code
stringlengths
22
1.05M
apis
listlengths
1
3.31k
extract_api
stringlengths
75
3.25M
# admin_tools/urls.py # Brought to you by We Vote. Be good. # -*- coding: UTF-8 -*- from django.conf.urls import re_path from . import views urlpatterns = [ re_path(r'^$', views.admin_home_view, name='admin_home',), re_path(r'^data_cleanup/$', views.data_cleanup_view, name='data_cleanup'), re_path(r'^data_cleanup_organization_analysis/$', views.data_cleanup_organization_analysis_view, name='data_cleanup_organization_analysis'), re_path(r'^data_cleanup_organization_list_analysis/$', views.data_cleanup_organization_list_analysis_view, name='data_cleanup_organization_list_analysis'), re_path(r'^data_cleanup_position_list_analysis/$', views.data_cleanup_position_list_analysis_view, name='data_cleanup_position_list_analysis'), re_path(r'^data_cleanup_voter_hanging_data_process/$', views.data_cleanup_voter_hanging_data_process_view, name='data_cleanup_voter_hanging_data_process'), re_path(r'^data_cleanup_voter_list_analysis/$', views.data_cleanup_voter_list_analysis_view, name='data_cleanup_voter_list_analysis'), re_path(r'^data_voter_statistics/$', views.data_voter_statistics_view, name='data_voter_statistics'), re_path(r'^import_sample_data/$', views.import_sample_data_view, name='import_sample_data'), re_path(r'^statistics/$', views.statistics_summary_view, name='statistics_summary'), re_path(r'^sync_dashboard/$', views.sync_data_with_master_servers_view, name='sync_dashboard'), ]
[ "django.conf.urls.re_path" ]
[((164, 219), 'django.conf.urls.re_path', 're_path', (['"""^$"""', 'views.admin_home_view'], {'name': '"""admin_home"""'}), "('^$', views.admin_home_view, name='admin_home')\n", (171, 219), False, 'from django.conf.urls import re_path\n'), ((227, 299), 'django.conf.urls.re_path', 're_path', (['"""^data_cleanup/$"""', 'views.data_cleanup_view'], {'name': '"""data_cleanup"""'}), "('^data_cleanup/$', views.data_cleanup_view, name='data_cleanup')\n", (234, 299), False, 'from django.conf.urls import re_path\n'), ((306, 454), 'django.conf.urls.re_path', 're_path', (['"""^data_cleanup_organization_analysis/$"""', 'views.data_cleanup_organization_analysis_view'], {'name': '"""data_cleanup_organization_analysis"""'}), "('^data_cleanup_organization_analysis/$', views.\n data_cleanup_organization_analysis_view, name=\n 'data_cleanup_organization_analysis')\n", (313, 454), False, 'from django.conf.urls import re_path\n'), ((459, 622), 'django.conf.urls.re_path', 're_path', (['"""^data_cleanup_organization_list_analysis/$"""', 'views.data_cleanup_organization_list_analysis_view'], {'name': '"""data_cleanup_organization_list_analysis"""'}), "('^data_cleanup_organization_list_analysis/$', views.\n data_cleanup_organization_list_analysis_view, name=\n 'data_cleanup_organization_list_analysis')\n", (466, 622), False, 'from django.conf.urls import re_path\n'), ((627, 778), 'django.conf.urls.re_path', 're_path', (['"""^data_cleanup_position_list_analysis/$"""', 'views.data_cleanup_position_list_analysis_view'], {'name': '"""data_cleanup_position_list_analysis"""'}), "('^data_cleanup_position_list_analysis/$', views.\n data_cleanup_position_list_analysis_view, name=\n 'data_cleanup_position_list_analysis')\n", (634, 778), False, 'from django.conf.urls import re_path\n'), ((783, 946), 'django.conf.urls.re_path', 're_path', (['"""^data_cleanup_voter_hanging_data_process/$"""', 'views.data_cleanup_voter_hanging_data_process_view'], {'name': '"""data_cleanup_voter_hanging_data_process"""'}), "('^data_cleanup_voter_hanging_data_process/$', views.\n data_cleanup_voter_hanging_data_process_view, name=\n 'data_cleanup_voter_hanging_data_process')\n", (790, 946), False, 'from django.conf.urls import re_path\n'), ((951, 1093), 'django.conf.urls.re_path', 're_path', (['"""^data_cleanup_voter_list_analysis/$"""', 'views.data_cleanup_voter_list_analysis_view'], {'name': '"""data_cleanup_voter_list_analysis"""'}), "('^data_cleanup_voter_list_analysis/$', views.\n data_cleanup_voter_list_analysis_view, name=\n 'data_cleanup_voter_list_analysis')\n", (958, 1093), False, 'from django.conf.urls import re_path\n'), ((1098, 1202), 'django.conf.urls.re_path', 're_path', (['"""^data_voter_statistics/$"""', 'views.data_voter_statistics_view'], {'name': '"""data_voter_statistics"""'}), "('^data_voter_statistics/$', views.data_voter_statistics_view, name=\n 'data_voter_statistics')\n", (1105, 1202), False, 'from django.conf.urls import re_path\n'), ((1204, 1299), 'django.conf.urls.re_path', 're_path', (['"""^import_sample_data/$"""', 'views.import_sample_data_view'], {'name': '"""import_sample_data"""'}), "('^import_sample_data/$', views.import_sample_data_view, name=\n 'import_sample_data')\n", (1211, 1299), False, 'from django.conf.urls import re_path\n'), ((1301, 1388), 'django.conf.urls.re_path', 're_path', (['"""^statistics/$"""', 'views.statistics_summary_view'], {'name': '"""statistics_summary"""'}), "('^statistics/$', views.statistics_summary_view, name=\n 'statistics_summary')\n", (1308, 1388), False, 'from django.conf.urls import re_path\n'), ((1390, 1488), 'django.conf.urls.re_path', 're_path', (['"""^sync_dashboard/$"""', 'views.sync_data_with_master_servers_view'], {'name': '"""sync_dashboard"""'}), "('^sync_dashboard/$', views.sync_data_with_master_servers_view, name\n ='sync_dashboard')\n", (1397, 1488), False, 'from django.conf.urls import re_path\n')]
from .zero import zero from main_module._unittester import UnitTester test = UnitTester(__name__) del UnitTester
[ "main_module._unittester.UnitTester" ]
[((78, 98), 'main_module._unittester.UnitTester', 'UnitTester', (['__name__'], {}), '(__name__)\n', (88, 98), False, 'from main_module._unittester import UnitTester\n')]
import numpy as np import numpy.random as npr import scipy.optimize as spo import tomo_challenge.metrics as tcm # custom data type, could be replaced with/tie in to tree.py class # cut_vals is (nfeat, nbins - 1) numpy array, float # tree_ids is ((nbins,) * nfeat) numpy array, int TreePars = namedtuple('TreePars', ['cut_vals', 'tree_ids']) # should maybe put this function in a class so we can call TreePars.to_array def treepars_to_array(treepars): """ Flattens cut_vals and tree_ids for optimizer """ cuts = np.flatten(treepars.cut_vals) ids = np.flatten(treepars.tree_ids) arr = np.concatenate((cuts, ids)) return(arr) # should maybe put this function in a class so we can call TreePars.from_array def array_to_treepars(arr): """ Converts optimizer format of 1D array back into namedtuple of arrays """ flat_cuts = arr[type(arr) == float] flat_ids = arr[type(arr) == int] nbins = len(np.unique(flat_ids)) nfeat = len(flat_cuts) / (nbins - 1) # maybe do some assert checks with these just in case types have problems # cuts = arr[0:nfeat*(nbins-1)].reshape((nfeat, nbins-1)) # ids = arr[feat*(nbins-1):].reshape((nbins,) * nfeat) cuts = flat_cuts.reshape((nfeat, nbins-1)) ids = flat_ids.reshape((nbins,) * nfeat) treepars = TreePars(cuts, ids) return(treepars) def get_cuts(galaxies, ival_treepars=None, nbins=3): """ Obtains simplest possible bin definitions: cuts in the space of observables given number of bins Parameters ---------- galaxies: numpy.ndarray, float observables (magnitudes and/or colors and/or errors) to serve as features for set of galaxies shape(galaxies) = (ngals, nfeat) ival_treepars: namedtuple, numpy.ndarray, float and int, optional initial values for decision tree parameters shape(ivals.cut_vals) = (nfeat, (nbins - 1)) shape(tree_ids) = ((nbins,) * nfeat) nbins: int, optional number of bins for which to obtain cuts Returns ------- assignments: numpy.ndarray, int bin assignment for each galaxy shape(assignments) = (ngals, 1) Notes ----- `sort_gals` does the heavy lifting. `eval_metric` will call one of the metrics from [tomo_challenge](https://github.com/LSSTDESC/tomo_challenge/blob/master/tomo_challenge/metrics.py). The original idea for a general, non-cut-based optimizer was to have parameters equal to the (ngals) length array of ints representing the bin assignments, but that's not necessary for the simple cut-and-sweep barber and would probably break `spo.minimize`. """ (ngals, nfeat) = np.shape(galaxies) if ival_treepars is None: cut_ivals = np.quantile(galaxies, np.linspace(0., 1., nbins), axis=1) assert(len(np.flatten(ivals)) == nbins**nfeat) # need structure and way of making dumb version of these tree_ids = npr.random_integers(0, nbins, nbins**nfeat) assert(len(np.unique(tree_ids)) == nbins) tree_ids.reshape((nfeat, nbins)) ival_treepars = TreePars(cut_ivals, tree_ids) ivals = treepars_to_array(ival_treepars) opt_res = spo.minimize(eval_metric, ivals, args=galaxies) treepars = array_to_treepars(opt_res.x) assignments = sort_gals(galaxies, treepars) return(assignments) def sort_gals(galaxies, tree_pars): """ Divides available galaxies into subsets according to a given decision tree on their observables Parameters ---------- galaxies: nfeature x n_gal array tree: tree object Notes ----- could be based on bisect, or maybe a sklearn object? """ pass def eval_metric(arr, galaxies): """ Just calls a metric from tomo_challenge wrapped for the `spo.minimize` API Notes ----- Replace `tcm.metric` with actual call to one of the tomo_challenge metrics Actually, there's a problem in that the current tomo_challenge metrics require the true redshifts... """ treepars = array_to_treepars(arr) assignments = sort_gals(galaxies, treepars) metval = tcm.metric(assignments) return metval
[ "numpy.unique", "tomo_challenge.metrics.metric", "numpy.random.random_integers", "scipy.optimize.minimize", "numpy.linspace", "numpy.concatenate", "numpy.flatten", "numpy.shape" ]
[((529, 558), 'numpy.flatten', 'np.flatten', (['treepars.cut_vals'], {}), '(treepars.cut_vals)\n', (539, 558), True, 'import numpy as np\n'), ((569, 598), 'numpy.flatten', 'np.flatten', (['treepars.tree_ids'], {}), '(treepars.tree_ids)\n', (579, 598), True, 'import numpy as np\n'), ((609, 636), 'numpy.concatenate', 'np.concatenate', (['(cuts, ids)'], {}), '((cuts, ids))\n', (623, 636), True, 'import numpy as np\n'), ((2661, 2679), 'numpy.shape', 'np.shape', (['galaxies'], {}), '(galaxies)\n', (2669, 2679), True, 'import numpy as np\n'), ((3179, 3226), 'scipy.optimize.minimize', 'spo.minimize', (['eval_metric', 'ivals'], {'args': 'galaxies'}), '(eval_metric, ivals, args=galaxies)\n', (3191, 3226), True, 'import scipy.optimize as spo\n'), ((4109, 4132), 'tomo_challenge.metrics.metric', 'tcm.metric', (['assignments'], {}), '(assignments)\n', (4119, 4132), True, 'import tomo_challenge.metrics as tcm\n'), ((943, 962), 'numpy.unique', 'np.unique', (['flat_ids'], {}), '(flat_ids)\n', (952, 962), True, 'import numpy as np\n'), ((2929, 2974), 'numpy.random.random_integers', 'npr.random_integers', (['(0)', 'nbins', '(nbins ** nfeat)'], {}), '(0, nbins, nbins ** nfeat)\n', (2948, 2974), True, 'import numpy.random as npr\n'), ((2753, 2781), 'numpy.linspace', 'np.linspace', (['(0.0)', '(1.0)', 'nbins'], {}), '(0.0, 1.0, nbins)\n', (2764, 2781), True, 'import numpy as np\n'), ((2808, 2825), 'numpy.flatten', 'np.flatten', (['ivals'], {}), '(ivals)\n', (2818, 2825), True, 'import numpy as np\n'), ((2992, 3011), 'numpy.unique', 'np.unique', (['tree_ids'], {}), '(tree_ids)\n', (3001, 3011), True, 'import numpy as np\n')]
import glob import numpy as np X = np.empty((0, 193)) y = np.empty((0, 10)) groups = np.empty((0, 1)) npz_files = glob.glob('./urban_sound_?.npz') for fn in npz_files: print(fn) data = np.load(fn) X = np.append(X, data['X'], axis=0) y = np.append(y, data['y'], axis=0) groups = np.append(groups, data['groups'], axis=0) print(groups[groups>0]) print(X.shape, y.shape) for r in y: if np.sum(r) > 1.5: print(r) np.savez('urban_sound', X=X, y=y, groups=groups)
[ "numpy.savez", "numpy.append", "numpy.sum", "numpy.empty", "numpy.load", "glob.glob" ]
[((36, 54), 'numpy.empty', 'np.empty', (['(0, 193)'], {}), '((0, 193))\n', (44, 54), True, 'import numpy as np\n'), ((59, 76), 'numpy.empty', 'np.empty', (['(0, 10)'], {}), '((0, 10))\n', (67, 76), True, 'import numpy as np\n'), ((86, 102), 'numpy.empty', 'np.empty', (['(0, 1)'], {}), '((0, 1))\n', (94, 102), True, 'import numpy as np\n'), ((115, 147), 'glob.glob', 'glob.glob', (['"""./urban_sound_?.npz"""'], {}), "('./urban_sound_?.npz')\n", (124, 147), False, 'import glob\n'), ((444, 492), 'numpy.savez', 'np.savez', (['"""urban_sound"""'], {'X': 'X', 'y': 'y', 'groups': 'groups'}), "('urban_sound', X=X, y=y, groups=groups)\n", (452, 492), True, 'import numpy as np\n'), ((194, 205), 'numpy.load', 'np.load', (['fn'], {}), '(fn)\n', (201, 205), True, 'import numpy as np\n'), ((214, 245), 'numpy.append', 'np.append', (['X', "data['X']"], {'axis': '(0)'}), "(X, data['X'], axis=0)\n", (223, 245), True, 'import numpy as np\n'), ((254, 285), 'numpy.append', 'np.append', (['y', "data['y']"], {'axis': '(0)'}), "(y, data['y'], axis=0)\n", (263, 285), True, 'import numpy as np\n'), ((299, 340), 'numpy.append', 'np.append', (['groups', "data['groups']"], {'axis': '(0)'}), "(groups, data['groups'], axis=0)\n", (308, 340), True, 'import numpy as np\n'), ((410, 419), 'numpy.sum', 'np.sum', (['r'], {}), '(r)\n', (416, 419), True, 'import numpy as np\n')]
import os import errno import sys def mock_directory_tree(tree): tree = dict([(os.path.join(*key), value) \ for key, value in tree.iteritems()]) def listdir(path): try: names = tree[path] except KeyError: raise OSError(errno.ENOENT, os.strerror(errno.ENOENT), path) if names is None: raise OSError(errno.ENOTDIR, os.strerror(errno.ENOTDIR), path) return names def isfile(path): try: item = tree[path] except KeyError: return False return item is None def isdir(path): try: item = tree[path] except KeyError: return False return item is not None return listdir, isfile, isdir class PreserveOs(object): def setUp(self): super(PreserveOs, self).setUp() self.__listdir = os.listdir self.__isfile = os.path.isfile self.__isdir = os.path.isdir def tearDown(self): os.path.isdir = self.__isdir os.path.isfile = self.__isfile os.listdir = self.__listdir super(PreserveOs, self).tearDown() def full_test_tree(self): tree = {('.',): ('__init__.py', 'test_first.py', 'test_second.py', 'test_sub_first', 't_sub_first', 'test_sub_third'), ('.', '__init__.py'): None, ('.', 'test_first.py'): None, ('.', 'test_second.py'): None, ('.', 'test_sub_first'): ('__init__.py', 'test_sub_first.py'), ('.', 'test_sub_first', '__init__.py'): None, ('.', 'test_sub_first', 'test_sub_first.py'): None, ('.', 't_sub_first'): ('__init__.py', 'test_sub_first.py'), ('.', 't_sub_first', '__init__.py'): None, ('.', 't_sub_first', 'test_sub_first.py'): None, ('.', 'test_sub_second'): ('test_sub_first.py',), ('.', 'test_sub_second', 'test_sub_first.py'): None, ('.', 'test_sub_third'): ('__init__.py', 'test_sub_first.py', 'test_sub_second'), ('.', 'test_sub_third', '__init__.py'): None, ('.', 'test_sub_third', 'test_sub_first.py'): None, ('.', 'test_sub_third', 'test_sub_second'): \ ('__init__.py', 'test_sub_first.py', 't_sub_second.py'), ('.', 'test_sub_third', 'test_sub_second', '__init__.py'): None, ('.', 'test_sub_third', 'test_sub_second', 'test_sub_first.py'): None, ('.', 'test_sub_third', 'test_sub_second', 't_sub_second.py'): None} os.listdir, os.path.isfile, os.path.isdir = mock_directory_tree(tree) self.expected_content = {'first': 'test_first', 'second': 'test_second', 'sub_first': 'test_sub_first', 'sub_first.sub_first': \ 'test_sub_first.test_sub_first', 'sub_third': 'test_sub_third', 'sub_third.sub_first': \ 'test_sub_third.test_sub_first', 'sub_third.sub_second': \ 'test_sub_third.test_sub_second', 'sub_third.sub_second.sub_first': \ 'test_sub_third.test_sub_second.' \ 'test_sub_first'} class ImportTrash(object): def setUp(self): self.modules_trash = [] self.meta_path_trash = [] def tearDown(self): for item in self.meta_path_trash: if item in sys.meta_path: sys.meta_path.remove(item) for name in self.modules_trash: if name in sys.modules: del sys.modules[name]
[ "os.strerror", "os.path.join", "sys.meta_path.remove" ]
[((84, 102), 'os.path.join', 'os.path.join', (['*key'], {}), '(*key)\n', (96, 102), False, 'import os\n'), ((406, 432), 'os.strerror', 'os.strerror', (['errno.ENOTDIR'], {}), '(errno.ENOTDIR)\n', (417, 432), False, 'import os\n'), ((3873, 3899), 'sys.meta_path.remove', 'sys.meta_path.remove', (['item'], {}), '(item)\n', (3893, 3899), False, 'import sys\n'), ((305, 330), 'os.strerror', 'os.strerror', (['errno.ENOENT'], {}), '(errno.ENOENT)\n', (316, 330), False, 'import os\n')]
import sys import unittest try: from unittest import mock except ImportError: import mock import argparse from tabcmd.parsers.create_site_users_parser import CreateSiteUsersParser from .common_setup import * commandname = 'createsiteusers' class CreateSiteUsersParserTest(unittest.TestCase): @classmethod def setUpClass(cls): cls.parser_under_test, manager, mock_command = initialize_test_pieces(commandname) CreateSiteUsersParser.create_site_user_parser(manager, mock_command) def test_create_site_users_parser_users_file(self): with mock.patch('builtins.open', mock.mock_open(read_data='test')) as open_file: mock_args = [commandname, "users.csv"] args = self.parser_under_test.parse_args(mock_args) open_file.assert_called_with('users.csv', 'r', -1, None, None) def test_create_site_user_parser_missing_arguments(self): mock_args = [commandname] with self.assertRaises(SystemExit): args = self.parser_under_test.parse_args(mock_args) def test_create_site_user_parser_role(self): with mock.patch('builtins.open', mock.mock_open(read_data='test')): mock_args = [commandname, "users.csv", '--site', 'site-name'] args = self.parser_under_test.parse_args(mock_args) assert args.site == 'site-name', args
[ "tabcmd.parsers.create_site_users_parser.CreateSiteUsersParser.create_site_user_parser", "mock.mock_open" ]
[((445, 513), 'tabcmd.parsers.create_site_users_parser.CreateSiteUsersParser.create_site_user_parser', 'CreateSiteUsersParser.create_site_user_parser', (['manager', 'mock_command'], {}), '(manager, mock_command)\n', (490, 513), False, 'from tabcmd.parsers.create_site_users_parser import CreateSiteUsersParser\n'), ((612, 644), 'mock.mock_open', 'mock.mock_open', ([], {'read_data': '"""test"""'}), "(read_data='test')\n", (626, 644), False, 'import mock\n'), ((1146, 1178), 'mock.mock_open', 'mock.mock_open', ([], {'read_data': '"""test"""'}), "(read_data='test')\n", (1160, 1178), False, 'import mock\n')]
import os from setuptools import setup, find_packages import versioneer if __name__ == "__main__": def read(fname): return open(os.path.join(os.path.dirname(__file__), fname)).read() meta = {} base_dir = os.path.dirname(os.path.abspath(__file__)) with open(os.path.join(base_dir, 'gammy', '_meta.py')) as fp: exec(fp.read(), meta) setup( name = "gammy", version = versioneer.get_version(), author = meta["__author__"], author_email = meta["__contact__"], description = "Generalized additive models with a Bayesian twist", url = "https://github.com/malmgrek/Gammy", cmdclass = versioneer.get_cmdclass(), packages = find_packages(), install_requires = [ "attrs", "bayespy", "h5py", "matplotlib", "numpy", "scipy" ], extras_require = { "dev": [ "versioneer", "pytest", "hypothesis", ], }, keywords = [ "Statistical modeling", "Bayesian statistics", "Machine learning", ], classifiers = [ "Programming Language :: Python :: 3 :: Only", "Development Status :: 1 - Planning", "Environment :: Console", "Intended Audience :: Science/Research", "License :: OSI Approved :: {0}".format(meta["__license__"]), "Operating System :: OS Independent", "Topic :: Scientific/Engineering", ], long_description = read('README.md'), long_description_content_type = "text/markdown", )
[ "setuptools.find_packages", "os.path.join", "versioneer.get_version", "os.path.dirname", "os.path.abspath", "versioneer.get_cmdclass" ]
[((244, 269), 'os.path.abspath', 'os.path.abspath', (['__file__'], {}), '(__file__)\n', (259, 269), False, 'import os\n'), ((285, 328), 'os.path.join', 'os.path.join', (['base_dir', '"""gammy"""', '"""_meta.py"""'], {}), "(base_dir, 'gammy', '_meta.py')\n", (297, 328), False, 'import os\n'), ((435, 459), 'versioneer.get_version', 'versioneer.get_version', ([], {}), '()\n', (457, 459), False, 'import versioneer\n'), ((707, 732), 'versioneer.get_cmdclass', 'versioneer.get_cmdclass', ([], {}), '()\n', (730, 732), False, 'import versioneer\n'), ((757, 772), 'setuptools.find_packages', 'find_packages', ([], {}), '()\n', (770, 772), False, 'from setuptools import setup, find_packages\n'), ((156, 181), 'os.path.dirname', 'os.path.dirname', (['__file__'], {}), '(__file__)\n', (171, 181), False, 'import os\n')]
# python 3.7 """Predicts the scene category, attribute.""" import numpy as np from PIL import Image import torch import torch.nn.functional as F import torchvision.transforms as transforms from .base_predictor import BasePredictor from .scene_wideresnet import resnet18 __all__ = ['ScenePredictor'] NUM_CATEGORIES = 365 NUM_ATTRIBUTES = 102 FEATURE_DIM = 512 class ScenePredictor(BasePredictor): """Defines the predictor class for scene analysis.""" def __init__(self): super().__init__('scene') def build(self): self.net = resnet18(num_classes=NUM_CATEGORIES) def load(self): # Load category labels. self.check_attr('category_anno_path') self.category_name_to_idx = {} self.category_idx_to_name = {} with open(self.category_anno_path, 'r') as f: for line in f: name, idx = line.strip().split(' ') name = name[3:].replace('/', '__') idx = int(idx) self.category_name_to_idx[name] = idx self.category_idx_to_name[idx] = name assert len(self.category_name_to_idx) == NUM_CATEGORIES assert len(self.category_idx_to_name) == NUM_CATEGORIES # Load attribute labels. self.check_attr('attribute_anno_path') self.attribute_name_to_idx = {} self.attribute_idx_to_name = {} with open(self.attribute_anno_path, 'r') as f: for idx, line in enumerate(f): name = line.strip().replace(' ', '_') self.attribute_name_to_idx[name] = idx self.attribute_idx_to_name[idx] = name assert len(self.attribute_name_to_idx) == NUM_ATTRIBUTES assert len(self.attribute_idx_to_name) == NUM_ATTRIBUTES # Transform for input images. self.transform = transforms.Compose([ transforms.Resize((224, 224)), transforms.ToTensor(), transforms.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225]) ]) # Load pre-trained weights for category prediction. checkpoint = torch.load(self.weight_path, map_location=lambda storage, loc: storage) state_dict = {k.replace('module.', ''): v for k, v in checkpoint['state_dict'].items()} self.net.load_state_dict(state_dict) fc_weight = list(self.net.parameters())[-2].data.numpy() fc_weight[fc_weight < 0] = 0 # Load additional weights for attribute prediction. self.check_attr('attribute_additional_weight_path') self.attribute_weight = np.load(self.attribute_additional_weight_path) assert self.attribute_weight.shape == (NUM_ATTRIBUTES, FEATURE_DIM) def _predict(self, images): if not isinstance(images, np.ndarray): raise ValueError(f'Images should be with type `numpy.ndarray`!') if images.dtype != np.uint8: raise ValueError(f'Images should be with dtype `numpy.uint8`!') if not (len(images.shape) == 4 and 0 < images.shape[0] <= self.batch_size and images.shape[3] == self.image_channels): raise ValueError(f'Images should be with shape [batch_size, height ' f'width, channel], where `batch_size` no larger than ' f'{self.batch_size}, and `channel` equals to ' f'{self.image_channels}!\n' f'But {images.shape} received!') xs = [self.transform(Image.fromarray(img)).unsqueeze(0) for img in images] xs = torch.cat(xs, dim=0).to(self.run_device) logits, features = self.net(xs) category_scores = self.get_value(F.softmax(logits, dim=1)) features = self.get_value(features).squeeze(axis=(2, 3)) attribute_scores = features.dot(self.attribute_weight.T) assert (len(category_scores.shape) == 2 and category_scores.shape[1] == NUM_CATEGORIES) assert (len(attribute_scores.shape) == 2 and attribute_scores.shape[1] == NUM_ATTRIBUTES) results = { 'category': category_scores, 'attribute': attribute_scores, } if self.use_cuda: torch.cuda.empty_cache() return results def predict(self, images, **kwargs): return self.batch_run(images, self._predict)
[ "torch.nn.functional.softmax", "PIL.Image.fromarray", "torch.load", "torchvision.transforms.Normalize", "torchvision.transforms.Resize", "torchvision.transforms.ToTensor", "numpy.load", "torch.cuda.empty_cache", "torch.cat" ]
[((1996, 2067), 'torch.load', 'torch.load', (['self.weight_path'], {'map_location': '(lambda storage, loc: storage)'}), '(self.weight_path, map_location=lambda storage, loc: storage)\n', (2006, 2067), False, 'import torch\n'), ((2492, 2538), 'numpy.load', 'np.load', (['self.attribute_additional_weight_path'], {}), '(self.attribute_additional_weight_path)\n', (2499, 2538), True, 'import numpy as np\n'), ((3561, 3585), 'torch.nn.functional.softmax', 'F.softmax', (['logits'], {'dim': '(1)'}), '(logits, dim=1)\n', (3570, 3585), True, 'import torch.nn.functional as F\n'), ((4063, 4087), 'torch.cuda.empty_cache', 'torch.cuda.empty_cache', ([], {}), '()\n', (4085, 4087), False, 'import torch\n'), ((1772, 1801), 'torchvision.transforms.Resize', 'transforms.Resize', (['(224, 224)'], {}), '((224, 224))\n', (1789, 1801), True, 'import torchvision.transforms as transforms\n'), ((1812, 1833), 'torchvision.transforms.ToTensor', 'transforms.ToTensor', ([], {}), '()\n', (1831, 1833), True, 'import torchvision.transforms as transforms\n'), ((1844, 1910), 'torchvision.transforms.Normalize', 'transforms.Normalize', (['[0.485, 0.456, 0.406]', '[0.229, 0.224, 0.225]'], {}), '([0.485, 0.456, 0.406], [0.229, 0.224, 0.225])\n', (1864, 1910), True, 'import torchvision.transforms as transforms\n'), ((3443, 3463), 'torch.cat', 'torch.cat', (['xs'], {'dim': '(0)'}), '(xs, dim=0)\n', (3452, 3463), False, 'import torch\n'), ((3379, 3399), 'PIL.Image.fromarray', 'Image.fromarray', (['img'], {}), '(img)\n', (3394, 3399), False, 'from PIL import Image\n')]
from collections import deque def solution(N, bus_stop): answer = [[1300 for _ in range(N)] for _ in range(N)] bus_stop = [(x-1, y-1) for x,y in bus_stop] q = deque(bus_stop) for x,y in bus_stop: answer[x][y] = 0 while q: x, y = q.popleft() for nx, ny in ((x-1, y), (x+1, y), (x, y+1), (x, y-1)): if ( 0 <= nx < N and 0 <= ny < N and answer[nx][ny] > answer[x][y] ): answer[nx][ny] = answer[x][y] + 1 q.append((nx, ny)) return answer if __name__ == '__main__': print(solution( 3, [[1,2],[3,3]], ))
[ "collections.deque" ]
[((172, 187), 'collections.deque', 'deque', (['bus_stop'], {}), '(bus_stop)\n', (177, 187), False, 'from collections import deque\n')]
import numpy as np import torch from torch.nn import functional as F from rltoolkit.acm.off_policy import AcMOffPolicy from rltoolkit.algorithms import DDPG from rltoolkit.algorithms.ddpg.models import Actor, Critic class DDPG_AcM(AcMOffPolicy, DDPG): def __init__( self, unbiased_update: bool = False, custom_loss: float = 0.0, custom_loss_target: float = 0.0, custom_loss_lr: float = 0.0001, refill_buffer: bool = False, lagrangian_custom_loss: bool = False, separate_custom_loss: bool = False, cw_cl_targets: list = None, custom_loss_target_decay: int = None, custom_loss_target_dfactor: float = None, *args, **kwargs, ): f"""DDPG with AcM class Args: unbiased_update (bool, optional): Use next_obs as action for update. Defaults to { False }. refill_buffer (bool, optional): if buffer should be refilled with new observations, when its full Defaults to {False} """ super().__init__(*args, **kwargs) self.unbiased_update = unbiased_update self.actor = Actor( self.ob_dim, ac_lim=self.actor_ac_lim, ac_dim=self.actor_output_dim ) if not self.acm_critic: self.critic = Critic(self.ob_dim, ac_dim=self.actor_output_dim) self.custom_loss = custom_loss custom_loss_scaled = np.log(np.exp(custom_loss) - 1) self.custom_loss_param = torch.tensor(custom_loss_scaled) if not separate_custom_loss else torch.Tensor([custom_loss_scaled] * self.actor_output_dim) self.custom_loss_param.requires_grad = lagrangian_custom_loss self.custom_loss_target = custom_loss_target self.cw_cl_targets = cw_cl_targets if lagrangian_custom_loss and cw_cl_targets: self.custom_loss_target = cw_cl_targets self.lagrangian_custom_loss = lagrangian_custom_loss self.custom_loss_lr = custom_loss_lr self.separate_custom_loss = separate_custom_loss self.custom_loss_optimizer = self.opt([self.custom_loss_param], lr=custom_loss_lr) self.refill_buffer = refill_buffer self.custom_loss_target_decay = custom_loss_target_decay self.custom_loss_target_dfactor = custom_loss_target_dfactor if self.custom_loss: self.loss["ddpg"] = 0.0 self.loss["dist"] = 0.0 if lagrangian_custom_loss: if self.separate_custom_loss: self.distances = [] for i in range(self.actor_output_dim): self.loss[f"custom_loss_param/{i}"] = 0.0 else: self.loss["custom_loss_param"] = 0.0 new_hparams = { "hparams/unbiased_update": self.unbiased_update, "hparams/custom_loss": self.custom_loss, "hparams/lagrangian_cl": self.lagrangian_custom_loss, "hparams/custom_loss_target_decay": self.custom_loss_target_decay, "hparams/custom_loss_target_dfactor": self.custom_loss_target_dfactor, } if self.lagrangian_custom_loss: if self.cw_cl_targets is None: new_hparams["hparams/cl_target"] = self.custom_loss_target new_hparams["hparams/cl_lr"] = self.custom_loss_lr self.hparams_acm.update(new_hparams) self.hparams.update(self.hparams_acm) def noise_action(self, obs, act_noise, deterministic=False): action, _ = self._actor.act(obs, deterministic) noise = act_noise * torch.randn(self.actor_output_dim, device=self.device) action += noise * self.actor_ac_lim action = np.clip( action.cpu(), -1.1 * self.actor_ac_lim.cpu(), 1.1 * self.actor_ac_lim.cpu() ) action = action.to(self.device) if self.denormalize_actor_out: action = self.replay_buffer.denormalize(action, self.acm_ob_idx) return action def custom_loss_target_decay_condition(self): return( self.custom_loss_target_decay is not None and self.custom_loss_target_dfactor is not None and self.iterations > 0 and self.stats_logger.frames % self.custom_loss_target_decay == 0 ) def acm_update_condition(self): return ( self.iteration > 0 and self.acm_epochs > 0 and self.stats_logger.frames % self.acm_update_freq == 0 ) def make_unbiased_update(self): if self.update_condition(): for _ in range(self.grad_steps): batch = self.replay_buffer.sample_batch( self.update_batch_size, self.device ) obs, next_obs, _, reward, done, acm_action = batch self.update( obs=obs, next_obs=next_obs, action=next_obs, reward=reward, done=done, acm_action=acm_action, ) def make_update(self): if self.unbiased_update: self.make_unbiased_update() else: super().make_update() if self.custom_loss_target_decay_condition(): self.custom_loss_target *= self.custom_loss_target_dfactor print(f"CUSTOM LOSS TARTGET DECAY, CURRENT VALUE {self.custom_loss_target}") if self.acm_update_condition(): if self.acm_update_batches: self.update_acm_batches(self.acm_update_batches) else: self.update_acm(self.acm_epochs) def collect_params_dict(self): params_dict = super().collect_params_dict() params_dict["acm"] = self.acm.state_dict() return params_dict def apply_params_dict(self, params_dict): super().apply_params_dict(params_dict) self.acm.load_state_dict(params_dict["acm"]) def save_model(self, save_path=None): save_path = DDPG.save_model(self, save_path) torch.save(self.acm.state_dict(), save_path + "_acm_model.pt") def compute_qfunc_targ( self, reward: torch.Tensor, next_obs: torch.Tensor, done: torch.Tensor ): """Compute targets for Q-functions Args: reward (torch.Tensor): batch of rewards next_obs (torch.Tensor): batch of next observations done (torch.Tensor): batch of done Returns: torch.Tensor: Q-function targets for the batch """ with torch.no_grad(): next_action, _ = self.actor_targ(next_obs) next_action = self.replay_buffer.denormalize(next_action, self.acm_ob_idx) if self.acm_critic: acm_obs = torch.cat([next_obs, next_action], axis=1) next_action = self.acm(acm_obs) q_target = self.critic_targ(next_obs, next_action) qfunc_target = reward + self.gamma * (1 - done) * q_target return qfunc_target def add_custom_loss(self, loss, action, denorm_action, next_obs): if self.custom_loss: self.loss["ddpg"] = loss.item() if self.norm_closs: next_obs = self.replay_buffer.normalize(next_obs, force=True) else: action = denorm_action if not self.separate_custom_loss: loss_dist = F.mse_loss(action, self.cut_obs(next_obs)) self.loss["dist"] = loss_dist.item() if self.lagrangian_custom_loss: loss += F.softplus(self.custom_loss_param) * (loss_dist - self.custom_loss_target) else: loss += self.custom_loss * loss_dist if self.custom_loss_target_decay is not None: self.loss["custom_loss_target"] = self.custom_loss_target else: distances = torch.mean(F.mse_loss(action, self.cut_obs(next_obs), reduction='none'), dim=0) if self.cw_cl_targets is None: loss += torch.sum(F.softplus(self.custom_loss_param) * (distances - self.custom_loss_target)) else: loss += torch.sum(F.softplus(self.custom_loss_param) * (distances - torch.Tensor(self.custom_loss_target))) self.loss["dist"] = distances.detach() if self.debug_mode: for j in range(distances.shape[0]): self.loss[f"dist/cw/{j}"] = distances[j] return loss def compute_pi_loss(self, obs, next_obs): action, _ = self._actor(obs) denorm_action = self.replay_buffer.denormalize(action, self.acm_ob_idx) if self.acm_critic: acm_obs = torch.cat([obs, denorm_action], axis=1) critic_action = self.acm(acm_obs) else: critic_action = denorm_action loss = -self._critic(obs, critic_action).mean() return self.add_custom_loss(loss, action, denorm_action, next_obs) def update_custom_loss_param_loss(self): if not self.lagrangian_custom_loss: return dist_loss = self.loss["dist"] if self.cw_cl_targets is None: loss = -F.softplus(self.custom_loss_param) * (dist_loss - self.custom_loss_target) else: loss = -F.softplus(self.custom_loss_param) * (dist_loss - torch.Tensor(self.custom_loss_target)) if self.separate_custom_loss: for i in range(len(loss)): self.loss[f"custom_loss_param/{i}"] = loss[i].item() self.loss["dist"] = torch.mean(self.loss["dist"]).item() loss = torch.sum(loss) else: self.loss["custom_loss_param"] = loss.item() self.custom_loss_optimizer.zero_grad() loss.backward() self.custom_loss_optimizer.step() def copy_offline_dataset(self, dataset, size): """copies the provided offlineRL dataset into the replay buffer. for the moment assumes D4RL dataset format (a dictionary) and copies elements one-by-one """ i = 0 traj = 0 while i < size: traj += 1 done = torch.tensor(dataset['timeouts'][i] or dataset['terminals'][i]) obs = torch.tensor(dataset['observations'][i]) prev_idx = self.replay_buffer.add_obs(obs) i += 1 ep_len = 0 while(not done and i < size): nextobs = torch.tensor(dataset['observations'][i]) rew = torch.tensor( dataset['rewards'][i] ) done = torch.tensor( dataset['timeouts'][i] or dataset['terminals'][i] ) action = torch.tensor( dataset['actions'][i] ) end = torch.tensor( dataset['terminals'][i] ) next_idx = self.replay_buffer.add_obs(nextobs) self.replay_buffer.add_timestep( prev_idx, next_idx, nextobs, rew, done, end ) self.replay_buffer.add_acm_action(action) prev_idx = next_idx i += 1 ep_len += 1 print(f"copied offline dataset with {i} samples, contains {traj} trajectories") #sets the internal variables according to the provided offline dataset self.acm_pre_train_samples = i self.buffer_size = i self.max_frames = i self.iterations = i / self.steps_per_epoch #updates std/dev/min/max parameters of the dataset self.update_obs_mean_std(self.replay_buffer) def collect_batch_and_train(self, steps_per_epoch: int, *args, **kwargs): """SPP variant of rollouts and collect samples if there is enough samples in replay buffer use existing samples to perform actor/critic update otherwise generate new samples till steps_per_epoch number of steps will be added to the replay buffer Args: steps_per_epoch (int): number of samples to collect and train *args, **kwargs: arguments for make_update """ collected = 0 while collected < steps_per_epoch: # important part, # when the replay buffer is filled stop generating new frames, just use the existing buffer # such that the number of used experience in learning is counted correctly if (self.stats_logger.frames >= self.buffer_size - self.acm_pre_train_samples) and not self.refill_buffer: self.stats_logger.frames += 1 collected += 1 self.make_update(*args, **kwargs) continue self.stats_logger.rollouts += 1 obs = self.env.reset() # end - end of the episode from perspective of the simulation # done - end of the episode from perspective of the model end = False obs = self.process_obs(obs) prev_idx = self.replay_buffer.add_obs(obs) ep_len = 0 while not end: obs = self.replay_buffer.normalize(obs) if (self.stats_logger.frames > self.acm_pre_train_samples) and (self.stats_logger.frames <= self.acm_pre_train_samples + self.random_frames): action = self.initial_act(obs) else: action = self.noise_action(obs, self.act_noise) action_proc = self.process_action(action, obs) prev_obs = obs obs, rew, done, _ = self.env.step(action_proc) ep_len += 1 end = True if ep_len == self.max_ep_len else done done = False if ep_len == self.max_ep_len else done obs = self.process_obs(obs) if self.next_obs_diff is not None: obs = self.compute_next_obs_diff(prev_obs, obs) next_idx = self.replay_buffer.add_obs(obs) self.replay_buffer.add_timestep( prev_idx, next_idx, action, rew, done, end ) prev_idx = next_idx self.stats_logger.frames += 1 collected += 1 self.make_update(*args, **kwargs) def update( self, obs: torch.Tensor, next_obs: torch.Tensor, action: torch.Tensor, reward: torch.Tensor, done: torch.Tensor, acm_action: torch.Tensor, ): """DDPG update step Args: obs (torch.Tensor): observations tensor next_obs (torch.Tensor): next observations tensor action (torch.Tensor): actions tensor reward (torch.Tensor): rewards tensor done (torch.Tensor): dones tensor acm_action (torch.Tensor): tensor of acm actions """ for param in self.acm.parameters(): param.requires_grad = False if self.acm_critic: action = acm_action y = self.compute_qfunc_targ(reward, next_obs, done) # Update Q-function by one step y_q = self._critic(obs, action) loss_q = F.mse_loss(y_q, y) self.loss["critic"] = loss_q.item() self.critic_optimizer.zero_grad() loss_q.backward() self.critic_optimizer.step() # Update policy by one step self._critic.eval() loss = self.compute_pi_loss(obs, next_obs) self.loss["actor"] = loss.item() self.actor_optimizer.zero_grad() loss.backward() self.actor_optimizer.step() #update temperature of Lagrangian optimization obj self.update_custom_loss_param_loss() # Update target networks self.update_target_nets() self._critic.train() for param in self.acm.parameters(): param.requires_grad = True def add_tensorboard_logs(self, buffer, done): super().add_tensorboard_logs(buffer, done) if self.lagrangian_custom_loss: self.tensorboard_writer.log_custom_loss_param( self.iteration, self.custom_loss_param) if __name__ == "__main__": #with torch.cuda.device(0): model = DDPG_AcM( # unbiased_update=True, # custom_loss=True, # acm_update_batches=50, # denormalize_actor_out=True, env_name="Pendulum-v0", buffer_size=50000, act_noise=0.05, iterations=100, gamma=0.99, steps_per_epoch=200, stats_freq=5, test_episodes=3, custom_loss=1, lagrangian_custom_loss=False, # tensorboard_dir="logs_ddpg", # tensorboard_comment="", acm_update_freq=200, acm_epochs=1, acm_pre_train_epochs=10, acm_pre_train_samples=10000, use_gpu=False, render=False, ) model.pre_train() model.train()
[ "torch.nn.functional.mse_loss", "rltoolkit.algorithms.ddpg.models.Critic", "rltoolkit.algorithms.ddpg.models.Actor", "torch.mean", "torch.Tensor", "numpy.exp", "torch.tensor", "torch.nn.functional.softplus", "torch.sum", "rltoolkit.algorithms.DDPG.save_model", "torch.no_grad", "torch.randn", "torch.cat" ]
[((1132, 1206), 'rltoolkit.algorithms.ddpg.models.Actor', 'Actor', (['self.ob_dim'], {'ac_lim': 'self.actor_ac_lim', 'ac_dim': 'self.actor_output_dim'}), '(self.ob_dim, ac_lim=self.actor_ac_lim, ac_dim=self.actor_output_dim)\n', (1137, 1206), False, 'from rltoolkit.algorithms.ddpg.models import Actor, Critic\n'), ((6017, 6049), 'rltoolkit.algorithms.DDPG.save_model', 'DDPG.save_model', (['self', 'save_path'], {}), '(self, save_path)\n', (6032, 6049), False, 'from rltoolkit.algorithms import DDPG\n'), ((15520, 15538), 'torch.nn.functional.mse_loss', 'F.mse_loss', (['y_q', 'y'], {}), '(y_q, y)\n', (15530, 15538), True, 'from torch.nn import functional as F\n'), ((1287, 1336), 'rltoolkit.algorithms.ddpg.models.Critic', 'Critic', (['self.ob_dim'], {'ac_dim': 'self.actor_output_dim'}), '(self.ob_dim, ac_dim=self.actor_output_dim)\n', (1293, 1336), False, 'from rltoolkit.algorithms.ddpg.models import Actor, Critic\n'), ((1471, 1503), 'torch.tensor', 'torch.tensor', (['custom_loss_scaled'], {}), '(custom_loss_scaled)\n', (1483, 1503), False, 'import torch\n'), ((1537, 1595), 'torch.Tensor', 'torch.Tensor', (['([custom_loss_scaled] * self.actor_output_dim)'], {}), '([custom_loss_scaled] * self.actor_output_dim)\n', (1549, 1595), False, 'import torch\n'), ((3569, 3623), 'torch.randn', 'torch.randn', (['self.actor_output_dim'], {'device': 'self.device'}), '(self.actor_output_dim, device=self.device)\n', (3580, 3623), False, 'import torch\n'), ((6559, 6574), 'torch.no_grad', 'torch.no_grad', ([], {}), '()\n', (6572, 6574), False, 'import torch\n'), ((8910, 8949), 'torch.cat', 'torch.cat', (['[obs, denorm_action]'], {'axis': '(1)'}), '([obs, denorm_action], axis=1)\n', (8919, 8949), False, 'import torch\n'), ((9826, 9841), 'torch.sum', 'torch.sum', (['loss'], {}), '(loss)\n', (9835, 9841), False, 'import torch\n'), ((10383, 10446), 'torch.tensor', 'torch.tensor', (["(dataset['timeouts'][i] or dataset['terminals'][i])"], {}), "(dataset['timeouts'][i] or dataset['terminals'][i])\n", (10395, 10446), False, 'import torch\n'), ((10465, 10505), 'torch.tensor', 'torch.tensor', (["dataset['observations'][i]"], {}), "(dataset['observations'][i])\n", (10477, 10505), False, 'import torch\n'), ((1413, 1432), 'numpy.exp', 'np.exp', (['custom_loss'], {}), '(custom_loss)\n', (1419, 1432), True, 'import numpy as np\n'), ((6776, 6818), 'torch.cat', 'torch.cat', (['[next_obs, next_action]'], {'axis': '(1)'}), '([next_obs, next_action], axis=1)\n', (6785, 6818), False, 'import torch\n'), ((10672, 10712), 'torch.tensor', 'torch.tensor', (["dataset['observations'][i]"], {}), "(dataset['observations'][i])\n", (10684, 10712), False, 'import torch\n'), ((10748, 10783), 'torch.tensor', 'torch.tensor', (["dataset['rewards'][i]"], {}), "(dataset['rewards'][i])\n", (10760, 10783), False, 'import torch\n'), ((10809, 10872), 'torch.tensor', 'torch.tensor', (["(dataset['timeouts'][i] or dataset['terminals'][i])"], {}), "(dataset['timeouts'][i] or dataset['terminals'][i])\n", (10821, 10872), False, 'import torch\n'), ((10900, 10935), 'torch.tensor', 'torch.tensor', (["dataset['actions'][i]"], {}), "(dataset['actions'][i])\n", (10912, 10935), False, 'import torch\n'), ((10976, 11013), 'torch.tensor', 'torch.tensor', (["dataset['terminals'][i]"], {}), "(dataset['terminals'][i])\n", (10988, 11013), False, 'import torch\n'), ((9394, 9428), 'torch.nn.functional.softplus', 'F.softplus', (['self.custom_loss_param'], {}), '(self.custom_loss_param)\n', (9404, 9428), True, 'from torch.nn import functional as F\n'), ((9503, 9537), 'torch.nn.functional.softplus', 'F.softplus', (['self.custom_loss_param'], {}), '(self.custom_loss_param)\n', (9513, 9537), True, 'from torch.nn import functional as F\n'), ((9553, 9590), 'torch.Tensor', 'torch.Tensor', (['self.custom_loss_target'], {}), '(self.custom_loss_target)\n', (9565, 9590), False, 'import torch\n'), ((9770, 9799), 'torch.mean', 'torch.mean', (["self.loss['dist']"], {}), "(self.loss['dist'])\n", (9780, 9799), False, 'import torch\n'), ((7592, 7626), 'torch.nn.functional.softplus', 'F.softplus', (['self.custom_loss_param'], {}), '(self.custom_loss_param)\n', (7602, 7626), True, 'from torch.nn import functional as F\n'), ((8135, 8169), 'torch.nn.functional.softplus', 'F.softplus', (['self.custom_loss_param'], {}), '(self.custom_loss_param)\n', (8145, 8169), True, 'from torch.nn import functional as F\n'), ((8291, 8325), 'torch.nn.functional.softplus', 'F.softplus', (['self.custom_loss_param'], {}), '(self.custom_loss_param)\n', (8301, 8325), True, 'from torch.nn import functional as F\n'), ((8341, 8378), 'torch.Tensor', 'torch.Tensor', (['self.custom_loss_target'], {}), '(self.custom_loss_target)\n', (8353, 8378), False, 'import torch\n')]
import io import sys from textnn.utils import ProgressIterator #inspired by https://stackoverflow.com/a/34738440 def capture_sysout(cmd): capturedOutput = io.StringIO() # Create StringIO object sys.stdout = capturedOutput # and redirect stdout. cmd() # Call function. sys.stdout = sys.__stdout__ # Reset redirect. return capturedOutput.getvalue() # Now works as before. def test_progress_iterator(): def progress_generator(): sum(ProgressIterator([1, 2, 3], interval=0, description="")) report = capture_sysout(cmd=progress_generator) lines = report.strip().split("\n") # expected result (with changing numbers): # 1/3 [=========>....................] - ETA: 7s # 2/3 [===================>..........] - ETA: 1s # 3/3 [==============================] - 4s 1s/step assert lines[0].startswith("1/3") assert "ETA: " in lines[0] assert lines[1].startswith("2/3") assert "ETA: " in lines[1] assert lines[2].startswith("3/3") assert lines[2].endswith("s/step") def test_progress_iterator_with_statement(): def progress_generator(): with ProgressIterator([1,2,3], interval=0, description="") as it: sum(it) report = capture_sysout(cmd=progress_generator) lines = report.strip().split("\n") # expected result (with changing numbers): # 1/3 [=========>....................] - ETA: 7s # 2/3 [===================>..........] - ETA: 1s # 3/3 [==============================] - 4s 1s/step assert lines[0].startswith("1/3") assert "ETA: " in lines[0] assert lines[1].startswith("2/3") assert "ETA: " in lines[1] assert lines[2].startswith("3/3") assert lines[2].endswith("s/step")
[ "io.StringIO", "textnn.utils.ProgressIterator" ]
[((161, 174), 'io.StringIO', 'io.StringIO', ([], {}), '()\n', (172, 174), False, 'import io\n'), ((575, 630), 'textnn.utils.ProgressIterator', 'ProgressIterator', (['[1, 2, 3]'], {'interval': '(0)', 'description': '""""""'}), "([1, 2, 3], interval=0, description='')\n", (591, 630), False, 'from textnn.utils import ProgressIterator\n'), ((1239, 1294), 'textnn.utils.ProgressIterator', 'ProgressIterator', (['[1, 2, 3]'], {'interval': '(0)', 'description': '""""""'}), "([1, 2, 3], interval=0, description='')\n", (1255, 1294), False, 'from textnn.utils import ProgressIterator\n')]
# -*- coding: utf-8 -*- """Highlevel wrapper of the VISA Library. :copyright: 2014-2020 by PyVISA-py Authors, see AUTHORS for more details. :license: MIT, see LICENSE for more details. """ import random from collections import OrderedDict from typing import Any, Dict, Iterable, List, Optional, Tuple, Union, cast from pyvisa import constants, highlevel, rname from pyvisa.constants import StatusCode from pyvisa.typing import VISAEventContext, VISARMSession, VISASession from pyvisa.util import LibraryPath from . import sessions from .common import logger class PyVisaLibrary(highlevel.VisaLibraryBase): """A pure Python backend for PyVISA. The object is basically a dispatcher with some common functions implemented. When a new resource object is requested to pyvisa, the library creates a Session object (that knows how to perform low-level communication operations) associated with a session handle (a number, usually refered just as session). A call to a library function is handled by PyVisaLibrary if it involves a resource agnostic function or dispatched to the correct session object (obtained from the session id). Importantly, the user is unaware of this. PyVisaLibrary behaves for the user just as NIVisaLibrary. """ #: Live session object identified by a randon session ID sessions: Dict[int, sessions.Session] # Try to import packages implementing lower level functionality. try: from .serial import SerialSession logger.debug("SerialSession was correctly imported.") except Exception as e: logger.debug("SerialSession was not imported %s." % e) try: from .usb import USBRawSession, USBSession logger.debug("USBSession and USBRawSession were correctly imported.") except Exception as e: logger.debug("USBSession and USBRawSession were not imported %s." % e) try: from .tcpip import TCPIPInstrSession, TCPIPSocketSession logger.debug("TCPIPSession was correctly imported.") except Exception as e: logger.debug("TCPIPSession was not imported %s." % e) try: from .gpib import GPIBSession logger.debug("GPIBSession was correctly imported.") except Exception as e: logger.debug("GPIBSession was not imported %s." % e) @staticmethod def get_library_paths() -> Iterable[LibraryPath]: """List a dummy library path to allow to create the library.""" return (LibraryPath("py"),) @staticmethod def get_debug_info() -> Dict[str, Union[str, List[str], Dict[str, str]]]: """Return a list of lines with backend info.""" from . import __version__ d: OrderedDict[str, Union[str, List[str], Dict[str, str]]] = OrderedDict() d["Version"] = "%s" % __version__ for key, val in sessions.Session.iter_valid_session_classes(): key_name = "%s %s" % (key[0].name.upper(), key[1]) d[key_name] = "Available " + val.get_low_level_info() for key, issue in sessions.Session.iter_session_classes_issues(): key_name = "%s %s" % (key[0].name.upper(), key[1]) d[key_name] = issue.split("\n") return d def _init(self) -> None: """Custom initialization code.""" # Map session handle to session object. self.sessions = {} def _register(self, obj: object) -> VISASession: """Creates a random but unique session handle for a session object. Register it in the sessions dictionary and return the value. """ session = None while session is None or session in self.sessions: session = random.randint(1000000, 9999999) self.sessions[session] = obj return session def open( self, session: VISARMSession, resource_name: str, access_mode: constants.AccessModes = constants.AccessModes.no_lock, open_timeout: int = constants.VI_TMO_IMMEDIATE, ) -> Tuple[VISASession, StatusCode]: """Opens a session to the specified resource. Corresponds to viOpen function of the VISA library. Parameters ---------- session : VISARMSession Resource Manager session (should always be a session returned from open_default_resource_manager()). resource_name : str Unique symbolic name of a resource. access_mode : constants.AccessModes, optional Specifies the mode by which the resource is to be accessed. open_timeout : int Specifies the maximum time period (in milliseconds) that this operation waits before returning an error. constants.VI_TMO_IMMEDIATE and constants.VI_TMO_INFINITE are used as min and max. Returns ------- VISASession Unique logical identifier reference to a session StatusCode Return value of the library call. """ try: open_timeout = int(open_timeout) except ValueError: raise ValueError( "open_timeout (%r) must be an integer (or compatible type)" % open_timeout ) try: parsed = rname.parse_resource_name(resource_name) except rname.InvalidResourceName: return ( VISASession(0), self.handle_return_value(None, StatusCode.error_invalid_resource_name), ) cls = sessions.Session.get_session_class( parsed.interface_type_const, parsed.resource_class ) sess = cls(session, resource_name, parsed, open_timeout) return self._register(sess), StatusCode.success def clear(self, session: VISASession) -> StatusCode: """Clears a device. Corresponds to viClear function of the VISA library. Parameters ---------- session : typin.VISASession Unique logical identifier to a session. Returns ------- StatusCode Return value of the library call. """ try: sess = self.sessions[session] except KeyError: return self.handle_return_value(session, StatusCode.error_invalid_object) return self.handle_return_value(session, sess.clear()) def flush( self, session: VISASession, mask: constants.BufferOperation ) -> StatusCode: """Flush the specified buffers. The buffers can be associated with formatted I/O operations and/or serial communication. Corresponds to viFlush function of the VISA library. Parameters ---------- session : VISASession Unique logical identifier to a session. mask : constants.BufferOperation Specifies the action to be taken with flushing the buffer. The values can be combined using the | operator. However multiple operations on a single buffer cannot be combined. Returns ------- StatusCode Return value of the library call. """ try: sess = self.sessions[session] except KeyError: return self.handle_return_value(session, StatusCode.error_invalid_object) return self.handle_return_value(session, sess.flush(mask)) def gpib_command( self, session: VISASession, command_byte: bytes ) -> Tuple[int, StatusCode]: """Write GPIB command bytes on the bus. Corresponds to viGpibCommand function of the VISA library. Parameters ---------- session : VISASession Unique logical identifier to a session. command_byte : bytes Data to write. Returns ------- int Number of written bytes StatusCode Return value of the library call. """ try: written, st = self.sessions[session].gpib_command(command_byte) return written, self.handle_return_value(session, st) except KeyError: return 0, self.handle_return_value(session, StatusCode.error_invalid_object) def assert_trigger( self, session: VISASession, protocol: constants.TriggerProtocol ) -> StatusCode: """Assert software or hardware trigger. Corresponds to viAssertTrigger function of the VISA library. Parameters ---------- session : VISASession Unique logical identifier to a session. protocol : constants.TriggerProtocol Trigger protocol to use during assertion. Returns ------- StatusCode Return value of the library call. """ try: return self.handle_return_value( session, self.sessions[session].assert_trigger(protocol) ) except KeyError: return self.handle_return_value(session, StatusCode.error_invalid_object) def gpib_send_ifc(self, session: VISASession) -> StatusCode: """Pulse the interface clear line (IFC) for at least 100 microseconds. Corresponds to viGpibSendIFC function of the VISA library. Parameters ---------- session : VISASession Unique logical identifier to a session. Returns ------- StatusCode Return value of the library call. """ try: return self.handle_return_value( session, self.sessions[session].gpib_send_ifc() ) except KeyError: return self.handle_return_value(session, StatusCode.error_invalid_object) def gpib_control_ren( self, session: VISASession, mode: constants.RENLineOperation ) -> StatusCode: """Controls the state of the GPIB Remote Enable (REN) interface line. Optionally the remote/local state of the device can also be set. Corresponds to viGpibControlREN function of the VISA library. Parameters ---------- session : VISASession Unique logical identifier to a session. mode : constants.RENLineOperation State of the REN line and optionally the device remote/local state. Returns ------- StatusCode Return value of the library call. """ try: return self.handle_return_value( session, self.sessions[session].gpib_control_ren(mode) ) except KeyError: return self.handle_return_value(session, StatusCode.error_invalid_object) def gpib_control_atn( self, session: VISASession, mode: constants.ATNLineOperation ) -> StatusCode: """Specifies the state of the ATN line and the local active controller state. Corresponds to viGpibControlATN function of the VISA library. Parameters ---------- session : VISASession Unique logical identifier to a session. mode : constants.ATNLineOperation State of the ATN line and optionally the local active controller state. Returns ------- StatusCode Return value of the library call. """ try: return self.handle_return_value( session, self.sessions[session].gpib_control_atn(mode) ) except KeyError: return self.handle_return_value(session, StatusCode.error_invalid_object) def gpib_pass_control( self, session: VISASession, primary_address: int, secondary_address: int ) -> StatusCode: """Tell a GPIB device to become controller in charge (CIC). Corresponds to viGpibPassControl function of the VISA library. Parameters ---------- session : VISASession Unique logical identifier to a session. primary_address : int Primary address of the GPIB device to which you want to pass control. secondary_address : int Secondary address of the targeted GPIB device. If the targeted device does not have a secondary address, this parameter should contain the value Constants.VI_NO_SEC_ADDR. Returns ------- StatusCode Return value of the library call. """ try: return self.handle_return_value( session, self.sessions[session].gpib_pass_control( primary_address, secondary_address ), ) except KeyError: return self.handle_return_value(session, StatusCode.error_invalid_object) def read_stb(self, session: VISASession) -> Tuple[int, StatusCode]: """Reads a status byte of the service request. Corresponds to viReadSTB function of the VISA library. Parameters ---------- session : VISASession Unique logical identifier to a session. Returns ------- int Service request status byte StatusCode Return value of the library call. """ try: sess = self.sessions[session] except KeyError: return 0, self.handle_return_value(session, StatusCode.error_invalid_object) stb, status_code = sess.read_stb() return stb, self.handle_return_value(session, status_code) def close( self, session: Union[VISASession, VISAEventContext, VISARMSession] ) -> StatusCode: """Closes the specified session, event, or find list. Corresponds to viClose function of the VISA library. Parameters --------- session : Union[VISASession, VISAEventContext, VISARMSession] Unique logical identifier to a session, event, resource manager. Returns ------- StatusCode Return value of the library call. """ try: sess = self.sessions[session] # The RM session directly references the library. if sess is not self: return self.handle_return_value(session, sess.close()) else: return self.handle_return_value(session, StatusCode.success) except KeyError: return self.handle_return_value(session, StatusCode.error_invalid_object) def open_default_resource_manager(self) -> Tuple[VISARMSession, StatusCode]: """This function returns a session to the Default Resource Manager resource. Corresponds to viOpenDefaultRM function of the VISA library. Returns ------- VISARMSession Unique logical identifier to a Default Resource Manager session StatusCode Return value of the library call. """ return ( cast(VISARMSession, self._register(self)), self.handle_return_value(None, StatusCode.success), ) def list_resources( self, session: VISARMSession, query: str = "?*::INSTR" ) -> Tuple[str, ...]: """Return a tuple of all connected devices matching query. Parameters ---------- session : VISARMSession Unique logical identifier to the resource manager session. query : str Regular expression used to match devices. Returns ------- Tuple[str, ...] Resource names of all the connected devices matching the query. """ # For each session type, ask for the list of connected resources and # merge them into a single list. # HINT: the cast should not be necessary here resources: List[str] = [] for key, st in sessions.Session.iter_valid_session_classes(): resources += st.list_resources() return rname.filter(resources, query) def read(self, session: VISASession, count: int) -> Tuple[bytes, StatusCode]: """Reads data from device or interface synchronously. Corresponds to viRead function of the VISA library. Parameters ---------- session : VISASession Unique logical identifier to a session. count : int Number of bytes to be read. Returns ------- bytes Date read StatusCode Return value of the library call. """ # from the session handle, dispatch to the read method of the session object. try: data, status_code = self.sessions[session].read(count) except KeyError: return ( b"", self.handle_return_value(session, StatusCode.error_invalid_object), ) return data, self.handle_return_value(session, status_code) def write(self, session: VISASession, data: bytes) -> Tuple[int, StatusCode]: """Write data to device or interface synchronously. Corresponds to viWrite function of the VISA library. Parameters ---------- session : VISASession Unique logical identifier to a session. data : bytes Data to be written. Returns ------- int Number of bytes actually transferred StatusCode Return value of the library call. """ # from the session handle, dispatch to the write method of the session object. try: written, status_code = self.sessions[session].write(data) except KeyError: return 0, self.handle_return_value(session, StatusCode.error_invalid_object) return written, self.handle_return_value(session, status_code) def buffer_read(self, session: VISASession, count: int) -> Tuple[bytes, StatusCode]: """Reads data through the use of a formatted I/O read buffer. The data can be read from a device or an interface. Corresponds to viBufRead function of the VISA library. Parameters ---------- session : VISASession\ Unique logical identifier to a session. count : int Number of bytes to be read. Returns ------- bytes Data read StatusCode Return value of the library call. """ return self.read(session, count) def buffer_write(self, session: VISASession, data: bytes) -> Tuple[int, StatusCode]: """Writes data to a formatted I/O write buffer synchronously. Corresponds to viBufWrite function of the VISA library. Parameters ---------- session : VISASession Unique logical identifier to a session. data : bytes Data to be written. Returns ------- int number of written bytes StatusCode return value of the library call. """ return self.write(session, data) def get_attribute( self, session: Union[VISASession, VISAEventContext, VISARMSession], attribute: Union[constants.ResourceAttribute, constants.EventAttribute], ) -> Tuple[Any, StatusCode]: """Retrieves the state of an attribute. Corresponds to viGetAttribute function of the VISA library. Parameters ---------- session : Union[VISASession, VISAEventContext] Unique logical identifier to a session, event, or find list. attribute : Union[constants.ResourceAttribute, constants.EventAttribute] Resource or event attribute for which the state query is made. Returns ------- Any State of the queried attribute for a specified resource StatusCode Return value of the library call. """ try: sess = self.sessions[session] except KeyError: return ( None, self.handle_return_value(session, StatusCode.error_invalid_object), ) state, status_code = sess.get_attribute( cast(constants.ResourceAttribute, attribute) ) return state, self.handle_return_value(session, status_code) def set_attribute( self, session: VISASession, attribute: constants.ResourceAttribute, attribute_state: Any, ) -> StatusCode: """Set the state of an attribute. Corresponds to viSetAttribute function of the VISA library. Parameters ---------- session : VISASession Unique logical identifier to a session. attribute : constants.ResourceAttribute Attribute for which the state is to be modified. attribute_state : Any The state of the attribute to be set for the specified object. Returns ------- StatusCode Return value of the library call. """ try: return self.handle_return_value( session, self.sessions[session].set_attribute(attribute, attribute_state), ) except KeyError: return self.handle_return_value(session, StatusCode.error_invalid_object) def lock( self, session: VISASession, lock_type: constants.Lock, timeout: int, requested_key: Optional[str] = None, ) -> Tuple[str, StatusCode]: """Establishes an access mode to the specified resources. Corresponds to viLock function of the VISA library. Parameters ---------- session : VISASession Unique logical identifier to a session. lock_type : constants.Lock Specifies the type of lock requested. timeout : int Absolute time period (in milliseconds) that a resource waits to get unlocked by the locking session before returning an error. requested_key : Optional[str], optional Requested locking key in the case of a shared lock. For an exclusive lock it should be None. Returns ------- str Key that can then be passed to other sessions to share the lock, or None for an exclusive lock. StatusCode Return value of the library call. """ try: sess = self.sessions[session] except KeyError: return ( "", self.handle_return_value(session, StatusCode.error_invalid_object), ) key, status_code = sess.lock(lock_type, timeout, requested_key) return key, self.handle_return_value(session, status_code) def unlock(self, session: VISASession) -> StatusCode: """Relinquish a lock for the specified resource. Corresponds to viUnlock function of the VISA library. Parameters ---------- session : VISASession Unique logical identifier to a session. Returns ------- StatusCode Return value of the library call. """ try: sess = self.sessions[session] except KeyError: return self.handle_return_value(session, StatusCode.error_invalid_object) return self.handle_return_value(session, sess.unlock()) def disable_event( self, session: VISASession, event_type: constants.EventType, mechanism: constants.EventMechanism, ) -> StatusCode: """Disable notification for an event type(s) via the specified mechanism(s). Corresponds to viDisableEvent function of the VISA library. Parameters ---------- session : VISASession Unique logical identifier to a session. event_type : constants.EventType Event type. mechanism : constants.EventMechanism Event handling mechanisms to be disabled. Returns ------- StatusCode Return value of the library call. """ pass def discard_events( self, session: VISASession, event_type: constants.EventType, mechanism: constants.EventMechanism, ) -> StatusCode: """Discard event occurrences for a given type and mechanisms in a session. Corresponds to viDiscardEvents function of the VISA library. Parameters ---------- session : VISASession Unique logical identifier to a session. event_type : constans.EventType Logical event identifier. mechanism : constants.EventMechanism Specifies event handling mechanisms to be discarded. Returns ------- StatusCode Return value of the library call. """ pass
[ "pyvisa.typing.VISASession", "collections.OrderedDict", "pyvisa.rname.filter", "pyvisa.rname.parse_resource_name", "pyvisa.util.LibraryPath", "typing.cast", "random.randint" ]
