prompt
stringlengths
19
1.03M
completion
stringlengths
4
2.12k
api
stringlengths
8
90
#!/usr/local/bin/python """ Mess-around project to learn more python. I organize my card collection according to price. The $TRADE_BOX_THRESHOLD is for cards kept in my trade box. I adjust this whenever the trade box gets full. $1-$TRADE_BOX_THRESHOLD cards are kept in a separate less accessed box. Anything under $1 is kept as a "bulk." Since prices change, it's a bit of a pain to check each card's value. This program will compare current prices to an older version of the inventory and produce a report reports: Report 1) Cards that dropped from trade box, $TRADE_BOX_THRESHOLD->$1; $TRADE_BOX_THRESHOLD->bulk w/ gross delta; by color, alphabetized Report 2) Cards that changed from dollar box, $1->$TRADE_BOX_THRESHOLD; $1->bulk w/gross delta; by color, alphabetized Report 3) Cards that increased from bulk box, bulk->$1; bulk-$TRADE_BOX_THRESHOLD w/gross delta; by color, alphabetized Overall change in value, any notes So I have to export from deckbox.org, then compare to old listCardsCSVs Export doesn't have color, so I have to compare to a library fetched from mtgjson.org, if listCardsCSVs aren't found then it probably means I need to update mtgjson.org I'll schedule this to run every month or so Goals: learn csv with pandas, http stuff with requests, json stuff Thanks to - https://deckbox.org/help/tooltips tooltip library TODO - figure out much change is from new stuff, this is interesting for a different reason; organic vs. adds TODO - little graphs showing change from month to month visually TODO - heatmap of changed by set TODO - heatmap of absolute and average value by set Pass in "--debug" for additional log output """ import datetime import io import json import logging import numpy import os import pandas import platform import re import requests import shutil import smtplib import sys import zipfile from email.mime.multipart import MIMEMultipart from email.mime.text import MIMEText from operator import itemgetter from pathlib import Path from timeit import default_timer as timer MAGIC_CARD_JSON_URL = "https://mtgjson.com/api/v5/AtomicCards.json.zip" DATA_DIR_NAME = "data/" RUN_LOG_FILE_NAME = DATA_DIR_NAME + "run-log.json" CONFIG_FILE_NAME = "config.json" COOKIE_FILE_NAME = "cookies.json" TRADE_BOX_THRESHOLD = 10 # this might change, but it's this for now BULK_BOX_THRESHOLD = 3 # used to be a dollar, but some buyers said less than #4 is bulk CURRENT_VERSION = "0.0.20" HOST_NAME = platform.node() def makeCookies(cookies): """write a dictionary of http cookies to a local file""" with open(COOKIE_FILE_NAME, "w") as file: json.dump(cookies, file) return def eatCookies(): """read a dictionary of http cookies from a local file""" with open(COOKIE_FILE_NAME, "r") as file: return json.load(file) def getCardLibrary(libFile): """go get a card json library, write it to disk, unzip it and return it as a Path""" # keep the zip too so we cn compare byte size for updates debug("in getCardLib:" + str(libFile)) response = requests.get(MAGIC_CARD_JSON_URL, stream=True) bytes = io.BytesIO(response.content) with open(str(libFile.with_suffix(".zip")), "wb") as file: file.write(bytes.read(-1)) zip = zipfile.ZipFile(bytes) zip.extractall(str(libFile.parent)) return libFile def cleanCardDataFrame(df): """clean up and prep the data frame, remove unnecessary columns, change formats expects a DataFrame in, returns a cleaned DataFrame back""" # remove all the columns I don't need listColumnsIDontNeed = {"Type", "Rarity", "Language", "Signed", "Artist Proof", "Altered Art", "Misprint", "Promo", "Textless", "My Price"} for colName in listColumnsIDontNeed: if colName in df.columns: del df[colName] # convert price to a number (dont' care about dollar sign) df["Price"] = df["Price"].str.replace("$", "").str.replace(",", "").astype(float) # should be fewer columns now, and price should be a float # df.info() return df def readRunLog(): """read the runLog, runlog has when-run (YYYYMMDDHHMMSS), old-file, new-file why json? because I want to be able to sort and add elements and hierarchies and stuff if I want, and trying to work more with json""" debug("reading the log") dictRunLog = {} if Path(RUN_LOG_FILE_NAME).exists(): with open(RUN_LOG_FILE_NAME, "r") as file: dictRunLog = json.load(file) debug("current run log: " + str(dictRunLog)) return dictRunLog def writeRunLog(strTimestampKey, dictLogEntry): """write out the runLog, runlog has when-run (YYYYMMDDHHMMSS), old-file, new-file overwriting this file every time kind of worries me, so I'm going to read the current file, merge over it with what is passed and write combined back out""" debug("writing the log") dictRunLog = readRunLog() dictRunLog[strTimestampKey] = dictLogEntry with open(RUN_LOG_FILE_NAME, "w") as file: json.dump(dictRunLog, file, default=default_numpy) def default_numpy(o): if isinstance(o, (numpy.int64, numpy.int32)): return int(o) raise TypeError("Can't understand the object type <" + str(type(o)) + "> for object " + str(o)) def determineCompareFile(dictRunLog): """figure out what the right file is to compare current file to, pass in fun file dict, return a file that exists in data the compare file should be the oldest, or the "new-file" from the last run log""" # sort run log by old-file dictRunLog = sorted(dictRunLog.items(), key=itemgetter(0)) runLogSize = len(dictRunLog) # print("size run log: " + str(runLogSize)+ str(dictRunLog) + "::::" + str(dictRunLog[runLogSize-1][1]["old-file"])) lastCompared = None lastNew = None # get the last item in the run log to find the last old-file if runLogSize > 0: lastCompared = dictRunLog[runLogSize - 1][1]["old-file"] lastNew = dictRunLog[runLogSize - 1][1]["new-file"] debug("LastCompared: " + str(lastCompared)) debug("LastNewFile: " + str(lastNew)) # find all the csvs in data/ listCardsCSVs = list(filter(lambda x: str(x).endswith( "magic-cards.csv"), os.listdir(DATA_DIR_NAME))) # sort them all, oldest to newest by file name listCardsCSVs = sorted(listCardsCSVs) debug("listCardsCSVs:" + str(len(listCardsCSVs)) + str(listCardsCSVs)) # find the lastCompared in list, default to -1 if no match indexLastCompared = None indexLastNew = None try: indexLastCompared = listCardsCSVs.index(lastCompared) indexLastNew = listCardsCSVs.index(lastNew) except ValueError: indexLastCompared = -1 indexLastNew = -1 debug("indexLastCompared: (-1 means I've never compared this file) " + str(indexLastCompared)) debug("indexLastNew: (-1 means I've never compared this file) " + str(indexLastNew)) # if there's no last new match in the directory, use the oldest if (indexLastNew == -1): toCompareFileName = listCardsCSVs[0] else: toCompareFileName = lastNew # Check the next card csv file up chronologically # indexToCompare = indexLastCompared+1 # there should not be a situation where there's not a file after the last compared, but if so, just run against the latest file # if (indexToCompare >= len(listCardsCSVs)): # indexToCompare = len(listCardsCSVs)-1 # debug("indexToCompare" + str(indexToCompare)) # toCompareFileName = listCardsCSVs[indexToCompare] # print("toCompareFileName: " + str(toCompareFileName)) return toCompareFileName def configure(): """load and return configuration dictionary from JSON and config logging""" configureLogging() with open(CONFIG_FILE_NAME, "r") as file: return json.load(file) def configureLogging(): """set up the logging for printing to the console stream""" logger = logging.getLogger(__name__) print("Checking arguments, if --debug sent in as argument, then debug log level" + str(sys.argv)) if (len(sys.argv) > 1): logLevel = sys.argv[1] if str(logLevel).endswith("debug"): logger.setLevel(logging.DEBUG) logger.addHandler(logging.StreamHandler()) print(str(logLevel)) debug("Debug level: " + str(logger.getEffectiveLevel())) def debug(msg): """log a debug message so I don't have to type getLogger... a million times.""" logger = logging.getLogger(__name__) logger.debug(msg) def makeMushedKey(row): """"Return a unique key based on a row, sortcat+name+edition+condition+foil+cardNumber""" return row["SortCategory"] + "-" + row["Name"] + "-" + row["Edition"] + "-" + row["Condition"] + "-" + str(row["CardNumber"]) + "-" + str(row["IsFoil"]) def updateRowStats(row, dictStats): """Update count/price stats for a row; deltas are calculated from the stats dictionary with mushedKeys as key""" key = makeMushedKey(row) oldCount = 0.0 if
pandas.notnull(row["OldCount"])
pandas.notnull
#!/usr/bin/env python # -*- coding: utf-8 -*- # @Time : 2019-05-22 17:45 # @Author : erwin import datetime import time import pandas as pd from component.demo_opentsdb.opentsdb_conn import OpenTSDBClient from machine_learning.similarity.dtw.hierarchical_helper import HierarchicalHelper from common.pickle_helper import store_model pd.set_option('display.max_columns', 1000) pd.set_option('display.width', 1000)
pd.set_option('display.max_colwidth', 1000)
pandas.set_option
#!/usr/bin/env python # ipdb> import os; os._exit(1) # call as: python convert_mat_to_excel.py # ======================================= # Version 0.1 # 30 March, 2019 # michael.taylor AT reading DOT ac DOT uk # ======================================= import os import os.path import glob import optparse from optparse import OptionParser import sys import numpy as np from scipy.io import loadmat import xarray import pandas as pd from pandas import Series, DataFrame, Panel import datetime as dt from sklearn.preprocessing import StandardScaler import seaborn as sns; sns.set(style="darkgrid") import matplotlib.pyplot as plt; plt.close("all") import matplotlib.dates as mdates import matplotlib.ticker as ticker import urllib def create_dataframe(file_in): # # LOAD MATLAB ARRAY # mat_dict = loadmat(file_in, squeeze_me=True) mat_keys = sorted( mat_dict.keys() ) py_dict = { k: mat_dict[k] for k in mat_keys} # --------------------------- # INPUTS p_sim2 (1685790, 10) # --------------------------- # (1) single1: irradiance @ 305 nm [Ir1] # (2) single2: irradiance @ 312 nm [Ir2] # (3) single3: irradiance @ 320 nm [Ir3] # (4) single4: irradiance @ 340 nm [Ir4] # (5) single5: irradiance @ 380 nm [Ir5] # (6) solar zenith angle [SZA] # (7) day of the year [DOY # (8) [Cos(DOY)] # (9) [Sin(DOY)] # (10) day of the week (DOW) # --------------------------- # TIME t_sim2 (1685790, 1) # --------------------------- # OUTPUTS y_sim2 (1685790, 6) # --------------------------- # (1) Ir1: vitamin D with action spectrum 1 [VitD(AS1)] # (2) Ir2: vitamin D with action spectrum 2 [VitD(AS2)] # (3) vitamin D with action spectrum from Ilias [VitD(AS3)] # (4) DNA damage effective dose (DNAD) # (5) CIE erythemal dose (CIE) # (6) Plant Growth (PG) # --------------------------- # EXTRACT INPUTS: x = py_dict['p_sim2'].T # EXTRACT OUTPUTS: y = py_dict['y_sim2'].T # CONVERT MATLAB DATETIME TO PANDAS DATETIME: # NB: 719529 is the Matlab datenum value of the Unix epoch start (1970-01-01) t = pd.to_datetime(py_dict['t_sim2'] - 719529, unit='D') # SELECT SAMPLE: x = x[0:10000,:] y = y[0:10000,:] t = t[0:10000] # PANDAS COLUMN HEADINGS: x_cols = ['Ir_305','Ir_312','Ir_320','Ir_340','Ir_380','SZA','DOY','CosDOY','SinDOY','DOW'] y_cols = ['VitaminD_AS1','VitaminD_AS2','VitaminD_AS3','DNA_Damage','CIE','Plant_Growth'] cols = np.append(x_cols,y_cols) # MERGE INPUTS & OUTPUTS INTO PANDAS DATAFRAME: df1 =
pd.DataFrame(x, columns=x_cols, index=t)
pandas.DataFrame
import pandas as pd import numpy as np import sys, getopt import os from os import path import collections def process_kp_baseline_survey(data_dictionary_filename, data_filename, output_folder): print('input dd =', data_dictionary_filename) print('input df =', data_filename) print('output dir =', output_folder) #-------------------------------------------------------------------------------- #Process data dictionary for KPDataDictionaries dd = pd.read_csv(data_dictionary_filename) dd = dd[['Variable Name', 'Type', 'Label', 'Valid Values (if not included in label)']] dd = dd.rename(columns={'Variable Name': 'ElementName', 'Type': 'DataType', 'Label': 'ElementDescription', 'Valid Values (if not included in label)':'Notes'}) dd['ElementName'] = dd['ElementName'].str.lower() replace_names = {'studyid': 'study_id', 'dem_1': 'age', 'dem_2': 'gender'} for k,v in replace_names.items(): dd['ElementName'] = dd['ElementName'].replace(k,v) dd['DataType'] = dd['DataType'].replace('integer','Integer') dd['DataType'] = dd['DataType'].replace('boolean','Boolean') for i, x in enumerate(dd["Notes"].values): if str(x).lower().find("1,") >= 0: dd['DataType'].values[i] = "Categorical" dd['DataType'] = dd['DataType'].replace('','Integer') dd = dd[dd['DataType'] != 'text'] dd.insert(2, 'Size', '') dd.insert(3, 'Required', 'Required') dd.insert(5, 'ValueRange', '') dd.insert(7, 'Aliases', '') dd = dd.dropna(subset=['ElementName']) #-------------------------------------------------------------------------------- #Process data for KPData df = pd.read_csv(data_filename) df.columns = df.columns.str.strip().str.lower() df = df.rename(columns=replace_names) column_names = dd['ElementName'].values df = df[column_names] for name in list(df.columns): if str(name).lower().find('trait') != -1: df[name] = df[name].fillna(4.0) df[name] = df[name].astype(float) df[name] = df[name].replace(1.0,'1 = Disagree strongly') df[name] = df[name].replace(2.0,'2 = Disagree moderately') df[name] = df[name].replace(3.0,'3 = Disagree a little') df[name] = df[name].replace(4.0,'4 = Neither agree nor disagree') df[name] = df[name].replace(5.0,'5 = Agree a little') df[name] = df[name].replace(6.0,'6 = Agree moderately') df[name] = df[name].replace(7.0,'7 = Agree strongly') #-------------------------------------------------------------------------------- #Create new csv files output_data_dictionary = 'kp-baseline-survey.csv' output_data = 'kp-baseline-survey-data.csv' output_data_dictionary_path = os.path.join(output_folder, output_data_dictionary) output_data_path = os.path.join(output_folder, output_data) dd.to_csv(output_data_dictionary_path, index=False) df.to_csv(output_data_path, index=False) print('dd shape =', dd.shape) print('df shape =', df.shape) print('dd output =', output_data_dictionary) print('df output =', output_data) #-------------------------------------------------------------------------------- #Create TIPI scores df_data = {} for name in list(df.columns): if str(name).lower().find('trait') != -1: df_data[name] = df[name] reverse_map = { '1 = Disagree strongly' : '7 = Agree strongly', '2 = Disagree moderately' : '6 = Agree moderately', '3 = Disagree a little' : '5 = Agree a little', '4 = Neither agree nor disagree' : '4 = Neither agree nor disagree', '5 = Agree a little' : '3 = Disagree a little', '6 = Agree moderately' : '2 = Disagree moderately', '7 = Agree strongly' : '1 = Disagree strongly' } def reverse(df): df = df.apply(lambda x: reverse_map[x]) return df df_tipi = {} df_tipi['Extraversion'] = [df_data['trait_1'].values, reverse(df_data['trait_6']).values] df_tipi['Agreeableness'] = [reverse(df_data['trait_2']).values, df_data['trait_7'].values] df_tipi['Conscientiousness'] = [df_data['trait_3'].values, reverse(df_data['trait_8']).values] df_tipi['Emotional Stability'] = [reverse(df_data['trait_4']).values, df_data['trait_9'].values] df_tipi['Openess to Experience'] = [df_data['trait_5'].values, reverse(df_data['trait_10']).values] tipi_scores = {} for k,v in df_tipi.items(): item0 = [int(str(x).split('=')[0]) for x in v[0]] item1 = [int(str(x).split('=')[0]) for x in v[1]] tipi_scores[k] = [(x+y)/2 for x, y in zip(item0, item1)] tipi_scores = pd.DataFrame(tipi_scores).set_index(df['study_id']) tipi_scores_filename = 'kp-baseline-survey-tipi.csv' tipi_scores_path = os.path.join(output_folder, tipi_scores_filename) tipi_scores.to_csv(tipi_scores_path) print('TIPI scores =', tipi_scores_filename) #-------------------------------------------------------------------------------- #Create IPAQ scores ipaq_data = collections.defaultdict(list) for name in list(df.columns): if str(name).lower().find('ipaq') != -1: if ((str(name).lower().find('_none') == -1) and (str(name).lower().find('_dk') == -1) and (str(name).lower().find('ipaq_4') == -1)): for item in df[name].values: if str(item).lower() == 'nan': ipaq_data[name].append(0) else: item = str(item).replace('-','') item = float(item) ipaq_data[name].append(item) ipaq_data[name] = np.array(ipaq_data[name]) MOVA = ipaq_data['ipaq_1'] * (ipaq_data['ipaq_1_hr'] * 60. + ipaq_data['ipaq_1_min']) MOMA = ipaq_data['ipaq_2'] * (ipaq_data['ipaq_2_hr'] * 60. + ipaq_data['ipaq_2_min']) MOW = ipaq_data['ipaq_3'] * (ipaq_data['ipaq_3_hr'] * 60. + ipaq_data['ipaq_3_min']) MOTO = MOVA + MOMA + MOW MMVA = MOVA + MOMA MMAE = 2. * MOVA + MOMA MMET = 8. * MOVA + 4. * MOMA + 3.3 * MOW ipaq_scores = {'MOVA':MOVA, 'MOMA':MOMA, 'MOW':MOW, 'MOTO':MOTO, 'MMVA':MMVA, 'MMAE':MMAE, 'MMET':MMET} ipaq_scores =
pd.DataFrame(ipaq_scores)
pandas.DataFrame
""" Monte Carlo-type tests for the BM model Note that that the actual tests that run are just regression tests against previously estimated values with small sample sizes that can be run quickly for continuous integration. However, this file can be used to re-run (slow) large-sample Monte Carlo tests. """ import numpy as np import pandas as pd import pytest from numpy.testing import assert_allclose from scipy.signal import lfilter from statsmodels.tsa.statespace import ( dynamic_factor_mq, sarimax, varmax, dynamic_factor) def simulate_k_factor1(nobs=1000): mod_sim = dynamic_factor.DynamicFactor(np.zeros((1, 4)), k_factors=1, factor_order=1, error_order=1) loadings = [1.0, -0.75, 0.25, -0.3, 0.5] p = np.r_[loadings[:mod_sim.k_endog], [10] * mod_sim.k_endog, 0.5, [0.] * mod_sim.k_endog] ix = pd.period_range(start='1935-01', periods=nobs, freq='M') endog = pd.DataFrame(mod_sim.simulate(p, nobs), index=ix) true = pd.Series(p, index=mod_sim.param_names) # Compute levels series (M and Q) ix = pd.period_range(start=endog.index[0] - 1, end=endog.index[-1], freq=endog.index.freq) levels_M = 1 + endog.reindex(ix) / 100 levels_M.iloc[0] = 100 levels_M = levels_M.cumprod() log_levels_M = np.log(levels_M) * 100 log_levels_Q = (np.log(levels_M).resample('Q', convention='e') .sum().iloc[:-1] * 100) # This is an alternative way to compute the quarterly levels # endog_M = endog.iloc[:, :3] # x = endog.iloc[:, 3:] # endog_Q = (x + 2 * x.shift(1) + 3 * x.shift(2) + 2 * x.shift(3) + # x.shift(4)).resample('Q', convention='e').last().iloc[:-1] / 3 # levels_Q = 1 + endog.iloc[:, 3:] / 100 # levels_Q.iloc[0] = 100 # Here is another alternative way to compute the quarterly levels # weights = np.array([1, 2, 3, 2, 1]) # def func(x, weights): # return np.sum(weights * x) # r = endog_M.rolling(5) # (r.apply(func, args=(weights,), raw=False).resample('Q', convention='e') # .last().iloc[:-1].tail()) # Compute the growth rate series that we'll actually run the model on endog_M = log_levels_M.iloc[:, :3].diff() endog_Q = log_levels_Q.iloc[:, 3:].diff() return endog_M, endog_Q, log_levels_M, log_levels_Q, true def simulate_k_factors3_blocks2(nobs=1000, idiosyncratic_ar1=False): # Simulate the first two factors ix = pd.period_range(start='2000-01', periods=1, freq='M') endog = pd.DataFrame(np.zeros((1, 2)), columns=['f1', 'f2'], index=ix) mod_f_12 = varmax.VARMAX(endog, order=(1, 0), trend='n') params = [0.5, 0.1, -0.2, 0.9, 1.0, 0, 1.0] f_12 = mod_f_12.simulate(params, nobs) # Simulate the third factor endog = pd.Series([0], name='f3', index=ix) mod_f_3 = sarimax.SARIMAX(endog, order=(2, 0, 0)) params = [0.7, 0.1, 1.] f_3 = mod_f_3.simulate(params, nobs) # Combine the factors f = pd.concat([f_12, f_3], axis=1) # Observed variables k_endog = 8 design = np.zeros((k_endog, 3)) design[0] = [1.0, 1.0, 1.0] design[1] = [0.5, -0.8, 0.0] design[2] = [1.0, 0.0, 0.0] design[3] = [0.2, 0.0, -0.1] design[4] = [0.5, 0.0, 0.0] design[5] = [-0.2, 0.0, 0.0] design[6] = [1.0, 1.0, 1.0] design[7] = [-1.0, 0.0, 0.0] rho = np.array([0.5, 0.2, -0.1, 0.0, 0.4, 0.9, 0.05, 0.05]) if not idiosyncratic_ar1: rho *= 0.0 eps = [lfilter([1], [1, -rho[i]], np.random.normal(size=nobs)) for i in range(k_endog)] endog = (design @ f.T).T + eps endog.columns = [f'y{i + 1}' for i in range(k_endog)] # True parameters tmp1 = design.ravel() tmp2 = np.linalg.cholesky(mod_f_12['state_cov']) tmp3 = rho if idiosyncratic_ar1 else [] true = np.r_[ tmp1[tmp1 != 0], mod_f_12['transition', :2, :].ravel(), mod_f_3['transition', :, 0], tmp2[np.tril_indices_from(tmp2)], mod_f_3['state_cov', 0, 0], tmp3, [1] * k_endog ] # Compute levels series (M and Q) ix = pd.period_range(endog.index[0] - 1, endog.index[-1], freq='M') levels_M = 1 + endog.reindex(ix) / 100 levels_M.iloc[0] = 100 levels_M = levels_M.cumprod() log_levels_M = np.log(levels_M) * 100 log_levels_Q = (np.log(levels_M).resample('Q', convention='e') .sum().iloc[:-1] * 100) # Compute the growth rate series that we'll actually run the model on endog_M = log_levels_M.iloc[:, :7].diff().iloc[1:] endog_Q = log_levels_Q.iloc[:, 7:].diff().iloc[2:] # Specification factor_names = np.array(['global', 'second', 'third']) factors = {endog.columns[i]: factor_names[design[i] != 0] for i in range(k_endog)} factor_orders = { ('global', 'second'): 1, 'third': 2, } return (endog_M, endog_Q, log_levels_M, log_levels_Q, factors, factor_orders, true, f) @pytest.mark.skip(reason="Monte carlo test, very slow, kept for manual runs") def test_k_factor1(reset_randomstate): # Fitted parameters for np.random.seed(1234) replicate the true parameters # pretty well (flipped signs on loadings are just from usual factor sign # identification issue): # True Fitted # loading.0->0 1.00 -0.98 # loading.0->1 -0.75 0.75 # loading.0)->2 0.25 -0.24 # loading.0->3 -0.30 0.31 # L1.0->0 0.50 0.50 # sigma2.0 10.00 10.07 # sigma2.1 10.00 10.06 # sigma2.2 10.00 9.94 # sigma2.3 10.00 11.60 np.random.seed(1234) endog_M, endog_Q, _, _, true_params, _ = simulate_k_factor1(nobs=100000) mod = dynamic_factor_mq.DynamicFactorMQ( endog_M, endog_quarterly=endog_Q, factors=1, factor_orders=1, idiosyncratic_ar1=False) # Fit the model with L-BFGS. Because the model doesn't impose identifying # assumptions on the factors, here we force identification by fixing the # factor error variance to be unity with mod.fix_params({'fb(0).cov.chol[1,1]': 1.}): mod.fit(method='lbfgs', disp=False) def gen_k_factor1_nonstationary(nobs=1000, k=1, idiosyncratic_ar1=False, idiosyncratic_var=0.4, k_ar=1): # Simulate univariate random walk ix = pd.period_range(start='1950-01', periods=1, freq='M') faux = pd.Series([0], index=ix) mod = sarimax.SARIMAX(faux, order=(k_ar, 0, 0), initialization='diffuse') params = np.r_[[0] * (k_ar - 1), [1.0001], 1.0] factor = mod.simulate(params, nobs) if idiosyncratic_ar1: mod_idio = sarimax.SARIMAX(faux, order=(1, 0, 0)) endog = pd.concat([ factor + mod_idio.simulate([0.7, idiosyncratic_var], nobs) for i in range(2 * k)], axis=1) else: endog = pd.concat([ factor + np.random.normal(scale=idiosyncratic_var**0.5, size=nobs) for i in range(2 * k)], axis=1) # Construct the quarterly variable levels_M = 1 + endog / 100 levels_M.iloc[0] = 100 levels_M = levels_M.cumprod() log_levels_M = np.log(levels_M) * 100 log_levels_Q = (np.log(levels_M).resample('Q', convention='e') .sum().iloc[:-1] * 100) # Compute the growth rate series that we'll actually run the model on endog_M = log_levels_M.diff().iloc[1:, :k] if k > 1: endog_M.columns = ['yM%d_f1' % (i + 1) for i in range(k)] else: endog_M.columns = ['yM_f1'] endog_Q = log_levels_Q.diff().iloc[1:, k:] if k > 1: endog_Q.columns = ['yQ%d_f1' % (i + 1) for i in range(k)] else: endog_Q.columns = ['yQ_f1'] return endog_M, endog_Q, factor def test_em_nonstationary(reset_randomstate): # Test that when the EM algorithm estimates non-stationary parameters, that # it warns the user and switches to a diffuse initialization. ix = pd.period_range(start='2000', periods=20, freq='M') endog_M = pd.Series(np.arange(20), index=ix) endog_M.iloc[10:12] += [0.4, -0.2] # add in a little noise ix = pd.period_range(start='2000', periods=5, freq='Q') endog_Q = pd.Series(np.arange(5), index=ix) mod = dynamic_factor_mq.DynamicFactorMQ( endog_M, endog_quarterly=endog_Q, idiosyncratic_ar1=False, standardize=False, factors=['global']) msg = ('Non-stationary parameters found at EM iteration 1, which is not' ' compatible with stationary initialization. Initialization was' r' switched to diffuse for the following: \["factor block:' r' \(\'global\',\)"\], and fitting was restarted.') with pytest.warns(UserWarning, match=msg): return mod.fit(maxiter=2, em_initialization=False) def gen_k_factor1(nobs=10000, k=1, idiosyncratic_ar1=False, idiosyncratic_var=0.4, k_ar=6): # Simulate univariate AR(6) ix = pd.period_range(start='1950-01', periods=1, freq='M') faux = pd.Series([0], index=ix) mod = sarimax.SARIMAX(faux, order=(k_ar, 0, 0)) params = np.r_[[0] * (k_ar - 1), [0.5], 1.0] factor = mod.simulate(params, nobs) if idiosyncratic_ar1: mod_idio = sarimax.SARIMAX(faux, order=(1, 0, 0)) endog = pd.concat([ factor + mod_idio.simulate([0.7, idiosyncratic_var], nobs) for i in range(2 * k)], axis=1) else: endog = pd.concat([ factor + np.random.normal(scale=idiosyncratic_var**0.5, size=nobs) for i in range(2 * k)], axis=1) # Construct the quarterly variable levels_M = 1 + endog / 100 levels_M.iloc[0] = 100 levels_M = levels_M.cumprod() log_levels_M = np.log(levels_M) * 100 log_levels_Q = (np.log(levels_M).resample('Q', convention='e') .sum().iloc[:-1] * 100) # Compute the growth rate series that we'll actually run the model on endog_M = log_levels_M.diff().iloc[1:, :k] if k > 1: endog_M.columns = ['yM%d_f1' % (i + 1) for i in range(k)] else: endog_M.columns = ['yM_f1'] endog_Q = log_levels_Q.diff().iloc[1:, k:] if k > 1: endog_Q.columns = ['yQ%d_f1' % (i + 1) for i in range(k)] else: endog_Q.columns = ['yQ_f1'] return endog_M, endog_Q, factor @pytest.mark.filterwarnings("ignore:Log-likelihood decreased") def test_k_factor1_factor_order_6(reset_randomstate): # This tests that the model is correctly set up when the lag order of the # factor is longer than 5 and we have a single factor. This is important # because 5 lags are always present when there is quarterly data, but we # want to check that, for example, we haven't accidentally relied on there # being exactly 5 lags available. # Note: as of 2020/07/25, the FRBNY code does not seem to work for 6 lags, # so we can't test against their code # Note: the case with only 100 nobs leads to issues with the EM algorithm # and a decrease in the log-likelihood # There is a description of the results from # a run with nobs=10000 that are a better indication of the model finding # the correct parameters. endog_M, endog_Q, _ = gen_k_factor1( nobs=100, idiosyncratic_var=0.0) # Construct and fit the model mod = dynamic_factor_mq.DynamicFactorMQ( endog_M, endog_quarterly=endog_Q, factor_orders=6, idiosyncratic_ar1=False, standardize=False) mod.fit() # From a run with 10000 observations, we get: # This results in the following fitted coefficients # True Fitted # loading.0->y1 1.00 1.15 # loading.0->y2 1.00 1.15 # L1.0->0 0.00 -0.01 # L2.0->0 0.00 -0.01 # L3.0->0 0.00 0.01 # L4.0->0 0.00 0.01 # L5.0->0 0.00 -0.00 # L6.0->0 0.50 0.50 # fb(0).cov.chol[1,1] 1.00 0.87 # sigma2.y1 0.00 -0.00 # sigma2.y2 0.00 0.00 # # Note that the fitted values are essentially exactly right, once we # account for the lack of factor identification. In particular, if we # normalize the loadings to one, then the estimated factor error variance # is (0.87 * 1.15)**2 = 1.0, as desired. def gen_k_factor2(nobs=10000, k=2, idiosyncratic_ar1=False, idiosyncratic_var=0.4, k_ar=6): # Simulate bivariate VAR(6) for the factor ix = pd.period_range(start='1950-01', periods=1, freq='M') faux = pd.DataFrame([[0, 0]], index=ix, columns=['f1', 'f2']) mod = varmax.VARMAX(faux, order=(k_ar, 0), trend='n') A = np.zeros((2, 2 * k_ar)) A[:, -2:] = np.array([[0.5, -0.2], [0.1, 0.3]]) Q = np.array([[1.5, 0.2], [0.2, 0.5]]) L = np.linalg.cholesky(Q) params = np.r_[A.ravel(), L[np.tril_indices_from(L)]] # Simulate the factors factors = mod.simulate(params, nobs) # Add in the idiosyncratic part faux = pd.Series([0], index=ix) mod_idio = sarimax.SARIMAX(faux, order=(1, 0, 0)) phi = [0.7, -0.2] if idiosyncratic_ar1 else [0, 0.] tmp = factors.iloc[:, 0] + factors.iloc[:, 1] # Monthly variables endog_M = pd.concat([tmp.copy() for i in range(k)], axis=1) columns = [] for i in range(k): endog_M.iloc[:, i] = ( endog_M.iloc[:, i] + mod_idio.simulate([phi[0], idiosyncratic_var], nobs)) columns += [f'yM{i + 1}_f2'] endog_M.columns = columns # Monthly versions of quarterly variables endog_Q_M = pd.concat([tmp.copy() for i in range(k)], axis=1) columns = [] for i in range(k): endog_Q_M.iloc[:, i] = ( endog_Q_M.iloc[:, i] + mod_idio.simulate([phi[0], idiosyncratic_var], nobs)) columns += [f'yQ{i + 1}_f2'] endog_Q_M.columns = columns # Create quarterly versions of quarterly variables levels_M = 1 + endog_Q_M / 100 levels_M.iloc[0] = 100 levels_M = levels_M.cumprod() # log_levels_M = np.log(levels_M) * 100 log_levels_Q = (np.log(levels_M).resample('Q', convention='e') .sum().iloc[:-1] * 100) # Compute the quarterly growth rate series endog_Q = log_levels_Q.diff() return endog_M, endog_Q, factors @pytest.mark.skip(reason="Monte carlo test, very slow, kept for manual runs") def test_k_factor2_factor_order_6(reset_randomstate): # This tests that the model is correctly set up when the lag order of the # factor is longer than 5 and we have two factors. This is important # because 5 lags are always present when there is quarterly data, but we # want to check that, for example, we haven't accidentally relied on there # being exactly 5 lags available. # Note: as of 2020/07/25, the FRBNY code does not seem to work for 6 lags, # so we can't test against their code endog_M, endog_Q, factors = gen_k_factor2() # Add the factors in to endog_M, which will allow us to identify them, # since endog_M and endog_Q are all the same linear combination of the # factors endog_M_aug = pd.concat([factors, endog_M], axis=1) mod = dynamic_factor_mq.DynamicFactorMQ( endog_M_aug, endog_quarterly=endog_Q, factor_multiplicities=2, factor_orders=6, idiosyncratic_ar1=False, standardize=False) res = mod.fit() # The identification for the VAR system means that it is harder to visually # check that the estimation procedure produced good estimates. # This is the invertible matrix that we'll use to transform the factors # and parameter matrices into the original form M = np.kron(np.eye(6), mod['design', :2, :2]) Mi = np.linalg.inv(M) # Get the estimated parameter matrices Z = mod['design', :, :12] A = mod['transition', :12, :12] R = mod['selection', :12, :2] Q = mod['state_cov', :2, :2] RQR = R @ Q @ R.T # Create the transformed matrices Z2 = Z @ Mi A2 = M @ A @ Mi Q2 = (M @ RQR @ M.T) # In this example, both endog_M and endog_Q are equal to the factors, # so we expect the loading matrix to look like, which can be confirmed # (up to some numerical precision) by printing Z2 # [ I 0 0 0 0 ] # [ I 2I 3I 2I I ] print(Z2.round(2)) desired = np.array([ [1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 2, 2, 3, 3, 2, 2, 1, 1, 0, 0], [1, 1, 2, 2, 3, 3, 2, 2, 1, 1, 0, 0]]) assert_allclose(Z2, desired, atol=0.1) # Confirm that this is approximately: # [ 0 0 0 0 0 0 0 0 0 0 0.5 -0.2 ] # [ 0 0 0 0 0 0 0 0 0 0 0.1 0.3 ] print(A2.round(2)) desired = np.array([ [0, 0, 0.02, 0, 0.01, -0.03, 0.01, 0.02, 0, -0.01, 0.5, -0.2], [0, 0, 0, 0.02, 0, -0.01, 0, 0, 0, 0.01, 0.1, 0.3], [1., 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 1., 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 1., 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 1., 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 1., 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 1., 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 1., 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 1., 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 1., 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 1., 0, 0]]) assert_allclose(A2, desired, atol=1e-2) # Confirm that this is approximately: # [ 1.5 0.2 ] # [ 0.2 0.5 ] # in the top left corner, and then zeros elsewhere print(Q2.round(2)) desired = np.array([[1.49, 0.21], [0.21, 0.49]]) assert_allclose(Q2[:2, :2], desired, atol=1e-2) assert_allclose(Q2[:2, 2:], 0, atol=1e-2) assert_allclose(Q2[2:, :2], 0, atol=1e-2) assert_allclose(Q2[2:, 2:], 0, atol=1e-2) # Finally, check that after the transformation, the factors are equal to # endog_M a = res.states.smoothed a2 = (M @ a.T.iloc[:12]).T assert_allclose(endog_M.values, a2.iloc[:, :2].values, atol=1e-10) @pytest.mark.skip(reason="Monte carlo test, very slow, kept for manual runs") def test_two_blocks_factor_orders_6(reset_randomstate): # This tests that the model is correctly set up when the lag order of the # factor is longer than 5 and we have two blocks of factors, one block with # a single factor and one block with two factors. # For the results below, we use nobs=1000, since nobs=10000 takes a very # long time and a large amount of memory. As a result, the results below # are noisier than they could be, although they still provide pretty good # evidence that the model is performing as it should nobs = 1000 idiosyncratic_ar1 = True k1 = 3 k2 = 10 endog1_M, endog1_Q, f1 = gen_k_factor1( nobs, k=k1, idiosyncratic_ar1=idiosyncratic_ar1) endog2_M, endog2_Q, f2 = gen_k_factor2( nobs, k=k2, idiosyncratic_ar1=idiosyncratic_ar1) endog_M =
pd.concat([endog1_M, f2, endog2_M], axis=1)
pandas.concat
''' Plots for my first-year (and beyond) figurative violence in the media project. Author: <NAME> <<EMAIL>> Date: April 01, 2017 ''' import matplotlib.pyplot as plt import matplotlib.dates as pltdates import pandas as pd import seaborn as sns from datetime import date, datetime, timedelta from .analysis import relative_likelihood from projects.common.analysis import ( daily_frequency, daily_metaphor_counts ) CUR_PAL = sns.color_palette() # for 8.5x11 paper DEFAULT_FIGSIZE = (7.5, 5) def by_network_frequency_figure( frequency_df, date_range=pd.date_range( '2016-09-01', '2016-11-30', freq='D' ), iatv_corpus_name=None, freq=True, partition_infos=None, font_scale=1.15, save_path=None): sns.axes_style("darkgrid") sns.set(font_scale=font_scale) CUR_PAL = sns.color_palette() df = frequency_df # fits are not being shown for this condition if (partition_infos is None): if freq: network_freq = daily_frequency( df, date_range, iatv_corpus_name, by=['network'] ) network_freq.plot(style='o') else: full_df = daily_metaphor_counts( df, ['network'], date_range )[['MSNBCW', 'CNNW', 'FOXNEWSW']] full_df.plot(style='o') # show fits TODO Include more arguments so that fits don't have to be # generated just to plot. Generate fits outside and pass fits in. else: if freq: # put networks in desired order, left to right networks = ['MSNBCW', 'CNNW', 'FOXNEWSW'] network_freq = daily_frequency( df, date_range, iatv_corpus_name, by=['network'] ) ax = network_freq[networks].plot( style='o', ms=14, alpha=0.5, legend=False, figsize=DEFAULT_FIGSIZE ) for net_idx, network in enumerate(networks): pinfo = partition_infos[network] day_td = timedelta(seconds=60) d0 = date_range[0] d1 = pinfo.partition_date_1 - day_td d2 = pinfo.partition_date_1 d3 = pinfo.partition_date_2 d4 = pinfo.partition_date_2 + day_td d5 = date_range[-1] fg = pinfo.f_ground fe = pinfo.f_excited dates =
pd.DatetimeIndex([d0, d1, d2, d3, d4, d5])
pandas.DatetimeIndex
# -*- coding: utf-8 -*- """ These the test the public routines exposed in types/common.py related to inference and not otherwise tested in types/test_common.py """ from warnings import catch_warnings, simplefilter import collections import re from datetime import datetime, date, timedelta, time from decimal import Decimal from numbers import Number from fractions import Fraction import numpy as np import pytz import pytest import pandas as pd from pandas._libs import lib, iNaT, missing as libmissing from pandas import (Series, Index, DataFrame, Timedelta, DatetimeIndex, TimedeltaIndex, Timestamp, Panel, Period, Categorical, isna, Interval, DateOffset) from pandas import compat from pandas.compat import u, PY2, StringIO, lrange from pandas.core.dtypes import inference from pandas.core.dtypes.common import ( is_timedelta64_dtype, is_timedelta64_ns_dtype, is_datetime64_dtype, is_datetime64_ns_dtype, is_datetime64_any_dtype, is_datetime64tz_dtype, is_number, is_integer, is_float, is_bool, is_scalar, is_scipy_sparse, ensure_int32, ensure_categorical) from pandas.util import testing as tm import pandas.util._test_decorators as td @pytest.fixture(params=[True, False], ids=str) def coerce(request): return request.param # collect all objects to be tested for list-like-ness; use tuples of objects, # whether they are list-like or not (special casing for sets), and their ID ll_params = [ ([1], True, 'list'), # noqa: E241 ([], True, 'list-empty'), # noqa: E241 ((1, ), True, 'tuple'), # noqa: E241 (tuple(), True, 'tuple-empty'), # noqa: E241 ({'a': 1}, True, 'dict'), # noqa: E241 (dict(), True, 'dict-empty'), # noqa: E241 ({'a', 1}, 'set', 'set'), # noqa: E241 (set(), 'set', 'set-empty'), # noqa: E241 (frozenset({'a', 1}), 'set', 'frozenset'), # noqa: E241 (frozenset(), 'set', 'frozenset-empty'), # noqa: E241 (iter([1, 2]), True, 'iterator'), # noqa: E241 (iter([]), True, 'iterator-empty'), # noqa: E241 ((x for x in [1, 2]), True, 'generator'), # noqa: E241 ((x for x in []), True, 'generator-empty'), # noqa: E241 (Series([1]), True, 'Series'), # noqa: E241 (Series([]), True, 'Series-empty'), # noqa: E241 (Series(['a']).str, True, 'StringMethods'), # noqa: E241 (Series([], dtype='O').str, True, 'StringMethods-empty'), # noqa: E241 (Index([1]), True, 'Index'), # noqa: E241 (Index([]), True, 'Index-empty'), # noqa: E241 (DataFrame([[1]]), True, 'DataFrame'), # noqa: E241 (DataFrame(), True, 'DataFrame-empty'), # noqa: E241 (np.ndarray((2,) * 1), True, 'ndarray-1d'), # noqa: E241 (np.array([]), True, 'ndarray-1d-empty'), # noqa: E241 (np.ndarray((2,) * 2), True, 'ndarray-2d'), # noqa: E241 (np.array([[]]), True, 'ndarray-2d-empty'), # noqa: E241 (np.ndarray((2,) * 3), True, 'ndarray-3d'), # noqa: E241 (np.array([[[]]]), True, 'ndarray-3d-empty'), # noqa: E241 (np.ndarray((2,) * 4), True, 'ndarray-4d'), # noqa: E241 (np.array([[[[]]]]), True, 'ndarray-4d-empty'), # noqa: E241 (np.array(2), False, 'ndarray-0d'), # noqa: E241 (1, False, 'int'), # noqa: E241 (b'123', False, 'bytes'), # noqa: E241 (b'', False, 'bytes-empty'), # noqa: E241 ('123', False, 'string'), # noqa: E241 ('', False, 'string-empty'), # noqa: E241 (str, False, 'string-type'), # noqa: E241 (object(), False, 'object'), # noqa: E241 (np.nan, False, 'NaN'), # noqa: E241 (None, False, 'None') # noqa: E241 ] objs, expected, ids = zip(*ll_params) @pytest.fixture(params=zip(objs, expected), ids=ids) def maybe_list_like(request): return request.param def test_is_list_like(maybe_list_like): obj, expected = maybe_list_like expected = True if expected == 'set' else expected assert inference.is_list_like(obj) == expected def test_is_list_like_disallow_sets(maybe_list_like): obj, expected = maybe_list_like expected = False if expected == 'set' else expected assert inference.is_list_like(obj, allow_sets=False) == expected def test_is_sequence(): is_seq = inference.is_sequence assert (is_seq((1, 2))) assert (is_seq([1, 2])) assert (not is_seq("abcd")) assert (not is_seq(u("abcd"))) assert (not is_seq(np.int64)) class A(object): def __getitem__(self): return 1 assert (not is_seq(A())) def test_is_array_like(): assert inference.is_array_like(Series([])) assert inference.is_array_like(Series([1, 2])) assert inference.is_array_like(np.array(["a", "b"])) assert inference.is_array_like(Index(["2016-01-01"])) class DtypeList(list): dtype = "special" assert inference.is_array_like(DtypeList()) assert not inference.is_array_like([1, 2, 3]) assert not inference.is_array_like(tuple()) assert not inference.is_array_like("foo") assert not inference.is_array_like(123) @pytest.mark.parametrize('inner', [ [], [1], (1, ), (1, 2), {'a': 1}, {1, 'a'}, Series([1]), Series([]), Series(['a']).str, (x for x in range(5)) ]) @pytest.mark.parametrize('outer', [ list, Series, np.array, tuple ]) def test_is_nested_list_like_passes(inner, outer): result = outer([inner for _ in range(5)]) assert inference.is_list_like(result) @pytest.mark.parametrize('obj', [ 'abc', [], [1], (1,), ['a'], 'a', {'a'}, [1, 2, 3], Series([1]), DataFrame({"A": [1]}), ([1, 2] for _ in range(5)), ]) def test_is_nested_list_like_fails(obj): assert not inference.is_nested_list_like(obj) @pytest.mark.parametrize( "ll", [{}, {'A': 1}, Series([1])]) def test_is_dict_like_passes(ll): assert inference.is_dict_like(ll) @pytest.mark.parametrize( "ll", ['1', 1, [1, 2], (1, 2), range(2), Index([1])]) def test_is_dict_like_fails(ll): assert not inference.is_dict_like(ll) @pytest.mark.parametrize("has_keys", [True, False]) @pytest.mark.parametrize("has_getitem", [True, False]) @pytest.mark.parametrize("has_contains", [True, False]) def test_is_dict_like_duck_type(has_keys, has_getitem, has_contains): class DictLike(object): def __init__(self, d): self.d = d if has_keys: def keys(self): return self.d.keys() if has_getitem: def __getitem__(self, key): return self.d.__getitem__(key) if has_contains: def __contains__(self, key): return self.d.__contains__(key) d = DictLike({1: 2}) result = inference.is_dict_like(d) expected = has_keys and has_getitem and has_contains assert result is expected def test_is_file_like(mock): class MockFile(object): pass is_file = inference.is_file_like data = StringIO("data") assert is_file(data) # No read / write attributes # No iterator attributes m = MockFile() assert not is_file(m) MockFile.write = lambda self: 0 # Write attribute but not an iterator m = MockFile() assert not is_file(m) # gh-16530: Valid iterator just means we have the # __iter__ attribute for our purposes. MockFile.__iter__ = lambda self: self # Valid write-only file m = MockFile() assert is_file(m) del MockFile.write MockFile.read = lambda self: 0 # Valid read-only file m = MockFile() assert is_file(m) # Iterator but no read / write attributes data = [1, 2, 3] assert not is_file(data) assert not is_file(mock.Mock()) @pytest.mark.parametrize( "ll", [collections.namedtuple('Test', list('abc'))(1, 2, 3)]) def test_is_names_tuple_passes(ll): assert inference.is_named_tuple(ll) @pytest.mark.parametrize( "ll", [(1, 2, 3), 'a', Series({'pi': 3.14})]) def test_is_names_tuple_fails(ll): assert not inference.is_named_tuple(ll) def test_is_hashable(): # all new-style classes are hashable by default class HashableClass(object): pass class UnhashableClass1(object): __hash__ = None class UnhashableClass2(object): def __hash__(self): raise TypeError("Not hashable") hashable = (1, 3.14, np.float64(3.14), 'a', tuple(), (1, ), HashableClass(), ) not_hashable = ([], UnhashableClass1(), ) abc_hashable_not_really_hashable = (([], ), UnhashableClass2(), ) for i in hashable: assert inference.is_hashable(i) for i in not_hashable: assert not inference.is_hashable(i) for i in abc_hashable_not_really_hashable: assert not inference.is_hashable(i) # numpy.array is no longer collections.Hashable as of # https://github.com/numpy/numpy/pull/5326, just test # is_hashable() assert not inference.is_hashable(np.array([])) # old-style classes in Python 2 don't appear hashable to # collections.Hashable but also seem to support hash() by default if PY2: class OldStyleClass(): pass c = OldStyleClass() assert not isinstance(c, compat.Hashable) assert inference.is_hashable(c) hash(c) # this will not raise @pytest.mark.parametrize( "ll", [re.compile('ad')]) def test_is_re_passes(ll): assert inference.is_re(ll) @pytest.mark.parametrize( "ll", ['x', 2, 3, object()]) def test_is_re_fails(ll): assert not inference.is_re(ll) @pytest.mark.parametrize( "ll", [r'a', u('x'), r'asdf', re.compile('adsf'), u(r'\u2233\s*'), re.compile(r'')]) def test_is_recompilable_passes(ll): assert inference.is_re_compilable(ll) @pytest.mark.parametrize( "ll", [1, [], object()]) def test_is_recompilable_fails(ll): assert not inference.is_re_compilable(ll) class TestInference(object): def test_infer_dtype_bytes(self): compare = 'string' if PY2 else 'bytes' # string array of bytes arr = np.array(list('abc'), dtype='S1') assert lib.infer_dtype(arr) == compare # object array of bytes arr = arr.astype(object) assert lib.infer_dtype(arr) == compare # object array of bytes with missing values assert lib.infer_dtype([b'a', np.nan, b'c'], skipna=True) == compare def test_isinf_scalar(self): # GH 11352 assert libmissing.isposinf_scalar(float('inf')) assert libmissing.isposinf_scalar(np.inf) assert not libmissing.isposinf_scalar(-np.inf) assert not libmissing.isposinf_scalar(1) assert not libmissing.isposinf_scalar('a') assert libmissing.isneginf_scalar(float('-inf')) assert libmissing.isneginf_scalar(-np.inf) assert not libmissing.isneginf_scalar(np.inf) assert not libmissing.isneginf_scalar(1) assert not libmissing.isneginf_scalar('a') def test_maybe_convert_numeric_infinities(self): # see gh-13274 infinities = ['inf', 'inF', 'iNf', 'Inf', 'iNF', 'InF', 'INf', 'INF'] na_values = {'', 'NULL', 'nan'} pos = np.array(['inf'], dtype=np.float64) neg = np.array(['-inf'], dtype=np.float64) msg = "Unable to parse string" for infinity in infinities: for maybe_int in (True, False): out = lib.maybe_convert_numeric( np.array([infinity], dtype=object), na_values, maybe_int) tm.assert_numpy_array_equal(out, pos) out = lib.maybe_convert_numeric( np.array(['-' + infinity], dtype=object), na_values, maybe_int) tm.assert_numpy_array_equal(out, neg) out = lib.maybe_convert_numeric( np.array([u(infinity)], dtype=object), na_values, maybe_int) tm.assert_numpy_array_equal(out, pos) out = lib.maybe_convert_numeric( np.array(['+' + infinity], dtype=object), na_values, maybe_int) tm.assert_numpy_array_equal(out, pos) # too many characters with pytest.raises(ValueError, match=msg): lib.maybe_convert_numeric( np.array(['foo_' + infinity], dtype=object), na_values, maybe_int) def test_maybe_convert_numeric_post_floatify_nan(self, coerce): # see gh-13314 data = np.array(['1.200', '-999.000', '4.500'], dtype=object) expected = np.array([1.2, np.nan, 4.5], dtype=np.float64) nan_values = {-999, -999.0} out = lib.maybe_convert_numeric(data, nan_values, coerce) tm.assert_numpy_array_equal(out, expected) def test_convert_infs(self): arr = np.array(['inf', 'inf', 'inf'], dtype='O') result = lib.maybe_convert_numeric(arr, set(), False) assert result.dtype == np.float64 arr = np.array(['-inf', '-inf', '-inf'], dtype='O') result = lib.maybe_convert_numeric(arr, set(), False) assert result.dtype == np.float64 def test_scientific_no_exponent(self): # See PR 12215 arr = np.array(['42E', '2E', '99e', '6e'], dtype='O') result = lib.maybe_convert_numeric(arr, set(), False, True) assert np.all(np.isnan(result)) def test_convert_non_hashable(self): # GH13324 # make sure that we are handing non-hashables arr = np.array([[10.0, 2], 1.0, 'apple']) result = lib.maybe_convert_numeric(arr, set(), False, True) tm.assert_numpy_array_equal(result, np.array([np.nan, 1.0, np.nan])) def test_convert_numeric_uint64(self): arr = np.array([2**63], dtype=object) exp = np.array([2**63], dtype=np.uint64) tm.assert_numpy_array_equal(lib.maybe_convert_numeric(arr, set()), exp) arr = np.array([str(2**63)], dtype=object) exp = np.array([2**63], dtype=np.uint64) tm.assert_numpy_array_equal(lib.maybe_convert_numeric(arr, set()), exp) arr = np.array([np.uint64(2**63)], dtype=object) exp = np.array([2**63], dtype=np.uint64) tm.assert_numpy_array_equal(lib.maybe_convert_numeric(arr, set()), exp) @pytest.mark.parametrize("arr", [ np.array([2**63, np.nan], dtype=object), np.array([str(2**63), np.nan], dtype=object), np.array([np.nan, 2**63], dtype=object), np.array([np.nan, str(2**63)], dtype=object)]) def test_convert_numeric_uint64_nan(self, coerce, arr): expected = arr.astype(float) if coerce else arr.copy() result = lib.maybe_convert_numeric(arr, set(), coerce_numeric=coerce) tm.assert_almost_equal(result, expected) def test_convert_numeric_uint64_nan_values(self, coerce): arr = np.array([2**63, 2**63 + 1], dtype=object) na_values = {2**63} expected = (np.array([np.nan, 2**63 + 1], dtype=float) if coerce else arr.copy()) result = lib.maybe_convert_numeric(arr, na_values, coerce_numeric=coerce) tm.assert_almost_equal(result, expected) @pytest.mark.parametrize("case", [ np.array([2**63, -1], dtype=object), np.array([str(2**63), -1], dtype=object), np.array([str(2**63), str(-1)], dtype=object), np.array([-1, 2**63], dtype=object), np.array([-1, str(2**63)], dtype=object), np.array([str(-1), str(2**63)], dtype=object)]) def test_convert_numeric_int64_uint64(self, case, coerce): expected = case.astype(float) if coerce else case.copy() result = lib.maybe_convert_numeric(case, set(), coerce_numeric=coerce) tm.assert_almost_equal(result, expected) @pytest.mark.parametrize("value", [-2**63 - 1, 2**64]) def test_convert_int_overflow(self, value): # see gh-18584 arr = np.array([value], dtype=object) result = lib.maybe_convert_objects(arr) tm.assert_numpy_array_equal(arr, result) def test_maybe_convert_objects_uint64(self): # see gh-4471 arr = np.array([2**63], dtype=object) exp = np.array([2**63], dtype=np.uint64) tm.assert_numpy_array_equal(lib.maybe_convert_objects(arr), exp) # NumPy bug: can't compare uint64 to int64, as that # results in both casting to float64, so we should # make sure that this function is robust against it arr = np.array([np.uint64(2**63)], dtype=object) exp = np.array([2**63], dtype=np.uint64) tm.assert_numpy_array_equal(lib.maybe_convert_objects(arr), exp) arr = np.array([2, -1], dtype=object) exp = np.array([2, -1], dtype=np.int64) tm.assert_numpy_array_equal(lib.maybe_convert_objects(arr), exp) arr = np.array([2**63, -1], dtype=object) exp = np.array([2**63, -1], dtype=object) tm.assert_numpy_array_equal(lib.maybe_convert_objects(arr), exp) def test_mixed_dtypes_remain_object_array(self): # GH14956 array = np.array([datetime(2015, 1, 1, tzinfo=pytz.utc), 1], dtype=object) result = lib.maybe_convert_objects(array, convert_datetime=1) tm.assert_numpy_array_equal(result, array) class TestTypeInference(object): # Dummy class used for testing with Python objects class Dummy(): pass def test_inferred_dtype_fixture(self, any_skipna_inferred_dtype): # see pandas/conftest.py inferred_dtype, values = any_skipna_inferred_dtype # make sure the inferred dtype of the fixture is as requested assert inferred_dtype == lib.infer_dtype(values, skipna=True) def test_length_zero(self): result = lib.infer_dtype(np.array([], dtype='i4')) assert result == 'integer' result = lib.infer_dtype([]) assert result == 'empty' # GH 18004 arr = np.array([np.array([], dtype=object), np.array([], dtype=object)]) result = lib.infer_dtype(arr) assert result == 'empty' def test_integers(self): arr = np.array([1, 2, 3, np.int64(4), np.int32(5)], dtype='O') result = lib.infer_dtype(arr) assert result == 'integer' arr = np.array([1, 2, 3, np.int64(4), np.int32(5), 'foo'], dtype='O') result = lib.infer_dtype(arr) assert result == 'mixed-integer' arr = np.array([1, 2, 3, 4, 5], dtype='i4') result = lib.infer_dtype(arr) assert result == 'integer' def test_bools(self): arr = np.array([True, False, True, True, True], dtype='O') result = lib.infer_dtype(arr) assert result == 'boolean' arr = np.array([np.bool_(True), np.bool_(False)], dtype='O') result = lib.infer_dtype(arr) assert result == 'boolean' arr = np.array([True, False, True, 'foo'], dtype='O') result = lib.infer_dtype(arr) assert result == 'mixed' arr = np.array([True, False, True], dtype=bool) result = lib.infer_dtype(arr) assert result == 'boolean' arr = np.array([True, np.nan, False], dtype='O') result = lib.infer_dtype(arr, skipna=True) assert result == 'boolean' def test_floats(self): arr = np.array([1., 2., 3., np.float64(4), np.float32(5)], dtype='O') result = lib.infer_dtype(arr) assert result == 'floating' arr = np.array([1, 2, 3, np.float64(4), np.float32(5), 'foo'], dtype='O') result = lib.infer_dtype(arr) assert result == 'mixed-integer' arr = np.array([1, 2, 3, 4, 5], dtype='f4') result = lib.infer_dtype(arr) assert result == 'floating' arr = np.array([1, 2, 3, 4, 5], dtype='f8') result = lib.infer_dtype(arr) assert result == 'floating' def test_decimals(self): # GH15690 arr = np.array([Decimal(1), Decimal(2), Decimal(3)]) result = lib.infer_dtype(arr) assert result == 'decimal' arr = np.array([1.0, 2.0, Decimal(3)]) result = lib.infer_dtype(arr) assert result == 'mixed' arr = np.array([Decimal(1), Decimal('NaN'), Decimal(3)]) result = lib.infer_dtype(arr) assert result == 'decimal' arr = np.array([Decimal(1), np.nan, Decimal(3)], dtype='O') result = lib.infer_dtype(arr) assert result == 'decimal' def test_string(self): pass def test_unicode(self): arr = [u'a', np.nan, u'c'] result = lib.infer_dtype(arr) assert result == 'mixed' arr = [u'a', np.nan, u'c'] result = lib.infer_dtype(arr, skipna=True) expected = 'unicode' if PY2 else 'string' assert result == expected @pytest.mark.parametrize('dtype, missing, skipna, expected', [ (float, np.nan, False, 'floating'), (float, np.nan, True, 'floating'), (object, np.nan, False, 'floating'), (object, np.nan, True, 'empty'), (object, None, False, 'mixed'), (object, None, True, 'empty') ]) @pytest.mark.parametrize('box', [pd.Series, np.array]) def test_object_empty(self, box, missing, dtype, skipna, expected): # GH 23421 arr = box([missing, missing], dtype=dtype) result = lib.infer_dtype(arr, skipna=skipna) assert result == expected def test_datetime(self): dates = [datetime(2012, 1, x) for x in range(1, 20)] index = Index(dates) assert index.inferred_type == 'datetime64' def test_infer_dtype_datetime(self): arr = np.array([Timestamp('2011-01-01'), Timestamp('2011-01-02')]) assert lib.infer_dtype(arr) == 'datetime' arr = np.array([np.datetime64('2011-01-01'), np.datetime64('2011-01-01')], dtype=object) assert lib.infer_dtype(arr) == 'datetime64' arr = np.array([datetime(2011, 1, 1), datetime(2012, 2, 1)]) assert lib.infer_dtype(arr) == 'datetime' # starts with nan for n in [pd.NaT, np.nan]: arr = np.array([n, pd.Timestamp('2011-01-02')]) assert lib.infer_dtype(arr) == 'datetime' arr = np.array([n, np.datetime64('2011-01-02')]) assert lib.infer_dtype(arr) == 'datetime64' arr = np.array([n, datetime(2011, 1, 1)]) assert lib.infer_dtype(arr) == 'datetime' arr = np.array([n, pd.Timestamp('2011-01-02'), n]) assert
lib.infer_dtype(arr)
pandas._libs.lib.infer_dtype
import builtins from io import StringIO from itertools import product from string import ascii_lowercase import numpy as np import pytest from pandas.errors import UnsupportedFunctionCall import pandas as pd from pandas import ( DataFrame, Index, MultiIndex, Series, Timestamp, date_range, isna) import pandas.core.nanops as nanops from pandas.util import testing as tm @pytest.mark.parametrize("agg_func", ['any', 'all']) @pytest.mark.parametrize("skipna", [True, False]) @pytest.mark.parametrize("vals", [ ['foo', 'bar', 'baz'], ['foo', '', ''], ['', '', ''], [1, 2, 3], [1, 0, 0], [0, 0, 0], [1., 2., 3.], [1., 0., 0.], [0., 0., 0.], [True, True, True], [True, False, False], [False, False, False], [np.nan, np.nan, np.nan] ]) def test_groupby_bool_aggs(agg_func, skipna, vals): df = DataFrame({'key': ['a'] * 3 + ['b'] * 3, 'val': vals * 2}) # Figure out expectation using Python builtin exp = getattr(builtins, agg_func)(vals) # edge case for missing data with skipna and 'any' if skipna and all(isna(vals)) and agg_func == 'any': exp = False exp_df = DataFrame([exp] * 2, columns=['val'], index=Index( ['a', 'b'], name='key')) result = getattr(df.groupby('key'), agg_func)(skipna=skipna) tm.assert_frame_equal(result, exp_df) def test_max_min_non_numeric(): # #2700 aa = DataFrame({'nn': [11, 11, 22, 22], 'ii': [1, 2, 3, 4], 'ss': 4 * ['mama']}) result = aa.groupby('nn').max() assert 'ss' in result result = aa.groupby('nn').max(numeric_only=False) assert 'ss' in result result = aa.groupby('nn').min() assert 'ss' in result result = aa.groupby('nn').min(numeric_only=False) assert 'ss' in result def test_intercept_builtin_sum(): s = Series([1., 2., np.nan, 3.]) grouped = s.groupby([0, 1, 2, 2]) result = grouped.agg(builtins.sum) result2 = grouped.apply(builtins.sum) expected = grouped.sum() tm.assert_series_equal(result, expected) tm.assert_series_equal(result2, expected) # @pytest.mark.parametrize("f", [max, min, sum]) # def test_builtins_apply(f): @pytest.mark.parametrize("f", [max, min, sum]) @pytest.mark.parametrize('keys', [ "jim", # Single key ["jim", "joe"] # Multi-key ]) def test_builtins_apply(keys, f): # see gh-8155 df = pd.DataFrame(np.random.randint(1, 50, (1000, 2)), columns=["jim", "joe"]) df["jolie"] = np.random.randn(1000) fname = f.__name__ result = df.groupby(keys).apply(f) ngroups = len(df.drop_duplicates(subset=keys)) assert_msg = ("invalid frame shape: {} " "(expected ({}, 3))".format(result.shape, ngroups)) assert result.shape == (ngroups, 3), assert_msg tm.assert_frame_equal(result, # numpy's equivalent function df.groupby(keys).apply(getattr(np, fname))) if f != sum: expected = df.groupby(keys).agg(fname).reset_index() expected.set_index(keys, inplace=True, drop=False) tm.assert_frame_equal(result, expected, check_dtype=False) tm.assert_series_equal(getattr(result, fname)(), getattr(df, fname)()) def test_arg_passthru(): # make sure that we are passing thru kwargs # to our agg functions # GH3668 # GH5724 df = pd.DataFrame( {'group': [1, 1, 2], 'int': [1, 2, 3], 'float': [4., 5., 6.], 'string': list('abc'), 'category_string': pd.Series(list('abc')).astype('category'), 'category_int': [7, 8, 9], 'datetime': pd.date_range('20130101', periods=3), 'datetimetz': pd.date_range('20130101', periods=3, tz='US/Eastern'), 'timedelta': pd.timedelta_range('1 s', periods=3, freq='s')}, columns=['group', 'int', 'float', 'string', 'category_string', 'category_int', 'datetime', 'datetimetz', 'timedelta']) expected_columns_numeric = Index(['int', 'float', 'category_int']) # mean / median expected = pd.DataFrame( {'category_int': [7.5, 9], 'float': [4.5, 6.], 'timedelta': [pd.Timedelta('1.5s'), pd.Timedelta('3s')], 'int': [1.5, 3], 'datetime': [pd.Timestamp('2013-01-01 12:00:00'), pd.Timestamp('2013-01-03 00:00:00')], 'datetimetz': [ pd.Timestamp('2013-01-01 12:00:00', tz='US/Eastern'), pd.Timestamp('2013-01-03 00:00:00', tz='US/Eastern')]}, index=Index([1, 2], name='group'), columns=['int', 'float', 'category_int', 'datetime', 'datetimetz', 'timedelta']) for attr in ['mean', 'median']: f = getattr(df.groupby('group'), attr) result = f() tm.assert_index_equal(result.columns, expected_columns_numeric) result = f(numeric_only=False) tm.assert_frame_equal(result.reindex_like(expected), expected) # TODO: min, max *should* handle # categorical (ordered) dtype expected_columns = Index(['int', 'float', 'string', 'category_int', 'datetime', 'datetimetz', 'timedelta']) for attr in ['min', 'max']: f = getattr(df.groupby('group'), attr) result = f() tm.assert_index_equal(result.columns, expected_columns) result = f(numeric_only=False) tm.assert_index_equal(result.columns, expected_columns) expected_columns = Index(['int', 'float', 'string', 'category_string', 'category_int', 'datetime', 'datetimetz', 'timedelta']) for attr in ['first', 'last']: f = getattr(df.groupby('group'), attr) result = f() tm.assert_index_equal(result.columns, expected_columns) result = f(numeric_only=False) tm.assert_index_equal(result.columns, expected_columns) expected_columns = Index(['int', 'float', 'string', 'category_int', 'timedelta']) for attr in ['sum']: f = getattr(df.groupby('group'), attr) result = f() tm.assert_index_equal(result.columns, expected_columns_numeric) result = f(numeric_only=False) tm.assert_index_equal(result.columns, expected_columns) expected_columns = Index(['int', 'float', 'category_int']) for attr in ['prod', 'cumprod']: f = getattr(df.groupby('group'), attr) result = f() tm.assert_index_equal(result.columns, expected_columns_numeric) result = f(numeric_only=False) tm.assert_index_equal(result.columns, expected_columns) # like min, max, but don't include strings expected_columns = Index(['int', 'float', 'category_int', 'datetime', 'datetimetz', 'timedelta']) for attr in ['cummin', 'cummax']: f = getattr(df.groupby('group'), attr) result = f() # GH 15561: numeric_only=False set by default like min/max tm.assert_index_equal(result.columns, expected_columns) result = f(numeric_only=False) tm.assert_index_equal(result.columns, expected_columns) expected_columns = Index(['int', 'float', 'category_int', 'timedelta']) for attr in ['cumsum']: f = getattr(df.groupby('group'), attr) result = f() tm.assert_index_equal(result.columns, expected_columns_numeric) result = f(numeric_only=False) tm.assert_index_equal(result.columns, expected_columns) def test_non_cython_api(): # GH5610 # non-cython calls should not include the grouper df = DataFrame( [[1, 2, 'foo'], [1, np.nan, 'bar'], [3, np.nan, 'baz']], columns=['A', 'B', 'C']) g = df.groupby('A') gni = df.groupby('A', as_index=False) # mad expected = DataFrame([[0], [np.nan]], columns=['B'], index=[1, 3]) expected.index.name = 'A' result = g.mad() tm.assert_frame_equal(result, expected) expected = DataFrame([[0., 0.], [0, np.nan]], columns=['A', 'B'], index=[0, 1]) result = gni.mad() tm.assert_frame_equal(result, expected) # describe expected_index = pd.Index([1, 3], name='A') expected_col = pd.MultiIndex(levels=[['B'], ['count', 'mean', 'std', 'min', '25%', '50%', '75%', 'max']], codes=[[0] * 8, list(range(8))]) expected = pd.DataFrame([[1.0, 2.0, np.nan, 2.0, 2.0, 2.0, 2.0, 2.0], [0.0, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan]], index=expected_index, columns=expected_col) result = g.describe() tm.assert_frame_equal(result, expected) expected = pd.concat([df[df.A == 1].describe().unstack().to_frame().T, df[df.A == 3].describe().unstack().to_frame().T]) expected.index = pd.Index([0, 1]) result = gni.describe() tm.assert_frame_equal(result, expected) # any expected = DataFrame([[True, True], [False, True]], columns=['B', 'C'], index=[1, 3]) expected.index.name = 'A' result = g.any() tm.assert_frame_equal(result, expected) # idxmax expected = DataFrame([[0.0], [np.nan]], columns=['B'], index=[1, 3]) expected.index.name = 'A' result = g.idxmax() tm.assert_frame_equal(result, expected) def test_cython_api2(): # this takes the fast apply path # cumsum (GH5614) df = DataFrame( [[1, 2, np.nan], [1, np.nan, 9], [3, 4, 9] ], columns=['A', 'B', 'C']) expected = DataFrame( [[2, np.nan], [np.nan, 9], [4, 9]], columns=['B', 'C']) result = df.groupby('A').cumsum() tm.assert_frame_equal(result, expected) # GH 5755 - cumsum is a transformer and should ignore as_index result = df.groupby('A', as_index=False).cumsum() tm.assert_frame_equal(result, expected) # GH 13994 result = df.groupby('A').cumsum(axis=1) expected = df.cumsum(axis=1) tm.assert_frame_equal(result, expected) result = df.groupby('A').cumprod(axis=1) expected = df.cumprod(axis=1) tm.assert_frame_equal(result, expected) def test_cython_median(): df = DataFrame(np.random.randn(1000)) df.values[::2] = np.nan labels = np.random.randint(0, 50, size=1000).astype(float) labels[::17] = np.nan result = df.groupby(labels).median() exp = df.groupby(labels).agg(nanops.nanmedian) tm.assert_frame_equal(result, exp) df = DataFrame(np.random.randn(1000, 5)) rs = df.groupby(labels).agg(np.median) xp = df.groupby(labels).median() tm.assert_frame_equal(rs, xp) def test_median_empty_bins(observed): df = pd.DataFrame(np.random.randint(0, 44, 500)) grps = range(0, 55, 5) bins = pd.cut(df[0], grps) result = df.groupby(bins, observed=observed).median() expected = df.groupby(bins, observed=observed).agg(lambda x: x.median()) tm.assert_frame_equal(result, expected) @pytest.mark.parametrize("dtype", [ 'int8', 'int16', 'int32', 'int64', 'float32', 'float64']) @pytest.mark.parametrize("method,data", [ ('first', {'df': [{'a': 1, 'b': 1}, {'a': 2, 'b': 3}]}), ('last', {'df': [{'a': 1, 'b': 2}, {'a': 2, 'b': 4}]}), ('min', {'df': [{'a': 1, 'b': 1}, {'a': 2, 'b': 3}]}), ('max', {'df': [{'a': 1, 'b': 2}, {'a': 2, 'b': 4}]}), ('nth', {'df': [{'a': 1, 'b': 2}, {'a': 2, 'b': 4}], 'args': [1]}), ('count', {'df': [{'a': 1, 'b': 2}, {'a': 2, 'b': 2}], 'out_type': 'int64'}) ]) def test_groupby_non_arithmetic_agg_types(dtype, method, data): # GH9311, GH6620 df = pd.DataFrame( [{'a': 1, 'b': 1}, {'a': 1, 'b': 2}, {'a': 2, 'b': 3}, {'a': 2, 'b': 4}]) df['b'] = df.b.astype(dtype) if 'args' not in data: data['args'] = [] if 'out_type' in data: out_type = data['out_type'] else: out_type = dtype exp = data['df'] df_out = pd.DataFrame(exp) df_out['b'] = df_out.b.astype(out_type) df_out.set_index('a', inplace=True) grpd = df.groupby('a') t = getattr(grpd, method)(*data['args']) tm.assert_frame_equal(t, df_out) @pytest.mark.parametrize("i", [ (Timestamp("2011-01-15 12:50:28.502376"), Timestamp("2011-01-20 12:50:28.593448")), (24650000000000001, 24650000000000002) ]) def test_groupby_non_arithmetic_agg_int_like_precision(i): # see gh-6620, gh-9311 df =
pd.DataFrame([{"a": 1, "b": i[0]}, {"a": 1, "b": i[1]}])
pandas.DataFrame
# -*- coding: utf-8 -*- """ @file:utils.py @time:2019/6/1 21:57 @author:Tangj @software:Pycharm @Desc """ import os import numpy as np from sklearn.base import BaseEstimator, TransformerMixin from sklearn.metrics import roc_auc_score from time import time import random import pandas as pd def frame_to_dict(train): train_dict = {} for col in train.columns: train_dict[col] = train[col].columns return trian_dict def del_adSize(ad_Size): ad_size_mean = [] ad_size_max = [] ad_size_min = [] for adSize in ad_Size: if not isinstance(adSize, str): # print(adSize) ad_size_mean.append(adSize) ad_size_max.append(adSize) ad_size_min.append(adSize) continue size = adSize.split(',') s = [] for i in size: s.append(int(i)) ad_size_mean.append(np.mean(s)) ad_size_max.append(np.max(s)) ad_size_min.append(np.min(s)) return ad_size_mean, ad_size_max, ad_size_max def write_data_into_parts(data, root_path, nums=5100000): l = data.shape[0] // nums for i in range(l + 1): begin = i * nums end = min(nums * (i + 1), data.shape[0]) t_data = data[begin:end] t_data.tofile(root_path + '.bin') def write_dict(path, data): fw = open(path, 'w') for key in data: fw.write(str(key) + ',' + str(data[key]) + '\n') fw.close() def read_allfea(path): f = open(path, 'r') fea = '0' for i in f: fea = i fea_val = fea.split(',') index_dict = {} for i, fea in enumerate(fea_val): index_dict[fea] = i + 1 if '-1' not in index_dict: index_dict['-1'] = len(fea_val) return fea, index_dict def one_hot_feature_concat(train, test, fea1, fea2, filter_num=100): train1 = train[fea1].values train2 = train[fea2].values test1 = test[fea1].values test2 = test[fea2].values train_data = [] test_data = [] train_res = [] test_res = [] for i, values in enumerate(train1): new = str(values) + '|' + str(train2[i]) train_data.append(new) for i, values in enumerate(test1): new = str(values) + '|' + str(test2[i]) # print(new) test_data.append(new) count_dict = {} for d in train_data: if d not in count_dict: count_dict[d] = 0 count_dict[d] += 1 filter_set = [] for i in count_dict: if count_dict[i] < 1: filter_set.append(i) index_dict = {} begin_index = 1 for d in train_data: # 给出现的value赋予一个index指引 if d in filter_set: d = '-1' if d not in index_dict: index_dict[d] = begin_index begin_index += 1 train_res.append(index_dict[d]) if '-1' not in index_dict: index_dict['-1'] = begin_index for d in test_data: if d not in index_dict or d in filter_set: d = '-1' test_res.append(index_dict[d]) print(test_res) return np.array(train_res), np.array(test_res) def one_hot_feature_process(train_data, val_data, test2_data, begin_num, filter_num=0): index_dict = {} begin_index = begin_num train_res = [] for d in train_data: # print(d) # 给出现的value赋予一个index指引 if d not in index_dict: index_dict[d] = begin_index begin_index += 1 # print(index_dict[d]) train_res.append(index_dict[d]) if '-1' not in index_dict: index_dict['-1'] = begin_index val_res = [] for d in val_data: if d not in index_dict: index_dict[d] = begin_index begin_index += 1 val_res.append(index_dict[d]) test2_res = [] for d in test2_data: if d not in index_dict: d = '-1' test2_res.append(index_dict[d]) # print(np.array(train_res)) return np.array(train_res), np.array(val_res), np.array(test2_res), index_dict def vector_feature_process(train_data, val_data, test2_data, begin_num, max_len, index_dict): train_res = [] train_res2 = [] val_res2 = [] test2_res2 = [] train_rate = [] val_rate = [] test2_rate = [] for d in train_data: lx = d.split(',') row = [0] * max_len row2 = [0] * max_len if len(lx) > max_len or d == 'all': j = 0 for i in index_dict: if j >= max_len: break row[j] = index_dict[i] j += 1 train_res.append(row) row2 = [1] * max_len train_res2.append(row2) train_rate.append(1) continue for i, x in enumerate(lx): if x not in index_dict: x = '-1' row[i] = index_dict[x] row2[row[i]] = 1 train_res.append(row) train_res2.append(row2) train_rate.append(len(lx) / max_len) val_res = [] for d in val_data: lx = d.split(',') row = [0] * max_len row2 = [0] * max_len if len(lx) > max_len or d == 'all': j = 0 for i in index_dict: if j >= max_len: break row[j] = index_dict[i] j += 1 val_res.append(row) row2 = [1] * max_len val_res2.append(row2) val_rate.append(1) continue for i, x in enumerate(lx): if x not in index_dict: x = '-1' row[i] = index_dict[x] row2[row[i]] = 1 val_res.append(row) val_res2.append(row2) val_rate.append(len(lx) / max_len) test2_res = [] for d in test2_data: lx = d.split(',') row = [0] * max_len row2 = [0] * max_len if len(lx) > max_len or d == 'all': j = 0 for i in index_dict: if j >= max_len: break row[j] = index_dict[i] j += 1 test2_res.append(row) row2 = [1] * max_len test2_res2.append(row2) test2_rate.append(1) continue for i, x in enumerate(lx): if x not in index_dict: x = '-1' row[i] = index_dict[x] row2[row[i]] = 1 test2_res.append(row) test2_res2.append(row2) test2_rate.append(len(lx) / max_len) return np.array(train_res), np.array(val_res), np.array(test2_res), index_dict, np.array(train_res2), np.array( val_res2), np.array(test2_res2), np.array(train_rate), np.array(val_rate), np.array(test2_rate), def count_one_feature_times(train, test, fea): count_dict = {} test_res = [] train_res = [] for val in train[fea].values: if val not in count_dict: count_dict[val] = 0 count_dict[val] += 1 if '-1' not in count_dict: count_dict['-1'] = 1 for i in train[fea].values: train_res.append(count_dict[i]) for i in test: if i not in count_dict: i = '-1' test_res.append(count_dict[i]) return np.array(train_res), np.array(test_res) def count_vector_feature_times(train, val_data, test, fea): count_dict = {} val_res = [] test_res = [] train_res = [] Train = pd.concat([train, val_data]) for val in Train[fea].values: vals = val.split(',') for i in vals: if i not in count_dict: count_dict[i] = 0 count_dict[i] += 1 if '-1' not in count_dict: count_dict['-1'] = 1 for val in train[fea].values: vals = val.split(',') l = [] for i in vals: l.append(count_dict[i]) # ['max', 'mean', 'min', 'median'] max_l = np.max(l) mean_l = np.mean(l) min_l = np.min(l) median_l = np.median(l) train_res.append([max_l, mean_l, min_l, median_l]) for val in val_data[fea].values: vals = val.split(',') l = [] for i in vals: l.append(count_dict[i]) # ['max', 'mean', 'min', 'median'] max_l = np.max(l) mean_l = np.mean(l) min_l = np.min(l) median_l = np.median(l) val_res.append([max_l, mean_l, min_l, median_l]) for val in test: vals = val.split(',') l = [] for i in vals: if i not in count_dict: i = '-1' l.append(count_dict[i]) # ['max', 'mean', 'min', 'median'] max_l = np.max(l) mean_l = np.mean(l) min_l = np.min(l) median_l = np.median(l) test_res.append([max_l, mean_l, min_l, median_l]) return np.array(train_res), np.array(val_res), np.array(test_res) # 对曝光、pctr和ecpm和bid的特征 def one_feature_exposure2(Train, test, fea, date): # 返回曝光的最大值,最小值,均值,中位数四个值, # 返回bid的最大值,最小值,均值,中位数四个值, test_res = [] train_res = [] id_res = [] reqday_res = [] train = Train num1 = train[train['day'] == 20190410].shape[0] id_res.extend(train[train['day'] == 20190410]['ad_id'].values) reqday_res.extend(train[train['day'] == 20190410]['day'].values) for i in range(num1): train_res.append([0, 0, 0, 0]) for i in range(len(date) - 1): day = int(date[i + 1]) train_compute = Train[Train['day'] == day] train_count = Train[Train['day'] < day] id_res.extend(train_compute['ad_id'].values) reqday_res.extend(train_compute['day'].values) exposure_dict = {} for value in train_count[fea].values: if value not in exposure_dict: exposure_dict[value] = [] train1 = train_count[train_count[fea] == value]['sucess_rate'].values exposure_dict[value].append(np.max(train1)) exposure_dict[value].append(np.min(train1)) exposure_dict[value].append(np.mean(train1)) exposure_dict[value].append(np.median(train1)) if '-1' not in exposure_dict: exposure_dict['-1'] = [0, 0, 0, 0] for value in train_compute[fea].values: if value not in exposure_dict: value = '-1' train_res.append(exposure_dict[value]) train_count = Train[Train['day'] > 20190414] exposure_dict = {} for value in train_count[fea].values: if value not in exposure_dict: train1 = train_count[train_count[fea] == value]['sucess_rate'].values exposure_dict[value] = [] exposure_dict[value].append(np.max(train1)) exposure_dict[value].append(np.min(train1)) exposure_dict[value].append(np.mean(train1)) exposure_dict[value].append(np.median(train1)) if '-1' not in exposure_dict: exposure_dict['-1'] = [0, 0, 0, 0] for value in test: if value not in exposure_dict: value = '-1' test_res.append(exposure_dict[value]) return np.array(train_res), np.array(test_res), np.array(id_res), np.array(reqday_res) def one_feature_exposure4(Train, test, fea, date): test_res = [] train_res = [] id_res = [] reqday_res = [] train = Train train_count = train[train['day'] == 20190410] train_compute = train[train['day'] == 20190410] id_res.extend(train_compute['ad_id'].values) reqday_res.extend(train_compute['day'].values) exposure_dict = {} for value in train_count[fea].values: if value not in exposure_dict: train1 = train_count[train_count[fea] == value]['ex'].values exposure_dict[value] = [] exposure_dict[value].append(np.mean(train1)) exposure_dict[value].append(np.median(train1)) if '-1' not in exposure_dict: exposure_dict['-1'] = [0.9, 0.9] for value in train_compute[fea].values: if value not in exposure_dict: value = '-1' train_res.append(exposure_dict[value]) train_count = train[train['day'] == 20190410] train_compute = train[train['day'] == 20190411] id_res.extend(train_compute['ad_id'].values) reqday_res.extend(train_compute['day'].values) exposure_dict = {} for value in train_count[fea].values: if value not in exposure_dict: train1 = train_count[train_count[fea] == value]['ex'].values exposure_dict[value] = [] exposure_dict[value].append(np.mean(train1)) exposure_dict[value].append(np.median(train1)) if '-1' not in exposure_dict: exposure_dict['-1'] = [0.9, 0.9] for value in train_compute[fea].values: if value not in exposure_dict: value = '-1' train_res.append(exposure_dict[value]) for i in range(len(date) - 2): day1 = int(date[i + 2]) day2 = int(date[i + 1]) day3 = int(date[i]) train1 = Train[Train['day'] == day3] train2 = Train[Train['day'] == day2] train_compute = Train[Train['day'] == day1] id_res.extend(train_compute['ad_id'].values) reqday_res.extend(train_compute['day'].values) train_count = pd.concat([train1, train2]) exposure_dict = {} for value in train_count[fea].values: if value not in exposure_dict: exposure_dict[value] = [] train1 = train_count[train_count[fea] == value]['ex'].values exposure_dict[value].append(np.mean(train1)) exposure_dict[value].append(np.median(train1)) if '-1' not in exposure_dict: exposure_dict['-1'] = [0.9, 0.9] for value in train_compute[fea].values: if value not in exposure_dict: value = '-1' train_res.append(exposure_dict[value]) train1 = train[train['day'] == 20190421] train2 = train[train['day'] == 20190422] train_count = pd.concat([train1, train2]) exposure_dict = {} for value in train_count[fea].values: if value not in exposure_dict: # print(train_count[train_count[fea] == value].shape[0]) train1 = train_count[train_count[fea] == value]['ex'].values exposure_dict[value] = [] exposure_dict[value].append(np.mean(train1)) exposure_dict[value].append(np.median(train1)) if '-1' not in exposure_dict: exposure_dict['-1'] = [0.9, 0.9] num_dis = 0 for value in test: # print(value) if value not in exposure_dict: num_dis += 1 value = '-1' test_res.append(exposure_dict[value]) print(num_dis) return np.array(train_res), np.array(test_res), \ np.array(id_res), np.array(reqday_res) def one_feature_exposure3(Train, test, fea, date): # 返回曝光的最大值,最小值,均值,中位数四个值, # 返回bid的最大值,最小值,均值,中位数四个值, test_res = [] train_res = [] id_res = [] reqday_res = [] train = Train # train_count = train[train['day'] == 20190410] # train_compute = train[train['day'] == 20190410] # id_res.extend(train_compute['ad_id'].values) # reqday_res.extend(train_compute['day'].values) # exposure_dict = {} # for value in train_count[fea].values: # if value not in exposure_dict: # train1 = train_count[train_count[fea] == value]['sucess_rate'].values # exposure_dict[value] = [] # exposure_dict[value].append(np.max(train1)) # exposure_dict[value].append(np.min(train1)) # exposure_dict[value].append(np.mean(train1)) # exposure_dict[value].append(np.median(train1)) # # if '-1' not in exposure_dict: # exposure_dict['-1'] = [0, 0, 0, 0] # # for value in train_compute[fea].values: # if value not in exposure_dict: # value = '-1' # train_res.append(exposure_dict[value]) # # train_count = train[train['day'] == 20190410] # train_compute = train[train['day'] == 20190411] # id_res.extend(train_compute['ad_id'].values) # reqday_res.extend(train_compute['day'].values) # exposure_dict = {} # for value in train_count[fea].values: # if value not in exposure_dict: # train1 = train_count[train_count[fea] == value]['sucess_rate'].values # exposure_dict[value] = [] # exposure_dict[value].append(np.max(train1)) # exposure_dict[value].append(np.min(train1)) # exposure_dict[value].append(np.mean(train1)) # exposure_dict[value].append(np.median(train1)) # if '-1' not in exposure_dict: # exposure_dict['-1'] = [0, 0, 0, 0] # # for value in train_compute[fea].values: # if value not in exposure_dict: # value = '-1' # train_res.append(exposure_dict[value]) # # for i in range(len(date) - 2): # day1 = int(date[i + 2]) # day2 = int(date[i + 1]) # day3 = int(date[i]) # # train1 = Train[Train['day'] == day3] # train2 = Train[Train['day'] == day2] # train_compute = Train[Train['day'] == day1] # id_res.extend(train_compute['ad_id'].values) # reqday_res.extend(train_compute['day'].values) # train_count = pd.concat([train1, train2]) # exposure_dict = {} # for value in train_count[fea].values: # if value not in exposure_dict: # exposure_dict[value] = [] # train1 = train_count[train_count[fea] == value]['sucess_rate'].values # exposure_dict[value].append(np.max(train1)) # exposure_dict[value].append(np.min(train1)) # exposure_dict[value].append(np.mean(train1)) # exposure_dict[value].append(np.median(train1)) # # if '-1' not in exposure_dict: # exposure_dict['-1'] = [0, 0, 0, 0] # for value in train_compute[fea].values: # if value not in exposure_dict: # value = '-1' # train_res.append(exposure_dict[value]) # train1 = train[train['day'] == 20190421] train_count = train[train['day'] == 20190422] # train_count = pd.concat([train1, train2]) exposure_dict = {} for value in train_count[fea].values: if value not in exposure_dict: train1 = train_count[train_count[fea] == value]['sucess_rate'].values exposure_dict[value] = [] exposure_dict[value].append(np.max(train1)) exposure_dict[value].append(np.min(train1)) exposure_dict[value].append(np.mean(train1)) exposure_dict[value].append(np.median(train1)) if '-1' not in exposure_dict: exposure_dict['-1'] = [0, 0, 0, 0] num_dis = 0 for value in test: # print(value) if value not in exposure_dict: num_dis += 1 value = '-1' test_res.append(exposure_dict[value]) print(num_dis) return np.array(train_res), np.array(test_res), \ np.array(id_res), np.array(reqday_res) def one_feature_exposure(train, val, test, fea, date): # 返回曝光的最大值,最小值,均值,中位数四个值, # 返回bid的最大值,最小值,均值,中位数四个值, val_res = [] test_res = [] train_res = [] val_res2 = [] test_res2 = [] train_res2 = [] train_res3 = [] id_res = [] reqday_res = [] Train = pd.concat([train, val]) num1 = train[train['Reqday'] == '02_16'].shape[0] id_res.extend(train[train['Reqday'] == '02_16']['ad_id'].values) reqday_res.extend(train[train['Reqday'] == '02_16']['Reqday'].values) for i in range(num1): train_res.append([8, 8, 8, 8]) train_res2.append([8, 8, 8, 8]) train_count = train[train['Reqday'] == '02_16'] train_compute = train[train['Reqday'] == '02_17'] id_res.extend(train_compute['ad_id'].values) reqday_res.extend(train_compute['Reqday'].values) exposure_dict = {} bid_dict = {} for value in train_count[fea].values: if value not in exposure_dict: train1 = train_count[train_count[fea] == value]['exposure'].values exposure_dict[value] = [] bid_dict[value] = [] exposure_dict[value].append(np.max(train1)) exposure_dict[value].append(np.min(train1)) exposure_dict[value].append(np.mean(train1)) exposure_dict[value].append(np.median(train1)) train2 = train_count[train_count[fea] == value]['adBid'].values bid_dict[value].append(np.max(train2)) bid_dict[value].append(np.min(train2)) bid_dict[value].append(np.mean(train2)) bid_dict[value].append(np.median(train2)) if '-1' not in exposure_dict: exposure_dict['-1'] = [8, 8, 8, 8] bid_dict['-1'] = [8, 8, 8, 8] for value in train_compute[fea].values: if value not in exposure_dict: value = '-1' train_res.append(exposure_dict[value]) train_res2.append(bid_dict[value]) for i in range(len(date) - 2): day1 = date[i + 2] day2 = date[i + 1] day3 = date[i] train1 = Train[Train['Reqday'] == day3] train2 = Train[Train['Reqday'] == day2] train_compute = Train[Train['Reqday'] == day1] id_res.extend(train_compute['ad_id'].values) reqday_res.extend(train_compute['Reqday'].values) train_count =
pd.concat([train1, train2])
pandas.concat
import altair as alt import pandas as pd from sys import argv import numpy as np df =
pd.read_csv(argv[1], keep_default_na=False)
pandas.read_csv
# -*- coding: utf-8 -*- # Global imports from __future__ import unicode_literals import os import glob import pickle import argparse as ap import pandas as pd import numpy as n import multiprocessing as mp # Plot imports import matplotlib.pyplot as plt import matplotlib matplotlib.use("tkagg") import seaborn as sns # Local imports from PELEParseReports import * # Script information __author__ = "<NAME>" __license__ = "MIT" __version__ = "1.0.2" __maintainer__ = "<NAME>" __email__ = "<EMAIL>" class PELEAnalyzer(): def __init__(self): self.reports, self.output_path, self.threshold, self.column_number, self.window_size, self.catalytic_event,\ self.to_drop, self.n_of_ester_groups, self.add_histidine, self.cysteine, self.threshold_histidine,\ self.catalytic_distance, self.verbose, self.perform_plots, self.violin_plots,\ self.num_steps, self.n_processors,self.analysis = self.parseArgs() def parseArgs(self): """ Parse arguments from command-line RETURNS ------- reports : string list of report files to look for data output_path : string output directory where the csv file will be saved threshold: float threshold for the desired metric column_number: integer index of the column the desired metric window_size: integer Number of steps to consider an entrance num_steps: ineger Number of steps per PELE epoch n_processors: integer Number of processors analysis: string Analysis to perform """ parser = ap.ArgumentParser(description='Script that performs different analysis of the \ metrics of the reports file from a PELE simulation.') optional = parser._action_groups.pop() required = parser.add_argument_group('required arguments') required.add_argument("-i", "--input", required=True, metavar="FILE", type=str, nargs='*', help="path to report files") optional.add_argument("-o", "--output", metavar="PATH", type=str, help="output path to save figure", default="PELE_results") optional.add_argument("-TE","--threshold", metavar="THRESHOLD",type=float, help="threshold for the desired metric", default = 4.0) optional.add_argument("-C","--column_number", metavar="INTEGER",type=int, help="index of the column where the desired metrics resides", default=7) optional.add_argument("-W","--window_size", metavar="INTEGER",type=int, help="number of steps between being out and entering the threshold to consider entrance", default = 2) optional.add_argument("-CE","--catalytic_event", metavar="LIST",type=str, nargs='*',help="index of the column where catalytic distances reside (they must be 3)") optional.add_argument("-TD","--to_drop", metavar="LIST",type=str, nargs='*',help="column names that want to be dropped", default=[]) optional.add_argument("-NE","--n_of_ester_groups", metavar="INTEGER",type=int, help="number of ester groups in the substrate used in the PELE simulation", default = 1) optional.add_argument("-AH","--add_histidine", help="Add the catalytic histidine - ether O atom(s) of the substrate to the count of catalytic events", action="store_true") optional.add_argument("-CS","--cysteine", help="The code takes into account that the nucleophile residue is a cysteine for the catalytic events", action="store_true") optional.add_argument("-TH","--threshold_histidine", metavar="THRESHOLD",type=float, help="threshold for the distance between the N atom of the His and the ether O atom of the substrate to consider as catalytic", default = 6.5) optional.add_argument("-CD","--catalytic_distance", metavar="THRESHOLD",type=float, help="threshold for the hydrogen bonds of the catalytic residues", default = 3.5) optional.add_argument("-V","--verbose", help="Activate the verbose mode", action="store_true") optional.add_argument("-PP","--perform_plots", help="Saves the plots of the calculated metrics/parameters", action="store_true") optional.add_argument("-VP","--violin_plots", help="Perform violin plots instead of box plots", action="store_true") optional.add_argument("-NS","--num_steps", metavar="INTEGER",type=int, help="number of steps per report", default = 40) optional.add_argument("-NP","--n_processors", metavar="INTEGER",type=int, help="number of processors to execute the code", default = 4) optional.add_argument("-A","--analysis", metavar="STRING",type=str, help="Type of analysis to perform", default="CATE") parser._action_groups.append(optional) args = parser.parse_args() reports = parseReports(args.input, parser) if args.catalytic_event is not None: args.catalytic_event = [int(i)-1 for i in args.catalytic_event] return reports, args.output, args.threshold, int(args.column_number)-1, args.window_size, \ args.catalytic_event, args.to_drop, args.n_of_ester_groups, args.add_histidine, args.cysteine,\ args.threshold_histidine, args.catalytic_distance, args.verbose, args.perform_plots,\ args.violin_plots, args.num_steps, args.n_processors, args.analysis def DecompressList(self,l_of_lists): """ This method decompress a list of lists into a list PARAMETERS ---------- l_of_lists: list of lists List of lists RETURNS ------- new_list: list New list """ new_list = [] for sublist in l_of_lists: for item in sublist: new_list.append(item) return new_list def Calculate_total_catalytic_events(self, set_of_thresholds, report): """ Helper function to calculate the catalytic events out of the total PELE steps whether are accepted or rejected PARAMETERS ---------- set_of_thresholds: list of booleans List of booleans RETURNS ------- Total_CE: The total number of catalytic events in the report file Integer/Float """ Total_CE = 0 for i,row in enumerate(set_of_thresholds): if i>0: if row==True and i != len(set_of_thresholds)-1 and set_of_thresholds[i-1]==True: Total_CE += (report.loc[i][1]-report.loc[i-1][1]) elif row==False and set_of_thresholds[i-1]==True: Total_CE += (report.loc[i][1]-report.loc[i-1][1])-1 elif row==True and i == len(set_of_thresholds)-1: Total_CE += (self.num_steps-report.loc[i][1]) else: continue else: continue return Total_CE def Catalytic_events_and_means(self, report): """ Take the PELE simulation report files and obtains the number of steps with a distance (metric) smaller than a threshold and the number of times in the simulation the the value of the desired metric gets lower than the threshold RETURNS ------- instances: integer Number of inside steps entrance: integer Number of entrances """ values_aux, cat_events, cat_trajectories, total_catalytic_events = [], [], [], [] rep = pd.read_csv(report,sep=" ") rep.dropna(axis=1,inplace=True) values_aux.append(rep.values.tolist()) for i in range(self.n_of_ester_groups): if self.add_histidine: if i == 0: if self.cysteine: set_of_thresholds = (rep[rep.columns[self.catalytic_event[0]+i]] <= self.threshold) & \ (rep[rep.columns[self.catalytic_event[0]+i+1]] <= self.threshold_histidine) & \ (rep[rep.columns[self.catalytic_event[1]]] <= self.catalytic_distance) & \ (rep[rep.columns[self.catalytic_event[2]]] <= self.catalytic_distance) CATE = rep[set_of_thresholds] Total_CE = self.Calculate_total_catalytic_events(set_of_thresholds, rep) else: set_of_thresholds = (rep[rep.columns[self.catalytic_event[0]+i]] <= self.threshold) & \ (rep[rep.columns[self.catalytic_event[0]+i+1]] <= self.threshold_histidine) & \ (rep[rep.columns[self.catalytic_event[1]]] <= self.catalytic_distance) & \ ((rep[rep.columns[self.catalytic_event[2]]] <= self.catalytic_distance) \ | (rep[rep.columns[self.catalytic_event[2]+1]] <= self.catalytic_distance)) CATE = rep[set_of_thresholds] Total_CE = self.Calculate_total_catalytic_events(set_of_thresholds, rep) else: if self.cysteine: set_of_thresholds = (rep[rep.columns[self.catalytic_event[0]+2^i]] <= self.threshold) & \ (rep[rep.columns[self.catalytic_event[0]+2**i+1]] <= self.threshold_histidine) & \ (rep[rep.columns[self.catalytic_event[1]]] <= self.catalytic_distance) & \ (rep[rep.columns[self.catalytic_event[2]]] <= self.catalytic_distance) CATE = rep[set_of_thresholds] Total_CE = self.Calculate_total_catalytic_events(set_of_thresholds, rep) else: set_of_thresholds = (rep[rep.columns[self.catalytic_event[0]+2^i]] <= self.threshold) & \ (rep[rep.columns[self.catalytic_event[0]+2**i+1]] <= self.threshold_histidine) & \ (rep[rep.columns[self.catalytic_event[1]]] <= self.catalytic_distance) & \ ((rep[rep.columns[self.catalytic_event[2]]] <= self.catalytic_distance) \ | (rep[rep.columns[self.catalytic_event[2]+1]] <= self.catalytic_distance)) CATE = rep[set_of_thresholds] Total_CE = self.Calculate_total_catalytic_events(set_of_thresholds, rep) else: if self.cysteine: set_of_thresholds = (rep[rep.columns[self.catalytic_event[0]+i]] <= self.threshold) & \ (rep[rep.columns[self.catalytic_event[1]]] <= self.catalytic_distance) & \ (rep[rep.columns[self.catalytic_event[2]]] <= self.catalytic_distance) CATE = rep[set_of_thresholds] Total_CE = self.Calculate_total_catalytic_events(set_of_thresholds, rep) else: set_of_thresholds = (rep[rep.columns[self.catalytic_event[0]+i]] <= self.threshold) & \ (rep[rep.columns[self.catalytic_event[1]]] <= self.catalytic_distance) & \ ((rep[rep.columns[self.catalytic_event[2]]] <= self.catalytic_distance) \ | (rep[rep.columns[self.catalytic_event[2]+1]] <= self.catalytic_distance)) CATE = rep[set_of_thresholds] Total_CE = self.Calculate_total_catalytic_events(set_of_thresholds, rep) CE = CATE.shape[0] cat_events.append(CE) total_catalytic_events.append(Total_CE) if CE!=0: cat_trajectories.append(1) if self.verbose: print("{} --> {}".format(report,list(CATE["numberOfAcceptedPeleSteps"]))) else: cat_trajectories.append(0) return values_aux, cat_events, cat_trajectories, rep.shape[0], total_catalytic_events def CalculateFreeEnergy(self, report): """ Take the PELE simulation report files and returns the estimated difference in the free energy of two differentiated states according to a/some metric/s. OUTPUT ------ output_path.csv File with the difference in the binding energies and the number of accepted PELE steps of each state. """ G1, G2 = [],[] rep = pd.read_csv(report,sep=" ") rep.dropna(axis=1,inplace=True) for i_row in range(rep.shape[0]): if rep.loc[i_row][self.column_number]<=self.threshold: # if rep.loc[i_row][self.column_number]<=self.threshold and rep.loc[i_row][5]<=0.2: G1.append(rep.loc[i_row][4]) else: G2.append(rep.loc[i_row][4]) return G1, G2 def EstimateEnantioselectivity(self, report): """ Take the PELE simulation report files and filters the number of steps with a distance (metric) smaller than a certain threshold RETURNS ------- Rep: pandas DataFrame Report file with the steps that have the metric below the threshold """ rep =
pd.read_csv(report, sep=" ")
pandas.read_csv
# -*- coding: utf-8 -*- import datetime import time from sqlalchemy.sql import func import pandas as pd import math data=pd.read_csv('上证50_daily.csv',index_col=0) t=data.index f=0 jiange=30 res=[] import datetime # def get_day_nday_ago(date,n): # t = time.strptime(date, "%Y-%m-%d") # y, m, d = t[0:3] # Date = str(datetime.datetime(y, m, d) - datetime.timedelta(n)).split() # return Date[0] def get_day_nday_ago(date,n): t = time.strptime(date, "%Y-%m-%d") y, m, d = t[0:3] before_n_days=[] for i in range(1, n + 1)[::-1]: before_n_days.append(str(datetime.datetime(y, m, d)- datetime.timedelta(days=i))[0:10]) # Date = str(datetime.datetime(y, m, d) - datetime.timedelta(n)).split() return before_n_days aa=get_day_nday_ago('2018-06-10',7) set(aa)&set(list(data.index)) t=list(data.index) time_window=30 res={} for i in t: aa = get_day_nday_ago(i, time_window) data_time_window=list(set(aa) & set(list(data.index))) tt=data.loc[data_time_window] if len(data_time_window)<=1: continue res[i]=sum(tt['volume'])/len(data_time_window) res2={} for i in t: data_day=data.loc[i] res2[i]=data_day['volume'] res3={} res4={} mairu={} maichu={} for i,j in res.items(): res3[i]=res2[i]-res[i] if res[i]>=1.2*res2[i]: res4[i]=1 mairu[i]=1 maichu[i]=0 elif res[i]<0.8*res2[i]: res4[i]=-1 maichu[i]=-1 mairu[i]=0 else: res4[i]=0 mairu[i]=0 maichu[i]=0 zz=
pd.DataFrame(res,index=[0])
pandas.DataFrame
# -*- coding: utf-8 -*- """ Created on Mon Jun 15 14:26:29 2020 @author: skyhigh """ import pandas as pd columns =['matth','english','science'] indexs = ['John','Julia',"Mary","Henry"] datas=[[80,70,90],[88,87,99],[77,66,76],[90,98,96]] df =
pd.DataFrame(datas,columns=columns,index=indexs)
pandas.DataFrame
# http://www.vdh.virginia.gov/coronavirus/ from bs4 import BeautifulSoup import csv from datetime import datetime from io import StringIO import os import requests import pandas as pd # Remove empty rows def filtered(rows): return [x for x in rows if "".join([(x[y] or "").strip() for y in x]) != ""] def run_VA(args): # Parameters raw_name = '../VA/raw' data_name = '../VA/data/data_%s.csv' now = datetime.now() links = [("locality", "https://data.virginia.gov/resource/bre9-aqqr.csv"), ("conf", "https://data.virginia.gov/resource/uqs3-x7zh.csv"), ("dist", "https://data.virginia.gov/resource/v5a8-4ahw.csv"), ("age", "https://data.virginia.gov/resource/uktn-mwig.csv"), ("sex", "https://data.virginia.gov/resource/tdt3-q47w.csv"), ("race_ethnicity", "https://data.virginia.gov/resource/9sba-m86n.csv")] for link in links: most_recent = "" exists = os.path.exists(data_name % link[0]) out = [] # If current data file does not exist if not exists: version = 0 v_exists = True while v_exists: version += 1 v_exists = os.path.exists((data_name % (link[0] + "_V" + str(version)))) version = version - 1 v_df = pd.read_csv((data_name % (link[0] + "_V" + str(version)))) date_col = "" for col in v_df.columns: if "date" in col.lower() and "report" in col.lower(): date_col = col break # Getting most recent date dates = (
pd.to_datetime(v_df[date_col])
pandas.to_datetime
import copy from GTac_Data import gtac_data from data_gen import raw_data_byts_checkout_2, collect_DataPoints # from data_collect_fingers_five import COLUMNS_RAW_FINGER_DATA, MAG_NUM, COL_INDEX from gtac_config import COLUMNS_RAW_FINGER_DATA, MAG_NUM, COL_INDEX # from Handover import collect_DataPoints, find_location, find_mat_value # from Stably_Gentle_Grasping import find_mat_sum_sec, reactive_pinch from draw_bubbles_py_3 import setup_scatter_ax, plot_fingertip_2 # from draw_lines2 import update_vals import serial import time import pandas as pd import numpy as np import argparse import matplotlib # matplotlib.use('TkAgg') from matplotlib import pyplot as plt from matplotlib.animation import FuncAnimation # from GTac_Hand import gtac_hand window_length = 200 x = np.linspace(0, 199, 200) y = np.zeros(len(x)) mag_x = [] mag_y = [] mag_z = [] mat_x_0 = [4, 4, 4, 4, 3, 3, 3, 3, 2, 2, 2, 2, 1, 1, 1, 1] mat_y_0 = [1, 2, 3, 4, 1, 2, 3, 4, 1, 2, 3, 4, 1, 2, 3, 4] mat_x = [1, 2, 3, 4, 1, 2, 3, 4, 1, 2, 3, 4, 1, 2, 3, 4] mat_y = [1, 1, 1, 1, 2, 2, 2, 2, 3, 3, 3, 3, 4, 4, 4, 4] press_location_r = 2.5 press_location_r_list = [] press_location_c = 2.5 press_location_c_list = [] sum_value = 0 sum_value_list = [] mat_sz = np.zeros(16) mat_amp_index = 10 pressing_loc_amp_index = 2 mat_loc_index = 0.001 def update_vals(data_frame_array, finger=1, sec=2, window_len=200): tri_index = finger * 9 + (2 - sec) * 3 sum_r = 0 sum_c = 0 global mag_x, mag_y, mag_z, sum_value, press_location_r, press_location_c, \ sum_value_list, press_location_r_list, press_location_c_list sum_value = 0 # update magnetic and resistive signals for GTac Bubbles for i in range(len(mat_x)): r = i // 4 c = i % 4 index, value = gtac_data.find_mat_value(data_frame_array, finger, sec, r, c) if value > 20: # threshold to remove noise for obtaining pressing location sum_r += (r + 1) * value sum_c += (c + 1) * value sum_value += value mat_sz[i] = abs(value * mat_amp_index) else: mat_sz[i] = 0 mat_x[i] = c + 1 + data_frame_array[tri_index] * mat_loc_index mat_y[i] = r + 1 + data_frame_array[tri_index + 1] * mat_loc_index # update pressing locations if sum_value != 0: press_location_r = round(sum_r / sum_value, 1) press_location_c = round(sum_c / sum_value, 1) # update magnetic signals mag_x.append(data_frame_array[tri_index]) mag_y.append(data_frame_array[tri_index + 1]) mag_z.append(abs(data_frame_array[tri_index + 2])) sum_value_list.append(sum_value) press_location_r_list.append(press_location_r - 1) press_location_c_list.append(press_location_c - 1) if len(mag_x) > window_len: mag_x = mag_x[-window_len:] mag_y = mag_y[-window_len:] mag_z = mag_z[-window_len:] sum_value_list = sum_value_list[-window_len:] press_location_r_list = press_location_r_list[-window_len:] press_location_c_list = press_location_c_list[-window_len:] print('r:{};c:{}'.format(press_location_r, press_location_c)) # update vals for plot gaussian # zarray = gaus2d(x=x_mesh, y=y_mesh, # mx=press_location_r, # my=press_location_c, # sx=1, # sy=1) # define normalized 2D gaussian def gaus2d(x=0, y=0, mx=0, my=0, sx=1, sy=1): return 1. / (2. * np.pi * sx * sy) * np.exp(-((x - mx)**2. / (2. * sx**2.) + (y - my)**2. / (2. * sy**2.))) def plot_pressing_loc(scat, press_location_r, press_location_c, sec_sum): scat.set_offsets(np.array([press_location_c, press_location_r])) scat.set_sizes([sec_sum * pressing_loc_amp_index]) def set_data_sec(f4_ax1_scat_tri_mat, f4_ax1_scat_pre_loc, f4_ax2_magx, f4_ax2_magy, f4_ax3_magz, f4_ax3_mat_sum, f4_ax4_center_x, f4_ax4_center_y): plot_fingertip_2(f4_ax1_scat_tri_mat, mat_x, mat_y, mat_sz) plot_pressing_loc(f4_ax1_scat_pre_loc, press_location_r, press_location_c, sum_value) if len(mag_y) == window_length: # print(len(mag_x),len(mag_y),len(mag_z),len(sum_value_list),len(press_location_c_list),len(press_location_r_list)) f4_ax2_magx.set_ydata(mag_x) f4_ax2_magy.set_ydata(mag_y) f4_ax3_magz.set_ydata(mag_z) f4_ax3_mat_sum.set_ydata(sum_value_list) f4_ax4_center_x.set_ydata(press_location_c_list) f4_ax4_center_y.set_ydata(press_location_r_list) def setup_scatter_ax2(ax): # rect is the box edge rect = plt.Rectangle((-1, -1), 5, 5, ec='none', lw=2, fc='none') ax.add_patch(rect) ax.axes.xaxis.set_visible(False) ax.axes.yaxis.set_visible(False) scat_base = ax.scatter(mat_x_0, mat_y_0, s=1500, alpha=0.4) scat_tri_mat = ax.scatter(mat_x, mat_y, s=150, alpha=1) scat_pre_loc = ax.scatter(press_location_c, press_location_r, s=150, alpha=1) return scat_tri_mat, scat_pre_loc def setup_figures(): # prepare the figure fig4 = plt.figure(figsize=(9, 5), constrained_layout=True) gs = fig4.add_gridspec(3, 5) f4_ax1 = fig4.add_subplot(gs[:, :-2], aspect='equal', autoscale_on=False, xlim=(0, 5), ylim=(0, 5)) f4_ax1.set_title('GTac Bubbles') f4_ax1_scat_tri_mat, f4_ax1_scat_pre_loc = setup_scatter_ax2(f4_ax1) f4_ax2 = fig4.add_subplot(gs[0, -2:]) f4_ax2.set_title('Shear Force Signals (uT)') f4_ax2.set_ylim([-500, 500]) f4_ax2_magx = f4_ax2.plot(np.zeros(window_length), label='SA-II x')[0] f4_ax2_magy = f4_ax2.plot(np.zeros(window_length), label='SA-II y')[0] # f4_ax3_magz = f4_ax2.plot(np.zeros(window_length), label='mag-z')[0] f4_ax2.legend(loc=0) f4_ax3 = fig4.add_subplot(gs[1, -2:]) f4_ax3.set_title('Normal Force Signals') f4_ax3.set_ylim([0, 2000]) f4_ax3_mat_sum = f4_ax3.plot(np.zeros(window_length), label='FA-I Sum')[0] f4_ax3_magz = f4_ax3.plot(np.zeros(window_length), label='SA-II z')[0] # f4_ax3_mag_z = f4_ax3.plot(np.zeros(window_length), # label='mag-z')[0] f4_ax3.legend(loc=0) f4_ax4 = fig4.add_subplot(gs[2, -2:]) f4_ax4.set_title('Normal Force Center') f4_ax4.set_ylim([0, 4]) f4_ax4_center_x = f4_ax4.plot(np.zeros(window_length), label='x')[0] f4_ax4_center_y = f4_ax4.plot(np.zeros(window_length), label='y')[0] f4_ax4.legend() # fig1 = plt.figure() # f1_ax1_gaussian = fig1.add_subplot(111, projection='3d') # f1_ax1_gaussian.set_title('GTac Super-Resotion') # f1_ax1_gaussian_plot = [f1_ax1_gaussian.plot_surface(x_mesh, y_mesh, zarray[:, :], color='0.75', rstride=1, cstride=1)] return fig4, f4_ax1_scat_tri_mat, f4_ax1_scat_pre_loc, \ f4_ax2_magx, f4_ax2_magy, f4_ax3_magz, \ f4_ax3_mat_sum, f4_ax4_center_x, f4_ax4_center_y def animate2(i): print(i) global TO_MOVE, TO_RELEASE, pinch, time_thumb_fle, last_time_12, last_time_12_inv start_in = time.time() data = raw_data_byts_checkout_2(ser, verbose=False) ms = int(round((time.time() - start) * 1000)) # data.append(ms) data = np.append(data, ms) # data = gtac_data.preprocess_(data) # dt_list.append(data) data_frame_array = data - avg # average by the initial data to_return = [] for f_ind, f in enumerate(finger_to_plot): for s_ind, s in enumerate(sec_to_plot): update_vals(data_frame_array, finger=f, sec=s) ind = f_ind * len(sec_to_plot) + s_ind # print(ind) set_data_sec(ax1_scat_tri_mat_list[ind], ax1_scat_pre_loc_list[ind], ax2_magx_list[ind], ax2_magy_list[ind], ax2_magz_list[ind], ax3_mat_sum_list[ind], ax4_center_x_list[ind], ax4_center_y_list[ind]) to_return.append(ax1_scat_tri_mat_list[ind]) to_return.append(ax1_scat_pre_loc_list[ind]) to_return.append(ax2_magx_list[ind]) to_return.append(ax2_magy_list[ind]) to_return.append(ax2_magz_list[ind]) to_return.append(ax3_mat_sum_list[ind]) to_return.append(ax4_center_x_list[ind]) to_return.append(ax4_center_y_list[ind]) # control the fingers to grasp # pinch,time_thumb_fle,last_time_12,last_time_12_inv = reactive_pinch(data_frame_array,ser, # pinch,time_thumb_fle,last_time_12,last_time_12_inv) # mat_sum_sec = find_mat_sum_sec(data_frame_array, # mat_th=50, # verbose=False) # if mat_sum_sec[2, 0] > 50 and not pinch: # pinch = True # # creat current time stamp # time_ctrl = time.time() # if pinch and mat_sum_sec[0, 2] < 300 and time_ctrl - time_thumb_fle > 0.05: # ser.write(b'<21>') # time_thumb_fle = time_ctrl # # if pinch and mat_sum_sec[1, 0] < 600 and time_ctrl - last_time_12 > 0.1: # ser.write(b'<41>') # ser.write(b'<1-1>') # # ser.write(b'<31>') # # ser.write(b'<51>') # # ser.write(b'<61>') # last_time_12 = time_ctrl # # if pinch and mat_sum_sec[1, 0] > 800 and time_ctrl - last_time_12_inv > 0.1: # ser.write(b'<4-1>') # ser.write(b'<2-1>') # ser.write(b'<11>') # # ser.write(b'<3-1>') # # ser.write(b'<5-1>') # # ser.write(b'<6-1>') # last_time_12_inv = time_ctrl # if time.time() - start > 5 and TO_MOVE: # ser.write(b'<220>') # ser.write(b'<450>') # TO_MOVE = False # TO_RELEASE = True # if time.time() - start > 15 and TO_RELEASE: # ser.write(b'<>') # TO_RELEASE = False print('frames {}, time {}ms'.format(i, round((time.time() - start_in) * 1000))) return to_return if __name__ == '__main__': # current time # sudo chmod 666 /dev/ttyACM0 timestr = time.strftime("%Y%m%d_%H%M%S") # parse the argumments parser = argparse.ArgumentParser() parser.add_argument("-sp", "--serialport", default='/dev/ttyACM1', help="set serial port (default: COM6)") # ubuntu: /dev/ttyACM0 parser.add_argument("-f", "--finger", default=0, type=int, help="set the finger to visualize") parser.add_argument("-s", "--section", default=0, type=int, help="set the section to visualize") # Read arguments from command line args = parser.parse_args() SerialPort, finger, sec = args.serialport, \ args.finger, \ args.section # creat a pandas DataFrame to store the data df_RAW =
pd.DataFrame(columns=COLUMNS_RAW_FINGER_DATA)
pandas.DataFrame
import pandas as pd import json, os from datetime import timedelta f = open('data/game_def.json') game_def = json.load(f) def getHardwareLog(start_date, end_date, hwlogpath): df = pd.read_csv(hwlogpath, header=[1]) df['Time'] = pd.to_datetime(df['Time']).dt.tz_localize("America/New_York") mask = (df['Time'] >= start_date) & (df['Time'] <= end_date) segment = df.loc[mask] return segment def getGame(target): for game in game_def: if game['name'] == target: return game def compute(trial, hwlogpath, index, platform): if not os.path.exists(f'data/processed/hw-study/{platform}/'): os.mkdir(f'data/processed/hw-study/{platform}/') trialStart = trial['init_time'] idxLoad = getGame(trial['game_name'])['times_load'] loadStart = trialStart + pd.Timedelta(seconds=trial['times'][idxLoad[1]]) loadEnd = trialStart + pd.Timedelta(seconds=trial['times'][idxLoad[0]]) hw_df = getHardwareLog(loadStart, loadEnd, hwlogpath) hw_df.to_csv(f'data/processed/hw-study/{platform}/{trial["game_name"]}-game-{trial["iteration"]}.csv') idxLevel = getGame(trial['game_name'])['times_level'] levelStart = trialStart +
pd.Timedelta(seconds=trial['times'][idxLevel[1]])
pandas.Timedelta
import os import speedtest import time import sys import shutil import pandas as pd from pythonping import ping import argparse import logging import traceback import configparser from PyQt5.QtCore import pyqtSignal, QObject from modules.visuals import InteractivePlots class Communicate(QObject): GUI_signal = pyqtSignal(str) # define logger main_logger = logging.getLogger("main_logger") main_logger.setLevel("WARNING") class NetworkTest: def __init__(self, defaults, callbackFunc): self.interval = defaults["interval"] self.ping_target = defaults["ping_target"] self.threads = defaults["threads"] self.path = defaults["path"] self.config_path = os.path.join(self.path, "modules", "config_a.ini") self.ping_file_name = defaults["ping_file_name"] self.speed_test_file_name = defaults["speed_test_file_name"] self.clear = defaults["clear"] self.ping_file_path = os.path.join(self.path, "Data", self.ping_file_name) self.speed_test_file_path = os.path.join(self.path, "Data", self.speed_test_file_name) self.doPingTest = True self.doSpeedTest = True self.runningTest = False self.readConfig() self.visuals = InteractivePlots(self.path, self.ping_file_path, self.speed_test_file_path) self.src = Communicate() self.src.GUI_signal.connect(callbackFunc) def readConfig(self): config = configparser.ConfigParser() try: config.read(self.config_path) # Get values from configuration file self.save_every = float(config['DEFAULT']['save_every']) self.ping_max_threshold = float(config['DEFAULT']['ping_max_threshold']) except: # In case no config-file is found or another reading error occured print("Configuration file not found/readable.") sys.exit(0) def updateTestVariables(self, updatedVariables): print(updatedVariables) self.doPingTest = updatedVariables["doPingTest"] self.doSpeedTest = updatedVariables["doSpeedTest"] self.interval = updatedVariables["interval"] self.ping_target = updatedVariables["ping_target"] self.threads = updatedVariables["threads"] self.path = updatedVariables["path"] self.ping_file_name = updatedVariables["ping_file_name"] self.speed_test_file_name = updatedVariables["speed_test_file_name"] self.clear = updatedVariables["clear"] self.ping_file_path = os.path.join(self.path, "Data", self.ping_file_name) self.speed_test_file_path = os.path.join(self.path, "Data", self.speed_test_file_name) # check if old files need to be moved in new dir. # If dir archive dosen't exist - create new one def archiveFiles(self): if os.path.isdir(os.path.join(self.path, "Data", "archive")) is False: # create archive folder os.mkdir(os.path.join(self.path, "Data", "archive")) date = time.strftime("_%Y_%m_%d_%H_%M_%S", time.localtime()) new_ping_name = "".join( (self.ping_file_name.split(".")[0], date, ".", self.ping_file_name.split(".")[1])) new_speed_test_name = "".join( (self.speed_test_file_name.split(".")[0], date, ".", self.speed_test_file_name.split(".")[1])) shutil.move(os.path.join(self.path, "Data", self.ping_file_name), os.path.join(self.path, "Data", "archive", new_ping_name)) shutil.move(os.path.join(self.path, "Data", self.speed_test_file_name), os.path.join(self.path, "Data", "archive", new_speed_test_name)) # check if old dataframe exists else create new one def createDataFrames(self): # check if a ping_test file already exists if(self.doPingTest): if self.ping_file_name not in os.listdir(os.path.join(self.path, "Data")): self.df_my_ping =
pd.DataFrame(columns=["date", "min", "max", "avg", "url"])
pandas.DataFrame
# --- # jupyter: # jupytext: # formats: ipynb,py:percent # text_representation: # extension: .py # format_name: percent # format_version: '1.3' # jupytext_version: 1.9.1 # kernelspec: # display_name: udl # language: python # name: udl # --- # %% [markdown] # # Sentiment analysis # # ### Some plotting functions # %% # Importing packages from matplotlib import pyplot as plt import numpy as np import random # %% # Some functions to plot our points and draw the lines def plot_points(features, labels): X = np.array(features) y = np.array(labels) spam = X[np.argwhere(y==1)] ham = X[np.argwhere(y==0)] plt.scatter([s[0][0] for s in spam], [s[0][1] for s in spam], s = 25, color = 'cyan', edgecolor = 'k', marker = '^') plt.scatter([s[0][0] for s in ham], [s[0][1] for s in ham], s = 25, color = 'red', edgecolor = 'k', marker = 's') plt.xlabel('aack') plt.ylabel('beep') plt.legend(['happy','sad']) def draw_line(a,b,c, color='black', linewidth=2.0, linestyle='solid', starting=0, ending=3): # Plotting the line ax + by + c = 0 x = np.linspace(starting, ending, 1000) plt.plot(x, -c/b - a*x/b, linestyle=linestyle, color=color, linewidth=linewidth) # %% import pandas as pd X = pd.DataFrame([[1,0],[0,2],[1,1],[1,2],[1,3],[2,2],[3,2],[2,3]]) y =
pd.Series([0,0,0,0,1,1,1,1])
pandas.Series
from numpy import * import pandas as pd
pd.set_option('precision',2)
pandas.set_option
