0, 0.0, 0), (6, 2, 3, 1.0, 4.0, 0.0, 1), (7, 3, 0, 1.0, 1.0, 0.0, 0), (8, 3, 1, 1.0, 2.0, 0.0, 0), (9, 3, 3, 1.0, 4.0, 0.0, 1), (10, 3, 4, 1.0, 5.0, 0.0, 1) ], dtype=order_dt) ) record_arrays_close( from_signals_shortonly(size=1, accumulate=[['disabled', 'addonly', 'removeonly', 'both']]).order_records, np.array([ (0, 0, 0, 1.0, 1.0, 0.0, 1), (1, 0, 3, 1.0, 4.0, 0.0, 0), (2, 1, 0, 1.0, 1.0, 0.0, 1), (3, 1, 1, 1.0, 2.0, 0.0, 1), (4, 1, 3, 2.0, 4.0, 0.0, 0), (5, 2, 0, 1.0, 1.0, 0.0, 1), (6, 2, 3, 1.0, 4.0, 0.0, 0), (7, 3, 0, 1.0, 1.0, 0.0, 1), (8, 3, 1, 1.0, 2.0, 0.0, 1), (9, 3, 3, 1.0, 4.0, 0.0, 0), (10, 3, 4, 1.0, 5.0, 0.0, 0) ], dtype=order_dt) ) def test_upon_long_conflict(self): kwargs = dict( close=price[:3], entries=pd.DataFrame([ [True, True, True, True, True, True, True], [True, True, True, True, False, True, False], [True, True, True, True, True, True, True] ]), exits=pd.DataFrame([ [True, True, True, True, True, True, True], [False, False, False, False, True, False, True], [True, True, True, True, True, True, True] ]), size=1., accumulate=True, upon_long_conflict=[[ 'ignore', 'entry', 'exit', 'adjacent', 'adjacent', 'opposite', 'opposite' ]] ) record_arrays_close( from_signals_longonly(**kwargs).order_records, np.array([ (0, 0, 1, 1.0, 2.0, 0.0, 0), (1, 1, 0, 1.0, 1.0, 0.0, 0), (2, 1, 1, 1.0, 2.0, 0.0, 0), (3, 1, 2, 1.0, 3.0, 0.0, 0), (4, 2, 1, 1.0, 2.0, 0.0, 0), (5, 2, 2, 1.0, 3.0, 0.0, 1), (6, 3, 1, 1.0, 2.0, 0.0, 0), (7, 3, 2, 1.0, 3.0, 0.0, 0), (8, 5, 1, 1.0, 2.0, 0.0, 0), (9, 5, 2, 1.0, 3.0, 0.0, 1) ], dtype=order_dt) ) def test_upon_short_conflict(self): kwargs = dict( close=price[:3], entries=pd.DataFrame([ [True, True, True, True, True, True, True], [True, True, True, True, False, True, False], [True, True, True, True, True, True, True] ]), exits=pd.DataFrame([ [True, True, True, True, True, True, True], [False, False, False, False, True, False, True], [True, True, True, True, True, True, True] ]), size=1., accumulate=True, upon_short_conflict=[[ 'ignore', 'entry', 'exit', 'adjacent', 'adjacent', 'opposite', 'opposite' ]] ) record_arrays_close( from_signals_shortonly(**kwargs).order_records, np.array([ (0, 0, 1, 1.0, 2.0, 0.0, 1), (1, 1, 0, 1.0, 1.0, 0.0, 1), (2, 1, 1, 1.0, 2.0, 0.0, 1), (3, 1, 2, 1.0, 3.0, 0.0, 1), (4, 2, 1, 1.0, 2.0, 0.0, 1), (5, 2, 2, 1.0, 3.0, 0.0, 0), (6, 3, 1, 1.0, 2.0, 0.0, 1), (7, 3, 2, 1.0, 3.0, 0.0, 1), (8, 5, 1, 1.0, 2.0, 0.0, 1), (9, 5, 2, 1.0, 3.0, 0.0, 0) ], dtype=order_dt) ) def test_upon_dir_conflict(self): kwargs = dict( close=price[:3], entries=pd.DataFrame([ [True, True, True, True, True, True, True], [True, True, True, True, False, True, False], [True, True, True, True, True, True, True] ]), exits=pd.DataFrame([ [True, True, True, True, True, True, True], [False, False, False, False, True, False, True], [True, True, True, True, True, True, True] ]), size=1., accumulate=True, upon_dir_conflict=[[ 'ignore', 'long', 'short', 'adjacent', 'adjacent', 'opposite', 'opposite' ]] ) record_arrays_close( from_signals_both(**kwargs).order_records, np.array([ (0, 0, 1, 1.0, 2.0, 0.0, 0), (1, 1, 0, 1.0, 1.0, 0.0, 0), (2, 1, 1, 1.0, 2.0, 0.0, 0), (3, 1, 2, 1.0, 3.0, 0.0, 0), (4, 2, 0, 1.0, 1.0, 0.0, 1), (5, 2, 1, 1.0, 2.0, 0.0, 0), (6, 2, 2, 1.0, 3.0, 0.0, 1), (7, 3, 1, 1.0, 2.0, 0.0, 0), (8, 3, 2, 1.0, 3.0, 0.0, 0), (9, 4, 1, 1.0, 2.0, 0.0, 1), (10, 4, 2, 1.0, 3.0, 0.0, 1), (11, 5, 1, 1.0, 2.0, 0.0, 0), (12, 5, 2, 1.0, 3.0, 0.0, 1), (13, 6, 1, 1.0, 2.0, 0.0, 1), (14, 6, 2, 1.0, 3.0, 0.0, 0) ], dtype=order_dt) ) def test_upon_opposite_entry(self): kwargs = dict( close=price[:3], entries=pd.DataFrame([ [True, False, True, False, True, False, True, False, True, False], [False, True, False, True, False, True, False, True, False, True], [True, False, True, False, True, False, True, False, True, False] ]), exits=pd.DataFrame([ [False, True, False, True, False, True, False, True, False, True], [True, False, True, False, True, False, True, False, True, False], [False, True, False, True, False, True, False, True, False, True] ]), size=1., upon_opposite_entry=[[ 'ignore', 'ignore', 'close', 'close', 'closereduce', 'closereduce', 'reverse', 'reverse', 'reversereduce', 'reversereduce' ]] ) record_arrays_close( from_signals_both(**kwargs).order_records, np.array([ (0, 0, 0, 1.0, 1.0, 0.0, 0), (1, 1, 0, 1.0, 1.0, 0.0, 1), (2, 2, 0, 1.0, 1.0, 0.0, 0), (3, 2, 1, 1.0, 2.0, 0.0, 1), (4, 2, 2, 1.0, 3.0, 0.0, 0), (5, 3, 0, 1.0, 1.0, 0.0, 1), (6, 3, 1, 1.0, 2.0, 0.0, 0), (7, 3, 2, 1.0, 3.0, 0.0, 1), (8, 4, 0, 1.0, 1.0, 0.0, 0), (9, 4, 1, 1.0, 2.0, 0.0, 1), (10, 4, 2, 1.0, 3.0, 0.0, 0), (11, 5, 0, 1.0, 1.0, 0.0, 1), (12, 5, 1, 1.0, 2.0, 0.0, 0), (13, 5, 2, 1.0, 3.0, 0.0, 1), (14, 6, 0, 1.0, 1.0, 0.0, 0), (15, 6, 1, 2.0, 2.0, 0.0, 1), (16, 6, 2, 2.0, 3.0, 0.0, 0), (17, 7, 0, 1.0, 1.0, 0.0, 1), (18, 7, 1, 2.0, 2.0, 0.0, 0), (19, 7, 2, 2.0, 3.0, 0.0, 1), (20, 8, 0, 1.0, 1.0, 0.0, 0), (21, 8, 1, 2.0, 2.0, 0.0, 1), (22, 8, 2, 2.0, 3.0, 0.0, 0), (23, 9, 0, 1.0, 1.0, 0.0, 1), (24, 9, 1, 2.0, 2.0, 0.0, 0), (25, 9, 2, 2.0, 3.0, 0.0, 1) ], dtype=order_dt) ) record_arrays_close( from_signals_both(**kwargs, accumulate=True).order_records, np.array([ (0, 0, 0, 1.0, 1.0, 0.0, 0), (1, 0, 2, 1.0, 3.0, 0.0, 0), (2, 1, 0, 1.0, 1.0, 0.0, 1), (3, 1, 2, 1.0, 3.0, 0.0, 1), (4, 2, 0, 1.0, 1.0, 0.0, 0), (5, 2, 1, 1.0, 2.0, 0.0, 1), (6, 2, 2, 1.0, 3.0, 0.0, 0), (7, 3, 0, 1.0, 1.0, 0.0, 1), (8, 3, 1, 1.0, 2.0, 0.0, 0), (9, 3, 2, 1.0, 3.0, 0.0, 1), (10, 4, 0, 1.0, 1.0, 0.0, 0), (11, 4, 1, 1.0, 2.0, 0.0, 1), (12, 4, 2, 1.0, 3.0, 0.0, 0), (13, 5, 0, 1.0, 1.0, 0.0, 1), (14, 5, 1, 1.0, 2.0, 0.0, 0), (15, 5, 2, 1.0, 3.0, 0.0, 1), (16, 6, 0, 1.0, 1.0, 0.0, 0), (17, 6, 1, 2.0, 2.0, 0.0, 1), (18, 6, 2, 2.0, 3.0, 0.0, 0), (19, 7, 0, 1.0, 1.0, 0.0, 1), (20, 7, 1, 2.0, 2.0, 0.0, 0), (21, 7, 2, 2.0, 3.0, 0.0, 1), (22, 8, 0, 1.0, 1.0, 0.0, 0), (23, 8, 1, 1.0, 2.0, 0.0, 1), (24, 8, 2, 1.0, 3.0, 0.0, 0), (25, 9, 0, 1.0, 1.0, 0.0, 1), (26, 9, 1, 1.0, 2.0, 0.0, 0), (27, 9, 2, 1.0, 3.0, 0.0, 1) ], dtype=order_dt) ) def test_init_cash(self): record_arrays_close( from_signals_both(close=price_wide, size=1., init_cash=[0., 1., 100.]).order_records, np.array([ (0, 0, 3, 1.0, 4.0, 0.0, 1), (1, 1, 0, 1.0, 1.0, 0.0, 0), (2, 1, 3, 2.0, 4.0, 0.0, 1), (3, 2, 0, 1.0, 1.0, 0.0, 0), (4, 2, 3, 2.0, 4.0, 0.0, 1) ], dtype=order_dt) ) record_arrays_close( from_signals_longonly(close=price_wide, size=1., init_cash=[0., 1., 100.]).order_records, np.array([ (0, 1, 0, 1.0, 1.0, 0.0, 0), (1, 1, 3, 1.0, 4.0, 0.0, 1), (2, 2, 0, 1.0, 1.0, 0.0, 0), (3, 2, 3, 1.0, 4.0, 0.0, 1) ], dtype=order_dt) ) record_arrays_close( from_signals_shortonly(close=price_wide, size=1., init_cash=[0., 1., 100.]).order_records, np.array([ (0, 0, 0, 1.0, 1.0, 0.0, 1), (1, 0, 3, 0.25, 4.0, 0.0, 0), (2, 1, 0, 1.0, 1.0, 0.0, 1), (3, 1, 3, 0.5, 4.0, 0.0, 0), (4, 2, 0, 1.0, 1.0, 0.0, 1), (5, 2, 3, 1.0, 4.0, 0.0, 0) ], dtype=order_dt) ) with pytest.raises(Exception): _ = from_signals_both(init_cash=np.inf).order_records with pytest.raises(Exception): _ = from_signals_longonly(init_cash=np.inf).order_records with pytest.raises(Exception): _ = from_signals_shortonly(init_cash=np.inf).order_records def test_group_by(self): pf = from_signals_both(close=price_wide, group_by=np.array([0, 0, 1])) record_arrays_close( pf.order_records, np.array([ (0, 0, 0, 100.0, 1.0, 0.0, 0), (1, 0, 3, 200.0, 4.0, 0.0, 1), (2, 1, 0, 100.0, 1.0, 0.0, 0), (3, 1, 3, 200.0, 4.0, 0.0, 1), (4, 2, 0, 100.0, 1.0, 0.0, 0), (5, 2, 3, 200.0, 4.0, 0.0, 1) ], dtype=order_dt) ) pd.testing.assert_index_equal( pf.wrapper.grouper.group_by, pd.Int64Index([0, 0, 1], dtype='int64') ) pd.testing.assert_series_equal( pf.init_cash, pd.Series([200., 100.], index=pd.Int64Index([0, 1], dtype='int64')).rename('init_cash') ) assert not pf.cash_sharing def test_cash_sharing(self): pf = from_signals_both(close=price_wide, group_by=np.array([0, 0, 1]), cash_sharing=True) record_arrays_close( pf.order_records, np.array([ (0, 0, 0, 100., 1., 0., 0), (1, 0, 3, 200., 4., 0., 1), (2, 2, 0, 100., 1., 0., 0), (3, 2, 3, 200., 4., 0., 1) ], dtype=order_dt) ) pd.testing.assert_index_equal( pf.wrapper.grouper.group_by, pd.Int64Index([0, 0, 1], dtype='int64') ) pd.testing.assert_series_equal( pf.init_cash, pd.Series([100., 100.], index=pd.Int64Index([0, 1], dtype='int64')).rename('init_cash') ) assert pf.cash_sharing with pytest.raises(Exception): _ = pf.regroup(group_by=False) def test_call_seq(self): pf = from_signals_both(close=price_wide, group_by=np.array([0, 0, 1]), cash_sharing=True) record_arrays_close( pf.order_records, np.array([ (0, 0, 0, 100., 1., 0., 0), (1, 0, 3, 200., 4., 0., 1), (2, 2, 0, 100., 1., 0., 0), (3, 2, 3, 200., 4., 0., 1) ], dtype=order_dt) ) np.testing.assert_array_equal( pf.call_seq.values, np.array([ [0, 1, 0], [0, 1, 0], [0, 1, 0], [0, 1, 0], [0, 1, 0] ]) ) pf = from_signals_both( close=price_wide, group_by=np.array([0, 0, 1]), cash_sharing=True, call_seq='reversed') record_arrays_close( pf.order_records, np.array([ (0, 1, 0, 100., 1., 0., 0), (1, 1, 3, 200., 4., 0., 1), (2, 2, 0, 100., 1., 0., 0), (3, 2, 3, 200., 4., 0., 1) ], dtype=order_dt) ) np.testing.assert_array_equal( pf.call_seq.values, np.array([ [1, 0, 0], [1, 0, 0], [1, 0, 0], [1, 0, 0], [1, 0, 0] ]) ) pf = from_signals_both( close=price_wide, group_by=np.array([0, 0, 1]), cash_sharing=True, call_seq='random', seed=seed) record_arrays_close( pf.order_records, np.array([ (0, 1, 0, 100., 1., 0., 0), (1, 1, 3, 200., 4., 0., 1), (2, 2, 0, 100., 1., 0., 0), (3, 2, 3, 200., 4., 0., 1) ], dtype=order_dt) ) np.testing.assert_array_equal( pf.call_seq.values, np.array([ [1, 0, 0], [0, 1, 0], [1, 0, 0], [1, 0, 0], [1, 0, 0] ]) ) kwargs = dict( close=1., entries=pd.DataFrame([ [False, False, True], [False, True, False], [True, False, False], [False, False, True], [False, True, False], ]), exits=pd.DataFrame([ [False, False, False], [False, False, True], [False, True, False], [True, False, False], [False, False, True], ]), group_by=np.array([0, 0, 0]), cash_sharing=True, call_seq='auto' ) pf = from_signals_both(**kwargs) record_arrays_close( pf.order_records, np.array([ (0, 2, 0, 100., 1., 0., 0), (1, 2, 1, 200., 1., 0., 1), (2, 1, 1, 200., 1., 0., 0), (3, 1, 2, 200., 1., 0., 1), (4, 0, 2, 200., 1., 0., 0), (5, 0, 3, 200., 1., 0., 1), (6, 2, 3, 200., 1., 0., 0), (7, 2, 4, 200., 1., 0., 1), (8, 1, 4, 200., 1., 0., 0) ], dtype=order_dt) ) np.testing.assert_array_equal( pf.call_seq.values, np.array([ [0, 1, 2], [2, 0, 1], [1, 2, 0], [0, 1, 2], [2, 0, 1] ]) ) pf = from_signals_longonly(**kwargs) record_arrays_close( pf.order_records, np.array([ (0, 2, 0, 100., 1., 0., 0), (1, 2, 1, 100., 1., 0., 1), (2, 1, 1, 100., 1., 0., 0), (3, 1, 2, 100., 1., 0., 1), (4, 0, 2, 100., 1., 0., 0), (5, 0, 3, 100., 1., 0., 1), (6, 2, 3, 100., 1., 0., 0), (7, 2, 4, 100., 1., 0., 1), (8, 1, 4, 100., 1., 0., 0) ], dtype=order_dt) ) np.testing.assert_array_equal( pf.call_seq.values, np.array([ [0, 1, 2], [2, 0, 1], [1, 2, 0], [0, 1, 2], [2, 0, 1] ]) ) pf = from_signals_shortonly(**kwargs) record_arrays_close( pf.order_records, np.array([ (0, 2, 0, 100., 1., 0., 1), (1, 2, 1, 100., 1., 0., 0), (2, 0, 2, 100., 1., 0., 1), (3, 0, 3, 100., 1., 0., 0), (4, 1, 4, 100., 1., 0., 1) ], dtype=order_dt) ) np.testing.assert_array_equal( pf.call_seq.values, np.array([ [2, 0, 1], [1, 0, 2], [0, 1, 2], [2, 1, 0], [1, 0, 2] ]) ) pf = from_signals_longonly(**kwargs, size=1., size_type='percent') record_arrays_close( pf.order_records, np.array([ (0, 2, 0, 100.0, 1.0, 0.0, 0), (1, 2, 1, 100.0, 1.0, 0.0, 1), (2, 1, 1, 100.0, 1.0, 0.0, 0), (3, 1, 2, 100.0, 1.0, 0.0, 1), (4, 0, 2, 100.0, 1.0, 0.0, 0), (5, 0, 3, 100.0, 1.0, 0.0, 1), (6, 2, 3, 100.0, 1.0, 0.0, 0), (7, 2, 4, 100.0, 1.0, 0.0, 1), (8, 1, 4, 100.0, 1.0, 0.0, 0) ], dtype=order_dt) ) np.testing.assert_array_equal( pf.call_seq.values, np.array([ [0, 1, 2], [2, 0, 1], [1, 0, 2], [0, 1, 2], [2, 0, 1] ]) ) def test_sl_stop(self): entries = pd.Series([True, False, False, False, False], index=price.index) exits = pd.Series([False, False, False, False, False], index=price.index) with pytest.raises(Exception): _ = from_signals_both(sl_stop=-0.1) close = pd.Series([5., 4., 3., 2., 1.], index=price.index) open = close + 0.25 high = close + 0.5 low = close - 0.5 record_arrays_close( from_signals_longonly( close=close, entries=entries, exits=exits, sl_stop=[[np.nan, 0.1, 0.5, np.inf]]).order_records, np.array([ (0, 0, 0, 20.0, 5.0, 0.0, 0), (1, 1, 0, 20.0, 5.0, 0.0, 0), (2, 1, 1, 20.0, 4.0, 0.0, 1), (3, 2, 0, 20.0, 5.0, 0.0, 0), (4, 2, 3, 20.0, 2.0, 0.0, 1), (5, 3, 0, 20.0, 5.0, 0.0, 0) ], dtype=order_dt) ) record_arrays_close( from_signals_shortonly( close=close, entries=entries, exits=exits, sl_stop=[[np.nan, 0.1, 0.5, np.inf]]).order_records, np.array([ (0, 0, 0, 20.0, 5.0, 0.0, 1), (1, 1, 0, 20.0, 5.0, 0.0, 1), (2, 2, 0, 20.0, 5.0, 0.0, 1), (3, 3, 0, 20.0, 5.0, 0.0, 1) ], dtype=order_dt) ) record_arrays_close( from_signals_both( close=close, entries=entries, exits=exits, sl_stop=[[np.nan, 0.1, 0.5, np.inf]]).order_records, from_signals_longonly( close=close, entries=entries, exits=exits, sl_stop=[[np.nan, 0.1, 0.5, np.inf]]).order_records ) record_arrays_close( from_signals_both( close=close, entries=exits, exits=entries, sl_stop=[[np.nan, 0.1, 0.5, np.inf]]).order_records, from_signals_shortonly( close=close, entries=entries, exits=exits, sl_stop=[[np.nan, 0.1, 0.5, np.inf]]).order_records ) record_arrays_close( from_signals_longonly( close=close, entries=entries, exits=exits, open=open, high=high, low=low, sl_stop=[[np.nan, 0.1, 0.15, 0.2, np.inf]]).order_records, np.array([ (0, 0, 0, 20.0, 5.0, 0.0, 0), (1, 1, 0, 20.0, 5.0, 0.0, 0), (2, 1, 1, 20.0, 4.25, 0.0, 1), (3, 2, 0, 20.0, 5.0, 0.0, 0), (4, 2, 1, 20.0, 4.25, 0.0, 1), (5, 3, 0, 20.0, 5.0, 0.0, 0), (6, 3, 1, 20.0, 4.0, 0.0, 1), (7, 4, 0, 20.0, 5.0, 0.0, 0) ], dtype=order_dt) ) record_arrays_close( from_signals_shortonly( close=close, entries=entries, exits=exits, open=open, high=high, low=low, sl_stop=[[np.nan, 0.1, 0.15, 0.2, np.inf]]).order_records, np.array([ (0, 0, 0, 20.0, 5.0, 0.0, 1), (1, 1, 0, 20.0, 5.0, 0.0, 1), (2, 2, 0, 20.0, 5.0, 0.0, 1), (3, 3, 0, 20.0, 5.0, 0.0, 1), (4, 4, 0, 20.0, 5.0, 0.0, 1) ], dtype=order_dt) ) close = pd.Series([1., 2., 3., 4., 5.], index=price.index) open = close - 0.25 high = close + 0.5 low = close - 0.5 record_arrays_close( from_signals_longonly( close=close, entries=entries, exits=exits, sl_stop=[[np.nan, 0.5, 3., np.inf]]).order_records, np.array([ (0, 0, 0, 100.0, 1.0, 0.0, 0), (1, 1, 0, 100.0, 1.0, 0.0, 0), (2, 2, 0, 100.0, 1.0, 0.0, 0), (3, 3, 0, 100.0, 1.0, 0.0, 0) ], dtype=order_dt) ) record_arrays_close( from_signals_shortonly( close=close, entries=entries, exits=exits, sl_stop=[[np.nan, 0.5, 3., np.inf]]).order_records, np.array([ (0, 0, 0, 100.0, 1.0, 0.0, 1), (1, 1, 0, 100.0, 1.0, 0.0, 1), (2, 1, 1, 100.0, 2.0, 0.0, 0), (3, 2, 0, 100.0, 1.0, 0.0, 1), (4, 2, 3, 50.0, 4.0, 0.0, 0), (5, 3, 0, 100.0, 1.0, 0.0, 1) ], dtype=order_dt) ) record_arrays_close( from_signals_both( close=close, entries=entries, exits=exits, sl_stop=[[np.nan, 0.5, 3., np.inf]]).order_records, from_signals_longonly( close=close, entries=entries, exits=exits, sl_stop=[[np.nan, 0.5, 3., np.inf]]).order_records ) record_arrays_close( from_signals_both( close=close, entries=exits, exits=entries, sl_stop=[[np.nan, 0.5, 3., np.inf]]).order_records, from_signals_shortonly( close=close, entries=entries, exits=exits, sl_stop=[[np.nan, 0.5, 3., np.inf]]).order_records ) record_arrays_close( from_signals_longonly( close=close, entries=entries, exits=exits, open=open, high=high, low=low, sl_stop=[[np.nan, 0.5, 0.75, 1., np.inf]]).order_records, np.array([ (0, 0, 0, 100.0, 1.0, 0.0, 0), (1, 1, 0, 100.0, 1.0, 0.0, 0), (2, 2, 0, 100.0, 1.0, 0.0, 0), (3, 3, 0, 100.0, 1.0, 0.0, 0), (4, 4, 0, 100.0, 1.0, 0.0, 0) ], dtype=order_dt) ) record_arrays_close( from_signals_shortonly( close=close, entries=entries, exits=exits, open=open, high=high, low=low, sl_stop=[[np.nan, 0.5, 0.75, 1., np.inf]]).order_records, np.array([ (0, 0, 0, 100.0, 1.0, 0.0, 1), (1, 1, 0, 100.0, 1.0, 0.0, 1), (2, 1, 1, 100.0, 1.75, 0.0, 0), (3, 2, 0, 100.0, 1.0, 0.0, 1), (4, 2, 1, 100.0, 1.75, 0.0, 0), (5, 3, 0, 100.0, 1.0, 0.0, 1), (6, 3, 1, 100.0, 2.0, 0.0, 0), (7, 4, 0, 100.0, 1.0, 0.0, 1) ], dtype=order_dt) ) def test_ts_stop(self): entries = pd.Series([True, False, False, False, False], index=price.index) exits = pd.Series([False, False, False, False, False], index=price.index) with pytest.raises(Exception): _ = from_signals_both(ts_stop=-0.1) close = pd.Series([4., 5., 4., 3., 2.], index=price.index) open = close + 0.25 high = close + 0.5 low = close - 0.5 record_arrays_close( from_signals_longonly( close=close, entries=entries, exits=exits, sl_stop=[[np.nan, 0.1, 0.5, np.inf]], sl_trail=True).order_records, np.array([ (0, 0, 0, 25.0, 4.0, 0.0, 0), (1, 1, 0, 25.0, 4.0, 0.0, 0), (2, 1, 2, 25.0, 4.0, 0.0, 1), (3, 2, 0, 25.0, 4.0, 0.0, 0), (4, 2, 4, 25.0, 2.0, 0.0, 1), (5, 3, 0, 25.0, 4.0, 0.0, 0) ], dtype=order_dt) ) record_arrays_close( from_signals_shortonly( close=close, entries=entries, exits=exits, sl_stop=[[np.nan, 0.1, 0.5, np.inf]], sl_trail=True).order_records, np.array([ (0, 0, 0, 25.0, 4.0, 0.0, 1), (1, 1, 0, 25.0, 4.0, 0.0, 1), (2, 1, 1, 25.0, 5.0, 0.0, 0), (3, 2, 0, 25.0, 4.0, 0.0, 1), (4, 3, 0, 25.0, 4.0, 0.0, 1) ], dtype=order_dt) ) record_arrays_close( from_signals_both( close=close, entries=entries, exits=exits, sl_stop=[[np.nan, 0.1, 0.5, np.inf]], sl_trail=True).order_records, from_signals_longonly( close=close, entries=entries, exits=exits, sl_stop=[[np.nan, 0.1, 0.5, np.inf]], sl_trail=True).order_records ) print('here') record_arrays_close( from_signals_both( close=close, entries=exits, exits=entries, sl_stop=[[np.nan, 0.1, 0.5, np.inf]], sl_trail=True).order_records, from_signals_shortonly( close=close, entries=entries, exits=exits, sl_stop=[[np.nan, 0.1, 0.5, np.inf]], sl_trail=True).order_records ) record_arrays_close( from_signals_longonly( close=close, entries=entries, exits=exits, open=open, high=high, low=low, sl_stop=[[np.nan, 0.15, 0.2, 0.25, np.inf]], sl_trail=True).order_records, np.array([ (0, 0, 0, 25.0, 4.0, 0.0, 0), (1, 1, 0, 25.0, 4.0, 0.0, 0), (2, 1, 2, 25.0, 4.25, 0.0, 1), (3, 2, 0, 25.0, 4.0, 0.0, 0), (4, 2, 2, 25.0, 4.25, 0.0, 1), (5, 3, 0, 25.0, 4.0, 0.0, 0), (6, 3, 2, 25.0, 4.125, 0.0, 1), (7, 4, 0, 25.0, 4.0, 0.0, 0) ], dtype=order_dt) ) record_arrays_close( from_signals_shortonly( close=close, entries=entries, exits=exits, open=open, high=high, low=low, sl_stop=[[np.nan, 0.15, 0.2, 0.25, np.inf]], sl_trail=True).order_records, np.array([ (0, 0, 0, 25.0, 4.0, 0.0, 1), (1, 1, 0, 25.0, 4.0, 0.0, 1), (2, 1, 1, 25.0, 5.25, 0.0, 0), (3, 2, 0, 25.0, 4.0, 0.0, 1), (4, 2, 1, 25.0, 5.25, 0.0, 0), (5, 3, 0, 25.0, 4.0, 0.0, 1), (6, 3, 1, 25.0, 5.25, 0.0, 0), (7, 4, 0, 25.0, 4.0, 0.0, 1) ], dtype=order_dt) ) close = pd.Series([2., 1., 2., 3., 4.], index=price.index) open = close - 0.25 high = close + 0.5 low = close - 0.5 record_arrays_close( from_signals_longonly( close=close, entries=entries, exits=exits, sl_stop=[[np.nan, 0.5, 3., np.inf]], sl_trail=True).order_records, np.array([ (0, 0, 0, 50.0, 2.0, 0.0, 0), (1, 1, 0, 50.0, 2.0, 0.0, 0), (2, 1, 1, 50.0, 1.0, 0.0, 1), (3, 2, 0, 50.0, 2.0, 0.0, 0), (4, 3, 0, 50.0, 2.0, 0.0, 0) ], dtype=order_dt) ) record_arrays_close( from_signals_shortonly( close=close, entries=entries, exits=exits, sl_stop=[[np.nan, 0.5, 3., np.inf]], sl_trail=True).order_records, np.array([ (0, 0, 0, 50.0, 2.0, 0.0, 1), (1, 1, 0, 50.0, 2.0, 0.0, 1), (2, 1, 2, 50.0, 2.0, 0.0, 0), (3, 2, 0, 50.0, 2.0, 0.0, 1), (4, 2, 4, 50.0, 4.0, 0.0, 0), (5, 3, 0, 50.0, 2.0, 0.0, 1) ], dtype=order_dt) ) record_arrays_close( from_signals_both( close=close, entries=entries, exits=exits, sl_stop=[[np.nan, 0.5, 3., np.inf]], sl_trail=True).order_records, from_signals_longonly( close=close, entries=entries, exits=exits, sl_stop=[[np.nan, 0.5, 3., np.inf]], sl_trail=True).order_records ) record_arrays_close( from_signals_both( close=close, entries=exits, exits=entries, sl_stop=[[np.nan, 0.5, 3., np.inf]], sl_trail=True).order_records, from_signals_shortonly( close=close, entries=entries, exits=exits, sl_stop=[[np.nan, 0.5, 3., np.inf]], sl_trail=True).order_records ) record_arrays_close( from_signals_longonly( close=close, entries=entries, exits=exits, open=open, high=high, low=low, sl_stop=[[np.nan, 0.5, 0.75, 1., np.inf]], sl_trail=True).order_records, np.array([ (0, 0, 0, 50.0, 2.0, 0.0, 0), (1, 1, 0, 50.0, 2.0, 0.0, 0), (2, 1, 1, 50.0, 0.75, 0.0, 1), (3, 2, 0, 50.0, 2.0, 0.0, 0), (4, 2, 1, 50.0, 0.5, 0.0, 1), (5, 3, 0, 50.0, 2.0, 0.0, 0), (6, 4, 0, 50.0, 2.0, 0.0, 0) ], dtype=order_dt) ) record_arrays_close( from_signals_shortonly( close=close, entries=entries, exits=exits, open=open, high=high, low=low, sl_stop=[[np.nan, 0.5, 0.75, 1., np.inf]], sl_trail=True).order_records, np.array([ (0, 0, 0, 50.0, 2.0, 0.0, 1), (1, 1, 0, 50.0, 2.0, 0.0, 1), (2, 1, 2, 50.0, 1.75, 0.0, 0), (3, 2, 0, 50.0, 2.0, 0.0, 1), (4, 2, 2, 50.0, 1.75, 0.0, 0), (5, 3, 0, 50.0, 2.0, 0.0, 1), (6, 3, 2, 50.0, 1.75, 0.0, 0), (7, 4, 0, 50.0, 2.0, 0.0, 1) ], dtype=order_dt) ) def test_tp_stop(self): entries = pd.Series([True, False, False, False, False], index=price.index) exits = pd.Series([False, False, False, False, False], index=price.index) with pytest.raises(Exception): _ = from_signals_both(sl_stop=-0.1) close = pd.Series([5., 4., 3., 2., 1.], index=price.index) open = close + 0.25 high = close + 0.5 low = close - 0.5 record_arrays_close( from_signals_longonly( close=close, entries=entries, exits=exits, tp_stop=[[np.nan, 0.1, 0.5, np.inf]]).order_records, np.array([ (0, 0, 0, 20.0, 5.0, 0.0, 0), (1, 1, 0, 20.0, 5.0, 0.0, 0), (2, 2, 0, 20.0, 5.0, 0.0, 0), (3, 3, 0, 20.0, 5.0, 0.0, 0) ], dtype=order_dt) ) record_arrays_close( from_signals_shortonly( close=close, entries=entries, exits=exits, tp_stop=[[np.nan, 0.1, 0.5, np.inf]]).order_records, np.array([ (0, 0, 0, 20.0, 5.0, 0.0, 1), (1, 1, 0, 20.0, 5.0, 0.0, 1), (2, 1, 1, 20.0, 4.0, 0.0, 0), (3, 2, 0, 20.0, 5.0, 0.0, 1), (4, 2, 3, 20.0, 2.0, 0.0, 0), (5, 3, 0, 20.0, 5.0, 0.0, 1) ], dtype=order_dt) ) record_arrays_close( from_signals_both( close=close, entries=entries, exits=exits, tp_stop=[[np.nan, 0.1, 0.5, np.inf]]).order_records, from_signals_longonly( close=close, entries=entries, exits=exits, tp_stop=[[np.nan, 0.1, 0.5, np.inf]]).order_records ) record_arrays_close( from_signals_both( close=close, entries=exits, exits=entries, tp_stop=[[np.nan, 0.1, 0.5, np.inf]]).order_records, from_signals_shortonly( close=close, entries=entries, exits=exits, tp_stop=[[np.nan, 0.1, 0.5, np.inf]]).order_records ) record_arrays_close( from_signals_longonly( close=close, entries=entries, exits=exits, open=open, high=high, low=low, tp_stop=[[np.nan, 0.1, 0.15, 0.2, np.inf]]).order_records, np.array([ (0, 0, 0, 20.0, 5.0, 0.0, 0), (1, 1, 0, 20.0, 5.0, 0.0, 0), (2, 2, 0, 20.0, 5.0, 0.0, 0), (3, 3, 0, 20.0, 5.0, 0.0, 0), (4, 4, 0, 20.0, 5.0, 0.0, 0) ], dtype=order_dt) ) record_arrays_close( from_signals_shortonly( close=close, entries=entries, exits=exits, open=open, high=high, low=low, tp_stop=[[np.nan, 0.1, 0.15, 0.2, np.inf]]).order_records, np.array([ (0, 0, 0, 20.0, 5.0, 0.0, 1), (1, 1, 0, 20.0, 5.0, 0.0, 1), (2, 1, 1, 20.0, 4.25, 0.0, 0), (3, 2, 0, 20.0, 5.0, 0.0, 1), (4, 2, 1, 20.0, 4.25, 0.0, 0), (5, 3, 0, 20.0, 5.0, 0.0, 1), (6, 3, 1, 20.0, 4.0, 0.0, 0), (7, 4, 0, 20.0, 5.0, 0.0, 1) ], dtype=order_dt) ) close = pd.Series([1., 2., 3., 4., 5.], index=price.index) open = close - 0.25 high = close + 0.5 low = close - 0.5 record_arrays_close( from_signals_longonly( close=close, entries=entries, exits=exits, tp_stop=[[np.nan, 0.5, 3., np.inf]]).order_records, np.array([ (0, 0, 0, 100.0, 1.0, 0.0, 0), (1, 1, 0, 100.0, 1.0, 0.0, 0), (2, 1, 1, 100.0, 2.0, 0.0, 1), (3, 2, 0, 100.0, 1.0, 0.0, 0), (4, 2, 3, 100.0, 4.0, 0.0, 1), (5, 3, 0, 100.0, 1.0, 0.0, 0) ], dtype=order_dt) ) record_arrays_close( from_signals_shortonly( close=close, entries=entries, exits=exits, tp_stop=[[np.nan, 0.5, 3., np.inf]]).order_records, np.array([ (0, 0, 0, 100.0, 1.0, 0.0, 1), (1, 1, 0, 100.0, 1.0, 0.0, 1), (2, 2, 0, 100.0, 1.0, 0.0, 1), (3, 3, 0, 100.0, 1.0, 0.0, 1) ], dtype=order_dt) ) record_arrays_close( from_signals_both( close=close, entries=entries, exits=exits, tp_stop=[[np.nan, 0.5, 3., np.inf]]).order_records, from_signals_longonly( close=close, entries=entries, exits=exits, tp_stop=[[np.nan, 0.5, 3., np.inf]]).order_records ) record_arrays_close( from_signals_both( close=close, entries=exits, exits=entries, tp_stop=[[np.nan, 0.5, 3., np.inf]]).order_records, from_signals_shortonly( close=close, entries=entries, exits=exits, tp_stop=[[np.nan, 0.5, 3., np.inf]]).order_records ) record_arrays_close( from_signals_longonly( close=close, entries=entries, exits=exits, open=open, high=high, low=low, tp_stop=[[np.nan, 0.5, 0.75, 1., np.inf]]).order_records, np.array([ (0, 0, 0, 100.0, 1.0, 0.0, 0), (1, 1, 0, 100.0, 1.0, 0.0, 0), (2, 1, 1, 100.0, 1.75, 0.0, 1), (3, 2, 0, 100.0, 1.0, 0.0, 0), (4, 2, 1, 100.0, 1.75, 0.0, 1), (5, 3, 0, 100.0, 1.0, 0.0, 0), (6, 3, 1, 100.0, 2.0, 0.0, 1), (7, 4, 0, 100.0, 1.0, 0.0, 0) ], dtype=order_dt) ) record_arrays_close( from_signals_shortonly( close=close, entries=entries, exits=exits, open=open, high=high, low=low, tp_stop=[[np.nan, 0.5, 0.75, 1., np.inf]]).order_records, np.array([ (0, 0, 0, 100.0, 1.0, 0.0, 1), (1, 1, 0, 100.0, 1.0, 0.0, 1), (2, 2, 0, 100.0, 1.0, 0.0, 1), (3, 3, 0, 100.0, 1.0, 0.0, 1), (4, 4, 0, 100.0, 1.0, 0.0, 1) ], dtype=order_dt) ) def test_stop_entry_price(self): entries = pd.Series([True, False, False, False, False], index=price.index) exits = pd.Series([False, False, False, False, False], index=price.index) close = pd.Series([5., 4., 3., 2., 1.], index=price.index) open = close + 0.25 high = close + 0.5 low = close - 0.5 record_arrays_close( from_signals_longonly( close=close, entries=entries, exits=exits, open=open, high=high, low=low, sl_stop=[[0.05, 0.5, 0.75]], price=1.1 * close, val_price=1.05 * close, stop_entry_price='val_price', stop_exit_price='stoplimit', slippage=0.1).order_records, np.array([ (0, 0, 0, 16.52892561983471, 6.050000000000001, 0.0, 0), (1, 0, 1, 16.52892561983471, 4.25, 0.0, 1), (2, 1, 0, 16.52892561983471, 6.050000000000001, 0.0, 0), (3, 1, 2, 16.52892561983471, 2.625, 0.0, 1), (4, 2, 0, 16.52892561983471, 6.050000000000001, 0.0, 0), (5, 2, 4, 16.52892561983471, 1.25, 0.0, 1) ], dtype=order_dt) ) record_arrays_close( from_signals_longonly( close=close, entries=entries, exits=exits, open=open, high=high, low=low, sl_stop=[[0.05, 0.5, 0.75]], price=1.1 * close, val_price=1.05 * close, stop_entry_price='price', stop_exit_price='stoplimit', slippage=0.1).order_records, np.array([ (0, 0, 0, 16.52892561983471, 6.050000000000001, 0.0, 0), (1, 0, 1, 16.52892561983471, 4.25, 0.0, 1), (2, 1, 0, 16.52892561983471, 6.050000000000001, 0.0, 0), (3, 1, 2, 16.52892561983471, 2.75, 0.0, 1), (4, 2, 0, 16.52892561983471, 6.050000000000001, 0.0, 0), (5, 2, 4, 16.52892561983471, 1.25, 0.0, 1) ], dtype=order_dt) ) record_arrays_close( from_signals_longonly( close=close, entries=entries, exits=exits, open=open, high=high, low=low, sl_stop=[[0.05, 0.5, 0.75]], price=1.1 * close, val_price=1.05 * close, stop_entry_price='fillprice', stop_exit_price='stoplimit', slippage=0.1).order_records, np.array([ (0, 0, 0, 16.52892561983471, 6.050000000000001, 0.0, 0), (1, 0, 1, 16.52892561983471, 4.25, 0.0, 1), (2, 1, 0, 16.52892561983471, 6.050000000000001, 0.0, 0), (3, 1, 2, 16.52892561983471, 3.0250000000000004, 0.0, 1), (4, 2, 0, 16.52892561983471, 6.050000000000001, 0.0, 0), (5, 2, 3, 16.52892561983471, 1.5125000000000002, 0.0, 1) ], dtype=order_dt) ) record_arrays_close( from_signals_longonly( close=close, entries=entries, exits=exits, open=open, high=high, low=low, sl_stop=[[0.05, 0.5, 0.75]], price=1.1 * close, val_price=1.05 * close, stop_entry_price='close', stop_exit_price='stoplimit', slippage=0.1).order_records, np.array([ (0, 0, 0, 16.52892561983471, 6.050000000000001, 0.0, 0), (1, 0, 1, 16.52892561983471, 4.25, 0.0, 1), (2, 1, 0, 16.52892561983471, 6.050000000000001, 0.0, 0), (3, 1, 2, 16.52892561983471, 2.5, 0.0, 1), (4, 2, 0, 16.52892561983471, 6.050000000000001, 0.0, 0), (5, 2, 4, 16.52892561983471, 1.25, 0.0, 1) ], dtype=order_dt) ) def test_stop_exit_price(self): entries = pd.Series([True, False, False, False, False], index=price.index) exits = pd.Series([False, False, False, False, False], index=price.index) close = pd.Series([5., 4., 3., 2., 1.], index=price.index) open = close + 0.25 high = close + 0.5 low = close - 0.5 record_arrays_close( from_signals_longonly( close=close, entries=entries, exits=exits, open=open, high=high, low=low, sl_stop=[[0.05, 0.5, 0.75]], price=1.1 * close, stop_exit_price='stoplimit', slippage=0.1).order_records, np.array([ (0, 0, 0, 16.528926, 6.05, 0.0, 0), (1, 0, 1, 16.528926, 4.25, 0.0, 1), (2, 1, 0, 16.528926, 6.05, 0.0, 0), (3, 1, 2, 16.528926, 2.5, 0.0, 1), (4, 2, 0, 16.528926, 6.05, 0.0, 0), (5, 2, 4, 16.528926, 1.25, 0.0, 1) ], dtype=order_dt) ) record_arrays_close( from_signals_longonly( close=close, entries=entries, exits=exits, open=open, high=high, low=low, sl_stop=[[0.05, 0.5, 0.75]], price=1.1 * close, stop_exit_price='stopmarket', slippage=0.1).order_records, np.array([ (0, 0, 0, 16.528926, 6.05, 0.0, 0), (1, 0, 1, 16.528926, 3.825, 0.0, 1), (2, 1, 0, 16.528926, 6.05, 0.0, 0), (3, 1, 2, 16.528926, 2.25, 0.0, 1), (4, 2, 0, 16.528926, 6.05, 0.0, 0), (5, 2, 4, 16.528926, 1.125, 0.0, 1) ], dtype=order_dt) ) record_arrays_close( from_signals_longonly( close=close, entries=entries, exits=exits, open=open, high=high, low=low, sl_stop=[[0.05, 0.5, 0.75]], price=1.1 * close, stop_exit_price='close', slippage=0.1).order_records, np.array([ (0, 0, 0, 16.528926, 6.05, 0.0, 0), (1, 0, 1, 16.528926, 3.6, 0.0, 1), (2, 1, 0, 16.528926, 6.05, 0.0, 0), (3, 1, 2, 16.528926, 2.7, 0.0, 1), (4, 2, 0, 16.528926, 6.05, 0.0, 0), (5, 2, 4, 16.528926, 0.9, 0.0, 1) ], dtype=order_dt) ) record_arrays_close( from_signals_longonly( close=close, entries=entries, exits=exits, open=open, high=high, low=low, sl_stop=[[0.05, 0.5, 0.75]], price=1.1 * close, stop_exit_price='price', slippage=0.1).order_records, np.array([ (0, 0, 0, 16.528926, 6.05, 0.0, 0), (1, 0, 1, 16.528926, 3.9600000000000004, 0.0, 1), (2, 1, 0, 16.528926, 6.05, 0.0, 0), (3, 1, 2, 16.528926, 2.97, 0.0, 1), (4, 2, 0, 16.528926, 6.05, 0.0, 0), (5, 2, 4, 16.528926, 0.9900000000000001, 0.0, 1) ], dtype=order_dt) ) def test_upon_stop_exit(self): entries = pd.Series([True, False, False, False, False], index=price.index) exits = pd.Series([False, False, False, False, False], index=price.index) close = pd.Series([5., 4., 3., 2., 1.], index=price.index) record_arrays_close( from_signals_both( close=close, entries=entries, exits=exits, size=1, sl_stop=0.1, upon_stop_exit=[['close', 'closereduce', 'reverse', 'reversereduce']], accumulate=True).order_records, np.array([ (0, 0, 0, 1.0, 5.0, 0.0, 0), (1, 0, 1, 1.0, 4.0, 0.0, 1), (2, 1, 0, 1.0, 5.0, 0.0, 0), (3, 1, 1, 1.0, 4.0, 0.0, 1), (4, 2, 0, 1.0, 5.0, 0.0, 0), (5, 2, 1, 2.0, 4.0, 0.0, 1), (6, 3, 0, 1.0, 5.0, 0.0, 0), (7, 3, 1, 1.0, 4.0, 0.0, 1) ], dtype=order_dt) ) record_arrays_close( from_signals_both( close=close, entries=entries, exits=exits, size=1, sl_stop=0.1, upon_stop_exit=[['close', 'closereduce', 'reverse', 'reversereduce']]).order_records, np.array([ (0, 0, 0, 1.0, 5.0, 0.0, 0), (1, 0, 1, 1.0, 4.0, 0.0, 1), (2, 1, 0, 1.0, 5.0, 0.0, 0), (3, 1, 1, 1.0, 4.0, 0.0, 1), (4, 2, 0, 1.0, 5.0, 0.0, 0), (5, 2, 1, 2.0, 4.0, 0.0, 1), (6, 3, 0, 1.0, 5.0, 0.0, 0), (7, 3, 1, 2.0, 4.0, 0.0, 1) ], dtype=order_dt) ) def test_upon_stop_update(self): entries = pd.Series([True, True, False, False, False], index=price.index) exits = pd.Series([False, False, False, False, False], index=price.index) close = pd.Series([5., 4., 3., 2., 1.], index=price.index) sl_stop = pd.Series([0.4, np.nan, np.nan, np.nan, np.nan]) record_arrays_close( from_signals_longonly( close=close, entries=entries, exits=exits, accumulate=True, size=1., sl_stop=sl_stop, upon_stop_update=[['keep', 'override', 'overridenan']]).order_records, np.array([ (0, 0, 0, 1.0, 5.0, 0.0, 0), (1, 0, 1, 1.0, 4.0, 0.0, 0), (2, 0, 2, 2.0, 3.0, 0.0, 1), (3, 1, 0, 1.0, 5.0, 0.0, 0), (4, 1, 1, 1.0, 4.0, 0.0, 0), (5, 1, 2, 2.0, 3.0, 0.0, 1), (6, 2, 0, 1.0, 5.0, 0.0, 0), (7, 2, 1, 1.0, 4.0, 0.0, 0) ], dtype=order_dt) ) sl_stop = pd.Series([0.4, 0.4, np.nan, np.nan, np.nan]) record_arrays_close( from_signals_longonly( close=close, entries=entries, exits=exits, accumulate=True, size=1., sl_stop=sl_stop, upon_stop_update=[['keep', 'override']]).order_records, np.array([ (0, 0, 0, 1.0, 5.0, 0.0, 0), (1, 0, 1, 1.0, 4.0, 0.0, 0), (2, 0, 2, 2.0, 3.0, 0.0, 1), (3, 1, 0, 1.0, 5.0, 0.0, 0), (4, 1, 1, 1.0, 4.0, 0.0, 