[((2771, 2784), 'collections.OrderedDict', 'OrderedDict', ([], {}), '()\n', (2782, 2784), False, 'from collections import OrderedDict\n'), ((15966, 15996), 'pyvisa.rname.filter', 'rname.filter', (['resources', 'query'], {}), '(resources, query)\n', (15978, 15996), False, 'from pyvisa import constants, highlevel, rname\n'), ((2494, 2511), 'pyvisa.util.LibraryPath', 'LibraryPath', (['"""py"""'], {}), "('py')\n", (2505, 2511), False, 'from pyvisa.util import LibraryPath\n'), ((3693, 3725), 'random.randint', 'random.randint', (['(1000000)', '(9999999)'], {}), '(1000000, 9999999)\n', (3707, 3725), False, 'import random\n'), ((5275, 5315), 'pyvisa.rname.parse_resource_name', 'rname.parse_resource_name', (['resource_name'], {}), '(resource_name)\n', (5300, 5315), False, 'from pyvisa import constants, highlevel, rname\n'), ((20228, 20272), 'typing.cast', 'cast', (['constants.ResourceAttribute', 'attribute'], {}), '(constants.ResourceAttribute, attribute)\n', (20232, 20272), False, 'from typing import Any, Dict, Iterable, List, Optional, Tuple, Union, cast\n'), ((5395, 5409), 'pyvisa.typing.VISASession', 'VISASession', (['(0)'], {}), '(0)\n', (5406, 5409), False, 'from pyvisa.typing import VISAEventContext, VISARMSession, VISASession\n')]
from __future__ import absolute_import from __future__ import division from __future__ import print_function from __future__ import unicode_literals import cv2 import numpy as np import os import math from PIL import Image, ImageDraw, ImageFont from caffe2.python import workspace from detectron.core.config import cfg from detectron.core.config import get_output_dir def vis_training(cur_iter): prefix = '' if cfg.WEBLY.MINING: prefix = 'mining_' if not (cfg.WSL.DEBUG or (cfg.WSL.SAMPLE and cur_iter % cfg.WSL.SAMPLE_ITER == 0)): return output_dir = get_output_dir(cfg.TRAIN.DATASETS, training=True) sample_dir = os.path.join(output_dir, 'webly_sample') if not os.path.exists(sample_dir): os.makedirs(sample_dir) for gpu_id in range(cfg.NUM_GPUS): data_ids = workspace.FetchBlob('gpu_{}/{}'.format(gpu_id, 'data_ids')) ims = workspace.FetchBlob('gpu_{}/{}'.format(gpu_id, 'data')) labels_oh = workspace.FetchBlob('gpu_{}/{}'.format( gpu_id, 'labels_oh')) im_score = workspace.FetchBlob('gpu_{}/{}'.format(gpu_id, 'cls_prob')) roi_score = workspace.FetchBlob('gpu_{}/{}'.format( gpu_id, prefix + 'rois_pred')) # roi_score_softmax = workspace.FetchBlob('gpu_{}/{}'.format( # gpu_id, prefix + 'rois_pred_softmax')) rois = workspace.FetchBlob('gpu_{}/{}'.format(gpu_id, prefix + 'rois')) # anchor_argmax = workspace.FetchBlob('gpu_{}/{}'.format( # gpu_id, 'anchor_argmax')) preffix = 'iter_' + str(cur_iter) + '_gpu_' + str(gpu_id) save_im(labels_oh, im_score, ims, cfg.PIXEL_MEANS, preffix, sample_dir) save_rois(labels_oh, im_score, roi_score, ims, rois, cfg.PIXEL_MEANS, preffix, '', sample_dir) # continue if cfg.WEBLY.ENTROPY: pass else: continue class_weight = workspace.FetchBlob('gpu_{}/{}'.format( gpu_id, prefix + 'rois_class_weight')) rois_pred_hatE = workspace.FetchBlob('gpu_{}/{}'.format( gpu_id, prefix + 'rois_pred_hatE')) rois_pred_E = workspace.FetchBlob('gpu_{}/{}'.format( gpu_id, prefix + 'rois_pred_E')) y_logN__logy = workspace.FetchBlob('gpu_{}/{}'.format( gpu_id, prefix + 'rois_pred_y_logN__logy')) save_entropy(labels_oh, im_score, class_weight, roi_score, ims, rois, cfg.PIXEL_MEANS, preffix, '', sample_dir, rois_pred_hatE, rois_pred_E, y_logN__logy) def save_im(labels_oh, im_score, ims, pixel_means, prefix, output_dir): batch_size, num_classes = im_score.shape for b in range(batch_size): for c in range(num_classes): # if labels_oh[b][c] == 0.0: # continue if im_score[b][c] < 0.1: continue im = ims[b, :, :, :].copy() channel_swap = (1, 2, 0) im = im.transpose(channel_swap) im += pixel_means im = im.astype(np.uint8) file_name = os.path.join( output_dir, prefix + '_b_' + str(b) + '_c_' + str(c) + '.png') cv2.imwrite(file_name, im) def save_rois(labels_oh, im_score, roi_score, ims, rois, pixel_means, prefix, suffix, output_dir): num_rois, num_classes = roi_score.shape batch_size, _, height, weight = ims.shape has_bg = False num_rois_this = min(500, num_rois) for b in range(batch_size): for c in range(num_classes): # if labels_oh[b][c] == 0.0: # continue if im_score[b][c] < 0.1: if has_bg: continue has_bg = True im = ims[b, :, :, :].copy() channel_swap = (1, 2, 0) im = im.transpose(channel_swap) im += pixel_means im = im.astype(np.uint8) im_S = im.copy() im_A = im.copy() argsort = np.argsort(-np.abs(roi_score[:, c])) argsort = argsort[:num_rois_this] argsort = argsort[::-1] if im_score[b][c] < 0.1: scale_p = 1.0 else: scale_p = 1.0 / roi_score[:, c].max() for n in range(num_rois_this): roi = rois[argsort[n]] if roi[0] != b: continue if roi_score[argsort[n]][c] * scale_p < 0.4: thickness = 3 else: thickness = 6 jet = gray2jet(roi_score[argsort[n]][c] * scale_p) cv2.rectangle(im_S, (roi[1], roi[2]), (roi[3], roi[4]), jet, thickness) file_name = os.path.join( output_dir, prefix + '_b_' + str(b) + '_c_' + str(c) + '_' + suffix + '.png') cv2.imwrite(file_name, im_S) continue num_anchors = anchor_argmax.shape[0] for n in range(num_rois): roi = rois[n] if roi[0] != b: continue for a in range(num_anchors): if anchor_argmax[a][n] == 1.0: break jet = gray2jet(1.0 * a / num_anchors) cv2.rectangle(im_A, (roi[1], roi[2]), (roi[3], roi[4]), jet, 1) file_name = os.path.join( output_dir, prefix + '_b_' + str(b) + '_c_' + str(c) + '_A_' + suffix + '.png') cv2.imwrite(file_name, im_A) def save_entropy(labels_oh, im_score, class_weight, roi_score, ims, rois, pixel_means, prefix, suffix, output_dir, rois_pred_hatE, rois_pred_E, y_logN__logy): num_rois, num_classes = roi_score.shape batch_size, _, height, weight = ims.shape rois_pred_E_sum = np.sum(rois_pred_E, axis=0).reshape(1, -1) E_sum_norm = np.true_divide(rois_pred_E_sum, y_logN__logy) E_sum_norm = np.where(E_sum_norm > 1., 1., E_sum_norm) E_class_weight = 1 - E_sum_norm for b in range(batch_size): for c in range(num_classes): if labels_oh[b][c] == 0.0 and im_score[b][c] < 0.1: continue im = ims[b, :, :, :].copy() channel_swap = (1, 2, 0) im = im.transpose(channel_swap) im += pixel_means im = im.astype(np.uint8) im_S = im.copy() im_A = im.copy() im_hatE = im.copy() im_E = im.copy() _NUM = 10 argsort_roi = np.argsort(roi_score[:, c])[::-1] argsort_hatE = np.argsort(rois_pred_hatE[:, c])[::-1] argsort_E = np.argsort(rois_pred_E[:, c])[::-1] if len(argsort_roi) >= _NUM: _NUM = 10 else: _NUM = len(argsort_roi) argsort_roi = argsort_roi[:_NUM][::-1] argsort_hatE = argsort_hatE[:_NUM][::-1] argsort_E = argsort_E[:_NUM][::-1] argsort_hatE = argsort_roi argsort_E = argsort_roi scale_p = 1.0 / roi_score[:, c].max() scale_p = 1.0 for n in range(_NUM): roi = rois[argsort_roi[n]] hatE_roi = rois[argsort_hatE[n]] E_roi = rois[argsort_E[n]] if roi[0] != b: continue # draw roi jet = gray2jet(roi_score[argsort_roi[n]][c] * scale_p) bgr = jet rgb = (jet[2], jet[1], jet[0]) # roi location cv2.rectangle(im_S, (roi[1], roi[2]), (roi[3], roi[4]), bgr, 2, lineType=cv2.LINE_AA) text = "{:.4f}".format(roi_score[argsort_roi[n]][c]) im_S = putText_with_TNR(im_S, int(roi[1]), int(roi[2]), 15, jet, rgb, text) if hatE_roi[0] != b: continue # draw rois_pred_hatE # jet = gray2jet(rois_pred_hatE[argsort_hatE[n]][c] * scale_p) # bgr = jet # rgb = (jet[2], jet[1], jet[0]) # roi location cv2.rectangle(im_hatE, (hatE_roi[1], hatE_roi[2]), (hatE_roi[3], hatE_roi[4]), bgr, 2, lineType=cv2.LINE_AA) # put Text hat_E text = "{:.4f}".format(rois_pred_hatE[argsort_hatE[n]][c]) im_hatE = putText_with_TNR(im_hatE, int(hatE_roi[1]), int(hatE_roi[2]), 15, jet, rgb, text) if E_roi[0] != b: continue # draw rois_pred_E # jet = gray2jet(rois_pred_E[argsort_E[n]][c] * scale_p) # bgr = jet # rgb = (jet[2], jet[1], jet[0]) # roi location cv2.rectangle(im_E, (E_roi[1], E_roi[2]), (E_roi[3], E_roi[4]), bgr, 2, lineType=cv2.LINE_AA) # put Text E text = "{:.4f}".format(rois_pred_E[argsort_E[n]][c]) im_E = putText_with_TNR(im_E, int(E_roi[1]), int(E_roi[2]), 15, jet, rgb, text) # write im_score text = "{:.4f}".format(im_score[b][c]) im_S = putText_with_TNR(im_S, 0, 0, 20, (0, 140, 255), (255, 255, 255), text) # write class_weight text = "{:.4f}".format(class_weight[b][c]) im_hatE = putText_with_TNR(im_hatE, 0, 0, 20, (0, 140, 255), (255, 255, 255), text) # write class_weight text = "{:.4f}".format(E_class_weight[b][c]) im_E = putText_with_TNR(im_E, 0, 0, 20, (0, 140, 255), (255, 255, 255), text) file_name_roi = os.path.join( output_dir, prefix + '_b_' + str(b) + '_c_' + str(c) + '_roi' + suffix + '.png') cv2.imwrite(file_name_roi, im_S) file_name_hatE = os.path.join( output_dir, prefix + '_b_' + str(b) + '_c_' + str(c) + '_hatE' + suffix + '.png') cv2.imwrite(file_name_hatE, im_hatE) file_name_E = os.path.join( output_dir, prefix + '_b_' + str(b) + '_c_' + str(c) + '_E' + suffix + '.png') cv2.imwrite(file_name_E, im_E) def dump_proto_files(model, output_dir): """Save prototxt descriptions of the training network and parameter initialization network.""" with open(os.path.join(output_dir, model.net.Proto().name), 'w') as fid: fid.write(str(model.net.Proto())) with open(os.path.join(output_dir, model.param_init_net.Proto().name), 'w') as fid: fid.write(str(model.param_init_net.Proto())) def gray2jet(f): # plot short rainbow RGB a = f / 0.25 # invert and group X = math.floor(a) # this is the integer part Y = math.floor(255 * (a - X)) # fractional part from 0 to 255 Z = math.floor(128 * (a - X)) # fractional part from 0 to 128 if X == 0: r = 0 g = Y b = 128 - Z elif X == 1: r = Y g = 255 b = 0 elif X == 2: r = 255 g = 255 - Z b = 0 elif X == 3: r = 255 g = 128 - Z b = 0 elif X == 4: r = 255 g = 0 b = 0 # opencv is bgr, not rgb return (b, g, r) def putText_with_TNR(img, x, y, size, fontColor, bgColor, string): thickness = 2 font_scale = 1.1 font = cv2.FONT_HERSHEY_SIMPLEX s = cv2.getTextSize(string, font, font_scale, thickness) cv2.rectangle( img, (x + thickness, y + thickness), (x + thickness + s[0][0] + 2, y + thickness + s[0][1] + 2), # (0, 140, 255), fontColor, cv2.FILLED, lineType=cv2.LINE_AA) position = (x + thickness + 1, y + thickness + s[0][1] + 1) cv2.putText(img, string, position, font, font_scale, (255, 255, 255), thickness, cv2.LINE_AA) return img # from OpenCV to PIL font = "/home/chenzhiwei/Documents/myFonts/timesnewroman.ttf" img_PIL = Image.fromarray(cv2.cvtColor(img, cv2.COLOR_BGR2RGB)) font = ImageFont.truetype(font, size) position = (x + 3, y - 2) draw = ImageDraw.Draw(img_PIL) offsetx, offsety = font.getoffset(string) width, height = font.getsize(string) draw.rectangle((offsetx + x + 2, offsety + y - 3, offsetx + x + width + 3, offsety + y + height - 3), fill=bgColor) draw.text(position, string, font=font, fill=fontColor) # back to OpenCV type img_OpenCV = cv2.cvtColor(np.asarray(img_PIL), cv2.COLOR_RGB2BGR) return img_OpenCV
[ "cv2.rectangle", "os.path.exists", "cv2.imwrite", "numpy.abs", "os.makedirs", "math.floor", "numpy.where", "detectron.core.config.get_output_dir", "os.path.join", "PIL.ImageFont.truetype", "numpy.asarray", "cv2.putText", "numpy.argsort", "numpy.sum", "PIL.ImageDraw.Draw", "numpy.true_divide", "cv2.cvtColor", "cv2.getTextSize" ]
[((602, 651), 'detectron.core.config.get_output_dir', 'get_output_dir', (['cfg.TRAIN.DATASETS'], {'training': '(True)'}), '(cfg.TRAIN.DATASETS, training=True)\n', (616, 651), False, 'from detectron.core.config import get_output_dir\n'), ((669, 709), 'os.path.join', 'os.path.join', (['output_dir', '"""webly_sample"""'], {}), "(output_dir, 'webly_sample')\n", (681, 709), False, 'import os\n'), ((5949, 5994), 'numpy.true_divide', 'np.true_divide', (['rois_pred_E_sum', 'y_logN__logy'], {}), '(rois_pred_E_sum, y_logN__logy)\n', (5963, 5994), True, 'import numpy as np\n'), ((6012, 6055), 'numpy.where', 'np.where', (['(E_sum_norm > 1.0)', '(1.0)', 'E_sum_norm'], {}), '(E_sum_norm > 1.0, 1.0, E_sum_norm)\n', (6020, 6055), True, 'import numpy as np\n'), ((11348, 11361), 'math.floor', 'math.floor', (['a'], {}), '(a)\n', (11358, 11361), False, 'import math\n'), ((11398, 11423), 'math.floor', 'math.floor', (['(255 * (a - X))'], {}), '(255 * (a - X))\n', (11408, 11423), False, 'import math\n'), ((11465, 11490), 'math.floor', 'math.floor', (['(128 * (a - X))'], {}), '(128 * (a - X))\n', (11475, 11490), False, 'import math\n'), ((12046, 12098), 'cv2.getTextSize', 'cv2.getTextSize', (['string', 'font', 'font_scale', 'thickness'], {}), '(string, font, font_scale, thickness)\n', (12061, 12098), False, 'import cv2\n'), ((12104, 12268), 'cv2.rectangle', 'cv2.rectangle', (['img', '(x + thickness, y + thickness)', '(x + thickness + s[0][0] + 2, y + thickness + s[0][1] + 2)', 'fontColor', 'cv2.FILLED'], {'lineType': 'cv2.LINE_AA'}), '(img, (x + thickness, y + thickness), (x + thickness + s[0][0] +\n 2, y + thickness + s[0][1] + 2), fontColor, cv2.FILLED, lineType=cv2.\n LINE_AA)\n', (12117, 12268), False, 'import cv2\n'), ((12403, 12500), 'cv2.putText', 'cv2.putText', (['img', 'string', 'position', 'font', 'font_scale', '(255, 255, 255)', 'thickness', 'cv2.LINE_AA'], {}), '(img, string, position, font, font_scale, (255, 255, 255),\n thickness, cv2.LINE_AA)\n', (12414, 12500), False, 'import cv2\n'), ((12700, 12730), 'PIL.ImageFont.truetype', 'ImageFont.truetype', (['font', 'size'], {}), '(font, size)\n', (12718, 12730), False, 'from PIL import Image, ImageDraw, ImageFont\n'), ((12772, 12795), 'PIL.ImageDraw.Draw', 'ImageDraw.Draw', (['img_PIL'], {}), '(img_PIL)\n', (12786, 12795), False, 'from PIL import Image, ImageDraw, ImageFont\n'), ((721, 747), 'os.path.exists', 'os.path.exists', (['sample_dir'], {}), '(sample_dir)\n', (735, 747), False, 'import os\n'), ((757, 780), 'os.makedirs', 'os.makedirs', (['sample_dir'], {}), '(sample_dir)\n', (768, 780), False, 'import os\n'), ((12651, 12687), 'cv2.cvtColor', 'cv2.cvtColor', (['img', 'cv2.COLOR_BGR2RGB'], {}), '(img, cv2.COLOR_BGR2RGB)\n', (12663, 12687), False, 'import cv2\n'), ((13157, 13176), 'numpy.asarray', 'np.asarray', (['img_PIL'], {}), '(img_PIL)\n', (13167, 13176), True, 'import numpy as np\n'), ((3212, 3238), 'cv2.imwrite', 'cv2.imwrite', (['file_name', 'im'], {}), '(file_name, im)\n', (3223, 3238), False, 'import cv2\n'), ((4900, 4928), 'cv2.imwrite', 'cv2.imwrite', (['file_name', 'im_S'], {}), '(file_name, im_S)\n', (4911, 4928), False, 'import cv2\n'), ((5553, 5581), 'cv2.imwrite', 'cv2.imwrite', (['file_name', 'im_A'], {}), '(file_name, im_A)\n', (5564, 5581), False, 'import cv2\n'), ((5889, 5916), 'numpy.sum', 'np.sum', (['rois_pred_E'], {'axis': '(0)'}), '(rois_pred_E, axis=0)\n', (5895, 5916), True, 'import numpy as np\n'), ((10387, 10419), 'cv2.imwrite', 'cv2.imwrite', (['file_name_roi', 'im_S'], {}), '(file_name_roi, im_S)\n', (10398, 10419), False, 'import cv2\n'), ((10590, 10626), 'cv2.imwrite', 'cv2.imwrite', (['file_name_hatE', 'im_hatE'], {}), '(file_name_hatE, im_hatE)\n', (10601, 10626), False, 'import cv2\n'), ((10791, 10821), 'cv2.imwrite', 'cv2.imwrite', (['file_name_E', 'im_E'], {}), '(file_name_E, im_E)\n', (10802, 10821), False, 'import cv2\n'), ((4668, 4739), 'cv2.rectangle', 'cv2.rectangle', (['im_S', '(roi[1], roi[2])', '(roi[3], roi[4])', 'jet', 'thickness'], {}), '(im_S, (roi[1], roi[2]), (roi[3], roi[4]), jet, thickness)\n', (4681, 4739), False, 'import cv2\n'), ((5327, 5390), 'cv2.rectangle', 'cv2.rectangle', (['im_A', '(roi[1], roi[2])', '(roi[3], roi[4])', 'jet', '(1)'], {}), '(im_A, (roi[1], roi[2]), (roi[3], roi[4]), jet, 1)\n', (5340, 5390), False, 'import cv2\n'), ((6603, 6630), 'numpy.argsort', 'np.argsort', (['roi_score[:, c]'], {}), '(roi_score[:, c])\n', (6613, 6630), True, 'import numpy as np\n'), ((6664, 6696), 'numpy.argsort', 'np.argsort', (['rois_pred_hatE[:, c]'], {}), '(rois_pred_hatE[:, c])\n', (6674, 6696), True, 'import numpy as np\n'), ((6727, 6756), 'numpy.argsort', 'np.argsort', (['rois_pred_E[:, c]'], {}), '(rois_pred_E[:, c])\n', (6737, 6756), True, 'import numpy as np\n'), ((7640, 7730), 'cv2.rectangle', 'cv2.rectangle', (['im_S', '(roi[1], roi[2])', '(roi[3], roi[4])', 'bgr', '(2)'], {'lineType': 'cv2.LINE_AA'}), '(im_S, (roi[1], roi[2]), (roi[3], roi[4]), bgr, 2, lineType=\n cv2.LINE_AA)\n', (7653, 7730), False, 'import cv2\n'), ((8326, 8439), 'cv2.rectangle', 'cv2.rectangle', (['im_hatE', '(hatE_roi[1], hatE_roi[2])', '(hatE_roi[3], hatE_roi[4])', 'bgr', '(2)'], {'lineType': 'cv2.LINE_AA'}), '(im_hatE, (hatE_roi[1], hatE_roi[2]), (hatE_roi[3], hatE_roi[4\n ]), bgr, 2, lineType=cv2.LINE_AA)\n', (8339, 8439), False, 'import cv2\n'), ((9153, 9250), 'cv2.rectangle', 'cv2.rectangle', (['im_E', '(E_roi[1], E_roi[2])', '(E_roi[3], E_roi[4])', 'bgr', '(2)'], {'lineType': 'cv2.LINE_AA'}), '(im_E, (E_roi[1], E_roi[2]), (E_roi[3], E_roi[4]), bgr, 2,\n lineType=cv2.LINE_AA)\n', (9166, 9250), False, 'import cv2\n'), ((4045, 4068), 'numpy.abs', 'np.abs', (['roi_score[:, c]'], {}), '(roi_score[:, c])\n', (4051, 4068), True, 'import numpy as np\n')]
# -*- coding: utf-8 -*- ''' Execute salt convenience routines ''' # Import python libs from __future__ import print_function from __future__ import absolute_import import collections import logging import time import sys import multiprocessing # Import salt libs import salt.exceptions import salt.loader import salt.minion import salt.utils import salt.utils.args import salt.utils.event from salt.client import mixins from salt.output import display_output from salt.utils.error import raise_error from salt.utils.event import tagify import salt.ext.six as six log = logging.getLogger(__name__) class RunnerClient(mixins.SyncClientMixin, mixins.AsyncClientMixin, object): ''' The interface used by the :command:`salt-run` CLI tool on the Salt Master It executes :ref:`runner modules <all-salt.runners>` which run on the Salt Master. Importing and using ``RunnerClient`` must be done on the same machine as the Salt Master and it must be done using the same user that the Salt Master is running as. Salt's :conf_master:`external_auth` can be used to authenticate calls. The eauth user must be authorized to execute runner modules: (``@runner``). Only the :py:meth:`master_call` below supports eauth. ''' client = 'runner' tag_prefix = 'run' def __init__(self, opts): self.opts = opts self.functions = salt.loader.runner(opts) # Must be self.functions for mixin to work correctly :-/ self.returners = salt.loader.returners(opts, self.functions) self.outputters = salt.loader.outputters(opts) self.event = salt.utils.event.MasterEvent(self.opts['sock_dir']) def cmd(self, fun, arg, pub_data=None, kwarg=None): ''' Execute a runner function .. code-block:: python >>> opts = salt.config.master_config('/etc/salt/master') >>> runner = salt.runner.RunnerClient(opts) >>> runner.cmd('jobs.list_jobs', []) { '20131219215650131543': { 'Arguments': [300], 'Function': 'test.sleep', 'StartTime': '2013, Dec 19 21:56:50.131543', 'Target': '*', 'Target-type': 'glob', 'User': 'saltdev' }, '20131219215921857715': { 'Arguments': [300], 'Function': 'test.sleep', 'StartTime': '2013, Dec 19 21:59:21.857715', 'Target': '*', 'Target-type': 'glob', 'User': 'saltdev' }, } ''' if kwarg is None: kwarg = {} if not isinstance(kwarg, dict): raise salt.exceptions.SaltInvocationError( 'kwarg must be formatted as a dictionary' ) if pub_data is None: pub_data = {} if not isinstance(pub_data, dict): raise salt.exceptions.SaltInvocationError( 'pub_data must be formatted as a dictionary' ) arglist = salt.utils.args.parse_input(arg) def _append_kwarg(arglist, kwarg): ''' Append the kwarg dict to the arglist ''' kwarg['__kwarg__'] = True arglist.append(kwarg) if kwarg: try: if isinstance(arglist[-1], dict) \ and '__kwarg__' in arglist[-1]: for key, val in six.iteritems(kwarg): if key in arglist[-1]: log.warning( 'Overriding keyword argument {0!r}'.format(key) ) arglist[-1][key] = val else: # No kwargs yet present in arglist _append_kwarg(arglist, kwarg) except IndexError: # arglist is empty, just append _append_kwarg(arglist, kwarg) self._verify_fun(fun) args, kwargs = salt.minion.load_args_and_kwargs( self.functions[fun], arglist, pub_data ) fstr = '{0}.prep_jid'.format(self.opts['master_job_cache']) jid = self.returners[fstr]() log.debug('Runner starting with jid {0}'.format(jid)) self.event.fire_event({'runner_job': fun}, tagify([jid, 'new'], 'job')) target = RunnerClient._thread_return data = {'fun': fun, 'jid': jid, 'args': args, 'kwargs': kwargs} args = (self, self.opts, data) ret = jid if self.opts.get('async', False): process = multiprocessing.Process( target=target, args=args ) process.start() else: ret = target(*args) return ret @classmethod def _thread_return(cls, instance, opts, data): ''' The multiprocessing process calls back here to stream returns ''' # Runners modules runtime injection: # - the progress event system with the correct jid # - Provide JID if the runner wants to access it directly done = {} progress = salt.utils.event.get_runner_event(opts, data['jid']).fire_progress for func_name, func in instance.functions.items(): if func.__module__ in done: continue mod = sys.modules[func.__module__] mod.__jid__ = data['jid'] mod.__progress__ = progress done[func.__module__] = mod ret = instance.functions[data['fun']](*data['args'], **data['kwargs']) # Sleep for just a moment to let any progress events return time.sleep(0.1) ret_load = {'return': ret, 'fun': data['fun'], 'fun_args': data['args']} # Don't use the invoking processes' event socket because it could be closed down by the time we arrive here. # Create another, for safety's sake. salt.utils.event.MasterEvent(opts['sock_dir']).fire_event(ret_load, tagify([data['jid'], 'return'], 'runner')) try: fstr = '{0}.save_runner_load'.format(opts['master_job_cache']) instance.returners[fstr](data['jid'], ret_load) except KeyError: log.debug( 'The specified returner used for the master job cache ' '"{0}" does not have a save_runner_load function! The results ' 'of this runner execution will not be stored.'.format( opts['master_job_cache'] ) ) except Exception: log.critical( 'The specified returner threw a stack trace:\n', exc_info=True ) if opts.get('async', False): return data['jid'] else: return ret def master_call(self, **kwargs): ''' Execute a runner function through the master network interface (eauth). ''' load = kwargs load['cmd'] = 'runner' sreq = salt.transport.Channel.factory(self.opts, crypt='clear', usage='master_call') ret = sreq.send(load) if isinstance(ret, collections.Mapping): if 'error' in ret: raise_error(**ret['error']) return ret def _reformat_low(self, low): ''' Format the low data for RunnerClient()'s master_call() function The master_call function here has a different function signature than on WheelClient. So extract all the eauth keys and the fun key and assume everything else is a kwarg to pass along to the runner function to be called. ''' auth_creds = dict([(i, low.pop(i)) for i in [ 'username', 'password', 'eauth', 'token', 'client', ] if i in low]) reformatted_low = {'fun': low.pop('fun')} reformatted_low.update(auth_creds) reformatted_low['kwarg'] = low return reformatted_low def cmd_async(self, low): ''' Execute a runner function asynchronously; eauth is respected This function requires that :conf_master:`external_auth` is configured and the user is authorized to execute runner functions: (``@runner``). .. code-block:: python runner.eauth_async({ 'fun': 'jobs.list_jobs', 'username': 'saltdev', 'password': '<PASSWORD>', 'eauth': 'pam', }) ''' reformatted_low = self._reformat_low(low) return self.master_call(**reformatted_low) def cmd_sync(self, low, timeout=None): ''' Execute a runner function synchronously; eauth is respected This function requires that :conf_master:`external_auth` is configured and the user is authorized to execute runner functions: (``@runner``). .. code-block:: python runner.eauth_sync({ 'fun': 'jobs.list_jobs', 'username': 'saltdev', 'password': '<PASSWORD>', 'eauth': 'pam', }) ''' sevent = salt.utils.event.get_event('master', self.opts['sock_dir'], self.opts['transport'], opts=self.opts) reformatted_low = self._reformat_low(low) job = self.master_call(**reformatted_low) ret_tag = tagify('ret', base=job['tag']) timelimit = time.time() + (timeout or 300) while True: ret = sevent.get_event(full=True) if ret is None: if time.time() > timelimit: raise salt.exceptions.SaltClientTimeout( "RunnerClient job '{0}' timed out".format(job['jid']), jid=job['jid']) else: continue if ret['tag'] == ret_tag: return ret['data']['return'] class Runner(RunnerClient): ''' Execute the salt runner interface ''' def print_docs(self): ''' Print out the documentation! ''' arg = self.opts.get('fun', None) docs = super(Runner, self).get_docs(arg) for fun in sorted(docs): display_output('{0}:'.format(fun), 'text', self.opts) print(docs[fun]) def run(self): ''' Execute the runner sequence ''' ret = {} if self.opts.get('doc', False): self.print_docs() else: try: # Run the runner! jid = super(Runner, self).cmd( self.opts['fun'], self.opts['arg'], self.opts) if self.opts.get('async', False): log.info('Running in async mode. Results of this execution may ' 'be collected by attaching to the master event bus or ' 'by examing the master job cache, if configured.') sys.exit(0) rets = self.get_runner_returns(jid) else: rets = [jid] # Gather the returns for ret in rets: if not self.opts.get('quiet', False): if isinstance(ret, dict) and 'outputter' in ret and ret['outputter'] is not None: print(self.outputters[ret['outputter']](ret['data'])) else: salt.output.display_output(ret, '', self.opts) except salt.exceptions.SaltException as exc: ret = str(exc) print(ret) return ret log.debug('Runner return: {0}'.format(ret)) return ret def get_runner_returns(self, jid, timeout=None): ''' Gather the return data from the event system, break hard when timeout is reached. ''' if timeout is None: timeout = self.opts['timeout'] * 2 timeout_at = time.time() + timeout last_progress_timestamp = time.time() while True: raw = self.event.get_event(timeout, full=True) time.sleep(0.1) # If we saw no events in the event bus timeout # OR # we have reached the total timeout # AND # have not seen any progress events for the length of the timeout. if raw is None and (time.time() > timeout_at and time.time() - last_progress_timestamp > timeout): # Timeout reached break try: if not raw['tag'].split('/')[1] == 'runner' and raw['tag'].split('/')[2] == jid: continue elif raw['tag'].split('/')[3] == 'progress' and raw['tag'].split('/')[2] == jid: last_progress_timestamp = time.time() yield {'data': raw['data']['data'], 'outputter': raw['data']['outputter']} elif raw['tag'].split('/')[3] == 'return' and raw['tag'].split('/')[2] == jid: yield raw['data']['return'] break # Handle a findjob that might have been kicked off under the covers elif raw['data']['fun'] == 'saltutil.findjob': timeout_at = timeout_at + 10 continue except (IndexError, KeyError): continue
[ "logging.getLogger", "salt.utils.event.tagify", "multiprocessing.Process", "time.sleep", "salt.ext.six.iteritems", "salt.utils.error.raise_error", "sys.exit", "time.time" ]
[((572, 599), 'logging.getLogger', 'logging.getLogger', (['__name__'], {}), '(__name__)\n', (589, 599), False, 'import logging\n'), ((5758, 5773), 'time.sleep', 'time.sleep', (['(0.1)'], {}), '(0.1)\n', (5768, 5773), False, 'import time\n'), ((9665, 9695), 'salt.utils.event.tagify', 'tagify', (['"""ret"""'], {'base': "job['tag']"}), "('ret', base=job['tag'])\n", (9671, 9695), False, 'from salt.utils.event import tagify\n'), ((12351, 12362), 'time.time', 'time.time', ([], {}), '()\n', (12360, 12362), False, 'import time\n'), ((4429, 4456), 'salt.utils.event.tagify', 'tagify', (["[jid, 'new']", '"""job"""'], {}), "([jid, 'new'], 'job')\n", (4435, 4456), False, 'from salt.utils.event import tagify\n'), ((4696, 4745), 'multiprocessing.Process', 'multiprocessing.Process', ([], {'target': 'target', 'args': 'args'}), '(target=target, args=args)\n', (4719, 4745), False, 'import multiprocessing\n'), ((6093, 6134), 'salt.utils.event.tagify', 'tagify', (["[data['jid'], 'return']", '"""runner"""'], {}), "([data['jid'], 'return'], 'runner')\n", (6099, 6134), False, 'from salt.utils.event import tagify\n'), ((9717, 9728), 'time.time', 'time.time', ([], {}), '()\n', (9726, 9728), False, 'import time\n'), ((12295, 12306), 'time.time', 'time.time', ([], {}), '()\n', (12304, 12306), False, 'import time\n'), ((12455, 12470), 'time.sleep', 'time.sleep', (['(0.1)'], {}), '(0.1)\n', (12465, 12470), False, 'import time\n'), ((7404, 7431), 'salt.utils.error.raise_error', 'raise_error', ([], {}), "(**ret['error'])\n", (7415, 7431), False, 'from salt.utils.error import raise_error\n'), ((3543, 3563), 'salt.ext.six.iteritems', 'six.iteritems', (['kwarg'], {}), '(kwarg)\n', (3556, 3563), True, 'import salt.ext.six as six\n'), ((9861, 9872), 'time.time', 'time.time', ([], {}), '()\n', (9870, 9872), False, 'import time\n'), ((11256, 11267), 'sys.exit', 'sys.exit', (['(0)'], {}), '(0)\n', (11264, 11267), False, 'import sys\n'), ((12724, 12735), 'time.time', 'time.time', ([], {}), '()\n', (12733, 12735), False, 'import time\n'), ((13177, 13188), 'time.time', 'time.time', ([], {}), '()\n', (13186, 13188), False, 'import time\n'), ((12785, 12796), 'time.time', 'time.time', ([], {}), '()\n', (12794, 12796), False, 'import time\n')]
# For usage of lark with PyInstaller. See https://pyinstaller-sample-hook.readthedocs.io/en/latest/index.html import os def get_hook_dirs(): return [os.path.dirname(__file__)]
[ "os.path.dirname" ]
[((160, 185), 'os.path.dirname', 'os.path.dirname', (['__file__'], {}), '(__file__)\n', (175, 185), False, 'import os\n')]
import click from arbol.arbol import aprint, asection from dexp.cli.defaults import DEFAULT_CLEVEL, DEFAULT_CODEC, DEFAULT_STORE from dexp.cli.parsing import _get_output_path, _parse_channels, _parse_chunks from dexp.datasets.open_dataset import glob_datasets from dexp.datasets.operations.crop import dataset_crop @click.command() @click.argument("input_paths", nargs=-1) # , help='input path' @click.option("--output_path", "-o") # , help='output path' @click.option("--channels", "-c", default=None, help="List of channels, all channels when ommited.") @click.option( "--quantile", "-q", default=0.99, type=float, help="Quantile parameter for lower bound of brightness for thresholding.", show_default=True, ) @click.option( "--reference-channel", "-rc", default=None, help="Reference channel to estimate cropping. If no provided it picks the first one.", ) @click.option("--store", "-st", default=DEFAULT_STORE, help="Zarr store: ‘dir’, ‘ndir’, or ‘zip’", show_default=True) @click.option("--chunks", "-chk", default=None, help="Dataset chunks dimensions, e.g. (1, 126, 512, 512).") @click.option( "--codec", "-z", default=DEFAULT_CODEC, help="Compression codec: zstd for ’, ‘blosclz’, ‘lz4’, ‘lz4hc’, ‘zlib’ or ‘snappy’ ", show_default=True, ) @click.option("--clevel", "-l", type=int, default=DEFAULT_CLEVEL, help="Compression level", show_default=True) @click.option("--overwrite", "-w", is_flag=True, help="Forces overwrite of target", show_default=True) @click.option( "--workers", "-wk", default=-4, help="Number of worker threads to spawn. Negative numbers n correspond to: number_of _cores / |n| ", show_default=True, ) # @click.option("--check", "-ck", default=True, help="Checking integrity of written file.", show_default=True) # def crop( input_paths, output_path, channels, quantile, reference_channel, store, chunks, codec, clevel, overwrite, workers, check, ): input_dataset, input_paths = glob_datasets(input_paths) output_path = _get_output_path(input_paths[0], output_path, "_crop") channels = _parse_channels(input_dataset, channels) if reference_channel is None: reference_channel = input_dataset.channels()[0] chunks = _parse_chunks(chunks) with asection( f"Cropping from: {input_paths} to {output_path} for channels: {channels}, " f"using channel {reference_channel} as a reference." ): dataset_crop( input_dataset, output_path, channels=channels, reference_channel=reference_channel, quantile=quantile, store=store, chunks=chunks, compression=codec, compression_level=clevel, overwrite=overwrite, workers=workers, check=check, ) input_dataset.close() aprint("Done!")
[ "click.argument", "dexp.cli.parsing._parse_chunks", "arbol.arbol.aprint", "click.option", "dexp.datasets.open_dataset.glob_datasets", "dexp.datasets.operations.crop.dataset_crop", "arbol.arbol.asection", "dexp.cli.parsing._get_output_path", "click.command", "dexp.cli.parsing._parse_channels" ]
[((319, 334), 'click.command', 'click.command', ([], {}), '()\n', (332, 334), False, 'import click\n'), ((336, 375), 'click.argument', 'click.argument', (['"""input_paths"""'], {'nargs': '(-1)'}), "('input_paths', nargs=-1)\n", (350, 375), False, 'import click\n'), ((401, 436), 'click.option', 'click.option', (['"""--output_path"""', '"""-o"""'], {}), "('--output_path', '-o')\n", (413, 436), False, 'import click\n'), ((462, 566), 'click.option', 'click.option', (['"""--channels"""', '"""-c"""'], {'default': 'None', 'help': '"""List of channels, all channels when ommited."""'}), "('--channels', '-c', default=None, help=\n 'List of channels, all channels when ommited.')\n", (474, 566), False, 'import click\n'), ((563, 724), 'click.option', 'click.option', (['"""--quantile"""', '"""-q"""'], {'default': '(0.99)', 'type': 'float', 'help': '"""Quantile parameter for lower bound of brightness for thresholding."""', 'show_default': '(True)'}), "('--quantile', '-q', default=0.99, type=float, help=\n 'Quantile parameter for lower bound of brightness for thresholding.',\n show_default=True)\n", (575, 724), False, 'import click\n'), ((744, 897), 'click.option', 'click.option', (['"""--reference-channel"""', '"""-rc"""'], {'default': 'None', 'help': '"""Reference channel to estimate cropping. If no provided it picks the first one."""'}), "('--reference-channel', '-rc', default=None, help=\n 'Reference channel to estimate cropping. If no provided it picks the first one.'\n )\n", (756, 897), False, 'import click\n'), ((908, 1029), 'click.option', 'click.option', (['"""--store"""', '"""-st"""'], {'default': 'DEFAULT_STORE', 'help': '"""Zarr store: ‘dir’, ‘ndir’, or ‘zip’"""', 'show_default': '(True)'}), "('--store', '-st', default=DEFAULT_STORE, help=\n 'Zarr store: ‘dir’, ‘ndir’, or ‘zip’', show_default=True)\n", (920, 1029), False, 'import click\n'), ((1026, 1137), 'click.option', 'click.option', (['"""--chunks"""', '"""-chk"""'], {'default': 'None', 'help': '"""Dataset chunks dimensions, e.g. (1, 126, 512, 512)."""'}), "('--chunks', '-chk', default=None, help=\n 'Dataset chunks dimensions, e.g. (1, 126, 512, 512).')\n", (1038, 1137), False, 'import click\n'), ((1134, 1301), 'click.option', 'click.option', (['"""--codec"""', '"""-z"""'], {'default': 'DEFAULT_CODEC', 'help': '"""Compression codec: zstd for ’, ‘blosclz’, ‘lz4’, ‘lz4hc’, ‘zlib’ or ‘snappy’ """', 'show_default': '(True)'}), "('--codec', '-z', default=DEFAULT_CODEC, help=\n 'Compression codec: zstd for ’, ‘blosclz’, ‘lz4’, ‘lz4hc’, ‘zlib’ or ‘snappy’ '\n , show_default=True)\n", (1146, 1301), False, 'import click\n'), ((1316, 1430), 'click.option', 'click.option', (['"""--clevel"""', '"""-l"""'], {'type': 'int', 'default': 'DEFAULT_CLEVEL', 'help': '"""Compression level"""', 'show_default': '(True)'}), "('--clevel', '-l', type=int, default=DEFAULT_CLEVEL, help=\n 'Compression level', show_default=True)\n", (1328, 1430), False, 'import click\n'), ((1427, 1533), 'click.option', 'click.option', (['"""--overwrite"""', '"""-w"""'], {'is_flag': '(True)', 'help': '"""Forces overwrite of target"""', 'show_default': '(True)'}), "('--overwrite', '-w', is_flag=True, help=\n 'Forces overwrite of target', show_default=True)\n", (1439, 1533), False, 'import click\n'), ((1530, 1704), 'click.option', 'click.option', (['"""--workers"""', '"""-wk"""'], {'default': '(-4)', 'help': '"""Number of worker threads to spawn. Negative numbers n correspond to: number_of _cores / |n| """', 'show_default': '(True)'}), "('--workers', '-wk', default=-4, help=\n 'Number of worker threads to spawn. Negative numbers n correspond to: number_of _cores / |n| '\n , show_default=True)\n", (1542, 1704), False, 'import click\n'), ((1722, 1834), 'click.option', 'click.option', (['"""--check"""', '"""-ck"""'], {'default': '(True)', 'help': '"""Checking integrity of written file."""', 'show_default': '(True)'}), "('--check', '-ck', default=True, help=\n 'Checking integrity of written file.', show_default=True)\n", (1734, 1834), False, 'import click\n'), ((2050, 2076), 'dexp.datasets.open_dataset.glob_datasets', 'glob_datasets', (['input_paths'], {}), '(input_paths)\n', (2063, 2076), False, 'from dexp.datasets.open_dataset import glob_datasets\n'), ((2095, 2149), 'dexp.cli.parsing._get_output_path', '_get_output_path', (['input_paths[0]', 'output_path', '"""_crop"""'], {}), "(input_paths[0], output_path, '_crop')\n", (2111, 2149), False, 'from dexp.cli.parsing import _get_output_path, _parse_channels, _parse_chunks\n'), ((2165, 2205), 'dexp.cli.parsing._parse_channels', '_parse_channels', (['input_dataset', 'channels'], {}), '(input_dataset, channels)\n', (2180, 2205), False, 'from dexp.cli.parsing import _get_output_path, _parse_channels, _parse_chunks\n'), ((2309, 2330), 'dexp.cli.parsing._parse_chunks', '_parse_chunks', (['chunks'], {}), '(chunks)\n', (2322, 2330), False, 'from dexp.cli.parsing import _get_output_path, _parse_channels, _parse_chunks\n'), ((2341, 2485), 'arbol.arbol.asection', 'asection', (['f"""Cropping from: {input_paths} to {output_path} for channels: {channels}, using channel {reference_channel} as a reference."""'], {}), "(\n f'Cropping from: {input_paths} to {output_path} for channels: {channels}, using channel {reference_channel} as a reference.'\n )\n", (2349, 2485), False, 'from arbol.arbol import aprint, asection\n'), ((2512, 2764), 'dexp.datasets.operations.crop.dataset_crop', 'dataset_crop', (['input_dataset', 'output_path'], {'channels': 'channels', 'reference_channel': 'reference_channel', 'quantile': 'quantile', 'store': 'store', 'chunks': 'chunks', 'compression': 'codec', 'compression_level': 'clevel', 'overwrite': 'overwrite', 'workers': 'workers', 'check': 'check'}), '(input_dataset, output_path, channels=channels,\n reference_channel=reference_channel, quantile=quantile, store=store,\n chunks=chunks, compression=codec, compression_level=clevel, overwrite=\n overwrite, workers=workers, check=check)\n', (2524, 2764), False, 'from dexp.datasets.operations.crop import dataset_crop\n'), ((2946, 2961), 'arbol.arbol.aprint', 'aprint', (['"""Done!"""'], {}), "('Done!')\n", (2952, 2961), False, 'from arbol.arbol import aprint, asection\n')]
import sys from matplotlib import image as mpimg import numpy as np import os DIPHA_CONST = 8067171840 DIPHA_IMAGE_TYPE_CONST = 1 DIM = 3 input_dir = os.path.join(os.getcwd(), sys.argv[1]) dipha_output_filename = sys.argv[2] vert_filename = sys.argv[3] input_filenames = [name for name in os.listdir(input_dir) if (os.path.isfile(input_dir + '/' + name)) and (name != ".DS_Store")] input_filenames.sort() image = mpimg.imread(os.path.join(input_dir, input_filenames[0])) nx, ny = image.shape del image nz = len(input_filenames) print(nx, ny, nz) #sys.exit() im_cube = np.zeros([nx, ny, nz]) i = 0 for name in input_filenames: sys.stdout.flush() print(i, name) fileName = input_dir + "/" + name im_cube[:, :, i] = mpimg.imread(fileName) i = i + 1 print('writing dipha output...') with open(dipha_output_filename, 'wb') as output_file: # this is needed to verify you are giving dipha a dipha file np.int64(DIPHA_CONST).tofile(output_file) # this tells dipha that we are giving an image as input np.int64(DIPHA_IMAGE_TYPE_CONST).tofile(output_file) # number of points np.int64(nx * ny * nz).tofile(output_file) # dimension np.int64(DIM).tofile(output_file) # pixels in each dimension np.int64(nx).tofile(output_file) np.int64(ny).tofile(output_file) np.int64(nz).tofile(output_file) # pixel values for k in range(nz): sys.stdout.flush() print('dipha - working on image', k) for j in range(ny): for i in range(nx): val = int(-im_cube[i, j, k]*255) ''' if val != 0 and val != -1: print('val check:', val) ''' np.float64(val).tofile(output_file) output_file.close() print('writing vert file') with open(vert_filename, 'w') as vert_file: for k in range(nz): sys.stdout.flush() print('verts - working on image', k) for j in range(ny): for i in range(nx): vert_file.write(str(i) + ' ' + str(j) + ' ' + str(k) + ' ' + str(int(-im_cube[i, j, k] * 255)) + '\n') vert_file.close() print(nx, ny, nz)
[ "os.listdir", "numpy.int64", "numpy.float64", "matplotlib.image.imread", "os.path.join", "os.getcwd", "os.path.isfile", "numpy.zeros", "sys.stdout.flush" ]
[((638, 660), 'numpy.zeros', 'np.zeros', (['[nx, ny, nz]'], {}), '([nx, ny, nz])\n', (646, 660), True, 'import numpy as np\n'), ((174, 185), 'os.getcwd', 'os.getcwd', ([], {}), '()\n', (183, 185), False, 'import os\n'), ((488, 531), 'os.path.join', 'os.path.join', (['input_dir', 'input_filenames[0]'], {}), '(input_dir, input_filenames[0])\n', (500, 531), False, 'import os\n'), ((705, 723), 'sys.stdout.flush', 'sys.stdout.flush', ([], {}), '()\n', (721, 723), False, 'import sys\n'), ((807, 829), 'matplotlib.image.imread', 'mpimg.imread', (['fileName'], {}), '(fileName)\n', (819, 829), True, 'from matplotlib import image as mpimg\n'), ((325, 346), 'os.listdir', 'os.listdir', (['input_dir'], {}), '(input_dir)\n', (335, 346), False, 'import os\n'), ((1499, 1517), 'sys.stdout.flush', 'sys.stdout.flush', ([], {}), '()\n', (1515, 1517), False, 'import sys\n'), ((1995, 2013), 'sys.stdout.flush', 'sys.stdout.flush', ([], {}), '()\n', (2011, 2013), False, 'import sys\n'), ((371, 409), 'os.path.isfile', 'os.path.isfile', (["(input_dir + '/' + name)"], {}), "(input_dir + '/' + name)\n", (385, 409), False, 'import os\n'), ((1010, 1031), 'numpy.int64', 'np.int64', (['DIPHA_CONST'], {}), '(DIPHA_CONST)\n', (1018, 1031), True, 'import numpy as np\n'), ((1118, 1150), 'numpy.int64', 'np.int64', (['DIPHA_IMAGE_TYPE_CONST'], {}), '(DIPHA_IMAGE_TYPE_CONST)\n', (1126, 1150), True, 'import numpy as np\n'), ((1200, 1222), 'numpy.int64', 'np.int64', (['(nx * ny * nz)'], {}), '(nx * ny * nz)\n', (1208, 1222), True, 'import numpy as np\n'), ((1265, 1278), 'numpy.int64', 'np.int64', (['DIM'], {}), '(DIM)\n', (1273, 1278), True, 'import numpy as np\n'), ((1336, 1348), 'numpy.int64', 'np.int64', (['nx'], {}), '(nx)\n', (1344, 1348), True, 'import numpy as np\n'), ((1374, 1386), 'numpy.int64', 'np.int64', (['ny'], {}), '(ny)\n', (1382, 1386), True, 'import numpy as np\n'), ((1412, 1424), 'numpy.int64', 'np.int64', (['nz'], {}), '(nz)\n', (1420, 1424), True, 'import numpy as np\n'), ((1825, 1840), 'numpy.float64', 'np.float64', (['val'], {}), '(val)\n', (1835, 1840), True, 'import numpy as np\n')]
import numpy as np import matplotlib.pyplot as plt import math def normal(mu,sigma,x): #normal distribution return 1/(math.pi*2)**0.5/sigma*np.exp(-(x-mu)**2/2/sigma**2) def eval(x): return normal(-4,1,x) + normal(4,1,x) #return 0.3*np.exp(-0.2*x**2)+0.7*np.exp(-0.2*(x-10)**2) def ref(x_star,x): #normal distribution return normal(x,10,x_star) N = [100,500,1000,5000] fig = plt.figure() for i in range(4): X = np.array([]) x = 0.1 #initialize x0 to be 0.1 for j in range(N[i]): u = np.random.rand() x_star = np.random.normal(x,10) A = min(1,eval(x_star)/eval(x)) #*q(x,x_star)/p(x)/q(x_star,x)) if u < A: x = x_star X=np.hstack((X,x)) ax = fig.add_subplot(2,2,i+1) ax.hist(X,bins=100,density=True) x = np.linspace(-10,20,5000) #ax.plot(x,eval(x)/2.7) #2.7 approximates the normalizing constant ax.plot(x,eval(x)/2) #2 approximates the normalizing constant ax.set_ylim(0,0.35) ax.text(-9,0.25,'I=%d'%N[i]) fig.suptitle('Metropolis_Hastings for MCMC(Normal)') #fig.suptitle('Metropolis_Hastings for MCMC(Exp.)') plt.savefig('MetropolisNormal.png',dpi=100) #plt.savefig('MetropolisExp.png',dpi=100) plt.show()
[ "numpy.random.normal", "matplotlib.pyplot.savefig", "numpy.random.rand", "numpy.hstack", "numpy.exp", "numpy.array", "matplotlib.pyplot.figure", "numpy.linspace", "matplotlib.pyplot.show" ]
[((396, 408), 'matplotlib.pyplot.figure', 'plt.figure', ([], {}), '()\n', (406, 408), True, 'import matplotlib.pyplot as plt\n'), ((1126, 1170), 'matplotlib.pyplot.savefig', 'plt.savefig', (['"""MetropolisNormal.png"""'], {'dpi': '(100)'}), "('MetropolisNormal.png', dpi=100)\n", (1137, 1170), True, 'import matplotlib.pyplot as plt\n'), ((1212, 1222), 'matplotlib.pyplot.show', 'plt.show', ([], {}), '()\n', (1220, 1222), True, 'import matplotlib.pyplot as plt\n'), ((436, 448), 'numpy.array', 'np.array', (['[]'], {}), '([])\n', (444, 448), True, 'import numpy as np\n'), ((801, 827), 'numpy.linspace', 'np.linspace', (['(-10)', '(20)', '(5000)'], {}), '(-10, 20, 5000)\n', (812, 827), True, 'import numpy as np\n'), ((145, 184), 'numpy.exp', 'np.exp', (['(-(x - mu) ** 2 / 2 / sigma ** 2)'], {}), '(-(x - mu) ** 2 / 2 / sigma ** 2)\n', (151, 184), True, 'import numpy as np\n'), ((524, 540), 'numpy.random.rand', 'np.random.rand', ([], {}), '()\n', (538, 540), True, 'import numpy as np\n'), ((558, 581), 'numpy.random.normal', 'np.random.normal', (['x', '(10)'], {}), '(x, 10)\n', (574, 581), True, 'import numpy as np\n'), ((704, 721), 'numpy.hstack', 'np.hstack', (['(X, x)'], {}), '((X, x))\n', (713, 721), True, 'import numpy as np\n')]
import os from typing import Any, Dict, List, Optional import carla from core.simulators.carla_simulator import CarlaSimulator from core.simulators.carla_data_provider import CarlaDataProvider from .srunner.scenarios.route_scenario import RouteScenario, SCENARIO_CLASS_DICT from .srunner.scenariomanager.scenario_manager import ScenarioManager class CarlaScenarioSimulator(CarlaSimulator): """ Carla simualtor used to run scenarios. The simulator loads configs of provided scenario, and create hero actor, npc vehicles, walkers, world map according to it. The sensors and running status are set as common Carla simulator. When created, it will set up Carla client due to arguments, set simulator basic configurations used all around its lifetime, and set some default running configurations. If no traffic manager port is provided, it will find random free port in system. :Arguments: - cfg (Dict): Config Dict. - client (carla.Client, optional): Already established Carla client. Defaults to None. - host (str, optional): TCP host Carla client link to. Defaults to 'localhost'. - port (int, optional): TCP port Carla client link to. Defaults to 9000. - tm_port (int, optional): Traffic manager port Carla client link to. Defaults to None. - timeout (float, optional): Carla client link timeout. Defaults to 10.0. :Interfaces: init, get_state, get_sensor_data, get_navigation, get_information, apply_control, run_step, clean_up :Properties: - town_name (str): Current town name. - hero_player (carla.Actor): hero actor in simulation. - collided (bool): Whether collided in current episode. - end_distance (float): Distance to target in current frame. - end_timeout (float): Timeout for entire route provided by planner. - total_diatance (float): Dictance for entire route provided by planner. - scenario_manager (Any): Scenario Manager instance used to get running state. """ config = dict( town='Town01', weather='random', sync_mode=True, delta_seconds=0.1, no_rendering=False, auto_pilot=False, n_vehicles=0, n_pedestrians=0, disable_two_wheels=False, col_threshold=400, resolution=1.0, waypoint_num=20, obs=list(), planner=dict(), aug=None, verbose=True, debug=False, ) def __init__( self, cfg: Dict, client: Optional[carla.Client] = None, host: str = 'localhost', port: int = 9000, tm_port: int = 9050, timeout: float = 10.0, **kwargs ) -> None: """ Init Carla scenario simulator. """ super().__init__(cfg, client, host, port, tm_port, timeout) self._resolution = self._cfg.resolution self._scenario = None self._start_scenario = False self._manager = ScenarioManager(self._debug, self._sync_mode, self._client_timeout) self._criteria_status = dict() def init(self, config: Any) -> None: """ Init simulator episode with provided args. This method takes an scneario configuration instance to set up scenarios in Carla server. the scenario could be a single scenario, or a route scenario together with several scenarios during navigating the route. A scneario manager is used to manager and check the running status and tick scenarios. A local planner is set to trace the route to generate target waypoint and road options in each tick. It will set world, map, vehicles, pedestrians dut to provided args and default configs, and reset running status. If no collision happens when creating actors, the init will end and return. :Arguments: - config (Any): Scenario configuration instance, containing information about the scenarios. """ self._scenario_config = config self.clean_up() self._set_town(config.town) self._set_weather(self._weather) self._blueprints = self._world.get_blueprint_library() while True: self.clean_up() CarlaDataProvider.set_client(self._client) CarlaDataProvider.set_world(self._world) CarlaDataProvider.set_traffic_manager_port(self._tm.get_port()) if CarlaDataProvider.get_map().name != config.town and CarlaDataProvider.get_map().name != "OpenDriveMap": print("WARNING: The CARLA server uses the wrong map: {}".format(CarlaDataProvider.get_map().name)) print("WARNING: This scenario requires to use map: {}".format(config.town)) print("[SIMULATOR] Preparing scenario: " + config.name) config.n_vehicles = self._n_vehicles config.disable_two_wheels = self._disable_two_wheels if "RouteScenario" in config.name: self._scenario = RouteScenario( world=self._world, config=config, debug_mode=self._debug, resolution=self._resolution ) self._hero_actor = self._scenario.ego_vehicles[0] self._prepare_observations() self._manager.load_scenario(self._scenario) self._planner.set_route(CarlaDataProvider.get_hero_vehicle_route(), clean=True) self._total_distance = self._planner.distance_to_goal self._end_timeout = self._scenario.route_timeout else: # select scenario if config.type in SCENARIO_CLASS_DICT: scenario_class = SCENARIO_CLASS_DICT[config.type] ego_vehicles = [] for vehicle in config.ego_vehicles: ego_vehicles.append( CarlaDataProvider.request_new_actor( vehicle.model, vehicle.transform, vehicle.rolename, True, color=vehicle.color, actor_category=vehicle.category ) ) self._scenario = scenario_class( world=self._world, ego_vehicles=ego_vehicles, config=config, debug_mode=self._debug ) else: raise RuntimeError("Scenario '{}' not support!".format(config.type)) self._hero_actor = self._scenario.ego_vehicles[0] self._prepare_observations() self._manager.load_scenario(self._scenario) self._planner.set_destination(config.route.data[0], config.route.data[1], clean=True) self._total_distance = self._planner.distance_to_goal self._spawn_pedestrians() if self._ready(): if self._debug: self._count_actors() break def run_step(self) -> None: """ Run one step simulation. This will tick Carla world and scenarios, update informations for all sensors and measurement. """ if not self._start_scenario: self._manager.start_scenario() self._start_scenario = True self._tick += 1 world_snapshot = self._world.get_snapshot() timestamp = world_snapshot.timestamp self._timestamp = timestamp.elapsed_seconds self._manager.tick_scenario(timestamp) if self._planner is not None: self._planner.run_step() self._collided = self._collision_sensor.collided self._traffic_light_helper.tick() if self._bev_wrapper is not None: if CarlaDataProvider._hero_vehicle_route is not None: self._bev_wrapper.tick() def get_criteria(self) -> List: """ Get criteria status list of scenario in current frame. Criteria related with hero actor is encounted. :Returns: List: Criteria list of scenario. """ criterion_list = self._manager.analyze_tick() for name, actor_id, result, actual_value, expected_value in criterion_list: if actor_id == self._hero_actor.id: self._criteria_status.update({name: [result, actual_value, expected_value]}) return self._criteria_status def end_scenario(self) -> None: """ End current scenario. Must be called before ending an episode. """ if self._start_scenario: self._manager.end_scenario() self._start_scenario = False def clean_up(self) -> None: """ Destroy all actors and sensors in current world. Clear all messages saved in simulator and data provider, and clean up running scenarios. This will NOT destroy theCarla client, so simulator can use same carla client to start next episode. """ if self._manager is not None: self._manager.clean_up() self._criteria_status.clear() super().clean_up() @property def scenario_manager(self) -> Any: return self._manager
[ "core.simulators.carla_data_provider.CarlaDataProvider.request_new_actor", "core.simulators.carla_data_provider.CarlaDataProvider.get_map", "core.simulators.carla_data_provider.CarlaDataProvider.set_world", "core.simulators.carla_data_provider.CarlaDataProvider.get_hero_vehicle_route", "core.simulators.carla_data_provider.CarlaDataProvider.set_client" ]
[((4290, 4332), 'core.simulators.carla_data_provider.CarlaDataProvider.set_client', 'CarlaDataProvider.set_client', (['self._client'], {}), '(self._client)\n', (4318, 4332), False, 'from core.simulators.carla_data_provider import CarlaDataProvider\n'), ((4345, 4385), 'core.simulators.carla_data_provider.CarlaDataProvider.set_world', 'CarlaDataProvider.set_world', (['self._world'], {}), '(self._world)\n', (4372, 4385), False, 'from core.simulators.carla_data_provider import CarlaDataProvider\n'), ((5403, 5445), 'core.simulators.carla_data_provider.CarlaDataProvider.get_hero_vehicle_route', 'CarlaDataProvider.get_hero_vehicle_route', ([], {}), '()\n', (5443, 5445), False, 'from core.simulators.carla_data_provider import CarlaDataProvider\n'), ((4478, 4505), 'core.simulators.carla_data_provider.CarlaDataProvider.get_map', 'CarlaDataProvider.get_map', ([], {}), '()\n', (4503, 4505), False, 'from core.simulators.carla_data_provider import CarlaDataProvider\n'), ((4530, 4557), 'core.simulators.carla_data_provider.CarlaDataProvider.get_map', 'CarlaDataProvider.get_map', ([], {}), '()\n', (4555, 4557), False, 'from core.simulators.carla_data_provider import CarlaDataProvider\n'), ((4662, 4689), 'core.simulators.carla_data_provider.CarlaDataProvider.get_map', 'CarlaDataProvider.get_map', ([], {}), '()\n', (4687, 4689), False, 'from core.simulators.carla_data_provider import CarlaDataProvider\n'), ((5939, 6095), 'core.simulators.carla_data_provider.CarlaDataProvider.request_new_actor', 'CarlaDataProvider.request_new_actor', (['vehicle.model', 'vehicle.transform', 'vehicle.rolename', '(True)'], {'color': 'vehicle.color', 'actor_category': 'vehicle.category'}), '(vehicle.model, vehicle.transform,\n vehicle.rolename, True, color=vehicle.color, actor_category=vehicle.\n category)\n', (5974, 6095), False, 'from core.simulators.carla_data_provider import CarlaDataProvider\n')]
import myproject myproject.logs(show_level='debug') myproject.mymod.do_something()
[ "myproject.mymod.do_something", "myproject.logs" ]
[((18, 52), 'myproject.logs', 'myproject.logs', ([], {'show_level': '"""debug"""'}), "(show_level='debug')\n", (32, 52), False, 'import myproject\n'), ((55, 85), 'myproject.mymod.do_something', 'myproject.mymod.do_something', ([], {}), '()\n', (83, 85), False, 'import myproject\n')]
# -*- coding: utf-8 -*- # # Helper Script for Mass-Invitation of Participant Organisations # # RLPPTM Template Version 1.0 # # Execute in web2py folder after code upgrade like: # python web2py.py -S eden -M -R applications/eden/modules/templates/RLPPTM/tools/mis.py # import os import sys from core import s3_format_datetime from templates.RLPPTM.config import SCHOOLS from templates.RLPPTM.helpers import InviteUserOrg # Batch limit (set to False to disable) BATCH_LIMIT = 250 # Override auth (disables all permission checks) auth.override = True # Failed-flag failed = False # Info log = None def info(msg): sys.stderr.write("%s" % msg) if log: log.write("%s" % msg) def infoln(msg): sys.stderr.write("%s\n" % msg) if log: log.write("%s\n" % msg) # Load models for tables otable = s3db.org_organisation gtable = s3db.org_group mtable = s3db.org_group_membership utable = s3db.auth_user oltable = s3db.org_organisation_user pltable = s3db.pr_person_user ctable = s3db.pr_contact timestmp = s3_format_datetime(dtfmt="%Y%m%d%H%M%S") LOGFILE = os.path.join(request.folder, "private", "mis_%s.log" % timestmp) # ----------------------------------------------------------------------------- # Invite organisations # if not failed: try: with open(LOGFILE, "w", encoding="utf-8") as logfile: log = logfile join = [mtable.on((mtable.organisation_id == otable.id) & \ (mtable.deleted == False)), gtable.on((gtable.id == mtable.group_id) & \ (gtable.name == SCHOOLS) & \ (gtable.deleted == False)), ] query = (otable.deleted == False) organisations = db(query).select(otable.id, otable.pe_id, otable.name, join = join, orderby = otable.id, ) total = len(organisations) infoln("Total: %s Organisations" % total) infoln("") skipped = sent = failures = 0 invite_org = InviteUserOrg.invite_account for organisation in organisations: info("%s..." % organisation.name) # Get all accounts that are linked to this org organisation_id = organisation.id join = oltable.on((oltable.user_id == utable.id) & \ (oltable.deleted == False)) left = pltable.on((pltable.user_id == utable.id) & \ (pltable.deleted == False)) query = (oltable.organisation_id == organisation_id) rows = db(query).select(utable.id, utable.email, utable.registration_key, pltable.pe_id, join = join, left = left, ) if rows: # There are already accounts linked to this organisation invited, registered = [], [] for row in rows: username = row.auth_user.email if row.pr_person_user.pe_id: registered.append(username) else: invited.append(username) if registered: infoln("already registered (%s)." % ", ".join(registered)) else: infoln("already invited (%s)." % ", ".join(invited)) skipped += 1 continue # Find email address query = (ctable.pe_id == organisation.pe_id) & \ (ctable.contact_method == "EMAIL") & \ (ctable.deleted == False) contact = db(query).select(ctable.value, orderby = ctable.priority, limitby = (0, 1), ).first() if contact: email = contact.value info("(%s)..." % email) else: infoln("no email address.") skipped += 1 continue error = invite_org(organisation, email, account=None) if not error: sent += 1 infoln("invited.") db.commit() else: failures += 1 infoln("invitation failed (%s)." % error) if BATCH_LIMIT and sent >= BATCH_LIMIT: infoln("Batch limit (%s) reached" % BATCH_LIMIT) skipped = total - (sent + failures) break infoln("") infoln("%s invitations sent" % sent) infoln("%s invitations failed" % failures) infoln("%s organisations skipped" % skipped) log = None except IOError: infoln("...failed (could not create logfile)") failed = True # ----------------------------------------------------------------------------- # Finishing up # if failed: db.rollback() infoln("PROCESS FAILED - Action rolled back.") else: db.commit() infoln("PROCESS SUCCESSFUL.")