import numpy as np import pandas as pd from datetime import datetime, timedelta import pytest import vectorbt as vbt from vectorbt.utils.config import merge_dicts seed = 42 # ############# base.py ############# # class MyData(vbt.Data): @classmethod def download_symbol(cls, symbol, shape=(5, 3), start_date=datetime(2020, 1, 1), columns=None, index_mask=None, column_mask=None, return_arr=False, tz_localize=None, seed=seed): np.random.seed(seed) a = np.random.uniform(size=shape) + symbol if return_arr: return a index = [start_date + timedelta(days=i) for i in range(a.shape[0])] if a.ndim == 1: sr = pd.Series(a, index=index, name=columns) if index_mask is not None: sr = sr.loc[index_mask] if tz_localize is not None: sr = sr.tz_localize(tz_localize) return sr df = pd.DataFrame(a, index=index, columns=columns) if index_mask is not None: df = df.loc[index_mask] if column_mask is not None: df = df.loc[:, column_mask] if tz_localize is not None: df = df.tz_localize(tz_localize) return df def update_symbol(self, symbol, n=1, **kwargs): download_kwargs = self.select_symbol_kwargs(symbol, self.download_kwargs) download_kwargs['start_date'] = self.data[symbol].index[-1] shape = download_kwargs.pop('shape', (5, 3)) new_shape = (n, shape[1]) if len(shape) > 1 else (n,) new_seed = download_kwargs.pop('seed', seed) + 1 kwargs = merge_dicts(download_kwargs, kwargs) return self.download_symbol(symbol, shape=new_shape, seed=new_seed, **kwargs) class TestData: def test_config(self, tmp_path): data = MyData.download([0, 1], shape=(5, 3), columns=['feat0', 'feat1', 'feat2']) assert MyData.loads(data.dumps()) == data data.save(tmp_path / 'data') assert MyData.load(tmp_path / 'data') == data def test_download(self): pd.testing.assert_series_equal( MyData.download(0, shape=(5,), return_arr=True).data[0], pd.Series( [ 0.3745401188473625, 0.9507143064099162, 0.7319939418114051, 0.5986584841970366, 0.15601864044243652 ] ) ) pd.testing.assert_frame_equal( MyData.download(0, shape=(5, 3), return_arr=True).data[0], pd.DataFrame( [ [0.3745401188473625, 0.9507143064099162, 0.7319939418114051], [0.5986584841970366, 0.15601864044243652, 0.15599452033620265], [0.05808361216819946, 0.8661761457749352, 0.6011150117432088], [0.7080725777960455, 0.020584494295802447, 0.9699098521619943], [0.8324426408004217, 0.21233911067827616, 0.18182496720710062] ] ) ) index = pd.DatetimeIndex( ['2020-01-01', '2020-01-02', '2020-01-03', '2020-01-04', '2020-01-05'], dtype='datetime64[ns]', freq='D' ) pd.testing.assert_series_equal( MyData.download(0, shape=(5,)).data[0], pd.Series( [ 0.3745401188473625, 0.9507143064099162, 0.7319939418114051, 0.5986584841970366, 0.15601864044243652 ], index=index ) ) pd.testing.assert_series_equal( MyData.download(0, shape=(5,), columns='feat0').data[0], pd.Series( [ 0.3745401188473625, 0.9507143064099162, 0.7319939418114051, 0.5986584841970366, 0.15601864044243652 ], index=index, name='feat0' ) ) pd.testing.assert_frame_equal( MyData.download(0, shape=(5, 3)).data[0], pd.DataFrame( [ [0.3745401188473625, 0.9507143064099162, 0.7319939418114051], [0.5986584841970366, 0.15601864044243652, 0.15599452033620265], [0.05808361216819946, 0.8661761457749352, 0.6011150117432088], [0.7080725777960455, 0.020584494295802447, 0.9699098521619943], [0.8324426408004217, 0.21233911067827616, 0.18182496720710062] ], index=index ) ) pd.testing.assert_frame_equal( MyData.download(0, shape=(5, 3), columns=['feat0', 'feat1', 'feat2']).data[0], pd.DataFrame( [ [0.3745401188473625, 0.9507143064099162, 0.7319939418114051], [0.5986584841970366, 0.15601864044243652, 0.15599452033620265], [0.05808361216819946, 0.8661761457749352, 0.6011150117432088], [0.7080725777960455, 0.020584494295802447, 0.9699098521619943], [0.8324426408004217, 0.21233911067827616, 0.18182496720710062] ], index=index, columns=pd.Index(['feat0', 'feat1', 'feat2'], dtype='object')) ) pd.testing.assert_series_equal( MyData.download([0, 1], shape=(5,)).data[0], pd.Series( [ 0.3745401188473625, 0.9507143064099162, 0.7319939418114051, 0.5986584841970366, 0.15601864044243652 ], index=index ) ) pd.testing.assert_series_equal( MyData.download([0, 1], shape=(5,)).data[1], pd.Series( [ 1.3745401188473625, 1.9507143064099162, 1.7319939418114051, 1.5986584841970366, 1.15601864044243652 ], index=index ) ) pd.testing.assert_frame_equal( MyData.download([0, 1], shape=(5, 3)).data[0], pd.DataFrame( [ [0.3745401188473625, 0.9507143064099162, 0.7319939418114051], [0.5986584841970366, 0.15601864044243652, 0.15599452033620265], [0.05808361216819946, 0.8661761457749352, 0.6011150117432088], [0.7080725777960455, 0.020584494295802447, 0.9699098521619943], [0.8324426408004217, 0.21233911067827616, 0.18182496720710062] ], index=index ) ) pd.testing.assert_frame_equal( MyData.download([0, 1], shape=(5, 3)).data[1], pd.DataFrame( [ [1.3745401188473625, 1.9507143064099162, 1.7319939418114051], [1.5986584841970366, 1.15601864044243652, 1.15599452033620265], [1.05808361216819946, 1.8661761457749352, 1.6011150117432088], [1.7080725777960455, 1.020584494295802447, 1.9699098521619943], [1.8324426408004217, 1.21233911067827616, 1.18182496720710062] ], index=index ) ) tzaware_index = pd.DatetimeIndex( [ '2020-01-01 01:00:00', '2020-01-02 01:00:00', '2020-01-03 01:00:00', '2020-01-04 01:00:00', '2020-01-05 01:00:00' ], dtype='datetime64[ns, Europe/Berlin]', freq='D' ) pd.testing.assert_series_equal( MyData.download(0, shape=(5,), tz_localize='UTC', tz_convert='Europe/Berlin').data[0], pd.Series( [ 0.3745401188473625, 0.9507143064099162, 0.7319939418114051, 0.5986584841970366, 0.15601864044243652 ], index=tzaware_index ) ) index_mask = vbt.symbol_dict({ 0: [False, True, True, True, True], 1: [True, True, True, True, False] }) pd.testing.assert_series_equal( MyData.download([0, 1], shape=(5,), index_mask=index_mask, missing_index='nan').data[0], pd.Series( [ np.nan, 0.9507143064099162, 0.7319939418114051, 0.5986584841970366, 0.15601864044243652 ], index=index ) ) pd.testing.assert_series_equal( MyData.download([0, 1], shape=(5,), index_mask=index_mask, missing_index='nan').data[1], pd.Series( [ 1.3745401188473625, 1.9507143064099162, 1.7319939418114051, 1.5986584841970366, np.nan ], index=index ) ) pd.testing.assert_series_equal( MyData.download([0, 1], shape=(5,), index_mask=index_mask, missing_index='drop').data[0], pd.Series( [ 0.9507143064099162, 0.7319939418114051, 0.5986584841970366 ], index=index[1:4] ) ) pd.testing.assert_series_equal( MyData.download([0, 1], shape=(5,), index_mask=index_mask, missing_index='drop').data[1], pd.Series( [ 1.9507143064099162, 1.7319939418114051, 1.5986584841970366 ], index=index[1:4] ) ) column_mask = vbt.symbol_dict({ 0: [False, True, True], 1: [True, True, False] }) pd.testing.assert_frame_equal( MyData.download([0, 1], shape=(5, 3), index_mask=index_mask, column_mask=column_mask, missing_index='nan', missing_columns='nan').data[0], pd.DataFrame( [ [np.nan, np.nan, np.nan], [np.nan, 0.15601864044243652, 0.15599452033620265], [np.nan, 0.8661761457749352, 0.6011150117432088], [np.nan, 0.020584494295802447, 0.9699098521619943], [np.nan, 0.21233911067827616, 0.18182496720710062] ], index=index ) ) pd.testing.assert_frame_equal( MyData.download([0, 1], shape=(5, 3), index_mask=index_mask, column_mask=column_mask, missing_index='nan', missing_columns='nan').data[1], pd.DataFrame( [ [1.3745401188473625, 1.9507143064099162, np.nan], [1.5986584841970366, 1.15601864044243652, np.nan], [1.05808361216819946, 1.8661761457749352, np.nan], [1.7080725777960455, 1.020584494295802447, np.nan], [np.nan, np.nan, np.nan] ], index=index ) ) pd.testing.assert_frame_equal( MyData.download([0, 1], shape=(5, 3), index_mask=index_mask, column_mask=column_mask, missing_index='drop', missing_columns='drop').data[0], pd.DataFrame( [ [0.15601864044243652], [0.8661761457749352], [0.020584494295802447] ], index=index[1:4], columns=pd.Int64Index([1], dtype='int64') ) ) pd.testing.assert_frame_equal( MyData.download([0, 1], shape=(5, 3), index_mask=index_mask, column_mask=column_mask, missing_index='drop', missing_columns='drop').data[1], pd.DataFrame( [ [1.15601864044243652], [1.8661761457749352], [1.020584494295802447] ], index=index[1:4], columns=pd.Int64Index([1], dtype='int64') ) ) with pytest.raises(Exception) as e_info: MyData.download([0, 1], shape=(5, 3), index_mask=index_mask, column_mask=column_mask, missing_index='raise', missing_columns='nan') with pytest.raises(Exception) as e_info: MyData.download([0, 1], shape=(5, 3), index_mask=index_mask, column_mask=column_mask, missing_index='nan', missing_columns='raise') with pytest.raises(Exception) as e_info: MyData.download([0, 1], shape=(5, 3), index_mask=index_mask, column_mask=column_mask, missing_index='test', missing_columns='nan') with pytest.raises(Exception) as e_info: MyData.download([0, 1], shape=(5, 3), index_mask=index_mask, column_mask=column_mask, missing_index='nan', missing_columns='test') def test_update(self): pd.testing.assert_series_equal( MyData.download(0, shape=(5,), return_arr=True).update().data[0], pd.Series( [ 0.3745401188473625, 0.9507143064099162, 0.7319939418114051, 0.5986584841970366, 0.11505456638977896 ] ) ) pd.testing.assert_series_equal( MyData.download(0, shape=(5,), return_arr=True).update(n=2).data[0], pd.Series( [ 0.3745401188473625, 0.9507143064099162, 0.7319939418114051, 0.5986584841970366, 0.11505456638977896, 0.6090665392794814 ] ) ) pd.testing.assert_frame_equal( MyData.download(0, shape=(5, 3), return_arr=True).update().data[0], pd.DataFrame( [ [0.3745401188473625, 0.9507143064099162, 0.7319939418114051], [0.5986584841970366, 0.15601864044243652, 0.15599452033620265], [0.05808361216819946, 0.8661761457749352, 0.6011150117432088], [0.7080725777960455, 0.020584494295802447, 0.9699098521619943], [0.11505456638977896, 0.6090665392794814, 0.13339096418598828] ] ) ) pd.testing.assert_frame_equal( MyData.download(0, shape=(5, 3), return_arr=True).update(n=2).data[0], pd.DataFrame( [ [0.3745401188473625, 0.9507143064099162, 0.7319939418114051], [0.5986584841970366, 0.15601864044243652, 0.15599452033620265], [0.05808361216819946, 0.8661761457749352, 0.6011150117432088], [0.7080725777960455, 0.020584494295802447, 0.9699098521619943], [0.11505456638977896, 0.6090665392794814, 0.13339096418598828], [0.24058961996534878, 0.3271390558111398, 0.8591374909485977] ] ) ) index = pd.DatetimeIndex( ['2020-01-01', '2020-01-02', '2020-01-03', '2020-01-04', '2020-01-05'], dtype='datetime64[ns]', freq='D' ) pd.testing.assert_series_equal( MyData.download(0, shape=(5,)).update().data[0], pd.Series( [ 0.3745401188473625, 0.9507143064099162, 0.7319939418114051, 0.5986584841970366, 0.11505456638977896 ], index=index ) ) index2 = pd.DatetimeIndex( ['2020-01-01', '2020-01-02', '2020-01-03', '2020-01-04', '2020-01-05', '2020-01-06'], dtype='datetime64[ns]', freq='D' ) pd.testing.assert_series_equal( MyData.download(0, shape=(5,)).update(n=2).data[0], pd.Series( [ 0.3745401188473625, 0.9507143064099162, 0.7319939418114051, 0.5986584841970366, 0.11505456638977896, 0.6090665392794814 ], index=index2 ) ) tzaware_index = pd.DatetimeIndex( [ '2020-01-01 01:00:00', '2020-01-02 01:00:00', '2020-01-03 01:00:00', '2020-01-04 01:00:00', '2020-01-05 01:00:00' ], dtype='datetime64[ns, Europe/Berlin]', freq='D' ) pd.testing.assert_series_equal( MyData.download(0, shape=(5,), tz_localize='UTC', tz_convert='Europe/Berlin') .update(tz_localize=None).data[0], pd.Series( [ 0.3745401188473625, 0.9507143064099162, 0.7319939418114051, 0.5986584841970366, 0.11505456638977896 ], index=tzaware_index ) ) index_mask = vbt.symbol_dict({ 0: [False, True, True, True, True], 1: [True, True, True, True, False] }) update_index_mask = vbt.symbol_dict({ 0: [True], 1: [False] }) pd.testing.assert_series_equal( MyData.download([0, 1], shape=(5,), index_mask=index_mask, missing_index='nan') .update(index_mask=update_index_mask).data[0], pd.Series( [ np.nan, 0.9507143064099162, 0.7319939418114051, 0.5986584841970366, 0.11505456638977896 ], index=index ) ) pd.testing.assert_series_equal( MyData.download([0, 1], shape=(5,), index_mask=index_mask, missing_index='nan') .update(index_mask=update_index_mask).data[1], pd.Series( [ 1.3745401188473625, 1.9507143064099162, 1.7319939418114051, 1.5986584841970366, np.nan ], index=index ) ) update_index_mask2 = vbt.symbol_dict({ 0: [True, False], 1: [False, True] }) pd.testing.assert_series_equal( MyData.download([0, 1], shape=(5,), index_mask=index_mask, missing_index='nan') .update(n=2, index_mask=update_index_mask2).data[0], pd.Series( [ np.nan, 0.9507143064099162, 0.7319939418114051, 0.5986584841970366, 0.11505456638977896, np.nan ], index=index2 ) ) pd.testing.assert_series_equal( MyData.download([0, 1], shape=(5,), index_mask=index_mask, missing_index='nan') .update(n=2, index_mask=update_index_mask2).data[1], pd.Series( [ 1.3745401188473625, 1.9507143064099162, 1.7319939418114051, 1.5986584841970366, np.nan, 1.6090665392794814 ], index=index2 ) ) pd.testing.assert_series_equal( MyData.download([0, 1], shape=(5,), index_mask=index_mask, missing_index='drop') .update(index_mask=update_index_mask).data[0], pd.Series( [ 0.9507143064099162, 0.7319939418114051, 0.5986584841970366 ], index=index[1:4] ) ) pd.testing.assert_series_equal( MyData.download([0, 1], shape=(5,), index_mask=index_mask, missing_index='drop') .update(index_mask=update_index_mask).data[1], pd.Series( [ 1.9507143064099162, 1.7319939418114051, 1.5986584841970366 ], index=index[1:4] ) ) pd.testing.assert_series_equal( MyData.download([0, 1], shape=(5,), index_mask=index_mask, missing_index='drop') .update(n=2, index_mask=update_index_mask2).data[0], pd.Series( [ 0.9507143064099162, 0.7319939418114051, 0.5986584841970366 ], index=index[1:4] ) ) pd.testing.assert_series_equal( MyData.download([0, 1], shape=(5,), index_mask=index_mask, missing_index='drop') .update(n=2, index_mask=update_index_mask2).data[1], pd.Series( [ 1.9507143064099162, 1.7319939418114051, 1.5986584841970366 ], index=index[1:4] ) ) column_mask = vbt.symbol_dict({ 0: [False, True, True], 1: [True, True, False] }) pd.testing.assert_frame_equal( MyData.download([0, 1], shape=(5, 3), index_mask=index_mask, column_mask=column_mask, missing_index='nan', missing_columns='nan') .update(index_mask=update_index_mask).data[0], pd.DataFrame( [ [np.nan, np.nan, np.nan], [np.nan, 0.15601864044243652, 0.15599452033620265], [np.nan, 0.8661761457749352, 0.6011150117432088], [np.nan, 0.020584494295802447, 0.9699098521619943], [np.nan, 0.6090665392794814, 0.13339096418598828] ], index=index ) ) pd.testing.assert_frame_equal( MyData.download([0, 1], shape=(5, 3), index_mask=index_mask, column_mask=column_mask, missing_index='nan', missing_columns='nan') .update(index_mask=update_index_mask).data[1], pd.DataFrame( [ [1.3745401188473625, 1.9507143064099162, np.nan], [1.5986584841970366, 1.15601864044243652, np.nan], [1.05808361216819946, 1.8661761457749352, np.nan], [1.7080725777960455, 1.020584494295802447, np.nan], [np.nan, np.nan, np.nan] ], index=index ) ) pd.testing.assert_frame_equal( MyData.download([0, 1], shape=(5, 3), index_mask=index_mask, column_mask=column_mask, missing_index='nan', missing_columns='nan') .update(n=2, index_mask=update_index_mask2).data[0], pd.DataFrame( [ [np.nan, np.nan, np.nan], [np.nan, 0.15601864044243652, 0.15599452033620265], [np.nan, 0.8661761457749352, 0.6011150117432088], [np.nan, 0.020584494295802447, 0.9699098521619943], [np.nan, 0.6090665392794814, 0.13339096418598828], [np.nan, np.nan, np.nan] ], index=index2 ) ) pd.testing.assert_frame_equal( MyData.download([0, 1], shape=(5, 3), index_mask=index_mask, column_mask=column_mask, missing_index='nan', missing_columns='nan') .update(n=2, index_mask=update_index_mask2).data[1], pd.DataFrame( [ [1.3745401188473625, 1.9507143064099162, np.nan], [1.5986584841970366, 1.15601864044243652, np.nan], [1.05808361216819946, 1.8661761457749352, np.nan], [1.7080725777960455, 1.020584494295802447, np.nan], [np.nan, np.nan, np.nan], [1.2405896199653488, 1.3271390558111398, np.nan] ], index=index2 ) ) pd.testing.assert_frame_equal( MyData.download([0, 1], shape=(5, 3), index_mask=index_mask, column_mask=column_mask, missing_index='drop', missing_columns='drop') .update(index_mask=update_index_mask).data[0], pd.DataFrame( [ [0.15601864044243652], [0.8661761457749352], [0.020584494295802447] ], index=index[1:4], columns=pd.Int64Index([1], dtype='int64') ) ) pd.testing.assert_frame_equal( MyData.download([0, 1], shape=(5, 3), index_mask=index_mask, column_mask=column_mask, missing_index='drop', missing_columns='drop') .update(index_mask=update_index_mask).data[1], pd.DataFrame( [ [1.15601864044243652], [1.8661761457749352], [1.020584494295802447] ], index=index[1:4], columns=pd.Int64Index([1], dtype='int64') ) ) pd.testing.assert_frame_equal( MyData.download([0, 1], shape=(5, 3), index_mask=index_mask, column_mask=column_mask, missing_index='drop', missing_columns='drop') .update(n=2, index_mask=update_index_mask2).data[0], pd.DataFrame( [ [0.15601864044243652], [0.8661761457749352], [0.020584494295802447] ], index=index[1:4], columns=pd.Int64Index([1], dtype='int64') ) ) pd.testing.assert_frame_equal( MyData.download([0, 1], shape=(5, 3), index_mask=index_mask, column_mask=column_mask, missing_index='drop', missing_columns='drop') .update(n=2, index_mask=update_index_mask2).data[1], pd.DataFrame( [ [1.15601864044243652], [1.8661761457749352], [1.020584494295802447] ], index=index[1:4], columns=pd.Int64Index([1], dtype='int64') ) ) def test_concat(self): index = pd.DatetimeIndex( ['2020-01-01', '2020-01-02', '2020-01-03', '2020-01-04', '2020-01-05'], dtype='datetime64[ns]', freq='D' ) pd.testing.assert_series_equal( MyData.download(0, shape=(5,), columns='feat0').concat()['feat0'], pd.Series( [ 0.3745401188473625, 0.9507143064099162, 0.7319939418114051, 0.5986584841970366, 0.15601864044243652 ], index=index, name=0 ) ) pd.testing.assert_frame_equal( MyData.download([0, 1], shape=(5,), columns='feat0').concat()['feat0'], pd.DataFrame( [ [0.3745401188473625, 1.3745401188473625], [0.9507143064099162, 1.9507143064099162], [0.7319939418114051, 1.7319939418114051], [0.5986584841970366, 1.5986584841970366], [0.15601864044243652, 1.15601864044243652] ], index=index, columns=pd.Int64Index([0, 1], dtype='int64', name='symbol') ) ) pd.testing.assert_series_equal( MyData.download(0, shape=(5, 3), columns=['feat0', 'feat1', 'feat2']).concat()['feat0'], pd.Series( [ 0.3745401188473625, 0.5986584841970366, 0.05808361216819946, 0.7080725777960455, 0.8324426408004217 ], index=index, name=0 ) ) pd.testing.assert_series_equal( MyData.download(0, shape=(5, 3), columns=['feat0', 'feat1', 'feat2']).concat()['feat1'], pd.Series( [ 0.9507143064099162, 0.15601864044243652, 0.8661761457749352, 0.020584494295802447, 0.21233911067827616 ], index=index, name=0 ) ) pd.testing.assert_series_equal( MyData.download(0, shape=(5, 3), columns=['feat0', 'feat1', 'feat2']).concat()['feat2'], pd.Series( [ 0.7319939418114051, 0.15599452033620265, 0.6011150117432088, 0.9699098521619943, 0.18182496720710062 ], index=index, name=0 ) ) pd.testing.assert_frame_equal( MyData.download([0, 1], shape=(5, 3), columns=['feat0', 'feat1', 'feat2']).concat()['feat0'], pd.DataFrame( [ [0.3745401188473625, 1.3745401188473625], [0.5986584841970366, 1.5986584841970366], [0.05808361216819946, 1.05808361216819946], [0.7080725777960455, 1.7080725777960455], [0.8324426408004217, 1.8324426408004217] ], index=index, columns=pd.Int64Index([0, 1], dtype='int64', name='symbol') ) ) pd.testing.assert_frame_equal( MyData.download([0, 1], shape=(5, 3), columns=['feat0', 'feat1', 'feat2']).concat()['feat1'], pd.DataFrame( [ [0.9507143064099162, 1.9507143064099162], [0.15601864044243652, 1.15601864044243652], [0.8661761457749352, 1.8661761457749352], [0.020584494295802447, 1.020584494295802447], [0.21233911067827616, 1.21233911067827616] ], index=index, columns=pd.Int64Index([0, 1], dtype='int64', name='symbol') ) ) pd.testing.assert_frame_equal( MyData.download([0, 1], shape=(5, 3), columns=['feat0', 'feat1', 'feat2']).concat()['feat2'], pd.DataFrame( [ [0.7319939418114051, 1.7319939418114051], [0.15599452033620265, 1.15599452033620265], [0.6011150117432088, 1.6011150117432088], [0.9699098521619943, 1.9699098521619943], [0.18182496720710062, 1.18182496720710062] ], index=index, columns=pd.Int64Index([0, 1], dtype='int64', name='symbol') ) ) def test_get(self): index = pd.DatetimeIndex( ['2020-01-01', '2020-01-02', '2020-01-03', '2020-01-04', '2020-01-05'], dtype='datetime64[ns]', freq='D' ) pd.testing.assert_series_equal( MyData.download(0, shape=(5,), columns='feat0').get(), pd.Series( [ 0.3745401188473625, 0.9507143064099162, 0.7319939418114051, 0.5986584841970366, 0.15601864044243652 ], index=index, name='feat0' ) ) pd.testing.assert_frame_equal( MyData.download(0, shape=(5, 3), columns=['feat0', 'feat1', 'feat2']).get(), pd.DataFrame( [ [0.3745401188473625, 0.9507143064099162, 0.7319939418114051], [0.5986584841970366, 0.15601864044243652, 0.15599452033620265], [0.05808361216819946, 0.8661761457749352, 0.6011150117432088], [0.7080725777960455, 0.020584494295802447, 0.9699098521619943], [0.8324426408004217, 0.21233911067827616, 0.18182496720710062] ], index=index, columns=pd.Index(['feat0', 'feat1', 'feat2'], dtype='object') ) ) pd.testing.assert_series_equal( MyData.download(0, shape=(5, 3), columns=['feat0', 'feat1', 'feat2']).get('feat0'), pd.Series( [ 0.3745401188473625, 0.5986584841970366, 0.05808361216819946, 0.7080725777960455, 0.8324426408004217 ], index=index, name='feat0' ) ) pd.testing.assert_frame_equal( MyData.download([0, 1], shape=(5,), columns='feat0').get(), pd.DataFrame( [ [0.3745401188473625, 1.3745401188473625], [0.9507143064099162, 1.9507143064099162], [0.7319939418114051, 1.7319939418114051], [0.5986584841970366, 1.5986584841970366], [0.15601864044243652, 1.15601864044243652] ], index=index, columns=pd.Int64Index([0, 1], dtype='int64', name='symbol') ) ) pd.testing.assert_frame_equal( MyData.download([0, 1], shape=(5, 3), columns=['feat0', 'feat1', 'feat2']).get('feat0'), pd.DataFrame( [ [0.3745401188473625, 1.3745401188473625], [0.5986584841970366, 1.5986584841970366], [0.05808361216819946, 1.05808361216819946], [0.7080725777960455, 1.7080725777960455], [0.8324426408004217, 1.8324426408004217] ], index=index, columns=pd.Int64Index([0, 1], dtype='int64', name='symbol') ) ) pd.testing.assert_frame_equal( MyData.download([0, 1], shape=(5, 3), columns=['feat0', 'feat1', 'feat2']).get(['feat0', 'feat1'])[0], pd.DataFrame( [ [0.3745401188473625, 1.3745401188473625], [0.5986584841970366, 1.5986584841970366], [0.05808361216819946, 1.05808361216819946], [0.7080725777960455, 1.7080725777960455], [0.8324426408004217, 1.8324426408004217] ], index=index, columns=
pd.Int64Index([0, 1], dtype='int64', name='symbol')
pandas.Int64Index
import sys import pandas from decisionengine_modules.glideinwms.transforms.grid_figure_of_merit import GridFigureOfMerit grid_entries = ["g1", "g2", "g3", "g4", "g5"] running = [5, 10, 15, 20, 200] max_allowed = [10, 10, 10, 2000, 500] idle = [20, 3, 4, 5, 6] max_idle = [10, 10, 10, 10, 10] entries = { "EntryName": grid_entries, "GlideinMonitorTotalStatusRunning": running, "GlideinConfigPerEntryMaxGlideins": max_allowed, "GlideinMonitorTotalStatusIdle": idle, "GlideinConfigPerEntryMaxIdle": max_idle, } grid_df =
pandas.DataFrame(entries)
pandas.DataFrame
import pandas as pd import numpy as np import scipy import seaborn as sns import matplotlib.pyplot as plt import os from functools import reduce from statsmodels.tsa.stattools import coint sns.set(style='white') # Retrieve intraday price data and combine them into a DataFrame. # 1. Load downloaded prices from folder into a list of dataframes. folder_path = 'STATICS/PRICE' file_names = os.listdir(folder_path) tickers = [name.split('.')[0] for name in file_names] df_list = [pd.read_csv(os.path.join('STATICS/PRICE', name)) for name in file_names] # 2. Replace the closing price column name by the ticker. for i in range(len(df_list)): df_list[i].rename(columns={'close': tickers[i]}, inplace=True) # 3. Merge all price dataframes. Extract roughly the first 70% data. df = reduce(lambda x, y: pd.merge(x, y, on='date'), df_list) idx = round(len(df) * 0.7) df = df.iloc[:idx, :] # Calculate and plot price correlations. pearson_corr = df[tickers].corr() sns.clustermap(pearson_corr).fig.suptitle('Pearson Correlations') # Plot the marginal distributions. sns.set(style='darkgrid') sns.jointplot(df['JNJ'], df['PG'], kind='hex', color='#2874A6') sns.jointplot(df['KO'], df['PEP'], kind='hex', color='#2C3E50') # Calculate the p-value of cointegration test for JNJ-PG and KO-PEP pairs. x = df['JNJ'] y = df['PG'] _, p_value, _ = coint(x, y) print('The p_value of JNJ-PG pair cointegration is: {}'.format(p_value)) x = df['KO'] y = df['PEP'] _, p_value, _ = coint(x, y) print('The p_value of KO-PEG pair cointegration is: {}'.format(p_value)) # Plot the linear relationship of the JNJ-PG pair. df2 = df[['JNJ', 'PG']].copy() spread = df2['JNJ'] - df2['PG'] mean_spread = spread.mean() df2['Dev'] = spread - mean_spread rnd = np.random.choice(len(df), size=500) sns.scatterplot(x='JNJ', y='PG', hue='Dev', linewidth=0.3, alpha=0.8, data=df2.iloc[rnd, :]).set_title('JNJ-PG Price Relationship') # Plot the linear relationship of the KO-PEP pair. df2 = df[['KO', 'PEP']].copy() spread = df2['KO'] - df2['PEP'] mean_spread = spread.mean() df2['Dev'] = spread - mean_spread rnd = np.random.choice(len(df), size=500) sns.scatterplot(x='KO', y='PEP', hue='Dev', linewidth=0.3, alpha=0.8, data=df2.iloc[rnd, :]).set_title('KO-PEP Price Relationship') # Plot the historical JNJ-PG prices and the spreads for a sample period. def plot_spread(df, ticker1, ticker2, idx, th, stop): px1 = df[ticker1].iloc[idx] / df[ticker1].iloc[idx[0]] px2 = df[ticker2].iloc[idx] / df[ticker2].iloc[idx[0]] sns.set(style='white') # Set plotting figure fig, ax = plt.subplots(2, 1, gridspec_kw={'height_ratios': [2, 1]}) # Plot the 1st subplot sns.lineplot(data=[px1, px2], linewidth=1.2, ax=ax[0]) ax[0].legend(loc='upper left') # Calculate the spread and other thresholds spread = df[ticker1].iloc[idx] - df[ticker2].iloc[idx] mean_spread = spread.mean() sell_th = mean_spread + th buy_th = mean_spread - th sell_stop = mean_spread + stop buy_stop = mean_spread - stop # Plot the 2nd subplot sns.lineplot(data=spread, color='#85929E', ax=ax[1], linewidth=1.2) ax[1].axhline(sell_th, color='b', ls='--', linewidth=1, label='sell_th') ax[1].axhline(buy_th, color='r', ls='--', linewidth=1, label='buy_th') ax[1].axhline(sell_stop, color='g', ls='--', linewidth=1, label='sell_stop') ax[1].axhline(buy_stop, color='y', ls='--', linewidth=1, label='buy_stop') ax[1].fill_between(idx, sell_th, buy_th, facecolors='r', alpha=0.3) ax[1].legend(loc='upper left', labels=['Spread', 'sell_th', 'buy_th', 'sell_stop', 'buy_stop'], prop={'size':6.5}) idx = range(11000, 12000) plot_spread(df, 'JNJ', 'PG', idx, 0.5, 1) idx = range(13000, 14000) plot_spread(df, 'KO', 'PEP', idx, 0.5, 1) # Generate correlated time-series. # 1. Simulate 1000 correlated random variables by Cholesky Decomposition. corr = np.array([[1.0, 0.9], [0.9, 1.0]]) L = scipy.linalg.cholesky(corr) rnd = np.random.normal(0, 1, size=(1000, 2)) out = rnd @ L # 2. Simulate GBM returns and prices. dt = 1/252 base1 = 110; mu1 = 0.03; sigma1 = 0.05 base2 = 80; mu2 = 0.01; sigma2 = 0.03 ret1 = np.exp((mu1 - 0.5 * (sigma1 ** 2) ) * dt + sigma1 * out[:, 0] * np.sqrt(dt)) ret2 = np.exp((mu2 - 0.5 * (sigma2 ** 2) ) * dt + sigma2 * out[:, 1] * np.sqrt(dt)) price1 = base1 * np.cumprod(ret1) price2 = base2 * np.cumprod(ret2) # 3. Calculate the return correlation and the p-value for cointegration testing. corr_ret , _ = scipy.stats.pearsonr(ret1, ret2) corr_price , _ = scipy.stats.pearsonr(price1, price2) _, p_value, _ = coint(price1, price2) print('GBM simulation result - return correlation: {}'.format(corr_ret)) print('GBM simulation result - price correlation: {}'.format(corr_price)) print('GBM simulation result - p-value for cointegration testing: {}'.format(p_value)) # 4. Plot the results. df_gbm =
pd.DataFrame()
pandas.DataFrame
import numpy as np import pandas as pd import pdb import os import math import argparse if __name__ == '__main__': #edit the directory muat_dir = '/users/primasan/projects/muat/' metadata = pd.read_csv(muat_dir + 'extfile/metadata_icgc_pcawg.tsv',sep='\t',index_col=0) dictMutation = pd.read_csv(muat_dir + 'extfile/dictMutation.csv',index_col=0) dictChpos = pd.read_csv(muat_dir + 'extfile/dictChpos.csv',index_col=0) dictGES = pd.read_csv(muat_dir + 'extfile/dictGES.csv',index_col=0) pcawg_dir = '/scratch/project_2001668/data/tcga/alltcga/' simplified_data = '/scratch/project_2001668/data/tcga/simplified/' tokenized_data = '/scratch/project_2001668/data/tcga/tokenized/' all_class = os.listdir(pcawg_dir) pd_all = [] for i in all_class: pcawg_histology = i allsamples = os.listdir(simplified_data + pcawg_histology) for j in allsamples: onesamples = j onerow = (pcawg_histology,onesamples) pd_all.append(onerow) pd_allsamp =
pd.DataFrame(pd_all)
pandas.DataFrame
# -*- coding: utf-8 -*- """ Created on Sun Apr 11 22:34:12 2021 @author: orkun """ import numpy as np import pandas as pd from sklearn.impute import SimpleImputer from pandas.api.types import is_numeric_dtype from sklearn import preprocessing from PyQt5.QtWidgets import QMessageBox from PyQt5.QtCore import QSize from graph_view import graphics class processes(object): def __init__(self, process_list, export_list, dataframe, col_list, miss_list): self.process_list = process_list self.export_list = export_list self.dataframe = dataframe self.col_list = col_list self.miss_list = miss_list def process_steps(self): self.procs_dic = {0: self.imput_data_get, 1: self.out_iqr_get, 2: self.scale_data_get} if self.export_list[1]: self.graph_class=graphics() for index, item in enumerate(self.process_list): if item: processed_data = self.procs_dic[index]() if processed_data is not None: self.dataframe = processed_data else: return None return self.dataframe def imput_data_get(self): num_imp = SimpleImputer(missing_values=np.nan, strategy='mean') cat_imp = SimpleImputer(missing_values=np.nan, strategy='most_frequent') imputed_data = self.dataframe.copy() for col_name in self.col_list: if is_numeric_dtype(self.dataframe[col_name].dtypes): imputer = num_imp.fit_transform(
pd.DataFrame(self.dataframe[col_name])
pandas.DataFrame
import pandas as pd import numpy as np import re #=============================================================================== def cleandots(x,mark): if str(x) == mark : # The mark was a '.' in HW 3 use case. return np.NaN else: return str (x) def cleandotsincolumn (series,mark): return series.apply (lambda x : cleandots (x,mark)) def cleandotsindataframe (mydataframe,mark): columns = mydataframe.columns for col in columns: mydataframe [col] = cleandotsincolumn (mydataframe [col],mark) return mydataframe #=============================================================================== def rename(df,col,name1 , name2): df[col][df[col] == name1] = name2 def WantedCols (df,wantedcol): columns = df.columns for col in columns: if col not in wantedcol: del df[col] return df def unWantedCols (df,unwanted): for col in unwanted: del df [col] return df #=============================================================================== def onlyNum(variable): try : variable = round (float (variable),6) return [variable if type (variable) == int or type (variable) == float else np.NaN] [0] except: variable = np.NaN return variable # if type(variable) == int or type(variable) == float: # return variable # else: # return np.NaN def dfonlynum (df,*columns): for col in columns: df [col] = df [col].apply (onlyNum) return df def NumMask (df,col,x,y): # Select a set of numbers from a column. I used it for Ranks. Numberlist= [i for i in range (x,y+1)] mask= df [col].apply(lambda x : x in Numberlist) return mask #=============================================================================== def catchpattern(df,col,mypattern): return df [col].apply (lambda x: re.findall(mypattern,str(x)) [0]) def splitname (df,col,splitchar): return df [col].apply (lambda x : str(x).split (splitchar) [0].rstrip()) # Removing explanations (descriptions) #=============================================================================== def print_full_rows(x): pd.set_option('display.max_rows', len(x)) print(x) pd.reset_option('display.max_rows') def print_full_col (x): pd.set_option('display.max_columns', len(x.columns)) print(x) pd.reset_option('display.max_columns') def print_full (x) : pd.set_option('display.max_rows', len(x)) pd.set_option('display.max_columns', len(x.columns)) print(x) pd.reset_option('display.max_rows')
pd.reset_option('display.max_columns')
pandas.reset_option
# -*- coding: utf-8 -*- """ Tools for calculating the fatigue damage equivalent PSD. Adapted and enhanced from the CAM versions. """ from types import SimpleNamespace import itertools as it import multiprocessing as mp import numpy as np import scipy.signal as signal import pandas as pd from pyyeti import cyclecount, srs, dsp WN_ = None SIG_ = None ASV_ = None BinAmps_ = None Count_ = None def _to_np_array(sh_arr): return np.frombuffer(sh_arr[0]).reshape(sh_arr[1]) def _mk_par_globals(wn, sig, asv, binamps, count): global WN_, SIG_, ASV_, BinAmps_, Count_ WN_ = _to_np_array(wn) SIG_ = _to_np_array(sig) ASV_ = _to_np_array(asv) BinAmps_ = _to_np_array(binamps) Count_ = _to_np_array(count) def _dofde(args): """Utility routine for parallel processing""" (j, (coeffunc, Q, dT, verbose)) = args if verbose: print(f"Processing frequency {WN_[j] / 2 / np.pi:8.2f} Hz", end="\r") b, a = coeffunc(Q, dT, WN_[j]) resphist = signal.lfilter(b, a, SIG_) ASV_[1, j] = abs(resphist).max() ASV_[2, j] = np.var(resphist, ddof=1) # use rainflow to count cycles: ind = cyclecount.findap(resphist) rf = cyclecount.rainflow(resphist[ind]) amp = rf["amp"] count = rf["count"] ASV_[0, j] = amp.max() BinAmps_[j] *= ASV_[0, j] # cumulative bin count: for jj in range(BinAmps_.shape[1]): pv = amp >= BinAmps_[j, jj] Count_[j, jj] = np.sum(count[pv]) def fdepsd( sig, sr, freq, Q, resp="absacce", hpfilter=5.0, winends="auto", nbins=300, T0=60.0, rolloff="lanczos", ppc=12, parallel="auto", maxcpu=14, verbose=False, ): r""" Compute a fatigue damage equivalent PSD from a signal. Parameters ---------- sig : 1d array_like Base acceleration signal. sr : scalar Sample rate. freq : array_like Frequency vector in Hz. This defines the single DOF (SDOF) systems to use. Q : scalar > 0.5 Dynamic amplification factor :math:`Q = 1/(2\zeta)` where :math:`\zeta` is the fraction of critical damping. resp : string; optional The type of response to base the damage calculations on: ========= ======================================= `resp` Damage is based on ========= ======================================= 'absacce' absolute acceleration [#fde1]_ 'pvelo' pseudo velocity [#fde2]_ ========= ======================================= hpfilter : scalar or None; optional High pass filter frequency; if None, no filtering is done. If filtering is done, it is a 3rd order butterworth via :func:`scipy.signal.lfilter`. winends : None or 'auto' or dictionary; optional If None, :func:`pyyeti.dsp.windowends` is not called. If 'auto', :func:`pyyeti.dsp.windowends` is called to apply a 0.25 second window or a 50 point window (whichever is smaller) to the front. Otherwise, `winends` must be a dictionary of arguments that will be passed to :func:`pyyeti.dsp.windowends` (not including `signal`). nbins : integer; optional The number of amplitude levels at which to count cycles T0 : scalar; optional Specifies test duration in seconds rolloff : string or function or None; optional Indicate which method to use to account for the SRS roll off when the minimum `ppc` value is not met. Either 'fft' or 'lanczos' seem the best. If a string, it must be one of these values: =========== ========================================== `rolloff` Notes =========== ========================================== 'fft' Use FFT to upsample data as needed. See :func:`scipy.signal.resample`. 'lanczos' Use Lanczos resampling to upsample as needed. See :func:`pyyeti.dsp.resample`. 'prefilter' Apply a high freq. gain filter to account for the SRS roll-off. See :func:`pyyeti.srs.preroll` for more information. This option ignores `ppc`. 'linear' Use linear interpolation to increase the points per cycle (this is not recommended; method; it's only here as a test case). 'none' Don't do anything to enforce the minimum `ppc`. Note error bounds listed above. None Same as 'none'. =========== ========================================== If a function, the call signature is: ``sig_new, sr_new = rollfunc(sig, sr, ppc, frq)``. Here, `sig` is 1d, len(time). The last three inputs are scalars. For example, the 'fft' function is (trimmed of documentation):: def fftroll(sig, sr, ppc, frq): N = sig.shape[0] if N > 1: curppc = sr/frq factor = int(np.ceil(ppc/curppc)) sig = signal.resample(sig, factor*N, axis=0) sr *= factor return sig, sr ppc : scalar; optional Specifies the minimum points per cycle for SRS calculations. See also `rolloff`. ====== ================================== `ppc` Maximum error at highest frequency ====== ================================== 3 81.61% 4 48.23% 5 31.58% 10 8.14% (minimum recommended `ppc`) 12 5.67% 15 3.64% 20 2.05% 25 1.31% 50 0.33% ====== ================================== parallel : string; optional Controls the parallelization of the calculations: ========== ============================================ `parallel` Notes ========== ============================================ 'auto' Routine determines whether or not to run parallel. 'no' Do not use parallel processing. 'yes' Use parallel processing. Beware, depending on the particular problem, using parallel processing can be slower than not using it. On Windows, be sure the :func:`fdepsd` call is contained within: ``if __name__ == "__main__":`` ========== ============================================ maxcpu : integer or None; optional Specifies maximum number of CPUs to use. If None, it is internally set to 4/5 of available CPUs (as determined from :func:`multiprocessing.cpu_count`). verbose : bool; optional If True, routine will print some status information. Returns ------- A SimpleNamespace with the members: freq : 1d ndarray Same as input `freq`. psd : pandas DataFrame; ``len(freq) x 5`` The amplitude and damage based PSDs. The index is `freq` and the five columns are: [G1, G2, G4, G8, G12] =========== =============================================== Name Description =========== =============================================== G1 The "G1" PSD (Mile's or similar equivalent from SRS); uses the maximum cycle amplitude instead of the raw SRS peak for each frequency. G1 is not a damage-based PSD. G2 The "G2" PSD of reference [#fde1]_; G2 >= G1 by bounding lower amplitude counts down to 1/3 of the maximum cycle amplitude. G2 is not a damage-based PSD. G4, G8, G12 The damage-based PSDs with fatigue exponents of 4, 8, and 12 =========== =============================================== peakamp : pandas DataFrame; ``len(freq) x 5`` The peak response of SDOFs (single DOF oscillators) using each PSD as a base input. The index and the five columns are the same as for `psd`. The peaks are computed from the Mile's equation (or similar if using ``resp='pvelo'``). The peak factor used is ``sqrt(2*log(f*T0))``. Note that the first column is, by definition, the maximum cycle amplitude for each SDOF from the rainflow count (G1 was calculated from this). Typically, this should be very close to the raw SRS peaks contained in the `srs` output but a little lower since SRS just grabs peaks without consideration of the opposite peak. binamps : pandas DataFrame; ``len(freq) x nbins`` A DataFrame of linearly spaced amplitude values defining the cycle counting bins. The index is `freq` and the columns are integers 0 to ``nbins - 1``. The values in each row (for a specific frequency SDOF), range from 0.0 up to ``peakamp.loc[freq, "G1"] * (nbins - 1) / nbins``. In other words, each value is the left-side amplitude boundary for that bin. The next column for this matrix would be ``peakamp.loc[:, "G1"]``. count : pandas DataFrame; ``len(freq) x nbins`` Summary matrix of the rainflow cycle counts. Size corresponds with `binamps` and the count is cumulative; that is, the count in each entry includes cycles at the `binamps` amplitude and above. Therefore, first column has total cycles for the SDOF. bincount : pandas DataFrame; ``len(freq) x nbins`` Non-cumulative version of `count`. In other words, the values are the number of cycles in the bin, left-side inclusive. The last bin includes the count of maximum amplitude cycles. di_sig : pandas DataFrame; ``len(freq) x 3`` Damage indicators computed from SDOF responses to the `sig` signal. Index is `freq` and columns are ['b=4', 'b=8', 'b=12']. The value for each frequency is the sum of the cycle count for a bin times its amplitude to the b power. That is, for the j-th frequency, the indicator is:: amps = binamps.loc[freq[j]] counts = bincount.loc[freq[j]] di = (amps ** b) @ counts # dot product of two vectors Note that this definition is slightly different than equation 14 from [#fde1]_ (would have to divide by the frequency), but the same as equation 10 of [#fde2]_ without the constant. di_test_part : pandas DataFrame; ``len(freq) x 3`` Test damage indicator without including the variance factor (see note). Same size as `di_sig`. Each value depends only on the frequency, `T0`, and the fatigue exponent ``b``. The ratio of a signal damage indicator to the corresponding partial test damage indicator is equal to the variance of the single DOF response to the test raised to the ``b / 2`` power:: var_test ** (b / 2) = di_sig / di_test_part .. note:: If the variance vactor (`var_test`) were included, then the test damage indicator would be the same as `di_sig`. This relationship is the basis of determining the amplitude of the test signal. var_test : pandas DataFrame; ``len(freq) x 3`` The required SDOF test response variances (see `di_test_part` description). Same size as `di_sig`. The amplitude of the G4, G8, and G12 columns of `psd` are computed from Mile's equation (or similar) and `var_test`. sig : 1d ndarray The version of the input `sig` that is fed into the fatique damage algorithm. This would be after any filtering, windowing, and upsampling. sr : scalar The sample rate of the output `sig`. srs : pandas Series; length = ``len(freq)`` The raw SRS peaks version of the first column in `amp`. See `amp`. Index is `freq`. var : pandas Series; length = ``len(freq)`` Vector of the SDOF response variances. Index is `freq`. parallel : string Either 'yes' or 'no' depending on whether parallel processing was used or not. ncpu : integer Specifies the number of CPUs used. resp : string Same as the input `resp`. Notes ----- Steps (see [#fde1]_, [#fde2]_): 1. Resample signal to higher rate if highest frequency would have less than `ppc` points-per-cycle. Method of increasing the sample rate is controlled by the `rolloff` input. 2. For each frequency: a. Compute the SDOF base-drive response b. Calculate `srs` and `var` outputs c. Use :func:`pyyeti.cyclecount.findap` to find cycle peaks d. Use :func:`pyyeti.cyclecount.rainflow` to count cycles and amplitudes e. Put counts into amplitude bins 3. Calculate `g1` based on cycle amplitudes from maximum amplitude (step 2d) and Mile's (or similar) equation. 4. Calculate `g2` to bound `g1` & lower amplitude cycles with high counts. Ignore amplitudes < ``Amax/3``. 5. Calculate damage indicators from data with b = 4, 8, 12 where b is the fatigue exponent. 6. By equating the theoretical damage from a `T0` second random vibration test to the damage from the input signal (step 5), solve for the required test response variances for b = 4, 8, 12. 7. Solve for `g4`, `g8`, `g12` from the results of step 6 using the Mile's equation (or similar); equations are shown below. No checks are done regarding the suitability of this method for the input data. It is recommended to read the references [#fde1]_ [#fde2]_ and do those checks (such as plotting Count or Time vs. Amp**2 and comparing to theoretical). The Mile's equation (or similar) is used in this methodology to relate acceleration PSDs to peak responses. If `resp` is 'absacce', it is the Mile's equation: .. math:: \sigma_{absacce}(f) = \sqrt{\frac{\pi}{2} \cdot f \cdot Q \cdot PSD(f)} If `resp` is 'pvelo', the similar equation is: .. math:: \sigma_{pvelo}(f) = \sqrt{\frac{Q \cdot PSD(f)}{8 \pi f}} Those two equations assume a flat acceleration PSD. Therefore, it is recommended to compare SDOF responses from flight data (SRS) to SDOF VRS responses from the developed specification (see :func:`pyyeti.srs.vrs` to compute the VRS response in the absolute-acceleration case). This is to check for conservatism. Instead of using 3 for peak factor (for 3-rms or 3-sigma), use :math:`\sqrt{2 \ln(f \cdot T_0)}` for the peak factor (derived below). Also, enveloping multiple specifications from multiple Q's is worth considering. Note that this analysis can be time consuming; the time is proportional to the number of frequencies multiplied by the number of time steps in the signal. The derivation of the peak factor is as follows. For the special case of narrow band noise where the instantaneous amplitudes follow the Gaussian distribution, the resulting probability density function for the peak amplitudes follow the Rayleigh distribution [#fde3]_. The single DOF response to Gaussian input is reasonably estimated as Gaussian narrow band. Let this response have the standard deviation :math:`\sigma`. From the Rayleigh distribution, the probability of a peak being greater than :math:`A` is: .. math:: Prob[peak > A] = e ^ {\frac{-A^2}{2 \sigma^2}} To estimate the maximum peak for the response of a single DOF system with frequency :math:`f`, find the amplitude that would be expected to occur once within the allotted time (:math:`T_0`). That is, set the product of the probability of a cycle amplitude being greater than :math:`A` and the number of cycles equal to 1.0, and then solve for :math:`A`. The number of cycles of :math:`f` Hz is :math:`N = f \cdot T_0`. Therefore: .. math:: \begin{aligned} Prob[peak > A] \cdot N &= 1.0 e ^ {\frac{-A^2}{2 \sigma^2}} f \cdot T_0 &= 1.0 \frac{-A^2}{2 \sigma^2} &= \ln(1.0) - \ln(f \cdot T_0) \frac{A^2}{2 \sigma^2} &= \ln(f \cdot T_0) A &= \sqrt{2 \ln(f \cdot T_0)} \sigma \end{aligned} .. note:: In addition to the example shown below, this routine is demonstrated in the pyYeti :ref:`tutorial`: :doc:`/tutorials/fatigue`. There is also a link to the source Jupyter notebook at the top of the tutorial. References ---------- .. [#fde1] "Analysis of Nonstationary Vibroacoustic Flight Data Using a Damage-Potential Basis"; <NAME>, <NAME>, <NAME>; Journal of Spacecraft and Rockets, Vol 40, No. 5, September-October 2003. .. [#fde2] "Implementing the Fatigue Damage Spectrum and Fatigue Damage Equivalent Vibration Testing"; <NAME>; 79th Shock and Vibration Symposium, October 26 – 30, 2008. .. [#fde3] Bendat, <NAME>., "Probability Functions for Random Responses: Prediction of Peaks, Fatigue Damage, and Catastrophic Failures", NASA Contractor Report 33 (NASA CR-33), 1964. See also -------- :func:`scipy.signal.welch`, :func:`pyyeti.psd.psdmod`, :func:`pyyeti.cyclecount.rainflow`, :func:`pyyeti.srs.srs`. Examples -------- Generate 60 second random signal to a pre-defined spec level, compute the PSD several different ways and compare. Since it's 60 seconds, the damage-based PSDs should be fairly close to the input spec level. The damage-based PSDs will be calculated with several Qs and enveloped. In this example, G2 envelopes G1, G4, G8, G12. This is not always the case. For example, try TF=120; the damage-based curves go up in order to fit equal damage in 60s. One Count vs. Amp**2 plot is done for illustration. .. plot:: :context: close-figs >>> import numpy as np >>> import matplotlib.pyplot as plt >>> from pyyeti import psd, fdepsd >>> import scipy.signal as signal >>> >>> TF = 60 # make a 60 second signal >>> spec = np.array([[20, 1], [50, 1]]) >>> sig, sr, t = psd.psd2time( ... spec, ppc=10, fstart=20, fstop=50, df=1 / TF, ... winends=dict(portion=10), gettime=True) >>> >>> fig = plt.figure('Example', figsize=[9, 6]) >>> fig.clf() >>> _ = plt.subplot(211) >>> _ = plt.plot(t, sig) >>> _ = plt.title(r'Input Signal - Specification Level = ' ... '1.0 $g^{2}$/Hz') >>> _ = plt.xlabel('Time (sec)') >>> _ = plt.ylabel('Acceleration (g)') >>> ax = plt.subplot(212) >>> f, p = signal.welch(sig, sr, nperseg=sr) >>> f2, p2 = psd.psdmod(sig, sr, nperseg=sr, timeslice=4, ... tsoverlap=0.5) Calculate G1, G2, and the damage potential PSDs: >>> psd_ = 0 >>> freq = np.arange(20., 50.1) >>> for q in (10, 25, 50): ... fde = fdepsd.fdepsd(sig, sr, freq, q) ... psd_ = np.fmax(psd_, fde.psd) >>> # >>> _ = plt.plot(*spec.T, 'k--', lw=2.5, label='Spec') >>> _ = plt.plot(f, p, label='Welch PSD') >>> _ = plt.plot(f2, p2, label='PSDmod') >>> >>> # For plot, rename columns in DataFrame to include "Env": >>> psd_ = (psd_ ... .rename(columns={i: i + ' Env' ... for i in psd_.columns})) >>> _ = psd_.plot.line(ax=ax) >>> _ = plt.xlim(20, 50) >>> _ = plt.title('PSD Comparison') >>> _ = plt.xlabel('Freq (Hz)') >>> _ = plt.ylabel(r'PSD ($g^{2}$/Hz)') >>> _ = plt.legend(loc='upper left', ... bbox_to_anchor=(1.02, 1.), ... borderaxespad=0.) >>> plt.tight_layout() >>> fig.subplots_adjust(right=0.78) .. plot:: :context: close-figs Compare to theoretical bin counts @ 30 Hz: >>> _ = plt.figure('Example 2') >>> plt.clf() >>> Frq = freq[np.searchsorted(freq, 30)] >>> _ = plt.semilogy(fde.binamps.loc[Frq]**2, ... fde.count.loc[Frq], ... label='Data') >>> # use flight time here (TF), not test time (T0) >>> Amax2 = 2 * fde.var.loc[Frq] * np.log(Frq * TF) >>> _ = plt.plot([0, Amax2], [Frq * TF, 1], label='Theory') >>> y1 = fde.count.loc[Frq, 0] >>> peakamp = fde.peakamp.loc[Frq] >>> for j, lbl in enumerate(fde.peakamp.columns): ... _ = plt.plot([0, peakamp[j]**2], [y1, 1], label=lbl) >>> _ = plt.title('Bin Count Check for Q=50, Freq=30 Hz') >>> _ = plt.xlabel(r'$Amp^2$') >>> _ = plt.ylabel('Count') >>> _ = plt.legend(loc='best') """ sig, freq = np.atleast_1d(sig, freq) if sig.ndim > 1 or freq.ndim > 1: raise ValueError("`sig` and `freq` must both be 1d arrays") if resp not in ("absacce", "pvelo"): raise ValueError("`resp` must be 'absacce' or 'pvelo'") (coeffunc, methfunc, rollfunc, ptr) = srs._process_inputs( resp, "abs", rolloff, "primary" ) if hpfilter is not None: if verbose: print(f"High pass filtering @ {hpfilter} Hz") b, a = signal.butter(3, hpfilter / (sr / 2), "high") # to try to get rid of filter transient at the beginning: # - put a 0.25 second buffer on the front (length from # looking at impulse response) # - filter # - chop off buffer n = int(0.25 * sr) sig2 = np.empty(n + sig.size) sig2[:n] = sig[0] sig2[n:] = sig sig = signal.lfilter(b, a, sig2)[n:] if winends == "auto": sig = dsp.windowends(sig, min(int(0.25 * sr), 50)) elif winends is not None: sig = dsp.windowends(sig, **winends) mxfrq = freq.max() curppc = sr / mxfrq if rolloff == "prefilter": sig, sr = rollfunc(sig, sr, ppc, mxfrq) rollfunc = None if curppc < ppc and rollfunc: if verbose: print( f"Using {rolloff} method to increase sample rate (have " f"only {curppc} pts/cycle @ {mxfrq} Hz" ) sig, sr = rollfunc(sig, sr, ppc, mxfrq) ppc = sr / mxfrq if verbose: print(f"After interpolation, have {ppc} pts/cycle @ {mxfrq} Hz\n") LF = freq.size dT = 1 / sr pi = np.pi Wn = 2 * pi * freq parallel, ncpu = srs._process_parallel( parallel, LF, sig.size, maxcpu, getresp=False ) # allocate RAM: if parallel == "yes": # global shared vars will be: WN, SIG, ASV, BinAmps, Count WN = (srs.copyToSharedArray(Wn), Wn.shape) SIG = (srs.copyToSharedArray(sig), sig.shape) ASV = (srs.createSharedArray((3, LF)), (3, LF)) BinAmps = (srs.createSharedArray((LF, nbins)), (LF, nbins)) a = _to_np_array(BinAmps) a += np.arange(nbins, dtype=float) / nbins Count = (srs.createSharedArray((LF, nbins)), (LF, nbins)) args = (coeffunc, Q, dT, verbose) gvars = (WN, SIG, ASV, BinAmps, Count) func = _dofde with mp.Pool( processes=ncpu, initializer=_mk_par_globals, initargs=gvars ) as pool: for _ in pool.imap_unordered(func, zip(range(LF), it.repeat(args, LF))): pass ASV = _to_np_array(ASV) Amax = ASV[0] SRSmax = ASV[1] Var = ASV[2] Count = _to_np_array(Count) BinAmps = a else: Amax = np.zeros(LF) SRSmax = np.zeros(LF) Var = np.zeros(LF) BinAmps = np.zeros((LF, nbins)) BinAmps += np.arange(nbins, dtype=float) / nbins Count = np.zeros((LF, nbins)) # loop over frequencies, calculating responses & counting # cycles for j, wn in enumerate(Wn): if verbose: print(f"Processing frequency {wn / 2 / pi:8.2f} Hz", end="\r") b, a = coeffunc(Q, dT, wn) resphist = signal.lfilter(b, a, sig) SRSmax[j] = abs(resphist).max() Var[j] = np.var(resphist, ddof=1) # use rainflow to count cycles: ind = cyclecount.findap(resphist) rf = cyclecount.rainflow(resphist[ind]) amp = rf["amp"] count = rf["count"] Amax[j] = amp.max() BinAmps[j] *= Amax[j] # cumulative bin count: for jj in range(nbins): pv = amp >= BinAmps[j, jj] Count[j, jj] = np.sum(count[pv]) if verbose: print() print("Computing outputs G1, G2, etc.") # calculate non-cumulative counts per bin: BinCount = np.hstack((Count[:, :-1] - Count[:, 1:], Count[:, -1:])) # for calculating G2: G2max = Amax ** 2 for j in range(LF): pv = BinAmps[j] >= Amax[j] / 3 # ignore small amp cycles if np.any(pv): x = BinAmps[j, pv] ** 2 x2 = G2max[j] y = np.log(Count[j, pv]) y1 = np.log(Count[j, 0]) g1y = np.interp(x, [0, x2], [y1, 0]) tantheta = (y - g1y) / x k = np.argmax(tantheta) if tantheta[k] > 0: # g2 line is higher than g1 line, so find BinAmps**2 # where log(count) = 0; ie, solve for x-intercept in # y = m x + b; (x, y) pts are: (0, y1), (x[k], y[k]): G2max[j] = x[k] * y1 / (y1 - y[k]) # calculate flight-damage indicators for b = 4, 8 and 12: b4 = 4 b8 = 8 b12 = 12 Df4 = np.zeros(LF) Df8 = np.zeros(LF) Df12 = np.zeros(LF) for j in range(LF): Df4[j] = (BinAmps[j] ** b4).dot(BinCount[j]) Df8[j] = (BinAmps[j] ** b8).dot(BinCount[j]) Df12[j] = (BinAmps[j] ** b12).dot(BinCount[j]) N0 = freq * T0 lnN0 = np.log(N0) if resp == "absacce": G1 = Amax ** 2 / (Q * pi * freq * lnN0) G2 = G2max / (Q * pi * freq * lnN0) # calculate test-damage indicators for b = 4, 8 and 12: Abar = 2 * lnN0 Abar2 = Abar ** 2 Dt4 = N0 * 8 - (Abar2 + 4 * Abar + 8) sig2_4 = np.sqrt(Df4 / Dt4) G4 = sig2_4 / ((Q * pi / 2) * freq) Abar3 = Abar2 * Abar Abar4 = Abar2 * Abar2 Dt8 = N0 * 384 - (Abar4 + 8 * Abar3 + 48 * Abar2 + 192 * Abar + 384) sig2_8 = (Df8 / Dt8) ** (1 / 4) G8 = sig2_8 / ((Q * pi / 2) * freq) Abar5 = Abar4 * Abar Abar6 = Abar4 * Abar2 Dt12 = N0 * 46080 - ( Abar6 + 12 * Abar5 + 120 * Abar4 + 960 * Abar3 + 5760 * Abar2 + 23040 * Abar + 46080 ) sig2_12 = (Df12 / Dt12) ** (1 / 6) G12 = sig2_12 / ((Q * pi / 2) * freq) Gmax = np.sqrt(np.vstack((G4, G8, G12)) * (Q * pi * freq * lnN0)) else: G1 = (Amax ** 2 * 4 * pi * freq) / (Q * lnN0) G2 = (G2max * 4 * pi * freq) / (Q * lnN0) Dt4 = 2 * N0 sig2_4 = np.sqrt(Df4 / Dt4) G4 = sig2_4 * ((4 * pi / Q) * freq) Dt8 = 24 * N0 sig2_8 = (Df8 / Dt8) ** (1 / 4) G8 = sig2_8 * ((4 * pi / Q) * freq) Dt12 = 720 * N0 sig2_12 = (Df12 / Dt12) ** (1 / 6) G12 = sig2_12 * ((4 * pi / Q) * freq) Gmax = np.sqrt(np.vstack((G4, G8, G12)) * (Q * lnN0) / (4 * pi * freq)) # for output, scale the damage indicators: Dt4 *= 4 # 2 ** (b/2) Dt8 *= 16 Dt12 *= 64 # assemble outputs: columns = ["G1", "G2", "G4", "G8", "G12"] lcls = locals() dct = {k: lcls[k] for k in columns} Gpsd = pd.DataFrame(dct, columns=columns, index=freq) Gpsd.index.name = "Frequency" index = Gpsd.index G2max = np.sqrt(G2max) Gmax = pd.DataFrame(np.vstack((Amax, G2max, Gmax)).T, columns=columns, index=index) BinAmps = pd.DataFrame(BinAmps, index=index) Count = pd.DataFrame(Count, index=index) BinCount = pd.DataFrame(BinCount, index=index) Var = pd.Series(Var, index=index) SRSmax =
pd.Series(SRSmax, index=index)
pandas.Series
import datetime import logging import json import requests from pandas import json_normalize import pandas as pd from google.cloud import storage from anyway.parsers.waze.waze_db_functions import ( insert_waze_alerts, insert_waze_traffic_jams, enrich_waze_alerts_ended_at_timestamp, enrich_waze_traffic_jams_ended_at_timestamp, ) from anyway.models import WazeAlert, WazeTrafficJams ISRAEL_POLYGON = [ ("33.717000", "32.547000"), ("34.722000", "33.004000"), ("35.793000", "33.331000"), ("35.914000", "32.953000"), ("35.750000", "32.723000"), ("35.395000", "31.084000"), ("34.931000", "29.473000"), ("33.717000", "32.547000"), ("33.717000", "32.547000"), ] WAZE_ALERTS_API_PARAMS = { "format": "JSON", "tk": "ccp_partner", "ccp_partner_name": "The Public Knowledge Workshop", "types": "traffic,alerts,irregularities", "polygon": ";".join([",".join(point) for point in ISRAEL_POLYGON]), } WAZE_ALERTS_API_URL = "https://il-georss.waze.com/rtserver/web/TGeoRSS" logger = logging.getLogger("waze_data") def list_blobs(bucket_name): """ Lists all the blobs in the bucket. """ storage_client = storage.Client() blobs = storage_client.list_blobs(bucket_name) return blobs def parse_waze_alerts_data(waze_alerts, back_filled=False): """ parse waze alert json into a Dataframe. param waze_alerts: waze raw alert json data return: parsed Dataframe """ waze_df = json_normalize(waze_alerts) waze_df["created_at"] =
pd.to_datetime(waze_df["pubMillis"], unit="ms")
pandas.to_datetime
#!/usr/bin/env python3 # -*- coding: utf-8 -*- """ Created on Sat May 23 03:54:38 2020 @author: lukepinkel """ import numpy as np import scipy as sp import scipy.stats import pandas as pd from .linalg_operations import _check_shape def get_param_table(params, se_params, degfree=None, index=None, parameter_label=None, pdist=None, p_const=2.0): if parameter_label is None: parameter_label = 'parameter' arr = np.vstack((_check_shape(params, 1), _check_shape(se_params, 1))).T df =
pd.DataFrame(arr, index=index, columns=[parameter_label, 'SE'])
pandas.DataFrame
from datetime import datetime startTime = datetime.now() import json import glob import os import pandas as pd import tensorflow as tf import tensorflowjs as tfjs from tensorflow import keras from sklearn.model_selection import train_test_split import requests EPOCHS = 9 CLASSES = 2 """ Build and return the Keras model ready to fit """ def build_classification_model(X_train): model = keras.Sequential([ keras.layers.Dense(64, activation=tf.nn.sigmoid, input_shape=(X_train.shape[1],)), keras.layers.Dense(64, activation=tf.nn.sigmoid), keras.layers.Dense(64, activation=tf.nn.sigmoid), keras.layers.Dense(CLASSES, activation=tf.nn.softmax) ]) model.compile(optimizer='adam', loss='sparse_categorical_crossentropy', metrics=['accuracy']) return model """ get the percent ontime of a particular airline by id """ def get_airline_percent_ontime(id, airlines): for obj in airlines: if obj['airline_id'] == id: return obj['airline_percent_ontime_arrival'] """ get the percent ontime of a particular airport by id """ def get_airport_percent_ontime(id, airports): for obj in airports: if obj['airport_id'] == id: return obj['airport_percent_ontime_departure'] """ create the classes for classifiying each departure or arrival time as ontime or late """ def create_classes(y): for i in range(len(y)): if y[i] < 10: y[i] = 0 else: y[i] = 1 return y """ create the classes and split the data into training and testing """ def prepare_data(X, y): y = y.tolist() y = create_classes(y) return train_test_split(X, y, test_size=0.2, random_state=42) """ Run the program to laod data, create and fit model, test, and save model as json """ print('Getting airport and airline metadata from FlyGenius API...', end=' ') r = requests.get('https://api.flygeni.us/airports/?use_details=True') airports = r.json() r = requests.get('https://api.flygeni.us/airlines/?use_details=True') airlines = r.json() print('done!\nLoading raw flight data from CSV files...', end=' ') path = os.path.normpath(os.path.join(os.getcwd(), 'data/flight-data/*_2017_*/*.csv')) all_data = glob.glob(path) loaded_data = [] for path in all_data: this_data =
pd.read_csv(path, skipinitialspace=True, low_memory=False)
pandas.read_csv
# coding: utf-8 # In[3]: import pandas as pd train = pd.read_csv('train.csv') test = pd.read_csv('test.csv') # In[4]: import matplotlib.pyplot as plt import seaborn as sns sns.set() # setting seaborn default for plots # In[5]: train_test_data = [train, test] # combining train and test dataset for dataset in train_test_data: dataset['Title'] = dataset['Name'].str.extract(' ([A-Za-z]+)\.', expand=False) # In[6]: title_mapping = {"Mr": 0, "Miss": 1, "Mrs": 2, "Master": 3, "Dr": 3, "Rev": 3, "Col": 3, "Major": 3, "Mlle": 3,"Countess": 3, "Ms": 3, "Lady": 3, "Jonkheer": 3, "Don": 3, "Dona" : 3, "Mme": 3,"Capt": 3,"Sir": 3 } for dataset in train_test_data: dataset['Title'] = dataset['Title'].map(title_mapping) # In[7]: # delete unnecessary feature from dataset train.drop('Name', axis=1, inplace=True) test.drop('Name', axis=1, inplace=True) # In[8]: sex_mapping = {"male": 0, "female": 1} for dataset in train_test_data: dataset['Sex'] = dataset['Sex'].map(sex_mapping) # In[9]: train["Age"].fillna(train.groupby("Title")["Age"].transform("median"), inplace=True) test["Age"].fillna(test.groupby("Title")["Age"].transform("median"), inplace=True) # In[10]: for dataset in train_test_data: dataset.loc[ dataset['Age'] <= 16, 'Age'] = 0, dataset.loc[(dataset['Age'] > 16) & (dataset['Age'] <= 26), 'Age'] = 1, dataset.loc[(dataset['Age'] > 26) & (dataset['Age'] <= 36), 'Age'] = 2, dataset.loc[(dataset['Age'] > 36) & (dataset['Age'] <= 62), 'Age'] = 3, dataset.loc[ dataset['Age'] > 62, 'Age'] = 4 # In[11]: Pclass1 = train[train['Pclass']==1]['Embarked'].value_counts() Pclass2 = train[train['Pclass']==2]['Embarked'].value_counts() Pclass3 = train[train['Pclass']==3]['Embarked'].value_counts() df = pd.DataFrame([Pclass1, Pclass2, Pclass3]) df.index = ['1st class','2nd class', '3rd class'] # In[12]: for dataset in train_test_data: dataset['Embarked'] = dataset['Embarked'].fillna('S') # In[13]: embarked_mapping = {"S": 0, "C": 1, "Q": 2} for dataset in train_test_data: dataset['Embarked'] = dataset['Embarked'].map(embarked_mapping) # In[14]: # fill missing Fare with median fare for each Pclass train["Fare"].fillna(train.groupby("Pclass")["Fare"].transform("median"), inplace=True) test["Fare"].fillna(test.groupby("Pclass")["Fare"].transform("median"), inplace=True) # In[15]: for dataset in train_test_data: dataset.loc[ dataset['Fare'] <= 17, 'Fare'] = 0, dataset.loc[(dataset['Fare'] > 17) & (dataset['Fare'] <= 30), 'Fare'] = 1, dataset.loc[(dataset['Fare'] > 30) & (dataset['Fare'] <= 100), 'Fare'] = 2, dataset.loc[ dataset['Fare'] > 100, 'Fare'] = 3 # In[16]: for dataset in train_test_data: dataset['Cabin'] = dataset['Cabin'].str[:1] # In[17]: Pclass1 = train[train['Pclass']==1]['Cabin'].value_counts() Pclass2 = train[train['Pclass']==2]['Cabin'].value_counts() Pclass3 = train[train['Pclass']==3]['Cabin'].value_counts() df =
pd.DataFrame([Pclass1, Pclass2, Pclass3])
pandas.DataFrame
from bokeh.sampledata.us_states import data as stateBorders from bokeh.sampledata.us_counties import data as counties from COVID.extract import COVID_counts import pandas as pd import numpy as np import pickle # stateBorders['D.C.'] = stateBorders.pop('DC') stateBorders=
pd.DataFrame(stateBorders)
pandas.DataFrame
# -*- coding: utf-8 -*- """ Created on Tue Feb 4 22:47:56 2020 @author: nipunn """ def outlying_rows(filename): mydataset=
pd.read_csv(filename)
pandas.read_csv
import IPython import base64 import cv2 import json import numpy as np import pandas as pd import pravega.grpc_gateway as pravega from matplotlib import pyplot as plt import time def ignore_non_events(read_events): for read_event in read_events: if len(read_event.event) > 0: yield read_event def opencv_image_to_mpl(img): return cv2.cvtColor(img, cv2.COLOR_BGR2RGB) class StreamBase(): def __init__(self, pravega_client, scope, stream, create=False): self.pravega_client = pravega_client self.scope = scope self.stream = stream if create: self.create_stream() def create_stream(self, min_num_segments=1): return self.pravega_client.CreateStream(pravega.pb.CreateStreamRequest( scope=self.scope, stream=self.stream, scaling_policy=pravega.pb.ScalingPolicy(min_num_segments=min_num_segments), )) def get_stream_info(self): return self.pravega_client.GetStreamInfo(pravega.pb.GetStreamInfoRequest( scope=self.scope, stream=self.stream, )) class OutputStream(StreamBase): def __init__(self, pravega_client, scope, stream, create=True): super(OutputStream, self).__init__(pravega_client, scope, stream, create) def write_video_from_file(self, filename, crop=None): cap = cv2.VideoCapture(filename) video_frames = self.opencv_video_frame_generator(cap) cropped_video_frames = (self.cropped_video_frame(f, crop) for f in video_frames) events_to_write = self.video_frame_write_generator(cropped_video_frames) write_response = self.pravega_client.WriteEvents(events_to_write) return write_response def opencv_video_frame_generator(self, vidcap): while True: pos_frames = vidcap.get(cv2.CAP_PROP_POS_FRAMES) success, image = vidcap.read() if not success: return video_frame = dict( image=image, frameNumber=int(pos_frames), timestamp=int(time.time() * 1000), ) yield video_frame def cropped_video_frame(self, video_frame, crop): if crop: left, top, right, bottom = crop video_frame['image'] = video_frame['image'][top:bottom, left:right] return video_frame def video_frame_write_generator(self, video_frame_iter, camera=0): for video_frame in video_frame_iter: event_dict = video_frame.copy() event_dict['camera'] = camera event_dict['ssrc'] = 0 success, png_array = cv2.imencode('.png', video_frame['image']) event_dict['data'] = base64.b64encode(png_array.tobytes()).decode(encoding='UTF-8') del event_dict['image'] to_log_dict = event_dict.copy() to_log_dict['data'] = '(%d bytes)' % len(event_dict['data']) # print('video_frame_write_generator: ' + json.dumps(to_log_dict)) event_json = json.dumps(event_dict) event_bytes = event_json.encode(encoding='UTF-8') event_to_write = pravega.pb.WriteEventsRequest( scope=self.scope, stream=self.stream, event=event_bytes, routing_key=str(camera), ) yield event_to_write class UnindexedStream(StreamBase): def __init__(self, pravega_client, scope, stream): super(UnindexedStream, self).__init__(pravega_client, scope, stream) def read_events(self, from_stream_cut=None, to_stream_cut=None): read_events_request = pravega.pb.ReadEventsRequest( scope=self.scope, stream=self.stream, from_stream_cut=from_stream_cut, to_stream_cut=to_stream_cut, ) return ignore_non_events(self.pravega_client.ReadEvents(read_events_request)) def read_event_to_video_frame(self, read_event): event_json = read_event.event video_frame = json.loads(event_json) image_png = base64.b64decode(video_frame['data']) del video_frame['data'] image_png_array = np.frombuffer(image_png, dtype=np.uint8) image_array = cv2.imdecode(image_png_array, cv2.IMREAD_UNCHANGED) video_frame['image_array'] = image_array video_frame['timestamp'] = pd.to_datetime(video_frame['timestamp'], unit='ms', utc=True) return video_frame def read_video_frames(self, from_stream_cut=None, to_stream_cut=None): read_events = self.read_events(from_stream_cut, to_stream_cut) return (self.read_event_to_video_frame(read_event) for read_event in read_events) def play_video(self, from_stream_cut=None, to_stream_cut=None, show_frame_interval=1): read_events = self.read_video_frames(from_stream_cut, to_stream_cut) for i, video_frame in enumerate(read_events): if i % show_frame_interval == 0: IPython.display.clear_output(wait=True) plt.title('frameNumber=%d, timestamp=%s' % (video_frame['frameNumber'], video_frame['timestamp'])) plt.imshow(opencv_image_to_mpl(video_frame['image_array'])); plt.show() class IndexedStream(): def __init__(self, pravega_client, scope, stream, from_stream_cut=None, timestamp_col='timestamp'): self.pravega_client = pravega_client self.scope = scope self.stream = stream self.from_stream_cut = from_stream_cut self.timestamp_col = timestamp_col self.index_df = None def build_index(self): stream_info = self.pravega_client.GetStreamInfo( pravega.pb.GetStreamInfoRequest(scope=self.scope, stream=self.stream)) # print('stream_info=%s' % str(stream_info)) from_stream_cut = stream_info.head_stream_cut if self.from_stream_cut is None else self.from_stream_cut to_stream_cut = stream_info.tail_stream_cut read_events_request = pravega.pb.ReadEventsRequest( scope=self.scope, stream=self.stream, from_stream_cut=from_stream_cut, to_stream_cut=to_stream_cut, ) # print(read_events_request) read_events = ignore_non_events(self.pravega_client.ReadEvents(read_events_request)) index_list = [self.read_event_to_index(read_event) for read_event in read_events] df = pd.DataFrame(index_list) df[self.timestamp_col] =
pd.to_datetime(df[self.timestamp_col], unit='ms', utc=True)
pandas.to_datetime
import csv from io import StringIO import os import numpy as np import pytest from pandas.errors import ParserError import pandas as pd from pandas import ( DataFrame, Index, MultiIndex, NaT, Series, Timestamp, date_range, read_csv, to_datetime, ) import pandas._testing as tm import pandas.core.common as com from pandas.io.common import get_handle MIXED_FLOAT_DTYPES = ["float16", "float32", "float64"] MIXED_INT_DTYPES = [ "uint8", "uint16", "uint32", "uint64", "int8", "int16", "int32", "int64", ] class TestDataFrameToCSV: def read_csv(self, path, **kwargs): params = {"index_col": 0, "parse_dates": True} params.update(**kwargs) return read_csv(path, **params) def test_to_csv_from_csv1(self, float_frame, datetime_frame): with tm.ensure_clean("__tmp_to_csv_from_csv1__") as path: float_frame["A"][:5] = np.nan float_frame.to_csv(path) float_frame.to_csv(path, columns=["A", "B"]) float_frame.to_csv(path, header=False) float_frame.to_csv(path, index=False) # test roundtrip # freq does not roundtrip datetime_frame.index = datetime_frame.index._with_freq(None) datetime_frame.to_csv(path) recons = self.read_csv(path) tm.assert_frame_equal(datetime_frame, recons) datetime_frame.to_csv(path, index_label="index") recons = self.read_csv(path, index_col=None) assert len(recons.columns) == len(datetime_frame.columns) + 1 # no index datetime_frame.to_csv(path, index=False) recons = self.read_csv(path, index_col=None) tm.assert_almost_equal(datetime_frame.values, recons.values) # corner case dm = DataFrame( { "s1": Series(range(3), index=np.arange(3)), "s2": Series(range(2), index=np.arange(2)), } ) dm.to_csv(path) recons = self.read_csv(path) tm.assert_frame_equal(dm, recons) def test_to_csv_from_csv2(self, float_frame): with tm.ensure_clean("__tmp_to_csv_from_csv2__") as path: # duplicate index df = DataFrame( np.random.randn(3, 3), index=["a", "a", "b"], columns=["x", "y", "z"] ) df.to_csv(path) result = self.read_csv(path) tm.assert_frame_equal(result, df) midx = MultiIndex.from_tuples([("A", 1, 2), ("A", 1, 2), ("B", 1, 2)]) df = DataFrame(np.random.randn(3, 3), index=midx, columns=["x", "y", "z"]) df.to_csv(path) result = self.read_csv(path, index_col=[0, 1, 2], parse_dates=False) tm.assert_frame_equal(result, df, check_names=False) # column aliases col_aliases = Index(["AA", "X", "Y", "Z"]) float_frame.to_csv(path, header=col_aliases) rs = self.read_csv(path) xp = float_frame.copy() xp.columns = col_aliases tm.assert_frame_equal(xp, rs) msg = "Writing 4 cols but got 2 aliases" with pytest.raises(ValueError, match=msg): float_frame.to_csv(path, header=["AA", "X"]) def test_to_csv_from_csv3(self): with tm.ensure_clean("__tmp_to_csv_from_csv3__") as path: df1 = DataFrame(np.random.randn(3, 1)) df2 = DataFrame(np.random.randn(3, 1)) df1.to_csv(path) df2.to_csv(path, mode="a", header=False) xp = pd.concat([df1, df2]) rs = read_csv(path, index_col=0) rs.columns = [int(label) for label in rs.columns] xp.columns = [int(label) for label in xp.columns] tm.assert_frame_equal(xp, rs) def test_to_csv_from_csv4(self): with tm.ensure_clean("__tmp_to_csv_from_csv4__") as path: # GH 10833 (TimedeltaIndex formatting) dt = pd.Timedelta(seconds=1) df = DataFrame( {"dt_data": [i * dt for i in range(3)]}, index=Index([i * dt for i in range(3)], name="dt_index"), ) df.to_csv(path) result = read_csv(path, index_col="dt_index") result.index = pd.to_timedelta(result.index) result["dt_data"] = pd.to_timedelta(result["dt_data"]) tm.assert_frame_equal(df, result, check_index_type=True) def test_to_csv_from_csv5(self, timezone_frame): # tz, 8260 with tm.ensure_clean("__tmp_to_csv_from_csv5__") as path: timezone_frame.to_csv(path) result = read_csv(path, index_col=0, parse_dates=["A"]) converter = ( lambda c: to_datetime(result[c]) .dt.tz_convert("UTC") .dt.tz_convert(timezone_frame[c].dt.tz) ) result["B"] = converter("B") result["C"] = converter("C") tm.assert_frame_equal(result, timezone_frame) def test_to_csv_cols_reordering(self): # GH3454 chunksize = 5 N = int(chunksize * 2.5) df = tm.makeCustomDataframe(N, 3) cs = df.columns cols = [cs[2], cs[0]] with tm.ensure_clean() as path: df.to_csv(path, columns=cols, chunksize=chunksize) rs_c = read_csv(path, index_col=0) tm.assert_frame_equal(df[cols], rs_c, check_names=False) def test_to_csv_new_dupe_cols(self): def _check_df(df, cols=None): with tm.ensure_clean() as path: df.to_csv(path, columns=cols, chunksize=chunksize) rs_c = read_csv(path, index_col=0) # we wrote them in a different order # so compare them in that order if cols is not None: if df.columns.is_unique: rs_c.columns = cols else: indexer, missing = df.columns.get_indexer_non_unique(cols) rs_c.columns = df.columns.take(indexer) for c in cols: obj_df = df[c] obj_rs = rs_c[c] if isinstance(obj_df, Series): tm.assert_series_equal(obj_df, obj_rs) else: tm.assert_frame_equal(obj_df, obj_rs, check_names=False) # wrote in the same order else: rs_c.columns = df.columns tm.assert_frame_equal(df, rs_c, check_names=False) chunksize = 5 N = int(chunksize * 2.5) # dupe cols df = tm.makeCustomDataframe(N, 3) df.columns = ["a", "a", "b"] _check_df(df, None) # dupe cols with selection cols = ["b", "a"] _check_df(df, cols) @pytest.mark.slow def test_to_csv_dtnat(self): # GH3437 def make_dtnat_arr(n, nnat=None): if nnat is None: nnat = int(n * 0.1) # 10% s = list(date_range("2000", freq="5min", periods=n)) if nnat: for i in np.random.randint(0, len(s), nnat): s[i] = NaT i = np.random.randint(100) s[-i] = NaT s[i] = NaT return s chunksize = 1000 # N=35000 s1 = make_dtnat_arr(chunksize + 5) s2 = make_dtnat_arr(chunksize + 5, 0) # s3=make_dtnjat_arr(chunksize+5,0) with tm.ensure_clean("1.csv") as pth: df = DataFrame({"a": s1, "b": s2}) df.to_csv(pth, chunksize=chunksize) recons = self.read_csv(pth).apply(to_datetime) tm.assert_frame_equal(df, recons, check_names=False) @pytest.mark.slow def test_to_csv_moar(self): def _do_test( df, r_dtype=None, c_dtype=None, rnlvl=None, cnlvl=None, dupe_col=False ): kwargs = {"parse_dates": False} if cnlvl: if rnlvl is not None: kwargs["index_col"] = list(range(rnlvl)) kwargs["header"] = list(range(cnlvl)) with tm.ensure_clean("__tmp_to_csv_moar__") as path: df.to_csv(path, encoding="utf8", chunksize=chunksize) recons = self.read_csv(path, **kwargs) else: kwargs["header"] = 0 with tm.ensure_clean("__tmp_to_csv_moar__") as path: df.to_csv(path, encoding="utf8", chunksize=chunksize) recons = self.read_csv(path, **kwargs) def _to_uni(x): if not isinstance(x, str): return x.decode("utf8") return x if dupe_col: # read_Csv disambiguates the columns by # labeling them dupe.1,dupe.2, etc'. monkey patch columns recons.columns = df.columns if rnlvl and not cnlvl: delta_lvl = [recons.iloc[:, i].values for i in range(rnlvl - 1)] ix = MultiIndex.from_arrays([list(recons.index)] + delta_lvl) recons.index = ix recons = recons.iloc[:, rnlvl - 1 :] type_map = {"i": "i", "f": "f", "s": "O", "u": "O", "dt": "O", "p": "O"} if r_dtype: if r_dtype == "u": # unicode r_dtype = "O" recons.index = np.array( [_to_uni(label) for label in recons.index], dtype=r_dtype ) df.index = np.array( [_to_uni(label) for label in df.index], dtype=r_dtype ) elif r_dtype == "dt": # unicode r_dtype = "O" recons.index = np.array( [Timestamp(label) for label in recons.index], dtype=r_dtype ) df.index = np.array( [Timestamp(label) for label in df.index], dtype=r_dtype ) elif r_dtype == "p": r_dtype = "O" idx_list = to_datetime(recons.index) recons.index = np.array( [Timestamp(label) for label in idx_list], dtype=r_dtype ) df.index = np.array( list(map(Timestamp, df.index.to_timestamp())), dtype=r_dtype ) else: r_dtype = type_map.get(r_dtype) recons.index = np.array(recons.index, dtype=r_dtype) df.index = np.array(df.index, dtype=r_dtype) if c_dtype: if c_dtype == "u": c_dtype = "O" recons.columns = np.array( [_to_uni(label) for label in recons.columns], dtype=c_dtype ) df.columns = np.array( [_to_uni(label) for label in df.columns], dtype=c_dtype ) elif c_dtype == "dt": c_dtype = "O" recons.columns = np.array( [Timestamp(label) for label in recons.columns], dtype=c_dtype ) df.columns = np.array( [Timestamp(label) for label in df.columns], dtype=c_dtype ) elif c_dtype == "p": c_dtype = "O" col_list = to_datetime(recons.columns) recons.columns = np.array( [Timestamp(label) for label in col_list], dtype=c_dtype ) col_list = df.columns.to_timestamp() df.columns = np.array( [Timestamp(label) for label in col_list], dtype=c_dtype ) else: c_dtype = type_map.get(c_dtype) recons.columns = np.array(recons.columns, dtype=c_dtype) df.columns = np.array(df.columns, dtype=c_dtype) tm.assert_frame_equal(df, recons, check_names=False) N = 100 chunksize = 1000 ncols = 4 base = chunksize // ncols for nrows in [ 2, 10, N - 1, N, N + 1, N + 2, 2 * N - 2, 2 * N - 1, 2 * N, 2 * N + 1, 2 * N + 2, base - 1, base, base + 1, ]: _do_test( tm.makeCustomDataframe(nrows, ncols, r_idx_type="dt", c_idx_type="s"), "dt", "s", ) for r_idx_type, c_idx_type in [("i", "i"), ("s", "s"), ("u", "dt"), ("p", "p")]: for ncols in [1, 2, 3, 4]: base = chunksize // ncols for nrows in [ 2, 10, N - 1, N, N + 1, N + 2, 2 * N - 2, 2 * N - 1, 2 * N, 2 * N + 1, 2 * N + 2, base - 1, base, base + 1, ]: _do_test( tm.makeCustomDataframe( nrows, ncols, r_idx_type=r_idx_type, c_idx_type=c_idx_type ), r_idx_type, c_idx_type, ) for ncols in [1, 2, 3, 4]: base = chunksize // ncols for nrows in [ 10, N - 2, N - 1, N, N + 1, N + 2, 2 * N - 2, 2 * N - 1, 2 * N, 2 * N + 1, 2 * N + 2, base - 1, base, base + 1, ]: _do_test(tm.makeCustomDataframe(nrows, ncols)) for nrows in [10, N - 2, N - 1, N, N + 1, N + 2]: df = tm.makeCustomDataframe(nrows, 3) cols = list(df.columns) cols[:2] = ["dupe", "dupe"] cols[-2:] = ["dupe", "dupe"] ix = list(df.index) ix[:2] = ["rdupe", "rdupe"] ix[-2:] = ["rdupe", "rdupe"] df.index = ix df.columns = cols _do_test(df, dupe_col=True) _do_test(DataFrame(index=np.arange(10))) _do_test( tm.makeCustomDataframe(chunksize // 2 + 1, 2, r_idx_nlevels=2), rnlvl=2 ) for ncols in [2, 3, 4]: base = int(chunksize // ncols) for nrows in [ 10, N - 2, N - 1, N, N + 1, N + 2, 2 * N - 2, 2 * N - 1, 2 * N, 2 * N + 1, 2 * N + 2, base - 1, base, base + 1, ]: _do_test(tm.makeCustomDataframe(nrows, ncols, r_idx_nlevels=2), rnlvl=2) _do_test(tm.makeCustomDataframe(nrows, ncols, c_idx_nlevels=2), cnlvl=2) _do_test( tm.makeCustomDataframe( nrows, ncols, r_idx_nlevels=2, c_idx_nlevels=2 ), rnlvl=2, cnlvl=2, ) def test_to_csv_from_csv_w_some_infs(self, float_frame): # test roundtrip with inf, -inf, nan, as full columns and mix float_frame["G"] = np.nan f = lambda x: [np.inf, np.nan][np.random.rand() < 0.5] float_frame["H"] = float_frame.index.map(f) with tm.ensure_clean() as path: float_frame.to_csv(path) recons = self.read_csv(path) tm.assert_frame_equal(float_frame, recons) tm.assert_frame_equal(np.isinf(float_frame), np.isinf(recons)) def test_to_csv_from_csv_w_all_infs(self, float_frame): # test roundtrip with inf, -inf, nan, as full columns and mix float_frame["E"] = np.inf float_frame["F"] = -np.inf with tm.ensure_clean() as path: float_frame.to_csv(path) recons = self.read_csv(path) tm.assert_frame_equal(float_frame, recons) tm.assert_frame_equal(np.isinf(float_frame), np.isinf(recons)) def test_to_csv_no_index(self): # GH 3624, after appending columns, to_csv fails with tm.ensure_clean("__tmp_to_csv_no_index__") as path: df = DataFrame({"c1": [1, 2, 3], "c2": [4, 5, 6]}) df.to_csv(path, index=False) result = read_csv(path) tm.assert_frame_equal(df, result) df["c3"] = Series([7, 8, 9], dtype="int64") df.to_csv(path, index=False) result = read_csv(path) tm.assert_frame_equal(df, result) def test_to_csv_with_mix_columns(self): # gh-11637: incorrect output when a mix of integer and string column # names passed as columns parameter in to_csv df = DataFrame({0: ["a", "b", "c"], 1: ["aa", "bb", "cc"]}) df["test"] = "txt" assert df.to_csv() == df.to_csv(columns=[0, 1, "test"]) def test_to_csv_headers(self): # GH6186, the presence or absence of `index` incorrectly # causes to_csv to have different header semantics. from_df = DataFrame([[1, 2], [3, 4]], columns=["A", "B"]) to_df = DataFrame([[1, 2], [3, 4]], columns=["X", "Y"]) with tm.ensure_clean("__tmp_to_csv_headers__") as path: from_df.to_csv(path, header=["X", "Y"]) recons = self.read_csv(path) tm.assert_frame_equal(to_df, recons) from_df.to_csv(path, index=False, header=["X", "Y"]) recons = self.read_csv(path) return_value = recons.reset_index(inplace=True) assert return_value is None tm.assert_frame_equal(to_df, recons) def test_to_csv_multiindex(self, float_frame, datetime_frame): frame = float_frame old_index = frame.index arrays = np.arange(len(old_index) * 2).reshape(2, -1) new_index = MultiIndex.from_arrays(arrays, names=["first", "second"]) frame.index = new_index with tm.ensure_clean("__tmp_to_csv_multiindex__") as path: frame.to_csv(path, header=False) frame.to_csv(path, columns=["A", "B"]) # round trip frame.to_csv(path) df = self.read_csv(path, index_col=[0, 1], parse_dates=False) # TODO to_csv drops column name tm.assert_frame_equal(frame, df, check_names=False) assert frame.index.names == df.index.names # needed if setUp becomes a class method float_frame.index = old_index # try multiindex with dates tsframe = datetime_frame old_index = tsframe.index new_index = [old_index, np.arange(len(old_index))] tsframe.index = MultiIndex.from_arrays(new_index) tsframe.to_csv(path, index_label=["time", "foo"]) recons = self.read_csv(path, index_col=[0, 1]) # TODO to_csv drops column name tm.assert_frame_equal(tsframe, recons, check_names=False) # do not load index tsframe.to_csv(path) recons = self.read_csv(path, index_col=None) assert len(recons.columns) == len(tsframe.columns) + 2 # no index tsframe.to_csv(path, index=False) recons = self.read_csv(path, index_col=None) tm.assert_almost_equal(recons.values, datetime_frame.values) # needed if setUp becomes class method datetime_frame.index = old_index with tm.ensure_clean("__tmp_to_csv_multiindex__") as path: # GH3571, GH1651, GH3141 def _make_frame(names=None): if names is True: names = ["first", "second"] return DataFrame( np.random.randint(0, 10, size=(3, 3)), columns=MultiIndex.from_tuples( [("bah", "foo"), ("bah", "bar"), ("ban", "baz")], names=names ), dtype="int64", ) # column & index are multi-index df = tm.makeCustomDataframe(5, 3, r_idx_nlevels=2, c_idx_nlevels=4) df.to_csv(path) result = read_csv(path, header=[0, 1, 2, 3], index_col=[0, 1]) tm.assert_frame_equal(df, result) # column is mi df = tm.makeCustomDataframe(5, 3, r_idx_nlevels=1, c_idx_nlevels=4) df.to_csv(path) result = read_csv(path, header=[0, 1, 2, 3], index_col=0) tm.assert_frame_equal(df, result) # dup column names? df = tm.makeCustomDataframe(5, 3, r_idx_nlevels=3, c_idx_nlevels=4) df.to_csv(path) result = read_csv(path, header=[0, 1, 2, 3], index_col=[0, 1, 2]) tm.assert_frame_equal(df, result) # writing with no index df = _make_frame() df.to_csv(path, index=False) result = read_csv(path, header=[0, 1]) tm.assert_frame_equal(df, result) # we lose the names here df = _make_frame(True) df.to_csv(path, index=False) result = read_csv(path, header=[0, 1]) assert com.all_none(*result.columns.names) result.columns.names = df.columns.names tm.assert_frame_equal(df, result) # whatsnew example df = _make_frame() df.to_csv(path) result = read_csv(path, header=[0, 1], index_col=[0]) tm.assert_frame_equal(df, result) df = _make_frame(True) df.to_csv(path) result = read_csv(path, header=[0, 1], index_col=[0]) tm.assert_frame_equal(df, result) # invalid options df = _make_frame(True) df.to_csv(path) for i in [6, 7]: msg = f"len of {i}, but only 5 lines in file" with pytest.raises(ParserError, match=msg): read_csv(path, header=list(range(i)), index_col=0) # write with cols msg = "cannot specify cols with a MultiIndex" with pytest.raises(TypeError, match=msg): df.to_csv(path, columns=["foo", "bar"]) with tm.ensure_clean("__tmp_to_csv_multiindex__") as path: # empty tsframe[:0].to_csv(path) recons = self.read_csv(path) exp = tsframe[:0] exp.index = [] tm.assert_index_equal(recons.columns, exp.columns) assert len(recons) == 0 def test_to_csv_interval_index(self): # GH 28210 df = DataFrame({"A": list("abc"), "B": range(3)}, index=pd.interval_range(0, 3)) with tm.ensure_clean("__tmp_to_csv_interval_index__.csv") as path: df.to_csv(path) result = self.read_csv(path, index_col=0) # can't roundtrip intervalindex via read_csv so check string repr (GH 23595) expected = df.copy() expected.index = expected.index.astype(str) tm.assert_frame_equal(result, expected) def test_to_csv_float32_nanrep(self): df = DataFrame(np.random.randn(1, 4).astype(np.float32)) df[1] = np.nan with tm.ensure_clean("__tmp_to_csv_float32_nanrep__.csv") as path: df.to_csv(path, na_rep=999) with open(path) as f: lines = f.readlines() assert lines[1].split(",")[2] == "999" def test_to_csv_withcommas(self): # Commas inside fields should be correctly escaped when saving as CSV. df = DataFrame({"A": [1, 2, 3], "B": ["5,6", "7,8", "9,0"]}) with tm.ensure_clean("__tmp_to_csv_withcommas__.csv") as path: df.to_csv(path) df2 = self.read_csv(path) tm.assert_frame_equal(df2, df) def test_to_csv_mixed(self): def create_cols(name): return [f"{name}{i:03d}" for i in range(5)] df_float = DataFrame( np.random.randn(100, 5), dtype="float64", columns=create_cols("float") ) df_int = DataFrame( np.random.randn(100, 5).astype("int64"), dtype="int64", columns=create_cols("int"), ) df_bool = DataFrame(True, index=df_float.index, columns=create_cols("bool")) df_object = DataFrame( "foo", index=df_float.index, columns=create_cols("object") ) df_dt = DataFrame( Timestamp("20010101"), index=df_float.index, columns=create_cols("date") ) # add in some nans df_float.iloc[30:50, 1:3] = np.nan # ## this is a bug in read_csv right now #### # df_dt.loc[30:50,1:3] = np.nan df = pd.concat([df_float, df_int, df_bool, df_object, df_dt], axis=1) # dtype dtypes = {} for n, dtype in [ ("float", np.float64), ("int", np.int64), ("bool", np.bool_), ("object", object), ]: for c in create_cols(n): dtypes[c] = dtype with tm.ensure_clean() as filename: df.to_csv(filename) rs = read_csv( filename, index_col=0, dtype=dtypes, parse_dates=create_cols("date") ) tm.assert_frame_equal(rs, df) def test_to_csv_dups_cols(self): df = DataFrame( np.random.randn(1000, 30), columns=list(range(15)) + list(range(15)), dtype="float64", ) with tm.ensure_clean() as filename: df.to_csv(filename) # single dtype, fine result = read_csv(filename, index_col=0) result.columns = df.columns tm.assert_frame_equal(result, df) df_float = DataFrame(np.random.randn(1000, 3), dtype="float64") df_int = DataFrame(np.random.randn(1000, 3)).astype("int64") df_bool = DataFrame(True, index=df_float.index, columns=range(3)) df_object = DataFrame("foo", index=df_float.index, columns=range(3)) df_dt = DataFrame(Timestamp("20010101"), index=df_float.index, columns=range(3)) df = pd.concat( [df_float, df_int, df_bool, df_object, df_dt], axis=1, ignore_index=True ) df.columns = [0, 1, 2] * 5 with tm.ensure_clean() as filename: df.to_csv(filename) result = read_csv(filename, index_col=0) # date cols for i in ["0.4", "1.4", "2.4"]: result[i] = to_datetime(result[i]) result.columns = df.columns tm.assert_frame_equal(result, df) # GH3457 N = 10 df = tm.makeCustomDataframe(N, 3) df.columns = ["a", "a", "b"] with tm.ensure_clean() as filename: df.to_csv(filename) # read_csv will rename the dups columns result = read_csv(filename, index_col=0) result = result.rename(columns={"a.1": "a"}) tm.assert_frame_equal(result, df) def test_to_csv_chunking(self): aa = DataFrame({"A": range(100000)}) aa["B"] = aa.A + 1.0 aa["C"] = aa.A + 2.0 aa["D"] = aa.A + 3.0 for chunksize in [10000, 50000, 100000]: with tm.ensure_clean() as filename: aa.to_csv(filename, chunksize=chunksize) rs = read_csv(filename, index_col=0) tm.assert_frame_equal(rs, aa) @pytest.mark.slow def test_to_csv_wide_frame_formatting(self): # Issue #8621 df = DataFrame(np.random.randn(1, 100010), columns=None, index=None) with tm.ensure_clean() as filename: df.to_csv(filename, header=False, index=False) rs = read_csv(filename, header=None) tm.assert_frame_equal(rs, df) def test_to_csv_bug(self): f1 = StringIO("a,1.0\nb,2.0") df = self.read_csv(f1, header=None) newdf = DataFrame({"t": df[df.columns[0]]}) with tm.ensure_clean() as path: newdf.to_csv(path) recons = read_csv(path, index_col=0) # don't check_names as t != 1 tm.assert_frame_equal(recons, newdf, check_names=False) def test_to_csv_unicode(self): df = DataFrame({"c/\u03c3": [1, 2, 3]}) with tm.ensure_clean() as path: df.to_csv(path, encoding="UTF-8") df2 = read_csv(path, index_col=0, encoding="UTF-8") tm.assert_frame_equal(df, df2) df.to_csv(path, encoding="UTF-8", index=False) df2 = read_csv(path, index_col=None, encoding="UTF-8") tm.assert_frame_equal(df, df2) def test_to_csv_unicode_index_col(self): buf = StringIO("") df = DataFrame( [["\u05d0", "d2", "d3", "d4"], ["a1", "a2", "a3", "a4"]], columns=["\u05d0", "\u05d1", "\u05d2", "\u05d3"], index=["\u05d0", "\u05d1"], ) df.to_csv(buf, encoding="UTF-8") buf.seek(0) df2 = read_csv(buf, index_col=0, encoding="UTF-8") tm.assert_frame_equal(df, df2) def test_to_csv_stringio(self, float_frame): buf = StringIO() float_frame.to_csv(buf) buf.seek(0) recons = read_csv(buf, index_col=0) tm.assert_frame_equal(recons, float_frame) def test_to_csv_float_format(self): df = DataFrame( [[0.123456, 0.234567, 0.567567], [12.32112, 123123.2, 321321.2]], index=["A", "B"], columns=["X", "Y", "Z"], ) with tm.ensure_clean() as filename: df.to_csv(filename, float_format="%.2f") rs = read_csv(filename, index_col=0) xp = DataFrame( [[0.12, 0.23, 0.57], [12.32, 123123.20, 321321.20]], index=["A", "B"], columns=["X", "Y", "Z"], ) tm.assert_frame_equal(rs, xp) def test_to_csv_unicodewriter_quoting(self): df = DataFrame({"A": [1, 2, 3], "B": ["foo", "bar", "baz"]}) buf = StringIO() df.to_csv(buf, index=False, quoting=csv.QUOTE_NONNUMERIC, encoding="utf-8") result = buf.getvalue() expected_rows = ['"A","B"', '1,"foo"', '2,"bar"', '3,"baz"'] expected = tm.convert_rows_list_to_csv_str(expected_rows) assert result == expected def test_to_csv_quote_none(self): # GH4328 df = DataFrame({"A": ["hello", '{"hello"}']}) for encoding in (None, "utf-8"): buf = StringIO() df.to_csv(buf, quoting=csv.QUOTE_NONE, encoding=encoding, index=False) result = buf.getvalue() expected_rows = ["A", "hello", '{"hello"}'] expected = tm.convert_rows_list_to_csv_str(expected_rows) assert result == expected def test_to_csv_index_no_leading_comma(self): df = DataFrame({"A": [1, 2, 3], "B": [4, 5, 6]}, index=["one", "two", "three"]) buf = StringIO() df.to_csv(buf, index_label=False) expected_rows = ["A,B", "one,1,4", "two,2,5", "three,3,6"] expected = tm.convert_rows_list_to_csv_str(expected_rows) assert buf.getvalue() == expected def test_to_csv_line_terminators(self): # see gh-20353 df = DataFrame({"A": [1, 2, 3], "B": [4, 5, 6]}, index=["one", "two", "three"]) with tm.ensure_clean() as path: # case 1: CRLF as line terminator df.to_csv(path, line_terminator="\r\n") expected = b",A,B\r\none,1,4\r\ntwo,2,5\r\nthree,3,6\r\n" with open(path, mode="rb") as f: assert f.read() == expected with tm.ensure_clean() as path: # case 2: LF as line terminator df.to_csv(path, line_terminator="\n") expected = b",A,B\none,1,4\ntwo,2,5\nthree,3,6\n" with open(path, mode="rb") as f: assert f.read() == expected with tm.ensure_clean() as path: # case 3: The default line terminator(=os.linesep)(gh-21406) df.to_csv(path) os_linesep = os.linesep.encode("utf-8") expected = ( b",A,B" + os_linesep + b"one,1,4" + os_linesep + b"two,2,5" + os_linesep + b"three,3,6" + os_linesep ) with open(path, mode="rb") as f: assert f.read() == expected def test_to_csv_from_csv_categorical(self): # CSV with categoricals should result in the same output # as when one would add a "normal" Series/DataFrame. s = Series(pd.Categorical(["a", "b", "b", "a", "a", "c", "c", "c"])) s2 = Series(["a", "b", "b", "a", "a", "c", "c", "c"]) res = StringIO() s.to_csv(res, header=False) exp = StringIO() s2.to_csv(exp, header=False) assert res.getvalue() == exp.getvalue() df = DataFrame({"s": s}) df2 = DataFrame({"s": s2}) res = StringIO() df.to_csv(res) exp = StringIO() df2.to_csv(exp) assert res.getvalue() == exp.getvalue() def test_to_csv_path_is_none(self, float_frame): # GH 8215 # Make sure we return string for consistency with # Series.to_csv() csv_str = float_frame.to_csv(path_or_buf=None) assert isinstance(csv_str, str) recons = read_csv(StringIO(csv_str), index_col=0) tm.assert_frame_equal(float_frame, recons) @pytest.mark.parametrize( "df,encoding", [ ( DataFrame( [[0.123456, 0.234567, 0.567567], [12.32112, 123123.2, 321321.2]], index=["A", "B"], columns=["X", "Y", "Z"], ), None, ), # GH 21241, 21118 (DataFrame([["abc", "def", "ghi"]], columns=["X", "Y", "Z"]), "ascii"), (DataFrame(5 * [[123, "你好", "世界"]], columns=["X", "Y", "Z"]), "gb2312"), ( DataFrame(5 * [[123, "Γειά σου", "Κόσμε"]], columns=["X", "Y", "Z"]), "cp737", ), ], ) def test_to_csv_compression(self, df, encoding, compression): with tm.ensure_clean() as filename: df.to_csv(filename, compression=compression, encoding=encoding) # test the round trip - to_csv -> read_csv result = read_csv( filename, compression=compression, index_col=0, encoding=encoding ) tm.assert_frame_equal(df, result) # test the round trip using file handle - to_csv -> read_csv with get_handle( filename, "w", compression=compression, encoding=encoding ) as handles: df.to_csv(handles.handle, encoding=encoding) assert not handles.handle.closed result = read_csv( filename, compression=compression, encoding=encoding, index_col=0, ).squeeze("columns") tm.assert_frame_equal(df, result) # explicitly make sure file is compressed with tm.decompress_file(filename, compression) as fh: text = fh.read().decode(encoding or "utf8") for col in df.columns: assert col in text with tm.decompress_file(filename, compression) as fh: tm.assert_frame_equal(df, read_csv(fh, index_col=0, encoding=encoding)) def test_to_csv_date_format(self, datetime_frame): with tm.ensure_clean("__tmp_to_csv_date_format__") as path: dt_index = datetime_frame.index datetime_frame = DataFrame( {"A": dt_index, "B": dt_index.shift(1)}, index=dt_index ) datetime_frame.to_csv(path, date_format="%Y%m%d") # Check that the data was put in the specified format test = read_csv(path, index_col=0) datetime_frame_int = datetime_frame.applymap( lambda x: int(x.strftime("%Y%m%d")) ) datetime_frame_int.index = datetime_frame_int.index.map( lambda x: int(x.strftime("%Y%m%d")) ) tm.assert_frame_equal(test, datetime_frame_int) datetime_frame.to_csv(path, date_format="%Y-%m-%d") # Check that the data was put in the specified format test = read_csv(path, index_col=0) datetime_frame_str = datetime_frame.applymap( lambda x: x.strftime("%Y-%m-%d") ) datetime_frame_str.index = datetime_frame_str.index.map( lambda x: x.strftime("%Y-%m-%d") ) tm.assert_frame_equal(test, datetime_frame_str) # Check that columns get converted datetime_frame_columns = datetime_frame.T datetime_frame_columns.to_csv(path, date_format="%Y%m%d") test = read_csv(path, index_col=0) datetime_frame_columns = datetime_frame_columns.applymap( lambda x: int(x.strftime("%Y%m%d")) ) # Columns don't get converted to ints by read_csv datetime_frame_columns.columns = datetime_frame_columns.columns.map( lambda x: x.strftime("%Y%m%d") ) tm.assert_frame_equal(test, datetime_frame_columns) # test NaTs nat_index = to_datetime( ["NaT"] * 10 + ["2000-01-01", "1/1/2000", "1-1-2000"] ) nat_frame = DataFrame({"A": nat_index}, index=nat_index) nat_frame.to_csv(path, date_format="%Y-%m-%d") test = read_csv(path, parse_dates=[0, 1], index_col=0) tm.assert_frame_equal(test, nat_frame) def test_to_csv_with_dst_transitions(self): with tm.ensure_clean("csv_date_format_with_dst") as path: # make sure we are not failing on transitions times = date_range( "2013-10-26 23:00", "2013-10-27 01:00", tz="Europe/London", freq="H", ambiguous="infer", ) for i in [times, times + pd.Timedelta("10s")]: i = i._with_freq(None) # freq is not preserved by read_csv time_range = np.array(range(len(i)), dtype="int64") df = DataFrame({"A": time_range}, index=i) df.to_csv(path, index=True) # we have to reconvert the index as we # don't parse the tz's result = read_csv(path, index_col=0) result.index = to_datetime(result.index, utc=True).tz_convert( "Europe/London" ) tm.assert_frame_equal(result, df) # GH11619 idx = date_range("2015-01-01", "2015-12-31", freq="H", tz="Europe/Paris") idx = idx._with_freq(None) # freq does not round-trip idx._data._freq = None # otherwise there is trouble on unpickle df = DataFrame({"values": 1, "idx": idx}, index=idx) with tm.ensure_clean("csv_date_format_with_dst") as path: df.to_csv(path, index=True) result = read_csv(path, index_col=0) result.index = to_datetime(result.index, utc=True).tz_convert( "Europe/Paris" ) result["idx"] = to_datetime(result["idx"], utc=True).astype( "datetime64[ns, Europe/Paris]" ) tm.assert_frame_equal(result, df) # assert working df.astype(str) with tm.ensure_clean("csv_date_format_with_dst") as path: df.to_pickle(path) result = pd.read_pickle(path) tm.assert_frame_equal(result, df) def test_to_csv_quoting(self): df = DataFrame( { "c_bool": [True, False], "c_float": [1.0, 3.2], "c_int": [42, np.nan], "c_string": ["a", "b,c"], } ) expected_rows = [ ",c_bool,c_float,c_int,c_string", "0,True,1.0,42.0,a", '1,False,3.2,,"b,c"', ] expected = tm.convert_rows_list_to_csv_str(expected_rows) result = df.to_csv() assert result == expected result = df.to_csv(quoting=None) assert result == expected expected_rows = [ ",c_bool,c_float,c_int,c_string", "0,True,1.0,42.0,a", '1,False,3.2,,"b,c"', ] expected = tm.convert_rows_list_to_csv_str(expected_rows) result = df.to_csv(quoting=csv.QUOTE_MINIMAL) assert result == expected expected_rows = [ '"","c_bool","c_float","c_int","c_string"', '"0","True","1.0","42.0","a"', '"1","False","3.2","","b,c"', ] expected = tm.convert_rows_list_to_csv_str(expected_rows) result = df.to_csv(quoting=csv.QUOTE_ALL) assert result == expected # see gh-12922, gh-13259: make sure changes to # the formatters do not break this behaviour expected_rows = [ '"","c_bool","c_float","c_int","c_string"', '0,True,1.0,42.0,"a"', '1,False,3.2,"","b,c"', ] expected = tm.convert_rows_list_to_csv_str(expected_rows) result = df.to_csv(quoting=csv.QUOTE_NONNUMERIC) assert result == expected msg = "need to escape, but no escapechar set" with pytest.raises(csv.Error, match=msg): df.to_csv(quoting=csv.QUOTE_NONE) with pytest.raises(csv.Error, match=msg): df.to_csv(quoting=csv.QUOTE_NONE, escapechar=None) expected_rows = [ ",c_bool,c_float,c_int,c_string", "0,True,1.0,42.0,a", "1,False,3.2,,b!,c", ] expected = tm.convert_rows_list_to_csv_str(expected_rows) result = df.to_csv(quoting=csv.QUOTE_NONE, escapechar="!") assert result == expected expected_rows = [ ",c_bool,c_ffloat,c_int,c_string", "0,True,1.0,42.0,a", "1,False,3.2,,bf,c", ] expected = tm.convert_rows_list_to_csv_str(expected_rows) result = df.to_csv(quoting=csv.QUOTE_NONE, escapechar="f") assert result == expected # see gh-3503: quoting Windows line terminators # presents with encoding? text_rows = ["a,b,c", '1,"test \r\n",3'] text = tm.convert_rows_list_to_csv_str(text_rows) df = read_csv(StringIO(text)) buf = StringIO() df.to_csv(buf, encoding="utf-8", index=False) assert buf.getvalue() == text # xref gh-7791: make sure the quoting parameter is passed through # with multi-indexes df = DataFrame({"a": [1, 2], "b": [3, 4], "c": [5, 6]}) df = df.set_index(["a", "b"]) expected_rows = ['"a","b","c"', '"1","3","5"', '"2","4","6"'] expected = tm.convert_rows_list_to_csv_str(expected_rows) assert df.to_csv(quoting=csv.QUOTE_ALL) == expected def test_period_index_date_overflow(self): # see gh-15982 dates = ["1990-01-01", "2000-01-01", "3005-01-01"] index = pd.PeriodIndex(dates, freq="D") df = DataFrame([4, 5, 6], index=index) result = df.to_csv() expected_rows = [",0", "1990-01-01,4", "2000-01-01,5", "3005-01-01,6"] expected = tm.convert_rows_list_to_csv_str(expected_rows) assert result == expected date_format = "%m-%d-%Y" result = df.to_csv(date_format=date_format) expected_rows = [",0", "01-01-1990,4", "01-01-2000,5", "01-01-3005,6"] expected = tm.convert_rows_list_to_csv_str(expected_rows) assert result == expected # Overflow with pd.NaT dates = ["1990-01-01", NaT, "3005-01-01"] index = pd.PeriodIndex(dates, freq="D") df = DataFrame([4, 5, 6], index=index) result = df.to_csv() expected_rows = [",0", "1990-01-01,4", ",5", "3005-01-01,6"] expected = tm.convert_rows_list_to_csv_str(expected_rows) assert result == expected def test_multi_index_header(self): # see gh-5539 columns = MultiIndex.from_tuples([("a", 1), ("a", 2), ("b", 1), ("b", 2)]) df = DataFrame([[1, 2, 3, 4], [5, 6, 7, 8]]) df.columns = columns header = ["a", "b", "c", "d"] result = df.to_csv(header=header) expected_rows = [",a,b,c,d", "0,1,2,3,4", "1,5,6,7,8"] expected = tm.convert_rows_list_to_csv_str(expected_rows) assert result == expected def test_to_csv_single_level_multi_index(self): # see gh-26303 index = Index([(1,), (2,), (3,)]) df = DataFrame([[1, 2, 3]], columns=index) df = df.reindex(columns=[(1,), (3,)]) expected = ",1,3\n0,1,3\n" result = df.to_csv(line_terminator="\n")
tm.assert_almost_equal(result, expected)
pandas._testing.assert_almost_equal
#!/usr/bin/env python # -*- coding: utf-8 -*- from __future__ import absolute_import import json import os import torch import pandas as pd import numpy as np def save_csv_log(opt, head, value, is_create=False, file_name='test'): if len(value.shape) < 2: value = np.expand_dims(value, axis=0) df =
pd.DataFrame(value)
pandas.DataFrame
import streamlit as st import numpy as np import pandas as pd import plotly.graph_objects as go from datetime import datetime import requests class DataFetcher: def __init__(self): self.url_brazil_general = 'https://covid19-brazil-api.now.sh/api/report/v1/brazil/' self.url_brazil_states = 'https://covid19-brazil-api.now.sh/api/report/v1' self.url_world_cases = 'https://pomber.github.io/covid19/timeseries.json' self.brazil_general_json = requests.get(self.url_brazil_general).json() self.brazil_states_json = requests.get(self.url_brazil_states).json() self.world_cases_json = requests.get(self.url_world_cases).json() def get_apis_status_code(self): brazil_general = requests.get(self.url_brazil_general).status_code brazil_states = requests.get(self.url_brazil_states).status_code world_cases = requests.get(self.url_world_cases).status_code return brazil_general, brazil_states, world_cases def get_main_counters(self): brazil_counters = self.brazil_general_json confirmed = brazil_counters['data']['confirmed'] deaths = brazil_counters['data']['deaths'] recovered = brazil_counters['data']['recovered'] return confirmed, deaths, recovered def get_update_time(self): update_time = self.brazil_general_json['data']['updated_at'] update_time_brazil = pd.to_datetime(update_time) -
pd.Timedelta(hours=3)
pandas.Timedelta
from pandas.util import hash_pandas_object import hashlib import pandas as pd import random random.seed(42) import numpy as np import psutil import time ROWS = 20000000 DATA = [random.random() for _ in range(ROWS)] def mem_use(): mem_profile = psutil.virtual_memory() print("Memory Usage = {} | percent = {}".format(mem_profile.used, mem_profile.percent)) def apply_assertion(df): assert hashlib.sha256(pd.util.hash_pandas_object(df, index=True).values).hexdigest() == '867567dc7d46f77af2bca9804ac366a5165d27612de100461b699bd23094ab90' ## CREATE AND LOAD ARRAYS IN MEMORY def using_numpy_arrays(): larray = [] for i in range(0,10): mem_use() larray.append(np.array(DATA)) #// 2.19 GB del larray time.sleep(5) ### USING HDF Storage def using_hdf_storage(): store = pd.HDFStore('store.h5') for i in range(0,10): mem_use() ## constant memory usage (start with store[f'v{i}'] = pd.DataFrame({f'v{i}':DATA}) df = pd.DataFrame() generat = ( store[f'v{i}'] for i in range(0,10)) df = pd.concat(generat,axis=1) mem_use() print(df.head()) time.sleep(5) using_hdf_storage() exit() import gc # USING GENERATOR def create_df_using_generator(): genera = ( pd.DataFramex for x in range(1,20000000)) mem_use() myDf = pd.DataFrame() myDf =
pd.concat(genera,axis=1)
pandas.concat
from scipy.stats import mannwhitneyu,wilcoxon import numpy as np from scipy.io import mmread import pandas as pd X = mmread('RFiles/all_data.mtx') X = X.tocsr() celllabels = np.load('Notebooks/meta/celllabels.npy') isCSF = np.load('Notebooks/meta/isCSF.npy') isMS = np.load('Notebooks/meta/isMS.npy') logX = np.log10(1+X.todense()) scaling_factor = logX.mean(axis=1) norm_X = logX - scaling_factor.reshape(len(scaling_factor), 1) # def MannWhitneyUTest(norm_X, idx1, idx2): # res = [] # for i in range(X.shape[1]): # x= np.asarray(X[idx1,i].todense()).ravel() # y= np.asarray(X[idx2,i].todense()).ravel() # if(len(np.unique(np.concatenate([x,y])))==1): # res.append([-1,-1]) # else: # res.append(mannwhitneyu(x,y,alternative = 'two-sided')) # stat = np.asarray([x[0] for x in res]) # pvalue = np.asarray([x[1] for x in res]) # return(stat,pvalue) def MannWhitneyUTest(X, idx1, idx2): res = [] for i in range(X.shape[1]): x= np.asarray(X[idx1,i]).ravel() y= np.asarray(X[idx2,i]).ravel() if(len(np.unique(np.concatenate([x,y])))==1): res.append([-1,-1]) else: res.append(mannwhitneyu(x,y,alternative = 'two-sided')) stat = np.asarray([x[0] for x in res]) pvalue = np.asarray([x[1] for x in res]) return(stat,pvalue) celltypes = ['B1', 'B2', 'CD4', 'CD8a', 'CD8n', 'Gran', 'MegaK', 'Mono', 'NK1', 'NK2', 'Tdg', 'Tregs', 'mDC1', 'mDC2', 'ncMono', 'pDC', 'plasma'] for i in celltypes: idx1 = (celllabels==i) & isCSF & isMS idx2 = (celllabels==i) & isCSF & (isMS == False) if (np.sum(idx1)>10) and (np.sum(idx2)>10): stat,pvalue = MannWhitneyUTest(norm_X, idx1, idx2) clusterid = np.repeat(i, len(stat)) res =
pd.DataFrame([clusterid,stat,pvalue],index=['clusterid','stat','pvalue'])
pandas.DataFrame
from __future__ import annotations from collections import abc from datetime import datetime from functools import partial from itertools import islice from typing import ( TYPE_CHECKING, Callable, Hashable, List, Tuple, TypedDict, Union, cast, overload, ) import warnings import numpy as np from pandas._libs import tslib from pandas._libs.tslibs import ( OutOfBoundsDatetime, Timedelta, Timestamp, iNaT, nat_strings, parsing, timezones, ) from pandas._libs.tslibs.parsing import ( # noqa:F401 DateParseError, format_is_iso, guess_datetime_format, ) from pandas._libs.tslibs.strptime import array_strptime from pandas._typing import ( AnyArrayLike, ArrayLike, DateTimeErrorChoices, Timezone, npt, ) from pandas.util._exceptions import find_stack_level from pandas.core.dtypes.common import ( ensure_object, is_datetime64_dtype, is_datetime64_ns_dtype, is_datetime64tz_dtype, is_float, is_integer, is_integer_dtype, is_list_like, is_numeric_dtype, is_scalar, ) from pandas.core.dtypes.generic import ( ABCDataFrame, ABCSeries, ) from pandas.core.dtypes.missing import notna from pandas.arrays import ( DatetimeArray, IntegerArray, ) from pandas.core import algorithms from pandas.core.algorithms import unique from pandas.core.arrays.base import ExtensionArray from pandas.core.arrays.datetimes import ( maybe_convert_dtype, objects_to_datetime64ns, tz_to_dtype, ) from pandas.core.construction import extract_array from pandas.core.indexes.base import Index from pandas.core.indexes.datetimes import DatetimeIndex if TYPE_CHECKING: from pandas._libs.tslibs.nattype import NaTType from pandas._libs.tslibs.timedeltas import UnitChoices from pandas import ( DataFrame, Series, ) # --------------------------------------------------------------------- # types used in annotations ArrayConvertible = Union[List, Tuple, AnyArrayLike] Scalar = Union[int, float, str] DatetimeScalar = Union[Scalar, datetime] DatetimeScalarOrArrayConvertible = Union[DatetimeScalar, ArrayConvertible] DatetimeDictArg = Union[List[Scalar], Tuple[Scalar, ...], AnyArrayLike] class YearMonthDayDict(TypedDict, total=True): year: DatetimeDictArg month: DatetimeDictArg day: DatetimeDictArg class FulldatetimeDict(YearMonthDayDict, total=False): hour: DatetimeDictArg hours: DatetimeDictArg minute: DatetimeDictArg minutes: DatetimeDictArg second: DatetimeDictArg seconds: DatetimeDictArg ms: DatetimeDictArg us: DatetimeDictArg ns: DatetimeDictArg DictConvertible = Union[FulldatetimeDict, "DataFrame"] start_caching_at = 50 # --------------------------------------------------------------------- def _guess_datetime_format_for_array(arr, dayfirst: bool | None = False): # Try to guess the format based on the first non-NaN element non_nan_elements = notna(arr).nonzero()[0] if len(non_nan_elements): return guess_datetime_format(arr[non_nan_elements[0]], dayfirst=dayfirst) def should_cache( arg: ArrayConvertible, unique_share: float = 0.7, check_count: int | None = None ) -> bool: """ Decides whether to do caching. If the percent of unique elements among `check_count` elements less than `unique_share * 100` then we can do caching. Parameters ---------- arg: listlike, tuple, 1-d array, Series unique_share: float, default=0.7, optional 0 < unique_share < 1 check_count: int, optional 0 <= check_count <= len(arg) Returns ------- do_caching: bool Notes ----- By default for a sequence of less than 50 items in size, we don't do caching; for the number of elements less than 5000, we take ten percent of all elements to check for a uniqueness share; if the sequence size is more than 5000, then we check only the first 500 elements. All constants were chosen empirically by. """ do_caching = True # default realization if check_count is None: # in this case, the gain from caching is negligible if len(arg) <= start_caching_at: return False if len(arg) <= 5000: check_count = len(arg) // 10 else: check_count = 500 else: assert ( 0 <= check_count <= len(arg) ), "check_count must be in next bounds: [0; len(arg)]" if check_count == 0: return False assert 0 < unique_share < 1, "unique_share must be in next bounds: (0; 1)" try: # We can't cache if the items are not hashable. unique_elements = set(islice(arg, check_count)) except TypeError: return False if len(unique_elements) > check_count * unique_share: do_caching = False return do_caching def _maybe_cache( arg: ArrayConvertible, format: str | None, cache: bool, convert_listlike: Callable, ) -> Series: """ Create a cache of unique dates from an array of dates Parameters ---------- arg : listlike, tuple, 1-d array, Series format : string Strftime format to parse time cache : bool True attempts to create a cache of converted values convert_listlike : function Conversion function to apply on dates Returns ------- cache_array : Series Cache of converted, unique dates. Can be empty """ from pandas import Series cache_array = Series(dtype=object) if cache: # Perform a quicker unique check if not should_cache(arg): return cache_array unique_dates = unique(arg) if len(unique_dates) < len(arg): cache_dates = convert_listlike(unique_dates, format) cache_array = Series(cache_dates, index=unique_dates) # GH#39882 and GH#35888 in case of None and NaT we get duplicates if not cache_array.index.is_unique: cache_array = cache_array[~cache_array.index.duplicated()] return cache_array def _box_as_indexlike( dt_array: ArrayLike, utc: bool | None = None, name: Hashable = None ) -> Index: """ Properly boxes the ndarray of datetimes to DatetimeIndex if it is possible or to generic Index instead Parameters ---------- dt_array: 1-d array Array of datetimes to be wrapped in an Index. tz : object None or 'utc' name : string, default None Name for a resulting index Returns ------- result : datetime of converted dates - DatetimeIndex if convertible to sole datetime64 type - general Index otherwise """ if is_datetime64_dtype(dt_array): tz = "utc" if utc else None return DatetimeIndex(dt_array, tz=tz, name=name) return Index(dt_array, name=name, dtype=dt_array.dtype) def _convert_and_box_cache( arg: DatetimeScalarOrArrayConvertible, cache_array: Series, name: str | None = None, ) -> Index: """ Convert array of dates with a cache and wrap the result in an Index. Parameters ---------- arg : integer, float, string, datetime, list, tuple, 1-d array, Series cache_array : Series Cache of converted, unique dates name : string, default None Name for a DatetimeIndex Returns ------- result : Index-like of converted dates """ from pandas import Series result = Series(arg).map(cache_array) return _box_as_indexlike(result._values, utc=None, name=name) def _return_parsed_timezone_results(result: np.ndarray, timezones, tz, name) -> Index: """ Return results from array_strptime if a %z or %Z directive was passed. Parameters ---------- result : ndarray[int64] int64 date representations of the dates timezones : ndarray pytz timezone objects tz : object None or pytz timezone object name : string, default None Name for a DatetimeIndex Returns ------- tz_result : Index-like of parsed dates with timezone """ tz_results = np.array( [Timestamp(res).tz_localize(zone) for res, zone in zip(result, timezones)] ) if tz is not None: # Convert to the same tz tz_results = np.array([tz_result.tz_convert(tz) for tz_result in tz_results]) return Index(tz_results, name=name) def _convert_listlike_datetimes( arg, format: str | None, name: Hashable = None, tz: Timezone | None = None, unit: str | None = None, errors: str = "raise", infer_datetime_format: bool = False, dayfirst: bool | None = None, yearfirst: bool | None = None, exact: bool = True, ): """ Helper function for to_datetime. Performs the conversions of 1D listlike of dates Parameters ---------- arg : list, tuple, ndarray, Series, Index date to be parsed name : object None or string for the Index name tz : object None or 'utc' unit : str None or string of the frequency of the passed data errors : str error handing behaviors from to_datetime, 'raise', 'coerce', 'ignore' infer_datetime_format : bool, default False inferring format behavior from to_datetime dayfirst : bool dayfirst parsing behavior from to_datetime yearfirst : bool yearfirst parsing behavior from to_datetime exact : bool, default True exact format matching behavior from to_datetime Returns ------- Index-like of parsed dates """ if isinstance(arg, (list, tuple)): arg = np.array(arg, dtype="O") arg_dtype = getattr(arg, "dtype", None) # these are shortcutable if is_datetime64tz_dtype(arg_dtype): if not isinstance(arg, (DatetimeArray, DatetimeIndex)): return DatetimeIndex(arg, tz=tz, name=name) if tz == "utc": arg = arg.tz_convert(None).tz_localize(tz) return arg elif is_datetime64_ns_dtype(arg_dtype): if not isinstance(arg, (DatetimeArray, DatetimeIndex)): try: return DatetimeIndex(arg, tz=tz, name=name) except ValueError: pass elif tz: # DatetimeArray, DatetimeIndex return arg.tz_localize(tz) return arg elif unit is not None: if format is not None: raise ValueError("cannot specify both format and unit") return _to_datetime_with_unit(arg, unit, name, tz, errors) elif getattr(arg, "ndim", 1) > 1: raise TypeError( "arg must be a string, datetime, list, tuple, 1-d array, or Series" ) # warn if passing timedelta64, raise for PeriodDtype # NB: this must come after unit transformation orig_arg = arg try: arg, _ = maybe_convert_dtype(arg, copy=False, tz=timezones.maybe_get_tz(tz)) except TypeError: if errors == "coerce": npvalues = np.array(["NaT"], dtype="datetime64[ns]").repeat(len(arg)) return DatetimeIndex(npvalues, name=name) elif errors == "ignore": idx = Index(arg, name=name) return idx raise arg = ensure_object(arg) require_iso8601 = False if infer_datetime_format and format is None: format = _guess_datetime_format_for_array(arg, dayfirst=dayfirst) if format is not None: # There is a special fast-path for iso8601 formatted # datetime strings, so in those cases don't use the inferred # format because this path makes process slower in this # special case format_is_iso8601 = format_is_iso(format) if format_is_iso8601: require_iso8601 = not infer_datetime_format format = None if format is not None: res = _to_datetime_with_format( arg, orig_arg, name, tz, format, exact, errors, infer_datetime_format ) if res is not None: return res assert format is None or infer_datetime_format utc = tz == "utc" result, tz_parsed = objects_to_datetime64ns( arg, dayfirst=dayfirst, yearfirst=yearfirst, utc=utc, errors=errors, require_iso8601=require_iso8601, allow_object=True, ) if tz_parsed is not None: # We can take a shortcut since the datetime64 numpy array # is in UTC dta = DatetimeArray(result, dtype=tz_to_dtype(tz_parsed)) return DatetimeIndex._simple_new(dta, name=name) utc = tz == "utc" return _box_as_indexlike(result, utc=utc, name=name) def _array_strptime_with_fallback( arg, name, tz, fmt: str, exact: bool, errors: str, infer_datetime_format: bool, ) -> Index | None: """ Call array_strptime, with fallback behavior depending on 'errors'. """ utc = tz == "utc" try: result, timezones = array_strptime(arg, fmt, exact=exact, errors=errors) except OutOfBoundsDatetime: if errors == "raise": raise elif errors == "coerce": result = np.empty(arg.shape, dtype="M8[ns]") iresult = result.view("i8") iresult.fill(iNaT) else: result = arg except ValueError: # if fmt was inferred, try falling back # to array_to_datetime - terminate here # for specified formats if not infer_datetime_format: if errors == "raise": raise elif errors == "coerce": result = np.empty(arg.shape, dtype="M8[ns]") iresult = result.view("i8") iresult.fill(iNaT) else: result = arg else: # Indicates to the caller to fallback to objects_to_datetime64ns return None else: if "%Z" in fmt or "%z" in fmt: return _return_parsed_timezone_results(result, timezones, tz, name) return _box_as_indexlike(result, utc=utc, name=name) def _to_datetime_with_format( arg, orig_arg, name, tz, fmt: str, exact: bool, errors: str, infer_datetime_format: bool, ) -> Index | None: """ Try parsing with the given format, returning None on failure. """ result = None # shortcut formatting here if fmt == "%Y%m%d": # pass orig_arg as float-dtype may have been converted to # datetime64[ns] orig_arg = ensure_object(orig_arg) try: # may return None without raising result = _attempt_YYYYMMDD(orig_arg, errors=errors) except (ValueError, TypeError, OutOfBoundsDatetime) as err: raise ValueError( "cannot convert the input to '%Y%m%d' date format" ) from err if result is not None: utc = tz == "utc" return _box_as_indexlike(result, utc=utc, name=name) # fallback res = _array_strptime_with_fallback( arg, name, tz, fmt, exact, errors, infer_datetime_format ) return res def _to_datetime_with_unit(arg, unit, name, tz, errors: str) -> Index: """ to_datetime specalized to the case where a 'unit' is passed. """ arg = extract_array(arg, extract_numpy=True) # GH#30050 pass an ndarray to tslib.array_with_unit_to_datetime # because it expects an ndarray argument if isinstance(arg, IntegerArray): arr = arg.astype(f"datetime64[{unit}]") tz_parsed = None else: arg = np.asarray(arg) arr, tz_parsed = tslib.array_with_unit_to_datetime(arg, unit, errors=errors) if errors == "ignore": # Index constructor _may_ infer to DatetimeIndex result = Index._with_infer(arr, name=name) else: result = DatetimeIndex(arr, name=name) if not isinstance(result, DatetimeIndex): return result # GH#23758: We may still need to localize the result with tz # GH#25546: Apply tz_parsed first (from arg), then tz (from caller) # result will be naive but in UTC result = result.tz_localize("UTC").tz_convert(tz_parsed) if tz is not None: if result.tz is None: result = result.tz_localize(tz) else: result = result.tz_convert(tz) return result def _adjust_to_origin(arg, origin, unit): """ Helper function for to_datetime. Adjust input argument to the specified origin Parameters ---------- arg : list, tuple, ndarray, Series, Index date to be adjusted origin : 'julian' or Timestamp origin offset for the arg unit : str passed unit from to_datetime, must be 'D' Returns ------- ndarray or scalar of adjusted date(s) """ if origin == "julian": original = arg j0 = Timestamp(0).to_julian_date() if unit != "D": raise ValueError("unit must be 'D' for origin='julian'") try: arg = arg - j0 except TypeError as err: raise ValueError( "incompatible 'arg' type for given 'origin'='julian'" ) from err # preemptively check this for a nice range j_max = Timestamp.max.to_julian_date() - j0 j_min = Timestamp.min.to_julian_date() - j0 if np.any(arg > j_max) or np.any(arg < j_min): raise OutOfBoundsDatetime( f"{original} is Out of Bounds for origin='julian'" ) else: # arg must be numeric if not ( (is_scalar(arg) and (is_integer(arg) or is_float(arg))) or is_numeric_dtype(np.asarray(arg)) ): raise ValueError( f"'{arg}' is not compatible with origin='{origin}'; " "it must be numeric with a unit specified" ) # we are going to offset back to unix / epoch time try: offset = Timestamp(origin) except OutOfBoundsDatetime as err: raise OutOfBoundsDatetime(f"origin {origin} is Out of Bounds") from err except ValueError as err: raise ValueError( f"origin {origin} cannot be converted to a Timestamp" ) from err if offset.tz is not None: raise ValueError(f"origin offset {offset} must be tz-naive") td_offset = offset - Timestamp(0) # convert the offset to the unit of the arg # this should be lossless in terms of precision ioffset = td_offset // Timedelta(1, unit=unit) # scalars & ndarray-like can handle the addition if is_list_like(arg) and not isinstance(arg, (ABCSeries, Index, np.ndarray)): arg = np.asarray(arg) arg = arg + ioffset return arg @overload def to_datetime( arg: DatetimeScalar, errors: DateTimeErrorChoices = ..., dayfirst: bool = ..., yearfirst: bool = ..., utc: bool | None = ..., format: str | None = ..., exact: bool = ..., unit: str | None = ..., infer_datetime_format: bool = ..., origin=..., cache: bool = ..., ) -> Timestamp: ... @overload def to_datetime( arg: Series | DictConvertible, errors: DateTimeErrorChoices = ..., dayfirst: bool = ..., yearfirst: bool = ..., utc: bool | None = ..., format: str | None = ..., exact: bool = ..., unit: str | None = ..., infer_datetime_format: bool = ..., origin=..., cache: bool = ..., ) -> Series: ... @overload def to_datetime( arg: list | tuple | Index | ArrayLike, errors: DateTimeErrorChoices = ..., dayfirst: bool = ..., yearfirst: bool = ..., utc: bool | None = ..., format: str | None = ..., exact: bool = ..., unit: str | None = ..., infer_datetime_format: bool = ..., origin=..., cache: bool = ..., ) -> DatetimeIndex: ... def to_datetime( arg: DatetimeScalarOrArrayConvertible | DictConvertible, errors: DateTimeErrorChoices = "raise", dayfirst: bool = False, yearfirst: bool = False, utc: bool | None = None, format: str | None = None, exact: bool = True, unit: str | None = None, infer_datetime_format: bool = False, origin="unix", cache: bool = True, ) -> DatetimeIndex | Series | DatetimeScalar | NaTType | None: """ Convert argument to datetime. This function converts a scalar, array-like, :class:`Series` or :class:`DataFrame`/dict-like to a pandas datetime object. Parameters ---------- arg : int, float, str, datetime, list, tuple, 1-d array, Series, DataFrame/dict-like The object to convert to a datetime. If a :class:`DataFrame` is provided, the method expects minimally the following columns: :const:`"year"`, :const:`"month"`, :const:`"day"`. errors : {'ignore', 'raise', 'coerce'}, default 'raise' - If :const:`'raise'`, then invalid parsing will raise an exception. - If :const:`'coerce'`, then invalid parsing will be set as :const:`NaT`. - If :const:`'ignore'`, then invalid parsing will return the input. dayfirst : bool, default False Specify a date parse order if `arg` is str or is list-like. If :const:`True`, parses dates with the day first, e.g. :const:`"10/11/12"` is parsed as :const:`2012-11-10`. .. warning:: ``dayfirst=True`` is not strict, but will prefer to parse with day first. If a delimited date string cannot be parsed in accordance with the given `dayfirst` option, e.g. ``to_datetime(['31-12-2021'])``, then a warning will be shown. yearfirst : bool, default False Specify a date parse order if `arg` is str or is list-like. - If :const:`True` parses dates with the year first, e.g. :const:`"10/11/12"` is parsed as :const:`2010-11-12`. - If both `dayfirst` and `yearfirst` are :const:`True`, `yearfirst` is preceded (same as :mod:`dateutil`). .. warning:: ``yearfirst=True`` is not strict, but will prefer to parse with year first. utc : bool, default None Control timezone-related parsing, localization and conversion. - If :const:`True`, the function *always* returns a timezone-aware UTC-localized :class:`Timestamp`, :class:`Series` or :class:`DatetimeIndex`. To do this, timezone-naive inputs are *localized* as UTC, while timezone-aware inputs are *converted* to UTC. - If :const:`False` (default), inputs will not be coerced to UTC. Timezone-naive inputs will remain naive, while timezone-aware ones will keep their time offsets. Limitations exist for mixed offsets (typically, daylight savings), see :ref:`Examples <to_datetime_tz_examples>` section for details. See also: pandas general documentation about `timezone conversion and localization <https://pandas.pydata.org/pandas-docs/stable/user_guide/timeseries.html #time-zone-handling>`_. format : str, default None The strftime to parse time, e.g. :const:`"%d/%m/%Y"`. Note that :const:`"%f"` will parse all the way up to nanoseconds. See `strftime documentation <https://docs.python.org/3/library/datetime.html #strftime-and-strptime-behavior>`_ for more information on choices. exact : bool, default True Control how `format` is used: - If :const:`True`, require an exact `format` match. - If :const:`False`, allow the `format` to match anywhere in the target string. unit : str, default 'ns' The unit of the arg (D,s,ms,us,ns) denote the unit, which is an integer or float number. This will be based off the origin. Example, with ``unit='ms'`` and ``origin='unix'``, this would calculate the number of milliseconds to the unix epoch start. infer_datetime_format : bool, default False If :const:`True` and no `format` is given, attempt to infer the format of the datetime strings based on the first non-NaN element, and if it can be inferred, switch to a faster method of parsing them. In some cases this can increase the parsing speed by ~5-10x. origin : scalar, default 'unix' Define the reference date. The numeric values would be parsed as number of units (defined by `unit`) since this reference date. - If :const:`'unix'` (or POSIX) time; origin is set to 1970-01-01. - If :const:`'julian'`, unit must be :const:`'D'`, and origin is set to beginning of Julian Calendar. Julian day number :const:`0` is assigned to the day starting at noon on January 1, 4713 BC. - If Timestamp convertible, origin is set to Timestamp identified by origin. cache : bool, default True If :const:`True`, use a cache of unique, converted dates to apply the datetime conversion. May produce significant speed-up when parsing duplicate date strings, especially ones with timezone offsets. The cache is only used when there are at least 50 values. The presence of out-of-bounds values will render the cache unusable and may slow down parsing. .. versionchanged:: 0.25.0 changed default value from :const:`False` to :const:`True`. Returns ------- datetime If parsing succeeded. Return type depends on input (types in parenthesis correspond to fallback in case of unsuccessful timezone or out-of-range timestamp parsing): - scalar: :class:`Timestamp` (or :class:`datetime.datetime`) - array-like: :class:`DatetimeIndex` (or :class:`Series` with :class:`object` dtype containing :class:`datetime.datetime`) - Series: :class:`Series` of :class:`datetime64` dtype (or :class:`Series` of :class:`object` dtype containing :class:`datetime.datetime`) - DataFrame: :class:`Series` of :class:`datetime64` dtype (or :class:`Series` of :class:`object` dtype containing :class:`datetime.datetime`) Raises ------ ParserError When parsing a date from string fails. ValueError When another datetime conversion error happens. For example when one of 'year', 'month', day' columns is missing in a :class:`DataFrame`, or when a Timezone-aware :class:`datetime.datetime` is found in an array-like of mixed time offsets, and ``utc=False``. See Also -------- DataFrame.astype : Cast argument to a specified dtype. to_timedelta : Convert argument to timedelta. convert_dtypes : Convert dtypes. Notes ----- Many input types are supported, and lead to different output types: - **scalars** can be int, float, str, datetime object (from stdlib :mod:`datetime` module or :mod:`numpy`). They are converted to :class:`Timestamp` when possible, otherwise they are converted to :class:`datetime.datetime`. None/NaN/null scalars are converted to :const:`NaT`. - **array-like** can contain int, float, str, datetime objects. They are converted to :class:`DatetimeIndex` when possible, otherwise they are converted to :class:`Index` with :class:`object` dtype, containing :class:`datetime.datetime`. None/NaN/null entries are converted to :const:`NaT` in both cases. - **Series** are converted to :class:`Series` with :class:`datetime64` dtype when possible, otherwise they are converted to :class:`Series` with :class:`object` dtype, containing :class:`datetime.datetime`. None/NaN/null entries are converted to :const:`NaT` in both cases. - **DataFrame/dict-like** are converted to :class:`Series` with :class:`datetime64` dtype. For each row a datetime is created from assembling the various dataframe columns. Column keys can be common abbreviations like [‘year’, ‘month’, ‘day’, ‘minute’, ‘second’, ‘ms’, ‘us’, ‘ns’]) or plurals of the same. The following causes are responsible for :class:`datetime.datetime` objects being returned (possibly inside an :class:`Index` or a :class:`Series` with :class:`object` dtype) instead of a proper pandas designated type (:class:`Timestamp`, :class:`DatetimeIndex` or :class:`Series` with :class:`datetime64` dtype): - when any input element is before :const:`Timestamp.min` or after :const:`Timestamp.max`, see `timestamp limitations <https://pandas.pydata.org/pandas-docs/stable/user_guide/timeseries.html #timeseries-timestamp-limits>`_. - when ``utc=False`` (default) and the input is an array-like or :class:`Series` containing mixed naive/aware datetime, or aware with mixed time offsets. Note that this happens in the (quite frequent) situation when the timezone has a daylight savings policy. In that case you may wish to use ``utc=True``. Examples -------- **Handling various input formats** Assembling a datetime from multiple columns of a :class:`DataFrame`. The keys can be common abbreviations like ['year', 'month', 'day', 'minute', 'second', 'ms', 'us', 'ns']) or plurals of the same >>> df = pd.DataFrame({'year': [2015, 2016], ... 'month': [2, 3], ... 'day': [4, 5]}) >>> pd.to_datetime(df) 0 2015-02-04 1 2016-03-05 dtype: datetime64[ns] Passing ``infer_datetime_format=True`` can often-times speedup a parsing if its not an ISO8601 format exactly, but in a regular format. >>> s = pd.Series(['3/11/2000', '3/12/2000', '3/13/2000'] * 1000) >>> s.head() 0 3/11/2000 1 3/12/2000 2 3/13/2000 3 3/11/2000 4 3/12/2000 dtype: object >>> %timeit pd.to_datetime(s, infer_datetime_format=True) # doctest: +SKIP 100 loops, best of 3: 10.4 ms per loop >>> %timeit pd.to_datetime(s, infer_datetime_format=False) # doctest: +SKIP 1 loop, best of 3: 471 ms per loop Using a unix epoch time >>> pd.to_datetime(1490195805, unit='s') Timestamp('2017-03-22 15:16:45') >>> pd.to_datetime(1490195805433502912, unit='ns') Timestamp('2017-03-22 15:16:45.433502912') .. warning:: For float arg, precision rounding might happen. To prevent unexpected behavior use a fixed-width exact type. Using a non-unix epoch origin >>> pd.to_datetime([1, 2, 3], unit='D', ... origin=pd.Timestamp('1960-01-01')) DatetimeIndex(['1960-01-02', '1960-01-03', '1960-01-04'], dtype='datetime64[ns]', freq=None) **Non-convertible date/times** If a date does not meet the `timestamp limitations <https://pandas.pydata.org/pandas-docs/stable/user_guide/timeseries.html #timeseries-timestamp-limits>`_, passing ``errors='ignore'`` will return the original input instead of raising any exception. Passing ``errors='coerce'`` will force an out-of-bounds date to :const:`NaT`, in addition to forcing non-dates (or non-parseable dates) to :const:`NaT`. >>> pd.to_datetime('13000101', format='%Y%m%d', errors='ignore') datetime.datetime(1300, 1, 1, 0, 0) >>> pd.to_datetime('13000101', format='%Y%m%d', errors='coerce') NaT .. _to_datetime_tz_examples: **Timezones and time offsets** The default behaviour (``utc=False``) is as follows: - Timezone-naive inputs are converted to timezone-naive :class:`DatetimeIndex`: >>> pd.to_datetime(['2018-10-26 12:00', '2018-10-26 13:00:15']) DatetimeIndex(['2018-10-26 12:00:00', '2018-10-26 13:00:15'], dtype='datetime64[ns]', freq=None) - Timezone-aware inputs *with constant time offset* are converted to timezone-aware :class:`DatetimeIndex`: >>> pd.to_datetime(['2018-10-26 12:00 -0500', '2018-10-26 13:00 -0500']) DatetimeIndex(['2018-10-26 12:00:00-05:00', '2018-10-26 13:00:00-05:00'], dtype='datetime64[ns, pytz.FixedOffset(-300)]', freq=None) - However, timezone-aware inputs *with mixed time offsets* (for example issued from a timezone with daylight savings, such as Europe/Paris) are **not successfully converted** to a :class:`DatetimeIndex`. Instead a simple :class:`Index` containing :class:`datetime.datetime` objects is returned: >>> pd.to_datetime(['2020-10-25 02:00 +0200', '2020-10-25 04:00 +0100']) Index([2020-10-25 02:00:00+02:00, 2020-10-25 04:00:00+01:00], dtype='object') - A mix of timezone-aware and timezone-naive inputs is converted to a timezone-aware :class:`DatetimeIndex` if the offsets of the timezone-aware are constant: >>> from datetime import datetime >>> pd.to_datetime(["2020-01-01 01:00 -01:00", datetime(2020, 1, 1, 3, 0)]) DatetimeIndex(['2020-01-01 01:00:00-01:00', '2020-01-01 02:00:00-01:00'], dtype='datetime64[ns, pytz.FixedOffset(-60)]', freq=None) | Setting ``utc=True`` solves most of the above issues: - Timezone-naive inputs are *localized* as UTC >>> pd.to_datetime(['2018-10-26 12:00', '2018-10-26 13:00'], utc=True) DatetimeIndex(['2018-10-26 12:00:00+00:00', '2018-10-26 13:00:00+00:00'], dtype='datetime64[ns, UTC]', freq=None) - Timezone-aware inputs are *converted* to UTC (the output represents the exact same datetime, but viewed from the UTC time offset `+00:00`). >>> pd.to_datetime(['2018-10-26 12:00 -0530', '2018-10-26 12:00 -0500'], ... utc=True) DatetimeIndex(['2018-10-26 17:30:00+00:00', '2018-10-26 17:00:00+00:00'], dtype='datetime64[ns, UTC]', freq=None) - Inputs can contain both naive and aware, string or datetime, the above rules still apply >>> from datetime import timezone, timedelta >>> pd.to_datetime(['2018-10-26 12:00', '2018-10-26 12:00 -0530', ... datetime(2020, 1, 1, 18), ... datetime(2020, 1, 1, 18, ... tzinfo=timezone(-timedelta(hours=1)))], ... utc=True) DatetimeIndex(['2018-10-26 12:00:00+00:00', '2018-10-26 17:30:00+00:00', '2020-01-01 18:00:00+00:00', '2020-01-01 19:00:00+00:00'], dtype='datetime64[ns, UTC]', freq=None) """ if arg is None: return None if origin != "unix": arg = _adjust_to_origin(arg, origin, unit) tz = "utc" if utc else None convert_listlike = partial( _convert_listlike_datetimes, tz=tz, unit=unit, dayfirst=dayfirst, yearfirst=yearfirst, errors=errors, exact=exact, infer_datetime_format=infer_datetime_format, ) result: Timestamp | NaTType | Series | Index if isinstance(arg, Timestamp): result = arg if tz is not None: if arg.tz is not None: result = arg.tz_convert(tz) else: result = arg.tz_localize(tz) elif isinstance(arg, ABCSeries): cache_array = _maybe_cache(arg, format, cache, convert_listlike) if not cache_array.empty: result = arg.map(cache_array) else: values = convert_listlike(arg._values, format) result = arg._constructor(values, index=arg.index, name=arg.name) elif isinstance(arg, (ABCDataFrame, abc.MutableMapping)): result = _assemble_from_unit_mappings(arg, errors, tz) elif isinstance(arg, Index): cache_array = _maybe_cache(arg, format, cache, convert_listlike) if not cache_array.empty: result = _convert_and_box_cache(arg, cache_array, name=arg.name) else: result = convert_listlike(arg, format, name=arg.name) elif is_list_like(arg): try: # error: Argument 1 to "_maybe_cache" has incompatible type # "Union[float, str, datetime, List[Any], Tuple[Any, ...], ExtensionArray, # ndarray[Any, Any], Series]"; expected "Union[List[Any], Tuple[Any, ...], # Union[Union[ExtensionArray, ndarray[Any, Any]], Index, Series], Series]" argc = cast( Union[list, tuple, ExtensionArray, np.ndarray, "Series", Index], arg ) cache_array = _maybe_cache(argc, format, cache, convert_listlike) except OutOfBoundsDatetime: # caching attempts to create a DatetimeIndex, which may raise # an OOB. If that's the desired behavior, then just reraise... if errors == "raise": raise # ... otherwise, continue without the cache. from pandas import Series cache_array = Series([], dtype=object) # just an empty array if not cache_array.empty: result = _convert_and_box_cache(argc, cache_array) else: result = convert_listlike(argc, format) else: result = convert_listlike(np.array([arg]), format)[0] if isinstance(arg, bool) and isinstance(result, np.bool_): result = bool(result) # TODO: avoid this kludge. # error: Incompatible return value type (got "Union[Timestamp, NaTType, # Series, Index]", expected "Union[DatetimeIndex, Series, float, str, # NaTType, None]") return result # type: ignore[return-value] # mappings for assembling units _unit_map = { "year": "year", "years": "year", "month": "month", "months": "month", "day": "day", "days": "day", "hour": "h", "hours": "h", "minute": "m", "minutes": "m", "second": "s", "seconds": "s", "ms": "ms", "millisecond": "ms", "milliseconds": "ms", "us": "us", "microsecond": "us", "microseconds": "us", "ns": "ns", "nanosecond": "ns", "nanoseconds": "ns", } def _assemble_from_unit_mappings(arg, errors: DateTimeErrorChoices, tz): """ assemble the unit specified fields from the arg (DataFrame) Return a Series for actual parsing Parameters ---------- arg : DataFrame errors : {'ignore', 'raise', 'coerce'}, default 'raise' - If :const:`'raise'`, then invalid parsing will raise an exception - If :const:`'coerce'`, then invalid parsing will be set as :const:`NaT` - If :const:`'ignore'`, then invalid parsing will return the input tz : None or 'utc' Returns ------- Series """ from pandas import ( DataFrame, to_numeric, to_timedelta, ) arg = DataFrame(arg) if not arg.columns.is_unique: raise ValueError("cannot assemble with duplicate keys") # replace passed unit with _unit_map def f(value): if value in _unit_map: return _unit_map[value] # m is case significant if value.lower() in _unit_map: return _unit_map[value.lower()] return value unit = {k: f(k) for k in arg.keys()} unit_rev = {v: k for k, v in unit.items()} # we require at least Ymd required = ["year", "month", "day"] req = sorted(set(required) - set(unit_rev.keys())) if len(req): _required = ",".join(req) raise ValueError( "to assemble mappings requires at least that " f"[year, month, day] be specified: [{_required}] is missing" ) # keys we don't recognize excess = sorted(set(unit_rev.keys()) - set(_unit_map.values())) if len(excess): _excess = ",".join(excess) raise ValueError( f"extra keys have been passed to the datetime assemblage: [{_excess}]" ) def coerce(values): # we allow coercion to if errors allows values = to_numeric(values, errors=errors) # prevent overflow in case of int8 or int16 if