0), (5, 1, 3, 2.0, 2.0, 0.0, 1) ], dtype=order_dt) ) def test_adjust_sl_func(self): entries = pd.Series([True, False, False, False, False], index=price.index) exits = pd.Series([False, False, False, False, False], index=price.index) close = pd.Series([5., 4., 3., 2., 1.], index=price.index) @njit def adjust_sl_func_nb(c, dur): return 0. if c.i - c.init_i >= dur else c.curr_stop, c.curr_trail record_arrays_close( from_signals_longonly( close=close, entries=entries, exits=exits, sl_stop=np.inf, adjust_sl_func_nb=adjust_sl_func_nb, adjust_sl_args=(2,)).order_records, np.array([ (0, 0, 0, 20.0, 5.0, 0.0, 0), (1, 0, 2, 20.0, 3.0, 0.0, 1) ], dtype=order_dt) ) def test_adjust_ts_func(self): entries = pd.Series([True, False, False, False, False], index=price.index) exits = pd.Series([False, False, False, False, False], index=price.index) close = pd.Series([10., 11., 12., 11., 10.], index=price.index) @njit def adjust_sl_func_nb(c, dur): return 0. if c.i - c.curr_i >= dur else c.curr_stop, c.curr_trail record_arrays_close( from_signals_longonly( close=close, entries=entries, exits=exits, sl_stop=np.inf, adjust_sl_func_nb=adjust_sl_func_nb, adjust_sl_args=(2,)).order_records, np.array([ (0, 0, 0, 10.0, 10.0, 0.0, 0), (1, 0, 4, 10.0, 10.0, 0.0, 1) ], dtype=order_dt) ) def test_adjust_tp_func(self): entries = pd.Series([True, False, False, False, False], index=price.index) exits = pd.Series([False, False, False, False, False], index=price.index) close = pd.Series([1., 2., 3., 4., 5.], index=price.index) @njit def adjust_tp_func_nb(c, dur): return 0. if c.i - c.init_i >= dur else c.curr_stop record_arrays_close( from_signals_longonly( close=close, entries=entries, exits=exits, tp_stop=np.inf, adjust_tp_func_nb=adjust_tp_func_nb, adjust_tp_args=(2,)).order_records, np.array([ (0, 0, 0, 100.0, 1.0, 0.0, 0), (1, 0, 2, 100.0, 3.0, 0.0, 1) ], dtype=order_dt) ) def test_max_orders(self): _ = from_signals_both(close=price_wide) _ = from_signals_both(close=price_wide, max_orders=6) with pytest.raises(Exception): _ = from_signals_both(close=price_wide, max_orders=5) def test_max_logs(self): _ = from_signals_both(close=price_wide, log=True) _ = from_signals_both(close=price_wide, log=True, max_logs=6) with pytest.raises(Exception): _ = from_signals_both(close=price_wide, log=True, max_logs=5) # ############# from_holding ############# # class TestFromHolding: def test_from_holding(self): record_arrays_close( vbt.Portfolio.from_holding(price).order_records, vbt.Portfolio.from_signals(price, True, False, accumulate=False).order_records ) # ############# from_random_signals ############# # class TestFromRandomSignals: def test_from_random_n(self): result = vbt.Portfolio.from_random_signals(price, n=2, seed=seed) record_arrays_close( result.order_records, vbt.Portfolio.from_signals( price, [True, False, True, False, False], [False, True, False, False, True] ).order_records ) pd.testing.assert_index_equal( result.wrapper.index, price.vbt.wrapper.index ) pd.testing.assert_index_equal( result.wrapper.columns, price.vbt.wrapper.columns ) result = vbt.Portfolio.from_random_signals(price, n=[1, 2], seed=seed) record_arrays_close( result.order_records, vbt.Portfolio.from_signals( price, [[False, True], [True, False], [False, True], [False, False], [False, False]], [[False, False], [False, True], [False, False], [False, True], [True, False]] ).order_records ) pd.testing.assert_index_equal( result.wrapper.index, pd.DatetimeIndex([ '2020-01-01', '2020-01-02', '2020-01-03', '2020-01-04', '2020-01-05' ], dtype='datetime64[ns]', freq=None) ) pd.testing.assert_index_equal( result.wrapper.columns, pd.Int64Index([1, 2], dtype='int64', name='randnx_n') ) def test_from_random_prob(self): result = vbt.Portfolio.from_random_signals(price, prob=0.5, seed=seed) record_arrays_close( result.order_records, vbt.Portfolio.from_signals( price, [True, False, False, False, False], [False, False, False, False, True] ).order_records ) pd.testing.assert_index_equal( result.wrapper.index, price.vbt.wrapper.index ) pd.testing.assert_index_equal( result.wrapper.columns, price.vbt.wrapper.columns ) result = vbt.Portfolio.from_random_signals(price, prob=[0.25, 0.5], seed=seed) record_arrays_close( result.order_records, vbt.Portfolio.from_signals( price, [[False, True], [False, False], [False, False], [False, False], [True, False]], [[False, False], [False, True], [False, False], [False, False], [False, False]] ).order_records ) pd.testing.assert_index_equal( result.wrapper.index, pd.DatetimeIndex([ '2020-01-01', '2020-01-02', '2020-01-03', '2020-01-04', '2020-01-05' ], dtype='datetime64[ns]', freq=None) ) pd.testing.assert_index_equal( result.wrapper.columns, pd.MultiIndex.from_tuples( [(0.25, 0.25), (0.5, 0.5)], names=['rprobnx_entry_prob', 'rprobnx_exit_prob']) ) # ############# from_order_func ############# # @njit def order_func_nb(c, size): _size = nb.get_elem_nb(c, size) return nb.order_nb(_size if c.i % 2 == 0 else -_size) @njit def log_order_func_nb(c, size): _size = nb.get_elem_nb(c, size) return nb.order_nb(_size if c.i % 2 == 0 else -_size, log=True) @njit def flex_order_func_nb(c, size): if c.call_idx < c.group_len: _size = nb.get_col_elem_nb(c, c.from_col + c.call_idx, size) return c.from_col + c.call_idx, nb.order_nb(_size if c.i % 2 == 0 else -_size) return -1, nb.order_nothing_nb() @njit def log_flex_order_func_nb(c, size): if c.call_idx < c.group_len: _size = nb.get_col_elem_nb(c, c.from_col + c.call_idx, size) return c.from_col + c.call_idx, nb.order_nb(_size if c.i % 2 == 0 else -_size, log=True) return -1, nb.order_nothing_nb() class TestFromOrderFunc: @pytest.mark.parametrize("test_row_wise", [False, True]) @pytest.mark.parametrize("test_flexible", [False, True]) def test_one_column(self, test_row_wise, test_flexible): order_func = flex_order_func_nb if test_flexible else order_func_nb pf = vbt.Portfolio.from_order_func( price.tolist(), order_func, np.asarray(np.inf), row_wise=test_row_wise, flexible=test_flexible) record_arrays_close( pf.order_records, np.array([ (0, 0, 0, 100.0, 1.0, 0.0, 0), (1, 0, 1, 200.0, 2.0, 0.0, 1), (2, 0, 2, 133.33333333333334, 3.0, 0.0, 0), (3, 0, 3, 66.66666666666669, 4.0, 0.0, 1), (4, 0, 4, 53.33333333333335, 5.0, 0.0, 0) ], dtype=order_dt) ) pf = vbt.Portfolio.from_order_func( price, order_func, np.asarray(np.inf), row_wise=test_row_wise, flexible=test_flexible) record_arrays_close( pf.order_records, np.array([ (0, 0, 0, 100.0, 1.0, 0.0, 0), (1, 0, 1, 200.0, 2.0, 0.0, 1), (2, 0, 2, 133.33333333333334, 3.0, 0.0, 0), (3, 0, 3, 66.66666666666669, 4.0, 0.0, 1), (4, 0, 4, 53.33333333333335, 5.0, 0.0, 0) ], dtype=order_dt) ) pd.testing.assert_index_equal( pf.wrapper.index, pd.DatetimeIndex(['2020-01-01', '2020-01-02', '2020-01-03', '2020-01-04', '2020-01-05']) ) pd.testing.assert_index_equal( pf.wrapper.columns, pd.Int64Index([0], dtype='int64') ) assert pf.wrapper.ndim == 1 assert pf.wrapper.freq == day_dt assert pf.wrapper.grouper.group_by is None @pytest.mark.parametrize("test_row_wise", [False, True]) @pytest.mark.parametrize("test_flexible", [False, True]) @pytest.mark.parametrize("test_use_numba", [False, True]) def test_multiple_columns(self, test_row_wise, test_flexible, test_use_numba): order_func = flex_order_func_nb if test_flexible else order_func_nb pf = vbt.Portfolio.from_order_func( price_wide, order_func, vbt.Rep('size'), broadcast_named_args=dict(size=[0, 1, np.inf]), row_wise=test_row_wise, flexible=test_flexible, use_numba=test_use_numba) if test_row_wise: record_arrays_close( pf.order_records, np.array([ (0, 1, 0, 1.0, 1.0, 0.0, 0), (1, 2, 0, 100.0, 1.0, 0.0, 0), (2, 1, 1, 1.0, 2.0, 0.0, 1), (3, 2, 1, 200.0, 2.0, 0.0, 1), (4, 1, 2, 1.0, 3.0, 0.0, 0), (5, 2, 2, 133.33333333333334, 3.0, 0.0, 0), (6, 1, 3, 1.0, 4.0, 0.0, 1), (7, 2, 3, 66.66666666666669, 4.0, 0.0, 1), (8, 1, 4, 1.0, 5.0, 0.0, 0), (9, 2, 4, 53.33333333333335, 5.0, 0.0, 0) ], dtype=order_dt) ) else: record_arrays_close( pf.order_records, np.array([ (0, 1, 0, 1.0, 1.0, 0.0, 0), (1, 1, 1, 1.0, 2.0, 0.0, 1), (2, 1, 2, 1.0, 3.0, 0.0, 0), (3, 1, 3, 1.0, 4.0, 0.0, 1), (4, 1, 4, 1.0, 5.0, 0.0, 0), (5, 2, 0, 100.0, 1.0, 0.0, 0), (6, 2, 1, 200.0, 2.0, 0.0, 1), (7, 2, 2, 133.33333333333334, 3.0, 0.0, 0), (8, 2, 3, 66.66666666666669, 4.0, 0.0, 1), (9, 2, 4, 53.33333333333335, 5.0, 0.0, 0) ], dtype=order_dt) ) pd.testing.assert_index_equal( pf.wrapper.index, pd.DatetimeIndex(['2020-01-01', '2020-01-02', '2020-01-03', '2020-01-04', '2020-01-05']) ) pd.testing.assert_index_equal( pf.wrapper.columns, pd.Index(['a', 'b', 'c'], dtype='object') ) assert pf.wrapper.ndim == 2 assert pf.wrapper.freq == day_dt assert pf.wrapper.grouper.group_by is None @pytest.mark.parametrize("test_row_wise", [False, True]) @pytest.mark.parametrize("test_flexible", [False, True]) def test_group_by(self, test_row_wise, test_flexible): order_func = flex_order_func_nb if test_flexible else order_func_nb pf = vbt.Portfolio.from_order_func( price_wide, order_func, np.asarray(np.inf), group_by=np.array([0, 0, 1]), row_wise=test_row_wise, flexible=test_flexible) if test_row_wise: record_arrays_close( pf.order_records, np.array([ (0, 0, 0, 100.0, 1.0, 0.0, 0), (1, 1, 0, 100.0, 1.0, 0.0, 0), (2, 2, 0, 100.0, 1.0, 0.0, 0), (3, 0, 1, 200.0, 2.0, 0.0, 1), (4, 1, 1, 200.0, 2.0, 0.0, 1), (5, 2, 1, 200.0, 2.0, 0.0, 1), (6, 0, 2, 133.33333333333334, 3.0, 0.0, 0), (7, 1, 2, 133.33333333333334, 3.0, 0.0, 0), (8, 2, 2, 133.33333333333334, 3.0, 0.0, 0), (9, 0, 3, 66.66666666666669, 4.0, 0.0, 1), (10, 1, 3, 66.66666666666669, 4.0, 0.0, 1), (11, 2, 3, 66.66666666666669, 4.0, 0.0, 1), (12, 0, 4, 53.33333333333335, 5.0, 0.0, 0), (13, 1, 4, 53.33333333333335, 5.0, 0.0, 0), (14, 2, 4, 53.33333333333335, 5.0, 0.0, 0) ], dtype=order_dt) ) else: record_arrays_close( pf.order_records, np.array([ (0, 0, 0, 100.0, 1.0, 0.0, 0), (1, 1, 0, 100.0, 1.0, 0.0, 0), (2, 0, 1, 200.0, 2.0, 0.0, 1), (3, 1, 1, 200.0, 2.0, 0.0, 1), (4, 0, 2, 133.33333333333334, 3.0, 0.0, 0), (5, 1, 2, 133.33333333333334, 3.0, 0.0, 0), (6, 0, 3, 66.66666666666669, 4.0, 0.0, 1), (7, 1, 3, 66.66666666666669, 4.0, 0.0, 1), (8, 0, 4, 53.33333333333335, 5.0, 0.0, 0), (9, 1, 4, 53.33333333333335, 5.0, 0.0, 0), (10, 2, 0, 100.0, 1.0, 0.0, 0), (11, 2, 1, 200.0, 2.0, 0.0, 1), (12, 2, 2, 133.33333333333334, 3.0, 0.0, 0), (13, 2, 3, 66.66666666666669, 4.0, 0.0, 1), (14, 2, 4, 53.33333333333335, 5.0, 0.0, 0) ], dtype=order_dt) ) pd.testing.assert_index_equal( pf.wrapper.grouper.group_by, pd.Int64Index([0, 0, 1], dtype='int64') ) pd.testing.assert_series_equal( pf.init_cash, pd.Series([200., 100.], index=pd.Int64Index([0, 1], dtype='int64')).rename('init_cash') ) assert not pf.cash_sharing @pytest.mark.parametrize("test_row_wise", [False, True]) @pytest.mark.parametrize("test_flexible", [False, True]) def test_cash_sharing(self, test_row_wise, test_flexible): order_func = flex_order_func_nb if test_flexible else order_func_nb pf = vbt.Portfolio.from_order_func( price_wide, order_func, np.asarray(np.inf), group_by=np.array([0, 0, 1]), cash_sharing=True, row_wise=test_row_wise, flexible=test_flexible) if test_row_wise: record_arrays_close( pf.order_records, np.array([ (0, 0, 0, 100., 1., 0., 0), (1, 2, 0, 100., 1., 0., 0), (2, 0, 1, 200., 2., 0., 1), (3, 2, 1, 200., 2., 0., 1), (4, 0, 2, 133.33333333, 3., 0., 0), (5, 2, 2, 133.33333333, 3., 0., 0), (6, 0, 3, 66.66666667, 4., 0., 1), (7, 2, 3, 66.66666667, 4., 0., 1), (8, 0, 4, 53.33333333, 5., 0., 0), (9, 2, 4, 53.33333333, 5., 0., 0) ], dtype=order_dt) ) else: record_arrays_close( pf.order_records, np.array([ (0, 0, 0, 100., 1., 0., 0), (1, 0, 1, 200., 2., 0., 1), (2, 0, 2, 133.33333333, 3., 0., 0), (3, 0, 3, 66.66666667, 4., 0., 1), (4, 0, 4, 53.33333333, 5., 0., 0), (5, 2, 0, 100., 1., 0., 0), (6, 2, 1, 200., 2., 0., 1), (7, 2, 2, 133.33333333, 3., 0., 0), (8, 2, 3, 66.66666667, 4., 0., 1), (9, 2, 4, 53.33333333, 5., 0., 0) ], dtype=order_dt) ) pd.testing.assert_index_equal( pf.wrapper.grouper.group_by, pd.Int64Index([0, 0, 1], dtype='int64') ) pd.testing.assert_series_equal( pf.init_cash, pd.Series([100., 100.], index=pd.Int64Index([0, 1], dtype='int64')).rename('init_cash') ) assert pf.cash_sharing @pytest.mark.parametrize( "test_row_wise", [False, True], ) def test_call_seq(self, test_row_wise): pf = vbt.Portfolio.from_order_func( price_wide, order_func_nb, np.asarray(np.inf), group_by=np.array([0, 0, 1]), cash_sharing=True, row_wise=test_row_wise) if test_row_wise: record_arrays_close( pf.order_records, np.array([ (0, 0, 0, 100., 1., 0., 0), (1, 2, 0, 100., 1., 0., 0), (2, 0, 1, 200., 2., 0., 1), (3, 2, 1, 200., 2., 0., 1), (4, 0, 2, 133.33333333, 3., 0., 0), (5, 2, 2, 133.33333333, 3., 0., 0), (6, 0, 3, 66.66666667, 4., 0., 1), (7, 2, 3, 66.66666667, 4., 0., 1), (8, 0, 4, 53.33333333, 5., 0., 0), (9, 2, 4, 53.33333333, 5., 0., 0) ], dtype=order_dt) ) else: record_arrays_close( pf.order_records, np.array([ (0, 0, 0, 100., 1., 0., 0), (1, 0, 1, 200., 2., 0., 1), (2, 0, 2, 133.33333333, 3., 0., 0), (3, 0, 3, 66.66666667, 4., 0., 1), (4, 0, 4, 53.33333333, 5., 0., 0), (5, 2, 0, 100., 1., 0., 0), (6, 2, 1, 200., 2., 0., 1), (7, 2, 2, 133.33333333, 3., 0., 0), (8, 2, 3, 66.66666667, 4., 0., 1), (9, 2, 4, 53.33333333, 5., 0., 0) ], dtype=order_dt) ) np.testing.assert_array_equal( pf.call_seq.values, np.array([ [0, 1, 0], [0, 1, 0], [0, 1, 0], [0, 1, 0], [0, 1, 0] ]) ) pf = vbt.Portfolio.from_order_func( price_wide, order_func_nb, np.asarray(np.inf), group_by=np.array([0, 0, 1]), cash_sharing=True, call_seq='reversed', row_wise=test_row_wise) if test_row_wise: record_arrays_close( pf.order_records, np.array([ (0, 1, 0, 100., 1., 0., 0), (1, 2, 0, 100., 1., 0., 0), (2, 1, 1, 200., 2., 0., 1), (3, 2, 1, 200., 2., 0., 1), (4, 1, 2, 133.33333333, 3., 0., 0), (5, 2, 2, 133.33333333, 3., 0., 0), (6, 1, 3, 66.66666667, 4., 0., 1), (7, 2, 3, 66.66666667, 4., 0., 1), (8, 1, 4, 53.33333333, 5., 0., 0), (9, 2, 4, 53.33333333, 5., 0., 0) ], dtype=order_dt) ) else: record_arrays_close( pf.order_records, np.array([ (0, 1, 0, 100., 1., 0., 0), (1, 1, 1, 200., 2., 0., 1), (2, 1, 2, 133.33333333, 3., 0., 0), (3, 1, 3, 66.66666667, 4., 0., 1), (4, 1, 4, 53.33333333, 5., 0., 0), (5, 2, 0, 100., 1., 0., 0), (6, 2, 1, 200., 2., 0., 1), (7, 2, 2, 133.33333333, 3., 0., 0), (8, 2, 3, 66.66666667, 4., 0., 1), (9, 2, 4, 53.33333333, 5., 0., 0) ], dtype=order_dt) ) np.testing.assert_array_equal( pf.call_seq.values, np.array([ [1, 0, 0], [1, 0, 0], [1, 0, 0], [1, 0, 0], [1, 0, 0] ]) ) pf = vbt.Portfolio.from_order_func( price_wide, order_func_nb, np.asarray(np.inf), group_by=np.array([0, 0, 1]), cash_sharing=True, call_seq='random', seed=seed, row_wise=test_row_wise) if test_row_wise: record_arrays_close( pf.order_records, np.array([ (0, 1, 0, 100., 1., 0., 0), (1, 2, 0, 100., 1., 0., 0), (2, 1, 1, 200., 2., 0., 1), (3, 2, 1, 200., 2., 0., 1), (4, 1, 2, 133.33333333, 3., 0., 0), (5, 2, 2, 133.33333333, 3., 0., 0), (6, 1, 3, 66.66666667, 4., 0., 1), (7, 2, 3, 66.66666667, 4., 0., 1), (8, 1, 4, 53.33333333, 5., 0., 0), (9, 2, 4, 53.33333333, 5., 0., 0) ], dtype=order_dt) ) else: record_arrays_close( pf.order_records, np.array([ (0, 1, 0, 100., 1., 0., 0), (1, 1, 1, 200., 2., 0., 1), (2, 1, 2, 133.33333333, 3., 0., 0), (3, 1, 3, 66.66666667, 4., 0., 1), (4, 1, 4, 53.33333333, 5., 0., 0), (5, 2, 0, 100., 1., 0., 0), (6, 2, 1, 200., 2., 0., 1), (7, 2, 2, 133.33333333, 3., 0., 0), (8, 2, 3, 66.66666667, 4., 0., 1), (9, 2, 4, 53.33333333, 5., 0., 0) ], dtype=order_dt) ) np.testing.assert_array_equal( pf.call_seq.values, np.array([ [1, 0, 0], [0, 1, 0], [1, 0, 0], [1, 0, 0], [1, 0, 0] ]) ) with pytest.raises(Exception): _ = vbt.Portfolio.from_order_func( price_wide, order_func_nb, np.asarray(np.inf), group_by=np.array([0, 0, 1]), cash_sharing=True, call_seq='auto', row_wise=test_row_wise ) target_hold_value = pd.DataFrame({ 'a': [0., 70., 30., 0., 70.], 'b': [30., 0., 70., 30., 30.], 'c': [70., 30., 0., 70., 0.] }, index=price.index) @njit def pre_segment_func_nb(c, target_hold_value): order_size = np.copy(target_hold_value[c.i, c.from_col:c.to_col]) order_size_type = np.full(c.group_len, SizeType.TargetValue) direction = np.full(c.group_len, Direction.Both) order_value_out = np.empty(c.group_len, dtype=np.float_) c.last_val_price[c.from_col:c.to_col] = c.close[c.i, c.from_col:c.to_col] nb.sort_call_seq_nb(c, order_size, order_size_type, direction, order_value_out) return order_size, order_size_type, direction @njit def pct_order_func_nb(c, order_size, order_size_type, direction): col_i = c.call_seq_now[c.call_idx] return nb.order_nb( order_size[col_i], c.close[c.i, col_i], size_type=order_size_type[col_i], direction=direction[col_i] ) pf = vbt.Portfolio.from_order_func( price_wide * 0 + 1, pct_order_func_nb, group_by=np.array([0, 0, 0]), cash_sharing=True, pre_segment_func_nb=pre_segment_func_nb, pre_segment_args=(target_hold_value.values,), row_wise=test_row_wise) np.testing.assert_array_equal( pf.call_seq.values, np.array([ [0, 1, 2], [2, 1, 0], [0, 2, 1], [1, 0, 2], [2, 1, 0] ]) ) pd.testing.assert_frame_equal( pf.asset_value(group_by=False), target_hold_value ) @pytest.mark.parametrize("test_row_wise", [False, True]) @pytest.mark.parametrize("test_flexible", [False, True]) def test_target_value(self, test_row_wise, test_flexible): @njit def target_val_pre_segment_func_nb(c, val_price): c.last_val_price[c.from_col:c.to_col] = val_price[c.i] return () if test_flexible: @njit def target_val_order_func_nb(c): col = c.from_col + c.call_idx if c.call_idx < c.group_len: return col, nb.order_nb(50., nb.get_col_elem_nb(c, col, c.close), size_type=SizeType.TargetValue) return -1, nb.order_nothing_nb() else: @njit def target_val_order_func_nb(c): return nb.order_nb(50., nb.get_elem_nb(c, c.close), size_type=SizeType.TargetValue) pf = vbt.Portfolio.from_order_func( price.iloc[1:], target_val_order_func_nb, row_wise=test_row_wise, flexible=test_flexible) if test_row_wise: record_arrays_close( pf.order_records, np.array([ (0, 0, 1, 25.0, 3.0, 0.0, 0), (1, 0, 2, 8.333333333333332, 4.0, 0.0, 1), (2, 0, 3, 4.166666666666668, 5.0, 0.0, 1) ], dtype=order_dt) ) else: record_arrays_close( pf.order_records, np.array([ (0, 0, 1, 25.0, 3.0, 0.0, 0), (1, 0, 2, 8.333333333333332, 4.0, 0.0, 1), (2, 0, 3, 4.166666666666668, 5.0, 0.0, 1) ], dtype=order_dt) ) pf = vbt.Portfolio.from_order_func( price.iloc[1:], target_val_order_func_nb, pre_segment_func_nb=target_val_pre_segment_func_nb, pre_segment_args=(price.iloc[:-1].values,), row_wise=test_row_wise, flexible=test_flexible) if test_row_wise: record_arrays_close( pf.order_records, np.array([ (0, 0, 0, 50.0, 2.0, 0.0, 0), (1, 0, 1, 25.0, 3.0, 0.0, 1), (2, 0, 2, 8.333333333333332, 4.0, 0.0, 1), (3, 0, 3, 4.166666666666668, 5.0, 0.0, 1) ], dtype=order_dt) ) else: record_arrays_close( pf.order_records, np.array([ (0, 0, 0, 50.0, 2.0, 0.0, 0), (1, 0, 1, 25.0, 3.0, 0.0, 1), (2, 0, 2, 8.333333333333332, 4.0, 0.0, 1), (3, 0, 3, 4.166666666666668, 5.0, 0.0, 1) ], dtype=order_dt) ) @pytest.mark.parametrize("test_row_wise", [False, True]) @pytest.mark.parametrize("test_flexible", [False, True]) def test_target_percent(self, test_row_wise, test_flexible): @njit def target_pct_pre_segment_func_nb(c, val_price): c.last_val_price[c.from_col:c.to_col] = val_price[c.i] return () if test_flexible: @njit def target_pct_order_func_nb(c): col = c.from_col + c.call_idx if c.call_idx < c.group_len: return col, nb.order_nb(0.5, nb.get_col_elem_nb(c, col, c.close), size_type=SizeType.TargetPercent) return -1, nb.order_nothing_nb() else: @njit def target_pct_order_func_nb(c): return nb.order_nb(0.5, nb.get_elem_nb(c, c.close), size_type=SizeType.TargetPercent) pf = vbt.Portfolio.from_order_func( price.iloc[1:], target_pct_order_func_nb, row_wise=test_row_wise, flexible=test_flexible) if test_row_wise: record_arrays_close( pf.order_records, np.array([ (0, 0, 1, 25.0, 3.0, 0.0, 0), (1, 0, 2, 8.333333333333332, 4.0, 0.0, 1), (2, 0, 3, 1.0416666666666679, 5.0, 0.0, 1) ], dtype=order_dt) ) else: record_arrays_close( pf.order_records, np.array([ (0, 0, 1, 25.0, 3.0, 0.0, 0), (1, 0, 2, 8.333333333333332, 4.0, 0.0, 1), (2, 0, 3, 1.0416666666666679, 5.0, 0.0, 1) ], dtype=order_dt) ) pf = vbt.Portfolio.from_order_func( price.iloc[1:], target_pct_order_func_nb, pre_segment_func_nb=target_pct_pre_segment_func_nb, pre_segment_args=(price.iloc[:-1].values,), row_wise=test_row_wise, flexible=test_flexible) if test_row_wise: record_arrays_close( pf.order_records, np.array([ (0, 0, 0, 50.0, 2.0, 0.0, 0), (1, 0, 1, 25.0, 3.0, 0.0, 1), (2, 0, 3, 3.125, 5.0, 0.0, 1) ], dtype=order_dt) ) else: record_arrays_close( pf.order_records, np.array([ (0, 0, 0, 50.0, 2.0, 0.0, 0), (1, 0, 1, 25.0, 3.0, 0.0, 1), (2, 0, 3, 3.125, 5.0, 0.0, 1) ], dtype=order_dt) ) @pytest.mark.parametrize("test_row_wise", [False, True]) @pytest.mark.parametrize("test_flexible", [False, True]) def test_update_value(self, test_row_wise, test_flexible): if test_flexible: @njit def order_func_nb(c): col = c.from_col + c.call_idx if c.call_idx < c.group_len: return col, nb.order_nb( np.inf if c.i % 2 == 0 else -np.inf, nb.get_col_elem_nb(c, col, c.close), fees=0.01, fixed_fees=1., slippage=0.01 ) return -1, nb.order_nothing_nb() else: @njit def order_func_nb(c): return nb.order_nb( np.inf if c.i % 2 == 0 else -np.inf, nb.get_elem_nb(c, c.close), fees=0.01, fixed_fees=1., slippage=0.01 ) @njit def post_order_func_nb(c, value_before, value_now): value_before[c.i, c.col] = c.value_before value_now[c.i, c.col] = c.value_now value_before = np.empty_like(price.values[:, None]) value_now = np.empty_like(price.values[:, None]) _ = vbt.Portfolio.from_order_func( price, order_func_nb, post_order_func_nb=post_order_func_nb, post_order_args=(value_before, value_now), row_wise=test_row_wise, update_value=False, flexible=test_flexible) np.testing.assert_array_equal( value_before, value_now ) _ = vbt.Portfolio.from_order_func( price, order_func_nb, post_order_func_nb=post_order_func_nb, post_order_args=(value_before, value_now), row_wise=test_row_wise, update_value=True, flexible=test_flexible) np.testing.assert_array_equal( value_before, np.array([ [100.0], [97.04930889128518], [185.46988117104038], [82.47853456223025], [104.65775576218027] ]) ) np.testing.assert_array_equal( value_now, np.array([ [98.01980198019803], [187.36243097890815], [83.30331990785257], [105.72569204546781], [73.54075125567473] ]) ) @pytest.mark.parametrize("test_row_wise", [False, True]) @pytest.mark.parametrize("test_flexible", [False, True]) def test_states(self, test_row_wise, test_flexible): close = np.array([ [1, 1, 1], [np.nan, 2, 2], [3, np.nan, 3], [4, 4, np.nan], [5, 5, 5] ]) size = np.array([ [1, 1, 1], [-1, -1, -1], [1, 1, 1], [-1, -1, -1], [1, 1, 1] ]) value_arr1 = np.empty((size.shape[0], 2), dtype=np.float_) value_arr2 = np.empty(size.shape, dtype=np.float_) value_arr3 = np.empty(size.shape, dtype=np.float_) return_arr1 = np.empty((size.shape[0], 2), dtype=np.float_) return_arr2 = np.empty(size.shape, dtype=np.float_) return_arr3 = np.empty(size.shape, dtype=np.float_) pos_record_arr1 = np.empty(size.shape, dtype=trade_dt) pos_record_arr2 = np.empty(size.shape, dtype=trade_dt) pos_record_arr3 = np.empty(size.shape, dtype=trade_dt) def pre_segment_func_nb(c): value_arr1[c.i, c.group] = c.last_value[c.group] return_arr1[c.i, c.group] = c.last_return[c.group] for col in range(c.from_col, c.to_col): pos_record_arr1[c.i, col] = c.last_pos_record[col] if c.i > 0: c.last_val_price[c.from_col:c.to_col] = c.last_val_price[c.from_col:c.to_col] + 0.5 return () if test_flexible: def order_func_nb(c): col = c.from_col + c.call_idx if c.call_idx < c.group_len: value_arr2[c.i, col] = c.last_value[c.group] return_arr2[c.i, col] = c.last_return[c.group] pos_record_arr2[c.i, col] = c.last_pos_record[col] return col, nb.order_nb(size[c.i, col], fixed_fees=1.) return -1, nb.order_nothing_nb() else: def order_func_nb(c): value_arr2[c.i, c.col] = c.value_now return_arr2[c.i, c.col] = c.return_now pos_record_arr2[c.i, c.col] = c.pos_record_now return nb.order_nb(size[c.i, c.col], fixed_fees=1.) def post_order_func_nb(c): value_arr3[c.i, c.col] = c.value_now return_arr3[c.i, c.col] = c.return_now pos_record_arr3[c.i, c.col] = c.pos_record_now _ = vbt.Portfolio.from_order_func( close, order_func_nb, pre_segment_func_nb=pre_segment_func_nb, post_order_func_nb=post_order_func_nb, use_numba=False, row_wise=test_row_wise, update_value=True, ffill_val_price=True, group_by=[0, 0, 1], cash_sharing=True, flexible=test_flexible ) np.testing.assert_array_equal( value_arr1, np.array([ [100.0, 100.0], [98.0, 99.0], [98.5, 99.0], [99.0, 98.0], [99.0, 98.5] ]) ) np.testing.assert_array_equal( value_arr2, np.array([ [100.0, 99.0, 100.0], [99.0, 99.0, 99.5], [99.0, 99.0, 99.0], [100.0, 100.0, 98.5], [99.0, 98.5, 99.0] ]) ) np.testing.assert_array_equal( value_arr3, np.array([ [99.0, 98.0, 99.0], [99.0, 98.5, 99.0], [99.0, 99.0, 98.0], [100.0, 99.0, 98.5], [98.5, 97.0, 99.0] ]) ) np.testing.assert_array_equal( return_arr1, np.array([ [np.nan, np.nan], [-0.02, -0.01], [0.00510204081632653, 0.0], [0.005076142131979695, -0.010101010101010102], [0.0, 0.00510204081632653] ]) ) np.testing.assert_array_equal( return_arr2, np.array([ [0.0, -0.01, 0.0], [-0.01, -0.01, -0.005], [0.01020408163265306, 0.01020408163265306, 0.0], [0.015228426395939087, 0.015228426395939087, -0.005050505050505051], [0.0, -0.005050505050505051, 0.01020408163265306] ]) ) np.testing.assert_array_equal( return_arr3, np.array([ [-0.01, -0.02, -0.01], [-0.01, -0.015, -0.01], [0.01020408163265306, 0.01020408163265306, -0.010101010101010102], [0.015228426395939087, 0.005076142131979695, -0.005050505050505051], [-0.005050505050505051, -0.020202020202020204, 0.01020408163265306] ]) ) record_arrays_close( pos_record_arr1.flatten()[3:], np.array([ (0, 0, 1.0, 0, 1.0, 1.0, -1, np.nan, 0.0, -1.0, -1.0, 0, 0, 0), (0, 1, 1.0, 0, 1.0, 1.0, -1, np.nan, 0.0, -1.0, -1.0, 0, 0, 0), (0, 2, 1.0, 0, 1.0, 1.0, -1, np.nan, 0.0, -1.0, -1.0, 0, 0, 0), (0, 0, 1.0, 0, 1.0, 1.0, -1, np.nan, 0.0, -0.5, -0.5, 0, 0, 0), (0, 1, 1.0, 0, 1.0, 1.0, 1, 2.0, 1.0, -1.0, -1.0, 0, 1, 0), (0, 2, 1.0, 0, 1.0, 1.0, 1, 2.0, 1.0, -1.0, -1.0, 0, 1, 0), (0, 0, 2.0, 0, 2.0, 2.0, -1, np.nan, 0.0, 0.0, 0.0, 0, 0, 0), (0, 1, 1.0, 0, 1.0, 1.0, 1, 2.0, 1.0, -1.0, -1.0, 0, 1, 0), (1, 2, 1.0, 2, 3.0, 1.0, -1, np.nan, 0.0, -1.0, -0.3333333333333333, 0, 0, 1), (0, 0, 2.0, 0, 2.0, 2.0, -1, 4.0, 1.0, 1.0, 0.25, 0, 0, 0), (1, 1, 1.0, 3, 4.0, 1.0, -1, np.nan, 0.0, -1.0, -0.25, 1, 0, 1), (1, 2, 1.0, 2, 3.0, 1.0, -1, np.nan, 0.0, -0.5, -0.16666666666666666, 0, 0, 1) ], dtype=trade_dt) ) record_arrays_close( pos_record_arr2.flatten()[3:], np.array([ (0, 0, 1.0, 0, 1.0, 1.0, -1, np.nan, 0.0, -0.5, -0.5, 0, 0, 0), (0, 1, 1.0, 0, 1.0, 1.0, -1, np.nan, 0.0, -0.5, -0.5, 0, 0, 0), (0, 2, 1.0, 0, 1.0, 1.0, -1, np.nan, 0.0, -0.5, -0.5, 0, 0, 0), (0, 0, 1.0, 0, 1.0, 1.0, -1, np.nan, 0.0, 0.0, 0.0, 0, 0, 0), (0, 1, 1.0, 0, 1.0, 1.0, 1, 2.0, 1.0, -1.0, -1.0, 0, 1, 0), (0, 2, 1.0, 0, 1.0, 1.0, 1, 2.0, 1.0, -1.0, -1.0, 0, 1, 0), (0, 0, 2.0, 0, 2.0, 2.0, -1, np.nan, 0.0, 1.0, 0.25, 0, 0, 0), (0, 1, 1.0, 0, 1.0, 1.0, 1, 2.0, 1.0, -1.0, -1.0, 0, 1, 0), (1, 2, 1.0, 2, 3.0, 1.0, -1, np.nan, 0.0, -0.5, -0.16666666666666666, 0, 0, 1), (0, 0, 2.0, 0, 2.0, 2.0, -1, 4.0, 1.0, 1.5, 0.375, 0, 0, 0), (1, 1, 1.0, 3, 4.0, 1.0, -1, np.nan, 0.0, -1.5, -0.375, 1, 0, 1), (1, 2, 1.0, 2, 3.0, 1.0, -1, np.nan, 0.0, 0.0, 0.0, 0, 0, 1) ], dtype=trade_dt) ) record_arrays_close( pos_record_arr3.flatten(), np.array([ (0, 0, 1.0, 0, 1.0, 1.0, -1, np.nan, 0.0, -1.0, -1.0, 0, 0, 0), (0, 1, 1.0, 0, 1.0, 1.0, -1, np.nan, 0.0, -1.0, -1.0, 0, 0, 0), (0, 2, 1.0, 0, 1.0, 1.0, -1, np.nan, 0.0, -1.0, -1.0, 0, 0, 0), (0, 0, 1.0, 0, 1.0, 1.0, -1, np.nan, 0.0, -0.5, -0.5, 0, 0, 0), (0, 1, 1.0, 0, 1.0, 1.0, 1, 2.0, 1.0, -1.0, -1.0, 0, 1, 0), (0, 2, 1.0, 0, 1.0, 1.0, 1, 2.0, 1.0, -1.0, -1.0, 0, 1, 0), (0, 0, 2.0, 0, 2.0, 2.0, -1, np.nan, 0.0, 0.0, 0.0, 0, 0, 0), (0, 1, 1.0, 0, 1.0, 1.0, 1, 2.0, 1.0, -1.0, -1.0, 0, 1, 0), (1, 2, 1.0, 2, 3.0, 1.0, -1, np.nan, 0.0, -1.0, -0.3333333333333333, 0, 0, 1), (0, 0, 2.0, 0, 2.0, 2.0, -1, 4.0, 1.0, 1.0, 0.25, 0, 0, 0), (1, 1, 1.0, 3, 4.0, 1.0, -1, np.nan, 0.0, -1.0, -0.25, 1, 0, 1), (1, 2, 1.0, 2, 3.0, 1.0, -1, np.nan, 0.0, -0.5, -0.16666666666666666, 0, 0, 1), (0, 0, 3.0, 0, 3.0, 3.0, -1, 4.0, 1.0, 1.0, 0.1111111111111111, 0, 0, 0), (1, 1, 1.0, 3, 4.0, 1.0, 4, 5.0, 1.0, -3.0, -0.75, 1, 1, 1), (1, 2, 2.0, 2, 4.0, 2.0, -1, np.nan, 0.0, 0.0, 0.0, 0, 0, 1) ], dtype=trade_dt) ) cash_arr = np.empty((size.shape[0], 2), dtype=np.float_) position_arr = np.empty(size.shape, dtype=np.float_) val_price_arr = np.empty(size.shape, dtype=np.float_) value_arr = np.empty((size.shape[0], 2), dtype=np.float_) return_arr = np.empty((size.shape[0], 2), dtype=np.float_) sim_order_cash_arr = np.empty(size.shape, dtype=np.float_) sim_order_value_arr = np.empty(size.shape, dtype=np.float_) sim_order_return_arr = np.empty(size.shape, dtype=np.float_) def post_order_func_nb(c): sim_order_cash_arr[c.i, c.col] = c.cash_now sim_order_value_arr[c.i, c.col] = c.value_now sim_order_return_arr[c.i, c.col] = c.value_now if c.i == 0 and c.call_idx == 0: sim_order_return_arr[c.i, c.col] -= c.init_cash[c.group] sim_order_return_arr[c.i, c.col] /= c.init_cash[c.group] else: if c.call_idx == 0: prev_i = c.i - 1 prev_col = c.to_col - 1 else: prev_i = c.i prev_col = c.from_col + c.call_idx - 1 sim_order_return_arr[c.i, c.col] -= sim_order_value_arr[prev_i, prev_col] sim_order_return_arr[c.i, c.col] /= sim_order_value_arr[prev_i, prev_col] def post_segment_func_nb(c): cash_arr[c.i, c.group] = c.last_cash[c.group] for col in range(c.from_col, c.to_col): position_arr[c.i, col] = c.last_position[col] val_price_arr[c.i, col] = c.last_val_price[col] value_arr[c.i, c.group] = c.last_value[c.group] return_arr[c.i, c.group] = c.last_return[c.group] pf = vbt.Portfolio.from_order_func( close, order_func_nb, post_order_func_nb=post_order_func_nb, post_segment_func_nb=post_segment_func_nb, use_numba=False, row_wise=test_row_wise, update_value=True, ffill_val_price=True, group_by=[0, 0, 1], cash_sharing=True, flexible=test_flexible ) np.testing.assert_array_equal( cash_arr, pf.cash().values ) np.testing.assert_array_equal( position_arr, pf.assets().values ) np.testing.assert_array_equal( val_price_arr, pf.get_filled_close().values ) np.testing.assert_array_equal( value_arr, pf.value().values ) np.testing.assert_array_equal( return_arr, pf.returns().values ) if test_flexible: with pytest.raises(Exception): pf.cash(in_sim_order=True, group_by=False) with pytest.raises(Exception): pf.value(in_sim_order=True, group_by=False) with pytest.raises(Exception): pf.returns(in_sim_order=True, group_by=False) else: np.testing.assert_array_equal( sim_order_cash_arr, pf.cash(in_sim_order=True, group_by=False).values ) np.testing.assert_array_equal( sim_order_value_arr, pf.value(in_sim_order=True, group_by=False).values ) np.testing.assert_array_equal( sim_order_return_arr, pf.returns(in_sim_order=True, group_by=False).values ) @pytest.mark.parametrize("test_row_wise", [False, True]) @pytest.mark.parametrize("test_flexible", [False, True]) def test_post_sim_ctx(self, test_row_wise, test_flexible): if test_flexible: def order_func(c): col = c.from_col + c.call_idx if c.call_idx < c.group_len: return col, nb.order_nb( 1., nb.get_col_elem_nb(c, col, c.close), fees=0.01, fixed_fees=1., slippage=0.01, log=True ) return -1, nb.order_nothing_nb() else: def order_func(c): return nb.order_nb( 1., nb.get_elem_nb(c, c.close), fees=0.01, fixed_fees=1., slippage=0.01, log=True ) def post_sim_func(c, lst): lst.append(deepcopy(c)) lst = [] _ = vbt.Portfolio.from_order_func( price_wide, order_func, post_sim_func_nb=post_sim_func, post_sim_args=(lst,), row_wise=test_row_wise, update_value=True, max_logs=price_wide.shape[0] * price_wide.shape[1], use_numba=False, group_by=[0, 0, 1], cash_sharing=True, flexible=test_flexible ) c = lst[-1] assert c.target_shape == price_wide.shape np.testing.assert_array_equal( c.close, price_wide.values ) np.testing.assert_array_equal( c.group_lens, np.array([2, 1]) ) np.testing.assert_array_equal( c.init_cash, np.array([100., 100.]) ) assert c.cash_sharing if test_flexible: assert c.call_seq is None else: np.testing.assert_array_equal( c.call_seq, np.array([ [0, 1, 0], [0, 1, 0], [0, 1, 0], [0, 1, 0], [0, 1, 0] ]) ) np.testing.assert_array_equal( c.segment_mask, np.array([ [True, True], [True, True], [True, True], [True, True], [True, True] ]) ) assert c.ffill_val_price assert c.update_value if test_row_wise: record_arrays_close( c.order_records, np.array([ (0, 0, 0, 1.0, 1.01, 1.0101, 0), (1, 1, 0, 1.0, 1.01, 1.0101, 0), (2, 2, 0, 1.0, 1.01, 1.0101, 0), (3, 0, 1, 1.0, 2.02, 1.0202, 0), (4, 1, 1, 1.0, 2.02, 1.0202, 0), (5, 2, 1, 1.0, 2.02, 1.0202, 0), (6, 0, 2, 1.0, 3.0300000000000002, 1.0303, 0), (7, 1, 2, 1.0, 3.0300000000000002, 1.0303, 0), (8, 