[ "sys.stderr.write", "os.path.join", "core.s3_format_datetime" ]
[((1031, 1071), 'core.s3_format_datetime', 's3_format_datetime', ([], {'dtfmt': '"""%Y%m%d%H%M%S"""'}), "(dtfmt='%Y%m%d%H%M%S')\n", (1049, 1071), False, 'from core import s3_format_datetime\n'), ((1082, 1146), 'os.path.join', 'os.path.join', (['request.folder', '"""private"""', "('mis_%s.log' % timestmp)"], {}), "(request.folder, 'private', 'mis_%s.log' % timestmp)\n", (1094, 1146), False, 'import os\n'), ((620, 648), 'sys.stderr.write', 'sys.stderr.write', (["('%s' % msg)"], {}), "('%s' % msg)\n", (636, 648), False, 'import sys\n'), ((712, 742), 'sys.stderr.write', 'sys.stderr.write', (["('%s\\n' % msg)"], {}), "('%s\\n' % msg)\n", (728, 742), False, 'import sys\n')]
import json import logging from django.core.management.base import BaseCommand from django.db import transaction from paprika_sync.core.models import PaprikaAccount from paprika_sync.core.serializers import RecipeSerializer, CategorySerializer from paprika_sync.core.utils import log_start_end logger = logging.getLogger(__name__) class Command(BaseCommand): help = 'Import all recipes from file to specified PaprikaAccount' def add_arguments(self, parser): parser.add_argument( 'file', help='Path to json file containing list of all recipes', ) parser.add_argument( '--categories-file', help='Path to json file containing list of all categories', ) parser.add_argument( 'paprika_account_id', type=int, help='ID of PaprikaAccount to import recipes to', ) parser.add_argument( '-r', '--remove', action='store_true', help="Removes all of account's existing recipes before importing", ) @log_start_end(logger) def handle(self, *args, **options): recipes_file = options['file'] categories_file = options['categories_file'] pa_id = options['paprika_account_id'] wipe_account = options['remove'] logger.info('Starting import for PaprikaAccount id %s from %s, wipe_account=%s', pa_id, recipes_file, wipe_account) pa = PaprikaAccount.objects.get(id=pa_id) with open(recipes_file, 'rt') as fin: recipes = json.load(fin) logger.info('Found %s recipes to import to %s', len(recipes), pa) categories = [] if categories_file: with open(categories_file, 'rt') as fin: categories = json.load(fin) logger.info('Found %s categories to import to %s', len(categories), pa) with transaction.atomic(): if wipe_account: pa.recipes.all().delete() pa.categories.all().delete() for category in categories: category['paprika_account'] = pa.id cs = CategorySerializer(data=category) if cs.is_valid(): cs.save() else: logger.warning('Failed to import category %s (%s) due to errors: %s', category['uid'], category['name'], cs.errors) for recipe in recipes: # Remove categories if we're not bothering to import them if not categories: recipe['categories'] = [] recipe['paprika_account'] = pa.id rs = RecipeSerializer(data=recipe) if rs.is_valid(): rs.save() else: logger.warning('Failed to import recipe %s (%s) due to errors: %s', recipe['uid'], recipe['name'], rs.errors) # recipe_field_names = set([f.name for f in Recipe._meta.fields]) # Recipe.objects.create( # paprika_account=pa, # **{k: v for k, v in recipe.items() if k in recipe_field_names}, # ) logger.info('Finished recipe import successfully') # transaction.set_rollback(True)
[ "logging.getLogger", "django.db.transaction.atomic", "paprika_sync.core.utils.log_start_end", "paprika_sync.core.models.PaprikaAccount.objects.get", "paprika_sync.core.serializers.RecipeSerializer", "paprika_sync.core.serializers.CategorySerializer", "json.load" ]
[((307, 334), 'logging.getLogger', 'logging.getLogger', (['__name__'], {}), '(__name__)\n', (324, 334), False, 'import logging\n'), ((1089, 1110), 'paprika_sync.core.utils.log_start_end', 'log_start_end', (['logger'], {}), '(logger)\n', (1102, 1110), False, 'from paprika_sync.core.utils import log_start_end\n'), ((1469, 1505), 'paprika_sync.core.models.PaprikaAccount.objects.get', 'PaprikaAccount.objects.get', ([], {'id': 'pa_id'}), '(id=pa_id)\n', (1495, 1505), False, 'from paprika_sync.core.models import PaprikaAccount\n'), ((1574, 1588), 'json.load', 'json.load', (['fin'], {}), '(fin)\n', (1583, 1588), False, 'import json\n'), ((1912, 1932), 'django.db.transaction.atomic', 'transaction.atomic', ([], {}), '()\n', (1930, 1932), False, 'from django.db import transaction\n'), ((1799, 1813), 'json.load', 'json.load', (['fin'], {}), '(fin)\n', (1808, 1813), False, 'import json\n'), ((2164, 2197), 'paprika_sync.core.serializers.CategorySerializer', 'CategorySerializer', ([], {'data': 'category'}), '(data=category)\n', (2182, 2197), False, 'from paprika_sync.core.serializers import RecipeSerializer, CategorySerializer\n'), ((2683, 2712), 'paprika_sync.core.serializers.RecipeSerializer', 'RecipeSerializer', ([], {'data': 'recipe'}), '(data=recipe)\n', (2699, 2712), False, 'from paprika_sync.core.serializers import RecipeSerializer, CategorySerializer\n')]
from dataclasses import dataclass, field @dataclass class FooTest: class Meta: name = "fooTest" value: str = field( init=False, default="Hello" ) @dataclass class Root: class Meta: name = "root" foo_test: str = field( init=False, default="Hello", metadata={ "name": "fooTest", "type": "Element", "required": True, } )
[ "dataclasses.field" ]
[((128, 162), 'dataclasses.field', 'field', ([], {'init': '(False)', 'default': '"""Hello"""'}), "(init=False, default='Hello')\n", (133, 162), False, 'from dataclasses import dataclass, field\n'), ((269, 374), 'dataclasses.field', 'field', ([], {'init': '(False)', 'default': '"""Hello"""', 'metadata': "{'name': 'fooTest', 'type': 'Element', 'required': True}"}), "(init=False, default='Hello', metadata={'name': 'fooTest', 'type':\n 'Element', 'required': True})\n", (274, 374), False, 'from dataclasses import dataclass, field\n')]
import json import os from collections import OrderedDict from copy import deepcopy import SimpleITK as sitk from batchgenerators.augmentations.utils import resize_segmentation # resize_softmax_output from skimage.transform import resize from torch.optim import lr_scheduler from torch import nn import numpy as np import torch from scipy.ndimage import binary_fill_holes ''' This code is not intended to be looked at by anyone. It is messy. It is undocumented. And the entire training pipeline is missing. ''' max_num_filters_3d = 320 max_num_filters_2d = 480 join = os.path.join def load_json(file): with open(file, 'r') as f: a = json.load(f) return a def resize_image(image, old_spacing, new_spacing, order=3, cval=0): new_shape = (int(np.round(old_spacing[0]/new_spacing[0]*float(image.shape[0]))), int(np.round(old_spacing[1]/new_spacing[1]*float(image.shape[1]))), int(np.round(old_spacing[2]/new_spacing[2]*float(image.shape[2])))) if any([i != j for i, j in zip(image.shape, new_shape)]): res = resize(image, new_shape, order=order, mode='edge', cval=cval) else: res = image return res class ConvDropoutNormNonlin(nn.Module): def __init__(self, input_channels, output_channels, conv_op=nn.Conv2d, conv_kwargs=None, norm_op=nn.BatchNorm2d, norm_op_kwargs=None, dropout_op=nn.Dropout2d, dropout_op_kwargs=None, nonlin=nn.LeakyReLU, nonlin_kwargs=None): super(ConvDropoutNormNonlin, self).__init__() if nonlin_kwargs is None: nonlin_kwargs = {'negative_slope': 1e-2, 'inplace': True} if dropout_op_kwargs is None: dropout_op_kwargs = {'p': 0.5, 'inplace': True} if norm_op_kwargs is None: norm_op_kwargs = {'eps': 1e-5, 'affine': True, 'momentum': 0.1} if conv_kwargs is None: conv_kwargs = {'kernel_size': 3, 'stride': 1, 'padding': 1, 'dilation': 1, 'bias': True} self.nonlin_kwargs = nonlin_kwargs self.nonlin = nonlin self.dropout_op = dropout_op self.dropout_op_kwargs = dropout_op_kwargs self.norm_op_kwargs = norm_op_kwargs self.conv_kwargs = conv_kwargs self.conv_op = conv_op self.norm_op = norm_op self.conv = self.conv_op(input_channels, output_channels, **self.conv_kwargs) if self.dropout_op is not None and self.dropout_op_kwargs['p'] is not None and self.dropout_op_kwargs[ 'p'] > 0: self.dropout = self.dropout_op(**self.dropout_op_kwargs) else: self.dropout = None self.instnorm = self.norm_op(output_channels, **self.norm_op_kwargs) self.lrelu = nn.LeakyReLU(**self.nonlin_kwargs) def forward(self, x): x = self.conv(x) if self.dropout is not None: x = self.dropout(x) return self.lrelu(self.instnorm(x)) def pad_nd_image(image, new_shape=None, mode="edge", kwargs=None, return_slicer=False, shape_must_be_divisible_by=None): if kwargs is None: kwargs = {} if new_shape is not None: old_shape = np.array(image.shape[-len(new_shape):]) else: assert shape_must_be_divisible_by is not None assert isinstance(shape_must_be_divisible_by, (list, tuple, np.ndarray)) new_shape = image.shape[-len(shape_must_be_divisible_by):] old_shape = new_shape num_axes_nopad = len(image.shape) - len(new_shape) new_shape = [max(new_shape[i], old_shape[i]) for i in range(len(new_shape))] if not isinstance(new_shape, np.ndarray): new_shape = np.array(new_shape) if shape_must_be_divisible_by is not None: if not isinstance(shape_must_be_divisible_by, (list, tuple, np.ndarray)): shape_must_be_divisible_by = [shape_must_be_divisible_by] * len(new_shape) else: assert len(shape_must_be_divisible_by) == len(new_shape) for i in range(len(new_shape)): if new_shape[i] % shape_must_be_divisible_by[i] == 0: new_shape[i] -= shape_must_be_divisible_by[i] new_shape = np.array([new_shape[i] + shape_must_be_divisible_by[i] - new_shape[i] % shape_must_be_divisible_by[i] for i in range(len(new_shape))]) difference = new_shape - old_shape pad_below = difference // 2 pad_above = difference // 2 + difference % 2 pad_list = [[0, 0]]*num_axes_nopad + list([list(i) for i in zip(pad_below, pad_above)]) res = np.pad(image, pad_list, mode, **kwargs) if not return_slicer: return res else: pad_list = np.array(pad_list) pad_list[:, 1] = np.array(res.shape) - pad_list[:, 1] slicer = list(slice(*i) for i in pad_list) return res, slicer class NeuralNetwork(nn.Module): def __init__(self): super(NeuralNetwork, self).__init__() def get_device(self): if next(self.parameters()).device == "cpu": return "cpu" else: return next(self.parameters()).device.index def set_device(self, device): if device == "cpu": self.cpu() else: self.cuda(device) def forward(self, x): raise NotImplementedError class SegmentationNetwork(NeuralNetwork): def __init__(self): self.input_shape_must_be_divisible_by = None self.conv_op = None super(NeuralNetwork, self).__init__() self.inference_apply_nonlin = lambda x:x def predict_3D(self, x, do_mirroring, num_repeats=1, use_train_mode=False, batch_size=1, mirror_axes=(2, 3, 4), tiled=False, tile_in_z=True, step=2, patch_size=None, regions_class_order=None, use_gaussian=False, pad_border_mode="edge", pad_kwargs=None): """ :param x: (c, x, y , z) :param do_mirroring: :param num_repeats: :param use_train_mode: :param batch_size: :param mirror_axes: :param tiled: :param tile_in_z: :param step: :param patch_size: :param regions_class_order: :param use_gaussian: :return: """ current_mode = self.training if use_train_mode is not None and use_train_mode: self.train() elif use_train_mode is not None and not use_train_mode: self.eval() else: pass assert len(x.shape) == 4, "data must have shape (c,x,y,z)" if self.conv_op == nn.Conv3d: if tiled: res = self._internal_predict_3D_3Dconv_tiled(x, num_repeats, batch_size, tile_in_z, step, do_mirroring, mirror_axes, patch_size, regions_class_order, use_gaussian, pad_border_mode, pad_kwargs=pad_kwargs) else: res = self._internal_predict_3D_3Dconv(x, do_mirroring, num_repeats, patch_size, batch_size, mirror_axes, regions_class_order, pad_border_mode, pad_kwargs=pad_kwargs) elif self.conv_op == nn.Conv2d: if tiled: res = self._internal_predict_3D_2Dconv_tiled(x, do_mirroring, num_repeats, batch_size, mirror_axes, step, patch_size, regions_class_order, use_gaussian, pad_border_mode, pad_kwargs=pad_kwargs) else: res = self._internal_predict_3D_2Dconv(x, do_mirroring, num_repeats, patch_size, batch_size, mirror_axes, regions_class_order, pad_border_mode, pad_kwargs=pad_kwargs) else: raise RuntimeError("Invalid conv op, cannot determine what dimensionality (2d/3d) the network is") if use_train_mode is not None: self.train(current_mode) return res def _internal_maybe_mirror_and_pred_3D(self, x, num_repeats, mirror_axes, do_mirroring=True): with torch.no_grad(): a = torch.zeros(x.shape).float() if self.get_device() == "cpu": a = a.cpu() else: a = a.cuda(self.get_device()) if do_mirroring: mirror_idx = 8 else: mirror_idx = 1 all_preds = [] for i in range(num_repeats): for m in range(mirror_idx): data_for_net = np.array(x) do_stuff = False if m == 0: do_stuff = True pass if m == 1 and (4 in mirror_axes): do_stuff = True data_for_net = data_for_net[:, :, :, :, ::-1] if m == 2 and (3 in mirror_axes): do_stuff = True data_for_net = data_for_net[:, :, :, ::-1, :] if m == 3 and (4 in mirror_axes) and (3 in mirror_axes): do_stuff = True data_for_net = data_for_net[:, :, :, ::-1, ::-1] if m == 4 and (2 in mirror_axes): do_stuff = True data_for_net = data_for_net[:, :, ::-1, :, :] if m == 5 and (2 in mirror_axes) and (4 in mirror_axes): do_stuff = True data_for_net = data_for_net[:, :, ::-1, :, ::-1] if m == 6 and (2 in mirror_axes) and (3 in mirror_axes): do_stuff = True data_for_net = data_for_net[:, :, ::-1, ::-1, :] if m == 7 and (2 in mirror_axes) and (3 in mirror_axes) and (4 in mirror_axes): do_stuff = True data_for_net = data_for_net[:, :, ::-1, ::-1, ::-1] if do_stuff: _ = a.data.copy_(torch.from_numpy(np.copy(data_for_net))) p = self.inference_apply_nonlin(self(a)) p = p.data.cpu().numpy() if m == 0: pass if m == 1 and (4 in mirror_axes): p = p[:, :, :, :, ::-1] if m == 2 and (3 in mirror_axes): p = p[:, :, :, ::-1, :] if m == 3 and (4 in mirror_axes) and (3 in mirror_axes): p = p[:, :, :, ::-1, ::-1] if m == 4 and (2 in mirror_axes): p = p[:, :, ::-1, :, :] if m == 5 and (2 in mirror_axes) and (4 in mirror_axes): p = p[:, :, ::-1, :, ::-1] if m == 6 and (2 in mirror_axes) and (3 in mirror_axes): p = p[:, :, ::-1, ::-1, :] if m == 7 and (2 in mirror_axes) and (3 in mirror_axes) and (4 in mirror_axes): p = p[:, :, ::-1, ::-1, ::-1] all_preds.append(p) return np.vstack(all_preds) def _internal_predict_3D_3Dconv(self, x, do_mirroring, num_repeats, min_size=None, BATCH_SIZE=None, mirror_axes=(2, 3, 4), regions_class_order=None, pad_border_mode="edge", pad_kwargs=None): with torch.no_grad(): x, slicer = pad_nd_image(x, min_size, pad_border_mode, pad_kwargs, True, self.input_shape_must_be_divisible_by) #x, old_shape = pad_patient_3D_incl_c(x, self.input_shape_must_be_divisible_by, min_size) new_shp = x.shape data = np.zeros(tuple([1] + list(new_shp)), dtype=np.float32) data[0] = x if BATCH_SIZE is not None: data = np.vstack([data] * BATCH_SIZE) stacked = self._internal_maybe_mirror_and_pred_3D(data, num_repeats, mirror_axes, do_mirroring) slicer = [slice(0, stacked.shape[i]) for i in range(len(stacked.shape) - (len(slicer) - 1))] + slicer[1:] stacked = stacked[slicer] uncertainty = stacked.var(0) bayesian_predictions = stacked softmax_pred = stacked.mean(0) if regions_class_order is None: predicted_segmentation = softmax_pred.argmax(0) else: predicted_segmentation_shp = softmax_pred[0].shape predicted_segmentation = np.zeros(predicted_segmentation_shp) for i, c in enumerate(regions_class_order): predicted_segmentation[softmax_pred[i] > 0.5] = c return predicted_segmentation, bayesian_predictions, softmax_pred, uncertainty def softmax_helper(x): rpt = [1 for _ in range(len(x.size()))] rpt[1] = x.size(1) x_max = x.max(1, keepdim=True)[0].repeat(*rpt) e_x = torch.exp(x - x_max) return e_x / e_x.sum(1, keepdim=True).repeat(*rpt) class InitWeights_He(object): def __init__(self, neg_slope=1e-2): self.neg_slope = neg_slope def __call__(self, module): if isinstance(module, nn.Conv3d) or isinstance(module, nn.Conv2d) or isinstance(module, nn.ConvTranspose2d) or isinstance(module, nn.ConvTranspose3d): module.weight = nn.init.kaiming_normal_(module.weight, a=1e-2) if module.bias is not None: module.bias = nn.init.constant_(module.bias, 0) class StackedConvLayers(nn.Module): def __init__(self, input_feature_channels, output_feature_channels, num_convs, conv_op=nn.Conv2d, conv_kwargs=None, norm_op=nn.BatchNorm2d, norm_op_kwargs=None, dropout_op=nn.Dropout2d, dropout_op_kwargs=None, nonlin=nn.LeakyReLU, nonlin_kwargs=None, first_stride=None): self.input_channels = input_feature_channels self.output_channels = output_feature_channels if nonlin_kwargs is None: nonlin_kwargs = {'negative_slope': 1e-2, 'inplace': True} if dropout_op_kwargs is None: dropout_op_kwargs = {'p': 0.5, 'inplace': True} if norm_op_kwargs is None: norm_op_kwargs = {'eps': 1e-5, 'affine': True, 'momentum': 0.1} if conv_kwargs is None: conv_kwargs = {'kernel_size': 3, 'stride': 1, 'padding': 1, 'dilation': 1, 'bias': True} self.nonlin_kwargs = nonlin_kwargs self.nonlin = nonlin self.dropout_op = dropout_op self.dropout_op_kwargs = dropout_op_kwargs self.norm_op_kwargs = norm_op_kwargs self.conv_kwargs = conv_kwargs self.conv_op = conv_op self.norm_op = norm_op if first_stride is not None: self.conv_kwargs_first_conv = deepcopy(conv_kwargs) self.conv_kwargs_first_conv['stride'] = first_stride else: self.conv_kwargs_first_conv = conv_kwargs super(StackedConvLayers, self).__init__() self.blocks = nn.Sequential( *([ConvDropoutNormNonlin(input_feature_channels, output_feature_channels, self.conv_op, self.conv_kwargs_first_conv, self.norm_op, self.norm_op_kwargs, self.dropout_op, self.dropout_op_kwargs, self.nonlin, self.nonlin_kwargs)] + [ConvDropoutNormNonlin(output_feature_channels, output_feature_channels, self.conv_op, self.conv_kwargs, self.norm_op, self.norm_op_kwargs, self.dropout_op, self.dropout_op_kwargs, self.nonlin, self.nonlin_kwargs) for _ in range(num_convs - 1)])) def forward(self, x): return self.blocks(x) def soft_dice(net_output, gt, smooth=1., smooth_in_nom=1.): axes = tuple(range(2, len(net_output.size()))) intersect = sum_tensor(net_output * gt, axes, keepdim=False) denom = sum_tensor(net_output + gt, axes, keepdim=False) result = (- ((2 * intersect + smooth_in_nom) / (denom + smooth))).mean() return result def sum_tensor(input, axes, keepdim=False): axes = np.unique(axes) if keepdim: for ax in axes: input = input.sum(ax, keepdim=True) else: for ax in sorted(axes, reverse=True): input = input.sum(ax) return input class Generic_UNet_Cotraining(SegmentationNetwork): def __init__(self, input_channels, base_num_features, num_classes, num_conv_per_stage=2, num_downscale=4, feat_map_mul_on_downscale=2, conv_op=nn.Conv2d, conv_kwargs=None, norm_op=nn.BatchNorm2d, norm_op_kwargs=None, dropout_op=nn.Dropout2d, dropout_op_kwargs=None, nonlin=nn.LeakyReLU, nonlin_kwargs=None, deep_supervision=True, dropout_in_localization=False, final_nonlin=softmax_helper, weightInitializer=InitWeights_He(1e-2), pool_op_kernel_sizes=None, upscale_logits=False, convolutional_pooling=False, convolutional_upsampling=False): """ Have fun lookint at that one. This is my go-to model. I crammed the cotraining code in there somehow, so yeah. What a mess. You know what's the best part? No documentation. What a great piece of code. :param input_channels: :param base_num_features: :param num_classes: :param num_conv_per_stage: :param num_downscale: :param feat_map_mul_on_downscale: :param conv_op: :param conv_kwargs: :param norm_op: :param norm_op_kwargs: :param dropout_op: :param dropout_op_kwargs: :param nonlin: :param nonlin_kwargs: :param deep_supervision: :param dropout_in_localization: :param final_nonlin: :param weightInitializer: :param pool_op_kernel_sizes: :param upscale_logits: :param convolutional_pooling: :param convolutional_upsampling: """ super(Generic_UNet_Cotraining, self).__init__() assert isinstance(num_classes, (list, tuple)), "for cotraining, num_classes must be list or tuple of int" self.num_classes = num_classes self.input_shape_must_be_divisible_by = np.prod(pool_op_kernel_sizes, 0) self.pool_op_kernel_sizes = pool_op_kernel_sizes self.convolutional_upsampling = convolutional_upsampling self.convolutional_pooling = convolutional_pooling self.upscale_logits = upscale_logits if nonlin_kwargs is None: nonlin_kwargs = {'negative_slope':1e-2, 'inplace':True} if dropout_op_kwargs is None: dropout_op_kwargs = {'p':0.5, 'inplace':True} if norm_op_kwargs is None: norm_op_kwargs = {'eps':1e-5, 'affine':True, 'momentum':0.1} if conv_kwargs is None: conv_kwargs = {'kernel_size':3, 'stride':1, 'padding':1, 'dilation':1, 'bias':True} self.nonlin = nonlin self.nonlin_kwargs = nonlin_kwargs self.dropout_op_kwargs = dropout_op_kwargs self.norm_op_kwargs = norm_op_kwargs self.conv_kwargs = conv_kwargs self.weightInitializer = weightInitializer self.conv_op = conv_op self.norm_op = norm_op self.dropout_op = dropout_op if pool_op_kernel_sizes is None: if conv_op == nn.Conv2d: pool_op_kernel_sizes = [(2, 2)] * num_downscale elif conv_op == nn.Conv3d: pool_op_kernel_sizes = [(2, 2, 2)] * num_downscale else: raise ValueError("unknown convolution dimensionality, conv op: %s" % str(conv_op)) self.pool_op_kernel_sizes = pool_op_kernel_sizes self.final_nonlin = final_nonlin assert num_conv_per_stage > 1, "this implementation does not support only one conv per stage" if conv_op == nn.Conv2d: upsample_mode = 'bilinear' pool_op = nn.MaxPool2d transpconv = nn.ConvTranspose2d elif conv_op == nn.Conv3d: upsample_mode = 'trilinear' pool_op = nn.MaxPool3d transpconv = nn.ConvTranspose3d else: raise ValueError("unknown convolution dimensionality, conv op: %s" % str(conv_op)) self.do_ds = deep_supervision self.conv_blocks_context = [] self.conv_blocks_localization = [] self.td = [] self.tu = [] self.seg_outputs = [] output_features = base_num_features input_features = input_channels for d in range(num_downscale): if d != 0 and self.convolutional_pooling: first_stride = pool_op_kernel_sizes[d-1] else: first_stride = None self.conv_blocks_context.append(StackedConvLayers(input_features, output_features, num_conv_per_stage, self.conv_op, self.conv_kwargs, self.norm_op, self.norm_op_kwargs, self.dropout_op, self.dropout_op_kwargs, self.nonlin, self.nonlin_kwargs, first_stride)) if not self.convolutional_pooling: self.td.append(pool_op(pool_op_kernel_sizes[d])) input_features = output_features output_features = int(np.round(output_features * feat_map_mul_on_downscale)) if self.conv_op == nn.Conv3d: output_features = min(output_features, max_num_filters_3d) else: output_features = min(output_features, max_num_filters_2d) if self.convolutional_pooling: first_stride = pool_op_kernel_sizes[-1] else: first_stride = None if self.convolutional_upsampling: final_num_features = output_features else: final_num_features = self.conv_blocks_context[-1].output_channels self.conv_blocks_context.append(nn.Sequential( StackedConvLayers(input_features, output_features, num_conv_per_stage - 1, self.conv_op, self.conv_kwargs, self.norm_op, self.norm_op_kwargs, self.dropout_op, self.dropout_op_kwargs, self.nonlin, self.nonlin_kwargs, first_stride), StackedConvLayers(output_features, final_num_features, 1, self.conv_op, self.conv_kwargs, self.norm_op, self.norm_op_kwargs, self.dropout_op, self.dropout_op_kwargs, self.nonlin, self.nonlin_kwargs))) if not dropout_in_localization: old_dropout_p = self.dropout_op_kwargs['p'] self.dropout_op_kwargs['p'] = 0.0 for u in range(num_downscale): nfeatures_from_down = final_num_features nfeatures_from_skip = self.conv_blocks_context[-(2 + u)].output_channels # self.conv_blocks_context[-1] is bottleneck, so start with -2 n_features_after_tu_and_concat = nfeatures_from_skip * 2 # the first conv reduces the number of features to match those of skip # the following convs work on that number of features # if not convolutional upsampling then the final conv reduces the num of features again if u != num_downscale-1 and not self.convolutional_upsampling: final_num_features = self.conv_blocks_context[-(3 + u)].output_channels else: final_num_features = nfeatures_from_skip if not self.convolutional_upsampling: self.tu.append(nn.Upsample(scale_factor=pool_op_kernel_sizes[-(u+1)], mode=upsample_mode)) else: self.tu.append(transpconv(nfeatures_from_down, nfeatures_from_skip, pool_op_kernel_sizes[-(u+1)], pool_op_kernel_sizes[-(u+1)], bias=False)) self.conv_blocks_localization.append(nn.Sequential( StackedConvLayers(n_features_after_tu_and_concat, nfeatures_from_skip, num_conv_per_stage - 1, self.conv_op, self.conv_kwargs, self.norm_op, self.norm_op_kwargs, self.dropout_op, self.dropout_op_kwargs, self.nonlin, self.nonlin_kwargs), StackedConvLayers(nfeatures_from_skip, final_num_features, 1, self.conv_op, self.conv_kwargs, self.norm_op, self.norm_op_kwargs, self.dropout_op, self.dropout_op_kwargs, self.nonlin, self.nonlin_kwargs) )) for ds in range(len(self.conv_blocks_localization)): self.seg_outputs.append(nn.ModuleList([conv_op(self.conv_blocks_localization[ds][-1].output_channels, i, 1, 1, 0, 1, 1, False) for i in num_classes])) self.upscale_logits_ops = [] cum_upsample = np.cumprod(np.vstack(pool_op_kernel_sizes), axis=0)[::-1] for usl in range(num_downscale - 1): if self.upscale_logits: self.upscale_logits_ops.append(nn.Upsample(scale_factor=tuple([int(i) for i in cum_upsample[usl+1]]), mode=upsample_mode)) else: self.upscale_logits_ops.append(lambda x: x) if not dropout_in_localization: self.dropout_op_kwargs['p'] = old_dropout_p # register all modules properly self.conv_blocks_localization = nn.ModuleList(self.conv_blocks_localization) self.conv_blocks_context = nn.ModuleList(self.conv_blocks_context) self.td = nn.ModuleList(self.td) self.tu = nn.ModuleList(self.tu) self.seg_outputs = nn.ModuleList(self.seg_outputs) if self.upscale_logits: self.upscale_logits_ops = nn.ModuleList(self.upscale_logits_ops) # lambda x:x is not a Module so we need to distinguish here self.apply(self.weightInitializer) self.test_return_output = 0 self.inference = False def train(self, mode=True): super(Generic_UNet_Cotraining, self).train(mode) def eval(self): super(Generic_UNet_Cotraining, self).eval() def infer(self, infer): self.train(False) self.inference = infer def forward(self, x): #input_var = x skips = [] seg_outputs = [] for d in range(len(self.conv_blocks_context) - 1): x = self.conv_blocks_context[d](x) skips.append(x) if not self.convolutional_pooling: x = self.td[d](x) x = self.conv_blocks_context[-1](x) for u in range(len(self.tu)): x = self.tu[u](x) x = torch.cat((x, skips[-(u + 1)]), dim=1) x = self.conv_blocks_localization[u](x) if not self.inference: seg_outputs.append([self.final_nonlin(self.seg_outputs[u][i](x[(x.shape[0]//len(self.num_classes) * i): (x.shape[0]//len(self.num_classes) * (i+1))])) for i in range(len(self.num_classes))]) else: seg_outputs.append(self.final_nonlin(self.seg_outputs[u][self.test_return_output](x))) if self.do_ds: return tuple([seg_outputs[-1]] + [i(j) for i, j in zip(list(self.upscale_logits_ops)[::-1], seg_outputs[:-1][::-1])]) else: return seg_outputs[-1] class NetworkTrainerBraTS2018Baseline2RegionsCotrainingBraTSDecSDCE(object): def __init__(self): self.preprocessed_data_directory = None # set through arguments from init self.experiment_name = "baseline_inspired_by_decathlon 2_regions_cotraining brats dec sd ce" self.experiment_description = "NetworkTrainerBraTS2018Baseline 2_regions_cotraining brats dec sd ce" self.output_folder = 'model/params' self.dataset_directory = None self.device = 0 self.fold = 0 self.preprocessed_data_directory = None self.gt_niftis_folder = None # set in self.initialize() self.network = None self.num_input_channels = self.num_classes = self.net_pool_per_axis = self.patch_size = self.batch_size = \ self.threeD = self.base_num_features = self.intensity_properties = self.normalization_schemes = None # loaded automatically from plans_file self.basic_generator_patch_size = self.data_aug_params = self.plans = None self.was_initialized = False self.also_val_in_tr_mode = False self.dataset = None self.inference_apply_nonlin = nn.Sigmoid() def initialize(self, training=True): if not os.path.isdir(self.output_folder): os.mkdir(self.output_folder) self.output_folder = os.path.join(self.output_folder, "fold%d" % self.fold) if not os.path.isdir(self.output_folder): os.mkdir(self.output_folder) self.process_plans_file() if training: raise NotImplementedError self.initialize_network_optimizer_and_scheduler() self.network.inference_apply_nonlin = self.inference_apply_nonlin self.was_initialized = True def initialize_network_optimizer_and_scheduler(self): net_numpool = max(self.net_pool_per_axis) net_pool_kernel_sizes = [] for s in range(1, net_numpool+1): this_pool_kernel_sizes = [1, 1, 1] if self.net_pool_per_axis[0] >= s: this_pool_kernel_sizes[0] = 2 if self.net_pool_per_axis[1] >= s: this_pool_kernel_sizes[1] = 2 if len(self.patch_size)>2: if self.net_pool_per_axis[2] >= s: this_pool_kernel_sizes[2] = 2 else: this_pool_kernel_sizes = this_pool_kernel_sizes[:-1] net_pool_kernel_sizes.append(tuple(this_pool_kernel_sizes)) if self.threeD: conv_op = nn.Conv3d dropout_op = nn.Dropout3d norm_op = nn.InstanceNorm3d else: conv_op = nn.Conv2d dropout_op = nn.Dropout2d norm_op = nn.InstanceNorm2d conv_kwargs = {'kernel_size':3, 'stride':1, 'padding':1, 'dilation':1, 'bias':True} norm_op_kwargs = {'eps':1e-5, 'affine':True, 'momentum':0.02, 'track_running_stats':False} dropout_op_kwargs = {'p':0, 'inplace':True} net_nonlin = nn.LeakyReLU net_nonlin_kwargs = {'negative_slope':1e-2, 'inplace':True} self.network = Generic_UNet_Cotraining(self.num_input_channels, self.base_num_features, self.num_classes, 2, net_numpool, 2, conv_op, conv_kwargs, norm_op, norm_op_kwargs, dropout_op, dropout_op_kwargs, net_nonlin, net_nonlin_kwargs, False, False, lambda x:x, InitWeights_He(1e-2), net_pool_kernel_sizes, True, False, False) self.optimizer = None self.lr_scheduler = None self.network.set_device(self.device) def process_plans_file(self): self.batch_size = 2 self.net_pool_per_axis = [4, 4, 4] self.patch_size = (128, 128, 128) self.intensity_properties = None self.normalization_schemes = ["nonCT"] * 4 self.base_num_features = 30 self.num_input_channels = 4 self.do_dummy_2D_aug = False self.use_mask_for_norm = True self.only_keep_largest_connected_component = {(0, ): False} if len(self.patch_size) == 2: self.threeD = False elif len(self.patch_size) == 3: self.threeD = True else: raise RuntimeError("invalid patch size in plans file: %s" % str(self.patch_size)) self.regions = ((1, 2, 3, 4), (2, 3, 4), (2,)) self.regions_class_order = (1, 3, 2) self.batch_size = 2 self.base_num_features = 30 self.num_classes = (3, 3) def predict_preprocessed_data_return_softmax(self, data, do_mirroring, num_repeats, use_train_mode, batch_size, mirror_axes, tiled, tile_in_z, step, min_size, use_gaussian): return self.network.predict_3D(data, do_mirroring, num_repeats, use_train_mode, batch_size, mirror_axes, tiled, tile_in_z, step, min_size, use_gaussian=use_gaussian)[2] def load_best_checkpoint(self, train=True): self.load_checkpoint(os.path.join(self.output_folder, "model_best.model"), train=train) def load_checkpoint(self, fname, train=True): print("loading checkpoint", fname, "train=", train) if not self.was_initialized: self.initialize() saved_model = torch.load(fname) new_state_dict = OrderedDict() for k, value in saved_model['state_dict'].items(): key = k new_state_dict[key] = value self.network.load_state_dict(new_state_dict) self.epoch = saved_model['epoch'] if train: optimizer_state_dict = saved_model['optimizer_state_dict'] if optimizer_state_dict is not None: self.optimizer.load_state_dict(optimizer_state_dict) if self.lr_scheduler is not None and not isinstance(self.lr_scheduler, lr_scheduler.ReduceLROnPlateau): self.lr_scheduler.load_state_dict(saved_model['lr_scheduler_state_dict']) if len(saved_model['plot_stuff']) < 9: self.all_tr_losses_x, self.all_tr_losses, self.all_tr_eval_metrics, self.all_val_losses_x, \ self.all_val_losses, self.all_val_eval_metrics_dc_per_sample, self.all_val_losses_tr_mode, \ self.all_val_eval_metrics_dc_glob = saved_model['plot_stuff'] self.all_val_eval_metrics_dc_per_sample_std = [] else: self.all_tr_losses_x, self.all_tr_losses, self.all_tr_eval_metrics, self.all_val_losses_x, \ self.all_val_losses, self.all_val_eval_metrics_dc_per_sample, self.all_val_losses_tr_mode, \ self.all_val_eval_metrics_dc_glob, self.all_val_eval_metrics_dc_per_sample_std = saved_model['plot_stuff'] self.network.set_device(self.device) def resize_softmax_output(softmax_output, new_shape, order=3): ''' Resizes softmax output. Resizes each channel in c separately and fuses results back together :param softmax_output: c x x x y x z :param new_shape: x x y x z :param order: :return: ''' tpe = softmax_output.dtype new_shp = [softmax_output.shape[0]] + list(new_shape) result = np.zeros(new_shp, dtype=softmax_output.dtype) for i in range(softmax_output.shape[0]): result[i] = resize(softmax_output[i].astype(float), new_shape, order, "constant", 0, True) return result.astype(tpe) def save_segmentation_nifti_softmax(softmax_output, dct, out_fname, order=3, region_class_order=None): ''' segmentation must have the same spacing as the original nifti (for now). segmentation may have been cropped out of the original image :param segmentation: :param dct: :param out_fname: :return: ''' old_size = dct.get('size_before_cropping') bbox = dct.get('brain_bbox') if bbox is not None: seg_old_size = np.zeros([softmax_output.shape[0]] + list(old_size)) for c in range(3): bbox[c][1] = np.min((bbox[c][0] + softmax_output.shape[c+1], old_size[c])) seg_old_size[:, bbox[0][0]:bbox[0][1], bbox[1][0]:bbox[1][1], bbox[2][0]:bbox[2][1]] = softmax_output else: seg_old_size = softmax_output segmentation = resize_softmax_output(seg_old_size, np.array(dct['size'])[[2, 1, 0]], order=order) if region_class_order is None: segmentation = segmentation.argmax(0) else: seg_old_spacing_final = np.zeros(segmentation.shape[1:]) for i, c in enumerate(region_class_order): seg_old_spacing_final[segmentation[i] > 0.5] = c segmentation = seg_old_spacing_final return segmentation.astype(np.uint8) def subfiles(folder, join=True, prefix=None, suffix=None, sort=True): if join: l = os.path.join else: l = lambda x, y: y res = [l(folder, i) for i in os.listdir(folder) if os.path.isfile(os.path.join(folder, i)) and (prefix is None or i.startswith(prefix)) and (suffix is None or i.endswith(suffix))] if sort: res.sort() return res def maybe_mkdir_p(directory): splits = directory.split("/")[1:] for i in range(0, len(splits)): if not os.path.isdir(os.path.join("/", *splits[:i+1])): os.mkdir(os.path.join("/", *splits[:i+1])) def convert_labels_back(seg): new_seg = np.zeros(seg.shape, dtype=seg.dtype) new_seg[seg == 1] = 2 new_seg[seg == 2] = 4 new_seg[seg == 3] = 1 return new_seg def preprocess_image(itk_image, is_seg=False, spacing_target=(1, 0.5, 0.5), brain_mask=None, cval=0): """ brain mask must be a numpy array that has the same shape as itk_image's pixel array. This function is not ideal but gets the job done :param itk_image: :param is_seg: :param spacing_target: :param brain_mask: :return: """ spacing = np.array(itk_image.GetSpacing())[[2, 1, 0]] image = sitk.GetArrayFromImage(itk_image).astype(float) if not is_seg: if brain_mask is None: brain_mask = (image!=image[0,0,0]).astype(float) if np.any([[i!=j] for i, j in zip(spacing, spacing_target)]): image = resize_image(image, spacing, spacing_target, 3, cval).astype(np.float32) brain_mask = resize_image(brain_mask.astype(float), spacing, spacing_target, order=0).astype(int) image[brain_mask==0] = 0 #subtract mean, divide by std. use heuristic masking image[brain_mask!=0] -= image[brain_mask!=0].mean() image[brain_mask!=0] /= image[brain_mask!=0].std() else: new_shape = (int(np.round(spacing[0] / spacing_target[0] * float(image.shape[0]))), int(np.round(spacing[1] / spacing_target[1] * float(image.shape[1]))), int(np.round(spacing[2] / spacing_target[2] * float(image.shape[2])))) image = resize_segmentation(image, new_shape, 1, cval) return image def create_brain_masks(data): """ data must be (b, c, x, y, z), brain mask is hole filled binary mask where all sequences are 0 (this is a heuristic to recover a brain mask form brain extracted mri sequences, not an actual brain ectraction) :param data: :return: """ shp = list(data.shape) brain_mask = np.zeros(shp, dtype=np.float32) for b in range(data.shape[0]): for c in range(data.shape[1]): this_mask = data[b, c] != 0 this_mask = binary_fill_holes(this_mask) brain_mask[b, c] = this_mask return brain_mask def extract_brain_region(image, segmentation, outside_value=0): brain_voxels = np.where(segmentation != outside_value) minZidx = int(np.min(brain_voxels[0])) maxZidx = int(np.max(brain_voxels[0])) minXidx = int(np.min(brain_voxels[1])) maxXidx = int(np.max(brain_voxels[1])) minYidx = int(np.min(brain_voxels[2])) maxYidx = int(np.max(brain_voxels[2])) # resize images resizer = (slice(minZidx, maxZidx), slice(minXidx, maxXidx), slice(minYidx, maxYidx)) return image[resizer], [[minZidx, maxZidx], [minXidx, maxXidx], [minYidx, maxYidx]] def load_and_preprocess(t1_file, t1km_file, t2_file, flair_file, seg_file=None, bet_file=None, encode_bet_mask_in_seg=False, label_conversion_fn=None): images = {} # t1 images["T1"] = sitk.ReadImage(t1_file) # t1km images["T1KM"] = sitk.ReadImage(t1km_file) properties_dict = { "spacing": images["T1"].GetSpacing(), "direction": images["T1"].GetDirection(), "size": images["T1"].GetSize(), "origin": images["T1"].GetOrigin() } # t2 images["T2"] = sitk.ReadImage(t2_file) # flair images["FLAIR"] = sitk.ReadImage(flair_file) if seg_file is not None: images['seg'] = sitk.ReadImage(seg_file) if bet_file is not None: images['bet_mask'] = sitk.ReadImage(bet_file) else: t1_npy = sitk.GetArrayFromImage(images["T1"]) mask = create_brain_masks(t1_npy[None])[0].astype(int) mask = sitk.GetImageFromArray(mask) mask.CopyInformation(images["T1"]) images['bet_mask'] = mask try: images["t1km_sub"] = images["T1KM"] - images["T1"] except RuntimeError: tmp1 = sitk.GetArrayFromImage(images["T1KM"]) tmp2 = sitk.GetArrayFromImage(images["T1"]) res = tmp1 - tmp2 res_itk = sitk.GetImageFromArray(res) res_itk.CopyInformation(images["T1"]) images["t1km_sub"] = res_itk for k in ['T1', 'T1KM', 'T2', 'FLAIR', "t1km_sub"]: images[k] = sitk.Mask(images[k], images['bet_mask'], 0) bet_numpy = sitk.GetArrayFromImage(images['bet_mask']) for k in images.keys(): is_seg = (k == "seg") | (k == "bet_mask") if is_seg: cval = -1 else: cval = 0 images[k] = preprocess_image(images[k], is_seg=is_seg, spacing_target=(1., 1., 1.), brain_mask=np.copy(bet_numpy), cval=cval) properties_dict['size_before_cropping'] = images["T1"].shape mask = np.copy(images['bet_mask']) for k in images.keys(): images[k], bbox = extract_brain_region(images[k], mask, False) properties_dict['brain_bbox'] = bbox if (label_conversion_fn is not None) and ("seg" in images.keys()): images["seg"] = label_conversion_fn(images["seg"]) use_these = ['T1', 'T1KM', 'T2', 'FLAIR', "t1km_sub", 'seg'] if (not encode_bet_mask_in_seg) or ("seg" not in images.keys()): use_these.append("bet_mask") else: images["seg"][images["bet_mask"] <= 0] = -1 imgs = [] for seq in use_these: if seq not in images.keys(): imgs.append(np.zeros(images["T1"].shape)[None]) else: imgs.append(images[seq][None]) all_data = np.vstack(imgs) return all_data, properties_dict def segment(t1_file, t1ce_file, t2_file, flair_file, netLoc): """ Segments the passed files """ trainer = NetworkTrainerBraTS2018Baseline2RegionsCotrainingBraTSDecSDCE() trainer.initialize(False) all_data, dct = load_and_preprocess(t1_file, t1ce_file, t2_file, flair_file, None, None, True, None) all_softmax = [] for fold in range(5): trainer.output_folder = join(netLoc, "%d" % fold) trainer.load_best_checkpoint(False) trainer.network.infer(True) trainer.network.test_return_output = 0 softmax = trainer.predict_preprocessed_data_return_softmax(all_data[:4], True, 1, False, 1, (2, 3, 4), False, None, None, trainer.patch_size, True) all_softmax.append(softmax[None]) softmax_consolidated = np.vstack(all_softmax).mean(0) output = save_segmentation_nifti_softmax(softmax_consolidated, dct, "tumor_isen2018_class.nii.gz", 1, trainer.regions_class_order) return output
[ "numpy.prod", "torch.nn.init.constant_", "torch.exp", "numpy.array", "copy.deepcopy", "torch.nn.Sigmoid", "os.listdir", "numpy.where", "torch.nn.ModuleList", "torch.nn.init.kaiming_normal_", "SimpleITK.GetArrayFromImage", "batchgenerators.augmentations.utils.resize_segmentation", "numpy.max", "os.path.isdir", "numpy.vstack", "os.mkdir", "numpy.min", "numpy.round", "collections.OrderedDict", "torch.nn.LeakyReLU", "scipy.ndimage.binary_fill_holes", "SimpleITK.ReadImage", "SimpleITK.Mask", "torch.nn.Upsample", "skimage.transform.resize", "torch.cat", "numpy.copy", "numpy.unique", "SimpleITK.GetImageFromArray", "torch.load", "os.path.join", "numpy.zeros", "json.load", "torch.no_grad", "numpy.pad", "torch.zeros" ]
[((4533, 4572), 'numpy.pad', 'np.pad', (['image', 'pad_list', 'mode'], {}), '(image, pad_list, mode, **kwargs)\n', (4539, 4572), True, 'import numpy as np\n'), ((13081, 13101), 'torch.exp', 'torch.exp', (['(x - x_max)'], {}), '(x - x_max)\n', (13090, 13101), False, 'import torch\n'), ((16372, 16387), 'numpy.unique', 'np.unique', (['axes'], {}), '(axes)\n', (16381, 16387), True, 'import numpy as np\n'), ((34691, 34736), 'numpy.zeros', 'np.zeros', (['new_shp'], {'dtype': 'softmax_output.dtype'}), '(new_shp, dtype=softmax_output.dtype)\n', (34699, 34736), True, 'import numpy as np\n'), ((36878, 36914), 'numpy.zeros', 'np.zeros', (['seg.shape'], {'dtype': 'seg.dtype'}), '(seg.shape, dtype=seg.dtype)\n', (36886, 36914), True, 'import numpy as np\n'), ((38796, 38827), 'numpy.zeros', 'np.zeros', (['shp'], {'dtype': 'np.float32'}), '(shp, dtype=np.float32)\n', (38804, 38827), True, 'import numpy as np\n'), ((39143, 39182), 'numpy.where', 'np.where', (['(segmentation != outside_value)'], {}), '(segmentation != outside_value)\n', (39151, 39182), True, 'import numpy as np\n'), ((39838, 39861), 'SimpleITK.ReadImage', 'sitk.ReadImage', (['t1_file'], {}), '(t1_file)\n', (39852, 39861), True, 'import SimpleITK as sitk\n'), ((39894, 39919), 'SimpleITK.ReadImage', 'sitk.ReadImage', (['t1km_file'], {}), '(t1km_file)\n', (39908, 39919), True, 'import SimpleITK as sitk\n'), ((40159, 40182), 'SimpleITK.ReadImage', 'sitk.ReadImage', (['t2_file'], {}), '(t2_file)\n', (40173, 40182), True, 'import SimpleITK as sitk\n'), ((40218, 40244), 'SimpleITK.ReadImage', 'sitk.ReadImage', (['flair_file'], {}), '(flair_file)\n', (40232, 40244), True, 'import SimpleITK as sitk\n'), ((41149, 41191), 'SimpleITK.GetArrayFromImage', 'sitk.GetArrayFromImage', (["images['bet_mask']"], {}), "(images['bet_mask'])\n", (41171, 41191), True, 'import SimpleITK as sitk\n'), ((41595, 41622), 'numpy.copy', 'np.copy', (["images['bet_mask']"], {}), "(images['bet_mask'])\n", (41602, 41622), True, 'import numpy as np\n'), ((42338, 42353), 'numpy.vstack', 'np.vstack', (['imgs'], {}), '(imgs)\n', (42347, 42353), True, 'import numpy as np\n'), ((649, 661), 'json.load', 'json.load', (['f'], {}), '(f)\n', (658, 661), False, 'import json\n'), ((1076, 1137), 'skimage.transform.resize', 'resize', (['image', 'new_shape'], {'order': 'order', 'mode': '"""edge"""', 'cval': 'cval'}), "(image, new_shape, order=order, mode='edge', cval=cval)\n", (1082, 1137), False, 'from skimage.transform import resize\n'), ((2762, 2796), 'torch.nn.LeakyReLU', 'nn.LeakyReLU', ([], {}), '(**self.nonlin_kwargs)\n', (2774, 2796), False, 'from torch import nn\n'), ((3665, 3684), 'numpy.array', 'np.array', (['new_shape'], {}), '(new_shape)\n', (3673, 3684), True, 'import numpy as np\n'), ((4647, 4665), 'numpy.array', 'np.array', (['pad_list'], {}), '(pad_list)\n', (4655, 4665), True, 'import numpy as np\n'), ((11276, 11296), 'numpy.vstack', 'np.vstack', (['all_preds'], {}), '(all_preds)\n', (11285, 11296), True, 'import numpy as np\n'), ((18495, 18527), 'numpy.prod', 'np.prod', (['pool_op_kernel_sizes', '(0)'], {}), '(pool_op_kernel_sizes, 0)\n', (18502, 18527), True, 'import numpy as np\n'), ((25719, 25763), 'torch.nn.ModuleList', 'nn.ModuleList', (['self.conv_blocks_localization'], {}), '(self.conv_blocks_localization)\n', (25732, 25763), False, 'from torch import nn\n'), ((25799, 25838), 'torch.nn.ModuleList', 'nn.ModuleList', (['self.conv_blocks_context'], {}), '(self.conv_blocks_context)\n', (25812, 25838), False, 'from torch import nn\n'), ((25857, 25879), 'torch.nn.ModuleList', 'nn.ModuleList', (['self.td'], {}), '(self.td)\n', (25870, 25879), False, 'from torch import nn\n'), ((25898, 25920), 'torch.nn.ModuleList', 'nn.ModuleList', (['self.tu'], {}), '(self.tu)\n', (25911, 25920), False, 'from torch import nn\n'), ((25948, 25979), 'torch.nn.ModuleList', 'nn.ModuleList', (['self.seg_outputs'], {}), '(self.seg_outputs)\n', (25961, 25979), False, 'from torch import nn\n'), ((28785, 28797), 'torch.nn.Sigmoid', 'nn.Sigmoid', ([], {}), '()\n', (28795, 28797), False, 'from torch import nn\n'), ((28960, 29014), 'os.path.join', 'os.path.join', (['self.output_folder', "('fold%d' % self.fold)"], {}), "(self.output_folder, 'fold%d' % self.fold)\n", (28972, 29014), False, 'import os\n'), ((32843, 32860), 'torch.load', 'torch.load', (['fname'], {}), '(fname)\n', (32853, 32860), False, 'import torch\n'), ((32886, 32899), 'collections.OrderedDict', 'OrderedDict', ([], {}), '()\n', (32897, 32899), False, 'from collections import OrderedDict\n'), ((35973, 36005), 'numpy.zeros', 'np.zeros', (['segmentation.shape[1:]'], {}), '(segmentation.shape[1:])\n', (35981, 36005), True, 'import numpy as np\n'), ((38395, 38441), 'batchgenerators.augmentations.utils.resize_segmentation', 'resize_segmentation', (['image', 'new_shape', '(1)', 'cval'], {}), '(image, new_shape, 1, cval)\n', (38414, 38441), False, 'from batchgenerators.augmentations.utils import resize_segmentation\n'), ((39201, 39224), 'numpy.min', 'np.min', (['brain_voxels[0]'], {}), '(brain_voxels[0])\n', (39207, 39224), True, 'import numpy as np\n'), ((39244, 39267), 'numpy.max', 'np.max', (['brain_voxels[0]'], {}), '(brain_voxels[0])\n', (39250, 39267), True, 'import numpy as np\n'), ((39287, 39310), 'numpy.min', 'np.min', (['brain_voxels[1]'], {}), '(brain_voxels[1])\n', (39293, 39310), True, 'import numpy as np\n'), ((39330, 39353), 'numpy.max', 'np.max', (['brain_voxels[1]'], {}), '(brain_voxels[1])\n', (39336, 39353), True, 'import numpy as np\n'), ((39373, 39396), 'numpy.min', 'np.min', (['brain_voxels[2]'], {}), '(brain_voxels[2])\n', (39379, 39396), True, 'import numpy as np\n'), ((39416, 39439), 'numpy.max', 'np.max', (['brain_voxels[2]'], {}), '(brain_voxels[2])\n', (39422, 39439), True, 'import numpy as np\n'), ((40299, 40323), 'SimpleITK.ReadImage', 'sitk.ReadImage', (['seg_file'], {}), '(seg_file)\n', (40313, 40323), True, 'import SimpleITK as sitk\n'), ((40383, 40407), 'SimpleITK.ReadImage', 'sitk.ReadImage', (['bet_file'], {}), '(bet_file)\n', (40397, 40407), True, 'import SimpleITK as sitk\n'), ((40435, 40471), 'SimpleITK.GetArrayFromImage', 'sitk.GetArrayFromImage', (["images['T1']"], {}), "(images['T1'])\n", (40457, 40471), True, 'import SimpleITK as sitk\n'), ((40550, 40578), 'SimpleITK.GetImageFromArray', 'sitk.GetImageFromArray', (['mask'], {}), '(mask)\n', (40572, 40578), True, 'import SimpleITK as sitk\n'), ((41088, 41131), 'SimpleITK.Mask', 'sitk.Mask', (['images[k]', "images['bet_mask']", '(0)'], {}), "(images[k], images['bet_mask'], 0)\n", (41097, 41131), True, 'import SimpleITK as sitk\n'), ((4691, 4710), 'numpy.array', 'np.array', (['res.shape'], {}), '(res.shape)\n', (4699, 4710), True, 'import numpy as np\n'), ((8137, 8152), 'torch.no_grad', 'torch.no_grad', ([], {}), '()\n', (8150, 8152), False, 'import torch\n'), ((11579, 11594), 'torch.no_grad', 'torch.no_grad', ([], {}), '()\n', (11592, 11594), False, 'import torch\n'), ((13484, 13530), 'torch.nn.init.kaiming_normal_', 'nn.init.kaiming_normal_', (['module.weight'], {'a': '(0.01)'}), '(module.weight, a=0.01)\n', (13507, 13530), False, 'from torch import nn\n'), ((14958, 14979), 'copy.deepcopy', 'deepcopy', (['conv_kwargs'], {}), '(conv_kwargs)\n', (14966, 14979), False, 'from copy import deepcopy\n'), ((26050, 26088), 'torch.nn.ModuleList', 'nn.ModuleList', (['self.upscale_logits_ops'], {}), '(self.upscale_logits_ops)\n', (26063, 26088), False, 'from torch import nn\n'), ((26949, 26987), 'torch.cat', 'torch.cat', (['(x, skips[-(u + 1)])'], {'dim': '(1)'}), '((x, skips[-(u + 1)]), dim=1)\n', (26958, 26987), False, 'import torch\n'), ((28855, 28888), 'os.path.isdir', 'os.path.isdir', (['self.output_folder'], {}), '(self.output_folder)\n', (28868, 28888), False, 'import os\n'), ((28902, 28930), 'os.mkdir', 'os.mkdir', (['self.output_folder'], {}), '(self.output_folder)\n', (28910, 28930), False, 'import os\n'), ((29030, 29063), 'os.path.isdir', 'os.path.isdir', (['self.output_folder'], {}), '(self.output_folder)\n', (29043, 29063), False, 'import os\n'), ((29077, 29105), 'os.mkdir', 'os.mkdir', (['self.output_folder'], {}), '(self.output_folder)\n', (29085, 29105), False, 'import os\n'), ((32576, 32628), 'os.path.join', 'os.path.join', (['self.output_folder', '"""model_best.model"""'], {}), "(self.output_folder, 'model_best.model')\n", (32588, 32628), False, 'import os\n'), ((35484, 35547), 'numpy.min', 'np.min', (['(bbox[c][0] + softmax_output.shape[c + 1], old_size[c])'], {}), '((bbox[c][0] + softmax_output.shape[c + 1], old_size[c]))\n', (35490, 35547), True, 'import numpy as np\n'), ((35802, 35823), 'numpy.array', 'np.array', (["dct['size']"], {}), "(dct['size'])\n", (35810, 35823), True, 'import numpy as np\n'), ((36385, 36403), 'os.listdir', 'os.listdir', (['folder'], {}), '(folder)\n', (36395, 36403), False, 'import os\n'), ((37448, 37481), 'SimpleITK.GetArrayFromImage', 'sitk.GetArrayFromImage', (['itk_image'], {}), '(itk_image)\n', (37470, 37481), True, 'import SimpleITK as sitk\n'), ((38966, 38994), 'scipy.ndimage.binary_fill_holes', 'binary_fill_holes', (['this_mask'], {}), '(this_mask)\n', (38983, 38994), False, 'from scipy.ndimage import binary_fill_holes\n'), ((40765, 40803), 'SimpleITK.GetArrayFromImage', 'sitk.GetArrayFromImage', (["images['T1KM']"], {}), "(images['T1KM'])\n", (40787, 40803), True, 'import SimpleITK as sitk\n'), ((40819, 40855), 'SimpleITK.GetArrayFromImage', 'sitk.GetArrayFromImage', (["images['T1']"], {}), "(images['T1'])\n", (40841, 40855), True, 'import SimpleITK as sitk\n'), ((40900, 40927), 'SimpleITK.GetImageFromArray', 'sitk.GetImageFromArray', (['res'], {}), '(res)\n', (40922, 40927), True, 'import SimpleITK as sitk\n'), ((43280, 43302), 'numpy.vstack', 'np.vstack', (['all_softmax'], {}), '(all_softmax)\n', (43289, 43302), True, 'import numpy as np\n'), ((12016, 12046), 'numpy.vstack', 'np.vstack', (['([data] * BATCH_SIZE)'], {}), '([data] * BATCH_SIZE)\n', (12025, 12046), True, 'import numpy as np\n'), ((12675, 12711), 'numpy.zeros', 'np.zeros', (['predicted_segmentation_shp'], {}), '(predicted_segmentation_shp)\n', (12683, 12711), True, 'import numpy as np\n'), ((13601, 13634), 'torch.nn.init.constant_', 'nn.init.constant_', (['module.bias', '(0)'], {}), '(module.bias, 0)\n', (13618, 13634), False, 'from torch import nn\n'), ((21721, 21774), 'numpy.round', 'np.round', (['(output_features * feat_map_mul_on_downscale)'], {}), '(output_features * feat_map_mul_on_downscale)\n', (21729, 21774), True, 'import numpy as np\n'), ((25196, 25227), 'numpy.vstack', 'np.vstack', (['pool_op_kernel_sizes'], {}), '(pool_op_kernel_sizes)\n', (25205, 25227), True, 'import numpy as np\n'), ((36742, 36776), 'os.path.join', 'os.path.join', (['"""/"""', '*splits[:i + 1]'], {}), "('/', *splits[:i + 1])\n", (36754, 36776), False, 'import os\n'), ((36798, 36832), 'os.path.join', 'os.path.join', (['"""/"""', '*splits[:i + 1]'], {}), "('/', *splits[:i + 1])\n", (36810, 36832), False, 'import os\n'), ((41486, 41504), 'numpy.copy', 'np.copy', (['bet_numpy'], {}), '(bet_numpy)\n', (41493, 41504), True, 'import numpy as np\n'), ((8170, 8190), 'torch.zeros', 'torch.zeros', (['x.shape'], {}), '(x.shape)\n', (8181, 8190), False, 'import torch\n'), ((8591, 8602), 'numpy.array', 'np.array', (['x'], {}), '(x)\n', (8599, 8602), True, 'import numpy as np\n'), ((23961, 24037), 'torch.nn.Upsample', 'nn.Upsample', ([], {'scale_factor': 'pool_op_kernel_sizes[-(u + 1)]', 'mode': 'upsample_mode'}), '(scale_factor=pool_op_kernel_sizes[-(u + 1)], mode=upsample_mode)\n', (23972, 24037), False, 'from torch import nn\n'), ((36422, 36445), 'os.path.join', 'os.path.join', (['folder', 'i'], {}), '(folder, i)\n', (36434, 36445), False, 'import os\n'), ((42230, 42258), 'numpy.zeros', 'np.zeros', (["images['T1'].shape"], {}), "(images['T1'].shape)\n", (42238, 42258), True, 'import numpy as np\n'), ((10110, 10131), 'numpy.copy', 'np.copy', (['data_for_net'], {}), '(data_for_net)\n', (10117, 10131), True, 'import numpy as np\n')]
import os import shutil import tempfile import zipfile def archive_write(archivepath, data, filename, compression, compressionlevel): """ Create a file named filename in the archive and write data to it :param archivepath: The path to the zip-archive :type archivepath: str :param data: The data to be written to the file :type data: str :param filename: The filename for the newly created file :type filename: str :param compression: The desired compression for the zip-archive :type compression: int :param compressionlevel: The desired compression level for the zip-archive :type compressionlevel: int :return: void """ archive = zipfile.ZipFile(archivepath, mode='a', compression=compression, compresslevel=compressionlevel) archive.writestr(filename, data) archive.close() def create_archive(archivepath, filedict, compression, compressionlevel): """ Write filedict to zip-archive data subdirectory. Will check wether archive at archivepath exists before writing. If file exists will raise a FileExistsError. :param archivepath: the path to the file :param filedict: dictionary containing the filepath, filename key-value pairs :param compression: desired compression methods (see zipfile documentation) :param compressionlevel: compression level (see zipfile documentation) :return: void """ if os.path.isfile(archivepath): raise FileExistsError("Specified file already exists") else: archive = zipfile.ZipFile(archivepath, mode='x', compression=compression, compresslevel=compressionlevel) for filepath, filename in filedict.items(): archive.write(filepath, arcname="data/" + filename) archive.close() def extract_archdata(archivepath, filename, destination): """ Extract a file from a archive and write it to the destination. If the destination path already exists extract_archdata will not overwrite but will throw a "FileExists" error. :param archivepath: The path to the archive containing the file :type archivepath: str :param filename: The archive name of the desired file. :type filename: str :param destination: The path at which the extracted file is to be placed. :type destination: str :return: void :rtype: None """ # check if destination path already exists if os.path.exists(destination): raise FileExistsError("The specified destination is already in use") archive = zipfile.ZipFile(archivepath, mode='r') with tempfile.TemporaryDirectory() as tmpdir: archive.extract(filename, path=tmpdir) # create directories for the destination os.makedirs(os.path.dirname(destination), exist_ok=True) shutil.copy(os.path.abspath(tmpdir + "/" + filename), destination) def read_bin(archivepath, filelist): """ Read a list of files from an archive and return the file data as a dictionary of filename, data key-value pairs. :param archivepath: the path to the archive :param filelist: list of filenames to read :return: dictionary with filename, data key-value pairs :rtype: dict """ datadict = dict() if os.path.isfile(archivepath): archive = zipfile.ZipFile(archivepath, mode='r') else: raise FileNotFoundError("Specified file does not exist") for filename in filelist: try: file = archive.open(filename) datadict[filename] = file.read().decode() file.close() except KeyError: datadict[filename] = None archive.close() return datadict def read_diff_log(archivepath): """ Read the diff-log.csv from a given archive file. :param archivepath: The path to the zip-archive :type archivepath: str :return: The diff-log.csv contents in ascii string form. :rtype: str """ arch = zipfile.ZipFile(archivepath, mode='r') diff_log_file = arch.open("diff-log.csv") diff_log_bin = diff_log_file.read() diff_log = diff_log_bin.decode() diff_log_file.close() arch.close() return diff_log def zip_extract(archivepath, filelist, extractpath): """ Extract a list of files to a specific location :param archivepath: the path to the zip-archive :param filelist: list of member filenames to extract :param extractpath: path for the extracted files :return: void """ if os.path.isfile(archivepath): archive = zipfile.ZipFile(archivepath, mode='r') else: raise FileNotFoundError("Specified file does not exist") archive.extractall(path=extractpath, members=filelist) archive.close()
[ "os.path.exists", "tempfile.TemporaryDirectory", "zipfile.ZipFile", "os.path.isfile", "os.path.dirname", "os.path.abspath" ]
[((696, 795), 'zipfile.ZipFile', 'zipfile.ZipFile', (['archivepath'], {'mode': '"""a"""', 'compression': 'compression', 'compresslevel': 'compressionlevel'}), "(archivepath, mode='a', compression=compression,\n compresslevel=compressionlevel)\n", (711, 795), False, 'import zipfile\n'), ((1491, 1518), 'os.path.isfile', 'os.path.isfile', (['archivepath'], {}), '(archivepath)\n', (1505, 1518), False, 'import os\n'), ((2547, 2574), 'os.path.exists', 'os.path.exists', (['destination'], {}), '(destination)\n', (2561, 2574), False, 'import os\n'), ((2667, 2705), 'zipfile.ZipFile', 'zipfile.ZipFile', (['archivepath'], {'mode': '"""r"""'}), "(archivepath, mode='r')\n", (2682, 2705), False, 'import zipfile\n'), ((3372, 3399), 'os.path.isfile', 'os.path.isfile', (['archivepath'], {}), '(archivepath)\n', (3386, 3399), False, 'import os\n'), ((4073, 4111), 'zipfile.ZipFile', 'zipfile.ZipFile', (['archivepath'], {'mode': '"""r"""'}), "(archivepath, mode='r')\n", (4088, 4111), False, 'import zipfile\n'), ((4608, 4635), 'os.path.isfile', 'os.path.isfile', (['archivepath'], {}), '(archivepath)\n', (4622, 4635), False, 'import os\n'), ((1611, 1710), 'zipfile.ZipFile', 'zipfile.ZipFile', (['archivepath'], {'mode': '"""x"""', 'compression': 'compression', 'compresslevel': 'compressionlevel'}), "(archivepath, mode='x', compression=compression,\n compresslevel=compressionlevel)\n", (1626, 1710), False, 'import zipfile\n'), ((2715, 2744), 'tempfile.TemporaryDirectory', 'tempfile.TemporaryDirectory', ([], {}), '()\n', (2742, 2744), False, 'import tempfile\n'), ((3419, 3457), 'zipfile.ZipFile', 'zipfile.ZipFile', (['archivepath'], {'mode': '"""r"""'}), "(archivepath, mode='r')\n", (3434, 3457), False, 'import zipfile\n'), ((4655, 4693), 'zipfile.ZipFile', 'zipfile.ZipFile', (['archivepath'], {'mode': '"""r"""'}), "(archivepath, mode='r')\n", (4670, 4693), False, 'import zipfile\n'), ((2873, 2901), 'os.path.dirname', 'os.path.dirname', (['destination'], {}), '(destination)\n', (2888, 2901), False, 'import os\n'), ((2939, 2979), 'os.path.abspath', 'os.path.abspath', (["(tmpdir + '/' + filename)"], {}), "(tmpdir + '/' + filename)\n", (2954, 2979), False, 'import os\n')]
import argparse import sys from cliquet.scripts import cliquet from pyramid.scripts import pserve from pyramid.paster import bootstrap def main(args=None): """The main routine.""" if args is None: args = sys.argv[1:] parser = argparse.ArgumentParser(description="Kinto commands") subparsers = parser.add_subparsers(title='subcommands', description='valid subcommands', help='init/start/migrate') parser_init = subparsers.add_parser('init') parser_init.set_defaults(which='init') parser_init.add_argument('--config_file', required=False, help='Config file may be passed as argument') parser_migrate = subparsers.add_parser('migrate') parser_migrate.set_defaults(which='migrate') parser_start = subparsers.add_parser('start') parser_start.set_defaults(which='start') args = vars(parser.parse_args()) if args['which'] == 'init': if(args['config_file'] is None): env = bootstrap('config/kinto.ini') else: config_file = format(args['config_file']) env = bootstrap(config_file) elif args['which'] == 'migrate': env = bootstrap('config/kinto.ini') cliquet.init_schema(env) elif args['which'] == 'start': pserve_argv = ['pserve', 'config/kinto.ini', '--reload'] pserve.main(pserve_argv) if __name__ == "__main__": main()
[ "cliquet.scripts.cliquet.init_schema", "pyramid.paster.bootstrap", "argparse.ArgumentParser", "pyramid.scripts.pserve.main" ]
[((269, 322), 'argparse.ArgumentParser', 'argparse.ArgumentParser', ([], {'description': '"""Kinto commands"""'}), "(description='Kinto commands')\n", (292, 322), False, 'import argparse\n'), ((1148, 1177), 'pyramid.paster.bootstrap', 'bootstrap', (['"""config/kinto.ini"""'], {}), "('config/kinto.ini')\n", (1157, 1177), False, 'from pyramid.paster import bootstrap\n'), ((1288, 1310), 'pyramid.paster.bootstrap', 'bootstrap', (['config_file'], {}), '(config_file)\n', (1297, 1310), False, 'from pyramid.paster import bootstrap\n'), ((1374, 1403), 'pyramid.paster.bootstrap', 'bootstrap', (['"""config/kinto.ini"""'], {}), "('config/kinto.ini')\n", (1383, 1403), False, 'from pyramid.paster import bootstrap\n'), ((1420, 1444), 'cliquet.scripts.cliquet.init_schema', 'cliquet.init_schema', (['env'], {}), '(env)\n', (1439, 1444), False, 'from cliquet.scripts import cliquet\n'), ((1573, 1597), 'pyramid.scripts.pserve.main', 'pserve.main', (['pserve_argv'], {}), '(pserve_argv)\n', (1584, 1597), False, 'from pyramid.scripts import pserve\n')]