is_integer_dtype(values)
pandas.core.dtypes.common.is_integer_dtype
import json import sys import pandas as pd from pandas import DataFrame from db.sql import dal from flask import request import tempfile import tarfile import csv import shutil import subprocess from flask import send_from_directory from annotation.main import T2WMLAnnotation from db.sql.kgtk import import_kgtk_dataframe from api.variable.delete import VariableDeleter from api.metadata.main import DatasetMetadataResource, VariableMetadataResource from api.metadata.metadata import DatasetMetadata from api.metadata.update import DatasetMetadataUpdater from annotation.validation.validate_annotation import ValidateAnnotation from time import time from datetime import datetime from typing import Dict, List, Any, Union, NoReturn, Optional, Tuple import traceback class AnnotatedData(object): def __init__(self): self.ta = T2WMLAnnotation() self.va = ValidateAnnotation() self.vmr = VariableMetadataResource() self.vd = VariableDeleter() def process(self, dataset, is_request_put=False): l = time() validate = request.args.get('validate', 'true').lower() == 'true' files_only = request.args.get('files_only', 'false').lower() == 'true' create_if_not_exist = request.args.get('create_if_not_exist', 'false').lower() == 'true' return_tsv = request.args.get('tsv', 'false').lower() == 'true' # check if the dataset exists s = time() dataset_qnode = dal.get_dataset_id(dataset) print(f'time take to get dataset: {time() - s} seconds') if not create_if_not_exist and not dataset_qnode: print(f'Dataset not defined: {dataset}') return {'Error': 'Dataset not found: {}'.format(dataset)}, 404 file_name = request.files['file'].filename t2wml_yaml, metadata_edges = None, None if 't2wml_yaml' in request.files: request.files['t2wml_yaml'].seek(0) t2wml_yaml = str(request.files['t2wml_yaml'].read(), 'utf-8') if not (file_name.endswith('.xlsx') or file_name.endswith('.csv')): return {"Error": "Please upload an annotated excel file or a csv file " "(file name ending with .xlsx or .csv)"}, 400 if file_name.endswith('.xlsx'): df =
pd.read_excel(request.files['file'], dtype=object, header=None)
pandas.read_excel
from sklearn.manifold import TSNE from clustering import silhouette as sil from data_processing import MulticlusteringExperimentUtils as expUtils # Keep the clustering experiments that involve outliers here from clustering.KMeansVariations import kMeans_baseline, kMeans_baseline_high_iteration, kMeans_baseline_random_init, \ kMeans_baseline_4_clusters, kMeans_baseline_3_clusters, kMeans_baseline_2_clusters, kMeans_baseline_2_clusters_low_iter,\ kMeans_baseline_2_clusters_high_iter, kMeans_baseline_highest_iteration, kMeans_baseline_highest_iteration_2_clusters,\ kMeans_baseline_5_clusters, kMeans_baseline_3_clusters_random_high_iter, kMeans_baseline_3_clusters_random_med_iter from clustering.tsne import makeTSNEPlot import pandas as pd # --- Remove all of the outliers for the big features ---- # average hold time from data_processing.CleanDataUtils import feature_set, feature_set_complete_vectors_only,feature_set_more_even_vectors, feature_set_3_labels_completeSamplesOnly,feature_set_3_labels_AllSamples, feature_set_4049_reduced from data_processing.dataUtils import getColumnZScores, removeOutliersByZScore def removeOutliersAndNormalizeData(feature_set_input, threshold): feature1 = 'avgSeekTime' feature2 = 'avgHoldTime' feature3 = 'averageNgramTime' feature_set_outliers_removed = feature_set_input feature_set_outliers_removed = getColumnZScores(pd.DataFrame(feature_set_outliers_removed), feature1) feature_set_outliers_removed = getColumnZScores(pd.DataFrame(feature_set_outliers_removed), feature2) feature_set_outliers_removed = getColumnZScores(pd.DataFrame(feature_set_outliers_removed), feature3) feature_set_outliers_removed = removeOutliersByZScore(feature_set_outliers_removed, feature1, threshold) feature_set_outliers_removed = removeOutliersByZScore(feature_set_outliers_removed, feature2, threshold) feature_set_outliers_removed = removeOutliersByZScore(feature_set_outliers_removed, feature3, threshold) feature_set_outliers_removed = expUtils.normalizeLabeledData(
pd.DataFrame(feature_set_outliers_removed)
pandas.DataFrame
from numpy import * import pandas as pd import datetime from datetime import timedelta def sum_duplicated(): fields = ['DATE', 'DAY_OFF', 'WEEK_END', 'DAY_WE_DS', 'ASS_ASSIGNMENT', 'CSPL_RECEIVED_CALLS' ] # selectionne les colonnes à lire x=pd.read_csv("data/train_2011_2012_2013.csv", sep=";", usecols=fields) # LECTURE pd.DataFrame(x.groupby(('ASS_ASSIGNMENT', 'DATE', 'WEEK_END', 'DAY_WE_DS'), squeeze =False).sum()).to_csv("data/trainPure.csv", sep=';', encoding='utf_8') def preprocessTOTAL(selectAss): fields = ['DATE', 'DAY_OFF', 'WEEK_END', 'DAY_WE_DS', 'ASS_ASSIGNMENT', 'CSPL_RECEIVED_CALLS' ] # selectionne les colonnes à lire x=pd.read_csv("data/trainPure.csv", sep=";", usecols=fields) # LECTURE du fichier de train, #################################################" Pour X if(selectAss != False):#selection x = x[x['ASS_ASSIGNMENT'] == selectAss] del x['ASS_ASSIGNMENT'] x['YEAR'] = x['DATE'].str[0:4] x['MONTH'] = x['DATE'].str[5:7] x['DAY'] = x['DATE'].str[8:10] x['HOUR'] = x['DATE'].str[-12:-8] x['DATE'] = pd.to_datetime(x['DAY']+'/'+x['MONTH']+'/'+x['YEAR']) ##############pour avoir le call de 7jours avant en 's7' tmp = pd.DataFrame() tmp['HOUR'] = x['HOUR'] tmp['DATE'] = x['DATE']- timedelta(days=7) #tmp.join(x[['DATE','HOUR', 'CSPL_RECEIVED_CALLS' ]], on=['DATE','HOUR'], how='left') tmp[['DATE','HOUR', 's7' ]]=pd.merge(tmp[['DATE','HOUR']],x[['DATE','HOUR', 'CSPL_RECEIVED_CALLS' ]], on=['HOUR', 'DATE'], how='left') x=pd.concat([x, tmp['s7']], axis=1) x['s7'][pd.isnull(x['s7'])]=x['CSPL_RECEIVED_CALLS'][pd.isnull(x['s7'])] file = ['joursFeries', 'vacances'] for f in file: jf =pd.read_csv("data/"+f+".csv", sep=";") for n in list(jf): x[n]= x['DATE'].apply(lambda x: x.strftime('%d/%m/%Y')).isin(jf[n]) #######################################################pour xTest xTest=pd.read_csv("data/submission.txt", sep="\t") # LECTURE del xTest['prediction'] souvenir = xTest.copy() if(selectAss != False): xTest = xTest[xTest['ASS_ASSIGNMENT'] == selectAss] souvenir = souvenir[souvenir['ASS_ASSIGNMENT'] == selectAss] del xTest['ASS_ASSIGNMENT'] xTest['YEAR'] = xTest['DATE'].str[0:4] xTest['MONTH'] = xTest['DATE'].str[5:7] xTest['DAY'] = xTest['DATE'].str[8:10] xTest['HOUR'] = xTest['DATE'].str[-12:-8] xTest['DATE'] = pd.to_datetime(xTest['DAY']+'/'+xTest['MONTH']+'/'+xTest['YEAR']) tmp =
pd.DataFrame()
pandas.DataFrame
#%% # ANCHOR IMPORTS import sys import pandas as pd, numpy as np import pickle import re from sklearn import feature_extraction , feature_selection from scipy.sparse import csr_matrix, hstack from sklearn.feature_extraction.text import CountVectorizer from sklearn.feature_extraction import DictVectorizer from sklearn.preprocessing import Normalizer from tqdm.autonotebook import trange, tqdm import swifter # Libraries for feature engineering. import string from collections import Counter # not necessary? #from nnsplit import NNSplit import spacy# .tokenizer.tokenize from spellchecker import SpellChecker # Other neat features. from nltk.metrics.distance import edit_distance from lexicalrichness import LexicalRichness import syllables import itertools import textstat # Stats from scipy.stats import chisquare #from statistics import mean #%% Get spacy docs and save them to data to speed up development. def get_docs(data, text_col='text_clean'): nlp = spacy.load('en_core_web_sm') nlp.enable_pipe("senter") data['docs'] = data[tect_col].apply(lambda x: nlp(x)) #%% def listify(series, feature_name=str): return [{feature_name: x[1]} for x in series.items()] #%% # Extract Baseline feature # Character trigrams (morphological/lexical/semantic?). def ngrams(train, test, params): """Extract character ngrams. Args: train (list): list of texts to fit the vectorizer. test (list): list of texts to transform to feature space. params (dict): parameters for the vectorizer construction Returns: [type]: [description] """ vectorizer = CountVectorizer(lowercase=params['ngrams']['lowercase'], ngram_range=params['ngrams']['size'], # experiment with ranges, e.g. ngram_range=(3,3) analyzer=params['ngrams']['type'], #, also try "char_wb" max_features=params['ngrams']['max_vocab']) # max_features=10000 # fit count vecotorizer to preprocessed tweets. #vectorizer.fit(train) # Transform into input vectors for train and test data. train_vectors = vectorizer.fit_transform(train) # using fit_transform due to better implementation. #train_vectors = vectorizer.transform(train) #.toarray() test_vectors = vectorizer.transform(test) #.toarray() # Inspect with vectorizer.get_feature_names() and .toarray() #inverse = vectorizer.inverse_transform(train) #feature_names = vectorizer.get_feature_names() #print(f'Train ({type(train_vectors)}) feature matrix has shape: {train_vectors.shape}') #print(f'Test ({type(test_vectors)}) feature matrix has shape: {test_vectors.shape}') #return vectorizer return vectorizer, train_vectors , test_vectors #return inverse #%% ANCHOR EXTRACT LIWC def parse_liwc(file, **args): """Parse a (left) aligned version of the LIWC lexicon. Args: file (str): filepath to lexcion (excel). Returns: DataFrame: df or dict """ df = pd.read_excel(file, skiprows=2) # Handling merged columns in file ### Adapted from https://stackoverflow.com/a/64179518 ### df.columns = df.columns.to_series()\ .replace('Unnamed:\s\d+', np.nan, regex=True).ffill().values # Multindex to represent multiple columns for some categories. df.columns = pd.MultiIndex.from_tuples([(x, y)for x, y in zip(df.columns, df.columns.to_series().groupby(level=0).cumcount())]) ### Accessed 26-04-2021 ### # d = data.to_dict(orient='list') ### Adapted from https://stackoverflow.com/a/50082926 # dm = data.melt() # data = dm.set_index(['variable', dm.groupby('variable').cumcount()]).sort_index()['value'].unstack(0) ### Accessed 26-04-2021 ### # Concat the terms by column. # d = dict() #d = {column: value for key, value in dd.items()} # for ki, wl in dd.items(): # nl = [] # k, i = ki # # for w in wl: # # if w not in nl: # # d[k].append(wl) # if k in d: # d[k].append(wl) # else: # d[k] = wl ### Solution from https://stackoverflow.com/a/48298420 ### # TODO experiment with not sorting the index? or reesrorting columns to mach the multiindex or just original df.columns. df = df.stack().sort_index(level=1).reset_index(drop=True) ### Accessed 26-04-2021 ### # Check that merged columns have the right number of terms. # sum(isinstance(x, str) for x in terms['Funct']) return df.to_dict(orient='list') #%% # Extract LIWC matches (lexical/semantic) def liwc_match(parsed, d, extract=False, text_col='text_clean'): """Search a corpus for matches against LIWC (2007) categories. Args: parsed (DataFrame): a pandas df with the all categories of LIWC prepared. d (str): a filepath to a pickle file with a corpus to search. extract (bool, optional): Switch specifying whether or not to return a Dict for feature extraction or feature inspection/analysis. Defaults to False. Returns: dict: a dict with {liwc_cat1...n : count} for each datapoint in the corpus OR a dict a, a dataFrame and a Series with results of searching the categories against the matches (absolute counts per datapoint (as dict and DF) totals per category (Series)). """ # load data to search. # Could do Series.count(regex) or df[clean_text] -> (joined) list? if isinstance(d, pd.DataFrame) == False: # the ... analysis case. data = pd.read_pickle(d) text = list(d) # a single row/tweet? if extract == True: # The extract case data = d text = data[text_col] # Dict for search results. results = dict() pats = dict() # save patterns to dict for debugging. # Loop through category-termlist pairs. for cat, terms in tqdm(parsed.items()): # Remove nans from term lists. terms = [term.strip(' ') for term in terms if isinstance(term, str)] # Compile re pattern from term list. #pat = re.compile('|'.join(terms), flags=re.MULTILINE) #pat = re.compile('|'.join( # [r'\b' + t[:-1] if t.endswith('*') else r'\b' + t + r'\b' for t in #terms])) ### Adapted from https://stackoverflow.com/a/65140193 ### pat = re.compile('|'.join([r'\b' + t[:-1] + r'\w*' if t.endswith('*') else r'\b' + t + r'\b' for t in terms]) , flags=re.MULTILINE | re.IGNORECASE) ### Accessed 27-04-2021 ### pats[cat] = pat #i, char = enumerate(j_terms) # for term in terms: # i = 0 # try: # pat = re.compile(term) # #print(pat, counter,'\n') # i +=1 # except: # print('error here:\n'.upper(),pat, i) # Aggregate matches per category into dict. storing tweet id's preserved in the source data. #results[cat] = pat.finditer(text.values) # For that, join values into list of lists -> re.match -> see below # results[cat][re.match(pat)] = re.finditer(pat, row_list) # if extract == True: You can't normalize since this isn't tokenized. # results[cat] = text.apply(lambda x: x.str.count(pat) / len(x)) # else: results[cat] = text.str.count(pat) #results[cat] = text.swifter.apply(lambda x: re.finditer(pat, x)) # Store results in DataFrame df_results = pd.DataFrame.from_dict(results) # Totals per category df_totals = df_results.sum().sort_values(ascending=False) if extract == True: # Export results to {index : {cat : count}...} for easy vectorization. results_per_row = df_results.to_dict(orient='records') # or orient='index'? -> DictVectorizer return results_per_row return {'results' : {'matches_dict' : results, 'matches_df' : df_results, 'matches_total': df_totals }, 'regex_pats' : pats } #%% def norm_freqs(data, expression, count_name=str, normalize=True, analyze=True): """Get frequencies (normalized = optional) of a regex pattern in a Series with one or more strings. Args: data (DataFrame): a dataframe with texts to extract frequencies from. expression (re.compile): a regex pattern to count occurrences of in each text. count_name (str, optional): a name for the counted feature. Defaults to str. normalize (bool, optional): [description]. Defaults to True. Returns: list: list of dicts with key = frequency name, value = frequency. """ # List to store frequencies # freqList = list() # Loop through each entry in the list of strings. # for e in stringList: # # Join to a regular string # text = ' '.join(e) # # Construct a dict for each entry with freuncies. # c = {count_name : len([char for char in text if char in expression])} # Get frequencies of a regex in a pandas column, normalize if set to True. c = data.apply(lambda x: len(re.findall( expression, x))/len(x) if normalize == True else len(re.findall(expression, x))) ### Adapted from https://stackoverflow.com/a/45452966 ### # Cast frequencies Series to list of dicts. cList = [{count_name: x[1]} for x in c.items()] ### Accessed 10-05-2021 ### if analyze == True: return cList else: return c def binary_freq(data, expression, feature_name=str, analyze=True): """Search data for occurrences of a binary feature as a regex. Args: data (pd.Series): a series with text instances. expression (re.compile): a regex or string to search for. feature_name (str, optional): a name for the feature to extract. Defaults to str. Returns: list: a list with a dict mapping feature name to 1 or 0 (true/false) based on occurrence in texts. """ b = data.str.contains(expression).astype(int) # cast bools to 0/1 if analyze == True: bList = [{feature_name: x[1]} for x in b.items()] return bList else: return b #%% ANCHOR extract character and word level features # Extract character-level features (lexical/morphological). def get_cl(data, text_col='text_clean', analyze=True): # 0. Cast data text col .to_list() # 1. Normalized punctation frequency. # # Using pandas instead of lists + counter + dicts. # df_results = pd.DataFrame({'text': textList}) # #p_pat = re.compile(r'[!"\$%&\'()*+,\-.\/:;=#@?\[\\\]^_`{|}~]*') # p_pat = re.compile(re.escape(string.punctuation)) # df_results['punct'] = df_results.text.str.count(p_pat) # the whole series #train['text_clean'].str.count(p_pat) df_punc_freq = data[text_col].apply(lambda x: len([char for char in ' '.join(x) if char in string.punctuation]) / len(' '.join(x))) #return punc_freq, df_punc_freq #df_punc_freq = pd.DataFrame.from_records(punc_freq) # Add to cl dict. #cl_results['punc_freq'] = punc_freq #2. Specific characters (also normalized) # 2.1 digits d_pat = re.compile(r'\d' , re.M) df_digits = norm_freqs(data[text_col], d_pat, count_name='digit_freq',normalize=True, analyze=False) #return df_digits # 2.2 Whitespace chars. ws_pat = re.compile(r' ', re.M) # NOTE just using actual whitespace instead of \s df_whitespaces = norm_freqs(data[text_col], ws_pat, count_name='whitespace_freq', normalize=True, analyze=False) # 2.3 tab characters NOTE Doesn't occur in either corpus. # tab_pat = re.compile(r'\t', re.M) # tabs = norm_freqs(data[text_col], tab_pat, count_name='tab_freqs', normalize=True) # 2.4 line break characters br_pat = re.compile(r'[\r\n\f]', re.M) df_lbreaks = norm_freqs(data[text_col], br_pat, count_name='line_break_freq', normalize=True, analyze=False) # 2.5 Upperchase chars (per all chars) up_pat = re.compile(r'[A-Z]', re.M) # Decide whether to be greedy about *all* uppercase chars or to be lazy (below). Also, @USER mentions are counted now. Can be excluded with \b(?!USER\b)[A-Z]. Try doing [^a-z\W] - caret negates the range of chars. #up_pat = re.compile(r'(?<![a-z])*[A-Z](?![a-z])*' , re.M) # Only count chars if they are not a one-off in the beginning of words. df_upchars = norm_freqs(data[text_col], up_pat, count_name= 'upper_char_freq', normalize=True, analyze=False) # 2.6 Special chars other than punctuation. NOTE Doesn't make much sense when using a full punctuaion set.. spc_pat = re.compile(r"[^a-z \.,!?':;\s]", re.M) df_spc = norm_freqs(data[text_col], spc_pat, count_name="special_characters", analyze=False) #3. Repeated characters (binary features) # NOTE if you want counts of each repeated char, consider just defining it with regexes and then using norm_freqs, normalize=False? # 3.1 question marks quest_pat = re.compile(r'\?{2,}', re.M) df_rep_quest = binary_freq(data[text_col] , quest_pat, feature_name='quest_rep', analyze=False) # 3.2 periods (ellipsis) per_pat = re.compile(r'\.{2,}', re.M) df_rep_per = binary_freq(data[text_col] , per_pat, feature_name='period_rep', analyze=False) # 3.3 exclamation marks excl_pat = re.compile(r'!{2,}', re.M) df_rep_excl = binary_freq(data[text_col] , excl_pat, feature_name='excl_rep', analyze=False) # 4 Contains equal signs eq_pat = re.compile(r'=', re.M) df_equals = binary_freq(data[text_col] , eq_pat , feature_name='equals', analyze=False) # 5 Quotes in chars #quotes = data[text_col].apply(lambda x: len(re.findall(quot_pat, x)) / len(x)) # per character --- works. #quotes_char = [{'quotes' : x[1]} for x in qoutes.items()] if analyze == True: #punc_freq = listify(df_punc_freq, feature_name='char_punc_freq') # new Alternative to punc_freq with dict comprehension. textList = data[text_col].to_list() ### Old approach to punc_freqs for analysis. cl_results = dict() # dict to store results. punc_freq = list() for e in textList: text = ' '.join(e) # Build dict with counts of all punct characters. # The first c example does it per punctuation character, the second for all. # Each count is normalized by total number of chars in the each string. # NOTE not using regexes here. Single quotes/apostrophes/contractions are counted as well. #c = {char:count/len(text) for char, count in Counter(text).items() #if char in string.punctuation} # This should generalize to regex matches. c = {'char_punc_freq': len([char for char in text if char in string.punctuation])/len(text)} punc_freq.append(c) digits = norm_freqs(data[text_col], d_pat, count_name='digit_freq',normalize=True) whitespaces = norm_freqs(data[text_col], ws_pat, count_name='whitespace_freq', normalize=True) lbreaks = norm_freqs(data[text_col], br_pat, count_name='line_break_freq', normalize=True) upchars = norm_freqs(data[text_col], up_pat, count_name= 'upper_char_freq', normalize=True) spc = norm_freqs(data[text_col], spc_pat, count_name="special_characters") rep_quest = binary_freq(data[text_col] , quest_pat, feature_name='quest_rep') rep_per = binary_freq(data[text_col] , per_pat, feature_name='period_rep') rep_excl = binary_freq(data[text_col] , excl_pat, feature_name='excl_rep') equals = binary_freq(data[text_col] , eq_pat , feature_name='equals') # Store results cl_results['char_punc_freq'] = punc_freq cl_results['digit_freq'] = digits cl_results['whitespace_freq'] = whitespaces #cl_results['tab_freq'] = tabs does not occur in either corpus. cl_results['linebreak_freq'] = lbreaks cl_results['uppercased_char_freq'] = upchars cl_results['special_char_freq'] = spc cl_results['repeated_questionmark'] = rep_quest cl_results['repeated_periods'] = rep_per cl_results['repeated_exclamation'] = rep_excl cl_results['contains_equals'] = equals return cl_results #punc_freq # (punc_freq , cl_results) # Store results as df for much easier vectorization... else: cl_results_df = pd.DataFrame() cl_results_df['char_punc_freq'] = df_punc_freq #✅ #pd.concat(cl_results_df) # Store results cl_results_df['digit_freq'] = df_digits #✅ cl_results_df['whitespace_freq'] = df_whitespaces #✅ #cl_results['tab_freq'] = tabs does not occur in either corpus. cl_results_df['linebreak_freq'] = df_lbreaks #✅ cl_results_df['uppercased_char_freq'] = df_upchars #✅ cl_results_df['special_char_freq'] = df_spc #✅ cl_results_df['repeated_questionmark'] = df_rep_quest #✅ cl_results_df['repeated_periods'] = df_rep_per #✅ cl_results_df['repeated_exclamation'] = df_rep_excl #✅ cl_results_df['contains_equals'] = df_equals #✅ return cl_results_df #%% # Debugging # test_df = train.iloc[:50,:] # test = get_cl(test_df, text_col='text_clean', analyze=False) # Extract word-level features (lexical/morphological) def get_wl(data, text_col='text_clean', analyze=False, docs=[]): # SpaCy pipe for rule based sentence splitting. #blank_nlp = spacy.blank('en') # spacy.load('en_core_web_sm') # sentencizer = blank_nlp.add_pipe("sentencizer") # morphologizer = blank_nlp.add_pipe('morphologizer') # blank_nlp.initialize() # # print(nlp.pipe_names) print('Configuring spacy for word level') nlp = spacy.load('en_core_web_sm', disable=["lemmatizer", 'ner']) # disable parser in favor of senter and sentencizer due to speed https://spacy.io/models nlp.disable_pipe("parser") nlp.enable_pipe("senter") # Load spellchecker spell = SpellChecker() # load exceptions to spellchecker (Twitter, covid specifc) try: spell.word_frequency.load_text_file('./utils/spell_additions.txt') except: pass # 1 Get lengths (total/avg words, sentence) # rewrite features as attributes of Lengths objects? # class Lengths: # def __init__(self, first_feat, second_feat): # pass #textList = data[text_col].to_list() wl_results = dict() # print('TOKENIZING WORD-LEVEL FEATURES') # data to docs if len(docs) <= 0: docs = data[text_col].swifter.apply(lambda x: nlp(x)) #assert len(docs) == len(data[text_col]) # get list of sentences. sents_c = docs.apply(lambda x: [s for s in x.sents]) # Words only (including numbers and @mentions) sents_w = docs.apply(lambda x: [[t.text for t in s if\ t.is_punct == False and t.is_space == False]\ for s in x.sents]) # list of *word* tokens in entire tweet. toks = docs.apply(lambda x: [t.text for t in x if t.is_punct == False and\ t.is_space == False]) # could have used data['tokens_clean] # alphabetic tokens only. (for spell checking) toks_alpha = docs.apply(lambda x: [t.text for t in x if t.is_alpha == True]) # Debugging getting empty lists of alphabetic tokens. #return pd.DataFrame({'tokens' : toks, 'alpha_tokens': toks_alpha}) toks_morph = docs.apply( lambda x: [t for t in x if t.is_alpha == True]) # print('\n GETTING WORD-LEVEL FEATURES') # 1.1 total length of tweet in words # c = {'total_words' : int} # for doc in docs: w_total_series = toks.map(len) # 1.2 avg word length awl = toks.apply(lambda x: sum(len(w) for w in x) / len(x)) # build dict with keys from list contained in feature_params value for lexical features > word_level. Check if they are there and populate them with the dicts below accordingly. Else don't. # 1.3.1 avg sentence length (words) asl_w = sents_w.apply(lambda x: sum(len(s) for s in x) / len(x)) # 1.3.2 avg sentence length (characters) #asl_c = apply(lambda x: sum([len(''.join(s.text)) for s in x])) asl_c = sents_c.apply(lambda x: sum(len(''.join(s.text)) for s in x) / len(x)) # 2.1 number of uppercased words. uws = toks_alpha.apply(lambda x: len([t for t in x if t.isupper() == True]) / len(x) if len(x) > 0 else 0.0) # 2.2 number of short words # use len of token <=3 sws = toks_alpha.apply(lambda x: len([t for t in x if len(t) <=3]) / len(x) if len(x) > 0 else 0.0) # 2.3 number of elongated words # use regex \b\w{3,}\b elw_pat = re.compile(r'(\w)\1{2,}', re.M) elws = toks_alpha.apply(lambda x: len([t for t in x if elw_pat.search(t)]) / len(x) if len(x) > 0 else 0.0) # 2.4 number of number-like tokens (both digits and numerals) nss = docs.apply(lambda x: len([t for t in x if t.like_num == True]) / len(x)) # 2.5 frequency of specific verb tenses pst = toks_morph.apply(lambda x: [t.morph for t in x if t.morph.get('Tense') == ['Past']]).map(len).divide(toks_alpha.map(len)) prs = toks_morph.apply(lambda x: [t.morph for t in x if t.morph.get('Tense') == ['Pres']]).map(len).divide(toks_alpha.map(len)) #NOTE using series.divide instead for if/else check with regular might give a problem with vectorizers. adj_pos = toks_morph.apply(lambda x: [t.morph for t in x if t.morph.get('Degree') == ['Pos']]).map(len).divide(toks_alpha.map(len)) adj_c_s = toks_morph.apply(lambda x: [t.morph for t in x if t.morph.get('Degree') == ['Cmp'] or t.morph.get('Degree') == ['Sup']]).map(len).divide(toks_alpha.map(len)) # Here you could add future tense, mood etc. # 2.6 Frequency of OOV words (according to spaCy model) # token.is_oov # 3. Frequencies of emotes/jis. e = data['emotes'].apply(lambda x: len(x[0] + x[1])).divide(toks.map(len)) # normalized by tokens. # 4. Non-standard spelling. Reconsider including this. It mostly captures proper names and acronyms if it has to be this fast. sc = toks_alpha.apply(lambda x: spell.unknown(x)).map(len).divide(toks_alpha.map(len)) # 5. number of quoted words # NOTE normalized by words (in match / in tweet) quot_pat = re.compile(r"(\".+?\"|\B'.+?'\B)") # should this be quot_pat = re.compile(r("\".+?\"|\B'.+?'\B")) # #quotes = data[text_col].apply(lambda x: re.findall(quot_pat, x).split(' ')).map(len).divide(toks_alpha.map(len)) # per word (split on whitespace). print('Tokenizing quote spans') quotes = data[text_col].swifter.apply(lambda x: [t for t in nlp(' '.join(re.findall(quot_pat, x))) if t.text.isalnum()]).map(len).divide(toks.map(len)) #return pd.DataFrame({'org_text': data[text_col],'alpha_toks': toks_alpha, 'quoted_toks' : quotes, 'quoted_lens' : quotes_lens}) #quotes = data[text_col].apply(lambda x: re.findall(quot_pat, x)).map(len).divide(toks_alpha.map(len)) # not finished. need to tokenize matches. #quotes = sents_c.apply(lambda x: len([re.findall(quot_pat, s) for s in x]) / len(x))# per sentence - doesn't work. # 6. Vocab richness/complexity # 6.1 Type-token ratio. tt = toks_alpha.apply(lambda x: len(set(x)) / len(x) if len(x) > 0 else 0.0) # could use Counter instead of set() # 6.2.1 Hapax legomena ### Adapted from https://stackoverflow.com/a/1801676 ### hlg = toks_alpha.apply(lambda x: len([word for word, count in Counter(map(str.lower, x)).items() if count == 1]) / len(x) if len(x) > 0 else 0.0) # could also lower with list comprehension. ### accessed 13-05-2021 ### # 6.2.2 Hapax dislegomena (words that occur twice only) hdlg = toks_alpha.apply(lambda x: len([word for word, count in Counter(map(str.lower, x)).items() if count == 2]) / len(x) if len(x) > 0 else 0.0) # Here you would implement complexity measures #- Brunet's W Measure #- Yule's K Characteristic #- Honore's R Measure #- Sichel's S Measure #- Simpson's Diversity Index # 7. syllable frequencies #NOTE this is averaged/normalized syllable frequncies. NOTE the syllables docs suggest using cmudict for accuracy over speed. sfr = toks_alpha.apply(lambda x: sum([syllables.estimate(w) for w in x]) / len(x) if len(x) > 0 else 0.0) # could also use statistics.mean for all of these averages.. # 8. Readability # Flesch-Kincaid reading ease fk = data[text_col].apply(lambda x: textstat.flesch_reading_ease(x)) # # 8.1 Automated Readability Index # ari = data[text_col].swifter.apply(lambda x: textstat.automated_readability_index(x)) # r_ari = listify(ari, feature_name='automated_readability_index') # # 8.2 Coleman-Liau index # cli = data[text_col].swifter.apply(lambda x: textstat.coleman_liau_index(x)) # r_cli = listify(cli, feature_name='coleman_liau_index') # # 8.3 Dale Chall Readability Index # dci = data[text_col].swifter.apply(lambda x: textstat.dale_chall_readability_score(x)) # r_dci = listify(dci, feature_name='dale_chall_index') # # 8.4 Gunning Fog Index # gfi = data[text_col].swifter.apply(lambda x: textstat.gunning_fog(x)) # r_gfi = listify(gfi, feature_name='gunning_fog_index') # 8.5 Consensus based on all tests in textstat. # consensus = data[text_col].swifter.apply(lambda x: textstat.text_standard(x, float_output=True)) # r_consensus = listify(consensus, feature_name='readability_consensus_score') # Could add basic sentiment with doc.token.sentiment? # Store results TODO store each list of dicts in separate dict on the same level. # wl_results = { # {'length_features' : w_total, w_len_avg, asl_w, asl_c}, # {'specific_w_frequencies' : upper_ws, shortws, elongws, nums, past_freq, pres_freq, adj_positives, adj_cmp_sup ,ems}, # {'nonstandard_spelling' : s_check}, # {'words_in_quotes' : quot_ws}, # {'richess/complexity' : ttr, hlgs, hldgs}, # {'syllable frequencies' : syl_freq}, # {'readability' : r_fk, r_ari, r_cli, r_dci, r_gfi, r_consensus} # } # print('\nSTORING RESULTS') # print('DONE') if analyze == True: w_total = [{'len_total_words': x[1]} for x in toks.map(len).items()] w_len_avg = [{'avg_word_length' : x[1]} for x in awl.items()] asl_w_avg = [{'avg_sent_len_words': x[1]} for x in asl_w.items()] asl_c_avg = [{'avg_sent_len_chars' : x[1]} for x in asl_c.items()] # move this to character level. upper_ws = [{'upper_words': x[1]} for x in uws.items()] shortws = [{'short_words': x[1]} for x in sws.items()] elongws = [{'elongated_words' : x[1]} for x in elws.items()] nums = listify(nss, feature_name='numerical_tokens_frequency') past_freq = listify(pst, feature_name = 'past_tense_frequency') pres_freq = listify(prs, feature_name='present_tense_frequency') adj_positives = listify(adj_pos, feature_name='positive_adjectives') adj_cmp_sup = listify(adj_c_s, feature_name='comp_and_sup_adjectives') ems = [{'emote_frequencies': x[1]} for x in e.items()] s_check = [{'nonstandard_words': x[1]} for x in sc.items()] quot_ws = listify(quotes, feature_name = 'quotes_in_words') ttr = [{'type-token_ratio': x[1]} for x in tt.items()] hlgs = listify(hlg, feature_name= 'hapax_legomena') hdlgs = listify(hdlg, feature_name='hapax_dislegomena') syl_freq = [{'avg_syllable_freq': x[1]} for x in sfr.items()] r_flk = [{'flesch_kincaid_reading_ease' : x[1]} for x in fk.items()] # Store results in dict. wl_results['total_word_len'] = w_total wl_results['avg_word_len'] = w_len_avg wl_results['avg_sentence_len_words'] = asl_w_avg wl_results['avg_sentence_len_chars'] = asl_c_avg wl_results['uppercased_words'] = upper_ws wl_results['short_words'] = shortws wl_results['elongated_words'] = elongws wl_results['numberlike_tokens'] = nums wl_results['past_tense_words'] = past_freq wl_results['present_tense_words'] = pres_freq wl_results['positive_adjectives'] = adj_positives wl_results['comp_and_sup_adjectives'] = adj_cmp_sup wl_results['emotes'] = ems wl_results['nonstandard_spelling'] = s_check # exclude? wl_results['quoted_words'] = quot_ws wl_results['type_token_ratio'] = ttr wl_results['hapax_legomena'] = hlgs wl_results['hapax_dislegomena'] = hdlgs wl_results['syllable_freqs'] = syl_freq #takes too long? wl_results['readability_flesch_kincaid'] = r_flk # wl_results['readability_ari'] = r_ari # wl_results['readability_coleman_liau'] = r_cli # wl_results['readability_dale_chall'] = r_dci # wl_results['readability_gunning_fog'] = r_gfi #wl_results['readability_consensus'] = r_consensus return wl_results else: # Build dataframe wl_results_df = pd.DataFrame() wl_results_df['total_word_len'] = w_total_series #✅ wl_results_df['avg_word_len'] = awl #✅ wl_results_df['avg_sentence_len_words'] = asl_w #✅ wl_results_df['avg_sentence_len_chars'] = asl_c #✅ wl_results_df['uppercased_words'] = uws #✅ wl_results_df['short_words'] = sws #✅ wl_results_df['elongated_words'] = elws #✅ wl_results_df['numberlike_tokens'] = nss #✅ wl_results_df['past_tense_words'] = pst #✅ wl_results_df['present_tense_words'] = prs #✅ wl_results_df['positive_adjectives'] = adj_pos #✅ wl_results_df['comp_and_sup_adjectives'] = adj_c_s #✅ wl_results_df['emotes'] = e #✅ wl_results_df['nonstandard_spelling'] = sc #✅ wl_results_df['quoted_words'] = quotes # ✅ wl_results_df['type_token_ratio'] = tt #✅ wl_results_df['hapax_legomena'] = hlg #✅ wl_results_df['hapax_dislegomena'] = hdlg #✅ wl_results_df['syllable_freqs'] = sfr #✅ wl_results_df['readability_flesch_kincaid'] = fk #✅ return wl_results_df #return get_wl(data)#get_cl(data) , get_wl(data) #%% # Debugging # test_df = train.iloc[:50, :] # test = get_wl(test_df, analyze=False) # %% #%% # Extract sentence-level features (syntactic) def get_sl(data, text_col = 'text_clean',cv=None , train=False, analyze=False): # load spacy model. print('Loading spacy model') nlp = spacy.load('en_core_web_sm') nlp.enable_pipe("senter") #TODO Added senter to get_sl while passing on docs for speed. # For POS tags, you could map a pos tag sequence/vector to the tweet. # Initialize CounVectorizer for pos ngrams. store pos tags in separate column and transform with sklearn-pandas per column instead. if train == True: cv = CountVectorizer(analyzer='word', ngram_range=(1,3)) else: cv = cv # Retoknize the text docs = data[text_col].swifter.apply(lambda x: nlp(x)) #toks = docs.apply(lambda x: [t.text for t in x]) # not used. #return pd.DataFrame({'docs' : docs.map(len) , 'toks': toks.map(len)}) # Frequencies # 1.1 frequencies of stop words (i.e. function words) sts = docs.apply(lambda x: len([t.text for t in x if t.is_stop == True]) / len(x)) # normalized by all tokens (including numbers and punct.) # 1.2 frequencies of punctuation pnct = docs.apply(lambda x: len([t.text for t in x if t.is_punct == True]) / len(x)) # 1.3 Frequencies of roots (normalized by total number of words in tweet). rts = docs.apply(lambda x: len([(t, t.dep_) for t in [t for t in x if t.is_space == False] if t.dep_ == 'ROOT']) / len(x)) # This still includes number-like tokens, punctuation and mentions, since these are relevant in the dependency trees. Normalization could account for whitespaces, but doesn't have to. # 3. POS frequencies. # Extract pos tags:count (use Counter) pos = docs.apply(lambda x: [t.pos_ for t in x if t.text.isalnum() == True]) pos_freq = docs.apply(lambda x: {p:c/len([t for t in x if t.text.isalnum() == True]) for p, c in Counter([t.pos_ for t in x if t.text.isalnum() == True ]).items()}) # normalized by alphanumeric tokens (since punctuation frequencies are captured separately). #pos_freq = [{k:v} for k, v in pfreq.items()] #return pd.DataFrame({'text' : data[text_col] , 'tokens' : toks, 'pos' : pos}) # 4. POS ngrams (n=uni-bi-tri) - TODO move to ngrams # join pos tags into strings for CountVectorizer -> return as special case. Do a type check in the lookup or vectorize function that just passes the matrix on. OR pass on POS strings to vectorize in the vectorize function? #print('fit/transforming posgrams') pgrams = pos.str.join(' ').to_list() if train == True: pgram_matrix = cv.fit_transform(pgrams) #return cv, pgram_matrix else: pgram_matrix = cv.transform(pgrams) # Sketch of countvectorizing pos ngrams. #cv.fit_transform(test.str.join(sep=' ').to_list()) # This works. consider how to get pos ngrams and still make them interpretable in the corpora - e.g. most frequent triplets? Does that even really tell you anthing? You could Counter or use a pandas method to get most frequent combination? # {k:v for k, v in Counter(cv.get_feature_names()).items()} # Note Counter has counter.most_common(n) # Could use nltk.util.ngrams(sequence, n) as suggested here https://stackoverflow.com/questions/11763613/python-list-of-ngrams-with-frequencies # 6. Sentiment? # sentis = docs.apply(lambda x: sum([t.sentiment for t in x])) # doesn't work. needs training? #return pd.DataFrame({'n_sents_spacy' : n_sents, 'n_sents_tstat' : n_sents_tstat}) if analyze == True: # Store results. stop_freq = listify(sts, feature_name='stopword_frequency') punct_freq = listify(pnct, feature_name='punctuation_freq') root_freq = listify(rts, feature_name='root_frequencies') syn_results = {'stopword_freq': stop_freq, 'syn_punc_freq' : punct_freq, 'root_freq': root_freq, 'pos_freq' : list(pos_freq), 'pos_ngrams' : pgram_matrix} return cv, syn_results else: syn_results_df = pd.DataFrame() syn_results_df['stopword_freq'] = sts syn_results_df['syn_punc_freq'] = pnct syn_results_df['root_freq'] = rts #syn_results_df['pos_freq'] = list(pos_freq) #syn_results_df['pos_ngrams'] = pgram_matrix return docs, cv, pgram_matrix, syn_results_df # To call on test data, remember to call it on the cv returning after calling it on the training data - call it 'train_cv' in model.py #%% # Debugging # test_df = train.iloc[:50,:] # test = get_sl(test_df, train=True, analyze=True) #%% ANCHOR testing get_syn # extract_feats(test_df, analyze=True, train=True) # NOTE when extracting in model.py, call twice instead of once. #train.columns.get_loc('text_clean') # test_df = train.iloc[:50, :] # versus list version: train_text[:20] # test = get_syn(test_df) # # val_test = get_lexical(train_text[:5]) #%% #%% # Extract document-level features (structural) def get_dl(data, text_col='text_clean', analyze=True, docs=[]): # 1. Number of sentences if len(docs) <= 0: print('Configuring spacy model for document level') nlp = spacy.load('en_core_web_sm', disable=['lemmatizer', 'parser','tagger','ner']) nlp.enable_pipe('senter') # this is the main diff between wl, sl and dl. docs = data[text_col].swifter.apply(lambda x: nlp(x)) ns = docs.apply(lambda x: len([s for s in x.sents])) #en_web_sm is not as accurate as blank or textstat. # ns = data[text_col].apply( # lambda x: textstat.sentence_count(x)) # 2. Number of user mentions - absolute counts. ms = data[text_col].str.count('@user', flags=re.I|re.M) # Could be expanded to include hashtags and urls in the future here. if analyze == True: n_sents = listify(ns, feature_name = 'number_of_sentences') ments = listify(ms, feature_name = 'number_of_mentions') struc_results = {'n_sents': n_sents, 'n_mentions': ments} # before skiping listify. #struc_results = {'n_sents' : ns, 'n_mentions' : ms} return struc_results else: struc_results_df = pd.DataFrame() struc_results_df['n_sents'] = ns #✅ struc_results_df['n_mentions'] = ms #✅ return struc_results_df #%% # Testing get_struc. #test = get_dl(test_df, analyze=False) #%% # ANCHOR function to lookup and get specific [{features: x.x}] from extraction funct. def feature_lookup(f_param_dict, extracted_features): feature_name1 = [{'feature_name' : 0.0}] for var in locals(): if var in f_param_dict['some_feature_cat1']: return locals()[var] # also look into dpath, dict-toolbox2 #%% # Test feature_lookup # t = {'some_feature_cat1': ['feature_name1', 'feature_name2']} # feature_lookup(t) #%% def conc_features(matrixList): # Concatenate feature vectors # pass a list or dict of matrices and do list/dict comprehension/unpacking? #combined_features = hstack([feature_vector1, feature_vector2], 'csr') combined_features = hstack(matrixList, 'csr') return combined_features #%% def d_vectorize(selected_feats, train=False, dv=None): # Old approach: Vectorize all generated lists of dicts (stored in a dict or list?). # if train == True: # dv = DictVectorizer() # #X = d.fit_transform(dictList) # # Either store as list. # dvList = [] # matList = [] # # Or in single dict # #matDict = dict() using dv as a key just overwrites the value since they are all identical. Nesting the dict just complicates things even more... # if train == True: # # Iterate through feature lists of dictionaries (lexical, syntactic, structural) # for feature_name, feat_list in selected_feats.items(): # #print(feature_name, feat_list) # #return # if feature_name == 'pos_ngrams': # Check for pos_ngrams (already vectorized) # matList.append(feat_list) # if pos_ngrams feat matrix, just append it. # #matDict[dv] = feat_list # continue # if train == True: # feat_matrix = dv.fit_transform(feat_list) # # NOTE storing each vectorizer # dvList.append(dv) # matList.append(feat_matrix) # # This is the test case # # The test case. transforming test data to fitted individual dvs. # if train == False: #iterate through each dv and all the feature lists. # feat_lists = [] # # this has to only fit once per feature dv-featurelist pair. # for feature_name, feat_list in selected_feats.items(): # if feature_name == 'pos_ngrams': # matList.append(feat_list) # continue # feat_lists.append(feat_list) # #return(feat_lists) # for dv, featList in list(zip(dvs, feat_lists)): # enable this to loop through both dvs and features. # #print(dv, featList) # feat_matrix = dv.transform(featList) # this needs to be passed its corresponding dv. if you store in zip/list, it should have the same, fixed order. but how to iterate? # matList.append(feat_matrix) # #matDict[dv] = feat_matrix # # Is LIWC a separate case? Should be the same as engineered features. # #return matDict#dv, matList #matDict.values() should be list of matrices equal to number of features. To be concatenated. # return dvList, matList # New approach - using dfs with selected features. # 1. Get list of dicts, row-wise from selected features DF. feats = selected_feats.to_dict('records') if train == True: dv = DictVectorizer() feats_vecs = dv.fit_transform(feats) return dv , feats_vecs else: feats_vecs = dv.transform(feats) return dv, feats_vecs #%% #### # test_df = train.iloc[:50,:] # sent_cv_train, extracted_train = extract_feats(test_df, text_col='text_clean', analyze=False, train=True, feature_pms=feature_params) # sent_cv_test, extracted_test = extract_feats(val.iloc[:50,:], text_col='text_clean', analyze=False, train=False, cv=sent_cv_train, feature_pms=feature_params) # train_dv, train_vecs = d_vectorize(train_selected_feats_df, train=True) # test_dv, test_vecs = d_vectorize(test_selected_feats_df, train=False, dv=train_dv) #### #test = d_vectorize(extracted_test, train=False, dvs=train_dvs) # Then d_vectorize LIWC matches. # Then concat all of the vectorized features. # Then fit model! #%% def extract_feats(data, text_col='text_clean', feature_pms=dict(), analyze=False, cv=None, train=False): # Data = dataframe - can be recast by child functions. # See if resetting data index speeds up extraction. data.reset_index(drop=True, inplace=True) # lowercase all @USER mentions. An artifact from preprocessing. data[text_col] = data[text_col].str.replace( '@USER', '@user') # , inplace=True) all_features_dict = dict() all_features_df_list = [] selected_features = dict() # 1. Call each of the extractor functions # 1.3 Sentence-level # TODO moved up to pass docs to other extraction functs for speed. print('Sentence level features') if analyze == True: docs = [] sent_cv, sent_lvl = get_sl( data, text_col=text_col, cv=cv, analyze=analyze, train=train) else: docs, sent_cv, pgram_matrix, sent_lvl = get_sl(data, text_col=text_col, cv=cv, analyze=analyze, train=train) # 1.1 Character-level (10 features) print('Character level features') char_lvl = get_cl(data, text_col=text_col, analyze=analyze) # 1.2 Word-level print('Word level features') word_lvl = get_wl(data, text_col=text_col, analyze=analyze, docs=docs) #sent_lvl = word_lvl.copy(deep=True) #return sent_lvl # if train == False: # sent_cv, sent_lvl = get_sl(data, text_col=text_col, analyze=analyze) # 1.4 Document-level print('Document level features') doc_lvl = get_dl(data, text_col=text_col, analyze=analyze, docs=docs) #return doc_lvl # Return all features if extracting for feature analysis. LIWC is analyzed separately. if analyze == True: # Store in dict all_features_dict['character_level'] = char_lvl all_features_dict['word_level'] = word_lvl all_features_dict['sentence_level'] = sent_lvl # Maybe pop pgrams matrix into separate var/container? all_features_dict['document_level'] = doc_lvl return sent_cv, all_features_dict # pass sent_cv on to analyze_feats from here. # Old approaches # Option 1 - extracting flat list (of n instances) (of dicts with n features) to vectorize in one go. # for feat_cat, feature_name in feature_pms['engineered'].items(): # if feat_cat in all_features.keys(): # selected_features[feat_cat] = all_features[feat_cat].values() # return selected_features # TODO how to make sure that all features align? Pandas? hstack before fitting? # Option 2 - extract individual lists of [{'feature1' : feature_value}... {'feature2' : feature_value}] for each feauture? # Iterate through features to pass on, given parameters in parameter dict. # Get a flat list of all desired target features. #target_feats = list(itertools.chain.from_iterable([fn for fn in feature_pms['engineered'].values()])) # Lookup and retrieve each feature from all_features and store in selected_features # Works, but return that awkward df with individual dicts. # for feat_level, feat_name in all_features.items():# outer level {'feature_level': 'feature_name': [{'feature' : feature_val}]} # for fn, fl in feat_name.items(): # if fn in target_feats: # selected_features[fn] = fl # Return selected features # 2. return selectively for classification if analyze == False: # Get a flat list of all desired target features. target_feats = list(itertools.chain.from_iterable([fn for fn in feature_pms['engineered'].values()])) #return char_lvl, word_lvl, sent_lvl, doc_lvl # Concatenate feature dfs for each level horizontally. #all_feats_df = pd.concat([char_lvl, word_lvl, sent_lvl, doc_lvl], axis=1, join='inner') # works. all_feats_df_list = [char_lvl, word_lvl, sent_lvl, doc_lvl] # Mitigating duplicate indeces in dfs.. [df.reset_index(inplace=True, drop=True) for df in all_feats_df_list] # 1.5 LIWC features # parsed_liwc is called in the main namespace. if feature_pms['liwc'] == True: liwc_feats = pd.DataFrame.from_records( liwc_match(parsed_liwc, data, extract=True)) #selected_features['liwc_counts'] = liwc_feats # store LIWC straight in selected_feats dict. # index liwc_feats with data.index liwc_feats.set_index(data.index, inplace=True) all_feats_df_list.append(liwc_feats) #return liwc_feats #return sent_cv, all_features # concat liwc features to df selected features. # Concat all feature dfs. #try: all_feats_df = pd.concat(all_feats_df_list, axis=1, join='inner') #print(all_feats_df) #except: # return all_feats_df_list# , [len(df) for df in all_feats_df_list] # Select columns from all features df unless they are pos_ngrams. could add pos_freqs here. # return all_feats_df 35+64=99 feats. selected_feats_df = all_feats_df[[fn for fn in target_feats if fn != 'pos_ngrams']] #return all_feats_df, target_feats return sent_cv, pgram_matrix, selected_feats_df #%% ANCHOR procedure for feature extraction. # test_df = train.iloc[:50,:] # #sent_cv, train_feats_df = extract_feats(test_df, feature_pms = feature_params, analyze=False, train=True) # # Parse LIWC # parsed_liwc = parse_liwc('../../../Data/LIWC2007dictionary poster.xls', text_col=text_col) # # This is just a test of extraction with liwc. # liwc_test = extract_feats(test_df, feature_pms = feature_params, analyze=False, train=True) # # Dict_vectorize-fit_transform train. # train_en_feat_vec = d_vectorize(train_selected_feats_df, train=True) # # Combine feature matrices: # also use ngrams in model.py. # train_feats_combined = conc_feat([train_pgram_matrix , train_en_feat_vec]) # # Extract test_feats # sent_cv, test_pgram_matrix, test_selected_feats_df = extract_feats(val.iloc[:50,], feature_pms= feature_params, analyze=False, train=False, cv=sent_cv) # # Dict_vectorize-transform test with train_dv. # test_en_feat_vec = d_vectorize(test_selected_feats_df, train=False) # -> concat pgram matrices and each selected feature df after dictvectorizing them. #### #analysis = analyze_feats(train_feats_dict) # analysis case #feats_for_vec = extract_feats(test_df, feature_pms=feature_params, analyze=False, train=True) # the train case # test = extract_feats(test_df, analyze=True, cv=train_cv, train=False) # test case #%% # analyze features TODO move to data_exploration def analyze_feats(featuresDict, resultpath='./exploring/feature_analysis/', cv=None): # This function is called on the complete output of all the extract functions. # Put all extracted features into a single dict. You then call vectorize and concat on that based on lookup either manual or via function. # LIWC is handled separately.. # 0. Append all lists of dicts (dictLists) to one flat list. featList = [] posfreqList = [] pgrams = None # Smarter solution : calculate stats directly on dict values in lists of dicts. statsDict = dict() #Loop through top level featDict for feat_level, feat_name in featuresDict.items(): #featList.append(pd.DataFrame(feat_name)) #print(feat_name.keys()) #Second level - individual feature names : ['feature' : int/flaot]. for feat, feat_value in feat_name.items(): #print( feat, type(feat_value)) # store pos features seperately. if feat == 'pos_freq': posfreqList.append(pd.DataFrame(feat_value)) continue if feat == 'pos_ngrams': pgrams = feat_value continue featList.append(pd.DataFrame(feat_value)) # Concat lists of extracted feature dataframes. featDF =
pd.concat(featList, axis=1)
pandas.concat
""" Copyright 2020 The Secure, Reliable, and Intelligent Systems Lab, ETH Zurich Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. """ import argparse import numpy as np import json import os import pandas as pd import time import torch from toolz import interleave import sys sys.path.insert(0, 'models') sys.path.insert(0, 'common') import predictions as pr import prediction_generator as prg from iterated_prediction_loop import IteratedPredictionLoop from model import GroundTruthModel from model import ClimatologicalModel from project_structure import * import utils class EvalLoop(IteratedPredictionLoop): def __init__(self,args): super(EvalLoop,self).__init__(args,eval_folder) if(not isinstance(self.steps,list)): self.steps = [self.steps] self.nsteps = len(args.steps) self.rps = args.rps if self.rps: self.n_bins = args.n_bins print("RPS mode") print("N bins",self.n_bins) self.predictions, self.binary_predictions = \ pr.construct_predictions_list(args.steps,max(self.n_bins,1)) self.certify = args.certify self.radius,self.cdf = pr.get_cdf_thresholds() if self.certify: print("Radius",self.radius) print("Cdf",self.cdf) def log_meta(self,time,folder): # Log meta file with experiments parameters stats = {"Time per run (seconds)":time,"N samples":self.samples} with open(folder + "/meta.json", "w") as f: f.write(json.dumps(stats,indent=4)) def get_config_folders(self,year_folder): config_folders = self.list_dir(os.path.join(self.folder, year_folder)) # Duplicate the MDN configs config_list = [] for c in config_folders: config,folder_full,run_folders,n_reps = self.load_config(year_folder,c) if(config["model"]["type"]=="mdn"): config_list.append({"n reps": n_reps, "training folder": folder_full, "output folder": "mdn_ours", "run folders": run_folders, "config": config}) elif(config["model"]["type"]=="lstm"): config_list.append({"n reps":n_reps, "training folder": folder_full, "output folder": "lstm", "run folders": run_folders, "config": config}) elif config["model"]["type"]=="tcn": config_list.append({"n reps": n_reps, "training folder": folder_full, "output folder": "tcn", "run folders": run_folders, "config": config}) else: raise Exception("No such model") # Iterate over config return config_list # Results has shape (repetition,nsteps) def get_entries(self,results,config): entries = np.zeros((self.nsteps,6)) if (config["model"]["type"] == "mdn"): entries[:,0] = 1 else: entries[:,0] = 0 entries[:,1] = self.steps # Average/Std metrics = np.array(results) means = np.mean(metrics, axis=0) stds = np.std(metrics, axis=0) entries[:,2:4] = means entries[:,4:6] = stds return entries def result_to_dataframe(self,result): predictions_list = [ self.predictions["steps"], self.predictions["names"], self.predictions["prices"]] predictions_list = zip(*predictions_list) product = [(x[0],x[1],x[2],y) for x in predictions_list for y in self.samples] indexes = pd.MultiIndex.from_tuples(product,names=["steps","names","prices","samples"]) columns = ["val"]+\ ["bin "+str(i) for i in range(self.n_bins)]+\ ["RPS"] data = result.transpose(1,0,2).reshape(-1,result.shape[2]) dataframe_for_run = pd.DataFrame(index=indexes, columns=columns, data=data) dataframe_for_run.sort_index(inplace=True) return dataframe_for_run def binary_results_to_dataframe(self,result): if self.certify: len_binary = 4+len(self.cdf) else: len_binary = 4 predictions_list = [self.binary_predictions["steps"], self.binary_predictions["names"], self.binary_predictions["prices"]] predictions_list = zip(*predictions_list) product = [(x[0], x[1], x[2], y) for x in predictions_list for y in self.samples] indexes =
pd.MultiIndex.from_tuples(product, names=["steps", "names", "prices", "samples"])
pandas.MultiIndex.from_tuples
#!/usr/bin/env python # coding: utf-8 # In[2]: import pandas as pd import numpy as np import matplotlib.pyplot as plt import seaborn as sns pd.options.display.max_columns = None # In[3]: df = pd.read_csv('full_data.csv') # In[4]: df.head() # Since i got the data from lolchess.gg, i only got informations of the date in the type of "2 days ago", "1 week ago" and so on. So the date is only an approximation. # In[5]: df = df.loc[:, (df != 0).any(axis=0)] # In[6]: df.head() # In[7]: df.info() # In[8]: df.describe() # In[9]: date_count = pd.DataFrame(df['date'].value_counts()).sort_index(ascending = False).reset_index().rename(columns={'index': 'Date', 'date': 'Count'}) date_count # I will concentrate the analysis on the data since last thursday (2020-12-10) # In[10]: df = df[df['date'] >= '2020-12-10'] # In[11]: tdf = df[df['Placement'] <= 8] #Look at the traits of all placements tdf = tdf.reset_index(drop = True) tdf.head() # In[12]: ptdf = tdf.iloc[:, 4:] # In[13]: # Start with two highest number of traits #ptdf = ptdf[ptdf.apply(lambda row: row >= row.nlargest(2)[-1],axis=1)] ptdf = ptdf[ptdf.apply(lambda row: row >= 1,axis=1)] ptdf.head() # In[14]: combinations = ptdf.notna().dot(ptdf.columns+' + ').str.rstrip(' +') # In[15]: nr_combs = [] for count, i in enumerate(ptdf.values): clear_list = [] current_traits = combinations.iloc[count].split(' + ') count2 = 0 for j in i: #print(j) if j > 0: clear_list.append(current_traits[count2] + ' (' + str(int(j)) + ')') clear_list.sort(key = lambda x: int(x.split('(')[1][-2]), reverse = True) count2 += 1 nr_combs.append(' + '.join(clear_list)) # In[16]: pd.DataFrame(nr_combs) # In[17]: df_test1 = pd.concat([tdf.iloc[:, :4], pd.DataFrame(nr_combs)], axis=1).rename(columns = {0: 'comb'}) df_test1.head() # In[18]:
pd.set_option('display.max_rows', None)
pandas.set_option
# pylint: disable=E1101,E1103,W0232 from datetime import datetime, timedelta from pandas.compat import range, lrange, lzip, u, zip import operator import re import nose import warnings import os import numpy as np from numpy.testing import assert_array_equal from pandas import period_range, date_range from pandas.core.index import (Index, Float64Index, Int64Index, MultiIndex, InvalidIndexError, NumericIndex) from pandas.tseries.index import DatetimeIndex from pandas.tseries.tdi import TimedeltaIndex from pandas.tseries.period import PeriodIndex from pandas.core.series import Series from pandas.util.testing import (assert_almost_equal, assertRaisesRegexp, assert_copy) from pandas import compat from pandas.compat import long import pandas.util.testing as tm import pandas.core.config as cf from pandas.tseries.index import _to_m8 import pandas.tseries.offsets as offsets import pandas as pd from pandas.lib import Timestamp class Base(object): """ base class for index sub-class tests """ _holder = None _compat_props = ['shape', 'ndim', 'size', 'itemsize', 'nbytes'] def verify_pickle(self,index): unpickled = self.round_trip_pickle(index) self.assertTrue(index.equals(unpickled)) def test_pickle_compat_construction(self): # this is testing for pickle compat if self._holder is None: return # need an object to create with self.assertRaises(TypeError, self._holder) def test_numeric_compat(self): idx = self.create_index() tm.assertRaisesRegexp(TypeError, "cannot perform __mul__", lambda : idx * 1) tm.assertRaisesRegexp(TypeError, "cannot perform __mul__", lambda : 1 * idx) div_err = "cannot perform __truediv__" if compat.PY3 else "cannot perform __div__" tm.assertRaisesRegexp(TypeError, div_err, lambda : idx / 1) tm.assertRaisesRegexp(TypeError, div_err, lambda : 1 / idx) tm.assertRaisesRegexp(TypeError, "cannot perform __floordiv__", lambda : idx // 1) tm.assertRaisesRegexp(TypeError, "cannot perform __floordiv__", lambda : 1 // idx) def test_boolean_context_compat(self): # boolean context compat idx = self.create_index() def f(): if idx: pass tm.assertRaisesRegexp(ValueError,'The truth value of a',f) def test_ndarray_compat_properties(self): idx = self.create_index() self.assertTrue(idx.T.equals(idx)) self.assertTrue(idx.transpose().equals(idx)) values = idx.values for prop in self._compat_props: self.assertEqual(getattr(idx, prop), getattr(values, prop)) # test for validity idx.nbytes idx.values.nbytes class TestIndex(Base, tm.TestCase): _holder = Index _multiprocess_can_split_ = True def setUp(self): self.indices = dict( unicodeIndex = tm.makeUnicodeIndex(100), strIndex = tm.makeStringIndex(100), dateIndex = tm.makeDateIndex(100), intIndex = tm.makeIntIndex(100), floatIndex = tm.makeFloatIndex(100), boolIndex = Index([True,False]), empty = Index([]), tuples = MultiIndex.from_tuples(lzip(['foo', 'bar', 'baz'], [1, 2, 3])) ) for name, ind in self.indices.items(): setattr(self, name, ind) def create_index(self): return Index(list('abcde')) def test_wrong_number_names(self): def testit(ind): ind.names = ["apple", "banana", "carrot"] for ind in self.indices.values(): assertRaisesRegexp(ValueError, "^Length", testit, ind) def test_set_name_methods(self): new_name = "This is the new name for this index" indices = (self.dateIndex, self.intIndex, self.unicodeIndex, self.empty) for ind in indices: original_name = ind.name new_ind = ind.set_names([new_name]) self.assertEqual(new_ind.name, new_name) self.assertEqual(ind.name, original_name) res = ind.rename(new_name, inplace=True) # should return None self.assertIsNone(res) self.assertEqual(ind.name, new_name) self.assertEqual(ind.names, [new_name]) #with assertRaisesRegexp(TypeError, "list-like"): # # should still fail even if it would be the right length # ind.set_names("a") with assertRaisesRegexp(ValueError, "Level must be None"): ind.set_names("a", level=0) # rename in place just leaves tuples and other containers alone name = ('A', 'B') ind = self.intIndex ind.rename(name, inplace=True) self.assertEqual(ind.name, name) self.assertEqual(ind.names, [name]) def test_hash_error(self): with tm.assertRaisesRegexp(TypeError, "unhashable type: %r" % type(self.strIndex).__name__): hash(self.strIndex) def test_new_axis(self): new_index = self.dateIndex[None, :] self.assertEqual(new_index.ndim, 2) tm.assert_isinstance(new_index, np.ndarray) def test_copy_and_deepcopy(self): from copy import copy, deepcopy for func in (copy, deepcopy): idx_copy = func(self.strIndex) self.assertIsNot(idx_copy, self.strIndex) self.assertTrue(idx_copy.equals(self.strIndex)) new_copy = self.strIndex.copy(deep=True, name="banana") self.assertEqual(new_copy.name, "banana") new_copy2 = self.intIndex.copy(dtype=int) self.assertEqual(new_copy2.dtype.kind, 'i') def test_duplicates(self): idx = Index([0, 0, 0]) self.assertFalse(idx.is_unique) def test_sort(self): self.assertRaises(TypeError, self.strIndex.sort) def test_mutability(self): self.assertRaises(TypeError, self.strIndex.__setitem__, 0, 'foo') def test_constructor(self): # regular instance creation tm.assert_contains_all(self.strIndex, self.strIndex) tm.assert_contains_all(self.dateIndex, self.dateIndex) # casting arr = np.array(self.strIndex) index = Index(arr) tm.assert_contains_all(arr, index) self.assert_numpy_array_equal(self.strIndex, index) # copy arr = np.array(self.strIndex) index = Index(arr, copy=True, name='name') tm.assert_isinstance(index, Index) self.assertEqual(index.name, 'name') assert_array_equal(arr, index) arr[0] = "SOMEBIGLONGSTRING" self.assertNotEqual(index[0], "SOMEBIGLONGSTRING") # what to do here? # arr = np.array(5.) # self.assertRaises(Exception, arr.view, Index) def test_constructor_corner(self): # corner case self.assertRaises(TypeError, Index, 0) def test_constructor_from_series(self): expected = DatetimeIndex([Timestamp('20110101'),Timestamp('20120101'),Timestamp('20130101')]) s = Series([Timestamp('20110101'),Timestamp('20120101'),Timestamp('20130101')]) result = Index(s) self.assertTrue(result.equals(expected)) result = DatetimeIndex(s) self.assertTrue(result.equals(expected)) # GH 6273 # create from a series, passing a freq s = Series(pd.to_datetime(['1-1-1990', '2-1-1990', '3-1-1990', '4-1-1990', '5-1-1990'])) result = DatetimeIndex(s, freq='MS') expected = DatetimeIndex(['1-1-1990', '2-1-1990', '3-1-1990', '4-1-1990', '5-1-1990'],freq='MS') self.assertTrue(result.equals(expected)) df = pd.DataFrame(np.random.rand(5,3)) df['date'] = ['1-1-1990', '2-1-1990', '3-1-1990', '4-1-1990', '5-1-1990'] result = DatetimeIndex(df['date'], freq='MS') # GH 6274 # infer freq of same result = pd.infer_freq(df['date']) self.assertEqual(result,'MS') def test_constructor_ndarray_like(self): # GH 5460#issuecomment-44474502 # it should be possible to convert any object that satisfies the numpy # ndarray interface directly into an Index class ArrayLike(object): def __init__(self, array): self.array = array def __array__(self, dtype=None): return self.array for array in [np.arange(5), np.array(['a', 'b', 'c']), date_range('2000-01-01', periods=3).values]: expected = pd.Index(array) result = pd.Index(ArrayLike(array)) self.assertTrue(result.equals(expected)) def test_index_ctor_infer_periodindex(self): xp = period_range('2012-1-1', freq='M', periods=3) rs = Index(xp) assert_array_equal(rs, xp) tm.assert_isinstance(rs, PeriodIndex) def test_constructor_simple_new(self): idx = Index([1, 2, 3, 4, 5], name='int') result = idx._simple_new(idx, 'int') self.assertTrue(result.equals(idx)) idx = Index([1.1, np.nan, 2.2, 3.0], name='float') result = idx._simple_new(idx, 'float') self.assertTrue(result.equals(idx)) idx = Index(['A', 'B', 'C', np.nan], name='obj') result = idx._simple_new(idx, 'obj') self.assertTrue(result.equals(idx)) def test_copy(self): i =
Index([], name='Foo')
pandas.core.index.Index
from datetime import datetime, timedelta import inspect import numpy as np import pytest from pandas.core.dtypes.common import ( is_categorical_dtype, is_interval_dtype, is_object_dtype, ) from pandas import ( Categorical, DataFrame, DatetimeIndex, Index, IntervalIndex, MultiIndex, RangeIndex, Series, Timestamp, cut, date_range, to_datetime, ) import pandas.util.testing as tm @pytest.mark.filterwarnings("ignore:Sparse:FutureWarning") class TestDataFrameAlterAxes: def test_set_index_directly(self, float_string_frame): df = float_string_frame idx = Index(np.arange(len(df))[::-1]) df.index = idx tm.assert_index_equal(df.index, idx) with pytest.raises(ValueError, match="Length mismatch"): df.index = idx[::2] def test_set_index(self, float_string_frame): df = float_string_frame idx = Index(np.arange(len(df))[::-1]) df = df.set_index(idx) tm.assert_index_equal(df.index, idx) with pytest.raises(ValueError, match="Length mismatch"): df.set_index(idx[::2]) def test_set_index_cast(self): # issue casting an index then set_index df = DataFrame( {"A": [1.1, 2.2, 3.3], "B": [5.0, 6.1, 7.2]}, index=[2010, 2011, 2012] ) df2 = df.set_index(df.index.astype(np.int32)) tm.assert_frame_equal(df, df2) # A has duplicate values, C does not @pytest.mark.parametrize("keys", ["A", "C", ["A", "B"], ("tuple", "as", "label")]) @pytest.mark.parametrize("inplace", [True, False]) @pytest.mark.parametrize("drop", [True, False]) def test_set_index_drop_inplace(self, frame_of_index_cols, drop, inplace, keys): df = frame_of_index_cols if isinstance(keys, list): idx = MultiIndex.from_arrays([df[x] for x in keys], names=keys) else: idx = Index(df[keys], name=keys) expected = df.drop(keys, axis=1) if drop else df expected.index = idx if inplace: result = df.copy() result.set_index(keys, drop=drop, inplace=True) else: result = df.set_index(keys, drop=drop) tm.assert_frame_equal(result, expected) # A has duplicate values, C does not @pytest.mark.parametrize("keys", ["A", "C", ["A", "B"], ("tuple", "as", "label")]) @pytest.mark.parametrize("drop", [True, False]) def test_set_index_append(self, frame_of_index_cols, drop, keys): df = frame_of_index_cols keys = keys if isinstance(keys, list) else [keys] idx = MultiIndex.from_arrays( [df.index] + [df[x] for x in keys], names=[None] + keys ) expected = df.drop(keys, axis=1) if drop else df.copy() expected.index = idx result = df.set_index(keys, drop=drop, append=True) tm.assert_frame_equal(result, expected) # A has duplicate values, C does not @pytest.mark.parametrize("keys", ["A", "C", ["A", "B"], ("tuple", "as", "label")]) @pytest.mark.parametrize("drop", [True, False]) def test_set_index_append_to_multiindex(self, frame_of_index_cols, drop, keys): # append to existing multiindex df = frame_of_index_cols.set_index(["D"], drop=drop, append=True) keys = keys if isinstance(keys, list) else [keys] expected = frame_of_index_cols.set_index(["D"] + keys, drop=drop, append=True) result = df.set_index(keys, drop=drop, append=True) tm.assert_frame_equal(result, expected) def test_set_index_after_mutation(self): # GH1590 df = DataFrame({"val": [0, 1, 2], "key": ["<KEY>"]}) expected = DataFrame({"val": [1, 2]}, Index(["b", "c"], name="key")) df2 = df.loc[df.index.map(lambda indx: indx >= 1)] result = df2.set_index("key") tm.assert_frame_equal(result, expected) # MultiIndex constructor does not work directly on Series -> lambda # Add list-of-list constructor because list is ambiguous -> lambda # also test index name if append=True (name is duplicate here for B) @pytest.mark.parametrize( "box", [ Series, Index, np.array, list, lambda x: [list(x)], lambda x: MultiIndex.from_arrays([x]), ], ) @pytest.mark.parametrize( "append, index_name", [(True, None), (True, "B"), (True, "test"), (False, None)] ) @pytest.mark.parametrize("drop", [True, False]) def test_set_index_pass_single_array( self, frame_of_index_cols, drop, append, index_name, box ): df = frame_of_index_cols df.index.name = index_name key = box(df["B"]) if box == list: # list of strings gets interpreted as list of keys msg = "['one', 'two', 'three', 'one', 'two']" with pytest.raises(KeyError, match=msg): df.set_index(key, drop=drop, append=append) else: # np.array/list-of-list "forget" the name of B name_mi = getattr(key, "names", None) name = [getattr(key, "name", None)] if name_mi is None else name_mi result = df.set_index(key, drop=drop, append=append) # only valid column keys are dropped # since B is always passed as array above, nothing is dropped expected = df.set_index(["B"], drop=False, append=append) expected.index.names = [index_name] + name if append else name tm.assert_frame_equal(result, expected) # MultiIndex constructor does not work directly on Series -> lambda # also test index name if append=True (name is duplicate here for A & B) @pytest.mark.parametrize( "box", [Series, Index, np.array, list, lambda x: MultiIndex.from_arrays([x])] ) @pytest.mark.parametrize( "append, index_name", [(True, None), (True, "A"), (True, "B"), (True, "test"), (False, None)], ) @pytest.mark.parametrize("drop", [True, False]) def test_set_index_pass_arrays( self, frame_of_index_cols, drop, append, index_name, box ): df = frame_of_index_cols df.index.name = index_name keys = ["A", box(df["B"])] # np.array/list "forget" the name of B names = ["A", None if box in [np.array, list, tuple, iter] else "B"] result = df.set_index(keys, drop=drop, append=append) # only valid column keys are dropped # since B is always passed as array above, only A is dropped, if at all expected = df.set_index(["A", "B"], drop=False, append=append) expected = expected.drop("A", axis=1) if drop else expected expected.index.names = [index_name] + names if append else names tm.assert_frame_equal(result, expected) # MultiIndex constructor does not work directly on Series -> lambda # We also emulate a "constructor" for the label -> lambda # also test index name if append=True (name is duplicate here for A) @pytest.mark.parametrize( "box2", [ Series, Index, np.array, list, iter, lambda x: MultiIndex.from_arrays([x]), lambda x: x.name, ], ) @pytest.mark.parametrize( "box1", [ Series, Index, np.array, list, iter, lambda x: MultiIndex.from_arrays([x]), lambda x: x.name, ], ) @pytest.mark.parametrize( "append, index_name", [(True, None), (True, "A"), (True, "test"), (False, None)] ) @pytest.mark.parametrize("drop", [True, False]) def test_set_index_pass_arrays_duplicate( self, frame_of_index_cols, drop, append, index_name, box1, box2 ): df = frame_of_index_cols df.index.name = index_name keys = [box1(df["A"]), box2(df["A"])] result = df.set_index(keys, drop=drop, append=append) # if either box is iter, it has been consumed; re-read keys = [box1(df["A"]), box2(df["A"])] # need to adapt first drop for case that both keys are 'A' -- # cannot drop the same column twice; # use "is" because == would give ambiguous Boolean error for containers first_drop = ( False if (keys[0] is "A" and keys[1] is "A") else drop # noqa: F632 ) # to test against already-tested behaviour, we add sequentially, # hence second append always True; must wrap keys in list, otherwise # box = list would be interpreted as keys expected = df.set_index([keys[0]], drop=first_drop, append=append) expected = expected.set_index([keys[1]], drop=drop, append=True) tm.assert_frame_equal(result, expected) @pytest.mark.parametrize("append", [True, False]) @pytest.mark.parametrize("drop", [True, False]) def test_set_index_pass_multiindex(self, frame_of_index_cols, drop, append): df = frame_of_index_cols keys = MultiIndex.from_arrays([df["A"], df["B"]], names=["A", "B"]) result = df.set_index(keys, drop=drop, append=append) # setting with a MultiIndex will never drop columns expected = df.set_index(["A", "B"], drop=False, append=append) tm.assert_frame_equal(result, expected) def test_set_index_verify_integrity(self, frame_of_index_cols): df = frame_of_index_cols with pytest.raises(ValueError, match="Index has duplicate keys"): df.set_index("A", verify_integrity=True) # with MultiIndex with pytest.raises(ValueError, match="Index has duplicate keys"): df.set_index([df["A"], df["A"]], verify_integrity=True) @pytest.mark.parametrize("append", [True, False]) @pytest.mark.parametrize("drop", [True, False]) def test_set_index_raise_keys(self, frame_of_index_cols, drop, append): df = frame_of_index_cols with pytest.raises(KeyError, match="['foo', 'bar', 'baz']"): # column names are A-E, as well as one tuple df.set_index(["foo", "bar", "baz"], drop=drop, append=append) # non-existent key in list with arrays with pytest.raises(KeyError, match="X"): df.set_index([df["A"], df["B"], "X"], drop=drop, append=append) msg = "[('foo', 'foo', 'foo', 'bar', 'bar')]" # tuples always raise KeyError with pytest.raises(KeyError, match=msg): df.set_index(tuple(df["A"]), drop=drop, append=append) # also within a list with pytest.raises(KeyError, match=msg): df.set_index(["A", df["A"], tuple(df["A"])], drop=drop, append=append) @pytest.mark.parametrize("append", [True, False]) @pytest.mark.parametrize("drop", [True, False]) @pytest.mark.parametrize("box", [set], ids=["set"]) def test_set_index_raise_on_type(self, frame_of_index_cols, box, drop, append): df = frame_of_index_cols msg = 'The parameter "keys" may be a column key, .*' # forbidden type, e.g. set with pytest.raises(TypeError, match=msg): df.set_index(box(df["A"]), drop=drop, append=append) # forbidden type in list, e.g. set with pytest.raises(TypeError, match=msg): df.set_index(["A", df["A"], box(df["A"])], drop=drop, append=append) # MultiIndex constructor does not work directly on Series -> lambda @pytest.mark.parametrize( "box", [Series, Index, np.array, iter, lambda x: MultiIndex.from_arrays([x])], ids=["Series", "Index", "np.array", "iter", "MultiIndex"], ) @pytest.mark.parametrize("length", [4, 6], ids=["too_short", "too_long"]) @pytest.mark.parametrize("append", [True, False]) @pytest.mark.parametrize("drop", [True, False]) def test_set_index_raise_on_len( self, frame_of_index_cols, box, length, drop, append ): # GH 24984 df = frame_of_index_cols # has length 5 values = np.random.randint(0, 10, (length,)) msg = "Length mismatch: Expected 5 rows, received array of length.*" # wrong length directly with pytest.raises(ValueError, match=msg): df.set_index(box(values), drop=drop, append=append) # wrong length in list with pytest.raises(ValueError, match=msg): df.set_index(["A", df.A, box(values)], drop=drop, append=append) def test_set_index_custom_label_type(self): # GH 24969 class Thing: def __init__(self, name, color): self.name = name self.color = color def __str__(self): return "<Thing {self.name!r}>".format(self=self) # necessary for pretty KeyError __repr__ = __str__ thing1 = Thing("One", "red") thing2 = Thing("Two", "blue") df = DataFrame({thing1: [0, 1], thing2: [2, 3]}) expected = DataFrame({thing1: [0, 1]}, index=Index([2, 3], name=thing2)) # use custom label directly result = df.set_index(thing2) tm.assert_frame_equal(result, expected) # custom label wrapped in list result = df.set_index([thing2]) tm.assert_frame_equal(result, expected) # missing key thing3 = Thing("Three", "pink") msg = "<Thing 'Three'>" with pytest.raises(KeyError, match=msg): # missing label directly df.set_index(thing3) with pytest.raises(KeyError, match=msg): # missing label in list df.set_index([thing3]) def test_set_index_custom_label_hashable_iterable(self): # GH 24969 # actual example discussed in GH 24984 was e.g. for shapely.geometry # objects (e.g. a collection of Points) that can be both hashable and # iterable; using frozenset as a stand-in for testing here class Thing(frozenset): # need to stabilize repr for KeyError (due to random order in sets) def __repr__(self): tmp = sorted(list(self)) # double curly brace prints one brace in format string return "frozenset({{{}}})".format(", ".join(map(repr, tmp))) thing1 = Thing(["One", "red"]) thing2 = Thing(["Two", "blue"]) df = DataFrame({thing1: [0, 1], thing2: [2, 3]}) expected = DataFrame({thing1: [0, 1]}, index=Index([2, 3], name=thing2)) # use custom label directly result = df.set_index(thing2) tm.assert_frame_equal(result, expected) # custom label wrapped in list result = df.set_index([thing2]) tm.assert_frame_equal(result, expected) # missing key thing3 = Thing(["Three", "pink"]) msg = r"frozenset\(\{'Three', 'pink'\}\)" with pytest.raises(KeyError, match=msg): # missing label directly df.set_index(thing3) with pytest.raises(KeyError, match=msg): # missing label in list df.set_index([thing3]) def test_set_index_custom_label_type_raises(self): # GH 24969 # purposefully inherit from something unhashable class Thing(set): def __init__(self, name, color): self.name = name self.color = color def __str__(self): return "<Thing {self.name!r}>".format(self=self) thing1 = Thing("One", "red") thing2 = Thing("Two", "blue") df = DataFrame([[0, 2], [1, 3]], columns=[thing1, thing2]) msg = 'The parameter "keys" may be a column key, .*' with pytest.raises(TypeError, match=msg): # use custom label directly df.set_index(thing2) with pytest.raises(TypeError, match=msg): # custom label wrapped in list df.set_index([thing2]) def test_construction_with_categorical_index(self): ci = tm.makeCategoricalIndex(10) ci.name = "B" # with Categorical df = DataFrame({"A": np.random.randn(10), "B": ci.values}) idf = df.set_index("B") tm.assert_index_equal(idf.index, ci) # from a CategoricalIndex df = DataFrame({"A": np.random.randn(10), "B": ci}) idf = df.set_index("B") tm.assert_index_equal(idf.index, ci) # round-trip idf = idf.reset_index().set_index("B") tm.assert_index_equal(idf.index, ci) def test_set_index_cast_datetimeindex(self): df = DataFrame( { "A": [datetime(2000, 1, 1) + timedelta(i) for i in range(1000)], "B": np.random.randn(1000), } ) idf = df.set_index("A") assert isinstance(idf.index, DatetimeIndex) def test_convert_dti_to_series(self): # don't cast a DatetimeIndex WITH a tz, leave as object # GH 6032 idx = DatetimeIndex( to_datetime(["2013-1-1 13:00", "2013-1-2 14:00"]), name="B" ).tz_localize("US/Pacific") df = DataFrame(np.random.randn(2, 1), columns=["A"]) expected = Series( np.array( [ Timestamp("2013-01-01 13:00:00-0800", tz="US/Pacific"), Timestamp("2013-01-02 14:00:00-0800", tz="US/Pacific"), ], dtype="object", ), name="B", ) # convert index to series result = Series(idx) tm.assert_series_equal(result, expected) # assign to frame df["B"] = idx result = df["B"] tm.assert_series_equal(result, expected) # convert to series while keeping the timezone result = idx.to_series(keep_tz=True, index=[0, 1]) tm.assert_series_equal(result, expected) # convert to utc with tm.assert_produces_warning(FutureWarning): df["B"] = idx.to_series(keep_tz=False, index=[0, 1]) result = df["B"] comp = Series(DatetimeIndex(expected.values).tz_localize(None), name="B") tm.assert_series_equal(result, comp) with tm.assert_produces_warning(FutureWarning) as m: result = idx.to_series(index=[0, 1]) tm.assert_series_equal(result, expected.dt.tz_convert(None)) msg = ( "The default of the 'keep_tz' keyword in " "DatetimeIndex.to_series will change to True in a future " "release." ) assert msg in str(m[0].message) with tm.assert_produces_warning(FutureWarning): result = idx.to_series(keep_tz=False, index=[0, 1]) tm.assert_series_equal(result, expected.dt.tz_convert(None)) # list of datetimes with a tz df["B"] = idx.to_pydatetime() result = df["B"] tm.assert_series_equal(result, expected) # GH 6785 # set the index manually import pytz df = DataFrame([{"ts": datetime(2014, 4, 1, tzinfo=pytz.utc), "foo": 1}]) expected = df.set_index("ts") df.index = df["ts"] df.pop("ts") tm.assert_frame_equal(df, expected) def test_reset_index_tz(self, tz_aware_fixture): # GH 3950 # reset_index with single level tz = tz_aware_fixture idx = date_range("1/1/2011", periods=5, freq="D", tz=tz, name="idx") df = DataFrame({"a": range(5), "b": ["A", "B", "C", "D", "E"]}, index=idx) expected = DataFrame( { "idx": [ datetime(2011, 1, 1), datetime(2011, 1, 2), datetime(2011, 1, 3), datetime(2011, 1, 4), datetime(2011, 1, 5), ], "a": range(5), "b": ["A", "B", "C", "D", "E"], }, columns=["idx", "a", "b"], ) expected["idx"] = expected["idx"].apply(lambda d: Timestamp(d, tz=tz)) tm.assert_frame_equal(df.reset_index(), expected) def test_set_index_timezone(self): # GH 12358 # tz-aware Series should retain the tz idx = to_datetime(["2014-01-01 10:10:10"], utc=True).tz_convert("Europe/Rome") df = DataFrame({"A": idx}) assert df.set_index(idx).index[0].hour == 11 assert DatetimeIndex(Series(df.A))[0].hour == 11 assert df.set_index(df.A).index[0].hour == 11 def test_set_index_dst(self): di = date_range("2006-10-29 00:00:00", periods=3, freq="H", tz="US/Pacific") df = DataFrame(data={"a": [0, 1, 2], "b": [3, 4, 5]}, index=di).reset_index() # single level res = df.set_index("index") exp = DataFrame( data={"a": [0, 1, 2], "b": [3, 4, 5]}, index=Index(di, name="index") ) tm.assert_frame_equal(res, exp) # GH 12920 res = df.set_index(["index", "a"]) exp_index = MultiIndex.from_arrays([di, [0, 1, 2]], names=["index", "a"]) exp = DataFrame({"b": [3, 4, 5]}, index=exp_index) tm.assert_frame_equal(res, exp) def test_reset_index_with_intervals(self): idx = IntervalIndex.from_breaks(np.arange(11), name="x") original = DataFrame({"x": idx, "y": np.arange(10)})[["x", "y"]] result = original.set_index("x") expected = DataFrame({"y": np.arange(10)}, index=idx) tm.assert_frame_equal(result, expected) result2 = result.reset_index()
tm.assert_frame_equal(result2, original)
pandas.util.testing.assert_frame_equal
# -*- coding: utf-8 -*- """ Created on Fri Aug 14 13:52:36 2020 @author: diego """ import os import sqlite3 import numpy as np import pandas as pd import plots as _plots import update_prices import update_companies_info pd.set_option("display.width", 400) pd.set_option("display.max_columns", 10) pd.options.mode.chained_assignment = None update_prices.update_prices() update_companies_info.update_db() cwd = os.getcwd() conn = sqlite3.connect(os.path.join(cwd, "data", "finance.db")) cur = conn.cursor() # %% Functions class Ticker: """ Attributes and Methods to analyse stocks traded in B3 -BOLSA BRASIL BALCÃO """ def __init__(self, ticker, group="consolidated"): """ Creates a Ticker Class Object Args: ticker: string string of the ticker group: string Financial statements group. Can be 'consolidated' or 'individual' """ self.ticker = ticker.upper() df = pd.read_sql( f"""SELECT cnpj, type, sector, subsector, segment, denom_comerc FROM tickers WHERE ticker = '{self.ticker}'""", conn, ) if len(df) == 0: print('unknown ticker') return self.cnpj = df["cnpj"][0] self.type = df["type"][0] self.sector = df["sector"][0] self.subsector = df["subsector"][0] self.segment = df["segment"][0] self.denom_comerc = df["denom_comerc"][0] Ticker.set_group(self, group) on_ticker = pd.read_sql( f"SELECT ticker FROM tickers WHERE cnpj = '{self.cnpj}' AND type = 'ON'", conn, ) on_ticker = on_ticker[on_ticker["ticker"].str[-1] == "3"] self.on_ticker = on_ticker.values[0][0] try: self.pn_ticker = pd.read_sql( f"SELECT ticker FROM tickers WHERE cnpj = '{self.cnpj}' AND type = 'PN'", conn, ).values[0][0] except: pass def set_group(self, new_group): """ To change the financial statement group attribute of a object Args: new_group: string can be 'consolidated' or 'individual' """ if new_group in ["individual", "consolidado", "consolidated"]: if new_group == "individual": self.grupo = "Individual" else: self.grupo = "Consolidado" # Infer the frequency of the reports dates = pd.read_sql( f"""SELECT DISTINCT dt_fim_exerc as date FROM dre WHERE cnpj = '{self.cnpj}' AND grupo_dfp = '{self.grupo}' ORDER BY dt_fim_exerc""", conn, ) if len(dates) == 0: self.grupo = "Individual" print( f"The group of {self.ticker} was automatically switched to individual due to the lack of consolidated statements." ) dates = pd.read_sql( f"""SELECT DISTINCT dt_fim_exerc as date FROM dre WHERE cnpj = '{self.cnpj}' AND grupo_dfp = '{self.grupo}' ORDER BY dt_fim_exerc""", conn, ) try: freq = pd.infer_freq(dates["date"]) self.freq = freq[0] except ValueError: self.freq = "Q" except TypeError: dates["date"] = pd.to_datetime(dates["date"]) number_of_observations = len(dates) period_of_time = ( dates.iloc[-1, 0] - dates.iloc[0, 0] ) / np.timedelta64(1, "Y") if number_of_observations / period_of_time > 1: self.freq = "Q" else: self.freq = "A" if self.freq == "A": print( f""" The {self.grupo} statements of {self.ticker} are only available on an annual basis. Only YTD values will be available in the functions and many functions will not work. Try setting the financial statements to individual: Ticker.set_group(Ticker object, 'individual') """ ) else: print("new_group needs to be 'consolidated' or 'individual'.") def get_begin_period(self, function, start_period): """ Support method for other methods of the Class """ if start_period == "all": begin_period = pd.to_datetime("1900-01-01") return begin_period.date() elif start_period not in ["all", "last"]: try: pd.to_datetime(start_period) except: print( "start_period must be 'last', 'all', or date formated as 'YYYY-MM-DD'." ) return if start_period == "last": if function in ["prices", "total_shares", "market_value"]: last_date = pd.read_sql( f"SELECT date FROM prices WHERE ticker = '{self.ticker}' ORDER BY date DESC LIMIT(1)", conn, ) else: last_date = pd.read_sql( f"SELECT dt_fim_exerc FROM dre WHERE cnpj = '{self.cnpj}' AND grupo_dfp = '{self.grupo}' ORDER BY dt_fim_exerc DESC LIMIT(1)", conn, ) begin_period = pd.to_datetime(last_date.values[0][0]) else: begin_period = pd.to_datetime(start_period) return begin_period.date() def create_pivot_table(df): """ Support method for other methods of the Class """ ##### Creates a pivot table and add % change columns ##### # create columns with % change of the values # value_types: ytd, quarter_value, ttm_value first_type = df.columns.get_loc('ds_conta') + 1 value_types = list(df.columns[first_type:]) new_columns = [i + " % change" for i in value_types] df[new_columns] = df[value_types].div( df.groupby("cd_conta")[value_types].shift(1)) # the calculation of %change from ytd is different: if 'ytd' in value_types: shifted_values = df[['dt_fim_exerc', 'cd_conta', 'ytd']] shifted_values = shifted_values.set_index( [(pd.to_datetime(shifted_values['dt_fim_exerc']) + pd.DateOffset(years=1)), shifted_values['cd_conta']]) df = df.set_index([df['dt_fim_exerc'], df['cd_conta']]) df['ytd % change'] = df['ytd'] / shifted_values['ytd'] df[new_columns] = (df[new_columns] - 1) * 100 # reshape df = df.pivot( index=["cd_conta", "ds_conta"], columns=["dt_fim_exerc"], values=value_types + new_columns ) # rename multiIndex column levels df.columns = df.columns.rename("value", level=0) df.columns = df.columns.rename("date", level=1) # sort columns by date df = df.sort_values([("date"), ("value")], axis=1, ascending=False) # So times, the description of the accounts have small differences for the # same account in different periods, as punctuation. The purpose of the df_index # is to keep only one description to each account, avoiding duplicated rows. df_index = df.reset_index().iloc[:, 0:2] df_index.columns = df_index.columns.droplevel(1) df_index = df_index.groupby("cd_conta").first() # This groupby adds the duplicated rows df = df.groupby(level=0, axis=0).sum() # The next two lines add the account description to the dataframe multiIndex df["ds_conta"] = df_index["ds_conta"] df = df.set_index("ds_conta", append=True) # Reorder the multiIndex column levels df = df.reorder_levels(order=[1, 0], axis=1) # Due to the command line 'df = df.sort_values([('dt_fim_exerc'), ('value')], # axis=1, ascending=False)' # the columns are ordered by date descending, and value descending. The pupose # here is to set the order as: date descending and value ascending df_columns = df.columns.to_native_types() new_order = [] for i in range(1, len(df_columns), 2): new_order.append(df_columns[i]) new_order.append(df_columns[i - 1]) new_order = pd.MultiIndex.from_tuples( new_order, names=("date", "value")) df = df[new_order] return df def income_statement(self, quarter=True, ytd=True, ttm=True, start_period="all"): """ Creates a dataframe with the income statement of the object. Args: quarter: boolean includes or not quarter values ytd: boolean includes or not year to date values ttm: boolean includes or not trailing twelve months value start_period: string Returns: pandas dataframe """ if self.freq == "A": quarter = False ttm = False begin_period = Ticker.get_begin_period( self, function="income_statement", start_period=start_period ) begin_period = begin_period + pd.DateOffset(months=-12) query = f"""SELECT dt_fim_exerc, fiscal_quarter, cd_conta, ds_conta, vl_conta AS ytd FROM dre WHERE cnpj = '{self.cnpj}' AND grupo_dfp = '{self.grupo}' AND dt_fim_exerc >= '{begin_period.date()}' ORDER BY dt_fim_exerc""" df = pd.read_sql(query, conn) df["quarter_value"] = df[["cd_conta", "ytd"] ].groupby("cd_conta").diff() df["quarter_value"][df["fiscal_quarter"] == 1] = df["ytd"][ df["fiscal_quarter"] == 1 ] if ttm == True: df["ttm_value"] = ( df[["dt_fim_exerc", "cd_conta", "quarter_value"]] .groupby("cd_conta") .rolling(window=4, min_periods=4) .sum() .reset_index(0, drop=True) ) if quarter == False: df = df.drop(["quarter_value"], axis=1) if ytd == False: df = df.drop(["ytd"], axis=1) df["dt_fim_exerc"] = pd.to_datetime(df["dt_fim_exerc"]) df = df[df["dt_fim_exerc"] >= begin_period + pd.DateOffset(months=12)] df = df.drop(columns=["fiscal_quarter"]) df = Ticker.create_pivot_table(df) return df def balance_sheet(self, start_period="all", plot=False): """ Creates a dataframe with the balance sheet statement of the object. Args: start_period: string plot: boolean Returns: pandas dataframe """ begin_period = Ticker.get_begin_period( self, function="bp", start_period=start_period ) query = f"""SELECT dt_fim_exerc, cd_conta, ds_conta, vl_conta FROM bpa WHERE cnpj = '{self.cnpj}' AND grupo_dfp = '{self.grupo}' AND dt_fim_exerc >= '{begin_period}' UNION ALL SELECT dt_fim_exerc, cd_conta, ds_conta, vl_conta FROM bpp WHERE cnpj = '{self.cnpj}' AND grupo_dfp = '{self.grupo}' AND dt_fim_exerc >= '{begin_period}' ORDER BY dt_fim_exerc""" df = pd.read_sql(query, conn, parse_dates=['dt_fim_exerc']) df = Ticker.create_pivot_table(df) if plot: _plots.bs_plot(df, self.ticker, self.grupo) return df def cash_flow(self, quarter=True, ytd=True, ttm=True, start_period="all"): """ Creates a dataframe with the cash flow statement of the object. Args: quarter: boolean includes or not quarter values ytd: boolean includes or not year to date values ttm: boolean includes or not trailing twelve months value start_period: string Returns: pandas dataframe """ if self.freq == "A": quarter = False ttm = False begin_period = Ticker.get_begin_period( self, function="dfc", start_period=start_period ) begin_period = begin_period + pd.DateOffset(months=-12) query = f"""SELECT dt_fim_exerc, fiscal_quarter, cd_conta, ds_conta, vl_conta AS ytd FROM dfc WHERE cnpj = '{self.cnpj}' AND grupo_dfp = '{self.grupo}' AND dt_fim_exerc >= '{begin_period.date()}' ORDER BY dt_fim_exerc""" df = pd.read_sql(query, conn) df["quarter_value"] = df[["cd_conta", "ytd"] ].groupby("cd_conta").diff() df["quarter_value"][df["fiscal_quarter"] == 1] = df["ytd"][ df["fiscal_quarter"] == 1 ] if ttm: df["ttm_value"] = ( df[["dt_fim_exerc", "cd_conta", "quarter_value"]] .groupby("cd_conta") .rolling(window=4, min_periods=4) .sum() .reset_index(0, drop=True) ) if not quarter: df = df.drop(["quarter_value"], axis=1) if not ytd: df = df.drop(["ytd"], axis=1) df["dt_fim_exerc"] = pd.to_datetime(df["dt_fim_exerc"]) df = df[df["dt_fim_exerc"] >= begin_period + pd.DateOffset(months=12)] df = df.drop(columns=["fiscal_quarter"]) df = Ticker.create_pivot_table(df) return df def prices(self, start_period="all"): """ Support method for other methods of the Class """ begin_period = Ticker.get_begin_period( self, function="prices", start_period=start_period ) prices = pd.read_sql( f"""SELECT date, preult AS price FROM prices WHERE ticker = '{self.ticker}' AND date >= '{begin_period}' ORDER BY date""", conn, index_col="date", parse_dates=['date'] ) return prices def total_shares(self, start_period="all"): """ Support method for other methods of the Class """ begin_period = Ticker.get_begin_period( self, function="total_shares", start_period=start_period ) query = f"""SELECT date, number_shares AS on_shares FROM prices WHERE ticker = '{self.on_ticker}' AND date >= '{begin_period}' ORDER BY date""" nshares_on = pd.read_sql(query, conn) try: query = f"""SELECT date, number_shares AS pn_shares FROM prices WHERE ticker = '{self.pn_ticker}' AND date >= '{begin_period}' ORDER BY date""" nshares_pn = pd.read_sql(query, conn) shares = nshares_on.merge(nshares_pn, how="left") shares["total_shares"] = shares["on_shares"] + \ shares["pn_shares"].fillna(0) except: shares = nshares_on.rename({"on_shares": "total_shares"}, axis=1) shares.index = shares["date"] shares.index = pd.to_datetime(shares.index) return shares[["total_shares"]] def net_income(self, quarter=True, ytd=True, ttm=True, start_period="all", plot=False): """ Creates a dataframe with the net income information of the object. Args: quarter: boolean includes or not quarter values ytd: boolean includes or not year to date values ttm: boolean includes or not trailing twelve months value start_period: string plot: boolean Returns: pandas dataframe """ if self.freq == "A": quarter = False ttm = False begin_period = Ticker.get_begin_period( self, function="net_income", start_period=start_period ) begin_period = begin_period + pd.DateOffset(months=-12) query = f"""SELECT dt_fim_exerc AS date, fiscal_quarter, ds_conta, vl_conta AS ytd_net_income FROM dre WHERE cnpj = '{self.cnpj}' AND grupo_dfp = '{self.grupo}' AND dt_fim_exerc >= '{begin_period.date()}' AND (ds_conta = 'Resultado Líquido das Operações Continuadas' OR ds_conta = 'Lucro/Prejuízo do Período') ORDER BY dt_fim_exerc""" income_statement = pd.read_sql( query, conn, index_col="date", parse_dates=['date']) df = income_statement[ income_statement["ds_conta"] == "Resultado Líquido das Operações Continuadas" ] if len(df) == 0: df = income_statement[ income_statement["ds_conta"] == "Lucro/Prejuízo do Período" ] df = df.drop(["ds_conta"], axis=1) df["quarter_net_income"] = df["ytd_net_income"] - \ df["ytd_net_income"].shift(1) df["quarter_net_income"][df["fiscal_quarter"] == 1] = df["ytd_net_income"][ df["fiscal_quarter"] == 1 ] if ttm == True: df["ttm_net_income"] = ( df["quarter_net_income"].rolling(window=4, min_periods=4).sum() ) if quarter == False: df = df.drop(["quarter_net_income"], axis=1) if ytd == False: df = df.drop(["ytd_net_income"], axis=1) df = df[df.index >= begin_period +
pd.DateOffset(months=12)
pandas.DateOffset
# Testing array.blend import utipy as ut import numpy as np import pandas as pd def test_blend_list(): x1 = [1, 2, 3, 4, 5, 6] x2 = [2, 3, 4, 5, 6, 7] blended0 = ut.blend(x1, x2, amount=0) blended1 = ut.blend(x1, x2, amount=1) blended05 = ut.blend(x1, x2, amount=.5) assert blended0 == x1 assert blended1 == x2 assert blended05 == [1.5, 2.5, 3.5, 4.5, 5.5, 6.5] def test_blend_ndarray(): x1 = np.asarray([1, 2, 3, 4, 5, 6]) x2 = np.asarray([2, 3, 4, 5, 6, 7]) blended0 = ut.blend(x1, x2, amount=0) blended1 = ut.blend(x1, x2, amount=1) blended05 = ut.blend(x1, x2, amount=.5) assert (blended0 == x1).all() assert (blended1 == x2).all() assert (blended05 == np.asarray([1.5, 2.5, 3.5, 4.5, 5.5, 6.5])).all() def test_blend_Series(): x1 = pd.Series([1, 2, 3, 4, 5, 6]) x2 =
pd.Series([2, 3, 4, 5, 6, 7])
pandas.Series
from dataProcessing import * from sklearn.ensemble import RandomForestClassifier from sklearn.ensemble import IsolationForest import pandas as pd import pickle from RandomForestCounterFactual import * def checkSamples( datasetFileName, unscaledFactualsFileName, unscaledCounterFactualsFileName, serializedClassifierFileName, roundMace = False ): reader = DatasetReader(datasetFileName,rangeFeasibilityForDiscreteFeatures=True) # Classifier clfRead, clfScaled = reader.readRandomForestFromPickleAndApplyMinMaxScaling(serializedClassifierFileName) # Factuals unscaledFactuals = pd.read_csv(unscaledFactualsFileName) scaledFactuals =
pd.DataFrame()
pandas.DataFrame
# import hashlib # import random # import json import binascii import json import traceback import uuid import numpy as np import datetime import Crypto import Crypto.Random from Crypto.Random import get_random_bytes # from Crypto.Hash import SHA from Crypto.PublicKey import RSA from Crypto.Cipher import PKCS1_OAEP from Crypto.Cipher import AES # import werkzeug import requests import os import pandas as pd import qrcode # from pyzbar.pyzbar import decode class Client: def __init__(self,server_ip,password=None): random = Crypto.Random.new().read self._private_key = RSA.generate(2048, random) self._public_key = self._private_key.publickey() self.contacts_name_key={} self.contacts_pkey_key = {} self.contacts=pd.DataFrame(columns=['name','public_key']) #self.groups = {} self.server_ip=server_ip self.request_session=requests.Session() self._public_key_send=binascii.b2a_hex(self._public_key.exportKey()).decode('ascii') self.chat_history=pd.DataFrame(columns=['sender_contact_id','receiver_contact_id','message','time','contact_id','content_address']) # contact:messages self.aes_key= get_random_bytes(16) self.aes_cipher = AES.new(self.aes_key, AES.MODE_EAX) self.nonce = self.aes_cipher.nonce self.download_files_path='secure_messenger_download' if not os.path.isdir(self.download_files_path): os.makedirs(self.download_files_path) self.password=password if password is not None: if os.path.isfile('private_key.pem') and os.path.isfile('aes_key.pem') and os.path.isfile('nonce.pem'): self.login_local(self.password) try: self.load_contacts() self.load_chat_history() except Exception as e: '' else: self.dump_password_encrypted_private_key(password) def dump_password_encrypted_private_key(self,password): with open('private_key.pem','wb') as f: dumped=self._private_key.export_key(passphrase=password) f.write(dumped) with open('aes_key.pem','wb') as f: encryptor = PKCS1_OAEP.new(self._public_key) encrypted = encryptor.encrypt(self.aes_key) f.write(encrypted) with open('nonce.pem','wb') as f: encryptor = PKCS1_OAEP.new(self._public_key) encrypted = encryptor.encrypt(self.nonce) f.write(encrypted) def sign_up(self,): if self.server_ip is None: return # send public key to server url=self.server_ip+'/login' payload = { 'time': str(datetime.datetime.now().timestamp()), 'public_key': self._public_key_send} resp=self.request_session.post(url, json=payload) def login_local(self,password): with open('private_key.pem', 'rb') as f: key_enc=f.read() self._private_key = RSA.importKey(key_enc,passphrase=password) self._public_key = self._private_key.publickey() self._public_key_send = binascii.b2a_hex(self._public_key.exportKey()).decode('ascii') with open('aes_key.pem','rb') as f: data=f.read() decrypter = PKCS1_OAEP.new(self._private_key) decrypted_dict = decrypter.decrypt(data) self.aes_key = decrypted_dict with open('nonce.pem', 'rb') as f: data = f.read() decrypter = PKCS1_OAEP.new(self._private_key) decrypted_dict = decrypter.decrypt(data) self.nonce = decrypted_dict def dump_contacts(self): # encryptor = PKCS1_OAEP.new(self._public_key) cipher = AES.new(self.aes_key, AES.MODE_EAX, self.nonce) ciphertext = cipher.encrypt(self.contacts.to_json(orient='records').encode()) # to_write=encryptor.encrypt(self.contacts.to_json(orient='records').encode()) with open('contacts.p', 'wb') as f: f.write(ciphertext) def load_contacts(self): # decrypter = PKCS1_OAEP.new(self._private_key) cipher = AES.new(self.aes_key, AES.MODE_EAX, self.nonce) if os.path.isfile('contacts.p'): with open('contacts.p', 'rb') as f: # decrypted=decrypter.decrypt(f.read()) data = cipher.decrypt(f.read()) self.contacts=pd.read_json(data.decode(),orient='records') def send_message(self,contact_id,msg=None,file=None,extension=None,file_path=None): if self.server_ip is None: print('no server') return key = get_random_bytes(16) cipher = AES.new(key, AES.MODE_EAX) nonce = cipher.nonce if file is not None: ciphertext_file = cipher.encrypt(file) cipher = AES.new(key, AES.MODE_EAX, nonce) else: ciphertext_file=b'' if msg is not None: ciphertext_msg = cipher.encrypt(msg.encode('ascii')) else: ciphertext_msg=''.encode('ascii') receiver_public_key=RSA.importKey(binascii.a2b_hex(self.contacts.iloc[contact_id]['public_key'])) receiver_public_key_send = self.contacts.iloc[contact_id]['public_key'] encryptor = PKCS1_OAEP.new(receiver_public_key) encrypted_nonce=binascii.b2a_hex(encryptor.encrypt(nonce)).decode('ascii') encrypted_aes_key = binascii.b2a_hex(encryptor.encrypt(key)).decode('ascii') encrypted_file = binascii.b2a_hex(ciphertext_file).decode('ascii') encrypted_message = binascii.b2a_hex(ciphertext_msg).decode('ascii') dtime=str(datetime.datetime.now().timestamp()) #send request url=self.server_ip+'/textmessage' payload={'message':encrypted_message,'encrypted_file':encrypted_file,'time':dtime,'receiver_public_key':receiver_public_key_send,'sender_public_key':self._public_key_send,'encrypted_nonce':encrypted_nonce,'encrypted_aes_key':encrypted_aes_key,'extension':extension} print('payload',payload) resp=self.request_session.post(url,json=payload) if resp.json()['status']=='success': self.update_chat_history('me',contact_id,msg,dtime,file_path) def add_contact(self,public_key,name): contact=
pd.Series({'public_key':public_key,'name':name})
pandas.Series
"""Run the file manually to find all angle data.""" import math import numpy as np import pandas as pd from lilypadz.helper.constant import TOAD_HOP def convert_xyz_to_kinematic(xyz_data: pd.DataFrame) -> pd.DataFrame: """Calculate three kinematic variables from the XYZ data. :param xyz_data: xyz data of a hop of a specific toad. :return: a pandas DataFrame that holds the kinematic variables. """ # Create a data frame for kinematic data. angle_data = pd.DataFrame( columns=['Elbow_Flex_Ext', 'Humeral_Pro_Ret', 'Humeral_Dep_Ele'] ) # Iterate over rows to find the angle data for each row. for index, row in xyz_data.iterrows(): # If the row contains any empty data, make the entire angle row empty. if row.isnull().values.any(): elbow_flex_ext = np.NaN humeral_pro_ret = np.NaN humeral_dep_ele = np.NaN # Do the proper calculations. else: # Calculate Elbow Flexion/Extraction seg_a = math.sqrt( (row['pt4_X'] - row['pt5_X']) ** 2 + (row['pt4_Y'] - row['pt5_Y']) ** 2 + (row['pt4_Z'] - row['pt5_Z']) ** 2 ) seg_b = math.sqrt( (row['pt5_X'] - row['pt6_X']) ** 2 + (row['pt5_Y'] - row['pt6_Y']) ** 2 + (row['pt5_Z'] - row['pt6_Z']) ** 2 ) seg_c = math.sqrt( (row['pt4_X'] - row['pt6_X']) ** 2 + (row['pt4_Y'] - row['pt6_Y']) ** 2 + (row['pt4_Z'] - row['pt6_Z']) ** 2 ) try: elbow_flex_ext = math.degrees( math.acos( (seg_c ** 2 - seg_a ** 2 - seg_b ** 2) / (-2 * seg_a * seg_b) ) ) except ZeroDivisionError: elbow_flex_ext = 0 # Calculate Humeral Protraction/Retraction pt5_x2 = row['pt5_X'] + (row['pt2_X'] - row['pt4_X']) pt5_y2 = row['pt5_Y'] + (row['pt2_Y'] - row['pt4_Y']) pt5_z2 = row['pt5_Z'] + (row['pt2_Z'] - row['pt4_Z']) seg_d = math.sqrt( (row['pt1_X'] - row['pt2_X']) ** 2 + (row['pt1_Y'] - row['pt2_Y']) ** 2 + (row['pt1_Z'] - row['pt2_Z']) ** 2 ) seg_e = math.sqrt( (row['pt2_X'] - pt5_x2) ** 2 + (row['pt2_Y'] - pt5_y2) ** 2 + (row['pt2_Z'] - pt5_z2) ** 2 ) seg_f = math.sqrt( (pt5_x2 - row['pt1_X']) ** 2 + (pt5_y2 - row['pt1_Y']) ** 2 + (pt5_z2 - row['pt1_Z']) ** 2 ) try: humeral_pro_ret = 180 - math.degrees( math.acos( (seg_f ** 2 - seg_d ** 2 - seg_e ** 2) / (-2 * seg_d * seg_e) ) ) except ZeroDivisionError: humeral_pro_ret = 0 # Calculate Humeral Depression/Elevation pt5_x3 = row['pt5_X'] + (row['pt3_X'] - row['pt4_X']) pt5_y3 = row['pt5_Y'] + (row['pt3_Y'] - row['pt4_Y']) pt5_z3 = row['pt5_Z'] + (row['pt3_Z'] - row['pt4_Z']) seg_g = math.sqrt( (row['pt3_X'] - row['pt2_X']) ** 2 + (row['pt3_Y'] - row['pt2_Y']) ** 2 + (row['pt3_Z'] - row['pt2_Z']) ** 2 ) seg_h = math.sqrt( (row['pt3_X'] - pt5_x3) ** 2 + (row['pt3_Y'] - pt5_y3) ** 2 + (row['pt3_Z'] - pt5_z3) ** 2 ) seg_i = math.sqrt( (pt5_x3 - row['pt2_X']) ** 2 + (pt5_y3 - row['pt2_Y']) ** 2 + (pt5_z3 - row['pt2_Z']) ** 2 ) try: humeral_dep_ele = 180 - math.degrees( math.acos( (seg_i ** 2 - seg_h ** 2 - seg_g ** 2) / (-2 * seg_g * seg_h) ) ) except ZeroDivisionError: humeral_dep_ele = 0 angle_data = angle_data.append( {'Elbow_Flex_Ext': elbow_flex_ext, 'Humeral_Pro_Ret': humeral_pro_ret, 'Humeral_Dep_Ele': humeral_dep_ele}, ignore_index=True ) return angle_data def save_all_kinematic_data(): for name, hops in TOAD_HOP.items(): for hop in hops: xyz_data =
pd.read_csv(f"{name}/{hop}/xyz.csv")
pandas.read_csv