2, 2, 1.0, 3.0300000000000002, 1.0303, 0), (9, 0, 3, 1.0, 4.04, 1.0404, 0), (10, 1, 3, 1.0, 4.04, 1.0404, 0), (11, 2, 3, 1.0, 4.04, 1.0404, 0), (12, 0, 4, 1.0, 5.05, 1.0505, 0), (13, 1, 4, 1.0, 5.05, 1.0505, 0), (14, 2, 4, 1.0, 5.05, 1.0505, 0) ], dtype=order_dt) ) else: record_arrays_close( c.order_records, np.array([ (0, 0, 0, 1.0, 1.01, 1.0101, 0), (1, 1, 0, 1.0, 1.01, 1.0101, 0), (2, 0, 1, 1.0, 2.02, 1.0202, 0), (3, 1, 1, 1.0, 2.02, 1.0202, 0), (4, 0, 2, 1.0, 3.0300000000000002, 1.0303, 0), (5, 1, 2, 1.0, 3.0300000000000002, 1.0303, 0), (6, 0, 3, 1.0, 4.04, 1.0404, 0), (7, 1, 3, 1.0, 4.04, 1.0404, 0), (8, 0, 4, 1.0, 5.05, 1.0505, 0), (9, 1, 4, 1.0, 5.05, 1.0505, 0), (10, 2, 0, 1.0, 1.01, 1.0101, 0), (11, 2, 1, 1.0, 2.02, 1.0202, 0), (12, 2, 2, 1.0, 3.0300000000000002, 1.0303, 0), (13, 2, 3, 1.0, 4.04, 1.0404, 0), (14, 2, 4, 1.0, 5.05, 1.0505, 0) ], dtype=order_dt) ) if test_row_wise: record_arrays_close( c.log_records, np.array([ (0, 0, 0, 0, 100.0, 0.0, 0.0, 100.0, np.nan, 100.0, 1.0, 1.0, 0, 2, 0.01, 1.0, 0.01, 0.0, np.inf, 0.0, False, True, False, True, 97.9799, 1.0, 0.0, 97.9799, 1.01, 98.9899, 1.0, 1.01, 1.0101, 0, 0, -1, 0), (1, 0, 1, 0, 97.9799, 0.0, 0.0, 97.9799, np.nan, 98.9899, 1.0, 1.0, 0, 2, 0.01, 1.0, 0.01, 0.0, np.inf, 0.0, False, True, False, True, 95.9598, 1.0, 0.0, 95.9598, 1.01, 97.97980000000001, 1.0, 1.01, 1.0101, 0, 0, -1, 1), (2, 1, 2, 0, 100.0, 0.0, 0.0, 100.0, np.nan, 100.0, 1.0, 1.0, 0, 2, 0.01, 1.0, 0.01, 0.0, np.inf, 0.0, False, True, False, True, 97.9799, 1.0, 0.0, 97.9799, 1.01, 98.9899, 1.0, 1.01, 1.0101, 0, 0, -1, 2), (3, 0, 0, 1, 95.9598, 1.0, 0.0, 95.9598, 1.0, 97.9598, 1.0, 2.0, 0, 2, 0.01, 1.0, 0.01, 0.0, np.inf, 0.0, False, True, False, True, 92.9196, 2.0, 0.0, 92.9196, 2.02, 97.95960000000001, 1.0, 2.02, 1.0202, 0, 0, -1, 3), (4, 0, 1, 1, 92.9196, 1.0, 0.0, 92.9196, 1.0, 97.95960000000001, 1.0, 2.0, 0, 2, 0.01, 1.0, 0.01, 0.0, np.inf, 0.0, False, True, False, True, 89.8794, 2.0, 0.0, 89.8794, 2.02, 97.95940000000002, 1.0, 2.02, 1.0202, 0, 0, -1, 4), (5, 1, 2, 1, 97.9799, 1.0, 0.0, 97.9799, 1.0, 98.9799, 1.0, 2.0, 0, 2, 0.01, 1.0, 0.01, 0.0, np.inf, 0.0, False, True, False, True, 94.9397, 2.0, 0.0, 94.9397, 2.02, 98.97970000000001, 1.0, 2.02, 1.0202, 0, 0, -1, 5), (6, 0, 0, 2, 89.8794, 2.0, 0.0, 89.8794, 2.0, 97.8794, 1.0, 3.0, 0, 2, 0.01, 1.0, 0.01, 0.0, np.inf, 0.0, False, True, False, True, 85.8191, 3.0, 0.0, 85.8191, 3.0300000000000002, 98.90910000000001, 1.0, 3.0300000000000002, 1.0303, 0, 0, -1, 6), (7, 0, 1, 2, 85.8191, 2.0, 0.0, 85.8191, 2.0, 98.90910000000001, 1.0, 3.0, 0, 2, 0.01, 1.0, 0.01, 0.0, np.inf, 0.0, False, True, False, True, 81.75880000000001, 3.0, 0.0, 81.75880000000001, 3.0300000000000002, 99.93880000000001, 1.0, 3.0300000000000002, 1.0303, 0, 0, -1, 7), (8, 1, 2, 2, 94.9397, 2.0, 0.0, 94.9397, 2.0, 98.9397, 1.0, 3.0, 0, 2, 0.01, 1.0, 0.01, 0.0, np.inf, 0.0, False, True, False, True, 90.8794, 3.0, 0.0, 90.8794, 3.0300000000000002, 99.96940000000001, 1.0, 3.0300000000000002, 1.0303, 0, 0, -1, 8), (9, 0, 0, 3, 81.75880000000001, 3.0, 0.0, 81.75880000000001, 3.0, 99.75880000000001, 1.0, 4.0, 0, 2, 0.01, 1.0, 0.01, 0.0, np.inf, 0.0, False, True, False, True, 76.67840000000001, 4.0, 0.0, 76.67840000000001, 4.04, 101.83840000000001, 1.0, 4.04, 1.0404, 0, 0, -1, 9), (10, 0, 1, 3, 76.67840000000001, 3.0, 0.0, 76.67840000000001, 3.0, 101.83840000000001, 1.0, 4.0, 0, 2, 0.01, 1.0, 0.01, 0.0, np.inf, 0.0, False, True, False, True, 71.59800000000001, 4.0, 0.0, 71.59800000000001, 4.04, 103.918, 1.0, 4.04, 1.0404, 0, 0, -1, 10), (11, 1, 2, 3, 90.8794, 3.0, 0.0, 90.8794, 3.0, 99.8794, 1.0, 4.0, 0, 2, 0.01, 1.0, 0.01, 0.0, np.inf, 0.0, False, True, False, True, 85.799, 4.0, 0.0, 85.799, 4.04, 101.959, 1.0, 4.04, 1.0404, 0, 0, -1, 11), (12, 0, 0, 4, 71.59800000000001, 4.0, 0.0, 71.59800000000001, 4.0, 103.59800000000001, 1.0, 5.0, 0, 2, 0.01, 1.0, 0.01, 0.0, np.inf, 0.0, False, True, False, True, 65.49750000000002, 5.0, 0.0, 65.49750000000002, 5.05, 106.74750000000002, 1.0, 5.05, 1.0505, 0, 0, -1, 12), (13, 0, 1, 4, 65.49750000000002, 4.0, 0.0, 65.49750000000002, 4.0, 106.74750000000002, 1.0, 5.0, 0, 2, 0.01, 1.0, 0.01, 0.0, np.inf, 0.0, False, True, False, True, 59.39700000000002, 5.0, 0.0, 59.39700000000002, 5.05, 109.89700000000002, 1.0, 5.05, 1.0505, 0, 0, -1, 13), (14, 1, 2, 4, 85.799, 4.0, 0.0, 85.799, 4.0, 101.799, 1.0, 5.0, 0, 2, 0.01, 1.0, 0.01, 0.0, np.inf, 0.0, False, True, False, True, 79.69850000000001, 5.0, 0.0, 79.69850000000001, 5.05, 104.94850000000001, 1.0, 5.05, 1.0505, 0, 0, -1, 14) ], dtype=log_dt) ) else: record_arrays_close( c.log_records, np.array([ (0, 0, 0, 0, 100.0, 0.0, 0.0, 100.0, np.nan, 100.0, 1.0, 1.0, 0, 2, 0.01, 1.0, 0.01, 0.0, np.inf, 0.0, False, True, False, True, 97.9799, 1.0, 0.0, 97.9799, 1.01, 98.9899, 1.0, 1.01, 1.0101, 0, 0, -1, 0), (1, 0, 1, 0, 97.9799, 0.0, 0.0, 97.9799, np.nan, 98.9899, 1.0, 1.0, 0, 2, 0.01, 1.0, 0.01, 0.0, np.inf, 0.0, False, True, False, True, 95.9598, 1.0, 0.0, 95.9598, 1.01, 97.97980000000001, 1.0, 1.01, 1.0101, 0, 0, -1, 1), (2, 0, 0, 1, 95.9598, 1.0, 0.0, 95.9598, 1.0, 97.9598, 1.0, 2.0, 0, 2, 0.01, 1.0, 0.01, 0.0, np.inf, 0.0, False, True, False, True, 92.9196, 2.0, 0.0, 92.9196, 2.02, 97.95960000000001, 1.0, 2.02, 1.0202, 0, 0, -1, 2), (3, 0, 1, 1, 92.9196, 1.0, 0.0, 92.9196, 1.0, 97.95960000000001, 1.0, 2.0, 0, 2, 0.01, 1.0, 0.01, 0.0, np.inf, 0.0, False, True, False, True, 89.8794, 2.0, 0.0, 89.8794, 2.02, 97.95940000000002, 1.0, 2.02, 1.0202, 0, 0, -1, 3), (4, 0, 0, 2, 89.8794, 2.0, 0.0, 89.8794, 2.0, 97.8794, 1.0, 3.0, 0, 2, 0.01, 1.0, 0.01, 0.0, np.inf, 0.0, False, True, False, True, 85.8191, 3.0, 0.0, 85.8191, 3.0300000000000002, 98.90910000000001, 1.0, 3.0300000000000002, 1.0303, 0, 0, -1, 4), (5, 0, 1, 2, 85.8191, 2.0, 0.0, 85.8191, 2.0, 98.90910000000001, 1.0, 3.0, 0, 2, 0.01, 1.0, 0.01, 0.0, np.inf, 0.0, False, True, False, True, 81.75880000000001, 3.0, 0.0, 81.75880000000001, 3.0300000000000002, 99.93880000000001, 1.0, 3.0300000000000002, 1.0303, 0, 0, -1, 5), (6, 0, 0, 3, 81.75880000000001, 3.0, 0.0, 81.75880000000001, 3.0, 99.75880000000001, 1.0, 4.0, 0, 2, 0.01, 1.0, 0.01, 0.0, np.inf, 0.0, False, True, False, True, 76.67840000000001, 4.0, 0.0, 76.67840000000001, 4.04, 101.83840000000001, 1.0, 4.04, 1.0404, 0, 0, -1, 6), (7, 0, 1, 3, 76.67840000000001, 3.0, 0.0, 76.67840000000001, 3.0, 101.83840000000001, 1.0, 4.0, 0, 2, 0.01, 1.0, 0.01, 0.0, np.inf, 0.0, False, True, False, True, 71.59800000000001, 4.0, 0.0, 71.59800000000001, 4.04, 103.918, 1.0, 4.04, 1.0404, 0, 0, -1, 7), (8, 0, 0, 4, 71.59800000000001, 4.0, 0.0, 71.59800000000001, 4.0, 103.59800000000001, 1.0, 5.0, 0, 2, 0.01, 1.0, 0.01, 0.0, np.inf, 0.0, False, True, False, True, 65.49750000000002, 5.0, 0.0, 65.49750000000002, 5.05, 106.74750000000002, 1.0, 5.05, 1.0505, 0, 0, -1, 8), (9, 0, 1, 4, 65.49750000000002, 4.0, 0.0, 65.49750000000002, 4.0, 106.74750000000002, 1.0, 5.0, 0, 2, 0.01, 1.0, 0.01, 0.0, np.inf, 0.0, False, True, False, True, 59.39700000000002, 5.0, 0.0, 59.39700000000002, 5.05, 109.89700000000002, 1.0, 5.05, 1.0505, 0, 0, -1, 9), (10, 1, 2, 0, 100.0, 0.0, 0.0, 100.0, np.nan, 100.0, 1.0, 1.0, 0, 2, 0.01, 1.0, 0.01, 0.0, np.inf, 0.0, False, True, False, True, 97.9799, 1.0, 0.0, 97.9799, 1.01, 98.9899, 1.0, 1.01, 1.0101, 0, 0, -1, 10), (11, 1, 2, 1, 97.9799, 1.0, 0.0, 97.9799, 1.0, 98.9799, 1.0, 2.0, 0, 2, 0.01, 1.0, 0.01, 0.0, np.inf, 0.0, False, True, False, True, 94.9397, 2.0, 0.0, 94.9397, 2.02, 98.97970000000001, 1.0, 2.02, 1.0202, 0, 0, -1, 11), (12, 1, 2, 2, 94.9397, 2.0, 0.0, 94.9397, 2.0, 98.9397, 1.0, 3.0, 0, 2, 0.01, 1.0, 0.01, 0.0, np.inf, 0.0, False, True, False, True, 90.8794, 3.0, 0.0, 90.8794, 3.0300000000000002, 99.96940000000001, 1.0, 3.0300000000000002, 1.0303, 0, 0, -1, 12), (13, 1, 2, 3, 90.8794, 3.0, 0.0, 90.8794, 3.0, 99.8794, 1.0, 4.0, 0, 2, 0.01, 1.0, 0.01, 0.0, np.inf, 0.0, False, True, False, True, 85.799, 4.0, 0.0, 85.799, 4.04, 101.959, 1.0, 4.04, 1.0404, 0, 0, -1, 13), (14, 1, 2, 4, 85.799, 4.0, 0.0, 85.799, 4.0, 101.799, 1.0, 5.0, 0, 2, 0.01, 1.0, 0.01, 0.0, np.inf, 0.0, False, True, False, True, 79.69850000000001, 5.0, 0.0, 79.69850000000001, 5.05, 104.94850000000001, 1.0, 5.05, 1.0505, 0, 0, -1, 14) ], dtype=log_dt) ) np.testing.assert_array_equal( c.last_cash, np.array([59.39700000000002, 79.69850000000001]) ) np.testing.assert_array_equal( c.last_position, np.array([5., 5., 5.]) ) np.testing.assert_array_equal( c.last_val_price, np.array([5.0, 5.0, 5.0]) ) np.testing.assert_array_equal( c.last_value, np.array([109.39700000000002, 104.69850000000001]) ) np.testing.assert_array_equal( c.second_last_value, np.array([103.59800000000001, 101.799]) ) np.testing.assert_array_equal( c.last_return, np.array([0.05597598409235705, 0.028482598060884715]) ) np.testing.assert_array_equal( c.last_debt, np.array([0., 0., 0.]) ) np.testing.assert_array_equal( c.last_free_cash, np.array([59.39700000000002, 79.69850000000001]) ) if test_row_wise: np.testing.assert_array_equal( c.last_oidx, np.array([12, 13, 14]) ) np.testing.assert_array_equal( c.last_lidx, np.array([12, 13, 14]) ) else: np.testing.assert_array_equal( c.last_oidx, np.array([8, 9, 14]) ) np.testing.assert_array_equal( c.last_lidx, np.array([8, 9, 14]) ) assert c.order_records[c.last_oidx[0]]['col'] == 0 assert c.order_records[c.last_oidx[1]]['col'] == 1 assert c.order_records[c.last_oidx[2]]['col'] == 2 assert c.log_records[c.last_lidx[0]]['col'] == 0 assert c.log_records[c.last_lidx[1]]['col'] == 1 assert c.log_records[c.last_lidx[2]]['col'] == 2 @pytest.mark.parametrize("test_row_wise", [False, True]) @pytest.mark.parametrize("test_flexible", [False, True]) def test_free_cash(self, test_row_wise, test_flexible): if test_flexible: def order_func(c, size): col = c.from_col + c.call_idx if c.call_idx < c.group_len: return col, nb.order_nb( size[c.i, col], nb.get_col_elem_nb(c, col, c.close), fees=0.01, fixed_fees=1., slippage=0.01 ) return -1, nb.order_nothing_nb() else: def order_func(c, size): return nb.order_nb( size[c.i, c.col], nb.get_elem_nb(c, c.close), fees=0.01, fixed_fees=1., slippage=0.01 ) def post_order_func(c, debt, free_cash): debt[c.i, c.col] = c.debt_now if c.cash_sharing: free_cash[c.i, c.group] = c.free_cash_now else: free_cash[c.i, c.col] = c.free_cash_now size = np.array([ [5, -5, 5], [5, -5, -10], [-5, 5, 10], [-5, 5, -10], [-5, 5, 10] ]) debt = np.empty(price_wide.shape, dtype=np.float_) free_cash = np.empty(price_wide.shape, dtype=np.float_) pf = vbt.Portfolio.from_order_func( price_wide, order_func, size, post_order_func_nb=post_order_func, post_order_args=(debt, free_cash,), row_wise=test_row_wise, use_numba=False, flexible=test_flexible ) np.testing.assert_array_equal( debt, np.array([ [0.0, 4.95, 0.0], [0.0, 14.850000000000001, 9.9], [0.0, 7.425000000000001, 0.0], [0.0, 0.0, 19.8], [24.75, 0.0, 0.0] ]) ) np.testing.assert_array_equal( free_cash, np.array([ [93.8995, 94.0005, 93.8995], [82.6985, 83.00150000000001, 92.70150000000001], [96.39999999999999, 81.55000000000001, 80.8985], [115.002, 74.998, 79.5025], [89.0045, 48.49550000000001, 67.0975] ]) ) np.testing.assert_almost_equal( free_cash, pf.cash(free=True).values ) debt = np.empty(price_wide.shape, dtype=np.float_) free_cash = np.empty(price_wide.shape, dtype=np.float_) pf = vbt.Portfolio.from_order_func( price_wide.vbt.wrapper.wrap(price_wide.values[::-1]), order_func, size, post_order_func_nb=post_order_func, post_order_args=(debt, free_cash,), row_wise=test_row_wise, use_numba=False, flexible=test_flexible ) np.testing.assert_array_equal( debt, np.array([ [0.0, 24.75, 0.0], [0.0, 44.55, 19.8], [0.0, 22.275, 0.0], [0.0, 0.0, 9.9], [4.95, 0.0, 0.0] ]) ) np.testing.assert_array_equal( free_cash, np.array([ [73.4975, 74.0025, 73.4975], [52.0955, 53.00449999999999, 72.1015], [65.797, 81.25299999999999, 80.0985], [74.598, 114.60199999999998, 78.9005], [68.5985, 108.50149999999998, 87.49949999999998] ]) ) np.testing.assert_almost_equal( free_cash, pf.cash(free=True).values ) debt = np.empty(price_wide.shape, dtype=np.float_) free_cash = np.empty((price_wide.shape[0], 2), dtype=np.float_) pf = vbt.Portfolio.from_order_func( price_wide, order_func, size, post_order_func_nb=post_order_func, post_order_args=(debt, free_cash,), row_wise=test_row_wise, use_numba=False, group_by=[0, 0, 1], cash_sharing=True, flexible=test_flexible ) np.testing.assert_array_equal( debt, np.array([ [0.0, 4.95, 0.0], [0.0, 14.850000000000001, 9.9], [0.0, 7.425000000000001, 0.0], [0.0, 0.0, 19.8], [24.75, 0.0, 0.0] ]) ) np.testing.assert_array_equal( free_cash, np.array([ [87.9, 93.8995], [65.70000000000002, 92.70150000000001], [77.95000000000002, 80.8985], [90.00000000000001, 79.5025], [37.500000000000014, 67.0975] ]) ) np.testing.assert_almost_equal( free_cash, pf.cash(free=True).values ) @pytest.mark.parametrize("test_row_wise", [False, True]) @pytest.mark.parametrize("test_flexible", [False, True]) def test_init_cash(self, test_row_wise, test_flexible): order_func = flex_order_func_nb if test_flexible else order_func_nb pf = vbt.Portfolio.from_order_func( price_wide, order_func, np.asarray(10.), row_wise=test_row_wise, init_cash=[1., 10., np.inf], flexible=test_flexible) if test_row_wise: record_arrays_close( pf.order_records, np.array([ (0, 0, 0, 1.0, 1.0, 0.0, 0), (1, 1, 0, 10.0, 1.0, 0.0, 0), (2, 2, 0, 10.0, 1.0, 0.0, 0), (3, 0, 1, 10.0, 2.0, 0.0, 1), (4, 1, 1, 10.0, 2.0, 0.0, 1), (5, 2, 1, 10.0, 2.0, 0.0, 1), (6, 0, 2, 6.666666666666667, 3.0, 0.0, 0), (7, 1, 2, 6.666666666666667, 3.0, 0.0, 0), (8, 2, 2, 10.0, 3.0, 0.0, 0), (9, 0, 3, 10.0, 4.0, 0.0, 1), (10, 1, 3, 10.0, 4.0, 0.0, 1), (11, 2, 3, 10.0, 4.0, 0.0, 1), (12, 0, 4, 8.0, 5.0, 0.0, 0), (13, 1, 4, 8.0, 5.0, 0.0, 0), (14, 2, 4, 10.0, 5.0, 0.0, 0) ], dtype=order_dt) ) else: record_arrays_close( pf.order_records, np.array([ (0, 0, 0, 1.0, 1.0, 0.0, 0), (1, 0, 1, 10.0, 2.0, 0.0, 1), (2, 0, 2, 6.666666666666667, 3.0, 0.0, 0), (3, 0, 3, 10.0, 4.0, 0.0, 1), (4, 0, 4, 8.0, 5.0, 0.0, 0), (5, 1, 0, 10.0, 1.0, 0.0, 0), (6, 1, 1, 10.0, 2.0, 0.0, 1), (7, 1, 2, 6.666666666666667, 3.0, 0.0, 0), (8, 1, 3, 10.0, 4.0, 0.0, 1), (9, 1, 4, 8.0, 5.0, 0.0, 0), (10, 2, 0, 10.0, 1.0, 0.0, 0), (11, 2, 1, 10.0, 2.0, 0.0, 1), (12, 2, 2, 10.0, 3.0, 0.0, 0), (13, 2, 3, 10.0, 4.0, 0.0, 1), (14, 2, 4, 10.0, 5.0, 0.0, 0) ], dtype=order_dt) ) assert type(pf._init_cash) == np.ndarray base_pf = vbt.Portfolio.from_order_func( price_wide, order_func, np.asarray(10.), row_wise=test_row_wise, init_cash=np.inf, flexible=test_flexible) pf = vbt.Portfolio.from_order_func( price_wide, order_func, np.asarray(10.), row_wise=test_row_wise, init_cash=InitCashMode.Auto, flexible=test_flexible) record_arrays_close( pf.order_records, base_pf.orders.values ) assert pf._init_cash == InitCashMode.Auto pf = vbt.Portfolio.from_order_func( price_wide, order_func, np.asarray(10.), row_wise=test_row_wise, init_cash=InitCashMode.AutoAlign, flexible=test_flexible) record_arrays_close( pf.order_records, base_pf.orders.values ) assert pf._init_cash == InitCashMode.AutoAlign def test_func_calls(self): @njit def pre_sim_func_nb(c, call_i, pre_sim_lst, sub_arg): if sub_arg != 15: raise ValueError call_i[0] += 1 pre_sim_lst.append(call_i[0]) return (call_i,) @njit def post_sim_func_nb(c, call_i, post_sim_lst, sub_arg): if sub_arg != 15: raise ValueError call_i[0] += 1 post_sim_lst.append(call_i[0]) return (call_i,) @njit def pre_group_func_nb(c, call_i, pre_group_lst, sub_arg): if sub_arg != 15: raise ValueError call_i[0] += 1 pre_group_lst.append(call_i[0]) return (call_i,) @njit def post_group_func_nb(c, call_i, post_group_lst, sub_arg): if sub_arg != 15: raise ValueError call_i[0] += 1 post_group_lst.append(call_i[0]) return (call_i,) @njit def pre_segment_func_nb(c, call_i, pre_segment_lst, sub_arg): if sub_arg != 15: raise ValueError call_i[0] += 1 pre_segment_lst.append(call_i[0]) return (call_i,) @njit def post_segment_func_nb(c, call_i, post_segment_lst, sub_arg): if sub_arg != 15: raise ValueError call_i[0] += 1 post_segment_lst.append(call_i[0]) return (call_i,) @njit def order_func_nb(c, call_i, order_lst, sub_arg): if sub_arg != 15: raise ValueError call_i[0] += 1 order_lst.append(call_i[0]) return NoOrder @njit def post_order_func_nb(c, call_i, post_order_lst, sub_arg): if sub_arg != 15: raise ValueError call_i[0] += 1 post_order_lst.append(call_i[0]) sub_arg = vbt.RepEval('np.prod([target_shape[0], target_shape[1]])') call_i = np.array([0]) pre_sim_lst = List.empty_list(typeof(0)) post_sim_lst = List.empty_list(typeof(0)) pre_group_lst = List.empty_list(typeof(0)) post_group_lst = List.empty_list(typeof(0)) pre_segment_lst = List.empty_list(typeof(0)) post_segment_lst = List.empty_list(typeof(0)) order_lst = List.empty_list(typeof(0)) post_order_lst = List.empty_list(typeof(0)) _ = vbt.Portfolio.from_order_func( price_wide, order_func_nb, order_lst, sub_arg, group_by=np.array([0, 0, 1]), pre_sim_func_nb=pre_sim_func_nb, pre_sim_args=(call_i, pre_sim_lst, sub_arg), post_sim_func_nb=post_sim_func_nb, post_sim_args=(call_i, post_sim_lst, sub_arg), pre_group_func_nb=pre_group_func_nb, pre_group_args=(pre_group_lst, sub_arg), post_group_func_nb=post_group_func_nb, post_group_args=(post_group_lst, sub_arg), pre_segment_func_nb=pre_segment_func_nb, pre_segment_args=(pre_segment_lst, sub_arg), post_segment_func_nb=post_segment_func_nb, post_segment_args=(post_segment_lst, sub_arg), post_order_func_nb=post_order_func_nb, post_order_args=(post_order_lst, sub_arg), row_wise=False, template_mapping=dict(np=np) ) assert call_i[0] == 56 assert list(pre_sim_lst) == [1] assert list(post_sim_lst) == [56] assert list(pre_group_lst) == [2, 34] assert list(post_group_lst) == [33, 55] assert list(pre_segment_lst) == [3, 9, 15, 21, 27, 35, 39, 43, 47, 51] assert list(post_segment_lst) == [8, 14, 20, 26, 32, 38, 42, 46, 50, 54] assert list(order_lst) == [4, 6, 10, 12, 16, 18, 22, 24, 28, 30, 36, 40, 44, 48, 52] assert list(post_order_lst) == [5, 7, 11, 13, 17, 19, 23, 25, 29, 31, 37, 41, 45, 49, 53] segment_mask = np.array([ [False, False], [False, True], [True, False], [True, True], [False, False], ]) call_i = np.array([0]) pre_sim_lst = List.empty_list(typeof(0)) post_sim_lst = List.empty_list(typeof(0)) pre_group_lst = List.empty_list(typeof(0)) post_group_lst = List.empty_list(typeof(0)) pre_segment_lst = List.empty_list(typeof(0)) post_segment_lst = List.empty_list(typeof(0)) order_lst = List.empty_list(typeof(0)) post_order_lst = List.empty_list(typeof(0)) _ = vbt.Portfolio.from_order_func( price_wide, order_func_nb, order_lst, sub_arg, group_by=np.array([0, 0, 1]), pre_sim_func_nb=pre_sim_func_nb, pre_sim_args=(call_i, pre_sim_lst, sub_arg), post_sim_func_nb=post_sim_func_nb, post_sim_args=(call_i, post_sim_lst, sub_arg), pre_group_func_nb=pre_group_func_nb, pre_group_args=(pre_group_lst, sub_arg), post_group_func_nb=post_group_func_nb, post_group_args=(post_group_lst, sub_arg), pre_segment_func_nb=pre_segment_func_nb, pre_segment_args=(pre_segment_lst, sub_arg), post_segment_func_nb=post_segment_func_nb, post_segment_args=(post_segment_lst, sub_arg), post_order_func_nb=post_order_func_nb, post_order_args=(post_order_lst, sub_arg), segment_mask=segment_mask, call_pre_segment=True, call_post_segment=True, row_wise=False, template_mapping=dict(np=np) ) assert call_i[0] == 38 assert list(pre_sim_lst) == [1] assert list(post_sim_lst) == [38] assert list(pre_group_lst) == [2, 22] assert list(post_group_lst) == [21, 37] assert list(pre_segment_lst) == [3, 5, 7, 13, 19, 23, 25, 29, 31, 35] assert list(post_segment_lst) == [4, 6, 12, 18, 20, 24, 28, 30, 34, 36] assert list(order_lst) == [8, 10, 14, 16, 26, 32] assert list(post_order_lst) == [9, 11, 15, 17, 27, 33] call_i = np.array([0]) pre_sim_lst = List.empty_list(typeof(0)) post_sim_lst = List.empty_list(typeof(0)) pre_group_lst = List.empty_list(typeof(0)) post_group_lst = List.empty_list(typeof(0)) pre_segment_lst = List.empty_list(typeof(0)) post_segment_lst = List.empty_list(typeof(0)) order_lst = List.empty_list(typeof(0)) post_order_lst = List.empty_list(typeof(0)) _ = vbt.Portfolio.from_order_func( price_wide, order_func_nb, order_lst, sub_arg, group_by=np.array([0, 0, 1]), pre_sim_func_nb=pre_sim_func_nb, pre_sim_args=(call_i, pre_sim_lst, sub_arg), post_sim_func_nb=post_sim_func_nb, post_sim_args=(call_i, post_sim_lst, sub_arg), pre_group_func_nb=pre_group_func_nb, pre_group_args=(pre_group_lst, sub_arg), post_group_func_nb=post_group_func_nb, post_group_args=(post_group_lst, sub_arg), pre_segment_func_nb=pre_segment_func_nb, pre_segment_args=(pre_segment_lst, sub_arg), post_segment_func_nb=post_segment_func_nb, post_segment_args=(post_segment_lst, sub_arg), post_order_func_nb=post_order_func_nb, post_order_args=(post_order_lst, sub_arg), segment_mask=segment_mask, call_pre_segment=False, call_post_segment=False, row_wise=False, template_mapping=dict(np=np) ) assert call_i[0] == 26 assert list(pre_sim_lst) == [1] assert list(post_sim_lst) == [26] assert list(pre_group_lst) == [2, 16] assert list(post_group_lst) == [15, 25] assert list(pre_segment_lst) == [3, 9, 17, 21] assert list(post_segment_lst) == [8, 14, 20, 24] assert list(order_lst) == [4, 6, 10, 12, 18, 22] assert list(post_order_lst) == [5, 7, 11, 13, 19, 23] def test_func_calls_flexible(self): @njit def pre_sim_func_nb(c, call_i, pre_sim_lst, sub_arg): if sub_arg != 15: raise ValueError call_i[0] += 1 pre_sim_lst.append(call_i[0]) return (call_i,) @njit def post_sim_func_nb(c, call_i, post_sim_lst, sub_arg): if sub_arg != 15: raise ValueError call_i[0] += 1 post_sim_lst.append(call_i[0]) return (call_i,) @njit def pre_group_func_nb(c, call_i, pre_group_lst, sub_arg): if sub_arg != 15: raise ValueError call_i[0] += 1 pre_group_lst.append(call_i[0]) return (call_i,) @njit def post_group_func_nb(c, call_i, post_group_lst, sub_arg): if sub_arg != 15: raise ValueError call_i[0] += 1 post_group_lst.append(call_i[0]) return (call_i,) @njit def pre_segment_func_nb(c, call_i, pre_segment_lst, sub_arg): if sub_arg != 15: raise ValueError call_i[0] += 1 pre_segment_lst.append(call_i[0]) return (call_i,) @njit def post_segment_func_nb(c, call_i, post_segment_lst, sub_arg): if sub_arg != 15: raise ValueError call_i[0] += 1 post_segment_lst.append(call_i[0]) return (call_i,) @njit def flex_order_func_nb(c, call_i, order_lst, sub_arg): if sub_arg != 15: raise ValueError call_i[0] += 1 order_lst.append(call_i[0]) col = c.from_col + c.call_idx if c.call_idx < c.group_len: return col, NoOrder return -1, NoOrder @njit def post_order_func_nb(c, call_i, post_order_lst, sub_arg): if sub_arg != 15: raise ValueError call_i[0] += 1 post_order_lst.append(call_i[0]) sub_arg = vbt.RepEval('np.prod([target_shape[0], target_shape[1]])') call_i = np.array([0]) pre_sim_lst = List.empty_list(typeof(0)) post_sim_lst = List.empty_list(typeof(0)) pre_group_lst = List.empty_list(typeof(0)) post_group_lst = List.empty_list(typeof(0)) pre_segment_lst = List.empty_list(typeof(0)) post_segment_lst = List.empty_list(typeof(0)) order_lst = List.empty_list(typeof(0)) post_order_lst = List.empty_list(typeof(0)) _ = vbt.Portfolio.from_order_func( price_wide, flex_order_func_nb, order_lst, sub_arg, group_by=np.array([0, 0, 1]), pre_sim_func_nb=pre_sim_func_nb, pre_sim_args=(call_i, pre_sim_lst, sub_arg), post_sim_func_nb=post_sim_func_nb, post_sim_args=(call_i, post_sim_lst, sub_arg), pre_group_func_nb=pre_group_func_nb, pre_group_args=(pre_group_lst, sub_arg), post_group_func_nb=post_group_func_nb, post_group_args=(post_group_lst, sub_arg), pre_segment_func_nb=pre_segment_func_nb, pre_segment_args=(pre_segment_lst, sub_arg), post_segment_func_nb=post_segment_func_nb, post_segment_args=(post_segment_lst, sub_arg), post_order_func_nb=post_order_func_nb, post_order_args=(post_order_lst, sub_arg), row_wise=False, flexible=True, template_mapping=dict(np=np) ) assert call_i[0] == 66 assert list(pre_sim_lst) == [1] assert list(post_sim_lst) == [66] assert list(pre_group_lst) == [2, 39] assert list(post_group_lst) == [38, 65] assert list(pre_segment_lst) == [3, 10, 17, 24, 31, 40, 45, 50, 55, 60] assert list(post_segment_lst) == [9, 16, 23, 30, 37, 44, 49, 54, 59, 64] assert list(order_lst) == [ 4, 6, 8, 11, 13, 15, 18, 20, 22, 25, 27, 29, 32, 34, 36, 41, 43, 46, 48, 51, 53, 56, 58, 61, 63 ] assert list(post_order_lst) == [5, 7, 12, 14, 19, 21, 26, 28, 33, 35, 42, 47, 52, 57, 62] segment_mask = np.array([ [False, False], [False, True], [True, False], [True, True], [False, False], ]) call_i = np.array([0]) pre_sim_lst = List.empty_list(typeof(0)) post_sim_lst = List.empty_list(typeof(0)) pre_group_lst = List.empty_list(typeof(0)) post_group_lst = List.empty_list(typeof(0)) pre_segment_lst = List.empty_list(typeof(0)) post_segment_lst = List.empty_list(typeof(0)) order_lst = List.empty_list(typeof(0)) post_order_lst = List.empty_list(typeof(0)) _ = vbt.Portfolio.from_order_func( price_wide, flex_order_func_nb, order_lst, sub_arg, group_by=np.array([0, 0, 1]), pre_sim_func_nb=pre_sim_func_nb, pre_sim_args=(call_i, pre_sim_lst, sub_arg), post_sim_func_nb=post_sim_func_nb, post_sim_args=(call_i, post_sim_lst, sub_arg), pre_group_func_nb=pre_group_func_nb, pre_group_args=(pre_group_lst, sub_arg), post_group_func_nb=post_group_func_nb, post_group_args=(post_group_lst, sub_arg), pre_segment_func_nb=pre_segment_func_nb, pre_segment_args=(pre_segment_lst, sub_arg), post_segment_func_nb=post_segment_func_nb, post_segment_args=(post_segment_lst, sub_arg), post_order_func_nb=post_order_func_nb, post_order_args=(post_order_lst, sub_arg), segment_mask=segment_mask, call_pre_segment=True, call_post_segment=True, row_wise=False, flexible=True, template_mapping=dict(np=np) ) assert call_i[0] == 42 assert list(pre_sim_lst) == [1] assert list(post_sim_lst) == [42] assert list(pre_group_lst) == [2, 24] assert list(post_group_lst) == [23, 41] assert list(pre_segment_lst) == [3, 5, 7, 14, 21, 25, 27, 32, 34, 39] assert list(post_segment_lst) == [4, 6, 13, 20, 22, 26, 31, 33, 38, 40] assert list(order_lst) == [8, 10, 12, 15, 17, 19, 28, 30, 35, 37] assert list(post_order_lst) == [9, 11, 16, 18, 29, 36] call_i = np.array([0]) pre_sim_lst = List.empty_list(typeof(0)) post_sim_lst = List.empty_list(typeof(0)) pre_group_lst = List.empty_list(typeof(0)) post_group_lst = List.empty_list(typeof(0)) pre_segment_lst = List.empty_list(typeof(0)) post_segment_lst = List.empty_list(typeof(0)) order_lst = List.empty_list(typeof(0)) post_order_lst = List.empty_list(typeof(0)) _ = vbt.Portfolio.from_order_func( price_wide, flex_order_func_nb, order_lst, sub_arg, group_by=np.array([0, 0, 1]), pre_sim_func_nb=pre_sim_func_nb, pre_sim_args=(call_i, pre_sim_lst, sub_arg), post_sim_func_nb=post_sim_func_nb, post_sim_args=(call_i, post_sim_lst, sub_arg), pre_group_func_nb=pre_group_func_nb, pre_group_args=(pre_group_lst, sub_arg), post_group_func_nb=post_group_func_nb, post_group_args=(post_group_lst, sub_arg), pre_segment_func_nb=pre_segment_func_nb, pre_segment_args=(pre_segment_lst, sub_arg), post_segment_func_nb=post_segment_func_nb, post_segment_args=(post_segment_lst, sub_arg), post_order_func_nb=post_order_func_nb, post_order_args=(post_order_lst, sub_arg), segment_mask=segment_mask, call_pre_segment=False, call_post_segment=False, row_wise=False, flexible=True, template_mapping=dict(np=np) ) assert call_i[0] == 30 assert list(pre_sim_lst) == [1] assert list(post_sim_lst) == [30] assert list(pre_group_lst) == [2, 18] assert list(post_group_lst) == [17, 29] assert list(pre_segment_lst) == [3, 10, 19, 24] assert list(post_segment_lst) == [9, 16, 23, 28] assert list(order_lst) == [4, 6, 8, 11, 13, 15, 20, 22, 25, 27] assert list(post_order_lst) == [5, 7, 12, 14, 21, 26] def test_func_calls_row_wise(self): @njit def pre_sim_func_nb(c, call_i, pre_sim_lst): call_i[0] += 1 pre_sim_lst.append(call_i[0]) return (call_i,) @njit def post_sim_func_nb(c, call_i, post_sim_lst): call_i[0] += 1 post_sim_lst.append(call_i[0]) return (call_i,) @njit def pre_row_func_nb(c, call_i, pre_row_lst): call_i[0] += 1 pre_row_lst.append(call_i[0]) return (call_i,) @njit def post_row_func_nb(c, call_i, post_row_lst): call_i[0] += 1 post_row_lst.append(call_i[0]) return (call_i,) @njit def pre_segment_func_nb(c, call_i, pre_segment_lst): call_i[0] += 1 pre_segment_lst.append(call_i[0]) return (call_i,) @njit def post_segment_func_nb(c, call_i, post_segment_lst): call_i[0] += 1 post_segment_lst.append(call_i[0]) return (call_i,) @njit def order_func_nb(c, call_i, order_lst): call_i[0] += 1 order_lst.append(call_i[0]) return NoOrder @njit def post_order_func_nb(c, call_i, post_order_lst): call_i[0] += 1 post_order_lst.append(call_i[0]) sub_arg = vbt.RepEval('np.prod([target_shape[0], target_shape[1]])') call_i = np.array([0]) pre_sim_lst = List.empty_list(typeof(0)) post_sim_lst = List.empty_list(typeof(0)) pre_row_lst = List.empty_list(typeof(0)) post_row_lst = List.empty_list(typeof(0)) pre_segment_lst = List.empty_list(typeof(0)) post_segment_lst = List.empty_list(typeof(0)) order_lst = List.empty_list(typeof(0)) post_order_lst = List.empty_list(typeof(0)) _ = vbt.Portfolio.from_order_func( price_wide, order_func_nb, order_lst, group_by=np.array([0, 0, 1]), pre_sim_func_nb=pre_sim_func_nb, pre_sim_args=(call_i, pre_sim_lst), post_sim_func_nb=post_sim_func_nb, post_sim_args=(call_i, post_sim_lst), pre_row_func_nb=pre_row_func_nb, pre_row_args=(pre_row_lst,), post_row_func_nb=post_row_func_nb, post_row_args=(post_row_lst,), pre_segment_func_nb=pre_segment_func_nb, pre_segment_args=(pre_segment_lst,), post_segment_func_nb=post_segment_func_nb, post_segment_args=(post_segment_lst,), post_order_func_nb=post_order_func_nb, post_order_args=(post_order_lst,), row_wise=True, template_mapping=dict(np=np) ) assert call_i[0] == 62 assert list(pre_sim_lst) == [1] assert list(post_sim_lst) == [62] assert list(pre_row_lst) == [2, 14, 26, 38, 50] assert list(post_row_lst) == [13, 25, 37, 49, 61] assert list(pre_segment_lst) == [3, 9, 15, 21, 27, 33, 39, 45, 51, 57] assert list(post_segment_lst) == [8, 12, 20, 24, 32, 36, 44, 48, 56, 60] assert list(order_lst) == [4, 6, 10, 16, 18, 22, 28, 30, 34, 40, 42, 46, 52, 54, 58] assert list(post_order_lst) == [5, 7, 11, 17, 19, 23, 29, 31, 35, 41, 43, 47, 53, 55, 59] segment_mask = np.array([ [False, False], [False, True], [True, False], [True, True], [False, False], ]) call_i = np.array([0]) pre_sim_lst = List.empty_list(typeof(0)) post_sim_lst = List.empty_list(typeof(0)) pre_row_lst = List.empty_list(typeof(0)) post_row_lst = List.empty_list(typeof(0)) pre_segment_lst = List.empty_list(typeof(0)) post_segment_lst = List.empty_list(typeof(0)) order_lst = List.empty_list(typeof(0)) post_order_lst = List.empty_list(typeof(0)) _ = vbt.Portfolio.from_order_func( price_wide, order_func_nb, order_lst, group_by=np.array([0, 0, 1]), pre_sim_func_nb=pre_sim_func_nb, pre_sim_args=(call_i, pre_sim_lst), post_sim_func_nb=post_sim_func_nb, post_sim_args=(call_i, post_sim_lst), pre_row_func_nb=pre_row_func_nb, pre_row_args=(pre_row_lst,), post_row_func_nb=post_row_func_nb, post_row_args=(post_row_lst,), pre_segment_func_nb=pre_segment_func_nb, pre_segment_args=(pre_segment_lst,), post_segment_func_nb=post_segment_func_nb, post_segment_args=(post_segment_lst,), post_order_func_nb=post_order_func_nb, post_order_args=(post_order_lst,), segment_mask=segment_mask, call_pre_segment=True, call_post_segment=True, row_wise=True, template_mapping=dict(np=np) ) assert call_i[0] == 44 assert list(pre_sim_lst) == [1] assert list(post_sim_lst) == [44] assert list(pre_row_lst) == [2, 8, 16, 26, 38] assert list(post_row_lst) == [7, 15, 25, 37, 43] assert list(pre_segment_lst) == [3, 5, 9, 11, 17, 23, 27, 33, 39, 41] assert list(post_segment_lst) == [4, 6, 10, 14, 22, 24, 32, 36, 40, 42] assert list(order_lst) == [12, 18, 20, 28, 30, 34] assert list(post_order_lst) == [13, 19, 21, 29, 31, 35] call_i = np.array([0]) pre_sim_lst = List.empty_list(typeof(0)) post_sim_lst = List.empty_list(typeof(0)) pre_row_lst = List.empty_list(typeof(0)) post_row_lst = List.empty_list(typeof(0)) pre_segment_lst = List.empty_list(typeof(0)) post_segment_lst = List.empty_list(typeof(0)) order_lst = List.empty_list(typeof(0)) post_order_lst = List.empty_list(typeof(0)) _ = vbt.Portfolio.from_order_func( price_wide, order_func_nb, order_lst, group_by=np.array([0, 0, 1]), pre_sim_func_nb=pre_sim_func_nb, pre_sim_args=(call_i, pre_sim_lst), post_sim_func_nb=post_sim_func_nb, post_sim_args=(call_i, post_sim_lst), pre_row_func_nb=pre_row_func_nb, pre_row_args=(pre_row_lst,), post_row_func_nb=post_row_func_nb, post_row_args=(post_row_lst,), pre_segment_func_nb=pre_segment_func_nb, pre_segment_args=(pre_segment_lst,), post_segment_func_nb=post_segment_func_nb, post_segment_args=(post_segment_lst,), post_order_func_nb=post_order_func_nb, post_order_args=(post_order_lst,), segment_mask=segment_mask, call_pre_segment=False, call_post_segment=False, row_wise=True, template_mapping=dict(np=np) ) assert