from django.contrib import admin from django.contrib.auth.models import User from .models import Vegetable, Harvest, Transaction, Merchandise, MerchandisePrice from .models import PurchasedItem, UserProfile, VegetablePrice, StockedVegetable from .models import MerchandisePhotos admin.site.register(Vegetable) admin.site.register(StockedVegetable) admin.site.register(Harvest) admin.site.register(VegetablePrice) admin.site.register(PurchasedItem) admin.site.register(Transaction) admin.site.register(UserProfile) admin.site.register(Merchandise) admin.site.register(MerchandisePrice) admin.site.register(MerchandisePhotos)
[ "django.contrib.admin.site.register" ]
[((280, 310), 'django.contrib.admin.site.register', 'admin.site.register', (['Vegetable'], {}), '(Vegetable)\n', (299, 310), False, 'from django.contrib import admin\n'), ((311, 348), 'django.contrib.admin.site.register', 'admin.site.register', (['StockedVegetable'], {}), '(StockedVegetable)\n', (330, 348), False, 'from django.contrib import admin\n'), ((349, 377), 'django.contrib.admin.site.register', 'admin.site.register', (['Harvest'], {}), '(Harvest)\n', (368, 377), False, 'from django.contrib import admin\n'), ((378, 413), 'django.contrib.admin.site.register', 'admin.site.register', (['VegetablePrice'], {}), '(VegetablePrice)\n', (397, 413), False, 'from django.contrib import admin\n'), ((414, 448), 'django.contrib.admin.site.register', 'admin.site.register', (['PurchasedItem'], {}), '(PurchasedItem)\n', (433, 448), False, 'from django.contrib import admin\n'), ((449, 481), 'django.contrib.admin.site.register', 'admin.site.register', (['Transaction'], {}), '(Transaction)\n', (468, 481), False, 'from django.contrib import admin\n'), ((482, 514), 'django.contrib.admin.site.register', 'admin.site.register', (['UserProfile'], {}), '(UserProfile)\n', (501, 514), False, 'from django.contrib import admin\n'), ((515, 547), 'django.contrib.admin.site.register', 'admin.site.register', (['Merchandise'], {}), '(Merchandise)\n', (534, 547), False, 'from django.contrib import admin\n'), ((548, 585), 'django.contrib.admin.site.register', 'admin.site.register', (['MerchandisePrice'], {}), '(MerchandisePrice)\n', (567, 585), False, 'from django.contrib import admin\n'), ((586, 624), 'django.contrib.admin.site.register', 'admin.site.register', (['MerchandisePhotos'], {}), '(MerchandisePhotos)\n', (605, 624), False, 'from django.contrib import admin\n')]
''' Summary: Program that implements a routing deamon based on the RIP version 2 protocol from RFC2453. Usage: python3 Router.py <router_config_file> Configuration File: The user supplies a router configuration file of the format: [Settings] router-id = <router_number> input-ports = <input> [, <input>, ...] outputs = <output>-<metric>-<destination_router> [, <output>-<metric>-<destination_router>, ...] where, router_number: ID of router between 1 - 64000. input: port number between 1024 - 64000. output: port number between 1024 - 6400, not equal to any inputs. metric: metric of output between 1 - 16. destination_router: ID of destination router. Description: This program implements a basic RIPv2 routing protocol from RFC2453 for routing computations in computer networks. It takes a configuration file as shown above and sets up a router with a new socket for each input-port. The RIPv2 protocol uses a routing table to keep track of all reachable routers on the network along with their metric/cost and the direct next hop router ID along the route to that destination router. However, it can only send messages to the direct neighbours specified in outputs. The protocol uses the Bellman-Ford distance vector algorithm to compute the lowest cost route to each router in the network. If the metric is 16 or greater, the router is considered unreachable. The routing table initially starts with a single route entry (RTE) for itself with a metric of zero. The routing table is periodically transmitted too each of its direct output ports via an unsolicited response message as defined in RFC2453 section 3.9.2 and 4. This is performed on a separate thread so it does not interfere with other operations The receives messages from other routers by using the python select() function which blocks until a message is ready to be read. Once a message is received the header and contents are validated. If the message is valid each RTE is processed according to RFC2453 section 3.9.2. If a new router is found the RTE is added to the routing table, adding the cost to the metric for the output the message was received on. If the RTE already exists, but the metric is smaller, the metric is updated to the lower metric. If the lower metric is from a different next hop router, change the next hop. If nothing has changed, restart the timeout timer. If RTE metric >= max metric of 16, mark the entry for garbage collection and update the metric in the table. If any change has occurred in the routing table as a result of a received message, a triggered update (RFC2453 section 3.10.1) is sent to all outputs with the updated entries. Triggered updates are sent with a random delay between 1 - 5 seconds to prevent synchronized updates. Request messages are not implemented in this program. Timers (all timers are on separate threads) (RFC2453 section 3.8): Update timer - Periodic unsolicited response message sent to all outputs. The period is adjusted each time to a random value between 0.8 * BASE_TIMER and 1.2 * BASE_TIMER to prevent synchronized updates. Timeout - used to check the routing table for RTEs which have have not been updated within the ROUTE_TIMEOUT interval. If a router has not been heard from within this time, then set the metric to the max metric of 16 and start the garbage collection timer. Garbage timer - used to check the routing table for RTEs set for garbage collection. If the timeout >= DELETE_TIMEOUT, mark the RTE for deletion. Garbage Collection - used to check the routing table for RTEs marked for deletion, and removes those entries from the table. ''' import configparser import select import socket import sys import time import threading import struct import datetime from random import randint, randrange DEBUG = False HOST = '127.0.0.1' # localhost BASE_TIMER = 5 MAX_METRIC = 16 ROUTE_TIMEOUT = BASE_TIMER * 6 DELETE_TIMEOUT = BASE_TIMER * 4 AF_INET = 2 # =========================================================================== # TRANSITIONS class Transistion(): '''Class Representing a transition between states.''' def __init__(self, to_state): self.to_state = to_state def execute(self): '''Run the transition functions''' pass # =========================================================================== # STATES class State(): '''Class Representing a generic state''' def __init__(self, fsm): self.fsm = fsm def enter(self): '''Execute functions for entering a state''' pass def execute(self): '''Execute functions while in state''' pass def exit(self): '''Execute functions for leaving a state''' pass class StartUp(State): '''Class Representing the Start up state which reads the configuration file ''' def __init__(self, fsm): super(StartUp, self).__init__(fsm) def execute(self): '''Execute the configuration functions''' print_message("Loading Configuration File: '" + self.fsm.router.config_file + "'") config = configparser.ConfigParser() config.read(self.fsm.router.config_file) self.get_router_id(config) self.setup_inputs(config) self.get_outputs(config) self.setup_routing_table() self.fsm.router.print_routing_table() self.fsm.to_transition("toWaiting") def exit(self): '''Print complete message''' print_message("Router Setup Complete.") def get_router_id(self, config): '''Read the router id number from the configuration file''' if 1 <= int(config['Settings']['router-id']) <= 64000: self.fsm.router.router_settings['id'] = \ int(config['Settings']['router-id']) else: raise Exception('Invalid Router ID Number') def get_outputs(self, config): '''Return a dictionary of outputs containing port, cost and destination router id from the Configuration file''' outputs = config['Settings']['outputs'].split(', ') outputs = [i.split('-') for i in outputs] self.fsm.router.router_settings['outputs'] = {} existing_ports = [] for output in outputs: is_valid_port = 1024 <= int(output[0]) <= 64000 and not \ int(output[0]) in existing_ports is_valid_cost = 1 <= int(output[1]) < 16 is_valid_id = 1 <= int(output[2]) <= 64000 if is_valid_port and is_valid_cost and is_valid_id: existing_ports.append(int(output[0])) self.fsm.router.router_settings['outputs'][int(output[2])] = \ {'metric': int(output[1]), 'port': int(output[0])} else: raise Exception('Invalid Outputs') def setup_inputs(self, config): '''Create input sockets from the inputs specified in the config file''' # get inputs from configuration file ports = config['Settings']['input-ports'].split(', ') inputs = [] for port in ports: if 1024 <= int(port) <= 64000 and not int(port) in inputs: inputs.append(int(port)) else: raise Exception('Invalid Port Number') self.fsm.router.router_settings['inputs'] = {} # create socket for each input port for port in inputs: try: self.fsm.router.router_settings['inputs'][port] = \ socket.socket(socket.AF_INET, socket.SOCK_DGRAM) print_message('Socket ' + str(port) + ' Created.') except socket.error as msg: print('Failed to create socket. Message: ' + str(msg)) sys.exit() # bind port to socket try: self.fsm.router.router_settings['inputs'][port].bind( (HOST, port)) print_message('Socket ' + str(port) + ' Bind Complete.') except socket.error as msg: print('Failed to create socket. Message ' + str(msg)) sys.exit() def setup_routing_table(self): '''Setup routing table with the outputs specified in the config file''' self.fsm.router.routing_table[self.fsm.router.router_settings['id']] = \ RIPRouteEntry(address=self.fsm.router.router_settings['id'], nexthop=0, metric=0, imported=True) class Waiting(State): ''' Class representing the waiting state of the FSM where the router waits for messages to be received on its input sockets. When a message is received the state changes to the ReadMeassage state. ''' def __init__(self, fsm): super(Waiting, self).__init__(fsm) def enter(self): '''Display State entry message''' print_message("Entering idle state...") def execute(self): '''Waits for input sockets to be readable and then changes the state to process the received message.''' readable = select.select( self.fsm.router.router_settings['inputs'].values(), [], []) if readable[0]: self.fsm.router.readable_ports = readable[0] self.fsm.to_transition("toReadMessage") def exit(self): '''Display State exit message''' print_message("Message Received") class ReadMessage(State): '''Class representing the state for reading messages received on the input sockets''' def __init__(self, fsm): super(ReadMessage, self).__init__(fsm) def enter(self): print_message("Reading Messages...") def execute(self): for port in self.fsm.router.readable_ports: packet = RIPPacket(port.recvfrom(1024)[0]) self.fsm.router.update_routing_table(packet) if self.fsm.router.route_change: self.fsm.router.trigger_update() self.fsm.router.print_routing_table() self.fsm.to_transition("toWaiting") def exit(self): print_message("Messages Read.") # =========================================================================== # FINITE STATE MACHINE class RouterFSM(): '''Class representing the Router finite state machine''' def __init__(self, rip_router): self.router = rip_router self.states = {} self.transitions = {} self.cur_state = None self.trans = None def add_transistion(self, trans_name, transition): '''Add a new transition to the FSM''' self.transitions[trans_name] = transition def add_state(self, state_name, state): '''Add a new state to the FSM''' self.states[state_name] = state def set_state(self, state_name): '''Set the current state of the FSM''' self.cur_state = self.states[state_name] def to_transition(self, to_trans): '''Set the current transition of the FSM''' self.trans = self.transitions[to_trans] def execute(self): '''Run the FSM''' if self.trans: self.cur_state.exit() self.trans.execute() self.set_state(self.trans.to_state) self.cur_state.enter() self.trans = None self.cur_state.execute() # =========================================================================== # IMPLEMENTATION class RIPPacket: '''Class representing a RIP packet containing a header and body as defined in RFC2453 RIPv2 section 4.''' def __init__(self, data=None, header=None, rtes=None): if data: self._init_from_network(data) elif header and rtes: self._init_from_host(header, rtes) else: raise ValueError def __repr__(self): return "RIPPacket: Command {}, Ver. {}, number of RTEs {}.". \ format(self.header.cmd, self.header.ver, len(self.rtes)) def _init_from_network(self, data): '''Init for RIPPacket if data is from the network''' # Packet Validation datalen = len(data) if datalen < RIPHeader.SIZE: raise FormatException malformed_rtes = (datalen - RIPHeader.SIZE) % RIPRouteEntry.SIZE if malformed_rtes: raise FormatException # Convert bytes in packet to header and RTE data num_rtes = int((datalen - RIPHeader.SIZE) / RIPRouteEntry.SIZE) self.header = RIPHeader(data[0:RIPHeader.SIZE]) self.rtes = [] rte_start = RIPHeader.SIZE rte_end = RIPHeader.SIZE + RIPRouteEntry.SIZE # Loop over data packet to obtain each RTE for i in range(num_rtes): self.rtes.append(RIPRouteEntry(rawdata=data[rte_start:rte_end], src_id=self.header.src)) rte_start += RIPRouteEntry.SIZE rte_end += RIPRouteEntry.SIZE def _init_from_host(self, header, rtes): '''Init for imported data''' if header.ver != 2: raise ValueError("Only Version 2 is supported.") self.header = header self.rtes = rtes def serialize(self): '''Return the byte sting representing this packet for network transmission''' packed = self.header.serialize() for rte in self.rtes: packed += rte.serialize() return packed class RIPHeader: '''Class representing the header of a RIP packet''' FORMAT = "!BBH" SIZE = struct.calcsize(FORMAT) TYPE_RESPONSE = 2 VERSION = 2 def __init__(self, rawdata=None, router_id=None): self.packed = None if rawdata: self._init_from_network(rawdata) elif router_id: self._init_from_host(router_id) else: raise ValueError def __repr__(self): return "RIP Header (cmd = {}, ver = {}, src = {})".format(self.cmd, self.ver, self.src) def _init_from_network(self, rawdata): '''init for data from network''' header = struct.unpack(self.FORMAT, rawdata) self.cmd = header[0] self.ver = header[1] self.src = header[2] def _init_from_host(self, router_id): '''Init for data from host''' self.cmd = self.TYPE_RESPONSE self.ver = self.VERSION self.src = router_id def serialize(self): '''Return the byte sting representing this header for network transmission''' return struct.pack(self.FORMAT, self.cmd, self.ver, self.src) class RIPRouteEntry: '''Class representing a single RIP route entry (RTE)''' FORMAT = "!HHIII" SIZE = struct.calcsize(FORMAT) MIN_METRIC = 0 MAX_METRIC = 16 def __init__(self, rawdata=None, src_id=None, address=None, nexthop=None, metric=None, imported=False): self.changed = False self.imported = imported self.init_timeout() if rawdata and src_id != None: self._init_from_network(rawdata, src_id) elif address and nexthop != None and metric != None: self._init_from_host(address, nexthop, metric) else: raise ValueError def __repr__(self): template = "|{:^11}|{:^10}|{:^11}|{:^15}|{:^10}|{:^13}|" # Check that timeout is set if self.timeout == None: return template.format(self.addr, self.metric, self.nexthop, self.changed, self.garbage, str(self.timeout)) else: timeout = (datetime.datetime.now() - self.timeout).total_seconds() return template.format(self.addr, self.metric, self.nexthop, self.changed, self.garbage, round(timeout, 1)) def _init_from_host(self, address, nexthop, metric): '''Init for data from host''' self.afi = AF_INET self.tag = 0 # not used self.addr = address self.nexthop = nexthop self.metric = metric def _init_from_network(self, rawdata, src_id): '''Init for data received from network''' rte = struct.unpack(self.FORMAT, rawdata) self.afi = rte[0] self.tag = rte[1] self.addr = rte[2] self.set_nexthop(rte[3]) self.metric = rte[4] if self.nexthop == 0: self.nexthop = src_id # Validation if not self.MIN_METRIC <= self.metric <= self.MAX_METRIC: raise FormatException def init_timeout(self): '''Initialize the timeout property''' if self.imported: self.timeout = None else: self.timeout = datetime.datetime.now() self.garbage = False self.marked_for_delection = False def __eq__(self, other): if self.afi == other.afi and \ self.addr == other.addr and \ self.tag == other.tag and \ self.nexthop == other.nexthop and \ self.metric == other.metric: return True else: return False def set_nexthop(self, nexthop): '''Set the nexthop property''' self.nexthop = nexthop def serialize(self): '''Pack entries into typical RIPv2 packet format for sending over the network. ''' return struct.pack(self.FORMAT, self.afi, self.tag, self.addr, self.nexthop, self.metric) class FormatException(Exception): '''Class representing the Format Exception''' def __init__(self, message=""): self.message = message class Router: '''Class representing a single router''' def __init__(self, config_file): self.fsm = RouterFSM(self) self.config_file = config_file # Dictionary of router settings, including router-id, inputs and # outputs self.router_settings = {} self.readable_ports = [] # Dictionary of routing table self.routing_table = {} self.route_change = False # STATES self.fsm.add_state("StartUp", StartUp(self.fsm)) self.fsm.add_state("Waiting", Waiting(self.fsm)) self.fsm.add_state("ReadMessage", ReadMessage(self.fsm)) # TRANSITIONS self.fsm.add_transistion("toWaiting", Transistion("Waiting")) self.fsm.add_transistion("toReadMessage", Transistion("ReadMessage")) self.fsm.set_state("StartUp") def execute(self): '''Run the router's finite state machine''' self.fsm.execute() def update_routing_table(self, packet): '''Update Routing table if new route info exist''' for rte in packet.rtes: # ignore RTEs of self if rte.addr != self.fsm.router.router_settings['id']: bestroute = self.routing_table.get(rte.addr) # set nexthop to source router and calculate metric rte.set_nexthop(packet.header.src) rte.metric = min(rte.metric + self.router_settings['outputs'][ packet.header.src]['metric'], RIPRouteEntry.MAX_METRIC) # Route dosn't yet exist if not bestroute: # ignore RTEs with a metric of MAX_METRIC if rte.metric == RIPRouteEntry.MAX_METRIC: return # Add new RTE to routing table rte.changed = True self.route_change = True self.routing_table[rte.addr] = rte print_message("RTE added for Router: " + str(rte.addr)) return else: # Route already exists if rte.nexthop == bestroute.nexthop: if bestroute.metric != rte.metric: if bestroute.metric != RIPRouteEntry.MAX_METRIC \ and rte.metric >= RIPRouteEntry.MAX_METRIC: # mark for garbage collection bestroute.metric = RIPRouteEntry.MAX_METRIC bestroute.garbage = True bestroute.changed = True self.route_change = True else: self.update_route(bestroute, rte) # Route still exists with same values elif not bestroute.garbage: bestroute.init_timeout() # Lower metric on existing route elif rte.metric < bestroute.metric: self.update_route(bestroute, rte) def update_route(self, bestroute, rte): '''Update an existing route entry with new route info''' bestroute.init_timeout() bestroute.garbage = False bestroute.changed = True bestroute.metric = rte.metric bestroute.nexthop = rte.nexthop self.route_change = True print_message("RTE for Router: " + str(rte.addr) + " updated with metric=" + str(rte.metric) + ", nexthop=" + str(rte.nexthop) + ".") def print_routing_table(self): '''Print the routing table to the terminal''' line = "+-----------+----------+-----------+---------------+----------+-------------+" print(line) print( "| Routing Table (Router " + str(self.router_settings['id']) + ") |") print(line) print( "|Router ID | Metric | NextHop | ChangedFlag | Garbage | Timeout(s) |") print(line) print(self.routing_table[self.router_settings['id']]) print( "+===========+==========+===========+===============+==========+=============+") for entry in self.routing_table: if entry != self.router_settings['id']: print(self.routing_table[entry]) print(line) print('\n') def trigger_update(self): '''Send Routing update for only the routes which have changed''' changed_rtes = [] print_message("Sending Trigger update.") for rte in self.routing_table.values(): if rte.changed: changed_rtes.append(rte) rte.changed = False self.route_change = False # send update with random delay between 1 and 5 seconds delay = randint(1, 5) threading.Timer(delay, self.update, [changed_rtes]) def update(self, entries): '''Send a message to all output ports''' if self.router_settings != {}: sock = list(self.router_settings['inputs'].values())[1] local_header = RIPHeader(router_id=self.router_settings['id']) for output in self.router_settings['outputs']: # Split horizon # Remove RTES for which nexthop == output split_horizon_entries = [] for entry in entries: if entry.nexthop != output: split_horizon_entries.append(entry) else: # Poison reverse # Create new entry to get around some funky referencing # When doing poisoned_entry = entry poisoned_entry = RIPRouteEntry(rawdata=None, src_id=None, address=entry.addr, nexthop=entry.nexthop, metric= RIPRouteEntry.MAX_METRIC, imported=entry.imported) split_horizon_entries.append(poisoned_entry) # comment out to disable split horizon packet = RIPPacket( header=local_header, rtes=split_horizon_entries) # Uncomment to disable split horizon # packet = RIPPacket(header=local_header, rtes=entries) sock.sendto(packet.serialize(), (HOST, self.router_settings['outputs'][output]["port"])) print_message("Message Sent To Router: " + str(output)) def check_timeout(self): '''Check the current timeout value for each RTE in the routing table. If the time difference with now is greater than ROUTE_TIMEOUT, then set the metric to 16 and start the garbage collection timer.''' print_message("Checking timeout...") if self.routing_table != {}: for rte in self.routing_table.values(): if rte.timeout != None and \ (datetime.datetime.now() - rte.timeout).total_seconds() \ >= ROUTE_TIMEOUT: rte.garbage = True rte.changed = True self.route_change = True rte.metric = RIPRouteEntry.MAX_METRIC rte.timeout = datetime.datetime.now() self.print_routing_table() print_message("Router: " + str(rte.addr) + " timed out.") def garbage_timer(self): '''Check the status of the garbage property of each RTE. If true, and the timeout value difference with now is greater than DELETE_TIMEOUT, mark it for deletion''' print_message("Checking garbage timeout...") if self.routing_table != {}: for rte in self.routing_table.values(): if rte.garbage: if (datetime.datetime.now() - rte.timeout).total_seconds() \ >= DELETE_TIMEOUT: rte.marked_for_delection = True def garbage_collection(self): '''Check the routing table for RTE's that are marked for deletion and remove them.''' print_message("Collecting Garbage...") if self.routing_table != {}: delete_routes = [] for rte in self.routing_table.values(): if rte.marked_for_delection: delete_routes.append(rte.addr) print_message("Router: " + str(rte.addr) + " has been " + "removed from the routing table.") for entry in delete_routes: del self.routing_table[entry] self.print_routing_table() def timer(self, function, param=None): '''Start a periodic timer which calls a specified function''' if param != None: function(list(param.values())) period = BASE_TIMER * randrange(8, 12, 1) / 10 else: period = BASE_TIMER function() threading.Timer(period, self.timer, [function, param]).start() def start_timers(self): '''Start the timers on separate threads''' self.timer(self.update, param=self.routing_table) self.timer(self.check_timeout) self.timer(self.garbage_timer) self.timer(self.garbage_collection) def main_loop(self): '''Start the main loop for the program.''' while True: self.execute() # RUN THE PROGRAM def print_message(message): '''Print the given message with the current time before it''' if DEBUG: print("[" + time.strftime("%H:%M:%S") + "]: " + message) def main(): '''Main function to run the program.''' if __name__ == "__main__": router = Router(str(sys.argv[-1])) router.start_timers() router.main_loop() main()
[ "struct.calcsize", "configparser.ConfigParser", "socket.socket", "random.randrange", "threading.Timer", "time.strftime", "struct.pack", "datetime.datetime.now", "struct.unpack", "sys.exit", "random.randint" ]
[((15093, 15116), 'struct.calcsize', 'struct.calcsize', (['FORMAT'], {}), '(FORMAT)\n', (15108, 15116), False, 'import struct\n'), ((16427, 16450), 'struct.calcsize', 'struct.calcsize', (['FORMAT'], {}), '(FORMAT)\n', (16442, 16450), False, 'import struct\n'), ((6336, 6363), 'configparser.ConfigParser', 'configparser.ConfigParser', ([], {}), '()\n', (6361, 6363), False, 'import configparser\n'), ((15792, 15827), 'struct.unpack', 'struct.unpack', (['self.FORMAT', 'rawdata'], {}), '(self.FORMAT, rawdata)\n', (15805, 15827), False, 'import struct\n'), ((16246, 16300), 'struct.pack', 'struct.pack', (['self.FORMAT', 'self.cmd', 'self.ver', 'self.src'], {}), '(self.FORMAT, self.cmd, self.ver, self.src)\n', (16257, 16300), False, 'import struct\n'), ((18000, 18035), 'struct.unpack', 'struct.unpack', (['self.FORMAT', 'rawdata'], {}), '(self.FORMAT, rawdata)\n', (18013, 18035), False, 'import struct\n'), ((19227, 19314), 'struct.pack', 'struct.pack', (['self.FORMAT', 'self.afi', 'self.tag', 'self.addr', 'self.nexthop', 'self.metric'], {}), '(self.FORMAT, self.afi, self.tag, self.addr, self.nexthop, self.\n metric)\n', (19238, 19314), False, 'import struct\n'), ((24673, 24686), 'random.randint', 'randint', (['(1)', '(5)'], {}), '(1, 5)\n', (24680, 24686), False, 'from random import randint, randrange\n'), ((24696, 24747), 'threading.Timer', 'threading.Timer', (['delay', 'self.update', '[changed_rtes]'], {}), '(delay, self.update, [changed_rtes])\n', (24711, 24747), False, 'import threading\n'), ((18561, 18584), 'datetime.datetime.now', 'datetime.datetime.now', ([], {}), '()\n', (18582, 18584), False, 'import datetime\n'), ((8835, 8883), 'socket.socket', 'socket.socket', (['socket.AF_INET', 'socket.SOCK_DGRAM'], {}), '(socket.AF_INET, socket.SOCK_DGRAM)\n', (8848, 8883), False, 'import socket\n'), ((29020, 29074), 'threading.Timer', 'threading.Timer', (['period', 'self.timer', '[function, param]'], {}), '(period, self.timer, [function, param])\n', (29035, 29074), False, 'import threading\n'), ((9082, 9092), 'sys.exit', 'sys.exit', ([], {}), '()\n', (9090, 9092), False, 'import sys\n'), ((9459, 9469), 'sys.exit', 'sys.exit', ([], {}), '()\n', (9467, 9469), False, 'import sys\n'), ((27251, 27274), 'datetime.datetime.now', 'datetime.datetime.now', ([], {}), '()\n', (27272, 27274), False, 'import datetime\n'), ((28912, 28931), 'random.randrange', 'randrange', (['(8)', '(12)', '(1)'], {}), '(8, 12, 1)\n', (28921, 28931), False, 'from random import randint, randrange\n'), ((17379, 17402), 'datetime.datetime.now', 'datetime.datetime.now', ([], {}), '()\n', (17400, 17402), False, 'import datetime\n'), ((29638, 29663), 'time.strftime', 'time.strftime', (['"""%H:%M:%S"""'], {}), "('%H:%M:%S')\n", (29651, 29663), False, 'import time\n'), ((26936, 26959), 'datetime.datetime.now', 'datetime.datetime.now', ([], {}), '()\n', (26957, 26959), False, 'import datetime\n'), ((27830, 27853), 'datetime.datetime.now', 'datetime.datetime.now', ([], {}), '()\n', (27851, 27853), False, 'import datetime\n')]
from django.db import models class SiteSettings(models.Model): site_name = models.CharField(max_length=200 , verbose_name='Site Name') site_url = models.CharField(max_length=200 , verbose_name='Site URL') site_address = models.CharField(max_length=300 , verbose_name='Site Address') site_phone = models.CharField(max_length=100 , null=True , blank=True , verbose_name='Site Phone') site_fax = models.CharField(max_length=200 , null=True , blank=True , verbose_name='Site Fax') site_email = models.EmailField(max_length=200 , null=True , blank=True , verbose_name='Site Email') about_us_text = models.TextField(verbose_name='About Us Text') site_copy_right = models.TextField(verbose_name='Copyright Text') site_logo = models.ImageField(upload_to='images/site-setting/' , verbose_name='Site Logo') is_main_setting = models.BooleanField(verbose_name='Site Main Settings') def __str__(self) -> str: super(SiteSettings , self).__str__() return self.site_name class Meta: verbose_name = 'Site Setting' verbose_name_plural = 'Site Settings' class FooterLinkBox(models.Model): title = models.CharField(max_length=200 , verbose_name='Title') def __str__(self) -> str: super(FooterLinkBox , self).__str__() return self.title class Meta: verbose_name = 'Footer Link Setting' verbose_name_plural = 'Footer Link Settings' class FooterLink(models.Model): title = models.CharField(max_length=200 , verbose_name='Title') url = models.URLField(max_length=500 , verbose_name='Links') footer_link_box = models.ForeignKey(to=FooterLinkBox , verbose_name='Category' , on_delete=models.CASCADE) def __str__(self) -> str: super(FooterLink , self).__str__() return self.title class Meta: verbose_name = 'Footer Link' verbose_name_plural = 'Footer Links' class Slider(models.Model): title = models.CharField(max_length=200 , verbose_name='Title') description = models.TextField(verbose_name='Slider Description') url_title = models.CharField(max_length=200 , verbose_name='URL Title') url = models.URLField(max_length=200 , verbose_name='URL Address') image = models.ImageField(upload_to='images/sliders' , verbose_name='Slider Image') is_active = models.BooleanField(default=False , verbose_name='Active / Inactive') def __str__(self) -> str: super(Slider , self).__str__() return self.title class Meta: verbose_name = 'Slider' verbose_name_plural = 'Sliders'
[ "django.db.models.EmailField", "django.db.models.TextField", "django.db.models.ForeignKey", "django.db.models.BooleanField", "django.db.models.ImageField", "django.db.models.URLField", "django.db.models.CharField" ]
[((83, 141), 'django.db.models.CharField', 'models.CharField', ([], {'max_length': '(200)', 'verbose_name': '"""Site Name"""'}), "(max_length=200, verbose_name='Site Name')\n", (99, 141), False, 'from django.db import models\n'), ((158, 215), 'django.db.models.CharField', 'models.CharField', ([], {'max_length': '(200)', 'verbose_name': '"""Site URL"""'}), "(max_length=200, verbose_name='Site URL')\n", (174, 215), False, 'from django.db import models\n'), ((236, 297), 'django.db.models.CharField', 'models.CharField', ([], {'max_length': '(300)', 'verbose_name': '"""Site Address"""'}), "(max_length=300, verbose_name='Site Address')\n", (252, 297), False, 'from django.db import models\n'), ((316, 403), 'django.db.models.CharField', 'models.CharField', ([], {'max_length': '(100)', 'null': '(True)', 'blank': '(True)', 'verbose_name': '"""Site Phone"""'}), "(max_length=100, null=True, blank=True, verbose_name=\n 'Site Phone')\n", (332, 403), False, 'from django.db import models\n'), ((417, 502), 'django.db.models.CharField', 'models.CharField', ([], {'max_length': '(200)', 'null': '(True)', 'blank': '(True)', 'verbose_name': '"""Site Fax"""'}), "(max_length=200, null=True, blank=True, verbose_name='Site Fax'\n )\n", (433, 502), False, 'from django.db import models\n'), ((518, 606), 'django.db.models.EmailField', 'models.EmailField', ([], {'max_length': '(200)', 'null': '(True)', 'blank': '(True)', 'verbose_name': '"""Site Email"""'}), "(max_length=200, null=True, blank=True, verbose_name=\n 'Site Email')\n", (535, 606), False, 'from django.db import models\n'), ((625, 671), 'django.db.models.TextField', 'models.TextField', ([], {'verbose_name': '"""About Us Text"""'}), "(verbose_name='About Us Text')\n", (641, 671), False, 'from django.db import models\n'), ((694, 741), 'django.db.models.TextField', 'models.TextField', ([], {'verbose_name': '"""Copyright Text"""'}), "(verbose_name='Copyright Text')\n", (710, 741), False, 'from django.db import models\n'), ((758, 835), 'django.db.models.ImageField', 'models.ImageField', ([], {'upload_to': '"""images/site-setting/"""', 'verbose_name': '"""Site Logo"""'}), "(upload_to='images/site-setting/', verbose_name='Site Logo')\n", (775, 835), False, 'from django.db import models\n'), ((859, 913), 'django.db.models.BooleanField', 'models.BooleanField', ([], {'verbose_name': '"""Site Main Settings"""'}), "(verbose_name='Site Main Settings')\n", (878, 913), False, 'from django.db import models\n'), ((1213, 1267), 'django.db.models.CharField', 'models.CharField', ([], {'max_length': '(200)', 'verbose_name': '"""Title"""'}), "(max_length=200, verbose_name='Title')\n", (1229, 1267), False, 'from django.db import models\n'), ((1577, 1631), 'django.db.models.CharField', 'models.CharField', ([], {'max_length': '(200)', 'verbose_name': '"""Title"""'}), "(max_length=200, verbose_name='Title')\n", (1593, 1631), False, 'from django.db import models\n'), ((1643, 1696), 'django.db.models.URLField', 'models.URLField', ([], {'max_length': '(500)', 'verbose_name': '"""Links"""'}), "(max_length=500, verbose_name='Links')\n", (1658, 1696), False, 'from django.db import models\n'), ((1720, 1811), 'django.db.models.ForeignKey', 'models.ForeignKey', ([], {'to': 'FooterLinkBox', 'verbose_name': '"""Category"""', 'on_delete': 'models.CASCADE'}), "(to=FooterLinkBox, verbose_name='Category', on_delete=\n models.CASCADE)\n", (1737, 1811), False, 'from django.db import models\n'), ((2101, 2155), 'django.db.models.CharField', 'models.CharField', ([], {'max_length': '(200)', 'verbose_name': '"""Title"""'}), "(max_length=200, verbose_name='Title')\n", (2117, 2155), False, 'from django.db import models\n'), ((2175, 2226), 'django.db.models.TextField', 'models.TextField', ([], {'verbose_name': '"""Slider Description"""'}), "(verbose_name='Slider Description')\n", (2191, 2226), False, 'from django.db import models\n'), ((2243, 2301), 'django.db.models.CharField', 'models.CharField', ([], {'max_length': '(200)', 'verbose_name': '"""URL Title"""'}), "(max_length=200, verbose_name='URL Title')\n", (2259, 2301), False, 'from django.db import models\n'), ((2313, 2372), 'django.db.models.URLField', 'models.URLField', ([], {'max_length': '(200)', 'verbose_name': '"""URL Address"""'}), "(max_length=200, verbose_name='URL Address')\n", (2328, 2372), False, 'from django.db import models\n'), ((2386, 2460), 'django.db.models.ImageField', 'models.ImageField', ([], {'upload_to': '"""images/sliders"""', 'verbose_name': '"""Slider Image"""'}), "(upload_to='images/sliders', verbose_name='Slider Image')\n", (2403, 2460), False, 'from django.db import models\n'), ((2478, 2546), 'django.db.models.BooleanField', 'models.BooleanField', ([], {'default': '(False)', 'verbose_name': '"""Active / Inactive"""'}), "(default=False, verbose_name='Active / Inactive')\n", (2497, 2546), False, 'from django.db import models\n')]
# -*- coding: utf-8 -*- # vispy: gallery 10 # Copyright (c) Vispy Development Team. All Rights Reserved. # Distributed under the (new) BSD License. See LICENSE.txt for more info. import sys import numpy as np from vispy import app, gloo, visuals from vispy.visuals.filters import Clipper, ColorFilter from vispy.visuals.shaders import MultiProgram from vispy.visuals.collections import PointCollection from vispy.visuals.transforms import STTransform from vispy.scene import SceneCanvas from vispy.scene.visuals import create_visual_node class LineVisual(visuals.Visual): """Example of a very simple GL-line visual. This shows the minimal set of methods that need to be reimplemented to make a new visual class. """ def __init__(self, pos=None, color=(1, 1, 1, 1)): vcode = """ attribute vec2 a_pos; void main() { gl_Position = $transform(vec4(a_pos, 0., 1.)); gl_PointSize = 10.; } """ fcode = """ void main() { gl_FragColor = $color; } """ visuals.Visual.__init__(self, vcode=vcode, fcode=fcode) self.pos_buf = gloo.VertexBuffer() # The Visual superclass contains a MultiProgram, which is an object # that behaves like a normal shader program (you can assign shader # code, upload values, set template variables, etc.) but internally # manages multiple ModularProgram instances, one per view. # The MultiProgram is accessed via the `shared_program` property, so # the following modifications to the program will be applied to all # views: self.shared_program['a_pos'] = self.pos_buf self.shared_program.frag['color'] = color self._need_upload = False # Visual keeps track of draw mode, index buffer, and GL state. These # are shared between all views. self._draw_mode = 'line_strip' self.set_gl_state('translucent', depth_test=False) if pos is not None: self.set_data(pos) def set_data(self, pos): self._pos = pos self._need_upload = True def _prepare_transforms(self, view=None): view.view_program.vert['transform'] = view.transforms.get_transform() def _prepare_draw(self, view=None): """This method is called immediately before each draw. The *view* argument indicates which view is about to be drawn. """ if self._need_upload: # Note that pos_buf is shared between all views, so we have no need # to use the *view* argument in this example. This will be true # for most visuals. self.pos_buf.set_data(self._pos) self._need_upload = False class PointVisual(LineVisual): """Another simple visual class. Due to the simplicity of these example classes, it was only necessary to subclass from LineVisual and set the draw mode to 'points'. A more fully-featured PointVisual class might not follow this approach. """ def __init__(self, pos=None, color=(1, 1, 1, 1)): LineVisual.__init__(self, pos, color) self._draw_mode = 'points' class PlotLineVisual(visuals.CompoundVisual): """An example compound visual that draws lines and points. To the user, the compound visual behaves exactly like a normal visual--it has a transform system, draw() and bounds() methods, etc. Internally, the compound visual automatically manages proxying these transforms and methods to its sub-visuals. """ def __init__(self, pos=None, line_color=(1, 1, 1, 1), point_color=(1, 1, 1, 1)): self._line = LineVisual(pos, color=line_color) self._point = PointVisual(pos, color=point_color) visuals.CompoundVisual.__init__(self, [self._line, self._point]) class PointCollectionVisual(visuals.Visual): """Thin wrapper around a point collection. Note: This is currently broken! """ def __init__(self): prog = MultiProgram(vcode='', fcode='') self.points = PointCollection("agg", color="shared", program=prog) visuals.Visual.__init__(self, program=prog) def _prepare_draw(self, view): if self.points._need_update: self.points._update() self._draw_mode = self.points._mode self._index_buffer = self.points._indices_buffer def append(self, *args, **kwargs): self.points.append(*args, **kwargs) def _prepare_transforms(self, view=None): pass @property def color(self): return self.points['color'] @color.setter def color(self, c): self.points['color'] = c class PanZoomTransform(STTransform): def __init__(self, canvas=None, aspect=None, **kwargs): self._aspect = aspect self.attach(canvas) STTransform.__init__(self, **kwargs) def attach(self, canvas): """ Attach this tranform to a canvas """ self._canvas = canvas canvas.events.mouse_wheel.connect(self.on_mouse_wheel) canvas.events.mouse_move.connect(self.on_mouse_move) def on_mouse_move(self, event): if event.is_dragging: dxy = event.pos - event.last_event.pos button = event.press_event.button if button == 1: self.move(dxy) elif button == 2: center = event.press_event.pos if self._aspect is None: self.zoom(np.exp(dxy * (0.01, -0.01)), center) else: s = dxy[1] * -0.01 self.zoom(np.exp(np.array([s, s])), center) def on_mouse_wheel(self, event): self.zoom(np.exp(event.delta * (0.01, -0.01)), event.pos) canvas = app.Canvas(keys='interactive', size=(900, 600), show=True, title="Visual Canvas") pos = np.random.normal(size=(1000, 2), loc=0, scale=50).astype('float32') pos[0] = [0, 0] # Make a line visual line = LineVisual(pos=pos) line.transforms.canvas = canvas line.transform = STTransform(scale=(2, 1), translate=(20, 20)) panzoom = PanZoomTransform(canvas) line.transforms.scene_transform = panzoom panzoom.changed.connect(lambda ev: canvas.update()) # Attach color filter to all views (current and future) of the visual line.attach(ColorFilter((1, 1, 0.5, 0.7))) # Attach a clipper just to this view. The Clipper filter requires a # transform that maps from the framebuffer coordinate system to the # clipping coordinates. tr = line.transforms.get_transform('framebuffer', 'canvas') line.attach(Clipper((20, 20, 260, 260), transform=tr), view=line) # Make a view of the line that will draw its shadow shadow = line.view() shadow.transforms.canvas = canvas shadow.transform = STTransform(scale=(2, 1), translate=(25, 25)) shadow.transforms.scene_transform = panzoom shadow.attach(ColorFilter((0, 0, 0, 0.6)), view=shadow) tr = shadow.transforms.get_transform('framebuffer', 'canvas') shadow.attach(Clipper((20, 20, 260, 260), transform=tr), view=shadow) # And make a second view of the line with different clipping bounds view = line.view() view.transforms.canvas = canvas view.transform = STTransform(scale=(2, 0.5), translate=(450, 150)) tr = view.transforms.get_transform('framebuffer', 'canvas') view.attach(Clipper((320, 20, 260, 260), transform=tr), view=view) # Make a compound visual plot = PlotLineVisual(pos, (0.5, 1, 0.5, 0.2), (0.5, 1, 1, 0.3)) plot.transforms.canvas = canvas plot.transform = STTransform(translate=(80, 450), scale=(1.5, 1)) tr = plot.transforms.get_transform('framebuffer', 'canvas') plot.attach(Clipper((20, 320, 260, 260), transform=tr), view=plot) # And make a view on the compound view2 = plot.view() view2.transforms.canvas = canvas view2.transform = STTransform(scale=(1.5, 1), translate=(450, 400)) tr = view2.transforms.get_transform('framebuffer', 'canvas') view2.attach(Clipper((320, 320, 260, 260), transform=tr), view=view2) # And a shadow for the view shadow2 = plot.view() shadow2.transforms.canvas = canvas shadow2.transform = STTransform(scale=(1.5, 1), translate=(455, 405)) shadow2.attach(ColorFilter((0, 0, 0, 0.6)), view=shadow2) tr = shadow2.transforms.get_transform('framebuffer', 'canvas') shadow2.attach(Clipper((320, 320, 260, 260), transform=tr), view=shadow2) # Example of a collection visual collection = PointCollectionVisual() collection.transforms.canvas = canvas collection.transform = STTransform(translate=(750, 150)) collection.append(np.random.normal(loc=0, scale=20, size=(10000, 3)), itemsize=5000) collection.color = (1, 0.5, 0.5, 1), (0.5, 0.5, 1, 1) shadow3 = collection.view() shadow3.transforms.canvas = canvas shadow3.transform = STTransform(scale=(1, 1), translate=(752, 152)) shadow3.attach(ColorFilter((0, 0, 0, 0.6)), view=shadow3) # tr = shadow3.transforms.get_transform('framebuffer', 'canvas') # shadow3.attach(Clipper((320, 320, 260, 260), transform=tr), view=shadow2) order = [shadow, line, view, plot, shadow2, view2, shadow3, collection] @canvas.connect def on_draw(event): canvas.context.clear((0.3, 0.3, 0.3, 1.0)) for v in order: v.draw() def on_resize(event): # Set canvas viewport and reconfigure visual transforms to match. vp = (0, 0, canvas.physical_size[0], canvas.physical_size[1]) canvas.context.set_viewport(*vp) for v in order: v.transforms.configure(canvas=canvas, viewport=vp) canvas.events.resize.connect(on_resize) on_resize(None) Line = create_visual_node(LineVisual) canvas2 = SceneCanvas(keys='interactive', title='Scene Canvas', show=True) v = canvas2.central_widget.add_view(margin=10) v.border_color = (1, 1, 1, 1) v.bgcolor = (0.3, 0.3, 0.3, 1) v.camera = 'panzoom' line2 = Line(pos, parent=v.scene) def mouse(ev): print(ev) v.events.mouse_press.connect(mouse) if __name__ == '__main__': if sys.flags.interactive != 1: app.run()
[ "vispy.app.Canvas", "numpy.random.normal", "vispy.gloo.VertexBuffer", "vispy.visuals.CompoundVisual.__init__", "vispy.visuals.filters.Clipper", "vispy.visuals.Visual.__init__", "vispy.scene.SceneCanvas", "vispy.scene.visuals.create_visual_node", "numpy.exp", "vispy.visuals.shaders.MultiProgram", "numpy.array", "vispy.visuals.filters.ColorFilter", "vispy.visuals.transforms.STTransform.__init__", "vispy.app.run", "vispy.visuals.collections.PointCollection", "vispy.visuals.transforms.STTransform" ]
[((5805, 5891), 'vispy.app.Canvas', 'app.Canvas', ([], {'keys': '"""interactive"""', 'size': '(900, 600)', 'show': '(True)', 'title': '"""Visual Canvas"""'}), "(keys='interactive', size=(900, 600), show=True, title=\n 'Visual Canvas')\n", (5815, 5891), False, 'from vispy import app, gloo, visuals\n'), ((6096, 6141), 'vispy.visuals.transforms.STTransform', 'STTransform', ([], {'scale': '(2, 1)', 'translate': '(20, 20)'}), '(scale=(2, 1), translate=(20, 20))\n', (6107, 6141), False, 'from vispy.visuals.transforms import STTransform\n'), ((6800, 6845), 'vispy.visuals.transforms.STTransform', 'STTransform', ([], {'scale': '(2, 1)', 'translate': '(25, 25)'}), '(scale=(2, 1), translate=(25, 25))\n', (6811, 6845), False, 'from vispy.visuals.transforms import STTransform\n'), ((7215, 7264), 'vispy.visuals.transforms.STTransform', 'STTransform', ([], {'scale': '(2, 0.5)', 'translate': '(450, 150)'}), '(scale=(2, 0.5), translate=(450, 150))\n', (7226, 7264), False, 'from vispy.visuals.transforms import STTransform\n'), ((7532, 7580), 'vispy.visuals.transforms.STTransform', 'STTransform', ([], {'translate': '(80, 450)', 'scale': '(1.5, 1)'}), '(translate=(80, 450), scale=(1.5, 1))\n', (7543, 7580), False, 'from vispy.visuals.transforms import STTransform\n'), ((7815, 7864), 'vispy.visuals.transforms.STTransform', 'STTransform', ([], {'scale': '(1.5, 1)', 'translate': '(450, 400)'}), '(scale=(1.5, 1), translate=(450, 400))\n', (7826, 7864), False, 'from vispy.visuals.transforms import STTransform\n'), ((8102, 8151), 'vispy.visuals.transforms.STTransform', 'STTransform', ([], {'scale': '(1.5, 1)', 'translate': '(455, 405)'}), '(scale=(1.5, 1), translate=(455, 405))\n', (8113, 8151), False, 'from vispy.visuals.transforms import STTransform\n'), ((8479, 8512), 'vispy.visuals.transforms.STTransform', 'STTransform', ([], {'translate': '(750, 150)'}), '(translate=(750, 150))\n', (8490, 8512), False, 'from vispy.visuals.transforms import STTransform\n'), ((8755, 8802), 'vispy.visuals.transforms.STTransform', 'STTransform', ([], {'scale': '(1, 1)', 'translate': '(752, 152)'}), '(scale=(1, 1), translate=(752, 152))\n', (8766, 8802), False, 'from vispy.visuals.transforms import STTransform\n'), ((9537, 9567), 'vispy.scene.visuals.create_visual_node', 'create_visual_node', (['LineVisual'], {}), '(LineVisual)\n', (9555, 9567), False, 'from vispy.scene.visuals import create_visual_node\n'), ((9578, 9642), 'vispy.scene.SceneCanvas', 'SceneCanvas', ([], {'keys': '"""interactive"""', 'title': '"""Scene Canvas"""', 'show': '(True)'}), "(keys='interactive', title='Scene Canvas', show=True)\n", (9589, 9642), False, 'from vispy.scene import SceneCanvas\n'), ((6354, 6383), 'vispy.visuals.filters.ColorFilter', 'ColorFilter', (['(1, 1, 0.5, 0.7)'], {}), '((1, 1, 0.5, 0.7))\n', (6365, 6383), False, 'from vispy.visuals.filters import Clipper, ColorFilter\n'), ((6619, 6660), 'vispy.visuals.filters.Clipper', 'Clipper', (['(20, 20, 260, 260)'], {'transform': 'tr'}), '((20, 20, 260, 260), transform=tr)\n', (6626, 6660), False, 'from vispy.visuals.filters import Clipper, ColorFilter\n'), ((6904, 6931), 'vispy.visuals.filters.ColorFilter', 'ColorFilter', (['(0, 0, 0, 0.6)'], {}), '((0, 0, 0, 0.6))\n', (6915, 6931), False, 'from vispy.visuals.filters import Clipper, ColorFilter\n'), ((7022, 7063), 'vispy.visuals.filters.Clipper', 'Clipper', (['(20, 20, 260, 260)'], {'transform': 'tr'}), '((20, 20, 260, 260), transform=tr)\n', (7029, 7063), False, 'from vispy.visuals.filters import Clipper, ColorFilter\n'), ((7337, 7379), 'vispy.visuals.filters.Clipper', 'Clipper', (['(320, 20, 260, 260)'], {'transform': 'tr'}), '((320, 20, 260, 260), transform=tr)\n', (7344, 7379), False, 'from vispy.visuals.filters import Clipper, ColorFilter\n'), ((7653, 7695), 'vispy.visuals.filters.Clipper', 'Clipper', (['(20, 320, 260, 260)'], {'transform': 'tr'}), '((20, 320, 260, 260), transform=tr)\n', (7660, 7695), False, 'from vispy.visuals.filters import Clipper, ColorFilter\n'), ((7939, 7982), 'vispy.visuals.filters.Clipper', 'Clipper', (['(320, 320, 260, 260)'], {'transform': 'tr'}), '((320, 320, 260, 260), transform=tr)\n', (7946, 7982), False, 'from vispy.visuals.filters import Clipper, ColorFilter\n'), ((8167, 8194), 'vispy.visuals.filters.ColorFilter', 'ColorFilter', (['(0, 0, 0, 0.6)'], {}), '((0, 0, 0, 0.6))\n', (8178, 8194), False, 'from vispy.visuals.filters import Clipper, ColorFilter\n'), ((8288, 8331), 'vispy.visuals.filters.Clipper', 'Clipper', (['(320, 320, 260, 260)'], {'transform': 'tr'}), '((320, 320, 260, 260), transform=tr)\n', (8295, 8331), False, 'from vispy.visuals.filters import Clipper, ColorFilter\n'), ((8531, 8581), 'numpy.random.normal', 'np.random.normal', ([], {'loc': '(0)', 'scale': '(20)', 'size': '(10000, 3)'}), '(loc=0, scale=20, size=(10000, 3))\n', (8547, 8581), True, 'import numpy as np\n'), ((8818, 8845), 'vispy.visuals.filters.ColorFilter', 'ColorFilter', (['(0, 0, 0, 0.6)'], {}), '((0, 0, 0, 0.6))\n', (8829, 8845), False, 'from vispy.visuals.filters import Clipper, ColorFilter\n'), ((1099, 1154), 'vispy.visuals.Visual.__init__', 'visuals.Visual.__init__', (['self'], {'vcode': 'vcode', 'fcode': 'fcode'}), '(self, vcode=vcode, fcode=fcode)\n', (1122, 1154), False, 'from vispy import app, gloo, visuals\n'), ((1179, 1198), 'vispy.gloo.VertexBuffer', 'gloo.VertexBuffer', ([], {}), '()\n', (1196, 1198), False, 'from vispy import app, gloo, visuals\n'), ((3816, 3880), 'vispy.visuals.CompoundVisual.__init__', 'visuals.CompoundVisual.__init__', (['self', '[self._line, self._point]'], {}), '(self, [self._line, self._point])\n', (3847, 3880), False, 'from vispy import app, gloo, visuals\n'), ((4060, 4092), 'vispy.visuals.shaders.MultiProgram', 'MultiProgram', ([], {'vcode': '""""""', 'fcode': '""""""'}), "(vcode='', fcode='')\n", (4072, 4092), False, 'from vispy.visuals.shaders import MultiProgram\n'), ((4115, 4167), 'vispy.visuals.collections.PointCollection', 'PointCollection', (['"""agg"""'], {'color': '"""shared"""', 'program': 'prog'}), "('agg', color='shared', program=prog)\n", (4130, 4167), False, 'from vispy.visuals.collections import PointCollection\n'), ((4176, 4219), 'vispy.visuals.Visual.__init__', 'visuals.Visual.__init__', (['self'], {'program': 'prog'}), '(self, program=prog)\n', (4199, 4219), False, 'from vispy import app, gloo, visuals\n'), ((4885, 4921), 'vispy.visuals.transforms.STTransform.__init__', 'STTransform.__init__', (['self'], {}), '(self, **kwargs)\n', (4905, 4921), False, 'from vispy.visuals.transforms import STTransform\n'), ((5914, 5963), 'numpy.random.normal', 'np.random.normal', ([], {'size': '(1000, 2)', 'loc': '(0)', 'scale': '(50)'}), '(size=(1000, 2), loc=0, scale=50)\n', (5930, 5963), True, 'import numpy as np\n'), ((9945, 9954), 'vispy.app.run', 'app.run', ([], {}), '()\n', (9952, 9954), False, 'from vispy import app, gloo, visuals\n'), ((5746, 5781), 'numpy.exp', 'np.exp', (['(event.delta * (0.01, -0.01))'], {}), '(event.delta * (0.01, -0.01))\n', (5752, 5781), True, 'import numpy as np\n'), ((5528, 5555), 'numpy.exp', 'np.exp', (['(dxy * (0.01, -0.01))'], {}), '(dxy * (0.01, -0.01))\n', (5534, 5555), True, 'import numpy as np\n'), ((5663, 5679), 'numpy.array', 'np.array', (['[s, s]'], {}), '([s, s])\n', (5671, 5679), True, 'import numpy as np\n')]
from unittest import TestCase from datetime import datetime import pyarrow as pa import numpy as np import pandas as pd from h1st.schema import SchemaInferrer class SchemaInferrerTestCase(TestCase): def test_infer_python(self): inferrer = SchemaInferrer() self.assertEqual(inferrer.infer_schema(1), pa.int64()) self.assertEqual(inferrer.infer_schema(1.1), pa.float64()) self.assertEqual(inferrer.infer_schema({ 'test1': 1, 'test2': "hello", 'test3': b"hello", 'today': datetime.now(), }), { 'type': dict, 'fields': { 'test1': pa.int64(), 'test2': pa.string(), 'test3': pa.binary(), 'today': pa.date64(), } }) self.assertEqual(inferrer.infer_schema(( 1, 2, 3 )), pa.list_(pa.int64())) self.assertEqual(inferrer.infer_schema(( 1.2, 1.3, 1.4 )), pa.list_(pa.float64())) table = pa.Table.from_arrays( [pa.array([1, 2, 3]), pa.array(["a", "b", "c"])], ['c1', 'c2'] ) self.assertEqual(inferrer.infer_schema(table), table.schema) def test_infer_numpy(self): inferrer = SchemaInferrer() self.assertEqual(inferrer.infer_schema(np.random.random((100, 28, 28))), { 'type': np.ndarray, 'item': pa.float64(), 'shape': (None, 28, 28) }) self.assertEqual(inferrer.infer_schema(np.array(["1", "2", "3"])), { 'type': np.ndarray, 'item': pa.string() }) def test_infer_dataframe(self): inferrer = SchemaInferrer() df = pd.DataFrame({ 'f1': [1, 2, 3], 'f2': ['a', 'b', 'c'], 'f3': [0.1, 0.2, 0.9] }) self.assertEqual(inferrer.infer_schema(df), { 'type': pd.DataFrame, 'fields': { 'f1': pa.int64(), 'f2': pa.string(), 'f3': pa.float64() } }) df = pd.DataFrame({ 'Timestamp': [1.1, 2.2, 3.1], 'CarSpeed': [0.1, 0.2, 0.9], 'Gx': [0.1, 0.2, 0.9], 'Gy': [0.1, 0.2, 0.9], 'Label': ['1', '0', '1'] }) self.assertEqual(inferrer.infer_schema(df), { 'type': pd.DataFrame, 'fields': { 'Timestamp': pa.float64(), 'CarSpeed': pa.float64(), 'Gx': pa.float64(), 'Gy': pa.float64(), 'Label': pa.string(), } }) self.assertEqual(inferrer.infer_schema(pd.Series([1, 2, 3])), { 'type': pd.Series, 'item': pa.int64() }) def test_infer_dict(self): inferrer = SchemaInferrer() self.assertEqual(inferrer.infer_schema({ 'test': 123, }), { 'type': dict, 'fields': { 'test': pa.int64(), } }) self.assertEqual(inferrer.infer_schema({ 'test': 123, 'indices': [1, 2, 3] }), { 'type': dict, 'fields': { 'test': pa.int64(), 'indices': pa.list_(pa.int64()) } }) self.assertEqual(inferrer.infer_schema({ 'results': pd.DataFrame({ 'CarSpeed': [0, 1, 2], 'Label': ['a', 'b', 'c'] }) }), { 'type': dict, 'fields': { 'results': { 'type': pd.DataFrame, 'fields': { 'CarSpeed': pa.int64(), 'Label': pa.string(), } } } }) def test_infer_list(self): inferrer = SchemaInferrer() self.assertEqual(inferrer.infer_schema([ {'test': 123}, {'test': 345}, ]), { 'type': list, 'item': { 'type': dict, 'fields': { 'test': pa.int64() } } })
[ "pandas.Series", "pyarrow.date64", "pyarrow.string", "numpy.random.random", "pyarrow.binary", "h1st.schema.SchemaInferrer", "numpy.array", "datetime.datetime.now", "pyarrow.int64", "pandas.DataFrame", "pyarrow.array", "pyarrow.float64" ]
[((253, 269), 'h1st.schema.SchemaInferrer', 'SchemaInferrer', ([], {}), '()\n', (267, 269), False, 'from h1st.schema import SchemaInferrer\n'), ((1286, 1302), 'h1st.schema.SchemaInferrer', 'SchemaInferrer', ([], {}), '()\n', (1300, 1302), False, 'from h1st.schema import SchemaInferrer\n'), ((1708, 1724), 'h1st.schema.SchemaInferrer', 'SchemaInferrer', ([], {}), '()\n', (1722, 1724), False, 'from h1st.schema import SchemaInferrer\n'), ((1738, 1815), 'pandas.DataFrame', 'pd.DataFrame', (["{'f1': [1, 2, 3], 'f2': ['a', 'b', 'c'], 'f3': [0.1, 0.2, 0.9]}"], {}), "({'f1': [1, 2, 3], 'f2': ['a', 'b', 'c'], 'f3': [0.1, 0.2, 0.9]})\n", (1750, 1815), True, 'import pandas as pd\n'), ((2118, 2267), 'pandas.DataFrame', 'pd.DataFrame', (["{'Timestamp': [1.1, 2.2, 3.1], 'CarSpeed': [0.1, 0.2, 0.9], 'Gx': [0.1, 0.2,\n 0.9], 'Gy': [0.1, 0.2, 0.9], 'Label': ['1', '0', '1']}"], {}), "({'Timestamp': [1.1, 2.2, 3.1], 'CarSpeed': [0.1, 0.2, 0.9],\n 'Gx': [0.1, 0.2, 0.9], 'Gy': [0.1, 0.2, 0.9], 'Label': ['1', '0', '1']})\n", (2130, 2267), True, 'import pandas as pd\n'), ((2864, 2880), 'h1st.schema.SchemaInferrer', 'SchemaInferrer', ([], {}), '()\n', (2878, 2880), False, 'from h1st.schema import SchemaInferrer\n'), ((3921, 3937), 'h1st.schema.SchemaInferrer', 'SchemaInferrer', ([], {}), '()\n', (3935, 3937), False, 'from h1st.schema import SchemaInferrer\n'), ((322, 332), 'pyarrow.int64', 'pa.int64', ([], {}), '()\n', (330, 332), True, 'import pyarrow as pa\n'), ((387, 399), 'pyarrow.float64', 'pa.float64', ([], {}), '()\n', (397, 399), True, 'import pyarrow as pa\n'), ((904, 914), 'pyarrow.int64', 'pa.int64', ([], {}), '()\n', (912, 914), True, 'import pyarrow as pa\n'), ((1014, 1026), 'pyarrow.float64', 'pa.float64', ([], {}), '()\n', (1024, 1026), True, 'import pyarrow as pa\n'), ((1081, 1100), 'pyarrow.array', 'pa.array', (['[1, 2, 3]'], {}), '([1, 2, 3])\n', (1089, 1100), True, 'import pyarrow as pa\n'), ((1102, 1127), 'pyarrow.array', 'pa.array', (["['a', 'b', 'c']"], {}), "(['a', 'b', 'c'])\n", (1110, 1127), True, 'import pyarrow as pa\n'), ((1350, 1381), 'numpy.random.random', 'np.random.random', (['(100, 28, 28)'], {}), '((100, 28, 28))\n', (1366, 1381), True, 'import numpy as np\n'), ((1438, 1450), 'pyarrow.float64', 'pa.float64', ([], {}), '()\n', (1448, 1450), True, 'import pyarrow as pa\n'), ((1547, 1572), 'numpy.array', 'np.array', (["['1', '2', '3']"], {}), "(['1', '2', '3'])\n", (1555, 1572), True, 'import numpy as np\n'), ((1629, 1640), 'pyarrow.string', 'pa.string', ([], {}), '()\n', (1638, 1640), True, 'import pyarrow as pa\n'), ((2715, 2735), 'pandas.Series', 'pd.Series', (['[1, 2, 3]'], {}), '([1, 2, 3])\n', (2724, 2735), True, 'import pandas as pd\n'), ((2791, 2801), 'pyarrow.int64', 'pa.int64', ([], {}), '()\n', (2799, 2801), True, 'import pyarrow as pa\n'), ((557, 571), 'datetime.datetime.now', 'datetime.now', ([], {}), '()\n', (569, 571), False, 'from datetime import datetime\n'), ((662, 672), 'pyarrow.int64', 'pa.int64', ([], {}), '()\n', (670, 672), True, 'import pyarrow as pa\n'), ((699, 710), 'pyarrow.string', 'pa.string', ([], {}), '()\n', (708, 710), True, 'import pyarrow as pa\n'), ((737, 748), 'pyarrow.binary', 'pa.binary', ([], {}), '()\n', (746, 748), True, 'import pyarrow as pa\n'), ((775, 786), 'pyarrow.date64', 'pa.date64', ([], {}), '()\n', (784, 786), True, 'import pyarrow as pa\n'), ((1997, 2007), 'pyarrow.int64', 'pa.int64', ([], {}), '()\n', (2005, 2007), True, 'import pyarrow as pa\n'), ((2031, 2042), 'pyarrow.string', 'pa.string', ([], {}), '()\n', (2040, 2042), True, 'import pyarrow as pa\n'), ((2066, 2078), 'pyarrow.float64', 'pa.float64', ([], {}), '()\n', (2076, 2078), True, 'import pyarrow as pa\n'), ((2476, 2488), 'pyarrow.float64', 'pa.float64', ([], {}), '()\n', (2486, 2488), True, 'import pyarrow as pa\n'), ((2518, 2530), 'pyarrow.float64', 'pa.float64', ([], {}), '()\n', (2528, 2530), True, 'import pyarrow as pa\n'), ((2554, 2566), 'pyarrow.float64', 'pa.float64', ([], {}), '()\n', (2564, 2566), True, 'import pyarrow as pa\n'), ((2590, 2602), 'pyarrow.float64', 'pa.float64', ([], {}), '()\n', (2600, 2602), True, 'import pyarrow as pa\n'), ((2629, 2640), 'pyarrow.string', 'pa.string', ([], {}), '()\n', (2638, 2640), True, 'import pyarrow as pa\n'), ((3043, 3053), 'pyarrow.int64', 'pa.int64', ([], {}), '()\n', (3051, 3053), True, 'import pyarrow as pa\n'), ((3276, 3286), 'pyarrow.int64', 'pa.int64', ([], {}), '()\n', (3284, 3286), True, 'import pyarrow as pa\n'), ((3434, 3497), 'pandas.DataFrame', 'pd.DataFrame', (["{'CarSpeed': [0, 1, 2], 'Label': ['a', 'b', 'c']}"], {}), "({'CarSpeed': [0, 1, 2], 'Label': ['a', 'b', 'c']})\n", (3446, 3497), True, 'import pandas as pd\n'), ((3324, 3334), 'pyarrow.int64', 'pa.int64', ([], {}), '()\n', (3332, 3334), True, 'import pyarrow as pa\n'), ((4189, 4199), 'pyarrow.int64', 'pa.int64', ([], {}), '()\n', (4197, 4199), True, 'import pyarrow as pa\n'), ((3747, 3757), 'pyarrow.int64', 'pa.int64', ([], {}), '()\n', (3755, 3757), True, 'import pyarrow as pa\n'), ((3792, 3803), 'pyarrow.string', 'pa.string', ([], {}), '()\n', (3801, 3803), True, 'import pyarrow as pa\n')]