# # Copyright 2016 Quantopian, Inc. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from collections import OrderedDict from textwrap import dedent from parameterized import parameterized import numpy as np from numpy import nan import pandas as pd from zipline._protocol import handle_non_market_minutes, BarData from zipline.assets import Asset, Equity from zipline.errors import ( HistoryInInitialize, HistoryWindowStartsBeforeData, ) from zipline.finance.asset_restrictions import NoRestrictions from zipline.testing import ( create_minute_df_for_asset, str_to_seconds, MockDailyBarReader, ) import zipline.testing.fixtures as zf OHLC = ['open', 'high', 'low', 'close'] OHLCP = OHLC + ['price'] ALL_FIELDS = OHLCP + ['volume'] class WithHistory(zf.WithCreateBarData, zf.WithDataPortal): TRADING_START_DT = TRADING_ENV_MIN_DATE = START_DATE = pd.Timestamp( '2014-01-03', tz='UTC', ) TRADING_END_DT = END_DATE = pd.Timestamp('2016-01-29', tz='UTC') SPLIT_ASSET_SID = 4 DIVIDEND_ASSET_SID = 5 MERGER_ASSET_SID = 6 HALF_DAY_TEST_ASSET_SID = 7 SHORT_ASSET_SID = 8 # asset1: # - 2014-03-01 (rounds up to TRADING_START_DT) to 2016-01-29. # - every minute/day. # asset2: # - 2015-01-05 to 2015-12-31 # - every minute/day. # asset3: # - 2015-01-05 to 2015-12-31 # - trades every 10 minutes # SPLIT_ASSET: # - 2015-01-04 to 2015-12-31 # - trades every minute # - splits on 2015-01-05 and 2015-01-06 # DIVIDEND_ASSET: # - 2015-01-04 to 2015-12-31 # - trades every minute # - dividends on 2015-01-05 and 2015-01-06 # MERGER_ASSET # - 2015-01-04 to 2015-12-31 # - trades every minute # - merger on 2015-01-05 and 2015-01-06 @classmethod def init_class_fixtures(cls): super().init_class_fixtures() cls.trading_days = cls.trading_calendar.sessions_in_range( cls.TRADING_START_DT, cls.TRADING_END_DT ) cls.ASSET1 = cls.asset_finder.retrieve_asset(1) cls.ASSET2 = cls.asset_finder.retrieve_asset(2) cls.ASSET3 = cls.asset_finder.retrieve_asset(3) cls.SPLIT_ASSET = cls.asset_finder.retrieve_asset( cls.SPLIT_ASSET_SID, ) cls.DIVIDEND_ASSET = cls.asset_finder.retrieve_asset( cls.DIVIDEND_ASSET_SID, ) cls.MERGER_ASSET = cls.asset_finder.retrieve_asset( cls.MERGER_ASSET_SID, ) cls.HALF_DAY_TEST_ASSET = cls.asset_finder.retrieve_asset( cls.HALF_DAY_TEST_ASSET_SID, ) cls.SHORT_ASSET = cls.asset_finder.retrieve_asset( cls.SHORT_ASSET_SID, ) @classmethod def make_equity_info(cls): jan_5_2015 = pd.Timestamp('2015-01-05', tz='UTC') day_after_12312015 = pd.Timestamp('2016-01-04', tz='UTC') return pd.DataFrame.from_dict( { 1: { 'start_date': pd.Timestamp('2014-01-03', tz='UTC'), 'end_date': cls.TRADING_END_DT, 'symbol': 'ASSET1', 'exchange': "TEST", }, 2: { 'start_date': jan_5_2015, 'end_date': day_after_12312015, 'symbol': 'ASSET2', 'exchange': "TEST", }, 3: { 'start_date': jan_5_2015, 'end_date': day_after_12312015, 'symbol': 'ASSET3', 'exchange': "TEST", }, cls.SPLIT_ASSET_SID: { 'start_date': jan_5_2015, 'end_date': day_after_12312015, 'symbol': 'SPLIT_ASSET', 'exchange': "TEST", }, cls.DIVIDEND_ASSET_SID: { 'start_date': jan_5_2015, 'end_date': day_after_12312015, 'symbol': 'DIVIDEND_ASSET', 'exchange': "TEST", }, cls.MERGER_ASSET_SID: { 'start_date': jan_5_2015, 'end_date': day_after_12312015, 'symbol': 'MERGER_ASSET', 'exchange': "TEST", }, cls.HALF_DAY_TEST_ASSET_SID: { 'start_date': pd.Timestamp('2014-07-02', tz='UTC'), 'end_date': day_after_12312015, 'symbol': 'HALF_DAY_TEST_ASSET', 'exchange': "TEST", }, cls.SHORT_ASSET_SID: { 'start_date': pd.Timestamp('2015-01-05', tz='UTC'), 'end_date': pd.Timestamp('2015-01-06', tz='UTC'), 'symbol': 'SHORT_ASSET', 'exchange': "TEST", } }, orient='index', ) @classmethod def make_splits_data(cls): return pd.DataFrame([ { 'effective_date': str_to_seconds('2015-01-06'), 'ratio': 0.25, 'sid': cls.SPLIT_ASSET_SID, }, { 'effective_date': str_to_seconds('2015-01-07'), 'ratio': 0.5, 'sid': cls.SPLIT_ASSET_SID, }, ]) @classmethod def make_mergers_data(cls): return pd.DataFrame([ { 'effective_date': str_to_seconds('2015-01-06'), 'ratio': 0.25, 'sid': cls.MERGER_ASSET_SID, }, { 'effective_date': str_to_seconds('2015-01-07'), 'ratio': 0.5, 'sid': cls.MERGER_ASSET_SID, } ]) @classmethod def make_dividends_data(cls): return pd.DataFrame([ { # only care about ex date, the other dates don't matter here 'ex_date': pd.Timestamp('2015-01-06', tz='UTC').to_datetime64(), 'record_date': pd.Timestamp('2015-01-06', tz='UTC').to_datetime64(), 'declared_date': pd.Timestamp('2015-01-06', tz='UTC').to_datetime64(), 'pay_date': pd.Timestamp('2015-01-06', tz='UTC').to_datetime64(), 'amount': 2.0, 'sid': cls.DIVIDEND_ASSET_SID, }, { 'ex_date': pd.Timestamp('2015-01-07', tz='UTC').to_datetime64(), 'record_date': pd.Timestamp('2015-01-07', tz='UTC').to_datetime64(), 'declared_date': pd.Timestamp('2015-01-07', tz='UTC').to_datetime64(), 'pay_date': pd.Timestamp('2015-01-07', tz='UTC').to_datetime64(), 'amount': 4.0, 'sid': cls.DIVIDEND_ASSET_SID, }], columns=[ 'ex_date', 'record_date', 'declared_date', 'pay_date', 'amount', 'sid'], ) @classmethod def make_adjustment_writer_equity_daily_bar_reader(cls): return MockDailyBarReader( dates=cls.trading_calendar.sessions_in_range( cls.TRADING_START_DT, cls.TRADING_END_DT, ), ) def verify_regular_dt(self, idx, dt, mode, fields=None, assets=None): if mode == 'daily': freq = '1d' else: freq = '1m' cal = self.trading_calendar equity_cal = self.trading_calendars[Equity] def reindex_to_primary_calendar(a, field): """ Reindex an array of prices from a window on the NYSE calendar by the window on the primary calendar with the same dt and window size. """ if mode == 'daily': dts = cal.sessions_window(dt, -9) # `dt` may not be a session on the equity calendar, so # find the next valid session. equity_sess = equity_cal.minute_to_session_label(dt) equity_dts = equity_cal.sessions_window(equity_sess, -9) elif mode == 'minute': dts = cal.minutes_window(dt, -10) equity_dts = equity_cal.minutes_window(dt, -10) output = pd.Series( index=equity_dts, data=a, ).reindex(dts) # Fill after reindexing, to ensure we don't forward fill # with values that are being dropped. if field == 'volume': return output.fillna(0) elif field == 'price': return output.fillna(method='ffill') else: return output fields = fields if fields is not None else ALL_FIELDS assets = assets if assets is not None else [self.ASSET2, self.ASSET3] bar_data = self.create_bardata( simulation_dt_func=lambda: dt, ) check_internal_consistency( bar_data, assets, fields, 10, freq ) for field in fields: for asset in assets: asset_series = bar_data.history(asset, field, 10, freq) base = MINUTE_FIELD_INFO[field] + 2 if idx < 9: missing_count = 9 - idx present_count = 9 - missing_count if field in OHLCP: if asset == self.ASSET2: # asset2 should have some leading nans np.testing.assert_array_equal( np.full(missing_count, np.nan), asset_series[0:missing_count] ) # asset2 should also have some real values np.testing.assert_array_equal( np.array(range(base, base + present_count + 1)), asset_series[(9 - present_count):] ) if asset == self.ASSET3: # asset3 should be NaN the entire time np.testing.assert_array_equal( np.full(10, np.nan), asset_series ) elif field == 'volume': if asset == self.ASSET2: # asset2 should have some zeros (instead of nans) np.testing.assert_array_equal( np.zeros(missing_count), asset_series[0:missing_count] ) # and some real values np.testing.assert_array_equal( np.array( range(base, base + present_count + 1) ) * 100, asset_series[(9 - present_count):] ) if asset == self.ASSET3: # asset3 is all zeros, no volume yet np.testing.assert_array_equal( np.zeros(10), asset_series ) else: # asset3 should have data every 10 minutes # construct an array full of nans, put something in the # right slot, and test for comparison position_from_end = ((idx + 1) % 10) + 1 # asset3's baseline data is 9 NaNs, then 11, then 9 NaNs, # then 21, etc. for idx 9 to 19, value_for_asset3 should # be a baseline of 11 (then adjusted for the individual # field), thus the rounding down to the nearest 10. value_for_asset3 = (((idx + 1) // 10) * 10) + \ MINUTE_FIELD_INFO[field] + 1 if field in OHLC: asset3_answer_key = np.full(10, np.nan) asset3_answer_key[-position_from_end] = \ value_for_asset3 asset3_answer_key = reindex_to_primary_calendar( asset3_answer_key, field, ) if asset == self.ASSET2: np.testing.assert_array_equal( reindex_to_primary_calendar( np.array( range(base + idx - 9, base + idx + 1) ), field, ), asset_series ) if asset == self.ASSET3: np.testing.assert_array_equal( asset3_answer_key, asset_series ) elif field == 'volume': asset3_answer_key = np.zeros(10) asset3_answer_key[-position_from_end] = \ value_for_asset3 * 100 asset3_answer_key = reindex_to_primary_calendar( asset3_answer_key, field, ) if asset == self.ASSET2: np.testing.assert_array_equal( reindex_to_primary_calendar( np.array( range(base + idx - 9, base + idx + 1) ) * 100, field, ), asset_series ) if asset == self.ASSET3: np.testing.assert_array_equal( asset3_answer_key, asset_series ) elif field == 'price': # price is always forward filled # asset2 has prices every minute, so it's easy if asset == self.ASSET2: # at idx 9, the data is 2 to 11 np.testing.assert_array_equal( reindex_to_primary_calendar( range(idx - 7, idx + 3), field=field, ), asset_series ) if asset == self.ASSET3: # Second part begins on the session after # `position_from_end` on the NYSE calendar. second_begin = ( dt - equity_cal.day * (position_from_end - 1) ) # First part goes up until the start of the # second part, because we forward-fill. first_end = second_begin - cal.day first_part = asset_series[:first_end] second_part = asset_series[second_begin:] decile_count = ((idx + 1) // 10) # in our test data, asset3 prices will be nine # NaNs, then ten 11s, ten 21s, ten 31s... if len(second_part) >= 10: np.testing.assert_array_equal( np.full(len(first_part), np.nan), first_part ) elif decile_count == 1: np.testing.assert_array_equal( np.full(len(first_part), np.nan), first_part ) np.testing.assert_array_equal( np.array([11] * len(second_part)), second_part ) else: np.testing.assert_array_equal( np.array([decile_count * 10 - 9] * len(first_part)), first_part ) np.testing.assert_array_equal( np.array([decile_count * 10 + 1] * len(second_part)), second_part ) def check_internal_consistency(bar_data, assets, fields, bar_count, freq): if isinstance(assets, Asset): asset_list = [assets] else: asset_list = assets if isinstance(fields, str): field_list = [fields] else: field_list = fields multi_field_dict = { asset: bar_data.history(asset, field_list, bar_count, freq) for asset in asset_list } multi_asset_dict = { field: bar_data.history(asset_list, field, bar_count, freq) for field in fields } panel = bar_data.history(asset_list, field_list, bar_count, freq) for field in field_list: # make sure all the different query forms are internally # consistent for asset in asset_list: series = bar_data.history(asset, field, bar_count, freq) np.testing.assert_array_equal( series, multi_asset_dict[field][asset] ) np.testing.assert_array_equal( series, multi_field_dict[asset][field] ) np.testing.assert_array_equal( series, panel[field][asset] ) # each minute's OHLCV data has a consistent offset for each field. # for example, the open is always 1 higher than the close, the high # is always 2 higher than the close, etc. MINUTE_FIELD_INFO = { 'open': 1, 'high': 2, 'low': -1, 'close': 0, 'price': 0, 'volume': 0, # unused, later we'll multiply by 100 } class MinuteEquityHistoryTestCase(WithHistory, zf.WithMakeAlgo, zf.ZiplineTestCase): EQUITY_DAILY_BAR_SOURCE_FROM_MINUTE = True DATA_PORTAL_FIRST_TRADING_DAY = zf.alias('TRADING_START_DT') @classmethod def make_equity_minute_bar_data(cls): equities_cal = cls.trading_calendars[Equity] data = {} sids = {2, 5, cls.SHORT_ASSET_SID, cls.HALF_DAY_TEST_ASSET_SID} for sid in sids: asset = cls.asset_finder.retrieve_asset(sid) data[sid] = create_minute_df_for_asset( equities_cal, asset.start_date, asset.end_date, start_val=2, ) data[1] = create_minute_df_for_asset( equities_cal, pd.Timestamp('2014-01-03', tz='utc'), pd.Timestamp('2016-01-29', tz='utc'), start_val=2, ) asset2 = cls.asset_finder.retrieve_asset(2) data[asset2.sid] = create_minute_df_for_asset( equities_cal, asset2.start_date, equities_cal.previous_session_label(asset2.end_date), start_val=2, minute_blacklist=[ pd.Timestamp('2015-01-08 14:31', tz='UTC'), pd.Timestamp('2015-01-08 21:00', tz='UTC'), ], ) # Start values are crafted so that the thousands place are equal when # adjustments are applied correctly. # The splits and mergers are defined as 4:1 then 2:1 ratios, so the # prices approximate that adjustment by quartering and then halving # the thousands place. data[cls.MERGER_ASSET_SID] = data[cls.SPLIT_ASSET_SID] = pd.concat(( create_minute_df_for_asset( equities_cal, pd.Timestamp('2015-01-05', tz='UTC'), pd.Timestamp('2015-01-05', tz='UTC'), start_val=8000), create_minute_df_for_asset( equities_cal, pd.Timestamp('2015-01-06', tz='UTC'), pd.Timestamp('2015-01-06', tz='UTC'), start_val=2000), create_minute_df_for_asset( equities_cal, pd.Timestamp('2015-01-07', tz='UTC'), pd.Timestamp('2015-01-07', tz='UTC'), start_val=1000), create_minute_df_for_asset( equities_cal, pd.Timestamp('2015-01-08', tz='UTC'), pd.Timestamp('2015-01-08', tz='UTC'), start_val=1000) )) asset3 = cls.asset_finder.retrieve_asset(3) data[3] = create_minute_df_for_asset( equities_cal, asset3.start_date, asset3.end_date, start_val=2, interval=10, ) return data.items() def test_history_in_initialize(self): algo_text = dedent( """\ from zipline.api import history def initialize(context): history([1], 10, '1d', 'price') def handle_data(context, data): pass """ ) algo = self.make_algo(script=algo_text) with self.assertRaises(HistoryInInitialize): algo.run() def test_negative_bar_count(self): """ Negative bar counts leak future information. """ with self.assertRaisesRegex( ValueError, "bar_count must be >= 1, but got -1" ): self.data_portal.get_history_window( [self.ASSET1], pd.Timestamp('2015-01-07 14:35', tz='UTC'), -1, '1d', 'close', 'minute', ) def test_daily_splits_and_mergers(self): # self.SPLIT_ASSET and self.MERGER_ASSET had splits/mergers # on 1/6 and 1/7 jan5 = pd.Timestamp('2015-01-05', tz='UTC') for asset in [self.SPLIT_ASSET, self.MERGER_ASSET]: # before any of the adjustments, 1/4 and 1/5 window1 = self.data_portal.get_history_window( [asset], self.trading_calendar.open_and_close_for_session(jan5)[1], 2, '1d', 'close', 'minute', )[asset] np.testing.assert_array_equal(np.array([np.nan, 8389]), window1) # straddling the first event window2 = self.data_portal.get_history_window( [asset], pd.Timestamp('2015-01-06 14:35', tz='UTC'), 2, '1d', 'close', 'minute', )[asset] # Value from 1/5 should be quartered np.testing.assert_array_equal( [2097.25, # Split occurs. The value of the thousands place should # match. 2004], window2 ) # straddling both events! window3 = self.data_portal.get_history_window( [asset], pd.Timestamp('2015-01-07 14:35', tz='UTC'), 3, '1d', 'close', 'minute', )[asset] np.testing.assert_array_equal( [1048.625, 1194.50, 1004.0], window3 ) # after last event window4 = self.data_portal.get_history_window( [asset], pd.Timestamp('2015-01-08 14:40', tz='UTC'), 2, '1d', 'close', 'minute', )[asset] # should not be adjusted np.testing.assert_array_equal([1389, 1009], window4) def test_daily_dividends(self): # self.DIVIDEND_ASSET had dividends on 1/6 and 1/7 jan5 = pd.Timestamp('2015-01-05', tz='UTC') asset = self.DIVIDEND_ASSET # before any of the dividends window1 = self.data_portal.get_history_window( [asset], self.trading_calendar.session_close(jan5), 2, '1d', 'close', 'minute', )[asset] np.testing.assert_array_equal(np.array([nan, 391]), window1) # straddling the first event window2 = self.data_portal.get_history_window( [asset], pd.Timestamp('2015-01-06 14:35', tz='UTC'), 2, '1d', 'close', 'minute', )[asset] np.testing.assert_array_equal( [383.18, # 391 (last close) * 0.98 (first div) # Dividend occurs prior. 396], window2 ) # straddling both events! window3 = self.data_portal.get_history_window( [asset], pd.Timestamp('2015-01-07 14:35', tz='UTC'), 3, '1d', 'close', 'minute', )[asset] np.testing.assert_array_equal( [367.853, # 391 (last close) * 0.98 * 0.96 (both) 749.76, # 781 (last_close) * 0.96 (second div) 786], # no adjustment window3 ) # after last event window4 = self.data_portal.get_history_window( [asset], pd.Timestamp('2015-01-08 14:40', tz='UTC'), 2, '1d', 'close', 'minute', )[asset] # should not be adjusted, should be 787 to 791 np.testing.assert_array_equal([1171, 1181], window4) def test_minute_before_assets_trading(self): # since asset2 and asset3 both started trading on 1/5/2015, let's do # some history windows that are completely before that minutes = self.trading_calendar.minutes_for_session( self.trading_calendar.previous_session_label(pd.Timestamp( '2015-01-05', tz='UTC' )) )[0:60] for idx, minute in enumerate(minutes): bar_data = self.create_bardata( lambda: minute, ) check_internal_consistency( bar_data, [self.ASSET2, self.ASSET3], ALL_FIELDS, 10, '1m' ) for field in ALL_FIELDS: # OHLCP should be NaN # Volume should be 0 asset2_series = bar_data.history(self.ASSET2, field, 10, '1m') asset3_series = bar_data.history(self.ASSET3, field, 10, '1m') if field == 'volume': np.testing.assert_array_equal(np.zeros(10), asset2_series) np.testing.assert_array_equal(np.zeros(10), asset3_series) else: np.testing.assert_array_equal( np.full(10, np.nan), asset2_series ) np.testing.assert_array_equal( np.full(10, np.nan), asset3_series ) @parameterized.expand([ ('open_sid_2', 'open', 2), ('high_sid_2', 'high', 2), ('low_sid_2', 'low', 2), ('close_sid_2', 'close', 2), ('volume_sid_2', 'volume', 2), ('open_sid_3', 'open', 3), ('high_sid_3', 'high', 3), ('low_sid_3', 'low', 3), ('close_sid_3', 'close', 3), ('volume_sid_3', 'volume', 3), ]) def test_minute_regular(self, name, field, sid): # asset2 and asset3 both started on 1/5/2015, but asset3 trades every # 10 minutes asset = self.asset_finder.retrieve_asset(sid) # Check the first hour of equities trading. minutes = self.trading_calendars[Equity].minutes_for_session( pd.Timestamp('2015-01-05', tz='UTC') )[0:60] for idx, minute in enumerate(minutes): self.verify_regular_dt(idx, minute, 'minute', assets=[asset], fields=[field]) def test_minute_sunday_midnight(self): # Most trading calendars aren't open at midnight on Sunday. sunday_midnight = pd.Timestamp('2015-01-09', tz='UTC') # Find the closest prior minute when the trading calendar was # open (note that if the calendar is open at `sunday_midnight`, # this will be `sunday_midnight`). trading_minutes = self.trading_calendar.all_minutes last_minute = trading_minutes[trading_minutes <= sunday_midnight][-1] sunday_midnight_bar_data = self.create_bardata(lambda: sunday_midnight) last_minute_bar_data = self.create_bardata(lambda: last_minute) # Ensure that we get the same results at midnight on Sunday as # the last open minute. with handle_non_market_minutes(sunday_midnight_bar_data): for field in ALL_FIELDS: np.testing.assert_array_equal( sunday_midnight_bar_data.history( self.ASSET2, field, 30, '1m', ), last_minute_bar_data.history(self.ASSET2, field, 30, '1m') ) def test_minute_after_asset_stopped(self): # SHORT_ASSET's last day was 2015-01-06 # get some history windows that straddle the end minutes = self.trading_calendars[Equity].minutes_for_session( pd.Timestamp('2015-01-07', tz='UTC') )[0:60] for idx, minute in enumerate(minutes): bar_data = self.create_bardata( lambda: minute ) check_internal_consistency( bar_data, self.SHORT_ASSET, ALL_FIELDS, 30, '1m' ) # Reset data portal because it has advanced past next test date. data_portal = self.make_data_portal() # close high low open price volume # 2015-01-06 20:47:00+00:00 768 770 767 769 768 76800 # 2015-01-06 20:48:00+00:00 769 771 768 770 769 76900 # 2015-01-06 20:49:00+00:00 770 772 769 771 770 77000 # 2015-01-06 20:50:00+00:00 771 773 770 772 771 77100 # 2015-01-06 20:51:00+00:00 772 774 771 773 772 77200 # 2015-01-06 20:52:00+00:00 773 775 772 774 773 77300 # 2015-01-06 20:53:00+00:00 774 776 773 775 774 77400 # 2015-01-06 20:54:00+00:00 775 777 774 776 775 77500 # 2015-01-06 20:55:00+00:00 776 778 775 777 776 77600 # 2015-01-06 20:56:00+00:00 777 779 776 778 777 77700 # 2015-01-06 20:57:00+00:00 778 780 777 779 778 77800 # 2015-01-06 20:58:00+00:00 779 781 778 780 779 77900 # 2015-01-06 20:59:00+00:00 780 782 779 781 780 78000 # 2015-01-06 21:00:00+00:00 781 783 780 782 781 78100 # 2015-01-07 14:31:00+00:00 NaN NaN NaN NaN NaN 0 # 2015-01-07 14:32:00+00:00 NaN NaN NaN NaN NaN 0 # 2015-01-07 14:33:00+00:00 NaN NaN NaN NaN NaN 0 # 2015-01-07 14:34:00+00:00 NaN NaN NaN NaN NaN 0 # 2015-01-07 14:35:00+00:00 NaN NaN NaN NaN NaN 0 # 2015-01-07 14:36:00+00:00 NaN NaN NaN NaN NaN 0 # 2015-01-07 14:37:00+00:00 NaN NaN NaN NaN NaN 0 # 2015-01-07 14:38:00+00:00 NaN NaN NaN NaN NaN 0 # 2015-01-07 14:39:00+00:00 NaN NaN NaN NaN NaN 0 # 2015-01-07 14:40:00+00:00 NaN NaN NaN NaN NaN 0 # 2015-01-07 14:41:00+00:00 NaN NaN NaN NaN NaN 0 # 2015-01-07 14:42:00+00:00 NaN NaN NaN NaN NaN 0 # 2015-01-07 14:43:00+00:00 NaN NaN NaN NaN NaN 0 # 2015-01-07 14:44:00+00:00 NaN NaN NaN NaN NaN 0 # 2015-01-07 14:45:00+00:00 NaN NaN NaN NaN NaN 0 # 2015-01-07 14:46:00+00:00 NaN NaN NaN NaN NaN 0 # choose a window that contains the last minute of the asset window_start = pd.Timestamp('2015-01-06 20:47', tz='UTC') window_end = pd.Timestamp('2015-01-07 14:46', tz='UTC') bar_data = BarData( data_portal=data_portal, simulation_dt_func=lambda: minutes[15], data_frequency='minute', restrictions=NoRestrictions(), trading_calendar=self.trading_calendar, ) bar_count = len( self.trading_calendar.minutes_in_range(window_start, window_end) ) window = bar_data.history( self.SHORT_ASSET, ALL_FIELDS, bar_count, '1m', ) # Window should start with 14 values and end with 16 NaNs/0s. for field in ALL_FIELDS: if field == 'volume': np.testing.assert_array_equal( range(76800, 78101, 100), window['volume'][0:14] ) np.testing.assert_array_equal( np.zeros(16), window['volume'][-16:] ) else: np.testing.assert_array_equal( np.array(range(768, 782)) + MINUTE_FIELD_INFO[field], window[field][0:14] ) np.testing.assert_array_equal( np.full(16, np.nan), window[field][-16:] ) # now do a smaller window that is entirely contained after the asset # ends window = bar_data.history(self.SHORT_ASSET, ALL_FIELDS, 5, '1m') for field in ALL_FIELDS: if field == 'volume': np.testing.assert_array_equal(np.zeros(5), window['volume']) else: np.testing.assert_array_equal(np.full(5, np.nan), window[field]) def test_minute_splits_and_mergers(self): # self.SPLIT_ASSET and self.MERGER_ASSET had splits/mergers # on 1/6 and 1/7 jan5 = pd.Timestamp('2015-01-05', tz='UTC') # the assets' close column starts at 2 on the first minute of # 1/5, then goes up one per minute forever for asset in [self.SPLIT_ASSET, self.MERGER_ASSET]: # before any of the adjustments, last 10 minutes of jan 5 equity_cal = self.trading_calendars[Equity] window1 = self.data_portal.get_history_window( [asset], equity_cal.open_and_close_for_session(jan5)[1], 10, '1m', 'close', 'minute', )[asset] np.testing.assert_array_equal( np.array(range(8380, 8390)), window1) # straddling the first event - begins with the last 5 equity # minutes on 2015-01-05, ends with the first 5 on # 2015-01-06. window2_start = pd.Timestamp('2015-01-05 20:56', tz='UTC') window2_end = pd.Timestamp('2015-01-06 14:35', tz='UTC') window2_count = len(self.trading_calendar.minutes_in_range( window2_start, window2_end, )) window2 = self.data_portal.get_history_window( [asset], pd.Timestamp('2015-01-06 14:35', tz='UTC'), window2_count, '1m', 'close', 'minute', )[asset] # five minutes from 1/5 should be halved np.testing.assert_array_equal( [2096.25, 2096.5, 2096.75, 2097, 2097.25], window2[:5], ) # Split occurs. The value of the thousands place should # match. np.testing.assert_array_equal( [2000, 2001, 2002, 2003, 2004], window2[-5:], ) # straddling both events! on the equities calendar this is 5 # minutes of 1/7, 390 of 1/6, and 5 minutes of 1/5. window3_start = pd.Timestamp('2015-01-05 20:56', tz='UTC') window3_end =
pd.Timestamp('2015-01-07 14:35', tz='UTC')
pandas.Timestamp
# -*- coding: utf-8 -*- from typing import Optional, Union import pandas as pd from mando import command from tstoolbox import tsutils try: from typing import Literal except ImportError: from typing_extensions import Literal try: from mando.rst_text_formatter import RSTHelpFormatter as HelpFormatter except ImportError: from argparse import RawTextHelpFormatter as HelpFormatter @command("cdec", formatter_class=HelpFormatter, doctype="numpy") @tsutils.doc(tsutils.docstrings) def cdec_cli( station_id, dur_code=None, sensor_num=None, start_date=None, end_date=None ): r"""Access data from the 'California Department of Water Resources'. The web site is called the 'California Data Exchange Center'. California Department of Water Resources: http://www.water.ca.gov/ California Data Exchange Center: http://cdec.water.ca.gov Downloads data for a set of CDEC station and sensor ids. If either is not provided, all available data will be downloaded. Parameters ---------- station_id: str [optional, default is None] Each string is the CDEC station ID and consist of three capital letters. sensor_num: integer, comma separated integers or ``None`` [optional, default is None] If ``None`` will get all sensors at `station_id`. SELECTED CDEC SENSOR NUMBERS (these are not available for all sites): +------------+-------------------------------------------+ | sensor_num | Description | +============+===========================================+ | 1 | river stage [ft] | +------------+-------------------------------------------+ | 2 | precipitation accumulated [in] | +------------+-------------------------------------------+ | 3 | SWE [in] | +------------+-------------------------------------------+ | 4 | air temperature [F] | +------------+-------------------------------------------+ | 5 | EC [ms/cm] | +------------+-------------------------------------------+ | 6 | reservoir elevation [ft] | +------------+-------------------------------------------+ | 7 | reservoir scheduled release [cfs] | +------------+-------------------------------------------+ | 8 | full natural flow [cfs] | +------------+-------------------------------------------+ | 15 | reservoir storage [af] | +------------+-------------------------------------------+ | 20 | flow -- river discharge [cfs] | +------------+-------------------------------------------+ | 22 | reservoir storage change [af] | +------------+-------------------------------------------+ | 23 | reservoir outflow [cfs] | +------------+-------------------------------------------+ | 24 | Evapotranspiration [in] | +------------+-------------------------------------------+ | 25 | water temperature [F] | +------------+-------------------------------------------+ | 27 | water turbidity [ntu] | +------------+-------------------------------------------+ | 28 | chlorophyll [ug/l] | +------------+-------------------------------------------+ | 41 | flow -- mean daily [cfs] | +------------+-------------------------------------------+ | 45 | precipitation incremental [in] | +------------+-------------------------------------------+ | 46 | runoff volume [af] | +------------+-------------------------------------------+ | 61 | water dissolved oxygen [mg/l] | +------------+-------------------------------------------+ | 62 | water pH value [pH] | +------------+-------------------------------------------+ | 64 | pan evaporation (incremental) [in] | +------------+-------------------------------------------+ | 65 | full natural flow [af] | +------------+-------------------------------------------+ | 66 | flow -- monthly volume [af] | +------------+-------------------------------------------+ | 67 | accretions (estimated) [af] | +------------+-------------------------------------------+ | 71 | spillway discharge [cfs] | +------------+-------------------------------------------+ | 74 | lake evaporation (computed) [cfs] | +------------+-------------------------------------------+ | 76 | reservoir inflow [cfs] | +------------+-------------------------------------------+ | 85 | control regulating discharge [cfs] | +------------+-------------------------------------------+ | 94 | top conservation storage (reservoir) [af] | +------------+-------------------------------------------+ | 100 | water EC [us/cm] | +------------+-------------------------------------------+ dur_code: str, comma separated strings, or ``None`` [optional, default is None] Possible values are 'E', 'H', 'D', and 'M' but not all of these time resolutions are available at every station. +----------+-------------+ | dur_code | Description | +==========+=============+ | E | event | +----------+-------------+ | H | hourly | +----------+-------------+ | D | daily | +----------+-------------+ | M | monthly | +----------+-------------+ {start_date} {end_date} """ tsutils._printiso( cdec( station_id, dur_code=dur_code, sensor_num=sensor_num, start_date=start_date, end_date=end_date, ) ) DEFAULT_START_DATE = "01/01/1901" DEFAULT_END_DATE = "Now" def get_stations(): """Fetch information on all CDEC sites. Returns ------- df : pandas DataFrame a pandas DataFrame (indexed on site id) with station information. """ # I haven't found a better list of stations, seems pretty janky # to just have them in a file, and not sure if/when it is updated. url = "http://cdec.water.ca.gov/misc/all_stations.csv" # the csv is malformed, so some rows think there are 7 fields col_names = ["id", "meta_url", "name", "num", "lat", "lon", "junk"] df = pd.read_csv(url, names=col_names, header=None, quotechar="'", index_col=0) return df def get_sensors(sensor_id=None): """ Get a list of sensor ids as a DataFrame indexed on sensor number. Can be limited by a list of numbers. Parameters ---------- sites : iterable of integers or ``None`` Returns ------- df : pandas DataFrame a python dict with site codes mapped to site information """ url = "http://cdec.water.ca.gov/misc/senslist.html" df = pd.read_html(url, header=0)[0] df.set_index("Sensor No") if sensor_id is None: return df return df.ix[sensor_id] def get_station_sensors(station_ids=None, sensor_ids=None, resolutions=None): """Get available sensors for the given stations. Get available sensors, sensor ids and time resolutions. If no station ids are provided, all available stations will be used (this is not recommended, and will probably take a really long time). The list can be limited by a list of sensor numbers, or time resolutions if you already know what you want. If none of the provided sensors or resolutions are available, an empty DataFrame will be returned for that station. Parameters ---------- station_ids : iterable of strings or ``None`` sensor_ids : iterable of integers or ``None`` check out or use the ``get_sensors()`` function to see a list of available sensor numbers resolutions : iterable of strings or ``None`` Possible values are 'event', 'hourly', 'daily', and 'monthly' but not all of these time resolutions are available at every station. Returns ------- dict : a python dict a python dict with site codes as keys with values containing pandas DataFrames of available sensor numbers and metadata. """ station_sensors = {} unit_conv = { "INCHES": "in", "AF": "acre feet", "CFS": "cfs", "FEET": "ft", } if station_ids is None: station_ids = get_stations().index for station_id in station_ids: url = "http://cdec.water.ca.gov/dynamicapp/staMeta?station_id={}".format( station_id ) sensor_list = pd.read_html(url)[1] sensor_list.columns = [ "sensor_description", "sensor_number", "duration", "plot", "data_collection", "data_available", ] v = list(sensor_list["sensor_description"].to_dict().values()) split = [i.split(",") for i in v] var_names = ["_".join(x[:-1]).strip() for x in split] units = [x[-1][1:] for x in split] units = [unit_conv.get(i, i) for i in units] var_names = [":".join([i, j]) for i, j in zip(var_names, units)] var_resolution = [x[1:-1] for x in sensor_list["duration"]] sensor_list["resolution"] = var_resolution sensor_list[ "variable" ] = var_names # [x + y for x, y in zip(var_names, var_resolution)] station_sensors[station_id] = _limit_sensor_list( sensor_list, sensor_ids, resolutions ) return station_sensors def get_data(station_ids=None, sensor_ids=None, resolutions=None, start=None, end=None): """Download data for a set of CDEC station and sensor ids. If either is not provided, all available data will be downloaded. Be really careful with choosing hourly resolution as the data sets are big, and CDEC's servers are slow as molasses in winter. Parameters ---------- station_ids : iterable of strings or ``None`` sensor_ids : iterable of integers or ``None`` check out or use the ``get_sensors()`` function to see a list of available sensor numbers resolutions : iterable of strings or ``None`` Possible values are 'event', 'hourly', 'daily', and 'monthly' but not all of these time resolutions are available at every station. Returns ------- dict : a python dict a python dict with site codes as keys. Values will be nested dicts containing all of the sensor/resolution combinations. """ if start is None: start_date = pd.Timestamp(DEFAULT_START_DATE).date() else: start_date = pd.Timestamp(start).date() if end is None: end_date =
pd.Timestamp(DEFAULT_END_DATE)
pandas.Timestamp
from __future__ import absolute_import, division, print_function import pytest from datetime import datetime, timedelta import numpy as np import pandas as pd import pandas.util.testing as tm from pandas import DataFrame, Series from string import ascii_lowercase from blaze.compute.core import compute from blaze import dshape, discover, transform from blaze.expr import symbol, join, by, summary, distinct, shape from blaze.expr import (merge, exp, mean, count, nunique, sum, min, max, any, var, std, concat) from blaze.compatibility import builtins, xfail, assert_series_equal t = symbol('t', 'var * {name: string, amount: int, id: int}') nt = symbol('t', 'var * {name: ?string, amount: float64, id: int}') df = DataFrame([['Alice', 100, 1], ['Bob', 200, 2], ['Alice', 50, 3]], columns=['name', 'amount', 'id']) ndf = DataFrame([['Alice', 100.0, 1], ['Bob', np.nan, 2], [np.nan, 50.0, 3]], columns=['name', 'amount', 'id']) tbig = symbol('tbig', 'var * {name: string, sex: string[1], amount: int, id: int}') dfbig = DataFrame([['Alice', 'F', 100, 1], ['Alice', 'F', 100, 3], ['Drew', 'F', 100, 4], ['Drew', 'M', 100, 5], ['Drew', 'M', 200, 5]], columns=['name', 'sex', 'amount', 'id']) def test_series_columnwise(): s = Series([1, 2, 3], name='a') t = symbol('t', 'var * {a: int64}') result = compute(t.a + 1, s) assert_series_equal(s + 1, result) def test_symbol(): tm.assert_frame_equal(compute(t, df), df) def test_projection(): tm.assert_frame_equal(compute(t[['name', 'id']], df), df[['name', 'id']]) def test_eq(): assert_series_equal(compute(t['amount'] == 100, df), df['amount'] == 100) def test_selection(): tm.assert_frame_equal(compute(t[t['amount'] == 0], df), df[df['amount'] == 0]) tm.assert_frame_equal(compute(t[t['amount'] > 150], df), df[df['amount'] > 150]) def test_arithmetic(): assert_series_equal(compute(t['amount'] + t['id'], df), df.amount + df.id) assert_series_equal(compute(t['amount'] * t['id'], df), df.amount * df.id) assert_series_equal(compute(t['amount'] % t['id'], df), df.amount % df.id) def test_join(): left = DataFrame( [['Alice', 100], ['Bob', 200]], columns=['name', 'amount']) right = DataFrame([['Alice', 1], ['Bob', 2]], columns=['name', 'id']) lsym = symbol('L', 'var * {name: string, amount: int}') rsym = symbol('R', 'var * {name: string, id: int}') joined = join(lsym, rsym, 'name') assert (dshape(joined.schema) == dshape('{name: string, amount: int, id: int}')) result = compute(joined, {lsym: left, rsym: right}) expected = DataFrame([['Alice', 100, 1], ['Bob', 200, 2]], columns=['name', 'amount', 'id']) tm.assert_frame_equal(result, expected) assert list(result.columns) == list(joined.fields) def test_multi_column_join(): left = [(1, 2, 3), (2, 3, 4), (1, 3, 5)] left = DataFrame(left, columns=['x', 'y', 'z']) right = [(1, 2, 30), (1, 3, 50), (1, 3, 150)] right = DataFrame(right, columns=['x', 'y', 'w']) lsym = symbol('lsym', 'var * {x: int, y: int, z: int}') rsym = symbol('rsym', 'var * {x: int, y: int, w: int}') j = join(lsym, rsym, ['x', 'y']) expected = [(1, 2, 3, 30), (1, 3, 5, 50), (1, 3, 5, 150)] expected = DataFrame(expected, columns=['x', 'y', 'z', 'w']) result = compute(j, {lsym: left, rsym: right}) print(result) tm.assert_frame_equal(result, expected) assert list(result.columns) == list(j.fields) def test_unary_op(): assert (compute(exp(t['amount']), df) == np.exp(df['amount'])).all() def test_abs(): assert (compute(abs(t['amount']), df) == abs(df['amount'])).all() def test_neg(): assert_series_equal(compute(-t['amount'], df), -df['amount']) @xfail(reason='Projection does not support arithmetic') def test_neg_projection(): assert_series_equal(compute(-t[['amount', 'id']], df), -df[['amount', 'id']]) def test_columns_series(): assert isinstance(compute(t['amount'], df), Series) assert isinstance(compute(t['amount'] > 150, df), Series) def test_reductions(): assert compute(mean(t['amount']), df) == 350 / 3 assert compute(count(t['amount']), df) == 3 assert compute(sum(t['amount']), df) == 100 + 200 + 50 assert compute(min(t['amount']), df) == 50 assert compute(max(t['amount']), df) == 200 assert compute(nunique(t['amount']), df) == 3 assert compute(nunique(t['name']), df) == 2 assert compute(any(t['amount'] > 150), df) is True assert compute(any(t['amount'] > 250), df) is False assert compute(var(t['amount']), df) == df.amount.var(ddof=0) assert compute(var(t['amount'], unbiased=True), df) == df.amount.var() assert compute(std(t['amount']), df) == df.amount.std(ddof=0) assert compute(std(t['amount'], unbiased=True), df) == df.amount.std() assert compute(t.amount[0], df) == df.amount.iloc[0] assert compute(t.amount[-1], df) == df.amount.iloc[-1] def test_reductions_on_dataframes(): assert compute(count(t), df) == 3 assert shape(compute(count(t, keepdims=True), df)) == (1,) def test_1d_reductions_keepdims(): series = df['amount'] for r in [sum, min, max, nunique, count, std, var]: result = compute(r(t.amount, keepdims=True), {t.amount: series}) assert type(result) == type(series) def test_distinct(): dftoobig = DataFrame([['Alice', 'F', 100, 1], ['Alice', 'F', 100, 1], ['Alice', 'F', 100, 3], ['Drew', 'F', 100, 4], ['Drew', 'M', 100, 5], ['Drew', 'F', 100, 4], ['Drew', 'M', 100, 5], ['Drew', 'M', 200, 5], ['Drew', 'M', 200, 5]], columns=['name', 'sex', 'amount', 'id']) d_t = distinct(tbig) d_df = compute(d_t, dftoobig) tm.assert_frame_equal(d_df, dfbig) # Test idempotence tm.assert_frame_equal(compute(d_t, d_df), d_df) def test_distinct_on(): cols = ['name', 'sex', 'amount', 'id'] df = DataFrame([['Alice', 'F', 100, 1], ['Alice', 'F', 100, 3], ['Drew', 'F', 100, 4], ['Drew', 'M', 100, 5], ['Drew', 'F', 100, 4], ['Drew', 'M', 100, 5], ['Drew', 'M', 200, 5]], columns=cols) s = symbol('s', discover(df)) computed = compute(s.distinct('sex'), df) tm.assert_frame_equal( computed, pd.DataFrame([['Alice', 'F', 100, 1], ['Drew', 'M', 100, 5]], columns=cols), ) def test_by_one(): result = compute(by(t['name'], total=t['amount'].sum()), df) expected = df.groupby('name')['amount'].sum().reset_index() expected.columns = ['name', 'total'] tm.assert_frame_equal(result, expected) def test_by_two(): result = compute(by(tbig[['name', 'sex']], total=sum(tbig['amount'])), dfbig) expected = DataFrame([['Alice', 'F', 200], ['Drew', 'F', 100], ['Drew', 'M', 300]], columns=['name', 'sex', 'total']) tm.assert_frame_equal(result, expected) def test_by_three(): expr = by(tbig[['name', 'sex']], total=(tbig['id'] + tbig['amount']).sum()) result = compute(expr, dfbig) expected = DataFrame([['Alice', 'F', 204], ['Drew', 'F', 104], ['Drew', 'M', 310]], columns=['name', 'sex', 'total']) expected.columns = expr.fields tm.assert_frame_equal(result, expected) def test_by_four(): t = tbig[['sex', 'amount']] expr = by(t['sex'], max=t['amount'].max()) result = compute(expr, dfbig) expected = DataFrame([['F', 100], ['M', 200]], columns=['sex', 'max']) tm.assert_frame_equal(result, expected) def test_join_by_arcs(): df_idx = DataFrame([['A', 1], ['B', 2], ['C', 3]], columns=['name', 'node_id']) df_arc = DataFrame([[1, 3], [2, 3], [3, 1]], columns=['node_out', 'node_id']) t_idx = symbol('t_idx', 'var * {name: string, node_id: int32}') t_arc = symbol('t_arc', 'var * {node_out: int32, node_id: int32}') joined = join(t_arc, t_idx, "node_id") want = by(joined['name'], count=joined['node_id'].count()) result = compute(want, {t_arc: df_arc, t_idx: df_idx}) result_pandas = pd.merge(df_arc, df_idx, on='node_id') gb = result_pandas.groupby('name') expected = gb.node_id.count().reset_index().rename(columns={ 'node_id': 'count' }) tm.assert_frame_equal(result, expected) assert list(result.columns) == ['name', 'count'] def test_join_suffixes(): df = pd.DataFrame( list(dict((k, n) for k in ascii_lowercase[:5]) for n in range(5)), ) a = symbol('a', discover(df)) b = symbol('b', discover(df)) suffixes = '_x', '_y' joined = join(a, b, 'a', suffixes=suffixes) expected = pd.merge(df, df, on='a', suffixes=suffixes) result = compute(joined, {a: df, b: df}) tm.assert_frame_equal(result, expected) def test_join_promotion(): a_data = pd.DataFrame([[0.0, 1.5], [1.0, 2.5]], columns=list('ab')) b_data = pd.DataFrame([[0, 1], [1, 2]], columns=list('ac')) a = symbol('a', discover(a_data)) b = symbol('b', discover(b_data)) joined = join(a, b, 'a') assert joined.dshape == dshape('var * {a: float64, b: ?float64, c: int64}') expected = pd.merge(a_data, b_data, on='a') result = compute(joined, {a: a_data, b: b_data}) tm.assert_frame_equal(result, expected) def test_sort(): tm.assert_frame_equal(compute(t.sort('amount'), df), df.sort('amount')) tm.assert_frame_equal(compute(t.sort('amount', ascending=True), df), df.sort('amount', ascending=True)) tm.assert_frame_equal(compute(t.sort(['amount', 'id']), df), df.sort(['amount', 'id'])) def test_sort_on_series_no_warning(recwarn): expected = df.amount.order() recwarn.clear() assert_series_equal(compute(t['amount'].sort('amount'), df), expected) # raises as assertion error if no warning occurs, same thing for below with pytest.raises(AssertionError): assert recwarn.pop(FutureWarning) assert_series_equal(compute(t['amount'].sort(), df), expected) with pytest.raises(AssertionError): assert recwarn.pop(FutureWarning) def test_field_on_series(): expr = symbol('s', 'var * int') data = Series([1, 2, 3, 4], name='s') assert_series_equal(compute(expr.s, data), data) def test_head(): tm.assert_frame_equal(compute(t.head(1), df), df.head(1)) def test_tail(): tm.assert_frame_equal(compute(t.tail(1), df), df.tail(1)) def test_label(): expected = df['amount'] * 10 expected.name = 'foo' assert_series_equal(compute((t['amount'] * 10).label('foo'), df), expected) def test_relabel(): result = compute(t.relabel({'name': 'NAME', 'id': 'ID'}), df) expected = df.rename(columns={'name': 'NAME', 'id': 'ID'}) tm.assert_frame_equal(result, expected) def test_relabel_series(): result = compute(t.relabel({'name': 'NAME'}), df.name) assert result.name == 'NAME' ts = pd.date_range('now', periods=10).to_series().reset_index(drop=True) tframe = DataFrame({'timestamp': ts}) def test_map_column(): inc = lambda x: x + 1 result = compute(t['amount'].map(inc, 'int'), df) expected = df['amount'] + 1 assert_series_equal(result, expected) def test_map(): f = lambda _, amt, id: amt + id result = compute(t.map(f, 'real'), df) expected = df['amount'] + df['id'] assert_series_equal(result, expected) def test_apply_column(): result = compute(t.amount.apply(np.sum, 'real'), df) expected = np.sum(df['amount']) assert result == expected result = compute(t.amount.apply(builtins.sum, 'real'), df) expected = builtins.sum(df['amount']) assert result == expected def test_apply(): result = compute(t.apply(str, 'string'), df) expected = str(df) assert result == expected def test_merge(): col = (t['amount'] * 2).label('new') expr = merge(t['name'], col) expected = DataFrame([['Alice', 200], ['Bob', 400], ['Alice', 100]], columns=['name', 'new']) result = compute(expr, df) tm.assert_frame_equal(result, expected) def test_by_nunique(): result = compute(by(t['name'], count=t['id'].nunique()), df) expected = DataFrame([['Alice', 2], ['Bob', 1]], columns=['name', 'count']) tm.assert_frame_equal(result, expected) def test_selection_out_of_order(): expr = t['name'][t['amount'] < 100] expected = df.loc[df.amount < 100, 'name'] result = compute(expr, df) assert_series_equal(result, expected) def test_outer_join(): left = [(1, 'Alice', 100), (2, 'Bob', 200), (4, 'Dennis', 400)] left = DataFrame(left, columns=['id', 'name', 'amount']) right = [('NYC', 1), ('Boston', 1), ('LA', 3), ('Moscow', 4)] right = DataFrame(right, columns=['city', 'id']) lsym = symbol('lsym', 'var * {id: int, name: string, amount: real}') rsym = symbol('rsym', 'var * {city: string, id: int}') convert = lambda df: set(df.to_records(index=False).tolist()) assert (convert(compute(join(lsym, rsym), {lsym: left, rsym: right})) == set([(1, 'Alice', 100, 'NYC'), (1, 'Alice', 100, 'Boston'), (4, 'Dennis', 400, 'Moscow')])) assert (convert(compute(join(lsym, rsym, how='left'), {lsym: left, rsym: right})) == set([(1, 'Alice', 100, 'NYC'), (1, 'Alice', 100, 'Boston'), (2, 'Bob', 200, np.nan), (4, 'Dennis', 400, 'Moscow')])) df = compute(join(lsym, rsym, how='right'), {lsym: left, rsym: right}) expected = DataFrame([(1., 'Alice', 100., 'NYC'), (1., 'Alice', 100., 'Boston'), (3., np.nan, np.nan, 'lsymA'), (4., 'Dennis', 400., 'Moscow')], columns=['id', 'name', 'amount', 'city']) result = df.sort('id').to_records(index=False) expected = expected.sort('id').to_records(index=False) np.array_equal(result, expected) df = compute(join(lsym, rsym, how='outer'), {lsym: left, rsym: right}) expected = DataFrame([(1., 'Alice', 100., 'NYC'), (1., 'Alice', 100., 'Boston'), (2., 'Bob', 200., np.nan), (3., np.nan, np.nan, 'LA'), (4., 'Dennis', 400., 'Moscow')], columns=['id', 'name', 'amount', 'city']) result = df.sort('id').to_records(index=False) expected = expected.sort('id').to_records(index=False) np.array_equal(result, expected) def test_by_on_same_column(): df = pd.DataFrame([[1, 2], [1, 4], [2, 9]], columns=['id', 'value']) t = symbol('data', 'var * {id: int, value: int}') gby = by(t['id'], count=t['id'].count()) expected = DataFrame([[1, 2], [2, 1]], columns=['id', 'count']) result = compute(gby, {t: df}) tm.assert_frame_equal(result, expected) def test_summary_by(): expr = by(t.name, summary(count=t.id.count(), sum=t.amount.sum())) result = compute(expr, df) expected = DataFrame([['Alice', 2, 150], ['Bob', 1, 200]], columns=['name', 'count', 'sum']) expr = by(t.name, summary(count=t.id.count(), sum=(t.amount + 1).sum())) result = compute(expr, df) expected = DataFrame([['Alice', 2, 152], ['Bob', 1, 201]], columns=['name', 'count', 'sum']) tm.assert_frame_equal(result, expected) @pytest.mark.xfail(raises=TypeError, reason=('pandas backend cannot support non Reduction ' 'subclasses')) def test_summary_by_first(): expr = by(t.name, fst=t.amount[0]) result = compute(expr, df) assert result == df.amount.iloc[0] def test_summary_by_reduction_arithmetic(): expr = by(t.name, summary(count=t.id.count(), sum=t.amount.sum() + 1)) result = compute(expr, df) expected = DataFrame([['Alice', 2, 151], ['Bob', 1, 201]], columns=['name', 'count', 'sum']) tm.assert_frame_equal(result, expected) def test_summary(): expr = summary(count=t.id.count(), sum=t.amount.sum()) assert_series_equal(compute(expr, df), Series({'count': 3, 'sum': 350})) def test_summary_on_series(): ser = Series([1, 2, 3]) s = symbol('s', '3 * int') expr = summary(max=s.max(), min=s.min()) assert compute(expr, ser) == (3, 1) expr = summary(max=s.max(), min=s.min(), keepdims=True) assert compute(expr, ser) == [(3, 1)] def test_summary_keepdims(): expr = summary(count=t.id.count(), sum=t.amount.sum(), keepdims=True) expected = DataFrame([[3, 350]], columns=['count', 'sum']) tm.assert_frame_equal(compute(expr, df), expected) def test_dplyr_transform(): df = DataFrame({'timestamp': pd.date_range('now', periods=5)}) t = symbol('t', discover(df)) expr = transform(t, date=t.timestamp.map(lambda x: x.date(), schema='datetime')) lhs = compute(expr, df) rhs = pd.concat([df, Series(df.timestamp.map(lambda x: x.date()), name='date').to_frame()], axis=1) tm.assert_frame_equal(lhs, rhs) def test_nested_transform(): d = {'timestamp': [1379613528, 1379620047], 'platform': ["Linux", "Windows"]} df = DataFrame(d) t = symbol('t', discover(df)) t = transform(t, timestamp=t.timestamp.map(datetime.fromtimestamp, schema='datetime')) expr = transform(t, date=t.timestamp.map(lambda x: x.date(), schema='datetime')) result = compute(expr, df) df['timestamp'] = df.timestamp.map(datetime.fromtimestamp) df['date'] = df.timestamp.map(lambda x: x.date()) tm.assert_frame_equal(result, df) def test_like(): expr = t.like(name='Alice*') expected = DataFrame([['Alice', 100, 1], ['Alice', 50, 3]], columns=['name', 'amount', 'id']) result = compute(expr, df).reset_index(drop=True) tm.assert_frame_equal(result, expected) def test_strlen(): expr = t.name.strlen() expected = pd.Series([5, 3, 5], name='name') result = compute(expr, df).reset_index(drop=True) assert_series_equal(expected, result) def test_rowwise_by(): f = lambda _, id, name: id + len(name) expr = by(t.map(f, 'int'), total=t.amount.sum()) df = pd.DataFrame({'id': [1, 1, 2], 'name': ['alice', 'wendy', 'bob'], 'amount': [100, 200, 300.03]}) expected = pd.DataFrame([(5, 300.03), (6, 300)], columns=expr.fields) result = compute(expr, df) tm.assert_frame_equal(result, expected) def test_datetime_access(): df = DataFrame({'name': ['Alice', 'Bob', 'Joe'], 'when': [datetime(2010, 1, 1, 1, 1, 1)] * 3, 'amount': [100, 200, 300], 'id': [1, 2, 3]}) t = symbol('t', discover(df)) for attr in ['day', 'month', 'minute', 'second']: expr = getattr(t.when, attr) assert_series_equal(compute(expr, df), Series([1, 1, 1], name=expr._name)) def test_frame_slice(): assert_series_equal(compute(t[0], df), df.iloc[0]) assert_series_equal(compute(t[2], df), df.iloc[2]) tm.assert_frame_equal(compute(t[:2], df), df.iloc[:2]) tm.assert_frame_equal(compute(t[1:3], df), df.iloc[1:3]) tm.assert_frame_equal(compute(t[1::2], df), df.iloc[1::2]) tm.assert_frame_equal(compute(t[[2, 0]], df), df.iloc[[2, 0]]) def test_series_slice(): assert compute(t.amount[0], df) == df.amount.iloc[0] assert compute(t.amount[2], df) == df.amount.iloc[2] assert_series_equal(compute(t.amount[:2], df), df.amount.iloc[:2]) assert_series_equal(compute(t.amount[1:3], df), df.amount.iloc[1:3]) assert_series_equal(compute(t.amount[1::2], df), df.amount.iloc[1::2]) def test_nelements(): assert compute(t.nelements(), df) == len(df) assert compute(t.nrows, df) == len(df) def test_datetime_truncation_minutes(): data = Series(['2000-01-01T12:10:00Z', '2000-06-25T12:35:12Z'], dtype='M8[ns]') s = symbol('s', 'var * datetime') result = compute(s.truncate(20, 'minutes'), data) expected = Series(['2000-01-01T12:00:00Z', '2000-06-25T12:20:00Z'], dtype='M8[ns]', name='s') assert_series_equal(result, expected) def test_datetime_truncation_nanoseconds(): data = Series(['2000-01-01T12:10:00.000000005', '2000-01-01T12:10:00.000000025'], dtype='M8[ns]') s = symbol('s', 'var * datetime') expected = Series(['2000-01-01T12:10:00.000000000', '2000-01-01T12:10:00.000000020'], dtype='M8[ns]', name='s') result = compute(s.truncate(nanoseconds=20), data) assert_series_equal(result, expected) def test_datetime_truncation_weeks(): data = Series(['2000-01-01T12:10:00Z', '2000-06-25T12:35:12Z'], dtype='M8[ns]') s = symbol('s', 'var * datetime') result = compute(s.truncate(2, 'weeks'), data) expected = Series(['1999-12-19', '2000-06-18'], dtype='M8[ns]', name='s') assert_series_equal(result, expected) def test_datetime_truncation_days(): data = Series(['2000-01-01T12:10:00Z', '2000-06-25T12:35:12Z'], dtype='M8[ns]') s = symbol('s', 'var * datetime') result = compute(s.truncate(days=3), data) expected =
Series(['1999-12-31', '2000-06-25'], dtype='M8[ns]', name='s')
pandas.Series
import pandas as pd import numpy as np import os from sklearn.linear_model import Ridge from sklearn.model_selection import cross_val_score from sklearn.model_selection import train_test_split from sklearn.metrics import mean_squared_error mos_data=pd.read_csv('data.csv')[['streaming_log','mos']] data=[] for l in os.listdir('./streaming_logs/'): d_=pd.read_csv('./streaming_logs/'+l) vmaf_change=0 smooth_count=0 rebuffer_count=0 for i in range(len(d_)): if i>0: if d_['rebuffering_duration'].iloc[i]>0: rebuffer_count+=1 vmaf_change=vmaf_change+np.abs(d_['vmaf'].iloc[i]-d_['vmaf'].iloc[i-1]) smooth_count=smooth_count+(np.abs(d_['vmaf'].iloc[i]-d_['vmaf'].iloc[i-1]))//20 # if vmaf_change > 20: # smooth_count+=1 data.append([l,d_['vmaf'].sum(), d_['rebuffering_duration'].sum(),rebuffer_count, vmaf_change, smooth_count]) agg_data=pd.DataFrame(data, columns=['streaming_log','total_vmaf','total_rebuffer','total_rebuffer_count','total_smooth_change','total_smooth_count']) merged_data=
pd.merge(mos_data, agg_data, on='streaming_log')
pandas.merge
from __future__ import absolute_import, division, print_function import json import logging import math import os import random import warnings from dataclasses import asdict from multiprocessing import cpu_count import numpy as np import pandas as pd import torch from scipy.stats import pearsonr from sklearn.metrics import ( confusion_matrix, label_ranking_average_precision_score, matthews_corrcoef, mean_squared_error, ) from tensorboardX import SummaryWriter from torch.utils.data import DataLoader, RandomSampler, SequentialSampler, TensorDataset from torch.utils.data.distributed import DistributedSampler from tqdm.auto import tqdm, trange from transformers import ( WEIGHTS_NAME, AdamW, AlbertConfig, AlbertForQuestionAnswering, AlbertTokenizer, AutoConfig, AutoModelForQuestionAnswering, AutoTokenizer, BartConfig, BartForQuestionAnswering, BartTokenizer, BertConfig, BertForQuestionAnswering, BertTokenizer, DistilBertConfig, DistilBertForQuestionAnswering, DistilBertTokenizer, ElectraConfig, ElectraTokenizer, LongformerConfig, LongformerForQuestionAnswering, LongformerTokenizer, MobileBertConfig, MobileBertForQuestionAnswering, MobileBertTokenizer, RobertaConfig, RobertaForQuestionAnswering, RobertaTokenizer, XLMConfig, XLMForQuestionAnswering, XLMRobertaConfig, XLMRobertaTokenizer, XLMTokenizer, XLNetConfig, XLNetForQuestionAnswering, XLNetTokenizer, get_linear_schedule_with_warmup, ) from simpletransformers.config.global_args import global_args from simpletransformers.config.model_args import QuestionAnsweringArgs from simpletransformers.config.utils import sweep_config_to_sweep_values from simpletransformers.custom_models.models import ElectraForQuestionAnswering, XLMRobertaForQuestionAnswering from simpletransformers.question_answering.question_answering_utils import ( LazyQuestionAnsweringDataset, RawResult, RawResultExtended, build_examples, convert_examples_to_features, get_best_predictions, get_best_predictions_extended, get_examples, squad_convert_examples_to_features, to_list, write_predictions, write_predictions_extended, ) try: import wandb wandb_available = True except ImportError: wandb_available = False logger = logging.getLogger(__name__) class QuestionAnsweringModel: def __init__(self, model_type, model_name, args=None, use_cuda=True, cuda_device=-1, **kwargs): """ Initializes a QuestionAnsweringModel model. Args: model_type: The type of model (bert, xlnet, xlm, distilbert) model_name: Default Transformer model name or path to a directory containing Transformer model file (pytorch_nodel.bin). args (optional): Default args will be used if this parameter is not provided. If provided, it should be a dict containing the args that should be changed in the default args' use_cuda (optional): Use GPU if available. Setting to False will force model to use CPU only. cuda_device (optional): Specific GPU that should be used. Will use the first available GPU by default. """ # noqa: ignore flake8" MODEL_CLASSES = { "albert": (AlbertConfig, AlbertForQuestionAnswering, AlbertTokenizer), "auto": (AutoConfig, AutoTokenizer, AutoModelForQuestionAnswering), "bart": (BartConfig, BartForQuestionAnswering, BartTokenizer), "bert": (BertConfig, BertForQuestionAnswering, BertTokenizer), "distilbert": (DistilBertConfig, DistilBertForQuestionAnswering, DistilBertTokenizer), "electra": (ElectraConfig, ElectraForQuestionAnswering, ElectraTokenizer), "longformer": (LongformerConfig, LongformerForQuestionAnswering, LongformerTokenizer), "mobilebert": (MobileBertConfig, MobileBertForQuestionAnswering, MobileBertTokenizer), "roberta": (RobertaConfig, RobertaForQuestionAnswering, RobertaTokenizer), "xlm": (XLMConfig, XLMForQuestionAnswering, XLMTokenizer), "xlmroberta": (XLMRobertaConfig, XLMRobertaForQuestionAnswering, XLMRobertaTokenizer), "xlnet": (XLNetConfig, XLNetForQuestionAnswering, XLNetTokenizer), } self.args = self._load_model_args(model_name) if isinstance(args, dict): self.args.update_from_dict(args) elif isinstance(args, QuestionAnsweringArgs): self.args = args if "sweep_config" in kwargs: self.is_sweeping = True sweep_config = kwargs.pop("sweep_config") sweep_values = sweep_config_to_sweep_values(sweep_config) self.args.update_from_dict(sweep_values) else: self.is_sweeping = False if self.args.manual_seed: random.seed(self.args.manual_seed) np.random.seed(self.args.manual_seed) torch.manual_seed(self.args.manual_seed) if self.args.n_gpu > 0: torch.cuda.manual_seed_all(self.args.manual_seed) if not use_cuda: self.args.fp16 = False config_class, model_class, tokenizer_class = MODEL_CLASSES[model_type] self.config = config_class.from_pretrained(model_name, **self.args.config) if not self.args.quantized_model: self.model = model_class.from_pretrained(model_name, config=self.config, **kwargs) else: quantized_weights = torch.load(os.path.join(model_name, "pytorch_model.bin")) self.model = model_class.from_pretrained(None, config=self.config, state_dict=quantized_weights) if self.args.dynamic_quantize: self.model = torch.quantization.quantize_dynamic(self.model, {torch.nn.Linear}, dtype=torch.qint8) if self.args.quantized_model: self.model.load_state_dict(quantized_weights) if self.args.dynamic_quantize: self.args.quantized_model = True if use_cuda: if torch.cuda.is_available(): if cuda_device == -1: self.device = torch.device("cuda") else: self.device = torch.device(f"cuda:{cuda_device}") else: raise ValueError( "'use_cuda' set to True when cuda is unavailable." " Make sure CUDA is available or set use_cuda=False." ) else: self.device = "cpu" self.results = {} if self.args.fp16: try: from torch.cuda import amp except AttributeError: raise AttributeError("fp16 requires Pytorch >= 1.6. Please update Pytorch or turn off fp16.") self.tokenizer = tokenizer_class.from_pretrained(model_name, do_lower_case=self.args.do_lower_case, **kwargs) self.args.model_name = model_name self.args.model_type = model_type if self.args.wandb_project and not wandb_available: warnings.warn("wandb_project specified but wandb is not available. Wandb disabled.") self.args.wandb_project = None def load_and_cache_examples(self, examples, evaluate=False, no_cache=False, output_examples=False): """ Converts a list of examples to a TensorDataset containing InputFeatures. Caches the InputFeatures. Utility function for train() and eval() methods. Not intended to be used directly. """ tokenizer = self.tokenizer args = self.args if not no_cache: no_cache = args.no_cache if not no_cache: os.makedirs(self.args.cache_dir, exist_ok=True) examples = get_examples(examples, is_training=not evaluate) mode = "dev" if evaluate else "train" cached_features_file = os.path.join( args.cache_dir, "cached_{}_{}_{}_{}".format(mode, args.model_type, args.max_seq_length, len(examples)), ) if os.path.exists(cached_features_file) and ( (not args.reprocess_input_data and not no_cache) or (mode == "dev" and args.use_cached_eval_features) ): features = torch.load(cached_features_file) logger.info(f" Features loaded from cache at {cached_features_file}") else: logger.info(" Converting to features started.") features, dataset = squad_convert_examples_to_features( examples=examples, tokenizer=tokenizer, max_seq_length=args.max_seq_length, doc_stride=args.doc_stride, max_query_length=args.max_query_length, is_training=not evaluate, tqdm_enabled=not args.silent, threads=args.process_count, args=args, ) # if not no_cache: # torch.save(features, cached_features_file) # all_input_ids = torch.tensor([f.input_ids for f in features], dtype=torch.long) # all_input_mask = torch.tensor([f.input_mask for f in features], dtype=torch.long) # all_segment_ids = torch.tensor([f.segment_ids for f in features], dtype=torch.long) # all_cls_index = torch.tensor([f.cls_index for f in features], dtype=torch.long) # all_p_mask = torch.tensor([f.p_mask for f in features], dtype=torch.float) # all_example_index = torch.arange(all_input_ids.size(0), dtype=torch.long) # if evaluate: # dataset = TensorDataset( # all_input_ids, all_input_mask, all_segment_ids, all_example_index, all_cls_index, all_p_mask, # ) # else: # all_start_positions = torch.tensor([f.start_position for f in features], dtype=torch.long) # all_end_positions = torch.tensor([f.end_position for f in features], dtype=torch.long) # dataset = TensorDataset( # all_input_ids, # all_input_mask, # all_segment_ids, # all_start_positions, # all_end_positions, # all_cls_index, # all_p_mask, # ) if output_examples: return dataset, examples, features return dataset def train_model( self, train_data, output_dir=False, show_running_loss=True, args=None, eval_data=None, verbose=True, **kwargs ): """ Trains the model using 'train_data' Args: train_data: Path to JSON file containing training data OR list of Python dicts in the correct format. The model will be trained on this data. output_dir: The directory where model files will be saved. If not given, self.args.output_dir will be used. show_running_loss (optional): Set to False to prevent running loss from being printed to console. Defaults to True. args (optional): Optional changes to the args dict of the model. Any changes made will persist for the model. eval_data (optional): Path to JSON file containing evaluation data against which evaluation will be performed when evaluate_during_training is enabled. Is required if evaluate_during_training is enabled. **kwargs: Additional metrics that should be used. Pass in the metrics as keyword arguments (name of metric: function to use). A metric function should take in two parameters. The first parameter will be the true labels, and the second parameter will be the predictions. Returns: global_step: Number of global steps trained training_details: Average training loss if evaluate_during_training is False or full training progress scores if evaluate_during_training is True """ # noqa: ignore flake8" if args: self.args.update_from_dict(args) if self.args.silent: show_running_loss = False if self.args.evaluate_during_training and eval_data is None: raise ValueError( "evaluate_during_training is enabled but eval_data is not specified." " Pass eval_data to model.train_model() if using evaluate_during_training." ) if not output_dir: output_dir = self.args.output_dir if os.path.exists(output_dir) and os.listdir(output_dir) and not self.args.overwrite_output_dir: raise ValueError( "Output directory ({}) already exists and is not empty." "Use --overwrite_output_dir to overcome.".format(output_dir) ) self._move_model_to_device() if self.args.lazy_loading: if isinstance(train_data, str): train_dataset = LazyQuestionAnsweringDataset(train_data, self.tokenizer, self.args) else: raise ValueError("Input must be given as a path to a file when using lazy loading") else: if isinstance(train_data, str): with open(train_data, "r", encoding=self.args.encoding) as f: train_examples = json.load(f) else: train_examples = train_data train_dataset = self.load_and_cache_examples(train_examples) os.makedirs(output_dir, exist_ok=True) global_step, training_details = self.train( train_dataset, output_dir, show_running_loss=show_running_loss, eval_data=eval_data, **kwargs ) self.save_model(model=self.model) logger.info(" Training of {} model complete. Saved to {}.".format(self.args.model_type, output_dir)) return global_step, training_details def train(self, train_dataset, output_dir, show_running_loss=True, eval_data=None, verbose=True, **kwargs): """ Trains the model on train_dataset. Utility function to be used by the train_model() method. Not intended to be used directly. """ device = self.device model = self.model args = self.args tb_writer = SummaryWriter(logdir=args.tensorboard_dir) train_sampler = RandomSampler(train_dataset) train_dataloader = DataLoader( train_dataset, sampler=train_sampler, batch_size=args.train_batch_size, num_workers=self.args.dataloader_num_workers, ) t_total = len(train_dataloader) // args.gradient_accumulation_steps * args.num_train_epochs no_decay = ["bias", "LayerNorm.weight"] optimizer_grouped_parameters = [] custom_parameter_names = set() for group in self.args.custom_parameter_groups: params = group.pop("params") custom_parameter_names.update(params) param_group = {**group} param_group["params"] = [p for n, p in model.named_parameters() if n in params] optimizer_grouped_parameters.append(param_group) for group in self.args.custom_layer_parameters: layer_number = group.pop("layer") layer = f"layer.{layer_number}." group_d = {**group} group_nd = {**group} group_nd["weight_decay"] = 0.0 params_d = [] params_nd = [] for n, p in model.named_parameters(): if n not in custom_parameter_names and layer in n: if any(nd in n for nd in no_decay): params_nd.append(p) else: params_d.append(p) custom_parameter_names.add(n) group_d["params"] = params_d group_nd["params"] = params_nd optimizer_grouped_parameters.append(group_d) optimizer_grouped_parameters.append(group_nd) if not self.args.train_custom_parameters_only: optimizer_grouped_parameters.extend( [ { "params": [ p for n, p in model.named_parameters() if n not in custom_parameter_names and not any(nd in n for nd in no_decay) ], "weight_decay": args.weight_decay, }, { "params": [ p for n, p in model.named_parameters() if n not in custom_parameter_names and any(nd in n for nd in no_decay) ], "weight_decay": 0.0, }, ] ) warmup_steps = math.ceil(t_total * args.warmup_ratio) args.warmup_steps = warmup_steps if args.warmup_steps == 0 else args.warmup_steps optimizer = AdamW(optimizer_grouped_parameters, lr=args.learning_rate, eps=args.adam_epsilon,) scheduler = get_linear_schedule_with_warmup( optimizer, num_warmup_steps=args.warmup_steps, num_training_steps=t_total ) if args.n_gpu > 1: model = torch.nn.DataParallel(model) global_step = 0 training_progress_scores = None tr_loss, logging_loss = 0.0, 0.0 model.zero_grad() train_iterator = trange(int(args.num_train_epochs), desc="Epoch", disable=args.silent, mininterval=0) epoch_number = 0 best_eval_metric = None early_stopping_counter = 0 steps_trained_in_current_epoch = 0 epochs_trained = 0 if args.model_name and os.path.exists(args.model_name): try: # set global_step to gobal_step of last saved checkpoint from model path checkpoint_suffix = args.model_name.split("/")[-1].split("-") if len(checkpoint_suffix) > 2: checkpoint_suffix = checkpoint_suffix[1] else: checkpoint_suffix = checkpoint_suffix[-1] global_step = int(checkpoint_suffix) epochs_trained = global_step // (len(train_dataloader) // args.gradient_accumulation_steps) steps_trained_in_current_epoch = global_step % ( len(train_dataloader) // args.gradient_accumulation_steps ) logger.info(" Continuing training from checkpoint, will skip to saved global_step") logger.info(" Continuing training from epoch %d", epochs_trained) logger.info(" Continuing training from global step %d", global_step) logger.info(" Will skip the first %d steps in the current epoch", steps_trained_in_current_epoch) except ValueError: logger.info(" Starting fine-tuning.") if args.evaluate_during_training: training_progress_scores = self._create_training_progress_scores(**kwargs) if args.wandb_project: wandb.init(project=args.wandb_project, config={**asdict(args)}, **args.wandb_kwargs) wandb.watch(self.model) if args.fp16: from torch.cuda import amp scaler = amp.GradScaler() for _ in train_iterator: model.train() if epochs_trained > 0: epochs_trained -= 1 continue train_iterator.set_description(f"Epoch {epoch_number + 1} of {args.num_train_epochs}") batch_iterator = tqdm( train_dataloader, desc=f"Running Epoch {epoch_number} of {args.num_train_epochs}", disable=args.silent, mininterval=0, ) for step, batch in enumerate(batch_iterator): if steps_trained_in_current_epoch > 0: steps_trained_in_current_epoch -= 1 continue batch = tuple(t.to(device) for t in batch) inputs = self._get_inputs_dict(batch) if args.fp16: with amp.autocast(): outputs = model(**inputs) # model outputs are always tuple in pytorch-transformers (see doc) loss = outputs[0] else: outputs = model(**inputs) # model outputs are always tuple in pytorch-transformers (see doc) loss = outputs[0] if args.n_gpu > 1: loss = loss.mean() # mean() to average on multi-gpu parallel training current_loss = loss.item() if show_running_loss: batch_iterator.set_description( f"Epochs {epoch_number}/{args.num_train_epochs}. Running Loss: {current_loss:9.4f}" ) if args.gradient_accumulation_steps > 1: loss = loss / args.gradient_accumulation_steps if args.fp16: scaler.scale(loss).backward() else: loss.backward() tr_loss += loss.item() if (step + 1) % args.gradient_accumulation_steps == 0: if args.fp16: scaler.unscale_(optimizer) torch.nn.utils.clip_grad_norm_(model.parameters(), args.max_grad_norm) if args.fp16: scaler.step(optimizer) scaler.update() else: optimizer.step() scheduler.step() # Update learning rate schedule model.zero_grad() global_step += 1 if args.logging_steps > 0 and global_step % args.logging_steps == 0: # Log metrics tb_writer.add_scalar("lr", scheduler.get_last_lr()[0], global_step) tb_writer.add_scalar( "loss", (tr_loss - logging_loss) / args.logging_steps, global_step, ) logging_loss = tr_loss if args.wandb_project or self.is_sweeping: wandb.log( { "Training loss": current_loss, "lr": scheduler.get_last_lr()[0], "global_step": global_step, } ) if args.save_steps > 0 and global_step % args.save_steps == 0: # Save model checkpoint output_dir_current = os.path.join(output_dir, "checkpoint-{}".format(global_step)) self.save_model(output_dir_current, optimizer, scheduler, model=model) if args.evaluate_during_training and ( args.evaluate_during_training_steps > 0 and global_step % args.evaluate_during_training_steps == 0 ): # Only evaluate when single GPU otherwise metrics may not average well results, _ = self.eval_model(eval_data, verbose=False, **kwargs) for key, value in results.items(): tb_writer.add_scalar("eval_{}".format(key), value, global_step) output_dir_current = os.path.join(output_dir, "checkpoint-{}".format(global_step)) if args.save_eval_checkpoints: self.save_model(output_dir_current, optimizer, scheduler, model=model, results=results) training_progress_scores["global_step"].append(global_step) training_progress_scores["train_loss"].append(current_loss) for key in results: training_progress_scores[key].append(results[key]) report = pd.DataFrame(training_progress_scores) report.to_csv( os.path.join(args.output_dir, "training_progress_scores.csv"), index=False, ) if args.wandb_project or self.is_sweeping: wandb.log(self._get_last_metrics(training_progress_scores)) if not best_eval_metric: best_eval_metric = results[args.early_stopping_metric] self.save_model(args.best_model_dir, optimizer, scheduler, model=model, results=results) if best_eval_metric and args.early_stopping_metric_minimize: if results[args.early_stopping_metric] - best_eval_metric < args.early_stopping_delta: best_eval_metric = results[args.early_stopping_metric] self.save_model( args.best_model_dir, optimizer, scheduler, model=model, results=results ) early_stopping_counter = 0 else: if args.use_early_stopping: if early_stopping_counter < args.early_stopping_patience: early_stopping_counter += 1 if verbose: logger.info(f" No improvement in {args.early_stopping_metric}") logger.info(f" Current step: {early_stopping_counter}") logger.info(f" Early stopping patience: {args.early_stopping_patience}") else: if verbose: logger.info(f" Patience of {args.early_stopping_patience} steps reached") logger.info(" Training terminated.") train_iterator.close() return ( global_step, tr_loss / global_step if not self.args.evaluate_during_training else training_progress_scores, ) else: if results[args.early_stopping_metric] - best_eval_metric > args.early_stopping_delta: best_eval_metric = results[args.early_stopping_metric] self.save_model( args.best_model_dir, optimizer, scheduler, model=model, results=results ) early_stopping_counter = 0 else: if args.use_early_stopping: if early_stopping_counter < args.early_stopping_patience: early_stopping_counter += 1 if verbose: logger.info(f" No improvement in {args.early_stopping_metric}") logger.info(f" Current step: {early_stopping_counter}") logger.info(f" Early stopping patience: {args.early_stopping_patience}") else: if verbose: logger.info(f" Patience of {args.early_stopping_patience} steps reached") logger.info(" Training terminated.") train_iterator.close() return ( global_step, tr_loss / global_step if not self.args.evaluate_during_training else training_progress_scores, ) epoch_number += 1 output_dir_current = os.path.join(output_dir, "checkpoint-{}-epoch-{}".format(global_step, epoch_number)) if args.save_model_every_epoch or args.evaluate_during_training: os.makedirs(output_dir_current, exist_ok=True) if args.save_model_every_epoch: self.save_model(output_dir_current, optimizer, scheduler, model=model) if args.evaluate_during_training and args.evaluate_each_epoch: results, _ = self.eval_model(eval_data, verbose=False, **kwargs) self.save_model(output_dir_current, optimizer, scheduler, results=results) training_progress_scores["global_step"].append(global_step) training_progress_scores["train_loss"].append(current_loss) for key in results: training_progress_scores[key].append(results[key]) report =
pd.DataFrame(training_progress_scores)
pandas.DataFrame
from datetime import ( datetime, timedelta, ) from importlib import reload import string import sys import numpy as np import pytest from pandas._libs.tslibs import iNaT import pandas.util._test_decorators as td from pandas import ( NA, Categorical, CategoricalDtype, Index, Interval, NaT, Series, Timedelta, Timestamp, cut, date_range, ) import pandas._testing as tm class TestAstypeAPI: def test_arg_for_errors_in_astype(self): # see GH#14878 ser = Series([1, 2, 3]) msg = ( r"Expected value of kwarg 'errors' to be one of \['raise', " r"'ignore'\]\. Supplied value is 'False'" ) with pytest.raises(ValueError, match=msg): ser.astype(np.float64, errors=False) ser.astype(np.int8, errors="raise") @pytest.mark.parametrize("dtype_class", [dict, Series]) def test_astype_dict_like(self, dtype_class): # see GH#7271 ser = Series(range(0, 10, 2), name="abc") dt1 = dtype_class({"abc": str}) result = ser.astype(dt1) expected = Series(["0", "2", "4", "6", "8"], name="abc") tm.assert_series_equal(result, expected) dt2 = dtype_class({"abc": "float64"}) result = ser.astype(dt2) expected = Series([0.0, 2.0, 4.0, 6.0, 8.0], dtype="float64", name="abc") tm.assert_series_equal(result, expected) dt3 = dtype_class({"abc": str, "def": str}) msg = ( "Only the Series name can be used for the key in Series dtype " r"mappings\." ) with pytest.raises(KeyError, match=msg): ser.astype(dt3) dt4 = dtype_class({0: str}) with pytest.raises(KeyError, match=msg): ser.astype(dt4) # GH#16717 # if dtypes provided is empty, it should error if dtype_class is Series: dt5 = dtype_class({}, dtype=object) else: dt5 = dtype_class({}) with pytest.raises(KeyError, match=msg): ser.astype(dt5) class TestAstype: @pytest.mark.parametrize("dtype", np.typecodes["All"]) def test_astype_empty_constructor_equality(self, dtype): # see GH#15524 if dtype not in ( "S", "V", # poor support (if any) currently "M", "m", # Generic timestamps raise a ValueError. Already tested. ): init_empty = Series([], dtype=dtype) with tm.assert_produces_warning(DeprecationWarning): as_type_empty = Series([]).astype(dtype) tm.assert_series_equal(init_empty, as_type_empty) @pytest.mark.parametrize("dtype", [str, np.str_]) @pytest.mark.parametrize( "series", [ Series([string.digits * 10, tm.rands(63), tm.rands(64), tm.rands(1000)]), Series([string.digits * 10, tm.rands(63), tm.rands(64), np.nan, 1.0]), ], ) def test_astype_str_map(self, dtype, series): # see GH#4405 result = series.astype(dtype) expected = series.map(str) tm.assert_series_equal(result, expected) def test_astype_float_to_period(self): result = Series([np.nan]).astype("period[D]") expected = Series([NaT], dtype="period[D]") tm.assert_series_equal(result, expected) def test_astype_no_pandas_dtype(self): # https://github.com/pandas-dev/pandas/pull/24866 ser = Series([1, 2], dtype="int64") # Don't have PandasDtype in the public API, so we use `.array.dtype`, # which is a PandasDtype. result = ser.astype(ser.array.dtype) tm.assert_series_equal(result, ser) @pytest.mark.parametrize("dtype", [np.datetime64, np.timedelta64]) def test_astype_generic_timestamp_no_frequency(self, dtype, request): # see GH#15524, GH#15987 data = [1] s = Series(data) if np.dtype(dtype).name not in ["timedelta64", "datetime64"]: mark = pytest.mark.xfail(reason="GH#33890 Is assigned ns unit") request.node.add_marker(mark) msg = ( fr"The '{dtype.__name__}' dtype has no unit\. " fr"Please pass in '{dtype.__name__}\[ns\]' instead." ) with pytest.raises(ValueError, match=msg): s.astype(dtype) def test_astype_dt64_to_str(self): # GH#10442 : testing astype(str) is correct for Series/DatetimeIndex dti = date_range("2012-01-01", periods=3) result = Series(dti).astype(str) expected = Series(["2012-01-01", "2012-01-02", "2012-01-03"], dtype=object) tm.assert_series_equal(result, expected) def test_astype_dt64tz_to_str(self): # GH#10442 : testing astype(str) is correct for Series/DatetimeIndex dti_tz = date_range("2012-01-01", periods=3, tz="US/Eastern") result = Series(dti_tz).astype(str) expected = Series( [ "2012-01-01 00:00:00-05:00", "2012-01-02 00:00:00-05:00", "2012-01-03 00:00:00-05:00", ], dtype=object, ) tm.assert_series_equal(result, expected) def test_astype_datetime(self): s = Series(iNaT, dtype="M8[ns]", index=range(5)) s = s.astype("O") assert s.dtype == np.object_ s = Series([datetime(2001, 1, 2, 0, 0)]) s = s.astype("O") assert s.dtype == np.object_ s = Series([datetime(2001, 1, 2, 0, 0) for i in range(3)]) s[1] = np.nan assert s.dtype == "M8[ns]" s = s.astype("O") assert s.dtype == np.object_ def test_astype_datetime64tz(self): s = Series(date_range("20130101", periods=3, tz="US/Eastern")) # astype result = s.astype(object) expected = Series(s.astype(object), dtype=object) tm.assert_series_equal(result, expected) result = Series(s.values).dt.tz_localize("UTC").dt.tz_convert(s.dt.tz) tm.assert_series_equal(result, s) # astype - object, preserves on construction result = Series(s.astype(object)) expected = s.astype(object) tm.assert_series_equal(result, expected) # astype - datetime64[ns, tz] with tm.assert_produces_warning(FutureWarning): # dt64->dt64tz astype deprecated result = Series(s.values).astype("datetime64[ns, US/Eastern]") tm.assert_series_equal(result, s) with tm.assert_produces_warning(FutureWarning): # dt64->dt64tz astype deprecated result = Series(s.values).astype(s.dtype) tm.assert_series_equal(result, s) result = s.astype("datetime64[ns, CET]") expected = Series(date_range("20130101 06:00:00", periods=3, tz="CET")) tm.assert_series_equal(result, expected) def test_astype_str_cast_dt64(self): # see GH#9757 ts = Series([Timestamp("2010-01-04 00:00:00")]) s = ts.astype(str) expected = Series(["2010-01-04"]) tm.assert_series_equal(s, expected) ts = Series([Timestamp("2010-01-04 00:00:00", tz="US/Eastern")]) s = ts.astype(str) expected = Series(["2010-01-04 00:00:00-05:00"]) tm.assert_series_equal(s, expected) def test_astype_str_cast_td64(self): # see GH#9757 td = Series([Timedelta(1, unit="d")]) ser = td.astype(str) expected = Series(["1 days"]) tm.assert_series_equal(ser, expected) def test_dt64_series_astype_object(self): dt64ser = Series(date_range("20130101", periods=3)) result = dt64ser.astype(object) assert isinstance(result.iloc[0], datetime) assert result.dtype == np.object_ def test_td64_series_astype_object(self): tdser = Series(["59 Days", "59 Days", "NaT"], dtype="timedelta64[ns]") result = tdser.astype(object) assert isinstance(result.iloc[0], timedelta) assert result.dtype == np.object_ @pytest.mark.parametrize( "data, dtype", [ (["x", "y", "z"], "string"), pytest.param( ["x", "y", "z"], "arrow_string", marks=td.skip_if_no("pyarrow", min_version="1.0.0"), ), (["x", "y", "z"], "category"), (3 * [Timestamp("2020-01-01", tz="UTC")], None), (3 * [Interval(0, 1)], None), ], ) @pytest.mark.parametrize("errors", ["raise", "ignore"]) def test_astype_ignores_errors_for_extension_dtypes(self, data, dtype, errors): # https://github.com/pandas-dev/pandas/issues/35471 from pandas.core.arrays.string_arrow import ArrowStringDtype # noqa: F401 ser = Series(data, dtype=dtype) if errors == "ignore": expected = ser result = ser.astype(float, errors="ignore") tm.assert_series_equal(result, expected) else: msg = "(Cannot cast)|(could not convert)" with pytest.raises((ValueError, TypeError), match=msg): ser.astype(float, errors=errors) @pytest.mark.parametrize("dtype", [np.float16, np.float32, np.float64]) def test_astype_from_float_to_str(self, dtype): # https://github.com/pandas-dev/pandas/issues/36451 s = Series([0.1], dtype=dtype) result = s.astype(str) expected = Series(["0.1"]) tm.assert_series_equal(result, expected) @pytest.mark.parametrize( "value, string_value", [ (None, "None"), (np.nan, "nan"), (NA, "<NA>"), ], ) def test_astype_to_str_preserves_na(self, value, string_value): # https://github.com/pandas-dev/pandas/issues/36904 s = Series(["a", "b", value], dtype=object) result = s.astype(str) expected = Series(["a", "b", string_value], dtype=object) tm.assert_series_equal(result, expected) @pytest.mark.parametrize("dtype", ["float32", "float64", "int64", "int32"]) def test_astype(self, dtype): s = Series(np.random.randn(5), name="foo") as_typed = s.astype(dtype) assert as_typed.dtype == dtype assert as_typed.name == s.name @pytest.mark.parametrize("value", [np.nan, np.inf]) @pytest.mark.parametrize("dtype", [np.int32, np.int64]) def test_astype_cast_nan_inf_int(self, dtype, value): # gh-14265: check NaN and inf raise error when converting to int msg = "Cannot convert non-finite values \\(NA or inf\\) to integer" s = Series([value]) with pytest.raises(ValueError, match=msg): s.astype(dtype) @pytest.mark.parametrize("dtype", [int, np.int8, np.int64]) def test_astype_cast_object_int_fail(self, dtype): arr = Series(["car", "house", "tree", "1"]) msg = r"invalid literal for int\(\) with base 10: 'car'" with pytest.raises(ValueError, match=msg): arr.astype(dtype) def test_astype_cast_object_int(self): arr = Series(["1", "2", "3", "4"], dtype=object) result = arr.astype(int) tm.assert_series_equal(result, Series(np.arange(1, 5))) def test_astype_unicode(self): # see GH#7758: A bit of magic is required to set # default encoding to utf-8 digits = string.digits test_series = [ Series([digits * 10, tm.rands(63), tm.rands(64), tm.rands(1000)]), Series(["データーサイエンス、お前はもう死んでいる"]), ] former_encoding = None if sys.getdefaultencoding() == "utf-8": test_series.append(Series(["野菜食べないとやばい".encode()])) for s in test_series: res = s.astype("unicode") expec = s.map(str) tm.assert_series_equal(res, expec) # Restore the former encoding if former_encoding is not None and former_encoding != "utf-8": reload(sys) sys.setdefaultencoding(former_encoding) def test_astype_bytes(self): # GH#39474 result = Series(["foo", "bar", "baz"]).astype(bytes) assert result.dtypes == np.dtype("S3") class TestAstypeString: @pytest.mark.parametrize( "data, dtype", [ ([True, NA], "boolean"), (["A", NA], "category"), (["2020-10-10", "2020-10-10"], "datetime64[ns]"), (["2020-10-10", "2020-10-10", NaT], "datetime64[ns]"), ( ["2012-01-01 00:00:00-05:00", NaT], "datetime64[ns, US/Eastern]", ), ([1, None], "UInt16"), (["1/1/2021", "2/1/2021"], "period[M]"), (["1/1/2021", "2/1/2021", NaT], "period[M]"), (["1 Day", "59 Days", NaT], "timedelta64[ns]"), # currently no way to parse IntervalArray from a list of strings ], ) def test_astype_string_to_extension_dtype_roundtrip(self, data, dtype, request): if dtype == "boolean" or ( dtype in ("period[M]", "datetime64[ns]", "timedelta64[ns]") and NaT in data ): mark = pytest.mark.xfail( reason="TODO StringArray.astype() with missing values #GH40566" ) request.node.add_marker(mark) # GH-40351 s = Series(data, dtype=dtype) tm.assert_series_equal(s, s.astype("string").astype(dtype)) class TestAstypeCategorical: def test_astype_categorical_to_other(self): cat = Categorical([f"{i} - {i + 499}" for i in range(0, 10000, 500)]) ser = Series(np.random.RandomState(0).randint(0, 10000, 100)).sort_values() ser = cut(ser, range(0, 10500, 500), right=False, labels=cat) expected = ser tm.assert_series_equal(ser.astype("category"), expected) tm.assert_series_equal(ser.astype(CategoricalDtype()), expected) msg = r"Cannot cast object dtype to float64" with pytest.raises(ValueError, match=msg): ser.astype("float64") cat = Series(Categorical(["a", "b", "b", "a", "a", "c", "c", "c"])) exp = Series(["a", "b", "b", "a", "a", "c", "c", "c"]) tm.assert_series_equal(cat.astype("str"), exp) s2 = Series(Categorical(["1", "2", "3", "4"])) exp2 = Series([1, 2, 3, 4]).astype("int") tm.assert_series_equal(s2.astype("int"), exp2) # object don't sort correctly, so just compare that we have the same # values def cmp(a, b): tm.assert_almost_equal(np.sort(np.unique(a)), np.sort(np.unique(b))) expected = Series(np.array(ser.values), name="value_group") cmp(ser.astype("object"), expected) cmp(ser.astype(np.object_), expected) # array conversion tm.assert_almost_equal(np.array(ser), np.array(ser.values)) tm.assert_series_equal(ser.astype("category"), ser) tm.assert_series_equal(ser.astype(CategoricalDtype()), ser) roundtrip_expected = ser.cat.set_categories( ser.cat.categories.sort_values() ).cat.remove_unused_categories() result = ser.astype("object").astype("category") tm.assert_series_equal(result, roundtrip_expected) result = ser.astype("object").astype(CategoricalDtype()) tm.assert_series_equal(result, roundtrip_expected) def test_astype_categorical_invalid_conversions(self): # invalid conversion (these are NOT a dtype) cat = Categorical([f"{i} - {i + 499}" for i in range(0, 10000, 500)]) ser = Series(np.random.randint(0, 10000, 100)).sort_values() ser = cut(ser, range(0, 10500, 500), right=False, labels=cat) msg = ( "dtype '<class 'pandas.core.arrays.categorical.Categorical'>' " "not understood" ) with pytest.raises(TypeError, match=msg): ser.astype(Categorical) with pytest.raises(TypeError, match=msg): ser.astype("object").astype(Categorical) def test_astype_categoricaldtype(self): s = Series(["a", "b", "a"]) result = s.astype(CategoricalDtype(["a", "b"], ordered=True)) expected = Series(Categorical(["a", "b", "a"], ordered=True)) tm.assert_series_equal(result, expected) result = s.astype(CategoricalDtype(["a", "b"], ordered=False)) expected = Series(Categorical(["a", "b", "a"], ordered=False)) tm.assert_series_equal(result, expected) result = s.astype(CategoricalDtype(["a", "b", "c"], ordered=False)) expected = Series( Categorical(["a", "b", "a"], categories=["a", "b", "c"], ordered=False) ) tm.assert_series_equal(result, expected) tm.assert_index_equal(result.cat.categories, Index(["a", "b", "c"])) @pytest.mark.parametrize("name", [None, "foo"]) @pytest.mark.parametrize("dtype_ordered", [True, False]) @pytest.mark.parametrize("series_ordered", [True, False]) def test_astype_categorical_to_categorical( self, name, dtype_ordered, series_ordered ): # GH#10696, GH#18593 s_data = list("abcaacbab") s_dtype = CategoricalDtype(list("bac"), ordered=series_ordered) s = Series(s_data, dtype=s_dtype, name=name) # unspecified categories dtype = CategoricalDtype(ordered=dtype_ordered) result = s.astype(dtype) exp_dtype = CategoricalDtype(s_dtype.categories, dtype_ordered) expected = Series(s_data, name=name, dtype=exp_dtype) tm.assert_series_equal(result, expected) # different categories dtype = CategoricalDtype(list("adc"), dtype_ordered) result = s.astype(dtype) expected = Series(s_data, name=name, dtype=dtype) tm.assert_series_equal(result, expected) if dtype_ordered is False: # not specifying ordered, so only test once expected = s result = s.astype("category") tm.assert_series_equal(result, expected) def test_astype_bool_missing_to_categorical(self): # GH-19182 s = Series([True, False, np.nan]) assert s.dtypes == np.object_ result = s.astype(CategoricalDtype(categories=[True, False])) expected = Series(Categorical([True, False, np.nan], categories=[True, False])) tm.assert_series_equal(result, expected) def test_astype_categories_raises(self): # deprecated GH#17636, removed in GH#27141 s = Series(["a", "b", "a"]) with pytest.raises(TypeError, match="got an unexpected"): s.astype("category", categories=["a", "b"], ordered=True) @pytest.mark.parametrize("items", [["a", "b", "c", "a"], [1, 2, 3, 1]]) def test_astype_from_categorical(self, items): ser = Series(items) exp = Series(Categorical(items)) res = ser.astype("category") tm.assert_series_equal(res, exp) def test_astype_from_categorical_with_keywords(self): # with keywords lst = ["a", "b", "c", "a"] ser = Series(lst) exp = Series(Categorical(lst, ordered=True)) res = ser.astype(
CategoricalDtype(None, ordered=True)
pandas.CategoricalDtype
from db.DBConnector import execute_query from utils.log import log_init, log_close, log import time from os import path from pathlib import Path import pandas as pd import matplotlib.pyplot as plt import numpy as np # the ids are not included as they are the same for every table: id : long classMetricsEntities = ["classAnonymousClassesQty", "classAssignmentsQty", "classComparisonsQty", "classLambdasQty", "classLoopQty", "classMathOperationsQty", "classMaxNestedBlocks", "classNosi", "classNumberOfAbstractMethods", "classNumberOfDefaultFields", "classNumberOfDefaultMethods", "classNumberOfFields", "classNumberOfFinalFields", "classNumberOfFinalMethods", "classNumberOfMethods", "classNumberOfPrivateFields", "classNumberOfPrivateMethods", "classNumberOfProtectedFields", "classNumberOfProtectedMethods", "classNumberOfPublicMethods", "classNumberOfStaticFields", "classNumberOfStaticMethods", "classNumberOfSynchronizedMethods", "classNumbersQty", "classParenthesizedExpsQty", "classReturnQty", "classStringLiteralsQty", "classSubClassesQty", "classTryCatchQty", "classVariablesQty"] classMetricsComplex = ["classCbo", "classLcom", "classLoc", "classRfc", "classWmc", "classTCC", "classLCC"] processMetricsFields = ["bugFixCount", "qtyMajorAuthors", "qtyMinorAuthors", "qtyOfAuthors", "qtyOfCommits"] methodMetricsSize = ["methodLoc", "methodUniqueWordsQty"] methodMetrics = ["methodAnonymousClassesQty", "methodAssignmentsQty", "methodCbo", "methodComparisonsQty", "methodLambdasQty", "methodLoopQty", "methodMathOperationsQty", "methodMaxNestedBlocks", "methodNumbersQty", "methodParametersQty", "methodParenthesizedExpsQty", "methodReturnQty", "methodRfc", "methodStringLiteralsQty", "methodSubClassesQty", "methodTryCatchQty", "methodVariablesQty", "methodWmc"] def plot_bar(data, x_labels, group_labels, scale: str = "linear", title: str = ""): fig, ax = plt.subplots(figsize=(max(len(x_labels), 6), 12), dpi=120) barWidth = 1 / (len(group_labels) + 1) x = np.arange(len(x_labels)) for index, row in data.iterrows(): ax.bar(x + index * barWidth, row, width=barWidth, edgecolor='white', label=group_labels[index]) plt.xticks(x, x_labels, rotation='30') ax.set_ylabel('AVG') ax.set_title(title) plt.yscale(scale) ax.legend() fig_path = f"results/Metrics/{title}_{scale}_mean.png" plt.savefig(fig_path) def plot_box(data, label, title, scale: str = "log"): fig, ax = plt.subplots(figsize=(max(len(label), 32), 12), dpi=120) ax.set_title(f"{title}") ax.boxplot(data, showfliers=False) plt.xticks(np.arange(1, len(label) + 1), label, rotation=30) plt.yscale(scale) plt.xlabel("Metrics") fig_path = f"results/Metrics/{title}_{scale}_box_plot.png" plt.savefig(fig_path) log(f"Saved box plot to {fig_path}") def query_avg(table_name: str, function: str, metrics, descriptor: str, group: bool): file_path = f"results/Metrics/{table_name}_{function}_{descriptor}.csv" Path(path.dirname(file_path)).mkdir(parents=True, exist_ok=True) if not path.exists(file_path): metrics_query = ', '.join([f"{function}({metric}) AS \"{metric}\"" for metric in metrics]) if group: query = f"SELECT {metrics_query} FROM {table_name} group by level" else: query = f"SELECT {metrics_query} FROM {table_name}" dataframe = execute_query(query) dataframe.to_csv(file_path, index=False) log(f"Got the data from {table_name} for these metrics: {metrics} for the aggregate function: {function}.") else: dataframe =
pd.read_csv(file_path)
pandas.read_csv
#!/usr/bin/env python3 ''' FILE: nav01_parser.py DESCRIPTION: Nav01 parser class for raw output from a Furuno GP-90D GPS reciever Data file contains GGA/ZDA/VTG NMEA0183 sentences with no additional information added. BUGS: NOTES: AUTHOR: <NAME> COMPANY: OceanDataTools VERSION: 0.2 CREATED: 2021-04-24 REVISION: 2021-05-05 LICENSE INFO: This code is licensed under MIT license (see LICENSE.txt for details) Copyright (C) OceanDataTools 2021 ''' import re import csv import sys import logging from datetime import datetime, timedelta from os.path import dirname, realpath sys.path.append(dirname(dirname(realpath(__file__)))) import pandas as pd from geopy import Point from geopy.distance import distance from lib.nav_manager import NavParser, R2RNAV_COLS from lib.utils import calculate_bearing DESCRIPTION = "Nav parser for raw output from a Furuno GP-90D GPS reciever. Data file contains GGA/ZDA/VTG NMEA0183 sentences with no additional information added." EXAMPLE_DATA = """ $GPGGA,123034,2447.9660,N,12221.8670,E,2,9,0.3,38,M,,M,,*40 $GPVTG,147.2,T,150.9,M,7.6,N,14.1,K*76 $GPZDA,123034,23,08,2009,00,00*4D $GPGGA,123035,2447.9641,N,12221.8681,E,2,9,0.4,38,M,,M,,*4B $GPVTG,147.2,T,150.9,M,7.6,N,14.1,K*76 $GPZDA,123035,23,08,2009,00,00*4C """ raw_gga_cols = ['hdr','sensor_time','latitude','NS','longitude','EW','nmea_quality','nsv','hdop','antenna_height','antenna_height_m','height_wgs84','height_wgs84_m','last_update','dgps_station_checksum'] raw_vtg_cols = ['hdr','heading_true','True','heading_mag','Mag','speed_kts','Knots','speed_kph','Kph_checksum'] raw_zda_cols = ['hdr','sensor_time','day','month','year','tz_hr','tz_min_checksum'] SENSOR_TIMESTAMP_FORMAT = "%H%M%S" class Nav01Parser(NavParser): ''' Parser class for raw output from a Furuno GP-90D GPS reciever Data file contains GGA/ZDA/VTG NMEA0183 sentences with no additional information added. ''' def __init__(self): super().__init__(name="nav01", description=DESCRIPTION, example_data=EXAMPLE_DATA) @staticmethod def _hemisphere_correction(coordinate, hemisphere): if hemisphere in ('W', "S"): return coordinate * -1.0 return coordinate @staticmethod def _verify_checksum(sentence): cksum = sentence[len(sentence) - 2:] chksumdata = re.sub("(\n|\r\n)","", sentence[sentence.find("$")+1:sentence.find("*")]) csum = 0 for char in chksumdata: # XOR'ing value of csum against the next char in line # and storing the new XOR value in csum csum ^= ord(char) return 1 if hex(csum) == hex(int(cksum, 16)) else 0 def parse_file(self, filepath): # pylint: disable=too-many-locals,too-many-branches,too-many-statements """ Process the provided file """ zda_into_df = { 'lineno': [], 'date': [] } vtg_into_df = { 'lineno': [], 'speed_made_good': [], 'course_made_good': [] } gga_into_df = { 'lineno': [], 'sensor_time': [], 'ship_latitude': [], 'ship_longitude': [], 'nmea_quality': [], 'nsv': [], 'hdop': [], 'antenna_height': [], 'valid_cksum': [], 'valid_parse': [] } try: with open(filepath, 'r') as csvfile: csv_reader = csv.reader(csvfile) for row in csv_reader: if row[0] == '$GPZDA': date = None if len(row) != len(raw_zda_cols): logging.warning("Parsing Error: (line: %s) %s", csv_reader.line_num, ','.join(row)) else: try: date = datetime.strptime(row[4] + row[3] + row[2], "%Y%m%d") except Exception as err: logging.warning("Parsing Error: (line: %s) %s", csv_reader.line_num, ','.join(row)) logging.debug(str(err)) zda_into_df['lineno'].append(csv_reader.line_num) zda_into_df['date'].append(date) elif row[0] == '$GPVTG': speed_made_good = None course_made_good = None if len(row) != len(raw_vtg_cols): logging.warning("Parsing Error: (line: %s) %s", csv_reader.line_num, ','.join(row)) else: try: speed_made_good = float(row[7])*1000/3600 course_made_good = float(row[1]) except Exception as err: logging.warning("Parsing Error: (line: %s) %s", csv_reader.line_num, ','.join(row)) logging.debug(str(err)) vtg_into_df['lineno'].append(csv_reader.line_num) vtg_into_df['speed_made_good'].append(speed_made_good) vtg_into_df['course_made_good'].append(course_made_good) elif row[0] == '$GPGGA': sensor_time = None ship_latitude = None ship_longitude = None nmea_quality = None nsv = None hdop = None antenna_height = None valid_cksum = None valid_parse = 0 if len(row) != len(raw_gga_cols): logging.warning("Parsing Error 1: (line: %s) %s", csv_reader.line_num, ','.join(row)) else: try: sensor_time = datetime.strptime(row[1], SENSOR_TIMESTAMP_FORMAT) ship_latitude = self._hemisphere_correction(float(row[2][:2]) + float(row[2][2:])/60, row[3]) ship_longitude = self._hemisphere_correction(float(row[4][:3]) + float(row[4][3:])/60, row[5]) nmea_quality = int(row[6]) nsv = int(row[7]) hdop = float(row[8]) antenna_height = float(row[9]) valid_cksum = self._verify_checksum(','.join(row)) valid_parse = 1 except Exception as err: logging.warning("Parsing Error 2: (line: %s) %s", csv_reader.line_num, ','.join(row)) logging.debug(str(err)) gga_into_df['lineno'].append(csv_reader.line_num) gga_into_df['sensor_time'].append(sensor_time) gga_into_df['ship_latitude'].append(ship_latitude) gga_into_df['ship_longitude'].append(ship_longitude) gga_into_df['nmea_quality'].append(nmea_quality) gga_into_df['nsv'].append(nsv) gga_into_df['hdop'].append(hdop) gga_into_df['antenna_height'].append(antenna_height) gga_into_df['valid_cksum'].append(valid_cksum) gga_into_df['valid_parse'].append(valid_parse) except Exception as err: logging.error("Problem accessing input file: %s", filepath) logging.error(str(err)) return None zda_df = pd.DataFrame(zda_into_df) del zda_into_df zda_df.drop_duplicates(subset=['date'], keep='first', inplace=True) vtg_df = pd.DataFrame(vtg_into_df) del vtg_into_df gga_df = pd.DataFrame(gga_into_df) del gga_into_df # Merge GGA with VTG to create data data = pd.merge_asof(gga_df, vtg_df, on="lineno", direction="forward") # Merge data with ZDA data =
pd.merge_asof(data, zda_df, on="lineno")
pandas.merge_asof
''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''' RMDL: Random Multimodel Deep Learning for Classification * Copyright (C) 2018 <NAME> <<EMAIL>> * Last Update: May 3rd, 2018 * This file is part of RMDL project, University of Virginia. * Free to use, change, share and distribute source code of RMDL * Refrenced paper : RMDL: Random Multimodel Deep Learning for Classification * Refrenced paper : An Improvement of Data Classification using Random Multimodel Deep Learning (RMDL) * Comments and Error: email: <EMAIL> ''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''' import os from RMDL import text_feature_extraction as txt from sklearn.model_selection import train_test_split from RMDL.Download import Download_WOS as WOS import numpy as np from RMDL import RMDL_Text as RMDL import tensorflow as tf import numpy as np import pandas as pd import tensorflow as tf from tensorflow.keras.preprocessing.sequence import pad_sequences from sklearn.utils import shuffle def load_data(file_name, sample_ratio=1, n_class=15, one_hot=True): '''load data from .csv file''' names = ["class", "title", "content"] csv_file = pd.read_csv(file_name, names=names) shuffle_csv = csv_file.sample(frac=sample_ratio) x = pd.Series(shuffle_csv["content"]) y =
pd.Series(shuffle_csv["class"])
pandas.Series
import os import logging from collections import defaultdict import pandas as pd from fol.foq_v2 import (concate_n_chains, copy_query, negation_sink, binary_formula_iterator, concate_iu_chains, parse_formula, decompose_D, to_D, union_bubble, DeMorgan_replacement, to_d, transformation) def convert_log_to_csv(logfile, outfile): already = False if os.path.exists(outfile): already = True already_df = pd.read_csv(outfile) formula_id_set = set(already_df.formula_id) original_set = set(already_df.original) outfile = outfile.replace(".csv", "_extend.csv") formula_id_set = set() original_set = () data_dict = defaultdict(list) with open(logfile, 'rt') as f: for line in f.readlines(): line = line.strip() *_, rtype, schema, data = line.split(":") row_data = dict() if rtype == 'record': for k, v in zip(schema.split('\t'), data.split('\t')): row_data[k.strip()] = v.strip() if row_data['original'] in original_set: continue if row_data['formula_id'] in formula_id_set: num = int(row_data['formula_id'][-4:]) while True: new_key = f"type{num+1:04d}" if new_key not in formula_id_set: row_data['formula_id'] = new_key formula_id_set.add(new_key) break num += 1 for k in row_data: data_dict[k].append(row_data[k]) df =
pd.DataFrame(data_dict)
pandas.DataFrame
import json import pandas as pd import numpy as np from sklearn.preprocessing import StandardScaler from sklearn.neighbors import NearestNeighbors def cluster(cohort_submissions: dict) -> list: """ Splits given dict into clusters of 4 based on their ranked complexity The 'remainder problem' of needing to have 4 submissions per cluster, regardless of number of submissions, is solved here by duplicating submission IDs across clusters to supplement any clusters with less than 4, with no clusters containing more than 1 submission_ID that also appears in another cluster, unless there are fewer than 3 total submissions, or exactly 5 submissions, in the given cohort. Input: dictionary of a single cohort containing nested dictionary with 'submission_id' as first level key, and 'complexity' as one of the inner keys Output: JSON object of clusters: {1: [list of submission_ids], 2: [list of submission_ids]} """ # Generate DataFrame from dict df =
pd.DataFrame.from_dict(cohort_submissions, orient="index")
pandas.DataFrame.from_dict
# To add a new cell, type '# %%' # To add a new markdown cell, type '# %% [markdown]' # %% # first, REMEMBER to activate cryptoalgowheel-S2 environment! # %% import datetime import os import sys import backtrader as bt import numpy as np import pandas as pd import matplotlib import PyQt5 # %% #*****WARNING: REVISE THE "dir" FOLDER PATHS!!! datadir = "./data" logdir = "./log" reportdir = "./report" datafile = "BTC_USDT_1h.csv" #!NOTICE: use our data "BTC_USDT_1h.csv" here from_datetime = "2020-01-01 00:00:00" to_datetime = "2020-04-01 00:00:00" # %% class OptDoubleSMACross(bt.Strategy): params = ( ("pfast", 10), ("pslow", 20), ) def log(self, txt, dt=None, doprint=False): #(by default don't print log here) if doprint: dt = dt or self.datas[0].datetime.date(0) print("%s, %s" % (dt.isoformat(), txt)) def __init__(self): self.dataclose = self.datas[0].close # add both "fast" and "slow" SimpleMovingAverage indicators self.fastsma = bt.indicators.SimpleMovingAverage(self.datas[0], period = self.params.pfast) self.slowsma = bt.indicators.SimpleMovingAverage(self.datas[0], period = self.params.pslow) # add a "CrossOver" signal!! self.crossover = bt.indicators.CrossOver(self.fastsma, self.slowsma) #NOTICE here passing in "fast" SMA as 1st line, "slow" SMA as 2nd line #["CrossOver" indicator Usage reference: https://www.backtrader.com/home/helloalgotrading/; documentation: https://www.backtrader.com/docu/indautoref/#crossover] def next(self): if not self.position: #if not in the market yet (no "position" yet) if self.crossover > 0: # "CrossOver" function return 1.0: meaning "fast SMA"(1st line) crosses the "slow SMA"(2nd line) upwards #--BUY! self.buy() else: #("already in the market") if self.crossover < 0: #"CrossOver" function return -1.0: meaning "fast SMA"(1st line) crosses the "slow SMA"(2nd line) downwards #--SELL! self.sell() #*** added "Strategy hook" here - "stop" method, in order to record the portfolio final net value of each optimization round: def stop(self): self.log("Fast SMA Period %2d, Slow SMA Period %2d: Ending Value %.2f" % (self.params.pfast, self.params.pslow, self.broker.getvalue()), doprint=True) #(do print the log message by the end of each optimization round here) # %% if __name__ == "__main__": cerebro = bt.Cerebro() # feed data: data = pd.read_csv(os.path.join(datadir, datafile), index_col="datetime", parse_dates=True) data = data.loc[(data.index >=
pd.to_datetime(from_datetime)
pandas.to_datetime
from torch.utils.data import DataLoader from torch.utils.tensorboard import SummaryWriter import torch from mbpert.loss import reg_loss_interaction, reg_loss_r, reg_loss_eps from mbpert.mbpert import MBPertDataset, MBPert import seaborn as sns import matplotlib.pyplot as plt import pandas as pd import numpy as np from scipy import stats if __name__ == '__main__': trainset = MBPertDataset("data/x0_train.txt", "data/x_ss_train.txt", "data/P_train.txt") testset = MBPertDataset("data/x0_test.txt", "data/x_ss_test.txt", "data/P_test.txt") trainloader = DataLoader(trainset, batch_size=32, shuffle=True) testloader = DataLoader(testset, batch_size=32, shuffle=True) n_species = trainset.n_species mbpert = MBPert(n_species) criterion = torch.nn.MSELoss() optimizer = torch.optim.Adam(mbpert.parameters()) # Log history writer = SummaryWriter() for epoch in range(500): running_loss = 0.0 # printing loss statistics per batch epoch_loss = 0.0 # plotting training loss curve for i, data in enumerate(trainloader, 0): # Get the input batch (x0, p), responses = data # Get the inputs that model.forward() accepts x0 = torch.ravel(x0) p = torch.t(p) # and responses x_ss = torch.ravel(responses) # Forward pass x_pred = mbpert(x0, p) # Compute loss (MSE + reg) loss = criterion(x_pred, x_ss) loss = loss + reg_loss_interaction(mbpert.A) + reg_loss_r(mbpert.r) + reg_loss_eps(mbpert.eps) # Zero gradients, perform a backward pass, and update parameters optimizer.zero_grad() loss.backward() optimizer.step() # print statistics running_loss += loss.item() if i % 5 == 4: # print every 5 mini-batches print('[%d, %5d] loss: %.3f' % (epoch + 1, i + 1, running_loss / 5)) running_loss = 0.0 epoch_loss += loss.item() # Log epoch loss (per batch) writer.add_scalar("Loss/train", epoch_loss/(i+1), epoch) # Log test set loss epoch_loss_test = 0.0 with torch.no_grad(): for i, testdata in enumerate(testloader, 0): (x0, p), responses = testdata x0 = torch.ravel(x0) p = torch.t(p) x_ss = torch.ravel(responses) x_pred = mbpert(x0, p) # Compute loss (MSE + reg) loss = criterion(x_pred, x_ss) loss = loss + reg_loss_interaction(mbpert.A) + reg_loss_r(mbpert.r) + reg_loss_eps(mbpert.eps) epoch_loss_test += loss.item() writer.add_scalar("Loss/test", epoch_loss_test/(i+1), epoch) writer.flush() writer.close() # Comparing true and predicted A, r, eps A = np.loadtxt("data/A.txt", dtype=np.float32) r = np.loadtxt("data/r.txt", dtype=np.float32) eps = np.loadtxt("data/eps.txt", dtype=np.float32) A_error_heatmap = sns.heatmap(np.abs(A - mbpert.A.detach().numpy()), center=0, annot=True, fmt='.2f') A_error_heatmap = A_error_heatmap.set_title("Absolute error for A") A_error_heatmap.get_figure().savefig("data/figs/A_error_heatmap.png") r_df = pd.DataFrame(data={'pred': mbpert.r.detach().numpy(), 'true': r, 'param': 'r'}) eps_df = pd.DataFrame(data={'pred': mbpert.eps.detach().numpy(), 'true': eps, 'param': 'eps'}) fig, ax = plt.subplots(figsize=(6, 4)) r_eps_pred_vs_true = sns.scatterplot(data=pd.concat([r_df, eps_df]), x='pred', y='true', hue='param', ax=ax) r_eps_pred_vs_true = sns.lineplot(x=np.linspace(-0.5, 1.5), y=np.linspace(-0.5, 1.5), color='g', ax=ax) r_eps_pred_vs_true.get_figure().savefig("data/figs/r_eps_pred_vs_true.png") # Plot predicted vs true steady states in test set x_ss_test = [] x_pred_test = [] with torch.no_grad(): for i, testdata in enumerate(testloader, 0): (x0, p), responses = testdata x0 = torch.ravel(x0) p = torch.t(p) x_ss = torch.ravel(responses) x_pred = mbpert(x0, p) x_ss_test.append(x_ss) x_pred_test.append(x_pred) x_ss_test = torch.cat(x_ss_test, dim=0) x_pred_test = torch.cat(x_pred_test, dim=0) x_df =
pd.DataFrame(data={'pred': x_pred_test, 'true': x_ss_test, 'value': 'x'})
pandas.DataFrame
from __future__ import print_function, absolute_import, division import pandas as pd import numpy as np import argparse import json import math import re import os import sys import csv import socket # -- ip checks import seaborn as sns import matplotlib.pyplot as plt from jinja2 import Environment, PackageLoader # --- functions --- def get_config(config): """ convert json config file into a python dict """ with open(config, 'r') as f: config_dict = json.load(f)[0] return config_dict # -- load data -- def get_dataframe(config): """ load csv into python dataframe """ df = pd.read_csv(config['input_file'], low_memory=False) return df # -- def get_overview(config, df): """ return details of the dataframe and any issues found """ overview_msg = {} df = df.copy() column_cnt = len(df.columns) try: df['EVENT_TIMESTAMP'] = pd.to_datetime(df[config['required_features']['EVENT_TIMESTAMP']], infer_datetime_format=True) date_range = df['EVENT_TIMESTAMP'].min().strftime('%Y-%m-%d') + ' to ' + df['EVENT_TIMESTAMP'].max().strftime('%Y-%m-%d') day_cnt = (df['EVENT_TIMESTAMP'].max() - df['EVENT_TIMESTAMP'].min()).days except: overview_msg[config['required_features']['EVENT_TIMESTAMP']] = " Unable to convert" + config['required_features']['EVENT_TIMESTAMP'] + " to timestamp" date_range = "" day_cnt = 0 record_cnt = df.shape[0] memory_size = df.memory_usage(index=True).sum() record_size = round(float(memory_size) / record_cnt,2) n_dupe = record_cnt - len(df.drop_duplicates()) if record_cnt <= 10000: overview_msg["Record count"] = "A minimum of 10,000 rows are required to train the model, your dataset contains " + str(record_cnt) overview_stats = { "Record count" : "{:,}".format(record_cnt) , "Column count" : "{:,}".format(column_cnt), "Duplicate count" : "{:,}".format(n_dupe), "Memory size" : "{:.2f}".format(memory_size/1024**2) + " MB", "Record size" : "{:,}".format(record_size) + " bytes", "Date range" : date_range, "Day count" : "{:,}".format(day_cnt) + " days", "overview_msg" : overview_msg, "overview_cnt" : len(overview_msg) } return df, overview_stats def set_feature(row, config): """ sets the feature type of each variable in the file, identifies features with issues as well as the required features. this is the first pass of rules """ rulehit = 0 feature = "" message = "" required_features = config['required_features'] # -- assign numeric -- if ((row._dtype in ['float64', 'int64']) and (row['nunique'] > 1)): feature = "numeric" message = "(" + "{:,}".format(row['nunique']) + ") unique" # -- assign categorical -- if ((row._dtype == 'object') and ( row.nunique_pct <= 0.75)): feature = "categorical" message = "(" + "{:.2f}".format(row.nunique_pct*100) + "%) unique" # -- assign categorical to numerics -- if ((row._dtype in ['float64', 'int64']) and ( row['nunique'] <= 1024 )): feature = "categorical" message = "(" + "{:,}".format(row['nunique']) + ") unique" # -- assign binary -- if (row['nunique'] == 2 ): feature = "categorical" message = "(" + "{:}".format(row['nunique']) + ") binary" # -- single value -- if (row['nunique'] == 1): rulehit = 1 feature = "exclude" message = "(" + "{:}".format(row['nunique']) + ") single value" # -- null pct -- if (row.null_pct >= 0.50 and (rulehit == 0)): rulehit = 1 feature = "exclude" message = "(" + "{:.2f}".format(row.null_pct*100) + "%) missing " # -- categorical w. high % unique if ((row._dtype == 'object') and ( row.nunique_pct >= 0.75)) and (rulehit == 0): rulehit = 1 feature = "exclude" message = "(" + "{:.2f}".format(row.nunique_pct*100) + "%) unique" # -- numeric w. extreeme % unique if ((row._dtype in ['float64', 'int64']) and ( row.nunique_pct >= 0.95)) and (rulehit == 0): rulehit = 1 feature = "exclude" message = "(" + "{:.2f}".format(row.nunique_pct*100) + "%) unique" if ('EMAIL_ADDRESS' in required_features) and (row._column == required_features['EMAIL_ADDRESS']): feature = "EMAIL_ADDRESS" if ('IP_ADDRESS' in required_features) and (row._column == required_features['IP_ADDRESS']): feature = "IP_ADDRESS" if row._column == required_features['EVENT_TIMESTAMP']: feature = "EVENT_TIMESTAMP" if row._column == required_features['EVENT_LABEL']: feature = "EVENT_LABEL" return feature, message def get_label(config, df): """ returns stats on the label and performs intial label checks """ message = {} label = config['required_features']['EVENT_LABEL'] label_summary = df[label].value_counts() rowcnt = df.shape[0] label_dict = { "label_field" : label, "label_values" : df[label].unique(), "label_dtype" : label_summary.dtype, "fraud_rate" : "{:.2f}".format((label_summary.min()/label_summary.sum())*100), "fraud_label": str(label_summary.idxmin()), "fraud_count": label_summary.min(), "legit_rate" : "{:.2f}".format((label_summary.max()/label_summary.sum())*100), "legit_count": label_summary.max(), "legit_label": str(label_summary.idxmax()), "null_count" : "{:,}".format(df[label].isnull().sum(axis = 0)), "null_rate" : "{:.2f}".format(df[label].isnull().sum(axis = 0)/rowcnt), } """ label checks """ if label_dict['fraud_count'] <= 500: message['fraud_count'] = "Fraud count " + str(label_dict['fraud_count']) + " is less than 500\n" if df[label].isnull().sum(axis = 0)/rowcnt >= 0.01: message['label_nulls'] = "Your LABEL column contains " + label_dict["null_count"] +" a significant number of null values" label_dict['warnings'] = len(message) return label_dict, message def get_partition(config, df): """ evaluates your dataset partitions and checks the distribution of fraud lables """ df = df.copy() row_count = df.shape[0] required_features = config['required_features'] message = {} stats ={} try: df['_event_timestamp'] = pd.to_datetime(df[required_features['EVENT_TIMESTAMP']]) df['_dt'] = pd.to_datetime(df['_event_timestamp'].dt.date) except: message['_event_timestamp'] = "could not parse " + required_features['EVENT_TIMESTAMP'] + " into a date or timestamp object" df['_event_timestamp'] = df[required_features['EVENT_TIMESTAMP']] df['_dt'] = df['_event_timestamp'] label_summary = df[required_features['EVENT_LABEL']].value_counts() legit_label = label_summary.idxmax() fraud_label = label_summary.idxmin() df = df.sort_values(by=['_event_timestamp']).reset_index(drop=True) ctab = pd.crosstab(df['_dt'].astype(str), df[required_features['EVENT_LABEL']]).reset_index() stats['labels'] = ctab['_dt'].tolist() stats['legit_rates'] = ctab[legit_label].tolist() stats['fraud_rates'] = ctab[fraud_label].tolist() # -- set partitions -- df['partition'] = 'training' df.loc[math.ceil(row_count*.7):math.ceil(row_count*.85),'partition'] = 'evaluation' df.loc[math.ceil(row_count*.85):,'partition'] = 'testing' message = "" return stats, message def get_stats(config, df): """ generates the key column analysis statistics calls set_features function """ df = df.copy() rowcnt = len(df) df_s1 = df.agg(['count', 'nunique',]).transpose().reset_index().rename(columns={"index":"_column"}) df_s1['count'] = df_s1['count'].astype('int64') df_s1['nunique'] = df_s1['nunique'].astype('int64') df_s1["null"] = (rowcnt - df_s1["count"]).astype('int64') df_s1["not_null"] = rowcnt - df_s1["null"] df_s1["null_pct"] = df_s1["null"] / rowcnt df_s1["nunique_pct"] = df_s1['nunique'] / rowcnt dt = pd.DataFrame(df.dtypes).reset_index().rename(columns={"index":"_column", 0:"_dtype"}) df_stats =
pd.merge(dt, df_s1, on='_column', how='inner')
pandas.merge
### ETL script for generating input tables to model ### main point: ETL JHU covid-19 case and mortality data # todo: refactor ## HERE! -> not handled here in python -> Serial Interval Table -> would be worthwhile to reproduce the R for that here ## "serial interval table" <--> that discretized gamma distribution ## so that this script does indeed produce all the required input tables for the model ## alternatively, could just generate that discretized gamma distribution in the R code itself, pre-simulation ## I don't like that idea -> will try to reproduce results in python - but not now -> other more pressing tasks now import os import numpy as np import warnings warnings.simplefilter( action="ignore", category=FutureWarning ) # suppress pandas "future warning" import pandas as pd def makeCaseMortalityTable(dirPath): print("\n~ COVID-19 CASE-MORTALITY TABLE ~") # E print("--- extracting JHU covid-19 case and mortality data ---") # what's the issue here? sometimes stalls for some reason -> fetching data from git # fetch the JHU time-series data # see: https://github.com/CSSEGISandData/COVID-19/blob/master/csse_covid_19_data/csse_covid_19_time_series/README.md jhu = "https://raw.githubusercontent.com/CSSEGISandData/COVID-19/master/csse_covid_19_data/csse_covid_19_time_series/" cases_csv = "time_series_covid19_confirmed_US.csv" deaths_csv = "time_series_covid19_deaths_US.csv" casesOrig = pd.read_csv(jhu + cases_csv) deathsOrig =
pd.read_csv(jhu + deaths_csv)
pandas.read_csv
import json import logging import pandas as pd import requests from gamestonk_terminal import config_terminal as cfg from gamestonk_terminal.decorators import log_start_end from gamestonk_terminal.rich_config import console logger = logging.getLogger(__name__) api_url = "https://api.glassnode.com/v1/metrics/" GLASSNODE_SUPPORTED_HASHRATE_ASSETS = ["BTC", "ETH"] GLASSNODE_SUPPORTED_EXCHANGES = [ "aggregated", "binance", "bittrex", "coinex", "gate.io", "gemini", "huobi", "kucoin", "poloniex", "bibox", "bigone", "bitfinex", "hitbtc", "kraken", "okex", "bithumb", "zb.com", "cobinhood", "bitmex", "bitstamp", "coinbase", "coincheck", "luno", ] GLASSNODE_SUPPORTED_ASSETS = [ "BTC", "ETH", "LTC", "AAVE", "ABT", "AMPL", "ANT", "ARMOR", "BADGER", "BAL", "BAND", "BAT", "BIX", "BNT", "BOND", "BRD", "BUSD", "BZRX", "CELR", "CHSB", "CND", "COMP", "CREAM", "CRO", "CRV", "CVC", "CVP", "DAI", "DDX", "DENT", "DGX", "DHT", "DMG", "DODO", "DOUGH", "DRGN", "ELF", "ENG", "ENJ", "EURS", "FET", "FTT", "FUN", "GNO", "GUSD", "HEGIC", "HOT", "HPT", "HT", "HUSD", "INDEX", "KCS", "LAMB", "LBA", "LDO", "LEO", "LINK", "LOOM", "LRC", "MANA", "MATIC", "MCB", "MCO", "MFT", "MIR", "MKR", "MLN", "MTA", "MTL", "MX", "NDX", "NEXO", "NFTX", "NMR", "Nsure", "OCEAN", "OKB", "OMG", "PAX", "PAY", "PERP", "PICKLE", "PNK", "PNT", "POLY", "POWR", "PPT", "QASH", "QKC", "QNT", "RDN", "REN", "REP", "RLC", "ROOK", "RPL", "RSR", "SAI", "SAN", "SNT", "SNX", "STAKE", "STORJ", "sUSD", "SUSHI", "TEL", "TOP", "UBT", "UMA", "UNI", "USDC", "USDK", "USDT", "UTK", "VERI", "WaBi", "WAX", "WBTC", "WETH", "wNMX", "WTC", "YAM", "YFI", "ZRX", ] INTERVALS_HASHRATE = ["24h", "1w", "1month"] INTERVALS_ACTIVE_ADDRESSES = ["24h", "1w", "1month"] INTERVALS_NON_ZERO_ADDRESSES = ["24h"] INTERVALS_DISPLAY_EXCHANGE_NET_POSITION_CHANGE = ["24h"] INTERVALS_EXCHANGE_BALANCES = ["24h"] @log_start_end(log=logger) def get_close_price(asset: str, interval: str, since: int, until: int) -> pd.DataFrame: """Returns the price of a cryptocurrency [Source: https://glassnode.com] Parameters ---------- asset : str Crypto to check close price (BTC or ETH) since : int Initial date timestamp (e.g., 1_614_556_800) until : int End date timestamp (e.g., 1_641_227_783_561) interval : str Interval frequency (e.g., 24h) Returns ------- pd.DataFrame price over time """ url = api_url + "market/price_usd_close" parameters = { "api_key": cfg.API_GLASSNODE_KEY, "a": asset, "i": interval, "s": str(since), "u": str(until), } r = requests.get(url, params=parameters) df = pd.DataFrame() if r.status_code == 200: df = pd.DataFrame(json.loads(r.text)) if df.empty: console.print(f"No data found for {asset} price.\n") else: df = df.set_index("t") df.index = pd.to_datetime(df.index, unit="s") elif r.status_code == 401: console.print("[red]Invalid API Key[/red]\n") else: console.print(r.text) return df @log_start_end(log=logger) def get_non_zero_addresses( asset: str, interval: str, since: int, until: int ) -> pd.DataFrame: """Returns addresses with non-zero balance of a certain asset [Source: https://glassnode.com] Parameters ---------- asset : str Asset to search (e.g., BTC) since : int Initial date timestamp (e.g., 1_577_836_800) until : int End date timestamp (e.g., 1_609_459_200) interval : str Interval frequency (e.g., 24h) Returns ------- pd.DataFrame addresses with non-zero balances """ url = api_url + "addresses/non_zero_count" parameters = { "api_key": cfg.API_GLASSNODE_KEY, "a": asset, "i": interval, "s": str(since), "u": str(until), } r = requests.get(url, params=parameters) df = pd.DataFrame() if r.status_code == 200: df = pd.DataFrame(json.loads(r.text)) if df.empty: console.print(f"No data found for {asset}'s non-zero addresses.\n") else: df["t"] =