call_i[0] == 32 assert list(pre_sim_lst) == [1] assert list(post_sim_lst) == [32] assert list(pre_row_lst) == [2, 4, 10, 18, 30] assert list(post_row_lst) == [3, 9, 17, 29, 31] assert list(pre_segment_lst) == [5, 11, 19, 25] assert list(post_segment_lst) == [8, 16, 24, 28] assert list(order_lst) == [6, 12, 14, 20, 22, 26] assert list(post_order_lst) == [7, 13, 15, 21, 23, 27] def test_func_calls_row_wise_flexible(self): @njit def pre_sim_func_nb(c, call_i, pre_sim_lst, sub_arg): if sub_arg != 15: raise ValueError call_i[0] += 1 pre_sim_lst.append(call_i[0]) return (call_i,) @njit def post_sim_func_nb(c, call_i, post_sim_lst, sub_arg): if sub_arg != 15: raise ValueError call_i[0] += 1 post_sim_lst.append(call_i[0]) return (call_i,) @njit def pre_row_func_nb(c, call_i, pre_row_lst, sub_arg): if sub_arg != 15: raise ValueError call_i[0] += 1 pre_row_lst.append(call_i[0]) return (call_i,) @njit def post_row_func_nb(c, call_i, post_row_lst, sub_arg): if sub_arg != 15: raise ValueError call_i[0] += 1 post_row_lst.append(call_i[0]) return (call_i,) @njit def pre_segment_func_nb(c, call_i, pre_segment_lst, sub_arg): if sub_arg != 15: raise ValueError call_i[0] += 1 pre_segment_lst.append(call_i[0]) return (call_i,) @njit def post_segment_func_nb(c, call_i, post_segment_lst, sub_arg): if sub_arg != 15: raise ValueError call_i[0] += 1 post_segment_lst.append(call_i[0]) return (call_i,) @njit def flex_order_func_nb(c, call_i, order_lst, sub_arg): if sub_arg != 15: raise ValueError call_i[0] += 1 order_lst.append(call_i[0]) col = c.from_col + c.call_idx if c.call_idx < c.group_len: return col, NoOrder return -1, NoOrder @njit def post_order_func_nb(c, call_i, post_order_lst, sub_arg): if sub_arg != 15: raise ValueError call_i[0] += 1 post_order_lst.append(call_i[0]) sub_arg = vbt.RepEval('np.prod([target_shape[0], target_shape[1]])') call_i = np.array([0]) pre_sim_lst = List.empty_list(typeof(0)) post_sim_lst = List.empty_list(typeof(0)) pre_row_lst = List.empty_list(typeof(0)) post_row_lst = List.empty_list(typeof(0)) pre_segment_lst = List.empty_list(typeof(0)) post_segment_lst = List.empty_list(typeof(0)) order_lst = List.empty_list(typeof(0)) post_order_lst = List.empty_list(typeof(0)) _ = vbt.Portfolio.from_order_func( price_wide, flex_order_func_nb, order_lst, sub_arg, group_by=np.array([0, 0, 1]), pre_sim_func_nb=pre_sim_func_nb, pre_sim_args=(call_i, pre_sim_lst, sub_arg), post_sim_func_nb=post_sim_func_nb, post_sim_args=(call_i, post_sim_lst, sub_arg), pre_row_func_nb=pre_row_func_nb, pre_row_args=(pre_row_lst, sub_arg), post_row_func_nb=post_row_func_nb, post_row_args=(post_row_lst, sub_arg), pre_segment_func_nb=pre_segment_func_nb, pre_segment_args=(pre_segment_lst, sub_arg), post_segment_func_nb=post_segment_func_nb, post_segment_args=(post_segment_lst, sub_arg), post_order_func_nb=post_order_func_nb, post_order_args=(post_order_lst, sub_arg), row_wise=True, flexible=True, template_mapping=dict(np=np) ) assert call_i[0] == 72 assert list(pre_sim_lst) == [1] assert list(post_sim_lst) == [72] assert list(pre_row_lst) == [2, 16, 30, 44, 58] assert list(post_row_lst) == [15, 29, 43, 57, 71] assert list(pre_segment_lst) == [3, 10, 17, 24, 31, 38, 45, 52, 59, 66] assert list(post_segment_lst) == [9, 14, 23, 28, 37, 42, 51, 56, 65, 70] assert list(order_lst) == [ 4, 6, 8, 11, 13, 18, 20, 22, 25, 27, 32, 34, 36, 39, 41, 46, 48, 50, 53, 55, 60, 62, 64, 67, 69 ] assert list(post_order_lst) == [5, 7, 12, 19, 21, 26, 33, 35, 40, 47, 49, 54, 61, 63, 68] segment_mask = np.array([ [False, False], [False, True], [True, False], [True, True], [False, False], ]) call_i = np.array([0]) pre_sim_lst = List.empty_list(typeof(0)) post_sim_lst = List.empty_list(typeof(0)) pre_row_lst = List.empty_list(typeof(0)) post_row_lst = List.empty_list(typeof(0)) pre_segment_lst = List.empty_list(typeof(0)) post_segment_lst = List.empty_list(typeof(0)) order_lst = List.empty_list(typeof(0)) post_order_lst = List.empty_list(typeof(0)) _ = vbt.Portfolio.from_order_func( price_wide, flex_order_func_nb, order_lst, sub_arg, group_by=np.array([0, 0, 1]), pre_sim_func_nb=pre_sim_func_nb, pre_sim_args=(call_i, pre_sim_lst, sub_arg), post_sim_func_nb=post_sim_func_nb, post_sim_args=(call_i, post_sim_lst, sub_arg), pre_row_func_nb=pre_row_func_nb, pre_row_args=(pre_row_lst, sub_arg), post_row_func_nb=post_row_func_nb, post_row_args=(post_row_lst, sub_arg), pre_segment_func_nb=pre_segment_func_nb, pre_segment_args=(pre_segment_lst, sub_arg), post_segment_func_nb=post_segment_func_nb, post_segment_args=(post_segment_lst, sub_arg), post_order_func_nb=post_order_func_nb, post_order_args=(post_order_lst, sub_arg), segment_mask=segment_mask, call_pre_segment=True, call_post_segment=True, row_wise=True, flexible=True, template_mapping=dict(np=np) ) assert call_i[0] == 48 assert list(pre_sim_lst) == [1] assert list(post_sim_lst) == [48] assert list(pre_row_lst) == [2, 8, 17, 28, 42] assert list(post_row_lst) == [7, 16, 27, 41, 47] assert list(pre_segment_lst) == [3, 5, 9, 11, 18, 25, 29, 36, 43, 45] assert list(post_segment_lst) == [4, 6, 10, 15, 24, 26, 35, 40, 44, 46] assert list(order_lst) == [12, 14, 19, 21, 23, 30, 32, 34, 37, 39] assert list(post_order_lst) == [13, 20, 22, 31, 33, 38] call_i = np.array([0]) pre_sim_lst = List.empty_list(typeof(0)) post_sim_lst = List.empty_list(typeof(0)) pre_row_lst = List.empty_list(typeof(0)) post_row_lst = List.empty_list(typeof(0)) pre_segment_lst = List.empty_list(typeof(0)) post_segment_lst = List.empty_list(typeof(0)) order_lst = List.empty_list(typeof(0)) post_order_lst = List.empty_list(typeof(0)) _ = vbt.Portfolio.from_order_func( price_wide, flex_order_func_nb, order_lst, sub_arg, group_by=np.array([0, 0, 1]), pre_sim_func_nb=pre_sim_func_nb, pre_sim_args=(call_i, pre_sim_lst, sub_arg), post_sim_func_nb=post_sim_func_nb, post_sim_args=(call_i, post_sim_lst, sub_arg), pre_row_func_nb=pre_row_func_nb, pre_row_args=(pre_row_lst, sub_arg), post_row_func_nb=post_row_func_nb, post_row_args=(post_row_lst, sub_arg), pre_segment_func_nb=pre_segment_func_nb, pre_segment_args=(pre_segment_lst, sub_arg), post_segment_func_nb=post_segment_func_nb, post_segment_args=(post_segment_lst, sub_arg), post_order_func_nb=post_order_func_nb, post_order_args=(post_order_lst, sub_arg), segment_mask=segment_mask, call_pre_segment=False, call_post_segment=False, row_wise=True, flexible=True, template_mapping=dict(np=np) ) assert call_i[0] == 36 assert list(pre_sim_lst) == [1] assert list(post_sim_lst) == [36] assert list(pre_row_lst) == [2, 4, 11, 20, 34] assert list(post_row_lst) == [3, 10, 19, 33, 35] assert list(pre_segment_lst) == [5, 12, 21, 28] assert list(post_segment_lst) == [9, 18, 27, 32] assert list(order_lst) == [6, 8, 13, 15, 17, 22, 24, 26, 29, 31] assert list(post_order_lst) == [7, 14, 16, 23, 25, 30] @pytest.mark.parametrize("test_row_wise", [False, True]) @pytest.mark.parametrize("test_flexible", [False, True]) def test_max_orders(self, test_row_wise, test_flexible): order_func = flex_order_func_nb if test_flexible else order_func_nb _ = vbt.Portfolio.from_order_func( price_wide, order_func, np.asarray(np.inf), row_wise=test_row_wise, flexible=test_flexible) _ = vbt.Portfolio.from_order_func( price_wide, order_func, np.asarray(np.inf), row_wise=test_row_wise, max_orders=15, flexible=test_flexible) with pytest.raises(Exception): _ = vbt.Portfolio.from_order_func( price_wide, order_func, np.asarray(np.inf), row_wise=test_row_wise, max_orders=14, flexible=test_flexible) @pytest.mark.parametrize("test_row_wise", [False, True]) @pytest.mark.parametrize("test_flexible", [False, True]) def test_max_logs(self, test_row_wise, test_flexible): log_order_func = log_flex_order_func_nb if test_flexible else log_order_func_nb _ = vbt.Portfolio.from_order_func( price_wide, log_order_func, np.asarray(np.inf), row_wise=test_row_wise, flexible=test_flexible) _ = vbt.Portfolio.from_order_func( price_wide, log_order_func, np.asarray(np.inf), row_wise=test_row_wise, max_logs=15, flexible=test_flexible) with pytest.raises(Exception): _ = vbt.Portfolio.from_order_func( price_wide, log_order_func, np.asarray(np.inf), row_wise=test_row_wise, max_logs=14, flexible=test_flexible) # ############# Portfolio ############# # price_na = pd.DataFrame({ 'a': [np.nan, 2., 3., 4., 5.], 'b': [1., 2., np.nan, 4., 5.], 'c': [1., 2., 3., 4., np.nan] }, index=price.index) order_size_new = pd.Series([1., 0.1, -1., -0.1, 1.]) directions = ['longonly', 'shortonly', 'both'] group_by = pd.Index(['first', 'first', 'second'], name='group') pf = vbt.Portfolio.from_orders( price_na, order_size_new, size_type='amount', direction=directions, fees=0.01, fixed_fees=0.1, slippage=0.01, log=True, call_seq='reversed', group_by=None, init_cash=[100., 100., 100.], freq='1D', attach_call_seq=True ) # independent pf_grouped = vbt.Portfolio.from_orders( price_na, order_size_new, size_type='amount', direction=directions, fees=0.01, fixed_fees=0.1, slippage=0.01, log=True, call_seq='reversed', group_by=group_by, cash_sharing=False, init_cash=[100., 100., 100.], freq='1D', attach_call_seq=True ) # grouped pf_shared = vbt.Portfolio.from_orders( price_na, order_size_new, size_type='amount', direction=directions, fees=0.01, fixed_fees=0.1, slippage=0.01, log=True, call_seq='reversed', group_by=group_by, cash_sharing=True, init_cash=[200., 100.], freq='1D', attach_call_seq=True ) # shared class TestPortfolio: def test_config(self, tmp_path): pf2 = pf.copy() pf2._metrics = pf2._metrics.copy() pf2.metrics['hello'] = 'world' pf2._subplots = pf2.subplots.copy() pf2.subplots['hello'] = 'world' assert vbt.Portfolio.loads(pf2['a'].dumps()) == pf2['a'] assert vbt.Portfolio.loads(pf2.dumps()) == pf2 pf2.save(tmp_path / 'pf') assert vbt.Portfolio.load(tmp_path / 'pf') == pf2 def test_wrapper(self): pd.testing.assert_index_equal( pf.wrapper.index, price_na.index ) pd.testing.assert_index_equal( pf.wrapper.columns, price_na.columns ) assert pf.wrapper.ndim == 2 assert pf.wrapper.grouper.group_by is None assert pf.wrapper.grouper.allow_enable assert pf.wrapper.grouper.allow_disable assert pf.wrapper.grouper.allow_modify pd.testing.assert_index_equal( pf_grouped.wrapper.index, price_na.index ) pd.testing.assert_index_equal( pf_grouped.wrapper.columns, price_na.columns ) assert pf_grouped.wrapper.ndim == 2 pd.testing.assert_index_equal( pf_grouped.wrapper.grouper.group_by, group_by ) assert pf_grouped.wrapper.grouper.allow_enable assert pf_grouped.wrapper.grouper.allow_disable assert pf_grouped.wrapper.grouper.allow_modify pd.testing.assert_index_equal( pf_shared.wrapper.index, price_na.index ) pd.testing.assert_index_equal( pf_shared.wrapper.columns, price_na.columns ) assert pf_shared.wrapper.ndim == 2 pd.testing.assert_index_equal( pf_shared.wrapper.grouper.group_by, group_by ) assert not pf_shared.wrapper.grouper.allow_enable assert pf_shared.wrapper.grouper.allow_disable assert not pf_shared.wrapper.grouper.allow_modify def test_indexing(self): assert pf['a'].wrapper == pf.wrapper['a'] assert pf['a'].orders == pf.orders['a'] assert pf['a'].logs == pf.logs['a'] assert pf['a'].init_cash == pf.init_cash['a'] pd.testing.assert_series_equal(pf['a'].call_seq, pf.call_seq['a']) assert pf['c'].wrapper == pf.wrapper['c'] assert pf['c'].orders == pf.orders['c'] assert pf['c'].logs == pf.logs['c'] assert pf['c'].init_cash == pf.init_cash['c'] pd.testing.assert_series_equal(pf['c'].call_seq, pf.call_seq['c']) assert pf[['c']].wrapper == pf.wrapper[['c']] assert pf[['c']].orders == pf.orders[['c']] assert pf[['c']].logs == pf.logs[['c']] pd.testing.assert_series_equal(pf[['c']].init_cash, pf.init_cash[['c']]) pd.testing.assert_frame_equal(pf[['c']].call_seq, pf.call_seq[['c']]) assert pf_grouped['first'].wrapper == pf_grouped.wrapper['first'] assert pf_grouped['first'].orders == pf_grouped.orders['first'] assert pf_grouped['first'].logs == pf_grouped.logs['first'] assert pf_grouped['first'].init_cash == pf_grouped.init_cash['first'] pd.testing.assert_frame_equal(pf_grouped['first'].call_seq, pf_grouped.call_seq[['a', 'b']]) assert pf_grouped[['first']].wrapper == pf_grouped.wrapper[['first']] assert pf_grouped[['first']].orders == pf_grouped.orders[['first']] assert pf_grouped[['first']].logs == pf_grouped.logs[['first']] pd.testing.assert_series_equal( pf_grouped[['first']].init_cash, pf_grouped.init_cash[['first']]) pd.testing.assert_frame_equal(pf_grouped[['first']].call_seq, pf_grouped.call_seq[['a', 'b']]) assert pf_grouped['second'].wrapper == pf_grouped.wrapper['second'] assert pf_grouped['second'].orders == pf_grouped.orders['second'] assert pf_grouped['second'].logs == pf_grouped.logs['second'] assert pf_grouped['second'].init_cash == pf_grouped.init_cash['second'] pd.testing.assert_series_equal(pf_grouped['second'].call_seq, pf_grouped.call_seq['c']) assert pf_grouped[['second']].orders == pf_grouped.orders[['second']] assert pf_grouped[['second']].wrapper == pf_grouped.wrapper[['second']] assert pf_grouped[['second']].orders == pf_grouped.orders[['second']] assert pf_grouped[['second']].logs == pf_grouped.logs[['second']] pd.testing.assert_series_equal( pf_grouped[['second']].init_cash, pf_grouped.init_cash[['second']]) pd.testing.assert_frame_equal(pf_grouped[['second']].call_seq, pf_grouped.call_seq[['c']]) assert pf_shared['first'].wrapper == pf_shared.wrapper['first'] assert pf_shared['first'].orders == pf_shared.orders['first'] assert pf_shared['first'].logs == pf_shared.logs['first'] assert pf_shared['first'].init_cash == pf_shared.init_cash['first'] pd.testing.assert_frame_equal(pf_shared['first'].call_seq, pf_shared.call_seq[['a', 'b']]) assert pf_shared[['first']].orders == pf_shared.orders[['first']] assert pf_shared[['first']].wrapper == pf_shared.wrapper[['first']] assert pf_shared[['first']].orders == pf_shared.orders[['first']] assert pf_shared[['first']].logs == pf_shared.logs[['first']] pd.testing.assert_series_equal( pf_shared[['first']].init_cash, pf_shared.init_cash[['first']]) pd.testing.assert_frame_equal(pf_shared[['first']].call_seq, pf_shared.call_seq[['a', 'b']]) assert pf_shared['second'].wrapper == pf_shared.wrapper['second'] assert pf_shared['second'].orders == pf_shared.orders['second'] assert pf_shared['second'].logs == pf_shared.logs['second'] assert pf_shared['second'].init_cash == pf_shared.init_cash['second'] pd.testing.assert_series_equal(pf_shared['second'].call_seq, pf_shared.call_seq['c']) assert pf_shared[['second']].wrapper == pf_shared.wrapper[['second']] assert pf_shared[['second']].orders == pf_shared.orders[['second']] assert pf_shared[['second']].logs == pf_shared.logs[['second']] pd.testing.assert_series_equal( pf_shared[['second']].init_cash, pf_shared.init_cash[['second']]) pd.testing.assert_frame_equal(pf_shared[['second']].call_seq, pf_shared.call_seq[['c']]) def test_regroup(self): assert pf.regroup(None) == pf assert pf.regroup(False) == pf assert pf.regroup(group_by) != pf pd.testing.assert_index_equal(pf.regroup(group_by).wrapper.grouper.group_by, group_by) assert pf_grouped.regroup(None) == pf_grouped assert pf_grouped.regroup(False) != pf_grouped assert pf_grouped.regroup(False).wrapper.grouper.group_by is None assert pf_grouped.regroup(group_by) == pf_grouped assert pf_shared.regroup(None) == pf_shared with pytest.raises(Exception): _ = pf_shared.regroup(False) assert pf_shared.regroup(group_by) == pf_shared def test_cash_sharing(self): assert not pf.cash_sharing assert not pf_grouped.cash_sharing assert pf_shared.cash_sharing def test_call_seq(self): pd.testing.assert_frame_equal( pf.call_seq, pd.DataFrame( np.array([ [0, 0, 0], [0, 0, 0], [0, 0, 0], [0, 0, 0], [0, 0, 0] ]), index=price_na.index, columns=price_na.columns ) ) pd.testing.assert_frame_equal( pf_grouped.call_seq, pd.DataFrame( np.array([ [1, 0, 0], [1, 0, 0], [1, 0, 0], [1, 0, 0], [1, 0, 0] ]), index=price_na.index, columns=price_na.columns ) ) pd.testing.assert_frame_equal( pf_shared.call_seq, pd.DataFrame( np.array([ [1, 0, 0], [1, 0, 0], [1, 0, 0], [1, 0, 0], [1, 0, 0] ]), index=price_na.index, columns=price_na.columns ) ) def test_orders(self): record_arrays_close( pf.orders.values, np.array([ (0, 0, 1, 0.1, 2.02, 0.10202, 0), (1, 0, 2, 0.1, 2.9699999999999998, 0.10297, 1), (2, 0, 4, 1.0, 5.05, 0.1505, 0), (3, 1, 0, 1.0, 0.99, 0.10990000000000001, 1), (4, 1, 1, 0.1, 1.98, 0.10198, 1), (5, 1, 3, 0.1, 4.04, 0.10404000000000001, 0), (6, 1, 4, 1.0, 4.95, 0.14950000000000002, 1), (7, 2, 0, 1.0, 1.01, 0.1101, 0), (8, 2, 1, 0.1, 2.02, 0.10202, 0), (9, 2, 2, 1.0, 2.9699999999999998, 0.1297, 1), (10, 2, 3, 0.1, 3.96, 0.10396000000000001, 1) ], dtype=order_dt) ) result = pd.Series( np.array([3, 4, 4]), index=price_na.columns ).rename('count') pd.testing.assert_series_equal( pf.orders.count(), result ) pd.testing.assert_series_equal( pf_grouped.get_orders(group_by=False).count(), result ) pd.testing.assert_series_equal( pf_shared.get_orders(group_by=False).count(), result ) result = pd.Series( np.array([7, 4]), index=pd.Index(['first', 'second'], dtype='object', name='group') ).rename('count') pd.testing.assert_series_equal( pf.get_orders(group_by=group_by).count(), result ) pd.testing.assert_series_equal( pf_grouped.orders.count(), result ) pd.testing.assert_series_equal( pf_shared.orders.count(), result ) def test_logs(self): record_arrays_close( pf.logs.values, np.array([ (0, 0, 0, 0, 100.0, 0.0, 0.0, 100.0, np.nan, 100.0, 1.0, np.nan, 0, 0, 0.01, 0.1, 0.01, 1e-08, np.inf, 0.0, False, True, False, True, 100.0, 0.0, 0.0, 100.0, np.nan, 100.0, np.nan, np.nan, np.nan, -1, 1, 1, -1), (1, 0, 0, 1, 100.0, 0.0, 0.0, 100.0, 2.0, 100.0, 0.1, 2.0, 0, 0, 0.01, 0.1, 0.01, 1e-08, np.inf, 0.0, False, True, False, True, 99.69598, 0.1, 0.0, 99.69598, 2.0, 100.0, 0.1, 2.02, 0.10202, 0, 0, -1, 0), (2, 0, 0, 2, 99.69598, 0.1, 0.0, 99.69598, 3.0, 99.99598, -1.0, 3.0, 0, 0, 0.01, 0.1, 0.01, 1e-08, np.inf, 0.0, False, True, False, True, 99.89001, 0.0, 0.0, 99.89001, 3.0, 99.99598, 0.1, 2.9699999999999998, 0.10297, 1, 0, -1, 1), (3, 0, 0, 3, 99.89001, 0.0, 0.0, 99.89001, 4.0, 99.89001, -0.1, 4.0, 0, 0, 0.01, 0.1, 0.01, 1e-08, np.inf, 0.0, False, True, False, True, 99.89001, 0.0, 0.0, 99.89001, 4.0, 99.89001, np.nan, np.nan, np.nan, -1, 2, 8, -1), (4, 0, 0, 4, 99.89001, 0.0, 0.0, 99.89001, 5.0, 99.89001, 1.0, 5.0, 0, 0, 0.01, 0.1, 0.01, 1e-08, np.inf, 0.0, False, True, False, True, 94.68951, 1.0, 0.0, 94.68951, 5.0, 99.89001, 1.0, 5.05, 0.1505, 0, 0, -1, 2), (5, 1, 1, 0, 100.0, 0.0, 0.0, 100.0, 1.0, 100.0, 1.0, 1.0, 0, 1, 0.01, 0.1, 0.01, 1e-08, np.inf, 0.0, False, True, False, True, 100.8801, -1.0, 0.99, 98.9001, 1.0, 100.0, 1.0, 0.99, 0.10990000000000001, 1, 0, -1, 3), (6, 1, 1, 1, 100.8801, -1.0, 0.99, 98.9001, 2.0, 98.8801, 0.1, 2.0, 0, 1, 0.01, 0.1, 0.01, 1e-08, np.inf, 0.0, False, True, False, True, 100.97612, -1.1, 1.188, 98.60011999999999, 2.0, 98.8801, 0.1, 1.98, 0.10198, 1, 0, -1, 4), (7, 1, 1, 2, 100.97612, -1.1, 1.188, 98.60011999999999, 2.0, 98.77611999999999, -1.0, np.nan, 0, 1, 0.01, 0.1, 0.01, 1e-08, np.inf, 0.0, False, True, False, True, 100.97612, -1.1, 1.188, 98.60011999999999, 2.0, 98.77611999999999, np.nan, np.nan, np.nan, -1, 1, 1, -1), (8, 1, 1, 3, 100.97612, -1.1, 1.188, 98.60011999999999, 4.0, 96.57611999999999, -0.1, 4.0, 0, 1, 0.01, 0.1, 0.01, 1e-08, np.inf, 0.0, False, True, False, True, 100.46808, -1.0, 1.08, 98.30807999999999, 4.0, 96.57611999999999, 0.1, 4.04, 0.10404000000000001, 0, 0, -1, 5), (9, 1, 1, 4, 100.46808, -1.0, 1.08, 98.30807999999999, 5.0, 95.46808, 1.0, 5.0, 0, 1, 0.01, 0.1, 0.01, 1e-08, np.inf, 0.0, False, True, False, True, 105.26858, -2.0, 6.03, 93.20857999999998, 5.0, 95.46808, 1.0, 4.95, 0.14950000000000002, 1, 0, -1, 6), (10, 2, 2, 0, 100.0, 0.0, 0.0, 100.0, 1.0, 100.0, 1.0, 1.0, 0, 2, 0.01, 0.1, 0.01, 1e-08, np.inf, 0.0, False, True, False, True, 98.8799, 1.0, 0.0, 98.8799, 1.0, 100.0, 1.0, 1.01, 0.1101, 0, 0, -1, 7), (11, 2, 2, 1, 98.8799, 1.0, 0.0, 98.8799, 2.0, 100.8799, 0.1, 2.0, 0, 2, 0.01, 0.1, 0.01, 1e-08, np.inf, 0.0, False, True, False, True, 98.57588000000001, 1.1, 0.0, 98.57588000000001, 2.0, 100.8799, 0.1, 2.02, 0.10202, 0, 0, -1, 8), (12, 2, 2, 2, 98.57588000000001, 1.1, 0.0, 98.57588000000001, 3.0, 101.87588000000001, -1.0, 3.0, 0, 2, 0.01, 0.1, 0.01, 1e-08, np.inf, 0.0, False, True, False, True, 101.41618000000001, 0.10000000000000009, 0.0, 101.41618000000001, 3.0, 101.87588000000001, 1.0, 2.9699999999999998, 0.1297, 1, 0, -1, 9), (13, 2, 2, 3, 101.41618000000001, 0.10000000000000009, 0.0, 101.41618000000001, 4.0, 101.81618000000002, -0.1, 4.0, 0, 2, 0.01, 0.1, 0.01, 1e-08, np.inf, 0.0, False, True, False, True, 101.70822000000001, 0.0, 0.0, 101.70822000000001, 4.0, 101.81618000000002, 0.1, 3.96, 0.10396000000000001, 1, 0, -1, 10), (14, 2, 2, 4, 101.70822000000001, 0.0, 0.0, 101.70822000000001, 4.0, 101.70822000000001, 1.0, np.nan, 0, 2, 0.01, 0.1, 0.01, 1e-08, np.inf, 0.0, False, True, False, True, 101.70822000000001, 0.0, 0.0, 101.70822000000001, 4.0, 101.70822000000001, np.nan, np.nan, np.nan, -1, 1, 1, -1) ], dtype=log_dt) ) result = pd.Series( np.array([5, 5, 5]), index=price_na.columns ).rename('count') pd.testing.assert_series_equal( pf.logs.count(), result ) pd.testing.assert_series_equal( pf_grouped.get_logs(group_by=False).count(), result ) pd.testing.assert_series_equal( pf_shared.get_logs(group_by=False).count(), result ) result = pd.Series( np.array([10, 5]), index=pd.Index(['first', 'second'], dtype='object', name='group') ).rename('count') pd.testing.assert_series_equal( pf.get_logs(group_by=group_by).count(), result ) pd.testing.assert_series_equal( pf_grouped.logs.count(), result ) pd.testing.assert_series_equal( pf_shared.logs.count(), result ) def test_entry_trades(self): record_arrays_close( pf.entry_trades.values, np.array([ (0, 0, 0.1, 1, 2.02, 0.10202, 2, 2.9699999999999998, 0.10297, -0.10999000000000003, -0.5445049504950497, 0, 1, 0), (1, 0, 1.0, 4, 5.05, 0.1505, 4, 5.0, 0.0, -0.20049999999999982, -0.03970297029702967, 0, 0, 1), (2, 1, 1.0, 0, 0.99, 0.10990000000000001, 4, 4.954285714285714, 0.049542857142857145, -4.12372857142857, -4.165382395382394, 1, 0, 2), (3, 1, 0.1, 1, 1.98, 0.10198, 4, 4.954285714285714, 0.004954285714285714, -0.4043628571428571, -2.0422366522366517, 1, 0, 2), (4, 1, 1.0, 4, 4.95, 0.14950000000000002, 4, 4.954285714285714, 0.049542857142857145, -0.20332857142857072, -0.04107647907647893, 1, 0, 2), (5, 2, 1.0, 0, 1.01, 0.1101, 3, 3.0599999999999996, 0.21241818181818184, 1.727481818181818, 1.71037803780378, 0, 1, 3), (6, 2, 0.1, 1, 2.02, 0.10202, 3, 3.0599999999999996, 0.021241818181818185, -0.019261818181818203, -0.09535553555355546, 0, 1, 3) ], dtype=trade_dt) ) result = pd.Series( np.array([2, 3, 2]), index=price_na.columns ).rename('count') pd.testing.assert_series_equal( pf.entry_trades.count(), result ) pd.testing.assert_series_equal( pf_grouped.get_entry_trades(group_by=False).count(), result ) pd.testing.assert_series_equal( pf_shared.get_entry_trades(group_by=False).count(), result ) result = pd.Series( np.array([5, 2]), index=pd.Index(['first', 'second'], dtype='object', name='group') ).rename('count') pd.testing.assert_series_equal( pf.get_entry_trades(group_by=group_by).count(), result ) pd.testing.assert_series_equal( pf_grouped.entry_trades.count(), result ) pd.testing.assert_series_equal( pf_shared.entry_trades.count(), result ) def test_exit_trades(self): record_arrays_close( pf.exit_trades.values, np.array([ (0, 0, 0.1, 1, 2.02, 0.10202, 2, 2.9699999999999998, 0.10297, -0.10999000000000003, -0.5445049504950497, 0, 1, 0), (1, 0, 1.0, 4, 5.05, 0.1505, 4, 5.0, 0.0, -0.20049999999999982, -0.03970297029702967, 0, 0, 1), (2, 1, 0.1, 0, 1.0799999999999998, 0.019261818181818182, 3, 4.04, 0.10404000000000001, -0.4193018181818182, -3.882424242424243, 1, 1, 2), (3, 1, 2.0, 0, 3.015, 0.3421181818181819, 4, 5.0, 0.0, -4.312118181818182, -0.7151108095884214, 1, 0, 2), (4, 2, 1.0, 0, 1.1018181818181818, 0.19283636363636364, 2, 2.9699999999999998, 0.1297, 1.5456454545454543, 1.4028135313531351, 0, 1, 3), (5, 2, 0.10000000000000009, 0, 1.1018181818181818, 0.019283636363636378, 3, 3.96, 0.10396000000000001, 0.1625745454545457, 1.4755115511551162, 0, 1, 3) ], dtype=trade_dt) ) result = pd.Series( np.array([2, 2, 2]), index=price_na.columns ).rename('count') pd.testing.assert_series_equal( pf.exit_trades.count(), result ) pd.testing.assert_series_equal( pf_grouped.get_exit_trades(group_by=False).count(), result ) pd.testing.assert_series_equal( pf_shared.get_exit_trades(group_by=False).count(), result ) result = pd.Series( np.array([4, 2]), index=pd.Index(['first', 'second'], dtype='object', name='group') ).rename('count') pd.testing.assert_series_equal( pf.get_exit_trades(group_by=group_by).count(), result ) pd.testing.assert_series_equal( pf_grouped.exit_trades.count(), result ) pd.testing.assert_series_equal( pf_shared.exit_trades.count(), result ) def test_positions(self): record_arrays_close( pf.positions.values, np.array([ (0, 0, 0.1, 1, 2.02, 0.10202, 2, 2.9699999999999998, 0.10297, -0.10999000000000003, -0.5445049504950497, 0, 1, 0), (1, 0, 1.0, 4, 5.05, 0.1505, 4, 5.0, 0.0, -0.20049999999999982, -0.03970297029702967, 0, 0, 1), (2, 1, 2.1, 0, 2.9228571428571426, 0.36138000000000003, 4, 4.954285714285714, 0.10404000000000001, -4.731420000000001, -0.7708406647116326, 1, 0, 2), (3, 2, 1.1, 0, 1.1018181818181818, 0.21212000000000003, 3, 3.06, 0.23366000000000003, 1.7082200000000003, 1.4094224422442245, 0, 1, 3) ], dtype=trade_dt) ) result = pd.Series( np.array([2, 1, 1]), index=price_na.columns ).rename('count') pd.testing.assert_series_equal( pf.positions.count(), result ) pd.testing.assert_series_equal( pf_grouped.get_positions(group_by=False).count(), result ) pd.testing.assert_series_equal( pf_shared.get_positions(group_by=False).count(), result ) result = pd.Series( np.array([3, 1]), index=pd.Index(['first', 'second'], dtype='object', name='group') ).rename('count') pd.testing.assert_series_equal( pf.get_positions(group_by=group_by).count(), result ) pd.testing.assert_series_equal( pf_grouped.positions.count(), result ) pd.testing.assert_series_equal( pf_shared.positions.count(), result ) def test_drawdowns(self): record_arrays_close( pf.drawdowns.values, np.array([ (0, 0, 0, 1, 4, 4, 100.0, 99.68951, 99.68951, 0), (1, 1, 0, 1, 4, 4, 99.8801, 95.26858, 95.26858, 0), (2, 2, 2, 3, 3, 4, 101.71618000000001, 101.70822000000001, 101.70822000000001, 0) ], dtype=drawdown_dt) ) result = pd.Series( np.array([1, 1, 1]), index=price_na.columns ).rename('count') pd.testing.assert_series_equal( pf.drawdowns.count(), result ) pd.testing.assert_series_equal( pf_grouped.get_drawdowns(group_by=False).count(), result ) pd.testing.assert_series_equal( pf_shared.get_drawdowns(group_by=False).count(), result ) result = pd.Series( np.array([1, 1]), index=pd.Index(['first', 'second'], dtype='object', name='group') ).rename('count') pd.testing.assert_series_equal( pf.get_drawdowns(group_by=group_by).count(), result ) pd.testing.assert_series_equal( pf_grouped.drawdowns.count(), result ) pd.testing.assert_series_equal( pf_shared.drawdowns.count(), result ) def test_close(self): pd.testing.assert_frame_equal(pf.close, price_na) pd.testing.assert_frame_equal(pf_grouped.close, price_na) pd.testing.assert_frame_equal(pf_shared.close, price_na) def test_get_filled_close(self): pd.testing.assert_frame_equal( pf.get_filled_close(), price_na.ffill().bfill() ) def test_asset_flow(self): pd.testing.assert_frame_equal( pf.asset_flow(direction='longonly'), pd.DataFrame( np.array([ [0., 0., 1.], [0.1, 0., 0.1], [-0.1, 0., -1.], [0., 0., -0.1], [1., 0., 0.] ]), index=price_na.index, columns=price_na.columns ) ) pd.testing.assert_frame_equal( pf.asset_flow(direction='shortonly'), pd.DataFrame( np.array([ [0., 1., 0.], [0., 0.1, 0.], [0., 0., 0.], [0., -0.1, 0.], [0., 1., 0.] ]), index=price_na.index, columns=price_na.columns ) ) result = pd.DataFrame( np.array([ [0., -1., 1.], [0.1, -0.1, 0.1], [-0.1, 0., -1.], [0., 0.1, -0.1], [1., -1., 0.] ]), index=price_na.index, columns=price_na.columns ) pd.testing.assert_frame_equal( pf.asset_flow(), result ) pd.testing.assert_frame_equal( pf_grouped.asset_flow(), result ) pd.testing.assert_frame_equal( pf_shared.asset_flow(), result ) def test_assets(self): pd.testing.assert_frame_equal( pf.assets(direction='longonly'), pd.DataFrame( np.array([ [0., 0., 1.], [0.1, 0., 1.1], [0., 0., 0.1], [0., 0., 0.], [1., 0., 0.] ]), index=price_na.index, columns=price_na.columns ) ) pd.testing.assert_frame_equal( pf.assets(direction='shortonly'), pd.DataFrame( np.array([ [0., 1., 0.], [0., 1.1, 0.], [0., 1.1, 0.], [0., 1., 0.], [0., 2., 0.] ]), index=price_na.index, columns=price_na.columns ) ) result = pd.DataFrame( np.array([ [0., -1., 1.], [0.1, -1.1, 1.1], [0., -1.1, 0.1], [0., -1., 0.], [1., -2., 0.] ]), index=price_na.index, columns=price_na.columns ) pd.testing.assert_frame_equal( pf.assets(), result ) pd.testing.assert_frame_equal( pf_grouped.assets(), result ) pd.testing.assert_frame_equal( pf_shared.assets(), result ) def test_position_mask(self): pd.testing.assert_frame_equal( pf.position_mask(direction='longonly'), pd.DataFrame( np.array([ [False, False, True], [True, False, True], [False, False, True], [False, False, False], [True, False, False] ]), index=price_na.index, columns=price_na.columns ) ) pd.testing.assert_frame_equal( pf.position_mask(direction='shortonly'), pd.DataFrame( np.array([ [False, True, False], [False, True, False], [False, True, False], [False, True, False], [False, True, False] ]), index=price_na.index, columns=price_na.columns ) ) result = pd.DataFrame( np.array([ [False, True, True], [True, True, True], [False, True, True], [False, True, False], [True, True, False] ]), index=price_na.index, columns=price_na.columns ) pd.testing.assert_frame_equal( pf.position_mask(), result ) pd.testing.assert_frame_equal( pf_grouped.position_mask(group_by=False), result ) pd.testing.assert_frame_equal( pf_shared.position_mask(group_by=False), result ) result = pd.DataFrame( np.array([ [True, True], [True, True], [True, True], [True, False], [True, False] ]), index=price_na.index, columns=pd.Index(['first', 'second'], dtype='object', name='group') ) pd.testing.assert_frame_equal( pf.position_mask(group_by=group_by), result ) pd.testing.assert_frame_equal( pf_grouped.position_mask(), result ) pd.testing.assert_frame_equal( pf_shared.position_mask(), result ) def test_position_coverage(self): pd.testing.assert_series_equal( pf.position_coverage(direction='longonly'), pd.Series(np.array([0.4, 0., 0.6]), index=price_na.columns).rename('position_coverage') ) pd.testing.assert_series_equal( pf.position_coverage(direction='shortonly'), pd.Series(np.array([0., 1., 0.]), index=price_na.columns).rename('position_coverage') ) result = pd.Series(np.array([0.4, 1., 0.6]), index=price_na.columns).rename('position_coverage') pd.testing.assert_series_equal( pf.position_coverage(), result ) pd.testing.assert_series_equal( pf_grouped.position_coverage(group_by=False), result ) pd.testing.assert_series_equal( pf_shared.position_coverage(group_by=False), result ) result = pd.Series( np.array([0.7, 0.6]), pd.Index(['first', 'second'], dtype='object', name='group') ).rename('position_coverage') pd.testing.assert_series_equal( pf.position_coverage(group_by=group_by), result ) pd.testing.assert_series_equal( pf_grouped.position_coverage(), result ) pd.testing.assert_series_equal( pf_shared.position_coverage(), result ) def test_cash_flow(self): pd.testing.assert_frame_equal( pf.cash_flow(free=True), pd.DataFrame( np.array([ [0.0, -1.0998999999999999, -1.1201], [-0.30402, -0.2999800000000002, -0.3040200000000002], [0.19402999999999998, 0.0, 2.8402999999999996], [0.0, -0.2920400000000002, 0.29204000000000035], [-5.2005, -5.0995, 0.0] ]), index=price_na.index, columns=price_na.columns ) ) result = pd.DataFrame( np.array([ [0., 0.8801, -1.1201], [-0.30402, 0.09602, -0.30402], [0.19403, 0., 2.8403], [0., -0.50804, 0.29204], [-5.2005, 4.8005, 0.] ]), index=price_na.index, columns=price_na.columns ) pd.testing.assert_frame_equal( pf.cash_flow(), result ) pd.testing.assert_frame_equal( pf_grouped.cash_flow(group_by=False), result ) pd.testing.assert_frame_equal( pf_shared.cash_flow(group_by=False), result ) result = pd.DataFrame( np.array([ [0.8801, -1.1201], [-0.208, -0.30402], [0.19403, 2.8403], [-0.50804, 0.29204], [-0.4, 0.] ]), index=price_na.index, columns=pd.Index(['first', 'second'], dtype='object', name='group') ) pd.testing.assert_frame_equal( pf.cash_flow(group_by=group_by), result ) pd.testing.assert_frame_equal( pf_grouped.cash_flow(), result ) pd.testing.assert_frame_equal( pf_shared.cash_flow(), result ) def test_init_cash(self): pd.testing.assert_series_equal( pf.init_cash, pd.Series(np.array([100., 100., 