"""Auxiliary methods.""" import os import json from errno import EEXIST import numpy as np import seaborn as sns import cPickle as pickle import matplotlib.pyplot as plt sns.set() DEFAULT_LOG_DIR = 'log' ATOB_WEIGHTS_FILE = 'atob_weights.h5' D_WEIGHTS_FILE = 'd_weights.h5' class MyDict(dict): """ Dictionary that allows to access elements with dot notation. ex: >> d = MyDict({'key': 'val'}) >> d.key 'val' >> d.key2 = 'val2' >> d {'key2': 'val2', 'key': 'val'} """ __getattr__ = dict.get __setattr__ = dict.__setitem__ def convert_to_rgb(img, is_binary=False): """Given an image, make sure it has 3 channels and that it is between 0 and 1.""" if len(img.shape) != 3: raise Exception("""Image must have 3 dimensions (channels x height x width). """ """Given {0}""".format(len(img.shape))) img_ch, _, _ = img.shape if img_ch != 3 and img_ch != 1: raise Exception("""Unsupported number of channels. """ """Must be 1 or 3, given {0}.""".format(img_ch)) imgp = img if img_ch == 1: imgp = np.repeat(img, 3, axis=0) if not is_binary: imgp = imgp * 127.5 + 127.5 imgp /= 255. return np.clip(imgp.transpose((1, 2, 0)), 0, 1) def compose_imgs(a, b, is_a_binary=True, is_b_binary=False): """Place a and b side by side to be plotted.""" ap = convert_to_rgb(a, is_binary=is_a_binary) bp = convert_to_rgb(b, is_binary=is_b_binary) if ap.shape != bp.shape: raise Exception("""A and B must have the same size. """ """{0} != {1}""".format(ap.shape, bp.shape)) # ap.shape and bp.shape must have the same size here h, w, ch = ap.shape composed = np.zeros((h, 2*w, ch)) composed[:, :w, :] = ap composed[:, w:, :] = bp return composed def get_log_dir(log_dir, expt_name): """Compose the log_dir with the experiment name.""" if log_dir is None: raise Exception('log_dir can not be None.') if expt_name is not None: return os.path.join(log_dir, expt_name) return log_dir def mkdir(mypath): """Create a directory if it does not exist.""" try: os.makedirs(mypath) except OSError as exc: if exc.errno == EEXIST and os.path.isdir(mypath): pass else: raise def create_expt_dir(params): """Create the experiment directory and return it.""" expt_dir = get_log_dir(params.log_dir, params.expt_name) # Create directories if they do not exist mkdir(params.log_dir) mkdir(expt_dir) # Save the parameters json.dump(params, open(os.path.join(expt_dir, 'params.json'), 'wb'), indent=4, sort_keys=True) return expt_dir def plot_loss(loss, label, filename, log_dir): """Plot a loss function and save it in a file.""" plt.figure(figsize=(5, 4)) plt.plot(loss, label=label) plt.legend() plt.savefig(os.path.join(log_dir, filename)) plt.clf() def log(losses, atob, it_val, N=4, log_dir=DEFAULT_LOG_DIR, expt_name=None, is_a_binary=True, is_b_binary=False): """Log losses and atob results.""" log_dir = get_log_dir(log_dir, expt_name) # Save the losses for further inspection pickle.dump(losses, open(os.path.join(log_dir, 'losses.pkl'), 'wb')) ########################################################################### # PLOT THE LOSSES # ########################################################################### plot_loss(losses['d'], 'discriminator', 'd_loss.png', log_dir) plot_loss(losses['d_val'], 'discriminator validation', 'd_val_loss.png', log_dir) plot_loss(losses['p2p'], 'Pix2Pix', 'p2p_loss.png', log_dir) plot_loss(losses['p2p_val'], 'Pix2Pix validation', 'p2p_val_loss.png', log_dir) ########################################################################### # PLOT THE A->B RESULTS # ########################################################################### plt.figure(figsize=(10, 6)) for i in range(N*N): a, _ = next(it_val) bp = atob.predict(a) img = compose_imgs(a[0], bp[0], is_a_binary=is_a_binary, is_b_binary=is_b_binary) plt.subplot(N, N, i+1) plt.imshow(img) plt.axis('off') plt.savefig(os.path.join(log_dir, 'atob.png')) plt.clf() # Make sure all the figures are closed. plt.close('all') def save_weights(models, log_dir=DEFAULT_LOG_DIR, expt_name=None): """Save the weights of the models into a file.""" log_dir = get_log_dir(log_dir, expt_name) models.atob.save_weights(os.path.join(log_dir, ATOB_WEIGHTS_FILE), overwrite=True) models.d.save_weights(os.path.join(log_dir, D_WEIGHTS_FILE), overwrite=True) def load_weights(atob, d, log_dir=DEFAULT_LOG_DIR, expt_name=None): """Load the weights into the corresponding models.""" log_dir = get_log_dir(log_dir, expt_name) atob.load_weights(os.path.join(log_dir, ATOB_WEIGHTS_FILE)) d.load_weights(os.path.join(log_dir, D_WEIGHTS_FILE)) def load_weights_of(m, weights_file, log_dir=DEFAULT_LOG_DIR, expt_name=None): """Load the weights of the model m.""" log_dir = get_log_dir(log_dir, expt_name) m.load_weights(os.path.join(log_dir, weights_file)) def load_losses(log_dir=DEFAULT_LOG_DIR, expt_name=None): """Load the losses of the given experiment.""" log_dir = get_log_dir(log_dir, expt_name) losses = pickle.load(open(os.path.join(log_dir, 'losses.pkl'), 'rb')) return losses def load_params(params): """ Load the parameters of an experiment and return them. The params passed as argument will be merged with the new params dict. If there is a conflict with a key, the params passed as argument prevails. """ expt_dir = get_log_dir(params.log_dir, params.expt_name) expt_params = json.load(open(os.path.join(expt_dir, 'params.json'), 'rb')) # Update the loaded parameters with the current parameters. This will # override conflicting keys as expected. expt_params.update(params) return expt_params
[ "matplotlib.pyplot.imshow", "seaborn.set", "numpy.repeat", "os.makedirs", "matplotlib.pyplot.plot", "matplotlib.pyplot.clf", "os.path.join", "matplotlib.pyplot.close", "matplotlib.pyplot.figure", "numpy.zeros", "os.path.isdir", "matplotlib.pyplot.axis", "matplotlib.pyplot.subplot", "matplotlib.pyplot.legend" ]
[((172, 181), 'seaborn.set', 'sns.set', ([], {}), '()\n', (179, 181), True, 'import seaborn as sns\n'), ((1798, 1822), 'numpy.zeros', 'np.zeros', (['(h, 2 * w, ch)'], {}), '((h, 2 * w, ch))\n', (1806, 1822), True, 'import numpy as np\n'), ((2920, 2946), 'matplotlib.pyplot.figure', 'plt.figure', ([], {'figsize': '(5, 4)'}), '(figsize=(5, 4))\n', (2930, 2946), True, 'import matplotlib.pyplot as plt\n'), ((2951, 2978), 'matplotlib.pyplot.plot', 'plt.plot', (['loss'], {'label': 'label'}), '(loss, label=label)\n', (2959, 2978), True, 'import matplotlib.pyplot as plt\n'), ((2983, 2995), 'matplotlib.pyplot.legend', 'plt.legend', ([], {}), '()\n', (2993, 2995), True, 'import matplotlib.pyplot as plt\n'), ((3049, 3058), 'matplotlib.pyplot.clf', 'plt.clf', ([], {}), '()\n', (3056, 3058), True, 'import matplotlib.pyplot as plt\n'), ((4176, 4203), 'matplotlib.pyplot.figure', 'plt.figure', ([], {'figsize': '(10, 6)'}), '(figsize=(10, 6))\n', (4186, 4203), True, 'import matplotlib.pyplot as plt\n'), ((4513, 4522), 'matplotlib.pyplot.clf', 'plt.clf', ([], {}), '()\n', (4520, 4522), True, 'import matplotlib.pyplot as plt\n'), ((4572, 4588), 'matplotlib.pyplot.close', 'plt.close', (['"""all"""'], {}), "('all')\n", (4581, 4588), True, 'import matplotlib.pyplot as plt\n'), ((1164, 1189), 'numpy.repeat', 'np.repeat', (['img', '(3)'], {'axis': '(0)'}), '(img, 3, axis=0)\n', (1173, 1189), True, 'import numpy as np\n'), ((2115, 2147), 'os.path.join', 'os.path.join', (['log_dir', 'expt_name'], {}), '(log_dir, expt_name)\n', (2127, 2147), False, 'import os\n'), ((2256, 2275), 'os.makedirs', 'os.makedirs', (['mypath'], {}), '(mypath)\n', (2267, 2275), False, 'import os\n'), ((3012, 3043), 'os.path.join', 'os.path.join', (['log_dir', 'filename'], {}), '(log_dir, filename)\n', (3024, 3043), False, 'import os\n'), ((4386, 4410), 'matplotlib.pyplot.subplot', 'plt.subplot', (['N', 'N', '(i + 1)'], {}), '(N, N, i + 1)\n', (4397, 4410), True, 'import matplotlib.pyplot as plt\n'), ((4417, 4432), 'matplotlib.pyplot.imshow', 'plt.imshow', (['img'], {}), '(img)\n', (4427, 4432), True, 'import matplotlib.pyplot as plt\n'), ((4441, 4456), 'matplotlib.pyplot.axis', 'plt.axis', (['"""off"""'], {}), "('off')\n", (4449, 4456), True, 'import matplotlib.pyplot as plt\n'), ((4474, 4507), 'os.path.join', 'os.path.join', (['log_dir', '"""atob.png"""'], {}), "(log_dir, 'atob.png')\n", (4486, 4507), False, 'import os\n'), ((4788, 4828), 'os.path.join', 'os.path.join', (['log_dir', 'ATOB_WEIGHTS_FILE'], {}), '(log_dir, ATOB_WEIGHTS_FILE)\n', (4800, 4828), False, 'import os\n'), ((4872, 4909), 'os.path.join', 'os.path.join', (['log_dir', 'D_WEIGHTS_FILE'], {}), '(log_dir, D_WEIGHTS_FILE)\n', (4884, 4909), False, 'import os\n'), ((5124, 5164), 'os.path.join', 'os.path.join', (['log_dir', 'ATOB_WEIGHTS_FILE'], {}), '(log_dir, ATOB_WEIGHTS_FILE)\n', (5136, 5164), False, 'import os\n'), ((5185, 5222), 'os.path.join', 'os.path.join', (['log_dir', 'D_WEIGHTS_FILE'], {}), '(log_dir, D_WEIGHTS_FILE)\n', (5197, 5222), False, 'import os\n'), ((5414, 5449), 'os.path.join', 'os.path.join', (['log_dir', 'weights_file'], {}), '(log_dir, weights_file)\n', (5426, 5449), False, 'import os\n'), ((2706, 2743), 'os.path.join', 'os.path.join', (['expt_dir', '"""params.json"""'], {}), "(expt_dir, 'params.json')\n", (2718, 2743), False, 'import os\n'), ((3343, 3378), 'os.path.join', 'os.path.join', (['log_dir', '"""losses.pkl"""'], {}), "(log_dir, 'losses.pkl')\n", (3355, 3378), False, 'import os\n'), ((5638, 5673), 'os.path.join', 'os.path.join', (['log_dir', '"""losses.pkl"""'], {}), "(log_dir, 'losses.pkl')\n", (5650, 5673), False, 'import os\n'), ((6051, 6088), 'os.path.join', 'os.path.join', (['expt_dir', '"""params.json"""'], {}), "(expt_dir, 'params.json')\n", (6063, 6088), False, 'import os\n'), ((2338, 2359), 'os.path.isdir', 'os.path.isdir', (['mypath'], {}), '(mypath)\n', (2351, 2359), False, 'import os\n')]
from github import Github def parseGithubURL(url): splitURL = url.split('/') owner = splitURL[3] repo = splitURL[4] return { "owner": owner, "repo": repo } def fetchRepoFiles(owner, repo): files = [] g = Github('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') repo = g.get_repo(f'{owner}/{repo}') contents = repo.get_contents('') while contents: file_content = contents.pop(0) if file_content.type == 'dir': contents.extend(repo.get_contents(file_content.path)) else: files.append(file_content.path) return files # parsedUrl = parseGithubURL('https://github.com/CakeCrusher/restock_emailer') # filePaths = fetchRepoFiles(parsedUrl['owner'], parsedUrl['repo']) # files = [path.split('/')[-1] for path in filePaths] # print(files)
[ "github.Github" ]
[((249, 299), 'github.Github', 'Github', (['"""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"""'], {}), "('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')\n", (255, 299), False, 'from github import Github\n')]
import types import django.test.testcases from django.conf import settings from facetools.models import TestUser from facetools.common import _create_signed_request from facetools.test import TestUserNotLoaded from facetools.signals import sync_facebook_test_user, setup_facebook_test_client from facetools.common import _get_facetools_test_fixture_name class FacebookTestCaseMixin(object): """ TestCase which makes it possible to test views when the FacebookMiddleware and SyncFacebookUser middlewares are activated. Must use the Client attached to this object (i.e. self.client). """ facebook_test_user = None def set_client_signed_request(self, facebook_id, access_token): """ Allow code to configure the test client so it has a signed request of the specified test user for each request """ setup_facebook_test_client.send(sender=None, client=self.client, signed_request=_create_signed_request( settings.FACEBOOK_APPLICATION_SECRET_KEY, facebook_id, oauth_token=access_token)) def _pre_setup(self): if self.facebook_test_user: if type(self.facebook_test_user) not in [str, unicode]: raise Exception("facebook_test_user variable must be a string (found a %s)" % type(self.facebook_test_user)) app_name = get_app_name_from_test_case(type(self).__module__) facetools_fixture_name = _get_facetools_test_fixture_name(app_name) if not hasattr(self, 'fixtures'): self.fixtures = [] if facetools_fixture_name not in self.fixtures: self.fixtures.append(facetools_fixture_name) super(FacebookTestCaseMixin, self)._pre_setup() # Make sure anybody that needs to sync their models loaded from fixtures # has a chance to do so now that the refreshed user test data is available. try: for test_user in TestUser.objects.all(): sync_facebook_test_user.send(sender=None, test_user=test_user) self.test_user = TestUser.objects.get(name=self.facebook_test_user) self.set_client_signed_request(self.test_user.facebook_id, self.test_user.access_token) except TestUser.DoesNotExist: raise TestUserNotLoaded("Test user %s hasn't been loaded via the %s fixture (did you run sync_facebook_test_users?)" % (self.facebook_test_user, facetools_fixture_name)) else: super(FacebookTestCaseMixin, self)._pre_setup() def get_app_name_from_test_case(module_path_string): """ Gets thet Django app from the __class__ attribute of a TestCase in a Django app. class_string should look something like this: 'facetools_tests.tests.test_test_module' """ packages = module_path_string.split(".") try: tests_location = packages.index("tests") except ValueError: raise ValueError("Couldn't find tests module in %s (are you running this test from tests.py or a tests package in your Django app?)" % module_path_string) if tests_location == 0: raise ValueError("Facetools doesn't support Django app's with a name of 'tests', or it failed to find the Django app name out of %s" % module_path_string) app_name = packages[tests_location - 1] if app_name not in settings.INSTALLED_APPS: raise ValueError("Facetools didn't find %s among INSTALLED_APPS. (app name pulled from %s)" % (app_name, module_path_string)) return app_name # ----------------------------------------------------------------------------- # Test Cases # ----------------------------------------------------------------------------- class FacebookTransactionTestCase(FacebookTestCaseMixin, django.test.testcases.TransactionTestCase): def _pre_setup(self): super(FacebookTransactionTestCase, self)._pre_setup() class FacebookTestCase(FacebookTestCaseMixin, django.test.testcases.TestCase): def _pre_setup(self): super(FacebookTestCase, self)._pre_setup() if 'LiveServerTestCase' in dir(django.test.testcases): class FacebookLiveServerTestCase(FacebookTestCaseMixin, django.test.testcases.LiveServerTestCase): def _pre_setup(self): super(FacebookLiveServerTestCase, self)._pre_setup()
[ "facetools.models.TestUser.objects.get", "facetools.common._get_facetools_test_fixture_name", "facetools.test.TestUserNotLoaded", "facetools.signals.sync_facebook_test_user.send", "facetools.common._create_signed_request", "facetools.models.TestUser.objects.all" ]
[((1433, 1475), 'facetools.common._get_facetools_test_fixture_name', '_get_facetools_test_fixture_name', (['app_name'], {}), '(app_name)\n', (1465, 1475), False, 'from facetools.common import _get_facetools_test_fixture_name\n'), ((947, 1054), 'facetools.common._create_signed_request', '_create_signed_request', (['settings.FACEBOOK_APPLICATION_SECRET_KEY', 'facebook_id'], {'oauth_token': 'access_token'}), '(settings.FACEBOOK_APPLICATION_SECRET_KEY,\n facebook_id, oauth_token=access_token)\n', (969, 1054), False, 'from facetools.common import _create_signed_request\n'), ((1963, 1985), 'facetools.models.TestUser.objects.all', 'TestUser.objects.all', ([], {}), '()\n', (1983, 1985), False, 'from facetools.models import TestUser\n'), ((2103, 2153), 'facetools.models.TestUser.objects.get', 'TestUser.objects.get', ([], {'name': 'self.facebook_test_user'}), '(name=self.facebook_test_user)\n', (2123, 2153), False, 'from facetools.models import TestUser\n'), ((2007, 2069), 'facetools.signals.sync_facebook_test_user.send', 'sync_facebook_test_user.send', ([], {'sender': 'None', 'test_user': 'test_user'}), '(sender=None, test_user=test_user)\n', (2035, 2069), False, 'from facetools.signals import sync_facebook_test_user, setup_facebook_test_client\n'), ((2322, 2495), 'facetools.test.TestUserNotLoaded', 'TestUserNotLoaded', (['("Test user %s hasn\'t been loaded via the %s fixture (did you run sync_facebook_test_users?)"\n % (self.facebook_test_user, facetools_fixture_name))'], {}), '(\n "Test user %s hasn\'t been loaded via the %s fixture (did you run sync_facebook_test_users?)"\n % (self.facebook_test_user, facetools_fixture_name))\n', (2339, 2495), False, 'from facetools.test import TestUserNotLoaded\n')]
# --------------------------------- # Prepare the data etc. # ---------------------------------- import numpy as np import pandas as pd # train_x is the training data, train_y is the target values, and test_x is the test data # stored in pandas DataFrames and Series (numpy arrays also used) train = pd.read_csv('../input/sample-data/train_preprocessed.csv') train_x = train.drop(['target'], axis=1) train_y = train['target'] test_x = pd.read_csv('../input/sample-data/test_preprocessed.csv') # As time-series data assume a period variable is set that changes with time train_x['period'] = np.arange(0, len(train_x)) // (len(train_x) // 4) train_x['period'] = np.clip(train_x['period'], 0, 3) test_x['period'] = 4 # ----------------------------------- # Hold-out method for time-series data # ----------------------------------- # Partition using the period variable as the basis (0 to 3 are the training data, 4 is the test data) # Here for within the training data period 3 is used for validation and periods 0 to 2 are used for training is_tr = train_x['period'] < 3 is_va = train_x['period'] == 3 tr_x, va_x = train_x[is_tr], train_x[is_va] tr_y, va_y = train_y[is_tr], train_y[is_va] # ----------------------------------- # Cross validation for time-series data (use method that follows time) # ----------------------------------- # Partition using the period variable as the basis (0 to 3 are the training data, 4 is the test data) # Periods 1, 2 and 3 are each used for cross-validation, and the preceding periods are used for training va_period_list = [1, 2, 3] for va_period in va_period_list: is_tr = train_x['period'] < va_period is_va = train_x['period'] == va_period tr_x, va_x = train_x[is_tr], train_x[is_va] tr_y, va_y = train_y[is_tr], train_y[is_va] # (For reference) Using TimeSeriesSplit() function is difficult as only the order of the data can be used from sklearn.model_selection import TimeSeriesSplit tss = TimeSeriesSplit(n_splits=4) for tr_idx, va_idx in tss.split(train_x): tr_x, va_x = train_x.iloc[tr_idx], train_x.iloc[va_idx] tr_y, va_y = train_y.iloc[tr_idx], train_y.iloc[va_idx] # ----------------------------------- # Cross validation for time-series data (method to simply partition by time) # ----------------------------------- # Partition using the period variable as the basis (0 to 3 are the training data, 4 is the test data) # Periods 1, 2 and 3 are each used for cross-validation, and the preceding periods are used for training va_period_list = [0, 1, 2, 3] for va_period in va_period_list: is_tr = train_x['period'] != va_period is_va = train_x['period'] == va_period tr_x, va_x = train_x[is_tr], train_x[is_va] tr_y, va_y = train_y[is_tr], train_y[is_va]
[ "numpy.clip", "pandas.read_csv", "sklearn.model_selection.TimeSeriesSplit" ]
[((302, 360), 'pandas.read_csv', 'pd.read_csv', (['"""../input/sample-data/train_preprocessed.csv"""'], {}), "('../input/sample-data/train_preprocessed.csv')\n", (313, 360), True, 'import pandas as pd\n'), ((437, 494), 'pandas.read_csv', 'pd.read_csv', (['"""../input/sample-data/test_preprocessed.csv"""'], {}), "('../input/sample-data/test_preprocessed.csv')\n", (448, 494), True, 'import pandas as pd\n'), ((663, 695), 'numpy.clip', 'np.clip', (["train_x['period']", '(0)', '(3)'], {}), "(train_x['period'], 0, 3)\n", (670, 695), True, 'import numpy as np\n'), ((1956, 1983), 'sklearn.model_selection.TimeSeriesSplit', 'TimeSeriesSplit', ([], {'n_splits': '(4)'}), '(n_splits=4)\n', (1971, 1983), False, 'from sklearn.model_selection import TimeSeriesSplit\n')]
# Download the Python helper library from twilio.com/docs/python/install from twilio.rest import Client # Your Account Sid and Auth Token from twilio.com/console api_key_sid = 'SKXXXX' api_key_secret = 'your_api_key_secret' client = Client(api_key_sid, api_key_secret) did_delete = client.video\ .compositionHooks('HKXXXX')\ .delete() if(did_delete): print('Composition removed')
[ "twilio.rest.Client" ]
[((234, 269), 'twilio.rest.Client', 'Client', (['api_key_sid', 'api_key_secret'], {}), '(api_key_sid, api_key_secret)\n', (240, 269), False, 'from twilio.rest import Client\n')]
from time import sleep debug_mode = False time_to_exit = False exiting = False exit_code = 0 def get_debug_mode(): return debug_mode def trigger_exit(_exit_code): global time_to_exit, exit_code exit_code = _exit_code time_to_exit = True sleep(0.1)
[ "time.sleep" ]
[((263, 273), 'time.sleep', 'sleep', (['(0.1)'], {}), '(0.1)\n', (268, 273), False, 'from time import sleep\n')]
from __future__ import absoulte_import from __future__ import division from __future__ import print_function import tensorflow as tf from data import data_utils data = data_utils class SequenceWrapperTest(tf.test.TestCase): def testDefaultTimesteps(self): seq = data.SequenceWrapper() t1 = seq.add_timestep() _ = seq.add_timestep() self.assertEqual(len(seq), 2) self.assertEqual(t1.weight, 0.0) self.assertEqual(t1.label, 0) self.assertEqual(t1.token, 0) def testSettersAndGetters(self): ts = data.SequenceWrapper().add_timestep() ts.set_token(3) ts.set_label(4) ts.set_weight(2.0) self.assertEqual(ts.token, 3) self.assertEqual(ts.label, 4) self.assertEqual(ts.weight, 2.0) def testTimestepIteration(self): seq = data.SequenceWrapper() seq.add_timestep().set_token(0) seq.add_timestep().set_token(1) seq.add_timestep().set_token(2) for i, ts in enumerate(seq): self.assertEqual(ts.token, i) def testFillsSequenceExampleCorrectly(self): seq = data.SequenceWrapper() seq.add_timestep().set_token(1).set_label(2).set_weight(3.0) seq.add_timestep().set_token(10).set_label(20).set_weight(30.0) seq_ex = seq.seq fl = seq_ex.feature_lists.feature_list fl_token = fl[data.SequenceWrapper.F_TOKEN_ID].feature fl_label = fl[data.SequenceWrapper.F_LABEL].feature fl_weight = fl[data.SequenceWrapper.F_WEIGHT].feature _ = [self.assertEqual(len(f), 2) for f in [fl_token, fl_label, fl_weight]] self.assertAllEqual([f.int64_list.value[0] for f in fl_token], [1, 10]) self.assertAllEqual([f.int64_list.value[0] for f in fl_label], [2, 20]) self.assertAllEqual([f.float_list.value[0] for f in fl_weight], [3.0, 30.0]) class DataUtilsTest(tf.test.TestCase): def testSplitByPunct(self): output = data.split_by_punct( "hello! world, i've been\nwaiting\tfor\ryou for.a long time" ) expected = [ "hello", "world", "i", "ve", "been", "waiting", "for", "you", "for", "a", "long", "time", ] self.assertListEqual(output, expected) def _buildDummySequence(self): seq = data.SequenceWrapper() for i in range(10): seq.add_timestep().set_token(i) return seq def testBuildLMSeq(self): seq = self._buildDummySequence() lm_seq = data.build_lm_sequence(seq) for i, ts in enumerate(lm_seq): # For end of sequence, the token and label should be same, and weight # should be 0.0. if i == len(lm_seq) - 1: self.assertEqual(ts.token, i) self.assertEqual(ts.label, i) self.assertEqual(ts.weight, 0.0) else: self.assertEqual(ts.token, i) self.assertEqual(ts.label, i + 1) self.assertEqual(ts.weight, 1.0) def testBuildSAESeq(self): seq = self._buildDummySequence() sa_seq = data.build_seq_ae_sequence(seq) self.assertEqual(len(sa_seq), len(seq) * 2 - 1) # Tokens should be sequence twice, minus the EOS token at the end for i, ts in enumerate(sa_seq): self.assertEqual(ts.token, seq[i % 10].token) # Weights should be len-1 0.0's and len 1.0's. for i in range(len(seq) - 1): self.assertEqual(sa_seq[i].weight, 0.0) for i in range(len(seq) - 1, len(sa_seq)): self.assertEqual(sa_seq[i].weight, 1.0) # Labels should be len-1 0's, and then the sequence for i in range(len(seq) - 1): self.assertEqual(sa_seq[i].label, 0) for i in range(len(seq) - 1, len(sa_seq)): self.assertEqual(sa_seq[i].label, seq[i - (len(seq) - 1)].token) def testBuildLabelSeq(self): seq = self._buildDummySequence() eos_id = len(seq) - 1 label_seq = data.build_labeled_sequence(seq, True) for i, ts in enumerate(label_seq[:-1]): self.assertEqual(ts.token, i) self.assertEqual(ts.label, 0) self.assertEqual(ts.weight, 0.0) final_timestep = label_seq[-1] self.assertEqual(final_timestep.token, eos_id) self.assertEqual(final_timestep.label, 1) self.assertEqual(final_timestep.weight, 1.0) def testBuildBidirLabelSeq(self): seq = self._buildDummySequence() reverse_seq = data.build_reverse_sequence(seq) bidir_seq = data.build_bidirectional_seq(seq, reverse_seq) label_seq = data.build_labeled_sequence(bidir_seq, True) for (i, ts), j in zip(enumerate(label_seq[:-1]), reversed(range(len(seq) - 1))): self.assertAllEqual(ts.tokens, [i, j]) self.assertEqual(ts.label, 0) self.assertEqual(ts.weight, 0.0) final_timestep = label_seq[-1] eos_id = len(seq) - 1 self.assertAllEqual(final_timestep.tokens, [eos_id, eos_id]) self.assertEqual(final_timestep.label, 1) self.assertEqual(final_timestep.weight, 1.0) def testReverseSeq(self): seq = self._buildDummySequence() reverse_seq = data.build_reverse_sequence(seq) for i, ts in enumerate(reversed(reverse_seq[:-1])): self.assertEqual(ts.token, i) self.assertEqual(ts.label, 0) self.assertEqual(ts.weight, 0.0) final_timestep = reverse_seq[-1] eos_id = len(seq) - 1 self.assertEqual(final_timestep.token, eos_id) self.assertEqual(final_timestep.label, 0) self.assertEqual(final_timestep.weight, 0.0) def testBidirSeq(self): seq = self._buildDummySequence() reverse_seq = data.build_reverse_sequence(seq) bidir_seq = data.build_bidirectional_seq(seq, reverse_seq) for (i, ts), j in zip(enumerate(bidir_seq[:-1]), reversed(range(len(seq) - 1))): self.assertAllEqual(ts.tokens, [i, j]) self.assertEqual(ts.label, 0) self.assertEqual(ts.weight, 0.0) final_timestep = bidir_seq[-1] eos_id = len(seq) - 1 self.assertAllEqual(final_timestep.tokens, [eos_id, eos_id]) self.assertEqual(final_timestep.label, 0) self.assertEqual(final_timestep.weight, 0.0) def testLabelGain(self): seq = self._buildDummySequence() label_seq = data.build_labeled_sequence(seq, True, label_gain=True) for i, ts in enumerate(label_seq): self.assertEqual(ts.token, i) self.assertEqual(ts.label, 1) self.assertNear(ts.weight, float(i) / (len(seq) - 1), 1e-3) if __name__ == "__main__": tf.test.main()
[ "tensorflow.test.main" ]
[((6909, 6923), 'tensorflow.test.main', 'tf.test.main', ([], {}), '()\n', (6921, 6923), True, 'import tensorflow as tf\n')]
from collections import OrderedDict from random import Random from typing import Set from .._types import Dataset, Split, LabelIndices from .._util import per_label from ._RandomSplitter import RandomSplitter from ._Splitter import Splitter class StratifiedSplitter(Splitter): """ TODO """ def __init__(self, percentage: float, labels: LabelIndices, random: Random = Random()): self._percentage = percentage self._labels = labels self._random = random def __str__(self) -> str: return f"strat-{self._percentage}" def __call__(self, dataset: Dataset) -> Split: subsets_per_label = per_label(dataset) sub_splits = { label: RandomSplitter(int(len(subsets_per_label[label]) * self._percentage), self._random)(subsets_per_label[label]) for label in self._labels.keys() } result = OrderedDict(), OrderedDict() for filename, label in dataset.items(): result_index = 0 if filename in sub_splits[label][0] else 1 result[result_index][filename] = label return result
[ "random.Random", "collections.OrderedDict" ]
[((386, 394), 'random.Random', 'Random', ([], {}), '()\n', (392, 394), False, 'from random import Random\n'), ((894, 907), 'collections.OrderedDict', 'OrderedDict', ([], {}), '()\n', (905, 907), False, 'from collections import OrderedDict\n'), ((909, 922), 'collections.OrderedDict', 'OrderedDict', ([], {}), '()\n', (920, 922), False, 'from collections import OrderedDict\n')]
""" Module containing the RetryingClient wrapper class. """ from time import sleep def _ensure_tuple_argument(argument_name, argument_value): """ Helper function to ensure the given arguments are tuples of Exceptions (or subclasses), or can at least be converted to such. Args: argument_name: str, name of the argument we're checking, only used for raising meaningful exceptions. argument: any, the argument itself. Returns: tuple[Exception]: A tuple with the elements from the argument if they are valid. Exceptions: ValueError: If the argument was not None, tuple or Iterable. ValueError: If any of the elements of the argument is not a subclass of Exception. """ # Ensure the argument is a tuple, set or list. if argument_value is None: return tuple() elif not isinstance(argument_value, (tuple, set, list)): raise ValueError("%s must be either a tuple, a set or a list." % argument_name) # Convert the argument before checking contents. argument_tuple = tuple(argument_value) # Check that all the elements are actually inherited from Exception. # (Catchable) if not all([issubclass(arg, Exception) for arg in argument_tuple]): raise ValueError( "%s is only allowed to contain elements that are subclasses of " "Exception." % argument_name ) return argument_tuple class RetryingClient(object): """ Client that allows retrying calls for the other clients. """ def __init__( self, client, attempts=2, retry_delay=0, retry_for=None, do_not_retry_for=None ): """ Constructor for RetryingClient. Args: client: Client|PooledClient|HashClient, inner client to use for performing actual work. attempts: optional int, how many times to attempt an action before failing. Must be 1 or above. Defaults to 2. retry_delay: optional int|float, how many seconds to sleep between each attempt. Defaults to 0. retry_for: optional None|tuple|set|list, what exceptions to allow retries for. Will allow retries for all exceptions if None. Example: `(MemcacheClientError, MemcacheUnexpectedCloseError)` Accepts any class that is a subclass of Exception. Defaults to None. do_not_retry_for: optional None|tuple|set|list, what exceptions should be retried. Will not block retries for any Exception if None. Example: `(IOError, MemcacheIllegalInputError)` Accepts any class that is a subclass of Exception. Defaults to None. Exceptions: ValueError: If `attempts` is not 1 or above. ValueError: If `retry_for` or `do_not_retry_for` is not None, tuple or Iterable. ValueError: If any of the elements of `retry_for` or `do_not_retry_for` is not a subclass of Exception. ValueError: If there is any overlap between `retry_for` and `do_not_retry_for`. """ if attempts < 1: raise ValueError( "`attempts` argument must be at least 1. " "Otherwise no attempts are made." ) self._client = client self._attempts = attempts self._retry_delay = retry_delay self._retry_for = _ensure_tuple_argument("retry_for", retry_for) self._do_not_retry_for = _ensure_tuple_argument( "do_not_retry_for", do_not_retry_for ) # Verify no overlap in the go/no-go exception collections. for exc_class in self._retry_for: if exc_class in self._do_not_retry_for: raise ValueError( 'Exception class "%s" was present in both `retry_for` ' "and `do_not_retry_for`. Any exception class is only " "allowed in a single argument." % repr(exc_class) ) # Take dir from the client to speed up future checks. self._client_dir = dir(self._client) def _retry(self, name, func, *args, **kwargs): """ Workhorse function, handles retry logic. Args: name: str, Name of the function called. func: callable, the function to retry. *args: args, array arguments to pass to the function. **kwargs: kwargs, keyword arguments to pass to the function. """ for attempt in range(self._attempts): try: result = func(*args, **kwargs) return result except Exception as exc: # Raise the exception to caller if either is met: # - We've used the last attempt. # - self._retry_for is set, and we do not match. # - self._do_not_retry_for is set, and we do match. # - name is not actually a member of the client class. if ( attempt >= self._attempts - 1 or (self._retry_for and not isinstance(exc, self._retry_for)) or ( self._do_not_retry_for and isinstance(exc, self._do_not_retry_for) ) or name not in self._client_dir ): raise exc # Sleep and try again. sleep(self._retry_delay) # This is the real magic soup of the class, we catch anything that isn't # strictly defined for ourselves and pass it on to whatever client we've # been given. def __getattr__(self, name): return lambda *args, **kwargs: self._retry( name, self._client.__getattribute__(name), *args, **kwargs ) # We implement these explicitly because they're "magic" functions and won't # get passed on by __getattr__. def __dir__(self): return self._client_dir # These magics are copied from the base client. def __setitem__(self, key, value): self.set(key, value, noreply=True) def __getitem__(self, key): value = self.get(key) if value is None: raise KeyError return value def __delitem__(self, key): self.delete(key, noreply=True)
[ "time.sleep" ]
[((5561, 5585), 'time.sleep', 'sleep', (['self._retry_delay'], {}), '(self._retry_delay)\n', (5566, 5585), False, 'from time import sleep\n')]
# Generated by Django 2.2.2 on 2019-08-25 09:29 from django.db import migrations, models class Migration(migrations.Migration): dependencies = [ ('classroom', '0024_auto_20190825_1723'), ] operations = [ migrations.AddField( model_name='myfile', name='file', field=models.CharField(blank=True, max_length=100), ), ]
[ "django.db.models.CharField" ]
[((334, 378), 'django.db.models.CharField', 'models.CharField', ([], {'blank': '(True)', 'max_length': '(100)'}), '(blank=True, max_length=100)\n', (350, 378), False, 'from django.db import migrations, models\n')]
# -*- encoding: utf-8 -*- from flask import request from lazyblacksmith.utils.request import is_xhr import logging logger = logging.getLogger('lb.ajax') def is_not_ajax(): """ Return True if request is not ajax This function is used in @cache annotation to not cache direct call (http 403) """ return not is_xhr(request)
[ "logging.getLogger", "lazyblacksmith.utils.request.is_xhr" ]
[((132, 160), 'logging.getLogger', 'logging.getLogger', (['"""lb.ajax"""'], {}), "('lb.ajax')\n", (149, 160), False, 'import logging\n'), ((348, 363), 'lazyblacksmith.utils.request.is_xhr', 'is_xhr', (['request'], {}), '(request)\n', (354, 363), False, 'from lazyblacksmith.utils.request import is_xhr\n')]
import os class Traces: def __init__(self, positive = set(), negative = set()): self.positive = positive self.negative = negative """ IG: at the moment we are adding a trace only if it ends up in an event. should we be more restrictive, e.g. consider xxx, the same as xxxxxxxxxx (where x is an empty event '') recent suggestion (from the meeting): ignore empty events altogether and don't consider them as events at all (neither for execution, nor for learning) """ def _should_add(self, trace, i): prefixTrace = trace[:i] if not prefixTrace[-1] == '': return True else: return False def _get_prefixes(self, trace, up_to_limit = None): if up_to_limit is None: up_to_limit = len(trace) all_prefixes = set() for i in range(1, up_to_limit+1): if self._should_add(trace, i): all_prefixes.add(trace[:i]) return all_prefixes def symbol_to_trace(self,symbols): letters = ['a','b','c','d','e','f','g', 'h', 'n'] numbers = [int(i) for i in range(0,9)] dictionary = dict(zip(letters, numbers)) traces = list() for symbol in symbols: traces.append(dictionary.get(symbol)) return tuple(traces) def trace_to_symbol(self,traces): letters = ['a','b','c','d','e','f','g', 'h', 'n'] numbers = [int(i) for i in range(0,9)] dictionary = dict(zip(numbers, letters)) symbols = list() for trace in traces: symbols.append(dictionary.get(trace)) return tuple(traces) def rm_trace_to_symbol(self,rm_file): file = rm_file letters = ['a','b','c','d','e','f','g', 'h', 'n'] numbers = [int(i) for i in range(0,9)] dictionary = dict(zip(numbers, letters)) with open(file) as f: content = f.readlines() lines = [] for line in content: end = 0 begin = 1 #initialize values based on what won't enter the loops; initial values irrelevant number = 0 #random, had to initialize if line != content[0]: number = str() check = 0 count=0 for character in line: if ((check==1) & (character=="'")): #looks for second quotation check = 10 #end search end = count-1 elif (character == "'"): #looks for first quotation check = 1 begin = count+1 elif (check==1): number += character count = count+1 symbol = dictionary.get(int(number)) #symbol = symbol + '&!n' line = list(line) #necessary for use of pop,insert if end==begin+1: line.pop(end) line.pop(begin) line.insert(begin,symbol) elif end==begin: line.pop(begin) line.insert(begin,symbol) lines.append(line) with open(rm_file, 'w') as f: for line in lines: for item in line: f.write(str(item)) def fix_rmfiles(self,rmfile): file = rmfile with open(file) as f: content = f.readlines() final_state = str() for line in content: if line != content[0]: brackets = 0 commas = 0 state = str() next_state = str() for character in line: if (character == "(") & (brackets == 0): brackets = 1 elif brackets == 1: if character == "(": brackets = 2 elif brackets == 2: if character == "1": final_state = next_state print(final_state) if ((commas == 0) & (brackets == 1)): if character == ",": commas = 1 else: state += character elif ((commas == 1) & (brackets == 1)): if character == ",": commas = 2 else: next_state += character # with open(rmfile, 'w') as f: # for line in content: # for item in line: # f.write(str(item)) # f.write("\n") # writethis = "(" + str(final_state) + "," + str(final_state) + ",'True',ConstantRewardFunction(0))" # f.write(writethis) """ when adding a trace, it additionally adds all prefixes as negative traces """ def add_trace(self, trace, reward, learned): trace = tuple(trace) if reward > 0: self.positive.add(trace) # | is a set union operator #if learned==0: self.negative |= self._get_prefixes(trace, len(trace)-1) else: #if learned == 0: self.negative |= self._get_prefixes(trace) # else: # self.negative.add(trace) def export_traces(self, filename): parent_path = os.path.dirname(filename) os.makedirs(parent_path,exist_ok=True) with open(filename, "w") as output_file: output_file.write("POSITIVE:") for trace in self.positive: output_file.write("\n") string_repr = [str(el) for el in trace] output_file.write(','.join(string_repr)) output_file.write("\nNEGATIVE:") for trace in self.negative: output_file.write("\n") string_repr = [str(el) for el in trace] output_file.write(','.join(string_repr)) def __repr__(self): return repr(self.positive) + "\n\n" + repr(self.negative)
[ "os.path.dirname", "os.makedirs" ]
[((5457, 5482), 'os.path.dirname', 'os.path.dirname', (['filename'], {}), '(filename)\n', (5472, 5482), False, 'import os\n'), ((5491, 5530), 'os.makedirs', 'os.makedirs', (['parent_path'], {'exist_ok': '(True)'}), '(parent_path, exist_ok=True)\n', (5502, 5530), False, 'import os\n')]
import django from django.conf import settings from django.conf.urls import include, url from django.contrib import admin from django.contrib.staticfiles.urls import staticfiles_urlpatterns if django.VERSION[:2] > (1, 9): from django.views.i18n import JavaScriptCatalog else: from django.views.i18n import javascript_catalog from django_comments_xtd import LatestCommentFeed from django_comments_xtd.views import XtdCommentListView from comp import views admin.autodiscover() urlpatterns = [ url(r'^$', views.HomepageView.as_view(), name='homepage'), url(r'^i18n/', include('django.conf.urls.i18n')), url(r'^admin/', include(admin.site.urls)), url(r'^articles/', include('comp.articles.urls')), url(r'^quotes/', include('comp.quotes.urls')), url(r'^comments/', include('django_comments_xtd.urls')), url(r'^comments/$', XtdCommentListView.as_view( content_types=["articles.article", "quotes.quote"], paginate_by=10, page_range=5), name='comments-xtd-list'), url(r'^feeds/comments/$', LatestCommentFeed(), name='comments-feed'), url(r'^api-auth/', include('rest_framework.urls', namespace='rest_framework')), ] if django.VERSION[:2] > (1, 9): urlpatterns.append( url(r'^jsi18n/$', JavaScriptCatalog.as_view(), name='javascript-catalog') ) else: js_info_dict = { 'packages': ('django_comments_xtd',) } urlpatterns.append( url(r'^jsi18n/$', javascript_catalog, js_info_dict, name='javascript-catalog') ) if settings.DEBUG: urlpatterns += staticfiles_urlpatterns() if 'rosetta' in settings.INSTALLED_APPS: urlpatterns += [url(r'^rosetta/', include('rosetta.urls'))]
[ "django.conf.urls.url", "comp.views.HomepageView.as_view", "django_comments_xtd.LatestCommentFeed", "django.conf.urls.include", "django.views.i18n.JavaScriptCatalog.as_view", "django_comments_xtd.views.XtdCommentListView.as_view", "django.contrib.staticfiles.urls.staticfiles_urlpatterns", "django.contrib.admin.autodiscover" ]
[((472, 492), 'django.contrib.admin.autodiscover', 'admin.autodiscover', ([], {}), '()\n', (490, 492), False, 'from django.contrib import admin\n'), ((1626, 1651), 'django.contrib.staticfiles.urls.staticfiles_urlpatterns', 'staticfiles_urlpatterns', ([], {}), '()\n', (1649, 1651), False, 'from django.contrib.staticfiles.urls import staticfiles_urlpatterns\n'), ((526, 554), 'comp.views.HomepageView.as_view', 'views.HomepageView.as_view', ([], {}), '()\n', (552, 554), False, 'from comp import views\n'), ((593, 625), 'django.conf.urls.include', 'include', (['"""django.conf.urls.i18n"""'], {}), "('django.conf.urls.i18n')\n", (600, 625), False, 'from django.conf.urls import include, url\n'), ((648, 672), 'django.conf.urls.include', 'include', (['admin.site.urls'], {}), '(admin.site.urls)\n', (655, 672), False, 'from django.conf.urls import include, url\n'), ((698, 727), 'django.conf.urls.include', 'include', (['"""comp.articles.urls"""'], {}), "('comp.articles.urls')\n", (705, 727), False, 'from django.conf.urls import include, url\n'), ((751, 778), 'django.conf.urls.include', 'include', (['"""comp.quotes.urls"""'], {}), "('comp.quotes.urls')\n", (758, 778), False, 'from django.conf.urls import include, url\n'), ((804, 839), 'django.conf.urls.include', 'include', (['"""django_comments_xtd.urls"""'], {}), "('django_comments_xtd.urls')\n", (811, 839), False, 'from django.conf.urls import include, url\n'), ((866, 978), 'django_comments_xtd.views.XtdCommentListView.as_view', 'XtdCommentListView.as_view', ([], {'content_types': "['articles.article', 'quotes.quote']", 'paginate_by': '(10)', 'page_range': '(5)'}), "(content_types=['articles.article',\n 'quotes.quote'], paginate_by=10, page_range=5)\n", (892, 978), False, 'from django_comments_xtd.views import XtdCommentListView\n'), ((1058, 1077), 'django_comments_xtd.LatestCommentFeed', 'LatestCommentFeed', ([], {}), '()\n', (1075, 1077), False, 'from django_comments_xtd import LatestCommentFeed\n'), ((1129, 1187), 'django.conf.urls.include', 'include', (['"""rest_framework.urls"""'], {'namespace': '"""rest_framework"""'}), "('rest_framework.urls', namespace='rest_framework')\n", (1136, 1187), False, 'from django.conf.urls import include, url\n'), ((1490, 1567), 'django.conf.urls.url', 'url', (['"""^jsi18n/$"""', 'javascript_catalog', 'js_info_dict'], {'name': '"""javascript-catalog"""'}), "('^jsi18n/$', javascript_catalog, js_info_dict, name='javascript-catalog')\n", (1493, 1567), False, 'from django.conf.urls import include, url\n'), ((1306, 1333), 'django.views.i18n.JavaScriptCatalog.as_view', 'JavaScriptCatalog.as_view', ([], {}), '()\n', (1331, 1333), False, 'from django.views.i18n import JavaScriptCatalog\n'), ((1732, 1755), 'django.conf.urls.include', 'include', (['"""rosetta.urls"""'], {}), "('rosetta.urls')\n", (1739, 1755), False, 'from django.conf.urls import include, url\n')]
import pytest from katana.dynamic_bitset import DynamicBitset __all__ = [] SIZE = 50 @pytest.fixture def dbs(): return DynamicBitset(SIZE) def test_set(dbs): dbs[10] = 1 assert dbs[10] def test_set_invalid_type(dbs): try: dbs[2.3] = 0 assert False except TypeError: pass def test_set_invalid_index_low(dbs): try: dbs[-1] = 1 assert False except IndexError: pass def test_set_invalid_index_high(dbs): try: dbs[SIZE] = 1 assert False except IndexError: pass def test_reset(dbs): dbs[10] = 1 dbs.reset() assert not dbs[10] assert len(dbs) == SIZE def test_reset_index(dbs): dbs[10] = 1 dbs[10] = 0 assert not dbs[10] def test_reset_begin_end(dbs): dbs[10] = 1 dbs[15] = 1 dbs[12:17] = 0 assert dbs[10] assert not dbs[15] def test_reset_begin_end_invalid_step(dbs): try: dbs[12:17:22] = 0 assert False except ValueError: pass def test_reset_none_end(dbs): dbs[10] = 1 dbs[15] = 1 dbs[:12] = 0 assert not dbs[10] assert dbs[15] def test_resize(dbs): dbs.resize(20) assert len(dbs) == 20 dbs[8] = 1 dbs.resize(20) assert len(dbs) == 20 assert dbs[8] dbs.resize(70) assert len(dbs) == 70 assert dbs[8] assert dbs.count() == 1 def test_clear(dbs): dbs[10] = 1 dbs.clear() assert len(dbs) == 0 dbs.resize(20) assert len(dbs) == 20 assert not dbs[10] def test_count(dbs): dbs[10] = 1 assert dbs.count() == 1
[ "katana.dynamic_bitset.DynamicBitset" ]
[((128, 147), 'katana.dynamic_bitset.DynamicBitset', 'DynamicBitset', (['SIZE'], {}), '(SIZE)\n', (141, 147), False, 'from katana.dynamic_bitset import DynamicBitset\n')]
import unittest import astar class BasicTests(unittest.TestCase): def test_bestpath(self): """ensure that we take the shortest path, and not the path with less elements. the path with less elements is A -> B with a distance of 100 the shortest path is A -> C -> D -> B with a distance of 60 """ nodes = {'A': [('B', 100), ('C', 20)], 'C': [('D', 20)], 'D': [('B', 20)]} def neighbors(n): for n1, d in nodes[n]: yield n1 def distance(n1, n2): for n, d in nodes[n1]: if n == n2: return d def cost(n, goal): return 1 path = list(astar.find_path('A', 'B', neighbors_fnct=neighbors, heuristic_cost_estimate_fnct=cost, distance_between_fnct=distance)) self.assertEqual(4, len(path)) for i, n in enumerate('ACDB'): self.assertEqual(n, path[i]) if __name__ == '__main__': unittest.main()
[ "unittest.main", "astar.find_path" ]
[((1010, 1025), 'unittest.main', 'unittest.main', ([], {}), '()\n', (1023, 1025), False, 'import unittest\n'), ((719, 841), 'astar.find_path', 'astar.find_path', (['"""A"""', '"""B"""'], {'neighbors_fnct': 'neighbors', 'heuristic_cost_estimate_fnct': 'cost', 'distance_between_fnct': 'distance'}), "('A', 'B', neighbors_fnct=neighbors,\n heuristic_cost_estimate_fnct=cost, distance_between_fnct=distance)\n", (734, 841), False, 'import astar\n')]
#!/bin/env python3 import csv def intersect(list1,list2): list3 = [ value for value in list1 if value in list2] return list3 def category(list1,effects): cat = 'Good' good = 0 bad = 0 for ing in list1: if effects[ing]=='Good': good += 1 else: bad += 1 if bad==0: return 'Potion' elif good==0: return 'Poison' else: return 'Downside' effects = {} ingredients = {} print("Formulating formulas") with open('ingredients.csv') as csvfile: aff = csv.reader(csvfile, delimiter=',') for row in aff: if row[0] not in effects.keys(): effects[row[0]] = row[1] with open('skyrim-ingredients.csv', newline='') as csvfile: ingre = csv.reader(csvfile, delimiter=',') for row in ingre: if row[0] not in ingredients.keys(): ingredients[row[0]] = [row[1],row[2],row[3],row[4]] multieffects = {} for ce in effects: curing = [] for ing in ingredients: if ce in ingredients[ing]: curing.append(ing) for k,curi in enumerate(curing): for i in range(k+1,len(curing)): cureff = intersect(ingredients[curi],ingredients[curing[i]]) cureff.sort() if len(cureff)>1: if curi>curing[i]: curname = curing[i] + ':' + curi else: curname = curi + ':' + curing[i] multieffects[curname] = cureff finallist = {} for me in multieffects: curing = me.split(":") for ing in ingredients: if ing!=curing[0] and ing!=curing[1]: eff1 = intersect(ingredients[curing[0]],ingredients[ing]) eff2 = intersect(ingredients[curing[1]],ingredients[ing]) if len(eff1)>0 or len(eff2)>0: tmpname = [ val for val in curing ] tmpname.append(ing) tmpname.sort() finalname = ":".join(tmpname) finallist[finalname] = list(set(multieffects[me] + eff1 + eff2)) finallist[finalname].sort() with open('formulas.csv',mode='w') as formula_file: formula_writer = csv.writer(formula_file, delimiter=',') formula_writer.writerow(['Category','Ingredient 1','Ingredient 2','Ingredient 3','Effect 1','Effect 2','Effect 3','Effect 4','Effect 5']) for fl in finallist: formula_writer.writerow([category(finallist[fl],effects)] + fl.split(":") + finallist[fl]) for fl in multieffects: formula_writer.writerow([category(multieffects[fl],effects)] + fl.split(":") + [''] + multieffects[fl])
[ "csv.writer", "csv.reader" ]
[((550, 584), 'csv.reader', 'csv.reader', (['csvfile'], {'delimiter': '""","""'}), "(csvfile, delimiter=',')\n", (560, 584), False, 'import csv\n'), ((755, 789), 'csv.reader', 'csv.reader', (['csvfile'], {'delimiter': '""","""'}), "(csvfile, delimiter=',')\n", (765, 789), False, 'import csv\n'), ((2176, 2215), 'csv.writer', 'csv.writer', (['formula_file'], {'delimiter': '""","""'}), "(formula_file, delimiter=',')\n", (2186, 2215), False, 'import csv\n')]
# coding: utf-8 """ Control-M Services Provides access to BMC Control-M Services # noqa: E501 OpenAPI spec version: 9.20.215 Contact: <EMAIL> Generated by: https://github.com/swagger-api/swagger-codegen.git """ import pprint import re # noqa: F401 import six from clients.ctm_api_client.configuration import Configuration class UserAdditionalProperties(object): """NOTE: This class is auto generated by the swagger code generator program. Do not edit the class manually. """ """ Attributes: swagger_types (dict): The key is attribute name and the value is attribute type. attribute_map (dict): The key is attribute name and the value is json key in definition. """ swagger_types = { "member_of_groups": "list[str]", "authentication": "AuthenticationData", "is_external_user": "bool", } attribute_map = { "member_of_groups": "memberOfGroups", "authentication": "authentication", "is_external_user": "isExternalUser", } def __init__( self, member_of_groups=None, authentication=None, is_external_user=None, _configuration=None, ): # noqa: E501 """UserAdditionalProperties - a model defined in Swagger""" # noqa: E501 if _configuration is None: _configuration = Configuration() self._configuration = _configuration self._member_of_groups = None self._authentication = None self._is_external_user = None self.discriminator = None if member_of_groups is not None: self.member_of_groups = member_of_groups if authentication is not None: self.authentication = authentication if is_external_user is not None: self.is_external_user = is_external_user @property def member_of_groups(self): """Gets the member_of_groups of this UserAdditionalProperties. # noqa: E501 List of role names # noqa: E501 :return: The member_of_groups of this UserAdditionalProperties. # noqa: E501 :rtype: list[str] """ return self._member_of_groups @member_of_groups.setter def member_of_groups(self, member_of_groups): """Sets the member_of_groups of this UserAdditionalProperties. List of role names # noqa: E501 :param member_of_groups: The member_of_groups of this UserAdditionalProperties. # noqa: E501 :type: list[str] """ self._member_of_groups = member_of_groups @property def authentication(self): """Gets the authentication of this UserAdditionalProperties. # noqa: E501 user authentication # noqa: E501 :return: The authentication of this UserAdditionalProperties. # noqa: E501 :rtype: AuthenticationData """ return self._authentication @authentication.setter def authentication(self, authentication): """Sets the authentication of this UserAdditionalProperties. user authentication # noqa: E501 :param authentication: The authentication of this UserAdditionalProperties. # noqa: E501 :type: AuthenticationData """ self._authentication = authentication @property def is_external_user(self): """Gets the is_external_user of this UserAdditionalProperties. # noqa: E501 :return: The is_external_user of this UserAdditionalProperties. # noqa: E501 :rtype: bool """ return self._is_external_user @is_external_user.setter def is_external_user(self, is_external_user): """Sets the is_external_user of this UserAdditionalProperties. :param is_external_user: The is_external_user of this UserAdditionalProperties. # noqa: E501 :type: bool """ self._is_external_user = is_external_user def to_dict(self): """Returns the model properties as a dict""" result = {} for attr, _ in six.iteritems(self.swagger_types): value = getattr(self, attr) if isinstance(value, list): result[attr] = list( map(lambda x: x.to_dict() if hasattr(x, "to_dict") else x, value) ) elif hasattr(value, "to_dict"): result[attr] = value.to_dict() elif isinstance(value, dict): result[attr] = dict( map( lambda item: (item[0], item[1].to_dict()) if hasattr(item[1], "to_dict") else item, value.items(), ) ) else: result[attr] = value if issubclass(UserAdditionalProperties, dict): for key, value in self.items(): result[key] = value return result def to_str(self): """Returns the string representation of the model""" return pprint.pformat(self.to_dict()) def __repr__(self): """For `print` and `pprint`""" return self.to_str() def __eq__(self, other): """Returns true if both objects are equal""" if not isinstance(other, UserAdditionalProperties): return False return self.to_dict() == other.to_dict() def __ne__(self, other): """Returns true if both objects are not equal""" if not isinstance(other, UserAdditionalProperties): return True return self.to_dict() != other.to_dict()
[ "clients.ctm_api_client.configuration.Configuration", "six.iteritems" ]
[((4101, 4134), 'six.iteritems', 'six.iteritems', (['self.swagger_types'], {}), '(self.swagger_types)\n', (4114, 4134), False, 'import six\n'), ((1428, 1443), 'clients.ctm_api_client.configuration.Configuration', 'Configuration', ([], {}), '()\n', (1441, 1443), False, 'from clients.ctm_api_client.configuration import Configuration\n')]
# -*- coding: utf-8 -*- """ Pytorch models __author__ = 'Jamie (<EMAIL>)' __copyright__ = 'No copyright. Just copyleft!' """ # pylint: disable=no-member # pylint: disable=invalid-name ########### # imports # ########### import torch import torch.nn as nn from embedder import Embedder from pos_models import PosTagger, FnnTagger, CnnTagger # pylint: disable=unused-import ############# # Ner Class # ############# class Ner(nn.Module): """ named entity recognizer pytorch model """ def __init__(self, embedder, encoder, decoder): """ * embedder (Embedder) [sentence_len, context_len] => [sentence_len, context_len, embed_dim] * encoder (nn.Module) [sentence_len, context_len, embed_dim] => [sentence_len, hidden_dim] * decoder (nn.Module) [sentence_len, hidden_dim] => [sentence_len, n_tags], """ super().__init__() self.embedder = embedder self.encoder = encoder self.decoder = decoder assert isinstance(embedder, Embedder) assert isinstance(encoder, nn.Module) assert isinstance(decoder, nn.Module) def forward(self, sentence, gazet, pos, words): #pylint: disable=arguments-differ # [sentence_len, context_len] => [sentence_len, context_len, embed_dim] sentence_embed = self.embedder(sentence, gazet, pos, words) # [sentence_len, context_len, embed_dim] => [sentence_len, hidden_dim] hidden = self.encoder(sentence_embed) # [sentence_len, hidden_dim] => [sentence_len, n_tags] predicted_tags = self.decoder(hidden) return predicted_tags def save(self, path): """ 모델을 저장하는 메소드 :param path: 경로 """ if torch.cuda.is_available(): self.cpu() torch.save(self, str(path)) if torch.cuda.is_available(): self.cuda() @classmethod def load(cls, path): """ 저장된 모델을 로드하는 메소드 :param path: 경로 :return: 모델 클래스 객체 """ model = torch.load(str(path)) if torch.cuda.is_available(): model.cuda() return model ################# # Encoder Class # ################# class Fnn5(nn.Module): """ 2-Layer Full-Connected Neural Networks """ def __init__(self, context_len=21, in_dim=50, hidden_dim=500): super(Fnn5, self).__init__() self.context_len = context_len self.hidden_dim = hidden_dim self.out_dim = hidden_dim self.net = nn.Sequential( nn.Linear(context_len*in_dim, hidden_dim), ) def forward(self, x):#pylint: disable=arguments-differ """ Args: x: [sentence_len, context_len, in_dim] Return: x: [sentence_len, out_dim] """ sentence_len = x.size(0) x = x.view(sentence_len, -1) # [sentence_len, context_len x in_dim] x = self.net(x) # [setence_len, out_dim] return x class Cnn7(nn.Module): """ ConvNet kernels=[2,3,4,5] + Fully-Connected """ def __init__(self, in_dim=50, hidden_dim=500): """ """ super(Cnn7, self).__init__() self.in_dim = in_dim self.hidden_dim = hidden_dim self.out_dim = in_dim * 4 self.conv2 = nn.Sequential( nn.Conv1d(in_dim, in_dim, kernel_size=2), # 20 nn.ReLU(), nn.MaxPool1d(kernel_size=2, ceil_mode=True), # 10 nn.Conv1d(in_dim, in_dim, kernel_size=2), # 9 nn.ReLU(), nn.MaxPool1d(kernel_size=2, ceil_mode=True), # 5 nn.Conv1d(in_dim, in_dim, kernel_size=2), # 4 nn.ReLU(), nn.MaxPool1d(kernel_size=2, ceil_mode=True), # 2 nn.Conv1d(in_dim, in_dim, kernel_size=2), # 1 ) self.conv3 = nn.Sequential( nn.Conv1d(in_dim, in_dim, kernel_size=3, padding=1), # 21 nn.ReLU(), nn.MaxPool1d(kernel_size=2, ceil_mode=True), # 11 nn.Conv1d(in_dim, in_dim, kernel_size=3, padding=1), # 11 nn.ReLU(), nn.MaxPool1d(kernel_size=2, ceil_mode=True), # 6 nn.Conv1d(in_dim, in_dim, kernel_size=3, padding=1), # 6 nn.ReLU(), nn.MaxPool1d(kernel_size=2, ceil_mode=True), # 3 nn.Conv1d(in_dim, in_dim, kernel_size=3), # 1 ) self.conv4 = nn.Sequential( nn.Conv1d(in_dim, in_dim, kernel_size=4, padding=1), # 20 nn.ReLU(), nn.MaxPool1d(kernel_size=2, ceil_mode=True), # 10 nn.Conv1d(in_dim, in_dim, kernel_size=4, padding=1), # 9 nn.ReLU(), nn.MaxPool1d(kernel_size=2, ceil_mode=True), # 5 nn.Conv1d(in_dim, in_dim, kernel_size=4, padding=1), # 4 nn.ReLU(), nn.Conv1d(in_dim, in_dim, kernel_size=4), # 1 ) self.conv5 = nn.Sequential( nn.Conv1d(in_dim, in_dim, kernel_size=5, padding=2), # 21 nn.ReLU(), nn.MaxPool1d(kernel_size=2, ceil_mode=True), # 11 nn.Conv1d(in_dim, in_dim, kernel_size=5, padding=2), # 11 nn.ReLU(), nn.MaxPool1d(kernel_size=2, ceil_mode=True), # 6 nn.Conv1d(in_dim, in_dim, kernel_size=5, padding=2), # 6 nn.ReLU(), nn.MaxPool1d(kernel_size=2, ceil_mode=True), # 3 nn.Conv1d(in_dim, in_dim, kernel_size=5, padding=1), # 1 ) def forward(self, x): #pylint: disable=arguments-differ """ Args: x: [sentence_length, context_len, in_dim] Return: x: [sentence_length, in_dim * 4] """ # [sentence_length, in_dim, context_len] x = x.transpose(1, 2) conv2 = self.conv2(x).squeeze(-1) # [sentence_len, in_dim] conv3 = self.conv3(x).squeeze(-1) # [sentence_len, in_dim] conv4 = self.conv4(x).squeeze(-1) # [sentence_len, in_dim] conv5 = self.conv5(x).squeeze(-1) # [sentence_len, in_dim] # [sentence_len, in_dim * 4] out = torch.cat([conv2, conv3, conv4, conv5], dim=1) return out class Cnn8(nn.Module): """ 9-layer Conv NN + Batch Norm + Residual """ def __init__(self, context_len=21, in_dim=64, hidden_dim=None): super(Cnn8, self).__init__() self.context_len = context_len # conv block 64 self.conv_block1_1 = self.conv_block(in_dim, 2, False) self.conv_block1_2_1 = self.conv_block(in_dim, 1, False) self.conv_block1_2_2 = self.conv_block(in_dim, 1, True) self.pool1 = nn.MaxPool1d(kernel_size=2, padding=1, ceil_mode=True) # conv block 128 self.conv_block2_1 = self.conv_block(in_dim*2, 2, False) self.conv_block2_2_1 = self.conv_block(in_dim*2, 1, False) self.conv_block2_2_2 = self.conv_block(in_dim*2, 1, True) self.pool2 = nn.MaxPool1d(kernel_size=2, padding=1, ceil_mode=True) # conv block 256 self.conv_block3_1 = self.conv_block(in_dim*4, 2, False) self.conv_block3_2_1 = self.conv_block(in_dim*4, 1, False) self.conv_block3_2_2 = self.conv_block(in_dim*4, 1, True) self.pool3 = nn.MaxPool1d(kernel_size=2) # conv block 512 self.conv_block4_1 = self.conv_block(in_dim*8, 2, False) self.conv_block4_2_1 = self.conv_block(in_dim*8, 1, False) self.conv_block4_2_2 = self.conv_block(in_dim*8, 1, True) self.pool4 = nn.MaxPool1d(kernel_size=3) self.out_dim = in_dim*16 @classmethod def conv_block(cls, in_dim=64, depth=2, double=True): """ Args: [batch_size, dim, length] Return: [batch_size, dim*2, length] if double=True [batch_size, dim, length] if double=False """ out_dim = in_dim layers = [] for i in range(depth): if double: if i == depth - 1: out_dim = in_dim * 2 layers.append(nn.Conv1d(in_dim, out_dim, kernel_size=3, padding=1)) layers.append(nn.BatchNorm1d(out_dim)) layers.append(nn.ReLU()) return nn.Sequential(*layers) def forward(self, sentence):#pylint: disable=arguments-differ """ Args: sentence: [sentence_len, context_len, embed_dim] Return: logit: [batch_size, out_dim] """ # [sentence_len, embed_dim, context_len] x = sentence.transpose(1, 2) # conv block 64 x = self.conv_block1_1(x) + x # [batch, in_dim, 21] x = self.conv_block1_2_1(x) + x # [batch, in_dim, 21] x = self.conv_block1_2_2(x) # [batch, in_dim*2, 21] x = self.pool1(x) # [batch, in_dim*2, 11] # conv block 128 x = self.conv_block2_1(x) + x # [batch, in_dim*2, 11] x = self.conv_block2_2_1(x) + x # [batch, in_dim*2, 11] x = self.conv_block2_2_2(x) # [batch, in_dim*4, 11] x = self.pool2(x) # [batch, in_dim*4, 6] # conv block 256 x = self.conv_block3_1(x) + x # [batch, in_dim*4, 6] x = self.conv_block3_2_1(x) + x # [batch, in_dim*4, 6] x = self.conv_block3_2_2(x) # [batch, in_dim*8, 6] x = self.pool3(x) # [batch, in_dim*8, 3] # conv block 512 x = self.conv_block4_1(x) + x # [batch, in_dim*8, 3] x = self.conv_block4_2_1(x) + x # [batch, in_dim*8, 3] x = self.conv_block4_2_2(x) # [batch, in_dim*16, 3] x = self.pool4(x) # [batch_size, in_dim*16, 1] x = x.squeeze(-1) # [batch, in_dim*16] return x class RnnEncoder(nn.Module): """ RNN Encoder Module """ def __init__(self, context_len=21, in_dim=1024, out_dim=1024, num_layers=2, cell='gru'): super(RnnEncoder, self).__init__() self.hidden_dim = out_dim // 2 if cell == 'gru': self.rnn = nn.GRU( input_size=in_dim, hidden_size=self.hidden_dim, num_layers=num_layers, dropout=0.5, bidirectional=True) if cell == 'lstm': self.rnn = nn.LSTM( input_size=in_dim, hidden_size=self.hidden_dim, num_layers=num_layers, dropout=0.5, bidirectional=True) elif cell == 'sru': from sru import SRU self.rnn = SRU( input_size=in_dim, hidden_size=self.hidden_dim, num_layers=num_layers, dropout=0.5, bidirectional=True) def forward(self, x):#pylint: disable=arguments-differ """ Args: x: [sentence_len, context_len, input_size] Return: x: [sentence_len, hidden_size] """ # input (seq_len, batch, input_size) # h_0 (num_layers * num_directions, batch, hidden_size) # output (seq_len, batch, hidden_size * num_directions) # h_n (num_layers * num_directions, batch, hidden_size) # [sequence_len, context_len, input_size] # =>[sentence_len, context_len, hidden_size x 2] x, _ = self.rnn(x) # [sequence_len, hidden_size x 2] x = x[:, 10, :] return x ################# # Decoder Class # ################# class FCDecoder(nn.Module): """ Fully-Connected Decoder """ def __init__(self, in_dim, hidden_dim, n_tags): super(FCDecoder, self).__init__() self.net = nn.Sequential( nn.ReLU(), nn.Dropout(), nn.Linear(in_dim, n_tags) ) def forward(self, x):#pylint: disable=arguments-differ """ [sentence_len, in_dim] => [sentence_len, n_tags] """ return self.net(x) class RnnDecoder(nn.Module): """ RNN-based Decoder """ def __init__(self, in_dim=1024, hidden_dim=512, n_tags=11, num_layers=2, cell='gru'): super(RnnDecoder, self).__init__() if cell == 'gru': self.rnn = nn.GRU( input_size=in_dim, hidden_size=hidden_dim, num_layers=num_layers, dropout=0.5, bidirectional=True) if cell == 'lstm': self.rnn = nn.LSTM( input_size=in_dim, hidden_size=hidden_dim, num_layers=num_layers, dropout=0.5, bidirectional=True) elif cell == 'sru': from sru import SRU self.rnn = SRU( input_size=in_dim, hidden_size=hidden_dim, num_layers=num_layers, dropout=0.5, bidirectional=True) self.out = nn.Sequential( nn.ReLU(), nn.Dropout(), nn.Linear(hidden_dim * 2, n_tags) ) def forward(self, x):#pylint: disable=arguments-differ """ [sentence_len, in_dim] => [sentence_len, n_tags] """ # input (seq_len, batch, input_size) # h_0 (num_layers * num_directions, batch, hidden_size) # output (seq_len, batch, hidden_size * num_directions) # h_n (num_layers * num_directions, batch, hidden_size) # [sentence_len, batch=1, input_size] x = x.unsqueeze(1) # x: [sentence_len, batch=1, hidden_size x 2] # h_n: [num_layers * 2, batch=1, hidden_size] # c_n: [num_layers * 2, batch=1, hidden_size] x, _ = self.rnn(x) # [sequence_len, hidden_size x 2] x = x.squeeze(1) # [sequence_len, n_tags] x = self.out(x) return x
[ "torch.nn.MaxPool1d", "torch.nn.ReLU", "torch.nn.Dropout", "sru.SRU", "torch.nn.Sequential", "torch.nn.LSTM", "torch.nn.BatchNorm1d", "torch.cuda.is_available", "torch.nn.Linear", "torch.nn.Conv1d", "torch.cat", "torch.nn.GRU" ]