pd.to_datetime(df["t"], unit="s")
pandas.to_datetime
import pandas as pd import matplotlib.pyplot as plt import statistics from datetime import datetime import copy import json import numpy as np from os import listdir from os.path import isfile, join import unknown import baseline import known_approx as kapprox import mary_optimal as mary dirs = ['/localdisk1/DOT/flights/2018', '/localdisk1/DOT/flights/2019', '/localdisk1/DOT/flights/2020'] sourcesdir = '/localdisk1/DOT/csv/' outputjsondir = '/localdisk1/DOT/json/' outputdir = '/localdisk1/DOT' alldata = '/localdisk1/DOT/allflights.csv' # number of runs nr = 15 # data set size n = 5000 def merge_files(): fs = [join(d, f) for d in dirs for f in listdir(d) if isfile(join(d, f))] #dfs = [pd.read_csv(f) for f in fs] dfs = [] for f in fs: dfs.append(pd.read_csv(f)) onedf =
pd.concat(dfs)
pandas.concat
import pandas as pd import numpy as np d= pd.read_csv(snakemake.input[0], sep= '\t', header=0, compression= 'gzip') d= d.loc[~d['#chrom'].str.contains('_'), :] d['a1']= d.alts.str.split(',').str[0] d['a2']= d.alts.str.split(',').str[1] d['#chrom']= d['#chrom'].str.replace('chr', '') d['POS']= np.where(d.ref.str.len() < d.alts.str.len(), d.chromStart, d.chromEnd) d['ref']= np.where(d.ref.str.len()< d.alts.str.len(), 'I', d.ref) d['ref']= np.where(d.ref.str.len() > d.alts.str.len(), 'D', d.ref) d['a1']= np.where(d.ref== 'I', 'D', d.a1) d['a1']= np.where(d.ref== 'D', 'I', d.a1) df= d.copy() df= df.loc[df.a2!= '', :] d.loc[d.ref > d.a1, ['ref', 'a1']] = d.loc[d.ref > d.a1, ['a1', 'ref']].values d['ID']= d['#chrom'] + ':' + d['POS'].astype(int).astype(str) + ':' + d.ref + ':' + d.a1 df.loc[df.ref > df.a2, ['ref', 'a2']] = df.loc[df.ref > df.a2, ['a2', 'ref']].values df['ID']= df['#chrom'] + ':' + df['POS'].astype(int).astype(str) + ':' + df.ref + ':' + df.a2 df= df[['ID', 'name']] d= d[['ID', 'name']] d=
pd.concat([d, df])
pandas.concat
from context import dero import pandas as pd from pandas.util.testing import assert_frame_equal from pandas import Timestamp from numpy import nan import numpy class DataFrameTest: df = pd.DataFrame([ (10516, 'a', '1/1/2000', 1.01), (10516, 'a', '1/2/2000', 1.02), (10516, 'a', '1/3/2000', 1.03), (10516, 'a', '1/4/2000', 1.04), (10516, 'b', '1/1/2000', 1.05), (10516, 'b', '1/2/2000', 1.06), (10516, 'b', '1/3/2000', 1.07), (10516, 'b', '1/4/2000', 1.08), (10517, 'a', '1/1/2000', 1.09), (10517, 'a', '1/2/2000', 1.10), (10517, 'a', '1/3/2000', 1.11), (10517, 'a', '1/4/2000', 1.12), ], columns = ['PERMNO','byvar','Date', 'RET']) df_duplicate_row = pd.DataFrame([ (10516, 'a', '1/1/2000', 1.01), (10516, 'a', '1/2/2000', 1.02), (10516, 'a', '1/3/2000', 1.03), (10516, 'a', '1/3/2000', 1.03), #this is a duplicated row (10516, 'a', '1/4/2000', 1.04), (10516, 'b', '1/1/2000', 1.05), (10516, 'b', '1/2/2000', 1.06), (10516, 'b', '1/3/2000', 1.07), (10516, 'b', '1/4/2000', 1.08), (10517, 'a', '1/1/2000', 1.09), (10517, 'a', '1/2/2000', 1.10), (10517, 'a', '1/3/2000', 1.11), (10517, 'a', '1/4/2000', 1.12), ], columns = ['PERMNO','byvar','Date', 'RET']) df_weight = pd.DataFrame(data = [ (10516, 'a', '1/1/2000', 1.01, 0), (10516, 'a', '1/2/2000', 1.02, 1), (10516, 'a', '1/3/2000', 1.03, 1), (10516, 'a', '1/4/2000', 1.04, 0), (10516, 'b', '1/1/2000', 1.05, 1), (10516, 'b', '1/2/2000', 1.06, 1), (10516, 'b', '1/3/2000', 1.07, 1), (10516, 'b', '1/4/2000', 1.08, 1), (10517, 'a', '1/1/2000', 1.09, 0), (10517, 'a', '1/2/2000', 1.1, 0), (10517, 'a', '1/3/2000', 1.11, 0), (10517, 'a', '1/4/2000', 1.12, 1), ], columns = ['PERMNO', 'byvar', 'Date', 'RET', 'weight']) df_nan_byvar = pd.DataFrame(data = [ ('a', 1), (nan, 2), ('b', 3), ('b', 4), ], columns = ['byvar', 'val']) df_nan_byvar_and_val = pd.DataFrame(data = [ ('a', 1), (nan, 2), ('b', nan), ('b', 4), ], columns = ['byvar', 'val']) single_ticker_df = pd.DataFrame(data = [ ('a', Timestamp('2000-01-01 00:00:00'), 'ADM'), ], columns = ['byvar', 'Date', 'TICKER']) df_datetime = df.copy() df_datetime['Date'] = pd.to_datetime(df_datetime['Date']) df_datetime_no_ret = df_datetime.copy() df_datetime_no_ret.drop('RET', axis=1, inplace=True) df_gvkey_str = pd.DataFrame([ ('001076','3/1/1995'), ('001076','4/1/1995'), ('001722','1/1/2012'), ('001722','7/1/2012'), ('001722', nan), (nan ,'1/1/2012') ], columns=['GVKEY','Date']) df_gvkey_str['Date'] = pd.to_datetime(df_gvkey_str['Date']) df_gvkey_num = df_gvkey_str.copy() df_gvkey_num['GVKEY'] = df_gvkey_num['GVKEY'].astype('float64') df_gvkey_str2 = pd.DataFrame([ ('001076','2/1/1995'), ('001076','3/2/1995'), ('001722','11/1/2011'), ('001722','10/1/2011'), ('001722', nan), (nan ,'1/1/2012') ], columns=['GVKEY','Date']) df_gvkey_str2['Date'] = pd.to_datetime(df_gvkey_str2['Date']) df_fill_data = pd.DataFrame( data=[ (4, 'c', nan, 'a'), (1, 'd', 3, 'a'), (10, 'e', 100, 'a'), (2, nan, 6, 'b'), (5, 'f', 8, 'b'), (11, 'g', 150, 'b'), ], columns=['y', 'x1', 'x2', 'group'] ) class TestCumulate(DataFrameTest): expect_between_1_3 = pd.DataFrame(data = [ (10516, 'a', '1/1/2000', 1.01, 1.01), (10516, 'a', '1/2/2000', 1.02, 1.02), (10516, 'a', '1/3/2000', 1.03, 1.0506), (10516, 'a', '1/4/2000', 1.04, 1.04), (10516, 'b', '1/1/2000', 1.05, 1.05), (10516, 'b', '1/2/2000', 1.06, 1.06), (10516, 'b', '1/3/2000', 1.07, 1.1342), (10516, 'b', '1/4/2000', 1.08, 1.08), (10517, 'a', '1/1/2000', 1.09, 1.09), (10517, 'a', '1/2/2000', 1.1, 1.1), (10517, 'a', '1/3/2000', 1.11, 1.2210000000000003), (10517, 'a', '1/4/2000', 1.12, 1.12), ], columns = ['PERMNO', 'byvar', 'Date', 'RET', 'cum_RET']) expect_first = pd.DataFrame([ (10516, 'a', '1/1/2000', 1.01, 1.01), (10516, 'a', '1/2/2000', 1.02, 1.02), (10516, 'a', '1/3/2000', 1.03, 1.0506), (10516, 'a', '1/4/2000', 1.04, 1.092624), (10516, 'b', '1/1/2000', 1.05, 1.05), (10516, 'b', '1/2/2000', 1.06, 1.06), (10516, 'b', '1/3/2000', 1.07, 1.1342), (10516, 'b', '1/4/2000', 1.08, 1.224936), (10517, 'a', '1/1/2000', 1.09, 1.09), (10517, 'a', '1/2/2000', 1.10, 1.10), (10517, 'a', '1/3/2000', 1.11, 1.221), (10517, 'a', '1/4/2000', 1.12, 1.36752), ], columns = ['PERMNO','byvar','Date', 'RET', 'cum_RET']) def test_method_between_1_3(self): cum_df = dero.pandas.cumulate(self.df, 'RET', 'between', periodvar='Date', byvars=['PERMNO','byvar'], time=[1,3]) assert_frame_equal(self.expect_between_1_3, cum_df, check_dtype=False) def test_method_between_m2_0(self): cum_df = dero.pandas.cumulate(self.df, 'RET', 'between', periodvar='Date', byvars=['PERMNO','byvar'], time=[-2,0]) #Actually same result as [1,3] assert_frame_equal(self.expect_between_1_3, cum_df, check_dtype=False) def test_shifted_index(self): df = self.df.copy() df.index = df.index + 10 cum_df = dero.pandas.cumulate(df, 'RET', 'between', periodvar='Date', byvars=['PERMNO','byvar'], time=[-2,0]) assert_frame_equal(self.expect_between_1_3, cum_df, check_dtype=False) def test_method_first(self): cum_df = dero.pandas.cumulate(self.df, 'RET', 'first', periodvar='Date', byvars=['PERMNO','byvar']) assert_frame_equal(self.expect_first, cum_df, check_dtype=False) def test_grossify(self): df = self.df.copy() #don't overwrite original df['RET'] -= 1 #ungrossify expect_first_grossify = self.expect_first.copy() expect_first_grossify['cum_RET'] -= 1 expect_first_grossify['RET'] -= 1 cum_df = dero.pandas.cumulate(df, 'RET', 'first', periodvar='Date', byvars=['PERMNO','byvar'], grossify=True) assert_frame_equal(expect_first_grossify, cum_df, check_dtype=False) class TestGroupbyMerge(DataFrameTest): def test_subset_max(self): byvars = ['PERMNO','byvar'] out = dero.pandas.groupby_merge(self.df, byvars, 'max', subset='RET') expect_df = pd.DataFrame( [(10516, 'a', '1/1/2000', 1.01, 1.04), (10516, 'a', '1/2/2000', 1.02, 1.04), (10516, 'a', '1/3/2000', 1.03, 1.04), (10516, 'a', '1/4/2000', 1.04, 1.04), (10516, 'b', '1/1/2000', 1.05, 1.08), (10516, 'b', '1/2/2000', 1.06, 1.08), (10516, 'b', '1/3/2000', 1.07, 1.08), (10516, 'b', '1/4/2000', 1.08, 1.08), (10517, 'a', '1/1/2000', 1.09, 1.12), (10517, 'a', '1/2/2000', 1.10, 1.12), (10517, 'a', '1/3/2000', 1.11, 1.12), (10517, 'a', '1/4/2000', 1.12, 1.12)], columns = ['PERMNO','byvar','Date', 'RET', 'RET_max']) assert_frame_equal(expect_df, out) def test_subset_std(self): byvars = ['PERMNO','byvar'] out = dero.pandas.groupby_merge(self.df, byvars, 'std', subset='RET') expect_df = pd.DataFrame( [(10516, 'a', '1/1/2000', 1.01, 0.012909944487358068), (10516, 'a', '1/2/2000', 1.02, 0.012909944487358068), (10516, 'a', '1/3/2000', 1.03, 0.012909944487358068), (10516, 'a', '1/4/2000', 1.04, 0.012909944487358068), (10516, 'b', '1/1/2000', 1.05, 0.012909944487358068), (10516, 'b', '1/2/2000', 1.06, 0.012909944487358068), (10516, 'b', '1/3/2000', 1.07, 0.012909944487358068), (10516, 'b', '1/4/2000', 1.08, 0.012909944487358068), (10517, 'a', '1/1/2000', 1.09, 0.012909944487358068), (10517, 'a', '1/2/2000', 1.10, 0.012909944487358068), (10517, 'a', '1/3/2000', 1.11, 0.012909944487358068), (10517, 'a', '1/4/2000', 1.12, 0.012909944487358068)], columns = ['PERMNO','byvar','Date', 'RET', 'RET_std']) assert_frame_equal(expect_df, out) def test_nan_byvar_transform(self): expect_df = self.df_nan_byvar.copy() expect_df['val_transform'] = expect_df['val'] out = dero.pandas.groupby_merge(self.df_nan_byvar, 'byvar', 'transform', (lambda x: x)) assert_frame_equal(expect_df, out) def test_nan_byvar_and_nan_val_transform_numeric(self): non_standard_index = self.df_nan_byvar_and_val.copy() non_standard_index.index = [5,6,7,8] expect_df = self.df_nan_byvar_and_val.copy() expect_df['val_transform'] = expect_df['val'] + 1 expect_df.index = [5,6,7,8] out = dero.pandas.groupby_merge(non_standard_index, 'byvar', 'transform', (lambda x: x + 1)) assert_frame_equal(expect_df, out) def test_nan_byvar_and_nan_val_and_nonstandard_index_transform_numeric(self): expect_df = self.df_nan_byvar_and_val.copy() expect_df['val_transform'] = expect_df['val'] + 1 def test_nan_byvar_sum(self): expect_df = pd.DataFrame(data = [ ('a', 1, 1.0), (nan, 2, nan), ('b', 3, 7.0), ('b', 4, 7.0), ], columns = ['byvar', 'val', 'val_sum']) out = dero.pandas.groupby_merge(self.df_nan_byvar, 'byvar', 'sum') assert_frame_equal(expect_df, out) class TestLongToWide: expect_df_with_colindex = pd.DataFrame(data = [ (10516, 'a', 1.01, 1.02, 1.03, 1.04), (10516, 'b', 1.05, 1.06, 1.07, 1.08), (10517, 'a', 1.09, 1.1, 1.11, 1.12), ], columns = ['PERMNO', 'byvar', 'RET1/1/2000', 'RET1/2/2000', 'RET1/3/2000', 'RET1/4/2000']) expect_df_no_colindex = pd.DataFrame(data = [ (10516, 'a', '1/1/2000', 1.01, 1.02, 1.03, 1.04), (10516, 'a', '1/2/2000', 1.01, 1.02, 1.03, 1.04), (10516, 'a', '1/3/2000', 1.01, 1.02, 1.03, 1.04), (10516, 'a', '1/4/2000', 1.01, 1.02, 1.03, 1.04), (10516, 'b', '1/1/2000', 1.05, 1.06, 1.07, 1.08), (10516, 'b', '1/2/2000', 1.05, 1.06, 1.07, 1.08), (10516, 'b', '1/3/2000', 1.05, 1.06, 1.07, 1.08), (10516, 'b', '1/4/2000', 1.05, 1.06, 1.07, 1.08), (10517, 'a', '1/1/2000', 1.09, 1.1, 1.11, 1.12), (10517, 'a', '1/2/2000', 1.09, 1.1, 1.11, 1.12), (10517, 'a', '1/3/2000', 1.09, 1.1, 1.11, 1.12), (10517, 'a', '1/4/2000', 1.09, 1.1, 1.11, 1.12), ], columns = ['PERMNO', 'byvar', 'Date', 'RET0', 'RET1', 'RET2', 'RET3']) input_data = DataFrameTest() ltw_no_dup_colindex = dero.pandas.long_to_wide(input_data.df, ['PERMNO', 'byvar'], 'RET', colindex='Date') ltw_dup_colindex = dero.pandas.long_to_wide(input_data.df_duplicate_row, ['PERMNO', 'byvar'], 'RET', colindex='Date') ltw_no_dup_no_colindex = dero.pandas.long_to_wide(input_data.df, ['PERMNO', 'byvar'], 'RET') ltw_dup_no_colindex = dero.pandas.long_to_wide(input_data.df_duplicate_row, ['PERMNO', 'byvar'], 'RET') df_list = [ltw_no_dup_colindex, ltw_dup_colindex, ltw_no_dup_no_colindex, ltw_dup_no_colindex] def test_no_duplicates_with_colindex(self): assert_frame_equal(self.expect_df_with_colindex, self.ltw_no_dup_colindex) def test_duplicates_with_colindex(self): assert_frame_equal(self.expect_df_with_colindex, self.ltw_dup_colindex) def test_no_duplicates_no_colindex(self): assert_frame_equal(self.expect_df_no_colindex, self.ltw_no_dup_no_colindex) def test_duplicates_no_colindex(self): assert_frame_equal(self.expect_df_no_colindex, self.ltw_dup_no_colindex) def test_no_extra_vars(self): for df in self.df_list: assert ('__idx__','__key__') not in df.columns class TestPortfolioAverages: input_data = DataFrameTest() expect_avgs_no_wt = pd.DataFrame(data = [ (1, 'a', 1.0250000000000001), (1, 'b', 1.0550000000000002), (2, 'a', 1.1050000000000002), (2, 'b', 1.0750000000000002), ], columns = ['portfolio', 'byvar', 'RET']) expect_avgs_wt = pd.DataFrame(data = [ (1, 'a', 1.0250000000000001, 1.025), (1, 'b', 1.0550000000000002, 1.0550000000000002), (2, 'a', 1.1050000000000002, 1.12), (2, 'b', 1.0750000000000002, 1.0750000000000002), ], columns = ['portfolio', 'byvar', 'RET', 'RET_wavg']) expect_ports = pd.DataFrame(data = [ (10516, 'a', '1/1/2000', 1.01, 0, 1), (10516, 'a', '1/2/2000', 1.02, 1, 1), (10516, 'a', '1/3/2000', 1.03, 1, 1), (10516, 'a', '1/4/2000', 1.04, 0, 1), (10516, 'b', '1/1/2000', 1.05, 1, 1), (10516, 'b', '1/2/2000', 1.06, 1, 1), (10516, 'b', '1/3/2000', 1.07, 1, 2), (10516, 'b', '1/4/2000', 1.08, 1, 2), (10517, 'a', '1/1/2000', 1.09, 0, 2), (10517, 'a', '1/2/2000', 1.1, 0, 2), (10517, 'a', '1/3/2000', 1.11, 0, 2), (10517, 'a', '1/4/2000', 1.12, 1, 2), ], columns = ['PERMNO', 'byvar', 'Date', 'RET', 'weight', 'portfolio']) avgs, ports = dero.pandas.portfolio_averages(input_data.df_weight, 'RET', 'RET', ngroups=2, byvars='byvar') w_avgs, w_ports = dero.pandas.portfolio_averages(input_data.df_weight, 'RET', 'RET', ngroups=2, byvars='byvar', wtvar='weight') def test_simple_averages(self): assert_frame_equal(self.expect_avgs_no_wt, self.avgs, check_dtype=False) def test_weighted_averages(self): assert_frame_equal(self.expect_avgs_wt, self.w_avgs, check_dtype=False) def test_portfolio_construction(self): print(self.ports) assert_frame_equal(self.expect_ports, self.ports, check_dtype=False) assert_frame_equal(self.expect_ports, self.w_ports, check_dtype=False) class TestWinsorize(DataFrameTest): def test_winsor_40_subset_byvars(self): expect_df = pd.DataFrame(data = [ (10516, 'a', '1/1/2000', 1.022624), (10516, 'a', '1/2/2000', 1.022624), (10516, 'a', '1/3/2000', 1.02672), (10516, 'a', '1/4/2000', 1.02672), (10516, 'b', '1/1/2000', 1.062624), (10516, 'b', '1/2/2000', 1.062624), (10516, 'b', '1/3/2000', 1.06672), (10516, 'b', '1/4/2000', 1.06672), (10517, 'a', '1/1/2000', 1.102624), (10517, 'a', '1/2/2000', 1.102624), (10517, 'a', '1/3/2000', 1.10672), (10517, 'a', '1/4/2000', 1.10672), ], columns = ['PERMNO', 'byvar', 'Date', 'RET']) wins = dero.pandas.winsorize(self.df, .4, subset='RET', byvars=['PERMNO','byvar']) assert_frame_equal(expect_df, wins, check_less_precise=True) class TestRegBy(DataFrameTest): def create_indf(self): indf = self.df_weight.copy() indf['key'] = indf['PERMNO'].astype(str) + '_' + indf['byvar'] return indf def test_regby_nocons(self): indf = self.create_indf() expect_df = pd.DataFrame(data = [ (0.48774684748988806, '10516_a'), (0.9388636664168903, '10516_b'), (0.22929206076239614, '10517_a'), ], columns = ['coef_RET', 'key']) rb = dero.pandas.reg_by(indf, 'weight', 'RET', 'key', cons=False) print('Reg by: ', rb) assert_frame_equal(expect_df, rb) def test_regby_cons(self): indf = self.create_indf() expect_df = pd.DataFrame(data = [ (0.49999999999999645, 5.329070518200751e-15, '10516_a'), (0.9999999999999893, 1.0658141036401503e-14, '10516_b'), (-32.89999999999997, 29.999999999999982, '10517_a'), ], columns = ['const', 'coef_RET', 'key']) rb = dero.pandas.reg_by(indf, 'weight', 'RET', 'key') print('Reg by: ', rb) assert_frame_equal(expect_df, rb) def test_regby_cons_low_obs(self): indf = self.create_indf().loc[:8,:] #makes it so that one byvar only has one obs expect_df = pd.DataFrame(data = [ (0.49999999999999645, 5.329070518200751e-15, '10516_a'), (0.9999999999999893, 1.0658141036401503e-14, '10516_b'), (nan, nan, '10517_a'), ], columns = ['const', 'coef_RET', 'key']) rb = dero.pandas.reg_by(indf, 'weight', 'RET', 'key') print('Reg by: ', rb) assert_frame_equal(expect_df, rb) class TestExpandMonths(DataFrameTest): def test_expand_months_tradedays(self): expect_df = pd.DataFrame(data = [ (Timestamp('2000-01-03 00:00:00'), 'a', Timestamp('2000-01-01 00:00:00'), 'ADM'), (Timestamp('2000-01-04 00:00:00'), 'a', Timestamp('2000-01-01 00:00:00'), 'ADM'), (Timestamp('2000-01-05 00:00:00'), 'a', Timestamp('2000-01-01 00:00:00'), 'ADM'), (Timestamp('2000-01-06 00:00:00'), 'a', Timestamp('2000-01-01 00:00:00'), 'ADM'), (Timestamp('2000-01-07 00:00:00'), 'a', Timestamp('2000-01-01 00:00:00'), 'ADM'), (Timestamp('2000-01-10 00:00:00'), 'a', Timestamp('2000-01-01 00:00:00'), 'ADM'), (Timestamp('2000-01-11 00:00:00'), 'a', Timestamp('2000-01-01 00:00:00'), 'ADM'), (Timestamp('2000-01-12 00:00:00'), 'a', Timestamp('2000-01-01 00:00:00'), 'ADM'), (Timestamp('2000-01-13 00:00:00'), 'a', Timestamp('2000-01-01 00:00:00'), 'ADM'), (Timestamp('2000-01-14 00:00:00'), 'a', Timestamp('2000-01-01 00:00:00'), 'ADM'), (Timestamp('2000-01-18 00:00:00'), 'a', Timestamp('2000-01-01 00:00:00'), 'ADM'), (Timestamp('2000-01-19 00:00:00'), 'a', Timestamp('2000-01-01 00:00:00'), 'ADM'), (Timestamp('2000-01-20 00:00:00'), 'a', Timestamp('2000-01-01 00:00:00'), 'ADM'), (Timestamp('2000-01-21 00:00:00'), 'a', Timestamp('2000-01-01 00:00:00'), 'ADM'), (Timestamp('2000-01-24 00:00:00'), 'a', Timestamp('2000-01-01 00:00:00'), 'ADM'), (Timestamp('2000-01-25 00:00:00'), 'a', Timestamp('2000-01-01 00:00:00'), 'ADM'), (Timestamp('2000-01-26 00:00:00'), 'a', Timestamp('2000-01-01 00:00:00'), 'ADM'), (Timestamp('2000-01-27 00:00:00'), 'a', Timestamp('2000-01-01 00:00:00'), 'ADM'), (Timestamp('2000-01-28 00:00:00'), 'a', Timestamp('2000-01-01 00:00:00'), 'ADM'), (Timestamp('2000-01-31 00:00:00'), 'a', Timestamp('2000-01-01 00:00:00'), 'ADM'), ], columns = ['Daily Date', 'byvar', 'Date', 'TICKER']) em = dero.pandas.expand_months(self.single_ticker_df) assert_frame_equal(expect_df.sort_index(axis=1), em.sort_index(axis=1)) def test_expand_months_calendardays(self): expect_df = pd.DataFrame(data = [ (Timestamp('2000-01-01 00:00:00'), 'a', Timestamp('2000-01-01 00:00:00'), 'ADM'), (Timestamp('2000-01-02 00:00:00'), 'a', Timestamp('2000-01-01 00:00:00'), 'ADM'), (Timestamp('2000-01-03 00:00:00'), 'a', Timestamp('2000-01-01 00:00:00'), 'ADM'), (Timestamp('2000-01-04 00:00:00'), 'a', Timestamp('2000-01-01 00:00:00'), 'ADM'), (Timestamp('2000-01-05 00:00:00'), 'a', Timestamp('2000-01-01 00:00:00'), 'ADM'), (Timestamp('2000-01-06 00:00:00'), 'a', Timestamp('2000-01-01 00:00:00'), 'ADM'), (Timestamp('2000-01-07 00:00:00'), 'a', Timestamp('2000-01-01 00:00:00'), 'ADM'), (Timestamp('2000-01-08 00:00:00'), 'a', Timestamp('2000-01-01 00:00:00'), 'ADM'), (Timestamp('2000-01-09 00:00:00'), 'a', Timestamp('2000-01-01 00:00:00'), 'ADM'), (Timestamp('2000-01-10 00:00:00'), 'a', Timestamp('2000-01-01 00:00:00'), 'ADM'), (Timestamp('2000-01-11 00:00:00'), 'a', Timestamp('2000-01-01 00:00:00'), 'ADM'), (Timestamp('2000-01-12 00:00:00'), 'a', Timestamp('2000-01-01 00:00:00'), 'ADM'), (Timestamp('2000-01-13 00:00:00'), 'a', Timestamp('2000-01-01 00:00:00'), 'ADM'), (Timestamp('2000-01-14 00:00:00'), 'a', Timestamp('2000-01-01 00:00:00'), 'ADM'), (Timestamp('2000-01-15 00:00:00'), 'a', Timestamp('2000-01-01 00:00:00'), 'ADM'), (Timestamp('2000-01-16 00:00:00'), 'a', Timestamp('2000-01-01 00:00:00'), 'ADM'), (Timestamp('2000-01-17 00:00:00'), 'a', Timestamp('2000-01-01 00:00:00'), 'ADM'), (Timestamp('2000-01-18 00:00:00'), 'a', Timestamp('2000-01-01 00:00:00'), 'ADM'), (Timestamp('2000-01-19 00:00:00'), 'a', Timestamp('2000-01-01 00:00:00'), 'ADM'), (Timestamp('2000-01-20 00:00:00'), 'a', Timestamp('2000-01-01 00:00:00'), 'ADM'), (Timestamp('2000-01-21 00:00:00'), 'a', Timestamp('2000-01-01 00:00:00'), 'ADM'), (Timestamp('2000-01-22 00:00:00'), 'a', Timestamp('2000-01-01 00:00:00'), 'ADM'), (Timestamp('2000-01-23 00:00:00'), 'a', Timestamp('2000-01-01 00:00:00'), 'ADM'), (Timestamp('2000-01-24 00:00:00'), 'a', Timestamp('2000-01-01 00:00:00'), 'ADM'), (Timestamp('2000-01-25 00:00:00'), 'a', Timestamp('2000-01-01 00:00:00'), 'ADM'), (Timestamp('2000-01-26 00:00:00'), 'a', Timestamp('2000-01-01 00:00:00'), 'ADM'), (Timestamp('2000-01-27 00:00:00'), 'a', Timestamp('2000-01-01 00:00:00'), 'ADM'), (Timestamp('2000-01-28 00:00:00'), 'a', Timestamp('2000-01-01 00:00:00'), 'ADM'), (Timestamp('2000-01-29 00:00:00'), 'a', Timestamp('2000-01-01 00:00:00'), 'ADM'), (Timestamp('2000-01-30 00:00:00'), 'a', Timestamp('2000-01-01 00:00:00'), 'ADM'), (Timestamp('2000-01-31 00:00:00'), 'a', Timestamp('2000-01-01 00:00:00'), 'ADM'), ], columns = ['Daily Date', 'byvar', 'Date', 'TICKER']) em = dero.pandas.expand_months(self.single_ticker_df, trade_days=False) assert_frame_equal(expect_df.sort_index(axis=1), em.sort_index(axis=1)) class TestPortfolio(DataFrameTest): def test_portfolio_byvars(self): expect_df = pd.DataFrame(data = [ (10516, 'a', '1/1/2000', 1.01, 1), (10516, 'a', '1/2/2000', 1.02, 1), (10516, 'a', '1/3/2000', 1.03, 2), (10516, 'a', '1/4/2000', 1.04, 2), (10516, 'b', '1/1/2000', 1.05, 1), (10516, 'b', '1/2/2000', 1.06, 1), (10516, 'b', '1/3/2000', 1.07, 2), (10516, 'b', '1/4/2000', 1.08, 2), (10517, 'a', '1/1/2000', 1.09, 1), (10517, 'a', '1/2/2000', 1.1, 1), (10517, 'a', '1/3/2000', 1.11, 2), (10517, 'a', '1/4/2000', 1.12, 2), ], columns = ['PERMNO', 'byvar', 'Date', 'RET', 'portfolio']) p = dero.pandas.portfolio(self.df, 'RET', ngroups=2, byvars=['PERMNO','byvar']) assert_frame_equal(expect_df, p, check_dtype=False) def test_portfolio_with_nan_and_byvars(self): expect_df = pd.DataFrame(data = [ (10516, 'a', '1/1/2000', nan, 0), (10516, 'a', '1/2/2000', 1.02, 1), (10516, 'a', '1/3/2000', 1.03, 1), #changed from 2 to 1 when updated nan handling (10516, 'a', '1/4/2000', 1.04, 2), (10516, 'b', '1/1/2000', 1.05, 1), (10516, 'b', '1/2/2000', 1.06, 1), (10516, 'b', '1/3/2000', 1.07, 2), (10516, 'b', '1/4/2000', 1.08, 2), (10517, 'a', '1/1/2000', 1.09, 1), (10517, 'a', '1/2/2000', 1.1, 1), (10517, 'a', '1/3/2000', 1.11, 2), (10517, 'a', '1/4/2000', 1.12, 2), ], columns = ['PERMNO', 'byvar', 'Date', 'RET', 'portfolio']) indf = self.df.copy() indf.loc[0, 'RET'] = nan p = dero.pandas.portfolio(indf, 'RET', ngroups=2, byvars=['PERMNO','byvar']) assert_frame_equal(expect_df, p, check_dtype=False) class TestConvertSASDateToPandasDate: df_sasdate = pd.DataFrame(data = [ ('011508', 16114.0), ('011508', 16482.0), ('011508', 17178.0), ('011508', 17197.0), ('011508', 17212.0), ], columns = ['gvkey', 'datadate']) df_sasdate_nan = pd.DataFrame(data = [ ('011508', 16114.0), ('011508', 16482.0), ('011508', 17178.0), ('011508', 17197.0), ('011508', nan), ('011508', 17212.0), ], columns = ['gvkey', 'datadate']) def test_convert(self): expect_df = pd.DataFrame(data = [ (numpy.datetime64('2004-02-13T00:00:00.000000000'),), (numpy.datetime64('2005-02-15T00:00:00.000000000'),), (numpy.datetime64('2007-01-12T00:00:00.000000000'),), (numpy.datetime64('2007-01-31T00:00:00.000000000'),), (numpy.datetime64('2007-02-15T00:00:00.000000000'),), ], columns = [0]) converted = pd.DataFrame(dero.pandas.convert_sas_date_to_pandas_date(self.df_sasdate['datadate'])) assert_frame_equal(expect_df, converted) def test_convert_nan(self): expect_df = pd.DataFrame(data = [ (numpy.datetime64('2004-02-13T00:00:00.000000000'),), (numpy.datetime64('2005-02-15T00:00:00.000000000'),), (numpy.datetime64('2007-01-12T00:00:00.000000000'),), (numpy.datetime64('2007-01-31T00:00:00.000000000'),), (numpy.datetime64('NaT'),), (numpy.datetime64('2007-02-15T00:00:00.000000000'),), ], columns = [0]) converted = pd.DataFrame(dero.pandas.convert_sas_date_to_pandas_date(self.df_sasdate_nan['datadate'])) assert_frame_equal(expect_df, converted) class TestMapWindows(DataFrameTest): times = [ [-4, -2, 0], [-3, 1, 2], [4, 5, 6], [0, 1, 2], [-1, 0, 1] ] df_period_str = pd.DataFrame([ (10516, '1/1/2000', 1.01), (10516, '1/2/2000', 1.02), (10516, '1/3/2000', 1.03), (10516, '1/4/2000', 1.04), (10516, '1/5/2000', 1.05), (10516, '1/6/2000', 1.06), (10516, '1/7/2000', 1.07), (10516, '1/8/2000', 1.08), (10517, '1/1/2000', 1.09), (10517, '1/2/2000', 1.10), (10517, '1/3/2000', 1.11), (10517, '1/4/2000', 1.12), (10517, '1/5/2000', 1.05), (10517, '1/6/2000', 1.06), (10517, '1/7/2000', 1.07), (10517, '1/8/2000', 1.08), ], columns = ['PERMNO','Date', 'RET']) df_period = df_period_str.copy() df_period['Date'] = pd.to_datetime(df_period['Date']) expect_dfs = [ pd.DataFrame(data = [ (10516, Timestamp('2000-01-01 00:00:00'), 1.01, 0), (10516, Timestamp('2000-01-02 00:00:00'), 1.02, 1), (10516, Timestamp('2000-01-03 00:00:00'), 1.03, 1), (10516, Timestamp('2000-01-04 00:00:00'), 1.04, 2), (10516, Timestamp('2000-01-05 00:00:00'), 1.05, 2), (10516, Timestamp('2000-01-06 00:00:00'), 1.06, 3), (10516, Timestamp('2000-01-07 00:00:00'), 1.07, 3), (10516, Timestamp('2000-01-08 00:00:00'), 1.08, 3), (10517, Timestamp('2000-01-01 00:00:00'), 1.09, 0), (10517, Timestamp('2000-01-02 00:00:00'), 1.1, 1), (10517, Timestamp('2000-01-03 00:00:00'), 1.11, 1), (10517, Timestamp('2000-01-04 00:00:00'), 1.12, 2), (10517, Timestamp('2000-01-05 00:00:00'), 1.05, 2), (10517, Timestamp('2000-01-06 00:00:00'), 1.06, 3), (10517, Timestamp('2000-01-07 00:00:00'), 1.07, 3), (10517, Timestamp('2000-01-08 00:00:00'), 1.08, 3), ], columns = ['PERMNO', 'Date', 'RET', '__map_window__']), pd.DataFrame(data = [ (10516, Timestamp('2000-01-01 00:00:00'), 1.01, 0), (10516, Timestamp('2000-01-02 00:00:00'), 1.02, 1), (10516, Timestamp('2000-01-03 00:00:00'), 1.03, 1), (10516, Timestamp('2000-01-04 00:00:00'), 1.04, 1), (10516, Timestamp('2000-01-05 00:00:00'), 1.05, 1), (10516, Timestamp('2000-01-06 00:00:00'), 1.06, 2), (10516, Timestamp('2000-01-07 00:00:00'), 1.07, 3), (10516, Timestamp('2000-01-08 00:00:00'), 1.08, 3), (10517, Timestamp('2000-01-01 00:00:00'), 1.09, 0), (10517, Timestamp('2000-01-02 00:00:00'), 1.1, 1), (10517, Timestamp('2000-01-03 00:00:00'), 1.11, 1), (10517, Timestamp('2000-01-04 00:00:00'), 1.12, 1), (10517, Timestamp('2000-01-05 00:00:00'), 1.05, 1), (10517, Timestamp('2000-01-06 00:00:00'), 1.06, 2), (10517, Timestamp('2000-01-07 00:00:00'), 1.07, 3), (10517, Timestamp('2000-01-08 00:00:00'), 1.08, 3), ], columns = ['PERMNO', 'Date', 'RET', '__map_window__']), pd.DataFrame(data = [ (10516, Timestamp('2000-01-01 00:00:00'), 1.01, 0), (10516, Timestamp('2000-01-02 00:00:00'), 1.02, 1), (10516, Timestamp('2000-01-03 00:00:00'), 1.03, 2), (10516, Timestamp('2000-01-04 00:00:00'), 1.04, 3), (10516, Timestamp('2000-01-05 00:00:00'), 1.05, 3), (10516, Timestamp('2000-01-06 00:00:00'), 1.06, 3), (10516, Timestamp('2000-01-07 00:00:00'), 1.07, 3), (10516, Timestamp('2000-01-08 00:00:00'), 1.08, 3), (10517, Timestamp('2000-01-01 00:00:00'), 1.09, 0), (10517, Timestamp('2000-01-02 00:00:00'), 1.1, 1), (10517, Timestamp('2000-01-03 00:00:00'), 1.11, 2), (10517, Timestamp('2000-01-04 00:00:00'), 1.12, 3), (10517, Timestamp('2000-01-05 00:00:00'), 1.05, 3), (10517, Timestamp('2000-01-06 00:00:00'), 1.06, 3), (10517, Timestamp('2000-01-07 00:00:00'), 1.07, 3), (10517, Timestamp('2000-01-08 00:00:00'), 1.08, 3), ], columns = ['PERMNO', 'Date', 'RET', '__map_window__']), pd.DataFrame(data = [ (10516, Timestamp('2000-01-01 00:00:00'), 1.01, 0), (10516, Timestamp('2000-01-02 00:00:00'), 1.02, 1), (10516, Timestamp('2000-01-03 00:00:00'), 1.03, 2), (10516, Timestamp('2000-01-04 00:00:00'), 1.04, 3), (10516, Timestamp('2000-01-05 00:00:00'), 1.05, 3), (10516, Timestamp('2000-01-06 00:00:00'), 1.06, 3), (10516, Timestamp('2000-01-07 00:00:00'), 1.07, 3), (10516, Timestamp('2000-01-08 00:00:00'), 1.08, 3), (10517, Timestamp('2000-01-01 00:00:00'), 1.09, 0), (10517, Timestamp('2000-01-02 00:00:00'), 1.1, 1), (10517, Timestamp('2000-01-03 00:00:00'), 1.11, 2), (10517, Timestamp('2000-01-04 00:00:00'), 1.12, 3), (10517, Timestamp('2000-01-05 00:00:00'), 1.05, 3), (10517, Timestamp('2000-01-06 00:00:00'), 1.06, 3), (10517, Timestamp('2000-01-07 00:00:00'), 1.07, 3), (10517, Timestamp('2000-01-08 00:00:00'), 1.08, 3), ], columns = ['PERMNO', 'Date', 'RET', '__map_window__']), pd.DataFrame(data = [ (10516, Timestamp('2000-01-01 00:00:00'), 1.01, 0), (10516, Timestamp('2000-01-02 00:00:00'), 1.02, 1), (10516, Timestamp('2000-01-03 00:00:00'), 1.03, 2), (10516, Timestamp('2000-01-04 00:00:00'), 1.04, 3), (10516, Timestamp('2000-01-05 00:00:00'), 1.05, 3), (10516, Timestamp('2000-01-06 00:00:00'), 1.06, 3), (10516, Timestamp('2000-01-07 00:00:00'), 1.07, 3), (10516, Timestamp('2000-01-08 00:00:00'), 1.08, 3), (10517, Timestamp('2000-01-01 00:00:00'), 1.09, 0), (10517, Timestamp('2000-01-02 00:00:00'), 1.1, 1), (10517, Timestamp('2000-01-03 00:00:00'), 1.11, 2), (10517, Timestamp('2000-01-04 00:00:00'), 1.12, 3), (10517, Timestamp('2000-01-05 00:00:00'), 1.05, 3), (10517,
Timestamp('2000-01-06 00:00:00')
pandas.Timestamp
"""Python Script Template.""" import os import pandas as pd H_PARAMS = "hparams.json" STATISTICS = "statistics.json" def get_name(h_params): """Get experiment name from hyper parameter json file.""" protagonist_name = h_params.protagonist_name[0] if protagonist_name in ["MVE", "Dyna", "STEVE"]: protagonist_name += f"-{h_params.base_agent_name[0]}" if protagonist_name in ["MVE", "Dyna", "STEVE", "BPTT"]: protagonist_name += f"-{h_params.num_steps[0]}" label = protagonist_name if h_params.hallucinate[0]: hallucination = True if h_params.strong_antagonist[0]: label, strong = "H-" + protagonist_name + "-strong", True else: label, strong = "H-" + protagonist_name + "-weak", False else: hallucination, strong = False, False wrapper = h_params.adversarial_wrapper[0] alpha = h_params.alpha[0] return dict( protagonist_name=protagonist_name, wrapper=wrapper, alpha=alpha, label=label, hallucination=hallucination, strong=strong, ) def get_player_data_frame(run_dir, player="Protagonist"): """Get Player dataframe.""" agent_listdir = os.listdir(run_dir) agents = [*filter(lambda x: player in x, agent_listdir)] if len(agents) == 0: return pd.DataFrame() name = agents[0] player_dir = f"{run_dir}/{name}" player_dir = player_dir + "/" + os.listdir(player_dir)[0] if len(os.listdir(player_dir)) == 0: return pd.DataFrame() return pd.read_json(f"{player_dir}/statistics.json") def extend_data_frame(df, name_dict): """Extend data frame with a name dictionary.""" df["counter"] = range(len(df)) for key, value in name_dict.items(): df[key] = value def get_all_data_frames(base_dir="runs/RARLAgent/"): """Get experiment data frames.""" if base_dir[-1] != "/": base_dir = base_dir + "/" joint_df =
pd.DataFrame()
pandas.DataFrame
import argparse import sys import pandas as pd def process_command_line(): """ Parse command line arguments `argv` is a list of arguments, or `None` for ``sys.argv[1:]``. Return a Namespace representing the argument list. """ # Create the parser parser = argparse.ArgumentParser(prog='mm_merge_predict_simulated', description='merge simulation scenario output with mm predictions') # Add arguments parser.add_argument( "experiment", type=str, help="String used in output filenames" ) parser.add_argument( "perf_curve_pred_filename", type=str, help="Path to csv file which contains predictions" ) parser.add_argument( "y_data_path", type=str, help="Path to directory containing y data files (which are created from sim output)" ) parser.add_argument( "output_filename", type=str, help="Path to merged output csv file" ) # Do the parsing and return the populated namespace with the input arg values args = parser.parse_args() return args def main(argv=None): # Parse command line arguments mm_args = process_command_line() exp = mm_args.experiment perf_curve_pred_filename = mm_args.perf_curve_pred_filename y_data_path = mm_args.y_data_path output_filename = mm_args.output_filename predictions_df =
pd.read_csv(perf_curve_pred_filename)
pandas.read_csv
import numpy as np import pytest from pandas import Categorical, Series import pandas._testing as tm @pytest.mark.parametrize( "keep, expected", [ ("first", Series([False, False, False, False, True, True, False])), ("last", Series([False, True, True, False, False, False, False])), (False, Series([False, True, True, False, True, True, False])), ], ) def test_drop_duplicates(any_numpy_dtype, keep, expected): tc = Series([1, 0, 3, 5, 3, 0, 4], dtype=np.dtype(any_numpy_dtype)) if tc.dtype == "bool": pytest.skip("tested separately in test_drop_duplicates_bool") tm.assert_series_equal(tc.duplicated(keep=keep), expected) tm.assert_series_equal(tc.drop_duplicates(keep=keep), tc[~expected]) sc = tc.copy() return_value = sc.drop_duplicates(keep=keep, inplace=True) assert return_value is None tm.assert_series_equal(sc, tc[~expected]) @pytest.mark.parametrize( "keep, expected", [ ("first", Series([False, False, True, True])), ("last", Series([True, True, False, False])), (False, Series([True, True, True, True])), ], ) def test_drop_duplicates_bool(keep, expected): tc = Series([True, False, True, False]) tm.assert_series_equal(tc.duplicated(keep=keep), expected) tm.assert_series_equal(tc.drop_duplicates(keep=keep), tc[~expected]) sc = tc.copy() return_value = sc.drop_duplicates(keep=keep, inplace=True) tm.assert_series_equal(sc, tc[~expected]) assert return_value is None @pytest.mark.parametrize("values", [[], list(range(5))]) def test_drop_duplicates_no_duplicates(any_numpy_dtype, keep, values): tc = Series(values, dtype=np.dtype(any_numpy_dtype)) expected = Series([False] * len(tc), dtype="bool") if tc.dtype == "bool": # 0 -> False and 1-> True # any other value would be duplicated tc = tc[:2] expected = expected[:2] tm.assert_series_equal(tc.duplicated(keep=keep), expected) result_dropped = tc.drop_duplicates(keep=keep) tm.assert_series_equal(result_dropped, tc) # validate shallow copy assert result_dropped is not tc class TestSeriesDropDuplicates: @pytest.fixture( params=["int_", "uint", "float_", "unicode_", "timedelta64[h]", "datetime64[D]"] ) def dtype(self, request): return request.param @pytest.fixture def cat_series1(self, dtype, ordered): # Test case 1 cat_array = np.array([1, 2, 3, 4, 5], dtype=np.dtype(dtype)) input1 = np.array([1, 2, 3, 3], dtype=np.dtype(dtype)) cat =
Categorical(input1, categories=cat_array, ordered=ordered)
pandas.Categorical
from datetime import datetime import numpy as np import pytest import pandas.util._test_decorators as td from pandas.core.dtypes.base import _registry as ea_registry from pandas.core.dtypes.common import ( is_categorical_dtype, is_interval_dtype, is_object_dtype, ) from pandas.core.dtypes.dtypes import ( CategoricalDtype, DatetimeTZDtype, IntervalDtype, PeriodDtype, ) from pandas import ( Categorical, DataFrame, DatetimeIndex, Index, Interval, IntervalIndex, MultiIndex, NaT, Period, PeriodIndex, Series, Timestamp, cut, date_range, notna, period_range, ) import pandas._testing as tm from pandas.core.arrays import SparseArray from pandas.tseries.offsets import BDay class TestDataFrameSetItem: @pytest.mark.parametrize("dtype", ["int32", "int64", "float32", "float64"]) def test_setitem_dtype(self, dtype, float_frame): arr = np.random.randn(len(float_frame)) float_frame[dtype] = np.array(arr, dtype=dtype) assert float_frame[dtype].dtype.name == dtype def test_setitem_list_not_dataframe(self, float_frame): data = np.random.randn(len(float_frame), 2) float_frame[["A", "B"]] = data tm.assert_almost_equal(float_frame[["A", "B"]].values, data) def test_setitem_error_msmgs(self): # GH 7432 df = DataFrame( {"bar": [1, 2, 3], "baz": ["d", "e", "f"]}, index=Index(["a", "b", "c"], name="foo"), ) ser = Series( ["g", "h", "i", "j"], index=Index(["a", "b", "c", "a"], name="foo"), name="fiz", ) msg = "cannot reindex from a duplicate axis" with pytest.raises(ValueError, match=msg): df["newcol"] = ser # GH 4107, more descriptive error message df = DataFrame(np.random.randint(0, 2, (4, 4)), columns=["a", "b", "c", "d"]) msg = "incompatible index of inserted column with frame index" with pytest.raises(TypeError, match=msg): df["gr"] = df.groupby(["b", "c"]).count() def test_setitem_benchmark(self): # from the vb_suite/frame_methods/frame_insert_columns N = 10 K = 5 df = DataFrame(index=range(N)) new_col = np.random.randn(N) for i in range(K): df[i] = new_col expected = DataFrame(np.repeat(new_col, K).reshape(N, K), index=range(N)) tm.assert_frame_equal(df, expected) def test_setitem_different_dtype(self): df = DataFrame( np.random.randn(5, 3), index=np.arange(5), columns=["c", "b", "a"] ) df.insert(0, "foo", df["a"]) df.insert(2, "bar", df["c"]) # diff dtype # new item df["x"] = df["a"].astype("float32") result = df.dtypes expected = Series( [np.dtype("float64")] * 5 + [np.dtype("float32")], index=["foo", "c", "bar", "b", "a", "x"], ) tm.assert_series_equal(result, expected) # replacing current (in different block) df["a"] = df["a"].astype("float32") result = df.dtypes expected = Series( [np.dtype("float64")] * 4 + [np.dtype("float32")] * 2, index=["foo", "c", "bar", "b", "a", "x"], ) tm.assert_series_equal(result, expected) df["y"] = df["a"].astype("int32") result = df.dtypes expected = Series( [np.dtype("float64")] * 4 + [np.dtype("float32")] * 2 + [np.dtype("int32")], index=["foo", "c", "bar", "b", "a", "x", "y"], ) tm.assert_series_equal(result, expected) def test_setitem_empty_columns(self): # GH 13522 df = DataFrame(index=["A", "B", "C"]) df["X"] = df.index df["X"] = ["x", "y", "z"] exp = DataFrame(data={"X": ["x", "y", "z"]}, index=["A", "B", "C"]) tm.assert_frame_equal(df, exp) def test_setitem_dt64_index_empty_columns(self): rng = date_range("1/1/2000 00:00:00", "1/1/2000 1:59:50", freq="10s") df = DataFrame(index=np.arange(len(rng))) df["A"] = rng assert df["A"].dtype == np.dtype("M8[ns]") def test_setitem_timestamp_empty_columns(self): # GH#19843 df = DataFrame(index=range(3)) df["now"] = Timestamp("20130101", tz="UTC") expected = DataFrame( [[Timestamp("20130101", tz="UTC")]] * 3, index=[0, 1, 2], columns=["now"] ) tm.assert_frame_equal(df, expected) def test_setitem_wrong_length_categorical_dtype_raises(self): # GH#29523 cat = Categorical.from_codes([0, 1, 1, 0, 1, 2], ["a", "b", "c"]) df = DataFrame(range(10), columns=["bar"]) msg = ( rf"Length of values \({len(cat)}\) " rf"does not match length of index \({len(df)}\)" ) with pytest.raises(ValueError, match=msg): df["foo"] = cat def test_setitem_with_sparse_value(self): # GH#8131 df = DataFrame({"c_1": ["a", "b", "c"], "n_1": [1.0, 2.0, 3.0]}) sp_array = SparseArray([0, 0, 1]) df["new_column"] = sp_array expected = Series(sp_array, name="new_column") tm.assert_series_equal(df["new_column"], expected) def test_setitem_with_unaligned_sparse_value(self): df = DataFrame({"c_1": ["a", "b", "c"], "n_1": [1.0, 2.0, 3.0]}) sp_series = Series(SparseArray([0, 0, 1]), index=[2, 1, 0]) df["new_column"] = sp_series expected = Series(SparseArray([1, 0, 0]), name="new_column") tm.assert_series_equal(df["new_column"], expected) def test_setitem_dict_preserves_dtypes(self): # https://github.com/pandas-dev/pandas/issues/34573 expected = DataFrame( { "a": Series([0, 1, 2], dtype="int64"), "b": Series([1, 2, 3], dtype=float), "c": Series([1, 2, 3], dtype=float), } ) df = DataFrame( { "a": Series([], dtype="int64"), "b": Series([], dtype=float), "c": Series([], dtype=float), } ) for idx, b in enumerate([1, 2, 3]): df.loc[df.shape[0]] = {"a": int(idx), "b": float(b), "c": float(b)} tm.assert_frame_equal(df, expected) @pytest.mark.parametrize( "obj,dtype", [ (Period("2020-01"), PeriodDtype("M")), (Interval(left=0, right=5), IntervalDtype("int64", "right")), ( Timestamp("2011-01-01", tz="US/Eastern"), DatetimeTZDtype(tz="US/Eastern"), ), ], ) def test_setitem_extension_types(self, obj, dtype): # GH: 34832 expected = DataFrame({"idx": [1, 2, 3], "obj": Series([obj] * 3, dtype=dtype)}) df = DataFrame({"idx": [1, 2, 3]}) df["obj"] = obj tm.assert_frame_equal(df, expected) @pytest.mark.parametrize( "ea_name", [ dtype.name for dtype in ea_registry.dtypes # property would require instantiation if not isinstance(dtype.name, property) ] # mypy doesn't allow adding lists of different types # https://github.com/python/mypy/issues/5492 + ["datetime64[ns, UTC]", "period[D]"], # type: ignore[list-item] ) def test_setitem_with_ea_name(self, ea_name): # GH 38386 result = DataFrame([0]) result[ea_name] = [1] expected = DataFrame({0: [0], ea_name: [1]}) tm.assert_frame_equal(result, expected) def test_setitem_dt64_ndarray_with_NaT_and_diff_time_units(self): # GH#7492 data_ns = np.array([1, "nat"], dtype="datetime64[ns]") result = Series(data_ns).to_frame() result["new"] = data_ns expected = DataFrame({0: [1, None], "new": [1, None]}, dtype="datetime64[ns]") tm.assert_frame_equal(result, expected) # OutOfBoundsDatetime error shouldn't occur data_s = np.array([1, "nat"], dtype="datetime64[s]") result["new"] = data_s expected = DataFrame({0: [1, None], "new": [1e9, None]}, dtype="datetime64[ns]") tm.assert_frame_equal(result, expected) @pytest.mark.parametrize("unit", ["h", "m", "s", "ms", "D", "M", "Y"]) def test_frame_setitem_datetime64_col_other_units(self, unit): # Check that non-nano dt64 values get cast to dt64 on setitem # into a not-yet-existing column n = 100 dtype = np.dtype(f"M8[{unit}]") vals = np.arange(n, dtype=np.int64).view(dtype) ex_vals = vals.astype("datetime64[ns]") df = DataFrame({"ints": np.arange(n)}, index=np.arange(n)) df[unit] = vals assert df[unit].dtype == np.dtype("M8[ns]") assert (df[unit].values == ex_vals).all() @pytest.mark.parametrize("unit", ["h", "m", "s", "ms", "D", "M", "Y"]) def test_frame_setitem_existing_datetime64_col_other_units(self, unit): # Check that non-nano dt64 values get cast to dt64 on setitem # into an already-existing dt64 column n = 100 dtype = np.dtype(f"M8[{unit}]") vals = np.arange(n, dtype=np.int64).view(dtype) ex_vals = vals.astype("datetime64[ns]") df = DataFrame({"ints": np.arange(n)}, index=np.arange(n)) df["dates"] = np.arange(n, dtype=np.int64).view("M8[ns]") # We overwrite existing dt64 column with new, non-nano dt64 vals df["dates"] = vals assert (df["dates"].values == ex_vals).all() def test_setitem_dt64tz(self, timezone_frame): df = timezone_frame idx = df["B"].rename("foo") # setitem df["C"] = idx tm.assert_series_equal(df["C"], Series(idx, name="C")) df["D"] = "foo" df["D"] = idx tm.assert_series_equal(df["D"], Series(idx, name="D")) del df["D"] # assert that A & C are not sharing the same base (e.g. they # are copies) v1 = df._mgr.arrays[1] v2 = df._mgr.arrays[2] tm.assert_extension_array_equal(v1, v2) v1base = v1._data.base v2base = v2._data.base assert v1base is None or (id(v1base) != id(v2base)) # with nan df2 = df.copy() df2.iloc[1, 1] = NaT df2.iloc[1, 2] = NaT result = df2["B"] tm.assert_series_equal(notna(result), Series([True, False, True], name="B")) tm.assert_series_equal(df2.dtypes, df.dtypes) def test_setitem_periodindex(self): rng = period_range("1/1/2000", periods=5, name="index") df = DataFrame(np.random.randn(5, 3), index=rng) df["Index"] = rng rs = Index(df["Index"]) tm.assert_index_equal(rs, rng, check_names=False) assert rs.name == "Index" assert rng.name == "index" rs = df.reset_index().set_index("index") assert isinstance(rs.index, PeriodIndex)
tm.assert_index_equal(rs.index, rng)
pandas._testing.assert_index_equal
"""Assay information class""" import os import yaml import pandas as pd from .example_filetype_format import FileTypeFormat from . import process_functions class Assayinfo(FileTypeFormat): """Assay information file type""" _fileType = "assayinfo" _process_kwargs = ["newPath", "databaseSynId"] def _validateFilename(self, filepath_list): """Validate assay information filename""" assert os.path.basename(filepath_list[0]) == "assay_information.yaml" def process_steps(self, assay_info_df, newPath, databaseSynId): """ Process bed input and update bed database Args: assay_info_df: Assay information dataframe newPath: Path to processed assay information databaseSynId: assay information database synapse id Returns: path to assay information dataframe """ # Must pass in a list process_assay_info_df = self._process(assay_info_df) process_functions.updateData(self.syn, databaseSynId, process_assay_info_df, self.center, filterByColumn="CENTER", toDelete=True) process_assay_info_df.to_csv(newPath, sep="\t", index=False) return newPath def _process(self, df): """ Process assay_information.yaml. Standardizes SEQ_ASSAY_ID, default 10 for gene_padding, and fills in variant_classifications Args: df: Assay information dataframe Returns: dataframe: Processed dataframe """ seq_assay_ids = [assay.upper().replace('_', '-') for assay in df['SEQ_ASSAY_ID']] df['SEQ_ASSAY_ID'] = seq_assay_ids df['SEQ_PIPELINE_ID'] = [assay.upper().replace('_', '-') for assay in df['SEQ_PIPELINE_ID']] if process_functions.checkColExist(df, "gene_padding"): df['gene_padding'] = df['gene_padding'].fillna(10) df['gene_padding'] = df['gene_padding'].astype(int) else: df['gene_padding'] = 10 if not process_functions.checkColExist(df, "variant_classifications"): df['variant_classifications'] = float('nan') df['CENTER'] = self.center return df def _get_dataframe(self, filepath_list): """Take in yaml file, returns dataframe""" filepath = filepath_list[0] try: with open(filepath, 'r') as yamlfile: # https://github.com/yaml/pyyaml/wiki/PyYAML-yaml.load(input)-Deprecation # Must add this because yaml load deprecation assay_info_dict = yaml.load(yamlfile, Loader=yaml.FullLoader) except Exception: raise ValueError( "assay_information.yaml: Can't read in your file. " "Please make sure the file is a correctly formatted yaml") # assay_info_df = pd.DataFrame(panel_info_dict) # assay_info_df = assay_info_df.transpose() # assay_info_df['SEQ_ASSAY_ID'] = assay_info_df.index # assay_info_df.reset_index(drop=True, inplace=True) assay_infodf = pd.DataFrame(assay_info_dict) assay_info_transposeddf = assay_infodf.transpose() all_panel_info = pd.DataFrame() for assay in assay_info_dict: assay_specific_info = assay_info_dict[assay]['assay_specific_info'] assay_specific_infodf = pd.DataFrame(assay_specific_info) seq_assay_id_infodf = assay_info_transposeddf.loc[[assay]] to_appenddf = [seq_assay_id_infodf]*(len(assay_specific_info) - 1) if to_appenddf: seq_assay_id_infodf = seq_assay_id_infodf.append(to_appenddf) seq_assay_id_infodf.reset_index(drop=True, inplace=True) assay_finaldf = pd.concat( [assay_specific_infodf, seq_assay_id_infodf], axis=1) del assay_finaldf['assay_specific_info'] columns_containing_lists = ['variant_classifications', 'alteration_types', 'preservation_technique', 'coverage'] for col in columns_containing_lists: if assay_finaldf.get(col) is not None: assay_finaldf[col] = [";".join(row) for row in assay_finaldf[col]] assay_finaldf['SEQ_PIPELINE_ID'] = assay all_panel_info = all_panel_info.append(assay_finaldf) return all_panel_info def _validate(self, assay_info_df): """ Validates the values of assay information file Args: assay_info_df: assay information dataframe Returns: tuple: error and warning """ total_error = "" warning = "" if process_functions.checkColExist(assay_info_df, "SEQ_ASSAY_ID"): all_seq_assays = assay_info_df.SEQ_ASSAY_ID.unique() if not all([assay.startswith(self.center) for assay in all_seq_assays]): total_error += \ ("Assay_information.yaml: Please make sure your all your " "SEQ_ASSAY_IDs start with your center abbreviation.\n") else: total_error += \ "Assay_information.yaml: Must have SEQ_ASSAY_ID column.\n" read_group_dict = process_functions.get_gdc_data_dictionary( "read_group") read_group_headers = read_group_dict['properties'] warn, error = process_functions.check_col_and_values( assay_info_df, 'is_paired_end', [True, False], filename="Assay_information.yaml", required=True) warning += warn total_error += error warn, error = process_functions.check_col_and_values( assay_info_df, 'library_selection', read_group_headers['library_selection']['enum'], filename="Assay_information.yaml", required=True) warning += warn total_error += error warn, error = process_functions.check_col_and_values( assay_info_df, 'library_strategy', read_group_headers['library_strategy']['enum'], filename="Assay_information.yaml", required=True) warning += warn total_error += error warn, error = process_functions.check_col_and_values( assay_info_df, 'platform', read_group_headers['platform']['enum'], filename="Assay_information.yaml", required=True) warning += warn total_error += error instrument_model = read_group_headers['instrument_model']['enum'] instrument_model.append(None) warn, error = process_functions.check_col_and_values( assay_info_df, 'instrument_model', instrument_model, filename="Assay_information.yaml", required=True) warning += warn total_error += error # target_capture_kit = read_group_headers['target_capture_kit']['enum'] # warn, error = process_functions.check_col_and_values( # assay_info_df, # 'target_capture_kit', # target_capture_kit, # filename="Assay_information.yaml", # required=True) # warning += warn # total_error += error if not process_functions.checkColExist(assay_info_df, "target_capture_kit"): total_error += ("Assay_information.yaml: " "Must have target_capture_kit column.\n") variant_classes = ['Splice_Site', 'Nonsense_Mutation', 'Frame_Shift_Del', 'Frame_Shift_Ins', 'Nonstop_Mutation', 'Translation_Start_Site', 'In_Frame_Ins', 'In_Frame_Del', 'Missense_Mutation', 'Intron', 'Splice_Region', 'Silent', 'RNA', "5'UTR", "3'UTR", 'IGR', "5'Flank", "3'Flank", None] warn, error = process_functions.check_col_and_values( assay_info_df, 'variant_classifications', variant_classes, filename="Assay_information.yaml", na_allowed=True, sep=";") warning += warn total_error += error if process_functions.checkColExist(assay_info_df, "read_length"): if not all([process_functions.checkInt(i) for i in assay_info_df["read_length"] if i is not None and not
pd.isnull(i)
pandas.isnull
import pandas as pd import xlsxwriter array = [['a1', 'a2', 'a3'], ['a4', 'a5', 'a6'], ['a7', 'a8', 'a9'], ['a10', 'a11', 'a12', 'a13', 'a14']] months = ['jan', 'feb', 'mar', 'apr', 'may'] df =
pd.DataFrame(array, columns=months)
pandas.DataFrame
import mne import pandas as pd from my_settings import * reject = dict(grad=4000e-13, # T / m (gradiometers) mag=4e-12, # T (magnetometers) eeg=180e-6 # ) result =
pd.DataFrame()
pandas.DataFrame
import json import pandas as pd import sys from tl.file_formats_validator import FFV from tl.exceptions import UnsupportTypeError from concurrent.futures import ThreadPoolExecutor from itertools import repeat class Utility(object): def __init__(self, es, output_column_name: str = 'retrieval_score', previous_match_column_name: str = 'retrieval_score'): self.es = es self.previous_match_column_name = previous_match_column_name self.ffv = FFV(previous_match_column_name) self.score_column_name = output_column_name def create_candidates_df(self, df, column, size, properties, method, lower_case=False, auxiliary_fields=None, auxiliary_folder=None, auxiliary_file_prefix='', extra_musts=None, max_threads=50, identifier_property=None): properties = [_.strip() for _ in properties.split(',')] candidates_format = list() df_columns = df.columns all_candidates_aux_dict = {} max_threads = min(df.shape[0], max_threads) if self.ffv.is_canonical_file(df): rows = df.to_dict("records") with ThreadPoolExecutor(max_workers=max_threads) as executor: for _candidates_format, candidates_aux_dict in executor.map( self.create_candidates, rows, repeat(df_columns), repeat(column), repeat(size), repeat(properties), repeat(method), repeat(lower_case), repeat(auxiliary_fields), repeat(extra_musts), repeat(identifier_property)): all_candidates_aux_dict = {**all_candidates_aux_dict, **candidates_aux_dict} candidates_format.extend(_candidates_format) self.write_auxiliary_files(auxiliary_folder, all_candidates_aux_dict, auxiliary_fields, prefix=auxiliary_file_prefix) return pd.DataFrame(candidates_format) elif self.ffv.is_candidates_file(df): grouped = df.groupby(by=['column', 'row', column]) relevant_columns = [c for c in df_columns if c not in ['kg_id', 'kg_labels', 'method', 'kg_descriptions', self.previous_match_column_name]] rows = list() for key_tuple, gdf in grouped: gdf.reset_index(inplace=True) rows.append({c: gdf.at[0, c] for c in relevant_columns}) with ThreadPoolExecutor(max_workers=max_threads) as executor: for _candidates_format, candidates_aux_dict in executor.map( self.create_candidates, rows, repeat(relevant_columns), repeat(column), repeat(size), repeat(properties), repeat(method), repeat(lower_case), repeat(auxiliary_fields), repeat(extra_musts)): all_candidates_aux_dict = {**all_candidates_aux_dict, **candidates_aux_dict} candidates_format.extend(_candidates_format) self.write_auxiliary_files(auxiliary_folder, all_candidates_aux_dict, auxiliary_fields, prefix=auxiliary_file_prefix) return pd.concat([df,
pd.DataFrame(candidates_format)
pandas.DataFrame
# -*- coding: utf-8 -*- # pylint: disable-msg=W0612,E1101 import itertools import warnings from warnings import catch_warnings from datetime import datetime from pandas.types.common import (is_integer_dtype, is_float_dtype, is_scalar) from pandas.compat import range, lrange, lzip, StringIO, lmap from pandas.tslib import NaT from numpy import nan from numpy.random import randn import numpy as np import pandas as pd from pandas import option_context from pandas.core.indexing import _non_reducing_slice, _maybe_numeric_slice from pandas.core.api import (DataFrame, Index, Series, Panel, isnull, MultiIndex, Timestamp, Timedelta, UInt64Index) from pandas.formats.printing import pprint_thing from pandas import concat from pandas.core.common import PerformanceWarning from pandas.tests.indexing.common import _mklbl import pandas.util.testing as tm from pandas import date_range _verbose = False # ------------------------------------------------------------------------ # Indexing test cases def _generate_indices(f, values=False): """ generate the indicies if values is True , use the axis values is False, use the range """ axes = f.axes if values: axes = [lrange(len(a)) for a in axes] return itertools.product(*axes) def _get_value(f, i, values=False): """ return the value for the location i """ # check agains values if values: return f.values[i] # this is equiv of f[col][row]..... # v = f # for a in reversed(i): # v = v.__getitem__(a) # return v with catch_warnings(record=True): return f.ix[i] def _get_result(obj, method, key, axis): """ return the result for this obj with this key and this axis """ if isinstance(key, dict): key = key[axis] # use an artifical conversion to map the key as integers to the labels # so ix can work for comparisions if method == 'indexer': method = 'ix' key = obj._get_axis(axis)[key] # in case we actually want 0 index slicing try: xp = getattr(obj, method).__getitem__(_axify(obj, key, axis)) except: xp = getattr(obj, method).__getitem__(key) return xp def _axify(obj, key, axis): # create a tuple accessor axes = [slice(None)] * obj.ndim axes[axis] = key return tuple(axes) class TestIndexing(tm.TestCase): _objs = set(['series', 'frame', 'panel']) _typs = set(['ints', 'uints', 'labels', 'mixed', 'ts', 'floats', 'empty', 'ts_rev']) def setUp(self): self.series_ints = Series(np.random.rand(4), index=lrange(0, 8, 2)) self.frame_ints = DataFrame(np.random.randn(4, 4), index=lrange(0, 8, 2), columns=lrange(0, 12, 3)) self.panel_ints = Panel(np.random.rand(4, 4, 4), items=lrange(0, 8, 2), major_axis=lrange(0, 12, 3), minor_axis=lrange(0, 16, 4)) self.series_uints = Series(np.random.rand(4), index=UInt64Index(lrange(0, 8, 2))) self.frame_uints = DataFrame(np.random.randn(4, 4), index=UInt64Index(lrange(0, 8, 2)), columns=UInt64Index(lrange(0, 12, 3))) self.panel_uints = Panel(np.random.rand(4, 4, 4), items=UInt64Index(lrange(0, 8, 2)), major_axis=UInt64Index(lrange(0, 12, 3)), minor_axis=UInt64Index(lrange(0, 16, 4))) self.series_labels = Series(np.random.randn(4), index=list('abcd')) self.frame_labels = DataFrame(np.random.randn(4, 4), index=list('abcd'), columns=list('ABCD')) self.panel_labels = Panel(np.random.randn(4, 4, 4), items=list('abcd'), major_axis=list('ABCD'), minor_axis=list('ZYXW')) self.series_mixed = Series(np.random.randn(4), index=[2, 4, 'null', 8]) self.frame_mixed = DataFrame(np.random.randn(4, 4), index=[2, 4, 'null', 8]) self.panel_mixed = Panel(np.random.randn(4, 4, 4), items=[2, 4, 'null', 8]) self.series_ts = Series(np.random.randn(4), index=date_range('20130101', periods=4)) self.frame_ts = DataFrame(np.random.randn(4, 4), index=date_range('20130101', periods=4)) self.panel_ts = Panel(np.random.randn(4, 4, 4), items=date_range('20130101', periods=4)) dates_rev = (date_range('20130101', periods=4) .sort_values(ascending=False)) self.series_ts_rev = Series(np.random.randn(4), index=dates_rev) self.frame_ts_rev = DataFrame(np.random.randn(4, 4), index=dates_rev) self.panel_ts_rev = Panel(np.random.randn(4, 4, 4), items=dates_rev) self.frame_empty = DataFrame({}) self.series_empty = Series({}) self.panel_empty = Panel({}) # form agglomerates for o in self._objs: d = dict() for t in self._typs: d[t] = getattr(self, '%s_%s' % (o, t), None) setattr(self, o, d) def check_values(self, f, func, values=False): if f is None: return axes = f.axes indicies = itertools.product(*axes) for i in indicies: result = getattr(f, func)[i] # check agains values if values: expected = f.values[i] else: expected = f for a in reversed(i): expected = expected.__getitem__(a) tm.assert_almost_equal(result, expected) def check_result(self, name, method1, key1, method2, key2, typs=None, objs=None, axes=None, fails=None): def _eq(t, o, a, obj, k1, k2): """ compare equal for these 2 keys """ if a is not None and a > obj.ndim - 1: return def _print(result, error=None): if error is not None: error = str(error) v = ("%-16.16s [%-16.16s]: [typ->%-8.8s,obj->%-8.8s," "key1->(%-4.4s),key2->(%-4.4s),axis->%s] %s" % (name, result, t, o, method1, method2, a, error or '')) if _verbose: pprint_thing(v) try: rs = getattr(obj, method1).__getitem__(_axify(obj, k1, a)) try: xp = _get_result(obj, method2, k2, a) except: result = 'no comp' _print(result) return detail = None try: if is_scalar(rs) and is_scalar(xp): self.assertEqual(rs, xp) elif xp.ndim == 1: tm.assert_series_equal(rs, xp) elif xp.ndim == 2: tm.assert_frame_equal(rs, xp) elif xp.ndim == 3: tm.assert_panel_equal(rs, xp) result = 'ok' except AssertionError as e: detail = str(e) result = 'fail' # reverse the checks if fails is True: if result == 'fail': result = 'ok (fail)' _print(result) if not result.startswith('ok'): raise AssertionError(detail) except AssertionError: raise except Exception as detail: # if we are in fails, the ok, otherwise raise it if fails is not None: if isinstance(detail, fails): result = 'ok (%s)' % type(detail).__name__ _print(result) return result = type(detail).__name__ raise AssertionError(_print(result, error=detail)) if typs is None: typs = self._typs if objs is None: objs = self._objs if axes is not None: if not isinstance(axes, (tuple, list)): axes = [axes] else: axes = list(axes) else: axes = [0, 1, 2] # check for o in objs: if o not in self._objs: continue d = getattr(self, o) for a in axes: for t in typs: if t not in self._typs: continue obj = d[t] if obj is not None: obj = obj.copy() k2 = key2 _eq(t, o, a, obj, key1, k2) def test_ix_deprecation(self): # GH 15114 df = DataFrame({'A': [1, 2, 3]}) with tm.assert_produces_warning(DeprecationWarning, check_stacklevel=False): df.ix[1, 'A'] def test_indexer_caching(self): # GH5727 # make sure that indexers are in the _internal_names_set n = 1000001 arrays = [lrange(n), lrange(n)] index = MultiIndex.from_tuples(lzip(*arrays)) s = Series(np.zeros(n), index=index) str(s) # setitem expected = Series(np.ones(n), index=index) s = Series(np.zeros(n), index=index) s[s == 0] = 1 tm.assert_series_equal(s, expected) def test_at_and_iat_get(self): def _check(f, func, values=False): if f is not None: indicies = _generate_indices(f, values) for i in indicies: result = getattr(f, func)[i] expected = _get_value(f, i, values) tm.assert_almost_equal(result, expected) for o in self._objs: d = getattr(self, o) # iat for f in [d['ints'], d['uints']]: _check(f, 'iat', values=True) for f in [d['labels'], d['ts'], d['floats']]: if f is not None: self.assertRaises(ValueError, self.check_values, f, 'iat') # at for f in [d['ints'], d['uints'], d['labels'], d['ts'], d['floats']]: _check(f, 'at') def test_at_and_iat_set(self): def _check(f, func, values=False): if f is not None: indicies = _generate_indices(f, values) for i in indicies: getattr(f, func)[i] = 1 expected = _get_value(f, i, values) tm.assert_almost_equal(expected, 1) for t in self._objs: d = getattr(self, t) # iat for f in [d['ints'], d['uints']]: _check(f, 'iat', values=True) for f in [d['labels'], d['ts'], d['floats']]: if f is not None: self.assertRaises(ValueError, _check, f, 'iat') # at for f in [d['ints'], d['uints'], d['labels'], d['ts'], d['floats']]: _check(f, 'at') def test_at_iat_coercion(self): # as timestamp is not a tuple! dates = date_range('1/1/2000', periods=8) df = DataFrame(randn(8, 4), index=dates, columns=['A', 'B', 'C', 'D']) s = df['A'] result = s.at[dates[5]] xp = s.values[5] self.assertEqual(result, xp) # GH 7729 # make sure we are boxing the returns s = Series(['2014-01-01', '2014-02-02'], dtype='datetime64[ns]') expected = Timestamp('2014-02-02') for r in [lambda: s.iat[1], lambda: s.iloc[1]]: result = r() self.assertEqual(result, expected) s = Series(['1 days', '2 days'], dtype='timedelta64[ns]') expected = Timedelta('2 days') for r in [lambda: s.iat[1], lambda: s.iloc[1]]: result = r() self.assertEqual(result, expected) def test_iat_invalid_args(self): pass def test_imethods_with_dups(self): # GH6493 # iat/iloc with dups s = Series(range(5), index=[1, 1, 2, 2, 3], dtype='int64') result = s.iloc[2] self.assertEqual(result, 2) result = s.iat[2] self.assertEqual(result, 2) self.assertRaises(IndexError, lambda: s.iat[10]) self.assertRaises(IndexError, lambda: s.iat[-10]) result = s.iloc[[2, 3]] expected = Series([2, 3], [2, 2], dtype='int64') tm.assert_series_equal(result, expected) df = s.to_frame() result = df.iloc[2] expected = Series(2, index=[0], name=2) tm.assert_series_equal(result, expected) result = df.iat[2, 0] expected = 2 self.assertEqual(result, 2) def test_repeated_getitem_dups(self): # GH 5678 # repeated gettitems on a dup index returing a ndarray df = DataFrame( np.random.random_sample((20, 5)), index=['ABCDE' [x % 5] for x in range(20)]) expected = df.loc['A', 0] result = df.loc[:, 0].loc['A'] tm.assert_series_equal(result, expected) def test_iloc_exceeds_bounds(self): # GH6296 # iloc should allow indexers that exceed the bounds df = DataFrame(np.random.random_sample((20, 5)), columns=list('ABCDE')) expected = df # lists of positions should raise IndexErrror! with tm.assertRaisesRegexp(IndexError, 'positional indexers are out-of-bounds'): df.iloc[:, [0, 1, 2, 3, 4, 5]] self.assertRaises(IndexError, lambda: df.iloc[[1, 30]]) self.assertRaises(IndexError, lambda: df.iloc[[1, -30]]) self.assertRaises(IndexError, lambda: df.iloc[[100]]) s = df['A'] self.assertRaises(IndexError, lambda: s.iloc[[100]]) self.assertRaises(IndexError, lambda: s.iloc[[-100]]) # still raise on a single indexer msg = 'single positional indexer is out-of-bounds' with tm.assertRaisesRegexp(IndexError, msg): df.iloc[30] self.assertRaises(IndexError, lambda: df.iloc[-30]) # GH10779 # single positive/negative indexer exceeding Series bounds should raise # an IndexError with tm.assertRaisesRegexp(IndexError, msg): s.iloc[30] self.assertRaises(IndexError, lambda: s.iloc[-30]) # slices are ok result = df.iloc[:, 4:10] # 0 < start < len < stop expected = df.iloc[:, 4:] tm.assert_frame_equal(result, expected) result = df.iloc[:, -4:-10] # stop < 0 < start < len expected = df.iloc[:, :0] tm.assert_frame_equal(result, expected) result = df.iloc[:, 10:4:-1] # 0 < stop < len < start (down) expected = df.iloc[:, :4:-1] tm.assert_frame_equal(result, expected) result = df.iloc[:, 4:-10:-1] # stop < 0 < start < len (down) expected = df.iloc[:, 4::-1] tm.assert_frame_equal(result, expected) result = df.iloc[:, -10:4] # start < 0 < stop < len expected = df.iloc[:, :4] tm.assert_frame_equal(result, expected) result = df.iloc[:, 10:4] # 0 < stop < len < start expected = df.iloc[:, :0] tm.assert_frame_equal(result, expected) result = df.iloc[:, -10:-11:-1] # stop < start < 0 < len (down) expected = df.iloc[:, :0] tm.assert_frame_equal(result, expected) result = df.iloc[:, 10:11] # 0 < len < start < stop expected = df.iloc[:, :0] tm.assert_frame_equal(result, expected) # slice bounds exceeding is ok result = s.iloc[18:30] expected = s.iloc[18:] tm.assert_series_equal(result, expected) result = s.iloc[30:] expected = s.iloc[:0] tm.assert_series_equal(result, expected) result = s.iloc[30::-1] expected = s.iloc[::-1] tm.assert_series_equal(result, expected) # doc example def check(result, expected): str(result) result.dtypes tm.assert_frame_equal(result, expected) dfl = DataFrame(np.random.randn(5, 2), columns=list('AB')) check(dfl.iloc[:, 2:3], DataFrame(index=dfl.index)) check(dfl.iloc[:, 1:3], dfl.iloc[:, [1]]) check(dfl.iloc[4:6], dfl.iloc[[4]]) self.assertRaises(IndexError, lambda: dfl.iloc[[4, 5, 6]]) self.assertRaises(IndexError, lambda: dfl.iloc[:, 4]) def test_iloc_getitem_int(self): # integer self.check_result('integer', 'iloc', 2, 'ix', {0: 4, 1: 6, 2: 8}, typs=['ints', 'uints']) self.check_result('integer', 'iloc', 2, 'indexer', 2, typs=['labels', 'mixed', 'ts', 'floats', 'empty'], fails=IndexError) def test_iloc_getitem_neg_int(self): # neg integer self.check_result('neg int', 'iloc', -1, 'ix', {0: 6, 1: 9, 2: 12}, typs=['ints', 'uints']) self.check_result('neg int', 'iloc', -1, 'indexer', -1, typs=['labels', 'mixed', 'ts', 'floats', 'empty'], fails=IndexError) def test_iloc_getitem_list_int(self): # list of ints self.check_result('list int', 'iloc', [0, 1, 2], 'ix', {0: [0, 2, 4], 1: [0, 3, 6], 2: [0, 4, 8]}, typs=['ints', 'uints']) self.check_result('list int', 'iloc', [2], 'ix', {0: [4], 1: [6], 2: [8]}, typs=['ints', 'uints']) self.check_result('list int', 'iloc', [0, 1, 2], 'indexer', [0, 1, 2], typs=['labels', 'mixed', 'ts', 'floats', 'empty'], fails=IndexError) # array of ints (GH5006), make sure that a single indexer is returning # the correct type self.check_result('array int', 'iloc', np.array([0, 1, 2]), 'ix', {0: [0, 2, 4], 1: [0, 3, 6], 2: [0, 4, 8]}, typs=['ints', 'uints']) self.check_result('array int', 'iloc', np.array([2]), 'ix', {0: [4], 1: [6], 2: [8]}, typs=['ints', 'uints']) self.check_result('array int', 'iloc', np.array([0, 1, 2]), 'indexer', [0, 1, 2], typs=['labels', 'mixed', 'ts', 'floats', 'empty'], fails=IndexError) def test_iloc_getitem_neg_int_can_reach_first_index(self): # GH10547 and GH10779 # negative integers should be able to reach index 0 df = DataFrame({'A': [2, 3, 5], 'B': [7, 11, 13]}) s = df['A'] expected = df.iloc[0] result = df.iloc[-3] tm.assert_series_equal(result, expected) expected = df.iloc[[0]] result = df.iloc[[-3]] tm.assert_frame_equal(result, expected) expected = s.iloc[0] result = s.iloc[-3] self.assertEqual(result, expected) expected = s.iloc[[0]] result = s.iloc[[-3]] tm.assert_series_equal(result, expected) # check the length 1 Series case highlighted in GH10547 expected = pd.Series(['a'], index=['A']) result = expected.iloc[[-1]] tm.assert_series_equal(result, expected) def test_iloc_getitem_dups(self): # no dups in panel (bug?) self.check_result('list int (dups)', 'iloc', [0, 1, 1, 3], 'ix', {0: [0, 2, 2, 6], 1: [0, 3, 3, 9]}, objs=['series', 'frame'], typs=['ints', 'uints']) # GH 6766 df1 = DataFrame([{'A': None, 'B': 1}, {'A': 2, 'B': 2}]) df2 = DataFrame([{'A': 3, 'B': 3}, {'A': 4, 'B': 4}]) df = concat([df1, df2], axis=1) # cross-sectional indexing result = df.iloc[0, 0] self.assertTrue(isnull(result)) result = df.iloc[0, :] expected = Series([np.nan, 1, 3, 3], index=['A', 'B', 'A', 'B'], name=0) tm.assert_series_equal(result, expected) def test_iloc_getitem_array(self): # array like s = Series(index=lrange(1, 4)) self.check_result('array like', 'iloc', s.index, 'ix', {0: [2, 4, 6], 1: [3, 6, 9], 2: [4, 8, 12]}, typs=['ints', 'uints']) def test_iloc_getitem_bool(self): # boolean indexers b = [True, False, True, False, ] self.check_result('bool', 'iloc', b, 'ix', b, typs=['ints', 'uints']) self.check_result('bool', 'iloc', b, 'ix', b, typs=['labels', 'mixed', 'ts', 'floats', 'empty'], fails=IndexError) def test_iloc_getitem_slice(self): # slices self.check_result('slice', 'iloc', slice(1, 3), 'ix', {0: [2, 4], 1: [3, 6], 2: [4, 8]}, typs=['ints', 'uints']) self.check_result('slice', 'iloc', slice(1, 3), 'indexer', slice(1, 3), typs=['labels', 'mixed', 'ts', 'floats', 'empty'], fails=IndexError) def test_iloc_getitem_slice_dups(self): df1 = DataFrame(np.random.randn(10, 4), columns=['A', 'A', 'B', 'B']) df2 = DataFrame(np.random.randint(0, 10, size=20).reshape(10, 2), columns=['A', 'C']) # axis=1 df = concat([df1, df2], axis=1) tm.assert_frame_equal(df.iloc[:, :4], df1) tm.assert_frame_equal(df.iloc[:, 4:], df2) df = concat([df2, df1], axis=1) tm.assert_frame_equal(df.iloc[:, :2], df2) tm.assert_frame_equal(df.iloc[:, 2:], df1) exp = concat([df2, df1.iloc[:, [0]]], axis=1) tm.assert_frame_equal(df.iloc[:, 0:3], exp) # axis=0 df = concat([df, df], axis=0) tm.assert_frame_equal(df.iloc[0:10, :2], df2) tm.assert_frame_equal(df.iloc[0:10, 2:], df1) tm.assert_frame_equal(df.iloc[10:, :2], df2) tm.assert_frame_equal(df.iloc[10:, 2:], df1) def test_iloc_setitem(self): df = self.frame_ints df.iloc[1, 1] = 1 result = df.iloc[1, 1] self.assertEqual(result, 1) df.iloc[:, 2:3] = 0 expected = df.iloc[:, 2:3] result = df.iloc[:, 2:3] tm.assert_frame_equal(result, expected) # GH5771 s = Series(0, index=[4, 5, 6]) s.iloc[1:2] += 1 expected = Series([0, 1, 0], index=[4, 5, 6]) tm.assert_series_equal(s, expected) def test_loc_setitem_slice(self): # GH10503 # assigning the same type should not change the type df1 = DataFrame({'a': [0, 1, 1], 'b': Series([100, 200, 300], dtype='uint32')}) ix = df1['a'] == 1 newb1 = df1.loc[ix, 'b'] + 1 df1.loc[ix, 'b'] = newb1 expected = DataFrame({'a': [0, 1, 1], 'b': Series([100, 201, 301], dtype='uint32')}) tm.assert_frame_equal(df1, expected) # assigning a new type should get the inferred type df2 = DataFrame({'a': [0, 1, 1], 'b': [100, 200, 300]}, dtype='uint64') ix = df1['a'] == 1 newb2 = df2.loc[ix, 'b'] df1.loc[ix, 'b'] = newb2 expected = DataFrame({'a': [0, 1, 1], 'b': [100, 200, 300]}, dtype='uint64') tm.assert_frame_equal(df2, expected) def test_ix_loc_setitem_consistency(self): # GH 5771 # loc with slice and series s = Series(0, index=[4, 5, 6]) s.loc[4:5] += 1 expected = Series([1, 1, 0], index=[4, 5, 6]) tm.assert_series_equal(s, expected) # GH 5928 # chained indexing assignment df = DataFrame({'a': [0, 1, 2]}) expected = df.copy() with catch_warnings(record=True): expected.ix[[0, 1, 2], 'a'] = -expected.ix[[0, 1, 2], 'a'] with catch_warnings(record=True): df['a'].ix[[0, 1, 2]] = -df['a'].ix[[0, 1, 2]] tm.assert_frame_equal(df, expected) df = DataFrame({'a': [0, 1, 2], 'b': [0, 1, 2]}) with catch_warnings(record=True): df['a'].ix[[0, 1, 2]] = -df['a'].ix[[0, 1, 2]].astype( 'float64') + 0.5 expected = DataFrame({'a': [0.5, -0.5, -1.5], 'b': [0, 1, 2]}) tm.assert_frame_equal(df, expected) # GH 8607 # ix setitem consistency df = DataFrame({'timestamp': [1413840976, 1413842580, 1413760580], 'delta': [1174, 904, 161], 'elapsed': [7673, 9277, 1470]}) expected = DataFrame({'timestamp': pd.to_datetime( [1413840976, 1413842580, 1413760580], unit='s'), 'delta': [1174, 904, 161], 'elapsed': [7673, 9277, 1470]}) df2 = df.copy() df2['timestamp'] = pd.to_datetime(df['timestamp'], unit='s') tm.assert_frame_equal(df2, expected) df2 = df.copy() df2.loc[:, 'timestamp'] = pd.to_datetime(df['timestamp'], unit='s') tm.assert_frame_equal(df2, expected) df2 = df.copy() with catch_warnings(record=True): df2.ix[:, 2] = pd.to_datetime(df['timestamp'], unit='s') tm.assert_frame_equal(df2, expected) def test_ix_loc_consistency(self): # GH 8613 # some edge cases where ix/loc should return the same # this is not an exhaustive case def compare(result, expected): if is_scalar(expected): self.assertEqual(result, expected) else: self.assertTrue(expected.equals(result)) # failure cases for .loc, but these work for .ix df = pd.DataFrame(np.random.randn(5, 4), columns=list('ABCD')) for key in [slice(1, 3), tuple([slice(0, 2), slice(0, 2)]), tuple([slice(0, 2), df.columns[0:2]])]: for index in [tm.makeStringIndex, tm.makeUnicodeIndex, tm.makeDateIndex, tm.makePeriodIndex, tm.makeTimedeltaIndex]: df.index = index(len(df.index)) with catch_warnings(record=True): df.ix[key] self.assertRaises(TypeError, lambda: df.loc[key]) df = pd.DataFrame(np.random.randn(5, 4), columns=list('ABCD'), index=pd.date_range('2012-01-01', periods=5)) for key in ['2012-01-03', '2012-01-31', slice('2012-01-03', '2012-01-03'), slice('2012-01-03', '2012-01-04'), slice('2012-01-03', '2012-01-06', 2), slice('2012-01-03', '2012-01-31'), tuple([[True, True, True, False, True]]), ]: # getitem # if the expected raises, then compare the exceptions try: with catch_warnings(record=True): expected = df.ix[key] except KeyError: self.assertRaises(KeyError, lambda: df.loc[key]) continue result = df.loc[key] compare(result, expected) # setitem df1 = df.copy() df2 = df.copy() with catch_warnings(record=True): df1.ix[key] = 10 df2.loc[key] = 10 compare(df2, df1) # edge cases s = Series([1, 2, 3, 4], index=list('abde')) result1 = s['a':'c'] with catch_warnings(record=True): result2 = s.ix['a':'c'] result3 = s.loc['a':'c'] tm.assert_series_equal(result1, result2) tm.assert_series_equal(result1, result3) # now work rather than raising KeyError s = Series(range(5), [-2, -1, 1, 2, 3]) with catch_warnings(record=True): result1 = s.ix[-10:3] result2 = s.loc[-10:3] tm.assert_series_equal(result1, result2) with catch_warnings(record=True): result1 = s.ix[0:3] result2 = s.loc[0:3] tm.assert_series_equal(result1, result2) def test_loc_setitem_dups(self): # GH 6541 df_orig = DataFrame( {'me': list('rttti'), 'foo': list('aaade'), 'bar': np.arange(5, dtype='float64') * 1.34 + 2, 'bar2': np.arange(5, dtype='float64') * -.34 + 2}).set_index('me') indexer = tuple(['r', ['bar', 'bar2']]) df = df_orig.copy() df.loc[indexer] *= 2.0 tm.assert_series_equal(df.loc[indexer], 2.0 * df_orig.loc[indexer]) indexer = tuple(['r', 'bar']) df = df_orig.copy() df.loc[indexer] *= 2.0 self.assertEqual(df.loc[indexer], 2.0 * df_orig.loc[indexer]) indexer = tuple(['t', ['bar', 'bar2']]) df = df_orig.copy() df.loc[indexer] *= 2.0 tm.assert_frame_equal(df.loc[indexer], 2.0 * df_orig.loc[indexer]) def test_iloc_setitem_dups(self): # GH 6766 # iloc with a mask aligning from another iloc df1 = DataFrame([{'A': None, 'B': 1}, {'A': 2, 'B': 2}]) df2 = DataFrame([{'A': 3, 'B': 3}, {'A': 4, 'B': 4}]) df = concat([df1, df2], axis=1) expected = df.fillna(3) expected['A'] = expected['A'].astype('float64') inds = np.isnan(df.iloc[:, 0]) mask = inds[inds].index df.iloc[mask, 0] = df.iloc[mask, 2] tm.assert_frame_equal(df, expected) # del a dup column across blocks expected = DataFrame({0: [1, 2], 1: [3, 4]}) expected.columns = ['B', 'B'] del df['A'] tm.assert_frame_equal(df, expected) # assign back to self df.iloc[[0, 1], [0, 1]] = df.iloc[[0, 1], [0, 1]] tm.assert_frame_equal(df, expected) # reversed x 2 df.iloc[[1, 0], [0, 1]] = df.iloc[[1, 0], [0, 1]].reset_index( drop=True) df.iloc[[1, 0], [0, 1]] = df.iloc[[1, 0], [0, 1]].reset_index( drop=True) tm.assert_frame_equal(df, expected) def test_chained_getitem_with_lists(self): # GH6394 # Regression in chained getitem indexing with embedded list-like from # 0.12 def check(result, expected): tm.assert_numpy_array_equal(result, expected) tm.assertIsInstance(result, np.ndarray) df = DataFrame({'A': 5 * [np.zeros(3)], 'B': 5 * [np.ones(3)]}) expected = df['A'].iloc[2] result = df.loc[2, 'A'] check(result, expected) result2 = df.iloc[2]['A'] check(result2, expected) result3 = df['A'].loc[2] check(result3, expected) result4 = df['A'].iloc[2] check(result4, expected) def test_loc_getitem_int(self): # int label self.check_result('int label', 'loc', 2, 'ix', 2, typs=['ints', 'uints'], axes=0) self.check_result('int label', 'loc', 3, 'ix', 3, typs=['ints', 'uints'], axes=1) self.check_result('int label', 'loc', 4, 'ix', 4, typs=['ints', 'uints'], axes=2) self.check_result('int label', 'loc', 2, 'ix', 2, typs=['label'], fails=KeyError) def test_loc_getitem_label(self): # label self.check_result('label', 'loc', 'c', 'ix', 'c', typs=['labels'], axes=0) self.check_result('label', 'loc', 'null', 'ix', 'null', typs=['mixed'], axes=0) self.check_result('label', 'loc', 8, 'ix', 8, typs=['mixed'], axes=0) self.check_result('label', 'loc', Timestamp('20130102'), 'ix', 1, typs=['ts'], axes=0) self.check_result('label', 'loc', 'c', 'ix', 'c', typs=['empty'], fails=KeyError) def test_loc_getitem_label_out_of_range(self): # out of range label self.check_result('label range', 'loc', 'f', 'ix', 'f', typs=['ints', 'uints', 'labels', 'mixed', 'ts'], fails=KeyError) self.check_result('label range', 'loc', 'f', 'ix', 'f', typs=['floats'], fails=TypeError) self.check_result('label range', 'loc', 20, 'ix', 20, typs=['ints', 'uints', 'mixed'], fails=KeyError) self.check_result('label range', 'loc', 20, 'ix', 20, typs=['labels'], fails=TypeError) self.check_result('label range', 'loc', 20, 'ix', 20, typs=['ts'], axes=0, fails=TypeError) self.check_result('label range', 'loc', 20, 'ix', 20, typs=['floats'], axes=0, fails=TypeError) def test_loc_getitem_label_list(self): # list of labels self.check_result('list lbl', 'loc', [0, 2, 4], 'ix', [0, 2, 4], typs=['ints', 'uints'], axes=0) self.check_result('list lbl', 'loc', [3, 6, 9], 'ix', [3, 6, 9], typs=['ints', 'uints'], axes=1) self.check_result('list lbl', 'loc', [4, 8, 12], 'ix', [4, 8, 12], typs=['ints', 'uints'], axes=2) self.check_result('list lbl', 'loc', ['a', 'b', 'd'], 'ix', ['a', 'b', 'd'], typs=['labels'], axes=0) self.check_result('list lbl', 'loc', ['A', 'B', 'C'], 'ix', ['A', 'B', 'C'], typs=['labels'], axes=1) self.check_result('list lbl', 'loc', ['Z', 'Y', 'W'], 'ix', ['Z', 'Y', 'W'], typs=['labels'], axes=2) self.check_result('list lbl', 'loc', [2, 8, 'null'], 'ix', [2, 8, 'null'], typs=['mixed'], axes=0) self.check_result('list lbl', 'loc', [Timestamp('20130102'), Timestamp('20130103')], 'ix', [Timestamp('20130102'), Timestamp('20130103')], typs=['ts'], axes=0) self.check_result('list lbl', 'loc', [0, 1, 2], 'indexer', [0, 1, 2], typs=['empty'], fails=KeyError) self.check_result('list lbl', 'loc', [0, 2, 3], 'ix', [0, 2, 3], typs=['ints', 'uints'], axes=0, fails=KeyError) self.check_result('list lbl', 'loc', [3, 6, 7], 'ix', [3, 6, 7], typs=['ints', 'uints'], axes=1, fails=KeyError) self.check_result('list lbl', 'loc', [4, 8, 10], 'ix', [4, 8, 10], typs=['ints', 'uints'], axes=2, fails=KeyError) def test_loc_getitem_label_list_fails(self): # fails self.check_result('list lbl', 'loc', [20, 30, 40], 'ix', [20, 30, 40], typs=['ints', 'uints'], axes=1, fails=KeyError) self.check_result('list lbl', 'loc', [20, 30, 40], 'ix', [20, 30, 40], typs=['ints', 'uints'], axes=2, fails=KeyError) def test_loc_getitem_label_array_like(self): # array like self.check_result('array like', 'loc', Series(index=[0, 2, 4]).index, 'ix', [0, 2, 4], typs=['ints', 'uints'], axes=0) self.check_result('array like', 'loc', Series(index=[3, 6, 9]).index, 'ix', [3, 6, 9], typs=['ints', 'uints'], axes=1) self.check_result('array like', 'loc', Series(index=[4, 8, 12]).index, 'ix', [4, 8, 12], typs=['ints', 'uints'], axes=2) def test_loc_getitem_bool(self): # boolean indexers b = [True, False, True, False] self.check_result('bool', 'loc', b, 'ix', b, typs=['ints', 'uints', 'labels', 'mixed', 'ts', 'floats']) self.check_result('bool', 'loc', b, 'ix', b, typs=['empty'], fails=KeyError) def test_loc_getitem_int_slice(self): # ok self.check_result('int slice2', 'loc', slice(2, 4), 'ix', [2, 4], typs=['ints', 'uints'], axes=0) self.check_result('int slice2', 'loc', slice(3, 6), 'ix', [3, 6], typs=['ints', 'uints'], axes=1) self.check_result('int slice2', 'loc', slice(4, 8), 'ix', [4, 8], typs=['ints', 'uints'], axes=2) # GH 3053 # loc should treat integer slices like label slices from itertools import product index = MultiIndex.from_tuples([t for t in product( [6, 7, 8], ['a', 'b'])]) df = DataFrame(np.random.randn(6, 6), index, index) result = df.loc[6:8, :] with catch_warnings(record=True): expected = df.ix[6:8, :] tm.assert_frame_equal(result, expected) index = MultiIndex.from_tuples([t for t in product( [10, 20, 30], ['a', 'b'])]) df = DataFrame(np.random.randn(6, 6), index, index) result = df.loc[20:30, :] with catch_warnings(record=True): expected = df.ix[20:30, :] tm.assert_frame_equal(result, expected) # doc examples result = df.loc[10, :] with catch_warnings(record=True): expected = df.ix[10, :] tm.assert_frame_equal(result, expected) result = df.loc[:, 10] # expected = df.ix[:,10] (this fails) expected = df[10] tm.assert_frame_equal(result, expected) def test_loc_to_fail(self): # GH3449 df = DataFrame(np.random.random((3, 3)), index=['a', 'b', 'c'], columns=['e', 'f', 'g']) # raise a KeyError? self.assertRaises(KeyError, df.loc.__getitem__, tuple([[1, 2], [1, 2]])) # GH 7496 # loc should not fallback s = Series() s.loc[1] = 1 s.loc['a'] = 2 self.assertRaises(KeyError, lambda: s.loc[-1]) self.assertRaises(KeyError, lambda: s.loc[[-1, -2]]) self.assertRaises(KeyError, lambda: s.loc[['4']]) s.loc[-1] = 3 result = s.loc[[-1, -2]] expected = Series([3, np.nan], index=[-1, -2]) tm.assert_series_equal(result, expected) s['a'] = 2 self.assertRaises(KeyError, lambda: s.loc[[-2]]) del s['a'] def f(): s.loc[[-2]] = 0 self.assertRaises(KeyError, f) # inconsistency between .loc[values] and .loc[values,:] # GH 7999 df = DataFrame([['a'], ['b']], index=[1, 2], columns=['value']) def f(): df.loc[[3], :] self.assertRaises(KeyError, f) def f(): df.loc[[3]] self.assertRaises(KeyError, f) def test_at_to_fail(self): # at should not fallback # GH 7814 s = Series([1, 2, 3], index=list('abc')) result = s.at['a'] self.assertEqual(result, 1) self.assertRaises(ValueError, lambda: s.at[0]) df = DataFrame({'A': [1, 2, 3]}, index=list('abc')) result = df.at['a', 'A'] self.assertEqual(result, 1) self.assertRaises(ValueError, lambda: df.at['a', 0]) s = Series([1, 2, 3], index=[3, 2, 1]) result = s.at[1] self.assertEqual(result, 3) self.assertRaises(ValueError, lambda: s.at['a']) df = DataFrame({0: [1, 2, 3]}, index=[3, 2, 1]) result = df.at[1, 0] self.assertEqual(result, 3) self.assertRaises(ValueError, lambda: df.at['a', 0]) # GH 13822, incorrect error string with non-unique columns when missing # column is accessed df = DataFrame({'x': [1.], 'y': [2.], 'z': [3.]}) df.columns = ['x', 'x', 'z'] # Check that we get the correct value in the KeyError self.assertRaisesRegexp(KeyError, r"\['y'\] not in index", lambda: df[['x', 'y', 'z']]) def test_loc_getitem_label_slice(self): # label slices (with ints) self.check_result('lab slice', 'loc', slice(1, 3), 'ix', slice(1, 3), typs=['labels', 'mixed', 'empty', 'ts', 'floats'], fails=TypeError) # real label slices self.check_result('lab slice', 'loc', slice('a', 'c'), 'ix', slice('a', 'c'), typs=['labels'], axes=0) self.check_result('lab slice', 'loc', slice('A', 'C'), 'ix', slice('A', 'C'), typs=['labels'], axes=1) self.check_result('lab slice', 'loc', slice('W', 'Z'), 'ix', slice('W', 'Z'), typs=['labels'], axes=2) self.check_result('ts slice', 'loc', slice('20130102', '20130104'), 'ix', slice('20130102', '20130104'), typs=['ts'], axes=0) self.check_result('ts slice', 'loc', slice('20130102', '20130104'), 'ix', slice('20130102', '20130104'), typs=['ts'], axes=1, fails=TypeError) self.check_result('ts slice', 'loc', slice('20130102', '20130104'), 'ix', slice('20130102', '20130104'), typs=['ts'], axes=2, fails=TypeError) # GH 14316 self.check_result('ts slice rev', 'loc', slice('20130104', '20130102'), 'indexer', [0, 1, 2], typs=['ts_rev'], axes=0) self.check_result('mixed slice', 'loc', slice(2, 8), 'ix', slice(2, 8), typs=['mixed'], axes=0, fails=TypeError) self.check_result('mixed slice', 'loc', slice(2, 8), 'ix', slice(2, 8), typs=['mixed'], axes=1, fails=KeyError) self.check_result('mixed slice', 'loc', slice(2, 8), 'ix', slice(2, 8), typs=['mixed'], axes=2, fails=KeyError) self.check_result('mixed slice', 'loc', slice(2, 4, 2), 'ix', slice( 2, 4, 2), typs=['mixed'], axes=0, fails=TypeError) def test_loc_general(self): df = DataFrame( np.random.rand(4, 4), columns=['A', 'B', 'C', 'D'], index=['A', 'B', 'C', 'D']) # want this to work result = df.loc[:, "A":"B"].iloc[0:2, :] self.assertTrue((result.columns == ['A', 'B']).all()) self.assertTrue((result.index == ['A', 'B']).all()) # mixed type result = DataFrame({'a': [Timestamp('20130101')], 'b': [1]}).iloc[0] expected = Series([Timestamp('20130101'), 1], index=['a', 'b'], name=0) tm.assert_series_equal(result, expected) self.assertEqual(result.dtype, object) def test_loc_setitem_consistency(self): # GH 6149 # coerce similary for setitem and loc when rows have a null-slice expected = DataFrame({'date': Series(0, index=range(5), dtype=np.int64), 'val': Series(range(5), dtype=np.int64)}) df = DataFrame({'date': date_range('2000-01-01', '2000-01-5'), 'val': Series( range(5), dtype=np.int64)}) df.loc[:, 'date'] = 0 tm.assert_frame_equal(df, expected) df = DataFrame({'date': date_range('2000-01-01', '2000-01-5'), 'val': Series(range(5), dtype=np.int64)}) df.loc[:, 'date'] = np.array(0, dtype=np.int64) tm.assert_frame_equal(df, expected) df = DataFrame({'date': date_range('2000-01-01', '2000-01-5'), 'val': Series(range(5), dtype=np.int64)}) df.loc[:, 'date'] = np.array([0, 0, 0, 0, 0], dtype=np.int64) tm.assert_frame_equal(df, expected) expected = DataFrame({'date': Series('foo', index=range(5)), 'val': Series(range(5), dtype=np.int64)}) df = DataFrame({'date': date_range('2000-01-01', '2000-01-5'), 'val': Series(range(5), dtype=np.int64)}) df.loc[:, 'date'] = 'foo' tm.assert_frame_equal(df, expected) expected = DataFrame({'date': Series(1.0, index=range(5)), 'val': Series(range(5), dtype=np.int64)}) df = DataFrame({'date': date_range('2000-01-01', '2000-01-5'), 'val': Series(range(5), dtype=np.int64)}) df.loc[:, 'date'] = 1.0 tm.assert_frame_equal(df, expected) def test_loc_setitem_consistency_empty(self): # empty (essentially noops) expected = DataFrame(columns=['x', 'y']) expected['x'] = expected['x'].astype(np.int64) df = DataFrame(columns=['x', 'y']) df.loc[:, 'x'] = 1 tm.assert_frame_equal(df, expected) df = DataFrame(columns=['x', 'y']) df['x'] = 1 tm.assert_frame_equal(df, expected) def test_loc_setitem_consistency_slice_column_len(self): # .loc[:,column] setting with slice == len of the column # GH10408 data = """Level_0,,,Respondent,Respondent,Respondent,OtherCat,OtherCat Level_1,,,Something,StartDate,EndDate,Yes/No,SomethingElse Region,Site,RespondentID,,,,, Region_1,Site_1,3987227376,A,5/25/2015 10:59,5/25/2015 11:22,Yes, Region_1,Site_1,3980680971,A,5/21/2015 9:40,5/21/2015 9:52,Yes,Yes Region_1,Site_2,3977723249,A,5/20/2015 8:27,5/20/2015 8:41,Yes, Region_1,Site_2,3977723089,A,5/20/2015 8:33,5/20/2015 9:09,Yes,No""" df = pd.read_csv(StringIO(data), header=[0, 1], index_col=[0, 1, 2]) df.loc[:, ('Respondent', 'StartDate')] = pd.to_datetime(df.loc[:, ( 'Respondent', 'StartDate')]) df.loc[:, ('Respondent', 'EndDate')] = pd.to_datetime(df.loc[:, ( 'Respondent', 'EndDate')]) df.loc[:, ('Respondent', 'Duration')] = df.loc[:, ( 'Respondent', 'EndDate')] - df.loc[:, ('Respondent', 'StartDate')] df.loc[:, ('Respondent', 'Duration')] = df.loc[:, ( 'Respondent', 'Duration')].astype('timedelta64[s]') expected = Series([1380, 720, 840, 2160.], index=df.index, name=('Respondent', 'Duration')) tm.assert_series_equal(df[('Respondent', 'Duration')], expected) def test_loc_setitem_frame(self): df = self.frame_labels result = df.iloc[0, 0] df.loc['a', 'A'] = 1 result = df.loc['a', 'A'] self.assertEqual(result, 1) result = df.iloc[0, 0] self.assertEqual(result, 1) df.loc[:, 'B':'D'] = 0 expected = df.loc[:, 'B':'D'] with catch_warnings(record=True): result = df.ix[:, 1:] tm.assert_frame_equal(result, expected) # GH 6254 # setting issue df = DataFrame(index=[3, 5, 4], columns=['A']) df.loc[[4, 3, 5], 'A'] = np.array([1, 2, 3], dtype='int64') expected = DataFrame(dict(A=Series( [1, 2, 3], index=[4, 3, 5]))).reindex(index=[3, 5, 4]) tm.assert_frame_equal(df, expected) # GH 6252 # setting with an empty frame keys1 = ['@' + str(i) for i in range(5)] val1 = np.arange(5, dtype='int64') keys2 = ['@' + str(i) for i in range(4)] val2 = np.arange(4, dtype='int64') index = list(set(keys1).union(keys2)) df = DataFrame(index=index) df['A'] = nan df.loc[keys1, 'A'] = val1 df['B'] = nan df.loc[keys2, 'B'] = val2 expected = DataFrame(dict(A=Series(val1, index=keys1), B=Series( val2, index=keys2))).reindex(index=index) tm.assert_frame_equal(df, expected) # GH 8669 # invalid coercion of nan -> int df = DataFrame({'A': [1, 2, 3], 'B': np.nan}) df.loc[df.B > df.A, 'B'] = df.A expected = DataFrame({'A': [1, 2, 3], 'B': np.nan}) tm.assert_frame_equal(df, expected) # GH 6546 # setting with mixed labels df = DataFrame({1: [1, 2], 2: [3, 4], 'a': ['a', 'b']}) result = df.loc[0, [1, 2]] expected = Series([1, 3], index=[1, 2], dtype=object, name=0) tm.assert_series_equal(result, expected) expected = DataFrame({1: [5, 2], 2: [6, 4], 'a': ['a', 'b']}) df.loc[0, [1, 2]] = [5, 6] tm.assert_frame_equal(df, expected) def test_loc_setitem_frame_multiples(self): # multiple setting df = DataFrame({'A': ['foo', 'bar', 'baz'], 'B': Series( range(3), dtype=np.int64)}) rhs = df.loc[1:2] rhs.index = df.index[0:2] df.loc[0:1] = rhs expected = DataFrame({'A': ['bar', 'baz', 'baz'], 'B': Series( [1, 2, 2], dtype=np.int64)}) tm.assert_frame_equal(df, expected) # multiple setting with frame on rhs (with M8) df = DataFrame({'date': date_range('2000-01-01', '2000-01-5'), 'val': Series( range(5), dtype=np.int64)}) expected = DataFrame({'date': [Timestamp('20000101'), Timestamp( '20000102'), Timestamp('20000101'), Timestamp('20000102'), Timestamp('20000103')], 'val': Series( [0, 1, 0, 1, 2], dtype=np.int64)}) rhs = df.loc[0:2] rhs.index = df.index[2:5] df.loc[2:4] = rhs tm.assert_frame_equal(df, expected) def test_iloc_getitem_frame(self): df = DataFrame(np.random.randn(10, 4), index=lrange(0, 20, 2), columns=lrange(0, 8, 2)) result = df.iloc[2] with catch_warnings(record=True): exp = df.ix[4] tm.assert_series_equal(result, exp) result = df.iloc[2, 2] with catch_warnings(record=True): exp = df.ix[4, 4] self.assertEqual(result, exp) # slice result = df.iloc[4:8] with catch_warnings(record=True): expected = df.ix[8:14] tm.assert_frame_equal(result, expected) result = df.iloc[:, 2:3] with catch_warnings(record=True): expected = df.ix[:, 4:5] tm.assert_frame_equal(result, expected) # list of integers result = df.iloc[[0, 1, 3]] with catch_warnings(record=True): expected = df.ix[[0, 2, 6]] tm.assert_frame_equal(result, expected) result = df.iloc[[0, 1, 3], [0, 1]] with catch_warnings(record=True): expected = df.ix[[0, 2, 6], [0, 2]] tm.assert_frame_equal(result, expected) # neg indicies result = df.iloc[[-1, 1, 3], [-1, 1]] with catch_warnings(record=True): expected = df.ix[[18, 2, 6], [6, 2]] tm.assert_frame_equal(result, expected) # dups indicies result = df.iloc[[-1, -1, 1, 3], [-1, 1]] with catch_warnings(record=True): expected = df.ix[[18, 18, 2, 6], [6, 2]] tm.assert_frame_equal(result, expected) # with index-like s = Series(index=lrange(1, 5)) result = df.iloc[s.index] with catch_warnings(record=True): expected = df.ix[[2, 4, 6, 8]] tm.assert_frame_equal(result, expected) def test_iloc_getitem_labelled_frame(self): # try with labelled frame df = DataFrame(np.random.randn(10, 4), index=list('abcdefghij'), columns=list('ABCD')) result = df.iloc[1, 1] exp = df.loc['b', 'B'] self.assertEqual(result, exp) result = df.iloc[:, 2:3] expected = df.loc[:, ['C']] tm.assert_frame_equal(result, expected) # negative indexing result = df.iloc[-1, -1] exp = df.loc['j', 'D'] self.assertEqual(result, exp) # out-of-bounds exception self.assertRaises(IndexError, df.iloc.__getitem__, tuple([10, 5])) # trying to use a label self.assertRaises(ValueError, df.iloc.__getitem__, tuple(['j', 'D'])) def test_iloc_getitem_doc_issue(self): # multi axis slicing issue with single block # surfaced in GH 6059 arr = np.random.randn(6, 4) index = date_range('20130101', periods=6) columns = list('ABCD') df = DataFrame(arr, index=index, columns=columns) # defines ref_locs df.describe() result = df.iloc[3:5, 0:2] str(result) result.dtypes expected = DataFrame(arr[3:5, 0:2], index=index[3:5], columns=columns[0:2]) tm.assert_frame_equal(result, expected) # for dups df.columns = list('aaaa') result = df.iloc[3:5, 0:2] str(result) result.dtypes expected = DataFrame(arr[3:5, 0:2], index=index[3:5], columns=list('aa')) tm.assert_frame_equal(result, expected) # related arr = np.random.randn(6, 4) index = list(range(0, 12, 2)) columns = list(range(0, 8, 2)) df = DataFrame(arr, index=index, columns=columns) df._data.blocks[0].mgr_locs result = df.iloc[1:5, 2:4] str(result) result.dtypes expected = DataFrame(arr[1:5, 2:4], index=index[1:5], columns=columns[2:4]) tm.assert_frame_equal(result, expected) def test_setitem_ndarray_1d(self): # GH5508 # len of indexer vs length of the 1d ndarray df = DataFrame(index=Index(lrange(1, 11))) df['foo'] = np.zeros(10, dtype=np.float64) df['bar'] = np.zeros(10, dtype=np.complex) # invalid def f(): with catch_warnings(record=True): df.ix[2:5, 'bar'] = np.array([2.33j, 1.23 + 0.1j, 2.2]) self.assertRaises(ValueError, f) def f(): df.loc[df.index[2:5], 'bar'] = np.array([2.33j, 1.23 + 0.1j, 2.2, 1.0]) self.assertRaises(ValueError, f) # valid df.loc[df.index[2:6], 'bar'] = np.array([2.33j, 1.23 + 0.1j, 2.2, 1.0]) result = df.loc[df.index[2:6], 'bar'] expected = Series([2.33j, 1.23 + 0.1j, 2.2, 1.0], index=[3, 4, 5, 6], name='bar') tm.assert_series_equal(result, expected) # dtype getting changed? df = DataFrame(index=Index(lrange(1, 11))) df['foo'] = np.zeros(10, dtype=np.float64) df['bar'] = np.zeros(10, dtype=np.complex) def f(): df[2:5] = np.arange(1, 4) * 1j self.assertRaises(ValueError, f) def test_iloc_setitem_series(self): df = DataFrame(np.random.randn(10, 4), index=list('abcdefghij'), columns=list('ABCD')) df.iloc[1, 1] = 1 result = df.iloc[1, 1] self.assertEqual(result, 1) df.iloc[:, 2:3] = 0 expected = df.iloc[:, 2:3] result = df.iloc[:, 2:3] tm.assert_frame_equal(result, expected) s = Series(np.random.randn(10), index=lrange(0, 20, 2)) s.iloc[1] = 1 result = s.iloc[1] self.assertEqual(result, 1) s.iloc[:4] = 0 expected = s.iloc[:4] result = s.iloc[:4] tm.assert_series_equal(result, expected) s = Series([-1] * 6) s.iloc[0::2] = [0, 2, 4] s.iloc[1::2] = [1, 3, 5] result = s expected = Series([0, 1, 2, 3, 4, 5]) tm.assert_series_equal(result, expected) def test_iloc_setitem_list_of_lists(self): # GH 7551 # list-of-list is set incorrectly in mixed vs. single dtyped frames df = DataFrame(dict(A=np.arange(5, dtype='int64'), B=np.arange(5, 10, dtype='int64'))) df.iloc[2:4] = [[10, 11], [12, 13]] expected = DataFrame(dict(A=[0, 1, 10, 12, 4], B=[5, 6, 11, 13, 9])) tm.assert_frame_equal(df, expected) df = DataFrame( dict(A=list('abcde'), B=np.arange(5, 10, dtype='int64'))) df.iloc[2:4] = [['x', 11], ['y', 13]] expected = DataFrame(dict(A=['a', 'b', 'x', 'y', 'e'], B=[5, 6, 11, 13, 9])) tm.assert_frame_equal(df, expected) def test_ix_general(self): # ix general issues # GH 2817 data = {'amount': {0: 700, 1: 600, 2: 222, 3: 333, 4: 444}, 'col': {0: 3.5, 1: 3.5, 2: 4.0, 3: 4.0, 4: 4.0}, 'year': {0: 2012, 1: 2011, 2: 2012, 3: 2012, 4: 2012}} df = DataFrame(data).set_index(keys=['col', 'year']) key = 4.0, 2012 # emits a PerformanceWarning, ok with self.assert_produces_warning(PerformanceWarning): tm.assert_frame_equal(df.loc[key], df.iloc[2:]) # this is ok df.sort_index(inplace=True) res = df.loc[key] # col has float dtype, result should be Float64Index index = MultiIndex.from_arrays([[4.] * 3, [2012] * 3], names=['col', 'year']) expected = DataFrame({'amount': [222, 333, 444]}, index=index) tm.assert_frame_equal(res, expected) def test_ix_weird_slicing(self): # http://stackoverflow.com/q/17056560/1240268 df = DataFrame({'one': [1, 2, 3, np.nan, np.nan], 'two': [1, 2, 3, 4, 5]}) df.loc[df['one'] > 1, 'two'] = -df['two'] expected = DataFrame({'one': {0: 1.0, 1: 2.0, 2: 3.0, 3: nan, 4: nan}, 'two': {0: 1, 1: -2, 2: -3, 3: 4, 4: 5}}) tm.assert_frame_equal(df, expected) def test_loc_coerceion(self): # 12411 df = DataFrame({'date': [pd.Timestamp('20130101').tz_localize('UTC'), pd.NaT]}) expected = df.dtypes result = df.iloc[[0]] tm.assert_series_equal(result.dtypes, expected) result = df.iloc[[1]] tm.assert_series_equal(result.dtypes, expected) # 12045 import datetime df = DataFrame({'date': [datetime.datetime(2012, 1, 1), datetime.datetime(1012, 1, 2)]}) expected = df.dtypes result = df.iloc[[0]] tm.assert_series_equal(result.dtypes, expected) result = df.iloc[[1]] tm.assert_series_equal(result.dtypes, expected) # 11594 df = DataFrame({'text': ['some words'] + [None] * 9}) expected = df.dtypes result = df.iloc[0:2] tm.assert_series_equal(result.dtypes, expected) result = df.iloc[3:] tm.assert_series_equal(result.dtypes, expected) def test_setitem_dtype_upcast(self): # GH3216 df = DataFrame([{"a": 1}, {"a": 3, "b": 2}]) df['c'] = np.nan self.assertEqual(df['c'].dtype, np.float64) df.loc[0, 'c'] = 'foo' expected = DataFrame([{"a": 1, "c": 'foo'}, {"a": 3, "b": 2, "c": np.nan}]) tm.assert_frame_equal(df, expected) # GH10280 df = DataFrame(np.arange(6, dtype='int64').reshape(2, 3), index=list('ab'), columns=['foo', 'bar', 'baz']) for val in [3.14, 'wxyz']: left = df.copy() left.loc['a', 'bar'] = val right = DataFrame([[0, val, 2], [3, 4, 5]], index=list('ab'), columns=['foo', 'bar', 'baz']) tm.assert_frame_equal(left, right) self.assertTrue(is_integer_dtype(left['foo'])) self.assertTrue(is_integer_dtype(left['baz'])) left = DataFrame(np.arange(6, dtype='int64').reshape(2, 3) / 10.0, index=list('ab'), columns=['foo', 'bar', 'baz']) left.loc['a', 'bar'] = 'wxyz' right = DataFrame([[0, 'wxyz', .2], [.3, .4, .5]], index=list('ab'), columns=['foo', 'bar', 'baz']) tm.assert_frame_equal(left, right) self.assertTrue(is_float_dtype(left['foo'])) self.assertTrue(is_float_dtype(left['baz'])) def test_setitem_iloc(self): # setitem with an iloc list df = DataFrame(np.arange(9).reshape((3, 3)), index=["A", "B", "C"], columns=["A", "B", "C"]) df.iloc[[0, 1], [1, 2]] df.iloc[[0, 1], [1, 2]] += 100 expected = DataFrame( np.array([0, 101, 102, 3, 104, 105, 6, 7, 8]).reshape((3, 3)), index=["A", "B", "C"], columns=["A", "B", "C"]) tm.assert_frame_equal(df, expected) def test_dups_fancy_indexing(self): # GH 3455 from pandas.util.testing import makeCustomDataframe as mkdf df = mkdf(10, 3) df.columns = ['a', 'a', 'b'] result = df[['b', 'a']].columns expected = Index(['b', 'a', 'a']) self.assert_index_equal(result, expected) # across dtypes df = DataFrame([[1, 2, 1., 2., 3., 'foo', 'bar']], columns=list('aaaaaaa')) df.head() str(df) result = DataFrame([[1, 2, 1., 2., 3., 'foo', 'bar']]) result.columns = list('aaaaaaa') # TODO(wesm): unused? df_v = df.iloc[:, 4] # noqa res_v = result.iloc[:, 4] # noqa tm.assert_frame_equal(df, result) # GH 3561, dups not in selected order df = DataFrame( {'test': [5, 7, 9, 11], 'test1': [4., 5, 6, 7], 'other': list('abcd')}, index=['A', 'A', 'B', 'C']) rows = ['C', 'B'] expected = DataFrame( {'test': [11, 9], 'test1': [7., 6], 'other': ['d', 'c']}, index=rows) result = df.loc[rows] tm.assert_frame_equal(result, expected) result = df.loc[Index(rows)] tm.assert_frame_equal(result, expected) rows = ['C', 'B', 'E'] expected = DataFrame( {'test': [11, 9, np.nan], 'test1': [7., 6, np.nan], 'other': ['d', 'c', np.nan]}, index=rows) result = df.loc[rows] tm.assert_frame_equal(result, expected) # see GH5553, make sure we use the right indexer rows = ['F', 'G', 'H', 'C', 'B', 'E'] expected = DataFrame({'test': [np.nan, np.nan, np.nan, 11, 9, np.nan], 'test1': [np.nan, np.nan, np.nan, 7., 6, np.nan], 'other': [np.nan, np.nan, np.nan, 'd', 'c', np.nan]}, index=rows) result = df.loc[rows] tm.assert_frame_equal(result, expected) # inconsistent returns for unique/duplicate indices when values are # missing df = DataFrame(randn(4, 3), index=list('ABCD')) expected = df.ix[['E']] dfnu = DataFrame(randn(5, 3), index=list('AABCD')) result = dfnu.ix[['E']] tm.assert_frame_equal(result, expected) # ToDo: check_index_type can be True after GH 11497 # GH 4619; duplicate indexer with missing label df = DataFrame({"A": [0, 1, 2]}) result = df.ix[[0, 8, 0]] expected = DataFrame({"A": [0, np.nan, 0]}, index=[0, 8, 0]) tm.assert_frame_equal(result, expected, check_index_type=False) df = DataFrame({"A": list('abc')}) result = df.ix[[0, 8, 0]] expected = DataFrame({"A": ['a', np.nan, 'a']}, index=[0, 8, 0]) tm.assert_frame_equal(result, expected, check_index_type=False) # non unique with non unique selector df = DataFrame({'test': [5, 7, 9, 11]}, index=['A', 'A', 'B', 'C']) expected = DataFrame( {'test': [5, 7, 5, 7, np.nan]}, index=['A', 'A', 'A', 'A', 'E']) result = df.ix[['A', 'A', 'E']] tm.assert_frame_equal(result, expected) # GH 5835 # dups on index and missing values df = DataFrame( np.random.randn(5, 5), columns=['A', 'B', 'B', 'B', 'A']) expected = pd.concat( [df.ix[:, ['A', 'B']], DataFrame(np.nan, columns=['C'], index=df.index)], axis=1) result = df.ix[:, ['A', 'B', 'C']] tm.assert_frame_equal(result, expected) # GH 6504, multi-axis indexing df = DataFrame(np.random.randn(9, 2), index=[1, 1, 1, 2, 2, 2, 3, 3, 3], columns=['a', 'b']) expected = df.iloc[0:6] result = df.loc[[1, 2]] tm.assert_frame_equal(result, expected) expected = df result = df.loc[:, ['a', 'b']] tm.assert_frame_equal(result, expected) expected = df.iloc[0:6, :] result = df.loc[[1, 2], ['a', 'b']] tm.assert_frame_equal(result, expected) def test_indexing_mixed_frame_bug(self): # GH3492 df = DataFrame({'a': {1: 'aaa', 2: 'bbb', 3: 'ccc'}, 'b': {1: 111, 2: 222, 3: 333}}) # this works, new column is created correctly df['test'] = df['a'].apply(lambda x: '_' if x == 'aaa' else x) # this does not work, ie column test is not changed idx = df['test'] == '_' temp = df.ix[idx, 'a'].apply(lambda x: '-----' if x == 'aaa' else x) df.ix[idx, 'test'] = temp self.assertEqual(df.iloc[0, 2], '-----') # if I look at df, then element [0,2] equals '_'. If instead I type # df.ix[idx,'test'], I get '-----', finally by typing df.iloc[0,2] I # get '_'. def test_multitype_list_index_access(self): # GH 10610 df = pd.DataFrame(np.random.random((10, 5)), columns=["a"] + [20, 21, 22, 23]) with self.assertRaises(KeyError): df[[22, 26, -8]] self.assertEqual(df[21].shape[0], df.shape[0]) def test_set_index_nan(self): # GH 3586 df = DataFrame({'PRuid': {17: 'nonQC', 18: 'nonQC', 19: 'nonQC', 20: '10', 21: '11', 22: '12', 23: '13', 24: '24', 25: '35', 26: '46', 27: '47', 28: '48', 29: '59', 30: '10'}, 'QC': {17: 0.0, 18: 0.0, 19: 0.0, 20: nan, 21: nan, 22: nan, 23: nan, 24: 1.0, 25: nan, 26: nan, 27: nan, 28: nan, 29: nan, 30: nan}, 'data': {17: 7.9544899999999998, 18: 8.0142609999999994, 19: 7.8591520000000008, 20: 0.86140349999999999, 21: 0.87853110000000001, 22: 0.8427041999999999, 23: 0.78587700000000005, 24: 0.73062459999999996, 25: 0.81668560000000001, 26: 0.81927080000000008, 27: 0.80705009999999999, 28: 0.81440240000000008, 29: 0.80140849999999997, 30: 0.81307740000000006}, 'year': {17: 2006, 18: 2007, 19: 2008, 20: 1985, 21: 1985, 22: 1985, 23: 1985, 24: 1985, 25: 1985, 26: 1985, 27: 1985, 28: 1985, 29: 1985, 30: 1986}}).reset_index() result = df.set_index(['year', 'PRuid', 'QC']).reset_index().reindex( columns=df.columns) tm.assert_frame_equal(result, df) def test_multi_nan_indexing(self): # GH 3588 df = DataFrame({"a": ['R1', 'R2', np.nan, 'R4'], 'b': ["C1", "C2", "C3", "C4"], "c": [10, 15, np.nan, 20]}) result = df.set_index(['a', 'b'], drop=False) expected = DataFrame({"a": ['R1', 'R2', np.nan, 'R4'], 'b': ["C1", "C2", "C3", "C4"], "c": [10, 15, np.nan, 20]}, index=[Index(['R1', 'R2', np.nan, 'R4'], name='a'), Index(['C1', 'C2', 'C3', 'C4'], name='b')]) tm.assert_frame_equal(result, expected) def test_multi_assign(self): # GH 3626, an assignement of a sub-df to a df df = DataFrame({'FC': ['a', 'b', 'a', 'b', 'a', 'b'], 'PF': [0, 0, 0, 0, 1, 1], 'col1': lrange(6), 'col2': lrange(6, 12)}) df.ix[1, 0] = np.nan df2 = df.copy() mask = ~df2.FC.isnull() cols = ['col1', 'col2'] dft = df2 * 2 dft.ix[3, 3] = np.nan expected = DataFrame({'FC': ['a', np.nan, 'a', 'b', 'a', 'b'], 'PF': [0, 0, 0, 0, 1, 1], 'col1': Series([0, 1, 4, 6, 8, 10]), 'col2': [12, 7, 16, np.nan, 20, 22]}) # frame on rhs df2.ix[mask, cols] = dft.ix[mask, cols] tm.assert_frame_equal(df2, expected) df2.ix[mask, cols] = dft.ix[mask, cols] tm.assert_frame_equal(df2, expected) # with an ndarray on rhs df2 = df.copy() df2.ix[mask, cols] = dft.ix[mask, cols].values tm.assert_frame_equal(df2, expected) df2.ix[mask, cols] = dft.ix[mask, cols].values tm.assert_frame_equal(df2, expected) # broadcasting on the rhs is required df = DataFrame(dict(A=[1, 2, 0, 0, 0], B=[0, 0, 0, 10, 11], C=[ 0, 0, 0, 10, 11], D=[3, 4, 5, 6, 7])) expected = df.copy() mask = expected['A'] == 0 for col in ['A', 'B']: expected.loc[mask, col] = df['D'] df.loc[df['A'] == 0, ['A', 'B']] = df['D'] tm.assert_frame_equal(df, expected) def test_ix_assign_column_mixed(self): # GH #1142 df = DataFrame(tm.getSeriesData()) df['foo'] = 'bar' orig = df.ix[:, 'B'].copy() df.ix[:, 'B'] = df.ix[:, 'B'] + 1 tm.assert_series_equal(df.B, orig + 1) # GH 3668, mixed frame with series value df = DataFrame({'x': lrange(10), 'y': lrange(10, 20), 'z': 'bar'}) expected = df.copy() for i in range(5): indexer = i * 2 v = 1000 + i * 200 expected.ix[indexer, 'y'] = v self.assertEqual(expected.ix[indexer, 'y'], v) df.ix[df.x % 2 == 0, 'y'] = df.ix[df.x % 2 == 0, 'y'] * 100 tm.assert_frame_equal(df, expected) # GH 4508, making sure consistency of assignments df = DataFrame({'a': [1, 2, 3], 'b': [0, 1, 2]}) df.ix[[0, 2, ], 'b'] = [100, -100] expected = DataFrame({'a': [1, 2, 3], 'b': [100, 1, -100]}) tm.assert_frame_equal(df, expected) df = pd.DataFrame({'a': lrange(4)}) df['b'] = np.nan df.ix[[1, 3], 'b'] = [100, -100] expected = DataFrame({'a': [0, 1, 2, 3], 'b': [np.nan, 100, np.nan, -100]}) tm.assert_frame_equal(df, expected) # ok, but chained assignments are dangerous # if we turn off chained assignement it will work with option_context('chained_assignment', None): df = pd.DataFrame({'a': lrange(4)}) df['b'] = np.nan df['b'].ix[[1, 3]] = [100, -100] tm.assert_frame_equal(df, expected) def test_ix_get_set_consistency(self): # GH 4544 # ix/loc get/set not consistent when # a mixed int/string index df = DataFrame(np.arange(16).reshape((4, 4)), columns=['a', 'b', 8, 'c'], index=['e', 7, 'f', 'g']) self.assertEqual(df.ix['e', 8], 2) self.assertEqual(df.loc['e', 8], 2) df.ix['e', 8] = 42 self.assertEqual(df.ix['e', 8], 42) self.assertEqual(df.loc['e', 8], 42) df.loc['e', 8] = 45 self.assertEqual(df.ix['e', 8], 45) self.assertEqual(df.loc['e', 8], 45) def test_setitem_list(self): # GH 6043 # ix with a list df = DataFrame(index=[0, 1], columns=[0]) df.ix[1, 0] = [1, 2, 3] df.ix[1, 0] = [1, 2] result = DataFrame(index=[0, 1], columns=[0]) result.ix[1, 0] = [1, 2] tm.assert_frame_equal(result, df) # ix with an object class TO(object): def __init__(self, value): self.value = value def __str__(self): return "[{0}]".format(self.value) __repr__ = __str__ def __eq__(self, other): return self.value == other.value def view(self): return self df = DataFrame(index=[0, 1], columns=[0]) df.ix[1, 0] = TO(1) df.ix[1, 0] = TO(2) result = DataFrame(index=[0, 1], columns=[0]) result.ix[1, 0] = TO(2) tm.assert_frame_equal(result, df) # remains object dtype even after setting it back df = DataFrame(index=[0, 1], columns=[0]) df.ix[1, 0] = TO(1) df.ix[1, 0] = np.nan result = DataFrame(index=[0, 1], columns=[0]) tm.assert_frame_equal(result, df) def test_iloc_mask(self): # GH 3631, iloc with a mask (of a series) should raise df = DataFrame(lrange(5), list('ABCDE'), columns=['a']) mask = (df.a % 2 == 0) self.assertRaises(ValueError, df.iloc.__getitem__, tuple([mask])) mask.index = lrange(len(mask)) self.assertRaises(NotImplementedError, df.iloc.__getitem__, tuple([mask])) # ndarray ok result = df.iloc[np.array([True] * len(mask), dtype=bool)] tm.assert_frame_equal(result, df) # the possibilities locs = np.arange(4) nums = 2 ** locs reps = lmap(bin, nums) df = DataFrame({'locs': locs, 'nums': nums}, reps) expected = { (None, ''): '0b1100', (None, '.loc'): '0b1100', (None, '.iloc'): '0b1100', ('index', ''): '0b11', ('index', '.loc'): '0b11', ('index', '.iloc'): ('iLocation based boolean indexing ' 'cannot use an indexable as a mask'), ('locs', ''): 'Unalignable boolean Series provided as indexer ' '(index of the boolean Series and of the indexed ' 'object do not match', ('locs', '.loc'): 'Unalignable boolean Series provided as indexer ' '(index of the boolean Series and of the ' 'indexed object do not match', ('locs', '.iloc'): ('iLocation based boolean indexing on an ' 'integer type is not available'), } # UserWarnings from reindex of a boolean mask with warnings.catch_warnings(record=True): result = dict() for idx in [None, 'index', 'locs']: mask = (df.nums > 2).values if idx: mask = Series(mask, list(reversed(getattr(df, idx)))) for method in ['', '.loc', '.iloc']: try: if method: accessor = getattr(df, method[1:]) else: accessor = df ans = str(bin(accessor[mask]['nums'].sum())) except Exception as e: ans = str(e) key = tuple([idx, method]) r = expected.get(key) if r != ans: raise AssertionError( "[%s] does not match [%s], received [%s]" % (key, ans, r)) def test_ix_slicing_strings(self): # GH3836 data = {'Classification': ['SA EQUITY CFD', 'bbb', 'SA EQUITY', 'SA SSF', 'aaa'], 'Random': [1, 2, 3, 4, 5], 'X': ['correct', 'wrong', 'correct', 'correct', 'wrong']} df = DataFrame(data) x = df[~df.Classification.isin(['SA EQUITY CFD', 'SA EQUITY', 'SA SSF' ])] df.ix[x.index, 'X'] = df['Classification'] expected = DataFrame({'Classification': {0: 'SA EQUITY CFD', 1: 'bbb', 2: 'SA EQUITY', 3: 'SA SSF', 4: 'aaa'}, 'Random': {0: 1, 1: 2, 2: 3, 3: 4, 4: 5}, 'X': {0: 'correct', 1: 'bbb', 2: 'correct', 3: 'correct', 4: 'aaa'}}) # bug was 4: 'bbb' tm.assert_frame_equal(df, expected) def test_non_unique_loc(self): # GH3659 # non-unique indexer with loc slice # https://groups.google.com/forum/?fromgroups#!topic/pydata/zTm2No0crYs # these are going to raise becuase the we are non monotonic df = DataFrame({'A': [1, 2, 3, 4, 5, 6], 'B': [3, 4, 5, 6, 7, 8]}, index=[0, 1, 0, 1, 2, 3]) self.assertRaises(KeyError, df.loc.__getitem__, tuple([slice(1, None)])) self.assertRaises(KeyError, df.loc.__getitem__, tuple([slice(0, None)])) self.assertRaises(KeyError, df.loc.__getitem__, tuple([slice(1, 2)])) # monotonic are ok df = DataFrame({'A': [1, 2, 3, 4, 5, 6], 'B': [3, 4, 5, 6, 7, 8]}, index=[0, 1, 0, 1, 2, 3]).sort_index(axis=0) result = df.loc[1:] expected = DataFrame({'A': [2, 4, 5, 6], 'B': [4, 6, 7, 8]}, index=[1, 1, 2, 3]) tm.assert_frame_equal(result, expected) result = df.loc[0:] tm.assert_frame_equal(result, df) result = df.loc[1:2] expected = DataFrame({'A': [2, 4, 5], 'B': [4, 6, 7]}, index=[1, 1, 2]) tm.assert_frame_equal(result, expected) def test_loc_name(self): # GH 3880 df = DataFrame([[1, 1], [1, 1]]) df.index.name = 'index_name' result = df.iloc[[0, 1]].index.name self.assertEqual(result, 'index_name') result = df.ix[[0, 1]].index.name self.assertEqual(result, 'index_name') result = df.loc[[0, 1]].index.name self.assertEqual(result, 'index_name') def test_iloc_non_unique_indexing(self): # GH 4017, non-unique indexing (on the axis) df = DataFrame({'A': [0.1] * 3000, 'B': [1] * 3000}) idx = np.array(lrange(30)) * 99 expected = df.iloc[idx] df3 = pd.concat([df, 2 * df, 3 * df]) result = df3.iloc[idx] tm.assert_frame_equal(result, expected) df2 = DataFrame({'A': [0.1] * 1000, 'B': [1] * 1000}) df2 = pd.concat([df2, 2 * df2, 3 * df2]) sidx = df2.index.to_series() expected = df2.iloc[idx[idx <= sidx.max()]] new_list = [] for r, s in expected.iterrows(): new_list.append(s) new_list.append(s * 2) new_list.append(s * 3) expected = DataFrame(new_list) expected = pd.concat([expected, DataFrame(index=idx[idx > sidx.max()]) ]) result = df2.loc[idx] tm.assert_frame_equal(result, expected, check_index_type=False) def test_string_slice(self): # GH 14424 # string indexing against datetimelike with object # dtype should properly raises KeyError df = pd.DataFrame([1], pd.Index([pd.Timestamp('2011-01-01')], dtype=object)) self.assertTrue(df.index.is_all_dates) with tm.assertRaises(KeyError): df['2011'] with tm.assertRaises(KeyError): df.loc['2011', 0] df = pd.DataFrame() self.assertFalse(df.index.is_all_dates) with tm.assertRaises(KeyError): df['2011'] with tm.assertRaises(KeyError): df.loc['2011', 0] def test_mi_access(self): # GH 4145 data = """h1 main h3 sub h5 0 a A 1 A1 1 1 b B 2 B1 2 2 c B 3 A1 3 3 d A 4 B2 4 4 e A 5 B2 5 5 f B 6 A2 6 """ df = pd.read_csv(StringIO(data), sep=r'\s+', index_col=0) df2 = df.set_index(['main', 'sub']).T.sort_index(1) index = Index(['h1', 'h3', 'h5']) columns = MultiIndex.from_tuples([('A', 'A1')], names=['main', 'sub']) expected = DataFrame([['a', 1, 1]], index=columns, columns=index).T result = df2.loc[:, ('A', 'A1')] tm.assert_frame_equal(result, expected) result = df2[('A', 'A1')] tm.assert_frame_equal(result, expected) # GH 4146, not returning a block manager when selecting a unique index # from a duplicate index # as of 4879, this returns a Series (which is similar to what happens # with a non-unique) expected = Series(['a', 1, 1], index=['h1', 'h3', 'h5'], name='A1') result = df2['A']['A1'] tm.assert_series_equal(result, expected) # selecting a non_unique from the 2nd level expected = DataFrame([['d', 4, 4], ['e', 5, 5]], index=Index(['B2', 'B2'], name='sub'), columns=['h1', 'h3', 'h5'], ).T result = df2['A']['B2'] tm.assert_frame_equal(result, expected) def test_non_unique_loc_memory_error(self): # GH 4280 # non_unique index with a large selection triggers a memory error columns = list('ABCDEFG') def gen_test(l, l2): return pd.concat([DataFrame(randn(l, len(columns)), index=lrange(l), columns=columns), DataFrame(np.ones((l2, len(columns))), index=[0] * l2, columns=columns)]) def gen_expected(df, mask): l = len(mask) return pd.concat([df.take([0], convert=False), DataFrame(np.ones((l, len(columns))), index=[0] * l, columns=columns), df.take(mask[1:], convert=False)]) df = gen_test(900, 100) self.assertFalse(df.index.is_unique) mask = np.arange(100) result = df.loc[mask] expected = gen_expected(df, mask) tm.assert_frame_equal(result, expected) df = gen_test(900000, 100000) self.assertFalse(df.index.is_unique) mask = np.arange(100000) result = df.loc[mask] expected = gen_expected(df, mask) tm.assert_frame_equal(result, expected) def test_astype_assignment(self): # GH4312 (iloc) df_orig = DataFrame([['1', '2', '3', '.4', 5, 6., 'foo']], columns=list('ABCDEFG')) df = df_orig.copy() df.iloc[:, 0:2] = df.iloc[:, 0:2].astype(np.int64) expected = DataFrame([[1, 2, '3', '.4', 5, 6., 'foo']], columns=list('ABCDEFG')) tm.assert_frame_equal(df, expected) df = df_orig.copy() df.iloc[:, 0:2] = df.iloc[:, 0:2]._convert(datetime=True, numeric=True) expected = DataFrame([[1, 2, '3', '.4', 5, 6., 'foo']], columns=list('ABCDEFG')) tm.assert_frame_equal(df, expected) # GH5702 (loc) df = df_orig.copy() df.loc[:, 'A'] = df.loc[:, 'A'].astype(np.int64) expected = DataFrame([[1, '2', '3', '.4', 5, 6., 'foo']], columns=list('ABCDEFG')) tm.assert_frame_equal(df, expected) df = df_orig.copy() df.loc[:, ['B', 'C']] = df.loc[:, ['B', 'C']].astype(np.int64) expected = DataFrame([['1', 2, 3, '.4', 5, 6., 'foo']], columns=list('ABCDEFG')) tm.assert_frame_equal(df, expected) # full replacements / no nans df = DataFrame({'A': [1., 2., 3., 4.]}) df.iloc[:, 0] = df['A'].astype(np.int64) expected = DataFrame({'A': [1, 2, 3, 4]}) tm.assert_frame_equal(df, expected) df = DataFrame({'A': [1., 2., 3., 4.]}) df.loc[:, 'A'] = df['A'].astype(np.int64) expected = DataFrame({'A': [1, 2, 3, 4]}) tm.assert_frame_equal(df, expected) def test_astype_assignment_with_dups(self): # GH 4686 # assignment with dups that has a dtype change cols = pd.MultiIndex.from_tuples([('A', '1'), ('B', '1'), ('A', '2')]) df = DataFrame(np.arange(3).reshape((1, 3)), columns=cols, dtype=object) index = df.index.copy() df['A'] = df['A'].astype(np.float64) self.assert_index_equal(df.index, index) # TODO(wesm): unused variables # result = df.get_dtype_counts().sort_index() # expected = Series({'float64': 2, 'object': 1}).sort_index() def test_dups_loc(self): # GH4726 # dup indexing with iloc/loc df = DataFrame([[1, 2, 'foo', 'bar', Timestamp('20130101')]], columns=['a', 'a', 'a', 'a', 'a'], index=[1]) expected = Series([1, 2, 'foo', 'bar', Timestamp('20130101')], index=['a', 'a', 'a', 'a', 'a'], name=1) result = df.iloc[0] tm.assert_series_equal(result, expected) result = df.loc[1] tm.assert_series_equal(result, expected) def test_partial_setting(self): # GH2578, allow ix and friends to partially set # series s_orig = Series([1, 2, 3]) s = s_orig.copy() s[5] = 5 expected = Series([1, 2, 3, 5], index=[0, 1, 2, 5]) tm.assert_series_equal(s, expected) s = s_orig.copy() s.loc[5] = 5 expected = Series([1, 2, 3, 5], index=[0, 1, 2, 5]) tm.assert_series_equal(s, expected) s = s_orig.copy() s[5] = 5. expected = Series([1, 2, 3, 5.], index=[0, 1, 2, 5]) tm.assert_series_equal(s, expected) s = s_orig.copy() s.loc[5] = 5. expected = Series([1, 2, 3, 5.], index=[0, 1, 2, 5]) tm.assert_series_equal(s, expected) # iloc/iat raise s = s_orig.copy() def f(): s.iloc[3] = 5. self.assertRaises(IndexError, f) def f(): s.iat[3] = 5. self.assertRaises(IndexError, f) # ## frame ## df_orig = DataFrame( np.arange(6).reshape(3, 2), columns=['A', 'B'], dtype='int64') # iloc/iat raise df = df_orig.copy() def f(): df.iloc[4, 2] = 5. self.assertRaises(IndexError, f) def f(): df.iat[4, 2] = 5. self.assertRaises(IndexError, f) # row setting where it exists expected = DataFrame(dict({'A': [0, 4, 4], 'B': [1, 5, 5]})) df = df_orig.copy() df.iloc[1] = df.iloc[2] tm.assert_frame_equal(df, expected) expected = DataFrame(dict({'A': [0, 4, 4], 'B': [1, 5, 5]})) df = df_orig.copy() df.loc[1] = df.loc[2] tm.assert_frame_equal(df, expected) # like 2578, partial setting with dtype preservation expected = DataFrame(dict({'A': [0, 2, 4, 4], 'B': [1, 3, 5, 5]})) df = df_orig.copy() df.loc[3] = df.loc[2] tm.assert_frame_equal(df, expected) # single dtype frame, overwrite expected = DataFrame(dict({'A': [0, 2, 4], 'B': [0, 2, 4]})) df = df_orig.copy() df.ix[:, 'B'] = df.ix[:, 'A'] tm.assert_frame_equal(df, expected) # mixed dtype frame, overwrite expected = DataFrame(dict({'A': [0, 2, 4], 'B': Series([0, 2, 4])})) df = df_orig.copy() df['B'] = df['B'].astype(np.float64) df.ix[:, 'B'] = df.ix[:, 'A'] tm.assert_frame_equal(df, expected) # single dtype frame, partial setting expected = df_orig.copy() expected['C'] = df['A'] df = df_orig.copy() df.ix[:, 'C'] = df.ix[:, 'A'] tm.assert_frame_equal(df, expected) # mixed frame, partial setting expected = df_orig.copy() expected['C'] = df['A'] df = df_orig.copy() df.ix[:, 'C'] = df.ix[:, 'A'] tm.assert_frame_equal(df, expected) # ## panel ## p_orig = Panel(np.arange(16).reshape(2, 4, 2), items=['Item1', 'Item2'], major_axis=pd.date_range('2001/1/12', periods=4), minor_axis=['A', 'B'], dtype='float64') # panel setting via item p_orig = Panel(np.arange(16).reshape(2, 4, 2), items=['Item1', 'Item2'], major_axis=pd.date_range('2001/1/12', periods=4), minor_axis=['A', 'B'], dtype='float64') expected = p_orig.copy() expected['Item3'] = expected['Item1'] p = p_orig.copy() p.loc['Item3'] = p['Item1'] tm.assert_panel_equal(p, expected) # panel with aligned series expected = p_orig.copy() expected = expected.transpose(2, 1, 0) expected['C'] = DataFrame({'Item1': [30, 30, 30, 30], 'Item2': [32, 32, 32, 32]}, index=p_orig.major_axis) expected = expected.transpose(2, 1, 0) p = p_orig.copy() p.loc[:, :, 'C'] = Series([30, 32], index=p_orig.items) tm.assert_panel_equal(p, expected) # GH 8473 dates = date_range('1/1/2000', periods=8) df_orig = DataFrame(np.random.randn(8, 4), index=dates, columns=['A', 'B', 'C', 'D']) expected = pd.concat([df_orig, DataFrame( {'A': 7}, index=[dates[-1] + 1])]) df = df_orig.copy() df.loc[dates[-1] + 1, 'A'] = 7 tm.assert_frame_equal(df, expected) df = df_orig.copy() df.at[dates[-1] + 1, 'A'] = 7 tm.assert_frame_equal(df, expected) exp_other = DataFrame({0: 7}, index=[dates[-1] + 1]) expected = pd.concat([df_orig, exp_other], axis=1) df = df_orig.copy() df.loc[dates[-1] + 1, 0] = 7 tm.assert_frame_equal(df, expected) df = df_orig.copy() df.at[dates[-1] + 1, 0] = 7 tm.assert_frame_equal(df, expected) def test_partial_setting_mixed_dtype(self): # in a mixed dtype environment, try to preserve dtypes # by appending df = DataFrame([[True, 1], [False, 2]], columns=["female", "fitness"]) s = df.loc[1].copy() s.name = 2 expected = df.append(s) df.loc[2] = df.loc[1] tm.assert_frame_equal(df, expected) # columns will align df = DataFrame(columns=['A', 'B']) df.loc[0] = Series(1, index=range(4)) tm.assert_frame_equal(df, DataFrame(columns=['A', 'B'], index=[0])) # columns will align df = DataFrame(columns=['A', 'B']) df.loc[0] = Series(1, index=['B']) exp = DataFrame([[np.nan, 1]], columns=['A', 'B'], index=[0], dtype='float64') tm.assert_frame_equal(df, exp) # list-like must conform df = DataFrame(columns=['A', 'B']) def f(): df.loc[0] = [1, 2, 3] self.assertRaises(ValueError, f) # these are coerced to float unavoidably (as its a list-like to begin) df = DataFrame(columns=['A', 'B']) df.loc[3] = [6, 7] exp = DataFrame([[6, 7]], index=[3], columns=['A', 'B'], dtype='float64') tm.assert_frame_equal(df, exp) def test_series_partial_set(self): # partial set with new index # Regression from GH4825 ser = Series([0.1, 0.2], index=[1, 2]) # loc expected = Series([np.nan, 0.2, np.nan], index=[3, 2, 3]) result = ser.loc[[3, 2, 3]] tm.assert_series_equal(result, expected, check_index_type=True) expected = Series([np.nan, 0.2, np.nan, np.nan], index=[3, 2, 3, 'x']) result = ser.loc[[3, 2, 3, 'x']] tm.assert_series_equal(result, expected, check_index_type=True) expected = Series([0.2, 0.2, 0.1], index=[2, 2, 1]) result = ser.loc[[2, 2, 1]] tm.assert_series_equal(result, expected, check_index_type=True) expected = Series([0.2, 0.2, np.nan, 0.1], index=[2, 2, 'x', 1]) result = ser.loc[[2, 2, 'x', 1]] tm.assert_series_equal(result, expected, check_index_type=True) # raises as nothing in in the index self.assertRaises(KeyError, lambda: ser.loc[[3, 3, 3]]) expected = Series([0.2, 0.2, np.nan], index=[2, 2, 3]) result = ser.loc[[2, 2, 3]] tm.assert_series_equal(result, expected, check_index_type=True) expected = Series([0.3, np.nan, np.nan], index=[3, 4, 4]) result = Series([0.1, 0.2, 0.3], index=[1, 2, 3]).loc[[3, 4, 4]] tm.assert_series_equal(result, expected, check_index_type=True) expected = Series([np.nan, 0.3, 0.3], index=[5, 3, 3]) result = Series([0.1, 0.2, 0.3, 0.4], index=[1, 2, 3, 4]).loc[[5, 3, 3]] tm.assert_series_equal(result, expected, check_index_type=True) expected = Series([np.nan, 0.4, 0.4], index=[5, 4, 4]) result = Series([0.1, 0.2, 0.3, 0.4], index=[1, 2, 3, 4]).loc[[5, 4, 4]] tm.assert_series_equal(result, expected, check_index_type=True) expected = Series([0.4, np.nan, np.nan], index=[7, 2, 2]) result = Series([0.1, 0.2, 0.3, 0.4], index=[4, 5, 6, 7]).loc[[7, 2, 2]] tm.assert_series_equal(result, expected, check_index_type=True) expected = Series([0.4, np.nan, np.nan], index=[4, 5, 5]) result = Series([0.1, 0.2, 0.3, 0.4], index=[1, 2, 3, 4]).loc[[4, 5, 5]] tm.assert_series_equal(result, expected, check_index_type=True) # iloc expected = Series([0.2, 0.2, 0.1, 0.1], index=[2, 2, 1, 1]) result = ser.iloc[[1, 1, 0, 0]] tm.assert_series_equal(result, expected, check_index_type=True) def test_series_partial_set_with_name(self): # GH 11497 idx = Index([1, 2], dtype='int64', name='idx') ser = Series([0.1, 0.2], index=idx, name='s') # loc exp_idx = Index([3, 2, 3], dtype='int64', name='idx') expected = Series([np.nan, 0.2, np.nan], index=exp_idx, name='s') result = ser.loc[[3, 2, 3]] tm.assert_series_equal(result, expected, check_index_type=True) exp_idx = Index([3, 2, 3, 'x'], dtype='object', name='idx') expected = Series([np.nan, 0.2, np.nan, np.nan], index=exp_idx, name='s') result = ser.loc[[3, 2, 3, 'x']] tm.assert_series_equal(result, expected, check_index_type=True) exp_idx = Index([2, 2, 1], dtype='int64', name='idx') expected = Series([0.2, 0.2, 0.1], index=exp_idx, name='s') result = ser.loc[[2, 2, 1]] tm.assert_series_equal(result, expected, check_index_type=True) exp_idx = Index([2, 2, 'x', 1], dtype='object', name='idx') expected = Series([0.2, 0.2, np.nan, 0.1], index=exp_idx, name='s') result = ser.loc[[2, 2, 'x', 1]] tm.assert_series_equal(result, expected, check_index_type=True) # raises as nothing in in the index self.assertRaises(KeyError, lambda: ser.loc[[3, 3, 3]]) exp_idx = Index([2, 2, 3], dtype='int64', name='idx') expected = Series([0.2, 0.2, np.nan], index=exp_idx, name='s') result = ser.loc[[2, 2, 3]] tm.assert_series_equal(result, expected, check_index_type=True) exp_idx = Index([3, 4, 4], dtype='int64', name='idx') expected = Series([0.3, np.nan, np.nan], index=exp_idx, name='s') idx = Index([1, 2, 3], dtype='int64', name='idx') result = Series([0.1, 0.2, 0.3], index=idx, name='s').loc[[3, 4, 4]] tm.assert_series_equal(result, expected, check_index_type=True) exp_idx = Index([5, 3, 3], dtype='int64', name='idx') expected = Series([np.nan, 0.3, 0.3], index=exp_idx, name='s') idx = Index([1, 2, 3, 4], dtype='int64', name='idx') result = Series([0.1, 0.2, 0.3, 0.4], index=idx, name='s').loc[[5, 3, 3]] tm.assert_series_equal(result, expected, check_index_type=True) exp_idx = Index([5, 4, 4], dtype='int64', name='idx') expected = Series([np.nan, 0.4, 0.4], index=exp_idx, name='s') idx = Index([1, 2, 3, 4], dtype='int64', name='idx') result = Series([0.1, 0.2, 0.3, 0.4], index=idx, name='s').loc[[5, 4, 4]] tm.assert_series_equal(result, expected, check_index_type=True) exp_idx = Index([7, 2, 2], dtype='int64', name='idx') expected = Series([0.4, np.nan, np.nan], index=exp_idx, name='s') idx = Index([4, 5, 6, 7], dtype='int64', name='idx') result = Series([0.1, 0.2, 0.3, 0.4], index=idx, name='s').loc[[7, 2, 2]] tm.assert_series_equal(result, expected, check_index_type=True) exp_idx = Index([4, 5, 5], dtype='int64', name='idx') expected =
Series([0.4, np.nan, np.nan], index=exp_idx, name='s')