100.]), index=price_na.columns).rename('init_cash') ) pd.testing.assert_series_equal( pf_grouped.get_init_cash(group_by=False), pd.Series(np.array([100., 100., 100.]), index=price_na.columns).rename('init_cash') ) pd.testing.assert_series_equal( pf_shared.get_init_cash(group_by=False), pd.Series(np.array([200., 200., 100.]), index=price_na.columns).rename('init_cash') ) result = pd.Series( np.array([200., 100.]), pd.Index(['first', 'second'], dtype='object', name='group') ).rename('init_cash') pd.testing.assert_series_equal( pf.get_init_cash(group_by=group_by), result ) pd.testing.assert_series_equal( pf_grouped.init_cash, result ) pd.testing.assert_series_equal( pf_shared.init_cash, result ) pd.testing.assert_series_equal( vbt.Portfolio.from_orders( price_na, 1000., init_cash=InitCashMode.Auto, group_by=None).init_cash, pd.Series( np.array([14000., 12000., 10000.]), index=price_na.columns ).rename('init_cash') ) pd.testing.assert_series_equal( vbt.Portfolio.from_orders( price_na, 1000., init_cash=InitCashMode.Auto, group_by=group_by).init_cash, pd.Series( np.array([26000.0, 10000.0]), index=pd.Index(['first', 'second'], dtype='object', name='group') ).rename('init_cash') ) pd.testing.assert_series_equal( vbt.Portfolio.from_orders( price_na, 1000., init_cash=InitCashMode.Auto, group_by=group_by, cash_sharing=True).init_cash, pd.Series( np.array([26000.0, 10000.0]), index=pd.Index(['first', 'second'], dtype='object', name='group') ).rename('init_cash') ) pd.testing.assert_series_equal( vbt.Portfolio.from_orders( price_na, 1000., init_cash=InitCashMode.AutoAlign, group_by=None).init_cash, pd.Series( np.array([14000., 14000., 14000.]), index=price_na.columns ).rename('init_cash') ) pd.testing.assert_series_equal( vbt.Portfolio.from_orders( price_na, 1000., init_cash=InitCashMode.AutoAlign, group_by=group_by).init_cash, pd.Series( np.array([26000.0, 26000.0]), index=pd.Index(['first', 'second'], dtype='object', name='group') ).rename('init_cash') ) pd.testing.assert_series_equal( vbt.Portfolio.from_orders( price_na, 1000., init_cash=InitCashMode.AutoAlign, group_by=group_by, cash_sharing=True).init_cash, pd.Series( np.array([26000.0, 26000.0]), index=pd.Index(['first', 'second'], dtype='object', name='group') ).rename('init_cash') ) def test_cash(self): pd.testing.assert_frame_equal( pf.cash(free=True), pd.DataFrame( np.array([ [100.0, 98.9001, 98.8799], [99.69598, 98.60011999999999, 98.57588000000001], [99.89001, 98.60011999999999, 101.41618000000001], [99.89001, 98.30807999999999, 101.70822000000001], [94.68951, 93.20857999999998, 101.70822000000001] ]), index=price_na.index, columns=price_na.columns ) ) result = pd.DataFrame( np.array([ [100., 100.8801, 98.8799], [99.69598, 100.97612, 98.57588], [99.89001, 100.97612, 101.41618], [99.89001, 100.46808, 101.70822], [94.68951, 105.26858, 101.70822] ]), index=price_na.index, columns=price_na.columns ) pd.testing.assert_frame_equal( pf.cash(), result ) pd.testing.assert_frame_equal( pf_grouped.cash(group_by=False), result ) pd.testing.assert_frame_equal( pf_shared.cash(group_by=False), pd.DataFrame( np.array([ [200., 200.8801, 98.8799], [199.69598, 200.97612, 98.57588], [199.89001, 200.97612, 101.41618], [199.89001, 200.46808, 101.70822], [194.68951, 205.26858, 101.70822] ]), index=price_na.index, columns=price_na.columns ) ) pd.testing.assert_frame_equal( pf_shared.cash(group_by=False, in_sim_order=True), pd.DataFrame( np.array([ [200.8801, 200.8801, 98.8799], [200.6721, 200.97612, 98.57588000000001], [200.86613, 200.6721, 101.41618000000001], [200.35809, 200.35809, 101.70822000000001], [199.95809, 205.15859, 101.70822000000001] ]), index=price_na.index, columns=price_na.columns ) ) result = pd.DataFrame( np.array([ [200.8801, 98.8799], [200.6721, 98.57588], [200.86613, 101.41618], [200.35809, 101.70822], [199.95809, 101.70822] ]), index=price_na.index, columns=pd.Index(['first', 'second'], dtype='object', name='group') ) pd.testing.assert_frame_equal( pf.cash(group_by=group_by), result ) pd.testing.assert_frame_equal( pf_grouped.cash(), result ) pd.testing.assert_frame_equal( pf_shared.cash(), result ) def test_asset_value(self): pd.testing.assert_frame_equal( pf.asset_value(direction='longonly'), pd.DataFrame( np.array([ [0., 0., 1.], [0.2, 0., 2.2], [0., 0., 0.3], [0., 0., 0.], [5., 0., 0.] ]), index=price_na.index, columns=price_na.columns ) ) pd.testing.assert_frame_equal( pf.asset_value(direction='shortonly'), pd.DataFrame( np.array([ [0., 1., 0.], [0., 2.2, 0.], [0., 2.2, 0.], [0., 4., 0.], [0., 10., 0.] ]), index=price_na.index, columns=price_na.columns ) ) result = pd.DataFrame( np.array([ [0., -1., 1.], [0.2, -2.2, 2.2], [0., -2.2, 0.3], [0., -4., 0.], [5., -10., 0.] ]), index=price_na.index, columns=price_na.columns ) pd.testing.assert_frame_equal( pf.asset_value(), result ) pd.testing.assert_frame_equal( pf_grouped.asset_value(group_by=False), result ) pd.testing.assert_frame_equal( pf_shared.asset_value(group_by=False), result ) result = pd.DataFrame( np.array([ [-1., 1.], [-2., 2.2], [-2.2, 0.3], [-4., 0.], [-5., 0.] ]), index=price_na.index, columns=pd.Index(['first', 'second'], dtype='object', name='group') ) pd.testing.assert_frame_equal( pf.asset_value(group_by=group_by), result ) pd.testing.assert_frame_equal( pf_grouped.asset_value(), result ) pd.testing.assert_frame_equal( pf_shared.asset_value(), result ) def test_gross_exposure(self): pd.testing.assert_frame_equal( pf.gross_exposure(direction='longonly'), pd.DataFrame( np.array([ [0., 0., 0.01001202], [0.00200208, 0., 0.02183062], [0., 0., 0.00294938], [0., 0., 0.], [0.05015573, 0., 0.] ]), index=price_na.index, columns=price_na.columns ) ) pd.testing.assert_frame_equal( pf.gross_exposure(direction='shortonly'), pd.DataFrame( np.array([ [0.0, 0.01000999998999, 0.0], [0.0, 0.021825370842812494, 0.0], [0.0, 0.021825370842812494, 0.0], [0.0, 0.03909759620159034, 0.0], [0.0, 0.09689116931945001, 0.0] ]), index=price_na.index, columns=price_na.columns ) ) result = pd.DataFrame( np.array([ [0.0, -0.010214494162927312, 0.010012024441354066], [0.00200208256628545, -0.022821548354919067, 0.021830620581035857], [0.0, -0.022821548354919067, 0.002949383274126105], [0.0, -0.04241418126633477, 0.0], [0.050155728521486365, -0.12017991413866216, 0.0] ]), index=price_na.index, columns=price_na.columns ) pd.testing.assert_frame_equal( pf.gross_exposure(), result ) pd.testing.assert_frame_equal( pf_grouped.gross_exposure(group_by=False), result ) pd.testing.assert_frame_equal( pf_shared.gross_exposure(group_by=False), pd.DataFrame( np.array([ [0.0, -0.00505305454620791, 0.010012024441354066], [0.0010005203706447724, -0.011201622483733716, 0.021830620581035857], [0.0, -0.011201622483733716, 0.002949383274126105], [0.0, -0.020585865497718882, 0.0], [0.025038871596209537, -0.0545825965137659, 0.0] ]), index=price_na.index, columns=price_na.columns ) ) result = pd.DataFrame( np.array([ [-0.00505305454620791, 0.010012024441354066], [-0.010188689433972452, 0.021830620581035857], [-0.0112078992458765, 0.002949383274126105], [-0.02059752492931316, 0.0], [-0.027337628293439265, 0.0] ]), index=price_na.index, columns=pd.Index(['first', 'second'], dtype='object', name='group') ) pd.testing.assert_frame_equal( pf.gross_exposure(group_by=group_by), result ) pd.testing.assert_frame_equal( pf_grouped.gross_exposure(), result ) pd.testing.assert_frame_equal( pf_shared.gross_exposure(), result ) def test_net_exposure(self): result = pd.DataFrame( np.array([ [0.0, -0.01000999998999, 0.010012024441354066], [0.00200208256628545, -0.021825370842812494, 0.021830620581035857], [0.0, -0.021825370842812494, 0.002949383274126105], [0.0, -0.03909759620159034, 0.0], [0.050155728521486365, -0.09689116931945001, 0.0] ]), index=price_na.index, columns=price_na.columns ) pd.testing.assert_frame_equal( pf.net_exposure(), result ) pd.testing.assert_frame_equal( pf_grouped.net_exposure(group_by=False), result ) pd.testing.assert_frame_equal( pf_shared.net_exposure(group_by=False), pd.DataFrame( np.array([ [0.0, -0.005002498748124688, 0.010012024441354066], [0.0010005203706447724, -0.010956168751293576, 0.021830620581035857], [0.0, -0.010956168751293576, 0.002949383274126105], [0.0, -0.019771825228137207, 0.0], [0.025038871596209537, -0.049210520540028384, 0.0] ]), index=price_na.index, columns=price_na.columns ) ) result = pd.DataFrame( np.array([ [-0.005002498748124688, 0.010012024441354066], [-0.009965205542937988, 0.021830620581035857], [-0.010962173376438594, 0.002949383274126105], [-0.019782580537729116, 0.0], [-0.0246106361476199, 0.0] ]), index=price_na.index, columns=pd.Index(['first', 'second'], dtype='object', name='group') ) pd.testing.assert_frame_equal( pf.net_exposure(group_by=group_by), result ) pd.testing.assert_frame_equal( pf_grouped.net_exposure(), result ) pd.testing.assert_frame_equal( pf_shared.net_exposure(), result ) def test_value(self): result = pd.DataFrame( np.array([ [100., 99.8801, 99.8799], [99.89598, 98.77612, 100.77588], [99.89001, 98.77612, 101.71618], [99.89001, 96.46808, 101.70822], [99.68951, 95.26858, 101.70822] ]), index=price_na.index, columns=price_na.columns ) pd.testing.assert_frame_equal( pf.value(), result ) pd.testing.assert_frame_equal( pf_grouped.value(group_by=False), result ) pd.testing.assert_frame_equal( pf_shared.value(group_by=False), pd.DataFrame( np.array([ [200., 199.8801, 99.8799], [199.89598, 198.77612, 100.77588], [199.89001, 198.77612, 101.71618], [199.89001, 196.46808, 101.70822], [199.68951, 195.26858, 101.70822] ]), index=price_na.index, columns=price_na.columns ) ) pd.testing.assert_frame_equal( pf_shared.value(group_by=False, in_sim_order=True), pd.DataFrame( np.array([ [199.8801, 199.8801, 99.8799], [198.6721, 198.77612000000002, 100.77588000000002], [198.66613, 198.6721, 101.71618000000001], [196.35809, 196.35809, 101.70822000000001], [194.95809, 195.15859, 101.70822000000001] ]), index=price_na.index, columns=price_na.columns ) ) result = pd.DataFrame( np.array([ [199.8801, 99.8799], [198.6721, 100.77588], [198.66613, 101.71618], [196.35809, 101.70822], [194.95809, 101.70822] ]), index=price_na.index, columns=pd.Index(['first', 'second'], dtype='object', name='group') ) pd.testing.assert_frame_equal( pf.value(group_by=group_by), result ) pd.testing.assert_frame_equal( pf_grouped.value(), result ) pd.testing.assert_frame_equal( pf_shared.value(), result ) def test_total_profit(self): result = pd.Series( np.array([-0.31049, -4.73142, 1.70822]), index=price_na.columns ).rename('total_profit') pd.testing.assert_series_equal( pf.total_profit(), result ) pd.testing.assert_series_equal( pf_grouped.total_profit(group_by=False), result ) pd.testing.assert_series_equal( pf_shared.total_profit(group_by=False), result ) result = pd.Series( np.array([-5.04191, 1.70822]), index=pd.Index(['first', 'second'], dtype='object', name='group') ).rename('total_profit') pd.testing.assert_series_equal( pf.total_profit(group_by=group_by), result ) pd.testing.assert_series_equal( pf_grouped.total_profit(), result ) pd.testing.assert_series_equal( pf_shared.total_profit(), result ) def test_final_value(self): result = pd.Series( np.array([99.68951, 95.26858, 101.70822]), index=price_na.columns ).rename('final_value') pd.testing.assert_series_equal( pf.final_value(), result ) pd.testing.assert_series_equal( pf_grouped.final_value(group_by=False), result ) pd.testing.assert_series_equal( pf_shared.final_value(group_by=False), pd.Series( np.array([199.68951, 195.26858, 101.70822]), index=price_na.columns ).rename('final_value') ) result = pd.Series( np.array([194.95809, 101.70822]), index=pd.Index(['first', 'second'], dtype='object', name='group') ).rename('final_value') pd.testing.assert_series_equal( pf.final_value(group_by=group_by), result ) pd.testing.assert_series_equal( pf_grouped.final_value(), result ) pd.testing.assert_series_equal( pf_shared.final_value(), result ) def test_total_return(self): result = pd.Series( np.array([-0.0031049, -0.0473142, 0.0170822]), index=price_na.columns ).rename('total_return') pd.testing.assert_series_equal( pf.total_return(), result ) pd.testing.assert_series_equal( pf_grouped.total_return(group_by=False), result ) pd.testing.assert_series_equal( pf_shared.total_return(group_by=False), pd.Series( np.array([-0.00155245, -0.0236571, 0.0170822]), index=price_na.columns ).rename('total_return') ) result = pd.Series( np.array([-0.02520955, 0.0170822]), index=pd.Index(['first', 'second'], dtype='object', name='group') ).rename('total_return') pd.testing.assert_series_equal( pf.total_return(group_by=group_by), result ) pd.testing.assert_series_equal( pf_grouped.total_return(), result ) pd.testing.assert_series_equal( pf_shared.total_return(), result ) def test_returns(self): result = pd.DataFrame( np.array([ [0.00000000e+00, -1.19900000e-03, -1.20100000e-03], [-1.04020000e-03, -1.10530526e-02, 8.97057366e-03], [-5.97621646e-05, 0.0, 9.33060570e-03], [0.00000000e+00, -0.023366376407576966, -7.82569695e-05], [-2.00720773e-03, -1.24341648e-02, 0.00000000e+00] ]), index=price_na.index, columns=price_na.columns ) pd.testing.assert_frame_equal( pf.returns(), result ) pd.testing.assert_frame_equal( pf_grouped.returns(group_by=False), result ) pd.testing.assert_frame_equal( pf_shared.returns(group_by=False), pd.DataFrame( np.array([ [0.00000000e+00, -5.99500000e-04, -1.20100000e-03], [-5.20100000e-04, -5.52321117e-03, 8.97057366e-03], [-2.98655331e-05, 0.0, 9.33060570e-03], [0.00000000e+00, -0.011611253907159497, -7.82569695e-05], [-1.00305163e-03, -6.10531746e-03, 0.00000000e+00] ]), index=price_na.index, columns=price_na.columns ) ) pd.testing.assert_frame_equal( pf_shared.returns(group_by=False, in_sim_order=True), pd.DataFrame( np.array([ [0.0, -0.0005995000000000062, -1.20100000e-03], [-0.0005233022960706736, -0.005523211165093367, 8.97057366e-03], [-3.0049513746473233e-05, 0.0, 9.33060570e-03], [0.0, -0.011617682390048093, -7.82569695e-05], [-0.0010273695869600474, -0.0061087373583639994, 0.00000000e+00] ]), index=price_na.index, columns=price_na.columns ) ) result = pd.DataFrame( np.array([ [-5.99500000e-04, -1.20100000e-03], [-6.04362315e-03, 8.97057366e-03], [-3.0049513746473233e-05, 9.33060570e-03], [-0.011617682390048093, -7.82569695e-05], [-7.12983101e-03, 0.00000000e+00] ]), index=price_na.index, columns=pd.Index(['first', 'second'], dtype='object', name='group') ) pd.testing.assert_frame_equal( pf.returns(group_by=group_by), result ) pd.testing.assert_frame_equal( pf_grouped.returns(), result ) pd.testing.assert_frame_equal( pf_shared.returns(), result ) def test_asset_returns(self): result = pd.DataFrame( np.array([ [0., -np.inf, -np.inf], [-np.inf, -1.10398, 0.89598], [-0.02985, 0.0, 0.42740909], [0., -1.0491090909090908, -0.02653333], [-np.inf, -0.299875, 0.] ]), index=price_na.index, columns=price_na.columns ) pd.testing.assert_frame_equal( pf.asset_returns(), result ) pd.testing.assert_frame_equal( pf_grouped.asset_returns(group_by=False), result ) pd.testing.assert_frame_equal( pf_shared.asset_returns(group_by=False), result ) result = pd.DataFrame( np.array([ [-np.inf, -np.inf], [-1.208, 0.89598], [-0.0029850000000000154, 0.42740909], [-1.0491090909090908, -0.02653333], [-0.35, 0.] ]), index=price_na.index, columns=pd.Index(['first', 'second'], dtype='object', name='group') ) pd.testing.assert_frame_equal( pf.asset_returns(group_by=group_by), result ) pd.testing.assert_frame_equal( pf_grouped.asset_returns(), result ) pd.testing.assert_frame_equal( pf_shared.asset_returns(), result ) def test_benchmark_value(self): result = pd.DataFrame( np.array([ [100., 100., 100.], [100., 200., 200.], [150., 200., 300.], [200., 400., 400.], [250., 500., 400.] ]), index=price_na.index, columns=price_na.columns ) pd.testing.assert_frame_equal( pf.benchmark_value(), result ) pd.testing.assert_frame_equal( pf_grouped.benchmark_value(group_by=False), result ) pd.testing.assert_frame_equal( pf_shared.benchmark_value(group_by=False), pd.DataFrame( np.array([ [200., 200., 100.], [200., 400., 200.], [300., 400., 300.], [400., 800., 400.], [500., 1000., 400.] ]), index=price_na.index, columns=price_na.columns ) ) result = pd.DataFrame( np.array([ [200., 100.], [300., 200.], [350., 300.], [600., 400.], [750., 400.] ]), index=price_na.index, columns=pd.Index(['first', 'second'], dtype='object', name='group') ) pd.testing.assert_frame_equal( pf.benchmark_value(group_by=group_by), result ) pd.testing.assert_frame_equal( pf_grouped.benchmark_value(), result ) pd.testing.assert_frame_equal( pf_shared.benchmark_value(), result ) def test_benchmark_returns(self): result = pd.DataFrame( np.array([ [0., 0., 0.], [0., 1., 1.], [0.5, 0., 0.5], [0.33333333, 1., 0.33333333], [0.25, 0.25, 0.] ]), index=price_na.index, columns=price_na.columns ) pd.testing.assert_frame_equal( pf.benchmark_returns(), result ) pd.testing.assert_frame_equal( pf_grouped.benchmark_returns(group_by=False), result ) pd.testing.assert_frame_equal( pf_shared.benchmark_returns(group_by=False), result ) result = pd.DataFrame( np.array([ [0., 0.], [0.5, 1.], [0.16666667, 0.5], [0.71428571, 0.33333333], [0.25, 0.] ]), index=price_na.index, columns=pd.Index(['first', 'second'], dtype='object', name='group') ) pd.testing.assert_frame_equal( pf.benchmark_returns(group_by=group_by), result ) pd.testing.assert_frame_equal( pf_grouped.benchmark_returns(), result ) pd.testing.assert_frame_equal( pf_shared.benchmark_returns(), result ) def test_total_benchmark_return(self): result = pd.Series( np.array([1.5, 4., 3.]), index=price_na.columns ).rename('total_benchmark_return') pd.testing.assert_series_equal( pf.total_benchmark_return(), result ) pd.testing.assert_series_equal( pf_grouped.total_benchmark_return(group_by=False), result ) pd.testing.assert_series_equal( pf_shared.total_benchmark_return(group_by=False), result ) result = pd.Series( np.array([2.75, 3.]), index=pd.Index(['first', 'second'], dtype='object', name='group') ).rename('total_benchmark_return') pd.testing.assert_series_equal( pf.total_benchmark_return(group_by=group_by), result ) pd.testing.assert_series_equal( pf_grouped.total_benchmark_return(), result ) pd.testing.assert_series_equal( pf_shared.total_benchmark_return(), result ) def test_return_method(self): pd.testing.assert_frame_equal( pf_shared.cumulative_returns(), pd.DataFrame( np.array([ [-0.000599499999999975, -0.0012009999999998966], [-0.006639499999999909, 0.007758800000000177], [-0.006669349999999907, 0.017161800000000005], [-0.01820955000000002, 0.017082199999999936], [-0.025209550000000136, 0.017082199999999936] ]), index=price_na.index, columns=pd.Index(['first', 'second'], dtype='object', name='group') ) ) pd.testing.assert_frame_equal( pf_shared.cumulative_returns(group_by=False), pd.DataFrame( np.array([ [0.0, -0.000599499999999975, -0.0012009999999998966], [-0.0005201000000001343, -0.006119399999999886, 0.007758800000000177], [-0.0005499500000001323, -0.006119399999999886, 0.017161800000000005], [-0.0005499500000001323, -0.017659599999999886, 0.017082199999999936], [-0.0015524500000001495, -0.023657099999999875, 0.017082199999999936] ]), index=price_na.index, columns=price_na.columns ) ) pd.testing.assert_series_equal( pf_shared.sharpe_ratio(), pd.Series( np.array([-20.095906945591288, 12.345065267401496]), index=pd.Index(['first', 'second'], dtype='object', name='group') ).rename('sharpe_ratio') ) pd.testing.assert_series_equal( pf_shared.sharpe_ratio(risk_free=0.01), pd.Series( np.array([-59.62258787402645, -23.91718815937344]), index=pd.Index(['first', 'second'], dtype='object', name='group') ).rename('sharpe_ratio') ) pd.testing.assert_series_equal( pf_shared.sharpe_ratio(year_freq='365D'), pd.Series( np.array([-20.095906945591288, 12.345065267401496]), index=pd.Index(['first', 'second'], dtype='object', name='group') ).rename('sharpe_ratio') ) pd.testing.assert_series_equal( pf_shared.sharpe_ratio(group_by=False), pd.Series( np.array([-13.30950646054953, -19.278625117344564, 12.345065267401496]), index=price_na.columns ).rename('sharpe_ratio') ) pd.testing.assert_series_equal( pf_shared.information_ratio(group_by=False), pd.Series( np.array([-0.9988561334618041, -0.8809478746008806, -0.884780642352239]), index=price_na.columns ).rename('information_ratio') ) with pytest.raises(Exception): _ = pf_shared.information_ratio(pf_shared.benchmark_returns(group_by=False) * 2) def test_stats(self): stats_index = pd.Index([ 'Start', 'End', 'Period', 'Start Value', 'End Value', 'Total Return [%]', 'Benchmark Return [%]', 'Max Gross Exposure [%]', 'Total Fees Paid', 'Max Drawdown [%]', 'Max Drawdown Duration', 'Total Trades', 'Total Closed Trades', 'Total Open Trades', 'Open Trade PnL', 'Win Rate [%]', 'Best Trade [%]', 'Worst Trade [%]', 'Avg Winning Trade [%]', 'Avg Losing Trade [%]', 'Avg Winning Trade Duration', 'Avg Losing Trade Duration', 'Profit Factor', 'Expectancy', 'Sharpe Ratio', 'Calmar Ratio', 'Omega Ratio', 'Sortino Ratio' ], dtype='object') pd.testing.assert_series_equal( pf.stats(), pd.Series( np.array([ pd.Timestamp('2020-01-01 00:00:00'), pd.Timestamp('2020-01-05 00:00:00'), pd.Timedelta('5 days 00:00:00'), 100.0, 98.88877000000001, -1.11123, 283.3333333333333, 2.05906183131983, 0.42223000000000005, 1.6451238489727062, pd.Timedelta('3 days 08:00:00'), 2.0, 1.3333333333333333, 0.6666666666666666, -1.5042060606060605, 33.333333333333336, -98.38058805880588, -100.8038553855386, 143.91625412541256, -221.34645964596464, pd.Timedelta('2 days 12:00:00'), pd.Timedelta('2 days 00:00:00'), np.inf, 0.10827272727272726, -6.751008013903537, 10378.930331014584, 4.768700318817701, 31.599760994679134 ]), index=stats_index, name='agg_func_mean') ) pd.testing.assert_series_equal( pf.stats(column='a'), pd.Series( np.array([ pd.Timestamp('2020-01-01 00:00:00'), pd.Timestamp('2020-01-05 00:00:00'), pd.Timedelta('5 days 00:00:00'), 100.0, 99.68951, -0.3104899999999997, 150.0, 5.015572852148637, 0.35549, 0.3104900000000015, pd.Timedelta('4 days 00:00:00'), 2, 1, 1, -0.20049999999999982, 0.0, -54.450495049504966, -54.450495049504966, np.nan, -54.450495049504966, pd.NaT, pd.Timedelta('1 days 00:00:00'), 0.0, -0.10999000000000003, -13.30804491478906, -65.40868619923044, 0.0, -11.738864633265454 ]), index=stats_index, name='a') ) pd.testing.assert_series_equal( pf.stats(column='a', settings=dict(freq='10 days', year_freq='200 days')), pd.Series( np.array([ pd.Timestamp('2020-01-01 00:00:00'), pd.Timestamp('2020-01-05 00:00:00'), pd.Timedelta('50 days 00:00:00'), 100.0, 99.68951, -0.3104899999999997, 150.0, 5.015572852148637, 0.35549, 0.3104900000000015, pd.Timedelta('40 days 00:00:00'), 2, 1, 1, -0.20049999999999982, 0.0, -54.450495049504966, -54.450495049504966, np.nan, -54.450495049504966, pd.NaT, pd.Timedelta('10 days 00:00:00'), 0.0, -0.10999000000000003, -3.1151776875290866, -3.981409131683691, 0.0, -2.7478603669149457 ]), index=stats_index, name='a') ) pd.testing.assert_series_equal( pf.stats(column='a', settings=dict(trade_type='positions')), pd.Series( np.array([ pd.Timestamp('2020-01-01 00:00:00'), pd.Timestamp('2020-01-05 00:00:00'), pd.Timedelta('5 days 00:00:00'), 100.0, 99.68951, -0.3104899999999997, 150.0, 5.015572852148637, 0.35549, 0.3104900000000015, pd.Timedelta('4 days 00:00:00'), 2, 1, 1, -0.20049999999999982, 0.0, -54.450495049504966, -54.450495049504966, np.nan, -54.450495049504966, pd.NaT, pd.Timedelta('1 days 00:00:00'), 0.0, -0.10999000000000003, -13.30804491478906, -65.40868619923044, 0.0, -11.738864633265454 ]), index=pd.Index([ 'Start', 'End', 'Period', 'Start Value', 'End Value', 'Total Return [%]', 'Benchmark Return [%]', 'Max Gross Exposure [%]', 'Total Fees Paid', 'Max Drawdown [%]', 'Max Drawdown Duration', 'Total Trades', 'Total Closed Trades', 'Total Open Trades', 'Open Trade PnL', 'Win Rate [%]', 'Best Trade [%]', 'Worst Trade [%]', 'Avg Winning Trade [%]', 'Avg Losing Trade [%]', 'Avg Winning Trade Duration', 'Avg Losing Trade Duration', 'Profit Factor', 'Expectancy', 'Sharpe Ratio', 'Calmar Ratio', 'Omega Ratio', 'Sortino Ratio' ], dtype='object'), name='a') ) pd.testing.assert_series_equal( pf.stats(column='a', settings=dict(required_return=0.1, risk_free=0.01)), pd.Series( np.array([ pd.Timestamp('2020-01-01 00:00:00'), pd.Timestamp('2020-01-05 00:00:00'), pd.Timedelta('5 days 00:00:00'), 100.0, 99.68951, -0.3104899999999997, 150.0, 5.015572852148637, 0.35549, 0.3104900000000015,
pd.Timedelta('4 days 00:00:00')
pandas.Timedelta
# Standard libraries import sys from typing import Optional import threading # Third party libraries import discord from discord.ext import commands import pandas as pd # Local dependencies from util.vars import config from util.db import get_db def get_guild(bot: commands.Bot) -> discord.Guild: """ Returns the guild / server the bot is currently connected to. Parameters ---------- commands.Bot The bot object. Returns ------- discord.Guild The guild / server the bot is currently connected to. """ return discord.utils.get( bot.guilds, # Return the debug server if -test is used as an argument name=config["DEBUG"]["GUILD_NAME"] if len(sys.argv) > 1 and sys.argv[1] == "-test" else config["DISCORD"]["GUILD_NAME"], ) def get_channel(bot: commands.Bot, channel_name: str) -> discord.TextChannel: """ Returns the discord.TextChannel object of the channel with the given name. Parameters ---------- bot : commands.Bot The bot object. channel_name : str The name of the channel. Returns ------- discord.TextChannel The discord.TextChannel object of the channel with the given name. """ return discord.utils.get( bot.get_all_channels(), guild__name=config["DEBUG"]["GUILD_NAME"] if len(sys.argv) > 1 and sys.argv[1] == "-test" else config["DISCORD"]["GUILD_NAME"], name=channel_name, ) def get_emoji(bot: commands.Bot, emoji: str) -> discord.Emoji: """ Returns the custom emoji with the given name. Parameters ---------- bot : commands.Bot The bot object. emoji : str The name of the emoji. Returns ------- discord.Emoji The custom emoji with the given name. """ guild = get_guild(bot) return discord.utils.get(guild.emojis, name=emoji) async def get_user(bot: commands.Bot, user_id: int) -> discord.User: """ Gets the discord.User object of the user with the given id. Parameters ---------- bot : commands.Bot The bot object. user_id : int The id of the user. Returns ------- discord.User The discord.User object of the user with the given id. """ return await bot.fetch_user(user_id) assets_db =
pd.DataFrame()
pandas.DataFrame
# TO DO # 1. Fair probability # 2. Hedge opportunities # 3. Datapane map # 4. Change since prior poll # Import modules import json import requests import warnings warnings.simplefilter(action='ignore', category=FutureWarning) import pandas as pd pd.set_option('display.max_rows', None) #print all rows without truncating pd.options.mode.chained_assignment = None #hide SettingWithCopyWarning import numpy as np import datetime import os import zipfile #Economist import urllib.request #Economist # Pull in market data from PredictIt's API Predictit_URL = "https://www.predictit.org/api/marketdata/all/" Predictit_response = requests.get(Predictit_URL) jsondata = Predictit_response.json() # Replace null values with zero def dict_clean(items): result = {} for key, value in items: if value is None: value = 0 result[key] = value return result dict_str = json.dumps(jsondata) jsondata = json.loads(dict_str, object_pairs_hook=dict_clean) # Market data by contract/price in dataframe data = [] for p in jsondata['markets']: for k in p['contracts']: data.append([p['id'],p['name'],k['id'],k['name'],k['bestBuyYesCost'],k['bestBuyNoCost'],k['bestSellYesCost'],k['bestSellNoCost']]) # Pandas dataframe named 'predictit_df' predictit_df = pd.DataFrame(data) # Update dataframe column names predictit_df.columns=['Market_ID','Market_Name','Contract_ID','Contract_Name','PredictIt_Yes','bestBuyNoCost','BestSellYesCost','BestSellNoCost'] # Filter PredicitIt dataframe to presidential state markets/contracts predictit_df = predictit_df[predictit_df['Market_Name'].str.contains("Which party will win") & predictit_df['Market_Name'].str.contains("2020 presidential election?")] # Fix annoying typo (double space) in congressional district market names predictit_df['Market_Name'] = predictit_df['Market_Name'].str.replace('in the 2020','in the 2020') # Split Market_Name column into state name column start_string = "Which party will win" end_string = "in the 2020 presidential election?" predictit_df['a'], predictit_df['state'] = predictit_df['Market_Name'].str.split(start_string, 1).str predictit_df['state'], predictit_df['b'] = predictit_df['state'].str.split(end_string, 1).str del predictit_df['a'] del predictit_df['b'] # Create answer column from contract names predictit_df['answer'] = predictit_df['Contract_Name'].str.replace('Republican','Trump').str.replace('Democratic','Biden') # Strip trailing/leading whitespaces in answer and state columns predictit_df['state'] = predictit_df['state'].str.strip() predictit_df['answer'] = predictit_df['answer'].str.strip() # Pull in polling data from 538 pres_polling = pd.read_csv('https://projects.fivethirtyeight.com/polls-page/president_polls.csv') pres_polling = pres_polling.dropna(subset=['state']) # Drop extraneous columns pres_polling = pres_polling.drop(['pollster_id', 'sponsor_ids','sponsors','display_name', 'pollster_rating_id', 'pollster_rating_name', 'fte_grade', 'sample_size', 'population', 'population_full', 'methodology', 'seat_number', 'seat_name', 'start_date', 'sponsor_candidate', 'internal', 'partisan', 'tracking', 'nationwide_batch', 'ranked_choice_reallocated', 'notes', 'url'], axis=1) # Standardize congressional district names in 538 with PredictIt pres_polling['state'] = pres_polling['state'].str.replace('Maine CD-1','ME-01') pres_polling['state'] = pres_polling['state'].str.replace('Maine CD-2','ME-02') pres_polling['state'] = pres_polling['state'].str.replace('Nebraska CD-2','NE-02') # Filter to most recent poll for Biden & Trump # create a count column for 'question_id' to work around "Delaware problem": multiple matchups in same survey pres_polling = pres_polling.loc[pres_polling['pollster'] != 'SurveyMonkey'] # filter out SurveyMonkey polls pres_polling['created_at'] = pd.to_datetime(pres_polling['created_at']) #convert 'created_at' to datetime recent_pres_polling = pres_polling[pres_polling['answer'].isin(['Biden', 'Trump'])] recent_pres_polling['Count'] = recent_pres_polling.groupby('question_id')['question_id'].transform('count') recent_pres_polling = recent_pres_polling[(recent_pres_polling.Count > 1)] recent_pres_polling = recent_pres_polling.sort_values(by=['question_id'], ascending=False).drop_duplicates(['state', 'candidate_name'], keep='first') # Rename 538 'pct' column to '538_latest_poll' recent_pres_polling = recent_pres_polling.rename({'pct': '538_latest_poll'}, axis=1) # Rename 538 'end_date' column to '538_poll_date' recent_pres_polling = recent_pres_polling.rename({'end_date': '538_poll_date'}, axis=1) # Pull in polling data from 538 polling averages pres_poll_avg = pd.read_csv('https://projects.fivethirtyeight.com/2020-general-data/presidential_poll_averages_2020.csv') # Drop extraneous columns pres_poll_avg = pres_poll_avg.drop(['cycle'], axis=1) # Standardize congressional district names in 538 polling averages with PredictIt pres_poll_avg['state'] = pres_poll_avg['state'].str.replace('Maine CD-1','ME-01') pres_poll_avg['state'] = pres_poll_avg['state'].str.replace('Maine CD-2','ME-02') pres_poll_avg['state'] = pres_poll_avg['state'].str.replace('Nebraska CD-2','NE-02') # Standarize candidate names and column name pres_poll_avg.replace({'candidate_name' : { '<NAME>.' : 'Biden', '<NAME>' : 'Trump'}}) pres_poll_avg['answer'] = pres_poll_avg['candidate_name'] # Filter to most recent poll for Biden & Trump pres_poll_avg['modeldate'] = pd.to_datetime(pres_poll_avg['modeldate']) #convert 'modeldate' to datetime pres_poll_avg = pres_poll_avg.sort_values(by=['modeldate']).drop_duplicates(['state', 'candidate_name'], keep='last') pres_poll_avg = pres_poll_avg[pres_poll_avg['answer'].isin(['Biden', 'Trump'])] # Round pct_estimate and pct_trend_adjusted to 2 decimal places pres_poll_avg['pct_estimate'] = pres_poll_avg['pct_estimate'].round(2) pres_poll_avg['pct_trend_adjusted'] = pres_poll_avg['pct_trend_adjusted'].round(2) # Merge 538 poll and 538 poll averages dataframes together recent_pres_polling = pd.merge(recent_pres_polling, pres_poll_avg, on=['state', 'answer'], how='left') # Pull in most recent state-level model data from 538 pres_model =
pd.read_csv('https://projects.fivethirtyeight.com/2020-general-data/presidential_state_toplines_2020.csv')
pandas.read_csv