[((1774, 1799), 'torch.cuda.is_available', 'torch.cuda.is_available', ([], {}), '()\n', (1797, 1799), False, 'import torch\n'), ((1871, 1896), 'torch.cuda.is_available', 'torch.cuda.is_available', ([], {}), '()\n', (1894, 1896), False, 'import torch\n'), ((2117, 2142), 'torch.cuda.is_available', 'torch.cuda.is_available', ([], {}), '()\n', (2140, 2142), False, 'import torch\n'), ((6207, 6253), 'torch.cat', 'torch.cat', (['[conv2, conv3, conv4, conv5]'], {'dim': '(1)'}), '([conv2, conv3, conv4, conv5], dim=1)\n', (6216, 6253), False, 'import torch\n'), ((6742, 6796), 'torch.nn.MaxPool1d', 'nn.MaxPool1d', ([], {'kernel_size': '(2)', 'padding': '(1)', 'ceil_mode': '(True)'}), '(kernel_size=2, padding=1, ceil_mode=True)\n', (6754, 6796), True, 'import torch.nn as nn\n'), ((7042, 7096), 'torch.nn.MaxPool1d', 'nn.MaxPool1d', ([], {'kernel_size': '(2)', 'padding': '(1)', 'ceil_mode': '(True)'}), '(kernel_size=2, padding=1, ceil_mode=True)\n', (7054, 7096), True, 'import torch.nn as nn\n'), ((7342, 7369), 'torch.nn.MaxPool1d', 'nn.MaxPool1d', ([], {'kernel_size': '(2)'}), '(kernel_size=2)\n', (7354, 7369), True, 'import torch.nn as nn\n'), ((7615, 7642), 'torch.nn.MaxPool1d', 'nn.MaxPool1d', ([], {'kernel_size': '(3)'}), '(kernel_size=3)\n', (7627, 7642), True, 'import torch.nn as nn\n'), ((8312, 8334), 'torch.nn.Sequential', 'nn.Sequential', (['*layers'], {}), '(*layers)\n', (8325, 8334), True, 'import torch.nn as nn\n'), ((2590, 2633), 'torch.nn.Linear', 'nn.Linear', (['(context_len * in_dim)', 'hidden_dim'], {}), '(context_len * in_dim, hidden_dim)\n', (2599, 2633), True, 'import torch.nn as nn\n'), ((3373, 3413), 'torch.nn.Conv1d', 'nn.Conv1d', (['in_dim', 'in_dim'], {'kernel_size': '(2)'}), '(in_dim, in_dim, kernel_size=2)\n', (3382, 3413), True, 'import torch.nn as nn\n'), ((3435, 3444), 'torch.nn.ReLU', 'nn.ReLU', ([], {}), '()\n', (3442, 3444), True, 'import torch.nn as nn\n'), ((3458, 3501), 'torch.nn.MaxPool1d', 'nn.MaxPool1d', ([], {'kernel_size': '(2)', 'ceil_mode': '(True)'}), '(kernel_size=2, ceil_mode=True)\n', (3470, 3501), True, 'import torch.nn as nn\n'), ((3523, 3563), 'torch.nn.Conv1d', 'nn.Conv1d', (['in_dim', 'in_dim'], {'kernel_size': '(2)'}), '(in_dim, in_dim, kernel_size=2)\n', (3532, 3563), True, 'import torch.nn as nn\n'), ((3584, 3593), 'torch.nn.ReLU', 'nn.ReLU', ([], {}), '()\n', (3591, 3593), True, 'import torch.nn as nn\n'), ((3607, 3650), 'torch.nn.MaxPool1d', 'nn.MaxPool1d', ([], {'kernel_size': '(2)', 'ceil_mode': '(True)'}), '(kernel_size=2, ceil_mode=True)\n', (3619, 3650), True, 'import torch.nn as nn\n'), ((3671, 3711), 'torch.nn.Conv1d', 'nn.Conv1d', (['in_dim', 'in_dim'], {'kernel_size': '(2)'}), '(in_dim, in_dim, kernel_size=2)\n', (3680, 3711), True, 'import torch.nn as nn\n'), ((3732, 3741), 'torch.nn.ReLU', 'nn.ReLU', ([], {}), '()\n', (3739, 3741), True, 'import torch.nn as nn\n'), ((3755, 3798), 'torch.nn.MaxPool1d', 'nn.MaxPool1d', ([], {'kernel_size': '(2)', 'ceil_mode': '(True)'}), '(kernel_size=2, ceil_mode=True)\n', (3767, 3798), True, 'import torch.nn as nn\n'), ((3819, 3859), 'torch.nn.Conv1d', 'nn.Conv1d', (['in_dim', 'in_dim'], {'kernel_size': '(2)'}), '(in_dim, in_dim, kernel_size=2)\n', (3828, 3859), True, 'import torch.nn as nn\n'), ((3927, 3978), 'torch.nn.Conv1d', 'nn.Conv1d', (['in_dim', 'in_dim'], {'kernel_size': '(3)', 'padding': '(1)'}), '(in_dim, in_dim, kernel_size=3, padding=1)\n', (3936, 3978), True, 'import torch.nn as nn\n'), ((4000, 4009), 'torch.nn.ReLU', 'nn.ReLU', ([], {}), '()\n', (4007, 4009), True, 'import torch.nn as nn\n'), ((4023, 4066), 'torch.nn.MaxPool1d', 'nn.MaxPool1d', ([], {'kernel_size': '(2)', 'ceil_mode': '(True)'}), '(kernel_size=2, ceil_mode=True)\n', (4035, 4066), True, 'import torch.nn as nn\n'), ((4088, 4139), 'torch.nn.Conv1d', 'nn.Conv1d', (['in_dim', 'in_dim'], {'kernel_size': '(3)', 'padding': '(1)'}), '(in_dim, in_dim, kernel_size=3, padding=1)\n', (4097, 4139), True, 'import torch.nn as nn\n'), ((4161, 4170), 'torch.nn.ReLU', 'nn.ReLU', ([], {}), '()\n', (4168, 4170), True, 'import torch.nn as nn\n'), ((4184, 4227), 'torch.nn.MaxPool1d', 'nn.MaxPool1d', ([], {'kernel_size': '(2)', 'ceil_mode': '(True)'}), '(kernel_size=2, ceil_mode=True)\n', (4196, 4227), True, 'import torch.nn as nn\n'), ((4248, 4299), 'torch.nn.Conv1d', 'nn.Conv1d', (['in_dim', 'in_dim'], {'kernel_size': '(3)', 'padding': '(1)'}), '(in_dim, in_dim, kernel_size=3, padding=1)\n', (4257, 4299), True, 'import torch.nn as nn\n'), ((4320, 4329), 'torch.nn.ReLU', 'nn.ReLU', ([], {}), '()\n', (4327, 4329), True, 'import torch.nn as nn\n'), ((4343, 4386), 'torch.nn.MaxPool1d', 'nn.MaxPool1d', ([], {'kernel_size': '(2)', 'ceil_mode': '(True)'}), '(kernel_size=2, ceil_mode=True)\n', (4355, 4386), True, 'import torch.nn as nn\n'), ((4407, 4447), 'torch.nn.Conv1d', 'nn.Conv1d', (['in_dim', 'in_dim'], {'kernel_size': '(3)'}), '(in_dim, in_dim, kernel_size=3)\n', (4416, 4447), True, 'import torch.nn as nn\n'), ((4516, 4567), 'torch.nn.Conv1d', 'nn.Conv1d', (['in_dim', 'in_dim'], {'kernel_size': '(4)', 'padding': '(1)'}), '(in_dim, in_dim, kernel_size=4, padding=1)\n', (4525, 4567), True, 'import torch.nn as nn\n'), ((4589, 4598), 'torch.nn.ReLU', 'nn.ReLU', ([], {}), '()\n', (4596, 4598), True, 'import torch.nn as nn\n'), ((4612, 4655), 'torch.nn.MaxPool1d', 'nn.MaxPool1d', ([], {'kernel_size': '(2)', 'ceil_mode': '(True)'}), '(kernel_size=2, ceil_mode=True)\n', (4624, 4655), True, 'import torch.nn as nn\n'), ((4677, 4728), 'torch.nn.Conv1d', 'nn.Conv1d', (['in_dim', 'in_dim'], {'kernel_size': '(4)', 'padding': '(1)'}), '(in_dim, in_dim, kernel_size=4, padding=1)\n', (4686, 4728), True, 'import torch.nn as nn\n'), ((4749, 4758), 'torch.nn.ReLU', 'nn.ReLU', ([], {}), '()\n', (4756, 4758), True, 'import torch.nn as nn\n'), ((4772, 4815), 'torch.nn.MaxPool1d', 'nn.MaxPool1d', ([], {'kernel_size': '(2)', 'ceil_mode': '(True)'}), '(kernel_size=2, ceil_mode=True)\n', (4784, 4815), True, 'import torch.nn as nn\n'), ((4836, 4887), 'torch.nn.Conv1d', 'nn.Conv1d', (['in_dim', 'in_dim'], {'kernel_size': '(4)', 'padding': '(1)'}), '(in_dim, in_dim, kernel_size=4, padding=1)\n', (4845, 4887), True, 'import torch.nn as nn\n'), ((4908, 4917), 'torch.nn.ReLU', 'nn.ReLU', ([], {}), '()\n', (4915, 4917), True, 'import torch.nn as nn\n'), ((4932, 4972), 'torch.nn.Conv1d', 'nn.Conv1d', (['in_dim', 'in_dim'], {'kernel_size': '(4)'}), '(in_dim, in_dim, kernel_size=4)\n', (4941, 4972), True, 'import torch.nn as nn\n'), ((5040, 5091), 'torch.nn.Conv1d', 'nn.Conv1d', (['in_dim', 'in_dim'], {'kernel_size': '(5)', 'padding': '(2)'}), '(in_dim, in_dim, kernel_size=5, padding=2)\n', (5049, 5091), True, 'import torch.nn as nn\n'), ((5113, 5122), 'torch.nn.ReLU', 'nn.ReLU', ([], {}), '()\n', (5120, 5122), True, 'import torch.nn as nn\n'), ((5136, 5179), 'torch.nn.MaxPool1d', 'nn.MaxPool1d', ([], {'kernel_size': '(2)', 'ceil_mode': '(True)'}), '(kernel_size=2, ceil_mode=True)\n', (5148, 5179), True, 'import torch.nn as nn\n'), ((5201, 5252), 'torch.nn.Conv1d', 'nn.Conv1d', (['in_dim', 'in_dim'], {'kernel_size': '(5)', 'padding': '(2)'}), '(in_dim, in_dim, kernel_size=5, padding=2)\n', (5210, 5252), True, 'import torch.nn as nn\n'), ((5274, 5283), 'torch.nn.ReLU', 'nn.ReLU', ([], {}), '()\n', (5281, 5283), True, 'import torch.nn as nn\n'), ((5297, 5340), 'torch.nn.MaxPool1d', 'nn.MaxPool1d', ([], {'kernel_size': '(2)', 'ceil_mode': '(True)'}), '(kernel_size=2, ceil_mode=True)\n', (5309, 5340), True, 'import torch.nn as nn\n'), ((5361, 5412), 'torch.nn.Conv1d', 'nn.Conv1d', (['in_dim', 'in_dim'], {'kernel_size': '(5)', 'padding': '(2)'}), '(in_dim, in_dim, kernel_size=5, padding=2)\n', (5370, 5412), True, 'import torch.nn as nn\n'), ((5433, 5442), 'torch.nn.ReLU', 'nn.ReLU', ([], {}), '()\n', (5440, 5442), True, 'import torch.nn as nn\n'), ((5456, 5499), 'torch.nn.MaxPool1d', 'nn.MaxPool1d', ([], {'kernel_size': '(2)', 'ceil_mode': '(True)'}), '(kernel_size=2, ceil_mode=True)\n', (5468, 5499), True, 'import torch.nn as nn\n'), ((5520, 5571), 'torch.nn.Conv1d', 'nn.Conv1d', (['in_dim', 'in_dim'], {'kernel_size': '(5)', 'padding': '(1)'}), '(in_dim, in_dim, kernel_size=5, padding=1)\n', (5529, 5571), True, 'import torch.nn as nn\n'), ((10063, 10178), 'torch.nn.GRU', 'nn.GRU', ([], {'input_size': 'in_dim', 'hidden_size': 'self.hidden_dim', 'num_layers': 'num_layers', 'dropout': '(0.5)', 'bidirectional': '(True)'}), '(input_size=in_dim, hidden_size=self.hidden_dim, num_layers=\n num_layers, dropout=0.5, bidirectional=True)\n', (10069, 10178), True, 'import torch.nn as nn\n'), ((10306, 10422), 'torch.nn.LSTM', 'nn.LSTM', ([], {'input_size': 'in_dim', 'hidden_size': 'self.hidden_dim', 'num_layers': 'num_layers', 'dropout': '(0.5)', 'bidirectional': '(True)'}), '(input_size=in_dim, hidden_size=self.hidden_dim, num_layers=\n num_layers, dropout=0.5, bidirectional=True)\n', (10313, 10422), True, 'import torch.nn as nn\n'), ((11713, 11722), 'torch.nn.ReLU', 'nn.ReLU', ([], {}), '()\n', (11720, 11722), True, 'import torch.nn as nn\n'), ((11736, 11748), 'torch.nn.Dropout', 'nn.Dropout', ([], {}), '()\n', (11746, 11748), True, 'import torch.nn as nn\n'), ((11762, 11787), 'torch.nn.Linear', 'nn.Linear', (['in_dim', 'n_tags'], {}), '(in_dim, n_tags)\n', (11771, 11787), True, 'import torch.nn as nn\n'), ((12233, 12342), 'torch.nn.GRU', 'nn.GRU', ([], {'input_size': 'in_dim', 'hidden_size': 'hidden_dim', 'num_layers': 'num_layers', 'dropout': '(0.5)', 'bidirectional': '(True)'}), '(input_size=in_dim, hidden_size=hidden_dim, num_layers=num_layers,\n dropout=0.5, bidirectional=True)\n', (12239, 12342), True, 'import torch.nn as nn\n'), ((12471, 12581), 'torch.nn.LSTM', 'nn.LSTM', ([], {'input_size': 'in_dim', 'hidden_size': 'hidden_dim', 'num_layers': 'num_layers', 'dropout': '(0.5)', 'bidirectional': '(True)'}), '(input_size=in_dim, hidden_size=hidden_dim, num_layers=num_layers,\n dropout=0.5, bidirectional=True)\n', (12478, 12581), True, 'import torch.nn as nn\n'), ((12974, 12983), 'torch.nn.ReLU', 'nn.ReLU', ([], {}), '()\n', (12981, 12983), True, 'import torch.nn as nn\n'), ((12997, 13009), 'torch.nn.Dropout', 'nn.Dropout', ([], {}), '()\n', (13007, 13009), True, 'import torch.nn as nn\n'), ((13023, 13056), 'torch.nn.Linear', 'nn.Linear', (['(hidden_dim * 2)', 'n_tags'], {}), '(hidden_dim * 2, n_tags)\n', (13032, 13056), True, 'import torch.nn as nn\n'), ((8155, 8207), 'torch.nn.Conv1d', 'nn.Conv1d', (['in_dim', 'out_dim'], {'kernel_size': '(3)', 'padding': '(1)'}), '(in_dim, out_dim, kernel_size=3, padding=1)\n', (8164, 8207), True, 'import torch.nn as nn\n'), ((8235, 8258), 'torch.nn.BatchNorm1d', 'nn.BatchNorm1d', (['out_dim'], {}), '(out_dim)\n', (8249, 8258), True, 'import torch.nn as nn\n'), ((8286, 8295), 'torch.nn.ReLU', 'nn.ReLU', ([], {}), '()\n', (8293, 8295), True, 'import torch.nn as nn\n'), ((10583, 10694), 'sru.SRU', 'SRU', ([], {'input_size': 'in_dim', 'hidden_size': 'self.hidden_dim', 'num_layers': 'num_layers', 'dropout': '(0.5)', 'bidirectional': '(True)'}), '(input_size=in_dim, hidden_size=self.hidden_dim, num_layers=num_layers,\n dropout=0.5, bidirectional=True)\n', (10586, 10694), False, 'from sru import SRU\n'), ((12743, 12849), 'sru.SRU', 'SRU', ([], {'input_size': 'in_dim', 'hidden_size': 'hidden_dim', 'num_layers': 'num_layers', 'dropout': '(0.5)', 'bidirectional': '(True)'}), '(input_size=in_dim, hidden_size=hidden_dim, num_layers=num_layers,\n dropout=0.5, bidirectional=True)\n', (12746, 12849), False, 'from sru import SRU\n')]
# coding: utf-8 import os.path try: from setuptools import setup extras = dict(zip_safe=False, test_suite='nose.collector', tests_require=['nose']) except ImportError: from distutils.core import setup extras = {} import apscheduler here = os.path.dirname(__file__) readme_path = os.path.join(here, 'README.rst') readme = open(readme_path).read() setup( name='APScheduler', version=apscheduler.release, description='In-process task scheduler with Cron-like capabilities', long_description=readme, author='<NAME>', author_email='<EMAIL>', url='http://pypi.python.org/pypi/APScheduler/', classifiers=[ 'Development Status :: 5 - Production/Stable', 'Intended Audience :: Developers', 'License :: OSI Approved :: MIT License', 'Programming Language :: Python', 'Programming Language :: Python :: 2.6', 'Programming Language :: Python :: 2.7', 'Programming Language :: Python :: 3', 'Programming Language :: Python :: 3.2', 'Programming Language :: Python :: 3.3' ], keywords='scheduling cron', license='MIT', packages=('apscheduler', 'apscheduler.jobstores', 'apscheduler.triggers', 'apscheduler.triggers.cron'), )
[ "distutils.core.setup" ]
[((367, 1185), 'distutils.core.setup', 'setup', ([], {'name': '"""APScheduler"""', 'version': 'apscheduler.release', 'description': '"""In-process task scheduler with Cron-like capabilities"""', 'long_description': 'readme', 'author': '"""<NAME>"""', 'author_email': '"""<EMAIL>"""', 'url': '"""http://pypi.python.org/pypi/APScheduler/"""', 'classifiers': "['Development Status :: 5 - Production/Stable',\n 'Intended Audience :: Developers',\n 'License :: OSI Approved :: MIT License',\n 'Programming Language :: Python',\n 'Programming Language :: Python :: 2.6',\n 'Programming Language :: Python :: 2.7',\n 'Programming Language :: Python :: 3',\n 'Programming Language :: Python :: 3.2',\n 'Programming Language :: Python :: 3.3']", 'keywords': '"""scheduling cron"""', 'license': '"""MIT"""', 'packages': "('apscheduler', 'apscheduler.jobstores', 'apscheduler.triggers',\n 'apscheduler.triggers.cron')"}), "(name='APScheduler', version=apscheduler.release, description=\n 'In-process task scheduler with Cron-like capabilities',\n long_description=readme, author='<NAME>', author_email='<EMAIL>', url=\n 'http://pypi.python.org/pypi/APScheduler/', classifiers=[\n 'Development Status :: 5 - Production/Stable',\n 'Intended Audience :: Developers',\n 'License :: OSI Approved :: MIT License',\n 'Programming Language :: Python',\n 'Programming Language :: Python :: 2.6',\n 'Programming Language :: Python :: 2.7',\n 'Programming Language :: Python :: 3',\n 'Programming Language :: Python :: 3.2',\n 'Programming Language :: Python :: 3.3'], keywords='scheduling cron',\n license='MIT', packages=('apscheduler', 'apscheduler.jobstores',\n 'apscheduler.triggers', 'apscheduler.triggers.cron'))\n", (372, 1185), False, 'from distutils.core import setup\n')]
import os import sys import random def get_next_wallpaper(curr_path): lst_dir = os.listdir() rand_index = random.randint(0, len(lst_dir) - 1) return lst_dir[rand_index] def get_wall_dir(): return "/Users/MYOUNG/Pictures/mmt" def main(): script = "osascript -e 'tell application \"Finder\" to set desktop picture to POSIX file '" path = get_wall_dir() file = get_next_wallpaper(path) # print("FILE = ", file) script = script + path + "/" + file # print("SCRIPT = ", script) os.system(script) main()
[ "os.system", "os.listdir" ]
[((86, 98), 'os.listdir', 'os.listdir', ([], {}), '()\n', (96, 98), False, 'import os\n'), ((514, 531), 'os.system', 'os.system', (['script'], {}), '(script)\n', (523, 531), False, 'import os\n')]
"""Automated CI tools to run with Nox""" import nox from nox import Session locations = "src", "noxfile.py", "docs/conf.py" nox.options.sessions = "lint", "tests" @nox.session(python="3.9") def tests(session: Session) -> None: """Run tests with nox""" session.run("poetry", "install", external=True) session.run("pytest", "--cov") @nox.session(python="3.9") def lint(session: Session) -> None: """Run linting with nox""" session.install( "flake8", "flake8-annotations", "flake8-bandit", "flake8-black", "flake8-bugbear", "flake8-docstrings", "flake8-import-order", ) args = session.posargs or locations session.run("flake8", *args) @nox.session(python="3.9") def black(session: Session) -> None: """Run black with nox""" session.install("black") args = session.posargs or locations session.run("black", *args, "--line-length=120") @nox.session(python="3.9") def pytype(session: Session) -> None: """Run the static type checker.""" args = session.posargs or ["--disable=import-error", *locations] session.install("pytype") session.run("pytype", *args) package = "hypermodern_python" @nox.session(python=["3.9"]) def typeguard(session: Session) -> None: """Run typeguard for type checking with nox""" args = session.posargs or ["-m", "not e2e"] session.run("poetry", "install", "--no-dev", external=True) session.install("pytest", "pytest-mock", "typeguard") session.run("pytest", f"--typeguard-packages={package}", *args) @nox.session(python="3.9") def docs(session: Session) -> None: """Build the documentation.""" session.run("poetry", "install", "--no-dev", external=True) session.install("sphinx", "sphinx-autodoc-typehints") session.run("sphinx-build", "docs", "docs/_build") @nox.session(python="3.9") def coverage(session: Session) -> None: """Upload coverage data.""" session.install("coverage[toml]", "codecov") session.run("coverage", "xml", "--fail-under=0") session.run("codecov", *session.posargs)
[ "nox.session" ]
[((167, 192), 'nox.session', 'nox.session', ([], {'python': '"""3.9"""'}), "(python='3.9')\n", (178, 192), False, 'import nox\n'), ((349, 374), 'nox.session', 'nox.session', ([], {'python': '"""3.9"""'}), "(python='3.9')\n", (360, 374), False, 'import nox\n'), ((728, 753), 'nox.session', 'nox.session', ([], {'python': '"""3.9"""'}), "(python='3.9')\n", (739, 753), False, 'import nox\n'), ((945, 970), 'nox.session', 'nox.session', ([], {'python': '"""3.9"""'}), "(python='3.9')\n", (956, 970), False, 'import nox\n'), ((1216, 1243), 'nox.session', 'nox.session', ([], {'python': "['3.9']"}), "(python=['3.9'])\n", (1227, 1243), False, 'import nox\n'), ((1577, 1602), 'nox.session', 'nox.session', ([], {'python': '"""3.9"""'}), "(python='3.9')\n", (1588, 1602), False, 'import nox\n'), ((1854, 1879), 'nox.session', 'nox.session', ([], {'python': '"""3.9"""'}), "(python='3.9')\n", (1865, 1879), False, 'import nox\n')]
__version__ = "2.1.1" # Work around to update TensorFlow's absl.logging threshold which alters the # default Python logging output behavior when present. # see: https://github.com/abseil/abseil-py/issues/99 # and: https://github.com/tensorflow/tensorflow/issues/26691#issuecomment-500369493 try: import absl.logging absl.logging.set_verbosity('info') absl.logging.set_stderrthreshold('info') absl.logging._warn_preinit_stderr = False except: pass import logging logger = logging.getLogger(__name__) # pylint: disable=invalid-name # Files and general utilities from .file_utils import (TRANSFORMERS_CACHE, PYTORCH_TRANSFORMERS_CACHE, PYTORCH_PRETRAINED_BERT_CACHE, cached_path, add_start_docstrings, add_end_docstrings, WEIGHTS_NAME, TF2_WEIGHTS_NAME, TF_WEIGHTS_NAME, CONFIG_NAME, is_tf_available, is_torch_available) # Tokenizers from .tokenization_utils import (PreTrainedTokenizer) from .tokenization_auto import AutoTokenizer from .tokenization_bert import BertTokenizer, BasicTokenizer, WordpieceTokenizer from .tokenization_openai import OpenAIGPTTokenizer from .tokenization_transfo_xl import (TransfoXLTokenizer, TransfoXLCorpus) from .tokenization_gpt2 import GPT2Tokenizer from .tokenization_ctrl import CTRLTokenizer from .tokenization_xlnet import XLNetTokenizer, SPIECE_UNDERLINE from .tokenization_xlm import XLMTokenizer from .tokenization_roberta import RobertaTokenizer from .tokenization_distilbert import DistilBertTokenizer # Configurations from .configuration_utils import PretrainedConfig from .configuration_auto import AutoConfig from .configuration_bert import BertConfig, BERT_PRETRAINED_CONFIG_ARCHIVE_MAP from .configuration_openai import OpenAIGPTConfig, OPENAI_GPT_PRETRAINED_CONFIG_ARCHIVE_MAP from .configuration_transfo_xl import TransfoXLConfig, TRANSFO_XL_PRETRAINED_CONFIG_ARCHIVE_MAP from .configuration_gpt2 import GPT2Config, GPT2_PRETRAINED_CONFIG_ARCHIVE_MAP from .configuration_ctrl import CTRLConfig, CTRL_PRETRAINED_CONFIG_ARCHIVE_MAP from .configuration_xlnet import XLNetConfig, XLNET_PRETRAINED_CONFIG_ARCHIVE_MAP from .configuration_ctrl import CTRLConfig, CTRL_PRETRAINED_CONFIG_ARCHIVE_MAP from .configuration_xlm import XLMConfig, XLM_PRETRAINED_CONFIG_ARCHIVE_MAP from .configuration_roberta import RobertaConfig, ROBERTA_PRETRAINED_CONFIG_ARCHIVE_MAP from .configuration_distilbert import DistilBertConfig, DISTILBERT_PRETRAINED_CONFIG_ARCHIVE_MAP # Modeling if is_torch_available(): from .modeling_utils import (PreTrainedModel, prune_layer, Conv1D) from .modeling_auto import (AutoModel, AutoModelForSequenceClassification, AutoModelForQuestionAnswering, AutoModelWithLMHead) from .modeling_bert import (BertPreTrainedModel, BertModel, BertForPreTraining, BertForMaskedLM, BertForNextSentencePrediction, BertForSequenceClassification, BertForMultipleChoice, BertForTokenClassification, BertForQuestionAnswering, load_tf_weights_in_bert, BERT_PRETRAINED_MODEL_ARCHIVE_MAP) from .modeling_openai import (OpenAIGPTPreTrainedModel, OpenAIGPTModel, OpenAIGPTLMHeadModel, OpenAIGPTDoubleHeadsModel, load_tf_weights_in_openai_gpt, OPENAI_GPT_PRETRAINED_MODEL_ARCHIVE_MAP) from .modeling_transfo_xl import (TransfoXLPreTrainedModel, TransfoXLModel, TransfoXLLMHeadModel, load_tf_weights_in_transfo_xl, TRANSFO_XL_PRETRAINED_MODEL_ARCHIVE_MAP) from .modeling_gpt2 import (GPT2PreTrainedModel, GPT2Model, GPT2LMHeadModel, GPT2DoubleHeadsModel, load_tf_weights_in_gpt2, GPT2_PRETRAINED_MODEL_ARCHIVE_MAP) from .modeling_ctrl import (CTRLPreTrainedModel, CTRLModel, CTRLLMHeadModel, CTRL_PRETRAINED_MODEL_ARCHIVE_MAP) from .modeling_xlnet import (XLNetPreTrainedModel, XLNetModel, XLNetLMHeadModel, XLNetForSequenceClassification, XLNetForMultipleChoice, XLNetForQuestionAnsweringSimple, XLNetForQuestionAnswering, load_tf_weights_in_xlnet, XLNET_PRETRAINED_MODEL_ARCHIVE_MAP) from .modeling_xlm import (XLMPreTrainedModel , XLMModel, XLMWithLMHeadModel, XLMForSequenceClassification, XLMForQuestionAnswering, XLMForQuestionAnsweringSimple, XLM_PRETRAINED_MODEL_ARCHIVE_MAP) from .modeling_roberta import (RobertaForMaskedLM, RobertaModel, RobertaForSequenceClassification, RobertaForMultipleChoice, ROBERTA_PRETRAINED_MODEL_ARCHIVE_MAP) from .modeling_distilbert import (DistilBertForMaskedLM, DistilBertModel, DistilBertForSequenceClassification, DistilBertForQuestionAnswering, DISTILBERT_PRETRAINED_MODEL_ARCHIVE_MAP) from .modeling_albert import AlbertForSequenceClassification # Optimization from .optimization import (AdamW, ConstantLRSchedule, WarmupConstantSchedule, WarmupCosineSchedule, WarmupCosineWithHardRestartsSchedule, WarmupLinearSchedule) if not is_tf_available() and not is_torch_available(): logger.warning("Neither PyTorch nor TensorFlow >= 2.0 have been found." "Models won't be available and only tokenizers, configuration" "and file/data utilities can be used.")
[ "logging.getLogger" ]
[((494, 521), 'logging.getLogger', 'logging.getLogger', (['__name__'], {}), '(__name__)\n', (511, 521), False, 'import logging\n')]
#!/usr/bin/env python """ Info: This script loads the model trained in the cnn-asl.py script and enables the user to use it for classifying unseen ASL letters. It also visualizes the feature map of the last convolutional layer of the network to enable the user to get an insight into exactly which parts of the original image that the model is paying attention to when classifying the image. Parameters: (optional) model_name: str <name-of-the-model-to-load>, default = "saved_model.json" (optional) train_data: str <name-of-training-data>, default = "asl_alphabet_train_subset" (optional) unseen_image: str <name-of-unseen-image>, default = "unseen_img_test1.png" Usage: $ python use-model.py Output: - unseen_image_superimposed_heatmap.png: superimposed heatmap on unseen image. - unseen_image_prediction.txt: model prediction of unseen image. """ ### DEPENDENCIES ### # Core libraries import os import sys sys.path.append(os.path.join("..")) # Matplotlib, numpy, OpenCV import matplotlib.pyplot as plt import numpy as np import cv2 # TensorFlow import tensorflow as tf from tensorflow.keras.preprocessing.image import (load_img, img_to_array) from tensorflow.keras.applications.resnet import preprocess_input from tensorflow.keras.models import model_from_json from tensorflow.keras import backend as K # argparse import argparse ### MAIN FUNCTION ### def main(): ### ARGPARSE ### # Initialize ArgumentParser class ap = argparse.ArgumentParser() # Argument 1: Model name ap.add_argument("-m", "--model_name", type = str, required = False, # the argument is not required help = "Name of the model", default = "saved_model.json") # default name # Argument 2: Training data ap.add_argument("-t", "--train_data", type = str, required = False, # the argument is not required help = "Name of training data folder", default = "asl_alphabet_train_subset") # default is a subset of the training dataset # Argument 3: Input image ap.add_argument("-u", "--unseen_image", type = str, required = False, # the argument is not required help = "Name of the image the model should classify", default = "unseen_img_test1.png") # default unseen image provided in the unseen_images folder # Parse arguments args = vars(ap.parse_args()) # Save input parameters model_name = args["model_name"] train_data = os.path.join("..", "data", "subset_asl_sign_language", args["train_data"]) unseen_image = args["unseen_image"] # Create output directory if it does not already exist if not os.path.exists(os.path.join("..", "output")): os.mkdir(os.path.join("..", "output")) # Start message print("\n[INFO] Initializing...") # Instantiate the class classifier = Loaded_model_classifier(train_data, unseen_image) # Create list of label names from the directory names in the training data folder labels = classifier.list_labels() # Load the model print(f"\n[INFO] Loading the CNN model, {model_name}, from 'output' directory...") model = classifier.load_model(model_name) # Classify input image print(f"\n[INFO] Using the model to predict the class of {unseen_image}...") label = classifier.classify_unseen_image(labels, model) # Visualize feature map of network for input image print(f"\n[INFO] Visualizing the feature map of the last convolutional layer of the network...") classifier.visualize_feature_map(model) # User message print(f"\n[INFO] Done! The {unseen_image} has been classified as {label} and the feature map of the last convolutional layer of the network has been visualized and saved as {unseen_image}_superimposed_heatmap.png in 'output' directory\n") # Creating classifier class class Loaded_model_classifier: def __init__(self, train_data, unseen_image): # Receive inputs: train data and input image self.train_data = train_data self.unseen_image = unseen_image def list_labels(self): """ This method defines the label names by listing the names of the folders within training directory without listing hidden files. It sorts the names alphabetically. """ # Create empty list labels = [] # For every name in training directory for name in os.listdir(self.train_data): # If it does not start with . (which hidden files do) if not name.startswith('.'): labels.append(name) # Sort labels alphabetically labels = sorted(labels) return labels def load_model(self, model_name): """ This method loads the model and the model weights that are saved in the output directory. """ # Load JSON-file and create model model_path = os.path.join("..", "output", model_name) json_model = open(model_path, "r") # Read file loaded_file = json_model.read() # Create model loaded_model = model_from_json(loaded_file) # Load weights into new model loaded_model.load_weights(os.path.join("..", "output", "model_weights.h5")) # Compile model loaded_model.compile(loss='binary_crossentropy', optimizer='adam', metrics=['accuracy']) return loaded_model def classify_unseen_image(self, labels, model): """ This method takes an unseen image, performs some preprocessing to prepare it for the model, and predicts the class of the image using the model. """ # Define path img_path = os.path.join("..", "data", "unseen_images", self.unseen_image) # Load unseen image image = load_img(img_path, target_size=(224, 224)) # using the same size as the images the model has been trained on # Convert the image to a numpy array image = img_to_array(image) # Reshape the image, because the model expects a tensor of rank 4. The image goes from being 3-dimensional to 4-dimensional: (1, 224, 224, 3) image = image.reshape((1, image.shape[0], image.shape[1], image.shape[2])) # Prepare the image for the ResNet50 model image = preprocess_input(image) # Predict the class of the image prediction = np.argmax(model.predict(image)) # Convert labels to be a dictionary which is needed to extract the label that corresponds to the prediction labels = dict(zip(labels, range(len(labels)))) # Define function that finds the key (letter) that corresponds to the predicted value def find_key(dictionary, value): return {k for k, v in dictionary.items() if v == value} # Extract letter that corresponds to the predicted value from the label dictionary label = find_key(labels, prediction) # Print the predicted class to the terminal print(f"\nThe model predicts {self.unseen_image} to be the letter {label}") # Save prediction as txt-file to output directory with open(os.path.join("..", "output", f"{self.unseen_image}_prediction.txt"), "w") as f: f.write(f"The predicted class of the {self.unseen_image} made by the model is {label}") return label def visualize_feature_map(self, model): """ This method visualizes the feature map of the last convolutional layer of the network. """ # Define path img_path = os.path.join("..", "data", "unseen_images", self.unseen_image) # Load image with dimensions corresponding to training images img = load_img(img_path, target_size=(224, 224)) # Convert image to array x = img_to_array(img) # Convert to rank 4 tensor x = np.expand_dims(x, axis=0) # Preprocess to be in line with ResNet50 data x = preprocess_input(x) # Create activation heatmap for final layer. This is done by taking advantage of how the model learns through gradient descent. We use the gradients that have been learned through training, and we go the opposite way (rather than minimizing we are maximizing). Essentially, we make use of the gradients in the final layer to highlight which regions are particularly informative when predicting a given class. with tf.GradientTape() as tape: # Take the last convolutional layer in the network last_conv_layer = model.get_layer('conv5_block3_out') # Create a model that maps the input image to the activations of the last convolutional layer as well as the output predictions iterate = tf.keras.models.Model([model.inputs], [model.output, last_conv_layer.output]) # Compute the gradient of the top predicted class for the input image with respect to the activations of the last conv layer # Take the gradients from the last layer model_out, last_conv_layer = iterate(x) # Find the class that has been predicted by the model class_out = model_out[:, np.argmax(model_out[0])] # Extract gradient of the output neuron of the last convolutional layer grads = tape.gradient(class_out, last_conv_layer) # Vector of mean intensity of the gradient over a specific feature map channel pooled_grads = K.mean(grads, axis=(0, 1, 2)) # Multiply each channel in the feature map array by "how important this channel is" with regard to the top predicted class. Then sum all the channels to obtain the heatmap class activation heatmap = tf.reduce_mean(tf.multiply(pooled_grads, last_conv_layer), axis=-1) heatmap = np.maximum(heatmap, 0) heatmap /= np.max(heatmap) heatmap = heatmap.reshape((7,7)) plt.matshow(heatmap) # Load unseen image with OpenCV img = cv2.imread(img_path) # Make heatmap semi-transparent intensity = 0.5 # Resize the heatmap to be the original dimensions of the input heatmap = cv2.resize(heatmap, (img.shape[1], img.shape[0])) # Apply colormap heatmap = cv2.applyColorMap(np.uint8(255*heatmap), cv2.COLORMAP_JET) # Multiply heatmap by intensity and 'add' this on top of the original image superimposed = (heatmap * intensity) + img # Save the superimposed image to output directory cv2.imwrite(os.path.join("..", "output", f"{self.unseen_image}_superimposed_heatmap.png"), superimposed) # User message print(f"\n[INFO] The feature map has now been visualized and superimposed on {self.unseen_image}. Find image as {self.unseen_image}_superimposed_heatmap.png in 'output' directory...") # Define behaviour when called from command line if __name__=="__main__": main()
[ "numpy.uint8", "tensorflow.multiply", "tensorflow.GradientTape", "os.listdir", "tensorflow.keras.backend.mean", "argparse.ArgumentParser", "numpy.max", "tensorflow.keras.models.Model", "numpy.maximum", "tensorflow.keras.preprocessing.image.img_to_array", "tensorflow.keras.preprocessing.image.load_img", "tensorflow.keras.applications.resnet.preprocess_input", "numpy.argmax", "cv2.resize", "matplotlib.pyplot.matshow", "cv2.imread", "tensorflow.keras.models.model_from_json", "os.path.join", "numpy.expand_dims" ]
[((960, 978), 'os.path.join', 'os.path.join', (['""".."""'], {}), "('..')\n", (972, 978), False, 'import os\n'), ((1486, 1511), 'argparse.ArgumentParser', 'argparse.ArgumentParser', ([], {}), '()\n', (1509, 1511), False, 'import argparse\n'), ((2663, 2737), 'os.path.join', 'os.path.join', (['""".."""', '"""data"""', '"""subset_asl_sign_language"""', "args['train_data']"], {}), "('..', 'data', 'subset_asl_sign_language', args['train_data'])\n", (2675, 2737), False, 'import os\n'), ((4653, 4680), 'os.listdir', 'os.listdir', (['self.train_data'], {}), '(self.train_data)\n', (4663, 4680), False, 'import os\n'), ((5190, 5230), 'os.path.join', 'os.path.join', (['""".."""', '"""output"""', 'model_name'], {}), "('..', 'output', model_name)\n", (5202, 5230), False, 'import os\n'), ((5390, 5418), 'tensorflow.keras.models.model_from_json', 'model_from_json', (['loaded_file'], {}), '(loaded_file)\n', (5405, 5418), False, 'from tensorflow.keras.models import model_from_json\n'), ((6039, 6101), 'os.path.join', 'os.path.join', (['""".."""', '"""data"""', '"""unseen_images"""', 'self.unseen_image'], {}), "('..', 'data', 'unseen_images', self.unseen_image)\n", (6051, 6101), False, 'import os\n'), ((6159, 6201), 'tensorflow.keras.preprocessing.image.load_img', 'load_img', (['img_path'], {'target_size': '(224, 224)'}), '(img_path, target_size=(224, 224))\n', (6167, 6201), False, 'from tensorflow.keras.preprocessing.image import load_img, img_to_array\n'), ((6342, 6361), 'tensorflow.keras.preprocessing.image.img_to_array', 'img_to_array', (['image'], {}), '(image)\n', (6354, 6361), False, 'from tensorflow.keras.preprocessing.image import load_img, img_to_array\n'), ((6690, 6713), 'tensorflow.keras.applications.resnet.preprocess_input', 'preprocess_input', (['image'], {}), '(image)\n', (6706, 6713), False, 'from tensorflow.keras.applications.resnet import preprocess_input\n'), ((8070, 8132), 'os.path.join', 'os.path.join', (['""".."""', '"""data"""', '"""unseen_images"""', 'self.unseen_image'], {}), "('..', 'data', 'unseen_images', self.unseen_image)\n", (8082, 8132), False, 'import os\n'), ((8230, 8272), 'tensorflow.keras.preprocessing.image.load_img', 'load_img', (['img_path'], {'target_size': '(224, 224)'}), '(img_path, target_size=(224, 224))\n', (8238, 8272), False, 'from tensorflow.keras.preprocessing.image import load_img, img_to_array\n'), ((8331, 8348), 'tensorflow.keras.preprocessing.image.img_to_array', 'img_to_array', (['img'], {}), '(img)\n', (8343, 8348), False, 'from tensorflow.keras.preprocessing.image import load_img, img_to_array\n'), ((8409, 8434), 'numpy.expand_dims', 'np.expand_dims', (['x'], {'axis': '(0)'}), '(x, axis=0)\n', (8423, 8434), True, 'import numpy as np\n'), ((8515, 8534), 'tensorflow.keras.applications.resnet.preprocess_input', 'preprocess_input', (['x'], {}), '(x)\n', (8531, 8534), False, 'from tensorflow.keras.applications.resnet import preprocess_input\n'), ((2864, 2892), 'os.path.join', 'os.path.join', (['""".."""', '"""output"""'], {}), "('..', 'output')\n", (2876, 2892), False, 'import os\n'), ((2912, 2940), 'os.path.join', 'os.path.join', (['""".."""', '"""output"""'], {}), "('..', 'output')\n", (2924, 2940), False, 'import os\n'), ((5496, 5544), 'os.path.join', 'os.path.join', (['""".."""', '"""output"""', '"""model_weights.h5"""'], {}), "('..', 'output', 'model_weights.h5')\n", (5508, 5544), False, 'import os\n'), ((8983, 9000), 'tensorflow.GradientTape', 'tf.GradientTape', ([], {}), '()\n', (8998, 9000), True, 'import tensorflow as tf\n'), ((9335, 9412), 'tensorflow.keras.models.Model', 'tf.keras.models.Model', (['[model.inputs]', '[model.output, last_conv_layer.output]'], {}), '([model.inputs], [model.output, last_conv_layer.output])\n', (9356, 9412), True, 'import tensorflow as tf\n'), ((10201, 10230), 'tensorflow.keras.backend.mean', 'K.mean', (['grads'], {'axis': '(0, 1, 2)'}), '(grads, axis=(0, 1, 2))\n', (10207, 10230), True, 'from tensorflow.keras import backend as K\n'), ((10557, 10579), 'numpy.maximum', 'np.maximum', (['heatmap', '(0)'], {}), '(heatmap, 0)\n', (10567, 10579), True, 'import numpy as np\n'), ((10603, 10618), 'numpy.max', 'np.max', (['heatmap'], {}), '(heatmap)\n', (10609, 10618), True, 'import numpy as np\n'), ((10676, 10696), 'matplotlib.pyplot.matshow', 'plt.matshow', (['heatmap'], {}), '(heatmap)\n', (10687, 10696), True, 'import matplotlib.pyplot as plt\n'), ((10776, 10796), 'cv2.imread', 'cv2.imread', (['img_path'], {}), '(img_path)\n', (10786, 10796), False, 'import cv2\n'), ((10995, 11044), 'cv2.resize', 'cv2.resize', (['heatmap', '(img.shape[1], img.shape[0])'], {}), '(heatmap, (img.shape[1], img.shape[0]))\n', (11005, 11044), False, 'import cv2\n'), ((7609, 7676), 'os.path.join', 'os.path.join', (['""".."""', '"""output"""', 'f"""{self.unseen_image}_prediction.txt"""'], {}), "('..', 'output', f'{self.unseen_image}_prediction.txt')\n", (7621, 7676), False, 'import os\n'), ((10482, 10524), 'tensorflow.multiply', 'tf.multiply', (['pooled_grads', 'last_conv_layer'], {}), '(pooled_grads, last_conv_layer)\n', (10493, 10524), True, 'import tensorflow as tf\n'), ((11127, 11150), 'numpy.uint8', 'np.uint8', (['(255 * heatmap)'], {}), '(255 * heatmap)\n', (11135, 11150), True, 'import numpy as np\n'), ((11423, 11500), 'os.path.join', 'os.path.join', (['""".."""', '"""output"""', 'f"""{self.unseen_image}_superimposed_heatmap.png"""'], {}), "('..', 'output', f'{self.unseen_image}_superimposed_heatmap.png')\n", (11435, 11500), False, 'import os\n'), ((9838, 9861), 'numpy.argmax', 'np.argmax', (['model_out[0]'], {}), '(model_out[0])\n', (9847, 9861), True, 'import numpy as np\n')]
from Algorithmia import ADK # API calls will begin at the apply() method, with the request body passed as 'input' # For more details, see algorithmia.com/developers/algorithm-development/languages def apply(input): # If your apply function uses state that's loaded into memory via load, you can pass that loaded state to your apply # function by defining an additional "globals" parameter in your apply function; but it's optional! return "hello {}".format(str(input)) # This turns your library code into an algorithm that can run on the platform. # If you intend to use loading operations, remember to pass a `load` function as a second variable. algorithm = ADK(apply) # The 'init()' function actually starts the algorithm, you can follow along in the source code # to see how everything works. algorithm.init("Algorithmia")
[ "Algorithmia.ADK" ]
[((677, 687), 'Algorithmia.ADK', 'ADK', (['apply'], {}), '(apply)\n', (680, 687), False, 'from Algorithmia import ADK\n')]
# Copyright 2018 Amazon.com, Inc. or its affiliates. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"). # You may not use this file except in compliance with the License. # A copy of the License is located at # # http://www.apache.org/licenses/LICENSE-2.0 # # or in the "license" file accompanying this file. This file is distributed # on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either # express or implied. See the License for the specific language governing # permissions and limitations under the License. import logging from typing import Callable, Optional, List, Tuple import pandas as pd from autogluon.tabular import TabularPredictor as AutogluonTabularPredictor from gluonts.core.component import validated from gluonts.dataset.common import Dataset from gluonts.dataset.util import to_pandas from gluonts.model.estimator import Estimator from gluonts.time_feature import ( TimeFeature, get_lags_for_frequency, time_features_from_frequency_str, ) from .predictor import ( TabularPredictor, mean_abs_scaling, get_features_dataframe, ) logger = logging.getLogger(__name__) class TabularEstimator(Estimator): """An estimator that trains an Autogluon Tabular model for time series forecasting. Additional keyword arguments to the constructor, other than the ones documented below, will be passed on to Autogluon Tabular's ``fit`` method used for training the model. Parameters ---------- freq Frequency of the data to handle prediction_length Prediction length lag_indices List of indices of the lagged observations to use as features. If None, this will be set automatically based on the frequency. time_features List of time features to be used. If None, this will be set automatically based on the frequency. scaling Function to be used to scale time series. This should take a pd.Series object as input, and return a scaled pd.Series and the scale (float). By default, this divides a series by the mean of its absolute value. batch_size Batch size of the resulting predictor; this is just used at prediction time, and does not affect training in any way. disable_auto_regression Whether to forecefully disable auto-regression in the model. If ``True``, this will remove any lag index which is smaller than ``prediction_length``. This will make predictions more efficient, but may impact their accuracy. quantiles_to_predict Whether to forecast in quantile way. If assigned with quantile values, this will train model using quantile prediction model. If None, then the model will be trained in a regular way. """ @validated() def __init__( self, freq: str, prediction_length: int, lag_indices: Optional[List[int]] = None, time_features: Optional[List[TimeFeature]] = None, scaling: Callable[ [pd.Series], Tuple[pd.Series, float] ] = mean_abs_scaling, batch_size: Optional[int] = 32, disable_auto_regression: bool = False, last_k_for_val: Optional[int] = None, quantiles_to_predict: Optional[List[float]] = None, eval_metric: str = "mean_absolute_error", **kwargs, ) -> None: super().__init__() self.freq = freq self.prediction_length = prediction_length self.lag_indices = ( lag_indices if lag_indices is not None else get_lags_for_frequency(self.freq) ) self.time_features = ( time_features if time_features is not None else time_features_from_frequency_str(self.freq) ) self.batch_size = batch_size self.disable_auto_regression = disable_auto_regression self.scaling = scaling self.last_k_for_val = last_k_for_val self.eval_metric = eval_metric self.quantiles_to_predict = quantiles_to_predict if self.disable_auto_regression: self.lag_indices = [ lag_idx for lag_idx in self.lag_indices if lag_idx >= self.prediction_length ] default_kwargs = { "time_limit": 60, # "excluded_model_types": ["KNN", "XT", "RF"], "presets": [ "high_quality_fast_inference_only_refit", "optimize_for_deployment", ], "auto_stack": True, } self.kwargs = {**default_kwargs, **kwargs} def train( self, training_data: Dataset, validation_data: Optional[Dataset] = None, ) -> TabularPredictor: kwargs_override = {} dfs = [ get_features_dataframe( series=self.scaling(to_pandas(entry))[0], time_features=self.time_features, lag_indices=self.lag_indices, ) for entry in training_data ] if validation_data is not None or self.last_k_for_val is not None: kwargs_override["auto_stack"] = False logger.warning( "Auto Stacking is turned off " "as validation dataset is provided before input into Tabular Predictor." ) if validation_data is not None: logger.log(20, "Validation dataset is directly provided.") validation_dfs = [ get_features_dataframe( series=self.scaling(to_pandas(entry))[0], time_features=self.time_features, lag_indices=self.lag_indices, ) for entry in validation_data ] train_df = pd.concat(dfs) val_df = pd.concat(validation_dfs) elif self.last_k_for_val is not None: logger.log( 20, f"last_k_for_val is provided, choosing last {self.last_k_for_val} of each time series as validation set.", ) train_dfs = [ tmp_df.iloc[: -self.last_k_for_val, :] for tmp_df in dfs ] validation_dfs = [ tmp_df.iloc[-self.last_k_for_val :, :] for tmp_df in dfs ] train_df = pd.concat(train_dfs) val_df = pd.concat(validation_dfs) else: logger.log( 20, "No validation dataset is provided, will let TabularPredictor do the splitting automatically," "Note that this might break the time order of time series data.", ) train_df = pd.concat(dfs) val_df = None if self.quantiles_to_predict is not None: ag_model = AutogluonTabularPredictor( label="target", problem_type="quantile", quantile_levels=self.quantiles_to_predict, ).fit( train_df, tuning_data=val_df, **{**self.kwargs, **kwargs_override}, ) else: ag_model = AutogluonTabularPredictor( label="target", problem_type="regression", eval_metric=self.eval_metric, ).fit( train_df, tuning_data=val_df, **{**self.kwargs, **kwargs_override}, ) return TabularPredictor( ag_model=ag_model, freq=self.freq, prediction_length=self.prediction_length, time_features=self.time_features, lag_indices=self.lag_indices, scaling=self.scaling, batch_size=self.batch_size, quantiles_to_predict=self.quantiles_to_predict, )
[ "logging.getLogger", "autogluon.tabular.TabularPredictor", "gluonts.time_feature.time_features_from_frequency_str", "gluonts.time_feature.get_lags_for_frequency", "gluonts.dataset.util.to_pandas", "pandas.concat", "gluonts.core.component.validated" ]
[((1145, 1172), 'logging.getLogger', 'logging.getLogger', (['__name__'], {}), '(__name__)\n', (1162, 1172), False, 'import logging\n'), ((2824, 2835), 'gluonts.core.component.validated', 'validated', ([], {}), '()\n', (2833, 2835), False, 'from gluonts.core.component import validated\n'), ((3622, 3655), 'gluonts.time_feature.get_lags_for_frequency', 'get_lags_for_frequency', (['self.freq'], {}), '(self.freq)\n', (3644, 3655), False, 'from gluonts.time_feature import TimeFeature, get_lags_for_frequency, time_features_from_frequency_str\n'), ((3781, 3824), 'gluonts.time_feature.time_features_from_frequency_str', 'time_features_from_frequency_str', (['self.freq'], {}), '(self.freq)\n', (3813, 3824), False, 'from gluonts.time_feature import TimeFeature, get_lags_for_frequency, time_features_from_frequency_str\n'), ((5864, 5878), 'pandas.concat', 'pd.concat', (['dfs'], {}), '(dfs)\n', (5873, 5878), True, 'import pandas as pd\n'), ((5900, 5925), 'pandas.concat', 'pd.concat', (['validation_dfs'], {}), '(validation_dfs)\n', (5909, 5925), True, 'import pandas as pd\n'), ((6407, 6427), 'pandas.concat', 'pd.concat', (['train_dfs'], {}), '(train_dfs)\n', (6416, 6427), True, 'import pandas as pd\n'), ((6449, 6474), 'pandas.concat', 'pd.concat', (['validation_dfs'], {}), '(validation_dfs)\n', (6458, 6474), True, 'import pandas as pd\n'), ((6763, 6777), 'pandas.concat', 'pd.concat', (['dfs'], {}), '(dfs)\n', (6772, 6777), True, 'import pandas as pd\n'), ((6878, 6991), 'autogluon.tabular.TabularPredictor', 'AutogluonTabularPredictor', ([], {'label': '"""target"""', 'problem_type': '"""quantile"""', 'quantile_levels': 'self.quantiles_to_predict'}), "(label='target', problem_type='quantile',\n quantile_levels=self.quantiles_to_predict)\n", (6903, 6991), True, 'from autogluon.tabular import TabularPredictor as AutogluonTabularPredictor\n'), ((7223, 7325), 'autogluon.tabular.TabularPredictor', 'AutogluonTabularPredictor', ([], {'label': '"""target"""', 'problem_type': '"""regression"""', 'eval_metric': 'self.eval_metric'}), "(label='target', problem_type='regression',\n eval_metric=self.eval_metric)\n", (7248, 7325), True, 'from autogluon.tabular import TabularPredictor as AutogluonTabularPredictor\n'), ((4931, 4947), 'gluonts.dataset.util.to_pandas', 'to_pandas', (['entry'], {}), '(entry)\n', (4940, 4947), False, 'from gluonts.dataset.util import to_pandas\n'), ((5638, 5654), 'gluonts.dataset.util.to_pandas', 'to_pandas', (['entry'], {}), '(entry)\n', (5647, 5654), False, 'from gluonts.dataset.util import to_pandas\n')]
from XDR_iocs import * import pytest from freezegun import freeze_time Client.severity = 'INFO' client = Client({'url': 'test'}) def d_sort(in_dict): return sorted(in_dict.items()) class TestGetHeaders: @freeze_time('2020-06-01T00:00:00Z') def test_sanity(self, mocker): """ Given: - API key - API key ID Then: - Verify headers created correct. """ params = { "apikey_id": "7", "apikey": "<KEY>" # noqa: E501 } headers = { 'Authorization': 'da94963b561e3c95899d843b1284cecf410606e9e809be528ec1cf03880c6e9e', 'x-iocs-source': 'xsoar', 'x-xdr-auth-id': '7', 'x-xdr-nonce': '1111111111111111111111111111111111111111111111111111111111111111', 'x-xdr-timestamp': '1590969600000' } mocker.patch('secrets.choice', return_value='1') output = get_headers(params) assert output == headers, f'get_headers({params})\n\treturns: {d_sort(output)}\n\tinstead: {d_sort(headers)}' def test_empty_case(self): """ Given: Empty params Then: get_headers will not raise error """ get_headers({}) class TestHttpRequest: class Res: content = 'error'.encode() def __init__(self, code): self.status_code = code @staticmethod def json(): return {} XDR_SERVER_ERROR = 500 INVALID_CREDS = 401 LICENSE_ERROR = 402 PERMISSION_ERROR = 403 OK = 200 data_test_http_request_error_codes = [ (OK, {}), (XDR_SERVER_ERROR, 'XDR internal server error.\t(error)'), (INVALID_CREDS, 'Unauthorized access. An issue occurred during authentication. This can indicate an incorrect key, id, or other invalid authentication parameters.\t(error)'), # noqa: E501 (LICENSE_ERROR, 'Unauthorized access. User does not have the required license type to run this API.\t(error)'), (PERMISSION_ERROR, 'Unauthorized access. The provided API key does not have the required RBAC permissions to run this API.\t(error)') # noqa: E501 ] @pytest.mark.parametrize('res, expected_output', data_test_http_request_error_codes) def test_http_request_error_codes(self, res, expected_output, mocker): """ Given: - Status code When: - http_request returns this status code. Then: - Verify error/success format. """ mocker.patch('requests.post', return_value=self.Res(res)) try: output = client.http_request('', {}) except DemistoException as error: output = str(error) assert output == expected_output, f'status code {res}\n\treturns: {output}\n\tinstead: {expected_output}' class TestGetRequestsKwargs: def test_with_file(self, mocker): """ Given: - file to upload Then: - Verify output format. """ def override_open(open_path, *_other): return open_path mocker.patch('builtins.open', side_effect=override_open) path = '/Users/some_user/some_dir/some_file.file' output = get_requests_kwargs(file_path=path) expected_output = {'files': [('file', ('iocs.json', path, 'application/json'))]} assert output == expected_output, f'get_requests_kwargs(file_path={path})\n\treturns: {output}\n\t instead: {expected_output}' # noqa: E501 def test_with_json(self): """ Given: - simple json Then: - the json ready to send """ _json = {'test': 'test'} output = get_requests_kwargs(_json=_json) expected_output = {'data': '{"request_data": {"test": "test"}}'} assert output == expected_output, f'get_requests_kwargs(_json={_json})\n\treturns: {output}\n\t instead: {expected_output}' # noqa: E501 class TestPrepareCommands: def test_prepare_get_changes(self): """ Given: - get changes command Then: - Verify url and json format. """ ts = int(datetime.now(timezone.utc).timestamp() * 1000) url_suffix, _json = prepare_get_changes(ts) assert url_suffix == 'get_changes', f'prepare_get_changes\n\treturns url_suffix: {url_suffix}\n\tinstead url_suffix: get_changes' # noqa: E501 assert _json == {'last_update_ts': ts} def test_prepare_enable_iocs(self): """ Given: - enable iocs command Then: - Verify url and json format. """ url_suffix, iocs = prepare_enable_iocs('8.8.8.8,domain.com') assert url_suffix == 'enable_iocs', f'prepare_enable_iocs\n\treturns url_suffix: {url_suffix}\n\tinstead url_suffix: enable_iocs' # noqa: E501 assert iocs == ['8.8.8.8', 'domain.com'] def test_prepare_disable_iocs(self): """ Given: - disable iocs command Then: - Verify url and json format. """ url_suffix, iocs = prepare_disable_iocs('8.8.8.8,domain.com') assert url_suffix == 'disable_iocs', f'prepare_disable_iocs\n\treturns url_suffix: {url_suffix}\n\tinstead url_suffix: disable_iocs' # noqa: E501 assert iocs == ['8.8.8.8', 'domain.com'] class TestCreateFile: path = 'test_data/sync_file_test.json' data_test_create_file_sync = [ ('Domain_iocs', 'Domain_sync_file'), ('IP_iocs', 'IP_sync_file'), ('File_iocs', 'File_sync_file') ] data_test_create_file_iocs_to_keep = [ ('Domain_iocs', 'Domain_iocs_to_keep_file'), ('IP_iocs', 'IP_iocs_to_keep_file'), ('File_iocs', 'File_iocs_to_keep_file') ] def setup(self): # creates the file with open(TestCreateFile.path, 'w') as _file: _file.write('') def teardown(self): # removes the file when done os.remove(TestCreateFile.path) @staticmethod def get_file(path): with open(path, 'r') as _file: return _file.read() @staticmethod def get_all_iocs(go_over, extension): iocs = [] total = 0 data = [] for in_iocs, out_iocs in go_over: ioc = json.loads(TestCreateFile.get_file(f'test_data/{in_iocs}.json')) iocs.extend(ioc['iocs']) total += ioc['total'] data.append(TestCreateFile.get_file(f'test_data/{out_iocs}.