pandas.core.api.Series
## drive_path = 'c:/' import numpy as np import pandas as pd import os import sys import matplotlib.pyplot as plt from scipy.stats import ks_2samp from scipy.stats import anderson_ksamp from scipy.stats import kruskal from scipy.stats import variation from scipy import signal as sps import seaborn as sns import glob import re ## #This piece spits out all the peaks in one dataframe def getpeaks(date): '''Spits out all the peaks from imaging session session input as string ''' # This piece spits out all the peaks from one session in one dataframe peakdf = pd.DataFrame([]) os.chdir('C:\\Users\\Annie\\Documents\\Data\\Ca_Imaging\\HabituationFiles\\%s' % date) for filename in glob.glob('*dt.txt'): f = pd.read_csv(filename, nrows=175) df = f[[col for col in f.columns if 'G PMT' in col]] peak = [] for col in df.columns: a = df[col] firsta = 1; firstb = 24; # Figures out if there is a min or max and sees if it passes threshold (3SD) if np.absolute(min(a[26:80])) > np.absolute(max(a[26:80])) and np.absolute(min(a[26:80])) >= 3 * np.std( df[col][firsta:firstb]): b = min(a[26:80]) peak.append(b) elif np.absolute(max(a[26:80])) > np.absolute(min(a[26:80])) and np.absolute(max(a[26:80])) >= 3 * np.std( df[col][firsta:firstb]): b = max(a[26:80]) peak.append(b) else: b = 0 peak.append(b) peaks = pd.DataFrame(peak).T peaks.columns = df.columns peaks = pd.concat([pd.DataFrame({'Trial': [int(filename.split('dt')[0])]}), peaks], axis=1) peakdf = peakdf.append(peaks, ignore_index=True) peakdf.to_csv('%s_peaks.csv' % date, index=False) trials = pd.read_csv('C:\\Users\\Annie\\Documents\\Data\\Ca_Imaging\\Analysis\\Odor_Panel\\Odor_Trials.csv') filerow = trials.loc[trials['File'] == date] odortrials = {} for t in filerow.Odor.unique(): y = {t: [int(x) for x in filerow.loc[filerow['Odor'] == t][['T1', 'T2', 'T3', 'T4']].values.tolist()[0]]} odortrials.update(y) # Get average peak across all trials using peakdf dataframe meandf = pd.DataFrame([]) for key in odortrials: odor = odortrials[key] mean = [] for col in peakdf.loc[peakdf['Trial'].isin(odor)][ [col for col in peakdf.loc[peakdf['Trial'].isin(odor)].columns if 'G PMT' in col]]: mean.append(peakdf.loc[peakdf['Trial'].isin(odor)][col].mean()) mean = pd.DataFrame(mean).T mean.columns = peakdf.loc[peakdf['Trial'].isin(odor)][ [col for col in peakdf.loc[peakdf['Trial'].isin(odor)].columns if 'G PMT' in col]].columns meandf = meandf.append(mean) meandf = meandf.reset_index(drop=True) meandf.columns = [str(col) + '_' + date for col in meandf.columns] meandf = pd.concat([pd.DataFrame({'Odor': odortrials.keys()}), meandf], axis=1) meandf.to_csv('%s_mean.csv' % date, index=False) # Get proportion of successful trials successdf = pd.DataFrame([]) for key in odortrials: odor = odortrials[key] newdf = peakdf.loc[peakdf['Trial'].isin(odor)] s = [] for col in peakdf.loc[peakdf['Trial'].isin(odor)][ [col for col in peakdf.loc[peakdf['Trial'].isin(odor)].columns if 'G PMT' in col]]: s.append(np.divide((newdf.loc[:, col] != 0).sum(), float(len(newdf.loc[:, col])))) s = pd.DataFrame(s).T s.columns = peakdf.loc[peakdf['Trial'].isin(odor)][ [col for col in peakdf.loc[peakdf['Trial'].isin(odor)].columns if 'G PMT' in col]].columns successdf = successdf.append(s) successdf = successdf.reset_index(drop=True) successdf.columns = [str(col) + '_' + date for col in successdf.columns] successdf = pd.concat([pd.DataFrame({'Odor': odortrials.keys()}), successdf], axis=1) successdf.to_csv('%s_success.csv' % date, index=False) return 'Done' ## def getintegral(date): '''Compute integrals and integral means date: string, session ''' temp = pd.DataFrame([]) os.chdir('C:\\Users\\Annie\\Documents\\Data\\Ca_Imaging\\HabituationFiles\\%s' % date) # Pull the trials that correspond to specific date/odors trials = pd.read_csv('C:\\Users\\Annie\\Documents\\Data\\Ca_Imaging\\Analysis\\Odor_Panel\\Odor_Trials.csv') filerow = trials.loc[trials['File'] == date] odortrials = {} for t in filerow.Odor.unique(): y = {t: [int(x) for x in filerow.loc[filerow['Odor'] == t][['T1', 'T2', 'T3', 'T4']].values.tolist()[0]]} odortrials.update(y) # Get the frame rate for a specified date num = trials.File.unique().tolist().index('%s' % date) fr = trials.loc[trials['File'] == trials.File.unique().tolist()[num]]['FrameRate'].iloc[0] # Get the integral intdf = pd.DataFrame([]) for filename in glob.glob('*dt.txt'): f = pd.read_csv(filename, nrows=125) df = f[[col for col in f.columns if 'G PMT' in col]] winstart = np.int(4 * fr) winend = np.int(12 * fr) integral = [] for col in df.columns: a = df[col] firsta = 1; firstb = 24; # Figures out if there is a min or max and sees if it passes threshold (3SD) if np.absolute(min(a[26:80])) > np.absolute(max(a[26:80])) and np.absolute(min(a[26:80])) >= 3 * np.std( df[col][firsta:firstb]): b = sum(df[col][winstart:winend] * (1 / fr)) integral.append(b) elif np.absolute(max(a[26:80])) > np.absolute(min(a[26:80])) and np.absolute(max(a[26:80])) >= 3 * np.std( df[col][firsta:firstb]): b = sum(df[col][winstart:winend] * (1 / fr)) integral.append(b) else: b = 0 integral.append(b) integral = pd.DataFrame(integral).T integral.columns = df.columns integral = pd.concat([pd.DataFrame({'Trial': [int(filename.split('dt')[0])]}), integral], axis=1) intdf = intdf.append(integral) intdf.to_csv('%s_integral.csv' % date, index=False) # Get average integral across all trials using integral dataframe meanint = pd.DataFrame([]) for key in odortrials: odor = odortrials[key] mean = [] for col in intdf.loc[intdf['Trial'].isin(odor)][ [col for col in intdf.loc[intdf['Trial'].isin(odor)].columns if 'G PMT' in col]]: mean.append(intdf.loc[intdf['Trial'].isin(odor)][col].mean()) mean = pd.DataFrame(mean).T mean.columns = intdf.loc[intdf['Trial'].isin(odor)][ [col for col in intdf.loc[intdf['Trial'].isin(odor)].columns if 'G PMT' in col]].columns meanint = meanint.append(mean) meanint = meanint.reset_index(drop=True) meanint.columns = [str(col) + '_' + date for col in meanint.columns] meanint = pd.concat([pd.DataFrame({'Odor': odortrials.keys()}), meanint], axis=1) meanint.to_csv('%s_meanint.csv' % date, index=False) return 'Done' ## def getbaseline(date): temp = pd.DataFrame([]) os.chdir('C:\\Users\\Annie\\Documents\\Data\\Ca_Imaging\\HabituationFiles\\%s' % date) # Pull the trials that correspond to specific date/odors trials = pd.read_csv('C:\\Users\\Annie\\Documents\\Data\\Ca_Imaging\\Analysis\\Odor_Panel\\Odor_Trials.csv') filerow = trials.loc[trials['File'] == date] odortrials = {} for t in filerow.Odor.unique(): y = {t: [int(x) for x in filerow.loc[filerow['Odor'] == t][['T1', 'T2', 'T3', 'T4']].values.tolist()[0]]} odortrials.update(y) # Get the frame rate for a specified date num = trials.File.unique().tolist().index('%s' % date) fr = trials.loc[trials['File'] == trials.File.unique().tolist()[num]]['FrameRate'].iloc[0] # Get baseline baseline = pd.DataFrame([]) for filename in glob.glob('*dt.txt'): f = pd.read_csv(filename, nrows=125) df = f[[col for col in f.columns if 'G PMT' in col]] winstart = np.int(4 * fr) winend = np.int(12 * fr) base = [] for col in df.columns: a = df[col] firsta = 1; firstb = 24; b = (df[col][firsta:firstb]).mean() base.append(b) base = pd.DataFrame(base).T base.columns = df.columns base = pd.concat([pd.DataFrame({'Trial': [int(filename.split('dt')[0])]}), base], axis=1) baseline = baseline.append(base) baseline.to_csv('%s_baseline.csv' % date, index=False) # mean baseline meanbase =
pd.DataFrame([])
pandas.DataFrame
# -------------- # Importing header files import numpy as np import pandas as pd from scipy.stats import mode import warnings warnings.filterwarnings('ignore') #Reading file bank_data =
pd.read_csv(path)
pandas.read_csv
# import sys, os # sys.path.append( os.path.join( os.path.dirname( __file__ ), '..' ) ) import numpy as np import pandas as pd from . import ConfusionMatrix y_true = [1,1,3,1] y_pred = [1,2,2,1] labels = [1,2,3] names = ['foo','bar','baz'] def test_create_cmat(): ''' Check that constructing method, called with ideal arguments, does not throw a weird error ''' cm = ConfusionMatrix.create( y_true, y_pred, labels, names ) def test_create_cmat_names_ok(): ''' Check that names are correctly set, either explicityly or dynamically ''' # Create with explicit names cm = ConfusionMatrix.create( y_true, y_pred, labels, names ) assert np.all( cm.cmat.columns == np.array(names) ) assert np.all( cm.cmat.index == np.array(names) ) # Create without explicit names, labels should be used cm = ConfusionMatrix.create( y_true, y_pred, labels ) assert np.all( cm.cmat.columns == np.array(labels) ) assert np.all( cm.cmat.index == np.array(labels) ) def test_create_cmat_labels_ok(): ''' Check that labels are correctly set or dynamically created ''' # Create with explicit labels cm = ConfusionMatrix.create( y_true, y_pred, labels+[4] ) assert cm.cmat.shape == (4,4) # Create with dynamically discovered labels cm = ConfusionMatrix.create( y_true, y_pred ) assert cm.cmat.shape == (3,3) assert np.all( cm.cmat.columns == np.array( labels )) assert np.all( cm.cmat.index == np.array( labels )) def test_classes(): ''' Check that classes returns the provided labels ''' cm = ConfusionMatrix.create( y_true, y_pred, labels, names ) assert cm.num_classes == 3 assert np.all( cm.classes == np.array( names )) def test_support(): ''' Check that support correctly returns support for each class ''' cm = ConfusionMatrix.create( y_true, y_pred, labels, names ) expected =
pd.Series([3,0,1], index=names )
pandas.Series
from collections import defaultdict import csv import pandas.compat as compat from pandas import DataFrame from pandas_datareader.base import _BaseReader _yahoo_codes = {'symbol': 's', 'last': 'l1', 'change_pct': 'p2', 'PE': 'r', 'time': 't1', 'short_ratio': 's7'} class YahooQuotesReader(_BaseReader): """Get current yahoo quote""" @property def url(self): return 'http://finance.yahoo.com/d/quotes.csv' @property def params(self): """Parameters to use in API calls""" if isinstance(self.symbols, compat.string_types): sym_list = self.symbols else: sym_list = '+'.join(self.symbols) # For codes see: http://www.gummy-stuff.org/Yahoo-data.htm # # Construct the code request string. request = ''.join(
compat.itervalues(_yahoo_codes)
pandas.compat.itervalues
#!/usr/bin/env python3 from argparse import ArgumentParser from collections import defaultdict import os import sys import matplotlib matplotlib.use('pdf') matplotlib.rcParams['pdf.fonttype'] = 42 matplotlib.rcParams['ps.fonttype'] = 42 matplotlib.rcParams['font.size'] = 12 import matplotlib.pyplot as plt import numpy as np import pandas as pd import scipy import seaborn as sns import statsmodels.stats.contingency_tables import tqdm from janus.pipeline import pipeline_to_tree as pt from janus.repair.local_rules import ( is_match_edit, edit_to_str, ) from janus import utils def add_timestamp_percentile(df, percentiles, percentiles_labels): unique_ts = df.groupby(["dataset", "id"]).head(1) percentile_map = {} for d in unique_ts["dataset"].unique(): unique_ts_d = unique_ts[unique_ts["dataset"] == d] unique_ts_d = unique_ts_d.sort_values("timestamp", ascending=True) percents = pd.qcut( unique_ts_d["timestamp"], percentiles, labels=percentiles_labels) for i, p in zip(unique_ts_d["id"], percents): percentile_map[(d, i)] = p return [percentile_map[(d, i)] for d, i in zip(df["dataset"], df["id"])] def prepare_df(df, compute_dist=False): df_orig = df[df["type"] == "orig"] df_orig = df_orig[~df_orig["failed"]] # make sure we only consider dataset/id where we have the orig # for all strategies unique_strategies = df["strategy"].unique() n_strategies = len(unique_strategies) strategy_cts = df_orig.groupby( ["dataset", "id"])["strategy"].agg(lambda x: len(set(x))) strategy_cts = strategy_cts.to_frame(name="strategy_cts").reset_index() df_orig = pd.merge(df_orig, strategy_cts, how="left", on=["dataset", "id"]) df_orig = df_orig[df_orig["strategy_cts"] == n_strategies] df_repaired = df[df["type"] == "repair"] df_repaired = df_repaired[~df_repaired["failed"]] df_repaired = df_repaired.sort_values("mean_test_score", ascending=False) # there should only be one secore per dataset/id/strategy assert df_repaired.groupby(["dataset", "strategy", "id"]).size().max() == 1 df_orig = df_orig[[ "dataset", "strategy", "id", "test_scores", "mean_test_score", "graph", "timestamp", "repair_time", ]] df_repaired = df_repaired[[ "dataset", "strategy", "id", "mean_test_score", "graph", "test_scores", "repair_time", ]] df_combined = pd.merge( df_orig, df_repaired, how="left", on=["dataset", "strategy", "id"], suffixes=("_orig", "_repaired"), ) if compute_dist: dist = [ None if pd.isnull(repaired) else pt.tree_edit_distance( pt.to_pipeline(orig), pt.to_pipeline(repaired)) for orig, repaired in tqdm.tqdm( list( zip(df_combined["graph_orig"], df_combined["graph_repaired"]))) ] else: dist = np.nan df_combined["distance"] = dist # assign "row" to timestamp-based quartile df_combined["ts_quartile"] = add_timestamp_percentile( df_combined, [0.0, 0.25, 0.5, 0.75, 1.0], ["0-0.25", "0.25-0.5", "0.5-0.75", "0.75-1.0"], ) df_combined["ts_decile"] = add_timestamp_percentile( df_combined, np.arange(0, 1.1, 0.1), (lambda x: ["{:.1f}-{:.1f}".format(i, j) for i, j in zip(x, x[1:])])( np.arange(0, 1.1, 0.1))) df_combined["score_diff"] = df_combined[ "mean_test_score_repaired"] - df_combined["mean_test_score_orig"] df_combined["had_effect"] = df_combined["score_diff"].abs() >= 0.01 df_combined["improved"] = (df_combined["score_diff"] > 0) & df_combined["had_effect"] df_combined["improved_int"] = df_combined["improved"].astype(int) df_combined["hurt"] = (df_combined["score_diff"] < 0) & df_combined["had_effect"] df_combined["has_repair"] = ~pd.isnull( df_combined["mean_test_score_repaired"]) df_combined["dummy"] = 1 return df_combined def stat_by_strategy(df, col, groupcols=None, op="mean"): if groupcols is None: groupcols = ["dataset", "strategy"] assert "strategy" in groupcols stat_df = df.groupby(groupcols)[col].agg(op) stat_df = stat_df.to_frame(name=col) stat_df = stat_df.reset_index() index_cols = list(groupcols) index_cols.remove("strategy") pv_stat_df = pd.pivot_table( data=stat_df, index=index_cols, columns="strategy", values=col) pv_stat_df = pv_stat_df.reset_index() pv_stat_df.columns.name = None return pv_stat_df def summarize_df(df): df = df.copy() # now append version with "overall" (i.e. agg) ts_quartile df_overall = df.copy() df_overall["ts_quartile"] = "overall" df = pd.concat((df, df_overall), axis=0).reset_index(drop=True) groupcols = ["dataset", "ts_quartile", "strategy"] print("Stat: Number of pipelines in experiments") print(stat_by_strategy(df, "dummy", groupcols=groupcols, op="sum"), "\n") print("Stat: Fraction w/ available 'repair'") print(stat_by_strategy(df, "has_repair", groupcols=groupcols, op="mean"), "\n") print("Stat: Fraction improved") print(stat_by_strategy(df, "improved", groupcols=groupcols, op="mean"), "\n") print("Stat: Total number improved") print(stat_by_strategy( df[df["ts_quartile"] == "overall"], "improved_int", groupcols=["dataset", "strategy"], op="sum"), "\n") print("Stat: Mean score diff") print(stat_by_strategy(df, "score_diff", groupcols=groupcols, op="mean"), "\n") print("Stat: Mean score diff (if improvement)") print(stat_by_strategy( df[df["score_diff"] > 0], "score_diff", groupcols=groupcols, op="mean"), "\n") df = df.sort_values("score_diff", ascending=False) best_df = df.groupby(["dataset", "ts_quartile", "id"]).head(1) print( "Stat: Number of dataset/pipeline where a strategy gets largest score improvement" ) print(stat_by_strategy(best_df, "dummy", groupcols=groupcols, op="sum")) print("Stat: Mean distance (if improvement)") print(stat_by_strategy( df[df["score_diff"] > 0], "distance", groupcols=groupcols, op="mean"), "\n") print("Stat: Mean repair time") print(stat_by_strategy( df, "repair_time_repaired", groupcols=["dataset", "strategy"], op="mean")) def get_palette(df): strats = sorted(df["strategy"].unique()) colors = sns.color_palette("colorblind", len(strats)) return strats, {s: c for s, c in zip(strats, colors)} def get_bootstrap(func, vals, num_iters, low, hi, random_state=None): num_obs = len(vals) rng = np.random.RandomState(random_state) boot_samples = rng.choice(vals, size=(num_iters, num_obs)) boot_ests = np.apply_along_axis(func, 1, boot_samples) obs_val = func(vals) boot_diffs = boot_ests - obs_val low_diff = np.percentile(boot_diffs, low) hi_diff = np.percentile(boot_diffs, hi) # note the order of the differences result = (obs_val - hi_diff, obs_val, obs_val - low_diff) assert result[0] < result[1] < result[2] return result def get_rng(strategy): return sum(ord(c) for c in strategy) def table_fraction_outcome(df, column, get_bold, random_state=None): mean_with_ci = lambda d, rs: get_bootstrap( np.mean, d, 1000, 5.0, 95.0, random_state=rs ) df_res = df.groupby(["dataset", "strategy"]).apply( lambda d: mean_with_ci(d[column].values, get_rng(d["strategy"].iloc[0])) ) df_res = df_res.to_frame(name="change_with_ci").reset_index() format_text = "{:.2f} ({:.2f}-{:.2f})" df_res["val_text"] = df_res["change_with_ci"].map( lambda t: format_text.format(t[1], t[0], t[2])) df_res["mean_val"] = df_res["change_with_ci"].map(lambda t: t[1]) # bold the highest value per dataset df_res["rank"] = df_res.groupby(["dataset"])["mean_val"].rank( "dense", ascending=False) df_res["with_bold"] = df_res.groupby(["dataset"])["mean_val"].apply(get_bold) df_res["val_text"] = [ "\\textbf{{{}}}".format(txt) if bold else txt for bold, txt in zip(df_res["with_bold"], df_res["val_text"]) ] df_res = df_res[["dataset", "strategy", "val_text"]] df_pv = pd.pivot( df_res, index="dataset", columns="strategy", values="val_text") df_pv = df_pv.reset_index() # escape ourselves df_pv["dataset"] = df_pv["dataset"].map(lambda x: x.replace("_", "\\_")) return df_pv def table_fraction_repaired(df, random_state=None): return table_fraction_outcome( df, "improved", lambda x: x == max(x), random_state=random_state) def table_fraction_hurt(df, random_state=None): return table_fraction_outcome( df, "hurt", lambda x: x == min(x), random_state=random_state) def plot_fraction_repaired(df): fig, ax = plt.subplots(1) hue_order, palette = get_palette(df) sns.barplot( data=df, x="improved", y="dataset", hue="strategy", estimator=np.mean, # linestyles=["None"] * len(df["strategy"].unique()), dodge=True, ci=95, ax=ax, orient="h", palette=palette, hue_order=hue_order, ) ax.set_xlabel("Fraction of Pipelines Improved") ax.set_ylabel("Dataset") plt.legend( loc="center right", bbox_to_anchor=(0.0, 1.05, 1., .102), ncol=2) plt.tight_layout() return ax def plot_fraction_repaired_rank(df): # rank systems # by fraction repaired # and then count the ranks fig, ax = plt.subplots(1) df_frac = df.groupby(["dataset", "strategy"])[["improved"]].mean() df_frac = df_frac.reset_index() df_frac["rank"] = df_frac.groupby(["dataset"])["improved"].rank( "dense", ascending=False) hue_order, palette = get_palette(df_frac) sns.countplot( data=df_frac, x="rank", hue="strategy", dodge=True, ax=ax, palette=palette, hue_order=hue_order, ) ax.set_xlabel("Rank") ax.set_ylabel("Datasets") plt.legend( loc="center right", bbox_to_anchor=(0.0, 1.05, 1., .102), ncol=2) plt.tight_layout() return ax def plot_fraction_candidate(df): fig, ax = plt.subplots(1) df = df.copy() sns.barplot( data=df, x="has_repair", y="dataset", hue="strategy", estimator=np.mean, # linestyles=["None"] * len(df["strategy"].unique()), dodge=True, ci=95, ax=ax, orient="h", ) ax.set_xlabel("Fraction of Pipelines with Repair Candidate") ax.set_ylabel("Dataset") plt.legend( loc="center right", bbox_to_anchor=(0.0, 1.05, 1., .102), ncol=2) plt.tight_layout() return ax def fraction_repaired_over_time(df): fig, ax = plt.subplots(1) sns.pointplot( data=df, x="ts_decile", y="improved", hue="strategy", estimator=np.mean, dodge=True, ci=95, ax=ax, ) plt.xticks(rotation=90) ax.set_xlabel("Timestamp Decile") ax.set_ylabel("Fraction of Pipelines Improved") plt.legend(loc="best", title=None, ncol=2) plt.tight_layout() return ax def plot_score_improvement(df): all_strategies = df["strategy"].unique() n_all_strategies = len(all_strategies) df = df[df["improved"]] check = df.groupby(["dataset", "id"])["strategy"].agg(lambda x: len(set(x))) check = check.to_frame(name="num_strategies").reset_index() check["drop"] = check["num_strategies"] < n_all_strategies df =
pd.merge(df, check, how="left", on=["dataset", "id"])
pandas.merge
import streamlit as st import pandas as pd from pyvis.network import Network import networkx as nx import matplotlib.pyplot as plt import bz2 import pickle import _pickle as cPickle import pydot import math import numpy as num def decompress_pickle(file): data = bz2.BZ2File(file, 'rb') data = cPickle.load(data) return data uploaded_files = st.sidebar.file_uploader("Choose files", accept_multiple_files=True) # sidebar for navigating pages page_nav = st.sidebar.selectbox("Select view:",('Document overviews','Focus concepts','Path views','Active Study view','Study phenomena','Study sets')) @st.cache def do_this_first(uploaded_files): #st.write(st.__version__) # Load any compressed pickle file # for uploaded_file in uploaded_files: # concepts = decompress_pickle(uploaded_file) # st.write("filename:", uploaded_file.name) filenames = [file.name for file in uploaded_files] # return this import pandas as pd Agg_Conceptdata = pd.DataFrame() All_Conceptdata = pd.DataFrame() Agg_np_to_sent = dict() Agg_sent_to_npflat = dict() Agg_sent_to_phen = dict() Agg_phen_to_sent = dict() Agg_att_to_sent = dict() Agg_sent_to_att = dict() Agg_ins_to_sent = dict() Agg_sent_to_ins = dict() Agg_set_to_sent = dict() Agg_sent_to_set = dict() Agg_np_to_forms = dict() doc_to_np = dict() np_to_doc = dict() Agg_df = pd.DataFrame() Agg_df = pd.DataFrame() Agg_np_to_roles = dict() Agg_sent_to_clt = dict() Agg_sents = dict() #Agg_sents_df = pd.DataFrame() #Agg_docs_df = pd.DataFrame() All_df = pd.DataFrame() for uploaded_file in uploaded_files: concepts = decompress_pickle(uploaded_file) filename = uploaded_file.name #st.write("filename:", uploaded_file.name) Conceptdata = concepts['Conceptdata'] sent_to_npflat = concepts['sent_to_npflat'] np_to_sent = concepts['np_to_sent'] np_to_forms = concepts['np_to_forms'] sent_to_phen = concepts['sent_to_phen'] phen_to_sent = concepts['phen_to_sent'] sent_to_att = concepts['sent_to_att'] att_to_sent = concepts['att_to_sent'] att_to_sent = concepts['att_to_sent'] ins_to_sent = concepts['ins_to_sent'] sent_to_ins = concepts['sent_to_ins'] set_to_sent = concepts['set_to_sent'] sent_to_set = concepts['sent_to_set'] np_to_roles = concepts['np_to_roles'] sent_to_clt = concepts['sent_to_clt'] sents = concepts['sents'] df = concepts['df'] Conceptdata['docname'] = filename Agg_Conceptdata = Agg_Conceptdata.append(Conceptdata,ignore_index=True) Agg_sent_to_clt[filename.replace(".pbz2","")] = sent_to_clt Agg_np_to_sent[filename.replace(".pbz2","")] = np_to_sent Agg_sents[filename.replace(".pbz2","")] = sents Agg_sent_to_npflat[filename.replace(".pbz2","")] = sent_to_npflat Agg_sent_to_set[filename.replace(".pbz2","")] = sent_to_set Agg_sent_to_att[filename.replace(".pbz2","")] = sent_to_att Agg_sent_to_phen[filename.replace(".pbz2","")] = sent_to_phen Agg_sent_to_ins[filename.replace(".pbz2","")] = sent_to_ins Agg_df = Agg_df.append(df,ignore_index=True) doc_to_np[filename] = list(np_to_sent.keys()) # return this for np in np_to_sent: # if np in Agg_np_to_sent: # Agg_np_to_sent[np] = Agg_np_to_sent[np] + [(filename,s) for s in np_to_sent[np]] # else: # Agg_np_to_sent[np] = [(filename,s) for s in np_to_sent[np]] if np in np_to_doc: np_to_doc[np] = np_to_doc[np] + [filename] else: np_to_doc[np] = [filename] for np in np_to_forms: if np in Agg_np_to_forms: Agg_np_to_forms[np] = Agg_np_to_forms[np] + np_to_forms[np] else: Agg_np_to_forms[np] = np_to_forms[np] for np in np_to_roles: if np in Agg_np_to_roles: Agg_np_to_roles[np] = Agg_np_to_roles[np] + np_to_roles[np] else: Agg_np_to_roles[np] = np_to_roles[np] for np in phen_to_sent: if np in Agg_phen_to_sent: Agg_phen_to_sent[np] = Agg_phen_to_sent[np] + [(filename,s) for s in phen_to_sent[np]] else: Agg_phen_to_sent[np] = [(filename,s) for s in phen_to_sent[np]] for np in att_to_sent: if np in Agg_att_to_sent: Agg_att_to_sent[np] = Agg_att_to_sent[np] + [(filename,s) for s in att_to_sent[np]] else: Agg_att_to_sent[np] = [(filename,s) for s in att_to_sent[np]] for np in set_to_sent: if np in Agg_set_to_sent: Agg_set_to_sent[np] = Agg_set_to_sent[np] + [(filename,s) for s in set_to_sent[np]] else: Agg_set_to_sent[np] = [(filename,s) for s in set_to_sent[np]] for np in ins_to_sent: if np in Agg_ins_to_sent: Agg_ins_to_sent[np] = Agg_ins_to_sent[np] + [(filename,s) for s in ins_to_sent[np]] else: Agg_ins_to_sent[np] = [(filename,s) for s in ins_to_sent[np]] #st.write(Agg_Conceptdata.columns) All_Conceptdata =
pd.DataFrame()
pandas.DataFrame
from datetime import datetime, timedelta, timezone import random from tabnanny import check import unittest import pandas as pd import pytz if __name__ == "__main__": from pathlib import Path import sys sys.path.insert(0, str(Path(__file__).resolve().parents[2])) from datatube.dtype import check_dtypes class TestObj: pass unittest.TestCase.maxDiff = None SIZE = 3 TEST_DATA = { int: { "integers": [-1 * SIZE // 2 + i + 1 for i in range(SIZE)], "whole floats": [-1 * SIZE // 2 + i + 1.0 for i in range(SIZE)], "real whole complex": [complex(-1 * SIZE // 2 + i + 1, 0) for i in range(SIZE)], }, float: { "decimal floats": [-1 * SIZE // 2 + i + 1 + random.random() for i in range(SIZE)], "real decimal complex": [complex(-1 * SIZE // 2 + i + 1 + random.random(), 0) for i in range(SIZE)], }, complex: { "imaginary complex": [complex(-1 * SIZE // 2 + i + 1 + random.random(), -1 * SIZE // 2 + i + 1 + random.random()) for i in range(SIZE)], }, str: { "integer strings": [str(-1 * SIZE // 2 + i + 1) for i in range(SIZE)], "whole float strings": [str(-1 * SIZE // 2 + i + 1.0) for i in range(SIZE)], "decimal float strings": [str(-1 * SIZE // 2 + i + 1 + random.random()) for i in range(SIZE)], "real whole complex strings": [str(complex(-1 * SIZE // 2 + i + 1, 0)) for i in range(SIZE)], "real decimal complex strings": [str(complex(-1 * SIZE // 2 + i + 1 + random.random(), 0)) for i in range(SIZE)], "imaginary complex strings": [str(complex(-1 * SIZE // 2 + i + 1 + random.random(), -1 * SIZE // 2 + i + 1 + random.random())) for i in range(SIZE)], "character strings": [chr(i % 26 + ord("a")) for i in range(SIZE)], "boolean strings": [str(bool((i + 1) % 2)) for i in range(SIZE)], "aware datetime strings": [str(datetime.fromtimestamp(i, tz=timezone.utc)) for i in range(SIZE)], "aware ISO 8601 strings": [datetime.fromtimestamp(i, tz=timezone.utc).isoformat() for i in range(SIZE)], "naive datetime strings": [str(datetime.fromtimestamp(i)) for i in range(SIZE)], "naive ISO 8601 strings": [datetime.fromtimestamp(i).isoformat() for i in range(SIZE)], "aware/naive datetime strings": [str(datetime.fromtimestamp(i, tz=timezone.utc)) if i % 2 else str(datetime.fromtimestamp(i)) for i in range(SIZE)], "aware/naive ISO 8601 strings": [datetime.fromtimestamp(i, tz=timezone.utc).isoformat() if i % 2 else datetime.fromtimestamp(i).isoformat() for i in range(SIZE)], "mixed timezone datetime strings": [str( datetime.fromtimestamp( i, tz=pytz.timezone( pytz.all_timezones[i % len(pytz.all_timezones)] ) ) ) for i in range(SIZE)], "mixed timezone ISO 8601 strings": [datetime.fromtimestamp( i, tz=pytz.timezone( pytz.all_timezones[i % len(pytz.all_timezones)] ) ).isoformat() for i in range(SIZE)], "timedelta strings": [str(timedelta(seconds=i + 1)) for i in range(SIZE)], "pd.Timedelta strings": [str(pd.Timedelta(timedelta(seconds=i + 1))) for i in range(SIZE)] }, bool: { "booleans": [bool((i + 1) % 2) for i in range(SIZE)] }, datetime: { "aware datetimes": [datetime.fromtimestamp(i, tz=timezone.utc) for i in range(SIZE)], "naive datetimes": [datetime.fromtimestamp(i) for i in range(SIZE)], "aware/naive datetimes": [datetime.fromtimestamp(i, tz=timezone.utc) if i % 2 else datetime.fromtimestamp(i) for i in range(SIZE)], "mixed timezone datetimes": [datetime.fromtimestamp( i, tz = pytz.timezone( pytz.all_timezones[i % len(pytz.all_timezones)] ) ) for i in range(SIZE)] }, timedelta: { "timedeltas": [timedelta(seconds=i + 1) for i in range(SIZE)] }, object: { "Nones": [None for _ in range(SIZE)], "custom objects": [TestObj() for _ in range(SIZE)] } } ALL_DATA = {col_name: data for v in TEST_DATA.values() for col_name, data in v.items()} class CheckDtypeTests(unittest.TestCase): def test_check_integers_series_no_na(self): failed = [] for col_name, data in ALL_DATA.items(): series = pd.Series(data) result = check_dtypes(series, int) expected = col_name in TEST_DATA[int] try: self.assertEqual(result, expected) except AssertionError: context = f"check_dtypes({data[:3]}..., int) != {expected}" failed.append(context) if len(failed) > 0: joined = "\n\t".join(failed) raise AssertionError(f"{len(failed)} failed checks:\n\t{joined}") def test_check_integers_series_with_na(self): failed = [] for col_name, data in ALL_DATA.items(): series = pd.Series(data + [None]) result = check_dtypes(series, int) expected = col_name in TEST_DATA[int] try: self.assertEqual(result, expected) except AssertionError: context = f"check_dtypes({data[:3]}..., int) != {expected}" failed.append(context) if len(failed) > 0: joined = "\n\t".join(failed) raise AssertionError(f"{len(failed)} failed checks:\n\t{joined}") def test_check_integers_df_no_na(self): df = pd.DataFrame(ALL_DATA) failed = [] for col_name in df.columns: result = check_dtypes(df, {col_name: int}) expected = col_name in TEST_DATA[int] try: self.assertEqual(result, expected) except AssertionError: context = (f"check_dtypes(df, {{{repr(col_name)}: int}}) != " f"{expected}") failed.append(context) if len(failed) > 0: joined = "\n\t".join(failed) raise AssertionError(f"{len(failed)} failed checks:\n\t{joined}") def test_check_integers_df_with_na(self): with_na = {k: v + [None] for k, v in ALL_DATA.items()} df = pd.DataFrame(with_na) failed = [] for col_name in df.columns: result = check_dtypes(df, {col_name: int}) expected = col_name in TEST_DATA[int] try: self.assertEqual(result, expected) except AssertionError: context = (f"check_dtypes(df, {{{repr(col_name)}: int}}) != " f"{expected}") failed.append(context) if len(failed) > 0: joined = "\n\t".join(failed) raise AssertionError(f"{len(failed)} failed checks:\n\t{joined}") def test_check_floats_series_no_na(self): failed = [] for col_name, data in ALL_DATA.items(): series = pd.Series(data) result = check_dtypes(series, float) expected = col_name in TEST_DATA[float] try: self.assertEqual(result, expected) except AssertionError: context = f"check_dtypes({data[:3]}..., float) != {expected}" failed.append(context) if len(failed) > 0: joined = "\n\t".join(failed) raise AssertionError(f"{len(failed)} failed checks:\n\t{joined}") def test_check_floats_series_with_na(self): failed = [] for col_name, data in ALL_DATA.items(): series = pd.Series(data + [None]) result = check_dtypes(series, float) expected = col_name in TEST_DATA[float] try: self.assertEqual(result, expected) except AssertionError: context = f"check_dtypes({data[:3]}..., float) != {expected}" failed.append(context) if len(failed) > 0: joined = "\n\t".join(failed) raise AssertionError(f"{len(failed)} failed checks:\n\t{joined}") def test_check_floats_df_no_na(self): df = pd.DataFrame(ALL_DATA) failed = [] for col_name in df.columns: result = check_dtypes(df, {col_name: float}) expected = col_name in TEST_DATA[float] try: self.assertEqual(result, expected) except AssertionError: context = (f"check_dtypes(df, {{{repr(col_name)}: float}}) != " f"{expected}") failed.append(context) if len(failed) > 0: joined = "\n\t".join(failed) raise AssertionError(f"{len(failed)} failed checks:\n\t{joined}") def test_check_floats_df_with_na(self): with_na = {k: v + [None] for k, v in ALL_DATA.items()} df = pd.DataFrame(with_na) failed = [] for col_name in df.columns: result = check_dtypes(df, {col_name: float}) expected = col_name in TEST_DATA[float] try: self.assertEqual(result, expected) except AssertionError: context = (f"check_dtypes(df, {{{repr(col_name)}: float}}) != " f"{expected}") failed.append(context) if len(failed) > 0: joined = "\n\t".join(failed) raise AssertionError(f"{len(failed)} failed checks:\n\t{joined}") def test_check_complex_series_no_na(self): failed = [] for col_name, data in ALL_DATA.items(): series = pd.Series(data) result = check_dtypes(series, complex) expected = col_name in TEST_DATA[complex] try: self.assertEqual(result, expected) except AssertionError: context = f"check_dtypes({data[:3]}..., complex) != {expected}" failed.append(context) if len(failed) > 0: joined = "\n\t".join(failed) raise AssertionError(f"{len(failed)} failed checks:\n\t{joined}") def test_check_complex_series_with_na(self): failed = [] for col_name, data in ALL_DATA.items(): series = pd.Series(data + [None]) result = check_dtypes(series, complex) expected = col_name in TEST_DATA[complex] try: self.assertEqual(result, expected) except AssertionError: context = f"check_dtypes({data[:3]}..., complex) != {expected}" failed.append(context) if len(failed) > 0: joined = "\n\t".join(failed) raise AssertionError(f"{len(failed)} failed checks:\n\t{joined}") def test_check_complex_df_no_na(self): df = pd.DataFrame(ALL_DATA) failed = [] for col_name in df.columns: result = check_dtypes(df, {col_name: complex}) expected = col_name in TEST_DATA[complex] try: self.assertEqual(result, expected) except AssertionError: context = (f"check_dtypes(df, {{{repr(col_name)}: complex}}) " f"!= {expected}") failed.append(context) if len(failed) > 0: joined = "\n\t".join(failed) raise AssertionError(f"{len(failed)} failed checks:\n\t{joined}") def test_check_complex_df_with_na(self): with_na = {k: v + [None] for k, v in ALL_DATA.items()} df = pd.DataFrame(with_na) failed = [] for col_name in df.columns: result = check_dtypes(df, {col_name: complex}) expected = col_name in TEST_DATA[complex] try: self.assertEqual(result, expected) except AssertionError: context = (f"check_dtypes(df, {{{repr(col_name)}: complex}}) " f"!= {expected}") failed.append(context) if len(failed) > 0: joined = "\n\t".join(failed) raise AssertionError(f"{len(failed)} failed checks:\n\t{joined}") def test_check_strings_series_no_na(self): failed = [] for col_name, data in ALL_DATA.items(): series = pd.Series(data) result = check_dtypes(series, str) expected = col_name in TEST_DATA[str] try: self.assertEqual(result, expected) except AssertionError: context = f"check_dtypes({data[:3]}..., str) != {expected}" failed.append(context) if len(failed) > 0: joined = "\n\t".join(failed) raise AssertionError(f"{len(failed)} failed checks:\n\t{joined}") def test_check_strings_series_with_na(self): failed = [] for col_name, data in ALL_DATA.items(): series = pd.Series(data + [None]) result = check_dtypes(series, str) expected = col_name in TEST_DATA[str] try: self.assertEqual(result, expected) except AssertionError: context = f"check_dtypes({data[:3]}..., str) != {expected}" failed.append(context) if len(failed) > 0: joined = "\n\t".join(failed) raise AssertionError(f"{len(failed)} failed checks:\n\t{joined}") def test_check_strings_df_no_na(self): df =
pd.DataFrame(ALL_DATA)
pandas.DataFrame
import streamlit as st import pandas as pd import altair as alt import numpy as np from streamlit_option_menu import option_menu import xgboost as xgb from sklearn.model_selection import train_test_split from sklearn.metrics import mean_squared_error from sklearn.model_selection import cross_val_score, KFold from sklearn.svm import SVR from sklearn.decomposition import PCA from xgboost import XGBRegressor from vega_datasets import data st.set_page_config(layout="wide") st.markdown(""" <style> .font { font-size:50px ; font-family: 'Cooper Black'; color: #FF9633;} </style> """, unsafe_allow_html=True) @st.cache() def load_data(allow_output_mutation=True): data_path = "ds_data.csv" df = pd.read_csv(data_path) return df def get_state_slices(df,state): lable = pd.Series([True]*len(df),index=df.index) if state: lable &= df['Job Location'].apply(lambda x : True if x==state else False) return lable df = load_data() def Xgb_Regression(): model = xgb.XGBRegressor(max_depth=7, eta=0.1,n_estimators=1000, learning_rate=0.1) return model @st.cache(allow_output_mutation=True) def train_model(x,y): model = Xgb_Regression() xtrain, xtest, ytrain, ytest=train_test_split(x, y, test_size=0.1) model.fit(xtrain, ytrain) print("***") print(xtest) return model, xtrain, xtest, ytrain, ytest def feature_importance(model,x): df = pd.DataFrame(model.feature_importances_,columns=['importance']) df['features'] = x.columns df.reindex(x.columns, axis=1) feature_chart = alt.Chart(df).mark_bar(color="#C0EDA6").encode( y=alt.Y('features',sort="-x"), x=alt.X('importance'), color="importance", tooltip = ['importance'] ).interactive() st.altair_chart(feature_chart, use_container_width=True) def model_accuracy(model, xtrain, xtest, ytrain, ytest): #evaluate scores = cross_val_score(model, xtrain, ytrain,cv=5) print("Mean cross-validation score: %.2f" % scores.mean()) ypred = model.predict(xtest) mse = mean_squared_error(ytest, ypred) print("MSE: %.2f" % mse) y_pred_test = model.predict(xtest) source = pd.DataFrame({ 'ytest':ytest, 'y_pred_test':y_pred_test, }) predVSactual=alt.Chart(source).mark_circle(size=60).encode( x='ytest', y='y_pred_test', ).interactive() line = alt.Chart(source).mark_line( color='red', size=3 ).encode( x="ytest", y="ytest", ) st.altair_chart(predVSactual+line,use_container_width=True) st.sidebar.image("images/logo.png", use_column_width=True) with st.sidebar: selected = option_menu( menu_title = "", options = ["Data Exploration", "Salary Prediction"], default_index=0, icons=["boxes","search","clipboard-data"], ) if selected =="Data Exploration": st.title(f"{selected}") if st.checkbox("Show raw data"): st.write(df[:25]) st.header("🗺️ The salary map of Data Scientist in the US") counties = alt.topo_feature(data.us_10m.url, 'counties') source = data.unemployment.url us_states = ['AK', 'AL', 'AR', 'AS', 'AZ', 'CA', 'CO', 'CQ', 'CT', 'DC', 'DE', 'FL', 'GA', 'GU', 'HI', 'IA', 'ID', 'IL', 'IN', 'KS', 'KY', 'LA', 'MA', 'MD', 'ME', 'MI', 'MN', 'MO', 'MS', 'MT', 'NC', 'ND', 'NE', 'NH', 'NJ', 'NM', 'NV', 'NY', 'OH', 'OK', 'OR', 'PA', 'PR', 'RI', 'SC', 'SD', 'TN', 'TX', 'UT', 'VA', 'VI', 'VT', 'WA', 'WI', 'WV', 'WY'] dic = {} for i, s in enumerate(us_states): dic[s] = i + 1 df_map = df.groupby('Job Location').agg({'avgSalary': np.mean}).reset_index() df_map['id'] = df_map['Job Location'].apply(lambda x : dic[x]) states = alt.topo_feature(data.us_10m.url, feature='states') map_salary = alt.Chart(states).mark_geoshape().encode( color='avgSalary:Q', tooltip=[ alt.Tooltip("Job Location:N", title="State"), alt.Tooltip("avgSalary" + ":O", format='.1f', title="Average Salary"), ], ).transform_lookup( lookup='id', from_=alt.LookupData(df_map, 'id', ['Job Location', 'avgSalary']) ).project('albersUsa') background = alt.Chart(states).mark_geoshape( fill='lightgray', stroke='white' ).properties( title='map of average data scientist salary/K', width=700, height=400 ).project('albersUsa') st.write(background + map_salary) st.header("❓ Select the states you want to know about:") values = df['Job Location'].unique().tolist() default_ix = values.index('CA') state_option = st.selectbox( 'state', values, index=default_ix ) state_slices = get_state_slices(df,state_option) nationwide = pd.DataFrame() nationwide['avgSalary'] = df['avgSalary'] nationwide['name'] = 'nationwide salary' state = pd.DataFrame() state['avgSalary'] = df[state_slices]['avgSalary'] state['name'] = state_option + ' salary' category = ['0-50K', '50K-100K', '100K-150K', '150K-200K', '200K-250K', '250K-300K'] nationwide['binned']=pd.cut(x=nationwide['avgSalary'], bins=[0,50,100,150,200, 250, 300], labels=category) nation_count = pd.value_counts(nationwide['binned']).reset_index() nation_count['name'] = 'US salary' state['binned']=
pd.cut(x=state['avgSalary'], bins=[0,50,100,150,200, 250, 300], labels=category)
pandas.cut
""" This module contains all US-specific data loading and data cleaning routines. """ import datetime import requests import pandas as pd import numpy as np from .. import data idx = pd.IndexSlice def get_raw_covidtracking_data(run_date: pd.Timestamp): """ Gets the current daily CSV from COVIDTracking """ if run_date.date() > datetime.date.today(): raise ValueError("Run date is in the future. Nice try.") if run_date.date() < datetime.date.today(): # TODO: implement downloading of historic data raise NotImplementedError( "Downloading with a run_date is not yet supported. " f"Today: {datetime.date.today()}, run_date: {run_date}" ) url = "https://covidtracking.com/api/v1/states/daily.csv" data = pd.read_csv(url).rename(columns={ "state": "region", }) data["date"] = pd.to_datetime(data["date"], format="%Y%m%d") data = data.set_index(["region", "date"]).sort_index() # Too little data or unreliable reporting in the data source. df_raw = data.drop(["MP", "GU", "AS", "PR", "VI"]) # the data in these columns is crap. But it will be corrected by the process_covidtracking_data function # here we just add the columns so the original data is kept for region in df_raw.reset_index().region.unique(): df_raw.loc[idx[region, :], "new_cases"] = df_raw.xs(region).positive.diff().values df_raw.loc[idx[region, :], "new_tests"] = df_raw.xs(region).total.diff().values # calculate the sum over all states df_all = df_raw.sum(level='date') df_all.insert(0, column='region', value='all') df_all = df_all.reset_index().set_index(['region', 'date']) df_merged = pd.concat([df_raw, df_all]).sort_index() return df_merged def apply_corrections(data: pd.DataFrame) -> pd.DataFrame: # On Jun 5 Covidtracking started counting probable cases too # which increases the amount by 5014. # https://covidtracking.com/screenshots/MI/MI-20200605-184320.png data.loc[idx["MI", pd.Timestamp("2020-06-05") :], "total"] -= 5014 # From CT: On June 19th, LDH removed 1666 duplicate and non resident cases # after implementing a new de-duplicaton process. data.loc[idx["LA", pd.Timestamp("2020-06-19") :], ["positive", "total"]] += 1666 # calculate the daily counts for region in data.reset_index().region.unique(): data.loc[idx[region, :], "new_cases"] = data.xs(region).positive.diff().values data.loc[idx[region, :], "new_tests"] = data.xs(region).total.diff().values data["new_cases"][data["new_cases"] < 0] = np.nan data["new_tests"][data["new_tests"] < 0] = np.nan # Michigan missed 6/18 totals and lumped them into 6/19 so we've # divided the totals in two and equally distributed to both days. data.loc[idx["MI", pd.Timestamp("2020-06-18")], "new_tests"] = 14871 data.loc[idx["MI", pd.Timestamp("2020-06-19")], "new_tests"] = 14871 # Note that when we set new_cases/new_tests to NaN, the model ignores that date. See # the likelihood function in GenerativeModel.build # Huge outlier in NJ causing sampling issues. data.loc[idx["NJ", pd.Timestamp("2020-05-11")], ["new_cases", "new_tests"]] = np.nan # Same tests and positives, nulling out data.loc[idx["NJ", pd.Timestamp("2020-07-25")], ["new_cases", "new_tests"]] = np.nan # Huge outlier in CA causing sampling issues. data.loc[idx["CA", pd.Timestamp("2020-04-22")], ["new_cases", "new_tests"]] = np.nan # Huge outlier in CA causing sampling issues. # TODO: generally should handle when # tests == # positives and that # is not an indication of positive rate. data.loc[idx["SC", pd.Timestamp("2020-06-26")], ["new_cases", "new_tests"]] = np.nan # Two days of no new data then lumped sum on third day with lack of new total tests data.loc[idx["OR", pd.Timestamp("2020-06-26") : pd.Timestamp("2020-06-28")], 'new_cases'] = 174 data.loc[idx["OR", pd.Timestamp("2020-06-26") : pd.Timestamp("2020-06-28")], 'new_tests'] = 3296 #https://twitter.com/OHdeptofhealth/status/1278768987292209154 data.loc[idx["OH", pd.Timestamp("2020-07-01")], ["new_cases", "new_tests"]] = np.nan data.loc[idx["OH", pd.Timestamp("2020-07-09")], ["new_cases", "new_tests"]] = np.nan # Nevada didn't report total tests this day data.loc[idx["NV", pd.Timestamp("2020-07-02")], ["new_cases", "new_tests"]] = np.nan # A bunch of incorrect values for WA data so nulling them out. data.loc[idx["WA", pd.Timestamp("2020-06-05") : pd.Timestamp("2020-06-07")], ["new_cases", "new_tests"]] = np.nan data.loc[idx["WA", pd.Timestamp("2020-06-20") : pd.Timestamp("2020-06-21")], ["new_cases", "new_tests"]] = np.nan # AL reported tests == positives data.loc[idx["AL", pd.Timestamp("2020-07-09")], ["new_cases", "new_tests"]] = np.nan # Low reported tests data.loc[idx["AR", pd.Timestamp("2020-07-10")], ["new_cases", "new_tests"]] = np.nan # Positives == tests data.loc[idx["MS", pd.Timestamp("2020-07-12")], ["new_cases", "new_tests"]] = np.nan # Positive == Tests; lumpy reporting for CT data.loc[idx["CT", pd.Timestamp("2020-07-17")], ["new_cases", "new_tests"]] = np.nan data.loc[idx["CT", pd.Timestamp("2020-07-21")], ["new_cases", "new_tests"]] = np.nan data.loc[idx["DC", pd.Timestamp("2020-08-04")], ["new_cases", "new_tests"]] = np.nan # Outlier dates in PA data.loc[ idx[ "PA", [
pd.Timestamp("2020-06-03")
pandas.Timestamp
import numpy as np import pandas as pd import pytest from blocktorch.problem_types import ( ProblemTypes, detect_problem_type, handle_problem_types, is_binary, is_classification, is_multiclass, is_regression, is_time_series, ) @pytest.fixture def correct_problem_types(): # Unit tests expect this order correct_problem_types = [ ProblemTypes.REGRESSION, ProblemTypes.MULTICLASS, ProblemTypes.BINARY, ProblemTypes.TIME_SERIES_REGRESSION, ProblemTypes.TIME_SERIES_BINARY, ProblemTypes.TIME_SERIES_MULTICLASS, ] yield correct_problem_types def test_handle_string(correct_problem_types): problem_types = [ "regression", ProblemTypes.MULTICLASS, "binary", ProblemTypes.TIME_SERIES_REGRESSION, "time series binary", "time series multiclass", ] for problem_type in zip(problem_types, correct_problem_types): assert handle_problem_types(problem_type[0]) == problem_type[1] problem_type = "fake" error_msg = "Problem type 'fake' does not exist" with pytest.raises(KeyError, match=error_msg): handle_problem_types(problem_type) == ProblemTypes.REGRESSION def test_handle_problem_types(correct_problem_types): for problem_type in correct_problem_types: assert handle_problem_types(problem_type) == problem_type def test_handle_incorrect_type(): error_msg = "`handle_problem_types` was not passed a str or ProblemTypes object" with pytest.raises(ValueError, match=error_msg): handle_problem_types(5) def test_detect_problem_type_error(): y_empty = pd.Series([]) y_one_value = pd.Series([1, 1, 1, 1, 1, 1]) y_nan = pd.Series([np.nan, np.nan, 0]) y_all_nan = pd.Series([np.nan, np.nan]) with pytest.raises(ValueError, match="Less than 2"): detect_problem_type(y_empty) with pytest.raises(ValueError, match="Less than 2"): detect_problem_type(y_one_value) with pytest.raises(ValueError, match="Less than 2"): detect_problem_type(y_nan) with pytest.raises(ValueError, match="Less than 2"): detect_problem_type(y_all_nan) def test_detect_problem_type_binary(): y_binary =
pd.Series([1, 0, 1, 0, 0, 1])
pandas.Series
# To add a new cell, type '#%%' # To add a new markdown cell, type '#%% [markdown]' #%% from IPython import get_ipython #%% import os import numpy as np import pandas as pd import matplotlib.pyplot as plt import io import base64 from matplotlib import animation from matplotlib import cm from matplotlib.pyplot import * from sklearn.cluster import KMeans from sklearn.neighbors import KNeighborsClassifier from dateutil import parser from IPython.display import HTML from subprocess import check_output import seaborn as sns #%% get_ipython().run_line_magic('matplotlib', 'inline') #%% plt.rcParams['patch.force_edgecolor'] = 'True' plt.rcParams['figure.figsize'] = (16,10) plt.rcParams['axes.unicode_minus'] = False #%% df_train = pd.read_csv('train.csv') df_test = pd.read_csv('test.csv') #%% df_train.head() #%% df_train.describe() #%% df_train['log_trip duration'] = np.log(df_train['trip_duration'].values + 1) plt.hist(df_train['log_trip duration'].values, bins=100) plt.xlabel("log(trip duration)") plt.ylabel('number of training records') plt.show #%% #Ignore tHis N = 20000 city_long_border = (-75, -75) city_lat_border = (40,40) fig,ax = plt.subplots(ncols=1) ax.scatter(df_train['pickup_longitude'].values[:N], df_train['pickup_latitude'].values[:N], color='blue',s=1,label='train',alpha=0.1) plt.show() #%% #%% type(df_train['pickup_datetime']) #%% df_train['pickup_datetime'] = pd.to_datetime(df_train['pickup_datetime']) #%% df_train['dropoff_datetime'] = pd.to_datetime(df_train['dropoff_datetime']) #%% df_train['pickup_hr'] = df_train['pickup_datetime'].apply(lambda time:time.hour) df_train['pickup_min'] = df_train['pickup_datetime'].apply(lambda time:time.minute) df_train['pickup_sec'] = df_train['pickup_datetime'].apply(lambda time:time.second) #%% df_train['dropoff_hr'] = df_train['dropoff_datetime'].apply(lambda time:time.hour) df_train['dropoff_min'] = df_train['dropoff_datetime'].apply(lambda time:time.minute) df_train['dropoff_sec'] = df_train['dropoff_datetime'].apply(lambda time:time.second) #%% df_train['pickup_day'] = df_train['pickup_datetime'].apply(lambda time:time.dayofweek) df_train['pickup_month'] = df_train['pickup_datetime'].apply(lambda time:time.month) df_train['pickup_year'] = df_train['pickup_datetime'].apply(lambda time:time.year) df_train['dropoff_day'] = df_train['dropoff_datetime'].apply(lambda time:time.dayofweek) df_train['dropoff_month'] = df_train['dropoff_datetime'].apply(lambda time:time.month) df_train['dropoff_year'] = df_train['dropoff_datetime'].apply(lambda time:time.year) #%% dmap = {0:'Mon',1:'Tue',2:'Wed',3:'Thur',4:'Fri',5:'Sat',6:'Sun'} df_train['Pickup Day of Week'] = df_train['pickup_day'].map(dmap) df_train['Dropoff Day of Week'] = df_train['dropoff_day'].map(dmap) #%% df_train.head() #%% df_train[df_train['Pickup Day of Week']!= df_train['Dropoff Day of Week']].head() #%% df_train[df_train['Pickup Day of Week']!= df_train['Dropoff Day of Week']].describe() #%% len(df_train[df_train['Pickup Day of Week']!= df_train['Dropoff Day of Week']]) #%% sns.countplot('Pickup Day of Week',data=df_train, hue='pickup_month') #%% sns.countplot('Pickup Day of Week',data=df_train) #%% df_train['Date'] = df_train['pickup_datetime'].apply(lambda t: t.date()) #%% df_train.groupby('Date').count()['id'].plot() #%% sns.countplot('Pickup Day of Week',data=df_train,hue='store_and_fwd_flag',palette='coolwarm') #%% sns.heatmap(df_train.corr(),cmap='coolwarm') #%% sns.scatterplot(x='pickup_latitude',y='dropoff_latitude',data=df_train) #%% sns.scatterplot(x='pickup_longitude',y='dropoff_longitude',data=df_train) #%% sns.jointplot(x='pickup_hr',y='dropoff_hr',data=df_train[:10000],kind = "reg") #%% # IDK if it is good..... sns.jointplot(x='pickup_hr',y='dropoff_hr',data=df_train[:10000],kind = "hex") #%% xlim = [-74.03, -73.77] ylim = [40.63, 40.85] df_train = df_train[(df_train.pickup_longitude> xlim[0]) & (df_train.pickup_longitude < xlim[1])] df_train = df_train[(df_train.dropoff_longitude> xlim[0]) & (df_train.dropoff_longitude < xlim[1])] df_train = df_train[(df_train.pickup_latitude> ylim[0]) & (df_train.pickup_latitude < ylim[1])] df_train = df_train[(df_train.dropoff_latitude> ylim[0]) & (df_train.dropoff_latitude < ylim[1])] longitude = list(df_train.pickup_longitude) + list(df_train.dropoff_longitude) latitude = list(df_train.pickup_latitude) + list(df_train.dropoff_latitude) #%% plt.figure(figsize = (10,10)) plt.plot(longitude,latitude,'.', alpha = 0.4, markersize = 0.05,color="black") plt.show() #%% km_df = pd.DataFrame() km_df['longitude'] = longitude km_df['latitude'] = latitude #%% [markdown] # #### Now we will cluster the NYC map based on the cabs pick up and drop off points... #%% kmeans = KMeans(n_clusters=15, random_state=2, n_init = 10).fit(km_df) km_df['label'] = kmeans.labels_ km_df = km_df.sample(200000) plt.figure(figsize = (10,10)) for label in km_df.label.unique(): plt.plot(km_df.longitude[km_df.label == label],km_df.latitude[km_df.label == label],'.', alpha = 0.3, markersize = 0.3) plt.title('Clusters of New York Based on Cab pickup and dropoff points') plt.show() #%% [markdown] # As we can see, the clustering results in a partition which is somewhat similar to the way NY is divided into different neighborhoods. We can see Upper East and West side of Central park in gray and pink respectively. West midtown in blue, Chelsea and West Village in brown, downtown area in blue, East Village and SoHo in purple. # # The airports JFK and La LaGuardia have there own cluster, and so do Queens and Harlem. Brooklyn is divided into 2 clusters, and the Bronx has too few rides to be separated from Harlem. # # Let's plot the cluster centers: #%% fig,ax = plt.subplots(figsize = (10,10)) for label in km_df.label.unique(): ax.plot(km_df.longitude[km_df.label == label],km_df.latitude[km_df.label == label],'.', alpha = 0.4, markersize = 0.1, color = 'gray') ax.plot(kmeans.cluster_centers_[label,0],kmeans.cluster_centers_[label,1],'o', color = 'r') ax.annotate(label, (kmeans.cluster_centers_[label,0],kmeans.cluster_centers_[label,1]), color = 'b', fontsize = 20) ax.set_title('Center of Clusters') plt.show() #%% [markdown] # ### Taxi rides from one cluster to another # # And the following animation, every arrow represents rides from one cluster to another. The width of the arrow is proportional to the relative amount of trips in the relevant hour. #%% df_train['pickup_cluster'] = kmeans.predict(df_train[['pickup_longitude','pickup_latitude']]) df_train['dropoff_cluster'] = kmeans.predict(df_train[['dropoff_longitude','dropoff_latitude']]) df_train['pickup_hour'] = df_train.pickup_datetime.apply(lambda x: parser.parse(x).hour ) clusters =
pd.DataFrame()
pandas.DataFrame
import pytest import pandas as pd from getdera import utils from pandas.testing import assert_frame_equal from getdera.dera import process # TESTCASES TEST_DATA_PATH = 'getdera/tests/data' TESTCASES = { 'process_tag': [ {'args': (f'{TEST_DATA_PATH}', 'risk', 'tag', '01-01-2020', '01-03-2020'), 'expected': pd.DataFrame({ 'tag': ['AcquiredFundFeesAndExpensesBasedOnEstimates', 'AmendmentFlag', 'AmendmentFlag', 'AnnualFundOperatingExpensesTableTextBlock', 'AnnualReturn2006'], 'version': ['rr/2012', 'dei/2012', 'dei/2014', 'rr/2012', 'rr/2012'], 'dummy_value': ['lorem2020q1', 'ipsum2020q1', 'dolor2020q1', 'sit2020q1', 'amet2020q1']}).set_index(['tag', 'version'])} ], 'process_sub': [ {'args': (f'{TEST_DATA_PATH}', 'risk', 'sub', '01-10-2019', '15-12-2019'), 'expected': pd.DataFrame({ 'adsh': ['0000000001-01-000001', '0000000001-01-000002', '0000000001-01-000003'], 'dummy_val': ['lorem2019q4', None, 'dolor2019q4']}).set_index('adsh')} ], 'process': [ {'args': (f'{TEST_DATA_PATH}', 'risk', 'txt', '01-07-2019', '15-12-2019'), 'expected': pd.DataFrame({ 'adsh': ['0000000001-01-000001', '0000000001-01-000002', '0000000001-01-000003']*2, 'dummy_val': ['lorem2019q3', None, 'ipsum2019q3', 'lorem2019q4', None, 'ipsum2019q4']})}, {'args': (f'{TEST_DATA_PATH}', 'risk', 'txt', '01-10-2019', '15-01-2020'), 'expected': pd.DataFrame({ 'adsh': ['0000000001-01-000001', '0000000001-01-000002', '0000000001-01-000003']*2, 'dummy_val': ['lorem2020q1', None, 'ipsum2020q1', 'lorem2019q4', None, 'ipsum2019q4']})} ], } # FIXTURES @pytest.fixture(scope='function', params=TESTCASES['process_tag']) def process_tag_params(request, tmp_data_directory): args = request.param['args'] expected = request.param['expected'] return args, expected @pytest.fixture(scope='function', params=TESTCASES['process_sub']) def process_sub_params(request, tmp_data_directory): args = request.param['args'] expected = request.param['expected'] return args, expected @pytest.fixture(scope='function', params=TESTCASES['process']) def process_params(request, tmp_data_directory): args = request.param['args'] expected = request.param['expected'] return args, expected # UNIT TESTS def test_process_tag(process_tag_params): result = process(*process_tag_params[0]) expected = process_tag_params[1]
assert_frame_equal(result, expected)
pandas.testing.assert_frame_equal
#!/usr/bin/env python # coding: utf-8 # # day6 宿題 # 作成:松島亮輔 # # 課題:住宅販売価格を予測する # In[1]: get_ipython().run_line_magic('matplotlib', 'inline') #グラフをnotebook内に描画させるための設定 import pandas as pd import numpy as np import matplotlib.pyplot as plt from sklearn import linear_model from sklearn.decomposition import PCA #主成分分析用ライブラリ from sklearn.metrics import mean_squared_error, mean_absolute_error from IPython.display import display import seaborn as sns from scipy.stats import norm from sklearn.linear_model import LinearRegression #線形回帰のライブラリ import math from sklearn.model_selection import train_test_split from sklearn.preprocessing import MinMaxScaler # In[2]: df_data = pd.read_csv("../input/kc_house_data.csv") df_data["price"] = df_data["price"] / 10**6 #単位を100万ドルにしておく print(df_data.columns) print(df_data.columns) display(df_data.head()) display(df_data.tail()) # In[3]: ex_ver = ["bedrooms","bathrooms","sqft_living","grade","sqft_above","sqft_living15"] # trainデータとtestデータに分ける # In[5]: X, y = df_data.iloc[:,1:], df_data["price"] X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.01, random_state=0) display(X_train) display(X_test) display(y_train) display(y_test) # In[6]: df_data = X_train # 以下の説明変数について分析する # In[7]: for ver in ex_ver: sns.jointplot(x=ver, y="price", data=df_data,kind = 'reg', size = 10) plt.show() # In[25]: coord_df_data = pd.DataFrame([]) PCA_data = pd.DataFrame([]) for ver in ex_ver: X = np.array(df_data[[ver,"price"]]) pca = PCA(n_components=2) #主成分分析用のオブジェクトをつくる。削減後の次元数を引数で指定する。2次元データなので、3以上にするとエラーになる pca.fit(X) #主成分分析の実行 Y = np.dot((X), pca.components_.T) PCA_data[ver] = [pca.components_] dataframe_value =
pd.DataFrame(Y)
pandas.DataFrame
# -*- coding: utf-8 -*- import sys # import io from collections import OrderedDict from tabulate import tabulate import decimal from decimal import Decimal import itertools import numbers import string import numpy as np from scipy import stats import pandas as pd #import seaborn as sns import matplotlib as mpl import matplotlib.pyplot as plt ############################################################################### def isNumber(number): #import numbers try: number = float(number) if isinstance(number, numbers.Real): return(True) else: return(False) except: return(False) def factorial(x): #import decimal # calculate the factorial of a number if not isNumber(x): raise ValueError("factorial: Received invalid number.") if (x < 0): raise ValueError("factorial: Cannot calculate factorial of negative numbers!") if (x == 0) or (x == 1): return(1) else: result = 1 for i in range(2, x + 1): i = decimal.Decimal(str(i)) try: result = (result * i) except decimal.Overflow as e: raise ValueError("Number too big, internal error (OVERFLOW)") except Exception as e: raise ValueError("%s"% (ascii(e),)) return(int(result)) def comb_nonrep(n, k): #import itertools # calculate the number of combinations without repetitions # for "n" objects diveded into groups of k" objects if (n < 0) or (k < 0): raise ValueError("received invalid negative number.") nom = factorial(n) denom = (factorial(k) * factorial(n - k)) result = int(nom / denom) return(result) def sign(number): #import numbers try: number = float(number) except Exception: raise ValueError("ERROR: string %r is not a valid number." % (number,)) # check if supposed number is number if (isinstance(number, numbers.Real)): if (number > 0): return(1) elif (number == 0): return(0) elif (number < 0): return(-1) else: raise ValueError("ERROR: unexpected error while evaluating %r" % (number, )) def mad(arr): # MAD is the Median Absolute Deviation: # http://en.wikipedia.org/wiki/Median_absolute_deviatio med = np.median(arr) mad = np.median(np.abs(arr - med)) return mad def xlog(number, base=None, round_at=None, option=None): # http://stats.stackexchange.com/questions/1444/how-should-i-transform-non-negative-data-including-zeros # http://robjhyndman.com/hyndsight/transformations/ #import numbers #from decimal import Decimal options = ["int", "sign", "shift:"] if option: option = str(option) # check if supposed number is number if not isNumber(number): raise ValueError("number '%s' is not a valid real number." % (ascii(number),)) if option: if (number < 0) and not ("sign" in option): raise ValueError("cannot calculate logarithm of a negative number.") else: if (number < 0): raise ValueError("cannot calculate logarithm of a negative number.") if base: if (base == 'e'): pass else: if not isNumber(number): raise ValueError("invalid base value '%s'" % (ascii(base),)) if (base == 1) and (number == 1): raise ValueError("calculation of log in base '1' of number '1' is not possible.") if (base == 0): raise ValueError("calculation of log in base 0 is not possible.") if (base < 0): raise ValueError("calculation of log with a negative base is not possible.") if (base == number): return(1) if option: if (option == "sign") and (option in options): nsign = sign(number) number = abs(Decimal(str(number))) elif ("shift:" in option): sopt= option.split(":") if not (len(sopt) == 2): raise ValueError("invalid option '%s'" % (ascii(option),)) shift = sopt[1] if not isNumber(shift): raise ValueError("invalid shift value %s in option %s" % (ascii(shift), ascii(option))) shift = float(shift) number = number + shift if not (isinstance(shift, numbers.Real)): raise ValueError("shift %s is not a valid real number." % (ascii(shift),)) if (shift <= 0): raise ValueError("shift can only be a positive integer value.") if base: if (base == "e"): result = Decimal(str(number)).ln() elif (base == 10): result = Decimal(str(number)).log10() else: base = float(base) result = (Decimal(str(number)).ln() / Decimal(str(base)).ln()) else: result = Decimal(str(number)).log10() if (option == "sign") and (option in options): result = (nsign * result) if round_at: if not isNumber(round_at): raise ValueError("rounding precision '%s' is not a valid real number." % (ascii(round_at),)) precision = int(Decimal(str(round_at))) if (precision < 0): precision = 0 result = round(result, precision) if (option == "int") and (option in options): result = round(result, 0) if result.is_zero(): result = 0 result = float(result) return result def xarccosh(number): # https://en.wikipedia.org/wiki/Inverse_hyperbolic_function # http://www.cs.washington.edu/research/projects/uns/F9/src/boost-1.39.0/libs/math/doc/sf_and_dist/html/math_toolkit/special/inv_hyper/acosh.html #from decimal import Decimal # arcsinh(185) = 5.913495700956333819331535103687269835462231550162396896624 - WOLFRAM ALPHA OK # calculated using Decimal -> 5.913495700956333819331535104 - OK if not isNumber(number): raise ValueError(" number '%s' is not a valid real number." % (ascii(number),)) if (number < 1): raise ValueError(" cannot calculate arccosh of a number smaller than 1.") # calculate INVERSE ARC COS # arccosh = ln(x + ( sqrt( (x ** 2) - 1) ) ) number = Decimal(str(number)) nsqrt = Decimal(xsqrt((number ** Decimal("2")) - Decimal("1"))) operation = number + nsqrt result = Decimal(operation).ln() return float(result) def xarcsinh(number): #from decimal import Decimal # https://en.wikipedia.org/wiki/Inverse_hyperbolic_function # http://worthwhile.typepad.com/worthwhile_canadian_initi/2011/07/a-rant-on-inverse-hyperbolic-sine-transformations.html # arcsinh(185) = 5.913510310160134810673581720 - WOLFRAM ALPHA OK # calculated using Decimal -> 5.913510310160134810673581720 - OK if not isNumber(number): raise ValueError(" number '%s' is not a valid real number." % (ascii(number),)) if (number < 1): raise ValueError(" cannot calculate arcsinh of a number smaller than 1.") # calculate INVERSE ARC SIN # arcsinh = ln(x + ( sqrt( (x ** 2) + 1) ) ) number = Decimal(str(number)) nsqrt = Decimal(xsqrt((number**Decimal("2")) + Decimal("1"))) operation = number + nsqrt result = Decimal(operation).ln() return float(result) def xarctanh(number): # https://en.wikipedia.org/wiki/Inverse_hyperbolic_function # http://www.cs.washington.edu/research/projects/uns/F9/src/boost-1.39.0/libs/math/doc/sf_and_dist/html/math_toolkit/special/inv_hyper/atanh.html #from decimal import Decimal # arcsinh(185) = 0.5493061443340548456976226184 - WOLFRAM ALPHA OK # calculated using Decimal -> 0.5493061443340548456976226185 - OK if not isNumber(number): raise ValueError(" number '%s' is not a valid real number." % (ascii(number),)) if (number >= 1): raise ValueError(" cannot calculate arctanh of a number equal or greater then 1.") if (number <= -1): raise ValueError(" cannot calculate arctanh of a number equal or smaller then -1.") # calculate INVERSE ARC TAN # arctan = (ln((1 + x) / (1 - x)) / 2) number = Decimal(str(number)) operation = ((Decimal("1") + number) / (Decimal("1") - number)) result = (operation.ln() / Decimal("2")) return float(result) def xcbrt(number): #from decimal import Decimal if not isNumber(number): raise ValueError(" number '%s' is not a valid real number." % (ascii(number),)) # calculate CUBIC ROOT number = Decimal(str(number)) result = (number ** (Decimal("1") / Decimal("3"))) return float(result) def xsqrt(number): #from decimal import Decimal if not isNumber(number): raise ValueError(" number '%s' is not a valid real number." % (ascii(number),)) # calculate CUBIC ROOT number = Decimal(str(number)) result = (number ** (Decimal("1") / Decimal("2"))) return float(result) def bonferroni_adj(alpha, tests): # Bonferroni adjustment = (significance level / number of tests) #from decimal import Decimal if not isNumber(alpha): raise ValueError(" number '%s' is not a valid real number." % (ascii(alpha),)) if not isNumber(tests): raise ValueError(" number '%s' is not a valid real number." % (ascii(tests),)) if (alpha < 0): raise ValueError("received invalid probability score (p < 0).") if (alpha > 1): raise ValueError("received invalid probability score (p > 1).") if (alpha < 0) or (tests < 0): raise ValueError("received invalid negative number.") if (alpha == 0) or (tests == 0): raise ValueError("received parameter as zero.") # calculate value for bonferroni adjustment alpha = Decimal(str(alpha)) tests = Decimal(str(tests)) badj = (alpha / tests) return badj def isprintable(data_string): #import string printset = set(string.printable) isprintable = set(data_string).issubset(printset) return isprintable def descriptive(nparray, selection): if (len(nparray) < 1): raise ValueError("ERROR: data array not valid.") if selection: selection = str(selection).lower() else: raise ValueError("ERROR: selection variable missing.") # allocate ordered dictionary diststats = OrderedDict() # get data columns columns = nparray.columns.values # create header list headers = list() for name in columns: headers.append(name) del(columns) if (selection == "df"): for name in headers: # get column type dtype = str(nparray[name].dtypes) if (("float" in dtype) or ("int" in dtype)): dtype = "numerical (%s)" % (dtype,) elif ("catego" in dtype): dtype = "categorical" # get total items in the columns dtotal = float(nparray[name].shape[0]) # get total items of numeric type (excludes NaN, nulls, strings, etc..) dvalid = float(nparray[name].count()) # get MISSING or NOT NUMERIC items (NaN, nulls, strings, etc..) dnulls = float(nparray[name].isnull().sum()) # numeric percentage dvalidp = float((dvalid/dtotal) * 100) # missing percentage dnullsp = float((dnulls/dtotal) * 100) # prepare formatted list dstring = [name, dtype, dtotal, dvalid, dvalidp, dnulls, dnullsp] # add list to ordered dictionary diststats[name] = dstring tab_headers = ["Column", "Type", "Elements", "Valid", "Valid (%)", "Missing", "Missing (%)"] elif (selection == "num"): for name in headers: # get column type dtype = str(nparray[name].dtypes) if (("float" in dtype) or ("int" in dtype)): # get total items in the columns dtotal = float(nparray[name].shape[0]) dmin = float(nparray[name].min()) dmax = float(nparray[name].max()) drange = float(dmax - dmin) dmean = float(nparray[name].mean()) dmedian = float(nparray[name].median()) dmode = float(nparray[name].mode()) # mean absolute deviation dmad = float(nparray[name].mad()) # prepare formatted list dstats = [name, dtotal, dmin, dmean, dmedian, dmode, dmax, drange, dmad] # add list to ordered dictionary diststats[name] = dstats tab_headers = ["Variable", "count", "min", "mean", "median", "mode", "max", "range","MAD"] elif (selection == "dist"): for name in headers: # get column type dtype = str(nparray[name].dtypes) if (("float" in dtype) or ("int" in dtype)): # get total items in the columns dtotal = float(nparray[name].shape[0]) dstd = float(nparray[name].std()) dq1 = float(nparray[name].quantile(0.25)) dq2 = float(nparray[name].quantile(0.5)) dq3 = float(nparray[name].quantile(0.75)) dIQR = (dq3 - dq1) dvar = float(nparray[name].var()) dskew = float(nparray[name].skew()) dkurt = float(nparray[name].kurtosis()) # prepare formatted list ddistr = [name, dtotal, dstd, dq1, dq2, dq3, dIQR, dvar, dskew, dkurt] # add list to ordered dictionary diststats[name] = ddistr tab_headers = ["Variable", "count", "stdev(n-1)", "25%", "50%", "75%", "IQR", "variance", "skewness", "kurtosis"] # prepare tabulation lines tablines = list() for k,v in diststats.items(): tablines.append(v) # create tabulate strtab = str(tabulate(tablines, headers=tab_headers, tablefmt='grid')) return(strtab) def manualbin(nparray, minval=None, maxval=None, numbins=None, binning=False): # check start value is number if not isNumber(minval): minval = np.min(nparray) if (minval > np.min(nparray)): minval = np.min(nparray) # check end value is number if not isNumber(maxval): maxval = np.max(nparray) if (maxval < np.max(nparray)): maxval = np.max(nparray) if (maxval == minval): minval = np.min(nparray) maxval = np.max(nparray) # sort the array in ASCENDING order nparray = np.sort(nparray) # check minimum array length if (len(nparray) < 4): return 1, minval, maxval else: if (isNumber(numbins) and (numbins > 0)): # calculate bin size as np float binsize = ((maxval - minval) / numbins) # generate the bins of size binsize from "minval" to "maxval" npbins = np.arange(minval, maxval, binsize) #print(minval) #print(maxval) #print(numbins) #print(binsize) #print(npbins) #print(ascii(binning)) if binning: # for each element in array, get bin number of value in i-th index # Output array of indices, of same shape as x. binned = np.digitize(nparray, npbins) return binsize, minval, maxval, numbins, binned else: return binsize, minval, maxval, numbins else: raise ValueError("ERROR: value for number of bins null or invalid.") def freqency_table(nparray, numbins, minval=None, maxval=None, binning=True): # check start value is number if not isNumber(minval): minval = np.min(nparray) if (minval > np.min(nparray)): minval = np.min(nparray) # check end value is number if not isNumber(maxval): maxval = np.max(nparray) if (maxval < np.max(nparray)): maxval = np.max(nparray) # check range make sense if (maxval == minval): minval = np.min(nparray) maxval = np.max(nparray) # check number of bins is correct if not isNumber(numbins): numbins = int(numbins) # get total number of elements #tot_elem = data[].shape[0] tot_elem = len(nparray) # sort the array in ASCENDING order nparray = np.sort(nparray) # get the binnig binsize, minval, maxval, numbins, binned = manualbin(nparray, minval, maxval, numbins=numbins, binning=True) # generate the bins of size binsize from "minval" to "maxval" npbins = np.arange(minval, maxval, binsize) # get how many elements per interval unique, counts = np.unique(binned, return_counts=True) bincount = OrderedDict(zip(unique, counts)) # create list for each interval range headbin = list() nbcount = 0 for num in npbins: nbcount = nbcount + 1 imin = npbins[(nbcount - 1)] if (nbcount < numbins): imax = npbins[(nbcount)] elif (nbcount == numbins): imax = maxval else: raise ValueError() headbin.append([nbcount, imin, imax]) del(npbins) # add bin count to each list for pos, val in bincount.items(): for elem in headbin: if (elem[0] == pos): elem.append(val) # add zero to any interval with no items for pos, val in bincount.items(): for elem in headbin: if (len(elem) == 3): elem.append(0) del(bincount) ftable = list() tot_freq = 0 tot_freqp = 0 for inter in headbin: # set interval headers if (inter[0] < numbins): interval = "[%s <-> %s)" % (inter[1], inter[2]) else: interval = "[%s <-> %s]" % (inter[1], inter[2]) # frequency freq = inter[3] # frequency percentage freqp = ((freq / float(tot_elem)) * 100) # cumulative frequency tot_freq = tot_freq + freq # cumulative frequency percentage tot_freqp = ((tot_freq / float(tot_elem)) * 100) # set printable list dstring =[interval, freq, freqp, tot_freq, tot_freqp] ftable.append(dstring) freq_headers = ["Interval", "Frequency", "Frequency (%)", "Cumulative Freq.", "Cumulative Freq. (%)"] # create tabulate strtab = (str(tabulate(ftable, headers=freq_headers, tablefmt='orgtbl')) + "\n") return(strtab) def cm2inch(*tupl): inch = 2.54 if isinstance(tupl[0], tuple): return tuple(i/inch for i in tupl[0]) else: return tuple(i/inch for i in tupl) def mm2inch(*tupl): inch = 25.4 if isinstance(tupl[0], tuple): return tuple(i/inch for i in tupl[0]) else: return tuple(i/inch for i in tupl) def uniquevals(nparray): # create temp dictionary to store unique value count tvalcount = dict() # count unique values for item in nparray: # save unique diametrer values tvalcount[item] = tvalcount.get(item, 0) + 1 # sort temp dictionary by key (that is numeric) and store in ordered dict valcount = OrderedDict(sorted(tvalcount.items())) # delete temp dictionary del(tvalcount) # return counts return valcount def splitdict(dictionary): # splits a dictionary into 2 nparray, one for K, one for V listA = list() listB = list() for key, value in dictionary.items(): listA.append(float(key)) listB.append(float(value)) arrA = np.array(listA) arrB = np.array(listB) del(listA) del(listB) return arrA, arrB def val_shift(nparray, shift): listA = list() for value in nparray: listA.append(value + shift) arrA = np.array(listA) del(listA) return arrA def axis_major_ticks(nparray): # get numeric range valrange = (max(nparray) - min(nparray)) # get 1% of the range onep = (valrange / 100.0) # set interval to use as spacer before min and after max (default 3% of range) spacer = (onep * 3) # set tick interval to 10% tickint = (onep * 10) # get array minimum value amin = min(nparray) # get array maximum value amax = max(nparray) # set lower range lowrng = (amin - spacer) # set higher range higrng = (amax + spacer) # set minimum ticker value mintick = amin # set maximum ticker value + 1% (otherwise max value is NOT visible) maxtick = (amax + (onep)) # calculate all values to use as tickers withing defined range # to see the end value we set max value as (max + value equal to 1% of range) major_ticks = np.arange(mintick, maxtick, tickint) # return all elements return lowrng, higrng, major_ticks, amin, amax def chi2_testtype(variable1, variable2, dataframe): #check that variables are categorical v1dtype = str(dataframe[variable1].dtypes) if (v1dtype == 'category'): v1dtypes = "PASS" else: v1dtypes = "FAIL" v2dtype = str(dataframe[variable2].dtypes) if (v2dtype == 'category'): v2dtypes = "PASS" else: v2dtypes = "FAIL" # print verbose results print("TEST --> Check that both variable are 'CATEGORICAL'") print("Variable: '%s' - Type: '%s' (%s)" % (variable1, v1dtype, v1dtypes)) print("Variable: '%s' - Type: '%s' (%s)" % (variable2, v2dtype, v2dtypes)) if (v1dtypes == 'FAIL') or (v2dtypes == 'FAIL'): print("Status --> FAIL - Not all variables are categorical, quitting.") raise ValueError("Not all variables are categorical.") else: print("Status --> PASS - All variables are categorical.\n") def chi2_testlen(variable1, variable2, dataframe): #check that data series have at least 2 groups v1uq = uniquevals(dataframe[variable1]) v1len = len(v1uq) v1names = list() for k, v in v1uq.items(): v1names.append(str(k)) if (v1len >= 2): v1lens = "PASS" else: v1lens = "FAIL" v2uq = uniquevals(dataframe[variable2]) v2len = len(v2uq) v2names = list() for k, v in v2uq.items(): v2names.append(str(k)) if (v2len >= 2): v2lens = "PASS" else: v2lens = "FAIL" # print verbose results print("TEST --> Check that each variable has at least 2 data groups") print("Variable: '%s' - Groups: '%s' - Names: %s (%s)" % (variable1, v1len, v1names, v1lens)) print("Variable: '%s' - Groups: '%s' - Names: %s (%s)" % (variable2, v2len, v2names, v2lens)) if (v1lens == 'FAIL') or (v2lens == 'FAIL'): print("Status--> FAIL - Not all variables have at least 2 data groups, quitting.") raise ValueError("Not all variables have at least 2 data groups.") else: print("Status --> PASS - All variables have at least 2 data groups.\n") def chi2_df(variable1, variable2, dataframe): v1uq = uniquevals(dataframe[variable1]) v1len = len(v1uq) v2uq = uniquevals(dataframe[variable2]) v2len = len(v2uq) # chi2 degrees of freedom # r is number of rows, c is number of columns # ((r -1) * (c - 1)) df = ((v2len - 1) * (v1len - 1)) return int(df) def chi2_pdev(observed, expected, round_at=None): if round_at: if not isNumber(round_at): raise ValueError("chi2 % dev - rounding precision '%s' is not a valid real number." % (ascii(round_at),)) precision = int(Decimal(str(round_at))) if (precision < 0): precision = 0 # calculate percentage deviation # (((Observed - Expected) / Expected) * 100) observed = Decimal(str(observed)) expected = Decimal(str(expected)) residual = (observed - expected) val_pdev = ((residual / expected) * 100) if round_at: val_pdev = round(val_pdev, precision) return float(val_pdev) def chi2_stdres(observed, expected, round_at=None): if round_at: if not isNumber(round_at): raise ValueError("chi2 stdev - rounding precision '%s' is not a valid real number." % (ascii(round_at),)) precision = int(Decimal(str(round_at))) if (precision < 0): precision = 0 # calculate standardised (Pearson) residual # ((Observed - Expected) / sqrt(Expected)) observed = Decimal(str(observed)) expected = Decimal(str(expected)) residual = (observed - expected) sqrtexp = xsqrt(expected) val_stdres = (residual / Decimal(str(sqrtexp))) if round_at: val_stdres = round(val_stdres, precision) return float(val_stdres) def chi2_adjusted_residual(observed, expected, rowtot, coltot, total, round_at=None): if round_at: if not isNumber(round_at): raise ValueError("chi2 stdev - rounding precision '%s' is not a valid real number." % (ascii(round_at),)) precision = int(Decimal(str(round_at))) if (precision < 0): precision = 0 # calculate adjusted residual # numerator = (observed - expected) # row proportion = ( row marginal total / grand total) # column proportion = ( column marginal total / grand total) # denominator = sqrt(expected * (1-row proportion) * (1-column proportion)) # adjusted residual = (numerator / denominator) observed = Decimal(str(observed)) expected = Decimal(str(expected)) rowtot = Decimal(str(rowtot)) coltot = Decimal(str(coltot)) total = Decimal(str(total)) residual = (observed - expected) denominator = xsqrt(expected * (1 - (rowtot / total)) * (1 - (coltot / total))) denominator = Decimal(str(denominator)) val_adjres = (residual / denominator) if round_at: val_adjres = round(val_adjres, precision) return float(val_adjres) def chi2_contrib(observed, expected, round_at=None): if round_at: if not isNumber(round_at): raise ValueError("chi2 contrib - rounding precision '%s' is not a valid real number." % (ascii(round_at),)) precision = int(Decimal(str(round_at))) if (precision < 0): precision = 0 # calculate standardised (Pearson) residual # ((Observed - Expected) / sqrt(Expected)) observed = Decimal(str(observed)) expected = Decimal(str(expected)) residual = (observed - expected) val_contrib = ((residual ** 2) / expected) if round_at: val_contrib = round(val_contrib, precision) return float(val_contrib) def chi2_pdev_yates(observed, expected, round_at=None): if round_at: if not isNumber(round_at): raise ValueError("chi2 % dev - Yates - rounding precision '%s' is not a valid real number." % (ascii(round_at),)) precision = int(Decimal(str(round_at))) if (precision < 0): precision = 0 # calculate percentage deviation # (((Observed - Expected) / Expected) * 100) observed = Decimal(str(observed)) expected = Decimal(str(expected)) residual = (abs(observed - expected) - Decimal(str(0.5))) val_pdev = ((residual / expected) * 100) if round_at: val_pdev = round(val_pdev, precision) if (observed > expected): (val_pdev * 1) elif (observed < expected): (val_pdev * -1) return float(val_pdev) def chi2_stdres_yates(observed, expected, round_at=None): if round_at: if not isNumber(round_at): raise ValueError("chi2 stdev - Yates - rounding precision '%s' is not a valid real number." % (ascii(round_at),)) precision = int(Decimal(str(round_at))) if (precision < 0): precision = 0 # calculate standardised (Pearson) residual # ((Observed - Expected) / sqrt(Expected)) observed = Decimal(str(observed)) expected = Decimal(str(expected)) residual = (abs(observed - expected) - Decimal(str(0.5))) sqrtexp = xsqrt(expected) val_stdres = (residual / Decimal(str(sqrtexp))) if round_at: val_stdres = round(val_stdres, precision) if (observed > expected): (val_stdres * 1) elif (observed < expected): (val_stdres * -1) return float(val_stdres) def chi2_contrib_yates(observed, expected, round_at=None): # chi2 YATES = ( ( ( abs(observed — expected) — 0.5) / expected) x 100) # The resulting value is then given a positive sign if observed > expected # and a negative sign if observed < expected. if round_at: if not isNumber(round_at): raise ValueError("chi2 contrib - Yates - rounding precision '%s' is not a valid real number." % (ascii(round_at),)) precision = int(Decimal(str(round_at))) if (precision < 0): precision = 0 # calculate standardised (Pearson) residual # ((Observed - Expected) / sqrt(Expected)) observed = Decimal(str(observed)) expected = Decimal(str(expected)) residual = (abs(observed - expected) - Decimal(str(0.5))) val_contrib = ((residual ** 2) / expected) if round_at: val_contrib = round(val_contrib, precision) return float(val_contrib) def phi_coefficient(chi2, totalelem, round_at=None): if round_at: if not isNumber(round_at): raise ValueError("Phi coeff - rounding precision '%s' is not a valid real number." % (ascii(round_at),)) precision = int(Decimal(str(round_at))) if (precision < 0): precision = 0 # phi coefficient # sqrt(chi2 / total elements) # to use ONLY with 2x2 tables chi2 = Decimal(str(chi2)) totalelem = Decimal(str(totalelem)) phi = xsqrt(chi2 / totalelem) if round_at: phi = round(phi, precision) phi = float(phi) # Phi coefficient Interpretation # Using table of Rea & Parker (1992) # http://files.eric.ed.gov/fulltext/EJ955682.pdf # https://c.ymcdn.com/sites/aisnet.org/resource/group/3f1cd2cf-a29b-4822-8581-7b1360e30c71/Spring_2003/kotrlikwilliamsspring2003.pdf # .00 and under .10 --> Negligible association # .10 and under .20 --> Weak association # .20 and under .40 --> Moderate association # .40 and under .60 --> Relatively strong association # .60 and under .80 --> Strong association # .80 and under 1.00 --> Very strong association interpretation = "" if (phi >= 0) and (phi < 0.1): interpretation = ("Negligible association") elif (phi >= 0.1) and (phi < 0.2): interpretation = ("Weak association") elif (phi >= 0.1) and (phi < 0.4): interpretation = ("Moderate association") elif (phi >= 0.1) and (phi < 0.6): interpretation = ("Relatively strong association") elif (phi >= 0.1) and (phi < 0.8): interpretation = ("Strong association") elif (phi >= 0.1) and (phi < 1): interpretation = ("Very strong association") elif (phi == 1): interpretation = ("Perfect match") final = "%s (%s)" % (phi, interpretation) return final def cramer_V(chi2, totalelem, minrowcol, round_at=None): if round_at: if not isNumber(round_at): raise ValueError("Cramer's V - rounding precision '%s' is not a valid real number." % (ascii(round_at),)) precision = int(Decimal(str(round_at))) if (precision < 0): precision = 0 # Cramers's V (V) # t = minimum value between (number of rows - 1) and (number of columns - 1) # sqrt(chi2 / (total elements * t)) # to use ONLY with rectangular tables # only with tables having different number of rows and columns (3x4, 4x6, etc) chi2 = Decimal(str(chi2)) totalelem = Decimal(str(totalelem)) minrowcol = Decimal(str(minrowcol)) t = (minrowcol - Decimal(str(1))) cramer = xsqrt(chi2 / (totalelem * t)) if round_at: cramer = round(cramer, precision) cramer = float(cramer) # Cramer’s Interpretation # Using table of Rea & Parker (1992) # https://c.ymcdn.com/sites/aisnet.org/resource/group/3f1cd2cf-a29b-4822-8581-7b1360e30c71/Spring_2003/kotrlikwilliamsspring2003.pdf # http://files.eric.ed.gov/fulltext/EJ955682.pdf # .00 and under .10 --> Negligible association # .10 and under .20 --> Weak association # .20 and under .40 --> Moderate association # .40 and under .60 --> Relatively strong association # .60 and under .80 --> Strong association # .80 and under 1.00 --> Very strong association interpretation = "" if (cramer >= 0) and (cramer < 0.1): interpretation = ("Negligible association") elif (cramer >= 0.1) and (cramer < 0.2): interpretation = ("Weak association") elif (cramer >= 0.1) and (cramer < 0.4): interpretation = ("Moderate association") elif (cramer >= 0.1) and (cramer < 0.6): interpretation = ("Relatively strong association") elif (cramer >= 0.1) and (cramer < 0.8): interpretation = ("Strong association") elif (cramer >= 0.1) and (cramer < 1): interpretation = ("Very strong association") elif (cramer == 1): interpretation = ("Perfect match") final = "%s (%s)" % (cramer, interpretation) return final def contingency_coeff(chi2, totalelem, round_at=None): if round_at: if not isNumber(round_at): raise ValueError("Observed Contingency coeff - rounding precision '%s' is not a valid real number." % (ascii(round_at),)) precision = int(Decimal(str(round_at))) if (precision < 0): precision = 0 # PEARSON contingency coefficient C # sqrt(chi2 / (chi2 + number total elements)) # to use ONLY with quadratic tables # only with tables having same number of rows and columns (3x3, 4x4, etc) chi2 = Decimal(str(chi2)) totalelem = Decimal(str(totalelem)) cC = xsqrt(chi2 / (chi2 + totalelem)) if round_at: cC = round(cC, precision) return float(cC) def contingency_coeff_corr(chi2, totalelem, minrowcol, round_at=None): if round_at: if not isNumber(round_at): raise ValueError("Observed Contingency Coeff Corrented - rounding precision '%s' is not a valid real number." % (ascii(round_at),)) precision = int(Decimal(str(round_at))) if (precision < 0): precision = 0 # PEARSON contingency coefficient C - corrected # m = minimum value between (number of rows) and (number of columns) # numerator = (chi2 * m) # denominator = ((chi2 + number total elements) * (m - 1)) # corrected coefficient = sqrt(numerator / denominator) # to use ONLY with quadratic tables # only with tables having same number of rows and columns (3x3, 4x4, etc) chi2 = Decimal(str(chi2)) totalelem = Decimal(str(totalelem)) minrowcol = Decimal(str(minrowcol)) nom = (chi2 * minrowcol) denom = ((chi2 + totalelem) * (minrowcol - Decimal(str(1)))) cC_corr = xsqrt(nom / denom) if round_at: cC_corr = round(cC_corr, precision) return float(cC_corr) def standardized_contingency_coeff(obeserved_contingency_coeff, nrows, ncolumns, round_at=None): if round_at: if not isNumber(round_at): raise ValueError("Observed Contingency Coeff Corrented - rounding precision '%s' is not a valid real number." % (ascii(round_at),)) precision = int(Decimal(str(round_at))) if (precision < 0): precision = 0 obeserved_contingency_coeff = Decimal(str(obeserved_contingency_coeff)) nrows = Decimal(str(nrows)) ncolumns = Decimal(str(ncolumns)) crows = ((nrows - Decimal(str(1))) / nrows) ccols = ((ncolumns - Decimal(str(1))) / ncolumns) # calculate contingency coefficient maximum value cont_coeff_max = ((crows * ccols) ** (Decimal(str(1))/Decimal(str(4)))) # calculate standardized value cont_coeff_std = (obeserved_contingency_coeff / cont_coeff_max) if round_at: cont_coeff_std = round(cont_coeff_std, precision) cont_coeff_std = float(cont_coeff_std) # Standardized Contingency Coefficient Interpretation # Analyzing Quantitative Data: From Description to Explanation, By <NAME>, page 100 # https://books.google.fr/books?id=Tv_-YxqWVQ8C&printsec=frontcover#v=onepage&q&f=false # .00 and under .01 --> No association # .01 and under .10 --> Negligible association # .10 and under .30 --> Weak association # .30 and under .60 --> Moderate association # .60 and under .75 --> Strong association # .75 and under .99 --> Very strong association # .99 and 1 --> Perfect association interpretation = "" if (cont_coeff_std >= 0) and (cont_coeff_std < 0.01): interpretation = ("No association") elif (cont_coeff_std >= 0.01) and (cont_coeff_std < 0.1): interpretation = ("Negligible association") elif (cont_coeff_std >= 0.10) and (cont_coeff_std < 0.30): interpretation = ("Weak association") elif (cont_coeff_std >= 0.30) and (cont_coeff_std < 0.60): interpretation = ("Moderate association") elif (cont_coeff_std >= 0.60) and (cont_coeff_std < 0.75): interpretation = ("Strong association") elif (cont_coeff_std >= 0.75) and (cont_coeff_std < 0.99): interpretation = ("Very Strong association") elif (cont_coeff_std >= 0.99) and (cont_coeff_std <= 1.0): interpretation = ("Perfect association") final = "%s (%s)" % (cont_coeff_std, interpretation) return final def likelihood_ratio_contrib(observed, expected, round_at=None): if round_at: if not isNumber(round_at): raise ValueError("likelihood ratio contrib - rounding precision '%s' is not a valid real number." % (ascii(round_at),)) precision = int(Decimal(str(round_at))) if (precision < 0): precision = 0 # the method requires if a cell is not valid, negative or zero has to be skipped # so we mark any invalid cell as zero therefore will have no impact if (observed == 0) or (expected == 0) : return 0 else: # calculate standardised (Pearson) residual # ((Observed - Expected) / sqrt(Expected)) observed = Decimal(str(observed)) expected = Decimal(str(expected)) ratio = float(observed / expected) lratioc = (observed * xlog(ratio, base='e')) if round_at: lratioc = round(lratioc, precision) return float(lratioc) def chi2_expected_check(nrows, ncolumns, list_all_expected_values): # set counter exp_neg_vals = 0 exp_zero = 0 exp_gt0_lt1_vals = 0 exp_egt1_lt5_vals = 0 exp_egt5_lt10_vals = 0 exp_egt10_vals = 0 # parse list of expected count and check each value for item in list_all_expected_values: if (item < 0): exp_neg_vals = exp_neg_vals + 1 elif (item == 0): exp_zero = exp_zero + 1 elif (item > 0) and (item < 1): exp_gt0_lt1_vals = exp_gt0_lt1_vals + 1 elif (item >= 1) and (item < 5): exp_egt1_lt5_vals = exp_egt1_lt5_vals + 1 elif (item >= 5) and (item < 10): exp_egt5_lt10_vals = exp_egt5_lt10_vals + 1 elif (item >= 10): exp_egt10_vals = exp_egt10_vals + 1 else: raise ValueError("Unexpected: malformed element in list of expected counts.") total_values = len(list_all_expected_values) test_logs = list() test_fail_1 = False test_fail_2 = False test_fail_3 = False data_isCompliant = True # for all table sizes test_header = "CHI SQUARED - Testing if all 'expected count' cells satisfy minimum requirements.\n" test_logs.append(test_header) # Assumtion Check 1: no expected count negative test1_text = "Assumption --> No expected count has negative value." test_logs.append(test1_text) test1_found = int(exp_neg_vals) test1_foundp = ((test1_found / total_values) * 100) test1_counts = "TEST: %s (%s%%) cells with an expected count less than 0." % (test1_found, test1_foundp) test_logs.append(test1_counts) if (test1_found == 0): test_logs.append("Status --> PASS\n") else: test_fail_1 = True test_logs.append("ERROR: Calculation will produce unrecoverable error 'Domain Error'\n") test_logs.append("Status --> FAIL\n") # Assumtion Check 2: no expected count equal to zero test2_text = "Assumption --> No expected count has a value of zero." test_logs.append(test2_text) test2_found = int(exp_zero) test2_foundp = ((test2_found / total_values) * 100) test2_counts = "TEST: %s (%s%%) cells with an expected count equal to 0." % (test2_found, test2_foundp) test_logs.append(test2_counts) if (test2_found == 0): test_logs.append("Status --> PASS\n") else: test_fail_2 = True test_logs.append("ERROR: Calculation will produce unrecoverable error 'Division by zero'\n") test_logs.append("Status --> FAIL\n") # Assumtion Check 3: no expected count less than 1 test3_text = "Assumption --> No expected count has a value smaller than 1." test_logs.append(test3_text) test3_found = int(exp_gt0_lt1_vals) test3_foundp = ((test3_found / total_values) * 100) test3_counts = "TEST: %s (%s%%) cells with an expected count less than 1." % (test3_found, test3_foundp) test_logs.append(test3_counts) if (test3_found == 0): test_logs.append("Status --> PASS\n") else: test_fail_3 = True test_logs.append("ERROR: No reliable result can be produced with expected count less then 1.") test_logs.append("Status --> FAIL\n") # calculate 20% cutoff cutoff_20 = (total_values * 0.2) # for tables equal to 2x2 if (nrows == 2) and (ncolumns == 2): # Assumtion Check 4: no expected count less than 5 # If any expected counts are less than 5, then some other test should be used # Cochran (1952, 1954) test4_text = "Assumption (for tables equal to 2x2) --> No expected count has a value smaller than 5." test_logs.append(test4_text) test4_found = (int(exp_gt0_lt1_vals) + int(exp_egt1_lt5_vals)) test4_foundp = ((test4_found / total_values) * 100) test4_counts = "TEST: %s (%s%%) cells with an expected count less than 5." % (test4_found, test4_foundp) test_logs.append(test4_counts) if (test4_found == 0): test_logs.append("Status --> PASS\n") else: test_logs.append("WARNING: If any expected counts are less than 5, then some other test should be used.") test_logs.append("Status --> FAIL\n") # Assumtion Check 5: All expected counts should be 10 or greater. test5_text = "Assumption (for tables equal to 2x2) --> No expected count has a value smaller than 10." test_logs.append(test5_text) test5_found = (int(exp_gt0_lt1_vals) + int(exp_egt1_lt5_vals) + int(exp_egt5_lt10_vals)) test5_foundp = ((test5_found / total_values) * 100) test5_counts = "TEST: %s (%s%%) cells with an expected count less than 10." % (test5_found, test5_foundp) test_logs.append(test5_counts) if (test5_found < cutoff_20): test_logs.append("Status --> PASS\n") else: test_logs.append("WARNING: All expected counts should be 10 or greater.") test_logs.append("Status --> FAIL\n") # for tables bigger than 2x2 else: # Assumtion Check 6: No more than 20% of the expected counts are less than 5 # No more than 20% of the expected counts are less than 5 # (Yates, Moore & McCabe, 1999, p. 734). test6_text = "Assumption (for tables bigger than 2x2) --> No more than 20% of the expected counts are less than 5." test_logs.append(test6_text) test6_found = (int(exp_gt0_lt1_vals) + int(exp_egt1_lt5_vals)) test6_foundp = ((test6_found / total_values) * 100) test6_counts = "TEST - %s (%s%%) cells with an expected count less than 5." % (test6_found, test6_foundp) test_logs.append(test6_counts) if (test6_found < cutoff_20): test_logs.append("Status --> PASS\n") else: test_logs.append("WARNING: More than 20% of the expected counts are less than 5, some other test should be used.") test_logs.append("Status --> FAIL\n") # report critical error if any of the first 3 test conditions are TRUE if (test_fail_1 == True) or (test_fail_2 == True) or (test_fail_3 == True): data_isCompliant = False test_logs.append("DETECTED CRITICAL ERRORS:") test_logs.append("Not possible to perform chi squared analysis as data does not meet basic requirements.") test_logs.append("A change in data structure or data grouping is required.\n") # return test results if (data_isCompliant == False): return ("FAIL", test_logs) else: return ("PASS", test_logs) def chi2_crosstab(variable1, variable2, dataframe, alpha=None, round_at=None, verbose=None): # set rounding precision if number is valid if round_at: if not isNumber(round_at): raise ValueError("rounding precision '%s' is not a valid real number." % (ascii(round_at),)) precision = int(Decimal(str(round_at))) if (precision < 0): precision = 9 if alpha: if not isNumber(alpha): raise ValueError("alpha '%s' is not a valid real number between 0 and 1." % (ascii(alpha),)) alpha = float(Decimal(str(alpha))) if (alpha < 0) or (alpha > 1): alpha = 0.05 else: alpha = 0.05 # check that both data series have same amount of element count1 = float(dataframe[variable1].shape[0]) count2 = float(dataframe[variable2].shape[0]) if not (count1 == count2): raise AssertionError("numeric series do not contain the same amount of observations.") # calculate degrees of freedom df = chi2_df(variable1, variable2, dataframe) # get name of groups for variable 1 (X) head_rows = list() v1uq = uniquevals(dataframe[variable1]) for k1, v1 in v1uq.items(): head_rows.append(str(k1)) head_rows = sorted(head_rows) rows = len(v1uq) # get name of groups for variable 2 (Y) head_cols = list() v2uq = uniquevals(dataframe[variable2]) for k2, v2 in v2uq.items(): head_cols.append(str(k2)) head_cols = sorted(head_cols) columns = len(v2uq) if (rows < 2) or (columns < 2): raise AssertionError("Cannot compute chi squared for table smaller than 2x2") # create associations between variable 1 (X) and variable 2 (Y) # variable 1 should be EXPECTED VARIABLE # variable 2 should be REFERENCE VARIABLE pairs = dict() for k1, v1 in v1uq.items(): for k2, v2 in v2uq.items(): pair = "%s,%s" % (str(k1), str(k2)) # set each cross-association to value count zero pairs[pair] = 0 # calculate value counts for each association for index, row in dataframe.iterrows(): valvar1 = row[variable1] valvar2 = row[variable2] pair = "%s,%s" % (str(valvar1), str(valvar2)) # increment each cross-association pairs[pair] = pairs.get(pair, 0) + 1 # create disctionary to store cross tab relations between variables tabrows = OrderedDict() # for each variable group of X for group1 in head_rows: # create a dictionary element with that name and assign a list to it tabrows[group1] = list() # for each variable group in Y for group2 in head_cols: # crete variable association string (X,Y) hpair = "%s,%s" % (str(group1), str(group2)) # check that association is in the pre calcolated association list if (hpair in pairs): # get the value for that association valcount = pairs[hpair] # append value to the list tabrows[group1].append(valcount) # if not in pre calcolated association list else: # raise error to alert of internal raise ValueError("Unexpected: pre computed crosstab relation '%s' not present." % (hpair,)) tabrows[group1].append(v1uq[group1]) # create list with all column total values tabrows["Total"] = list() alltot = 0 for group2 in head_cols: tabrows["Total"].append(v2uq[group2]) alltot = alltot + v2uq[group2] tabrows["Total"].append(alltot) # copy dictionary so we can work on the copy to add element temprows = tabrows.copy() # calculate expected counts excount = 0 # lists for internal calculations (max precision, no rounding) list_allobserved = list() list_allexp = list() list_allchi2 = list() list_allchi2_yates = list() list_alllikelihood = list() # number of total elements totalelem = tabrows["Total"][-1] # create cross tabulation to check each value and check calculated values for k, v in tabrows.items(): if (k == "Total"): pass else: # list for expected count head_exp = k + " (expected)" list_expected = list() sum_expected = Decimal("0") # list for residuals head_res = k + " (residual)" list_residual = list() sum_residuals = Decimal("0") # list for standardised residuals head_stdres = k + " (std. residual)" list_stdresidual = list() head_stdres_yates = k + " (std. residual, Yates)" list_stdresidual_yates = list() # list for adjusted residuals head_adjresiduals = k + " (adj. residual)" list_adjresiduals = list() # list for percentage deviation head_pdeviation = k + " (% deviation)" list_pdeviation = list() head_pdeviation_yates = k + " (% deviation, Yates)" list_pdeviation_yates = list() # list for chi 2 cell contribution head_chi2contrib = k + " (chi2 contrib.)" list_chi2contrib = list() head_chi2contrib_yates = k + " (chi2 contrib., Yates)" list_chi2contrib_yates = list() # Likelihood ratio head_liker = k + " (likelihood ratio)" list_likelihood_ratio = list() # set step counter to zero excount = 0 # parse each count for item in v: # set each count to Decimal type item = Decimal(item) # check if we finished the element counts if (excount == columns): # skip last column that has marginal totals pass # start parsing and counting else: # calculate expected value total_row = Decimal(str(v[-1])) total_col = Decimal(str(tabrows["Total"][excount])) total_tab = Decimal(str(totalelem)) list_allobserved.append(float(item)) # calculate expected value val_exp = ((total_col * total_row) / total_tab) list_allexp.append(float(val_exp)) if round_at: val_expr = round(val_exp, precision) list_expected.append(float(val_expr)) sum_expected = sum_expected + val_exp # check for possible division by zero errors if (val_exp == Decimal(0)): list_pdeviation.append("Division by zero") list_pdeviation_yates.append("Division by zero") list_stdresidual.append("Division by zero") list_stdresidual_yates.append("Division by zero") list_adjresiduals.append("Division by zero") list_chi2contrib.append("Division by zero") list_chi2contrib_yates.append("Division by zero") list_likelihood_ratio.append("Division by zero") # safety, this WILL generate an internal error # as we mix string and floats TO BE SURE we spot this list_allchi2.append("Division by zero") list_allchi2_yates.append("Division by zero") list_alllikelihood.append("Division by zero") else: # calculate residual # (Observed - Expected) val_res = (item - Decimal(str(val_exp))) if round_at: val_res = round(val_res, precision) list_residual.append(float(val_res)) sum_residuals = sum_residuals + val_res # calculate percentage deviation val_pdev = chi2_pdev(item, val_exp, round_at=precision) list_pdeviation.append(val_pdev) # calculate percentage deviation - YATES correction val_pdevy = chi2_pdev_yates(item, val_exp, round_at=precision) list_pdeviation_yates.append(val_pdevy) # calculate standardised (Pearson) residual val_stdres = chi2_stdres(item, val_exp, round_at=precision) list_stdresidual.append(val_stdres) # calculate standardised (Pearson) residual - YATES correction val_stdresy = chi2_stdres_yates(item, val_exp, round_at=precision) list_stdresidual_yates.append(val_stdresy) # calculate adjusted residual val_adjres = chi2_adjusted_residual(item, val_exp, total_row, total_col, total_tab, round_at=precision) list_adjresiduals.append(val_adjres) # ELEMENTS FOR LATER CALCULATIONS - NEED TO STAY NOT ROUNDED # calculate chi square contribution chi2contrib = chi2_contrib(item, val_exp) list_allchi2.append(chi2contrib) # calculate chi square contribution - YATES correction chi2contriby = chi2_contrib_yates(item, val_exp) list_allchi2_yates.append(chi2contriby) # calculate likelihood ratio (G) contribution likelihoodr = (2 * likelihood_ratio_contrib(item, val_exp)) list_alllikelihood.append(likelihoodr) # for each list of data to use in tabular visualization if round_at: # add rounded elements to lists list_chi2contrib.append(round(chi2contrib, precision)) list_chi2contrib_yates.append(round(chi2contriby, precision)) list_likelihood_ratio.append(round(likelihoodr, precision)) else: # add raw value to the list list_chi2contrib.append(chi2contrib) list_chi2contrib_yates.append(chi2contriby) list_likelihood_ratio.append(likelihoodr) # increment step counter excount = excount + 1 # clean all intermediate variables at the end of each pass del(total_row) del(total_col) del(total_tab) del(val_exp) del(val_res) del(val_pdev) del(val_pdevy) del(val_stdres) del(val_stdresy) del(val_adjres) del(chi2contrib) del(chi2contriby) del(likelihoodr) # check sum of expected counts and add to list sum_expected = int(round(sum_expected, 0)) if not (sum_expected == v1uq[k]): raise AssertionError("Unexpected: sum of expected counts for '%s' should be '%s', got '%s'." % (k, v1uq[k], sum_expected)) else: list_expected.append(sum_expected) temprows[head_exp] = list_expected del(list_expected) # check sum of residual values and add to list sum_residuals = int(round(sum_residuals, 0)) if not (sum_residuals == 0): raise AssertionError("Unexpected: sum of residuals for '%s' should be zero, got '%s'." % (k, sum_residuals,)) else: sum_residuals = abs(sum_residuals) list_residual.append(sum_residuals) temprows[head_res] = list_residual del(list_residual) # add list of percentage deviations to reference dictionary temprows[head_pdeviation] = list_pdeviation temprows[head_pdeviation_yates] = list_pdeviation_yates del(list_pdeviation) del(list_pdeviation_yates) # add list of standardised residuals to reference dictionary temprows[head_stdres] = list_stdresidual temprows[head_stdres_yates] = list_stdresidual_yates del(list_stdresidual) del(list_stdresidual_yates) # add list of adjusted residuals to reference dictionary temprows[head_adjresiduals] = list_adjresiduals del(list_adjresiduals) # add list of chi2 cell contributions to reference dictionary temprows[head_chi2contrib] = list_chi2contrib temprows[head_chi2contrib_yates] = list_chi2contrib_yates del(list_chi2contrib) del(list_chi2contrib_yates) # add list of clikelihood ratios to reference dictionary temprows[head_liker] = list_likelihood_ratio del(list_likelihood_ratio) # reset step counter excount = 0 ########################################################################### # prepare tables to print # create header line freq_headers = [""] for item in head_cols: freq_headers.append(item) freq_headers.append("Total") # create value table table_fit = list() for k, v in temprows.items(): printrow = list() printrow.append(k) for value in v: printrow.append(value) # row name + values + total if (len(printrow) == (len(head_cols) + 2)): pass # row name + values elif (len(printrow) == (len(head_cols) + 1)): printrow.append("-") else: raise AssertionError("Elements in list does not match expected number of columns.") table_fit.append(printrow) # create list to store all values table_all = list() # create list to store only observation counts table_data = list() for group in head_rows: for line in table_fit: line_name = str(line[0]) if (line_name == group): table_data.append(line) if (line_name.startswith(group)): if ("expected" in line_name): table_data.append(line) table_all.append(line) for line in table_fit: line_name = str(line[0]) if (line_name.startswith("Total")): table_data.append(line) table_all.append(line) # create tabulate print_table_data = str(tabulate(table_data, headers=freq_headers , tablefmt='pipe' , stralign='left' , numalign='left')) # create tabulate print_table_all = str(tabulate(table_all, headers=freq_headers , tablefmt='pipe' , stralign='left' , numalign='left')) ########################################################################### # Check for data issues, if found print data table and log, then exit status, statuslog = chi2_expected_check(rows, columns, list_allexp) if (status == "FAIL"): print("Chi Squared - Contingency Table\n") print(print_table_data) print() for line in statuslog: print(line) print("Quitting!\n") print() sys.exit(1) else: if (verbose == True): for line in statuslog: print(line) ########################################################################### # perform all calculation # total number of cells tot_cells = (rows * columns) # minimum expected value if round_at: expected_min = round(min(list_allexp), precision) else: expected_min = min(list_allexp) # minimum observed value observed_min = min(list_allobserved) # calculate chi value - sum of all contributors - using RAW value list chi2 = sum(list_allchi2) # calculate chi value std dev chi2_stdev = np.array(list_allchi2).std() # calculate chi value - yates correction - using RAW value list chi2_yates = sum(list_allchi2_yates) # calculate chi value std dev - yates correction chi2_stdev_yates = np.array(list_allchi2_yates).std() # probability value p_val = stats.chi2.sf(chi2, df) # probability value - YATES p_val_yates = stats.chi2.sf(chi2_yates, df) # phi coefficient phi_coeff = phi_coefficient(chi2, totalelem) # contingency coefficient C obs_cont_coeff = contingency_coeff(chi2, totalelem) if (rows < columns): # corrected contingency coefficient obs_cont_coeff_corr = contingency_coeff_corr(chi2, totalelem, rows) else: # corrected contingency coefficient obs_cont_coeff_corr = contingency_coeff_corr(chi2, totalelem, columns) if (rows == columns): cont_coeff_std = standardized_contingency_coeff(obs_cont_coeff, rows, columns) cont_coeff_std_corr = standardized_contingency_coeff(obs_cont_coeff_corr, rows, columns) # cramer's V if (rows < columns): cramerV = cramer_V(chi2, totalelem, rows) else: cramerV = cramer_V(chi2, totalelem, columns) ########################################################################### # Interpret results # chi squared - interpretation # http://www.itl.nist.gov/div898/handbook/eda/section3/eda3674.htm # upper tail, one sided - we use alpha chi2_ut_1s = alpha # calculate chi 2 critical value chi2_CV_ut_1s = stats.chi2.isf(chi2_ut_1s, df) # check if we can accept or reject null hypothesis - chi squared if (chi2 > chi2_CV_ut_1s): chi2_iterp_ut_1s = "Rejected" else: chi2_iterp_ut_1s = "Accepted" # check if we can accept or reject null hypothesis - chi squared - YATES if (chi2_yates > chi2_CV_ut_1s): chi2_iterp_ut_1s_yates = "Rejected" else: chi2_iterp_ut_1s_yates = "Accepted" # lower tail, one sided - we use abs(alpha-1) chi2_lt_1s = abs(alpha-1) # calculater chi 2 critical value chi2_CV_lt_1s = stats.chi2.isf(chi2_lt_1s, df) # check if we can accept or reject null hypothesis - chi squared if (chi2 < chi2_CV_lt_1s): chi2_iterp_lt_1s = "Rejected" else: chi2_iterp_lt_1s = "Accepted" # check if we can accept or reject null hypothesis - chi squared - YATES if (chi2_yates < chi2_CV_lt_1s): chi2_iterp_lt_1s_yates = "Rejected" else: chi2_iterp_lt_1s_yates = "Accepted" # two sided - we use (alpha/2) for upper tail chi2_ut_2s = (alpha/2) # two sided - we use (abs(1-(alpha/2))) for lower tail chi2_lt_2s = (abs(1-(alpha/2))) # calculater chi 2 critical value chi2_CV_ut_2s = stats.chi2.isf(chi2_ut_2s, df) chi2_CV_lt_2s = stats.chi2.isf(chi2_lt_2s, df) # check if we can accept or reject null hypothesis - chi squared if (chi2 < chi2_CV_lt_2s) or (chi2 > chi2_CV_ut_2s): chi2_iterp_2s = "Rejected" else: chi2_iterp_2s = "Accepted" # check if we can accept or reject null hypothesis - chi squared - YATES if (chi2_yates < chi2_CV_lt_2s) or (chi2 > chi2_CV_ut_2s): chi2_iterp_2s_yates = "Rejected" else: chi2_iterp_2s_yates = "Accepted" # Likelihood ratio (G-test) - using RAW value list likelihood_ratio = (sum(list_alllikelihood)) # lower tail, one sided if (likelihood_ratio < chi2_CV_lt_1s): likelihood_ratio_iterp_lt_1s = "Rejected" else: likelihood_ratio_iterp_lt_1s = "Accepted" # upper tail, one sided if (likelihood_ratio > chi2_CV_ut_1s): likelihood_ratio_iterp_ut_1s = "Rejected" else: likelihood_ratio_iterp_ut_1s = "Accepted" # two sided - we use (alpha/2) for upper tail if (likelihood_ratio < chi2_CV_lt_2s) or (likelihood_ratio > chi2_CV_ut_2s): likelihood_ratio_iterp_2s = "Rejected" else: likelihood_ratio_iterp_2s = "Accepted" ########################################################################### # add all results to list for later printing all_details = list() all_details.append("\n===========================") all_details.append("Contingency Table") all_details.append("Table Size: '%sx%s'" % (rows, columns)) all_details.append("Number of cells: '%s'" % (tot_cells,)) all_details.append("Total number of elements: '%s'" % (totalelem,)) all_details.append("Observed minimum value: '%s'" % (observed_min,)) all_details.append("Expected minimum value: '%s'" % (expected_min,)) all_details.append("\nChi Squared") all_details.append("Pearson chi2: '%s'" % (chi2,)) all_details.append("Pearson chi2 (std. dev): '%s'" % (chi2_stdev,)) all_details.append("Degrees of freedom (df): '%s'" % (df,)) all_details.append("p-value (Pearson chi2): '%s'" % (p_val,)) all_details.append("Critical value, Lower tail, one-sided (alpha=%s, df=%s): %s" % (alpha, df, chi2_CV_lt_1s)) all_details.append("Critical value, Upper tail, one-sided (alpha=%s, df=%s): %s" % (alpha, df, chi2_CV_ut_1s)) all_details.append("Critical value, two-sided (alpha=%s, df=%s, value: %s,%s" % (chi2_ut_2s, df, chi2_CV_lt_2s, chi2_CV_ut_2s)) all_details.append("Pearson chi2, Null hypothesis, Lower tail, one-sided: '%s'" % (chi2_iterp_lt_1s,)) all_details.append("Pearson chi2, Null hypothesis, Upper tail, one-sided: '%s'" % (chi2_iterp_ut_1s,)) all_details.append("Pearson chi2, Null hypothesis, Two-sided: '%s'" % (chi2_iterp_2s,)) all_details.append("\nChi Squared - Yates Continuity Corrections") all_details.append("Yates chi2: '%s'" % (chi2_yates,)) all_details.append("Yates chi2 (std. dev): '%s'" % (chi2_stdev_yates,)) all_details.append("Degrees of freedom (df): '%s'" % (df,)) all_details.append("p-value (Yates chi2): '%s'" % (p_val_yates,)) all_details.append("Critical value, Lower tail, one-sided (alpha=%s, df=%s): %s" % (alpha, df, chi2_CV_lt_1s)) all_details.append("Critical value, Upper tail, one-sided (alpha=%s, df=%s): %s" % (alpha, df, chi2_CV_ut_1s)) all_details.append("Critical value, two-sided (alpha=%s, df=%s, value: %s,%s" % (chi2_ut_2s, df, chi2_CV_lt_2s, chi2_CV_ut_2s)) all_details.append("Yates chi2, Null hypothesis, Lower tail, one-sided: '%s'" % (chi2_iterp_lt_1s_yates,)) all_details.append("Yates chi2, Null hypothesis, Upper tail, one-sided: '%s'" % (chi2_iterp_ut_1s_yates,)) all_details.append("Yates chi2, Null hypothesis, Two-tailed: '%s'" % (chi2_iterp_2s_yates,)) all_details.append("\nChi Squared - Log-Likelihood ratio") all_details.append("Log-Likelihood ratio (G-test): '%s'" % (likelihood_ratio,)) all_details.append("Critical value, Lower tail, one-sided (alpha=%s, df=%s): %s" % (alpha, df, chi2_CV_lt_1s)) all_details.append("Critical value, Upper tail, one-sided (alpha=%s, df=%s): %s" % (alpha, df, chi2_CV_ut_1s)) all_details.append("Critical value, two-sided (alpha=%s, df=%s, value: %s,%s" % (chi2_ut_2s, df, chi2_CV_lt_2s, chi2_CV_ut_2s)) all_details.append("G-test, Null hypothesis, Lower tail, one-sided: '%s'" % (likelihood_ratio_iterp_lt_1s,)) all_details.append("G-test, Null hypothesis, Upper tail, one-sided: '%s'" % (likelihood_ratio_iterp_ut_1s,)) all_details.append("G-test, Null hypothesis, Two-tailed: '%s'" % (likelihood_ratio_iterp_2s,)) if (rows == columns): all_details.append("\nContingency coefficient") all_details.append("Observed contingency coefficient (C): '%s'" % (obs_cont_coeff,)) all_details.append("Observed contingency coefficient corrected (C corr): '%s'" % (obs_cont_coeff_corr,)) all_details.append("Standardized contingency coefficient (C std): '%s'" % (cont_coeff_std,)) all_details.append("Standardized contingency coefficient corrected (C corr std): '%s'" % (cont_coeff_std_corr,)) all_details.append("\nMeasures of Associations") if (rows == 2) and (columns == 2): all_details.append("Phi coefficient: '%s'" % (phi_coeff,)) all_details.append("Cramer's V (V): '%s'" % (cramerV,)) all_details.append("===========================\n") if (verbose == True): # print full table with all calculations print(print_table_all) # print all calculation with details for line in all_details: print(line) return (chi2, p_val, df, chi2_iterp_2s) def generalizedESD(x, maxOLs, alpha=0.05, fullOutput=False): # SOURCE: # PyAstronomy/src/pyasl/asl/outlier.py # https://github.com/sczesla/PyAstronomy """ Carry out a Generalized ESD Test for Outliers. The Generalized Extreme Studentized Deviate (ESD) test for outliers can be used to search for outliers in a univariate data set, which approximately follows a normal distribution. A description of the algorithm is, e.g., given at `Nist <http://www.itl.nist.gov/div898/handbook/eda/section3/eda35h3.htm>`_ or [Rosner1983]_. Parameters ---------- maxOLs : int Maximum number of outliers in the data set. alpha : float, optional Significance (default is 0.05). fullOutput : boolean, optional Determines whether additional return values are provided. Default is False. Returns ------- Number of outliers : int The number of data points characterized as outliers by the test. Indices : list of ints The indices of the data points found to be outliers. R : list of floats, optional The values of the "R statistics". Only provided if `fullOutput` is set to True. L : list of floats, optional The lambda values needed to test whether a point should be regarded an outlier. Only provided if `fullOutput` is set to True. """ from scipy.stats import t if maxOLs < 1: raise ValueError("Maximum number of outliers, `maxOLs`, must be > 1.") import numpy.ma as ma xm = ma.array(x) n = len(xm) # Compute R-values R = [] L = [] minds = [] for i in range(maxOLs + 1): # Compute mean and std of x xmean = xm.mean() xstd = xm.std() # Find maximum deviation rr = np.abs((xm - xmean)/xstd) minds.append(np.argmax(rr)) R.append(rr[minds[-1]]) if i >= 1: p = 1.0 - alpha/(2.0*(n - i + 1)) perPoint = t.ppf(p, n-i-1) L.append((n-i)*perPoint / np.sqrt((n-i-1+perPoint**2) * (n-i+1))) # Mask that value and proceed xm[minds[-1]] = ma.masked # Remove the first entry from R, which is of # no meaning for the test R.pop(-1) # Find the number of outliers ofound = False for i in range(maxOLs-1, -1, -1): if R[i] > L[i]: ofound = True break # Prepare return value if ofound: if not fullOutput: # There are outliers return i+1, minds[0:i+1] else: return i+1, minds[0:i+1], R, L, minds else: # No outliers could be detected if not fullOutput: # There are outliers return 0, [] else: return 0, [], R, L, minds ############################################################################### dataset = 'marscrater_clean.csv' data = pd.read_csv(dataset) # setting variables to CATEGORICAL data["CRATER_ID"] = data["CRATER_ID"].astype('category') data["CRATER_NAME"] = data["CRATER_NAME"].astype('category') data["MORPHOLOGY_EJECTA_1"] = data["MORPHOLOGY_EJECTA_1"].astype('category') data["MORPHOLOGY_EJECTA_2"] = data["MORPHOLOGY_EJECTA_2"].astype('category') data["MORPHOLOGY_EJECTA_3"] = data["MORPHOLOGY_EJECTA_3"].astype('category') # setting variables to NUMERIC - FLOAT data["LATITUDE_CIRCLE_IMAGE"] = data["LATITUDE_CIRCLE_IMAGE"].astype('float64') data["LONGITUDE_CIRCLE_IMAGE"] = data["LONGITUDE_CIRCLE_IMAGE"].astype('float64') data["DIAM_CIRCLE_IMAGE"] = data["DIAM_CIRCLE_IMAGE"].astype('float64') data["DEPTH_RIMFLOOR_TOPOG"] = data["DEPTH_RIMFLOOR_TOPOG"].astype('float64') # setting variables to NUMERIC - INT data["NUMBER_LAYERS"] = data["NUMBER_LAYERS"].astype('int') ############################################################################### # add new array to dataframe data = pd.concat([data, pd.DataFrame(columns=['LONGITUDE_EAST_360'])], ignore_index=True) data = pd.concat([data, pd.DataFrame(columns=['QUADRANGLE'])], ignore_index=True) data = pd.concat([data, pd.DataFrame(columns=['HEMISPHERE'])], ignore_index=True) data = pd.concat([data, pd.DataFrame(columns=['LAYERS'])], ignore_index=True) data = pd.concat([data,
pd.DataFrame(columns=['LATITUDE_SOUTH_180'])