from daily_clifile_editor import compute_breakpoint import pandas as pd import subprocess import numpy as np import matplotlib.pyplot as plt # Jun 11 2015 precip = [ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0.02, 0.02, 0.02, 0.02, 0.02, 0.02, 0.09, 0.09, 0.12, 0.09, 0.09, 0.14, 0.14, 0.14, 0.09, 0.36, 1.34, 1.34, 1.34, 0.89, 0.38, 0.38, 0.12, 0.09, 0.09, 0.14, 0.14, 0.17, 0.15, 0.15, 0.30, 0.27, 0.27, 0.60, 0.60, 0.60, 0.27, 0.27, 0.20, 0.20, 0.21, 0.20, 0.20, 0.29, 0.35, 0.35, 0.23, 0.09, 0.06, 0.06, 0.05, 0.05, 0.05, 0.03, 0.03, 0.06, 0.06, 0.06, 0.08, 0.08, 0.11, 0.14, 0.14, 0.06, 0.06, 0.06, 0.09, 0.09, 0.12, 0.15, 0.15, 0.14, 0.14, 0.14, 0.11, 0.14, 0.11, 0.11, 0.11, 0.14, 0.14, 0.20, 0.29, 0.29, 0.23, 0.20, 0.17, 0.17, 0.17, 0.14, 0.12, 0.12, 0.11, 0.18, 0.18, 0.21, 0.20, 0.21, 0.20, 0.20, 0.26, 0.21, 0.05, 0.05, 0.08, 0.08, 0.08, 0.08, 0.11, 0.11, 0.12, 0.12, 0.12, 0.21, 0.21, 0.20, 0.18, 0.18, 0.14, 0.14, 0.14, 0.15, 0.15, 0.15, 0.15, 0.15, 0.14, 0.14, 0.14, 0.12, 0.12, 0.09, 0.09, 0.09, 0.05, 0.03, 0.06, 0.06, 0.06, 0.06, 0.06, 0.12, 0.12, 0.15, 0.17, 0.17, 0.14, 0.14, 0.09, 0.09, 0.14, 0.14, 0.17, 0.17, 0.15, 0.12, 0.12, 0.15, 0.15, 0.26, 0.29, 0.38, 0.38, 0.50, 0.42, 0.35, 0.35, 0.50, 0.50, 0.42, 0.42, 0.45, 0.44, 0.44, 0.50, 0.56, 0.57, 0.53, 0.53, 0.36, 0.24, 0.24, 0.09, 0.09, 0.08, 0.09, 0.09, 0.06, 0.03, 0.05, 0.11, 0.11, 0.20, 0.41, 0.41, 0.14, 0.14, 0.12, 0.11, 0.11, 0.09, 0.09, 0.09, 0.11, 0.11, 0.12, 0.14, 0.14, 0.06, 0.06, 0.06, 0.03, 0.03, 0.11, 0.15, 0.15, 0.12, 0.12, 0.12, 0.06, 0.06, 0.20, 0.20, 0.20, 0.12, 0.12, 1.35, 2.68, 2.68, 3.62, 3.62, 2.46, 0.38, 0.38, 1.05, 1.05, 1.04, 0.59, 0.59, 0.86, 0.90, 0.90, 0.51, 0.51, 0.41, 0.23, 0.23, 0.59, 0.59, 1.41, 2.19, 2.19, 2.16, 1.41, 1.41, 1.02, 1.02, 1.02, 1.04, 1.04, 1.71, 1.71, 1.71, 0.92, 0.92, 0.92, 0.72, 0.72, 0.63, 0.29, 0.29, 0.03, 0.03, 0.02, 0.02, 0.02, 0.02, 0.02, 0.02, 0.02, 0, 0, 0, 0, 0, 0, 0, 0, 0.02, 0.02, 0.02, 0.05, 0.05, 0.03, 0.02, 0.02, 0.05, 0.05, 0.03, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0.03, 0.03, 0.03, 0.02, 0.02, 0.02, 0.02, 0.02, 0, 0, 0.03, 0.03, 0.03, 0.05, 0.24, 0.24, 1.01, 0.92, 0.24, 0.45, 0.45, 1.34, 1.34, 1.34, 1.34, 1.34, 2.06, 2.06, 1.94, 0, 0.02, 0.02, 0.02, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0.11, 0.11, 0.24, 0.24, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0.05, 0.06, 0.06, 0.03, 0.03, 0.03, 0.02, 0.02, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, ] def get_results(): for line in open("/i/0/env/10240010/0109/102400100109_44.env"): tokens = line.strip().split() if tokens[0] == "11" and tokens[1] == "6" and tokens[2] == "9": return dict( runoff=float(tokens[4]), loss=float(tokens[5]), delivery=float(tokens[12]), ) def get_maxrate(bpdata): t = [] r = [] for line in bpdata: tokens = line.split() if len(tokens) != 2: continue t.append(float(tokens[0])) r.append(float(tokens[1])) maxr = 0 for i in range(1, len(t)): dt = t[i] - t[i - 1] dr = r[i] - r[i - 1] rate = dr / dt if rate > maxr: maxr = rate return maxr def edit(bpdata): o = open("/i/0/cli/095x041/094.86x040.84.cli").read() pos1 = o.find("11\t6\t2015") pos2 = o.find("12\t6\t2015") out = open("/i/0/cli/095x041/094.86x040.84.cli", "w") newdata = ( "11\t6\t2015\t%(points)s\t25.0\t20.0\t269\t4.2\t0\t20.0\n" "%(bp)s\n" ) % dict(points=len(bpdata), bp=("\n".join(bpdata))) out.write(o[:pos1] + newdata + o[pos2:]) out.close() def run(): print( "%2s %2s %2s %6s %6s %6s %6s" % ("I", "A", "SZ", "MAXR", "RUNOF", "LOSS", "DELIV") ) rows = [] for intensityThres in range(1, 21): for accumThres in range(1, 21): bpdata = compute_breakpoint( precip, accumThreshold=accumThres, intensityThreshold=intensityThres, ) edit(bpdata) maxr = get_maxrate(bpdata) cmd = "~/bin/wepp < /i/0/run/10240010/0109/102400100109_44.run" subprocess.call( cmd, shell=True, stdout=subprocess.PIPE, stderr=subprocess.PIPE ) res = get_results() print( ("%2i %2i %2i %6.2f %6.2f %6.3f %6.3f") % ( intensityThres, accumThres, len(bpdata), maxr, res["runoff"], res["loss"], res["delivery"], ) ) rows.append( dict( intensitythres=intensityThres, accumthres=accumThres, points=len(bpdata), maxrate=maxr, runoff=res["runoff"], loss=res["loss"], delivery=res["delivery"], ) ) df = pd.DataFrame(rows) df.to_pickle("exercise.pickle") def plot(): df =
pd.read_pickle("exercise.pickle")
pandas.read_pickle
import numpy as np import pandas as pd import matplotlib.pyplot as plt class DataProcessor: def __init__(self, data_path): self.orig_data = pd.read_csv(data_path) self.data = self.orig_data self.scaled_features = {} self.train_features = None self.train_targets = None self.test_features = None self.test_targets = None self.test_data = None self.val_features = None self.val_targets = None def show_data(self, plot_by_dteday=False): print (self.data.head()) if plot_by_dteday == True: self.data[:24*10].plot(x='dteday', y='cnt', title='Data for the first 10 days') plt.show() def virtualize(self): # Add virtualized data columns dummy_fields = ['season', 'weathersit', 'mnth', 'hr', 'weekday'] for each in dummy_fields: dummies = pd.get_dummies(self.data[each], prefix=each, drop_first=False) self.data =
pd.concat([self.data, dummies], axis=1)
pandas.concat
import multiprocessing as mp import numpy as np import pandas as pd def _get_ids(vol, bl, co): """Fetch block and extract IDs. Parameters ---------- vol : CloudVolume Volume to query. bl : list-like Coordinates defining the block: left, right, top, bottom, z1, z2 co : numpy array x/y/z coordinates WITHIN block of segment IDs to fetch. """ # Unpack block indices l, r, t, b, z1, z2 = bl # Subset block to relevant parts (i.e. those containing # requested coordinates) to save memory mn = co.min(axis=0) mx = co.max(axis=0) + 1 l, r = l + mn[0], l + mx[0] t, b = t + mn[1], t + mx[1] z1, z2 = z1 + mn[2], z1 + mx[2] # Offset coordinates too co -= mn # Get the block chunk = vol[l:r, t:b, z1:z2] # Get the IDs out of the block co_id = chunk[co[:, 0], co[:, 1], co[:, 2]] return co_id def get_multiple_ids(x, vol, max_workers=mp.cpu_count() - 5): """Return multiple segment IDs using cloudvolume. Parameters ---------- x : numpy array Array with x/y/z coordinates to fetch segmentation IDs for. vol : cloudvolume.CloudVolume """ # Make sure x is array if not isinstance(x, np.ndarray): x = np.array(x) if not max_workers: max_workers = 1 # Hard coded block size blocksize = np.array([128, 128, 32]) # Make bins to fit with blocksize xbins = np.arange(0, np.max(x) + blocksize[0], blocksize[0]) ybins = np.arange(0, np.max(x) + blocksize[1], blocksize[1]) zbins = np.arange(0, np.max(x) + blocksize[2], blocksize[2]) # Sort data into bins cbin =
pd.DataFrame(x)
pandas.DataFrame
# AUTOGENERATED! DO NOT EDIT! File to edit: nbs/00_io.ipynb (unless otherwise specified). __all__ = ['dicom_dataframe', 'get_plane', 'is_axial', 'is_sagittal', 'is_coronal', 'is_fat_suppressed', 'load_mat', 'load_h5'] # Cell from fastscript import call_parse, Param, bool_arg from scipy import ndimage import h5py import math import matplotlib.pyplot as plt import numpy as np import os import pandas as pd import pydicom import scipy.io as spio # Cell def _get_dcm_paths_from_folderpath(path_to_dicom_dir, dicom_extension='DCM'): """ Returns a list of paths to dicom files within a directory. Attributes: path_to_dicom_dir (str): path to folder containing dicoms. dicom_extension (str): case insensitive str with dicom extension. Returns: dcm_paths_list (list): list of paths to dicom files. """ if not path_to_dicom_dir.endswith(('/')): path_to_dicom_dir = f"{path_to_dicom_dir}/" filenames_list = os.listdir(path_to_dicom_dir) dcm_paths_list = [os.path.join(path_to_dicom_dir, name) for name in filenames_list if str.lower(dicom_extension) in str.lower(name)] return(dcm_paths_list) # Cell def _read_dicom_from_file(dicom_file_path): """ Reads dicom using pydicom.dcmread. Attributes: dicom_file_path (str): path to file of interest Returns: dcm (FileDataset): result from pydicom.dcmread() """ try: return(pydicom.dcmread(dicom_file_path)) except Exception as error: print(error) # Cell def _get_tag_from_loaded_dicom(dcm, tag): """ Get tag from loaded pydicom data structure. Attributes: dcm (FileDataset): dicom slice, result from pydicom.dcmread() tag (str): key of interest in the dicom (e.g. "SOPClassUID") Returns: content (str): the contant of the dicom key """ try: content = dcm[tag].value return(content) except Exception as e: print(str(tag), " tag was not found! Skipping...", e) return None # Cell def _get_normal_from_dicom_slice(dcm): """ Get normal vector from a dicom slice. Attributes: dcm (FileDataset): dicom slice, result from pydicom.dcmread() Returns: normal_vector (arr): numpy array with dimensions of slice's normal vector """ cosines = _get_tag_from_loaded_dicom(dcm,'ImageOrientationPatient') cosines = [float(i) for i in cosines] normal = np.empty(3) normal[0] = cosines[1]*cosines[5] - cosines[2]*cosines[4]; normal[1] = cosines[2]*cosines[3] - cosines[0]*cosines[5]; normal[2] = cosines[0]*cosines[4] - cosines[1]*cosines[3]; return(np.array(normal)) # Cell def _get_dicom_slice_IPP_along_normal(dcm): """ Get dicom slice ImagePositionPatient (IPP) in the direction of the slice's normal vector Attributes: dcm (FileDataset): dicom slice, result from pydicom.dcmread() Returns: slice_ipp (double): ImagePositionPatient value along slice's normal vector """ IPP = _get_tag_from_loaded_dicom(dcm, 'ImagePositionPatient') IPP = [float(i) for i in IPP] slice_ipp = np.inner(_get_normal_from_dicom_slice(dcm), IPP) return(slice_ipp) # Cell def _get_distance_between_two_dicom_slices(dcm1, dcm2): """ Get distance between two dicom slices along the normal vector Attributes: dcm1 (FileDataset): dicom slice, result from pydicom.dcmread() dcm2 (FileDataset): dicom slice, result from pydicom.dcmread() Returns: distance_vector (arr): numpy array with difference between center of two slices """ slice_position_1 = _get_dicom_slice_IPP_along_normal(dcm1) slice_position_2 = _get_dicom_slice_IPP_along_normal(dcm2) distance = np.abs(slice_position_2 - slice_position_1) return(distance) # Cell class dicom_dataframe: """ Class for sorting, selecting and loading portions of dicom data. Objects of this class are pandas dataframes with at least one main column ('DS') that holds the results of pydicom.read() for each file read during initialization. Users can populate the dataframe with new columns using DICOM tags to facilitate subsequent filtering, sorting and data loading. """ def __init__(self, path_to_dicom_dir, dicom_extension='dcm', read_single_random_dcm=False): """ Read dicom files from folder and add them to a pandas dataframe. Attributes: path_to_dicom_dir (str): path to directory containing dicom files dicom_extension (str): cases insensitive string with dicom file extension read_single_random_dcm (bool): whether or not to return a single, random dicom file Returns: updates self.dataframe with new columns. """ if not path_to_dicom_dir.endswith(('/')): path_to_dicom_dir = f"{path_to_dicom_dir}/" df =
pd.DataFrame()
pandas.DataFrame
import shutil import sys from argparse import ArgumentParser from collections import Counter from pathlib import Path from zipfile import ZipFile import numpy as np import pandas as pd import requests from src.config import CONTEXT_SIZE, COVERAGE, DATA_DIR, TEXT8_URL, VOCAB_SIZE from src.utils.logger import get_logger logger = get_logger(__name__) def download_data(url=TEXT8_URL, dest_dir=DATA_DIR): # prepare destination dest = Path(dest_dir) / Path(url).name dest.parent.mkdir(parents=True, exist_ok=True) # downlaod zip if not dest.exists(): logger.info("downloading file: %s.", url) r = requests.get(url, stream=True) with dest.open("wb") as f: shutil.copyfileobj(r.raw, f) logger.info("file downloaded: %s.", dest) # extract zip if not Path(dest_dir, "text8").exists(): with dest.open("rb") as f, ZipFile(f, "r") as zf: zf.extractall(dest_dir) logger.info("file extracted.") def load_data(src_dir=DATA_DIR): file_path = Path(src_dir, "text8") with open(file_path) as f: text8 = f.read() logger.info("file loaded: %s.", file_path) return text8 def process_data(text8, vocab_size=VOCAB_SIZE, coverage=COVERAGE, context_size=CONTEXT_SIZE): text8_tokens = text8.split() # create vocab df_vocab = create_vocabulary(text8_tokens, vocab_size, coverage) vocab_size, _ = df_vocab.shape logger.info("vocab created, size: %s.", vocab_size) # compute interaction df_interaction = create_interaction_dataframe(text8_tokens, df_vocab, context_size) df_interaction = create_glove_dataframe(df_interaction) return {"vocabulary": df_vocab, "interaction": df_interaction} def create_vocabulary(text_tokens, vocab_size=VOCAB_SIZE, coverage=COVERAGE): tokens_counter = Counter(text_tokens) # find cumulative proportion of token counts counts = np.sort(list(tokens_counter.values()))[::-1] total = np.sum(counts) counts_cumprop = np.cumsum(counts) / total # get count with defined coverage of total tokens count_cutoff = counts[np.searchsorted(counts_cumprop, coverage)] logger.info("count cufoff: %s; token coverage: %s.", count_cutoff, coverage) # get vocab and counts vocab = [token for token, count in tokens_counter.most_common(vocab_size) if count >= count_cutoff] vocab_counts = [tokens_counter[token] for token in vocab] unk_count = total - np.sum(vocab_counts) df_vocab = pd.DataFrame({"token": ["<UNK>"] + vocab, "count": [unk_count] + vocab_counts}) df_vocab["proportion"] = df_vocab["count"] / total df_vocab = df_vocab.sort_values("count", ascending=False).reset_index(drop=True) return df_vocab def create_interaction_dataframe(text_tokens, df_vocab, context_size=CONTEXT_SIZE): token2id = {token: i for i, token in enumerate(df_vocab["token"])} token_ids = (token2id.get(token, 0) for token in text_tokens) df = pd.DataFrame(list(enumerate(token_ids)), columns=["position", "token_id"]) # cross join by position for right context only df_concat = pd.concat([df.set_index(df["position"] + i + 1) for i in range(context_size)]) df_co = df_concat.join(df, how="inner", lsuffix="_row", rsuffix="_col") df_co = df_co.loc[(df_co["token_id_row"] != df_co["token_id_col"]) & (df_co["position_row"] < df_co["position_col"]), :] df_co = df_co.assign(**{"value": 1 / (df_co["position_col"] - df_co["position_row"])}) # aggregate interactions df_agg = (df_co.groupby(["token_id_row", "token_id_col"])["value"] .agg(["count", "sum"]) .reset_index() .rename(columns={"token_id_row": "row_token_id", "token_id_col": "col_token_id", "sum": "value"})) df_agg = df_agg.loc[(df_agg["count"] != 0) & (df_agg["value"] != 0), :] # union swap row and col since symmetric dfs_agg = [df_agg, df_agg.rename(columns={"row_token_id": "col_token_id", "col_token_id": "row_token_id"})] df_agg = (
pd.concat(dfs_agg, sort=False)
pandas.concat
import copy import os import warnings import pandas as pd import numpy as np import seaborn as sns import matplotlib.pyplot as plt from pathlib import Path from tqdm import tqdm from scipy import stats from typing import Tuple, Dict, Union from scipy.spatial.distance import cdist from sklearn.model_selection import KFold from sklearn.tree import DecisionTreeClassifier from sklearn.neural_network import MLPClassifier from sklearn.decomposition import PCA from sklearn.metrics import f1_score, mean_squared_error, jaccard_score from sklearn.exceptions import ConvergenceWarning from sklearn.ensemble import RandomForestRegressor, RandomForestClassifier from sklearn.linear_model import Lasso, Ridge, ElasticNet, LogisticRegression from dython.nominal import compute_associations, numerical_encoding from .viz import * from .metrics import * from .notebook import visualize_notebook, isnotebook, EvaluationResult from .utils import dict_to_df class TableEvaluator: """ Class for evaluating synthetic data. It is given the real and fake data and allows the user to easily evaluate data with the `evaluate` method. Additional evaluations can be done with the different methods of evaluate and the visual evaluation method. """ def __init__(self, real: pd.DataFrame, fake: pd.DataFrame, cat_cols=None, unique_thresh=0, metric='pearsonr', verbose=False, n_samples=None, name: str = None, seed=1337): """ :param real: Real dataset (pd.DataFrame) :param fake: Synthetic dataset (pd.DataFrame) :param unique_thresh: Threshold for automatic evaluation if column is numeric :param cat_cols: The columns that are to be evaluated as discrete. If passed, unique_thresh is ignored. :param metric: the metric to use for evaluation linear relations. Pearson's r by default, but supports all models in scipy.stats :param verbose: Whether to print verbose output :param n_samples: Number of samples to evaluate. If none, it will take the minimal length of both datasets and cut the larger one off to make sure they are the same length. :param name: Name of the TableEvaluator. Used in some plotting functions like `viz.plot_correlation_comparison` to indicate your model. """ self.name = name self.unique_thresh = unique_thresh self.real = real.copy() self.fake = fake.copy() self.comparison_metric = getattr(stats, metric) self.verbose = verbose self.random_seed = seed # Make sure columns and their order are the same. if len(real.columns) == len(fake.columns): fake = fake[real.columns.tolist()] assert real.columns.tolist() == fake.columns.tolist(), 'Columns in real and fake dataframe are not the same' if cat_cols is None: real = real.infer_objects() fake = fake.infer_objects() self.numerical_columns = [column for column in real._get_numeric_data().columns if len(real[column].unique()) > unique_thresh] self.categorical_columns = [column for column in real.columns if column not in self.numerical_columns] else: self.categorical_columns = cat_cols self.numerical_columns = [column for column in real.columns if column not in cat_cols] # Make sure the number of samples is equal in both datasets. if n_samples is None: self.n_samples = min(len(self.real), len(self.fake)) elif len(fake) >= n_samples and len(real) >= n_samples: self.n_samples = n_samples else: raise Exception(f'Make sure n_samples < len(fake/real). len(real): {len(real)}, len(fake): {len(fake)}') self.real = self.real.sample(self.n_samples) self.fake = self.fake.sample(self.n_samples) assert len(self.real) == len(self.fake), f'len(real) != len(fake)' self.real.loc[:, self.categorical_columns] = self.real.loc[:, self.categorical_columns].fillna('[NAN]').astype( str) self.fake.loc[:, self.categorical_columns] = self.fake.loc[:, self.categorical_columns].fillna('[NAN]').astype( str) self.real.loc[:, self.numerical_columns] = self.real.loc[:, self.numerical_columns].fillna( self.real[self.numerical_columns].mean()) self.fake.loc[:, self.numerical_columns] = self.fake.loc[:, self.numerical_columns].fillna( self.fake[self.numerical_columns].mean()) def plot_mean_std(self, fname=None): """ Class wrapper function for plotting the mean and std using `viz.plot_mean_std`. :param fname: If not none, saves the plot with this file name. """ plot_mean_std(self.real, self.fake, fname=fname) def plot_cumsums(self, nr_cols=4, fname=None): """ Plot the cumulative sums for all columns in the real and fake dataset. Height of each row scales with the length of the labels. Each plot contains the values of a real columns and the corresponding fake column. :param fname: If not none, saves the plot with this file name. """ nr_charts = len(self.real.columns) nr_rows = max(1, nr_charts // nr_cols) nr_rows = nr_rows + 1 if nr_charts % nr_cols != 0 else nr_rows max_len = 0 # Increase the length of plots if the labels are long if not self.real.select_dtypes(include=['object']).empty: lengths = [] for d in self.real.select_dtypes(include=['object']): lengths.append(max([len(x.strip()) for x in self.real[d].unique().tolist()])) max_len = max(lengths) row_height = 6 + (max_len // 30) fig, ax = plt.subplots(nr_rows, nr_cols, figsize=(16, row_height * nr_rows)) fig.suptitle('Cumulative Sums per feature', fontsize=16) axes = ax.flatten() for i, col in enumerate(self.real.columns): r = self.real[col] f = self.fake.iloc[:, self.real.columns.tolist().index(col)] cdf(r, f, col, 'Cumsum', ax=axes[i]) plt.tight_layout(rect=[0, 0.02, 1, 0.98]) if fname is not None: plt.savefig(fname) plt.show() def plot_distributions(self, nr_cols=3, fname=None): """ Plot the distribution plots for all columns in the real and fake dataset. Height of each row of plots scales with the length of the labels. Each plot contains the values of a real columns and the corresponding fake column. :param fname: If not none, saves the plot with this file name. """ nr_charts = len(self.real.columns) nr_rows = max(1, nr_charts // nr_cols) nr_rows = nr_rows + 1 if nr_charts % nr_cols != 0 else nr_rows max_len = 0 # Increase the length of plots if the labels are long if not self.real.select_dtypes(include=['object']).empty: lengths = [] for d in self.real.select_dtypes(include=['object']): lengths.append(max([len(x.strip()) for x in self.real[d].unique().tolist()])) max_len = max(lengths) row_height = 6 + (max_len // 30) fig, ax = plt.subplots(nr_rows, nr_cols, figsize=(16, row_height * nr_rows)) fig.suptitle('Distribution per feature', fontsize=16) axes = ax.flatten() for i, col in enumerate(self.real.columns): if col not in self.categorical_columns: plot_df = pd.DataFrame({col: self.real[col].append(self.fake[col]), 'kind': ['real'] * self.n_samples + ['fake'] * self.n_samples}) fig = sns.histplot(plot_df, x=col, hue='kind', ax=axes[i], stat='probability', legend=True) axes[i].set_autoscaley_on(True) else: real = self.real.copy() fake = self.fake.copy() real['kind'] = 'Real' fake['kind'] = 'Fake' concat = pd.concat([fake, real]) palette = sns.color_palette( [(0.8666666666666667, 0.5176470588235295, 0.3215686274509804), (0.2980392156862745, 0.4470588235294118, 0.6901960784313725)]) x, y, hue = col, "proportion", "kind" ax = (concat[x] .groupby(concat[hue]) .value_counts(normalize=True) .rename(y) .reset_index() .pipe((sns.barplot, "data"), x=x, y=y, hue=hue, ax=axes[i], saturation=0.8, palette=palette)) ax.set_xticklabels(axes[i].get_xticklabels(), rotation='vertical') plt.tight_layout(rect=[0, 0.02, 1, 0.98]) if fname is not None: plt.savefig(fname) plt.show() def plot_correlation_difference(self, plot_diff=True, fname=None, **kwargs): """ Plot the association matrices for each table and, if chosen, the difference between them. :param plot_diff: whether to plot the difference :param fname: If not none, saves the plot with this file name. :param kwargs: kwargs for sns.heatmap """ plot_correlation_difference(self.real, self.fake, cat_cols=self.categorical_columns, plot_diff=plot_diff, fname=fname, **kwargs) def correlation_distance(self, how: str = 'euclidean') -> float: """ Calculate distance between correlation matrices with certain metric. :param how: metric to measure distance. Choose from [``euclidean``, ``mae``, ``rmse``]. :return: distance between the association matrices in the chosen evaluation metric. Default: Euclidean """ from scipy.spatial.distance import cosine if how == 'euclidean': distance_func = euclidean_distance elif how == 'mae': distance_func = mean_absolute_error elif how == 'rmse': distance_func = rmse elif how == 'cosine': def custom_cosine(a, b): return cosine(a.reshape(-1), b.reshape(-1)) distance_func = custom_cosine else: raise ValueError(f'`how` parameter must be in [euclidean, mae, rmse]') real_corr = compute_associations(self.real, nominal_columns=self.categorical_columns, theil_u=True) fake_corr = compute_associations(self.fake, nominal_columns=self.categorical_columns, theil_u=True) return distance_func( real_corr.values, fake_corr.values ) def plot_pca(self, fname=None): """ Plot the first two components of a PCA of real and fake data. :param fname: If not none, saves the plot with this file name. """ real, fake = self.convert_numerical() pca_r = PCA(n_components=2) pca_f = PCA(n_components=2) real_t = pca_r.fit_transform(real) fake_t = pca_f.fit_transform(fake) fig, ax = plt.subplots(1, 2, figsize=(12, 6)) fig.suptitle('First two components of PCA', fontsize=16) sns.scatterplot(ax=ax[0], x=real_t[:, 0], y=real_t[:, 1]) sns.scatterplot(ax=ax[1], x=fake_t[:, 0], y=fake_t[:, 1]) ax[0].set_title('Real data') ax[1].set_title('Fake data') if fname is not None: plt.savefig(fname) plt.show() def get_copies(self, return_len: bool = False) -> Union[pd.DataFrame, int]: """ Check whether any real values occur in the fake data. :param return_len: whether to return the length of the copied rows or not. :return: Dataframe containing the duplicates if return_len=False, else integer indicating the number of copied rows. """ real_hashes = self.real.apply(lambda x: hash(tuple(x)), axis=1) fake_hashes = self.fake.apply(lambda x: hash(tuple(x)), axis=1) dup_idxs = fake_hashes.isin(real_hashes.values) dup_idxs = dup_idxs[dup_idxs == True].sort_index().index.tolist() if self.verbose: print(f'Nr copied columns: {len(dup_idxs)}') copies = self.fake.loc[dup_idxs, :] if return_len: return len(copies) else: return copies def get_duplicates(self, return_values: bool = False) -> Tuple[Union[pd.DataFrame, int], Union[pd.DataFrame, int]]: """ Return duplicates within each dataset. :param return_values: whether to return the duplicate values in the datasets. If false, the lengths are returned. :return: dataframe with duplicates or the length of those dataframes if return_values=False. """ real_duplicates = self.real[self.real.duplicated(keep=False)] fake_duplicates = self.fake[self.fake.duplicated(keep=False)] if return_values: return real_duplicates, fake_duplicates else: return len(real_duplicates), len(fake_duplicates) def pca_correlation(self, lingress=False): """ Calculate the relation between PCA explained variance values. Due to some very large numbers, in recent implementation the MAPE(log) is used instead of regressions like Pearson's r. :param lingress: whether to use a linear regression, in this case Pearson's. :return: the correlation coefficient if lingress=True, otherwise 1 - MAPE(log(real), log(fake)) """ self.pca_r = PCA(n_components=5) self.pca_f = PCA(n_components=5) real, fake = self.convert_numerical() self.pca_r.fit(real) self.pca_f.fit(fake) if self.verbose: results = pd.DataFrame({'real': self.pca_r.explained_variance_, 'fake': self.pca_f.explained_variance_}) print(f'\nTop 5 PCA components:') print(results.to_string()) if lingress: corr, p, _ = self.comparison_metric(self.pca_r.explained_variance_, self.pca_f.explained_variance_) return corr else: pca_error = mean_absolute_percentage_error(self.pca_r.explained_variance_, self.pca_f.explained_variance_) return 1 - pca_error def fit_estimators(self): """ Fit self.r_estimators and self.f_estimators to real and fake data, respectively. """ if self.verbose: print(f'\nFitting real') for i, c in enumerate(self.r_estimators): if self.verbose: print(f'{i + 1}: {type(c).__name__}') c.fit(self.real_x_train, self.real_y_train) if self.verbose: print(f'\nFitting fake') for i, c in enumerate(self.f_estimators): if self.verbose: print(f'{i + 1}: {type(c).__name__}') c.fit(self.fake_x_train, self.fake_y_train) def score_estimators(self): """ Get F1 scores of self.r_estimators and self.f_estimators on the fake and real data, respectively. :return: dataframe with the results for each estimator on each data test set. """ if self.target_type == 'class': rows = [] for r_classifier, f_classifier, estimator_name in zip(self.r_estimators, self.f_estimators, self.estimator_names): for dataset, target, dataset_name in zip([self.real_x_test, self.fake_x_test], [self.real_y_test, self.fake_y_test], ['real', 'fake']): predictions_classifier_real = r_classifier.predict(dataset) predictions_classifier_fake = f_classifier.predict(dataset) f1_r = f1_score(target, predictions_classifier_real, average='micro') f1_f = f1_score(target, predictions_classifier_fake, average='micro') jac_sim = jaccard_score(predictions_classifier_real, predictions_classifier_fake, average='micro') row = {'index': f'{estimator_name}_{dataset_name}', 'f1_real': f1_r, 'f1_fake': f1_f, 'jaccard_similarity': jac_sim} rows.append(row) results = pd.DataFrame(rows).set_index('index') elif self.target_type == 'regr': r2r = [rmse(self.real_y_test, clf.predict(self.real_x_test)) for clf in self.r_estimators] f2f = [rmse(self.fake_y_test, clf.predict(self.fake_x_test)) for clf in self.f_estimators] # Calculate test set accuracies on the other dataset r2f = [rmse(self.fake_y_test, clf.predict(self.fake_x_test)) for clf in self.r_estimators] f2r = [rmse(self.real_y_test, clf.predict(self.real_x_test)) for clf in self.f_estimators] index = [f'real_data_{classifier}' for classifier in self.estimator_names] + \ [f'fake_data_{classifier}' for classifier in self.estimator_names] results =
pd.DataFrame({'real': r2r + f2r, 'fake': r2f + f2f}, index=index)
pandas.DataFrame
import pytest from pymanda import ChoiceData, DiscreteChoice import pandas as pd import numpy as np @pytest.fixture def psa_data(): '''create data for psa analysis''' #create corporations series corps = ['x' for x in range(50)] corps += ['y' for x in range(25)] corps += ['z' for x in range(25)] #create choice series #corp x choices = ['a' for x in range(30)] choices += ['b' for x in range(20)] #corp y choices += ['c' for x in range(20)] choices += ['d' for x in range(5)] #corp z choices += ['e' for x in range(25)] # create zips #corp x zips = [1 for x in range(20)] #in 75 psa zips += [2 for x in range(10)] #in 75 psa zips += [3 for x in range(8)] #in 75 psa zips += [4 for x in range(7)] #in 90 psa zips += [5 for x in range(3)] # in 90 psa zips += [6 for x in range(2)] # out of psa #corp y zips += [7 for x in range(10)] #in 75 psa zips += [8 for x in range(9)] #in 75 psa zips += [3 for x in range(4)] #in 90 psa zips += [5 for x in range(2)] #out of psa #corp z zips += [7 for x in range(10)] #in 75 psa zips += [10 for x in range(9)] #in 75 psa zips += [3 for x in range(4)] #in 90 psa zips += [9 for x in range(1)] #out of psa zips += ["" for x in range(1)] #out of psa psa_data = pd.DataFrame({'corporation': corps, 'choice' : choices, "geography": zips}) return psa_data @pytest.fixture() def onechoice_data(): choices = ['a' for x in range(100)] zips = [1 for x in range(20)] zips += [2 for x in range(20)] zips += [3 for x in range(20)] zips += [4 for x in range(20)] zips += [5 for x in range(20)] wght = [1.5 for x in range(20)] wght += [1 for x in range(20)] wght += [.75 for x in range(20)] wght += [.5 for x in range(20)] wght += [.25 for x in range(20)] onechoice_data = pd.DataFrame({'choice': choices, 'geography': zips, 'weight' : wght}) return onechoice_data ## Tests for ChoiceData Initialization def test_BadInput(): '''Test for error catching bad input''' with pytest.raises(TypeError): ChoiceData(["bad", "input"]) def test_AllMissing(): '''test for empty dataframe''' df_empty = pd.DataFrame({'corporation': [], 'choice' : [], "geography": []}) with pytest.raises(ValueError): ChoiceData(df_empty, 'choice', corp_var='corporation', geog_var='geography') def test_ChoiceMissing(psa_data): '''test for an observation missing choice''' df_miss = pd.DataFrame({'corporation': [""], 'choice' : [""], "geography": [""]}) df_miss =
pd.concat([df_miss, psa_data])
pandas.concat
# coding: utf-8 import pandas as pd from collections import defaultdict def main(args): clustering =
pd.read_table(args.clustering_file, sep=',', names=['contig_id', 'cluster_id'], index_col=0)
pandas.read_table