{extension}')) all_iocs = {'iocs': iocs, 'total': total} all_data = ''.join(data) return all_iocs, all_data def test_create_file_sync_without_iocs(self, mocker): """ Given: - Sync command When: - there is no iocs Then: - Verify sync file data. """ mocker.patch.object(demisto, 'searchIndicators', return_value={}) create_file_sync(TestCreateFile.path) data = self.get_file(TestCreateFile.path) expected_data = '' assert data == expected_data, f'create_file_sync with no iocs\n\tcreates: {data}\n\tinstead: {expected_data}' @pytest.mark.parametrize('in_iocs, out_iocs', data_test_create_file_sync) def test_create_file_sync(self, in_iocs, out_iocs, mocker): """ Given: - Sync command When: - iocs type is a specific type. Then: - Verify sync file data. """ mocker.patch.object(demisto, 'searchIndicators', return_value=json.loads(self.get_file(f'test_data/{in_iocs}.json'))) # noqa: E501 create_file_sync(TestCreateFile.path) data = self.get_file(TestCreateFile.path) expected_data = self.get_file(f'test_data/{out_iocs}.txt') assert data == expected_data, f'create_file_sync with {in_iocs} iocs\n\tcreates: {data}\n\tinstead: {expected_data}' def test_create_file_sync_all_types(self, mocker): """ Given: - Sync command When: - iocs as all types Then: - Verify sync file data. """ all_iocs, expected_data = self.get_all_iocs(self.data_test_create_file_sync, 'txt') mocker.patch.object(demisto, 'searchIndicators', return_value=all_iocs) create_file_sync(TestCreateFile.path) data = self.get_file(TestCreateFile.path) assert data == expected_data, f'create_file_sync with all iocs\n\tcreates: {data}\n\tinstead: {expected_data}' data_test_create_file_with_empty_indicators = [ {}, {'value': '11.11.11.11'}, {'indicator_type': 'IP'} ] @pytest.mark.parametrize('defective_indicator', data_test_create_file_with_empty_indicators) def test_create_file_sync_with_empty_indicators(self, defective_indicator, mocker): """ Given: - Sync command When: - a part iocs dont have all required data Then: - Verify sync file data. """ all_iocs, expected_data = self.get_all_iocs(self.data_test_create_file_sync, 'txt') all_iocs['iocs'].append(defective_indicator) all_iocs['total'] += 1 mocker.patch.object(demisto, 'searchIndicators', return_value=all_iocs) warnings = mocker.patch.object(demisto, 'debug') create_file_sync(TestCreateFile.path) data = self.get_file(TestCreateFile.path) assert data == expected_data, f'create_file_sync with all iocs\n\tcreates: {data}\n\tinstead: {expected_data}' error_msg = warnings.call_args.args[0] assert error_msg.startswith("unexpected IOC format in key: '"), f"create_file_sync empty message\n\tstarts: {error_msg}\n\tinstead: unexpected IOC format in key: '" # noqa: E501 assert error_msg.endswith(f"', {str(defective_indicator)}"), f"create_file_sync empty message\n\tends: {error_msg}\n\tinstead: ', {str(defective_indicator)}" # noqa: E501 def test_create_file_iocs_to_keep_without_iocs(self, mocker): """ Given: - iocs to keep command When: - there is no iocs Then: - Verify iocs to keep file data. """ mocker.patch.object(demisto, 'searchIndicators', return_value={}) create_file_iocs_to_keep(TestCreateFile.path) data = self.get_file(TestCreateFile.path) expected_data = '' assert data == expected_data, f'create_file_iocs_to_keep with no iocs\n\tcreates: {data}\n\tinstead: {expected_data}' @pytest.mark.parametrize('in_iocs, out_iocs', data_test_create_file_iocs_to_keep) def test_create_file_iocs_to_keep(self, in_iocs, out_iocs, mocker): """ Given: - iocs to keep command When: - iocs type is a specific type. Then: - Verify iocs to keep file data. """ mocker.patch.object(demisto, 'searchIndicators', return_value=json.loads( self.get_file(f'test_data/{in_iocs}.json'))) create_file_iocs_to_keep(TestCreateFile.path) data = self.get_file(TestCreateFile.path) expected_data = self.get_file(f'test_data/{out_iocs}.txt') assert data == expected_data, f'create_file_iocs_to_keep with {in_iocs} iocs\n\tcreates: {data}\n\tinstead: {expected_data}' # noqa: E501 def test_create_file_iocs_to_keep_all_types(self, mocker): """ Given: - iocs to keep command When: - iocs as all types Then: - Verify iocs to keep file data. """ all_iocs, expected_data = self.get_all_iocs(self.data_test_create_file_iocs_to_keep, 'txt') mocker.patch.object(demisto, 'searchIndicators', return_value=all_iocs) create_file_iocs_to_keep(TestCreateFile.path) data = self.get_file(TestCreateFile.path) assert data == expected_data, f'create_file_iocs_to_keep with all iocs\n\tcreates: {data}\n\tinstead: {expected_data}' class TestDemistoIOCToXDR: data_test_demisto_expiration_to_xdr = [ (None, -1), ('', -1), ('0001-01-01T00:00:00Z', -1), ('2020-06-03T00:00:00Z', 1591142400000) ] @pytest.mark.parametrize('demisto_expiration, xdr_expiration', data_test_demisto_expiration_to_xdr) def test_demisto_expiration_to_xdr(self, demisto_expiration, xdr_expiration): """ Given: - demisto indicator expiration Then: - Verify XDR expiration. """ output = demisto_expiration_to_xdr(demisto_expiration) assert xdr_expiration == output, f'demisto_expiration_to_xdr({demisto_expiration})\n\treturns: {output}\n\tinstead: {xdr_expiration}' # noqa: E501 data_test_demisto_reliability_to_xdr = [ (None, 'F'), ('A - Completely reliable', 'A'), ('B - Usually reliable', 'B'), ('C - Fairly reliable', 'C'), ('D - Not usually reliable', 'D'), ('E - Unreliable', 'E'), ('F - Reliability cannot be judged', 'F') ] @pytest.mark.parametrize('demisto_reliability, xdr_reliability', data_test_demisto_reliability_to_xdr) def test_demisto_reliability_to_xdr(self, demisto_reliability, xdr_reliability): """ Given: - demisto indicator reliability Then: - Verify XDR reliability. """ output = demisto_reliability_to_xdr(demisto_reliability) assert output == xdr_reliability, f'demisto_reliability_to_xdr({demisto_reliability})\n\treturns: {output}\n\tinstead: {xdr_reliability}' # noqa: E501 data_test_demisto_types_to_xdr = [ ('File', 'HASH'), ('IP', 'IP'), ('Domain', 'DOMAIN_NAME') ] @pytest.mark.parametrize('demisto_type, xdr_type', data_test_demisto_types_to_xdr) def test_demisto_types_to_xdr(self, demisto_type, xdr_type): """ Given: - demisto indicator type Then: - Verify XDR type. """ output = demisto_types_to_xdr(demisto_type) assert output == xdr_type, f'demisto_reliability_to_xdr({demisto_type})\n\treturns: {output}\n\tinstead: {xdr_type}' data_test_demisto_vendors_to_xdr = [ ( {'moduleID': {'sourceBrand': 'test', 'reliability': 'A - Completely reliable', 'score': 2}}, {'vendor_name': 'test', 'reputation': 'SUSPICIOUS', 'reliability': 'A'} ), ( {'moduleID': {'reliability': 'A - Completely reliable', 'score': 2}}, {'vendor_name': 'moduleID', 'reputation': 'SUSPICIOUS', 'reliability': 'A'} ), ( {'moduleID': {'sourceBrand': 'test', 'score': 2}}, {'vendor_name': 'test', 'reputation': 'SUSPICIOUS', 'reliability': 'F'} ), ( {'moduleID': {'reliability': 'A - Completely reliable', 'score': 0}}, {'vendor_name': 'moduleID', 'reputation': 'UNKNOWN', 'reliability': 'A'} ) ] @pytest.mark.parametrize('demisto_vendor, xdr_vendor', data_test_demisto_vendors_to_xdr) def test_demisto_vendors_to_xdr(self, demisto_vendor, xdr_vendor): """ Given: - demisto indicator vendors reports. Then: - Verify XDR vendors format. """ output = demisto_vendors_to_xdr(demisto_vendor)[0] assert output == xdr_vendor, f'demisto_vendors_to_xdr({demisto_vendor})\n\treturns: {d_sort(output)}\n\tinstead: {d_sort(xdr_vendor)}' # noqa: E501 data_test_demisto_ioc_to_xdr = [ ( {'value': '11.11.11.11', 'indicator_type': 'IP', 'score': 2}, {'expiration_date': -1, 'indicator': '11.11.11.11', 'reputation': 'SUSPICIOUS', 'severity': 'INFO', 'type': 'IP'} ), ( {'value': '11.11.11.11', 'indicator_type': 100, 'score': 2}, {'expiration_date': -1, 'indicator': '11.11.11.11', 'reputation': 'SUSPICIOUS', 'severity': 'INFO', 'type': '100'} ), ( {'value': '11.11.11.11', 'indicator_type': 'IP'}, {'expiration_date': -1, 'indicator': '11.11.11.11', 'reputation': 'UNKNOWN', 'severity': 'INFO', 'type': 'IP'} ), ( {'value': '11.11.11.11', 'indicator_type': 'IP', 'expiration': '2020-06-03T00:00:00Z'}, {'expiration_date': 1591142400000, 'indicator': '11.11.11.11', 'reputation': 'UNKNOWN', 'severity': 'INFO', 'type': 'IP'} # noqa: E501 ), ( {'value': '11.11.11.11', 'indicator_type': 'IP', 'comments': [{'type': 'IndicatorCommentTimeLine', 'content': 'test'}]}, # noqa: E501 {'expiration_date': -1, 'indicator': '11.11.11.11', 'reputation': 'UNKNOWN', 'severity': 'INFO', 'type': 'IP'} ), ( {'value': '11.11.11.11', 'indicator_type': 'IP', 'comments': [{'type': 'IndicatorCommentRegular', 'content': 'test'}]}, # noqa: E501 {'expiration_date': -1, 'indicator': '11.11.11.11', 'reputation': 'UNKNOWN', 'severity': 'INFO', 'type': 'IP', 'comment': 'test'} # noqa: E501 ), ( {'value': '11.11.11.11', 'indicator_type': 'IP', 'comments': [{'type': 'IndicatorCommentRegular', 'content': 'test'}, {'type': 'IndicatorCommentRegular', 'content': 'this is the comment'}]}, # noqa: E501 {'expiration_date': -1, 'indicator': '11.11.11.11', 'reputation': 'UNKNOWN', 'severity': 'INFO', 'type': 'IP', 'comment': 'this is the comment'} # noqa: E501 ), ( {'value': '11.11.11.11', 'indicator_type': 'IP', 'aggregatedReliability': 'A - Completely reliable'}, {'expiration_date': -1, 'indicator': '11.11.11.11', 'reputation': 'UNKNOWN', 'severity': 'INFO', 'type': 'IP', 'reliability': 'A'} # noqa: E501 ), ( {'value': '11.11.11.11', 'indicator_type': 'IP', 'CustomFields': {'threattypes': {'threatcategory': 'Malware'}}}, # noqa: E501 {'expiration_date': -1, 'indicator': '11.11.11.11', 'reputation': 'UNKNOWN', 'severity': 'INFO', 'type': 'IP', 'class': 'Malware'} # noqa: E501 ), ( {'value': '11.11.11.11', 'indicator_type': 'IP', 'moduleToFeedMap': {'module': {'sourceBrand': 'test', 'score': 2}}}, # noqa: E501 {'expiration_date': -1, 'indicator': '11.11.11.11', 'reputation': 'UNKNOWN', 'severity': 'INFO', 'type': 'IP', 'vendors': [{'vendor_name': 'test', 'reputation': 'SUSPICIOUS', 'reliability': 'F'}]} # noqa: E501 ) ] @pytest.mark.parametrize('demisto_ioc, xdr_ioc', data_test_demisto_ioc_to_xdr) def test_demisto_ioc_to_xdr(self, demisto_ioc, xdr_ioc): """ Given: - demisto indicator. Then: - Verify XDR indicator format. """ output = demisto_ioc_to_xdr(demisto_ioc) assert output == xdr_ioc, f'demisto_ioc_to_xdr({demisto_ioc})\n\treturns: {d_sort(output)}\n\tinstead: {d_sort(xdr_ioc)}' # noqa: E501 def test_empty_demisto_ioc_to_xdr(self, mocker): warnings = mocker.patch.object(demisto, 'debug') output = demisto_ioc_to_xdr({}) assert output == {}, 'demisto_ioc_to_xdr({})\n\treturns: ' + str(d_sort(output)) + '\n\tinstead: {}' assert warnings.call_args.args[0] == "unexpected IOC format in key: 'value', {}" class TestXDRIOCToDemisto: data_test_xdr_expiration_to_demisto = [ (-1, 'Never'), (1591142400000, '2020-06-03T00:00:00Z'), (1592142400000, '2020-06-14T13:46:40Z') ] @pytest.mark.parametrize('xdr_expiration, demisto_expiration', data_test_xdr_expiration_to_demisto) def test_xdr_expiration_to_demisto(self, xdr_expiration, demisto_expiration): """ Given: - expiration in XDR format. Then: - expiration in demisto format. """ output = xdr_expiration_to_demisto(xdr_expiration) assert output == demisto_expiration, f'xdr_expiration_to_demisto({xdr_expiration})\n\treturns: {output}\n\tinstead: {demisto_expiration}' # noqa: E501 data_test_xdr_ioc_to_demisto = [ ( { 'RULE_ID': 863, 'RULE_INSERT_TIME': 1591165763753, 'RULE_MODIFY_TIME': 1591166095668, 'RULE_SEVERITY': 'SEV_010_INFO', 'NUMBER_OF_HITS': 0, 'RULE_SOURCE': 'XSOAR TIM', 'RULE_COMMENT': '', 'RULE_STATUS': 'DISABLED', 'BS_STATUS': 'DONE', 'BS_TS': 1591165801230, 'BS_RETRIES': 1, 'RULE_EXPIRATION_TIME': -1, 'IOC_TYPE': 'HASH', 'RULE_INDICATOR': 'fa66f1e0e318b6d7b595b6cee580dc0d8e4ac38fbc8dbfcac6ad66dbe282832e', 'REPUTATION': 'GOOD', # noqa: E501 'RELIABILITY': None, 'VENDORS': None, 'KLASS': None, 'IS_DEFAULT_TTL': False, 'RULE_TTL': -1, 'MARKED_DELETED': 0 }, { 'value': 'fa66f1e0e318b6d7b595b6cee580dc0d8e4ac38fbc8dbfcac6ad66dbe282832e', 'type': 'File', 'score': 1, 'fields': { 'expirationdate': 'Never', 'tags': 'Cortex XDR', 'xdrstatus': 'disabled' } } ), ( { 'RULE_ID': 861, 'RULE_INSERT_TIME': 1591165763753, 'RULE_MODIFY_TIME': 1591166095668, 'RULE_SEVERITY': 'SEV_010_INFO', 'NUMBER_OF_HITS': 0, 'RULE_SOURCE': 'XSOAR TIM', 'RULE_COMMENT': '', 'RULE_STATUS': 'DISABLED', 'BS_STATUS': 'DONE', 'BS_TS': 1591165801784, 'BS_RETRIES': 1, 'RULE_EXPIRATION_TIME': -1, 'IOC_TYPE': 'DOMAIN_NAME', 'RULE_INDICATOR': 'test.com', 'REPUTATION': 'GOOD', # noqa: E501 'RELIABILITY': None, 'VENDORS': None, 'KLASS': None, 'IS_DEFAULT_TTL': False, 'RULE_TTL': -1, 'MARKED_DELETED': 0 }, { 'value': 'test.com', 'type': 'Domain', 'score': 1, 'fields': { 'expirationdate': 'Never', 'tags': 'Cortex XDR', 'xdrstatus': 'disabled' } } ), ( { 'RULE_ID': 862, 'RULE_INSERT_TIME': 1591165763753, 'RULE_MODIFY_TIME': 1591166095668, 'RULE_SEVERITY': 'SEV_010_INFO', 'NUMBER_OF_HITS': 0, 'RULE_SOURCE': 'XSOAR TIM', 'RULE_COMMENT': '', 'RULE_STATUS': 'ENABLED', 'BS_STATUS': 'DONE', 'BS_TS': 1591165801784, 'BS_RETRIES': 1, 'RULE_EXPIRATION_TIME': -1, 'IOC_TYPE': 'DOMAIN_NAME', 'RULE_INDICATOR': 'test.co.il', 'REPUTATION': 'SUSPICIOUS', 'RELIABILITY': 'A', 'VENDORS': [{'vendor_name': 'Cortex XDR - IOC', 'reputation': 'SUSPICIOUS', 'reliability': 'A'}], 'KLASS': None, 'IS_DEFAULT_TTL': False, 'RULE_TTL': -1, 'MARKED_DELETED': 0 }, { 'value': 'test.co.il', 'type': 'Domain', 'score': 2, 'fields': { 'expirationdate': 'Never', 'tags': 'Cortex XDR', 'xdrstatus': 'enabled' } } ) ] @pytest.mark.parametrize('xdr_ioc, demisto_ioc', data_test_xdr_ioc_to_demisto) def test_xdr_ioc_to_demisto(self, xdr_ioc, demisto_ioc, mocker): """ Given: - IOC in XDR format. Then: - IOC in demisto format. """ mocker.patch.object(demisto, 'searchIndicators', return_value={}) output = xdr_ioc_to_demisto(xdr_ioc) del output['rawJSON'] assert output == demisto_ioc, f'xdr_ioc_to_demisto({xdr_ioc})\n\treturns: {d_sort(output)}\n\tinstead: {d_sort(demisto_ioc)}' # noqa: E501 class TestCommands: # test commands full flow class TestIOCSCommand: def test_iocs_command_with_enable(self, mocker): """ Given: - enable command Then: - Verify enable command is called. """ mocker.patch.object(demisto, 'command', return_value='xdr-iocs-enable') mocker.patch.object(demisto, 'args', return_value={'indicator': '11.11.11.11'}) mocker.patch('XDR_iocs.Client.http_request', return_value={}) outputs = mocker.patch('XDR_iocs.return_outputs') enable_ioc = mocker.patch('XDR_iocs.prepare_enable_iocs', side_effect=prepare_enable_iocs) iocs_command(client) output = outputs.call_args.args[0] assert output == 'indicators 11.11.11.11 enabled.', f'enable command\n\tprints: {output}\n\tinstead: indicators 11.11.11.11 enabled.' # noqa: E501 assert enable_ioc.call_count == 1, 'enable command not called' def test_iocs_command_with_disable(self, mocker): """ Given: - disable command Then: - Verify disable command is called. """ mocker.patch.object(demisto, 'command', return_value='xdr-iocs-disable') mocker.patch.object(demisto, 'args', return_value={'indicator': '11.11.11.11'}) mocker.patch('XDR_iocs.Client.http_request', return_value={}) outputs = mocker.patch('XDR_iocs.return_outputs') disable_ioc = mocker.patch('XDR_iocs.prepare_disable_iocs', side_effect=prepare_disable_iocs) iocs_command(client) output = outputs.call_args.args[0] assert output == 'indicators 11.11.11.11 disabled.', f'disable command\n\tprints: {output}\n\tinstead: indicators 11.11.11.11 disabled.' # noqa: E501 assert disable_ioc.call_count == 1, 'disable command not called' def test_sync(self, mocker): http_request = mocker.patch.object(Client, 'http_request') iocs, data = TestCreateFile.get_all_iocs(TestCreateFile.data_test_create_file_sync, 'txt') mocker.patch.object(demisto, 'searchIndicators', returnvalue=iocs) mocker.patch('XDR_iocs.return_outputs') sync(client) assert http_request.call_args.args[0] == 'sync_tim_iocs', 'sync command url changed' @freeze_time('2020-06-03T02:00:00Z') def test_iocs_to_keep(self, mocker): http_request = mocker.patch.object(Client, 'http_request') iocs, data = TestCreateFile.get_all_iocs(TestCreateFile.data_test_create_file_iocs_to_keep, 'txt') mocker.patch.object(demisto, 'searchIndicators', returnvalue=iocs) mocker.patch('XDR_iocs.return_outputs') iocs_to_keep(client) assert http_request.call_args.args[0] == 'iocs_to_keep', 'iocs_to_keep command url changed' def test_tim_insert_jsons(self, mocker): http_request = mocker.patch.object(Client, 'http_request') mocker.patch.object(demisto, 'getIntegrationContext', return_value={'time': '2020-06-03T00:00:00Z'}) iocs, _ = TestCreateFile.get_all_iocs(TestCreateFile.data_test_create_file_sync, 'txt') mocker.patch.object(demisto, 'searchIndicators', return_value=iocs) mocker.patch('XDR_iocs.return_outputs') tim_insert_jsons(client) assert http_request.call_args.kwargs['url_suffix'] == 'tim_insert_jsons/', 'tim_insert_jsons command url changed' def test_get_changes(self, mocker): mocker.patch.object(demisto, 'getIntegrationContext', return_value={'ts': 1591142400000}) mocker.patch.object(demisto, 'createIndicators') mocker.patch.object(demisto, 'searchIndicators', return_value={}) xdr_res = {'reply': list(map(lambda xdr_ioc: xdr_ioc[0], TestXDRIOCToDemisto.data_test_xdr_ioc_to_demisto))} mocker.patch.object(Client, 'http_request', return_value=xdr_res) get_changes(client) xdr_ioc_to_timeline(list(map(lambda x: str(x[0].get('RULE_INDICATOR')), TestXDRIOCToDemisto.data_test_xdr_ioc_to_demisto))) # noqa: E501 class TestParams: tags_test = [ ( {'value': '11.11.11.11', 'indicator_type': 'IP', 'score': 2}, {'expiration_date': -1, 'indicator': '11.11.11.11', 'reputation': 'SUSPICIOUS', 'severity': 'INFO', 'type': 'IP'}, {'tlp_color': ''}, 'Cortex XDR', None ), ( {'value': '11.11.11.11', 'indicator_type': 'IP', 'score': 2}, {'expiration_date': -1, 'indicator': '11.11.11.11', 'reputation': 'SUSPICIOUS', 'severity': 'INFO', 'type': 'IP'}, {'tag': 'tag1'}, 'tag1', None ), ( {'value': '11.11.11.11', 'indicator_type': 'IP', 'score': 2}, {'expiration_date': -1, 'indicator': '11.11.11.11', 'reputation': 'SUSPICIOUS', 'severity': 'INFO', 'type': 'IP'}, {'feedTags': 'tag2', 'tlp_color': 'AMBER'}, 'tag2', 'AMBER' ) ] @pytest.mark.parametrize('demisto_ioc, xdr_ioc, param_value, expected_tags, expected_tlp_color', tags_test) def test_feed_tags_and_tlp_color(self, demisto_ioc, xdr_ioc, param_value, expected_tags, expected_tlp_color, mocker): """ Given: - IOC in XDR format. Then: - IOC in demisto format. """ mocker.patch.object(demisto, 'searchIndicators', return_value={}) mocker.patch.object(demisto, 'params', return_value=param_value) mocker.patch.object(demisto, 'getIntegrationContext', return_value={'ts': 1591142400000}) mocker.patch.object(demisto, 'searchIndicators', return_value={}) outputs = mocker.patch.object(demisto, 'createIndicators') Client.tag = demisto.params().get('feedTags', demisto.params().get('tag', Client.tag)) Client.tlp_color = demisto.params().get('tlp_color') client = Client({'url': 'yana'}) xdr_res = {'reply': list(map(lambda xdr_ioc: xdr_ioc[0], TestXDRIOCToDemisto.data_test_xdr_ioc_to_demisto))} mocker.patch.object(Client, 'http_request', return_value=xdr_res) get_changes(client) output = outputs.call_args.args[0] assert output[0]['fields']['tags'] == expected_tags assert output[0]['fields'].get('trafficlightprotocol') == expected_tlp_color
[ "pytest.mark.parametrize", "freezegun.freeze_time" ]
[((218, 253), 'freezegun.freeze_time', 'freeze_time', (['"""2020-06-01T00:00:00Z"""'], {}), "('2020-06-01T00:00:00Z')\n", (229, 253), False, 'from freezegun import freeze_time\n'), ((2243, 2330), 'pytest.mark.parametrize', 'pytest.mark.parametrize', (['"""res, expected_output"""', 'data_test_http_request_error_codes'], {}), "('res, expected_output',\n data_test_http_request_error_codes)\n", (2266, 2330), False, 'import pytest\n'), ((7399, 7471), 'pytest.mark.parametrize', 'pytest.mark.parametrize', (['"""in_iocs, out_iocs"""', 'data_test_create_file_sync'], {}), "('in_iocs, out_iocs', data_test_create_file_sync)\n", (7422, 7471), False, 'import pytest\n'), ((8937, 9032), 'pytest.mark.parametrize', 'pytest.mark.parametrize', (['"""defective_indicator"""', 'data_test_create_file_with_empty_indicators'], {}), "('defective_indicator',\n data_test_create_file_with_empty_indicators)\n", (8960, 9032), False, 'import pytest\n'), ((10880, 10965), 'pytest.mark.parametrize', 'pytest.mark.parametrize', (['"""in_iocs, out_iocs"""', 'data_test_create_file_iocs_to_keep'], {}), "('in_iocs, out_iocs', data_test_create_file_iocs_to_keep\n )\n", (10903, 10965), False, 'import pytest\n'), ((12595, 12697), 'pytest.mark.parametrize', 'pytest.mark.parametrize', (['"""demisto_expiration, xdr_expiration"""', 'data_test_demisto_expiration_to_xdr'], {}), "('demisto_expiration, xdr_expiration',\n data_test_demisto_expiration_to_xdr)\n", (12618, 12697), False, 'import pytest\n'), ((13470, 13575), 'pytest.mark.parametrize', 'pytest.mark.parametrize', (['"""demisto_reliability, xdr_reliability"""', 'data_test_demisto_reliability_to_xdr'], {}), "('demisto_reliability, xdr_reliability',\n data_test_demisto_reliability_to_xdr)\n", (13493, 13575), False, 'import pytest\n'), ((14169, 14254), 'pytest.mark.parametrize', 'pytest.mark.parametrize', (['"""demisto_type, xdr_type"""', 'data_test_demisto_types_to_xdr'], {}), "('demisto_type, xdr_type',\n data_test_demisto_types_to_xdr)\n", (14192, 14254), False, 'import pytest\n'), ((15441, 15532), 'pytest.mark.parametrize', 'pytest.mark.parametrize', (['"""demisto_vendor, xdr_vendor"""', 'data_test_demisto_vendors_to_xdr'], {}), "('demisto_vendor, xdr_vendor',\n data_test_demisto_vendors_to_xdr)\n", (15464, 15532), False, 'import pytest\n'), ((18998, 19075), 'pytest.mark.parametrize', 'pytest.mark.parametrize', (['"""demisto_ioc, xdr_ioc"""', 'data_test_demisto_ioc_to_xdr'], {}), "('demisto_ioc, xdr_ioc', data_test_demisto_ioc_to_xdr)\n", (19021, 19075), False, 'import pytest\n'), ((20033, 20135), 'pytest.mark.parametrize', 'pytest.mark.parametrize', (['"""xdr_expiration, demisto_expiration"""', 'data_test_xdr_expiration_to_demisto'], {}), "('xdr_expiration, demisto_expiration',\n data_test_xdr_expiration_to_demisto)\n", (20056, 20135), False, 'import pytest\n'), ((23758, 23835), 'pytest.mark.parametrize', 'pytest.mark.parametrize', (['"""xdr_ioc, demisto_ioc"""', 'data_test_xdr_ioc_to_demisto'], {}), "('xdr_ioc, demisto_ioc', data_test_xdr_ioc_to_demisto)\n", (23781, 23835), False, 'import pytest\n'), ((26797, 26832), 'freezegun.freeze_time', 'freeze_time', (['"""2020-06-03T02:00:00Z"""'], {}), "('2020-06-03T02:00:00Z')\n", (26808, 26832), False, 'from freezegun import freeze_time\n'), ((29524, 29639), 'pytest.mark.parametrize', 'pytest.mark.parametrize', (['"""demisto_ioc, xdr_ioc, param_value, expected_tags, expected_tlp_color"""', 'tags_test'], {}), "(\n 'demisto_ioc, xdr_ioc, param_value, expected_tags, expected_tlp_color',\n tags_test)\n", (29547, 29639), False, 'import pytest\n')]
from decimal import ROUND_HALF_DOWN, ROUND_HALF_EVEN, ROUND_HALF_UP, Decimal from math import ceil, floor, log2 from typing import Union import torch from ppq.core import RoundingPolicy def ppq_numerical_round(value: float, policy: RoundingPolicy=RoundingPolicy.ROUND_HALF_EVEN) -> int: """ reference: https://en.wikipedia.org/wiki/Rounding decimal defination: - decimal.ROUND_CEILING (towards Infinity) - decimal.ROUND_DOWN (towards zero) - decimal.ROUND_FLOOR (towards -Infinity) - decimal.ROUND_HALF_DOWN (to nearest with ties going towards zero) - decimal.ROUND_HALF_EVEN (to nearest with ties going to nearest even integer) - decimal.ROUND_HALF_UP (to nearest with ties going away from zero) - decimal.ROUND_UP (away from zero) - decimal.ROUND_05UP (away from zero if last digit after rounding towards zero would have been 0 or 5; otherwise towards zero) Args: value (float): [description] policy (RoundingPolicy, optional): [description]. Defaults to RoundingPolicy.ROUND_HALF_EVEN. Raises: ValueError: [description] Returns: int: [description] """ assert isinstance(value, float), 'numerical round only takes effect on float number.' if policy == RoundingPolicy.ROUND_HALF_EVEN: return int(Decimal(value).quantize(exp=Decimal(1), rounding=ROUND_HALF_EVEN)) elif policy == RoundingPolicy.ROUND_HALF_UP: if value > 0: return int(Decimal(value).quantize(exp=Decimal(1), rounding=ROUND_HALF_UP)) else: return int(Decimal(value).quantize(exp=Decimal(1), rounding=ROUND_HALF_DOWN)) elif policy == RoundingPolicy.ROUND_HALF_DOWN: if value > 0: return int(Decimal(value).quantize(exp=Decimal(1), rounding=ROUND_HALF_DOWN)) else: return int(Decimal(value).quantize(exp=Decimal(1), rounding=ROUND_HALF_UP)) elif policy == RoundingPolicy.ROUND_HALF_TOWARDS_ZERO: return ppq_numerical_round(value, RoundingPolicy.ROUND_HALF_DOWN) elif policy == RoundingPolicy.ROUND_HALF_FAR_FORM_ZERO: return ppq_numerical_round(value, RoundingPolicy.ROUND_HALF_UP) elif policy == RoundingPolicy.ROUND_TO_NEAR_INT: if value > 0: return floor(value + 0.5) else: return ceil(value - 0.5) elif policy == RoundingPolicy.ROUND_UP: return ceil(value) else: raise ValueError('Unexpected rounding policy found.') def ppq_tensor_round(value: torch.Tensor, policy:RoundingPolicy=RoundingPolicy.ROUND_HALF_EVEN) -> torch.Tensor: """ reference: https://en.wikipedia.org/wiki/Rounding Args: value (torch.Tensor): [description] policy (RoundingPolicy, optional): [description]. Defaults to RoundingPolicy.ROUND_HALF_EVEN. Raises: ValueError: [description] Returns: torch.Tensor: [description] """ assert isinstance(value, torch.Tensor), 'tensor round only takes effect on torch tensor.' if policy == RoundingPolicy.ROUND_HALF_EVEN: # default rounding policy of torch is ROUND_TO_NEAR_EVEN # try this: print(torch.Tensor([1.5, 2.5, 3.5, 4.5]).round()) # However it may generate unexpected results due to version difference. return value.round() elif policy == RoundingPolicy.ROUND_UP: return value.ceil() elif policy == RoundingPolicy.ROUND_HALF_TOWARDS_ZERO: return torch.sign(value) * torch.ceil(value.abs() - 0.5) elif policy == RoundingPolicy.ROUND_HALF_FAR_FORM_ZERO: return torch.sign(value) * torch.floor(value.abs() + 0.5) elif policy == RoundingPolicy.ROUND_HALF_DOWN: return torch.ceil(value - 0.5) elif policy == RoundingPolicy.ROUND_HALF_UP: return torch.floor(value + 0.5) elif policy == RoundingPolicy.ROUND_TO_NEAR_INT: raise NotImplementedError(f'Torch Tensor can not use this rounding policy({policy}) try ROUND_HALF_EVEN instead.') else: raise ValueError('Unexpected rounding policy found.') def ppq_round_to_power_of_2(value: Union[float, int], policy: RoundingPolicy=RoundingPolicy.ROUND_UP) -> float: if value == 0: return 0 sign = 1 if value >= 0 else -1 assert isinstance(value, float) or isinstance(value, int), \ 'power-of-2 round only takes effect on float or int.' return sign * float(pow(2, ppq_numerical_round(log2(sign * value), policy=policy)))
[ "math.ceil", "math.floor", "torch.floor", "math.log2", "torch.sign", "torch.ceil", "decimal.Decimal" ]
[((1397, 1411), 'decimal.Decimal', 'Decimal', (['value'], {}), '(value)\n', (1404, 1411), False, 'from decimal import ROUND_HALF_DOWN, ROUND_HALF_EVEN, ROUND_HALF_UP, Decimal\n'), ((1425, 1435), 'decimal.Decimal', 'Decimal', (['(1)'], {}), '(1)\n', (1432, 1435), False, 'from decimal import ROUND_HALF_DOWN, ROUND_HALF_EVEN, ROUND_HALF_UP, Decimal\n'), ((3472, 3489), 'torch.sign', 'torch.sign', (['value'], {}), '(value)\n', (3482, 3489), False, 'import torch\n'), ((4434, 4452), 'math.log2', 'log2', (['(sign * value)'], {}), '(sign * value)\n', (4438, 4452), False, 'from math import ceil, floor, log2\n'), ((3597, 3614), 'torch.sign', 'torch.sign', (['value'], {}), '(value)\n', (3607, 3614), False, 'import torch\n'), ((3714, 3737), 'torch.ceil', 'torch.ceil', (['(value - 0.5)'], {}), '(value - 0.5)\n', (3724, 3737), False, 'import torch\n'), ((1546, 1560), 'decimal.Decimal', 'Decimal', (['value'], {}), '(value)\n', (1553, 1560), False, 'from decimal import ROUND_HALF_DOWN, ROUND_HALF_EVEN, ROUND_HALF_UP, Decimal\n'), ((1574, 1584), 'decimal.Decimal', 'Decimal', (['(1)'], {}), '(1)\n', (1581, 1584), False, 'from decimal import ROUND_HALF_DOWN, ROUND_HALF_EVEN, ROUND_HALF_UP, Decimal\n'), ((1636, 1650), 'decimal.Decimal', 'Decimal', (['value'], {}), '(value)\n', (1643, 1650), False, 'from decimal import ROUND_HALF_DOWN, ROUND_HALF_EVEN, ROUND_HALF_UP, Decimal\n'), ((1664, 1674), 'decimal.Decimal', 'Decimal', (['(1)'], {}), '(1)\n', (1671, 1674), False, 'from decimal import ROUND_HALF_DOWN, ROUND_HALF_EVEN, ROUND_HALF_UP, Decimal\n'), ((3802, 3826), 'torch.floor', 'torch.floor', (['(value + 0.5)'], {}), '(value + 0.5)\n', (3813, 3826), False, 'import torch\n'), ((1787, 1801), 'decimal.Decimal', 'Decimal', (['value'], {}), '(value)\n', (1794, 1801), False, 'from decimal import ROUND_HALF_DOWN, ROUND_HALF_EVEN, ROUND_HALF_UP, Decimal\n'), ((1815, 1825), 'decimal.Decimal', 'Decimal', (['(1)'], {}), '(1)\n', (1822, 1825), False, 'from decimal import ROUND_HALF_DOWN, ROUND_HALF_EVEN, ROUND_HALF_UP, Decimal\n'), ((1879, 1893), 'decimal.Decimal', 'Decimal', (['value'], {}), '(value)\n', (1886, 1893), False, 'from decimal import ROUND_HALF_DOWN, ROUND_HALF_EVEN, ROUND_HALF_UP, Decimal\n'), ((1907, 1917), 'decimal.Decimal', 'Decimal', (['(1)'], {}), '(1)\n', (1914, 1917), False, 'from decimal import ROUND_HALF_DOWN, ROUND_HALF_EVEN, ROUND_HALF_UP, Decimal\n'), ((2291, 2309), 'math.floor', 'floor', (['(value + 0.5)'], {}), '(value + 0.5)\n', (2296, 2309), False, 'from math import ceil, floor, log2\n'), ((2331, 2348), 'math.ceil', 'ceil', (['(value - 0.5)'], {}), '(value - 0.5)\n', (2335, 2348), False, 'from math import ceil, floor, log2\n'), ((2408, 2419), 'math.ceil', 'ceil', (['value'], {}), '(value)\n', (2412, 2419), False, 'from math import ceil, floor, log2\n')]
from django.conf.urls import patterns, url from roomsensor import views urlpatterns = patterns('', url(r'^$', views.index, name='roomsensor'), # ex: /roomsensor/name/ url(r'^(?P<roomsensor_name>\w+)/$', views.display, name='roomsensor_display'), url(r'^(?P<roomsensor_name>\w+)/read/$', views.read, name='roomsensor_read'), # JSON data for graph creation url(r'^(?P<roomsensor_name>\w+)/rawdata/(?P<datapoints>\d+)/(?P<compression_factor>\d+)/$', views.rawdata, name='roomsensor_rawdata'), )
[ "django.conf.urls.url" ]
[((105, 146), 'django.conf.urls.url', 'url', (['"""^$"""', 'views.index'], {'name': '"""roomsensor"""'}), "('^$', views.index, name='roomsensor')\n", (108, 146), False, 'from django.conf.urls import patterns, url\n'), ((182, 259), 'django.conf.urls.url', 'url', (['"""^(?P<roomsensor_name>\\\\w+)/$"""', 'views.display'], {'name': '"""roomsensor_display"""'}), "('^(?P<roomsensor_name>\\\\w+)/$', views.display, name='roomsensor_display')\n", (185, 259), False, 'from django.conf.urls import patterns, url\n'), ((265, 341), 'django.conf.urls.url', 'url', (['"""^(?P<roomsensor_name>\\\\w+)/read/$"""', 'views.read'], {'name': '"""roomsensor_read"""'}), "('^(?P<roomsensor_name>\\\\w+)/read/$', views.read, name='roomsensor_read')\n", (268, 341), False, 'from django.conf.urls import patterns, url\n'), ((383, 523), 'django.conf.urls.url', 'url', (['"""^(?P<roomsensor_name>\\\\w+)/rawdata/(?P<datapoints>\\\\d+)/(?P<compression_factor>\\\\d+)/$"""', 'views.rawdata'], {'name': '"""roomsensor_rawdata"""'}), "('^(?P<roomsensor_name>\\\\w+)/rawdata/(?P<datapoints>\\\\d+)/(?P<compression_factor>\\\\d+)/$'\n , views.rawdata, name='roomsensor_rawdata')\n", (386, 523), False, 'from django.conf.urls import patterns, url\n')]
import numpy as np from collections import defaultdict, Counter import random import json from tqdm import tqdm def transX(dataset): rel2id = json.load(open(dataset + '/relation2ids')) ent2id = json.load(open(dataset + '/ent2ids')) with open('../Fast-TransX/' + dataset + '_base/entity2id.txt', 'w') as g1: num_ents = len(ent2id.keys()) g1.write(str(num_ents) + '\n') for k, v in ent2id.items(): g1.write(k + '\t' + str(v) + '\n') with open('../Fast-TransX/' + dataset + '_base/relation2id.txt', 'w') as g1: num_rels = len(rel2id.keys()) g1.write(str(num_rels) + '\n') for k, v in rel2id.items(): g1.write(k + '\t' + str(v) + '\n') file_name = dataset + '/path_graph' train_triples = [] with open(file_name) as f: lines = f.readlines() for line in tqdm(lines): e1 = line.split('\t')[0] e2 = line.rstrip().split('\t')[2] rel = line.split('\t')[1] train_triples.append([e1,rel,e2]) train_triples.append([e2,rel+'_inv',e1]) with open('../Fast-TransX/' + dataset + '_base/train2id.txt', 'w') as g3: num_triples = len(train_triples) g3.write(str(num_triples) + '\n') for triple in train_triples: e1, rel, e2 = triple g3.write(str(ent2id[e1]) + '\t' + str(ent2id[e2]) + '\t' + str(rel2id[rel]) + '\n') if __name__ == '__main__': transX('Wiki')
[ "tqdm.tqdm" ]
[((874, 885), 'tqdm.tqdm', 'tqdm', (['lines'], {}), '(lines)\n', (878, 885), False, 'from tqdm import tqdm\n')]
#!/usr/bin/env python # -*- coding: utf-8 -*- """The setup script.""" from setuptools import setup, find_packages with open("README.rst") as readme_file: readme = readme_file.read() with open("HISTORY.rst") as history_file: history = history_file.read() requirements = ["Click>=6.0", "suds2==0.7.1"] setup_requirements = [ # TODO(ovnicraft): put setup requirements (distutils extensions, etc.) here ] test_requirements = [ # TODO: put package test requirements here ] setup( name="runa", version="0.2.10", description="Librería para uso de WS del Bus Gubernamental de Ecuador", long_description=readme + "\n\n" + history, author="<NAME>", author_email="<EMAIL>", url="https://github.com/ovnicraft/runa", packages=find_packages(include=["runa"]), entry_points={"console_scripts": ["runa=runa.cli:main"]}, include_package_data=True, install_requires=requirements, license="MIT license", zip_safe=False, keywords="runa webservices ecuador bgs", classifiers=[ "Development Status :: 3 - Beta", "Intended Audience :: Developers", "License :: OSI Approved :: MIT License", "Natural Language :: English", "Programming Language :: Python :: 3.4", "Programming Language :: Python :: 3.5", "Programming Language :: Python :: 3.6", ], test_suite="tests", tests_require=test_requirements, setup_requires=setup_requirements, )
[ "setuptools.find_packages" ]
[((769, 800), 'setuptools.find_packages', 'find_packages', ([], {'include': "['runa']"}), "(include=['runa'])\n", (782, 800), False, 'from setuptools import setup, find_packages\n')]
import time import board import displayio import busio from analogio import AnalogIn import neopixel import adafruit_adt7410 from adafruit_bitmap_font import bitmap_font from adafruit_display_text.label import Label from adafruit_button import Button import adafruit_touchscreen from adafruit_pyportal import PyPortal # ------------- Inputs and Outputs Setup ------------- # # init. the temperature sensor i2c_bus = busio.I2C(board.SCL, board.SDA) adt = adafruit_adt7410.ADT7410(i2c_bus, address=0x48) adt.high_resolution = True # init. the light sensor light_sensor = AnalogIn(board.LIGHT) pixel = neopixel.NeoPixel(board.NEOPIXEL, 1, brightness=1) WHITE = 0xffffff RED = 0xff0000 YELLOW = 0xffff00 GREEN = 0x00ff00 BLUE = 0x0000ff PURPLE = 0xff00ff BLACK = 0x000000 # ---------- Sound Effects ------------- # soundDemo = '/sounds/sound.wav' soundBeep = '/sounds/beep.wav' soundTab = '/sounds/tab.wav' # ------------- Other Helper Functions------------- # # Helper for cycling through a number set of 1 to x. def numberUP(num, max_val): num += 1 if num <= max_val: return num else: return 1 # ------------- Screen Setup ------------- # pyportal = PyPortal() display = board.DISPLAY display.rotation = 270 # Backlight function # Value between 0 and 1 where 0 is OFF, 0.5 is 50% and 1 is 100% brightness. def set_backlight(val): val = max(0, min(1.0, val)) board.DISPLAY.auto_brightness = False board.DISPLAY.brightness = val # Set the Backlight set_backlight(0.3) # Touchscreen setup # ------Rotate 270: screen_width = 240 screen_height = 320 ts = adafruit_touchscreen.Touchscreen(board.TOUCH_YD, board.TOUCH_YU, board.TOUCH_XR, board.TOUCH_XL, calibration=((5200, 59000), (5800, 57000)), size=(screen_width, screen_height)) # ------------- Display Groups ------------- # splash = displayio.Group(max_size=15) # The Main Display Group view1 = displayio.Group(max_size=15) # Group for View 1 objects view2 = displayio.Group(max_size=15) # Group for View 2 objects view3 = displayio.Group(max_size=15) # Group for View 3 objects def hideLayer(hide_target): try: splash.remove(hide_target) except ValueError: pass def showLayer(show_target): try: time.sleep(0.1) splash.append(show_target) except ValueError: pass # ------------- Setup for Images ------------- # # Display an image until the loop starts pyportal.set_background('/images/loading.bmp') bg_group = displayio.Group(max_size=1) splash.append(bg_group) icon_group = displayio.Group(max_size=1) icon_group.x = 180 icon_group.y = 120 icon_group.scale = 1 view2.append(icon_group) # This will handel switching Images and Icons def set_image(group, filename): """Set the image file for a given goup for display. This is most useful for Icons or image slideshows. :param group: The chosen group :param filename: The filename of the chosen image """ print("Set image to ", filename) if group: group.pop() if not filename: return # we're done, no icon desired image_file = open(filename, "rb") image = displayio.OnDiskBitmap(image_file) try: image_sprite = displayio.TileGrid(image, pixel_shader=displayio.ColorConverter()) except TypeError: image_sprite = displayio.TileGrid(image, pixel_shader=displayio.ColorConverter(), position=(0, 0)) group.append(image_sprite) set_image(bg_group, "/images/BGimage.bmp") # ---------- Text Boxes ------------- # # Set the font and preload letters font = bitmap_font.load_font("/fonts/Helvetica-Bold-16.bdf") font.load_glyphs(b'abcdefghjiklmnopqrstuvwxyzABCDEFGHIJKLMNOPQRSTUVWXYZ1234567890- ()') # Default Label styling: TABS_X = 5 TABS_Y = 50 # Text Label Objects feed1_label = Label(font, text="Text Wondow 1", color=0xE39300, max_glyphs=200) feed1_label.x = TABS_X feed1_label.y = TABS_Y view1.append(feed1_label) feed2_label = Label(font, text="Text Wondow 2", color=0xFFFFFF, max_glyphs=200) feed2_label.x = TABS_X feed2_label.y = TABS_Y view2.append(feed2_label) sensors_label = Label(font, text="Data View", color=0x03AD31, max_glyphs=200) sensors_label.x = TABS_X sensors_label.y = TABS_Y view3.append(sensors_label) sensor_data = Label(font, text="Data View", color=0x03AD31, max_glyphs=100) sensor_data.x = TABS_X+15 sensor_data.y = 170 view3.append(sensor_data) text_hight = Label(font, text="M", color=0x03AD31, max_glyphs=10) # return a reformatted string with word wrapping using PyPortal.wrap_nicely def text_box(target, top, string, max_chars): text = pyportal.wrap_nicely(string, max_chars) new_text = "" test = "" for w in text: new_text += '\n'+w test += 'M\n' text_hight.text = test # Odd things happen without this glyph_box = text_hight.bounding_box target.text = "" # Odd things happen without this target.y = int(glyph_box[3]/2)+top target.text = new_text # ---------- Display Buttons ------------- # # Default button styling: BUTTON_HEIGHT = 40 BUTTON_WIDTH = 80 # We want three buttons across the top of the screen TAPS_HEIGHT = 40 TAPS_WIDTH = int(screen_width/3) TAPS_Y = 0 # We want two big buttons at the bottom of the screen BIG_BUTTON_HEIGHT = int(screen_height/3.2) BIG_BUTTON_WIDTH = int(screen_width/2) BIG_BUTTON_Y = int(screen_height-BIG_BUTTON_HEIGHT) # This group will make it easy for us to read a button press later. buttons = [] # Main User Interface Buttons button_view1 = Button(x=0, y=0, width=TAPS_WIDTH, height=TAPS_HEIGHT, label="View1", label_font=font, label_color=0xff7e00, fill_color=0x5c5b5c, outline_color=0x767676, selected_fill=0x1a1a1a, selected_outline=0x2e2e2e, selected_label=0x525252) buttons.append(button_view1) # adding this button to the buttons group button_view2 = Button(x=TAPS_WIDTH, y=0, width=TAPS_WIDTH, height=TAPS_HEIGHT, label="View2", label_font=font, label_color=0xff7e00, fill_color=0x5c5b5c, outline_color=0x767676, selected_fill=0x1a1a1a, selected_outline=0x2e2e2e, selected_label=0x525252) buttons.append(button_view2) # adding this button to the buttons group button_view3 = Button(x=TAPS_WIDTH*2, y=0, width=TAPS_WIDTH, height=TAPS_HEIGHT, label="View3", label_font=font, label_color=0xff7e00, fill_color=0x5c5b5c, outline_color=0x767676, selected_fill=0x1a1a1a, selected_outline=0x2e2e2e, selected_label=0x525252) buttons.append(button_view3) # adding this button to the buttons group button_switch = Button(x=0, y=BIG_BUTTON_Y, width=BIG_BUTTON_WIDTH, height=BIG_BUTTON_HEIGHT, label="Switch", label_font=font, label_color=0xff7e00, fill_color=0x5c5b5c, outline_color=0x767676, selected_fill=0x1a1a1a, selected_outline=0x2e2e2e, selected_label=0x525252) buttons.append(button_switch) # adding this button to the buttons group button_2 = Button(x=BIG_BUTTON_WIDTH, y=BIG_BUTTON_Y, width=BIG_BUTTON_WIDTH, height=BIG_BUTTON_HEIGHT, label="Button", label_font=font, label_color=0xff7e00, fill_color=0x5c5b5c, outline_color=0x767676, selected_fill=0x1a1a1a, selected_outline=0x2e2e2e, selected_label=0x525252) buttons.append(button_2) # adding this button to the buttons group # Add all of the main buttons to the spalsh Group for b in buttons: splash.append(b.group) # Make a button to change the icon image on view2 button_icon = Button(x=150, y=60, width=BUTTON_WIDTH, height=BUTTON_HEIGHT, label="Icon", label_font=font, label_color=0xffffff, fill_color=0x8900ff, outline_color=0xbc55fd, selected_fill=0x5a5a5a, selected_outline=0xff6600, selected_label=0x525252, style=Button.ROUNDRECT) buttons.append(button_icon) # adding this button to the buttons group # Add this button to view2 Group view2.append(button_icon.group) # Make a button to play a sound on view2 button_sound = Button(x=150, y=170, width=BUTTON_WIDTH, height=BUTTON_HEIGHT, label="Sound", label_font=font, label_color=0xffffff, fill_color=0x8900ff, outline_color=0xbc55fd, selected_fill=0x5a5a5a, selected_outline=0xff6600, selected_label=0x525252, style=Button.ROUNDRECT) buttons.append(button_sound) # adding this button to the buttons group # Add this button to view2 Group view3.append(button_sound.group) #pylint: disable=global-statement def switch_view(what_view): global view_live if what_view == 1: hideLayer(view2) hideLayer(view3) button_view1.selected = False button_view2.selected = True button_view3.selected = True showLayer(view1) view_live = 1 print("View1 On") elif what_view == 2: # global icon hideLayer(view1) hideLayer(view3) button_view1.selected = True button_view2.selected = False button_view3.selected = True showLayer(view2) view_live = 2 print("View2 On") else: hideLayer(view1) hideLayer(view2) button_view1.selected = True button_view2.selected = True button_view3.selected = False showLayer(view3) view_live = 3 print("View3 On") #pylint: enable=global-statement # Set veriables and startup states button_view1.selected = False button_view2.selected = True button_view3.selected = True showLayer(view1) hideLayer(view2) hideLayer(view3) view_live = 1 icon = 1 icon_name = "Ruby" button_mode = 1 switch_state = 0 button_switch.label = "OFF" button_switch.selected = True # Update out Labels with display text. text_box(feed1_label, TABS_Y, "The text on this screen is wrapped so that all of it fits nicely into a \ text box that is ### x ###.", 30) text_box(feed1_label, TABS_Y, 'The text on this screen is wrapped so that all of it fits nicely into a \ text box that is {} x {}.' .format(feed1_label.bounding_box[2], feed1_label.bounding_box[3]*2), 30) text_box(feed2_label, TABS_Y, 'Tap on the Icon button to meet a new friend.', 18) text_box(sensors_label, TABS_Y, "This screen can display sensor readings and tap Sound to play a WAV file.", 28) board.DISPLAY.show(splash) # ------------- Code Loop ------------- # while True: touch = ts.touch_point light = light_sensor.value tempC = round(adt.temperature) tempF = tempC * 1.8 + 32 sensor_data.text = 'Touch: {}\nLight: {}\n Temp: {}°F'.format(touch, light, tempF) # ------------- Handle Button Press Detection ------------- # if touch: # Only do this if the screen is touched # loop with buttons using enumerate() to number each button group as i for i, b in enumerate(buttons): if b.contains(touch): # Test each button to see if it was pressed print('button%d pressed' % i) if i == 0 and view_live != 1: # only if view1 is visable pyportal.play_file(soundTab) switch_view(1) while ts.touch_point: pass if i == 1 and view_live != 2: # only if view2 is visable pyportal.play_file(soundTab) switch_view(2) while ts.touch_point: pass if i == 2 and view_live != 3: # only if view3 is visable pyportal.play_file(soundTab) switch_view(3) while ts.touch_point: pass if i == 3: pyportal.play_file(soundBeep) # Toggle switch button type if switch_state == 0: switch_state = 1 b.label = "ON" b.selected = False pixel.fill(WHITE) print("Swich ON") else: switch_state = 0 b.label = "OFF" b.selected = True pixel.fill(BLACK) print("Swich OFF") # for debounce while ts.touch_point: pass print("Swich Pressed") if i == 4: pyportal.play_file(soundBeep) # Momentary button type b.selected = True print('Button Pressed') button_mode = numberUP(button_mode, 5) if button_mode == 1: pixel.fill(RED) elif button_mode == 2: pixel.fill(YELLOW) elif button_mode == 3: pixel.fill(GREEN) elif button_mode == 4: pixel.fill(BLUE) elif button_mode == 5: pixel.fill(PURPLE) switch_state = 1 button_switch.label = "ON" button_switch.selected = False # for debounce while ts.touch_point: pass print("Button released") b.selected = False if i == 5 and view_live == 2: # only if view2 is visable pyportal.play_file(soundBeep) b.selected = True while ts.touch_point: pass print("Icon Button Pressed") icon = numberUP(icon, 3) if icon == 1: icon_name = "Ruby" elif icon == 2: icon_name = "Gus" elif icon == 3: icon_name = "Billie" b.selected = False text_box(feed2_label, TABS_Y, "Every time you tap the Icon button the icon image will \ change. Say hi to {}!".format(icon_name), 18) set_image(icon_group, "/images/"+icon_name+".bmp") if i == 6 and view_live == 3: # only if view3 is visable b.selected = True while ts.touch_point: pass print("Sound Button Pressed") pyportal.play_file(soundDemo) b.selected = False
[ "adafruit_bitmap_font.bitmap_font.load_font", "busio.I2C", "analogio.AnalogIn", "adafruit_button.Button", "board.DISPLAY.show", "displayio.Group", "adafruit_touchscreen.Touchscreen", "time.sleep", "displayio.ColorConverter", "neopixel.NeoPixel", "adafruit_adt7410.ADT7410", "adafruit_pyportal.PyPortal", "displayio.OnDiskBitmap", "adafruit_display_text.label.Label" ]
[((417, 448), 'busio.I2C', 'busio.I2C', (['board.SCL', 'board.SDA'], {}), '(board.SCL, board.SDA)\n', (426, 448), False, 'import busio\n'), ((455, 500), 'adafruit_adt7410.ADT7410', 'adafruit_adt7410.ADT7410', (['i2c_bus'], {'address': '(72)'}), '(i2c_bus, address=72)\n', (479, 500), False, 'import adafruit_adt7410\n'), ((571, 592), 'analogio.AnalogIn', 'AnalogIn', (['board.LIGHT'], {}), '(board.LIGHT)\n', (579, 592), False, 'from analogio import AnalogIn\n'), ((602, 652), 'neopixel.NeoPixel', 'neopixel.NeoPixel', (['board.NEOPIXEL', '(1)'], {'brightness': '(1)'}), '(board.NEOPIXEL, 1, brightness=1)\n', (619, 652), False, 'import neopixel\n'), ((1182, 1192), 'adafruit_pyportal.PyPortal', 'PyPortal', ([], {}), '()\n', (1190, 1192), False, 'from adafruit_pyportal import PyPortal\n'), ((1597, 1782), 'adafruit_touchscreen.Touchscreen', 'adafruit_touchscreen.Touchscreen', (['board.TOUCH_YD', 'board.TOUCH_YU', 'board.TOUCH_XR', 'board.TOUCH_XL'], {'calibration': '((5200, 59000), (5800, 57000))', 'size': '(screen_width, screen_height)'}), '(board.TOUCH_YD, board.TOUCH_YU, board.\n TOUCH_XR, board.TOUCH_XL, calibration=((5200, 59000), (5800, 57000)),\n size=(screen_width, screen_height))\n', (1629, 1782), False, 'import adafruit_touchscreen\n'), ((1997, 2025), 'displayio.Group', 'displayio.Group', ([], {'max_size': '(15)'}), '(max_size=15)\n', (2012, 2025), False, 'import displayio\n'), ((2060, 2088), 'displayio.Group', 'displayio.Group', ([], {'max_size': '(15)'}), '(max_size=15)\n', (2075, 2088), False, 'import displayio\n'), ((2125, 2153), 'displayio.Group', 'displayio.Group', ([], {'max_size': '(15)'}), '(max_size=15)\n', (2140, 2153), False, 'import displayio\n'), ((2190, 2218), 'displayio.Group', 'displayio.Group', ([], {'max_size': '(15)'}), '(max_size=15)\n', (2205, 2218), False, 'import displayio\n'), ((2641, 2668), 'displayio.Group', 'displayio.Group', ([], {'max_size': '(1)'}), '(max_size=1)\n', (2656, 2668), False, 'import displayio\n'), ((2708, 2735), 'displayio.Group', 'displayio.Group', ([], {'max_size': '(1)'}), '(max_size=1)\n', (2723, 2735), False, 'import displayio\n'), ((3768, 3821), 'adafruit_bitmap_font.bitmap_font.load_font', 'bitmap_font.load_font', (['"""/fonts/Helvetica-Bold-16.bdf"""'], {}), "('/fonts/Helvetica-Bold-16.bdf')\n", (3789, 3821), False, 'from adafruit_bitmap_font import bitmap_font\n'), ((3995, 4060), 'adafruit_display_text.label.Label', 'Label', (['font'], {'text': '"""Text Wondow 1"""', 'color': '(14914304)', 'max_glyphs': '(200)'}), "(font, text='Text Wondow 1', color=14914304, max_glyphs=200)\n", (4000, 4060), False, 'from adafruit_display_text.label import Label\n'), ((4148, 4213), 'adafruit_display_text.label.Label', 'Label', (['font'], {'text': '"""Text Wondow 2"""', 'color': '(16777215)', 'max_glyphs': '(200)'}), "(font, text='Text Wondow 2', color=16777215, max_glyphs=200)\n", (4153, 4213), False, 'from adafruit_display_text.label import Label\n'), ((4303, 4362), 'adafruit_display_text.label.Label', 'Label', (['font'], {'text': '"""Data View"""', 'color': '(240945)', 'max_glyphs': '(200)'}), "(font, text='Data View', color=240945, max_glyphs=200)\n", (4308, 4362), False, 'from adafruit_display_text.label import Label\n'), ((4458, 4517), 'adafruit_display_text.label.Label', 'Label', (['font'], {'text': '"""Data View"""', 'color': '(240945)', 'max_glyphs': '(100)'}), "(font, text='Data View', color=240945, max_glyphs=100)\n", (4463, 4517), False, 'from adafruit_display_text.label import Label\n'), ((4607, 4657), 'adafruit_display_text.label.Label', 'Label', (['font'], {'text': '"""M"""', 'color': '(240945)', 'max_glyphs': '(10)'}), "(font, text='M', color=240945, max_glyphs=10)\n", (4612, 4657), False, 'from adafruit_display_text.label import Label\n'), ((5696, 5932), 'adafruit_button.Button', 'Button', ([], {'x': '(0)', 'y': '(0)', 'width': 'TAPS_WIDTH', 'height': 'TAPS_HEIGHT', 'label': '"""View1"""', 'label_font': 'font', 'label_color': '(16743936)', 'fill_color': '(6052700)', 'outline_color': '(7763574)', 'selected_fill': '(1710618)', 'selected_outline': '(3026478)', 'selected_label': '(5395026)'}), "(x=0, y=0, width=TAPS_WIDTH, height=TAPS_HEIGHT, label='View1',\n label_font=font, label_color=16743936, fill_color=6052700,\n outline_color=7763574, selected_fill=1710618, selected_outline=3026478,\n selected_label=5395026)\n", (5702, 5932), False, 'from adafruit_button import Button\n'), ((6124, 6370), 'adafruit_button.Button', 'Button', ([], {'x': 'TAPS_WIDTH', 'y': '(0)', 'width': 'TAPS_WIDTH', 'height': 'TAPS_HEIGHT', 'label': '"""View2"""', 'label_font': 'font', 'label_color': '(16743936)', 'fill_color': '(6052700)', 'outline_color': '(7763574)', 'selected_fill': '(1710618)', 'selected_outline': '(3026478)', 'selected_label': '(5395026)'}), "(x=TAPS_WIDTH, y=0, width=TAPS_WIDTH, height=TAPS_HEIGHT, label=\n 'View2', label_font=font, label_color=16743936, fill_color=6052700,\n outline_color=7763574, selected_fill=1710618, selected_outline=3026478,\n selected_label=5395026)\n", (6130, 6370), False, 'from adafruit_button import Button\n'), ((6561, 6811), 'adafruit_button.Button', 'Button', ([], {'x': '(TAPS_WIDTH * 2)', 'y': '(0)', 'width': 'TAPS_WIDTH', 'height': 'TAPS_HEIGHT', 'label': '"""View3"""', 'label_font': 'font', 'label_color': '(16743936)', 'fill_color': '(6052700)', 'outline_color': '(7763574)', 'selected_fill': '(1710618)', 'selected_outline': '(3026478)', 'selected_label': '(5395026)'}), "(x=TAPS_WIDTH * 2, y=0, width=TAPS_WIDTH, height=TAPS_HEIGHT, label=\n 'View3', label_font=font, label_color=16743936, fill_color=6052700,\n outline_color=7763574, selected_fill=1710618, selected_outline=3026478,\n selected_label=5395026)\n", (6567, 6811), False, 'from adafruit_button import Button\n'), ((7001, 7264), 'adafruit_button.Button', 'Button', ([], {'x': '(0)', 'y': 'BIG_BUTTON_Y', 'width': 'BIG_BUTTON_WIDTH', 'height': 'BIG_BUTTON_HEIGHT', 'label': '"""Switch"""', 'label_font': 'font', 'label_color': '(16743936)', 'fill_color': '(6052700)', 'outline_color': '(7763574)', 'selected_fill': '(1710618)', 'selected_outline': '(3026478)', 'selected_label': '(5395026)'}), "(x=0, y=BIG_BUTTON_Y, width=BIG_BUTTON_WIDTH, height=\n BIG_BUTTON_HEIGHT, label='Switch', label_font=font, label_color=\n 16743936, fill_color=6052700, outline_color=7763574, selected_fill=\n 1710618, selected_outline=3026478, selected_label=5395026)\n", (7007, 7264), False, 'from adafruit_button import Button\n'), ((7455, 7733), 'adafruit_button.Button', 'Button', ([], {'x': 'BIG_BUTTON_WIDTH', 'y': 'BIG_BUTTON_Y', 'width': 'BIG_BUTTON_WIDTH', 'height': 'BIG_BUTTON_HEIGHT', 'label': '"""Button"""', 'label_font': 'font', 'label_color': '(16743936)', 'fill_color': '(6052700)', 'outline_color': '(7763574)', 'selected_fill': '(1710618)', 'selected_outline': '(3026478)', 'selected_label': '(5395026)'}), "(x=BIG_BUTTON_WIDTH, y=BIG_BUTTON_Y, width=BIG_BUTTON_WIDTH, height=\n BIG_BUTTON_HEIGHT, label='Button', label_font=font, label_color=\n 16743936, fill_color=6052700, outline_color=7763574, selected_fill=\n 1710618, selected_outline=3026478, selected_label=5395026)\n", (7461, 7733), False, 'from adafruit_button import Button\n'), ((8044, 8313), 'adafruit_button.Button', 'Button', ([], {'x': '(150)', 'y': '(60)', 'width': 'BUTTON_WIDTH', 'height': 'BUTTON_HEIGHT', 'label': '"""Icon"""', 'label_font': 'font', 'label_color': '(16777215)', 'fill_color': '(8978687)', 'outline_color': '(12342781)', 'selected_fill': '(5921370)', 'selected_outline': '(16737792)', 'selected_label': '(5395026)', 'style': 'Button.ROUNDRECT'}), "(x=150, y=60, width=BUTTON_WIDTH, height=BUTTON_HEIGHT, label='Icon',\n label_font=font, label_color=16777215, fill_color=8978687,\n outline_color=12342781, selected_fill=5921370, selected_outline=\n 16737792, selected_label=5395026, style=Button.ROUNDRECT)\n", (8050, 8313), False, 'from adafruit_button import Button\n'), ((8603, 8875), 'adafruit_button.Button', 'Button', ([], {'x': '(150)', 'y': '(170)', 'width': 'BUTTON_WIDTH', 'height': 'BUTTON_HEIGHT', 'label': '"""Sound"""', 'label_font': 'font', 'label_color': '(16777215)', 'fill_color': '(8978687)', 'outline_color': '(12342781)', 'selected_fill': '(5921370)', 'selected_outline': '(16737792)', 'selected_label': '(5395026)', 'style': 'Button.ROUNDRECT'}), "(x=150, y=170, width=BUTTON_WIDTH, height=BUTTON_HEIGHT, label=\n 'Sound', label_font=font, label_color=16777215, fill_color=8978687,\n outline_color=12342781, selected_fill=5921370, selected_outline=\n 16737792, selected_label=5395026, style=Button.ROUNDRECT)\n", (8609, 8875), False, 'from adafruit_button import Button\n'), ((10943, 10969), 'board.DISPLAY.show', 'board.DISPLAY.show', (['splash'], {}), '(splash)\n', (10961, 10969), False, 'import board\n'), ((3305, 3339), 'displayio.OnDiskBitmap', 'displayio.OnDiskBitmap', (['image_file'], {}), '(image_file)\n', (3327, 3339), False, 'import displayio\n'), ((2402, 2417), 'time.sleep', 'time.sleep', (['(0.1)'], {}), '(0.1)\n', (2412, 2417), False, 'import time\n'), ((3411, 3437), 'displayio.ColorConverter', 'displayio.ColorConverter', ([], {}), '()\n', (3435, 3437), False, 'import displayio\n'), ((3523, 3549), 'displayio.ColorConverter', 'displayio.ColorConverter', ([], {}), '()\n', (3547, 3549), False, 'import displayio\n')]
from astropy import coordinates as coord from astropy import wcs from astropy.io import fits from astropy import units as u from misc import bcolors import numpy as np import os def convert_hms_dd(RA, DEC): ''' Convert HMS to DD system ''' if (':' in RA) and (':' in DEC): Coord_dd = coord.SkyCoord(RA, DEC, unit=(u.hour,u.degree), frame='icrs') RA_dd = Coord_dd.ra.deg Dec_dd = Coord_dd.dec.deg elif (not (':' in RA) and not (':' in DEC)) and (('.' in RA) and ('.' in DEC)): RA_dd, Dec_dd = float(RA), float(DEC) else: print(bcolors.FAIL + 'Coordinates have wrong format.' + bcolors.ENDC) sys.exit() return RA_dd, Dec_dd def get_header(FILE, KEYWORD): ''' Get keyword from fits file ''' header = fits.getheader(FILE) return header[KEYWORD] def pix2arcsec(FITS): ''' Get pixel scale ''' hdu = fits.open(FITS) if len(hdu) > 1: header = fits.getheader(FITS, 0) header += fits.getheader(FITS, 1) else: header = fits.getheader(FITS) hdu_wcs = wcs.WCS(header) return np.median(wcs.utils.proj_plane_pixel_scales(hdu_wcs)) * 3600 def sky2xy (FITS, RA=False, DEC=False, CAT=None): ''' Coordinate transformation: sky -> xy ''' if CAT == None: if RA != False and DEC != False: cmd=('sky2xy %s %s %s | grep -v off' %(FITS, RA, DEC)) program_call = os.popen(cmd) xy = [] for line in program_call: xy=np.array(line.strip().split()[-2:]).astype(float) if len(xy) > 0: return xy else: cmd =("more %s | awk '{print $1,$2}' > %s" %(CAT, CAT.replace(CAT.split('.')[-1], 'reg'))) os.system(cmd) cmd = ("sky2xy %s @%s | grep -v off | awk '{print $5, $6}'" %(FITS, CAT.replace(CAT.split('.')[-1], 'reg'))) cat = os.popen(cmd) xy = [] for line in cat: xy.append(list(map(float, line.replace('\n', '').split()))) return np.array(xy) def xy2sky (FITSFILE,X,Y): ''' Coordinate transformation: xy -> sky ''' program_call = os.popen('xy2sky %s %s %s' %(FITSFILE, X, Y)) sky = [] for line in program_call: sky.append(line.strip().split()[:2]) return sky
[ "astropy.io.fits.getheader", "astropy.coordinates.SkyCoord", "numpy.array", "os.popen", "astropy.io.fits.open", "os.system", "astropy.wcs.WCS", "astropy.wcs.utils.proj_plane_pixel_scales" ]
[((736, 756), 'astropy.io.fits.getheader', 'fits.getheader', (['FILE'], {}), '(FILE)\n', (750, 756), False, 'from astropy.io import fits\n'), ((841, 856), 'astropy.io.fits.open', 'fits.open', (['FITS'], {}), '(FITS)\n', (850, 856), False, 'from astropy.io import fits\n'), ((999, 1014), 'astropy.wcs.WCS', 'wcs.WCS', (['header'], {}), '(header)\n', (1006, 1014), False, 'from astropy import wcs\n'), ((1925, 1971), 'os.popen', 'os.popen', (["('xy2sky %s %s %s' % (FITSFILE, X, Y))"], {}), "('xy2sky %s %s %s' % (FITSFILE, X, Y))\n", (1933, 1971), False, 'import os\n'), ((298, 360), 'astropy.coordinates.SkyCoord', 'coord.SkyCoord', (['RA', 'DEC'], {'unit': '(u.hour, u.degree)', 'frame': '"""icrs"""'}), "(RA, DEC, unit=(u.hour, u.degree), frame='icrs')\n", (312, 360), True, 'from astropy import coordinates as coord\n'), ((886, 909), 'astropy.io.fits.getheader', 'fits.getheader', (['FITS', '(0)'], {}), '(FITS, 0)\n', (900, 909), False, 'from astropy.io import fits\n'), ((922, 945), 'astropy.io.fits.getheader', 'fits.getheader', (['FITS', '(1)'], {}), '(FITS, 1)\n', (936, 945), False, 'from astropy.io import fits\n'), ((964, 984), 'astropy.io.fits.getheader', 'fits.getheader', (['FITS'], {}), '(FITS)\n', (978, 984), False, 'from astropy.io import fits\n'), ((1564, 1578), 'os.system', 'os.system', (['cmd'], {}), '(cmd)\n', (1573, 1578), False, 'import os\n'), ((1700, 1713), 'os.popen', 'os.popen', (['cmd'], {}), '(cmd)\n', (1708, 1713), False, 'import os\n'), ((1818, 1830), 'numpy.array', 'np.array', (['xy'], {}), '(xy)\n', (1826, 1830), True, 'import numpy as np\n'), ((1033, 1075), 'astropy.wcs.utils.proj_plane_pixel_scales', 'wcs.utils.proj_plane_pixel_scales', (['hdu_wcs'], {}), '(hdu_wcs)\n', (1066, 1075), False, 'from astropy import wcs\n'), ((1316, 1329), 'os.popen', 'os.popen', (['cmd'], {}), '(cmd)\n', (1324, 1329), False, 'import os\n')]
import math from torch.optim.lr_scheduler import _LRScheduler from torch.optim.optimizer import Optimizer class PolyLR(_LRScheduler): """ Sets the learning rate of each parameter group according to poly learning rate policy """ def __init__(self, optimizer, max_iter=90000, power=0.9, last_epoch=-1): self.max_iter = max_iter self.power = power super().__init__(optimizer, last_epoch) def get_lr(self): return [base_lr * (1 - float(self.last_epoch) / self.max_iter) ** self.power for base_lr in self.base_lrs] func_zoo = { "cosine_decay": lambda epoch, step, len_epoch, total_epoch: 0.5 * (math.cos(step * math.pi / (total_epoch * len_epoch)) + 1) } class CosineWarmRestart: def __init__( self, optimizer: Optimizer, func: str = "cosine_decay", warmup: bool = True, warmup_epoch: int = 1, period: int = 10, min_lr: float = 1e-5, low_epoch: int = 1, ): # self.base_lrs = list(map(lambda group: group["lr"], optimizer.param_groups))[0] self.base_lrs = [x["lr"] for x in optimizer.param_groups][0] self.optimizer = optimizer self.warmup = warmup self.warmup_epoch = warmup_epoch self.period = period self.cos_period = period - low_epoch self.low_epoch = low_epoch self.lr_func = func_zoo[func] self.min_lr = min_lr def cosine_step(self, current_epoch: int, global_step: int, len_epoch: int) -> float: if self.warmup and current_epoch < self.warmup_epoch: lr = self.base_lrs * float(1 + global_step) / (self.warmup_epoch * len_epoch) else: lr = self.base_lrs * self.lr_func(current_epoch, global_step, len_epoch, self.cos_period) lr = max(self.min_lr, lr) for param_group in self.optimizer.param_groups: param_group["lr"] = lr return lr def step(self, current_epoch: int, global_step: int, len_epoch: int) -> float: current_epoch = current_epoch % self.period if current_epoch >= self.period - self.low_epoch: global_step = len_epoch * self.cos_period else: global_step = global_step % (self.period * len_epoch) return self.cosine_step(current_epoch, global_step, len_epoch)
[ "math.cos" ]
[((657, 709), 'math.cos', 'math.cos', (['(step * math.pi / (total_epoch * len_epoch))'], {}), '(step * math.pi / (total_epoch * len_epoch))\n', (665, 709), False, 'import math\n')]
import json import logging logger = logging.getLogger(__name__) with open('configuration.json') as f: config = json.load(f) TELEGRAM_TOKEN = config["telegram-bot-token"] NOTION_TOKEN = config["notion-token"] NOTION_TABLE_URL = config["inbox_table"]["table_url"] def check_allowed_user(user_id): """ check if allowed user :param user_id: telegram user id :return True if user is valid , False otherwise """ valid_user = config["allowed_user_id"] user_id = str(user_id) return user_id == valid_user def restrict_action(handled_action): """ Wrapper for creating a private bot :param handled_action: the action to perform """ def check_private(update, context): if not (check_allowed_user(update.message.from_user.id)): logging.warning("An unauthorized user attempted to use the bot. username: {}, id: {} .".format( update.message.from_user.username, update.message.from_user.id )) return else: return handled_action(update, context) return check_private
[ "logging.getLogger", "json.load" ]
[((37, 64), 'logging.getLogger', 'logging.getLogger', (['__name__'], {}), '(__name__)\n', (54, 64), False, 'import logging\n'), ((117, 129), 'json.load', 'json.load', (['f'], {}), '(f)\n', (126, 129), False, 'import json\n')]