pandas.DataFrame
# Copyright (c) 2018-2021, NVIDIA CORPORATION. import array as arr import datetime import io import operator import random import re import string import textwrap from copy import copy import cupy import numpy as np import pandas as pd import pyarrow as pa import pytest from numba import cuda import cudf from cudf.core._compat import PANDAS_GE_110, PANDAS_GE_120 from cudf.core.column import column from cudf.tests import utils from cudf.tests.utils import ( ALL_TYPES, DATETIME_TYPES, NUMERIC_TYPES, assert_eq, assert_exceptions_equal, does_not_raise, gen_rand, ) def test_init_via_list_of_tuples(): data = [ (5, "cats", "jump", np.nan), (2, "dogs", "dig", 7.5), (3, "cows", "moo", -2.1, "occasionally"), ] pdf = pd.DataFrame(data) gdf = cudf.DataFrame(data) assert_eq(pdf, gdf) def _dataframe_na_data(): return [ pd.DataFrame( { "a": [0, 1, 2, np.nan, 4, None, 6], "b": [np.nan, None, "u", "h", "d", "a", "m"], }, index=["q", "w", "e", "r", "t", "y", "u"], ), pd.DataFrame({"a": [0, 1, 2, 3, 4], "b": ["a", "b", "u", "h", "d"]}), pd.DataFrame( { "a": [None, None, np.nan, None], "b": [np.nan, None, np.nan, None], } ), pd.DataFrame({"a": []}), pd.DataFrame({"a": [np.nan], "b": [None]}), pd.DataFrame({"a": ["a", "b", "c", None, "e"]}), pd.DataFrame({"a": ["a", "b", "c", "d", "e"]}), ] @pytest.mark.parametrize("rows", [0, 1, 2, 100]) def test_init_via_list_of_empty_tuples(rows): data = [()] * rows pdf = pd.DataFrame(data) gdf = cudf.DataFrame(data) assert_eq( pdf, gdf, check_like=True, check_column_type=False, check_index_type=False, ) @pytest.mark.parametrize( "dict_of_series", [ {"a": pd.Series([1.0, 2.0, 3.0])}, {"a": pd.Series([1.0, 2.0, 3.0], index=[4, 5, 6])}, { "a": pd.Series([1.0, 2.0, 3.0], index=[4, 5, 6]), "b": pd.Series([1.0, 2.0, 4.0], index=[1, 2, 3]), }, {"a": [1, 2, 3], "b": pd.Series([1.0, 2.0, 3.0], index=[4, 5, 6])}, { "a": pd.Series([1.0, 2.0, 3.0], index=["a", "b", "c"]), "b": pd.Series([1.0, 2.0, 4.0], index=["c", "d", "e"]), }, { "a": pd.Series( ["a", "b", "c"], index=pd.MultiIndex.from_tuples([(1, 2), (1, 3), (2, 3)]), ), "b": pd.Series( ["a", " b", "d"], index=pd.MultiIndex.from_tuples([(1, 2), (1, 3), (2, 3)]), ), }, ], ) def test_init_from_series_align(dict_of_series): pdf = pd.DataFrame(dict_of_series) gdf = cudf.DataFrame(dict_of_series) assert_eq(pdf, gdf) for key in dict_of_series: if isinstance(dict_of_series[key], pd.Series): dict_of_series[key] = cudf.Series(dict_of_series[key]) gdf = cudf.DataFrame(dict_of_series) assert_eq(pdf, gdf) @pytest.mark.parametrize( ("dict_of_series", "expectation"), [ ( { "a": pd.Series(["a", "b", "c"], index=[4, 4, 5]), "b": pd.Series(["a", "b", "c"], index=[4, 5, 6]), }, pytest.raises( ValueError, match="Cannot align indices with non-unique values" ), ), ( { "a": pd.Series(["a", "b", "c"], index=[4, 4, 5]), "b": pd.Series(["a", "b", "c"], index=[4, 4, 5]), }, does_not_raise(), ), ], ) def test_init_from_series_align_nonunique(dict_of_series, expectation): with expectation: gdf = cudf.DataFrame(dict_of_series) if expectation == does_not_raise(): pdf = pd.DataFrame(dict_of_series) assert_eq(pdf, gdf) def test_init_unaligned_with_index(): pdf = pd.DataFrame( { "a": pd.Series([1.0, 2.0, 3.0], index=[4, 5, 6]), "b": pd.Series([1.0, 2.0, 3.0], index=[1, 2, 3]), }, index=[7, 8, 9], ) gdf = cudf.DataFrame( { "a": cudf.Series([1.0, 2.0, 3.0], index=[4, 5, 6]), "b": cudf.Series([1.0, 2.0, 3.0], index=[1, 2, 3]), }, index=[7, 8, 9], ) assert_eq(pdf, gdf, check_dtype=False) def test_series_basic(): # Make series from buffer a1 = np.arange(10, dtype=np.float64) series = cudf.Series(a1) assert len(series) == 10 np.testing.assert_equal(series.to_array(), np.hstack([a1])) def test_series_from_cupy_scalars(): data = [0.1, 0.2, 0.3] data_np = np.array(data) data_cp = cupy.array(data) s_np = cudf.Series([data_np[0], data_np[2]]) s_cp = cudf.Series([data_cp[0], data_cp[2]]) assert_eq(s_np, s_cp) @pytest.mark.parametrize("a", [[1, 2, 3], [1, 10, 30]]) @pytest.mark.parametrize("b", [[4, 5, 6], [-11, -100, 30]]) def test_append_index(a, b): df = pd.DataFrame() df["a"] = a df["b"] = b gdf = cudf.DataFrame() gdf["a"] = a gdf["b"] = b # Check the default index after appending two columns(Series) expected = df.a.append(df.b) actual = gdf.a.append(gdf.b) assert len(expected) == len(actual) assert_eq(expected.index, actual.index) expected = df.a.append(df.b, ignore_index=True) actual = gdf.a.append(gdf.b, ignore_index=True) assert len(expected) == len(actual) assert_eq(expected.index, actual.index) def test_series_init_none(): # test for creating empty series # 1: without initializing sr1 = cudf.Series() got = sr1.to_string() expect = "Series([], dtype: float64)" # values should match despite whitespace difference assert got.split() == expect.split() # 2: Using `None` as an initializer sr2 = cudf.Series(None) got = sr2.to_string() expect = "Series([], dtype: float64)" # values should match despite whitespace difference assert got.split() == expect.split() def test_dataframe_basic(): np.random.seed(0) df = cudf.DataFrame() # Populate with cuda memory df["keys"] = np.arange(10, dtype=np.float64) np.testing.assert_equal(df["keys"].to_array(), np.arange(10)) assert len(df) == 10 # Populate with numpy array rnd_vals = np.random.random(10) df["vals"] = rnd_vals np.testing.assert_equal(df["vals"].to_array(), rnd_vals) assert len(df) == 10 assert tuple(df.columns) == ("keys", "vals") # Make another dataframe df2 = cudf.DataFrame() df2["keys"] = np.array([123], dtype=np.float64) df2["vals"] = np.array([321], dtype=np.float64) # Concat df = cudf.concat([df, df2]) assert len(df) == 11 hkeys = np.asarray(np.arange(10, dtype=np.float64).tolist() + [123]) hvals = np.asarray(rnd_vals.tolist() + [321]) np.testing.assert_equal(df["keys"].to_array(), hkeys) np.testing.assert_equal(df["vals"].to_array(), hvals) # As matrix mat = df.as_matrix() expect = np.vstack([hkeys, hvals]).T np.testing.assert_equal(mat, expect) # test dataframe with tuple name df_tup = cudf.DataFrame() data = np.arange(10) df_tup[(1, "foobar")] = data np.testing.assert_equal(data, df_tup[(1, "foobar")].to_array()) df = cudf.DataFrame(pd.DataFrame({"a": [1, 2, 3], "c": ["a", "b", "c"]})) pdf = pd.DataFrame(pd.DataFrame({"a": [1, 2, 3], "c": ["a", "b", "c"]})) assert_eq(df, pdf) gdf = cudf.DataFrame({"id": [0, 1], "val": [None, None]}) gdf["val"] = gdf["val"].astype("int") assert gdf["val"].isnull().all() @pytest.mark.parametrize( "pdf", [ pd.DataFrame({"a": range(10), "b": range(10, 20), "c": range(1, 11)}), pd.DataFrame( {"a": range(10), "b": range(10, 20), "d": ["a", "v"] * 5} ), ], ) @pytest.mark.parametrize( "columns", [["a"], ["b"], "a", "b", ["a", "b"]], ) @pytest.mark.parametrize("inplace", [True, False]) def test_dataframe_drop_columns(pdf, columns, inplace): pdf = pdf.copy() gdf = cudf.from_pandas(pdf) expected = pdf.drop(columns=columns, inplace=inplace) actual = gdf.drop(columns=columns, inplace=inplace) if inplace: expected = pdf actual = gdf assert_eq(expected, actual) @pytest.mark.parametrize( "pdf", [ pd.DataFrame({"a": range(10), "b": range(10, 20), "c": range(1, 11)}), pd.DataFrame( {"a": range(10), "b": range(10, 20), "d": ["a", "v"] * 5} ), ], ) @pytest.mark.parametrize( "labels", [[1], [0], 1, 5, [5, 9], pd.Index([0, 1, 2, 3, 4, 5, 6, 7, 8, 9])], ) @pytest.mark.parametrize("inplace", [True, False]) def test_dataframe_drop_labels_axis_0(pdf, labels, inplace): pdf = pdf.copy() gdf = cudf.from_pandas(pdf) expected = pdf.drop(labels=labels, axis=0, inplace=inplace) actual = gdf.drop(labels=labels, axis=0, inplace=inplace) if inplace: expected = pdf actual = gdf assert_eq(expected, actual) @pytest.mark.parametrize( "pdf", [ pd.DataFrame({"a": range(10), "b": range(10, 20), "c": range(1, 11)}), pd.DataFrame( {"a": range(10), "b": range(10, 20), "d": ["a", "v"] * 5} ), ], ) @pytest.mark.parametrize( "index", [[1], [0], 1, 5, [5, 9], pd.Index([0, 1, 2, 3, 4, 5, 6, 7, 8, 9])], ) @pytest.mark.parametrize("inplace", [True, False]) def test_dataframe_drop_index(pdf, index, inplace): pdf = pdf.copy() gdf = cudf.from_pandas(pdf) expected = pdf.drop(index=index, inplace=inplace) actual = gdf.drop(index=index, inplace=inplace) if inplace: expected = pdf actual = gdf assert_eq(expected, actual) @pytest.mark.parametrize( "pdf", [ pd.DataFrame( {"a": range(10), "b": range(10, 20), "d": ["a", "v"] * 5}, index=pd.MultiIndex( levels=[ ["lama", "cow", "falcon"], ["speed", "weight", "length"], ], codes=[ [0, 0, 0, 1, 1, 1, 2, 2, 2, 1], [0, 1, 2, 0, 1, 2, 0, 1, 2, 1], ], ), ) ], ) @pytest.mark.parametrize( "index,level", [ ("cow", 0), ("lama", 0), ("falcon", 0), ("speed", 1), ("weight", 1), ("length", 1), pytest.param( "cow", None, marks=pytest.mark.xfail( reason="https://github.com/pandas-dev/pandas/issues/36293" ), ), pytest.param( "lama", None, marks=pytest.mark.xfail( reason="https://github.com/pandas-dev/pandas/issues/36293" ), ), pytest.param( "falcon", None, marks=pytest.mark.xfail( reason="https://github.com/pandas-dev/pandas/issues/36293" ), ), ], ) @pytest.mark.parametrize("inplace", [True, False]) def test_dataframe_drop_multiindex(pdf, index, level, inplace): pdf = pdf.copy() gdf = cudf.from_pandas(pdf) expected = pdf.drop(index=index, inplace=inplace, level=level) actual = gdf.drop(index=index, inplace=inplace, level=level) if inplace: expected = pdf actual = gdf assert_eq(expected, actual) @pytest.mark.parametrize( "pdf", [ pd.DataFrame({"a": range(10), "b": range(10, 20), "c": range(1, 11)}), pd.DataFrame( {"a": range(10), "b": range(10, 20), "d": ["a", "v"] * 5} ), ], ) @pytest.mark.parametrize( "labels", [["a"], ["b"], "a", "b", ["a", "b"]], ) @pytest.mark.parametrize("inplace", [True, False]) def test_dataframe_drop_labels_axis_1(pdf, labels, inplace): pdf = pdf.copy() gdf = cudf.from_pandas(pdf) expected = pdf.drop(labels=labels, axis=1, inplace=inplace) actual = gdf.drop(labels=labels, axis=1, inplace=inplace) if inplace: expected = pdf actual = gdf assert_eq(expected, actual) def test_dataframe_drop_error(): df = cudf.DataFrame({"a": [1], "b": [2], "c": [3]}) pdf = df.to_pandas() assert_exceptions_equal( lfunc=pdf.drop, rfunc=df.drop, lfunc_args_and_kwargs=([], {"columns": "d"}), rfunc_args_and_kwargs=([], {"columns": "d"}), expected_error_message="column 'd' does not exist", ) assert_exceptions_equal( lfunc=pdf.drop, rfunc=df.drop, lfunc_args_and_kwargs=([], {"columns": ["a", "d", "b"]}), rfunc_args_and_kwargs=([], {"columns": ["a", "d", "b"]}), expected_error_message="column 'd' does not exist", ) assert_exceptions_equal( lfunc=pdf.drop, rfunc=df.drop, lfunc_args_and_kwargs=(["a"], {"columns": "a", "axis": 1}), rfunc_args_and_kwargs=(["a"], {"columns": "a", "axis": 1}), expected_error_message="Cannot specify both", ) assert_exceptions_equal( lfunc=pdf.drop, rfunc=df.drop, lfunc_args_and_kwargs=([], {"axis": 1}), rfunc_args_and_kwargs=([], {"axis": 1}), expected_error_message="Need to specify at least", ) assert_exceptions_equal( lfunc=pdf.drop, rfunc=df.drop, lfunc_args_and_kwargs=([[2, 0]],), rfunc_args_and_kwargs=([[2, 0]],), expected_error_message="One or more values not found in axis", ) def test_dataframe_drop_raises(): df = cudf.DataFrame( {"a": [1, 2, 3], "c": [10, 20, 30]}, index=["x", "y", "z"] ) pdf = df.to_pandas() assert_exceptions_equal( lfunc=pdf.drop, rfunc=df.drop, lfunc_args_and_kwargs=(["p"],), rfunc_args_and_kwargs=(["p"],), expected_error_message="One or more values not found in axis", ) # label dtype mismatch assert_exceptions_equal( lfunc=pdf.drop, rfunc=df.drop, lfunc_args_and_kwargs=([3],), rfunc_args_and_kwargs=([3],), expected_error_message="One or more values not found in axis", ) expect = pdf.drop("p", errors="ignore") actual = df.drop("p", errors="ignore") assert_eq(actual, expect) assert_exceptions_equal( lfunc=pdf.drop, rfunc=df.drop, lfunc_args_and_kwargs=([], {"columns": "p"}), rfunc_args_and_kwargs=([], {"columns": "p"}), expected_error_message="column 'p' does not exist", ) expect = pdf.drop(columns="p", errors="ignore") actual = df.drop(columns="p", errors="ignore") assert_eq(actual, expect) assert_exceptions_equal( lfunc=pdf.drop, rfunc=df.drop, lfunc_args_and_kwargs=([], {"labels": "p", "axis": 1}), rfunc_args_and_kwargs=([], {"labels": "p", "axis": 1}), expected_error_message="column 'p' does not exist", ) expect = pdf.drop(labels="p", axis=1, errors="ignore") actual = df.drop(labels="p", axis=1, errors="ignore") assert_eq(actual, expect) def test_dataframe_column_add_drop_via_setitem(): df = cudf.DataFrame() data = np.asarray(range(10)) df["a"] = data df["b"] = data assert tuple(df.columns) == ("a", "b") del df["a"] assert tuple(df.columns) == ("b",) df["c"] = data assert tuple(df.columns) == ("b", "c") df["a"] = data assert tuple(df.columns) == ("b", "c", "a") def test_dataframe_column_set_via_attr(): data_0 = np.asarray([0, 2, 4, 5]) data_1 = np.asarray([1, 4, 2, 3]) data_2 = np.asarray([2, 0, 3, 0]) df = cudf.DataFrame({"a": data_0, "b": data_1, "c": data_2}) for i in range(10): df.c = df.a assert assert_eq(df.c, df.a, check_names=False) assert tuple(df.columns) == ("a", "b", "c") df.c = df.b assert assert_eq(df.c, df.b, check_names=False) assert tuple(df.columns) == ("a", "b", "c") def test_dataframe_column_drop_via_attr(): df = cudf.DataFrame({"a": []}) with pytest.raises(AttributeError): del df.a assert tuple(df.columns) == tuple("a") @pytest.mark.parametrize("axis", [0, "index"]) def test_dataframe_index_rename(axis): pdf = pd.DataFrame({"a": [1, 2, 3], "b": [4, 5, 6], "c": [7, 8, 9]}) gdf = cudf.DataFrame.from_pandas(pdf) expect = pdf.rename(mapper={1: 5, 2: 6}, axis=axis) got = gdf.rename(mapper={1: 5, 2: 6}, axis=axis) assert_eq(expect, got) expect = pdf.rename(index={1: 5, 2: 6}) got = gdf.rename(index={1: 5, 2: 6}) assert_eq(expect, got) expect = pdf.rename({1: 5, 2: 6}) got = gdf.rename({1: 5, 2: 6}) assert_eq(expect, got) # `pandas` can support indexes with mixed values. We throw a # `NotImplementedError`. with pytest.raises(NotImplementedError): gdf.rename(mapper={1: "x", 2: "y"}, axis=axis) def test_dataframe_MI_rename(): gdf = cudf.DataFrame( {"a": np.arange(10), "b": np.arange(10), "c": np.arange(10)} ) gdg = gdf.groupby(["a", "b"]).count() pdg = gdg.to_pandas() expect = pdg.rename(mapper={1: 5, 2: 6}, axis=0) got = gdg.rename(mapper={1: 5, 2: 6}, axis=0) assert_eq(expect, got) @pytest.mark.parametrize("axis", [1, "columns"]) def test_dataframe_column_rename(axis): pdf = pd.DataFrame({"a": [1, 2, 3], "b": [4, 5, 6], "c": [7, 8, 9]}) gdf = cudf.DataFrame.from_pandas(pdf) expect = pdf.rename(mapper=lambda name: 2 * name, axis=axis) got = gdf.rename(mapper=lambda name: 2 * name, axis=axis) assert_eq(expect, got) expect = pdf.rename(columns=lambda name: 2 * name) got = gdf.rename(columns=lambda name: 2 * name) assert_eq(expect, got) rename_mapper = {"a": "z", "b": "y", "c": "x"} expect = pdf.rename(columns=rename_mapper) got = gdf.rename(columns=rename_mapper) assert_eq(expect, got) def test_dataframe_pop(): pdf = pd.DataFrame( {"a": [1, 2, 3], "b": ["x", "y", "z"], "c": [7.0, 8.0, 9.0]} ) gdf = cudf.DataFrame.from_pandas(pdf) # Test non-existing column error with pytest.raises(KeyError) as raises: gdf.pop("fake_colname") raises.match("fake_colname") # check pop numeric column pdf_pop = pdf.pop("a") gdf_pop = gdf.pop("a") assert_eq(pdf_pop, gdf_pop) assert_eq(pdf, gdf) # check string column pdf_pop = pdf.pop("b") gdf_pop = gdf.pop("b") assert_eq(pdf_pop, gdf_pop) assert_eq(pdf, gdf) # check float column and empty dataframe pdf_pop = pdf.pop("c") gdf_pop = gdf.pop("c") assert_eq(pdf_pop, gdf_pop) assert_eq(pdf, gdf) # check empty dataframe edge case empty_pdf = pd.DataFrame(columns=["a", "b"]) empty_gdf = cudf.DataFrame(columns=["a", "b"]) pb = empty_pdf.pop("b") gb = empty_gdf.pop("b") assert len(pb) == len(gb) assert empty_pdf.empty and empty_gdf.empty @pytest.mark.parametrize("nelem", [0, 3, 100, 1000]) def test_dataframe_astype(nelem): df = cudf.DataFrame() data = np.asarray(range(nelem), dtype=np.int32) df["a"] = data assert df["a"].dtype is np.dtype(np.int32) df["b"] = df["a"].astype(np.float32) assert df["b"].dtype is np.dtype(np.float32) np.testing.assert_equal(df["a"].to_array(), df["b"].to_array()) @pytest.mark.parametrize("nelem", [0, 100]) def test_index_astype(nelem): df = cudf.DataFrame() data = np.asarray(range(nelem), dtype=np.int32) df["a"] = data assert df.index.dtype is np.dtype(np.int64) df.index = df.index.astype(np.float32) assert df.index.dtype is np.dtype(np.float32) df["a"] = df["a"].astype(np.float32) np.testing.assert_equal(df.index.to_array(), df["a"].to_array()) df["b"] = df["a"] df = df.set_index("b") df["a"] = df["a"].astype(np.int16) df.index = df.index.astype(np.int16) np.testing.assert_equal(df.index.to_array(), df["a"].to_array()) def test_dataframe_to_string(): pd.options.display.max_rows = 5 pd.options.display.max_columns = 8 # Test basic df = cudf.DataFrame( {"a": [1, 2, 3, 4, 5, 6], "b": [11, 12, 13, 14, 15, 16]} ) string = str(df) assert string.splitlines()[-1] == "[6 rows x 2 columns]" # Test skipped columns df = cudf.DataFrame( { "a": [1, 2, 3, 4, 5, 6], "b": [11, 12, 13, 14, 15, 16], "c": [11, 12, 13, 14, 15, 16], "d": [11, 12, 13, 14, 15, 16], } ) string = df.to_string() assert string.splitlines()[-1] == "[6 rows x 4 columns]" # Test masked df = cudf.DataFrame( {"a": [1, 2, 3, 4, 5, 6], "b": [11, 12, 13, 14, 15, 16]} ) data = np.arange(6) mask = np.zeros(1, dtype=cudf.utils.utils.mask_dtype) mask[0] = 0b00101101 masked = cudf.Series.from_masked_array(data, mask) assert masked.null_count == 2 df["c"] = masked # check data values = masked.copy() validids = [0, 2, 3, 5] densearray = masked.to_array() np.testing.assert_equal(data[validids], densearray) # valid position is corret for i in validids: assert data[i] == values[i] # null position is correct for i in range(len(values)): if i not in validids: assert values[i] is cudf.NA pd.options.display.max_rows = 10 got = df.to_string() expect = """ a b c 0 1 11 0 1 2 12 <NA> 2 3 13 2 3 4 14 3 4 5 15 <NA> 5 6 16 5 """ # values should match despite whitespace difference assert got.split() == expect.split() def test_dataframe_to_string_wide(monkeypatch): monkeypatch.setenv("COLUMNS", "79") # Test basic df = cudf.DataFrame() for i in range(100): df["a{}".format(i)] = list(range(3)) pd.options.display.max_columns = 0 got = df.to_string() expect = """ a0 a1 a2 a3 a4 a5 a6 a7 ... a92 a93 a94 a95 a96 a97 a98 a99 0 0 0 0 0 0 0 0 0 ... 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 ... 1 1 1 1 1 1 1 1 2 2 2 2 2 2 2 2 2 ... 2 2 2 2 2 2 2 2 [3 rows x 100 columns] """ # values should match despite whitespace difference assert got.split() == expect.split() def test_dataframe_empty_to_string(): # Test for printing empty dataframe df = cudf.DataFrame() got = df.to_string() expect = "Empty DataFrame\nColumns: []\nIndex: []\n" # values should match despite whitespace difference assert got.split() == expect.split() def test_dataframe_emptycolumns_to_string(): # Test for printing dataframe having empty columns df = cudf.DataFrame() df["a"] = [] df["b"] = [] got = df.to_string() expect = "Empty DataFrame\nColumns: [a, b]\nIndex: []\n" # values should match despite whitespace difference assert got.split() == expect.split() def test_dataframe_copy(): # Test for copying the dataframe using python copy pkg df = cudf.DataFrame() df["a"] = [1, 2, 3] df2 = copy(df) df2["b"] = [4, 5, 6] got = df.to_string() expect = """ a 0 1 1 2 2 3 """ # values should match despite whitespace difference assert got.split() == expect.split() def test_dataframe_copy_shallow(): # Test for copy dataframe using class method df = cudf.DataFrame() df["a"] = [1, 2, 3] df2 = df.copy() df2["b"] = [4, 2, 3] got = df.to_string() expect = """ a 0 1 1 2 2 3 """ # values should match despite whitespace difference assert got.split() == expect.split() def test_dataframe_dtypes(): dtypes = pd.Series( [np.int32, np.float32, np.float64], index=["c", "a", "b"] ) df = cudf.DataFrame( {k: np.ones(10, dtype=v) for k, v in dtypes.iteritems()} ) assert df.dtypes.equals(dtypes) def test_dataframe_add_col_to_object_dataframe(): # Test for adding column to an empty object dataframe cols = ["a", "b", "c"] df = pd.DataFrame(columns=cols, dtype="str") data = {k: v for (k, v) in zip(cols, [["a"] for _ in cols])} gdf = cudf.DataFrame(data) gdf = gdf[:0] assert gdf.dtypes.equals(df.dtypes) gdf["a"] = [1] df["a"] = [10] assert gdf.dtypes.equals(df.dtypes) gdf["b"] = [1.0] df["b"] = [10.0] assert gdf.dtypes.equals(df.dtypes) def test_dataframe_dir_and_getattr(): df = cudf.DataFrame( { "a": np.ones(10), "b": np.ones(10), "not an id": np.ones(10), "oop$": np.ones(10), } ) o = dir(df) assert {"a", "b"}.issubset(o) assert "not an id" not in o assert "oop$" not in o # Getattr works assert df.a.equals(df["a"]) assert df.b.equals(df["b"]) with pytest.raises(AttributeError): df.not_a_column @pytest.mark.parametrize("order", ["C", "F"]) def test_empty_dataframe_as_gpu_matrix(order): df = cudf.DataFrame() # Check fully empty dataframe. mat = df.as_gpu_matrix(order=order).copy_to_host() assert mat.shape == (0, 0) df = cudf.DataFrame() nelem = 123 for k in "abc": df[k] = np.random.random(nelem) # Check all columns in empty dataframe. mat = df.head(0).as_gpu_matrix(order=order).copy_to_host() assert mat.shape == (0, 3) @pytest.mark.parametrize("order", ["C", "F"]) def test_dataframe_as_gpu_matrix(order): df = cudf.DataFrame() nelem = 123 for k in "abcd": df[k] = np.random.random(nelem) # Check all columns mat = df.as_gpu_matrix(order=order).copy_to_host() assert mat.shape == (nelem, 4) for i, k in enumerate(df.columns): np.testing.assert_array_equal(df[k].to_array(), mat[:, i]) # Check column subset mat = df.as_gpu_matrix(order=order, columns=["a", "c"]).copy_to_host() assert mat.shape == (nelem, 2) for i, k in enumerate("ac"): np.testing.assert_array_equal(df[k].to_array(), mat[:, i]) def test_dataframe_as_gpu_matrix_null_values(): df = cudf.DataFrame() nelem = 123 na = -10000 refvalues = {} for k in "abcd": df[k] = data = np.random.random(nelem) bitmask = utils.random_bitmask(nelem) df[k] = df[k].set_mask(bitmask) boolmask = np.asarray( utils.expand_bits_to_bytes(bitmask)[:nelem], dtype=np.bool_ ) data[~boolmask] = na refvalues[k] = data # Check null value causes error with pytest.raises(ValueError) as raises: df.as_gpu_matrix() raises.match("column 'a' has null values") for k in df.columns: df[k] = df[k].fillna(na) mat = df.as_gpu_matrix().copy_to_host() for i, k in enumerate(df.columns): np.testing.assert_array_equal(refvalues[k], mat[:, i]) def test_dataframe_append_empty(): pdf = pd.DataFrame( { "key": [1, 1, 1, 2, 2, 2, 3, 3, 3, 4, 4, 4], "value": [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12], } ) gdf = cudf.DataFrame.from_pandas(pdf) gdf["newcol"] = 100 pdf["newcol"] = 100 assert len(gdf["newcol"]) == len(pdf) assert len(pdf["newcol"]) == len(pdf) assert_eq(gdf, pdf) def test_dataframe_setitem_from_masked_object(): ary = np.random.randn(100) mask = np.zeros(100, dtype=bool) mask[:20] = True np.random.shuffle(mask) ary[mask] = np.nan test1_null = cudf.Series(ary, nan_as_null=True) assert test1_null.nullable assert test1_null.null_count == 20 test1_nan = cudf.Series(ary, nan_as_null=False) assert test1_nan.null_count == 0 test2_null = cudf.DataFrame.from_pandas( pd.DataFrame({"a": ary}), nan_as_null=True ) assert test2_null["a"].nullable assert test2_null["a"].null_count == 20 test2_nan = cudf.DataFrame.from_pandas( pd.DataFrame({"a": ary}), nan_as_null=False ) assert test2_nan["a"].null_count == 0 gpu_ary = cupy.asarray(ary) test3_null = cudf.Series(gpu_ary, nan_as_null=True) assert test3_null.nullable assert test3_null.null_count == 20 test3_nan = cudf.Series(gpu_ary, nan_as_null=False) assert test3_nan.null_count == 0 test4 = cudf.DataFrame() lst = [1, 2, None, 4, 5, 6, None, 8, 9] test4["lst"] = lst assert test4["lst"].nullable assert test4["lst"].null_count == 2 def test_dataframe_append_to_empty(): pdf = pd.DataFrame() pdf["a"] = [] pdf["b"] = [1, 2, 3] gdf = cudf.DataFrame() gdf["a"] = [] gdf["b"] = [1, 2, 3] assert_eq(gdf, pdf) def test_dataframe_setitem_index_len1(): gdf = cudf.DataFrame() gdf["a"] = [1] gdf["b"] = gdf.index._values np.testing.assert_equal(gdf.b.to_array(), [0]) def test_empty_dataframe_setitem_df(): gdf1 = cudf.DataFrame() gdf2 = cudf.DataFrame({"a": [1, 2, 3, 4, 5]}) gdf1["a"] = gdf2["a"] assert_eq(gdf1, gdf2) def test_assign(): gdf = cudf.DataFrame({"x": [1, 2, 3]}) gdf2 = gdf.assign(y=gdf.x + 1) assert list(gdf.columns) == ["x"] assert list(gdf2.columns) == ["x", "y"] np.testing.assert_equal(gdf2.y.to_array(), [2, 3, 4]) @pytest.mark.parametrize("nrows", [1, 8, 100, 1000]) def test_dataframe_hash_columns(nrows): gdf = cudf.DataFrame() data = np.asarray(range(nrows)) data[0] = data[-1] # make first and last the same gdf["a"] = data gdf["b"] = gdf.a + 100 out = gdf.hash_columns(["a", "b"]) assert isinstance(out, cupy.ndarray) assert len(out) == nrows assert out.dtype == np.int32 # Check default out_all = gdf.hash_columns() np.testing.assert_array_equal(cupy.asnumpy(out), cupy.asnumpy(out_all)) # Check single column out_one = cupy.asnumpy(gdf.hash_columns(["a"])) # First matches last assert out_one[0] == out_one[-1] # Equivalent to the cudf.Series.hash_values() np.testing.assert_array_equal(cupy.asnumpy(gdf.a.hash_values()), out_one) @pytest.mark.parametrize("nrows", [3, 10, 100, 1000]) @pytest.mark.parametrize("nparts", [1, 2, 8, 13]) @pytest.mark.parametrize("nkeys", [1, 2]) def test_dataframe_hash_partition(nrows, nparts, nkeys): np.random.seed(123) gdf = cudf.DataFrame() keycols = [] for i in range(nkeys): keyname = "key{}".format(i) gdf[keyname] = np.random.randint(0, 7 - i, nrows) keycols.append(keyname) gdf["val1"] = np.random.randint(0, nrows * 2, nrows) got = gdf.partition_by_hash(keycols, nparts=nparts) # Must return a list assert isinstance(got, list) # Must have correct number of partitions assert len(got) == nparts # All partitions must be DataFrame type assert all(isinstance(p, cudf.DataFrame) for p in got) # Check that all partitions have unique keys part_unique_keys = set() for p in got: if len(p): # Take rows of the keycolumns and build a set of the key-values unique_keys = set(map(tuple, p.as_matrix(columns=keycols))) # Ensure that none of the key-values have occurred in other groups assert not (unique_keys & part_unique_keys) part_unique_keys |= unique_keys assert len(part_unique_keys) @pytest.mark.parametrize("nrows", [3, 10, 50]) def test_dataframe_hash_partition_masked_value(nrows): gdf = cudf.DataFrame() gdf["key"] = np.arange(nrows) gdf["val"] = np.arange(nrows) + 100 bitmask = utils.random_bitmask(nrows) bytemask = utils.expand_bits_to_bytes(bitmask) gdf["val"] = gdf["val"].set_mask(bitmask) parted = gdf.partition_by_hash(["key"], nparts=3) # Verify that the valid mask is correct for p in parted: df = p.to_pandas() for row in df.itertuples(): valid = bool(bytemask[row.key]) expected_value = row.key + 100 if valid else np.nan got_value = row.val assert (expected_value == got_value) or ( np.isnan(expected_value) and np.isnan(got_value) ) @pytest.mark.parametrize("nrows", [3, 10, 50]) def test_dataframe_hash_partition_masked_keys(nrows): gdf = cudf.DataFrame() gdf["key"] = np.arange(nrows) gdf["val"] = np.arange(nrows) + 100 bitmask = utils.random_bitmask(nrows) bytemask = utils.expand_bits_to_bytes(bitmask) gdf["key"] = gdf["key"].set_mask(bitmask) parted = gdf.partition_by_hash(["key"], nparts=3, keep_index=False) # Verify that the valid mask is correct for p in parted: df = p.to_pandas() for row in df.itertuples(): valid = bool(bytemask[row.val - 100]) # val is key + 100 expected_value = row.val - 100 if valid else np.nan got_value = row.key assert (expected_value == got_value) or ( np.isnan(expected_value) and np.isnan(got_value) ) @pytest.mark.parametrize("keep_index", [True, False]) def test_dataframe_hash_partition_keep_index(keep_index): gdf = cudf.DataFrame( {"val": [1, 2, 3, 4], "key": [3, 2, 1, 4]}, index=[4, 3, 2, 1] ) expected_df1 = cudf.DataFrame( {"val": [1], "key": [3]}, index=[4] if keep_index else None ) expected_df2 = cudf.DataFrame( {"val": [2, 3, 4], "key": [2, 1, 4]}, index=[3, 2, 1] if keep_index else range(1, 4), ) expected = [expected_df1, expected_df2] parts = gdf.partition_by_hash(["key"], nparts=2, keep_index=keep_index) for exp, got in zip(expected, parts): assert_eq(exp, got) def test_dataframe_hash_partition_empty(): gdf = cudf.DataFrame({"val": [1, 2], "key": [3, 2]}, index=["a", "b"]) parts = gdf.iloc[:0].partition_by_hash(["key"], nparts=3) assert len(parts) == 3 for part in parts: assert_eq(gdf.iloc[:0], part) @pytest.mark.parametrize("dtype1", utils.supported_numpy_dtypes) @pytest.mark.parametrize("dtype2", utils.supported_numpy_dtypes) def test_dataframe_concat_different_numerical_columns(dtype1, dtype2): df1 = pd.DataFrame(dict(x=pd.Series(np.arange(5)).astype(dtype1))) df2 = pd.DataFrame(dict(x=pd.Series(np.arange(5)).astype(dtype2))) if dtype1 != dtype2 and "datetime" in dtype1 or "datetime" in dtype2: with pytest.raises(TypeError): cudf.concat([df1, df2]) else: pres = pd.concat([df1, df2]) gres = cudf.concat([cudf.from_pandas(df1), cudf.from_pandas(df2)]) assert_eq(cudf.from_pandas(pres), gres) def test_dataframe_concat_different_column_types(): df1 = cudf.Series([42], dtype=np.float64) df2 = cudf.Series(["a"], dtype="category") with pytest.raises(ValueError): cudf.concat([df1, df2]) df2 = cudf.Series(["a string"]) with pytest.raises(TypeError): cudf.concat([df1, df2]) @pytest.mark.parametrize( "df_1", [cudf.DataFrame({"a": [1, 2], "b": [1, 3]}), cudf.DataFrame({})] ) @pytest.mark.parametrize( "df_2", [cudf.DataFrame({"a": [], "b": []}), cudf.DataFrame({})] ) def test_concat_empty_dataframe(df_1, df_2): got = cudf.concat([df_1, df_2]) expect = pd.concat([df_1.to_pandas(), df_2.to_pandas()], sort=False) # ignoring dtypes as pandas upcasts int to float # on concatenation with empty dataframes assert_eq(got, expect, check_dtype=False) @pytest.mark.parametrize( "df1_d", [ {"a": [1, 2], "b": [1, 2], "c": ["s1", "s2"], "d": [1.0, 2.0]}, {"b": [1.9, 10.9], "c": ["s1", "s2"]}, {"c": ["s1"], "b": [None], "a": [False]}, ], ) @pytest.mark.parametrize( "df2_d", [ {"a": [1, 2, 3]}, {"a": [1, None, 3], "b": [True, True, False], "c": ["s3", None, "s4"]}, {"a": [], "b": []}, {}, ], ) def test_concat_different_column_dataframe(df1_d, df2_d): got = cudf.concat( [cudf.DataFrame(df1_d), cudf.DataFrame(df2_d), cudf.DataFrame(df1_d)], sort=False, ) expect = pd.concat( [pd.DataFrame(df1_d), pd.DataFrame(df2_d), pd.DataFrame(df1_d)], sort=False, ) # numerical columns are upcasted to float in cudf.DataFrame.to_pandas() # casts nan to 0 in non-float numerical columns numeric_cols = got.dtypes[got.dtypes != "object"].index for col in numeric_cols: got[col] = got[col].astype(np.float64).fillna(np.nan) assert_eq(got, expect, check_dtype=False) @pytest.mark.parametrize( "ser_1", [pd.Series([1, 2, 3]), pd.Series([], dtype="float64")] ) @pytest.mark.parametrize("ser_2", [pd.Series([], dtype="float64")]) def test_concat_empty_series(ser_1, ser_2): got = cudf.concat([cudf.Series(ser_1), cudf.Series(ser_2)]) expect = pd.concat([ser_1, ser_2]) assert_eq(got, expect) def test_concat_with_axis(): df1 = pd.DataFrame(dict(x=np.arange(5), y=np.arange(5))) df2 = pd.DataFrame(dict(a=np.arange(5), b=np.arange(5))) concat_df = pd.concat([df1, df2], axis=1) cdf1 = cudf.from_pandas(df1) cdf2 = cudf.from_pandas(df2) # concat only dataframes concat_cdf = cudf.concat([cdf1, cdf2], axis=1) assert_eq(concat_cdf, concat_df) # concat only series concat_s = pd.concat([df1.x, df1.y], axis=1) cs1 = cudf.Series.from_pandas(df1.x) cs2 = cudf.Series.from_pandas(df1.y) concat_cdf_s = cudf.concat([cs1, cs2], axis=1) assert_eq(concat_cdf_s, concat_s) # concat series and dataframes s3 = pd.Series(np.random.random(5)) cs3 = cudf.Series.from_pandas(s3) concat_cdf_all = cudf.concat([cdf1, cs3, cdf2], axis=1) concat_df_all = pd.concat([df1, s3, df2], axis=1) assert_eq(concat_cdf_all, concat_df_all) # concat manual multi index midf1 = cudf.from_pandas(df1) midf1.index = cudf.MultiIndex( levels=[[0, 1, 2, 3], [0, 1]], codes=[[0, 1, 2, 3, 2], [0, 1, 0, 1, 0]] ) midf2 = midf1[2:] midf2.index = cudf.MultiIndex( levels=[[3, 4, 5], [2, 0]], codes=[[0, 1, 2], [1, 0, 1]] ) mipdf1 = midf1.to_pandas() mipdf2 = midf2.to_pandas() assert_eq(cudf.concat([midf1, midf2]), pd.concat([mipdf1, mipdf2])) assert_eq(cudf.concat([midf2, midf1]), pd.concat([mipdf2, mipdf1])) assert_eq( cudf.concat([midf1, midf2, midf1]), pd.concat([mipdf1, mipdf2, mipdf1]) ) # concat groupby multi index gdf1 = cudf.DataFrame( { "x": np.random.randint(0, 10, 10), "y": np.random.randint(0, 10, 10), "z": np.random.randint(0, 10, 10), "v": np.random.randint(0, 10, 10), } ) gdf2 = gdf1[5:] gdg1 = gdf1.groupby(["x", "y"]).min() gdg2 = gdf2.groupby(["x", "y"]).min() pdg1 = gdg1.to_pandas() pdg2 = gdg2.to_pandas() assert_eq(cudf.concat([gdg1, gdg2]), pd.concat([pdg1, pdg2])) assert_eq(cudf.concat([gdg2, gdg1]), pd.concat([pdg2, pdg1])) # series multi index concat gdgz1 = gdg1.z gdgz2 = gdg2.z pdgz1 = gdgz1.to_pandas() pdgz2 = gdgz2.to_pandas() assert_eq(cudf.concat([gdgz1, gdgz2]), pd.concat([pdgz1, pdgz2])) assert_eq(cudf.concat([gdgz2, gdgz1]), pd.concat([pdgz2, pdgz1])) @pytest.mark.parametrize("nrows", [0, 3, 10, 100, 1000]) def test_nonmatching_index_setitem(nrows): np.random.seed(0) gdf = cudf.DataFrame() gdf["a"] = np.random.randint(2147483647, size=nrows) gdf["b"] = np.random.randint(2147483647, size=nrows) gdf = gdf.set_index("b") test_values = np.random.randint(2147483647, size=nrows) gdf["c"] = test_values assert len(test_values) == len(gdf["c"]) assert ( gdf["c"] .to_pandas() .equals(cudf.Series(test_values).set_index(gdf._index).to_pandas()) ) def test_from_pandas(): df = pd.DataFrame({"x": [1, 2, 3]}, index=[4.0, 5.0, 6.0]) gdf = cudf.DataFrame.from_pandas(df) assert isinstance(gdf, cudf.DataFrame) assert_eq(df, gdf) s = df.x gs = cudf.Series.from_pandas(s) assert isinstance(gs, cudf.Series) assert_eq(s, gs) @pytest.mark.parametrize("dtypes", [int, float]) def test_from_records(dtypes): h_ary = np.ndarray(shape=(10, 4), dtype=dtypes) rec_ary = h_ary.view(np.recarray) gdf = cudf.DataFrame.from_records(rec_ary, columns=["a", "b", "c", "d"]) df = pd.DataFrame.from_records(rec_ary, columns=["a", "b", "c", "d"]) assert isinstance(gdf, cudf.DataFrame) assert_eq(df, gdf) gdf = cudf.DataFrame.from_records(rec_ary) df = pd.DataFrame.from_records(rec_ary) assert isinstance(gdf, cudf.DataFrame) assert_eq(df, gdf) @pytest.mark.parametrize("columns", [None, ["first", "second", "third"]]) @pytest.mark.parametrize( "index", [ None, ["first", "second"], "name", "age", "weight", [10, 11], ["abc", "xyz"], ], ) def test_from_records_index(columns, index): rec_ary = np.array( [("Rex", 9, 81.0), ("Fido", 3, 27.0)], dtype=[("name", "U10"), ("age", "i4"), ("weight", "f4")], ) gdf = cudf.DataFrame.from_records(rec_ary, columns=columns, index=index) df = pd.DataFrame.from_records(rec_ary, columns=columns, index=index) assert isinstance(gdf, cudf.DataFrame) assert_eq(df, gdf) def test_dataframe_construction_from_cupy_arrays(): h_ary = np.array([[1, 2, 3], [4, 5, 6]], np.int32) d_ary = cupy.asarray(h_ary) gdf = cudf.DataFrame(d_ary, columns=["a", "b", "c"]) df = pd.DataFrame(h_ary, columns=["a", "b", "c"]) assert isinstance(gdf, cudf.DataFrame) assert_eq(df, gdf) gdf = cudf.DataFrame(d_ary) df = pd.DataFrame(h_ary) assert isinstance(gdf, cudf.DataFrame) assert_eq(df, gdf) gdf = cudf.DataFrame(d_ary, index=["a", "b"]) df = pd.DataFrame(h_ary, index=["a", "b"]) assert isinstance(gdf, cudf.DataFrame) assert_eq(df, gdf) gdf = cudf.DataFrame(d_ary) gdf = gdf.set_index(keys=0, drop=False) df = pd.DataFrame(h_ary) df = df.set_index(keys=0, drop=False) assert isinstance(gdf, cudf.DataFrame) assert_eq(df, gdf) gdf = cudf.DataFrame(d_ary) gdf = gdf.set_index(keys=1, drop=False) df = pd.DataFrame(h_ary) df = df.set_index(keys=1, drop=False) assert isinstance(gdf, cudf.DataFrame) assert_eq(df, gdf) def test_dataframe_cupy_wrong_dimensions(): d_ary = cupy.empty((2, 3, 4), dtype=np.int32) with pytest.raises( ValueError, match="records dimension expected 1 or 2 but found: 3" ): cudf.DataFrame(d_ary) def test_dataframe_cupy_array_wrong_index(): d_ary = cupy.empty((2, 3), dtype=np.int32) with pytest.raises( ValueError, match="Length mismatch: Expected axis has 2 elements, " "new values have 1 elements", ): cudf.DataFrame(d_ary, index=["a"]) with pytest.raises( ValueError, match="Length mismatch: Expected axis has 2 elements, " "new values have 1 elements", ): cudf.DataFrame(d_ary, index="a") def test_index_in_dataframe_constructor(): a = pd.DataFrame({"x": [1, 2, 3]}, index=[4.0, 5.0, 6.0]) b = cudf.DataFrame({"x": [1, 2, 3]}, index=[4.0, 5.0, 6.0]) assert_eq(a, b) assert_eq(a.loc[4:], b.loc[4:]) dtypes = NUMERIC_TYPES + DATETIME_TYPES + ["bool"] @pytest.mark.parametrize("nelem", [0, 2, 3, 100, 1000]) @pytest.mark.parametrize("data_type", dtypes) def test_from_arrow(nelem, data_type): df = pd.DataFrame( { "a": np.random.randint(0, 1000, nelem).astype(data_type), "b": np.random.randint(0, 1000, nelem).astype(data_type), } ) padf = pa.Table.from_pandas( df, preserve_index=False ).replace_schema_metadata(None) gdf = cudf.DataFrame.from_arrow(padf) assert isinstance(gdf, cudf.DataFrame) assert_eq(df, gdf) s = pa.Array.from_pandas(df.a) gs = cudf.Series.from_arrow(s) assert isinstance(gs, cudf.Series) # For some reason PyArrow to_pandas() converts to numpy array and has # better type compatibility np.testing.assert_array_equal(s.to_pandas(), gs.to_array()) @pytest.mark.parametrize("nelem", [0, 2, 3, 100, 1000]) @pytest.mark.parametrize("data_type", dtypes) def test_to_arrow(nelem, data_type): df = pd.DataFrame( { "a": np.random.randint(0, 1000, nelem).astype(data_type), "b": np.random.randint(0, 1000, nelem).astype(data_type), } ) gdf = cudf.DataFrame.from_pandas(df) pa_df = pa.Table.from_pandas( df, preserve_index=False ).replace_schema_metadata(None) pa_gdf = gdf.to_arrow(preserve_index=False).replace_schema_metadata(None) assert isinstance(pa_gdf, pa.Table) assert pa.Table.equals(pa_df, pa_gdf) pa_s = pa.Array.from_pandas(df.a) pa_gs = gdf["a"].to_arrow() assert isinstance(pa_gs, pa.Array) assert pa.Array.equals(pa_s, pa_gs) pa_i = pa.Array.from_pandas(df.index) pa_gi = gdf.index.to_arrow() assert isinstance(pa_gi, pa.Array) assert pa.Array.equals(pa_i, pa_gi) @pytest.mark.parametrize("data_type", dtypes) def test_to_from_arrow_nulls(data_type): if data_type == "longlong": data_type = "int64" if data_type == "bool": s1 = pa.array([True, None, False, None, True], type=data_type) else: dtype = np.dtype(data_type) if dtype.type == np.datetime64: time_unit, _ = np.datetime_data(dtype) data_type = pa.timestamp(unit=time_unit) s1 = pa.array([1, None, 3, None, 5], type=data_type) gs1 = cudf.Series.from_arrow(s1) assert isinstance(gs1, cudf.Series) # We have 64B padded buffers for nulls whereas Arrow returns a minimal # number of bytes, so only check the first byte in this case np.testing.assert_array_equal( np.asarray(s1.buffers()[0]).view("u1")[0], gs1._column.mask_array_view.copy_to_host().view("u1")[0], ) assert pa.Array.equals(s1, gs1.to_arrow()) s2 = pa.array([None, None, None, None, None], type=data_type) gs2 = cudf.Series.from_arrow(s2) assert isinstance(gs2, cudf.Series) # We have 64B padded buffers for nulls whereas Arrow returns a minimal # number of bytes, so only check the first byte in this case np.testing.assert_array_equal( np.asarray(s2.buffers()[0]).view("u1")[0], gs2._column.mask_array_view.copy_to_host().view("u1")[0], ) assert pa.Array.equals(s2, gs2.to_arrow()) def test_to_arrow_categorical(): df = pd.DataFrame() df["a"] = pd.Series(["a", "b", "c"], dtype="category") gdf = cudf.DataFrame.from_pandas(df) pa_df = pa.Table.from_pandas( df, preserve_index=False ).replace_schema_metadata(None) pa_gdf = gdf.to_arrow(preserve_index=False).replace_schema_metadata(None) assert isinstance(pa_gdf, pa.Table) assert pa.Table.equals(pa_df, pa_gdf) pa_s = pa.Array.from_pandas(df.a) pa_gs = gdf["a"].to_arrow() assert isinstance(pa_gs, pa.Array) assert pa.Array.equals(pa_s, pa_gs) def test_from_arrow_missing_categorical(): pd_cat = pd.Categorical(["a", "b", "c"], categories=["a", "b"]) pa_cat = pa.array(pd_cat, from_pandas=True) gd_cat = cudf.Series(pa_cat) assert isinstance(gd_cat, cudf.Series) assert_eq( pd.Series(pa_cat.to_pandas()), # PyArrow returns a pd.Categorical gd_cat.to_pandas(), ) def test_to_arrow_missing_categorical(): pd_cat = pd.Categorical(["a", "b", "c"], categories=["a", "b"]) pa_cat = pa.array(pd_cat, from_pandas=True) gd_cat = cudf.Series(pa_cat) assert isinstance(gd_cat, cudf.Series) assert pa.Array.equals(pa_cat, gd_cat.to_arrow()) @pytest.mark.parametrize("data_type", dtypes) def test_from_scalar_typing(data_type): if data_type == "datetime64[ms]": scalar = ( np.dtype("int64") .type(np.random.randint(0, 5)) .astype("datetime64[ms]") ) elif data_type.startswith("datetime64"): scalar = np.datetime64(datetime.date.today()).astype("datetime64[ms]") data_type = "datetime64[ms]" else: scalar = np.dtype(data_type).type(np.random.randint(0, 5)) gdf = cudf.DataFrame() gdf["a"] = [1, 2, 3, 4, 5] gdf["b"] = scalar assert gdf["b"].dtype == np.dtype(data_type) assert len(gdf["b"]) == len(gdf["a"]) @pytest.mark.parametrize("data_type", NUMERIC_TYPES) def test_from_python_array(data_type): np_arr = np.random.randint(0, 100, 10).astype(data_type) data = memoryview(np_arr) data = arr.array(data.format, data) gs = cudf.Series(data) np.testing.assert_equal(gs.to_array(), np_arr) def test_series_shape(): ps = pd.Series([1, 2, 3, 4]) cs = cudf.Series([1, 2, 3, 4]) assert ps.shape == cs.shape def test_series_shape_empty(): ps = pd.Series(dtype="float64") cs = cudf.Series([]) assert ps.shape == cs.shape def test_dataframe_shape(): pdf = pd.DataFrame({"a": [0, 1, 2, 3], "b": [0.1, 0.2, None, 0.3]}) gdf = cudf.DataFrame.from_pandas(pdf) assert pdf.shape == gdf.shape def test_dataframe_shape_empty(): pdf = pd.DataFrame() gdf = cudf.DataFrame() assert pdf.shape == gdf.shape @pytest.mark.parametrize("num_cols", [1, 2, 10]) @pytest.mark.parametrize("num_rows", [1, 2, 20]) @pytest.mark.parametrize("dtype", dtypes) @pytest.mark.parametrize("nulls", ["none", "some", "all"]) def test_dataframe_transpose(nulls, num_cols, num_rows, dtype): pdf = pd.DataFrame() null_rep = np.nan if dtype in ["float32", "float64"] else None for i in range(num_cols): colname = string.ascii_lowercase[i] data = pd.Series(np.random.randint(0, 26, num_rows).astype(dtype)) if nulls == "some": idx = np.random.choice( num_rows, size=int(num_rows / 2), replace=False ) data[idx] = null_rep elif nulls == "all": data[:] = null_rep pdf[colname] = data gdf = cudf.DataFrame.from_pandas(pdf) got_function = gdf.transpose() got_property = gdf.T expect = pdf.transpose() assert_eq(expect, got_function) assert_eq(expect, got_property) @pytest.mark.parametrize("num_cols", [1, 2, 10]) @pytest.mark.parametrize("num_rows", [1, 2, 20]) def test_dataframe_transpose_category(num_cols, num_rows): pdf = pd.DataFrame() for i in range(num_cols): colname = string.ascii_lowercase[i] data = pd.Series(list(string.ascii_lowercase), dtype="category") data = data.sample(num_rows, replace=True).reset_index(drop=True) pdf[colname] = data gdf = cudf.DataFrame.from_pandas(pdf) got_function = gdf.transpose() got_property = gdf.T expect = pdf.transpose() assert_eq(expect, got_function.to_pandas()) assert_eq(expect, got_property.to_pandas()) def test_generated_column(): gdf = cudf.DataFrame({"a": (i for i in range(5))}) assert len(gdf) == 5 @pytest.fixture def pdf(): return pd.DataFrame({"x": range(10), "y": range(10)}) @pytest.fixture def gdf(pdf): return cudf.DataFrame.from_pandas(pdf) @pytest.mark.parametrize( "data", [ {"x": [np.nan, 2, 3, 4, 100, np.nan], "y": [4, 5, 6, 88, 99, np.nan]}, {"x": [1, 2, 3], "y": [4, 5, 6]}, {"x": [np.nan, np.nan, np.nan], "y": [np.nan, np.nan, np.nan]}, {"x": [], "y": []}, {"x": []}, ], ) @pytest.mark.parametrize( "func", [ lambda df, **kwargs: df.min(**kwargs), lambda df, **kwargs: df.max(**kwargs), lambda df, **kwargs: df.sum(**kwargs), lambda df, **kwargs: df.product(**kwargs), lambda df, **kwargs: df.cummin(**kwargs), lambda df, **kwargs: df.cummax(**kwargs), lambda df, **kwargs: df.cumsum(**kwargs), lambda df, **kwargs: df.cumprod(**kwargs), lambda df, **kwargs: df.mean(**kwargs), lambda df, **kwargs: df.sum(**kwargs), lambda df, **kwargs: df.max(**kwargs), lambda df, **kwargs: df.std(ddof=1, **kwargs), lambda df, **kwargs: df.var(ddof=1, **kwargs), lambda df, **kwargs: df.std(ddof=2, **kwargs), lambda df, **kwargs: df.var(ddof=2, **kwargs), lambda df, **kwargs: df.kurt(**kwargs), lambda df, **kwargs: df.skew(**kwargs), lambda df, **kwargs: df.all(**kwargs), lambda df, **kwargs: df.any(**kwargs), ], ) @pytest.mark.parametrize("skipna", [True, False, None]) def test_dataframe_reductions(data, func, skipna): pdf = pd.DataFrame(data=data) gdf = cudf.DataFrame.from_pandas(pdf) assert_eq(func(pdf, skipna=skipna), func(gdf, skipna=skipna)) @pytest.mark.parametrize( "data", [ {"x": [np.nan, 2, 3, 4, 100, np.nan], "y": [4, 5, 6, 88, 99, np.nan]}, {"x": [1, 2, 3], "y": [4, 5, 6]}, {"x": [np.nan, np.nan, np.nan], "y": [np.nan, np.nan, np.nan]}, {"x": [], "y": []}, {"x": []}, ], ) @pytest.mark.parametrize("func", [lambda df: df.count()]) def test_dataframe_count_reduction(data, func): pdf = pd.DataFrame(data=data) gdf = cudf.DataFrame.from_pandas(pdf) assert_eq(func(pdf), func(gdf)) @pytest.mark.parametrize( "data", [ {"x": [np.nan, 2, 3, 4, 100, np.nan], "y": [4, 5, 6, 88, 99, np.nan]}, {"x": [1, 2, 3], "y": [4, 5, 6]}, {"x": [np.nan, np.nan, np.nan], "y": [np.nan, np.nan, np.nan]}, {"x": [], "y": []}, {"x": []}, ], ) @pytest.mark.parametrize("ops", ["sum", "product", "prod"]) @pytest.mark.parametrize("skipna", [True, False, None]) @pytest.mark.parametrize("min_count", [-10, -1, 0, 1, 2, 3, 10]) def test_dataframe_min_count_ops(data, ops, skipna, min_count): psr = pd.DataFrame(data) gsr = cudf.DataFrame(data) if PANDAS_GE_120 and psr.shape[0] * psr.shape[1] < min_count: pytest.xfail("https://github.com/pandas-dev/pandas/issues/39738") assert_eq( getattr(psr, ops)(skipna=skipna, min_count=min_count), getattr(gsr, ops)(skipna=skipna, min_count=min_count), check_dtype=False, ) @pytest.mark.parametrize( "binop", [ operator.add, operator.mul, operator.floordiv, operator.truediv, operator.mod, operator.pow, operator.eq, operator.lt, operator.le, operator.gt, operator.ge, operator.ne, ], ) def test_binops_df(pdf, gdf, binop): pdf = pdf + 1.0 gdf = gdf + 1.0 d = binop(pdf, pdf) g = binop(gdf, gdf) assert_eq(d, g) @pytest.mark.parametrize("binop", [operator.and_, operator.or_, operator.xor]) def test_bitwise_binops_df(pdf, gdf, binop): d = binop(pdf, pdf + 1) g = binop(gdf, gdf + 1) assert_eq(d, g) @pytest.mark.parametrize( "binop", [ operator.add, operator.mul, operator.floordiv, operator.truediv, operator.mod, operator.pow, operator.eq, operator.lt, operator.le, operator.gt, operator.ge, operator.ne, ], ) def test_binops_series(pdf, gdf, binop): pdf = pdf + 1.0 gdf = gdf + 1.0 d = binop(pdf.x, pdf.y) g = binop(gdf.x, gdf.y) assert_eq(d, g) @pytest.mark.parametrize("binop", [operator.and_, operator.or_, operator.xor]) def test_bitwise_binops_series(pdf, gdf, binop): d = binop(pdf.x, pdf.y + 1) g = binop(gdf.x, gdf.y + 1) assert_eq(d, g) @pytest.mark.parametrize("unaryop", [operator.neg, operator.inv, operator.abs]) def test_unaryops_df(pdf, gdf, unaryop): d = unaryop(pdf - 5) g = unaryop(gdf - 5) assert_eq(d, g) @pytest.mark.parametrize( "func", [ lambda df: df.empty, lambda df: df.x.empty, lambda df: df.x.fillna(123, limit=None, method=None, axis=None), lambda df: df.drop("x", axis=1, errors="raise"), ], ) def test_unary_operators(func, pdf, gdf): p = func(pdf) g = func(gdf) assert_eq(p, g) def test_is_monotonic(gdf): pdf = pd.DataFrame({"x": [1, 2, 3]}, index=[3, 1, 2]) gdf = cudf.DataFrame.from_pandas(pdf) assert not gdf.index.is_monotonic assert not gdf.index.is_monotonic_increasing assert not gdf.index.is_monotonic_decreasing def test_iter(pdf, gdf): assert list(pdf) == list(gdf) def test_iteritems(gdf): for k, v in gdf.iteritems(): assert k in gdf.columns assert isinstance(v, cudf.Series) assert_eq(v, gdf[k]) @pytest.mark.parametrize("q", [0.5, 1, 0.001, [0.5], [], [0.005, 0.5, 1]]) @pytest.mark.parametrize("numeric_only", [True, False]) def test_quantile(q, numeric_only): ts = pd.date_range("2018-08-24", periods=5, freq="D") td = pd.to_timedelta(np.arange(5), unit="h") pdf = pd.DataFrame( {"date": ts, "delta": td, "val": np.random.randn(len(ts))} ) gdf = cudf.DataFrame.from_pandas(pdf) assert_eq(pdf["date"].quantile(q), gdf["date"].quantile(q)) assert_eq(pdf["delta"].quantile(q), gdf["delta"].quantile(q)) assert_eq(pdf["val"].quantile(q), gdf["val"].quantile(q)) if numeric_only: assert_eq(pdf.quantile(q), gdf.quantile(q)) else: q = q if isinstance(q, list) else [q] assert_eq( pdf.quantile( q if isinstance(q, list) else [q], numeric_only=False ), gdf.quantile(q, numeric_only=False), ) def test_empty_quantile(): pdf = pd.DataFrame({"x": []}) df = cudf.DataFrame({"x": []}) actual = df.quantile() expected = pdf.quantile() assert_eq(actual, expected) def test_from_pandas_function(pdf): gdf = cudf.from_pandas(pdf) assert isinstance(gdf, cudf.DataFrame) assert_eq(pdf, gdf) gdf = cudf.from_pandas(pdf.x) assert isinstance(gdf, cudf.Series) assert_eq(pdf.x, gdf) with pytest.raises(TypeError): cudf.from_pandas(123) @pytest.mark.parametrize("preserve_index", [True, False]) def test_arrow_pandas_compat(pdf, gdf, preserve_index): pdf["z"] = range(10) pdf = pdf.set_index("z") gdf["z"] = range(10) gdf = gdf.set_index("z") pdf_arrow_table = pa.Table.from_pandas(pdf, preserve_index=preserve_index) gdf_arrow_table = gdf.to_arrow(preserve_index=preserve_index) assert pa.Table.equals(pdf_arrow_table, gdf_arrow_table) gdf2 = cudf.DataFrame.from_arrow(pdf_arrow_table) pdf2 = pdf_arrow_table.to_pandas() assert_eq(pdf2, gdf2) @pytest.mark.parametrize("nrows", [1, 8, 100, 1000, 100000]) def test_series_hash_encode(nrows): data = np.asarray(range(nrows)) # Python hash returns different value which sometimes # results in enc_with_name_arr and enc_arr to be same. # And there is no other better way to make hash return same value. # So using an integer name to get constant value back from hash. s = cudf.Series(data, name=1) num_features = 1000 encoded_series = s.hash_encode(num_features) assert isinstance(encoded_series, cudf.Series) enc_arr = encoded_series.to_array() assert np.all(enc_arr >= 0) assert np.max(enc_arr) < num_features enc_with_name_arr = s.hash_encode(num_features, use_name=True).to_array() assert enc_with_name_arr[0] != enc_arr[0] @pytest.mark.parametrize("dtype", NUMERIC_TYPES + ["bool"]) def test_cuda_array_interface(dtype): np_data = np.arange(10).astype(dtype) cupy_data = cupy.array(np_data) pd_data = pd.Series(np_data) cudf_data = cudf.Series(cupy_data) assert_eq(pd_data, cudf_data) gdf = cudf.DataFrame() gdf["test"] = cupy_data pd_data.name = "test" assert_eq(pd_data, gdf["test"]) @pytest.mark.parametrize("nelem", [0, 2, 3, 100]) @pytest.mark.parametrize("nchunks", [1, 2, 5, 10]) @pytest.mark.parametrize("data_type", dtypes) def test_from_arrow_chunked_arrays(nelem, nchunks, data_type): np_list_data = [ np.random.randint(0, 100, nelem).astype(data_type) for i in range(nchunks) ] pa_chunk_array = pa.chunked_array(np_list_data) expect = pd.Series(pa_chunk_array.to_pandas()) got = cudf.Series(pa_chunk_array) assert_eq(expect, got) np_list_data2 = [ np.random.randint(0, 100, nelem).astype(data_type) for i in range(nchunks) ] pa_chunk_array2 = pa.chunked_array(np_list_data2) pa_table = pa.Table.from_arrays( [pa_chunk_array, pa_chunk_array2], names=["a", "b"] ) expect = pa_table.to_pandas() got = cudf.DataFrame.from_arrow(pa_table) assert_eq(expect, got) @pytest.mark.skip(reason="Test was designed to be run in isolation") def test_gpu_memory_usage_with_boolmask(): ctx = cuda.current_context() def query_GPU_memory(note=""): memInfo = ctx.get_memory_info() usedMemoryGB = (memInfo.total - memInfo.free) / 1e9 return usedMemoryGB cuda.current_context().deallocations.clear() nRows = int(1e8) nCols = 2 dataNumpy = np.asfortranarray(np.random.rand(nRows, nCols)) colNames = ["col" + str(iCol) for iCol in range(nCols)] pandasDF = pd.DataFrame(data=dataNumpy, columns=colNames, dtype=np.float32) cudaDF = cudf.core.DataFrame.from_pandas(pandasDF) boolmask = cudf.Series(np.random.randint(1, 2, len(cudaDF)).astype("bool")) memory_used = query_GPU_memory() cudaDF = cudaDF[boolmask] assert ( cudaDF.index._values.data_array_view.device_ctypes_pointer == cudaDF["col0"].index._values.data_array_view.device_ctypes_pointer ) assert ( cudaDF.index._values.data_array_view.device_ctypes_pointer == cudaDF["col1"].index._values.data_array_view.device_ctypes_pointer ) assert memory_used == query_GPU_memory() def test_boolmask(pdf, gdf): boolmask = np.random.randint(0, 2, len(pdf)) > 0 gdf = gdf[boolmask] pdf = pdf[boolmask] assert_eq(pdf, gdf) @pytest.mark.parametrize( "mask_shape", [ (2, "ab"), (2, "abc"), (3, "ab"), (3, "abc"), (3, "abcd"), (4, "abc"), (4, "abcd"), ], ) def test_dataframe_boolmask(mask_shape): pdf = pd.DataFrame() for col in "abc": pdf[col] = np.random.randint(0, 10, 3) pdf_mask = pd.DataFrame() for col in mask_shape[1]: pdf_mask[col] = np.random.randint(0, 2, mask_shape[0]) > 0 gdf = cudf.DataFrame.from_pandas(pdf) gdf_mask = cudf.DataFrame.from_pandas(pdf_mask) gdf = gdf[gdf_mask] pdf = pdf[pdf_mask] assert np.array_equal(gdf.columns, pdf.columns) for col in gdf.columns: assert np.array_equal( gdf[col].fillna(-1).to_pandas().values, pdf[col].fillna(-1).values ) @pytest.mark.parametrize( "mask", [ [True, False, True], pytest.param( cudf.Series([True, False, True]), marks=pytest.mark.xfail( reason="Pandas can't index a multiindex with a Series" ), ), ], ) def test_dataframe_multiindex_boolmask(mask): gdf = cudf.DataFrame( {"w": [3, 2, 1], "x": [1, 2, 3], "y": [0, 1, 0], "z": [1, 1, 1]} ) gdg = gdf.groupby(["w", "x"]).count() pdg = gdg.to_pandas() assert_eq(gdg[mask], pdg[mask]) def test_dataframe_assignment(): pdf = pd.DataFrame() for col in "abc": pdf[col] = np.array([0, 1, 1, -2, 10]) gdf = cudf.DataFrame.from_pandas(pdf) gdf[gdf < 0] = 999 pdf[pdf < 0] = 999 assert_eq(gdf, pdf) def test_1row_arrow_table(): data = [pa.array([0]), pa.array([1])] batch = pa.RecordBatch.from_arrays(data, ["f0", "f1"]) table = pa.Table.from_batches([batch]) expect = table.to_pandas() got = cudf.DataFrame.from_arrow(table) assert_eq(expect, got) def test_arrow_handle_no_index_name(pdf, gdf): gdf_arrow = gdf.to_arrow() pdf_arrow = pa.Table.from_pandas(pdf) assert pa.Table.equals(pdf_arrow, gdf_arrow) got = cudf.DataFrame.from_arrow(gdf_arrow) expect = pdf_arrow.to_pandas() assert_eq(expect, got) @pytest.mark.parametrize("num_rows", [1, 3, 10, 100]) @pytest.mark.parametrize("num_bins", [1, 2, 4, 20]) @pytest.mark.parametrize("right", [True, False]) @pytest.mark.parametrize("dtype", NUMERIC_TYPES + ["bool"]) @pytest.mark.parametrize("series_bins", [True, False]) def test_series_digitize(num_rows, num_bins, right, dtype, series_bins): data = np.random.randint(0, 100, num_rows).astype(dtype) bins = np.unique(np.sort(np.random.randint(2, 95, num_bins).astype(dtype))) s = cudf.Series(data) if series_bins: s_bins = cudf.Series(bins) indices = s.digitize(s_bins, right) else: indices = s.digitize(bins, right) np.testing.assert_array_equal( np.digitize(data, bins, right), indices.to_array() ) def test_series_digitize_invalid_bins(): s = cudf.Series(np.random.randint(0, 30, 80), dtype="int32") bins = cudf.Series([2, None, None, 50, 90], dtype="int32") with pytest.raises( ValueError, match="`bins` cannot contain null entries." ): _ = s.digitize(bins) def test_pandas_non_contiguious(): arr1 = np.random.sample([5000, 10]) assert arr1.flags["C_CONTIGUOUS"] is True df = pd.DataFrame(arr1) for col in df.columns: assert df[col].values.flags["C_CONTIGUOUS"] is False gdf = cudf.DataFrame.from_pandas(df) assert_eq(gdf.to_pandas(), df) @pytest.mark.parametrize("num_elements", [0, 2, 10, 100]) @pytest.mark.parametrize("null_type", [np.nan, None, "mixed"]) def test_series_all_null(num_elements, null_type): if null_type == "mixed": data = [] data1 = [np.nan] * int(num_elements / 2) data2 = [None] * int(num_elements / 2) for idx in range(len(data1)): data.append(data1[idx]) data.append(data2[idx]) else: data = [null_type] * num_elements # Typecast Pandas because None will return `object` dtype expect = pd.Series(data, dtype="float64") got = cudf.Series(data) assert_eq(expect, got) @pytest.mark.parametrize("num_elements", [0, 2, 10, 100]) def test_series_all_valid_nan(num_elements): data = [np.nan] * num_elements sr = cudf.Series(data, nan_as_null=False) np.testing.assert_equal(sr.null_count, 0) def test_series_rename(): pds = pd.Series([1, 2, 3], name="asdf") gds = cudf.Series([1, 2, 3], name="asdf") expect = pds.rename("new_name") got = gds.rename("new_name") assert_eq(expect, got) pds = pd.Series(expect) gds = cudf.Series(got) assert_eq(pds, gds) pds = pd.Series(expect, name="name name") gds = cudf.Series(got, name="name name") assert_eq(pds, gds) @pytest.mark.parametrize("data_type", dtypes) @pytest.mark.parametrize("nelem", [0, 100]) def test_head_tail(nelem, data_type): def check_index_equality(left, right): assert left.index.equals(right.index) def check_values_equality(left, right): if len(left) == 0 and len(right) == 0: return None np.testing.assert_array_equal(left.to_pandas(), right.to_pandas()) def check_frame_series_equality(left, right): check_index_equality(left, right) check_values_equality(left, right) gdf = cudf.DataFrame( { "a": np.random.randint(0, 1000, nelem).astype(data_type), "b": np.random.randint(0, 1000, nelem).astype(data_type), } ) check_frame_series_equality(gdf.head(), gdf[:5]) check_frame_series_equality(gdf.head(3), gdf[:3]) check_frame_series_equality(gdf.head(-2), gdf[:-2]) check_frame_series_equality(gdf.head(0), gdf[0:0]) check_frame_series_equality(gdf["a"].head(), gdf["a"][:5]) check_frame_series_equality(gdf["a"].head(3), gdf["a"][:3]) check_frame_series_equality(gdf["a"].head(-2), gdf["a"][:-2]) check_frame_series_equality(gdf.tail(), gdf[-5:]) check_frame_series_equality(gdf.tail(3), gdf[-3:]) check_frame_series_equality(gdf.tail(-2), gdf[2:]) check_frame_series_equality(gdf.tail(0), gdf[0:0]) check_frame_series_equality(gdf["a"].tail(), gdf["a"][-5:]) check_frame_series_equality(gdf["a"].tail(3), gdf["a"][-3:]) check_frame_series_equality(gdf["a"].tail(-2), gdf["a"][2:]) def test_tail_for_string(): gdf = cudf.DataFrame() gdf["id"] = cudf.Series(["a", "b"], dtype=np.object_) gdf["v"] = cudf.Series([1, 2]) assert_eq(gdf.tail(3), gdf.to_pandas().tail(3)) @pytest.mark.parametrize("drop", [True, False]) def test_reset_index(pdf, gdf, drop): assert_eq( pdf.reset_index(drop=drop, inplace=False), gdf.reset_index(drop=drop, inplace=False), ) assert_eq( pdf.x.reset_index(drop=drop, inplace=False), gdf.x.reset_index(drop=drop, inplace=False), ) @pytest.mark.parametrize("drop", [True, False]) def test_reset_named_index(pdf, gdf, drop): pdf.index.name = "cudf" gdf.index.name = "cudf" assert_eq( pdf.reset_index(drop=drop, inplace=False), gdf.reset_index(drop=drop, inplace=False), ) assert_eq( pdf.x.reset_index(drop=drop, inplace=False), gdf.x.reset_index(drop=drop, inplace=False), ) @pytest.mark.parametrize("drop", [True, False]) def test_reset_index_inplace(pdf, gdf, drop): pdf.reset_index(drop=drop, inplace=True) gdf.reset_index(drop=drop, inplace=True) assert_eq(pdf, gdf) @pytest.mark.parametrize( "data", [ { "a": [1, 2, 3, 4, 5], "b": ["a", "b", "c", "d", "e"], "c": [1.0, 2.0, 3.0, 4.0, 5.0], } ], ) @pytest.mark.parametrize( "index", [ "a", ["a", "b"], pd.CategoricalIndex(["I", "II", "III", "IV", "V"]), pd.Series(["h", "i", "k", "l", "m"]), ["b", pd.Index(["I", "II", "III", "IV", "V"])], ["c", [11, 12, 13, 14, 15]], pd.MultiIndex( levels=[ ["I", "II", "III", "IV", "V"], ["one", "two", "three", "four", "five"], ], codes=[[0, 1, 2, 3, 4], [4, 3, 2, 1, 0]], names=["col1", "col2"], ), pd.RangeIndex(0, 5), # corner case [pd.Series(["h", "i", "k", "l", "m"]), pd.RangeIndex(0, 5)], [ pd.MultiIndex( levels=[ ["I", "II", "III", "IV", "V"], ["one", "two", "three", "four", "five"], ], codes=[[0, 1, 2, 3, 4], [4, 3, 2, 1, 0]], names=["col1", "col2"], ), pd.RangeIndex(0, 5), ], ], ) @pytest.mark.parametrize("drop", [True, False]) @pytest.mark.parametrize("append", [True, False]) @pytest.mark.parametrize("inplace", [True, False]) def test_set_index(data, index, drop, append, inplace): gdf = cudf.DataFrame(data) pdf = gdf.to_pandas() expected = pdf.set_index(index, inplace=inplace, drop=drop, append=append) actual = gdf.set_index(index, inplace=inplace, drop=drop, append=append) if inplace: expected = pdf actual = gdf assert_eq(expected, actual) @pytest.mark.parametrize( "data", [ { "a": [1, 1, 2, 2, 5], "b": ["a", "b", "c", "d", "e"], "c": [1.0, 2.0, 3.0, 4.0, 5.0], } ], ) @pytest.mark.parametrize("index", ["a", pd.Index([1, 1, 2, 2, 3])]) @pytest.mark.parametrize("verify_integrity", [True]) @pytest.mark.xfail def test_set_index_verify_integrity(data, index, verify_integrity): gdf = cudf.DataFrame(data) gdf.set_index(index, verify_integrity=verify_integrity) @pytest.mark.parametrize("drop", [True, False]) @pytest.mark.parametrize("nelem", [10, 200, 1333]) def test_set_index_multi(drop, nelem): np.random.seed(0) a = np.arange(nelem) np.random.shuffle(a) df = pd.DataFrame( { "a": a, "b": np.random.randint(0, 4, size=nelem), "c": np.random.uniform(low=0, high=4, size=nelem), "d": np.random.choice(["green", "black", "white"], nelem), } ) df["e"] = df["d"].astype("category") gdf = cudf.DataFrame.from_pandas(df) assert_eq(gdf.set_index("a", drop=drop), gdf.set_index(["a"], drop=drop)) assert_eq( df.set_index(["b", "c"], drop=drop), gdf.set_index(["b", "c"], drop=drop), ) assert_eq( df.set_index(["d", "b"], drop=drop), gdf.set_index(["d", "b"], drop=drop), ) assert_eq( df.set_index(["b", "d", "e"], drop=drop), gdf.set_index(["b", "d", "e"], drop=drop), ) @pytest.mark.parametrize("copy", [True, False]) def test_dataframe_reindex_0(copy): # TODO (ptaylor): pandas changes `int` dtype to `float64` # when reindexing and filling new label indices with NaN gdf = cudf.datasets.randomdata( nrows=6, dtypes={ "a": "category", # 'b': int, "c": float, "d": str, }, ) pdf = gdf.to_pandas() # Validate reindex returns a copy unmodified assert_eq(pdf.reindex(copy=True), gdf.reindex(copy=copy)) @pytest.mark.parametrize("copy", [True, False]) def test_dataframe_reindex_1(copy): index = [-3, 0, 3, 0, -2, 1, 3, 4, 6] gdf = cudf.datasets.randomdata( nrows=6, dtypes={"a": "category", "c": float, "d": str} ) pdf = gdf.to_pandas() # Validate labels are used as index when axis defaults to 0 assert_eq(pdf.reindex(index, copy=True), gdf.reindex(index, copy=copy)) @pytest.mark.parametrize("copy", [True, False]) def test_dataframe_reindex_2(copy): index = [-3, 0, 3, 0, -2, 1, 3, 4, 6] gdf = cudf.datasets.randomdata( nrows=6, dtypes={"a": "category", "c": float, "d": str} ) pdf = gdf.to_pandas() # Validate labels are used as index when axis=0 assert_eq( pdf.reindex(index, axis=0, copy=True), gdf.reindex(index, axis=0, copy=copy), ) @pytest.mark.parametrize("copy", [True, False]) def test_dataframe_reindex_3(copy): columns = ["a", "b", "c", "d", "e"] gdf = cudf.datasets.randomdata( nrows=6, dtypes={"a": "category", "c": float, "d": str} ) pdf = gdf.to_pandas() # Validate labels are used as columns when axis=0 assert_eq( pdf.reindex(columns, axis=1, copy=True), gdf.reindex(columns, axis=1, copy=copy), ) @pytest.mark.parametrize("copy", [True, False]) def test_dataframe_reindex_4(copy): index = [-3, 0, 3, 0, -2, 1, 3, 4, 6] gdf = cudf.datasets.randomdata( nrows=6, dtypes={"a": "category", "c": float, "d": str} ) pdf = gdf.to_pandas() # Validate labels are used as index when axis=0 assert_eq( pdf.reindex(labels=index, axis=0, copy=True), gdf.reindex(labels=index, axis=0, copy=copy), ) @pytest.mark.parametrize("copy", [True, False]) def test_dataframe_reindex_5(copy): columns = ["a", "b", "c", "d", "e"] gdf = cudf.datasets.randomdata( nrows=6, dtypes={"a": "category", "c": float, "d": str} ) pdf = gdf.to_pandas() # Validate labels are used as columns when axis=1 assert_eq( pdf.reindex(labels=columns, axis=1, copy=True), gdf.reindex(labels=columns, axis=1, copy=copy), ) @pytest.mark.parametrize("copy", [True, False]) def test_dataframe_reindex_6(copy): index = [-3, 0, 3, 0, -2, 1, 3, 4, 6] gdf = cudf.datasets.randomdata( nrows=6, dtypes={"a": "category", "c": float, "d": str} ) pdf = gdf.to_pandas() # Validate labels are used as index when axis='index' assert_eq( pdf.reindex(labels=index, axis="index", copy=True), gdf.reindex(labels=index, axis="index", copy=copy), ) @pytest.mark.parametrize("copy", [True, False]) def test_dataframe_reindex_7(copy): columns = ["a", "b", "c", "d", "e"] gdf = cudf.datasets.randomdata( nrows=6, dtypes={"a": "category", "c": float, "d": str} ) pdf = gdf.to_pandas() # Validate labels are used as columns when axis='columns' assert_eq( pdf.reindex(labels=columns, axis="columns", copy=True), gdf.reindex(labels=columns, axis="columns", copy=copy), ) @pytest.mark.parametrize("copy", [True, False]) def test_dataframe_reindex_8(copy): index = [-3, 0, 3, 0, -2, 1, 3, 4, 6] gdf = cudf.datasets.randomdata( nrows=6, dtypes={"a": "category", "c": float, "d": str} ) pdf = gdf.to_pandas() # Validate reindexes labels when index=labels assert_eq( pdf.reindex(index=index, copy=True), gdf.reindex(index=index, copy=copy), ) @pytest.mark.parametrize("copy", [True, False]) def test_dataframe_reindex_9(copy): columns = ["a", "b", "c", "d", "e"] gdf = cudf.datasets.randomdata( nrows=6, dtypes={"a": "category", "c": float, "d": str} ) pdf = gdf.to_pandas() # Validate reindexes column names when columns=labels assert_eq( pdf.reindex(columns=columns, copy=True), gdf.reindex(columns=columns, copy=copy), ) @pytest.mark.parametrize("copy", [True, False]) def test_dataframe_reindex_10(copy): index = [-3, 0, 3, 0, -2, 1, 3, 4, 6] columns = ["a", "b", "c", "d", "e"] gdf = cudf.datasets.randomdata( nrows=6, dtypes={"a": "category", "c": float, "d": str} ) pdf = gdf.to_pandas() # Validate reindexes both labels and column names when # index=index_labels and columns=column_labels assert_eq( pdf.reindex(index=index, columns=columns, copy=True), gdf.reindex(index=index, columns=columns, copy=copy), ) @pytest.mark.parametrize("copy", [True, False]) def test_dataframe_reindex_change_dtype(copy): if PANDAS_GE_110: kwargs = {"check_freq": False} else: kwargs = {} index = pd.date_range("12/29/2009", periods=10, freq="D") columns = ["a", "b", "c", "d", "e"] gdf = cudf.datasets.randomdata( nrows=6, dtypes={"a": "category", "c": float, "d": str} ) pdf = gdf.to_pandas() # Validate reindexes both labels and column names when # index=index_labels and columns=column_labels assert_eq( pdf.reindex(index=index, columns=columns, copy=True), gdf.reindex(index=index, columns=columns, copy=copy), **kwargs, ) @pytest.mark.parametrize("copy", [True, False]) def test_series_categorical_reindex(copy): index = [-3, 0, 3, 0, -2, 1, 3, 4, 6] gdf = cudf.datasets.randomdata(nrows=6, dtypes={"a": "category"}) pdf = gdf.to_pandas() assert_eq(pdf["a"].reindex(copy=True), gdf["a"].reindex(copy=copy)) assert_eq( pdf["a"].reindex(index, copy=True), gdf["a"].reindex(index, copy=copy) ) assert_eq( pdf["a"].reindex(index=index, copy=True), gdf["a"].reindex(index=index, copy=copy), ) @pytest.mark.parametrize("copy", [True, False]) def test_series_float_reindex(copy): index = [-3, 0, 3, 0, -2, 1, 3, 4, 6] gdf = cudf.datasets.randomdata(nrows=6, dtypes={"c": float}) pdf = gdf.to_pandas() assert_eq(pdf["c"].reindex(copy=True), gdf["c"].reindex(copy=copy)) assert_eq( pdf["c"].reindex(index, copy=True), gdf["c"].reindex(index, copy=copy) ) assert_eq( pdf["c"].reindex(index=index, copy=True), gdf["c"].reindex(index=index, copy=copy), ) @pytest.mark.parametrize("copy", [True, False]) def test_series_string_reindex(copy): index = [-3, 0, 3, 0, -2, 1, 3, 4, 6] gdf = cudf.datasets.randomdata(nrows=6, dtypes={"d": str}) pdf = gdf.to_pandas() assert_eq(pdf["d"].reindex(copy=True), gdf["d"].reindex(copy=copy)) assert_eq( pdf["d"].reindex(index, copy=True), gdf["d"].reindex(index, copy=copy) ) assert_eq( pdf["d"].reindex(index=index, copy=True), gdf["d"].reindex(index=index, copy=copy), ) def test_to_frame(pdf, gdf): assert_eq(pdf.x.to_frame(), gdf.x.to_frame()) name = "foo" gdf_new_name = gdf.x.to_frame(name=name) pdf_new_name = pdf.x.to_frame(name=name) assert_eq(pdf.x.to_frame(), gdf.x.to_frame()) name = False gdf_new_name = gdf.x.to_frame(name=name) pdf_new_name = pdf.x.to_frame(name=name) assert_eq(gdf_new_name, pdf_new_name) assert gdf_new_name.columns[0] is name def test_dataframe_empty_sort_index(): pdf = pd.DataFrame({"x": []}) gdf = cudf.DataFrame.from_pandas(pdf) expect = pdf.sort_index() got = gdf.sort_index() assert_eq(expect, got) @pytest.mark.parametrize("axis", [0, 1, "index", "columns"]) @pytest.mark.parametrize("ascending", [True, False]) @pytest.mark.parametrize("ignore_index", [True, False]) @pytest.mark.parametrize("inplace", [True, False]) @pytest.mark.parametrize("na_position", ["first", "last"]) def test_dataframe_sort_index( axis, ascending, inplace, ignore_index, na_position ): pdf = pd.DataFrame( {"b": [1, 3, 2], "a": [1, 4, 3], "c": [4, 1, 5]}, index=[3.0, 1.0, np.nan], ) gdf = cudf.DataFrame.from_pandas(pdf) expected = pdf.sort_index( axis=axis, ascending=ascending, ignore_index=ignore_index, inplace=inplace, na_position=na_position, ) got = gdf.sort_index( axis=axis, ascending=ascending, ignore_index=ignore_index, inplace=inplace, na_position=na_position, ) if inplace is True: assert_eq(pdf, gdf) else: assert_eq(expected, got) @pytest.mark.parametrize("axis", [0, 1, "index", "columns"]) @pytest.mark.parametrize( "level", [ 0, "b", 1, ["b"], "a", ["a", "b"], ["b", "a"], [0, 1], [1, 0], [0, 2], None, ], ) @pytest.mark.parametrize("ascending", [True, False]) @pytest.mark.parametrize("ignore_index", [True, False]) @pytest.mark.parametrize("inplace", [True, False]) @pytest.mark.parametrize("na_position", ["first", "last"]) def test_dataframe_mulitindex_sort_index( axis, level, ascending, inplace, ignore_index, na_position ): pdf = pd.DataFrame( { "b": [1.0, 3.0, np.nan], "a": [1, 4, 3], 1: ["a", "b", "c"], "e": [3, 1, 4], "d": [1, 2, 8], } ).set_index(["b", "a", 1]) gdf = cudf.DataFrame.from_pandas(pdf) # ignore_index is supported in v.1.0 expected = pdf.sort_index( axis=axis, level=level, ascending=ascending, inplace=inplace, na_position=na_position, ) if ignore_index is True: expected = expected got = gdf.sort_index( axis=axis, level=level, ascending=ascending, ignore_index=ignore_index, inplace=inplace, na_position=na_position, ) if inplace is True: if ignore_index is True: pdf = pdf.reset_index(drop=True) assert_eq(pdf, gdf) else: if ignore_index is True: expected = expected.reset_index(drop=True) assert_eq(expected, got) @pytest.mark.parametrize("dtype", dtypes + ["category"]) def test_dataframe_0_row_dtype(dtype): if dtype == "category": data = pd.Series(["a", "b", "c", "d", "e"], dtype="category") else: data = np.array([1, 2, 3, 4, 5], dtype=dtype) expect = cudf.DataFrame() expect["x"] = data expect["y"] = data got = expect.head(0) for col_name in got.columns: assert expect[col_name].dtype == got[col_name].dtype expect = cudf.Series(data) got = expect.head(0) assert expect.dtype == got.dtype @pytest.mark.parametrize("nan_as_null", [True, False]) def test_series_list_nanasnull(nan_as_null): data = [1.0, 2.0, 3.0, np.nan, None] expect = pa.array(data, from_pandas=nan_as_null) got = cudf.Series(data, nan_as_null=nan_as_null).to_arrow() # Bug in Arrow 0.14.1 where NaNs aren't handled expect = expect.cast("int64", safe=False) got = got.cast("int64", safe=False) assert pa.Array.equals(expect, got) def test_column_assignment(): gdf = cudf.datasets.randomdata( nrows=20, dtypes={"a": "category", "b": int, "c": float} ) new_cols = ["q", "r", "s"] gdf.columns = new_cols assert list(gdf.columns) == new_cols def test_select_dtype(): gdf = cudf.datasets.randomdata( nrows=20, dtypes={"a": "category", "b": int, "c": float, "d": str} ) pdf = gdf.to_pandas() assert_eq(pdf.select_dtypes("float64"), gdf.select_dtypes("float64")) assert_eq(pdf.select_dtypes(np.float64), gdf.select_dtypes(np.float64)) assert_eq( pdf.select_dtypes(include=["float64"]), gdf.select_dtypes(include=["float64"]), ) assert_eq( pdf.select_dtypes(include=["object", "int", "category"]), gdf.select_dtypes(include=["object", "int", "category"]), ) assert_eq( pdf.select_dtypes(include=["int64", "float64"]), gdf.select_dtypes(include=["int64", "float64"]), ) assert_eq( pdf.select_dtypes(include=np.number), gdf.select_dtypes(include=np.number), ) assert_eq( pdf.select_dtypes(include=[np.int64, np.float64]), gdf.select_dtypes(include=[np.int64, np.float64]), ) assert_eq( pdf.select_dtypes(include=["category"]), gdf.select_dtypes(include=["category"]), ) assert_eq( pdf.select_dtypes(exclude=np.number), gdf.select_dtypes(exclude=np.number), ) assert_exceptions_equal( lfunc=pdf.select_dtypes, rfunc=gdf.select_dtypes, lfunc_args_and_kwargs=([], {"includes": ["Foo"]}), rfunc_args_and_kwargs=([], {"includes": ["Foo"]}), ) assert_exceptions_equal( lfunc=pdf.select_dtypes, rfunc=gdf.select_dtypes, lfunc_args_and_kwargs=( [], {"exclude": np.number, "include": np.number}, ), rfunc_args_and_kwargs=( [], {"exclude": np.number, "include": np.number}, ), ) gdf = cudf.DataFrame( {"A": [3, 4, 5], "C": [1, 2, 3], "D": ["a", "b", "c"]} ) pdf = gdf.to_pandas() assert_eq( pdf.select_dtypes(include=["object", "int", "category"]), gdf.select_dtypes(include=["object", "int", "category"]), ) assert_eq( pdf.select_dtypes(include=["object"], exclude=["category"]), gdf.select_dtypes(include=["object"], exclude=["category"]), ) gdf = cudf.DataFrame({"a": range(10), "b": range(10, 20)}) pdf = gdf.to_pandas() assert_eq( pdf.select_dtypes(include=["category"]), gdf.select_dtypes(include=["category"]), ) assert_eq( pdf.select_dtypes(include=["float"]), gdf.select_dtypes(include=["float"]), ) assert_eq( pdf.select_dtypes(include=["object"]), gdf.select_dtypes(include=["object"]), ) assert_eq( pdf.select_dtypes(include=["int"]), gdf.select_dtypes(include=["int"]) ) assert_eq( pdf.select_dtypes(exclude=["float"]), gdf.select_dtypes(exclude=["float"]), ) assert_eq( pdf.select_dtypes(exclude=["object"]), gdf.select_dtypes(exclude=["object"]), ) assert_eq( pdf.select_dtypes(include=["int"], exclude=["object"]), gdf.select_dtypes(include=["int"], exclude=["object"]), ) assert_exceptions_equal( lfunc=pdf.select_dtypes, rfunc=gdf.select_dtypes, ) gdf = cudf.DataFrame( {"a": cudf.Series([], dtype="int"), "b": cudf.Series([], dtype="str")} ) pdf = gdf.to_pandas() assert_eq( pdf.select_dtypes(exclude=["object"]), gdf.select_dtypes(exclude=["object"]), ) assert_eq( pdf.select_dtypes(include=["int"], exclude=["object"]), gdf.select_dtypes(include=["int"], exclude=["object"]), ) def test_select_dtype_datetime(): gdf = cudf.datasets.timeseries( start="2000-01-01", end="2000-01-02", freq="3600s", dtypes={"x": int} ) gdf = gdf.reset_index() pdf = gdf.to_pandas() assert_eq(pdf.select_dtypes("datetime64"), gdf.select_dtypes("datetime64")) assert_eq( pdf.select_dtypes(np.dtype("datetime64")), gdf.select_dtypes(np.dtype("datetime64")), ) assert_eq( pdf.select_dtypes(include="datetime64"), gdf.select_dtypes(include="datetime64"), ) def test_select_dtype_datetime_with_frequency(): gdf = cudf.datasets.timeseries( start="2000-01-01", end="2000-01-02", freq="3600s", dtypes={"x": int} ) gdf = gdf.reset_index() pdf = gdf.to_pandas() assert_exceptions_equal( pdf.select_dtypes, gdf.select_dtypes, (["datetime64[ms]"],), (["datetime64[ms]"],), ) def test_array_ufunc(): gdf = cudf.DataFrame({"x": [2, 3, 4.0], "y": [9.0, 2.5, 1.1]}) pdf = gdf.to_pandas() assert_eq(np.sqrt(gdf), np.sqrt(pdf)) assert_eq(np.sqrt(gdf.x), np.sqrt(pdf.x)) @pytest.mark.parametrize("nan_value", [-5, -5.0, 0, 5, 5.0, None, "pandas"]) def test_series_to_gpu_array(nan_value): s = cudf.Series([0, 1, None, 3]) np.testing.assert_array_equal( s.to_array(nan_value), s.to_gpu_array(nan_value).copy_to_host() ) def test_dataframe_describe_exclude(): np.random.seed(12) data_length = 10000 df = cudf.DataFrame() df["x"] = np.random.normal(10, 1, data_length) df["x"] = df.x.astype("int64") df["y"] = np.random.normal(10, 1, data_length) pdf = df.to_pandas() gdf_results = df.describe(exclude=["float"]) pdf_results = pdf.describe(exclude=["float"]) assert_eq(gdf_results, pdf_results) def test_dataframe_describe_include(): np.random.seed(12) data_length = 10000 df = cudf.DataFrame() df["x"] = np.random.normal(10, 1, data_length) df["x"] = df.x.astype("int64") df["y"] = np.random.normal(10, 1, data_length) pdf = df.to_pandas() gdf_results = df.describe(include=["int"]) pdf_results = pdf.describe(include=["int"]) assert_eq(gdf_results, pdf_results) def test_dataframe_describe_default(): np.random.seed(12) data_length = 10000 df = cudf.DataFrame() df["x"] = np.random.normal(10, 1, data_length) df["y"] = np.random.normal(10, 1, data_length) pdf = df.to_pandas() gdf_results = df.describe() pdf_results = pdf.describe() assert_eq(pdf_results, gdf_results) def test_series_describe_include_all(): np.random.seed(12) data_length = 10000 df = cudf.DataFrame() df["x"] = np.random.normal(10, 1, data_length) df["x"] = df.x.astype("int64") df["y"] = np.random.normal(10, 1, data_length) df["animal"] = np.random.choice(["dog", "cat", "bird"], data_length) pdf = df.to_pandas() gdf_results = df.describe(include="all") pdf_results = pdf.describe(include="all") assert_eq(gdf_results[["x", "y"]], pdf_results[["x", "y"]]) assert_eq(gdf_results.index, pdf_results.index) assert_eq(gdf_results.columns, pdf_results.columns) assert_eq( gdf_results[["animal"]].fillna(-1).astype("str"), pdf_results[["animal"]].fillna(-1).astype("str"), ) def test_dataframe_describe_percentiles(): np.random.seed(12) data_length = 10000 sample_percentiles = [0.0, 0.1, 0.33, 0.84, 0.4, 0.99] df = cudf.DataFrame() df["x"] = np.random.normal(10, 1, data_length) df["y"] = np.random.normal(10, 1, data_length) pdf = df.to_pandas() gdf_results = df.describe(percentiles=sample_percentiles) pdf_results = pdf.describe(percentiles=sample_percentiles) assert_eq(pdf_results, gdf_results) def test_get_numeric_data(): pdf = pd.DataFrame( {"x": [1, 2, 3], "y": [1.0, 2.0, 3.0], "z": ["a", "b", "c"]} ) gdf = cudf.from_pandas(pdf) assert_eq(pdf._get_numeric_data(), gdf._get_numeric_data()) @pytest.mark.parametrize("dtype", NUMERIC_TYPES) @pytest.mark.parametrize("period", [-1, -5, -10, -20, 0, 1, 5, 10, 20]) @pytest.mark.parametrize("data_empty", [False, True]) def test_shift(dtype, period, data_empty): if data_empty: data = None else: if dtype == np.int8: # to keep data in range data = gen_rand(dtype, 100000, low=-2, high=2) else: data = gen_rand(dtype, 100000) gdf = cudf.DataFrame({"a": cudf.Series(data, dtype=dtype)}) pdf = pd.DataFrame({"a": pd.Series(data, dtype=dtype)}) shifted_outcome = gdf.a.shift(period).fillna(0) expected_outcome = pdf.a.shift(period).fillna(0).astype(dtype) if data_empty: assert_eq(shifted_outcome, expected_outcome, check_index_type=False) else: assert_eq(shifted_outcome, expected_outcome) @pytest.mark.parametrize("dtype", NUMERIC_TYPES) @pytest.mark.parametrize("period", [-1, -5, -10, -20, 0, 1, 5, 10, 20]) @pytest.mark.parametrize("data_empty", [False, True]) def test_diff(dtype, period, data_empty): if data_empty: data = None else: if dtype == np.int8: # to keep data in range data = gen_rand(dtype, 100000, low=-2, high=2) else: data = gen_rand(dtype, 100000) gdf = cudf.DataFrame({"a": cudf.Series(data, dtype=dtype)}) pdf = pd.DataFrame({"a": pd.Series(data, dtype=dtype)}) expected_outcome = pdf.a.diff(period) diffed_outcome = gdf.a.diff(period).astype(expected_outcome.dtype) if data_empty: assert_eq(diffed_outcome, expected_outcome, check_index_type=False) else: assert_eq(diffed_outcome, expected_outcome) @pytest.mark.parametrize("df", _dataframe_na_data()) @pytest.mark.parametrize("nan_as_null", [True, False, None]) def test_dataframe_isnull_isna(df, nan_as_null): gdf = cudf.DataFrame.from_pandas(df, nan_as_null=nan_as_null) assert_eq(df.isnull(), gdf.isnull()) assert_eq(df.isna(), gdf.isna()) # Test individual columns for col in df: assert_eq(df[col].isnull(), gdf[col].isnull()) assert_eq(df[col].isna(), gdf[col].isna()) @pytest.mark.parametrize("df", _dataframe_na_data()) @pytest.mark.parametrize("nan_as_null", [True, False, None]) def test_dataframe_notna_notnull(df, nan_as_null): gdf = cudf.DataFrame.from_pandas(df, nan_as_null=nan_as_null) assert_eq(df.notnull(), gdf.notnull()) assert_eq(df.notna(), gdf.notna()) # Test individual columns for col in df: assert_eq(df[col].notnull(), gdf[col].notnull()) assert_eq(df[col].notna(), gdf[col].notna()) def test_ndim(): pdf = pd.DataFrame({"x": range(5), "y": range(5, 10)}) gdf = cudf.DataFrame.from_pandas(pdf) assert pdf.ndim == gdf.ndim assert pdf.x.ndim == gdf.x.ndim s = pd.Series(dtype="float64") gs = cudf.Series() assert s.ndim == gs.ndim @pytest.mark.parametrize( "decimals", [ -3, 0, 5, pd.Series([1, 4, 3, -6], index=["w", "x", "y", "z"]), cudf.Series([-4, -2, 12], index=["x", "y", "z"]), {"w": -1, "x": 15, "y": 2}, ], ) def test_dataframe_round(decimals): pdf = pd.DataFrame( { "w": np.arange(0.5, 10.5, 1), "x": np.random.normal(-100, 100, 10), "y": np.array( [ 14.123, 2.343, np.nan, 0.0, -8.302, np.nan, 94.313, -112.236, -8.029, np.nan, ] ), "z": np.repeat([-0.6459412758761901], 10), } ) gdf = cudf.DataFrame.from_pandas(pdf) if isinstance(decimals, cudf.Series): pdecimals = decimals.to_pandas() else: pdecimals = decimals result = gdf.round(decimals) expected = pdf.round(pdecimals) assert_eq(result, expected) # with nulls, maintaining existing null mask for c in pdf.columns: arr = pdf[c].to_numpy().astype("float64") # for pandas nulls arr.ravel()[np.random.choice(10, 5, replace=False)] = np.nan pdf[c] = gdf[c] = arr result = gdf.round(decimals) expected = pdf.round(pdecimals) assert_eq(result, expected) for c in gdf.columns: np.array_equal(gdf[c].nullmask.to_array(), result[c].to_array()) @pytest.mark.parametrize( "data", [ [0, 1, 2, 3], [-2, -1, 2, 3, 5], [-2, -1, 0, 3, 5], [True, False, False], [True], [False], [], [True, None, False], [True, True, None], [None, None], [[0, 5], [1, 6], [2, 7], [3, 8], [4, 9]], [[1, True], [2, False], [3, False]], pytest.param( [["a", True], ["b", False], ["c", False]], marks=[ pytest.mark.xfail( reason="NotImplementedError: all does not " "support columns of object dtype." ) ], ), ], ) def test_all(data): # Pandas treats `None` in object type columns as True for some reason, so # replacing with `False` if np.array(data).ndim <= 1: pdata = cudf.utils.utils._create_pandas_series(data=data).replace( [None], False ) gdata = cudf.Series.from_pandas(pdata) else: pdata = pd.DataFrame(data, columns=["a", "b"]).replace([None], False) gdata = cudf.DataFrame.from_pandas(pdata) # test bool_only if pdata["b"].dtype == "bool": got = gdata.all(bool_only=True) expected = pdata.all(bool_only=True) assert_eq(got, expected) else: with pytest.raises(NotImplementedError): gdata.all(bool_only=False) with pytest.raises(NotImplementedError): gdata.all(level="a") got = gdata.all() expected = pdata.all() assert_eq(got, expected) @pytest.mark.parametrize( "data", [ [0, 1, 2, 3], [-2, -1, 2, 3, 5], [-2, -1, 0, 3, 5], [0, 0, 0, 0, 0], [0, 0, None, 0], [True, False, False], [True], [False], [], [True, None, False], [True, True, None], [None, None], [[0, 5], [1, 6], [2, 7], [3, 8], [4, 9]], [[1, True], [2, False], [3, False]], pytest.param( [["a", True], ["b", False], ["c", False]], marks=[ pytest.mark.xfail( reason="NotImplementedError: any does not " "support columns of object dtype." ) ], ), ], ) @pytest.mark.parametrize("axis", [0, 1]) def test_any(data, axis): if np.array(data).ndim <= 1: pdata = cudf.utils.utils._create_pandas_series(data=data) gdata = cudf.Series.from_pandas(pdata) if axis == 1: with pytest.raises(NotImplementedError): gdata.any(axis=axis) else: got = gdata.any(axis=axis) expected = pdata.any(axis=axis) assert_eq(got, expected) else: pdata = pd.DataFrame(data, columns=["a", "b"]) gdata = cudf.DataFrame.from_pandas(pdata) # test bool_only if pdata["b"].dtype == "bool": got = gdata.any(bool_only=True) expected = pdata.any(bool_only=True) assert_eq(got, expected) else: with pytest.raises(NotImplementedError): gdata.any(bool_only=False) with pytest.raises(NotImplementedError): gdata.any(level="a") got = gdata.any(axis=axis) expected = pdata.any(axis=axis) assert_eq(got, expected) @pytest.mark.parametrize("axis", [0, 1]) def test_empty_dataframe_any(axis): pdf = pd.DataFrame({}, columns=["a", "b"]) gdf = cudf.DataFrame.from_pandas(pdf) got = gdf.any(axis=axis) expected = pdf.any(axis=axis) assert_eq(got, expected, check_index_type=False) @pytest.mark.parametrize("indexed", [False, True]) def test_dataframe_sizeof(indexed): rows = int(1e6) index = list(i for i in range(rows)) if indexed else None gdf = cudf.DataFrame({"A": [8] * rows, "B": [32] * rows}, index=index) for c in gdf._data.columns: assert gdf._index.__sizeof__() == gdf._index.__sizeof__() cols_sizeof = sum(c.__sizeof__() for c in gdf._data.columns) assert gdf.__sizeof__() == (gdf._index.__sizeof__() + cols_sizeof) @pytest.mark.parametrize("a", [[], ["123"]]) @pytest.mark.parametrize("b", ["123", ["123"]]) @pytest.mark.parametrize( "misc_data", ["123", ["123"] * 20, 123, [1, 2, 0.8, 0.9] * 50, 0.9, 0.00001], ) @pytest.mark.parametrize("non_list_data", [123, "abc", "zyx", "rapids", 0.8]) def test_create_dataframe_cols_empty_data(a, b, misc_data, non_list_data): expected = pd.DataFrame({"a": a}) actual = cudf.DataFrame.from_pandas(expected) expected["b"] = b actual["b"] = b assert_eq(actual, expected) expected = pd.DataFrame({"a": []}) actual = cudf.DataFrame.from_pandas(expected) expected["b"] = misc_data actual["b"] = misc_data assert_eq(actual, expected) expected = pd.DataFrame({"a": a}) actual = cudf.DataFrame.from_pandas(expected) expected["b"] = non_list_data actual["b"] = non_list_data assert_eq(actual, expected) def test_empty_dataframe_describe(): pdf = pd.DataFrame({"a": [], "b": []}) gdf = cudf.from_pandas(pdf) expected = pdf.describe() actual = gdf.describe() assert_eq(expected, actual) def test_as_column_types(): col = column.as_column(cudf.Series([])) assert_eq(col.dtype, np.dtype("float64")) gds = cudf.Series(col) pds = pd.Series(pd.Series([], dtype="float64")) assert_eq(pds, gds) col = column.as_column(cudf.Series([]), dtype="float32") assert_eq(col.dtype, np.dtype("float32")) gds = cudf.Series(col) pds = pd.Series(pd.Series([], dtype="float32")) assert_eq(pds, gds) col = column.as_column(cudf.Series([]), dtype="str") assert_eq(col.dtype, np.dtype("object")) gds = cudf.Series(col) pds = pd.Series(pd.Series([], dtype="str")) assert_eq(pds, gds) col = column.as_column(cudf.Series([]), dtype="object") assert_eq(col.dtype, np.dtype("object")) gds = cudf.Series(col) pds = pd.Series(pd.Series([], dtype="object")) assert_eq(pds, gds) pds = pd.Series(np.array([1, 2, 3]), dtype="float32") gds = cudf.Series(column.as_column(np.array([1, 2, 3]), dtype="float32")) assert_eq(pds, gds) pds = pd.Series([1, 2, 3], dtype="float32") gds = cudf.Series([1, 2, 3], dtype="float32") assert_eq(pds, gds) pds = pd.Series([], dtype="float64") gds = cudf.Series(column.as_column(pds)) assert_eq(pds, gds) pds = pd.Series([1, 2, 4], dtype="int64") gds = cudf.Series(column.as_column(cudf.Series([1, 2, 4]), dtype="int64")) assert_eq(pds, gds) pds = pd.Series([1.2, 18.0, 9.0], dtype="float32") gds = cudf.Series( column.as_column(cudf.Series([1.2, 18.0, 9.0]), dtype="float32") ) assert_eq(pds, gds) pds = pd.Series([1.2, 18.0, 9.0], dtype="str") gds = cudf.Series( column.as_column(cudf.Series([1.2, 18.0, 9.0]), dtype="str") ) assert_eq(pds, gds) pds = pd.Series(pd.Index(["1", "18", "9"]), dtype="int") gds = cudf.Series( cudf.core.index.StringIndex(["1", "18", "9"]), dtype="int" ) assert_eq(pds, gds) def test_one_row_head(): gdf = cudf.DataFrame({"name": ["carl"], "score": [100]}, index=[123]) pdf = gdf.to_pandas() head_gdf = gdf.head() head_pdf = pdf.head() assert_eq(head_pdf, head_gdf) @pytest.mark.parametrize("dtype", NUMERIC_TYPES) @pytest.mark.parametrize("as_dtype", NUMERIC_TYPES) def test_series_astype_numeric_to_numeric(dtype, as_dtype): psr = pd.Series([1, 2, 4, 3], dtype=dtype) gsr = cudf.from_pandas(psr) assert_eq(psr.astype(as_dtype), gsr.astype(as_dtype)) @pytest.mark.parametrize("dtype", NUMERIC_TYPES) @pytest.mark.parametrize("as_dtype", NUMERIC_TYPES) def test_series_astype_numeric_to_numeric_nulls(dtype, as_dtype): data = [1, 2, None, 3] sr = cudf.Series(data, dtype=dtype) got = sr.astype(as_dtype) expect = cudf.Series([1, 2, None, 3], dtype=as_dtype) assert_eq(expect, got) @pytest.mark.parametrize("dtype", NUMERIC_TYPES) @pytest.mark.parametrize( "as_dtype", [ "str", "category", "datetime64[s]", "datetime64[ms]", "datetime64[us]", "datetime64[ns]", ], ) def test_series_astype_numeric_to_other(dtype, as_dtype): psr = pd.Series([1, 2, 3], dtype=dtype) gsr = cudf.from_pandas(psr) assert_eq(psr.astype(as_dtype), gsr.astype(as_dtype)) @pytest.mark.parametrize( "as_dtype", [ "str", "int32", "uint32", "float32", "category", "datetime64[s]", "datetime64[ms]", "datetime64[us]", "datetime64[ns]", ], ) def test_series_astype_string_to_other(as_dtype): if "datetime64" in as_dtype: data = ["2001-01-01", "2002-02-02", "2000-01-05"] else: data = ["1", "2", "3"] psr = pd.Series(data) gsr = cudf.from_pandas(psr) assert_eq(psr.astype(as_dtype), gsr.astype(as_dtype)) @pytest.mark.parametrize( "as_dtype", [ "category", "datetime64[s]", "datetime64[ms]", "datetime64[us]", "datetime64[ns]", ], ) def test_series_astype_datetime_to_other(as_dtype): data = ["2001-01-01", "2002-02-02", "2001-01-05"] psr = pd.Series(data) gsr = cudf.from_pandas(psr) assert_eq(psr.astype(as_dtype), gsr.astype(as_dtype)) @pytest.mark.parametrize( "inp", [ ("datetime64[ns]", "2011-01-01 00:00:00.000000000"), ("datetime64[us]", "2011-01-01 00:00:00.000000"), ("datetime64[ms]", "2011-01-01 00:00:00.000"), ("datetime64[s]", "2011-01-01 00:00:00"), ], ) def test_series_astype_datetime_to_string(inp): dtype, expect = inp base_date = "2011-01-01" sr = cudf.Series([base_date], dtype=dtype) got = sr.astype(str)[0] assert expect == got @pytest.mark.parametrize( "as_dtype", [ "int32", "uint32", "float32", "category", "datetime64[s]", "datetime64[ms]", "datetime64[us]", "datetime64[ns]", "str", ], ) def test_series_astype_categorical_to_other(as_dtype): if "datetime64" in as_dtype: data = ["2001-01-01", "2002-02-02", "2000-01-05", "2001-01-01"] else: data = [1, 2, 3, 1] psr = pd.Series(data, dtype="category") gsr = cudf.from_pandas(psr) assert_eq(psr.astype(as_dtype), gsr.astype(as_dtype)) @pytest.mark.parametrize("ordered", [True, False]) def test_series_astype_to_categorical_ordered(ordered): psr = pd.Series([1, 2, 3, 1], dtype="category") gsr = cudf.from_pandas(psr) ordered_dtype_pd = pd.CategoricalDtype( categories=[1, 2, 3], ordered=ordered ) ordered_dtype_gd = cudf.CategoricalDtype.from_pandas(ordered_dtype_pd) assert_eq( psr.astype("int32").astype(ordered_dtype_pd).astype("int32"), gsr.astype("int32").astype(ordered_dtype_gd).astype("int32"), ) @pytest.mark.parametrize("ordered", [True, False]) def test_series_astype_cat_ordered_to_unordered(ordered): pd_dtype = pd.CategoricalDtype(categories=[1, 2, 3], ordered=ordered) pd_to_dtype = pd.CategoricalDtype( categories=[1, 2, 3], ordered=not ordered ) gd_dtype = cudf.CategoricalDtype.from_pandas(pd_dtype) gd_to_dtype = cudf.CategoricalDtype.from_pandas(pd_to_dtype) psr = pd.Series([1, 2, 3], dtype=pd_dtype) gsr = cudf.Series([1, 2, 3], dtype=gd_dtype) expect = psr.astype(pd_to_dtype) got = gsr.astype(gd_to_dtype) assert_eq(expect, got) def test_series_astype_null_cases(): data = [1, 2, None, 3] # numerical to other assert_eq(cudf.Series(data, dtype="str"), cudf.Series(data).astype("str")) assert_eq( cudf.Series(data, dtype="category"), cudf.Series(data).astype("category"), ) assert_eq( cudf.Series(data, dtype="float32"), cudf.Series(data, dtype="int32").astype("float32"), ) assert_eq( cudf.Series(data, dtype="float32"), cudf.Series(data, dtype="uint32").astype("float32"), ) assert_eq( cudf.Series(data, dtype="datetime64[ms]"), cudf.Series(data).astype("datetime64[ms]"), ) # categorical to other assert_eq( cudf.Series(data, dtype="str"), cudf.Series(data, dtype="category").astype("str"), ) assert_eq( cudf.Series(data, dtype="float32"), cudf.Series(data, dtype="category").astype("float32"), ) assert_eq( cudf.Series(data, dtype="datetime64[ms]"), cudf.Series(data, dtype="category").astype("datetime64[ms]"), ) # string to other assert_eq( cudf.Series([1, 2, None, 3], dtype="int32"), cudf.Series(["1", "2", None, "3"]).astype("int32"), ) assert_eq( cudf.Series( ["2001-01-01", "2001-02-01", None, "2001-03-01"], dtype="datetime64[ms]", ), cudf.Series(["2001-01-01", "2001-02-01", None, "2001-03-01"]).astype( "datetime64[ms]" ), ) assert_eq( cudf.Series(["a", "b", "c", None], dtype="category").to_pandas(), cudf.Series(["a", "b", "c", None]).astype("category").to_pandas(), ) # datetime to other data = [ "2001-01-01 00:00:00.000000", "2001-02-01 00:00:00.000000", None, "2001-03-01 00:00:00.000000", ] assert_eq( cudf.Series(data), cudf.Series(data, dtype="datetime64[us]").astype("str"), ) assert_eq( pd.Series(data, dtype="datetime64[ns]").astype("category"), cudf.from_pandas(pd.Series(data, dtype="datetime64[ns]")).astype( "category" ), ) def test_series_astype_null_categorical(): sr = cudf.Series([None, None, None], dtype="category") expect = cudf.Series([None, None, None], dtype="int32") got = sr.astype("int32") assert_eq(expect, got) @pytest.mark.parametrize( "data", [ ( pd.Series([3, 3.0]), pd.Series([2.3, 3.9]), pd.Series([1.5, 3.9]), pd.Series([1.0, 2]), ), [ pd.Series([3, 3.0]), pd.Series([2.3, 3.9]), pd.Series([1.5, 3.9]), pd.Series([1.0, 2]), ], ], ) def test_create_dataframe_from_list_like(data): pdf = pd.DataFrame(data, index=["count", "mean", "std", "min"]) gdf = cudf.DataFrame(data, index=["count", "mean", "std", "min"]) assert_eq(pdf, gdf) pdf = pd.DataFrame(data) gdf = cudf.DataFrame(data) assert_eq(pdf, gdf) def test_create_dataframe_column(): pdf = pd.DataFrame(columns=["a", "b", "c"], index=["A", "Z", "X"]) gdf = cudf.DataFrame(columns=["a", "b", "c"], index=["A", "Z", "X"]) assert_eq(pdf, gdf) pdf = pd.DataFrame( {"a": [1, 2, 3], "b": [2, 3, 5]}, columns=["a", "b", "c"], index=["A", "Z", "X"], ) gdf = cudf.DataFrame( {"a": [1, 2, 3], "b": [2, 3, 5]}, columns=["a", "b", "c"], index=["A", "Z", "X"], ) assert_eq(pdf, gdf) @pytest.mark.parametrize( "data", [ [1, 2, 4], [], [5.0, 7.0, 8.0], pd.Categorical(["a", "b", "c"]), ["m", "a", "d", "v"], ], ) def test_series_values_host_property(data): pds = cudf.utils.utils._create_pandas_series(data=data) gds = cudf.Series(data) np.testing.assert_array_equal(pds.values, gds.values_host) @pytest.mark.parametrize( "data", [ [1, 2, 4], [], [5.0, 7.0, 8.0], pytest.param( pd.Categorical(["a", "b", "c"]), marks=pytest.mark.xfail(raises=NotImplementedError), ), pytest.param( ["m", "a", "d", "v"], marks=pytest.mark.xfail(raises=NotImplementedError), ), ], ) def test_series_values_property(data): pds = cudf.utils.utils._create_pandas_series(data=data) gds = cudf.Series(data) gds_vals = gds.values assert isinstance(gds_vals, cupy.ndarray) np.testing.assert_array_equal(gds_vals.get(), pds.values) @pytest.mark.parametrize( "data", [ {"A": [1, 2, 3], "B": [4, 5, 6]}, {"A": [1.0, 2.0, 3.0], "B": [4.0, 5.0, 6.0]}, {"A": [1, 2, 3], "B": [1.0, 2.0, 3.0]}, {"A": np.float32(np.arange(3)), "B": np.float64(np.arange(3))}, pytest.param( {"A": [1, None, 3], "B": [1, 2, None]}, marks=pytest.mark.xfail( reason="Nulls not supported by as_gpu_matrix" ), ), pytest.param( {"A": [None, None, None], "B": [None, None, None]}, marks=pytest.mark.xfail( reason="Nulls not supported by as_gpu_matrix" ), ), pytest.param( {"A": [], "B": []}, marks=pytest.mark.xfail(reason="Requires at least 1 row"), ), pytest.param( {"A": [1, 2, 3], "B": ["a", "b", "c"]}, marks=pytest.mark.xfail( reason="str or categorical not supported by as_gpu_matrix" ), ), pytest.param( {"A": pd.Categorical(["a", "b", "c"]), "B": ["d", "e", "f"]}, marks=pytest.mark.xfail( reason="str or categorical not supported by as_gpu_matrix" ), ), ], ) def test_df_values_property(data): pdf = pd.DataFrame.from_dict(data) gdf = cudf.DataFrame.from_pandas(pdf) pmtr = pdf.values gmtr = gdf.values.get() np.testing.assert_array_equal(pmtr, gmtr) def test_value_counts(): pdf = pd.DataFrame( { "numeric": [1, 2, 3, 4, 5, 6, 1, 2, 4] * 10, "alpha": ["u", "h", "d", "a", "m", "u", "h", "d", "a"] * 10, } ) gdf = cudf.DataFrame( { "numeric": [1, 2, 3, 4, 5, 6, 1, 2, 4] * 10, "alpha": ["u", "h", "d", "a", "m", "u", "h", "d", "a"] * 10, } ) assert_eq( pdf.numeric.value_counts().sort_index(), gdf.numeric.value_counts().sort_index(), check_dtype=False, ) assert_eq( pdf.alpha.value_counts().sort_index(), gdf.alpha.value_counts().sort_index(), check_dtype=False, ) @pytest.mark.parametrize( "data", [ [], [0, 12, 14], [0, 14, 12, 12, 3, 10, 12, 14], np.random.randint(-100, 100, 200), pd.Series([0.0, 1.0, None, 10.0]), [None, None, None, None], [np.nan, None, -1, 2, 3], ], ) @pytest.mark.parametrize( "values", [ np.random.randint(-100, 100, 10), [], [np.nan, None, -1, 2, 3], [1.0, 12.0, None, None, 120], [0, 14, 12, 12, 3, 10, 12, 14, None], [None, None, None], ["0", "12", "14"], ["0", "12", "14", "a"], ], ) def test_isin_numeric(data, values): index = np.random.randint(0, 100, len(data)) psr = cudf.utils.utils._create_pandas_series(data=data, index=index) gsr = cudf.Series.from_pandas(psr, nan_as_null=False) expected = psr.isin(values) got = gsr.isin(values) assert_eq(got, expected) @pytest.mark.parametrize( "data", [ [], pd.Series( ["2018-01-01", "2019-04-03", None, "2019-12-30"], dtype="datetime64[ns]", ), pd.Series( [ "2018-01-01", "2019-04-03", None, "2019-12-30", "2018-01-01", "2018-01-01", ], dtype="datetime64[ns]", ), ], ) @pytest.mark.parametrize( "values", [ [], [1514764800000000000, 1577664000000000000], [ 1514764800000000000, 1577664000000000000, 1577664000000000000, 1577664000000000000, 1514764800000000000, ], ["2019-04-03", "2019-12-30", "2012-01-01"], [ "2012-01-01", "2012-01-01", "2012-01-01", "2019-04-03", "2019-12-30", "2012-01-01", ], ], ) def test_isin_datetime(data, values): psr = cudf.utils.utils._create_pandas_series(data=data) gsr = cudf.Series.from_pandas(psr) got = gsr.isin(values) expected = psr.isin(values) assert_eq(got, expected) @pytest.mark.parametrize( "data", [ [], pd.Series(["this", "is", None, "a", "test"]), pd.Series(["test", "this", "test", "is", None, "test", "a", "test"]), pd.Series(["0", "12", "14"]), ], ) @pytest.mark.parametrize( "values", [ [], ["this", "is"], [None, None, None], ["12", "14", "19"], pytest.param( [12, 14, 19], marks=pytest.mark.xfail( not PANDAS_GE_120, reason="pandas's failure here seems like a bug(in < 1.2) " "given the reverse succeeds", ), ), ["is", "this", "is", "this", "is"], ], ) def test_isin_string(data, values): psr = cudf.utils.utils._create_pandas_series(data=data) gsr = cudf.Series.from_pandas(psr) got = gsr.isin(values) expected = psr.isin(values) assert_eq(got, expected) @pytest.mark.parametrize( "data", [ [], pd.Series(["a", "b", "c", "c", "c", "d", "e"], dtype="category"), pd.Series(["a", "b", None, "c", "d", "e"], dtype="category"), pd.Series([0, 3, 10, 12], dtype="category"), pd.Series([0, 3, 10, 12, 0, 10, 3, 0, 0, 3, 3], dtype="category"), ], ) @pytest.mark.parametrize( "values", [ [], ["a", "b", None, "f", "words"], ["0", "12", None, "14"], [0, 10, 12, None, 39, 40, 1000], [0, 0, 0, 0, 3, 3, 3, None, 1, 2, 3], ], ) def test_isin_categorical(data, values): psr = cudf.utils.utils._create_pandas_series(data=data) gsr = cudf.Series.from_pandas(psr) got = gsr.isin(values) expected = psr.isin(values) assert_eq(got, expected) @pytest.mark.parametrize( "data", [ [], pd.Series( ["this", "is", None, "a", "test"], index=["a", "b", "c", "d", "e"] ), pd.Series([0, 15, 10], index=[0, None, 9]), pd.Series( range(25), index=pd.date_range( start="2019-01-01", end="2019-01-02", freq="H" ), ), ], ) @pytest.mark.parametrize( "values", [ [], ["this", "is"], [0, 19, 13], ["2019-01-01 04:00:00", "2019-01-01 06:00:00", "2018-03-02"], ], ) def test_isin_index(data, values): psr = cudf.utils.utils._create_pandas_series(data=data) gsr = cudf.Series.from_pandas(psr) got = gsr.index.isin(values) expected = psr.index.isin(values) assert_eq(got, expected) @pytest.mark.parametrize( "data", [ pd.MultiIndex.from_arrays( [[1, 2, 3], ["red", "blue", "green"]], names=("number", "color") ), pd.MultiIndex.from_arrays([[], []], names=("number", "color")), pd.MultiIndex.from_arrays( [[1, 2, 3, 10, 100], ["red", "blue", "green", "pink", "white"]], names=("number", "color"), ), ], ) @pytest.mark.parametrize( "values,level,err", [ (["red", "orange", "yellow"], "color", None), (["red", "white", "yellow"], "color", None), ([0, 1, 2, 10, 11, 15], "number", None), ([0, 1, 2, 10, 11, 15], None, TypeError), (pd.Series([0, 1, 2, 10, 11, 15]), None, TypeError), (pd.Index([0, 1, 2, 10, 11, 15]), None, TypeError), (
pd.Index([0, 1, 2, 8, 11, 15])
pandas.Index
from sklearn.preprocessing import LabelEncoder from sklearn.feature_extraction.text import TfidfVectorizer from sklearn.model_selection import train_test_split from tensorflow.keras.models import Sequential from tensorflow.keras.callbacks import EarlyStopping, ModelCheckpoint from tensorflow.keras.layers import Dropout, Dense import pandas as pd import numpy as np import pickle from imblearn.over_sampling import SMOTE import time start = time.time() df = pd.read_csv('bsa_training_data.csv') print(f'df.shape: {df.shape}') X = df.PARTICULARS df.Label.dropna(inplace=True) y = df.Label.astype(str) print(f'Total Unique Labels in Train: {len(df.Label.unique())}') le = LabelEncoder() y = le.fit_transform(y).astype(str) le_name = r'Saved Models/target_label_encoder.sav' pickle.dump(le, open(le_name, 'wb')) print(f'type(X): {type(X)}, X.shape: {X.shape}') cv = TfidfVectorizer(analyzer='word') Xcv = cv.fit_transform(X).toarray() cv_name = 'vectorizer.sav' pickle.dump(cv, open(cv_name, 'wb')) print(f'Xcv.shape: {Xcv.shape}, type(Xcv): {type(Xcv)}') from imblearn.over_sampling import SMOTE sm = SMOTE(random_state=22) X = df.PARTICULARS df.Label.dropna(inplace=True) y = df.Label.astype(str) print(f'Total Unique Labels in Train: {len(df.Label.unique())}') le = LabelEncoder() y = le.fit_transform(y).astype(str) le_name = 'target_label_encoder.sav' pickle.dump(le, open(le_name, 'wb')) print(f'type(X): {type(X)}, X.shape: {X.shape}') cv = TfidfVectorizer(analyzer='word') Xcv = cv.fit_transform(X).toarray() cv_name = 'vectorizer.sav' pickle.dump(cv, open(cv_name, 'wb')) print(f'Xcv.shape: {Xcv.shape}, type(Xcv): {type(Xcv)}') from imblearn.over_sampling import SMOTE sm = SMOTE(random_state=42, k_neighbors=1) Xtrain, ytrain = sm.fit_resample(Xcv, y.ravel()) Xtrain =
pd.DataFrame(Xtrain)
pandas.DataFrame