# this will be the main program for inspecting TESS light curves for stellar rotation # Import relevant modules #%matplotlib inline import numpy as np import pandas as pd import matplotlib.pyplot as plt #import matplotlib.cm as cm #import matplotlib import matplotlib.gridspec as gridspec #from astropy.visualization import astropy_mpl_style from glob import glob from astropy.io import fits import warnings warnings.filterwarnings('ignore') #from astroquery.vizier import Vizier #from astropy.coordinates import SkyCoord #import astropy.units as u from astropy.timeseries import LombScargle import os import sys ############# If you move these programs you will need to update these directories and names ############# sys.path.append('/content/gdrive/My Drive/') from tess_check import myDir as myDir import time #################################################################################### # Load sheet def load_sheet(project_name): from google.colab import auth auth.authenticate_user() import gspread from oauth2client.client import GoogleCredentials gc = gspread.authorize(GoogleCredentials.get_application_default()) dir_project = myDir.project_dir(project_name) sheet_id_file = os.path.join(dir_project,f"{project_name}.txt") f = open(sheet_id_file,"r") doc_id = f.readline() f.close() sheet = gc.open_by_key(doc_id) return sheet def list_to_string(list,delim=' '): list_as_string = list[0] for i in range(len(list)-1): id = i+1 list_as_string += (delim + list[id]) return list_as_string # Auto run def tesscheck_auto(project_name, tess_cycle=1, redo=False): #cluster = 'ComaBer' user = 'Auto' target_table = get_prot_table('Auto',project_name) target_data_val = target_table.get_all_values() target_data = pd.DataFrame.from_records(target_data_val[1:],columns=target_data_val[0]) if tess_cycle == 1: cycle_sectors = ['1','2','3','4','5','6','7','8','9','10','11','12','13'] if tess_cycle == 2: cycle_sectors = ['14', '15', '16','17','18','19','20','21','22','23','24','25','26'] print('Assembling target list...') #star_list = stars_todo(target_table) star_list = stars_todo(target_data) number_stars = len(star_list) print(str(number_stars)+' stars to analyze') if number_stars == 0: print('no stars remaining.') else: for i in range(number_stars): if star_list[i][0] != 'n': star = make_star(target_data,star_list[i]) star = make_star(target_data,star_list[i]) print(str(i)+' '+star_list[i]) tstar = initiate_star(star,project_name,user=user) tstar['which_sectors'] = cycle_sectors display_tess_lite_v2(tstar, save = False, noplot = True) update_prot_table(target_table, tstar) return #################################################################################### # Main program def tesscheck_run_v1(): # Identify the user user = tess_user() # Load the Prot table prot_table = get_prot_table(user) # rows = prot_table.get_all_values() # print(rows) cluster = 'NGC_7092' file = glob('/content/gdrive/My Drive/Tables/'+cluster+'-Catalog.csv') clu = pd.read_csv(file[0]) gmag = clu['GMAG'] bprp = clu['BP_RP'] RA = clu['RA_ICRS'] Dec = clu['DE_ICRS'] # star = clu.iloc[121] star = clu.iloc[276] tstar = initiate_star(star,cluster,user=user) #display_tess_lite(tstar, save = True) display_tess_lite_v2(tstar, save = False, noplot = True) update_prot_table(prot_table, tstar, user) return tstar #################################################################################### # Identify the User def tess_user(project_name): #dir_project = project_dir(project_name) status = read_status(project_name) #file_status = glob(dir_project + 'Status.txt') #file_open = open(file_status[0], "r") #lines = file_open.readlines() #user_line = lines[8] users = status['Users'].split(' ') #users = users[1:-1] number_of_users = len(users) print('Which user? Press...') for i in range(number_of_users): print(' '+str(i+1)+' for '+users[i]) print(' '+str(i+2)+' for Other') # while loop # val = input("Enter number for your name: ") val = input() user = '' #user_found = 0 if val.isdigit() == False: print('No user selected.') user = 'None' return user else: # is the number in the range? if (float(val) > (number_of_users+1)) | (float(val) == 0): print('Out of bounds') user = 'Noone' return user if (float(val) <= (number_of_users)) & (float(val) != 0): id = int(val) user = users[id-1] print(user + ' is logged in.') add_user_to_sheet(project_name, user) return user if float(val) == (number_of_users+1): print('Other selected. Need to make sheet and update Status.txt') print('Other: What name?') other_name = input() other_name = other_name.replace(" ", "") other_name = other_name.lower() other_name = other_name.capitalize() #make_status(project_name, add_user=other_name, add_step = '', change_auto='', reset=False): user = other_name # prompt for it iu = np.where(np.array(users) == user) if np.size(iu) > 0: print('User already exists, logging in.') add_user_to_sheet(project_name, user) return user else: make_status(project_name, add_user=user, add_step = '', change_auto='', reset=False) add_user_to_sheet(project_name, user) print(user + ' profile is created and user is logged in.') return user #################################################################################### def get_prot_table(user,project_name): sheet_name = project_name from google.colab import auth auth.authenticate_user() import gspread from oauth2client.client import GoogleCredentials gc = gspread.authorize(GoogleCredentials.get_application_default()) # load the table worksheet = load_sheet(sheet_name) if user == 'Auto': table = worksheet.worksheet('Targets') else: table = worksheet.worksheet(user) return table #################################################################################### # Functions to locate a star's TESS data def find_ffi(star, cluster): # homedir = os.path.expanduser("~") dir_ffi = myDir.project_dir(cluster)+'FFI/' RA = str(star["RA_ICRS"])[:7] DE = str(star["DE_ICRS"])[:7] file_ffi = glob(dir_ffi+"*"+RA+"*"+DE+"*/*.fits") if len(file_ffi) == 0: file_ffi = glob(dir_ffi+"*"+RA+"*"+DE+"*.fits") return(file_ffi) def find_ffi_coord(ra, dec, cluster): dir_ffi = myDir.project_dir(cluster)+'FFI/' RA = str(ra)[:7] DE = str(dec)[:7] file_ffi = glob(dir_ffi+"*"+RA+"*"+DE+"*/*.fits") if len(file_ffi) == 0: file_ffi = glob(dir_ffi+"*"+RA+"*"+DE+"*.fits") return(file_ffi) def find_sap(star, cluster): dir_sap = myDir.project_dir(cluster)+'SAP/' if star["DR2NAME"][0] == 'G': star_name = star["DR2NAME"][9:] else: star_name = star["DR2NAME"] file_sap = glob(dir_sap + "*" + star_name + "*.csv") return(file_sap) def find_cpm(star, cluster): dir_cpm = myDir.project_dir(cluster)+'CPM/' if star["DR2NAME"][0] == 'G': star_name = star["DR2NAME"][9:] else: star_name = star["DR2NAME"] file_cpm = glob(dir_cpm + "*" + star_name + "*.csv") return(file_cpm) def load_cpm_fromfile(file): lc = pd.read_csv(file) return lc def load_cpm(star): lc = pd.read_csv(star['file_cpm'][0]) return lc def load_sap(star): lc = pd.read_csv(star['file_sap'][0]) return lc def load_ffi_fromfile(file): ffi_data = fits.open(file) images = ffi_data[1].data image = images[100]['Flux'] if np.max(image) == 0: image = images[500]['Flux'] return image def load_ffi(star): ffi_data = fits.open(star['file_ffi'][0]) images = ffi_data[1].data image = images[100]['Flux'] if np.max(image) == 0: image = images[500]['Flux'] return image def load_ffis(star): ffi_data = fits.open(star['file_ffi'][0]) images = ffi_data[1].data image = images['Flux'] return image #################################################################################### def make_star(target_data, dr2_now): star = {'DR2NAME': '', 'RA_ICRS': 0., 'DE_ICRS': 0., 'GMAG': 0., 'BP_RP': 0.} iloc = np.where(dr2_now == target_data['DR2Name']) id = iloc[0][0] star['DR2NAME'] = dr2_now star['RA_ICRS'] = target_data['RA'][id] star['DE_ICRS'] = target_data['Dec'][id] star['GMAG'] = target_data['Gmag'][id] star['BP_RP'] = target_data['BP_RP'][id] return star #################################################################################### def initiate_star(star, cluster, user='NONE', blank=False): star_data = {'User' : user, 'Source': '', 'RA':0.,'Dec':0., 'Gmag':0., 'gbr':0., #'Cluster':star['Cluster'], 'Cluster':cluster, # data files 'file_ffi':'', 'file_cpm':'', 'file_sap':'', 'file_cdips':'', 'exist_ffi': 0, 'exist_cpm':0, 'exist_cdips':0, 'exist_sap':0, 'SAP_line':False, 'number_sectors':0, 'which_sectors':[''], 'sector_list':[''], # lc arrays # LC option and Period results 'which_LC':'CPM', # default is CPM 'Prot_LS':0., 'is_it_double':0, # the Lomb-Scargle period and if it should be doubled 'Power_LS':0., # the Lomb-Scargle period and if it should be doubled 'Prot_final':0., 'Amplitude':0., 'Multi':0, # if it is multi, then set this to multi=1 'Flares':0, 'Notes':'', # anything noteworthy about this star? 'LC_Quality':1, # 1 = modulate, 0 is flat, -1 is garbage 'LC_Action':'', # # Plotting options 'x_min':0.0,'x_max':0.0, # time range 'y_min':0.0,'y_max':0.0, # flux range, will be calculated during first iteration, and then adjusted by user # LS options 'pmin':0.1,'pmax':30., # default period range for LS analysis 'pxlog':0 } if blank == True: return star_data star_data['Source'] = star["DR2NAME"] star_data['RA'] = star["RA_ICRS"] star_data['Dec'] = star["DE_ICRS"] star_data['Gmag'] = star["GMAG"] star_data['gbr'] = star["BP_RP"] # Once the blank data dictionary is created, test/load data into it exist = np.array([0,0,0,0]) file_ffi = find_ffi(star,cluster) file_cpm = find_cpm(star,cluster) file_sap = find_sap(star,cluster) file_cdips = '' #file_cdips = find_cdips(star) if len(file_ffi) > 0: exist[0] = 1 # star_data['ffi_image'] = load_ffi(file_ffi) star_data['file_ffi'] = file_ffi star_data['exist_ffi'] = 1 if len(file_cpm) > 0: exist[1] = 1 #lc_cpm = load_cpm(file_cpm) star_data['file_cpm'] = file_cpm star_data['exist_cpm'] = 1 if len(file_sap) > 0: exist[2] = 1 #lc_cpm = load_cpm(file_cpm) star_data['file_sap'] = file_sap star_data['exist_sap'] = 1 if len(file_cdips) > 0: exist[3] = 1 #lc_cdips = load_cdips(file_cdips) star_data['file_cdips'] = file_cdips star_data['exist_cdips'] = 1 if exist.sum() == 0: print('No data for this star') return star_data else: return star_data #################################################################################### # modified version of the display program. needs to be copied into tesscheck.py def display_tess_lite_v2(tstar,save = False,noplot = False): time_1 = time.time() # plotting defaults axis_fontsize = 16 import matplotlib.pylab as pylab params = {'axes.labelsize': 16,'axes.titlesize': 16,'xtick.labelsize': 14,'ytick.labelsize': 14} pylab.rcParams.update(params) #cpm data for star if tstar['exist_cpm'] == 0: return if tstar['which_LC'] == 'CPM': lc_cpm = load_cpm(tstar) # if tstar['which_sectors'] != 'All': # ifin = np.where((np.isfinite(lc_cpm['flux']) == True) & (lc_cpm['sector'] == int(tstar['which_sectors']))) # if np.size(ifin) == 0: # print('sector not available, reverting back to All') # ifin = np.where(np.isfinite(lc_cpm['flux']) == True) # tstar['which_sectors'] = 'All' time_all = lc_cpm['time'] flux_all = lc_cpm['flux'] sector_all = lc_cpm['sector'] lc_title = 'TESS Light Curve (Calibrated with Causal Pixel Modeling)' if tstar['which_LC'] == 'SAP': lc_sap = load_sap(tstar) time_all = lc_sap['time'] flux_all = lc_sap['flux'] flux_all /= np.nanmedian(flux_all) flux_all -= 1 sector_all = lc_sap['sector'] lc_title = 'TESS Light Curve (Extracted with Simple Aperture Photometry)' # what if we say just load the whle thing, whether SAP or CPM, then we handle the sectors... ifin = np.where(np.isfinite(flux_all)) #find infs unique_sectors = np.unique(sector_all).astype(int) #all the sectors for each data point from table unique_sectors = list(map(str,unique_sectors)) #unique instances # save into tstar['sector_list'] = unique_sectors #unique sectors saved as a list length_all = len(flux_all) use_these = np.zeros(length_all) length_which_sectors = len(tstar['which_sectors']) #tstars['which_sectors'] is blank until this runs once, if tstar['which_sectors'] != ['']: #skips this on first run when it's blank for index_sectors in range(length_which_sectors): id_sector_match = np.where((float(tstar['which_sectors'][index_sectors]) == sector_all) & (np.isfinite(flux_all) == True)) if len(id_sector_match[0]) > 0: use_these[id_sector_match[0]] = 1 ifin = np.where(use_these == 1) if len(ifin[0]) == 0: ifin = np.where(np.isfinite(flux_all) == True) print('all points ruled out, reverting to all points') use_these = np.zeros(length_all) use_these[ifin[0]] = 1 if float(tstar['y_max'])>0: # print('trimming') #ifin = np.where((flux>float(tstar['y_min'])) & (flux<float(tstar['y_max']))) iyra = np.where(abs(100*flux_all)>float(tstar['y_max'])) if len(iyra[0]) > 0: use_these[iyra[0]] = 0 if ((tstar['x_min'] != 0) | (tstar['x_max'] != 0)): ixra = np.where((time_all-min(time_all) < float(tstar['x_min'])) | (time_all-min(time_all) > float(tstar['x_max']))) if len(ixra[0]) > 0: use_these[ixra[0]] = 0 # ifin = np.where(np.isfinite(flux_all) == True) # use_these = np.zeros(length_all) # use_these[ifin[0]] = 1 iuse = np.where(use_these == 1) if len(iuse[0]) == 0: print('what happened?') times = time_all[iuse[0]] flux = flux_all[iuse[0]] sectors = sector_all[iuse[0]] sectors_used = np.unique(sectors).astype(int) sectors_used = list(map(str,sectors_used)) if (tstar['which_LC'] == 'SAP') & (tstar['SAP_line'] == True): slope, intercept = np.polyfit(times, flux, 1) sap_line = slope * times + intercept flux -= sap_line #Periodogram Setup Pmin = tstar['pmin'] Pmax = tstar['pmax'] Fmin = 1/Pmax Fmax = 1/Pmin # freq_cpm, pow_cpm = LombScargle(lc_cpm["time"], lc_cpm["flux"]).autopower(minimum_frequency=Fmin,maximum_frequency=Fmax) # naf= np.array(1/freq_cpm) # nap= np.array(pow_cpm) # maX = np.argmax(nap) # period = (naf[maX]) time_2 = time.time() periods_cpm = np.logspace(np.log10(Pmin),np.log10(Pmax),10000) freq_cpm = 1/periods_cpm pow_cpm = LombScargle(times, flux).power(freq_cpm) period = periods_cpm[np.argmax(pow_cpm)] tstar['Prot_LS'] = period tstar['Power_LS'] = np.max(pow_cpm) # Amplitude measurement perc05 = np.percentile(flux,5) perc95 = np.percentile(flux,95) amp = float(perc95-perc05) tstar['Amplitude'] = amp # check if double # read which_LC, then store in that period. # store these in star, update Prot_final mdub = float(1.0) if tstar['is_it_double'] == 1: mdub = float(2.0) period_final = float(tstar['Prot_LS']*mdub) tstar['Prot_final'] = period_final #Figure creation if noplot == False: panel = plt.figure(constrained_layout=True, figsize= (16,11)) gs = gridspec.GridSpec(100, 100) #cpm lightcurve # how many sectors? #all_sectors = lc_cpm['sector'].unique().astype(int) # unique_sectors = sector_all.unique().astype(int) # all_sectors = sectors # I'm pretty sure I reran CPM so that this isn't an issue anymore. Bad sectors arent in the CPM file. n_sec = len(sectors_used) # this should probably be number used n_all_sec = len(unique_sectors) tstar['number_sectors'] = n_sec primary_colors = ['b','r'] color_options = [] for icol in range(n_sec): color_options.append(primary_colors[icol%2]) n_obs = len(sectors) colors = np.repeat('r', n_obs) for i in range(n_sec): id = np.where(np.array(sectors) == float(sectors_used[i])) colors[id] = color_options[i] tmin = np.min(times) if noplot == False: cpmlight = panel.add_subplot(gs[0:40, 0:100]) cpmlight.set_title(lc_title) cpmlight.scatter(times-tmin,flux*100,c = colors,s=15) cpmlight.set_xlabel('Day of Observation') cpmlight.set_ylabel('Percent Change in Brightness') #find midpoint in time array to place amplitude amp_time = np.mean(times-tmin) #plot amplitude cpmlight.plot([amp_time,amp_time],[-amp*100/2,amp*100/2],c='purple') if float(tstar['y_max'])>0: cpmlight.set_ylim(float(tstar['y_min']),float(tstar['y_max'])) # if ((float(tstar['x_min']) != 0) | (float(tstar['x_max']) != 0)): # cpmlight.set_xlim(float(tstar['x_min'])-0.5,float(tstar['x_max'])+0.5) #Mark adding a text for each sector as it is plotted bot, top = cpmlight.get_ylim() #find the upper limit for us to put text for x in sectors.index: if x == sectors.index.min(): cpmlight.text(times[x]-tmin, top*.9, str(int(sectors[x]))) #put sector number for first sector cur_sector = sectors[x] else: if sectors[x]!=cur_sector: cpmlight.text(times[x]-tmin, top*.9, str(int(sectors[x]))) #put sector number for each subsequent sector cur_sector = sectors[x] # Phased light curve #cpm_phase = panel.add_subplot(gs[55:, :40]) if noplot == False: cpm_phase = panel.add_subplot(gs[55:, 65:]) cpm_phase.set_title('Phased Light Curve') cpm_phase.scatter(times%period_final,flux*100,c=colors,s=7) cpm_phase.set_xlabel('Day in Rotation Cycle') #cpm_phase.set_ylabel('Percent Change in Brightness') if float(tstar['y_max'])>0: cpm_phase.set_ylim(float(tstar['y_min']),float(tstar['y_max'])) #cpm periodogram if noplot == False: #cpmper = panel.add_subplot(gs[55:,32:60]) cpmper = panel.add_subplot(gs[55:,34:60]) cpmper.set_title('Periodogram') cpmper.plot(1/freq_cpm, pow_cpm, color = 'black') cpmper.set_xlabel('Period (days)') cpmper.set_ylabel('Power') if tstar['Power_LS']<0.1: cpmper.set_yscale('log') cpmper.set_ylim(0.001,1) if tstar['pxlog'] == 1: cpmper.set_xscale('log') # cpmper.plot([tstar['Prot_final'],tstar['Prot_final']],[0,1],c='red') cpmper.plot(tstar['Prot_final'],0.95,marker='v',markerfacecolor='red',markersize=20,markeredgecolor="black") # print(cpmlight.get_xlim()) # print('First panels: '+str(time.time()-time_3)) # First panels: 0.05 seconds #FFI image time_4 = time.time() if noplot == False: # if (tstar['which_sectors'] == 'All'): ffi_image = load_ffi_fromfile(tstar['file_ffi'][0]) if (n_all_sec > 1) & (ffi_test(ffi_image) == 0): print('switching sector') ffi_image = load_ffi_fromfile(tstar['file_ffi'][1]) if (tstar['which_sectors'] != 'All') & (np.size(tstar['file_ffi'])>1): if tstar['which_sectors'] == '15': ffi_image = load_ffi_fromfile(tstar['file_ffi'][0]) if tstar['which_sectors'] == '16': ffi_image = load_ffi_fromfile(tstar['file_ffi'][1]) ffimage = panel.add_subplot(gs[55:, 0:25]) ffimage.set_title('TESS Cutout Image') color_map = plt.cm.get_cmap('gray') reversed_color_map = color_map.reversed() ffi_mod = np.clip(ffi_image-np.min(ffi_image),0,1000) ffimage.imshow(ffi_mod,origin = 'lower',cmap=reversed_color_map) ffimage.plot([15,17],[20,20],color='red') ffimage.plot([23,25],[20,20],color='red') ffimage.plot([20,20],[15,17],color='red') ffimage.plot([20,20],[23,25],color='red') ffimage.set_xlabel('Pixels') ffimage.set_ylabel('Pixels') if save == True: # dir_panels = '/content/gdrive/My Drive/TESS/'+tstar['Cluster']+'/Panels/' #dir_panels = '/content/gdrive/My Drive/Plots/Panels_Final/' dir_panels = myDir.project_dir(tstar['Cluster'])+'Panels/' end = '-User='+tstar['User']+'.png' if tstar['Source'][0] == 'G': dr2 = tstar['Source'][9:] else: dr2 = tstar['Source'] file_save = dir_panels+'GaiaDR2_'+dr2+end panel.savefig(file_save, dpi=300, bbox_inches='tight', pad_inches=0.25, transparent=False) # print('Display time:' + str(time.time() - time_1)) return tstar #################################################################################### def update_prot_table(table, tstar): user = tstar['User'] # (1) where is the star in the table? cell = table.find(tstar['Source']) # print("Found something at R%sC%s" % (cell.row, cell.col)) row_number = cell.row if user == 'Auto': columns = ['Prot','Prot_LS', 'Power_LS', 'TESS_Data'] n_col = len(columns) cols = [] for column in columns: cell = table.find(column) cols.append(cell.col) cell_list = [table.cell(row_number,cols[0]),table.cell(row_number,cols[1]),table.cell(row_number,cols[2]),table.cell(row_number,cols[3])] cell_list[1].value = tstar['Prot_LS'] cell_list[2].value = tstar['Power_LS'] if (tstar['exist_ffi'] == 0) or (tstar['exist_cpm'] == 0): cell_list[0].value = '-1' cell_list[3].value = 'No' else: cell_list[0].value = '' cell_list[3].value = 'Yes' table.update_cells(cell_list) #added amplitude column, and sector_list if user != 'Auto': columns = ['Prot_Final','Prot_LS', 'Power_LS', 'Single_Double', 'Multi', 'Quality', 'LC_Source', 'Class', 'Notes', 'Amp','Sectors_Used','Flares'] n_col = len(columns) cols = [2,3,4,5,6,7,8,9,10,11,12,13] # for column in columns: # cell = table.find(column) # cols.append(cell.col) cell_range = 'B'+str(row_number)+':M'+str(row_number) cell_list = table.range(cell_range) if tstar['LC_Action'] == 'Publish': cell_list[0].value = tstar['Prot_final'] if tstar['LC_Action'] == 'Good': cell_list[0].value = tstar['Prot_final'] if tstar['LC_Action'] == 'Follow up': cell_list[0].value = -tstar['Prot_final'] if tstar['LC_Action'] == 'Flat': cell_list[0].value = 99 if tstar['LC_Action'] == 'Garbage': cell_list[0].value = -99 cell_list[1].value = tstar['Prot_LS'] cell_list[2].value = tstar['Power_LS'] cell_list[3].value = tstar['is_it_double'] cell_list[4].value = tstar['Multi'] cell_list[5].value = tstar['LC_Quality'] cell_list[6].value = tstar['which_LC'] cell_list[7].value = tstar['LC_Action'] cell_list[8].value = tstar['Notes'] cell_list[9].value = tstar['Amplitude'] cell_list[10].value = str(tstar['which_sectors']) cell_list[11].value = tstar['Flares'] table.update_cells(cell_list) #################################################################################### def stars_todo(table): n_stars = len(table) not_done = np.zeros(n_stars, dtype=int) for i in range(n_stars): if len(table['Prot_LS'][i]) == 0: not_done[i] = 1 ido = np.where(not_done == 1) dr2_list = table['DR2Name'].to_numpy() star_list = dr2_list[ido[0]] return star_list def stars_todo_split(table, user): n_stars = len(table) not_done = np.zeros(n_stars, dtype=int) for i in range(n_stars): if len(table['Prot_LS'][i]) == 0: not_done[i] = 1 ido = np.where(not_done == 1) list = ido[0] if user == 'Angeli': these = np.where(ido[0] < 202) list = ido[0][these] if user == 'Isabella': these = np.where((ido[0] > 191) & (ido[0] < 379)) list = ido[0][these] if user == 'Linus': these = np.where(ido[0] > 373) list = ido[0][these] dr2_list = table['DR2Name'].to_numpy() star_list = dr2_list[list] return star_list #################################################################################### def stars_nodata(): target_table = get_prot_table('Auto') target_data = target_table.get_all_records() dr2_list = target_table.col_values(1) dr2 = np.array(dr2_list[1:]) num = np.size(dr2) # load their table user_table = get_prot_table('Jason') # Identify columns # Locate Prot_LS column cell = user_table.find('Prot_LS') col_prot = cell.col # Locate Power LS column cell = user_table.find('Power_LS') col_pow = cell.col # Loop over targets for i in range(num): row_number = i+2 # Does target have TESS data, according to target table? val = target_data[i]['Prot_LS'] if val == 0: user_table.update_cell(row_number,col_prot,0) user_table.update_cell(row_number,col_pow,0) #################################################################################### def stars_nodata_new(Team): target_table = get_prot_table('Auto') target_data = target_table.get_all_records() dr2_list = target_table.col_values(1) dr2 = np.array(dr2_list[1:]) num = np.size(dr2) # load their table user_table = get_prot_table('Jason') # Identify columns # Locate Prot_LS column cell = user_table.find('Prot_LS') col_prot = cell.col # Locate Power LS column cell = user_table.find('Power_LS') col_pow = cell.col # Loop over targets for i in range(num): row_number = i+2 # Does target have TESS data, according to target table? val = target_data[i]['Prot_LS'] if val == 0: user_table.update_cell(row_number,col_prot,0) user_table.update_cell(row_number,col_pow,0) #################################################################################### def ffi_test(ffi): shape = np.shape(ffi) val = ffi[int(shape[0]/2),int(shape[1]/2)] if np.isfinite(val): good_or_bad = 1 else: good_or_bad = 0 return good_or_bad #################################################################################### def tess_inspect_not_working(tstar): import ipywidgets as widgets from ipywidgets import interactive from IPython.display import display import matplotlib.pylab as pylab lc_cpm = load_cpm(tstar) all_sectors = lc_cpm['sector'].unique().astype(int) sectors = sector.unique().astype(int) thing_widget = widgets.SelectMultiple( options=sectors, value=sectors, #rows=10, description='Sectors', disabled=False ) interactive_plot = interactive(idisplay_tess, thing=thing_widget,double=False) output = interactive_plot.children[-1] interactive_plot idisplay() return #################################################################################### #################################################################################### def update_panelname_v1(tstar, locate=False): import os from glob import glob dir_panels = '/content/gdrive/My Drive/Projects/'+tstar['Cluster']+'/Panels/' name = dir_panels + '*'+tstar['Source'][9:]+'*' file = glob(name) if locate == True: return np.size(file) else: end = '-User='+tstar['User']+'-Review='+tstar['LC_Action']+'.png' new_file = dir_panels + 'GaiaDR2_'+str(tstar["Source"])[9:]+end os.rename(file[0],new_file) def update_panelname(tstar, locate=False): import os from glob import glob dir_panels = myDir.project_dir(tstar['Cluster'])+'Panels/' if tstar['Source'][0] == 'G': dr2 = tstar['Source'][9:] else: dr2 = tstar['Source'] name = dir_panels + '*'+dr2+'*'+tstar['User']+'*' file = glob(name) if locate == True: return np.size(file) else: end = '-User='+tstar['User']+'-Review='+tstar['LC_Action']+'.png' new_file = dir_panels + 'GaiaDR2_'+dr2+end os.rename(file[0],new_file) ############################################################################# def prot_show_v1(project_name, user, gbr, clusters=False): # gbr = target_data['BP_RP'].to_numpy(dtype=float) fig1, ax1 = plt.subplots(figsize=(7,6)) ax1.tick_params(axis='both', which='major', labelsize=15) aw = 1.5 ax1.spines['top'].set_linewidth(aw) ax1.spines['left'].set_linewidth(aw) ax1.spines['right'].set_linewidth(aw) ax1.spines['bottom'].set_linewidth(aw) prot_table_now = get_prot_table(user,project_name) prot_data_val_now = prot_table_now.get_all_values() prot_data_now = pd.DataFrame.from_records(prot_data_val_now[1:],columns=prot_data_val_now[0]) pnow = prot_data_now['Prot_Final'].to_numpy() uu = np.where((pnow != '') & (pnow != '-1') & (gbr != 'nan')) prot_now = pnow[uu[0]] color = gbr[uu[0]].astype(float) ax1.set_xlim(0.4,2.5) ax1.set_xlabel('BP - RP (mag)',fontsize=20) ax1.set_ylim(0,20) ax1.set_ylabel('Rotation Period (days)',fontsize=20) if clusters == True: file = glob('/content/gdrive/My Drive/Tables/gyro_clusters_draft-2020April08.csv') clus = pd.read_csv(file[0]) indicesPl = np.where((clus["CLUSTER"] == "Pleiades") & (clus['BENCH'] == 1)) indicesPr = np.where((clus["CLUSTER"] == "Praesepe") & (clus['BENCH'] == 1)) #indicesNGC = np.where((Cluster == "NGC_6811") & (clus['BENCH'] == 1)) pleiades = clus.iloc[indicesPl] praesepe = clus.iloc[indicesPr] #NGC6811 = clus.iloc[indicesNGC] plt.plot(pleiades["BP_RP"]-0.415*0.12, pleiades["PROT"], markerfacecolor = 'blue', markeredgecolor='black', label = '120 Myr Pleiades',markersize=10,alpha=0.7,linestyle='',marker='.') plt.plot(praesepe["BP_RP"]-0.415*0.035, praesepe["PROT"], markerfacecolor = 'cyan', markeredgecolor='black', label = '670 Myr Praesepe',markersize=10,alpha=0.7,linestyle='',marker='.') ax1.plot(color, np.array(prot_now,dtype=float),markerfacecolor='red',markeredgecolor='black',marker='*',markersize=20,linestyle='') plt.show() def prot_show(project_name, user, gbr, clusters=False, pcut=0.0): # gbr = target_data['BP_RP'].to_numpy(dtype=float) fig1, ax1 = plt.subplots(figsize=(15,9)) ax1.tick_params(axis='both', which='major', labelsize=15) aw = 1.5 ax1.spines['top'].set_linewidth(aw) ax1.spines['left'].set_linewidth(aw) ax1.spines['right'].set_linewidth(aw) ax1.spines['bottom'].set_linewidth(aw) prot_table_now = get_prot_table(user,project_name) prot_data_val_now = prot_table_now.get_all_values() prot_data_now = pd.DataFrame.from_records(prot_data_val_now[1:],columns=prot_data_val_now[0]) pnow = prot_data_now['Prot_Final'].to_numpy() qnow = prot_data_now['Quality'].to_numpy() cnow = prot_data_now['Class'].to_numpy() uu = np.where((pnow != '') & (pnow != '-1') & (gbr != 'nan') & (qnow != '-1') & (cnow == 'Accept')) # uu = np.where((pnow != '') & (pnow != '-1') & (gbr != 'nan')) prot_now = pnow[uu[0]] color = gbr[uu[0]].astype(float) power_now = prot_data_now['Power_LS'].to_numpy() vv = np.where(power_now[uu[0]].astype(float)>pcut) ax1.set_xlim(0.4,3.5) ax1.set_xlabel('BP - RP (mag)',fontsize=20) ax1.set_ylim(0,25) ax1.set_ylabel('Rotation Period (days)',fontsize=20) if clusters == True: file = glob('/content/gdrive/My Drive/Tables/gyro_clusters_draft-2020April08.csv') clus = pd.read_csv(file[0]) indicesPl = np.where((clus["CLUSTER"] == "Pleiades") & (clus['BENCH'] == 1)) indicesPr = np.where((clus["CLUSTER"] == "Praesepe") & (clus['BENCH'] == 1)) #indicesNGC = np.where((Cluster == "NGC_6811") & (clus['BENCH'] == 1)) pleiades = clus.iloc[indicesPl] praesepe = clus.iloc[indicesPr] #NGC6811 = clus.iloc[indicesNGC] ax1.plot(pleiades["BP_RP"]-0.415*0.12, pleiades["PROT"], markerfacecolor = 'blue', markeredgecolor='black', label = '120 Myr Pleiades',markersize=10,alpha=0.7,linestyle='',marker='.') ax1.plot(praesepe["BP_RP"]-0.415*0.035, praesepe["PROT"], markerfacecolor = 'cyan', markeredgecolor='black', label = '670 Myr Praesepe',markersize=10,alpha=0.7,linestyle='',marker='.') ax1.plot(color[vv[0]], np.array(prot_now[vv[0]],dtype=float),markerfacecolor='red',markeredgecolor='black',marker='*',markersize=15,linestyle='') print(len(vv[0])) # ax1.scatter([1.2215], [11.6770],s=3000,c='green') # ax1.plot([1.2375,1.2375],[0,20],c='green') # ax1.plot([0.5,2.5],[11.677,11.677],c='green') plt.show() ############################################################################# def make_status(project_name, add_user='', add_step = '', change_auto='', reset=False): # directory dir_project = myDir.project_dir(project_name) # ensure the file doesnt already exist file_status = glob(dir_project + "Status.txt") new_file = 1 if (np.size(file_status) == 1) | (reset == False): bsize = os.path.getsize(file_status[0]) #size in bytes if bsize < 40: print('remove the file') os.remove(file_status[0]) else: new_file = 0 status = read_status(project_name) if (new_file == 1) | (reset == True): status = {'Project':project_name, 'Users':'Jason Team_Member', 'Steps':'Status_Initialized', 'Auto': 'No'} if len(add_user) > 0: status['Users'] += ' '+add_user if len(add_step) > 0: status['Steps'] += ' '+add_step if len(change_auto) > 0: status['Auto'] = change_auto lines = [] # 1: project title lines.append('Project: '+project_name+"\n") # 2: Users lines.append('Users: '+status['Users']+"\n") # 3: Steps lines.append('Steps: '+status['Steps']+"\n") # 4: Has tesscheck_auto been run? lines.append('tesscheck_auto: '+status['Auto']+"") # 5: Which sectors? # 6: Number of repeat sectors? # Create the file fo = open(dir_project + "Status.txt", "w") fo.writelines(lines) fo.close() ###################################### def read_status(project_name): dir_project = myDir.project_dir(project_name) # ensure the file doesnt already exist file_status = glob(dir_project + "Status.txt") if np.size(file_status) == 0: make_status(project_name) #print('no file') return bsize = os.path.getsize(file_status[0]) #size in bytes if (bsize < 40): os.remove(file_status[0]) make_status(project_name) #print('no file') return fo = open(file_status[0], "r") lines_current = fo.readlines() fo.close() # 2 Users c_users_line = lines_current[1][0:-1] c_users_split = c_users_line.split(sep=' ') users_current = c_users_split[1:] # 3 Steps c_steps_line = lines_current[2][0:-1] c_steps_split = c_steps_line.split(sep=' ') steps_current = c_steps_split[1:] # 4 Auto c_line = lines_current[3] c_split = c_line.split(sep=' ') auto_current = c_split[1:] status = {'Project':project_name, 'Users':list_to_string(users_current), 'Steps':list_to_string(steps_current), 'Auto':auto_current[0]} return status ############################################################################# def add_user_to_sheet(project_name, user): from google.colab import auth auth.authenticate_user() import gspread from oauth2client.client import GoogleCredentials gc = gspread.authorize(GoogleCredentials.get_application_default()) sheet = load_sheet(project_name) sheet_list = sheet.worksheets() target_table = get_prot_table('Auto',project_name) target_data_val = target_table.get_all_values() target_data = pd.DataFrame.from_records(target_data_val[1:],columns=target_data_val[0]) dr2_list = target_data['DR2Name'].to_numpy() number_of_stars = len(dr2_list) sheet_exists = 0 for isheet in sheet_list: if isheet.title == user: sheet_exists = 1 if sheet_exists == 1: print('This user has a sheet') else: print('Making sheet for new user...') new_sheet = sheet.add_worksheet(title=user,rows=number_of_stars+1,cols=10) columns = ['DR2Name', 'Prot_Final', 'Prot_LS', 'Power_LS', 'Single_Double', 'Multi', 'Quality', 'LC_Source', 'Class', 'Notes','Amp','Sectors_Used','Flares'] cell_range = 'A1:M1' cell_list = new_sheet.range(cell_range) i=0 for cell in cell_list: cell.value = columns[i] i+=1 new_sheet.update_cells(cell_list) cell_range = 'A2:A'+str(number_of_stars+1) cell_list = new_sheet.range(cell_range) i=0 for cell in cell_list: cell.value = target_data['DR2Name'][i] i+=1 new_sheet.update_cells(cell_list) cell_range = 'B2:B'+str(number_of_stars+1) cell_list = new_sheet.range(cell_range) i=0 for cell in cell_list: if target_data['Prot'][i] == '-1': cell.value = target_data['Prot'][i] i+=1 new_sheet.update_cells(cell_list) cell_range = 'C2:C'+str(number_of_stars+1) cell_list = new_sheet.range(cell_range) i=0 for cell in cell_list: if target_data['Prot_LS'][i] == '0': cell.value = target_data['Prot_LS'][i] i+=1 new_sheet.update_cells(cell_list) cell_range = 'D2:D'+str(number_of_stars+1) cell_list = new_sheet.range(cell_range) i=0 for cell in cell_list: if target_data['Power_LS'][i] == '0': cell.value = target_data['Power_LS'][i] i+=1 new_sheet.update_cells(cell_list) # print('Setting up a new user took '+str(time.time()-start_time)+' seconds') def prot_auto_show(project_name, clusters=False, pcut=0.0, av=0.0): fig1, ax1 = plt.subplots(figsize=(15,9)) ax1.tick_params(axis='both', which='major', labelsize=15) aw = 1.5 ax1.spines['top'].set_linewidth(aw) ax1.spines['left'].set_linewidth(aw) ax1.spines['right'].set_linewidth(aw) ax1.spines['bottom'].set_linewidth(aw) worksheet = load_sheet(project_name) target_table = worksheet.worksheet('Targets') target_data_val = target_table.get_all_values() target_data = pd.DataFrame.from_records(target_data_val[1:],columns=target_data_val[0]) gbr = target_data['BP_RP'].to_numpy(dtype=float) pnow = target_data['Prot_LS'].to_numpy() uu = np.where((pnow != '') & (pnow != '-1') & (gbr != 'nan')) prot_now = pnow[uu[0]] color = gbr[uu[0]].astype(float) - 0.415*av power_now = target_data['Power_LS'].to_numpy() vv = np.where(power_now[uu[0]].astype(float)>pcut) ax1.set_xlim(0.4,3.5) ax1.set_xlabel('$(BP - RP)_0$ (mag)',fontsize=20) ax1.set_ylim(0,25) ax1.set_ylabel('Rotation Period (days)',fontsize=20) if clusters == True: file = glob('/content/gdrive/My Drive/Tables/gyro_clusters_draft-2020April08.csv') clus =
pd.read_csv(file[0])
pandas.read_csv
from __future__ import division from datetime import datetime import sys if sys.version_info < (3, 3): import mock else: from unittest import mock import pandas as pd import numpy as np import random from nose.tools import assert_almost_equal as aae import bt import bt.algos as algos def test_algo_name(): class TestAlgo(algos.Algo): pass actual = TestAlgo() assert actual.name == 'TestAlgo' class DummyAlgo(algos.Algo): def __init__(self, return_value=True): self.return_value = return_value self.called = False def __call__(self, target): self.called = True return self.return_value def test_algo_stack(): algo1 = DummyAlgo(return_value=True) algo2 = DummyAlgo(return_value=False) algo3 = DummyAlgo(return_value=True) target = mock.MagicMock() stack = bt.AlgoStack(algo1, algo2, algo3) actual = stack(target) assert not actual assert algo1.called assert algo2.called assert not algo3.called def test_print_temp_data(): target = mock.MagicMock() target.temp={} target.temp['selected'] = ['c1','c2'] target.temp['weights'] = [0.5,0.5] algo = algos.PrintTempData() assert algo( target ) algo = algos.PrintTempData( 'Selected: {selected}') assert algo( target ) def test_print_info(): target = bt.Strategy('s', []) target.temp={} algo = algos.PrintInfo() assert algo( target ) algo = algos.PrintInfo( '{now}: {name}') assert algo( target ) def test_run_once(): algo = algos.RunOnce() assert algo(None) assert not algo(None) assert not algo(None) def test_run_period(): target = mock.MagicMock() dts = pd.date_range('2010-01-01', periods=35) data = pd.DataFrame(index=dts, columns=['c1', 'c2'], data=100) algo = algos.RunPeriod() # adds the initial day backtest = bt.Backtest( bt.Strategy('', [algo]), data ) target.data = backtest.data dts = target.data.index target.now = None assert not algo(target) # run on first date target.now = dts[0] assert not algo(target) # run on first supplied date target.now = dts[1] assert algo(target) # run on last date target.now = dts[len(dts) - 1] assert not algo(target) algo = algos.RunPeriod( run_on_first_date=False, run_on_end_of_period=True, run_on_last_date=True ) # adds the initial day backtest = bt.Backtest( bt.Strategy('', [algo]), data ) target.data = backtest.data dts = target.data.index # run on first date target.now = dts[0] assert not algo(target) # first supplied date target.now = dts[1] assert not algo(target) # run on last date target.now = dts[len(dts) - 1] assert algo(target) # date not in index target.now = datetime(2009, 2, 15) assert not algo(target) def test_run_daily(): target = mock.MagicMock() dts = pd.date_range('2010-01-01', periods=35) data = pd.DataFrame(index=dts, columns=['c1', 'c2'], data=100) algo = algos.RunDaily() # adds the initial day backtest = bt.Backtest( bt.Strategy('',[algo]), data ) target.data = backtest.data target.now = dts[1] assert algo(target) def test_run_weekly(): dts = pd.date_range('2010-01-01', periods=367) data = pd.DataFrame(index=dts, columns=['c1', 'c2'], data=100) target = mock.MagicMock() target.data = data algo = algos.RunWeekly() # adds the initial day backtest = bt.Backtest( bt.Strategy('', [algo]), data ) target.data = backtest.data # end of week target.now = dts[2] assert not algo(target) # new week target.now = dts[3] assert algo(target) algo = algos.RunWeekly( run_on_first_date=False, run_on_end_of_period=True, run_on_last_date=True ) # adds the initial day backtest = bt.Backtest( bt.Strategy('', [algo]), data ) target.data = backtest.data # end of week target.now = dts[2] assert algo(target) # new week target.now = dts[3] assert not algo(target) dts = pd.DatetimeIndex([datetime(2016, 1, 3), datetime(2017, 1, 8),datetime(2018, 1, 7)]) data = pd.DataFrame(index=dts, columns=['c1', 'c2'], data=100) # adds the initial day backtest = bt.Backtest( bt.Strategy('', [algo]), data ) target.data = backtest.data # check next year target.now = dts[1] assert algo(target) def test_run_monthly(): dts = pd.date_range('2010-01-01', periods=367) data = pd.DataFrame(index=dts, columns=['c1', 'c2'], data=100) target = mock.MagicMock() target.data = data algo = algos.RunMonthly() # adds the initial day backtest = bt.Backtest( bt.Strategy('', [algo]), data ) target.data = backtest.data # end of month target.now = dts[30] assert not algo(target) # new month target.now = dts[31] assert algo(target) algo = algos.RunMonthly( run_on_first_date=False, run_on_end_of_period=True, run_on_last_date=True ) # adds the initial day backtest = bt.Backtest( bt.Strategy('', [algo]), data ) target.data = backtest.data # end of month target.now = dts[30] assert algo(target) # new month target.now = dts[31] assert not algo(target) dts = pd.DatetimeIndex([datetime(2016, 1, 3), datetime(2017, 1, 8), datetime(2018, 1, 7)]) data = pd.DataFrame(index=dts, columns=['c1', 'c2'], data=100) # adds the initial day backtest = bt.Backtest( bt.Strategy('', [algo]), data ) target.data = backtest.data # check next year target.now = dts[1] assert algo(target) def test_run_quarterly(): dts = pd.date_range('2010-01-01', periods=367) data = pd.DataFrame(index=dts, columns=['c1', 'c2'], data=100) target = mock.MagicMock() target.data = data algo = algos.RunQuarterly() # adds the initial day backtest = bt.Backtest( bt.Strategy('', [algo]), data ) target.data = backtest.data # end of quarter target.now = dts[89] assert not algo(target) # new quarter target.now = dts[90] assert algo(target) algo = algos.RunQuarterly( run_on_first_date=False, run_on_end_of_period=True, run_on_last_date=True ) # adds the initial day backtest = bt.Backtest( bt.Strategy('', [algo]), data ) target.data = backtest.data # end of quarter target.now = dts[89] assert algo(target) # new quarter target.now = dts[90] assert not algo(target) dts = pd.DatetimeIndex([datetime(2016, 1, 3), datetime(2017, 1, 8), datetime(2018, 1, 7)]) data = pd.DataFrame(index=dts, columns=['c1', 'c2'], data=100) # adds the initial day backtest = bt.Backtest( bt.Strategy('', [algo]), data ) target.data = backtest.data # check next year target.now = dts[1] assert algo(target) def test_run_yearly(): dts = pd.date_range('2010-01-01', periods=367) data = pd.DataFrame(index=dts, columns=['c1', 'c2'], data=100) target = mock.MagicMock() target.data = data algo = algos.RunYearly() # adds the initial day backtest = bt.Backtest( bt.Strategy('', [algo]), data ) target.data = backtest.data # end of year target.now = dts[364] assert not algo(target) # new year target.now = dts[365] assert algo(target) algo = algos.RunYearly( run_on_first_date=False, run_on_end_of_period=True, run_on_last_date=True ) # adds the initial day backtest = bt.Backtest( bt.Strategy('', [algo]), data ) target.data = backtest.data # end of year target.now = dts[364] assert algo(target) # new year target.now = dts[365] assert not algo(target) def test_run_on_date(): target = mock.MagicMock() target.now = pd.to_datetime('2010-01-01') algo = algos.RunOnDate('2010-01-01', '2010-01-02') assert algo(target) target.now = pd.to_datetime('2010-01-02') assert algo(target) target.now = pd.to_datetime('2010-01-03') assert not algo(target) def test_run_if_out_of_bounds(): algo = algos.RunIfOutOfBounds(0.5) dts = pd.date_range('2010-01-01', periods=3) s = bt.Strategy('s') data = pd.DataFrame(index=dts, columns=['c1', 'c2'], data=100) s.setup(data) s.temp['selected'] = ['c1', 'c2'] s.temp['weights'] = {'c1': .5, 'c2':.5} s.update(dts[0]) s.children['c1'] = bt.core.SecurityBase('c1') s.children['c2'] = bt.core.SecurityBase('c2') s.children['c1']._weight = 0.5 s.children['c2']._weight = 0.5 assert not algo(s) s.children['c1']._weight = 0.25 s.children['c2']._weight = 0.75 assert not algo(s) s.children['c1']._weight = 0.24 s.children['c2']._weight = 0.76 assert algo(s) s.children['c1']._weight = 0.75 s.children['c2']._weight = 0.25 assert not algo(s) s.children['c1']._weight = 0.76 s.children['c2']._weight = 0.24 assert algo(s) def test_run_after_date(): target = mock.MagicMock() target.now = pd.to_datetime('2010-01-01') algo = algos.RunAfterDate('2010-01-02') assert not algo(target) target.now = pd.to_datetime('2010-01-02') assert not algo(target) target.now = pd.to_datetime('2010-01-03') assert algo(target) def test_run_after_days(): target = mock.MagicMock() target.now = pd.to_datetime('2010-01-01') algo = algos.RunAfterDays(3) assert not algo(target) assert not algo(target) assert not algo(target) assert algo(target) def test_set_notional(): algo = algos.SetNotional('notional') s = bt.FixedIncomeStrategy('s') dts = pd.date_range('2010-01-01', periods=3) data = pd.DataFrame(index=dts, columns=['c1', 'c2'], data=100.) notional = pd.Series(index=dts[:2], data=[1e6, 5e6]) s.setup( data, notional = notional ) s.update(dts[0]) assert algo(s) assert s.temp['notional_value'] == 1e6 s.update(dts[1]) assert algo(s) assert s.temp['notional_value'] == 5e6 s.update(dts[2]) assert not algo(s) def test_rebalance(): algo = algos.Rebalance() s = bt.Strategy('s') dts = pd.date_range('2010-01-01', periods=3) data = pd.DataFrame(index=dts, columns=['c1', 'c2'], data=100) s.setup(data) s.adjust(1000) s.update(dts[0]) s.temp['weights'] = {'c1': 1} assert algo(s) assert s.value == 1000 assert s.capital == 0 c1 = s['c1'] assert c1.value == 1000 assert c1.position == 10 assert c1.weight == 1. s.temp['weights'] = {'c2': 1} assert algo(s) assert s.value == 1000 assert s.capital == 0 c2 = s['c2'] assert c1.value == 0 assert c1.position == 0 assert c1.weight == 0 assert c2.value == 1000 assert c2.position == 10 assert c2.weight == 1. def test_rebalance_with_commissions(): algo = algos.Rebalance() s = bt.Strategy('s') s.set_commissions(lambda q, p: 1) dts = pd.date_range('2010-01-01', periods=3) data = pd.DataFrame(index=dts, columns=['c1', 'c2'], data=100) s.setup(data) s.adjust(1000) s.update(dts[0]) s.temp['weights'] = {'c1': 1} assert algo(s) assert s.value == 999 assert s.capital == 99 c1 = s['c1'] assert c1.value == 900 assert c1.position == 9 assert c1.weight == 900 / 999. s.temp['weights'] = {'c2': 1} assert algo(s) assert s.value == 997 assert s.capital == 97 c2 = s['c2'] assert c1.value == 0 assert c1.position == 0 assert c1.weight == 0 assert c2.value == 900 assert c2.position == 9 assert c2.weight == 900. / 997 def test_rebalance_with_cash(): algo = algos.Rebalance() s = bt.Strategy('s') s.set_commissions(lambda q, p: 1) dts = pd.date_range('2010-01-01', periods=3) data = pd.DataFrame(index=dts, columns=['c1', 'c2'], data=100) s.setup(data) s.adjust(1000) s.update(dts[0]) s.temp['weights'] = {'c1': 1} # set cash amount s.temp['cash'] = 0.5 assert algo(s) assert s.value == 999 assert s.capital == 599 c1 = s['c1'] assert c1.value == 400 assert c1.position == 4 assert c1.weight == 400.0 / 999 s.temp['weights'] = {'c2': 1} # change cash amount s.temp['cash'] = 0.25 assert algo(s) assert s.value == 997 assert s.capital == 297 c2 = s['c2'] assert c1.value == 0 assert c1.position == 0 assert c1.weight == 0 assert c2.value == 700 assert c2.position == 7 assert c2.weight == 700.0 / 997 def test_rebalance_updatecount(): algo = algos.Rebalance() s = bt.Strategy('s') s.use_integer_positions(False) dts = pd.date_range('2010-01-01', periods=3) data = pd.DataFrame(index=dts, columns=['c1', 'c2', 'c3', 'c4','c5'], data=100) s.setup(data) s.adjust(1000) s.update(dts[0]) s.temp['weights'] = {'c1': 0.25, 'c2':0.25, 'c3':0.25, 'c4':0.25} update = bt.core.SecurityBase.update bt.core.SecurityBase._update_call_count = 0 def side_effect(self, *args, **kwargs): bt.core.SecurityBase._update_call_count += 1 return update(self, *args, **kwargs) with mock.patch.object(bt.core.SecurityBase, 'update', side_effect) as mock_update: assert algo(s) assert s.value == 1000 assert s.capital == 0 # Update is called once when each weighted security is created (4) # and once for each security after all allocations are made (4) assert bt.core.SecurityBase._update_call_count == 8 s.update(dts[1]) s.temp['weights'] = {'c1': 0.5, 'c2':0.5} update = bt.core.SecurityBase.update bt.core.SecurityBase._update_call_count = 0 def side_effect(self, *args, **kwargs): bt.core.SecurityBase._update_call_count += 1 return update(self, *args, **kwargs) with mock.patch.object(bt.core.SecurityBase, 'update', side_effect) as mock_update: assert algo(s) # Update is called once for each weighted security before allocation (4) # and once for each security after all allocations are made (4) assert bt.core.SecurityBase._update_call_count == 8 s.update(dts[2]) s.temp['weights'] = {'c1': 0.25, 'c2':0.25, 'c3':0.25, 'c4':0.25} update = bt.core.SecurityBase.update bt.core.SecurityBase._update_call_count = 0 def side_effect(self, *args, **kwargs): bt.core.SecurityBase._update_call_count += 1 return update(self, *args, **kwargs) with mock.patch.object(bt.core.SecurityBase, 'update', side_effect) as mock_update: assert algo(s) # Update is called once for each weighted security before allocation (2) # and once for each security after all allocations are made (4) assert bt.core.SecurityBase._update_call_count == 6 def test_rebalance_fixedincome(): algo = algos.Rebalance() c1 = bt.Security('c1') c2 = bt.CouponPayingSecurity('c2') s = bt.FixedIncomeStrategy('s', children = [c1, c2]) dts = pd.date_range('2010-01-01', periods=3) data = pd.DataFrame(index=dts, columns=['c1', 'c2'], data=100) coupons = pd.DataFrame(index=dts, columns=['c2'], data=0) s.setup(data, coupons=coupons) s.update(dts[0]) s.temp['notional_value'] = 1000 s.temp['weights'] = {'c1': 1} assert algo(s) assert s.value == 0. assert s.notional_value == 1000 assert s.capital == -1000 c1 = s['c1'] assert c1.value == 1000 assert c1.notional_value == 1000 assert c1.position == 10 assert c1.weight == 1. s.temp['weights'] = {'c2': 1} assert algo(s) assert s.value == 0. assert s.notional_value == 1000 assert s.capital == -1000*100 c2 = s['c2'] assert c1.value == 0 assert c1.notional_value == 0 assert c1.position == 0 assert c1.weight == 0 assert c2.value == 1000*100 assert c2.notional_value == 1000 assert c2.position == 1000 assert c2.weight == 1. def test_select_all(): algo = algos.SelectAll() s = bt.Strategy('s') dts = pd.date_range('2010-01-01', periods=3) data = pd.DataFrame(index=dts, columns=['c1', 'c2'], data=100.) data['c1'][dts[1]] = np.nan data['c2'][dts[1]] = 95 data['c1'][dts[2]] = -5 s.setup(data) s.update(dts[0]) assert algo(s) selected = s.temp['selected'] assert len(selected) == 2 assert 'c1' in selected assert 'c2' in selected # make sure don't keep nan s.update(dts[1]) assert algo(s) selected = s.temp['selected'] assert len(selected) == 1 assert 'c2' in selected # if specify include_no_data then 2 algo2 = algos.SelectAll(include_no_data=True) assert algo2(s) selected = s.temp['selected'] assert len(selected) == 2 assert 'c1' in selected assert 'c2' in selected # behavior on negative prices s.update(dts[2]) assert algo(s) selected = s.temp['selected'] assert len(selected) == 1 assert 'c2' in selected algo3 = algos.SelectAll(include_negative=True) assert algo3(s) selected = s.temp['selected'] assert len(selected) == 2 assert 'c1' in selected assert 'c2' in selected def test_select_randomly_n_none(): algo = algos.SelectRandomly(n=None) # Behaves like SelectAll s = bt.Strategy('s') dts = pd.date_range('2010-01-01', periods=3) data = pd.DataFrame(index=dts, columns=['c1', 'c2'], data=100.) data['c1'][dts[1]] = np.nan data['c2'][dts[1]] = 95 data['c1'][dts[2]] = -5 s.setup(data) s.update(dts[0]) assert algo(s) selected = s.temp.pop('selected') assert len(selected) == 2 assert 'c1' in selected assert 'c2' in selected # make sure don't keep nan s.update(dts[1]) assert algo(s) selected = s.temp.pop('selected') assert len(selected) == 1 assert 'c2' in selected # if specify include_no_data then 2 algo2 = algos.SelectRandomly(n=None, include_no_data=True) assert algo2(s) selected = s.temp.pop('selected') assert len(selected) == 2 assert 'c1' in selected assert 'c2' in selected # behavior on negative prices s.update(dts[2]) assert algo(s) selected = s.temp.pop('selected') assert len(selected) == 1 assert 'c2' in selected algo3 = algos.SelectRandomly(n=None, include_negative=True) assert algo3(s) selected = s.temp.pop('selected') assert len(selected) == 2 assert 'c1' in selected assert 'c2' in selected def test_select_randomly(): s = bt.Strategy('s') dts = pd.date_range('2010-01-01', periods=3) data = pd.DataFrame(index=dts, columns=['c1', 'c2', 'c3'], data=100.) data['c1'][dts[0]] = np.nan data['c2'][dts[0]] = 95 data['c3'][dts[0]] = -5 s.setup(data) s.update(dts[0]) algo = algos.SelectRandomly(n=1) assert algo(s) assert s.temp.pop('selected') == ['c2'] random.seed(1000) algo = algos.SelectRandomly(n=1, include_negative=True) assert algo(s) assert s.temp.pop('selected') == ['c3'] random.seed(1009) algo = algos.SelectRandomly(n=1, include_no_data=True) assert algo(s) assert s.temp.pop('selected') == ['c1'] random.seed(1009) # If selected already set, it will further filter it s.temp['selected'] = ['c2'] algo = algos.SelectRandomly(n=1, include_no_data=True) assert algo(s) assert s.temp.pop('selected') == ['c2'] def test_select_these(): s = bt.Strategy('s') dts = pd.date_range('2010-01-01', periods=3) data = pd.DataFrame(index=dts, columns=['c1', 'c2'], data=100.) data['c1'][dts[1]] = np.nan data['c2'][dts[1]] = 95 data['c1'][dts[2]] = -5 s.setup(data) s.update(dts[0]) algo = algos.SelectThese( ['c1', 'c2']) assert algo(s) selected = s.temp['selected'] assert len(selected) == 2 assert 'c1' in selected assert 'c2' in selected algo = algos.SelectThese( ['c1']) assert algo(s) selected = s.temp['selected'] assert len(selected) == 1 assert 'c1' in selected # make sure don't keep nan s.update(dts[1]) algo = algos.SelectThese( ['c1', 'c2']) assert algo(s) selected = s.temp['selected'] assert len(selected) == 1 assert 'c2' in selected # if specify include_no_data then 2 algo2 = algos.SelectThese( ['c1', 'c2'], include_no_data=True) assert algo2(s) selected = s.temp['selected'] assert len(selected) == 2 assert 'c1' in selected assert 'c2' in selected # behavior on negative prices s.update(dts[2]) assert algo(s) selected = s.temp['selected'] assert len(selected) == 1 assert 'c2' in selected algo3 = algos.SelectThese(['c1', 'c2'], include_negative=True) assert algo3(s) selected = s.temp['selected'] assert len(selected) == 2 assert 'c1' in selected assert 'c2' in selected def test_select_where_all(): s = bt.Strategy('s') dts = pd.date_range('2010-01-01', periods=3) data = pd.DataFrame(index=dts, columns=['c1', 'c2'], data=100.) data['c1'][dts[1]] = np.nan data['c2'][dts[1]] = 95 data['c1'][dts[2]] = -5 where = pd.DataFrame(index=dts, columns=['c1', 'c2'], data=True) s.setup(data, where = where) s.update(dts[0]) algo = algos.SelectWhere('where') assert algo(s) selected = s.temp['selected'] assert len(selected) == 2 assert 'c1' in selected assert 'c2' in selected # make sure don't keep nan s.update(dts[1]) algo = algos.SelectThese( ['c1', 'c2']) assert algo(s) selected = s.temp['selected'] assert len(selected) == 1 assert 'c2' in selected # if specify include_no_data then 2 algo2 = algos.SelectWhere('where', include_no_data=True) assert algo2(s) selected = s.temp['selected'] assert len(selected) == 2 assert 'c1' in selected assert 'c2' in selected # behavior on negative prices s.update(dts[2]) assert algo(s) selected = s.temp['selected'] assert len(selected) == 1 assert 'c2' in selected algo3 = algos.SelectWhere('where', include_negative=True) assert algo3(s) selected = s.temp['selected'] assert len(selected) == 2 assert 'c1' in selected assert 'c2' in selected def test_select_where(): s = bt.Strategy('s') dts = pd.date_range('2010-01-01', periods=3) data = pd.DataFrame(index=dts, columns=['c1', 'c2'], data=100.) where = pd.DataFrame(index=dts, columns=['c1', 'c2'], data=True) where.loc[ dts[1] ] = False where['c1'].loc[ dts[2] ] = False algo = algos.SelectWhere('where') s.setup(data, where=where) s.update(dts[0]) assert algo(s) selected = s.temp['selected'] assert len(selected) == 2 assert 'c1' in selected assert 'c2' in selected s.update(dts[1]) assert algo(s) assert s.temp['selected'] == [] s.update(dts[2]) assert algo(s) assert s.temp['selected'] == ['c2'] def test_select_where_legacy(): s = bt.Strategy('s') dts = pd.date_range('2010-01-01', periods=3) data = pd.DataFrame(index=dts, columns=['c1', 'c2'], data=100.) where = pd.DataFrame(index=dts, columns=['c1', 'c2'], data=True) where.loc[ dts[1] ] = False where['c1'].loc[ dts[2] ] = False algo = algos.SelectWhere(where) s.setup(data) s.update(dts[0]) assert algo(s) selected = s.temp['selected'] assert len(selected) == 2 assert 'c1' in selected assert 'c2' in selected s.update(dts[1]) assert algo(s) assert s.temp['selected'] == [] s.update(dts[2]) assert algo(s) assert s.temp['selected'] == ['c2'] def test_select_regex(): s = bt.Strategy('s') algo = algos.SelectRegex( 'c1' ) s.temp['selected'] = ['a1', 'c1', 'c2', 'c11', 'cc1'] assert algo( s ) assert s.temp['selected'] == ['c1', 'c11', 'cc1'] algo = algos.SelectRegex( '^c1$' ) assert algo( s ) assert s.temp['selected'] == ['c1'] def test_resolve_on_the_run(): s = bt.Strategy('s') dts = pd.date_range('2010-01-01', periods=3) data = pd.DataFrame(index=dts, columns=['c1', 'c2', 'b1'], data=100.) data['c1'][dts[1]] = np.nan data['c2'][dts[1]] = 95 data['c2'][dts[2]] = -5 on_the_run = pd.DataFrame(index=dts, columns=['c'], data='c1') on_the_run.loc[dts[2], 'c'] = 'c2' s.setup(data, on_the_run = on_the_run) s.update(dts[0]) s.temp['selected'] = ['c', 'b1'] algo = algos.ResolveOnTheRun( 'on_the_run' ) assert algo(s) selected = s.temp['selected'] assert len(selected) == 2 assert 'c1' in selected assert 'b1' in selected # make sure don't keep nan s.update(dts[1]) s.temp['selected'] = ['c', 'b1'] assert algo(s) selected = s.temp['selected'] assert len(selected) == 1 assert 'b1' in selected # if specify include_no_data then 2 algo2 = algos.ResolveOnTheRun('on_the_run', include_no_data=True) s.temp['selected'] = ['c', 'b1'] assert algo2(s) selected = s.temp['selected'] assert len(selected) == 2 assert 'c1' in selected assert 'b1' in selected # behavior on negative prices s.update(dts[2]) s.temp['selected'] = ['c', 'b1'] assert algo(s) selected = s.temp['selected'] assert len(selected) == 1 assert 'b1' in selected algo3 = algos.ResolveOnTheRun('on_the_run', include_negative=True) s.temp['selected'] = ['c', 'b1'] assert algo3(s) selected = s.temp['selected'] assert len(selected) == 2 assert 'c2' in selected assert 'b1' in selected def test_select_types(): c1 = bt.Security('c1') c2 = bt.CouponPayingSecurity('c2') c3 = bt.HedgeSecurity('c3') c4 = bt.CouponPayingHedgeSecurity('c4') c5 = bt.FixedIncomeSecurity('c5') s = bt.Strategy('p', children = [c1, c2, c3, c4, c5]) dts = pd.date_range('2010-01-01', periods=3) data = pd.DataFrame(index=dts, columns=['c1', 'c2', 'c3', 'c4', 'c5'], data=100.) coupons = pd.DataFrame(index=dts, columns=['c2', 'c4'], data=0.) s.setup(data, coupons = coupons) i = 0 s.update(dts[i]) algo = algos.SelectTypes(include_types=(bt.Security, bt.HedgeSecurity), exclude_types=()) assert algo(s) assert set(s.temp.pop('selected')) == set(['c1', 'c3']) algo = algos.SelectTypes(include_types=(bt.core.SecurityBase,), exclude_types=(bt.CouponPayingSecurity,)) assert algo(s) assert set(s.temp.pop('selected')) == set(['c1', 'c3', 'c5']) s.temp['selected'] = ['c1', 'c2', 'c3'] algo = algos.SelectTypes(include_types=(bt.core.SecurityBase,)) assert algo(s) assert set(s.temp.pop('selected')) == set(['c1', 'c2', 'c3']) def test_weight_equally(): algo = algos.WeighEqually() s = bt.Strategy('s') dts = pd.date_range('2010-01-01', periods=3) data = pd.DataFrame(index=dts, columns=['c1', 'c2'], data=100) s.setup(data) s.update(dts[0]) s.temp['selected'] = ['c1', 'c2'] assert algo(s) weights = s.temp['weights'] assert len(weights) == 2 assert 'c1' in weights assert weights['c1'] == 0.5 assert 'c2' in weights assert weights['c2'] == 0.5 def test_weight_specified(): algo = algos.WeighSpecified(c1=0.6, c2=0.4) s = bt.Strategy('s') dts = pd.date_range('2010-01-01', periods=3) data = pd.DataFrame(index=dts, columns=['c1', 'c2'], data=100) data['c1'][dts[1]] = 105 data['c2'][dts[1]] = 95 s.setup(data) s.update(dts[0]) assert algo(s) weights = s.temp['weights'] assert len(weights) == 2 assert 'c1' in weights assert weights['c1'] == 0.6 assert 'c2' in weights assert weights['c2'] == 0.4 def test_scale_weights(): s = bt.Strategy('s') algo = algos.ScaleWeights( -0.5 ) s.temp['weights'] = {'c1': 0.5, 'c2': -0.4, 'c3':0 } assert algo( s ) assert s.temp['weights'] == {'c1':-0.25, 'c2':0.2, 'c3':0} def test_select_has_data(): algo = algos.SelectHasData(min_count=3, lookback=pd.DateOffset(days=3)) s = bt.Strategy('s') dts = pd.date_range('2010-01-01', periods=10) data = pd.DataFrame(index=dts, columns=['c1', 'c2'], data=100.) data['c1'].loc[dts[0]] = np.nan data['c1'].loc[dts[1]] = np.nan s.setup(data) s.update(dts[2]) assert algo(s) selected = s.temp['selected'] assert len(selected) == 1 assert 'c2' in selected def test_select_has_data_preselected(): algo = algos.SelectHasData(min_count=3, lookback=pd.DateOffset(days=3)) s = bt.Strategy('s') dts = pd.date_range('2010-01-01', periods=3) data =
pd.DataFrame(index=dts, columns=['c1', 'c2'], data=100.)
pandas.DataFrame
import numpy as np import pandas as pd import random from rpy2.robjects.packages import importr utils = importr('utils') prodlim = importr('prodlim') survival = importr('survival') #KMsurv = importr('KMsurv') #cvAUC = importr('pROC') #utils.install_packages('pseudo') #utils.install_packages('prodlim') #utils.install_packages('survival') #utils.install_packages('KMsurv') #utils.install_packages('pROC') import rpy2.robjects as robjects from rpy2.robjects import r def sim_event_times_case1(trainset, num_samples): train_n = int( .8 * num_samples) test_n = int( (.2) * num_samples) cov = np.random.standard_normal(size=(num_samples, 9)) treatment = np.random.binomial(n=1,p=.5,size=num_samples) treatment=np.expand_dims(treatment,1) clinical_data = np.concatenate((treatment, cov), axis=1) index = np.arange(len(trainset.targets)) idx_sample = np.random.choice(index, num_samples,replace=False) digits = np.array(trainset.targets)[idx_sample] denom = np.exp( 1.7* digits+ .6*np.cos(digits)*clinical_data[:,0]+.2*clinical_data[:,1]+.3*clinical_data[:,0] ) true_times = np.sqrt(-np.log( np.random.uniform(low=0,high=1,size=num_samples) )/ denom ) censored_times = np.random.uniform(low=0,high=true_times) censored_indicator = np.random.binomial(n=1,p=.3,size=digits.shape[0]) times = np.where(censored_indicator==1, censored_times,true_times) event = np.where(censored_indicator==1,0,1) cutoff = np.array(np.quantile(true_times,(.2,.3,.4,.5,.6))) event_1= np.where(true_times<= cutoff[0],1,0) event_2= np.where(true_times<= cutoff[1],1,0) event_3= np.where(true_times<= cutoff[2],1,0) event_4= np.where(true_times<= cutoff[3],1,0) event_5= np.where(true_times<= cutoff[4],1,0) cens_perc = np.sum(censored_indicator)/num_samples cens_perc_train = np.sum(censored_indicator[:train_n])/train_n df = np.concatenate((np.expand_dims(idx_sample,axis=1), np.expand_dims(times,axis=1),np.expand_dims(event,axis=1), np.expand_dims(event_1,axis=1),np.expand_dims(event_2,axis=1),np.expand_dims(event_3,axis=1),np.expand_dims(event_4,axis=1),np.expand_dims(event_5,axis=1),clinical_data),axis=1) df = pd.DataFrame(df,columns= ('ID','time','event','event_1','event_2','event_3','event_4','event_5','cov1','cov2','cov3','cov4','cov5','cov6','cov7','cov8','cov9','cov10')) # the ID is the image chosen #split data train_clindata_all = df.iloc[0:train_n,:] order_time = np.argsort(train_clindata_all['time']) train_clindata_all = train_clindata_all.iloc[order_time,:] test_clindata_all = df.iloc[train_n:,:] time_r = robjects.FloatVector(train_clindata_all['time']) event_r = robjects.BoolVector(train_clindata_all['event']) cutoff_r = robjects.FloatVector(cutoff) robjects.globalenv["time_r"] = time_r robjects.globalenv["event_r"] = event_r robjects.globalenv["cutoff"] = cutoff_r r('km_out <- prodlim(Hist(time_r,event_r)~1)') r(' surv_pso <- jackknife(km_out,times=cutoff) ' ) risk_pso1 = r('1-surv_pso[,1]') risk_pso2 = r('1-surv_pso[,2]') risk_pso3 = r('1-surv_pso[,3]') risk_pso4 = r('1-surv_pso[,4]') risk_pso5 = r('1-surv_pso[,5]') train_clindata_all = train_clindata_all.assign(risk_pso1 = np.array(risk_pso1,dtype=np.float64), risk_pso2 = np.array(risk_pso2,dtype=np.float64), risk_pso3 = np.array(risk_pso3,dtype=np.float64), risk_pso4 = np.array(risk_pso4,dtype=np.float64), risk_pso5 = np.array(risk_pso5,dtype=np.float64) ) long_df = pd.melt(train_clindata_all, id_vars=['ID'],value_vars=['risk_pso1','risk_pso2','risk_pso3','risk_pso4','risk_pso5'] ) long_df.rename(columns={'variable': 'time_point','value': 'ps_risk'}, inplace=True) mymap= {'risk_pso1': 'time1', 'risk_pso2': 'time2', 'risk_pso3': 'time3', 'risk_pso4': 'time4', 'risk_pso5': 'time5' } long_df = long_df.applymap(lambda s : mymap.get(s) if s in mymap else s) train_val_clindata = pd.get_dummies(long_df, columns=['time_point']) test_clindata_all = test_clindata_all.assign( time_point1=1,time_point2=2,time_point3=3,time_point4=4,time_point5=5 ) long_test_df = pd.melt(test_clindata_all, id_vars=['ID'],value_vars=['time_point1','time_point2','time_point3','time_point4','time_point5'] ) long_test_df.rename(columns={'value': 'time_point'}, inplace=True) long_test_clindata_all = pd.merge(left=long_test_df, right=test_clindata_all, how='left',left_on='ID' ,right_on='ID') cols_test = long_test_clindata_all.columns.tolist() long_test_clindata = long_test_clindata_all[ ['ID'] + ['time_point'] + ['time'] + ['event'] + ['event_1'] + ['event_2'] + ['event_3'] + ['event_4'] + ['event_5']] long_test_clindata = pd.get_dummies(long_test_clindata, columns=['time_point']) covariates = df[['ID'] + df.columns.tolist()[8:]] clindata = {'train_val':train_val_clindata , 'test':long_test_clindata, 'covariates': covariates,'time_train': train_clindata_all['time'], 'event_train': train_clindata_all['event'], 'slide_id_test': test_clindata_all['ID'], 'cutoff': cutoff , 'cens': cens_perc, 'cens_train': cens_perc_train} return clindata def sim_event_times_case2(trainset, num_samples): train_n = int( .8 * num_samples) test_n = int( (.2) * num_samples) cov = np.random.standard_normal(size=(num_samples, 9)) treatment = np.random.binomial(n=1,p=.5,size=num_samples) treatment=np.expand_dims(treatment,1) clinical_data = np.concatenate((treatment, cov), axis=1) index = np.arange(len(trainset.targets)) idx_sample = np.random.choice(index, num_samples,replace=False) digits = np.array(trainset.targets)[idx_sample] denom = np.exp( 1.7* digits+ .6*np.cos(digits)*clinical_data[:,0]+.2*clinical_data[:,1]+.3*clinical_data[:,0] ) true_times = np.sqrt(-np.log( np.random.uniform(low=0,high=1,size=num_samples) )/ denom ) denom = np.exp( 1.4*clinical_data[:,0]+2.6*clinical_data[:,1] -.2*clinical_data[:,2] )*6 censored_times = np.sqrt(-np.log(np.random.uniform(low=0,high=1,size=num_samples))/denom ) censored_indicator = (true_times > censored_times)*1 times = np.where(censored_indicator==1, censored_times,true_times) event = np.where(censored_indicator==1,0,1) cutoff = np.array(np.quantile(true_times,(.2,.3,.4,.5,.6))) event_1= np.where(true_times<= cutoff[0],1,0) event_2= np.where(true_times<= cutoff[1],1,0) event_3= np.where(true_times<= cutoff[2],1,0) event_4= np.where(true_times<= cutoff[3],1,0) event_5= np.where(true_times<= cutoff[4],1,0) cens_perc = np.sum(censored_indicator)/num_samples cens_perc_train = np.sum(censored_indicator[:train_n])/train_n df = np.concatenate((np.expand_dims(idx_sample,axis=1), np.expand_dims(times,axis=1),np.expand_dims(event,axis=1), np.expand_dims(event_1,axis=1),np.expand_dims(event_2,axis=1),np.expand_dims(event_3,axis=1),np.expand_dims(event_4,axis=1),np.expand_dims(event_5,axis=1),clinical_data),axis=1) df =
pd.DataFrame(df,columns= ('ID','time','event','event_1','event_2','event_3','event_4','event_5','cov1','cov2','cov3','cov4','cov5','cov6','cov7','cov8','cov9','cov10'))
pandas.DataFrame