from functools import partialmethod import pandas as pd from sqlalchemy.orm import sessionmaker from sqlalchemy import create_engine import sqlite3 import click import json import pkg_resources from itertools import combinations from q2_mlab.db.schema import RegressionScore from q2_mlab.plotting.components import ( Mediator, ComponentMixin, Plottable, ButtonComponent, ScatterComponent, SegmentComponent, DataSourceComponent, SelectComponent, ) from bokeh.plotting import figure from bokeh.transform import factor_cmap from bokeh.models import ( ColumnDataSource, CheckboxButtonGroup, TextInput, Legend, LegendItem, ) from bokeh.models.widgets import ( Div, ) from bokeh.palettes import ( Category20, Set3, ) from bokeh.layouts import column, row from bokeh.server.server import Server groups = ['parameters_id', 'dataset', 'target', 'level', 'algorithm'] drop_cols = ['artifact_uuid', 'datetime', 'CV_IDX', 'id'] target_map = { 'age_v2': 'age', 'BL_AGE': 'age', 'age': 'age', 'bmi_v2': 'bmi', 'BMI': 'bmi', 'bmi': 'bmi' } with pkg_resources.resource_stream( __name__, "standard_deviations.json" ) as f: TARGET_SD = json.load(f) def _get_standardized_mae(df_row, norm_dict): """ """ mae = df_row['MAE'] target = df_row['target'] dataset = df_row['dataset'] cv_fold = df_row['CV_IDX'] level = df_row['level'] key = f"({dataset}, {target}, {level}, {cv_fold})" sd = norm_dict.get(key, 1) standardized_mae = mae / sd return standardized_mae def process_db_df(df): # remap values for consistency df['level'] = df['level'].replace('none', 'MG') df['target'] = df['target'].map(target_map) df['standardized_MAE'] = df.apply(_get_standardized_mae, axis=1, args=(TARGET_SD,)) group_stats = df.drop( drop_cols, axis=1 ).groupby( groups ).agg( ['var', 'mean'] ) group_stats.columns = agg_columns = ['_'.join(col).strip() for col in group_stats.columns.values] group_stats.reset_index(inplace=True) min_by = ['dataset', 'target'] group_mins = group_stats[agg_columns + min_by].groupby(min_by).min() indices = group_stats[['dataset', 'target']].to_records( index=False).tolist() expanded_group_mins = group_mins.loc[indices] expanded_group_mins.index = group_stats.index relative_group_stats = (group_stats / expanded_group_mins)[agg_columns] relative_group_stats.columns = ['relative_' + col for col in relative_group_stats] group_stats = group_stats.join(relative_group_stats) return group_stats def find_segments(group_stats, across, groupby): """ TODO makes some assumptions about the guarantees on pairs when there are more than 2 categories """ seg_cols = groupby.copy() seg_cols.remove(across) group_counts = group_stats[seg_cols + [across]].groupby(seg_cols).count() max_n_pairs = group_counts[across].max() category_values = group_stats[across].unique() where = (group_counts[across] == max_n_pairs) keep_repeats = group_stats.set_index(seg_cols).loc[where] keep_repeats_parts = [] for i, sub_group in enumerate(category_values): where = keep_repeats[across] == sub_group keep_repeats_parts.append(keep_repeats.loc[where]) keep_repeats_parts[i].columns = [col + '_' + sub_group for col in keep_repeats_parts[i].columns] segment_df = pd.concat(keep_repeats_parts, axis=1 ) return segment_df class TextInputComponent(ComponentMixin): def __init__(self, text_input_kwargs): super().__init__() self.text_input = TextInput(**text_input_kwargs) self.layout = self.text_input self.input_text_callback = None def set_mediator(self, mediator): super().set_mediator(mediator) event_name = 'text-change' text_change = self.make_attr_old_new_callback(event_name) self.input_text_callback = text_change self.text_input.on_change('value', self.input_text_callback) class CheckboxButtonGroupComponent(ComponentMixin): def __init__(self, checkbox_kwargs): super().__init__() self.checkbox = CheckboxButtonGroup(**checkbox_kwargs) self.checkbox_change = None self.layout = self.checkbox def set_mediator(self, mediator): super().set_mediator(mediator) event_name = 'checkbox-change' self.checkbox_change = self.make_attr_old_new_callback(event_name) self.checkbox.on_change('active', self.checkbox_change) class SegmentComponentExt(SegmentComponent): def redraw(self, x, y, seg_0, seg_1, data): self.data_source.data = data self.segment.glyph.x0 = '_'.join([x, seg_0]) self.segment.glyph.x1 = '_'.join([x, seg_1]) self.segment.glyph.y0 = '_'.join([y, seg_0]) self.segment.glyph.y1 = '_'.join([y, seg_1]) palettes = { 'Category20': Category20, 'Set3': Set3, } DEFAULTS = { 'segment_variable': 'dataset', 'x': 'MAE_mean', 'y': 'MAE_var', 'x_axis_type': 'log', 'y_axis_type': 'log', 'cmap': 'Category20' } class AlgorithmScatter(Mediator, Plottable): def __init__(self, x, y, engine, cmap=None): super().__init__() self.x = x self.y = y self.engine = engine self.data = None self.scatter = None if cmap is None: self.cmap = Category20 else: self.cmap = cmap self.line_segment_variable = DEFAULTS['segment_variable'] self.data_raw = None self.data_static = None self.data = None self.seg_0, self.seg_1 = None, None self.scatter_source = None self.x_axis_type = DEFAULTS['x_axis_type'] self.y_axis_type = DEFAULTS['y_axis_type'] self.axis_types = ['linear', 'log'] self.line_segment_pairs = { 'dataset': ['finrisk', 'sol'], 'level': ['16S', 'MG'], 'target': ['age', 'bmi'], } self.scatter_tools = 'pan,wheel_zoom,box_select,lasso_select,'\ 'reset,box_zoom,save' self.segment = None self.segment_source = None self.segment_button = None self.segment_variable_select = None self.x_var_select = None self.y_var_select = None self.dataset_bars = None self.dataset_bars_source = None self.dataset_bars_figure = None self.level_bars = None self.level_bars_source = None self.level_bars_figure = None self.target_bars = None self.target_bars_source = None self.target_bars_figure = None self.query_button = None self.query_input = None self.query_row = None self.layout = None def notify(self, component, event_name, *args, **kwargs, ): if (event_name == 'dropdown-select') and \ (component is self.x_var_select): self.x = component.select.value self.scatter.scatter.glyph.x = self.x self.scatter.layout.xaxis.axis_label = self.x self.segment.segment.glyph.x0 = '_'.join([self.x, self.seg_0]) self.segment.segment.glyph.x1 = '_'.join([self.x, self.seg_1]) if (event_name == 'dropdown-select') and \ (component is self.y_var_select): self.y = component.select.value self.scatter.scatter.glyph.y = self.y self.scatter.layout.yaxis.axis_label = self.y self.segment.segment.glyph.y0 = '_'.join([self.y, self.seg_0]) self.segment.segment.glyph.y1 = '_'.join([self.y, self.seg_1]) if (event_name == 'selected-indices') and \ (component is self.scatter_source): selected_indices = self.scatter_source.data_source.selected.indices self.dataset_bars_source.data = self.get_dataset_counts( indices=selected_indices, ) self.level_bars_source.data = self.get_level_counts( indices=selected_indices, ) self.target_bars_source.data = self.get_target_counts( indices=selected_indices, ) if (event_name == 'button-click') and \ (component is self.query_button): df = self.handle_query(self.query_input.text_input.value) # need to update self.data due to how the hbars are currently # written self.data = df self.scatter_source.data_source.data = df.to_dict(orient='list') segment_source = find_segments( df, across=self.line_segment_variable, groupby=['parameters_id', 'algorithm', 'level', 'dataset', 'target'], ) self.segment.segment.data_source.data = segment_source.to_dict( orient='list', ) selected_indices = self.scatter_source.data_source.selected.indices self.dataset_bars_source.data = self.get_dataset_counts( indices=selected_indices, ) self.level_bars_source.data = self.get_level_counts( indices=selected_indices, ) self.target_bars_source.data = self.get_target_counts( indices=selected_indices, ) if (event_name == 'checkbox-change') and \ (component is self.segment_button): active = self.segment_button.checkbox.active if 0 in active: self.segment.segment.visible = True else: self.segment.segment.visible = False if (event_name == 'dropdown-select') and \ (component is self.segment_variable_select): new_segment_variable = self.segment_variable_select.select.value self.line_segment_variable = new_segment_variable new_segment_data = find_segments( self.data, across=self.line_segment_variable, groupby=['parameters_id', 'algorithm', 'level', 'dataset', 'target'] ) line_segment_ends = self.line_segment_pairs[new_segment_variable] self.segment.redraw( self.x, self.y, *line_segment_ends, new_segment_data ) def plot(self): self.data_raw = pd.read_sql_table(RegressionScore.__tablename__, con=self.engine, ) # TODO this is temporary self.data_raw = self.data_raw.loc[ self.data_raw['algorithm'] != 'MLPRegressor' ] self.data = df = process_db_df(self.data_raw) self.data_static = df self.seg_0, self.seg_1 = self.line_segment_pairs[ self.line_segment_variable ] # ## Data Setup scatter_source = ColumnDataSource(df) self.scatter_source = DataSourceComponent(scatter_source) self.scatter_source.set_mediator(self) # ## General Setup algorithms = sorted(df['algorithm'].unique()) levels = sorted(df['level'].unique()) datasets = sorted(df['dataset'].unique()) targets = sorted(df['target'].unique()) plot_width = 600 self.line_segment_pairs = { 'level': ['16S', 'MG'], 'target': ['age', 'bmi'], } dataset_combinations = combinations(["finrisk", "imsms", "sol"], r=2) for dataset_pair in dataset_combinations: d1, d2 = dataset_pair self.line_segment_pairs[f"{d1}-to-{d2}"] = [d1, d2] categorical_variables = ['parameters_id', 'target', 'algorithm', 'level', 'dataset'] plottable_variables = list(sorted( df.columns.drop(categorical_variables) )) color_scheme = self.cmap[len(algorithms)] algorithm_cmap = factor_cmap('algorithm', palette=color_scheme, factors=algorithms, ) figure_kwargs = dict(x_axis_type=self.x_axis_type, y_axis_type=self.y_axis_type, plot_height=400, tools=self.scatter_tools, output_backend='webgl', ) # ## Segment Plot segment_source = ColumnDataSource( find_segments(self.data, across=self.line_segment_variable, groupby=['parameters_id', 'algorithm', 'level', 'dataset'] ) ) self.segment_source = DataSourceComponent(scatter_source) self.segment = SegmentComponentExt(data_source=segment_source) segment_kwargs = { 'x0': self.x + '_' + self.seg_0, 'x1': self.x + '_' + self.seg_1, 'y0': self.y + '_' + self.seg_0, 'y1': self.y + '_' + self.seg_1, 'line_width': 0.1, 'line_color': '#A9A9A9', } self.segment.plot( figure_kwargs=figure_kwargs, segment_kwargs=segment_kwargs, ) # ## Segment Visible button self.segment_button = CheckboxButtonGroupComponent( checkbox_kwargs=dict( labels=['Segments'], active=[0], ) ) self.segment_button.set_mediator(self) self.segment_variable_select = SelectComponent( select_kwargs=dict( value=self.line_segment_variable, title='Segment Variable', options=list(self.line_segment_pairs.keys()), ) ) self.segment_variable_select.set_mediator(self) # ## Scatter plot self.scatter = ScatterComponent() scatter_kwargs = dict(x=self.x, y=self.y, source=scatter_source, # legend_field='algorithm', fill_color=algorithm_cmap, name='scatter', ) self.scatter.plot( figure=self.segment.layout, scatter_kwargs=scatter_kwargs, ) scatter = self.scatter.layout scatter.toolbar.logo = None scatter.xaxis.axis_label = self.x scatter.yaxis.axis_label = self.y self.scatter.scatter.glyph.line_color = 'white' self.scatter.scatter.glyph.line_width = 0.1 self.scatter.scatter.nonselection_glyph.line_color = 'white' transform = algorithm_cmap['transform'] legend_fig = figure(outline_line_alpha=0, toolbar_location=None) legend_items = [] for i, (alg, color) in enumerate(zip(transform.factors, transform.palette)): legend_fig.circle(fill_color=color, name=f'circ{i}', line_color='white', ) renderers = legend_fig.select(name=f'circ{i}') legend_item = LegendItem( label=alg, renderers=renderers, ) legend_items.append(legend_item) legend = Legend( items=legend_items, location='top_left', ) legend_fig.add_layout(legend) scatter.plot_width = plot_width scatter.plot_height = 500 # ## Variable Selection self.x_var_select = SelectComponent( select_kwargs=dict( value=self.x, title='X variable', options=plottable_variables ) ) self.x_var_select.set_mediator(self) x_select = self.x_var_select.select self.y_var_select = SelectComponent( select_kwargs=dict( value=self.y, title='Y variable', options=plottable_variables ) ) self.y_var_select.set_mediator(self) y_select = self.y_var_select.select # ## Dataset Stacked Hbars data_getter = self.get_dataset_counts self.dataset_bars_source = ColumnDataSource(data_getter()) self.dataset_bars_figure = figure(y_range=datasets, plot_height=100) self.dataset_bars = self.dataset_bars_figure.hbar_stack( algorithms, y='dataset', height=0.9, color=color_scheme, source=self.dataset_bars_source, ) self.dataset_bars_figure.toolbar_location = None self.dataset_bars_figure.plot_width = plot_width # ## Level Stacked Hbars data_getter = self.get_level_counts self.level_bars_source = ColumnDataSource(data_getter()) self.level_bars_figure = figure(y_range=levels, plot_height=100) self.level_bars = self.level_bars_figure.hbar_stack( algorithms, y='level', height=0.9, color=color_scheme, source=self.level_bars_source, ) self.level_bars_figure.toolbar_location = None self.level_bars_figure.plot_width = plot_width # ## Target Stacked Hbars data_getter = self.get_target_counts self.target_bars_source = ColumnDataSource(data_getter()) self.target_bars_figure = figure(y_range=targets, plot_height=100) self.target_bars = self.target_bars_figure.hbar_stack( algorithms, y='target', height=0.9, color=color_scheme, source=self.target_bars_source, ) self.target_bars_figure.toolbar_location = None self.target_bars_figure.plot_width = plot_width # ## Text input button_width = 100 self.query_input = TextInputComponent( text_input_kwargs=dict( title='Enter query', width=plot_width - button_width ) ) self.query_button = ButtonComponent( button_kwargs=dict( label='Execute', width=button_width, ) ) self.query_button.set_mediator(self) self.query_row = row(self.query_input.layout, column( Div(text="", height=8), self.query_button.layout, )) # ## Layout variable_selection = row(x_select, y_select, ) segment_selection = row( self.segment_variable_select.layout, column( Div(text="", height=8), self.segment_button.layout, ) ) self.layout = row( column( self.query_row, variable_selection, segment_selection, row( scatter, column( self.dataset_bars_figure, self.level_bars_figure, self.target_bars_figure, legend_fig, ), ), ), ) return self def handle_query(self, text): if text != '': df = self.data_static.query(text).reset_index(drop=True) else: df = self.data_static return df def get_counts_by(self, category, by, indices=None): # TODO consider switching orientation of counts and by data = self.subset_selected(indices) counts =
pd.crosstab(data[by], data[category])
pandas.crosstab
import plotly.graph_objects as go from plotly.subplots import make_subplots from parameters_cov import params import pandas as pd import numpy as np from math import ceil import datetime from data_constants import POPULATIONS month_len = 365/12 longname = {'S': 'Susceptible', 'I': 'Infected', 'R': 'Recovered (total)', 'H': 'Hospitalised', 'C': 'Critical', 'D': 'Deaths (total)', } index = {'S': params.S_L_ind, 'I': params.I_L_ind, 'R': params.R_L_ind, 'H': params.H_L_ind, 'C': params.C_L_ind, 'D': params.D_L_ind, } colors = {'S': 'blue', 'I': 'orange', 'R': 'green', 'H': 'red', 'C': 'black', 'D': 'purple', } ######################################################################################################################## def human_format(num,dp=0): if num<1 and num>=0.1: return '%.2f' % num elif num<0.1: return '%.3f' % num magnitude = 0 while abs(num) >= 1000: magnitude += 1 num /= 1000.0 if dp==0 and not num/10<1: return '%.0f%s' % (num, ['', 'K', 'M', 'B'][magnitude]) else: return '%.1f%s' % (num, ['', 'K', 'M', 'B'][magnitude]) ######################################################################################################################## def time_exceeded_function(yy,tt,ICU_grow): ICU_capac = [params.ICU_capacity*(1 + ICU_grow*time/365 ) for time in tt] Exceeded_vec = [ (yy[params.C_H_ind,i]+yy[params.C_L_ind,i]) > ICU_capac[i] for i in range(len(tt))] Crit_vals = [ (yy[params.C_H_ind,i]+yy[params.C_L_ind,i]) for i in range(len(tt))] c_low = [-2] c_high = [-1] ICU = False if max(Crit_vals)>params.ICU_capacity: if Exceeded_vec[0]: # if exceeded at t=0 c_low.append(0) for i in range(len(Exceeded_vec)-1): if not Exceeded_vec[i] and Exceeded_vec[i+1]: # entering ICU = True y1 = 100*(yy[params.C_H_ind,i]+yy[params.C_L_ind,i]) y2 = 100*(yy[params.C_H_ind,i+1]+yy[params.C_L_ind,i+1]) t1 = tt[i] t2 = tt[i+1] t_int = t1 + (t2- t1)* abs((100*0.5*(ICU_capac[i]+ICU_capac[i+1]) - y1)/(y2-y1)) c_low.append(t_int) # 0.5 * ( tt[i] + tt[i+1])) if Exceeded_vec[i] and not Exceeded_vec[i+1]: # leaving y1 = 100*(yy[params.C_H_ind,i]+yy[params.C_L_ind,i]) y2 = 100*(yy[params.C_H_ind,i+1]+yy[params.C_L_ind,i+1]) t1 = tt[i] t2 = tt[i+1] t_int = t1 + (t2- t1)* abs((100*0.5*(ICU_capac[i]+ICU_capac[i+1]) - y1)/(y2-y1)) c_high.append(t_int) # 0.5 * ( tt[i] + tt[i+1])) if len(c_low)>len(c_high): c_high.append(tt[-1]+1) return c_low, c_high, ICU ######################################################################################################################## def extract_info(yy,tt,t_index,ICU_grow): ################################################################### # find percentage deaths/critical care metric_val_L_3yr = yy[params.D_L_ind,t_index-1] metric_val_H_3yr = yy[params.D_H_ind,t_index-1] ################################################################### ICU_val_3yr = [yy[params.C_H_ind,i] + yy[params.C_L_ind,i] for i in range(t_index)] ICU_capac = [params.ICU_capacity*(1 + ICU_grow*time/365 ) for time in tt] ICU_val_3yr = max([ICU_val_3yr[i]/ICU_capac[i] for i in range(t_index)]) ################################################################### # find what fraction of herd immunity safe threshold reached herd_val_3yr = [yy[params.S_H_ind,i] + yy[params.S_L_ind,i] for i in range(t_index)] herd_lim = 1/(params.R_0) herd_fraction_out = min((1-herd_val_3yr[-1])/(1-herd_lim),1) ################################################################### # find time ICU capacity exceeded time_exc = 0 # if True: c_low, c_high, _ = time_exceeded_function(yy,tt,ICU_grow) time_exc = [c_high[jj] - c_low[jj] for jj in range(1,len(c_high)-1)] time_exc = sum(time_exc) if c_high[-1]>0: if c_high[-1]<=tt[-1]: time_exc = time_exc + c_high[-1] - c_low[-1] else: time_exc = time_exc + tt[-1] - c_low[-1] time_exc = time_exc/month_len ################################################################### # find herd immunity time till reached multiplier_95 = 0.95 threshold_herd_95 = (1-multiplier_95) + multiplier_95*herd_lim time_reached = 50 # i.e never reached unless below satisfied if herd_val_3yr[-1] < threshold_herd_95: herd_time_vec = [tt[i] if herd_val_3yr[i] < threshold_herd_95 else 0 for i in range(len(herd_val_3yr))] herd_time_vec = np.asarray(herd_time_vec) time_reached = min(herd_time_vec[herd_time_vec>0])/month_len return metric_val_L_3yr, metric_val_H_3yr, ICU_val_3yr, herd_fraction_out, time_exc, time_reached ######################################################################################################################## def Bar_chart_generator(data,data2 = None, data_group = None,name1=None,name2=None,preset=None,text_addition=None,color=None,y_title=None,yax_tick_form=None,maxi=True,yax_font_size_multiplier=None,hover_form=None): # ,title_font_size=None): #title font_size = 10 if yax_font_size_multiplier is None: yax_font_size = font_size else: yax_font_size = yax_font_size_multiplier*font_size ledge = None show_ledge = False if len(data)==2: cats = ['Strategy Choice','Do Nothing'] else: cats = ['Strategy One','Strategy Two','Do Nothing'] order_vec = [len(data)-1,0,1] order_vec = order_vec[:(len(data))] data1 = [data[i] for i in order_vec] cats = [cats[i] for i in order_vec] if data2 is not None: data2 = [data2[i] for i in order_vec] if data_group is not None: name1 = 'End of Year 1' trace0 = go.Bar( x = cats, y = data1, marker=dict(color=color), name = name1, hovertemplate=hover_form ) traces = [trace0] barmode = None if data_group is not None: data_group = [data_group[i] for i in order_vec] traces.append( go.Bar( x = cats, y = data_group, # marker=dict(color=color), name = 'End of Year 3', hovertemplate=hover_form )) barmode='group' show_ledge = True if data2 is not None: traces.append(go.Bar( x = cats, y = data2, hovertemplate=hover_form, name = name2) ) show_ledge = True if show_ledge: ledge = dict( font=dict(size=font_size), x = 0.5, y = 1.02, xanchor= 'center', yanchor= 'bottom', ) # cross if data_group is not None: data_use = data_group elif data2 is not None: data_use = [data1[i] + data2[i] for i in range(len(data1))] else: data_use = data1 counter_bad = 0 counter_good = 0 if len(data_use)>1: for i, dd in enumerate(data_use): if maxi and dd == max(data_use): worst_cat = cats[i] worst_cat_y = dd counter_bad += 1 if maxi and dd == min(data_use): best_cat = cats[i] best_cat_y = dd counter_good += 1 if not maxi and dd == min(data_use): worst_cat = cats[i] worst_cat_y = dd counter_bad += 1 if not maxi and dd == max(data_use): best_cat = cats[i] best_cat_y = dd counter_good += 1 if counter_bad<2: traces.append(go.Scatter( x= [worst_cat], y= [worst_cat_y/2], mode='markers', marker_symbol = 'x', marker_size = (30/20)*font_size, marker_line_width=1, opacity=0.5, marker_color = 'red', marker_line_color = 'black', hovertemplate='Worst Strategy', showlegend=False, name = worst_cat )) if counter_good<2: traces.append(go.Scatter( x= [best_cat], y= [best_cat_y/2], opacity=0.5, mode = 'text', text = [r'✅'], textfont= dict(size= (30/20)*font_size), hovertemplate='Best Strategy', showlegend=False, name = best_cat )) layout = go.Layout( # autosize=False, font = dict(size=font_size), barmode = barmode, template="simple_white", #plotly_white", yaxis_tickformat = yax_tick_form, height=450, legend = ledge, # xaxis=dict(showline=False), yaxis = dict( automargin = True, # showline=False, title = y_title, title_font = dict(size=yax_font_size), ), showlegend = show_ledge, transition = {'duration': 500}, ) return {'data': traces, 'layout': layout} ######################################################################################################################## def solnIntoDataframe(sol,startdate): time = pd.Series([startdate + datetime.timedelta(days=i) for i in sol['t']]) df = pd.DataFrame(time) df.columns = ['t'] sol['y'] = np.asarray(sol['y']) for name in index.keys(): y_Low = 100*
pd.Series(sol['y'][index[name],:])
pandas.Series
# -*- coding: utf-8 -*- """ Created on Mon Jan 27 13:30:31 2020 @author: User """ import sys import datetime as dt from collections import Counter import pprint import matplotlib import matplotlib.pyplot as plt import matplotlib.lines as mlines from matplotlib import cm from matplotlib import gridspec from mpl_toolkits.mplot3d import Axes3D # noqa: F401 unused import # import os from platform import system import glob import cycler import numpy as np import pandas as pd from pandas.api.types import CategoricalDtype from bs4 import BeautifulSoup import re from scipy.stats import linregress # from sklearn import linear_model import scipy.signal import itertools from itertools import chain, repeat import logging import datetime as dt from pathlib import Path # import h5py from multiprocessing import Pool, cpu_count # import timeit # import time matplotlib.rcParams.update({"font.size": 16}) plt.rcParams["font.family"] = "sans-serif" plt.rcParams["font.sans-serif"] = "Helvetica" plt.rcParams["axes.edgecolor"] = "#333F4B" plt.rcParams["xtick.color"] = "#333F4B" plt.rcParams["ytick.color"] = "#333F4B" try: import statsmodels.formula.api as smf import statsmodels.api as sm import seaborn as sns except Exception as e: print("No modules: %s" % e) from file_py_helper.find_folders import FindExpFolder from file_py_helper.file_functions import FileOperations from file_py_helper.PostChar import ( SampleSelection, Characterization_TypeSetting, SampleCodesChar, ) if __name__ == "__main__": print(f"Package: {__package__}, File: {__file__}") from elchempy.main_run_PAR_DW import ECRunOVV from elchempy.indexer.prepare_input import CleanUpCrew from elchempy.experiments.EIS.models import Model_Collection import post_helper import merger # import EC # sys.path.append(list(FH_path.rglob('*.py'))) # import FH_path.joinpath('FindExpFolder.py') # import FindExpFolder.py # from FileHelper import FindExpFolder # from FindExpFolder import * # from .experiments import EIS # from .runEC import run_PAR_DW from elchempy.runEC.EC_logging_config import start_logging # logger = start_logging(__name__) else: # print('\n\n***** run_PAR_DW *****') print(f"File: {__file__}, Name:{__name__}, Package:{__package__}") # FH_path = Path(__file__).parent.parent.parent # sys.path.append(str(FH_path)) # import FileHelper from elchempy.main_run_PAR_DW import ECRunOVV from elchempy.indexer.prepare_input import CleanUpCrew from elchempy.runEC.EC_logging_config import start_logging from elchempy.PostEC import post_helper, merger from elchempy.experiments.EIS.models import Model_Collection # logger = start_logging(__name__) _logger = logging.getLogger(__name__) _logger.setLevel(20) EvRHE = "E_AppV_RHE" class PostEC: AllColls = [ "Unnamed: 0", "Segment #", "Point #", "E(V)", "I(A)", "Elapsed Time(s)", "Current Range", "Status", "E Applied(V)", "Frequency(Hz)", "Z Real", "Z Imag", "ActionId", "AC Amplitude", "RHE_OCP", "E_AppV_RHE", "E_Applied_VRHE", "j A/cm2", "jmAcm-2", "jcorr", "Gas", "EXP", "Electrode", "j_ring", "RPM", "Comment", "Measured_OCP", "pH", "Electrolyte", "ScanRate_calc", "SampleID", "File", "BaseName", "hash", "Instrument", "DATE", "EvRHE_diff", "DestFile", "Sweep_Type", "Type", "Cycle", "DAC_V", "Scanrate", "ORR_scan", "Jcorr", "J_N2_scan", "J_O2_diff", "J_O2_diff_diff", "Analysis_date", "J_2nd_diff", "Jkin_max", "Jkin_min", "E_onset", "Diff_lim", "E_half", "I(A)_ring", "I(A)_disk", "Frac_H2O2", "J_ring", "n_ORR", ] DropColls = [ "Unnamed: 0", "Segment #", "Point #", "E(V)", "I(A)", "Elapsed Time(s)", "Current Range", "Status", "E Applied(V)", "Frequency(Hz)", "Z Real", "Z Imag", "ActionId", "AC Amplitude", "RHE_OCP", "E_AppV_RHE", "jmAcm-2", "jcorr", "Gas", "EXP", "Electrode", "j_ring", "RPM", "Comment", "Measured_OCP", "pH", "Electrolyte", "ScanRate_calc", "SampleID", "File", "BaseName", "hash", "Instrument", "DATE", "EvRHE_diff", "DestFile", "Sweep_Type", "Type", "Cycle", "DAC_V", "Scanrate", "ORR_scan", "Jcorr", "J_N2_scan", "J_O2_diff", "J_O2_diff_diff", "Analysis_date", "J_2nd_diff", "Jkin_max", "Jkin_min", "E_onset", "Diff_lim", "E_half", "I(A)_ring", "I(A)_disk", "Frac_H2O2", "J_ring", "n_ORR", ] KeepColls = [ "E_AppV_RHE", "jmAcm-2", "Jcorr", "J_N2_scan", "Jkin_max", "Jkin_min", "Frac_H2O2", "J_ring", "n_ORR", ] # SampleCodes = FindExpFolder.LoadSampleCode() # FindExpFolder('VERSASTAT').SampleCodeLst # PostDestDir.mkdir(parents=True,exist_ok=True) # ExpPARovv = EC_loadOVV() # OnlyRecentMissingOVV = runEC.MainPrepareList() # ExpPARovv = ExpPARovv.iloc[100:120] OutParsID = pd.DataFrame() # Go1, Go2, Go3 = True, False, False # Go1, Go2, Go3 = False, True, False Go1, Go2, Go3 = False, False, True # KL_coeff = KL_coefficients() EvRHE_List = [ 0, 0.1, 0.2, 0.3, 0.4, 0.45, 0.5, 0.55, 0.6, 0.65, 0.7, 0.75, 0.8, 0.9, 1, ] def __init__(self): self.DestDir = FindExpFolder("VERSASTAT").PostDir @staticmethod def StartLogging(level_log="INFO"): # level_log = kwargs['level'] log_fn = FindExpFolder("VERSASTAT").PostDir.joinpath("PostEC_logger.log") logging.basicConfig( filename=log_fn, filemode="w", level=level_log, format="%(asctime)s %(levelname)s, %(lineno)d: %(message)s", ) logging.warning("Started logging for PostEC script...") def applyParallel(dfGrouped, func): with Pool(cpu_count() - 1) as p: ret_list = p.map(func, [group for name, group in dfGrouped]) return ret_list def check_status(file, verbose=False): """Check status will return (status,extra) of filename""" PAR_file_test = Path(str(file)).stem match = [ re.search("(?<!VERS|Vers)(AST|postAST|pAST)", str(a)) for a in PAR_file_test.split("_") ] if any(match): status = "EoL" extra = [ a for a in PAR_file_test.split("_") if [i for i in match if i][0][0] in a ] if verbose: print(file, status, *extra) return status, extra[0] # if any([re.search(r'', i) for i in str(Path(str(file)).stem.split('_'))]): else: return "BoL", 0 # status = # extra = [0] # return status,extra def postEC_Status(files, verbose=False): # files = ['N2_HER_1500rpm_JOS6_pAST-sHA_285_#3_Disc_Parstat'] if len(files) > 1: status_lst, extra_lst = [], [] for file in files: status, extra = PostEC.check_status(file) status_lst.append(status) extra_lst.append(extra) return status_lst, extra_lst else: return PostEC.check_status(files) def OLD_PostOrganizeFolders(TakeRecentList=True): postOVV = [] PostDestDir = FindExpFolder("VERSASTAT").DestDir.joinpath("PostEC") PAR_version = FileOperations.version RunOVV_fn_opts = list( FindExpFolder("VERSASTAT").DestDir.rglob( "RunOVV_v{0}.xlsx".format(PAR_version) ) ) RunOVV_fn = [i for i in RunOVV_fn_opts if not "_Conflict" in i.stem][0] if RunOVV_fn.is_file() and TakeRecentList == True: OvvFromFile = pd.read_excel(RunOVV_fn, index_col=[0]) status, extra = PostEC.postEC_Status(OvvFromFile.PAR_file.values) OvvFromFile = OvvFromFile.assign( **{ "Date_PAR_EXP": OvvFromFile.PAR_date - OvvFromFile.EXP_date, "Status": status, "Extra": extra, } ) OnlyRecentMissingOVV = OvvFromFile # OvvFromFile['Date_PAR_EXP'] = OvvFromFile.PAR_date-OvvFromFile.EXP_date # OvvFromFile['Status'] = OvvFromFile.PAR_file.values print("EC OVV loaded from file:{0}".format(RunOVV_fn)) OnlyRecentMissingOVV = FileOperations.ChangeRoot_DF( OnlyRecentMissingOVV, ["Dest_dir", "EXP_dir", "PAR_file"] ) # CS_parts_PDD = FileOperations.find_CS_parts(PostDestDir) # CS_parts_pOVV = FileOperations.find_CS_parts(OnlyRecentMissingOVV.Dest_dir.iloc[0]) # chLst =[] # if CS_parts_PDD[0] != CS_parts_pOVV[0]: # chLst = [CS_parts_PDD[0].joinpath(FileOperations.find_CS_parts(i)[1]) for i in OnlyRecentMissingOVV.Dest_dir.values] # OnlyRecentMissingOVV['Dest_dir'] = chLst # else: # pass postOVVlst, outLst = [], [] postOVVcols = [ "DestFilename", "SampleID", "Status", "Status_extra", "Electrolyte", "Gas", "RPM", "Scanrate", "EXP_date", "Type_Exp", "SourceFilename", "Exp_dir", ] # postOVVout = PostEC.FromListgrp(group) # postOVVlst = PostEC.applyParallel(OnlyRecentMissingOVV.groupby('Dest_dir'),PostEC.FromListgrp) # postOVVlst = [outLst.append(PostEC.FromListgrp(i)) for i in OnlyRecentMissingOVV.groupby('Dest_dir')] # for i in OnlyRecentMissingOVV.groupby('Dest_dir'): # PostEC.FromListgrp(i) # try: # postOVVout = pd.DataFrame(postOVVlst,columns=) # except Exception as e: # postOVVout = pd.DataFrame(postOVVlst) # for n,gr in OnlyRecentMissingOVV.groupby(by=['Dest_dir']): # PostEC.FromListgrp(n,gr.EXP_dir.unique()[0]) # pass # postOVVlst = [outLst.append(PostEC.FromListgrp(n,gr.EXP_dir.unique()[0])) for n,gr in OnlyRecentMissingOVV.groupby(by=['Dest_dir'])] postOVVout = pd.concat( [pd.DataFrame(i, columns=postOVVcols) for i in outLst], sort=False, ignore_index=True, ) postOVVout.to_excel(PostDestDir.joinpath("postEC_Organized.xlsx")) return postOVVout class EnterExitLog: def __init__(self, funcName): self.funcName = funcName def __enter__(self): _logger.info(f"Started: {self.funcName}") self.init_time = dt.datetime.now() return self def __exit__(self, type, value, tb): self.end_time = dt.datetime.now() self.duration = self.end_time - self.init_time _logger.info(f"Finished: {self.funcName} in {self.duration} seconds") def func_timer_decorator(func): def func_wrapper(*args, **kwargs): with EnterExitLog(func.__name__): return func(*args, **kwargs) return func_wrapper def get_daily_pickle(exp_type=""): today = dt.datetime.now().date() _result = {"today": today} if exp_type: daily_pickle_path = FindExpFolder("VERSASTAT").PostDir.joinpath( f"{today:%Y-%m-%d}_{exp_type}_{system()}.pkl.compress" ) daily_pkl_options = list( FindExpFolder("VERSASTAT").PostDir.rglob( f"*_{exp_type}_{system()}.pkl.compress" ) ) daily_pkl_options = sorted(daily_pkl_options, key=lambda x: x.stat().st_ctime) _result.update( { "daily_path": daily_pickle_path, "_exists": daily_pickle_path.exists(), "daily_options": daily_pkl_options, } ) daily_pickle_path_RAW = FindExpFolder("VERSASTAT").PostDir.joinpath( f"{today:%Y-%m-%d}_{exp_type}_{system()}_RAW.pkl.compress" ) daily_pkl_options_RAW = list( FindExpFolder("VERSASTAT").PostDir.rglob( f"*_{exp_type}_{system()}_RAW.pkl.compress" ) ) daily_pkl_options_RAW = sorted( daily_pkl_options_RAW, key=lambda x: x.stat().st_ctime ) _result.update( { "daily_path_RAW": daily_pickle_path_RAW, "_raw_exists": daily_pickle_path_RAW.exists(), "daily_options_RAW": daily_pkl_options_RAW, } ) if "EIS" in exp_type: _result.update( { "daily_path_BRUTE": FindExpFolder("VERSASTAT").PostDir.joinpath( f"{today:%Y-%m-%d}_{exp_type}_BRUTE_{system()}.pkl.compress" ), "daily_path_RAW_WB": FindExpFolder("VERSASTAT").PostDir.joinpath( f"{today:%Y-%m-%d}_{exp_type}_RAW_WB_{system()}.pkl.compress" ), } ) return _result def _collect_test(): tt = CollectLoadPars(load_type="fast") class CollectLoadPars: def __init__(self, load_type="fast"): self.load_type = load_type self.load_pars() self.collect_dict() def load_pars(self): _BaseLoad = BaseLoadPars() _kws = {"EC_index": _BaseLoad.EC_index, "SampleCodes": _BaseLoad.SampleCodes} if "fast" in self.load_type: _kws.update(**{"reload": False, "reload_raw": False}) self.EIS_load = EIS_LoadPars(**_kws) self.ORR_load = ORR_LoadPars(**_kws) self.N2_load = N2_LoadPars(**_kws) def collect_dict(self): _load_attrs = [i for i in self.__dict__.keys() if i.endswith("_load")] _collect = {} for _load_pars in _load_attrs: _pars_name = f'{_load_pars.split("_")[0]}_pars' if hasattr(getattr(self, _load_pars), _pars_name): _pars = getattr(getattr(self, _load_pars), _pars_name) _collect.update({_pars_name: _pars}) self.pars_collection = _collect class BaseLoadPars: _required_funcs = [ "make_raw_pars_from_scratch", "edit_raw_columns", "search_pars_files", "read_in_pars_files", "extra_stuff_delegator", ] def __init__( self, EC_index=pd.DataFrame(), SampleCodes=pd.DataFrame(), exp_type="", reload=False, reload_raw=False, ): self.exp_type = exp_type self._auto_set_exp_type() self.EC_index = EC_index self.SampleCodes = SampleCodes self._check_class_req_functions() self.check_EC_index() self.set_OVV_exp_type() self._reload = reload self._reload_raw = reload_raw self.get_daily_pickle() if self.exp_type: self.load_delegator() def _auto_set_exp_type(self): _cls_name = self.__class__.__name__ if "_" in _cls_name: _cls_exp_type = _cls_name.split("_")[0] _exp_type = f"{_cls_exp_type}_pars" self.exp_type = _exp_type def check_EC_index(self): if self.EC_index.empty: EC_index = ECRunOVV(load=1).EC_index EC_index = FileOperations.ChangeRoot_DF(EC_index, []) EC_index.PAR_file = EC_index.PAR_file.astype(str) EC_index["Loading_cm2"] = EC_index["Loading_cm2"].round(3) self.EC_index = EC_index if self.SampleCodes.empty: SampleCodes = FindExpFolder().LoadSampleCode() self.SampleCodes = SampleCodes # SampleCodesChar().load def set_OVV_exp_type(self): if not self.EC_index.empty and self.exp_type: PAR_exp_uniq = self.EC_index.PAR_exp.unique() PAR_match = [ parexp for parexp in PAR_exp_uniq if self.exp_type.split("_")[0] in parexp ] self.exp_type_match = PAR_match # if PAR_match: EC_index_exp = self.EC_index.loc[self.EC_index.PAR_exp.isin(PAR_match)] self.EC_index_exp = EC_index_exp if EC_index_exp.empty: _logger.error(f'set_OVV_exp_type "{self.__class__.__name__}" empty') self.EC_index_exp_destdirs = EC_index_exp.Dest_dir.unique() def get_daily_pickle(self): exp_type = self.exp_type today = dt.datetime.now().date() _result = {"today": today} if exp_type: daily_pickle_path = FindExpFolder("VERSASTAT").PostDir.joinpath( f"{today:%Y-%m-%d}_{exp_type}_{system()}.pkl.compress" ) daily_pkl_options = list( FindExpFolder("VERSASTAT").PostDir.rglob( f"*_{exp_type}_{system()}.pkl.compress" ) ) daily_pkl_options = sorted( daily_pkl_options, key=lambda x: x.stat().st_ctime ) _result.update( { "daily_path": daily_pickle_path, "_exists": daily_pickle_path.exists(), "daily_options": daily_pkl_options, } ) if not daily_pkl_options and not self._reload_raw: self._reload_raw = True daily_pickle_path_RAW = FindExpFolder("VERSASTAT").PostDir.joinpath( f"{today:%Y-%m-%d}_{exp_type}_{system()}_RAW.pkl.compress" ) _pickle_path_RAW_read_in = FindExpFolder("VERSASTAT").PostDir.joinpath( f"{exp_type}_{system()}_RAW_read_in.pkl.compress" ) daily_pkl_options_RAW = list( FindExpFolder("VERSASTAT").PostDir.rglob( f"*_{exp_type}_{system()}_RAW.pkl.compress" ) ) daily_pkl_options_RAW = sorted( daily_pkl_options_RAW, key=lambda x: x.stat().st_ctime ) _result.update( { "daily_path_RAW": daily_pickle_path_RAW, "_raw_exists": daily_pickle_path_RAW.exists(), "daily_options_RAW": daily_pkl_options_RAW, "pkl_path_RAW_read_in": _pickle_path_RAW_read_in, } ) if "EIS" in exp_type: daily_pkl_options_RAW_WB = list( FindExpFolder("VERSASTAT").PostDir.rglob( f"*_{exp_type}_{system()}_RAW_WB.pkl.compress" ) ) daily_pkl_options_RAW_WB = sorted( daily_pkl_options_RAW_WB, key=lambda x: x.stat().st_ctime ) _result.update( { "daily_path_BRUTE": FindExpFolder("VERSASTAT").PostDir.joinpath( f"{today:%Y-%m-%d}_{exp_type}_{system()}_BRUTE.pkl.compress" ), "daily_path_RAW_WB": FindExpFolder( "VERSASTAT" ).PostDir.joinpath( f"{today:%Y-%m-%d}_{exp_type}_{system()}_RAW_WB.pkl.compress" ), "daily_options_RAW_WB": daily_pkl_options_RAW_WB, } ) self.daily_pickle_path = _result def load_delegator(self): setattr(self, self.exp_type, pd.DataFrame()) if self._reload: if self._reload_raw: self.make_raw_pars_from_scratch() else: self.read_in_daily_raw() if hasattr(self, "edit_raw_columns"): try: self.edit_raw_columns() except Exception as e: _logger.warning( f'edit_raw_columns in load_delegator "{self.__class__.__name__}" {self.exp_type} failed because {e}' ) self.save_daily_pars() else: self.read_in_daily_pars() try: self.extra_stuff_delegator() except Exception as e: _logger.warning( f'extra_stuff_delegator "{self.__class__.__name__}" {self.exp_type} failed because {e}' ) def _check_class_req_functions(self): for _f in self._required_funcs: if not hasattr(self, _f) and "BaseLoadPars" not in self.__class__.__name__: _logger.warning( f'Class "{self.__class__.__name__}" is missing required func: "{_f}"' ) def save_daily_pars(self): pars = getattr(self, self.exp_type) pars.to_pickle(self.daily_pickle_path["daily_path"]) _logger.info( f'{self.exp_type} len({len(pars)}) OVV to daily pickle: {self.daily_pickle_path.get("daily_path")}' ) def read_in_daily_pars(self): if self.daily_pickle_path.get("daily_options"): _pars_fp = self.daily_pickle_path.get("daily_options")[-1] _logger.info( f"start read_in_daily_pars {self.exp_type} pars OVV from daily {_pars_fp} " ) _pars = pd.read_pickle(_pars_fp) try: _pars = FileOperations.ChangeRoot_DF(_pars, [], coltype="string") setattr(self, self.exp_type, _pars) _logger.info(f"Loaded {self.exp_type} pars OVV from daily {_pars_fp} ") except Exception as e: _pars = pd.DataFrame() _logger.error( f" ERROR in Loaded {self.exp_type} pars OVV from daily {_pars_fp} {e} " ) else: _pars = pd.DataFrame() _pars_fp = "options empty list" if _pars.empty: _logger.error( f" ERROR in Loaded {self.exp_type} pars OVV from daily {_pars_fp}: empty " ) def reload_raw_df_delegator(self): _raw_read_fp = self.daily_pickle_path.get("pkl_path_RAW_read_in") if _raw_read_fp.exists() and not (self._reload or self._reload_raw): _pars_RAW_read_in = pd.read_pickle(_raw_read_fp) setattr(self, f"{self.exp_type}_RAW", _pars_RAW_read_in) else: self.generate_raw_df() self.reload_raw_df() _pars_RAW_read_in = getattr(self, f"{self.exp_type}_RAW") _pars_RAW_read_in.to_pickle(_raw_read_fp) def read_in_daily_raw(self): _raw_fp = self.daily_pickle_path.get("daily_options_RAW")[-1] _pars_RAW = pd.read_pickle(_raw_fp) _pars_RAW.sort_values("source_delta_mtime", inplace=True) if not "level_0" in _pars_RAW.columns: _pars_RAW = _pars_RAW.reset_index() setattr(self, f"{self.exp_type}_RAW", _pars_RAW) _logger.info(f"Loaded raw df {self.exp_type} from daily {_raw_fp} ") def save_daily_raw(self): _pars_RAW = getattr(self, f"{self.exp_type}_RAW") _pars_RAW.to_pickle(self.daily_pickle_path.get("daily_path_RAW")) _logger.info( f'{self.exp_type} OVV to daily pickle: {self.daily_pickle_path.get("daily_path_RAW")}' ) def set_gen_raw_fls(self): _par_files = [ list(self.search_pars_files(d)) for d in self.EC_index_exp_destdirs ] self._par_files = _par_files if not _par_files: _logger.warning(f"{self.exp_type} set_gen_raw_fls: list empty ") self._par_fls_gen = (a for i in self._par_files for a in i) @func_timer_decorator def generate_raw_df(self): if not hasattr(self, "_par_fls_gen"): self.set_gen_raw_fls() _pars_lst = list(self.read_in_pars_files(self._par_fls_gen)) try: _pars_RAW = pd.concat(_pars_lst, sort=False) except Exception as e: _pars_RAW = pd.DataFrame() _logger.warning(f"{self.exp_type} generate_raw_df: {e}") setattr(self, f"{self.exp_type}_RAW", _pars_RAW) @staticmethod def get_source_meta(filepath): i = filepath _source_mtime = dt.datetime.fromtimestamp(i.stat().st_mtime) _delta_mtime = dt.datetime.now() - _source_mtime _meta_res = { "sourceFilename": i, "source_mtime": _source_mtime, "source_delta_mtime": _delta_mtime, "sourcebasename": i.stem, } return _meta_res def extra_stuff_delegator(self): _extra_funcs = [i for i in self.__dict__.keys() if i.startswith("_extra")] for _func in _extra_funcs: try: func = getattr(self, _func) func() # self._extra_plotting() except Exception as e: _logger.info( f"{self.__class__.__name__} Extra stuff failed because {e}" ) def _testing(): tt = EIS_LoadPars(reload=False, reload_raw=False) tt._reload_raw self = tt self.load_delegator() self.make_raw_pars_from_scratch() class EIS_LoadPars(BaseLoadPars): col_names = ["File_SpecFit", "File_SpecRaw", "PAR_file"] def __init__( self, EC_index=pd.DataFrame(), SampleCodes=pd.DataFrame(), exp_type="EIS_pars", BRUTE_out=False, **kws, ): self.BRUTE_out = BRUTE_out super().__init__( EC_index=EC_index, SampleCodes=SampleCodes, exp_type=exp_type, **kws ) def read_in_pars_files(self, _genlist): # _ps = Path(d).rglob(f'*_pars_v{FileOperations.version}.xlsx' ) while True: try: i = next(_genlist) if i.name.endswith("xlsx"): _pp = pd.read_excel(i, index_col=[0]) elif i.name.endswith("pkl"): _pp = pd.read_pickle(i) _pp = FileOperations.ChangeRoot_DF(_pp, [], coltype="string") _meta = self.get_source_meta(i) _pp = _pp.assign(**_meta) yield _pp except StopIteration: return "all done" print("gen empty") def search_pars_files(self, _dest_dir): return Path(_dest_dir.joinpath("EIS")).rglob( f"*_pars_v{FileOperations.EIS_version}.xlsx" ) @func_timer_decorator def make_raw_pars_from_scratch(self): _logger.info( f'Reloading raw extra steps "{self.__class__.__name__}" {self.exp_type}' ) self.reload_raw_df_delegator() self._load_WB_delegator() self._merge_WB_pars_raw() self._raw_finish_edit_columns() self.save_daily_raw() def reload_raw_df_delegator(self): _raw_read_fp = self.daily_pickle_path.get("pkl_path_RAW_read_in") if _raw_read_fp.exists() and not (self._reload or self._reload_raw): EIS_pars_RAW_read_in = pd.read_pickle(_raw_read_fp) setattr(self, f"{self.exp_type}_RAW", EIS_pars_RAW_read_in) else: self.generate_raw_df() self.reload_raw_df() EIS_pars_RAW_read_in = getattr(self, f"{self.exp_type}_RAW") EIS_pars_RAW_read_in.to_pickle(_raw_read_fp) def reload_raw_df(self): _pars_RAW = getattr(self, f"{self.exp_type}_RAW") _pars_RAW.sort_values("source_delta_mtime", inplace=True) _pars_RAW = _pars_RAW.reset_index() setattr(self, f"{self.exp_type}_RAW", _pars_RAW) self._raw_extra_steps() _logger.info(f'Reloading "{self.__class__.__name__}" {self.exp_type}') # self.EIS_pars_RAW = EIS_pars_RAW def _raw_extra_steps(self): _logger.info( f'Reloading raw extra steps "{self.__class__.__name__}" {self.exp_type}' ) EIS_pars_all = getattr(self, f"{self.exp_type}_RAW") float_cols = set( [ a for i in EIS_pars_all.lmfit_var_names.unique() if type(i) == str and not "(" in i for a in i.split(", ") ] ) float_cols.update( set( [a for i in float_cols for a in EIS_pars_all.columns if a.startswith(i)] ) ) EIS_pars_all[list(float_cols)] = EIS_pars_all[list(float_cols)].fillna(0) # EIS_pars_all[list(float_cols)] = EIS_pars_all[list(float_cols)].astype(float) obj_flt_cols = [ i for i in EIS_pars_all.columns if str(EIS_pars_all[i].dtype) == "object" and i in float_cols ] EIS_pars_all[obj_flt_cols] = EIS_pars_all[obj_flt_cols].replace("", 0) EIS_pars_all[list(float_cols)] = EIS_pars_all[list(float_cols)].astype(float) wrong_fls = [ EIS_pars_all.loc[EIS_pars_all[i].astype(str).str.contains("Parameter")] for i in obj_flt_cols ] if wrong_fls: wrong_objflt_df = pd.concat(wrong_fls) fix_dct = { i: [ float(v.split("value=")[-1].split(",")[0]) for v in wrong_objflt_df[i].values ] for i in obj_flt_cols } fixed_objflt_df = wrong_objflt_df.assign(**fix_dct) EIS_pars_all = pd.concat( [ EIS_pars_all.drop(index=wrong_objflt_df.index, axis=0), fixed_objflt_df, ], axis=0, sort=True, ) setattr(self, f"{self.exp_type}_RAW", EIS_pars_all) def _load_WB_delegator(self): daily_options_WB = self.daily_pickle_path.get("daily_options_RAW_WB") if daily_options_WB: _WB_RAW_daily_path = daily_options_WB[-1] if _WB_RAW_daily_path.exists() and not (self._reload or self._reload_raw): _EIS_WB_pars_all = pd.read_pickle(_WB_RAW_daily_path) setattr(self, f"{self.exp_type}_WB", _EIS_WB_pars_all) else: self.reload_raw_WB_df() else: self.reload_raw_WB_df() def reload_raw_WB_df(self): _logger.info(f'Reloading "{self.__class__.__name__}" {self.exp_type} WB') _EIS_WB_files = [ list(Path(d.joinpath("EIS/lin_Warburg")).rglob(f"lin_Warburg*.pkl")) for d in self.EC_index_exp_destdirs ] self._EIS_WB_files = _EIS_WB_files self._EIS_WB_fls = (a for i in _EIS_WB_files for a in i) _WB_lst = list(self.read_in_pars_files(self._EIS_WB_fls)) _EIS_WB_pars_all = pd.concat(_WB_lst, sort=False, ignore_index=True) setattr(self, f"{self.exp_type}_WB", _EIS_WB_pars_all) _EIS_WB_pars_all.to_pickle(self.daily_pickle_path.get("daily_path_RAW_WB")) def _merge_WB_pars_raw(self): _EIS_WB_pars_all = getattr(self, f"{self.exp_type}_WB") EIS_pars_all = getattr(self, f"{self.exp_type}_RAW") _diffcols = set(EIS_pars_all.columns).difference(_EIS_WB_pars_all.columns) _mcols = [ i for i in set(EIS_pars_all.columns).intersection(_EIS_WB_pars_all.columns) if i not in [ "sourceFilename", "source_mtime", "source_delta_mtime", "sourcebasename", ] ] _dtype_mismatch = [ (i, EIS_pars_all[i].dtype, _EIS_WB_pars_all[i].dtype) for i in _mcols if EIS_pars_all[i].dtype != _EIS_WB_pars_all[i].dtype ] if _dtype_mismatch: _excl = [] for i in _dtype_mismatch: try: _EIS_WB_pars_all[i[0]] = _EIS_WB_pars_all[i[0]].astype(i[1]) except Exception as e: _excl.append(i[0]) print(i, "\n", e) _mcols = [i for i in _mcols if i not in _excl] # EIS_pars_all[i[0]] = EIS_pars_all[i[0]].astype(i[2]) _merge = pd.merge( EIS_pars_all, _EIS_WB_pars_all, on=_mcols, how="left", suffixes=("", "_WB") ) if not _merge.empty: return _merge else: print("WB merge was empty") return EIS_pars_all setattr(self, f"{self.exp_type}_RAW", EIS_pars_all) def _raw_finish_edit_columns(self): # EIS_pars_all = self._merge_WB_pars_raw(EIS_pars_all) EIS_pars_all = getattr(self, f"{self.exp_type}_RAW") EIS_pars_all = EIS_pars_all.assign( **{ "EIS_fake": [ "fakeZmean" in Path(i).name for i in EIS_pars_all.PAR_file.to_numpy() ] } ) _not_in_index = EIS_pars_all.loc[ ( ~(EIS_pars_all.PAR_file.isin(self.EC_index.PAR_file.values)) & (~EIS_pars_all.EIS_fake == True) ) ] CleanUpCrew(list_of_files=_not_in_index.sourceFilename.unique(), delete=True) EIS_pars_all = EIS_pars_all.iloc[ ~(EIS_pars_all.index.isin(_not_in_index.index)) ] EIS_pars_all = Load_from_Indexes.test_update_from_index( EIS_pars_all, self.EC_index ) setattr(self, f"{self.exp_type}_RAW", EIS_pars_all) def edit_raw_columns(self): EIS_pars_all = getattr(self, f"{self.exp_type}_RAW") # EIS_pars_RAW = self._raw_extra_steps(EIS_pars_RAW) E_dc_RHE_cols = [ (np.round(i, 3), np.round(i, 3) * 1e3) for i in EIS_pars_all[EvRHE].values ] EIS_pars_all = EIS_pars_all.assign( **{ "E_dc_RHE": [i[0] for i in E_dc_RHE_cols], "E_dc_RHE_mV": [i[1] for i in E_dc_RHE_cols], } ) EIS_pars_recent = EIS_pars_all.loc[ (EIS_pars_all.source_mtime > pd.Timestamp(dt.date(2020, 11, 25))) & (EIS_pars_all.PAR_file.str.contains("None") == False) ] EIS_pars_undup = EIS_pars_recent.dropna(subset=self.col_names).drop_duplicates( keep="first" ) # === POST EDITING OF LOADED PARS === EIS_pars_undup = EIS_pars_undup.assign( **{"Loading_cm2": EIS_pars_undup["Loading_cm2"].round(3)} ) EIS_pars_undup = post_helper.make_uniform_EvRHE(EIS_pars_undup) EIS_pars_undup = CollectPostOVV.MatchECconditions(EIS_pars_undup) # EIS_pars_undup = Load_from_Indexes.add_missing_ECindex_cols(EC_index, EIS_pars_undup) _oc_OVV = list(EIS_pars_undup.columns.intersection(self.EC_index_exp.columns)) if not set(self.EC_index_exp.groupby(_oc_OVV).groups.keys()).intersection( EIS_pars_undup.groupby(_oc_OVV).groups.keys() ): _drpcols = [ a for a in EIS_pars_undup.columns if ( a in [i for i in _oc_OVV if i not in "PAR_file"] or "_".join(a.split("_")[0:-1]) in [i for i in _oc_OVV if i not in "PAR_file"] ) ] # EIS_pars_undup.drop(columns =_drpcols) EIS_pars_undup = Load_from_Indexes.add_missing_ECindex_cols( self.EC_index, EIS_pars_undup.drop(columns=_drpcols) ) # EIS_pars_undup = pd.merge(EIS_pars_undup,EIS_OVV,on=_oc_OVV, how='left') _oc_SC = list(EIS_pars_undup.columns.intersection(self.SampleCodes.columns)) EIS_pars_undup = pd.merge( EIS_pars_undup, self.SampleCodes, how="left", on=_oc_SC ) EIS_pars_BRUTE = EIS_pars_undup.loc[ (EIS_pars_undup.BRUTE_FIT == 1) | (EIS_pars_undup.FINAL_FIT == 0) ] if self.BRUTE_out: EIS_pars_BRUTE.to_pickle(eis_daily["daily_path_BRUTE"]) EIS_pars = EIS_pars_undup.loc[(EIS_pars_undup.FINAL_FIT == 1)] EIS_pars = EIS_extra_methods.add_best_model_per_spectrum(EIS_pars) setattr(self, self.exp_type, EIS_pars) # def extra_stuff_delegator(self): # try: # self._extra_best_models() # self._extra_plotting() # except Exception as e: # _logger.info(f'{self.__class__.__name__} Extra stuff failed because {e}') def _extra_best_models(self): _err_type = "lmfit_MSE" _filter = "(EIS_pars.lmfit_MSE < 65E4) & (EIS_pars.Rct < 2E3) & (EIS_pars.Rct > 2E-2) \ & (EIS_pars.Rs > 0.01) & (EIS_pars.Rs < 200) & (EIS_pars.Cdlp < 0.075)\ & (EIS_pars.lmfit_redchi < 1E3) & (EIS_pars.Aw < 10E3) & (EIS_pars.Aw > 10E-2)\ & (EIS_pars.Qad < 1) & (EIS_pars.tau < 1E3)" _filter += '& (EIS_pars.SampleID.str.contains("JOS1|JOS2|JOS3|JOS4|JOS5"))' _filter += "& (EIS_pars.EIS_fake == False)" _grps = ["Model_EEC", "Gas", "lmfit_var_names"][0:2] EIS_pars = self.EIS_pars best_models = ( EIS_pars.loc[eval(_filter)] .dropna(axis=0, subset=[_err_type]) .groupby(_grps)[_err_type] .agg(["count", "mean", "std"]) .sort_values(["Gas", "mean"], ascending=True) ) print(best_models) keep_models = ( best_models.loc[(best_models["count"] > 5) & (best_models["std"] > 0)] .index.get_level_values(0) .unique() ) EIS_pars = EIS_pars.loc[EIS_pars.Model_EEC.isin(keep_models)] if hasattr(EIS_pars, "best_mod_name"): # EIS_best_mods = EIS_pars.loc[EIS_pars.Model_EEC_name.isin([i for i in EIS_pars.best_mod_name.unique() if not pd.isna(i)])] EIS_best_mods = EIS_pars.loc[ EIS_pars.index.isin( [i for i in EIS_pars.best_mod_n.unique() if not pd.isna(i)] ) ] self.EIS_pars_best_mods = EIS_best_mods _agg = ( EIS_best_mods.dropna(subset=[_err_type]) .groupby(_grps + ["E_RHE"])[_err_type] .agg(["count", "mean", "std"]) ) _agg_best = _agg.loc[_agg["count"] > 3].sort_values( ["Gas", "E_RHE", "mean"], ascending=True ) def _extra_plotting(self): if hasattr(self, "EIS_pars_best_mods"): self.EIS_pars_best_mods.query("pH < 15").plot( y="Qad", x="E_RHE", c="pH", colormap="rainbow_r", kind="scatter", ylim=(0, 0.05), ) self.EIS_pars_best_mods.query("pH < 15").plot( y="Rs", x="E_RHE", c="pH", colormap="rainbow_r", kind="scatter", ylim=(0, 80), ) self.EIS_pars_best_mods.query("pH < 15").plot( y="Rs", x="R_ion", c="E_RHE", colormap="rainbow_r", kind="scatter", ylim=(0, 80), xlim=(0.1, 2e3), logx=True, ) def _testing(): t2 = ORR_LoadPars(reload=True, reload_raw=True) tf2 = ORR_LoadPars(reload=False, reload_raw=False) t2._reload_raw self = tf2 self.load_delegator() self.make_raw_pars_from_scratch() class ORR_LoadPars(BaseLoadPars): read_types = ["ORR_pars", "KL_pars"] def __init__( self, EC_index=pd.DataFrame(), SampleCodes=pd.DataFrame(), exp_type="ORR_pars", BRUTE_out=False, **kws, ): self.BRUTE_out = BRUTE_out super().__init__( EC_index=EC_index, SampleCodes=SampleCodes, exp_type=exp_type, **kws ) def read_in_pars_files(self, _genlist): # _ps = Path(d).rglob(f'*_pars_v{FileOperations.version}.xlsx' ) while True: try: i = next(_genlist) # _source_mtime = dt.datetime.fromtimestamp(i.stat().st_mtime) # _delta_mtime = dt.datetime.now() - _source_mtime _i_stem = i.stem _pparts = i.parent.parts if "KL" == _pparts[-1]: if _i_stem.startswith("KL_"): _type = "KL_data" else: _type = "KL_unknown" elif "RingDisk" == _pparts[-1]: _type = "ORR_ringdisk" elif "TAFEL" == _pparts[-1]: _type = "Tafel" else: if _i_stem.startswith("ORR_pars"): _type = "ORR_pars" elif _i_stem.startswith("KL_pars"): _type = "KL_pars" elif _i_stem.startswith("O2_ORR") and _i_stem.endswith( f"_RRDE_v{FileOperations.version}" ): _type = "ORR_RRDE" else: _type = "O2_ORR_unknown" _meta = self.get_source_meta(i) _meta.update({"source_type": _type}) if _type in self.read_types: _pp = pd.read_excel(i, index_col=[0]) _pp = FileOperations.ChangeRoot_DF(_pp, [], coltype="string") _pp = _pp.assign(**_meta) else: _pp = pd.DataFrame(_meta, index=[0]) # _meta.update({'DF' : _pp}) yield _pp except StopIteration: return "all done" print("gen empty") @func_timer_decorator def make_raw_pars_from_scratch(self): _logger.info( f'Reloading raw extra steps "{self.__class__.__name__}" {self.exp_type}' ) self.reload_raw_df_delegator() if hasattr(self, "_raw_finish_edit_columns"): self._raw_finish_edit_columns() self.save_daily_raw() def search_pars_files(self, dest_dir): return Path(dest_dir.joinpath(f"ORR_v{FileOperations.version}")).rglob("*xlsx") def reload_raw_df(self): _pars_RAW = getattr(self, f"{self.exp_type}_RAW") _pars_RAW.sort_values("source_delta_mtime", inplace=True) _pars_RAW = _pars_RAW.reset_index() setattr(self, f"{self.exp_type}_RAW", _pars_RAW) # self._raw_extra_steps() _logger.info(f'Reloading "{self.__class__.__name__}" {self.exp_type}') # self.EIS_pars_RAW = EIS_pars_RAW def edit_raw_columns(self): ### Fixing the pars after loading... # TODO : taking out duplicates based on time_since_run.... ORR_pars_char = getattr(self, f"{self.exp_type}_RAW") # Load_na = ORR_pars_char.loc[(ORR_pars_char.Loading_cm2.isna()) & (ORR_pars_char.PAR_file.isna() == False)] # if not Load_na.empty: # Load_na_missingvalues =[(n,*GetSampleID.ink_loading_from_filename(i.PAR_file)) for n,i in Load_na.iterrows()] # Load_na_vals = pd.DataFrame(Load_na_missingvalues).rename(columns={1 : 'Loading_name',2 : 'Loading_cm2'}).set_index([0]) # ORR_pars_char.Loading_cm2.fillna(value=Load_na_vals.Loading_cm2,inplace=True) # # ORR_char_merge_cols = [i for i in ORR_pars.columns if i in SampleCodes.columns] ORR_pars_char = ORR_pars_char.drop( columns=[i for i in ORR_pars_char.columns if "Unnamed" in i] ) if not ORR_pars_char.loc[ORR_pars_char.Loading_cm2.isna()].empty: _loading_cols = ["Loading_cm2", "Loading_name", "Loading_date"] ORR_pars_char = ORR_pars_char.drop(columns=_loading_cols) ORR_pars_char = pd.merge( ORR_pars_char, self.EC_index[["PAR_file"] + _loading_cols], on="PAR_file", how="left", ) ORR_pars_char.Loading_cm2 = ORR_pars_char.Loading_cm2.fillna( value=0.379 ) # fillna for Loading_cm2 ORR_pars_char.Loading_cm2 = ORR_pars_char.Loading_cm2.round(3) if ORR_pars_char.postAST.dropna().empty: ORR_pars_char = ORR_pars_char.drop(columns="postAST") # _int = list(set(ORR_pars_char.columns).intersection(set(EC_index.columns))) ORR_pars_char = pd.merge( ORR_pars_char, self.EC_index[["PAR_file", "postAST"]], on="PAR_file", suffixes=("", ""), ) ORR_pars_char = make_uniform_RPM_DAC(ORR_pars_char) setattr(self, f"{self.exp_type}", ORR_pars_char) # def extra_stuff_delegator(self): # try: # self._extra_plotting() # except Exception as e: # _logger.info(f'{self.__class__.__name__} Extra stuff failed because {e}') def _extra_plotting(self): ORR_pars_char = getattr(self, f"{self.exp_type}") for swp, swgrp in ORR_pars_char.query("(pH < 14) & (RPM_DAC > 900)").groupby( "Sweep_Type" ): fig, (ax1, ax2) = plt.subplots(figsize=(10, 4), ncols=2) # plt.figure() swgrp.plot( y="ORR_Jkin_min_750", x="ORR_E_onset", c="pH", title=f"{swp}", kind="scatter", logy=True, colormap="rainbow_r", ylim=[0.1, 50], xlim=(0.5, 1), ax=ax1, ) ax1.set_xlabel("E onset / mV_RHE") swgrp.plot( y="ORR_Frac_H2O2_600", x="ORR_E_onset", c="pH", title=f"{swp}", kind="scatter", logy=True, colormap="rainbow_r", ylim=[0.1, 100], xlim=(0.5, 1), ax=ax2, ) # ax2.set_xlabel('E onset / mV_RHE') plt.suptitle("ORR with E_onset") plt.show() fig, (ax1, ax2) = plt.subplots(figsize=(10, 4), ncols=2) swgrp.plot( y="ORR_E_onset", x="N2_BG_lin_slope", c="pH", title=f"{swp}", kind="scatter", logy=True, logx=True, colormap="rainbow_r", xlim=[0.01, 4], ylim=(0.5, 1), ax=ax1, ) swgrp.plot( y="ORR_Jkin_min_750", x="N2_BG_lin_slope", c="pH", title=f"{swp}", kind="scatter", logy=True, logx=True, colormap="rainbow_r", xlim=[0.01, 4], ylim=(0.001, 50), ax=ax2, ) # ax2.set_xlabel('E onset / mV_RHE') plt.suptitle("ORR with N2_BG lin slope") plt.show() plt.close() def _N2_testing(): n2 = N2_LoadPars(reload=True, reload_raw=True) n2r = N2_LoadPars(reload=True, reload_raw=False) class N2_LoadPars(BaseLoadPars): def __init__( self, EC_index=pd.DataFrame(), SampleCodes=pd.DataFrame(), exp_type="", BRUTE_out=False, **kws, ): self.BRUTE_out = BRUTE_out super().__init__( EC_index=EC_index, SampleCodes=SampleCodes, exp_type=exp_type, **kws ) @func_timer_decorator def make_raw_pars_from_scratch(self): _logger.info( f'Reloading raw extra steps "{self.__class__.__name__}" {self.exp_type}' ) self.reload_raw_df_delegator() if hasattr(self, "_raw_finish_edit_columns"): self._raw_finish_edit_columns() self.save_daily_raw() def _old(self): IndexOVV_N2_pars_fn = FindExpFolder("VERSASTAT").PostDir.joinpath( "N2Cdl_pars_IndexOVV_v{0}.pkl.compress".format(FileOperations.version) ) n2_daily = get_daily_pickle(exp_type="N2_all") if n2_daily.get("_exists", False) and reload != True: # Cdl_pars_char = pd.read_excel(IndexOVV_N2_pars_fn,index_col=[0]) Cdl_pars_char = pd.read_pickle(n2_daily.get("daily_path")) Cdl_pars_char = FileOperations.ChangeRoot_DF( Cdl_pars_char, [], coltype="string" ) else: # @@ Check POST_AST status from OVV and PRM _logger.info( f'START reloading N2_pars OVV from daily {n2_daily["today"]:%Y-%m-%d}' ) # EC_index = ECRunOVV(load=1).index # ['EXP_dir','Dest_dir','PAR_file','PAR_file_Ring', 'ORR_act_N2_bg','DestFile'] # EC_index = FileOperations.ChangeRoot_DF(OnlyRecentMissingOVV,[]) # OnlyRecentMissingOVV.PAR_file = OnlyRecentMissingOVV.PAR_file.astype(str) # OnlyRecentMissingOVV['Loading_cm2'] = OnlyRecentMissingOVV['Loading_cm2'].round(3) # SampleCodes = SampleCodesChar().load # EC_index, SampleCodes = Load_from_Indexes.get_EC_index() # def read_df(_par_fls, ): # _ps = Path(d).rglob(f'*_pars_v{FileOperations.version}.xlsx' ) def search_pars_files(self, destdir): return Path(destdir.joinpath(f"N2_scans_v{FileOperations.version}")).rglob( "*.xlsx" ) def read_in_pars_files(self, _genlist, read_types=["Cdl_data", "Cdl_pars"]): while True: try: i = next(_genlist) _i_stem = i.stem _meta = self.get_source_meta(i) if _i_stem.endswith("_BG"): _N2_type = "BG" else: if _i_stem.startswith("CV_"): _N2_type = "CV" if _i_stem.endswith(f"_first_v{FileOperations.version}"): _N2_type = "CV_first" # if not 'Scan Rate' in _pp.columns: # 'N2_CV_raw = N2_CV_raw.assign(**{'ScanRate' : [i.split(f'_v{FileOperations.version}')[0].split('_')[-1] for i in N2_CV_raw.basename.to_numpy()]}) elif _i_stem.startswith("Cdl_data_"): _N2_type = "Cdl_data" elif _i_stem.startswith("Cdl_pars"): _N2_type = "Cdl_pars" else: _N2_type = "N2_unknown" _meta.update({"N2_type": _N2_type}) if _N2_type in read_types: _pp = pd.read_excel(i, index_col=[0]) _pp = FileOperations.ChangeRoot_DF(_pp, [], coltype="string") _pp = _pp.assign(**_meta) else: _pp = pd.DataFrame(_meta, index=[0]) # _meta.update({'DF' : _pp}) yield _pp except StopIteration: return "all done" print("gen empty") def reload_raw_df(self): _pars_RAW = getattr(self, f"{self.exp_type}_RAW") if not _pars_RAW.empty: _pars_RAW.sort_values("source_delta_mtime", inplace=True) _pars_RAW = _pars_RAW.reset_index() setattr(self, f"{self.exp_type}_RAW", _pars_RAW) _logger.info( f'Reloading "{self.__class__.__name__}" {self.exp_type} len({len(_pars_RAW)}' ) def _old_stuff(): if n2_daily.get("_raw_exists", False) and use_daily is True: N2_pars_all = pd.read_pickle(n2_daily.get("daily_path_RAW")) elif n2_daily.get("daily_options_RAW", False) and use_daily is True: if n2_daily.get("daily_options_RAW")[-1]: N2_pars_all = pd.read_pickle(n2_daily.get("daily_options_RAW")[-1]) else: # Construct new N2 pars ovv from reading in files N2_OVV = EC_index.loc[EC_index.PAR_exp == "N2_act"] _par_files = [ list(Path(d.joinpath("N2_scans_v30")).rglob("*.xlsx")) for d in N2_OVV.Dest_dir.unique() ] _par_fls = (a for i in _par_files for a in i) # if 'EIS' in a.name) _par_reads = read_df(_par_fls, read_types=["Cdl_data", "Cdl_pars"]) N2_pars_all = pd.concat([i["DF"] for i in _par_reads], sort=False) for n, gr in N2_pars_all.groupby("PAR_file"): print( n, f'\nSamples: {", ".join([str(i) for i in gr.SampleID.unique()])}', ",".join(gr.N2_type.unique()), ) N2_pars_all, _missing_index = Load_from_Indexes.check_missing_ECindex( EC_index, N2_pars_all, clean_up=True ) N2_pars_all.to_pickle(n2_daily["daily_path_RAW"]) def _extra_pivot_CV(self): N2_type_grps = N2_pars_all.groupby("N2_type") if "CV" in N2_type_grps.groups.keys(): # N2 CVs TODO add Scan Rate column N2_CV_raw = N2_type_grps.get_group("CV").dropna(axis=1, how="all") # N2_CV_raw.plot(x=EvRHE,y='jmAcm-2') N2_CV_pivot_SR_lst = [] for PF, PFgr in N2_CV_raw.groupby("PAR_file"): # PF ,PFgr for swp, swgrp in PFgr.groupby("Sweep_Type"): # swp, swgrp # swgrp.plot(x=EvRHE,y='jmAcm-2') # E_T_idx = pd.MultiIndex.from_tuples(zip(swgrp['Elapsed Time(s)'].to_numpy(),swgrp[EvRHE].to_numpy()),names=['Elapsed_Time_s',EvRHE]) # swgrp.index = E_T_idx # {n : len(gr) for n,gr in swgrp.groupby('Segment #')} pvt = swgrp.pivot( index="Elapsed Time(s)", columns="ScanRate_mVs", values=[EvRHE, "jmAcm-2", "Segment #"], ) # pvt = swgrp.pivot(index=EvRHE,columns='ScanRate_mVs',values='jmAcm-2') pvt.columns = pd.MultiIndex.from_tuples( [(f"{i[0]}_{int(i[1])}", i[1]) for i in pvt.columns] ) # pvt.rename(columns=pd.MultiIndex.from_tuples([(f'{i[0]}_{int(i[1])}', i[1]) for i in pvt.columns],names=['data','ScanRate_mVs']),inplace=True) indx = pd.MultiIndex.from_tuples( zip(repeat(PF), repeat(swp), pvt.index), names=["PAR_file", "Sweep_Type", EvRHE], ) pvt.index = indx N2_CV_pivot_SR_lst.append(pvt) # for sr, srgrp in PFgr.groupby('ScanRate_mVs'): # SR = int(sr) N2_CV_pivot_SR = pd.concat(N2_CV_pivot_SR_lst, sort=False) # N2Cdl_pars_index = N2_grps.groupby('N2_type').get_group('Cdl_pars') # N2Cdl_pars_files = [Path(i) for i in N2Cdl_pars_index['SourceFilename'].unique() if re.search('(?i)(_pars|_v20)',Path(i).stem) and Path(i).exists()] # cdl = pd.read_excel(N2Cdl_pars_files[0],index_col=[0]) # N2Cdl_pars.rename(columns={'Filename' : 'PAR_file'}) # EPtest = N2Cdl_pars_index.loc[no_match] # a slice for testing purpose # pd.merge(N2Cdl_pars_raw,N2_CV_index[['PAR_file','DestFile']],on='PAR_file',how='left') # N2Cdl_pars_raw = N2_type_grps.get_group('Cdl_pars').dropna(axis=1,how='all') # N2Cdl_data_index = postOVVout.groupby('Type_output').get_group('N2_Cdl_data') # N2_CV_index = postOVVout.groupby('Type_output').get_group('N2_CV') # lst, no_match, non_exist = [],[],[] # for n,r in N2Cdl_pars_raw.iterrows(): # Cdl_data_file = N2Cdl_data_index.loc[N2Cdl_data_index.PAR_file == r.PAR_file].DestFile.unique() # CV_files = N2_CV_index.loc[N2_CV_index.PAR_file == r.PAR_file].DestFile.unique() # lst.append([set(Cdl_data_file),set(CV_files)]) # if len(N2Cdl_pars_raw) == len(lst): # N2Cdl_pars_raw = N2Cdl_pars_raw.assign(**{'Cdl_data_file' : [i[0] for i in lst], 'Cdl_CV_data_files' : [i[1] for i in lst]}) # Cdl_pars = pd.concat([i for i in lst],sort=False,ignore_index=True) def edit_raw_columns(self): N2Cdl_pars_raw = getattr(self, f"{self.exp_type}_RAW") N2_type_grps = N2Cdl_pars_raw.groupby("N2_type") N2Cdl_pars_raw = N2_type_grps.get_group("Cdl_pars").dropna(axis=1, how="all") N2Cdl_pars_raw.drop_duplicates( subset=N2Cdl_pars_raw.columns[0:19], keep="first", inplace=True ) N2Cdl_pars_raw = FileOperations.ChangeRoot_DF( N2Cdl_pars_raw, [], coltype="string" ) Cdl_pars = post_helper.make_uniform_EvRHE(N2Cdl_pars_raw) Cdl_pars.drop_duplicates(subset=Cdl_pars.columns[0:19], inplace=True) # Cdl_pars_merge_cols = [i for i in Cdl_pars.columns if i in SampleCodes.columns and not 'Unnamed' in i] # Cdl_pars_char = pd.merge(Cdl_pars,SampleCodes,on=Cdl_pars_merge_cols,how='left') # Cdl_pars_char.drop_duplicates(subset=Cdl_pars_char.columns[0:19],inplace=True) _int = list(set(Cdl_pars.columns).intersection(set(self.EC_index.columns))) if Cdl_pars.postAST.dropna().empty and len(self.EC_index.columns) != len(_int): Cdl_pars = Cdl_pars.drop(columns="postAST") # _int = list(set(Cdl_pars_char.columns).intersection(set(EC_index.columns))) Cdl_pars = pd.merge( Cdl_pars, self.EC_index[["PAR_file", "postAST"]], on="PAR_file", suffixes=("", ""), ) Cdl_pars = Load_from_Indexes.add_missing_ECindex_cols(self.EC_index, Cdl_pars) setattr(self, f"{self.exp_type}", Cdl_pars) def _extra_xls_out(self): if xls_out: new_N2_pars_char_target = FileOperations.CompareHashDFexport( Cdl_pars_char, IndexOVV_N2_pars_fn ) _logger.info( "PostEC Cdl N2 CVs re-indexed and saved: {0}".format( new_N2_pars_char_target ) ) Cdl_pars_char.to_pickle(IndexOVV_N2_pars_fn) def _extra_plotting(self): try: Cdl_pars_char.query('(Sweep_Type_N2 == "cathodic") & (pH < 7)').plot( y="Cdl", x="E_RHE", kind="scatter", ylim=(0, 0.08), title="checking plot: Cdl in acid", ) # Cdl_pars_char.query('(Sweep_Type_N2 == "cathodic") & (pH < 7)').groupby('BET_cat_agg').plot(y='Cdl',x='E_RHE',colormap='viridis',kind='scatter',ylim=(0,0.08),title='Cdl in acid') if extra_plotting: Cdl_pars_char.query('(Sweep_Type_N2 == "cathodic") & (pH > 7)').plot( y="Cdl", x="E_RHE", c="BET_cat_agg", colormap="viridis", kind="scatter", ylim=(0, 0.03), title="Cdl in alkaline", ) alkCdl = Cdl_pars_char.query('(Sweep_Type_N2 == "cathodic") & (pH > 7)') acidCdl = Cdl_pars_char.query( '(Sweep_Type_N2 == "cathodic") & (pH < 7)' ) # fig = plt.figure() # ax = fig.add_subplot(111, projection='3d') # ax.plot_trisurf(alkCdl.E_RHE,alkCdl.Cdl,alkCdl.BET_cat_agg,cmap=cm.viridis) Cdl_atE = Cdl_pars_char.loc[ (Cdl_pars_char.Sweep_Type_N2 == "cathodic") & (np.isclose(Cdl_pars_char["E_RHE"], 0.5, atol=0.02)) ] fig, ax = plt.subplots() for n, Ogr in Cdl_atE.query( '(Sweep_Type_N2 == "cathodic") & (pH < 7)' ).groupby("postAST"): c_set = "g" if n == "no" else "r" Ogr.plot( x="BET_cat_agg", y="Cdl", s=50, c=c_set, kind="scatter", label=n, title="N2 Cdl vs BET in acid", ax=ax, ylim=(0, 50e-3), ) fig, ax = plt.subplots() for n, Ogr in Cdl_atE.query( '(Sweep_Type_N2 == "cathodic") & (pH > 7)' ).groupby("postAST"): c_set = "g" if n == "no" else "r" Ogr.plot( x="BET_cat_agg", y="Cdl", s=50, c=c_set, kind="scatter", label=n, title="N2 Cdl vs BET in alk", ax=ax, ylim=(0, 50e-3), ) except Exception as e: _logger.warning(f"PostEC Cdl N2 CVs extra plotting fail:\n{e}") class CollectPostOVV: """Loops over all index files and merges them with the RunOVV""" def __init__(): pass @staticmethod def LoadPostOVV(reload=False): PostDestDir = FindExpFolder("VERSASTAT").DestDir.joinpath("PostEC") SampleCodes = FindExpFolder().LoadSampleCode() # CS_parts_PDD = FileOperations.find_CS_parts(PostDestDir) if reload == True: postOVVout = CollectPostOVV.LoadIndexes(reload=True) else: try: postOVVout = CollectPostOVV.LoadIndexes(reload=False) except Exception as e: logging.warning( "CollectPostOVV no Indexes available: {0}. Using postEC_Organized".format( e ) ) postOVVout = pd.read_excel( PostDestDir.joinpath("postEC_Organized.xlsx"), index_col=[0] ) # pd.read_excel(PostDestDir.joinpath('SampleCodeLst.xlsx')) # CS_parts_pOVV = FileOperations.find_CS_parts(postOVVout.Exp_dir.iloc[0]) # if CS_parts_PDD[0] != CS_parts_pOVV[0]: # chLst = [CS_parts_PDD[0].joinpath(FileOperations.find_CS_parts(i)[1]) for i in postOVVout.SourceFilename.values] # postOVVout['SourceFilename'] = chLst # else: # pass postSample = pd.merge(postOVVout, SampleCodes, on="SampleID", how="left") print("Types:", " , ".join([str(i) for i in postSample.Type_output.unique()])) postSample.PAR_file = postSample.PAR_file.astype(str) postSample = FileOperations.ChangeRoot_DF( postSample, [ "EXP_dir", "Dest_dir", "PAR_file", "PAR_file_Ring", "ORR_act_N2_bg", "DestFile", "SourceFilename", ], ) return postSample # def RunFolderCopy(serie): # postOVVlst = [outLst.append(PostEC.FromListgrp(n,gr.EXP_dir.unique()[0])) for n,gr in serie.groupby(by=['Dest_dir'])] # return postOVVlst @staticmethod def LoadIndexes(reload=False): IndexOVV_fn = FindExpFolder("VERSASTAT").DestDir.joinpath( "IndexOVV_v{0}.xlsx".format(FileOperations.version) ) if IndexOVV_fn.exists() and not reload: Index_merged = pd.read_excel(IndexOVV_fn, index_col=[0]) Index_merged = FileOperations.ChangeRoot_DF( Index_merged, [ "EXP_dir", "Dest_dir", "PAR_file", "PAR_file_Ring", "ORR_act_N2_bg", "DestFile", "SourceFilename", ], ) _logger.info("PostEC loaded IndexOVV from recent: {0}".format(IndexOVV_fn)) else: _logger.info( "PostEC reloading IndexOVV from Index files and Exp dir files!!" ) OnlyRecentMissingOVV = ECRunOVV(load=1).index # ['EXP_dir','Dest_dir','PAR_file','PAR_file_Ring', 'ORR_act_N2_bg','DestFile'] OnlyRecentMissingOVV = FileOperations.ChangeRoot_DF( OnlyRecentMissingOVV, [] ) OnlyRecentMissingOVV.PAR_file = OnlyRecentMissingOVV.PAR_file.astype(str) # if index_source == 'ExpDirs': idx_files = [ list(Path(i).rglob("**/*index*.xlsx")) for i in OnlyRecentMissingOVV.Dest_dir.unique() if list(Path(i).rglob("**/*index.xlsx")) ] # for i in OnlyRecentMissingOVV.Dest_dir.unique(): # [idx_files.append([a for a in a if a]) for a in [(Path(i).rglob('index.xlsx')) for i in OnlyRecentMissingOVV.Dest_dir.unique()]] # idx_dir = FindExpFolder('VERSASTAT').IndexDir # idx_files = idx_dir.rglob('*.xlsx') # subset=['PAR_file','DestFile','Type_output','Script_run_date'] idx_lst = set([a for i in idx_files for a in i]) idx_mtime = [ (i, (dt.datetime.now() - dt.datetime.fromtimestamp(i.stat().st_mtime))) for i in idx_lst ] # print(f'len {len(idx_lst)} and set {len(set(idx_lst))}') alst = ( [] ) # Alternative = pd.concat([[pd.read_excel(c,index_col=[0]) for c in a ] for b in idx_files],sort=False,ignore_index=True) for idxfp in idx_lst: df = pd.read_excel(idxfp, index_col=[0]) df["IndexSource"] = idxfp alst.append(df) Index_from_expdirs_all = pd.concat( [i for i in alst], sort=False, ignore_index=True ) Index_from_expdirs_all.sort_values( "Script_run_date", ascending=False, inplace=True ) Index_from_expdirs = Index_from_expdirs_all.drop_duplicates(keep="first") Index_from_expdirs = FileOperations.ChangeRoot_DF(Index_from_expdirs, []) idx_exp_tDelta = [ (n, pd.to_datetime(dt.datetime.now()) - i["Script_run_date"]) for n, i in Index_from_expdirs.iterrows() ] Index_from_expdirs = Index_from_expdirs.assign( **{ "Source": "ExpDirs", "Time_since_run": [pd.to_timedelta(i[1]) for i in idx_exp_tDelta], } ) # Index_from_expdirs['Time_since_run'] = [pd.to_timedelta(pd.to_datetime(datetime.now())-i) for i in Index_from_expdirs['Script_run_date'].values] # limit = pd.to_timedelta('7h') # ['Time_since_run'] = [pd.to_timedelta(pd.to_datetime(datetime.now())-i) for i in Index['Script_run_date'].values] # Index = Index.loc[Index['Time_since_run'] < limit] # Index = Index.iloc[dups].loc[Index['Time_since_run'] < limit] # else: # dups.append(gr.Time_since_run.idxmin()) # 1elif index_source == 'IndexDir': IndexDir_idxfiles = list( FindExpFolder("VERSASTAT").IndexDir.rglob("*.xlsx") ) Index_from_idxdir_all = pd.concat( [ pd.read_excel(i, index_col=[0]).assign(IndexSource=i) for i in IndexDir_idxfiles ], sort=False, ignore_index=True, ) Index_from_idxdir_all.sort_values( "Script_run_date", ascending=False, inplace=True ) Index_from_idxdir = Index_from_idxdir_all.drop_duplicates(keep="first") Index_from_idxdir = FileOperations.ChangeRoot_DF(Index_from_idxdir, []) Index_from_idxdir = Index_from_idxdir.assign(**{"Source": "IndexDir"}) Index_from_idxdir["Time_since_run"] = [ pd.to_timedelta(pd.to_datetime(dt.datetime.now()) - i) for i in Index_from_idxdir["Script_run_date"].values ] # dup_idxdir = Index_from_idxdir.loc[Index_from_idxdir.DestFile.duplicated() == True] dups_date, singles, others, unused_dups = [], [], [], [] for n, gr in Index_from_idxdir.groupby( ["PAR_file", "DestFile", "Type_output"] ): # Indexes.groupby(['PAR_file','DestFile','Type_output','ScanRate','Segment']): if len(gr) > 1: dgr = gr # print(n,gr.Time_since_run.unique()) dups_date.append(gr.Time_since_run.idxmin()) unused_dups.append( list(set(gr.index) - {gr.Time_since_run.idxmin()}) ) elif len(gr) == 1: singles.append(gr.index[0]) else: others.append(gr.index) dup_fltr_idxdir = Index_from_idxdir.loc[singles + dups_date] # Indexes = pd.merge(Index_from_expdirs,Index_from_idxdir, on=['PAR_file','DestFile','Type_output','ScanRate','Segment','Sweep_Type','Source']) Indexes = pd.concat([Index_from_expdirs, dup_fltr_idxdir], sort=False) # Indexes['Time_since_run'] = [pd.to_timedelta(pd.to_datetime(datetime.now())-i) for i in Indexes['Script_run_date'].values] Indexes = Indexes.dropna( subset=["PAR_file", "DestFile", "Type_output"] ).reset_index() dups_date, singles, others = [], [], [] Idxgr = Indexes.groupby(["PAR_file", "DestFile", "Type_output"]) for n, gr in Idxgr: # Indexes.groupby(['PAR_file','DestFile','Type_output','ScanRate','Segment']): if len(gr) > 1: dgr = gr idxmin = gr.Time_since_run.idxmin() # print(n,gr.Time_since_run.unique()) dups_date.append([idxmin, gr.loc[idxmin, "Source"]]) elif len(gr) == 1: singles.append(gr.index[0]) else: others.append(gr.index) # for n2,gr2 in OnlyRecentMissingOVV.groupby('PAR_file'): # if len(gr2) > 1: # dgr2 = gr2 # Index = Index.iloc[dups].loc[Index['Time_since_run'] < limit] Index = Indexes.loc[singles + [i[0] for i in dups_date]].dropna( subset=["DestFile"] ) # for a in Index.DestFile.values: # try: Path(a).is_file() # except: print(a) # if not any([Path(i).exists() for i in Index.DestFile.values]): # Index = FileOperations.ChangeRoot_DF(Index,['PAR_file','DestFile']) 'EXP_dir','Dest_dir','PAR_file','PAR_file_Ring','ORR_act_N2_bg','DestFile','SourceFilename' Index = FileOperations.ChangeRoot_DF(Index, []) Index = Index.assign( **{ "Type_Exp": Index["Type_output"], "SourceFilename": [Path(str(i)) for i in Index["DestFile"].values], } ) # Index['Type_Exp'] = Index['Type_output'] # Index['SourceFilename'] = [Path(str(i)) for i in Index['DestFile'].values] Index.PAR_file = Index.PAR_file.astype(str) Index_undup = Index.loc[ ( Index.duplicated( subset=[ "PAR_file", "DestFile", "Type_output", "Time_since_run", "Source", ] ) == False ) ] idx_merge_cols = [ i for i in Index_undup.columns if i in OnlyRecentMissingOVV.columns and not "Segment" in i ] Index_merged = pd.merge( Index_undup, OnlyRecentMissingOVV, on="PAR_file", how="left" ) Index_merged.PAR_file = [ Path(str(i)) for i in Index_merged["PAR_file"].values ] new_IndexOVV_target = FileOperations.CompareHashDFexport( Index_merged, IndexOVV_fn ) try: _logger.info( "PostEC re-indexed and saved: {0}".format(new_IndexOVV_target) ) except: print("no log") return Index_merged @staticmethod def MatchPostASTs(postOVVout): # postOVVout.postAST.unique() # [(n,len(gr)) for n,gr in postOVVout.groupby('postAST')] faillst, fail_index_gr = [], [] matchAST_lst, non_uniq_lst = [], [] for nAST, ASTgr in postOVVout.query( '(postAST != "no") & (postAST != "postORR")' ).groupby(["postAST", "PAR_date", "PAR_file"]): nAST, ASTgr # for nDT,grDT in ASTgr.groupby(') if ASTgr.PAR_file.nunique() == 1 and ASTgr.Source.nunique() > 1: ASTgr_grSource = ASTgr.groupby("Source") ASTgr_info = [ (n, len(gr), gr.Time_since_run.mean()) for n, gr in ASTgr_grSource ] if len(set([i[1] for i in ASTgr_info])) == 1: take_source = ASTgr_info[np.argmin([i[2] for i in ASTgr_info])][0] ASTgr = ASTgr_grSource.get_group(take_source) fail_index_source_gr = ASTgr_grSource.get_group( ASTgr_info[np.argmax([i[2] for i in ASTgr_info])][0] ) fail_index_gr.append(fail_index_source_gr) EC_exp_uniq = [ (i, ASTgr[i].unique(), ASTgr[i].nunique()) for i in [ c for c in SampleSelection.EC_exp_cols + ["SampleID", "Type_exp", "PAR_file"] if c in ASTgr.columns ] ] EC_exp_non_uniq = [i for i in EC_exp_uniq if i[2] != 1] if EC_exp_non_uniq: print( "Not unique PAR_date {0},multiple: {1}".format( nAST[1], EC_exp_non_uniq ) ) non_uniq_lst.append([nAST, EC_exp_non_uniq, EC_exp_uniq]) faillst.append(ASTgr) EC_exp_query = " & ".join( [ '({0} == "{1}")'.format(i[0], i[1][0]) for i in EC_exp_uniq[1:-1] + [("postAST", ["no"])] if not "Loading" in i[0] ] ) past = nAST[1] - pd.to_timedelta(1, unit="D") past_slice = postOVVout.query("(PAR_date > @past) & (PAR_date < @nAST[1])") past_query = past_slice.query(EC_exp_query) if past_query.query(EC_exp_query).empty: # expand search to all OVV for similar conditions all_query = postOVVout.query(EC_exp_query) if not all_query.empty: preAST = tuple(all_query.PAR_file.unique()) else: preAST = "no-preAST" else: # find previous preAST measurments preAST = tuple(past_query.PAR_file.unique()) matchAST_lst.append(list(nAST) + [preAST]) if fail_index_gr: fail_index_filter = pd.concat(fail_index_gr) postOVVout = postOVVout.loc[ ~postOVVout.index.isin(fail_index_filter.index), : ] non_uniq = pd.DataFrame(non_uniq_lst) if faillst: fails = pd.concat(faillst) matchAST = pd.DataFrame( matchAST_lst, columns=["postAST", "PAR_date", "PAR_file", "preAST"] ) postOVVout = pd.merge( postOVVout, matchAST[["PAR_file", "preAST"]], on="PAR_file", how="left" ) return postOVVout # ASTgr.SampleID.unique() @staticmethod def MatchECconditions(OVV_df): # postOVVout.postAST.unique() # [(n,len(gr)) for n,gr in postOVVout.groupby('postAST')] matchAST_lst = [] # 'DW16_2018-03-06 00:00:00_no_0.1MHClO4+10mMH2O2_1.0_0.379' OVV_df["PAR_date_day"] = [ dt.datetime.strftime(i, format="%Y-%m-%d") for i in OVV_df.PAR_date.fillna(dt.date(1970, 12, 12)).to_list() ] # [pd.datetime.strftime(pd.to_datetime(i),format='%Y-%m-%d') for i in postOVVout.PAR_date.fillna(0).to_list()] EC_label_cols = [ "SampleID", "pH", "Electrolyte", "Loading_cm2", "postAST", "PAR_date_day", ] post_prev_cols = OVV_df.columns # +[i for i in SampleSelection.EC_exp_cols if i not in ['RPM','Gas']] for nAST, ASTgr in OVV_df.groupby(EC_label_cols): nAST, ASTgr # for nDT,grDT in ASTgr.groupby(') minDT, maxDT = ASTgr.PAR_date.min(), ASTgr.PAR_date.max() deltaDT = maxDT - minDT # par_Day = pd.datetime.strftime(nAST[-1],format='%Y-%m-%d') EC_exp_query = "_".join([str(i) for i in list(nAST)]) EC_exp_nodate = "_".join([str(i) for i in list(nAST)[0:-1]]) matchAST_lst.append( pd.DataFrame( [ (i, EC_exp_query, EC_exp_nodate, deltaDT) for i in ASTgr.PAR_file.unique() ], columns=["PAR_file", "ECexp", "ECuniq", "EC_deltaDT"], ) ) EC_exp_match = pd.concat( [i for i in matchAST_lst], ignore_index=True, sort=False ) OVV_df = pd.merge(OVV_df, EC_exp_match, on=["PAR_file"], how="left") print( 'Added columns: "{0}" to postOVV with len({1})'.format( ", ".join(list(set(post_prev_cols) - set(OVV_df.columns))), len(OVV_df) ) ) return OVV_df # ASTgr.SampleID.unique() # merge_cols = [i for i in Index.columns if i in OnlyRecentMissingOVV.columns and not 'Segment' in i] # p2,ovv2 = Index.set_index(merge_cols), OnlyRecentMissingOVV.set_index(merge_cols) # merge = p2.update(ovv2) # merge = p2.combine_first(ovv2) # else: # AllEIS_BoL = pd.concat([pd.read_excel(i) for i in list(PostDestDir.joinpath('EIS','0.1MH2SO4').rglob('*BoL*'))]) # AllEIS_EoL = pd.concat([pd.read_excel(i) for i in list(PostDestDir.joinpath('EIS','0.1MH2SO4').rglob('*EoL*'))]) # AllEIS_BoL = AllEIS_BoL.loc[(AllEIS_BoL['Unnamed: 0'] > 0.2901) & (AllEIS_BoL['Unnamed: 0'] < 0.301) & (AllEIS_BoL.SampleID != 'O2'),:] # AllEIS300_EoL = AllEIS_EoL.loc[(AllEIS_EoL['Unnamed: 0'] > 0.2901) & (AllEIS_EoL['Unnamed: 0'] < 0.301) & (AllEIS_EoL.SampleID != 'O2'),:] # .query('(EXP_date > 20181001)') # refl = [] # for a in postOVVout.SampleID.values: # ScodeRef = SampleCodes.loc[SampleCodes.SampleID == a,:] # if ScodeRef.empty: # Scode = EISovv['SampleID'].unique()[0] # else: # Scode = ScodeRef.Sample.values[0] # refl.append(Scode) # postOVVout['SampleLabel'] = refl # return postOVVout # for a in postOVVout.SampleID.values: # ScodeRef = SampleCodes.loc[SampleCodes.SampleID == a,:] # if ScodeRef.empty: # Scode = EISovv['SampleID'].unique()[0] # else: # Scode = ScodeRef.Sample.values[0] # refl.append(Scode) # postOVVout['SampleLabel'] = refl # postOVVout.loc[postOVVout.Type_Exp == 'EIS_Combined'] # def recently_modified(file,20): # file_mtime = pd.to_datetime(DestFile.stat().st_mtime,unit='s') class Load_from_Indexes: """This class loads the parameters of Electrochemical Data files and merge it with the Overview""" SampleCodes = FindExpFolder().LoadSampleCode() # EC_label_cols = ['SampleID','pH','Electrolyte','Loading_cm2','postAST','PAR_date_day'] EC_label_cols = [ "PAR_file", "SampleID", "postAST", "Loading_cm2", "Electrolyte", "pH", "Gas", "RPM_DAC", "E_RHE", ] PostDestDir = FindExpFolder("VERSASTAT").PostDir def __init__(self, **kwargs): if "reload" in kwargs: # self.postOVVout = CollectPostOVV.LoadPostOVV(kwargs['reload']) print( "Exp types found in overview: {0}".format( ", ".join([str(i) for i in self.postOVVout.Type_Exp.unique()]) ) ) pass @staticmethod def PreparePostOVV(fastload=False): postOVV_pickle_path = FindExpFolder("VERSASTAT").PostDir.joinpath( "PostOVVout_v20_{0}.pkl.compress".format(system()) ) if postOVV_pickle_path.is_file(): tdelta = dt.datetime.now() - dt.datetime.fromtimestamp( postOVV_pickle_path.stat().st_mtime ) if tdelta.seconds > 600: fastload = False print(f"Fastload overwrite to False, {tdelta}") if fastload == True: try: postOVVout = pd.read_pickle(postOVV_pickle_path, compression="xz") return postOVVout except Exception as e: print("Load postOVVout from pickle error: ", e) LoadOVV = Load_from_Indexes(reload=True) else: LoadOVV = Load_from_Indexes(reload=True) postOVVout = LoadOVV.postOVVout print("Types:", " , ".join([str(i) for i in postOVVout.Type_output.unique()])) postOVVout.Loading_cm2 = np.round(postOVVout.Loading_cm2, 3) postOVVout = CollectPostOVV.MatchPostASTs(postOVVout) postOVVout = CollectPostOVV.MatchECconditions(postOVVout) postOVVout.PAR_file = postOVVout.PAR_file.astype(str) postOVVout["PAR_date_day"] = [ pd.datetime.strftime(pd.to_datetime(i), format="%Y-%m-%d") for i in postOVVout.PAR_date.fillna(0).values ] postOVVout = FileOperations.ChangeRoot_DF(postOVVout, [], coltype="string") postOVVout.to_pickle(postOVV_pickle_path, compression="xz") return postOVVout def CollectAllExpTypeOVV(): PostDestDir = FindExpFolder("VERSASTAT").DestDir.joinpath("PostEC") today = datetime.today() postOVVout = Load_from_Indexes.PreparePostOVV(fastload=False) # len(22965) # postOVVout.PAR_file = postOVVout.PAR_file.astype(str) # === Loading preparation overview of Samples and merging with the data from Characterization techniques === # SampleCodes = PostChar.SampleCodeChar() # Reload_set = True logger = start_logger() EIS_pars = Load_from_Indexes.EIS_pars_OVV( postOVVout, SampleCodes, reload=Reload_set ) # EIS_Pars2 6745, 22813 HPRR_pars = Load_from_Indexes.HPRR_pars_OVV( postOVVout, SampleCodes, reload=Reload_set ) # HPRR 1668 Cdl_pars = Load_from_Indexes.N2_pars_OVV(reload=Reload_set) # Cdl runs 20322 Cdl_pars_catan = MergeEISandCdl.splitcol_Sweep_Cdl(Cdl_pars) # 10342 HER_pars = Load_from_Indexes.HER_pars_OVV( postOVVout, SampleCodes, reload=Reload_set ) # 2539 OER_pars = Load_from_Indexes.OER_pars_OVV( postOVVout, SampleCodes, reload=Reload_set ) # run 1347 if list( PostDestDir.rglob( f"{today.year}-{today.month}-*_ORR_pars_{system()}.pkl.compress" ) )[-1].is_file(): ORR_pars = Load_from_Indexes.ORR_pars_OVV( postOVVout, SampleCodes, reload=Reload_set ) # ORR 1908 ORR_pars.to_pickle( PostDestDir.joinpath( f"{today.year}-{today.month}-{today.day}_ORR_pars_{system()}.pkl.compress" ) ) EIS_pars.to_pickle( PostDestDir.joinpath( f"{today.year}-{today.month}-{today.day}_EIS_pars_{system()}.pkl.compress" ) ) # FindExpFolder().LoadSampleCode() # SampleCodes = ExportECfromCV.SampleCodes # SampleSelect_all = SampleSelection('*','*') # SampleCodesChar = SampleSelect_all.Prep_EA_BET # SampleCodes = pd.merge(SampleCodes,SampleCodesChar,how='left',on='SampleID',suffixes=('','_char')).drop_duplicates(subset=['SampleID','N_content']) # === Start preparing pars OVV from index per Experimental type === # # postOVVout,SampleCodes = pd.DataFrame(),pd.DataFrame() def extraPostOVV(): OnlyRecentMissingOVV = run_PAR_DW.ECRunOVV(load=1).index # === Checking expirements from index to analyzed data=== # [ (i) for i, gr in OnlyRecentMissingOVV.query('PAR_exp == "EIS"').groupby( "SampleID" ) if gr.Loading_cm2.nunique() > 1 ] [ (i) for i, gr in postOVVout.query('PAR_exp == "EIS"').groupby("SampleID") if gr.Loading_cm2.nunique() > 1 ] eismiss = OnlyRecentMissingOVV.loc[ OnlyRecentMissingOVV.PAR_file.isin( [ i for i in OnlyRecentMissingOVV.query( 'PAR_exp == "EIS"' ).PAR_file.values if i not in postOVVout.PAR_file.values ] ) ].sort_values( by="PAR_date", ) # 40 eismiss.to_excel( FindExpFolder("VERSASTAT").PostDir.joinpath("OVV_EIS_missing.xlsx") ) orrmiss = OnlyRecentMissingOVV.loc[ OnlyRecentMissingOVV.PAR_file.isin( [ i for i in OnlyRecentMissingOVV.query( 'PAR_exp == "ORR" & Electrode != "Pt_ring"' ).PAR_file.values if i not in ORR_pars.PAR_file.values ] ) ].sort_values( by="PAR_date", ) # 279 # orrmiss = OnlyRecentMissingOVV.loc[OnlyRecentMissingOVV.PAR_file.isin([i for i in OnlyRecentMissingOVV.query('PAR_exp == "ORR"').PAR_file.values if i not in ORR_pars.PAR_file.values])].sort_values(by='PAR_date',) orrmiss.to_pickle(PostDestDir.joinpath("ORR_missing.pkl.compress")) SampleSelection.EC_exp_cols + "SampleID" + EvRHE for n, gr in Cdl_pars.groupby( [i for i in SampleSelection.EC_exp_cols if i in Cdl_pars.columns] ): fig, ax = plt.subplots() for sID, sgr in gr.groupby("SampleID"): sgr.plot( y="Cdl", x="Qad", c="BET_cat_agg_x", colormap="jet", kind="scatter", title="Cdl in acid", ax=ax, ) EIS_pars.query(SampleSelection.acid1500).query('Gas == "O2" & pH == 1 ').plot( x="BET_cat_agg", y="Rct", kind="scatter", c="N_content", colormap="viridis" ) mcls = [i for i in EIS_pars.columns if i in Cdl_pars.dropna(axis=1).columns] mcls2 = [ i for i in SampleSelection.EC_exp_cols + ["SampleID", "E_RHE"] if i in EIS_pars.columns and i in Cdl_pars.dropna(axis=1).columns ] mcls3 = [ i for i in SampleSelection.EC_exp_cols + ["SampleID", "E_RHE"] if i in EIS_pars.columns and i in Cdl_pars.dropna(axis=1).columns and i in ORR_pars_char.columns ] [ (i, EIS_pars[i].dtypes, Cdl_pars[i].dtypes) for i in mcls if EIS_pars[i].dtypes != Cdl_pars[i].dtypes ] EIS_Cdl = pd.merge(EIS_pars, Cdl_pars, on=mcls2, how="outer") EIS_Cdl_ORR = pd.merge(EIS_Cdl, ORR_pars_char, on=mcls3, how="outer") # [['E_RHE','Cdl','Cdlp']] ECdl = EIS_Cdl.dropna(how="any", axis=0, subset=["Cdl", "Cdlp"]) ECdl_ORR = EIS_Cdl.dropna(how="any", axis=0, subset=["Cdl", "Cdlp"]) test1_alk = ECdl.query( '(pH > 7) & (pH < 15) & (E_RHE > 0.494) & (E_RHE < 0.516) & (Sweep_Type_N2 == "cathodic")' ) test1_acid = ECdl.query( '(pH < 7) & (E_RHE > 0.494) & (E_RHE < 0.516) & (Sweep_Type_N2 == "cathodic")' ) test1_alk.plot( y="Cdl", x="Qad", c="BET_cat_agg_x", colormap="jet", kind="scatter", title="Cdl in alkaline", ) test1_alk.plot( y="Cdl_corr", x="Rct", c="BET_cat_agg_x", colormap="jet", kind="scatter", title="Cdl in alkaline", ) test1_acid.plot( y="Cdl", x="Qad", c="BET_cat_agg_x", colormap="jet", kind="scatter", title="Cdl in acid", ) test1_acid.plot( y="Cdl", x="Rct_kin", c="BET_cat_agg_x", colormap="jet", kind="scatter", title="Cdl in acid", ) # HPRR_pars = pd.merge(HPRR_pars,postOVVout,on='PAR_file',how='left') # print('Leftover SampleIDs: {0}'.format(set(HPRR_pars.SampleID.unique()) - set(SampleCodes.SampleID.unique()))) # HPRR_pars = pd.merge(HPRR_pars,SampleCodes,on='SampleID',how='left') # @@ Check POST_AST status from OVV and PRM... print( "Leftover SampleIDs: {0}".format( set(ORR_pars.SampleID.unique()) - set(SampleCodes.SampleID.unique()) ) ) ORR_pars = pd.merge(ORR_pars, SampleCodes, on="SampleID", how="left") return HPRR_pars_ovv, EIS_pars_ovv def get_EC_index(): EC_index = ECRunOVV(load=1).EC_index # ['EXP_dir','Dest_dir','PAR_file','PAR_file_Ring', 'ORR_act_N2_bg','DestFile'] EC_index = FileOperations.ChangeRoot_DF(EC_index, []) EC_index.PAR_file = EC_index.PAR_file.astype(str) EC_index["Loading_cm2"] = EC_index["Loading_cm2"].round(3) SampleCodes = FindExpFolder().LoadSampleCode() # SampleCodesChar().load return EC_index, SampleCodes @staticmethod def check_missing_ECindex(OnlyRecentMissingOVV, DF_pars, clean_up=False): not_in_index = DF_pars.loc[ ~DF_pars.PAR_file.isin(OnlyRecentMissingOVV.PAR_file.values) ] CleanUpCrew(list_of_files=not_in_index.sourceFilename.unique(), delete=clean_up) return ( DF_pars.loc[DF_pars.PAR_file.isin(OnlyRecentMissingOVV.PAR_file.values)], not_in_index, ) @staticmethod def add_missing_ECindex_cols(EC_index, DF): if list(EC_index.columns.difference(DF.columns)): DF = pd.merge( DF, EC_index[["PAR_file"] + list(EC_index.columns.difference(DF.columns))], on="PAR_file", how="left", ) return DF @staticmethod def IndexPars_CB_paper(): postOVVout, SampleCodes = pd.DataFrame(), pd.DataFrame() PostECddSeries = FindExpFolder("VERSASTAT").DestDir.joinpath( "PostEC/{0}".format(SampleSelection.Series_CB_paper["name"]) ) PostECddSeries.mkdir(exist_ok=True, parents=True) EIS_pars = Load_from_Indexes.EIS_pars_OVV( postOVVout, SampleCodes, reload=False ) # EIS_Pars2 HPRR_pars = Load_from_Indexes.HPRR_pars_OVV( postOVVout, SampleCodes, reload=False ) # HPRR ORR_pars = Load_from_Indexes.ORR_pars_OVV( postOVVout, SampleCodes, reload=False ) # ORR Cdl_pars = Load_from_Indexes.N2_pars_OVV(reload=False) HER_pars = Load_from_Indexes.HER_pars_OVV(postOVVout, SampleCodes, reload=False) OER_pars = Load_from_Indexes.OER_pars_OVV(postOVVout, SampleCodes, reload=False) CBsamples = SampleSelection.Series_CB_paper["sIDs"] EIS_CB_paper = EIS_pars.loc[EIS_pars.SampleID.isin(CBsamples)] # 7644 HPRR_CB_paper = HPRR_pars.loc[HPRR_pars.SampleID.isin(CBsamples)] HPRR_CB_paper.to_excel(PostECddSeries.joinpath("HPRR_CB_paper.xlsx")) ORR_CB_paper = ORR_pars.loc[ORR_pars.SampleID.isin(CBsamples)] ORR_CB_paper.to_excel(PostECddSeries.joinpath("ORR_CB_paper.xlsx")) Cdl_CB_paper = Cdl_pars.loc[Cdl_pars.SampleID.isin(CBsamples)] Cdl_CB_paper.to_excel(PostECddSeries.joinpath("Cdl_CB_paper.xlsx")) HER_CB_paper = HER_pars.loc[HER_pars.SampleID.isin(CBsamples)] OER_CB_paper = OER_pars.loc[OER_pars.SampleID.isin(CBsamples)] Cdl_CB_cath, Cdl_CB_an = Cdl_CB_paper.query( 'Sweep_Type_N2 == "cathodic"' ), Cdl_CB_paper.query('Sweep_Type_N2 == "anodic"') merge_cols_catan = [i for i in Cdl_CB_cath.columns if i in Cdl_CB_an.columns] Cdl_CB_catan = pd.merge( Cdl_CB_cath, Cdl_CB_an, on=[i for i in merge_cols_catan if i not in SampleSelection.EC_N2Cdl_cols], how="left", suffixes=["_cat", "_an"], ) Cdl_CB_catan["Cdl_sum"] = Cdl_CB_catan["Cdl_an"] + Cdl_CB_catan["Cdl_cat"] return ( EIS_CB_paper, HPRR_CB_paper, ORR_CB_paper, Cdl_CB_paper, HER_CB_paper, OER_CB_paper, ) @staticmethod def IndexPars_Porph_SiO2(): postOVVout, SampleCodes = pd.DataFrame(), pd.DataFrame() serie = SampleSelection.Series_Porhp_SiO2["sIDslice"] EIS_pars = Load_from_Indexes.EIS_pars_OVV( postOVVout, SampleCodes, reload=False ) # EIS_Pars2 Cdl_pars = Load_from_Indexes.N2_pars_OVV(reload=False) EIS_Porph_SiO2 = EIS_pars.loc[EIS_pars.SampleID.isin(serie)] Cdl_Porph_SiO2 = Cdl_pars.loc[Cdl_pars.SampleID.isin(serie)] Cdl_Porph_SiO2_cath, Cdl_Porph_SiO2_an = Cdl_Porph_SiO2.query( 'Sweep_Type_N2 == "cathodic"' ), Cdl_Porph_SiO2.query('Sweep_Type_N2 == "anodic"') HPRR_pars_char = Load_from_Indexes.HPRR_pars_OVV( postOVVout, SampleCodes, reload=False ) # HPRR ORR_pars_char = Load_from_Indexes.ORR_pars_OVV( postOVVout, SampleCodes, reload=False ) # ORR HER_pars = Load_from_Indexes.HER_pars_OVV(postOVVout, SampleCodes, reload=False) OER_pars = Load_from_Indexes.OER_pars_OVV(postOVVout, SampleCodes, reload=False) HPRR_Porph_SiO2 = HPRR_pars_char.loc[HPRR_pars_char.SampleID.isin(serie)] ORR_Porph_SiO2 = ORR_pars_char.loc[ORR_pars_char.SampleID.isin(serie)] HER_Porph_SiO2 = HER_pars.loc[Cdl_pars.SampleID.isin(serie)] OER_Porph_SiO2 = OER_pars.loc[Cdl_pars.SampleID.isin(serie)] return ORR_Porph_SiO2 def test_update_from_index(pars, EC_index): _olap = pars.columns.intersection(EC_index.columns) _olap_minus = [i for i in _olap if not "PAR_file" == i] _mtime = [i for i in pars.columns if i.endswith("delta_mtime")] if _mtime: _idx = pars[_mtime[0]].idxmin() else: _idx = 0 _ECidx = ( EC_index.loc[EC_index.PAR_file == pars.iloc[_idx].PAR_file][_olap] .iloc[0] .to_dict() ) _prsx = pars.iloc[_idx][_olap].to_dict() _check = { key: {"pars": val, "EC_index": _ECidx.get(key, "xx")} for key, val in _prsx.items() if _ECidx.get(key, "xx") != val } _pars_bad = False if _check: _pars_bad = any( "error" in str(i) for i in [i["pars"] for i in _check.values()] ) if _pars_bad: _logger.info(f"Overwriting columns in Pars from EC_index") _new_pars = pd.merge( pars[[i for i in pars.columns if i not in _olap_minus]], EC_index[_olap], on="PAR_file", how="left", ) else: _new_pars = pars return _new_pars @staticmethod def EIS_pars_OVV( reload=False, extra_plotting=False, xls_out=False, BRUTE_out=False, use_daily=True, use_latest=False, **kwargs, ): # IndexOVV_EISpars_fn_xls = PostDestDir.joinpath('EIS_pars_IndexOVV_v{0}.xlsx'.format(FileOperations.version)) # IndexOVV_EISpars_fn = PostDestDir.joinpath('EIS_pars_IndexOVV_v{0}.pkl.compress'.format(FileOperations.version)) # PostDestDir = Load_from_Indexes.PostDestDir # FindExpFolder('VERSASTAT').PostDir eis_daily = get_daily_pickle(exp_type="EIS_pars") # today = dt.datetime.now().date() # eis_daily_pickle_path = PostDestDir.joinpath(f'{today.year}-{today.month}-{today.day}_EIS_pars_{system()}.pkl.compress') # eis_daily_pickle_path_RAW = PostDestDir.joinpath(f'{today.year}-{today.month}-{today.day}_EIS_pars_{system()}_RAW.pkl.compress') if eis_daily.get("_exists", False) and not reload and use_daily: EIS_pars = pd.read_pickle(eis_daily.get("daily_path")) EIS_pars = FileOperations.ChangeRoot_DF(EIS_pars, [], coltype="string") _logger.info( f'Loaded EIS_pars OVV from daily {eis_daily["today"]} pickle: {eis_daily.get("daily_path","")}' ) elif ( eis_daily.get("daily_options", []) and not reload and (use_latest or use_daily) ): EIS_pars = pd.read_pickle(eis_daily.get("daily_options")[-1]) EIS_pars = FileOperations.ChangeRoot_DF(EIS_pars, [], coltype="string") _logger.info( f'Loaded EIS_pars OVV from daily {eis_daily.get("daily_options")[-1]} ' ) else: # @@ Read EIS pars files and extend with columns from Samples # try other way:: idx_files_EIS = [list(Path(i).rglob('**/EIS/*pars_v20.xlsx')) for i in OnlyRecentMissingOVV.Dest_dir.unique() if list(Path(i).rglob('**/EIS/*pars_v20.xlsx'))] _logger.info( f'START reloading EIS_pars OVV from daily {eis_daily["today"]}' ) # OnlyRecentMissingOVV = ECRunOVV(load=1).index ## ['EXP_dir','Dest_dir','PAR_file','PAR_file_Ring', 'ORR_act_N2_bg','DestFile'] # OnlyRecentMissingOVV = FileOperations.ChangeRoot_DF(OnlyRecentMissingOVV,[]) # OnlyRecentMissingOVV.PAR_file = OnlyRecentMissingOVV.PAR_file.astype(str) # OnlyRecentMissingOVV['Loading_cm2'] = OnlyRecentMissingOVV['Loading_cm2'].round(3) # SampleCodes = SampleCodesChar().load EC_index, SampleCodes = Load_from_Indexes.get_EC_index() def read_df(_par_fls): # _ps = Path(d).rglob(f'*_pars_v{FileOperations.version}.xlsx' ) while True: try: i = next(_par_fls) if i.name.endswith("xlsx"): _pp = pd.read_excel(i, index_col=[0]) elif i.name.endswith("pkl"): _pp = pd.read_pickle(i) _pp = FileOperations.ChangeRoot_DF(_pp, [], coltype="string") _source_mtime = dt.datetime.fromtimestamp(i.stat().st_mtime) _delta_mtime = dt.datetime.now() - _source_mtime _pp = _pp.assign( **{ "sourceFilename": i, "source_mtime": _source_mtime, "source_delta_mtime": _delta_mtime, "sourcebasename": i.stem, } ) yield _pp except StopIteration: return "all done" print("gen empty") # finally: # yield _pp # _pf = _pp.PAR_file.unique()[0] # _pfstem = Path(_pf).stem # _spectraf = list(Path(Path(i).parent).rglob(f'{_pfstem}_v{FileOperations.version}.xlsx' ))[0] # _spectradf = pd.read_excel(_spectraf ) # yield _pp # bn = 'O2_EIS-range_1500rpm_JOS1_285_5mV_1500rpm_pars_v20.xlsx' EIS_OVV = EC_index.loc[EC_index.PAR_exp == "EIS"] col_names = ["File_SpecFit", "File_SpecRaw", "PAR_file"] # +['PAR_file','Segment',EvRHE, 'RPM_DAC'] # [ Path(d).rglob(f'*_pars_v{FileOperations.version}.xlsx' ) for d in EIS_OVV.Dest_dir.unique()] _par_files = [ list( Path(d.joinpath("EIS")).rglob( f"*_pars_v{FileOperations.EIS_version}.xlsx" ) ) for d in EIS_OVV.Dest_dir.unique() ] _EIS_WB_files = [ list(Path(d.joinpath("EIS/lin_Warburg")).rglob(f"lin_Warburg*.pkl")) for d in EIS_OVV.Dest_dir.unique() ] _EIS_WB_fls = (a for i in _EIS_WB_files for a in i) _par_fls = (a for i in _par_files for a in i) # if 'EIS' in a.name) # tt = (i for i in _par_fls if bn in i.name) # __ttp = list(read_df(tt, col_names)) if eis_daily.get("_raw_exists", False) and use_daily == True: EIS_pars_all = pd.read_pickle(eis_daily.get("daily_path_RAW")) elif ( not eis_daily.get("_raw_exists", False) and use_daily == True and eis_daily.get("daily_options_RAW") ): EIS_pars_all = pd.read_pickle(eis_daily.get("daily_options_RAW")[-1]) else: _pars_lst = list(read_df(_par_fls)) EIS_pars_RAW = pd.concat(_pars_lst, sort=False) EIS_pars_RAW.sort_values("source_delta_mtime", inplace=True) EIS_pars_RAW = EIS_pars_RAW.reset_index() EIS_pars_all = EIS_pars_RAW float_cols = set( [ a for i in EIS_pars_all.lmfit_var_names.unique() if type(i) == str and not "(" in i for a in i.split(", ") ] ) float_cols.update( set( [ a for i in float_cols for a in EIS_pars_all.columns if a.startswith(i) ] ) ) EIS_pars_all[list(float_cols)] = EIS_pars_all[list(float_cols)].fillna( 0 ) # EIS_pars_all[list(float_cols)] = EIS_pars_all[list(float_cols)].astype(float) obj_flt_cols = [ i for i in EIS_pars_all.columns if str(EIS_pars_all[i].dtype) == "object" and i in float_cols ] EIS_pars_all[obj_flt_cols] = EIS_pars_all[obj_flt_cols].replace("", 0) EIS_pars_all[list(float_cols)] = EIS_pars_all[list(float_cols)].astype( float ) wrong_fls = [ EIS_pars_all.loc[ EIS_pars_all[i].astype(str).str.contains("Parameter") ] for i in obj_flt_cols ] if wrong_fls: wrong_objflt_df = pd.concat(wrong_fls) fix_dct = { i: [ float(v.split("value=")[-1].split(",")[0]) for v in wrong_objflt_df[i].values ] for i in obj_flt_cols } fixed_objflt_df = wrong_objflt_df.assign(**fix_dct) EIS_pars_all = pd.concat( [ EIS_pars_all.drop(index=wrong_objflt_df.index, axis=0), fixed_objflt_df, ], axis=0, sort=True, ) def _add_WB_pars(EIS_pars_all): _WB_RAW_daily_path = eis_daily.get("daily_path_RAW_WB") if _WB_RAW_daily_path.exists(): _EIS_WB_pars_all = pd.read_pickle(_WB_RAW_daily_path) else: _WB_lst = list(read_df(_EIS_WB_fls)) _EIS_WB_pars_all = pd.concat( _WB_lst, sort=False, ignore_index=True ) _EIS_WB_pars_all.to_pickle(_WB_RAW_daily_path) _diffcols = set(EIS_pars_all.columns).difference( _EIS_WB_pars_all.columns ) _mcols = [ i for i in set(EIS_pars_all.columns).intersection( _EIS_WB_pars_all.columns ) if i not in [ "sourceFilename", "source_mtime", "source_delta_mtime", "sourcebasename", ] ] _dtype_mismatch = [ (i, EIS_pars_all[i].dtype, _EIS_WB_pars_all[i].dtype) for i in _mcols if EIS_pars_all[i].dtype != _EIS_WB_pars_all[i].dtype ] if _dtype_mismatch: _excl = [] for i in _dtype_mismatch: try: _EIS_WB_pars_all[i[0]] = _EIS_WB_pars_all[i[0]].astype( i[1] ) except Exception as e: _excl.append(i[0]) print(i, "\n", e) _mcols = [i for i in _mcols if i not in _excl] # EIS_pars_all[i[0]] = EIS_pars_all[i[0]].astype(i[2]) _merge = pd.merge( EIS_pars_all, _EIS_WB_pars_all, on=_mcols, how="left", suffixes=("", "_WB"), ) if not _merge.empty: return _merge else: print("WB merge was empty") return EIS_pars_all EIS_pars_all = _add_WB_pars(EIS_pars_all) EIS_pars_all = EIS_pars_all.assign( **{ "EIS_fake": [ "fakeZmean" in Path(i).name for i in EIS_pars_all.PAR_file.to_numpy() ] } ) _not_in_index = EIS_pars_all.loc[ ( ~(EIS_pars_all.PAR_file.isin(EC_index.PAR_file.values)) & (~EIS_pars_all.EIS_fake == True) ) ] CleanUpCrew( list_of_files=_not_in_index.sourceFilename.unique(), delete=True ) EIS_pars_all = EIS_pars_all.iloc[ ~(EIS_pars_all.index.isin(_not_in_index.index)) ] EIS_pars_all = Load_from_Indexes.test_update_from_index( EIS_pars_all, EC_index ) EIS_pars_all.to_pickle(eis_daily.get("daily_path_RAW")) # EIS_pars_all = pd.read_pickle(eis_daily.get('daily_path_RAW')) # === TAKING ONLY NEWEST FITTING PARS === # # for n ,gr in EIS_pars_all.groupby(by=col_names): # n,gr E_dc_RHE_cols = [ (np.round(i, 3), np.round(i, 3) * 1e3) for i in EIS_pars_all[EvRHE].values ] EIS_pars_all = EIS_pars_all.assign( **{ "E_dc_RHE": [i[0] for i in E_dc_RHE_cols], "E_dc_RHE_mV": [i[1] for i in E_dc_RHE_cols], } ) EIS_pars_recent = EIS_pars_all.loc[ (EIS_pars_all.source_mtime > pd.Timestamp(dt.date(2020, 11, 25))) & (EIS_pars_all.PAR_file.str.contains("None") == False) ] EIS_pars_undup = EIS_pars_recent.dropna(subset=col_names).drop_duplicates( keep="first" ) # EIS_pars = EIS_pars.loc[EIS_pars.lmfit_var_names.str.contains('/(')] # set([a for i in EIS_pars_all.lmfit_var_names.unique() if not '(' in i for a in i.split(', ')]) # === POST EDITING OF LOADED PARS === EIS_pars_undup = EIS_pars_undup.assign( **{"Loading_cm2": EIS_pars_undup["Loading_cm2"].round(3)} ) EIS_pars_undup = post_helper.make_uniform_EvRHE(EIS_pars_undup) EIS_pars_undup = CollectPostOVV.MatchECconditions(EIS_pars_undup) # EIS_pars_undup = Load_from_Indexes.add_missing_ECindex_cols(EC_index, EIS_pars_undup) _oc_OVV = list(EIS_pars_undup.columns.intersection(EIS_OVV.columns)) if not set(EIS_OVV.groupby(_oc_OVV).groups.keys()).intersection( EIS_pars_undup.groupby(_oc_OVV).groups.keys() ): _drpcols = [ a for a in EIS_pars_undup.columns if ( a in [i for i in _oc_OVV if i not in "PAR_file"] or "_".join(a.split("_")[0:-1]) in [i for i in _oc_OVV if i not in "PAR_file"] ) ] # EIS_pars_undup.drop(columns =_drpcols) EIS_pars_undup = Load_from_Indexes.add_missing_ECindex_cols( EC_index, EIS_pars_undup.drop(columns=_drpcols) ) # EIS_pars_undup = pd.merge(EIS_pars_undup,EIS_OVV,on=_oc_OVV, how='left') _oc_SC = list(EIS_pars_undup.columns.intersection(SampleCodes.columns)) EIS_pars_undup = pd.merge( EIS_pars_undup, SampleCodes, how="left", on=_oc_SC ) EIS_pars_BRUTE = EIS_pars_undup.loc[ (EIS_pars_undup.BRUTE_FIT == 1) | (EIS_pars_undup.FINAL_FIT == 0) ] if BRUTE_out: EIS_pars_BRUTE.to_pickle(eis_daily["daily_path_BRUTE"]) EIS_pars = EIS_pars_undup.loc[(EIS_pars_undup.FINAL_FIT == 1)] EIS_pars = EIS_extra_methods.add_best_model_per_spectrum(EIS_pars) EIS_pars.to_pickle(eis_daily["daily_path"]) _logger.info(f'EIS_pars OVV to daily pickle: {eis_daily.get("daily_path")}') _err_type = "lmfit_MSE" _filter = "(EIS_pars.lmfit_MSE < 65E4) & (EIS_pars.Rct < 2E3) & (EIS_pars.Rct > 2E-2) \ & (EIS_pars.Rs > 0.01) & (EIS_pars.Rs < 200) & (EIS_pars.Cdlp < 0.075)\ & (EIS_pars.lmfit_redchi < 1E3) & (EIS_pars.Aw < 10E3) & (EIS_pars.Aw > 10E-2)\ & (EIS_pars.Qad < 1) & (EIS_pars.tau < 1E3)" _filter += '& (EIS_pars.SampleID.str.contains("JOS1|JOS2|JOS3|JOS4|JOS5"))' _filter += "& (EIS_pars.EIS_fake == False)" _grps = ["Model_EEC", "Gas", "lmfit_var_names"][0:2] best_models = ( EIS_pars.loc[eval(_filter)] .dropna(axis=0, subset=[_err_type]) .groupby(_grps)[_err_type] .agg(["count", "mean", "std"]) .sort_values("mean", ascending=True) ) print(best_models) keep_models = ( best_models.loc[(best_models["count"] > 5) & (best_models["std"] > 0)] .index.get_level_values(0) .unique() ) EIS_pars = EIS_pars.loc[EIS_pars.Model_EEC.isin(keep_models)] best_models = ( EIS_pars.loc[eval(_filter)] .dropna(axis=0, subset=[_err_type]) .groupby(_grps)[_err_type] .agg(["count", "mean", "std"]) .sort_values(["Gas", "mean"], ascending=True) ) print(best_models) if hasattr(EIS_pars, "best_mod_name"): # EIS_best_mods = EIS_pars.loc[EIS_pars.Model_EEC_name.isin([i for i in EIS_pars.best_mod_name.unique() if not pd.isna(i)])] EIS_best_mods = EIS_pars.loc[ EIS_pars.index.isin( [i for i in EIS_pars.best_mod_n.unique() if not pd.isna(i)] ) ] _agg = ( EIS_best_mods.dropna(subset=[_err_type]) .groupby(_grps + ["E_RHE"])[_err_type] .agg(["count", "mean", "std"]) ) _agg_best = _agg.loc[_agg["count"] > 3].sort_values( ["Gas", "E_RHE", "mean"], ascending=True ) # fast_checking_EEC_models =[(2, 'EEC_2CPEpRW',50), # (3, 'EEC_2CPEpW',120),(4,'EEC_2CPE_W',100), # (5, 'EEC_2CPE',100), (6,'EEC_Randles_RWpCPE_CPE',60)] # # ['Model(Singh2015_RQRQR)', 'Model(Singh2015_RQRWR)', 'Model(Singh2015_R3RQ)', 'Model(Bandarenka_2011_RQRQR)' ] if extra_plotting == "blocked": for n, r in best_models.head(1).iterrows(): modname = r.name[0] varnames = [ a for i in EIS_pars.loc[ EIS_pars["Model_EEC"] == modname ].lmfit_var_names.unique() for a in i.split(", ") ] # [1]]+[fast_checking_EEC_models[4]]: # modname = f'Model({_modname})' EIS_pars_fltr = EIS_pars.loc[ (EIS_pars["Model_EEC"] == modname) & eval(_filter) ] for var in varnames: EIS_pars_fltr.query("pH < 7 & Rct < 2E3").plot( y=var, x="E_RHE", c="BET_cat_agg", colormap="rainbow_r", kind="scatter", title=modname, logy=0, ) # .query('pH < 15').plot(y='Rs',x='E_RHE',c='pH',colormap='rainbow_r',kind='scatter',ylim=(0,100),title=modname) EIS_pars.loc[EIS_pars["Model_EEC"] == modname].query("pH < 15").plot( y="Qad", x="E_RHE", c="pH", colormap="rainbow_r", kind="scatter", ylim=(0, 0.05), title=modname, ) EIS_pars.loc[EIS_pars["Model_EEC"] == modname].query("pH < 7").plot( y="R_ion", x="E_RHE", c="BET_cat_agg", colormap="rainbow_r", kind="scatter", title=modname, ) EIS_pars.loc[EIS_pars["Model_EEC"] == modname].query("pH < 7").plot( y="tau", x="E_RHE", c="BET_cat_agg", colormap="rainbow_r", kind="scatter", ylim=(0, 100), title=modname, ) EIS_pars.loc[EIS_pars["Model_EEC"] == modname].query("pH < 7").plot( y="Rct", x="E_RHE", c="BET_cat_agg", colormap="rainbow_r", kind="scatter", ylim=(0.1, 1e4), logy=True, title=modname, ) if ( not EIS_pars.loc[EIS_pars["Model_EEC"] == modname] .query("pH > 7") .empty ): EIS_pars.loc[EIS_pars["Model_EEC"] == modname].query("pH > 7").plot( y="Qad+Cdlp", x="E_RHE", c="BET_cat_agg", colormap="rainbow_r", kind="scatter", ylim=(0.1, 1e-4), logy=True, title=modname, ) plt.close() # EIS_pars.query('pH < 17').groupby('Model_EEC').plot(y='RedChisqr',x='E_RHE',colormap='viridis',kind='scatter',ax=ax) _porph = EIS_pars.loc[EIS_pars.PAR_file.str.contains("06.05")] fig, ax = plt.subplots() for n, Hgr in _porph.query("pH < 7").groupby("postAST"): c_set = "g" if n == "no" else "r" Hgr.plot( x="E_RHE", y="Rct_kin", s=50, c=c_set, kind="scatter", label=n, title="EIS, E vs Qad at", ax=ax, ylim=(1e-6, 1), logy=True, ) plt.show() plt.close() if "update_index" in kwargs.keys(): pass return EIS_pars # dest_files.append({'index' : n, 'PAR_file' : str(r.PAR_file),'EIS_dest_dir' : EIS_dest_dir, # 'EIS_dest_Pars' : EIS_dest_dir.joinpath( Path(r.PAR_file).stem + '_pars.xlsx'), # 'EIS_dest_spectra' :EIS_dest_dir.joinpath( Path(r.PAR_file).stem + '_Combined.xlsx') # }) # EIS_pars_index_p1 = postOVVout.query('Type_output == "EIS_Pars1"') ## EIS_pars_index_p2 = postOVVout.query('Type_output == "EIS_Pars2"') # EIS_pars_indexes = postOVVout.query('Type_output == "EIS_Pars"') # if 'source' in kwargs.keys(): # EIS_pars_indexes = EIS_pars_indexes.loc[EIS_pars_indexes.Source == kwargs.get('source','ExpDirs')] ## pars_index_from_read = EIS_get_index_column_names() ## EIS_pars_index = pd.concat([EIS_pars_index_p1,EIS_pars_index_p2]) ## EIS_pars_index = postOVVout.groupby('Type_output').get_group('EIS_Pars1') # EIS_pars_spectra = postOVVout.groupby('Type_output').get_group('EIS_AllData_combined').drop_duplicates(subset=['PAR_file','DestFile','Time_since_run']) ## EPtest = EIS_pars_indexes.loc[no_match] # a slice for testing purpose ## test_load_nm = no_matches.loc[no_matches[2].str.contains('Columns not matching! "Loading_cm2" values:'),0].values ## EPtest = EIS_pars_indexes.loc[EIS_pars_indexes.index.isin(test_load_nm)] # EISlst,no_match,faillst = [],[],[] @staticmethod def HPRR_pars_OVV( postOVVout, SampleCodes, reload=False, extra_plotting=False, xls_out=False ): # exp_type = 'H IndexOVV_HPRRpars_fn = FindExpFolder("VERSASTAT").PostDir.joinpath( "Pars_IndexOVV_HPRR_v{0}.xlsx".format(FileOperations.version) ) if IndexOVV_HPRRpars_fn.exists() and reload != True: HPRR_pars_char = pd.read_excel(IndexOVV_HPRRpars_fn, index_col=[0]) HPRR_pars_char = FileOperations.ChangeRoot_DF( HPRR_pars_char, [], coltype="string" ) else: # === Making destination directories === # PostDestDir = FindExpFolder("VERSASTAT").DestDir.joinpath("PostEC") PPD_HPRR = PostDestDir.joinpath("HPRR") PPD_HPRR.mkdir(parents=True, exist_ok=True) PPD_HPRR_data = PPD_HPRR.joinpath("DataFiles") PPD_HPRR_data.mkdir(parents=True, exist_ok=True) # # === Loading Index files for HPRR and reading the Parameters files into one DataFrame === # HPRR_pars_index = postOVVout.groupby("Type_output").get_group("HPRR") HP_Pars_files = [ Path(i) for i in HPRR_pars_index["SourceFilename"].unique() if "_Pars" in Path(i).stem ] HPRR_pars_raw = pd.concat( [pd.read_excel(i, index_col=[0]) for i in HP_Pars_files], sort=False ) HPRR_pars_raw = FileOperations.ChangeRoot_DF( HPRR_pars_raw, [], coltype="string" ) HPRR_merge_cols = [ i for i in HPRR_pars_raw.columns if i in HPRR_pars_index.columns and not "Segment" in i ] HPRR_p2, HPRR_ovv2 = HPRR_pars_raw.set_index( HPRR_merge_cols ), HPRR_pars_index.set_index(HPRR_merge_cols) HPRR_pars_ovv = HPRR_p2.join(HPRR_ovv2, rsuffix="_ovv").reset_index() HPRR_pars_merge_cols = [ i for i in HPRR_pars_ovv.columns if i in postOVVout.columns and not "Segment" in i and not "Unnamed" in i ] HPRR_pars = pd.merge( HPRR_pars_ovv, postOVVout, on=HPRR_pars_merge_cols, how="left" ) # HPRR_pars = pd.merge(HPRR_pars_ovv,postOVVout,on='PAR_file',how='left') print( "Leftover SampleIDs: {0}".format( set(HPRR_pars.SampleID.unique()) - set(SampleCodes.SampleID.unique()) ) ) HPRR_char_merge_cols = [ i for i in HPRR_pars_ovv.columns if i in SampleCodes.columns if not "Unnamed" in i ] HPRR_pars_char = pd.merge( HPRR_pars_ovv, SampleCodes, on=HPRR_char_merge_cols, how="left" ) HPRR_pars_char = HPRR_pars_char.drop( columns=[i for i in HPRR_pars_char.columns if "Unnamed" in i] ) new_IndexOVV_HPRRpars_target = FileOperations.CompareHashDFexport( HPRR_pars_char, IndexOVV_HPRRpars_fn ) _logger.info( "PostEC HPRR re-indexed and saved: {0}".format( new_IndexOVV_HPRRpars_target ) ) if extra_plotting: try: HPRR_pars_char.query( '(RPM_HPRR > 700) & (Loading_cm2 > 0.1) & (E_name == "E_j0")' ).plot(x="AD/AG", y="fit_slope_HPRR", kind="scatter") except Exception as e: print("HPRR plot fail:", e) try: HPRR_pars_char.query( '(RPM_HPRR > 700) & (Loading_cm2 > 0.1) & (E_name == "E_j0")' ).plot(x="N_content", y="fit_slope_HPRR", kind="scatter") except Exception as e: print("HPRR plot fail:", e) return HPRR_pars_char @staticmethod def HER_pars_OVV(reload=False, use_daily=True, extra_plotting=False, xls_out=False): # exp_type = 'H # PostDestDir = Load_from_Indexes.PostDestDir her_daily = get_daily_pickle(exp_type="HER_pars") # IndexOVV_HER_pars_fn = FindExpFolder('VERSASTAT').PostDir.joinpath('Pars_IndexOVV_HER_v{0}.pkl.compress'.format(FileOperations.version)) if her_daily.get("_exists", False) and reload != True: # Cdl_pars_char = pd.read_excel(IndexOVV_N2_pars_fn,index_col=[0]) HER_pars_char = pd.read_pickle(her_daily.get("daily_path")) HER_pars_char = FileOperations.ChangeRoot_DF( HER_pars_char, [], coltype="string" ) else: # @@ Check POST_AST status from OVV and PRM EC_index, SampleCodes = Load_from_Indexes.get_EC_index() def read_df(_par_fls, read_types=["HER_pars"]): # _ps = Path(d).rglob(f'*_pars_v{FileOperations.version}.xlsx' ) while True: try: i = next(_par_fls) _source_mtime = dt.datetime.fromtimestamp(i.stat().st_mtime) _delta_mtime = dt.datetime.now() - _source_mtime _i_stem = i.stem _pparts = i.parent.parts if f"HER_v{FileOperations.version}" in _pparts[-2]: if _i_stem.startswith("HER") or "HER" in _i_stem.split("_"): # any([_i_stem.startswith(_p) for _p in ['N2_HER|N2_EIS']]): _type = "HER_pars" else: _type = "HER_unknown" else: _type = "_unknown" _meta = { "sourceFilename": i, "source_mtime": _source_mtime, "source_delta_mtime": _delta_mtime, "source_basename": _i_stem, "source_type": _type, } if _type in read_types: _pp = pd.read_excel(i, index_col=[0]) _pp = FileOperations.ChangeRoot_DF( _pp, [], coltype="string" ) _pp = _pp.assign(**_meta) else: _pp = pd.DataFrame(_meta, index=[0]) if not "Analysis_date" in _pp.columns: _pp = _pp.assign( **{ "Analysis_date": dt.datetime.fromtimestamp( i.stat().st_ctime ) } ) _meta.update({"DF": _pp}) yield _meta except StopIteration: return "all done" print("gen empty") if her_daily.get("_raw_exists", False) and use_daily: HER_pars_all = pd.read_pickle(her_daily.get("daily_path_RAW")) elif her_daily.get("daily_options_RAW", False) and use_daily: HER_pars_all = pd.read_pickle(her_daily.get("daily_options_RAW")[-1]) else: # Construct new N2 pars ovv from reading in files HER_OVV = EC_index.loc[EC_index.PAR_exp.str.contains("HER")] _par_files = [ list( Path(d.joinpath(f"HER_v{FileOperations.version}")).rglob( "*xlsx" ) ) for d in HER_OVV.Dest_dir.unique() ] _par_fls = (a for i in _par_files for a in i) # if 'EIS' in a.name) _par_reads = read_df(_par_fls, read_types=["HER_pars"]) _reads_out = [i for i in _par_reads] HER_pars_all = pd.concat( [i["DF"] for i in _reads_out], sort=False, ignore_index=True ) not_in_index = HER_pars_all.loc[ ~HER_pars_all.PAR_file.isin(EC_index.PAR_file.values) ] if not_in_index.empty: print("HER pars, not-in-index is empty... success!") else: print("HER pars, not-in-index is NOT empty... delete wrong pars??") # CleanUpCrew(list_of_files = not_in_index.SourceFilename.unique(), delete = True) HER_pars_all = HER_pars_all.loc[ HER_pars_all.PAR_file.isin(EC_index.PAR_file.values) ] HER_pars_recent = HER_pars_all.loc[ HER_pars_all.Analysis_date > dt.datetime.fromisoformat("2020-07-15") ] for n, gr in HER_pars_recent.groupby("_type"): print( n, f" len {len(gr)}", f'\nSamples: {", ".join([str(i) for i in gr.SampleID.unique()])}', ) HER_pars_recent.to_pickle(her_daily["daily_path_RAW"]) # ORR_merge_cols = [i for i in ORR_pars.columns if i in ORR_pars_index.columns and not 'Segment' in i] # p2,ovv2 = ORR_pars.dropna(subset=ORR_merge_cols).set_index(ORR_merge_cols), ORR_pars_index.dropna(subset=ORR_merge_cols).set_index(ORR_merge_cols) # ORR_pars_ovv = p2.join(ovv2,rsuffix='_ovv').reset_index() # ORR_pars_ovv.query('(pH < 7)').plot(y='E_onset',x='Loading_cm2',kind='scatter',logy=False) # ORR_pars_ovv = pd.merge(ORR_pars,ORR_pars_index,on=ORR_merge_cols,suffixes=('','_ovv'),how='left') # ORR_pars = pd.merge(ORR_pars,postOVVout,on=['PAR_file','SampleID','Electrolyte','pH','postAST'],how='left',suffixes=('','_ovv')) # print('Leftover SampleIDs: {0}'.format(set(ORR_pars.SampleID.unique()) - set(SampleCodes.SampleID.unique()))) HER_pars_char = pd.merge( HER_pars_recent, SampleCodes, on="SampleID", how="left" ) HER_pars_char = pd.merge( HER_pars_char, EC_index, on="PAR_file", suffixes=("", "_index") ) ### Fixing the pars after loading... # TODO : taking out duplicates based on time_since_run.... Load_na = HER_pars_char.loc[HER_pars_char.Loading_cm2.isna()] if not Load_na.empty: Load_na_missingvalues = [ (n, *GetSampleID.ink_loading_from_filename(i.PAR_file)) for n, i in Load_na.iterrows() ] Load_na_vals = ( pd.DataFrame(Load_na_missingvalues) .rename(columns={1: "Loading_name", 2: "Loading_cm2"}) .set_index([0]) ) HER_pars_char.Loading_cm2.fillna( value=Load_na_vals.Loading_cm2, inplace=True ) # ORR_char_merge_cols = [i for i in ORR_pars.columns if i in SampleCodes.columns] # ORR_pars_char = pd.merge(ORR_pars,SampleCodes,on=ORR_char_merge_cols,how='left') HER_pars_char = HER_pars_char.drop( columns=[i for i in HER_pars_char.columns if "Unnamed" in i] ) if HER_pars_char.loc[HER_pars_char.Loading_cm2.isna()].empty == False: HER_pars_char.Loading_cm2 = HER_pars_char.Loading_cm2.fillna( value=0.379 ) # fillna for Loading_cm2 HER_pars_char.Loading_cm2 = HER_pars_char.Loading_cm2.round(3) HER_pars_char.HER_at_E_slice = HER_pars_char.HER_at_E_slice.round(3) if HER_pars_char.postAST.dropna().empty: HER_pars_char = HER_pars_char.drop(columns="postAST") # _int = list(set(ORR_pars_char.columns).intersection(set(EC_index.columns))) HER_pars_char = pd.merge( HER_pars_char, EC_index, on="PAR_file", suffixes=("", "_index") ) HER_pars_char = make_uniform_RPM_DAC(HER_pars_char) # ORR_pars_char = pd.merge(ORR_pars_char, EC_index[['PAR_file', 'postAST']], on = 'PAR_file') _sgdct = [] for pf, pfgrp in HER_pars_char.groupby("PAR_file"): _segs = pfgrp["Segment #"].unique() for _n, _seg in enumerate(_segs): _sgdct.append({"PAR_file": pf, "Segment #": _seg, "HER_Segnum": _n}) _HER_segnums = pd.DataFrame(_sgdct) HER_pars_char = pd.merge( HER_pars_char, _HER_segnums, on=["PAR_file", "Segment #"] ) # ORR_pars_char.loc[ORR_pars_char.Loading_cm2.isna() == True] # if xls_out: # IndexOVV_HER_pars_fn = FileOperations.CompareHashDFexport(HER_pars_char,IndexOVV_HER_pars_fn) HER_pars_char.to_pickle(her_daily["daily_path"]) if extra_plotting: jmA2_slice = HER_pars_char.loc[(HER_pars_char["Segment #"] > 1)].query( '(HER_type == "j_slice_onset") & (HER_at_J_slice == -2)' ) jmA2_slice.plot( x="Metal_wt", y="HER_Tafel_slope", kind="scatter", ylim=(0, 1e3) ) jmA2_slice.plot( x="N_content", y="HER_Tafel_slope", s=50, c="g", kind="scatter", ylim=(0, 1e3), ) # HER_atE = HER_pars_char.loc[(HER_pars_char['Segment #'] > 1) & np.isclose(HER_pars_char[EvRHE+'_upper'],-0.3,atol=0.02)].query('(E_type == "E_slice")') if extra_plotting: E_350mV_slice = HER_pars_char.loc[ (HER_pars_char["Segment #"] > 1) ].query( '(HER_type == "E_slice") & (HER_at_E_slice < -0.29) & (HER_at_E_slice > -0.33)' ) fig, ax = plt.subplots() for n, Hgr in E_350mV_slice.groupby(["postAST", "RPM"]): c_set = "g" if "no" in n else "r" _ms_set = "o" if n[-1] < 100 else "*" Hgr.plot( x="N_content", y="HER_J_upper", s=50, c=c_set, kind="scatter", label=n, title="HER at -0.3 Vrhe, j vs N_content", ax=ax, **{"marker": _ms_set}, ) E_350mV_slice.plot( x="N_content", y="HER_J_upper", kind="bar", title="HER, j vs N_content at", ) E_350mV_slice.plot( x="BET_cat_agg", y="HER_J_upper", s=50, c="g", kind="scatter", title="HER, j vs N_content at", ) return HER_pars_char def old_HER(): if IndexOVV_HER_pars_fn.exists() and reload is not True: HER_pars_char = pd.read_pickle(IndexOVV_HER_pars_fn) if HER_pars_char.SourceFilename.iloc[0].exists() == False: HER_pars_char = FileOperations.ChangeRoot_DF( HER_pars_char, [], coltype="string" ) # ORR_pars_char = ORR_pars_char.drop_duplicates(subset=ORR_pars_char.columns[0:19]) elif reload == "pickle": IndexOVV_HER_pars_fn_pkl = list( PostDestDir.rglob( f"{today.year}-{today.month}-*_HER_pars_{system()}.pkl.compress" ) )[-1] HER_pars_char = pd.read_pickle(IndexOVV_HER_pars_fn_pkl) if postOVVout.empty or SampleCodes.empty: reload = False if IndexOVV_HER_pars_fn.exists() and reload != True: HER_pars_char = pd.read_excel(IndexOVV_HER_pars_fn, index_col=[0]) HER_pars_char = FileOperations.ChangeRoot_DF( HER_pars_char, [], coltype="string" ) else: # === Making destination directories === # PostDestDir = FindExpFolder("VERSASTAT").DestDir.joinpath("PostEC") PPD_HER_OER = PostDestDir.joinpath("HER_OER") PPD_HER_OER.mkdir(parents=True, exist_ok=True) PPD_HER_OER_data = PPD_HER_OER.joinpath("DataFiles") PPD_HER_OER_data.mkdir(parents=True, exist_ok=True) # # === Loading Index files for HPRR and reading the Parameters files into one DataFrame === # HER_pars_index = postOVVout.groupby("Type_output").get_group( "HER_Jkin_Tafel" ) # HP_Pars_files = [i for i in HER_pars_index['SourceFilename'].unique() if '_pars' in i.stem] HER_pars_raw = pd.concat( [ pd.read_excel(i, index_col=[0]) for i in HER_pars_index["SourceFilename"].unique() ] ) HER_pars_raw = FileOperations.ChangeRoot_DF( HER_pars_raw, [i for i in HER_pars_raw.columns if re.search("([F-f]ile)", i)], coltype="string", ) HER_merge_cols = [ i for i in HER_pars_raw.columns if i in HER_pars_index.columns and not "Segment" in i and not "Sweep_Type" in i ] HER_p2, HER_ovv2 = HER_pars_raw.set_index( HER_merge_cols ), HER_pars_index.set_index(HER_merge_cols) HER_pars_ovv = HER_p2.join(HER_ovv2, rsuffix="_ovv").reset_index() # HER_pars = pd.merge(HER_pars_ovv,postOVVout,on=HEpars_merge_cols,how='left') # OER_pars = pd.merge(HPRR_pars_ovv,postOVVout,on=HPRR_pars_merge_cols,how='left') # # HPRR_pars = pd.merge(HPRR_pars_ovv,postOVVout,on='PAR_file',how='left') # print('Leftover SampleIDs: {0}'.format(set(HER_.SampleID.unique()) - set(SampleCodes.SampleID.unique()))) HER_char_merge_cols = [ i for i in HER_pars_ovv.columns if i in SampleCodes.columns ] HER_pars_char = pd.merge( HER_pars_ovv, SampleCodes, on=HER_char_merge_cols, how="left" ) new_IndexOVV_HERpars_target = FileOperations.CompareHashDFexport( HER_pars_char, IndexOVV_HER_pars_fn ) _logger.info( "PostEC HPRR re-indexed and saved: {0}".format( new_IndexOVV_HERpars_target ) ) @staticmethod def OER_pars_OVV( postOVVout, SampleCodes, reload=False, extra_plotting=False, xls_out=False ): # exp_type = 'H IndexOVV_OERpars_fn = FindExpFolder("VERSASTAT").PostDir.joinpath( "Pars_IndexOVV_OER_v{0}.xlsx".format(FileOperations.version) ) if IndexOVV_OERpars_fn.exists() and reload != True: OER_pars_char = pd.read_excel(IndexOVV_OERpars_fn, index_col=[0]) OER_pars_char = FileOperations.ChangeRoot_DF( OER_pars_char, [], coltype="string" ) else: # === Making destination directories === # PostDestDir = FindExpFolder("VERSASTAT").DestDir.joinpath("PostEC") PPD_HER_OER = PostDestDir.joinpath("HER_OER") PPD_HER_OER.mkdir(parents=True, exist_ok=True) PPD_HER_OER_data = PPD_HER_OER.joinpath("DataFiles") PPD_HER_OER_data.mkdir(parents=True, exist_ok=True) # # === Loading Index files for HPRR and reading the Parameters files into one DataFrame === # OER_pars_index = postOVVout.groupby("Type_output").get_group( "OER_Jkin_Tafel" ) OER_pars_raw = pd.concat( [ pd.read_excel(i, index_col=[0]) for i in OER_pars_index["SourceFilename"].unique() ] ) OER_pars_raw = FileOperations.ChangeRoot_DF( OER_pars_raw, [i for i in OER_pars_raw.columns if re.search("([F-f]ile)", i)], coltype="string", ) OER_merge_cols = [ i for i in OER_pars_raw.columns if i in OER_pars_index.columns and not "Segment" in i and not "Sweep_Type" in i ] OER_p2, OER_ovv2 = OER_pars_raw.set_index( OER_merge_cols ), OER_pars_index.set_index(OER_merge_cols) OER_pars_ovv = OER_p2.join(OER_ovv2, rsuffix="_ovv").reset_index() # HER_pars = pd.merge(HER_pars_ovv,postOVVout,on=HEpars_merge_cols,how='left') # OER_pars = pd.merge(HPRR_pars_ovv,postOVVout,on=HPRR_pars_merge_cols,how='left') # # HPRR_pars = pd.merge(HPRR_pars_ovv,postOVVout,on='PAR_file',how='left') # print('Leftover SampleIDs: {0}'.format(set(HER_.SampleID.unique()) - set(SampleCodes.SampleID.unique()))) OER_char_merge_cols = [ i for i in OER_pars_ovv.columns if i in SampleCodes.columns and not "Unnamed" in i ] OER_pars_char = pd.merge( OER_pars_ovv, SampleCodes, on=OER_char_merge_cols, how="left" ) new_IndexOVV_OERpars_target = FileOperations.CompareHashDFexport( OER_pars_char, IndexOVV_OERpars_fn ) _logger.info( "PostEC OER re-indexed and saved: {0}".format( new_IndexOVV_OERpars_target ) ) OER_pars_char.loc[(OER_pars_char["Segment #"] > 1)].query( '(E_type == "E_onset")' ).plot(x="AD/AG", y="TafelSlope", kind="scatter") OER_pars_char.loc[(OER_pars_char["Segment #"] > 1)].query( '(E_type == "E_onset")' ).plot(x="N_content", y="TafelSlope", s=50, c="g", kind="scatter") if extra_plotting: OER_atE = OER_pars_char.loc[ (OER_pars_char["Segment #"] > 1) & np.isclose(OER_pars_char[EvRHE + "_upper"], 1.7, atol=0.02) ].query('(E_type == "E_slice")') fig, ax = plt.subplots() for n, Ogr in OER_atE.groupby("postAST"): c_set = "g" if n == "no" else "r" Ogr.plot( x="N_content", y="j_upper", s=50, c=c_set, kind="scatter", label=n, title="OER, j vs N_content at", ax=ax, ) return OER_pars_char @staticmethod def ORR_pars_OVV(reload=False, extra_plotting=False, xls_out=False, use_daily=True): # exp_type = 'H PostDestDir = Load_from_Indexes.PostDestDir orr_daily = get_daily_pickle(exp_type="ORR_pars") IndexOVV_ORRpars_fn = FindExpFolder("VERSASTAT").PostDir.joinpath( "Pars_IndexOVV_ORR_v{0}.pkl.compress".format(FileOperations.version) ) if IndexOVV_ORRpars_fn.exists() and reload is not True: # ORR_pars_char = pd.read_excel(IndexOVV_ORRpars_fn,index_col=[0]) ORR_pars_char =
pd.read_pickle(IndexOVV_ORRpars_fn)
pandas.read_pickle
import numpy as np import pandas as pd from copy import copy, deepcopy from matplotlib import pyplot as plt from datetime import datetime, timedelta from matplotlib.backends.backend_pdf import PdfPages dfheight=
pd.read_csv('../data/raw/Results from Val_Roseg_Timelapse in µm per sec.csv')
pandas.read_csv