from time import time from typing import Type, TypeVar, MutableMapping, Any, Iterable, Generator, Union import arrow import datetime import math from datapipelines import DataSource, PipelineContext, Query, NotFoundError, validate_query from .common import RiotAPIService, APINotFoundError from ...data import Platform, Season, Queue, SEASON_IDS, QUEUE_IDS from ...dto.match import MatchDto, MatchListDto, TimelineDto from ..uniquekeys import convert_region_to_platform T = TypeVar("T") def _get_current_time(query: MutableMapping[str, Any], context: PipelineContext = None) -> int: return int(time()) * 1000 class MatchAPI(RiotAPIService): @DataSource.dispatch def get(self, type: Type[T], query: MutableMapping[str, Any], context: PipelineContext = None) -> T: pass @DataSource.dispatch def get_many(self, type: Type[T], query: MutableMapping[str, Any], context: PipelineContext = None) -> Iterable[T]: pass _validate_get_match_query = Query. \ has("id").as_(int).also. \ has("platform").as_(Platform) @get.register(MatchDto) @validate_query(_validate_get_match_query, convert_region_to_platform) def get_match(self, query: MutableMapping[str, Any], context: PipelineContext = None) -> MatchDto: url = "https://{platform}.api.riotgames.com/lol/match/v4/matches/{id}".format(platform=query["platform"].value.lower(), id=query["id"]) try: app_limiter, method_limiter = self._get_rate_limiter(query["platform"], "matches/id") data = self._get(url, {}, app_limiter=app_limiter, method_limiter=method_limiter) except APINotFoundError as error: raise NotFoundError(str(error)) from error data["gameId"] = query["id"] data["region"] = query["platform"].region.value for p in data["participantIdentities"]: aid = p.get("player", {}).get("currentAccountId", None) if aid == 0: p["player"]["bot"] = True return MatchDto(data) _validate_get_many_match_query = Query. \ has("ids").as_(Iterable).also. \ has("platform").as_(Platform) @get_many.register(MatchDto) @validate_query(_validate_get_many_match_query, convert_region_to_platform) def get_many_match(self, query: MutableMapping[str, Any], context: PipelineContext = None) -> Generator[MatchDto, None, None]: def generator(): for id in query["ids"]: url = "https://{platform}.api.riotgames.com/lol/match/v4/matches/{id}".format(platform=query["platform"].value.lower(), id=id) try: app_limiter, method_limiter = self._get_rate_limiter(query["platform"], "matches/id") data = self._get(url, {}, app_limiter=app_limiter, method_limiter=method_limiter) except APINotFoundError as error: raise NotFoundError(str(error)) from error for participant in data["participants"]: participant.setdefault("runes", []) for p in data["participantIdentities"]: aid = p.get("player", {}).get("currentAccountId", None) if aid == 0: p["player"]["bot"] = True data["gameId"] = id data["region"] = query["platform"].region.value yield MatchDto(data) return generator() _validate_get_match_list_query = Query. \ has("accountId").as_(str).also. \ has("platform").as_(Platform).also. \ has("beginTime").as_(int).also. \ can_have("endTime").as_(int).also. \ has("beginIndex").as_(int).also. \ has("maxNumberOfMatches").as_(float).also. \ can_have("seasons").as_(Iterable).also. \ can_have("champion.ids").as_(Iterable).also. \ can_have("queues").as_(Iterable) @get.register(MatchListDto) @validate_query(_validate_get_match_list_query, convert_region_to_platform) def get_match_list(self, query: MutableMapping[str, Any], context: PipelineContext = None) -> MatchListDto: params = {} riot_index_interval = 100 riot_date_interval = datetime.timedelta(days=7) begin_time = query["beginTime"] # type: arrow.Arrow end_time = query.get("endTime", arrow.now()) # type: arrow.Arrow if isinstance(begin_time, int): begin_time = arrow.get(begin_time / 1000) if isinstance(end_time, int): end_time = arrow.get(end_time / 1000) def determine_calling_method(begin_time, end_time) -> str: """Returns either "by_date" or "by_index".""" matches_per_date_interval = 10 # This is an assumption seconds_per_day = (60 * 60 * 24) riot_date_interval_in_days = riot_date_interval.total_seconds() / seconds_per_day # in units of days npulls_by_date = (end_time - begin_time).total_seconds() / seconds_per_day / riot_date_interval_in_days npulls_by_index = (arrow.now() - begin_time).total_seconds() / seconds_per_day / riot_date_interval_in_days * matches_per_date_interval / riot_index_interval if math.ceil(npulls_by_date) < math.ceil(npulls_by_index): by = "by_date" else: by = "by_index" return by calling_method = determine_calling_method(begin_time, end_time) if calling_method == "by_date": params["beginTime"] = begin_time.timestamp * 1000 if "endTime" in query: params["endTime"] = min((begin_time + riot_date_interval).timestamp * 1000, query["endTime"]) else: params["endTime"] = (begin_time + riot_date_interval).timestamp * 1000 else: params["beginIndex"] = query["beginIndex"] params["endIndex"] = query["beginIndex"] + min(riot_index_interval, query["maxNumberOfMatches"]) params["endIndex"] = int(params["endIndex"]) if "seasons" in query: seasons = {Season(season) for season in query["seasons"]} params["season"] = {SEASON_IDS[season] for season in seasons} else: seasons = set() if "champion.ids" in query: champions = query["champion.ids"] params["champion"] = champions else: champions = set() if "queues" in query: queues = {Queue(queue) for queue in query["queues"]} params["queue"] = {QUEUE_IDS[queue] for queue in queues} else: queues = set() url = "https://{platform}.api.riotgames.com/lol/match/v4/matchlists/by-account/{accountId}".format(platform=query["platform"].value.lower(), accountId=query["accountId"]) try: app_limiter, method_limiter = self._get_rate_limiter(query["platform"], "matchlists/by-account/accountId") data = self._get(url, params, app_limiter=app_limiter, method_limiter=method_limiter) except APINotFoundError: data = {"matches": []} data["accountId"] = query["accountId"] data["region"] = query["platform"].region.value data["season"] = seasons data["champion"] = champions data["queue"] = queues if calling_method == "by_index": data["beginIndex"] = params["beginIndex"] data["endIndex"] = params["endIndex"] data["maxNumberOfMatches"] = query["maxNumberOfMatches"] else: data["beginTime"] = params["beginTime"] data["endTime"] = params["endTime"] for match in data["matches"]: match["accountId"] = query["accountId"] match["region"] = Platform(match["platformId"]).region.value return MatchListDto(data) _validate_get_many_match_list_query = Query. \ has("accountIds").as_(Iterable).also. \ has("platform").as_(Platform).also. \ can_have("beginTime").as_(int).also. \ can_have("endTime").as_(int).also. \ can_have("beginIndex").as_(int).also. \ can_have("endIndex").as_(int).also. \ can_have("seasons").as_(Iterable).also. \ can_have("champion.ids").as_(Iterable).also. \ can_have("queues").as_(Iterable) @get_many.register(MatchListDto) @validate_query(_validate_get_many_match_list_query, convert_region_to_platform) def get_many_match_list(self, query: MutableMapping[str, Any], context: PipelineContext = None) -> Generator[MatchListDto, None, None]: params = {} if "beginIndex" in query: params["beginIndex"] = query["beginIndex"] if "endIndex" in query: params["endIndex"] = query["endIndex"] if "seasons" in query: seasons = {Season(season) for season in query["seasons"]} params["season"] = {SEASON_IDS[season] for season in seasons} else: seasons = set() if "champion.ids" in query: params["champion"] = {query["champion.ids"]} if "queues" in query: queues = {Queue(queue) for queue in query["queues"]} params["queue"] = {QUEUE_IDS[queue] for queue in queues} else: queues = set() def generator(): for id in query["accountIds"]: url = "https://{platform}.api.riotgames.com/lol/match/v4/matchlists/by-account/{accountId}".format(platform=query["platform"].value.lower(), accountId=id) try: app_limiter, method_limiter = self._get_rate_limiter(query["platform"], "matchlists/by-account/accountId") data = self._get(url, params, app_limiter=app_limiter, method_limiter=method_limiter) except APINotFoundError as error: raise NotFoundError(str(error)) from error data["accountId"] = id data["region"] = query["platform"].region.value if "beginIndex" in query: data["beginIndex"] = query["beginIndex"] if "endIndex" in query: data["endIndex"] = query["endIndex"] if "seasons" in query: data["seasons"] = seasons if "champion.ids" in query: data["champion"] = params["champion"] if "queues" in query: params["queue"] = queues yield MatchListDto(data) return generator() _validate_get_timeline_query = Query. \ has("id").as_(int).also. \ has("platform").as_(Platform) @get.register(TimelineDto) @validate_query(_validate_get_timeline_query, convert_region_to_platform) def get_match_timeline(self, query: MutableMapping[str, Any], context: PipelineContext = None) -> TimelineDto: url = "https://{platform}.api.riotgames.com/lol/match/v4/timelines/by-match/{id}".format(platform=query["platform"].value.lower(), id=query["id"]) try: app_limiter, method_limiter = self._get_rate_limiter(query["platform"], "timelines/by-match/id") data = self._get(url, {}, app_limiter=app_limiter, method_limiter=method_limiter) except APINotFoundError as error: raise NotFoundError(str(error)) from error data["matchId"] = query["id"] data["region"] = query["platform"].region.value return TimelineDto(data) _validate_get_many_timeline_query = Query. \ has("ids").as_(Iterable).also. \ has("platform").as_(Platform) @get_many.register(TimelineDto) @validate_query(_validate_get_many_timeline_query, convert_region_to_platform) def get_many_match_timeline(self, query: MutableMapping[str, Any], context: PipelineContext = None) -> Generator[TimelineDto, None, None]: def generator(): for id in query["ids"]: url = "https://{platform}.api.riotgames.com/lol/match/v4/timelines/by-match/{id}".format(platform=query["platform"].value.lower(), id=id) try: app_limiter, method_limiter = self._get_rate_limiter(query["platform"], "timelines/by-match/id") data = self._get(url, {}, app_limiter=app_limiter, method_limiter=method_limiter) except APINotFoundError as error: raise NotFoundError(str(error)) from error data["matchId"] = id data["region"] = query["platform"].region.value yield TimelineDto(data) return generator()
[ "math.ceil", "arrow.now", "arrow.get", "datapipelines.Query.has", "datetime.timedelta", "datapipelines.validate_query", "time.time", "typing.TypeVar" ]
[((477, 489), 'typing.TypeVar', 'TypeVar', (['"""T"""'], {}), "('T')\n", (484, 489), False, 'from typing import Type, TypeVar, MutableMapping, Any, Iterable, Generator, Union\n'), ((1103, 1172), 'datapipelines.validate_query', 'validate_query', (['_validate_get_match_query', 'convert_region_to_platform'], {}), '(_validate_get_match_query, convert_region_to_platform)\n', (1117, 1172), False, 'from datapipelines import DataSource, PipelineContext, Query, NotFoundError, validate_query\n'), ((2194, 2268), 'datapipelines.validate_query', 'validate_query', (['_validate_get_many_match_query', 'convert_region_to_platform'], {}), '(_validate_get_many_match_query, convert_region_to_platform)\n', (2208, 2268), False, 'from datapipelines import DataSource, PipelineContext, Query, NotFoundError, validate_query\n'), ((3959, 4033), 'datapipelines.validate_query', 'validate_query', (['_validate_get_match_list_query', 'convert_region_to_platform'], {}), '(_validate_get_match_list_query, convert_region_to_platform)\n', (3973, 4033), False, 'from datapipelines import DataSource, PipelineContext, Query, NotFoundError, validate_query\n'), ((8372, 8451), 'datapipelines.validate_query', 'validate_query', (['_validate_get_many_match_list_query', 'convert_region_to_platform'], {}), '(_validate_get_many_match_list_query, convert_region_to_platform)\n', (8386, 8451), False, 'from datapipelines import DataSource, PipelineContext, Query, NotFoundError, validate_query\n'), ((10709, 10781), 'datapipelines.validate_query', 'validate_query', (['_validate_get_timeline_query', 'convert_region_to_platform'], {}), '(_validate_get_timeline_query, convert_region_to_platform)\n', (10723, 10781), False, 'from datapipelines import DataSource, PipelineContext, Query, NotFoundError, validate_query\n'), ((11664, 11741), 'datapipelines.validate_query', 'validate_query', (['_validate_get_many_timeline_query', 'convert_region_to_platform'], {}), '(_validate_get_many_timeline_query, convert_region_to_platform)\n', (11678, 11741), False, 'from datapipelines import DataSource, PipelineContext, Query, NotFoundError, validate_query\n'), ((4230, 4256), 'datetime.timedelta', 'datetime.timedelta', ([], {'days': '(7)'}), '(days=7)\n', (4248, 4256), False, 'import datetime\n'), ((603, 609), 'time.time', 'time', ([], {}), '()\n', (607, 609), False, 'from time import time\n'), ((4359, 4370), 'arrow.now', 'arrow.now', ([], {}), '()\n', (4368, 4370), False, 'import arrow\n'), ((4458, 4486), 'arrow.get', 'arrow.get', (['(begin_time / 1000)'], {}), '(begin_time / 1000)\n', (4467, 4486), False, 'import arrow\n'), ((4548, 4574), 'arrow.get', 'arrow.get', (['(end_time / 1000)'], {}), '(end_time / 1000)\n', (4557, 4574), False, 'import arrow\n'), ((5229, 5254), 'math.ceil', 'math.ceil', (['npulls_by_date'], {}), '(npulls_by_date)\n', (5238, 5254), False, 'import math\n'), ((5257, 5283), 'math.ceil', 'math.ceil', (['npulls_by_index'], {}), '(npulls_by_index)\n', (5266, 5283), False, 'import math\n'), ((987, 1002), 'datapipelines.Query.has', 'Query.has', (['"""id"""'], {}), "('id')\n", (996, 1002), False, 'from datapipelines import DataSource, PipelineContext, Query, NotFoundError, validate_query\n'), ((2067, 2083), 'datapipelines.Query.has', 'Query.has', (['"""ids"""'], {}), "('ids')\n", (2076, 2083), False, 'from datapipelines import DataSource, PipelineContext, Query, NotFoundError, validate_query\n'), ((10590, 10605), 'datapipelines.Query.has', 'Query.has', (['"""id"""'], {}), "('id')\n", (10599, 10605), False, 'from datapipelines import DataSource, PipelineContext, Query, NotFoundError, validate_query\n'), ((11534, 11550), 'datapipelines.Query.has', 'Query.has', (['"""ids"""'], {}), "('ids')\n", (11543, 11550), False, 'from datapipelines import DataSource, PipelineContext, Query, NotFoundError, validate_query\n'), ((5075, 5086), 'arrow.now', 'arrow.now', ([], {}), '()\n', (5084, 5086), False, 'import arrow\n'), ((3495, 3517), 'datapipelines.Query.has', 'Query.has', (['"""accountId"""'], {}), "('accountId')\n", (3504, 3517), False, 'from datapipelines import DataSource, PipelineContext, Query, NotFoundError, validate_query\n'), ((7894, 7917), 'datapipelines.Query.has', 'Query.has', (['"""accountIds"""'], {}), "('accountIds')\n", (7903, 7917), False, 'from datapipelines import DataSource, PipelineContext, Query, NotFoundError, validate_query\n')]
""" This caching is very important for speed and memory optimizations. There's nothing really spectacular, just some decorators. The following cache types are available: - module caching (`load_parser` and `save_parser`), which uses pickle and is really important to assure low load times of modules like ``numpy``. - ``time_cache`` can be used to cache something for just a limited time span, which can be useful if there's user interaction and the user cannot react faster than a certain time. This module is one of the reasons why |jedi| is not thread-safe. As you can see there are global variables, which are holding the cache information. Some of these variables are being cleaned after every API usage. """ import time import os import sys import json import hashlib import gc import inspect import shutil import re try: import cPickle as pickle except ImportError: import pickle from jedi import settings from jedi import common from jedi import debug _time_caches = {} # for fast_parser, should not be deleted parser_cache = {} class ParserCacheItem(object): def __init__(self, parser, change_time=None): self.parser = parser if change_time is None: change_time = time.time() self.change_time = change_time def clear_time_caches(delete_all=False): """ Jedi caches many things, that should be completed after each completion finishes. :param delete_all: Deletes also the cache that is normally not deleted, like parser cache, which is important for faster parsing. """ global _time_caches if delete_all: for cache in _time_caches.values(): cache.clear() parser_cache.clear() else: # normally just kill the expired entries, not all for tc in _time_caches.values(): # check time_cache for expired entries for key, (t, value) in list(tc.items()): if t < time.time(): # delete expired entries del tc[key] def time_cache(time_add_setting): """ s This decorator works as follows: Call it with a setting and after that use the function with a callable that returns the key. But: This function is only called if the key is not available. After a certain amount of time (`time_add_setting`) the cache is invalid. """ def _temp(key_func): dct = {} _time_caches[time_add_setting] = dct def wrapper(*args, **kwargs): generator = key_func(*args, **kwargs) key = next(generator) try: expiry, value = dct[key] if expiry > time.time(): return value except KeyError: pass value = next(generator) time_add = getattr(settings, time_add_setting) if key is not None: dct[key] = time.time() + time_add, value return value return wrapper return _temp @time_cache("call_signatures_validity") def cache_call_signatures(evaluator, call, source, user_pos): """This function calculates the cache key.""" index = user_pos[0] - 1 lines = common.splitlines(source) before_cursor = lines[index][:user_pos[1]] other_lines = lines[call.start_pos[0]:index] whole = '\n'.join(other_lines + [before_cursor]) before_bracket = re.match(r'.*\(', whole, re.DOTALL) module_path = call.get_parent_until().path yield None if module_path is None else (module_path, before_bracket, call.start_pos) yield evaluator.eval_element(call) def underscore_memoization(func): """ Decorator for methods:: class A(object): def x(self): if self._x: self._x = 10 return self._x Becomes:: class A(object): @underscore_memoization def x(self): return 10 A now has an attribute ``_x`` written by this decorator. """ name = '_' + func.__name__ def wrapper(self): try: return getattr(self, name) except AttributeError: result = func(self) if inspect.isgenerator(result): result = list(result) setattr(self, name, result) return result return wrapper def memoize_method(method): """A normal memoize function.""" def wrapper(self, *args, **kwargs): dct = self.__dict__.setdefault('_memoize_method_dct', {}) key = (args, frozenset(kwargs.items())) try: return dct[key] except KeyError: result = method(self, *args, **kwargs) dct[key] = result return result return wrapper def memoize_function(obj): """ A normal memoize function for memoizing free functions. """ cache = obj.cache = {} def memoizer(*args, **kwargs): key = str(args) + str(kwargs) if key not in cache: cache[key] = obj(*args, **kwargs) return cache[key] return memoizer def cache_star_import(func): @time_cache("star_import_cache_validity") def wrapper(self): yield self.base # The cache key yield func(self) return wrapper def _invalidate_star_import_cache_module(module, only_main=False): """ Important if some new modules are being reparsed """ try: t, modules = _time_caches['star_import_cache_validity'][module] except KeyError: pass else: del _time_caches['star_import_cache_validity'][module] def invalidate_star_import_cache(path): """On success returns True.""" try: parser_cache_item = parser_cache[path] except KeyError: pass else: _invalidate_star_import_cache_module(parser_cache_item.parser.module) def load_parser(path): """ Returns the module or None, if it fails. """ p_time = os.path.getmtime(path) if path else None try: parser_cache_item = parser_cache[path] if not path or p_time <= parser_cache_item.change_time: return parser_cache_item.parser else: # In case there is already a module cached and this module # has to be reparsed, we also need to invalidate the import # caches. _invalidate_star_import_cache_module(parser_cache_item.parser.module) except KeyError: if settings.use_filesystem_cache: return ParserPickling.load_parser(path, p_time) def save_parser(path, parser, pickling=True): try: p_time = None if path is None else os.path.getmtime(path) except OSError: p_time = None pickling = False item = ParserCacheItem(parser, p_time) parser_cache[path] = item if settings.use_filesystem_cache and pickling: ParserPickling.save_parser(path, item) class ParserPickling(object): version = 24 """ Version number (integer) for file system cache. Increment this number when there are any incompatible changes in parser representation classes. For example, the following changes are regarded as incompatible. - Class name is changed. - Class is moved to another module. - Defined slot of the class is changed. """ def __init__(self): self.__index = None self.py_tag = 'cpython-%s%s' % sys.version_info[:2] """ Short name for distinguish Python implementations and versions. It's like `sys.implementation.cache_tag` but for Python < 3.3 we generate something similar. See: http://docs.python.org/3/library/sys.html#sys.implementation .. todo:: Detect interpreter (e.g., PyPy). """ def load_parser(self, path, original_changed_time): try: pickle_changed_time = self._index[path] except KeyError: return None if original_changed_time is not None \ and pickle_changed_time < original_changed_time: # the pickle file is outdated return None with open(self._get_hashed_path(path), 'rb') as f: try: gc.disable() parser_cache_item = pickle.load(f) finally: gc.enable() debug.dbg('pickle loaded: %s', path) parser_cache[path] = parser_cache_item return parser_cache_item.parser def save_parser(self, path, parser_cache_item): self.__index = None try: files = self._index except KeyError: files = {} self._index = files with open(self._get_hashed_path(path), 'wb') as f: pickle.dump(parser_cache_item, f, pickle.HIGHEST_PROTOCOL) files[path] = parser_cache_item.change_time self._flush_index() @property def _index(self): if self.__index is None: try: with open(self._get_path('index.json')) as f: data = json.load(f) except (IOError, ValueError): self.__index = {} else: # 0 means version is not defined (= always delete cache): if data.get('version', 0) != self.version: self.clear_cache() self.__index = {} else: self.__index = data['index'] return self.__index def _remove_old_modules(self): # TODO use change = False if change: self._flush_index(self) self._index # reload index def _flush_index(self): data = {'version': self.version, 'index': self._index} with open(self._get_path('index.json'), 'w') as f: json.dump(data, f) self.__index = None def clear_cache(self): shutil.rmtree(self._cache_directory()) def _get_hashed_path(self, path): return self._get_path('%s.pkl' % hashlib.md5(path.encode("utf-8")).hexdigest()) def _get_path(self, file): dir = self._cache_directory() if not os.path.exists(dir): os.makedirs(dir) return os.path.join(dir, file) def _cache_directory(self): return os.path.join(settings.cache_directory, self.py_tag) # is a singleton ParserPickling = ParserPickling()
[ "os.path.exists", "pickle.dump", "gc.enable", "os.makedirs", "jedi.debug.dbg", "gc.disable", "os.path.join", "re.match", "inspect.isgenerator", "pickle.load", "json.load", "os.path.getmtime", "jedi.common.splitlines", "time.time", "json.dump" ]
[((3207, 3232), 'jedi.common.splitlines', 'common.splitlines', (['source'], {}), '(source)\n', (3224, 3232), False, 'from jedi import common\n'), ((3404, 3439), 're.match', 're.match', (['""".*\\\\("""', 'whole', 're.DOTALL'], {}), "('.*\\\\(', whole, re.DOTALL)\n", (3412, 3439), False, 'import re\n'), ((5956, 5978), 'os.path.getmtime', 'os.path.getmtime', (['path'], {}), '(path)\n', (5972, 5978), False, 'import os\n'), ((8324, 8360), 'jedi.debug.dbg', 'debug.dbg', (['"""pickle loaded: %s"""', 'path'], {}), "('pickle loaded: %s', path)\n", (8333, 8360), False, 'from jedi import debug\n'), ((10197, 10220), 'os.path.join', 'os.path.join', (['dir', 'file'], {}), '(dir, file)\n', (10209, 10220), False, 'import os\n'), ((10269, 10320), 'os.path.join', 'os.path.join', (['settings.cache_directory', 'self.py_tag'], {}), '(settings.cache_directory, self.py_tag)\n', (10281, 10320), False, 'import os\n'), ((1226, 1237), 'time.time', 'time.time', ([], {}), '()\n', (1235, 1237), False, 'import time\n'), ((6645, 6667), 'os.path.getmtime', 'os.path.getmtime', (['path'], {}), '(path)\n', (6661, 6667), False, 'import os\n'), ((8726, 8784), 'pickle.dump', 'pickle.dump', (['parser_cache_item', 'f', 'pickle.HIGHEST_PROTOCOL'], {}), '(parser_cache_item, f, pickle.HIGHEST_PROTOCOL)\n', (8737, 8784), False, 'import pickle\n'), ((9798, 9816), 'json.dump', 'json.dump', (['data', 'f'], {}), '(data, f)\n', (9807, 9816), False, 'import json\n'), ((10132, 10151), 'os.path.exists', 'os.path.exists', (['dir'], {}), '(dir)\n', (10146, 10151), False, 'import os\n'), ((10165, 10181), 'os.makedirs', 'os.makedirs', (['dir'], {}), '(dir)\n', (10176, 10181), False, 'import os\n'), ((4214, 4241), 'inspect.isgenerator', 'inspect.isgenerator', (['result'], {}), '(result)\n', (4233, 4241), False, 'import inspect\n'), ((8202, 8214), 'gc.disable', 'gc.disable', ([], {}), '()\n', (8212, 8214), False, 'import gc\n'), ((8251, 8265), 'pickle.load', 'pickle.load', (['f'], {}), '(f)\n', (8262, 8265), False, 'import pickle\n'), ((8303, 8314), 'gc.enable', 'gc.enable', ([], {}), '()\n', (8312, 8314), False, 'import gc\n'), ((1944, 1955), 'time.time', 'time.time', ([], {}), '()\n', (1953, 1955), False, 'import time\n'), ((2667, 2678), 'time.time', 'time.time', ([], {}), '()\n', (2676, 2678), False, 'import time\n'), ((9046, 9058), 'json.load', 'json.load', (['f'], {}), '(f)\n', (9055, 9058), False, 'import json\n'), ((2918, 2929), 'time.time', 'time.time', ([], {}), '()\n', (2927, 2929), False, 'import time\n')]
# -*- coding: utf-8 -*- # Form implementation generated from reading ui file 'PrestamoDeLibros.ui' # # Created by: PyQt4 UI code generator 4.11.4 # # WARNING! All changes made in this file will be lost! from PyQt4 import QtCore, QtGui try: _fromUtf8 = QtCore.QString.fromUtf8 except AttributeError: def _fromUtf8(s): return s try: _encoding = QtGui.QApplication.UnicodeUTF8 def _translate(context, text, disambig): return QtGui.QApplication.translate(context, text, disambig, _encoding) except AttributeError: def _translate(context, text, disambig): return QtGui.QApplication.translate(context, text, disambig) class Ui_Form(object): def setupUi(self, Form): Form.setObjectName(_fromUtf8("Form")) Form.resize(400, 300) self.pushButton = QtGui.QPushButton(Form) self.pushButton.setGeometry(QtCore.QRect(140, 70, 121, 41)) self.pushButton.setObjectName(_fromUtf8("pushButton")) self.pushButton_2 = QtGui.QPushButton(Form) self.pushButton_2.setGeometry(QtCore.QRect(140, 160, 121, 41)) self.pushButton_2.setObjectName(_fromUtf8("pushButton_2")) self.retranslateUi(Form) QtCore.QMetaObject.connectSlotsByName(Form) def retranslateUi(self, Form): Form.setWindowTitle(_translate("Form", "Form", None)) self.pushButton.setText(_translate("Form", "Solicitar", None)) self.pushButton_2.setText(_translate("Form", "Reservar", None)) if __name__ == "__main__": import sys app = QtGui.QApplication(sys.argv) Form = QtGui.QWidget() ui = Ui_Form() ui.setupUi(Form) Form.show() sys.exit(app.exec_())
[ "PyQt4.QtGui.QApplication", "PyQt4.QtGui.QWidget", "PyQt4.QtCore.QMetaObject.connectSlotsByName", "PyQt4.QtGui.QPushButton", "PyQt4.QtGui.QApplication.translate", "PyQt4.QtCore.QRect" ]
[((1541, 1569), 'PyQt4.QtGui.QApplication', 'QtGui.QApplication', (['sys.argv'], {}), '(sys.argv)\n', (1559, 1569), False, 'from PyQt4 import QtCore, QtGui\n'), ((1581, 1596), 'PyQt4.QtGui.QWidget', 'QtGui.QWidget', ([], {}), '()\n', (1594, 1596), False, 'from PyQt4 import QtCore, QtGui\n'), ((458, 522), 'PyQt4.QtGui.QApplication.translate', 'QtGui.QApplication.translate', (['context', 'text', 'disambig', '_encoding'], {}), '(context, text, disambig, _encoding)\n', (486, 522), False, 'from PyQt4 import QtCore, QtGui\n'), ((815, 838), 'PyQt4.QtGui.QPushButton', 'QtGui.QPushButton', (['Form'], {}), '(Form)\n', (832, 838), False, 'from PyQt4 import QtCore, QtGui\n'), ((998, 1021), 'PyQt4.QtGui.QPushButton', 'QtGui.QPushButton', (['Form'], {}), '(Form)\n', (1015, 1021), False, 'from PyQt4 import QtCore, QtGui\n'), ((1202, 1245), 'PyQt4.QtCore.QMetaObject.connectSlotsByName', 'QtCore.QMetaObject.connectSlotsByName', (['Form'], {}), '(Form)\n', (1239, 1245), False, 'from PyQt4 import QtCore, QtGui\n'), ((606, 659), 'PyQt4.QtGui.QApplication.translate', 'QtGui.QApplication.translate', (['context', 'text', 'disambig'], {}), '(context, text, disambig)\n', (634, 659), False, 'from PyQt4 import QtCore, QtGui\n'), ((875, 905), 'PyQt4.QtCore.QRect', 'QtCore.QRect', (['(140)', '(70)', '(121)', '(41)'], {}), '(140, 70, 121, 41)\n', (887, 905), False, 'from PyQt4 import QtCore, QtGui\n'), ((1060, 1091), 'PyQt4.QtCore.QRect', 'QtCore.QRect', (['(140)', '(160)', '(121)', '(41)'], {}), '(140, 160, 121, 41)\n', (1072, 1091), False, 'from PyQt4 import QtCore, QtGui\n')]
from hwtest.shell_utils import run_command def test_linux_usb3hub(): """ Test for Linux Foundation 3.0 root hub in `lsusb` output """ resp = run_command(["lsusb"]) assert "1d6b:0003" in resp
[ "hwtest.shell_utils.run_command" ]
[((160, 182), 'hwtest.shell_utils.run_command', 'run_command', (["['lsusb']"], {}), "(['lsusb'])\n", (171, 182), False, 'from hwtest.shell_utils import run_command\n')]
# Copyright 2012-2014 The Meson development team # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # http://www.apache.org/licenses/LICENSE-2.0 # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import backends import environment, mesonlib import build import mlog import dependencies from mesonlib import File from meson_install import InstallData from build import InvalidArguments from coredata import MesonException import os, sys, pickle, re import subprocess, shutil if mesonlib.is_windows(): quote_char = '"' execute_wrapper = 'cmd /c' else: quote_char = "'" execute_wrapper = '' def ninja_quote(text): return text.replace(' ', '$ ').replace(':', '$:') class RawFilename(): def __init__(self, fname): self.fname = fname def split(self, c): return self.fname.split(c) def startswith(self, s): return self.fname.startswith(s) class NinjaBuildElement(): def __init__(self, outfilenames, rule, infilenames): if isinstance(outfilenames, str): self.outfilenames = [outfilenames] else: self.outfilenames = outfilenames assert(isinstance(rule, str)) self.rule = rule if isinstance(infilenames, str): self.infilenames = [infilenames] else: self.infilenames = infilenames self.deps = [] self.orderdeps = [] self.elems = [] def add_dep(self, dep): if isinstance(dep, list): self.deps += dep else: self.deps.append(dep) def add_orderdep(self, dep): if isinstance(dep, list): self.orderdeps += dep else: self.orderdeps.append(dep) def add_item(self, name, elems): if isinstance(elems, str): elems = [elems] self.elems.append((name, elems)) def write(self, outfile): line = 'build %s: %s %s' % (' '.join([ninja_quote(i) for i in self.outfilenames]),\ self.rule, ' '.join([ninja_quote(i) for i in self.infilenames])) if len(self.deps) > 0: line += ' | ' + ' '.join([ninja_quote(x) for x in self.deps]) if len(self.orderdeps) > 0: line += ' || ' + ' '.join([ninja_quote(x) for x in self.orderdeps]) line += '\n' # This is the only way I could find to make this work on all # platforms including Windows command shell. Slash is a dir separator # on Windows, too, so all characters are unambiguous and, more importantly, # do not require quoting. line = line.replace('\\', '/') outfile.write(line) for e in self.elems: (name, elems) = e should_quote = True if name == 'DEPFILE' or name == 'DESC' or name == 'pool': should_quote = False line = ' %s = ' % name q_templ = quote_char + "%s" + quote_char noq_templ = "%s" newelems = [] for i in elems: if not should_quote or i == '&&': # Hackety hack hack templ = noq_templ else: templ = q_templ i = i.replace('\\', '\\\\') if quote_char == '"': i = i.replace('"', '\\"') newelems.append(templ % ninja_quote(i)) line += ' '.join(newelems) line += '\n' outfile.write(line) outfile.write('\n') class NinjaBackend(backends.Backend): def __init__(self, build): super().__init__(build) self.source_suffix_in_objs = True self.ninja_filename = 'build.ninja' self.fortran_deps = {} self.all_outputs = {} def check_outputs(self, elem): for n in elem.outfilenames: if n in self.all_outputs: raise MesonException('Multiple producers for Ninja target "%s". Please rename your targets.' % n) self.all_outputs[n] = True def detect_vs_dep_prefix(self, outfile, tempfilename): '''VS writes its dependency in a locale dependent format. Detect the search prefix to use.''' if shutil.which('cl') is None: return outfile outfile.close() open(os.path.join(self.environment.get_scratch_dir(), 'incdetect.c'), 'w').write('''#include<stdio.h> int dummy; ''') pc = subprocess.Popen(['cl', '/showIncludes', '/c', 'incdetect.c'], stdout=subprocess.PIPE, stderr=subprocess.PIPE, cwd=self.environment.get_scratch_dir()) (stdo, _) = pc.communicate() for line in stdo.split(b'\r\n'): if line.endswith(b'stdio.h'): matchstr = b':'.join(line.split(b':')[0:2]) + b':' binfile = open(tempfilename, 'ab') binfile.write(b'msvc_deps_prefix = ' + matchstr + b'\r\n') binfile.close() return open(tempfilename, 'a') raise MesonException('Could not determine vs dep dependency prefix string.') def generate(self, interp): self.interpreter = interp outfilename = os.path.join(self.environment.get_build_dir(), self.ninja_filename) tempfilename = outfilename + '~' outfile = open(tempfilename, 'w') outfile.write('# This is the build file for project "%s"\n' % self.build.get_project()) outfile.write('# It is autogenerated by the Meson build system.\n') outfile.write('# Do not edit by hand.\n\n') outfile.write('ninja_required_version = 1.5.1\n\n') outfile = self.detect_vs_dep_prefix(outfile, tempfilename) self.generate_rules(outfile) self.generate_phony(outfile) outfile.write('# Build rules for targets\n\n') [self.generate_target(t, outfile) for t in self.build.get_targets().values()] if len(self.build.pot) > 0: outfile.write('# Build rules for localisation.\n\n') self.generate_po(outfile) outfile.write('# Test rules\n\n') self.generate_tests(outfile) outfile.write('# Install rules\n\n') self.generate_install(outfile) if self.environment.coredata.get_builtin_option('coverage'): outfile.write('# Coverage rules\n\n') self.generate_coverage_rules(outfile) outfile.write('# Suffix\n\n') self.generate_ending(outfile) # Only ovewrite the old build file after the new one has been # fully created. outfile.close() os.replace(tempfilename, outfilename) self.generate_compdb() # http://clang.llvm.org/docs/JSONCompilationDatabase.html def generate_compdb(self): ninja_exe = environment.detect_ninja() builddir = self.environment.get_build_dir() jsondb = subprocess.check_output([ninja_exe, '-t', 'compdb', 'c_COMPILER', 'cpp_COMPILER'], cwd=builddir) open(os.path.join(builddir, 'compile_commands.json'), 'wb').write(jsondb) # Get all generated headers. Any source file might need them so # we need to add an order dependency to them. def get_generated_headers(self, target): header_deps = [] for gensource in target.get_generated_sources(): if isinstance(gensource, build.CustomTarget): continue for src in gensource.get_outfilelist(): if self.environment.is_header(src): header_deps.append(os.path.join(self.get_target_private_dir(target), src)) for dep in target.link_targets: if isinstance(dep, (build.StaticLibrary, build.SharedLibrary)): header_deps += self.get_generated_headers(dep) return header_deps def generate_target(self, target, outfile): if isinstance(target, build.CustomTarget): self.generate_custom_target(target, outfile) if isinstance(target, build.RunTarget): self.generate_run_target(target, outfile) name = target.get_id() gen_src_deps = [] if name in self.processed_targets: return if isinstance(target, build.Jar): self.generate_jar_target(target, outfile) return if 'rust' in self.environment.coredata.compilers.keys() and self.has_rust(target): self.generate_rust_target(target, outfile) return if 'cs' in self.environment.coredata.compilers.keys() and self.has_cs(target): self.generate_cs_target(target, outfile) return if 'vala' in self.environment.coredata.compilers.keys() and self.has_vala(target): gen_src_deps += self.generate_vala_compile(target, outfile) if 'swift' in self.environment.coredata.compilers.keys() and self.has_swift(target): self.generate_swift_target(target, outfile) return self.scan_fortran_module_outputs(target) # The following deals with C/C++ compilation. (gen_src, gen_other_deps) = self.process_dep_gens(outfile, target) gen_src_deps += gen_src self.process_target_dependencies(target, outfile) self.generate_custom_generator_rules(target, outfile) outname = self.get_target_filename(target) obj_list = [] use_pch = self.environment.coredata.get_builtin_option('use_pch') is_unity = self.environment.coredata.get_builtin_option('unity') if use_pch and target.has_pch(): pch_objects = self.generate_pch(target, outfile) else: pch_objects = [] header_deps = gen_other_deps unity_src = [] unity_deps = [] # Generated sources that must be built before compiling a Unity target. header_deps += self.get_generated_headers(target) for gensource in target.get_generated_sources(): if isinstance(gensource, build.CustomTarget): for src in gensource.output: src = os.path.join(self.get_target_dir(gensource), src) if self.environment.is_source(src) and not self.environment.is_header(src): if is_unity: unity_deps.append(os.path.join(self.environment.get_build_dir(), RawFilename(src))) else: obj_list.append(self.generate_single_compile(target, outfile, RawFilename(src), True, header_deps)) elif self.environment.is_object(src): obj_list.append(src) elif self.environment.is_library(src): pass else: # Assume anything not specifically a source file is a header. This is because # people generate files with weird suffixes (.inc, .fh) that they then include # in their source files. header_deps.append(RawFilename(src)) else: for src in gensource.get_outfilelist(): if self.environment.is_object(src): obj_list.append(os.path.join(self.get_target_private_dir(target), src)) elif not self.environment.is_header(src): if is_unity: if self.has_dir_part(src): rel_src = src else: rel_src = os.path.join(self.get_target_private_dir(target), src) unity_deps.append(rel_src) abs_src = os.path.join(self.environment.get_build_dir(), rel_src) unity_src.append(abs_src) else: obj_list.append(self.generate_single_compile(target, outfile, src, True, header_deps=header_deps)) src_list = [] for src in gen_src_deps: src_list.append(src) if is_unity: unity_src.append(os.path.join(self.environment.get_build_dir(), src)) header_deps.append(src) else: # Generated targets are ordered deps because the must exist # before the sources compiling them are used. After the first # compile we get precise dependency info from dep files. # This should work in all cases. If it does not, then just # move them from orderdeps to proper deps. if self.environment.is_header(src): header_deps.append(src) else: obj_list.append(self.generate_single_compile(target, outfile, src, True, [], header_deps)) for src in target.get_sources(): if src.endswith('.vala'): continue if not self.environment.is_header(src): src_list.append(src) if is_unity: abs_src = os.path.join(self.environment.get_build_dir(), src.rel_to_builddir(self.build_to_src)) unity_src.append(abs_src) else: obj_list.append(self.generate_single_compile(target, outfile, src, False, [], header_deps)) obj_list += self.flatten_object_list(target) if is_unity: for src in self.generate_unity_files(target, unity_src): obj_list.append(self.generate_single_compile(target, outfile, src, True, unity_deps + header_deps)) linker = self.determine_linker(target, src_list) elem = self.generate_link(target, outfile, outname, obj_list, linker, pch_objects) self.generate_shlib_aliases(target, self.get_target_dir(target)) elem.write(outfile) self.processed_targets[name] = True def process_target_dependencies(self, target, outfile): for t in target.get_dependencies(): tname = t.get_basename() + t.type_suffix() if not tname in self.processed_targets: self.generate_target(t, outfile) def generate_custom_target(self, target, outfile): (srcs, ofilenames, cmd) = self.eval_custom_target_command(target) deps = [] for i in target.get_dependencies(): # FIXME, should not grab element at zero but rather expand all. if isinstance(i, list): i = i[0] fname = i.get_filename() if isinstance(fname, list): fname = fname[0] deps.append(os.path.join(self.get_target_dir(i), fname)) if target.build_always: deps.append('PHONY') elem = NinjaBuildElement(ofilenames, 'CUSTOM_COMMAND', srcs) for i in target.depend_files: if isinstance(i, mesonlib.File): deps.append(i.rel_to_builddir(self.build_to_src)) else: deps.append(os.path.join(self.build_to_src, i)) elem.add_dep(deps) for d in target.extra_depends: tmp = d.get_filename() if not isinstance(tmp, list): tmp = [tmp] for fname in tmp: elem.add_dep(os.path.join(self.get_target_dir(d), fname)) elem.add_item('COMMAND', cmd) elem.add_item('description', 'Generating %s with a custom command.' % target.name) elem.write(outfile) self.check_outputs(elem) self.processed_targets[target.name + target.type_suffix()] = True def generate_run_target(self, target, outfile): runnerscript = os.path.join(self.environment.get_script_dir(), 'commandrunner.py') deps = [] arg_strings = [] for i in target.args: if isinstance(i, str): arg_strings.append(i) elif isinstance(i, (build.BuildTarget, build.CustomTarget)): relfname = self.get_target_filename(i) deps.append(relfname) arg_strings.append(os.path.join(self.environment.get_build_dir(), relfname)) else: mlog.debug(str(i)) raise MesonException('Unreachable code in generate_run_target.') elem = NinjaBuildElement(target.name, 'CUSTOM_COMMAND', deps) cmd = [sys.executable, runnerscript, self.environment.get_source_dir(), self.environment.get_build_dir(), target.subdir] texe = target.command try: texe = texe.held_object except AttributeError: pass if isinstance(texe, build.Executable): abs_exe = os.path.join(self.environment.get_build_dir(), self.get_target_filename(texe)) deps.append(self.get_target_filename(texe)) if self.environment.is_cross_build() \ and self.environment.cross_info.config['binaries'].get('exe_wrapper', None) is not None: cmd += [self.environment.cross_info.config['binaries']['exe_wrapper']] cmd.append(abs_exe) else: cmd.append(target.command) cmd += arg_strings elem.add_item('COMMAND', cmd) elem.add_item('description', 'Running external command %s.' % target.name) elem.add_item('pool', 'console') elem.write(outfile) self.check_outputs(elem) self.processed_targets[target.name + target.type_suffix()] = True def generate_po(self, outfile): for p in self.build.pot: (packagename, languages, subdir) = p input_file = os.path.join(subdir, 'POTFILES') elem = NinjaBuildElement('pot', 'GEN_POT', []) elem.add_item('PACKAGENAME', packagename) elem.add_item('OUTFILE', packagename + '.pot') elem.add_item('FILELIST', os.path.join(self.environment.get_source_dir(), input_file)) elem.add_item('OUTDIR', os.path.join(self.environment.get_source_dir(), subdir)) elem.write(outfile) self.check_outputs(elem) for l in languages: infile = os.path.join(self.environment.get_source_dir(), subdir, l + '.po') outfilename = os.path.join(subdir, l + '.gmo') lelem = NinjaBuildElement(outfilename, 'GEN_GMO', infile) lelem.add_item('INFILE', infile) lelem.add_item('OUTFILE', outfilename) lelem.write(outfile) self.check_outputs(lelem) def generate_coverage_rules(self, outfile): (gcovr_exe, lcov_exe, genhtml_exe) = environment.find_coverage_tools() added_rule = False if gcovr_exe: added_rule = True elem = NinjaBuildElement('coverage-xml', 'CUSTOM_COMMAND', '') elem.add_item('COMMAND', [gcovr_exe, '-x', '-r', self.environment.get_build_dir(),\ '-o', os.path.join(self.environment.get_log_dir(), 'coverage.xml')]) elem.add_item('DESC', 'Generating XML coverage report.') elem.write(outfile) elem = NinjaBuildElement('coverage-text', 'CUSTOM_COMMAND', '') elem.add_item('COMMAND', [gcovr_exe, '-r', self.environment.get_build_dir(),\ '-o', os.path.join(self.environment.get_log_dir(), 'coverage.txt')]) elem.add_item('DESC', 'Generating text coverage report.') elem.write(outfile) self.check_outputs(elem) if lcov_exe and genhtml_exe: added_rule = True phony_elem = NinjaBuildElement('coverage-html', 'phony', 'coveragereport/index.html') phony_elem.write(outfile) elem = NinjaBuildElement('coveragereport/index.html', 'CUSTOM_COMMAND', '') command = [lcov_exe, '--directory', self.environment.get_build_dir(),\ '--capture', '--output-file', 'coverage.info', '--no-checksum',\ '&&', genhtml_exe, '--prefix', self.environment.get_build_dir(),\ '--output-directory', self.environment.get_log_dir(), '--title', 'Code coverage',\ '--legend', '--show-details', 'coverage.info'] elem.add_item('COMMAND', command) elem.add_item('DESC', 'Generating HTML coverage report.') self.check_outputs(elem) elem.write(outfile) if not added_rule: mlog.log(mlog.red('Warning:'), 'coverage requested but neither gcovr nor lcov/genhtml found.') def generate_install(self, outfile): script_root = self.environment.get_script_dir() install_script = os.path.join(script_root, 'meson_install.py') install_data_file = os.path.join(self.environment.get_scratch_dir(), 'install.dat') depfixer = os.path.join(script_root, 'depfixer.py') d = InstallData(self.environment.get_source_dir(), self.environment.get_build_dir(), self.environment.get_prefix(), depfixer) elem = NinjaBuildElement('install', 'CUSTOM_COMMAND', 'PHONY') elem.add_dep('all') elem.add_item('DESC', 'Installing files.') elem.add_item('COMMAND', [sys.executable, install_script, install_data_file]) elem.add_item('pool', 'console') self.generate_depmf_install(d) self.generate_target_install(d) self.generate_header_install(d) self.generate_man_install(d) self.generate_data_install(d) self.generate_po_install(d, elem) self.generate_custom_install_script(d) self.generate_subdir_install(d) elem.write(outfile) self.check_outputs(elem) ofile = open(install_data_file, 'wb') pickle.dump(d, ofile) def generate_po_install(self, d, elem): for p in self.build.pot: (package_name, languages, subdir) = p # FIXME: assumes only one po package per source d.po_package_name = package_name for lang in languages: rel_src = os.path.join(subdir, lang + '.gmo') src_file = os.path.join(self.environment.get_build_dir(), rel_src) d.po.append((src_file, self.environment.coredata.get_builtin_option('localedir'), lang)) elem.add_dep(rel_src) def generate_target_install(self, d): libdir = self.environment.get_libdir() bindir = self.environment.get_bindir() should_strip = self.environment.coredata.get_builtin_option('strip') for t in self.build.get_targets().values(): if t.should_install(): outdir = t.get_custom_install_dir() if outdir is None: if isinstance(t, build.Executable): outdir = bindir else: outdir = libdir i = [self.get_target_filename(t), outdir, t.get_aliaslist(),\ should_strip, t.install_rpath] d.targets.append(i) def generate_custom_install_script(self, d): d.install_scripts = self.build.install_scripts def generate_header_install(self, d): incroot = self.environment.get_includedir() headers = self.build.get_headers() for h in headers: outdir = h.get_custom_install_dir() if outdir is None: outdir = os.path.join(incroot, h.get_install_subdir()) for f in h.get_sources(): abspath = os.path.join(self.environment.get_source_dir(), h.get_source_subdir(), f) i = [abspath, outdir] d.headers.append(i) def generate_man_install(self, d): manroot = self.environment.get_mandir() man = self.build.get_man() for m in man: for f in m.get_sources(): num = f.split('.')[-1] subdir = m.get_custom_install_dir() if subdir is None: subdir = os.path.join(manroot, 'man' + num) srcabs = os.path.join(self.environment.get_source_dir(), m.get_source_subdir(), f) dstabs = os.path.join(subdir, f + '.gz') i = [srcabs, dstabs] d.man.append(i) def generate_data_install(self, d): data = self.build.get_data() for de in data: assert(isinstance(de, build.Data)) subdir = de.install_dir for f in de.sources: if de.in_sourcetree: srcprefix = self.environment.get_source_dir() else: srcprefix = self.environment.get_build_dir() srcabs = os.path.join(srcprefix, de.source_subdir, f) dstabs = os.path.join(subdir, f) i = [srcabs, dstabs] d.data.append(i) def generate_subdir_install(self, d): for sd in self.build.get_install_subdirs(): src_dir = os.path.join(self.environment.get_source_dir(), sd.source_subdir, sd.installable_subdir) dst_dir = os.path.join(self.environment.get_prefix(), sd.install_dir) d.install_subdirs.append([src_dir, dst_dir]) def write_test_suite_targets(self, cmd, outfile): suites = {} for t in self.build.get_tests(): for s in t.suite: suites[s] = True suites = list(suites.keys()) suites.sort() for s in suites: if s == '': visible_name = 'for top level tests' else: visible_name = s elem = NinjaBuildElement('test-' + s, 'CUSTOM_COMMAND', ['all', 'PHONY']) elem.add_item('COMMAND', cmd + ['--suite=' + s]) elem.add_item('DESC', 'Running test suite %s.' % visible_name) elem.add_item('pool', 'console') elem.write(outfile) self.check_outputs(elem) def generate_tests(self, outfile): self.serialise_tests() valgrind = environment.find_valgrind() script_root = self.environment.get_script_dir() test_script = os.path.join(script_root, 'meson_test.py') test_data = os.path.join(self.environment.get_scratch_dir(), 'meson_test_setup.dat') cmd = [sys.executable, test_script, test_data] elem = NinjaBuildElement('test', 'CUSTOM_COMMAND', ['all', 'PHONY']) elem.add_item('COMMAND', cmd) elem.add_item('DESC', 'Running all tests.') elem.add_item('pool', 'console') elem.write(outfile) self.check_outputs(elem) self.write_test_suite_targets(cmd, outfile) if valgrind: velem = NinjaBuildElement('test-valgrind', 'CUSTOM_COMMAND', ['all', 'PHONY']) velem.add_item('COMMAND', cmd + ['--wrapper=' + valgrind]) velem.add_item('DESC', 'Running test suite under Valgrind.') velem.add_item('pool', 'console') velem.write(outfile) self.check_outputs(velem) # And then benchmarks. benchmark_script = os.path.join(script_root, 'meson_benchmark.py') benchmark_data = os.path.join(self.environment.get_scratch_dir(), 'meson_benchmark_setup.dat') cmd = [sys.executable, benchmark_script, benchmark_data] elem = NinjaBuildElement('benchmark', 'CUSTOM_COMMAND', ['all', 'PHONY']) elem.add_item('COMMAND', cmd) elem.add_item('DESC', 'Running benchmark suite.') elem.add_item('pool', 'console') elem.write(outfile) self.check_outputs(elem) def generate_rules(self, outfile): outfile.write('# Rules for compiling.\n\n') self.generate_compile_rules(outfile) outfile.write('# Rules for linking.\n\n') if self.environment.is_cross_build(): self.generate_static_link_rules(True, outfile) self.generate_static_link_rules(False, outfile) self.generate_dynamic_link_rules(outfile) outfile.write('# Other rules\n\n') outfile.write('rule CUSTOM_COMMAND\n') outfile.write(' command = $COMMAND\n') outfile.write(' description = $DESC\n') outfile.write(' restat = 1\n\n') outfile.write('rule REGENERATE_BUILD\n') c = (quote_char + ninja_quote(sys.executable) + quote_char, quote_char + ninja_quote(self.environment.get_build_command()) + quote_char, quote_char + ninja_quote(self.environment.get_source_dir()) + quote_char, quote_char + ninja_quote(self.environment.get_build_dir()) + quote_char) outfile.write(" command = %s %s %s %s --backend ninja secret-handshake\n" % c) outfile.write(' description = Regenerating build files\n') outfile.write(' generator = 1\n\n') if len(self.build.pot) > 0: self.generate_gettext_rules(outfile) outfile.write('\n') def generate_gettext_rules(self, outfile): rule = 'rule GEN_POT\n' command = " command = xgettext --package-name=$PACKAGENAME -p $OUTDIR -f $FILELIST -D '%s' -k_ -o $OUTFILE\n" % \ self.environment.get_source_dir() desc = " description = Creating pot file for package $PACKAGENAME.\n" outfile.write(rule) outfile.write(command) outfile.write(desc) outfile.write('\n') rule = 'rule GEN_GMO\n' command = ' command = msgfmt $INFILE -o $OUTFILE\n' desc = ' description = Generating gmo file $OUTFILE\n' outfile.write(rule) outfile.write(command) outfile.write(desc) outfile.write('\n') def generate_phony(self, outfile): outfile.write('# Phony build target, always out of date\n') outfile.write('build PHONY: phony\n') outfile.write('\n') def generate_jar_target(self, target, outfile): fname = target.get_filename() subdir = target.get_subdir() outname_rel = os.path.join(self.get_target_dir(target), fname) src_list = target.get_sources() class_list = [] compiler = self.get_compiler_for_source(src_list[0]) assert(compiler.get_language() == 'java') c = 'c' m = '' e = '' f = 'f' main_class = target.get_main_class() if main_class != '': e = 'e' for src in src_list: plain_class_path = self.generate_single_java_compile(src, target, compiler, outfile) class_list.append(plain_class_path) class_dep_list = [os.path.join(self.get_target_private_dir(target), i) for i in class_list] jar_rule = 'java_LINKER' commands = [c+m+e+f] if e != '': commands.append(main_class) commands.append(self.get_target_filename(target)) for cls in class_list: commands += ['-C', self.get_target_private_dir(target), cls] elem = NinjaBuildElement(outname_rel, jar_rule, []) elem.add_dep(class_dep_list) elem.add_item('ARGS', commands) elem.write(outfile) self.check_outputs(elem) def generate_cs_resource_tasks(self, target, outfile): args = [] deps = [] for r in target.resources: rel_sourcefile = os.path.join(self.build_to_src, target.subdir, r) if r.endswith('.resources'): a = '-resource:' + rel_sourcefile elif r.endswith('.txt') or r.endswith('.resx'): ofilebase = os.path.splitext(os.path.basename(r))[0] + '.resources' ofilename = os.path.join(self.get_target_private_dir(target), ofilebase) elem = NinjaBuildElement(ofilename, "CUSTOM_COMMAND", rel_sourcefile) elem.add_item('COMMAND', ['resgen', rel_sourcefile, ofilename]) elem.add_item('DESC', 'Compiling resource %s.' % rel_sourcefile) elem.write(outfile) self.check_outputs(elem) deps.append(ofilename) a = '-resource:' + ofilename else: raise InvalidArguments('Unknown resource file %s.' % r) args.append(a) return (args, deps) def generate_cs_target(self, target, outfile): buildtype = self.environment.coredata.get_builtin_option('buildtype') fname = target.get_filename() outname_rel = os.path.join(self.get_target_dir(target), fname) src_list = target.get_sources() compiler = self.get_compiler_for_source(src_list[0]) assert(compiler.get_language() == 'cs') rel_srcs = [s.rel_to_builddir(self.build_to_src) for s in src_list] deps = [] commands = target.extra_args.get('cs', []) commands += compiler.get_buildtype_args(buildtype) if isinstance(target, build.Executable): commands.append('-target:exe') elif isinstance(target, build.SharedLibrary): commands.append('-target:library') else: raise MesonException('Unknown C# target type.') (resource_args, resource_deps) = self.generate_cs_resource_tasks(target, outfile) commands += resource_args deps += resource_deps commands += compiler.get_output_args(outname_rel) for l in target.link_targets: lname = os.path.join(self.get_target_dir(l), l.get_filename()) commands += compiler.get_link_args(lname) deps.append(lname) if '-g' in commands: outputs = [outname_rel, outname_rel + '.mdb'] else: outputs = [outname_rel] elem = NinjaBuildElement(outputs, 'cs_COMPILER', rel_srcs) elem.add_dep(deps) elem.add_item('ARGS', commands) self.check_outputs(elem) elem.write(outfile) def generate_single_java_compile(self, src, target, compiler, outfile): args = [] args += compiler.get_buildtype_args(self.environment.coredata.get_builtin_option('buildtype')) args += compiler.get_output_args(self.get_target_private_dir(target)) for i in target.include_dirs: for idir in i.get_incdirs(): args += ['-sourcepath', os.path.join(self.build_to_src, i.curdir, idir)] rel_src = src.rel_to_builddir(self.build_to_src) plain_class_path = src.fname[:-4] + 'class' rel_obj = os.path.join(self.get_target_private_dir(target), plain_class_path) element = NinjaBuildElement(rel_obj, compiler.get_language() + '_COMPILER', rel_src) element.add_item('ARGS', args) element.write(outfile) self.check_outputs(element) return plain_class_path def generate_java_link(self, outfile): rule = 'rule java_LINKER\n' command = ' command = jar $ARGS\n' description = ' description = Creating jar $out.\n' outfile.write(rule) outfile.write(command) outfile.write(description) outfile.write('\n') def split_vala_sources(self, sources): src = [] vapi_src = [] for s in sources: if s.endswith('.vapi'): vapi_src.append(s) else: src.append(s) return (src, vapi_src) def determine_dep_vapis(self, target): result = [] for dep in target.link_targets: for i in dep.sources: if hasattr(i, 'fname'): i = i.fname if i.endswith('vala'): vapiname = os.path.splitext(os.path.split(i)[1])[0] + '.vapi' fullname = os.path.join(self.get_target_private_dir(dep), vapiname) result.append(fullname) break return result def generate_vala_compile(self, target, outfile): """Vala is compiled into C. Set up all necessary build steps here.""" valac = self.environment.coredata.compilers['vala'] (src, vapi_src) = self.split_vala_sources(target.get_sources()) vapi_src = [x.rel_to_builddir(self.build_to_src) for x in vapi_src] extra_dep_files = [] vala_input_files = [] for s in src: if s.endswith('.vala'): vala_input_files.append(s.rel_to_builddir(self.build_to_src)) namebase = os.path.splitext(os.path.split(vala_input_files[0])[1])[0] hname = namebase + '.h' vapiname = namebase + '.vapi' outputs = [vapiname] args = ['-d', self.get_target_private_dir(target)] args += ['-C']#, '-o', cname] if not isinstance(target, build.Executable): outputs.append(hname) args += ['-H', hname] args += ['--vapi=' + vapiname] for src in vala_input_files: namebase = os.path.splitext(os.path.split(src)[1])[0] + '.c' outputs.append(namebase) if self.environment.coredata.get_builtin_option('werror'): args += valac.get_werror_args() for d in target.external_deps: if isinstance(d, dependencies.PkgConfigDependency): if d.name == 'glib-2.0' and d.version_requirement is not None \ and d.version_requirement.startswith(('>=', '==')): args += ['--target-glib', d.version_requirement[2:]] args += ['--pkg', d.name] extra_args = [] for a in target.extra_args.get('vala', []): if isinstance(a, File): relname = a.rel_to_builddir(self.build_to_src) extra_dep_files.append(relname) extra_args.append(relname) else: extra_args.append(a) dependency_vapis = self.determine_dep_vapis(target) extra_dep_files += dependency_vapis args += extra_args args += dependency_vapis outputs = [os.path.join(self.get_target_private_dir(target), x) for x in outputs] element = NinjaBuildElement(outputs, valac.get_language() + '_COMPILER', vala_input_files + vapi_src) element.add_item('ARGS', args) element.add_dep(extra_dep_files) element.write(outfile) self.check_outputs(element) return outputs def generate_rust_target(self, target, outfile): rustc = self.environment.coredata.compilers['rust'] relsrc = [] for i in target.get_sources(): if not rustc.can_compile(i): raise InvalidArguments('Rust target %s contains a non-rust source file.' % target.get_basename()) relsrc.append(i.rel_to_builddir(self.build_to_src)) target_name = os.path.join(target.subdir, target.get_filename()) args = ['--crate-type'] if isinstance(target, build.Executable): cratetype = 'bin' elif isinstance(target, build.SharedLibrary): cratetype = 'rlib' elif isinstance(target, build.StaticLibrary): cratetype = 'rlib' else: raise InvalidArguments('Unknown target type for rustc.') args.append(cratetype) args += rustc.get_buildtype_args(self.environment.coredata.get_builtin_option('buildtype')) depfile = target.name + '.d' args += ['--out-dir', target.subdir] args += ['--emit', 'dep-info', '--emit', 'link'] orderdeps = [os.path.join(t.subdir, t.get_filename()) for t in target.link_targets] linkdirs = {} for d in target.link_targets: linkdirs[d.subdir] = True for d in linkdirs.keys(): if d == '': d = '.' args += ['-L', d] element = NinjaBuildElement(target_name, 'rust_COMPILER', relsrc) if len(orderdeps) > 0: element.add_orderdep(orderdeps) element.add_item('ARGS', args) element.add_item('targetdep', depfile) element.add_item('cratetype', cratetype) element.write(outfile) self.check_outputs(element) def swift_module_file_name(self, target): return os.path.join(self.get_target_private_dir(target), self.target_swift_modulename(target) + '.swiftmodule') def target_swift_modulename(self, target): return target.name def is_swift_target(self, target): for s in target.sources: if s.endswith('swift'): return True return False def determine_swift_dep_modules(self, target): result = [] for l in target.link_targets: if self.is_swift_target(l): result.append(self.swift_module_file_name(l)) return result def determine_swift_dep_dirs(self, target): result = [] for l in target.link_targets: result.append(self.get_target_private_dir_abs(l)) return result def get_swift_link_deps(self, target): result = [] for l in target.link_targets: result.append(self.get_target_filename(l)) return result def split_swift_generated_sources(self, target): all_srcs = [] for genlist in target.get_generated_sources(): if isinstance(genlist, build.CustomTarget): for ifile in genlist.get_filename(): rel = os.path.join(self.get_target_dir(genlist), ifile) all_srcs.append(rel) else: for ifile in genlist.get_outfilelist(): rel = os.path.join(self.get_target_private_dir(target), ifile) all_srcs.append(rel) srcs = [] others = [] for i in all_srcs: if i.endswith('.swift'): srcs.append(i) else: others.append(i) return (srcs, others) def generate_swift_target(self, target, outfile): module_name = self.target_swift_modulename(target) swiftc = self.environment.coredata.compilers['swift'] abssrc = [] abs_headers = [] header_imports = [] for i in target.get_sources(): if swiftc.can_compile(i): relsrc = i.rel_to_builddir(self.build_to_src) abss = os.path.normpath(os.path.join(self.environment.get_build_dir(), relsrc)) abssrc.append(abss) elif self.environment.is_header(i): relh = i.rel_to_builddir(self.build_to_src) absh = os.path.normpath(os.path.join(self.environment.get_build_dir(), relh)) abs_headers.append(absh) header_imports += swiftc.get_header_import_args(absh) else: raise InvalidArguments('Swift target %s contains a non-swift source file.' % target.get_basename()) os.makedirs(self.get_target_private_dir_abs(target), exist_ok=True) compile_args = swiftc.get_compile_only_args() compile_args += swiftc.get_module_args(module_name) link_args = swiftc.get_output_args(os.path.join(self.environment.get_build_dir(), self.get_target_filename(target))) rundir = self.get_target_private_dir(target) out_module_name = self.swift_module_file_name(target) in_module_files = self.determine_swift_dep_modules(target) abs_module_dirs = self.determine_swift_dep_dirs(target) module_includes = [] for x in abs_module_dirs: module_includes += swiftc.get_include_args(x) link_deps = self.get_swift_link_deps(target) abs_link_deps = [os.path.join(self.environment.get_build_dir(), x) for x in link_deps] (rel_generated, _) = self.split_swift_generated_sources(target) abs_generated = [os.path.join(self.environment.get_build_dir(), x) for x in rel_generated] # We need absolute paths because swiftc needs to be invoked in a subdir # and this is the easiest way about it. objects = [] # Relative to swift invocation dir rel_objects = [] # Relative to build.ninja for i in abssrc + abs_generated: base = os.path.split(i)[1] oname = os.path.splitext(base)[0] + '.o' objects.append(oname) rel_objects.append(os.path.join(self.get_target_private_dir(target), oname)) # Swiftc does not seem to be able to emit objects and module files in one go. elem = NinjaBuildElement(rel_objects, 'swift_COMPILER', abssrc) elem.add_dep(in_module_files + rel_generated) elem.add_dep(abs_headers) elem.add_item('ARGS', compile_args + header_imports + abs_generated + module_includes) elem.add_item('RUNDIR', rundir) elem.write(outfile) self.check_outputs(elem) elem = NinjaBuildElement(out_module_name, 'swift_COMPILER', abssrc) elem.add_dep(in_module_files + rel_generated) elem.add_item('ARGS', compile_args + abs_generated + module_includes + swiftc.get_mod_gen_args()) elem.add_item('RUNDIR', rundir) elem.write(outfile) self.check_outputs(elem) if isinstance(target, build.StaticLibrary): elem = self.generate_link(target, outfile, self.get_target_filename(target), rel_objects, self.build.static_linker) elem.write(outfile) elif isinstance(target, build.Executable): elem = NinjaBuildElement(self.get_target_filename(target), 'swift_COMPILER', []) elem.add_dep(rel_objects) elem.add_dep(link_deps) elem.add_item('ARGS', link_args + swiftc.get_std_exe_link_args() + objects + abs_link_deps) elem.add_item('RUNDIR', rundir) elem.write(outfile) self.check_outputs(elem) else: raise MesonException('Swift supports only executable and static library targets.') def generate_static_link_rules(self, is_cross, outfile): if self.build.has_language('java'): if not is_cross: self.generate_java_link(outfile) if is_cross: if self.environment.cross_info.need_cross_compiler(): static_linker = self.build.static_cross_linker else: static_linker = self.build.static_linker crstr = '_CROSS' else: static_linker = self.build.static_linker crstr = '' if static_linker is None: return rule = 'rule STATIC%s_LINKER\n' % crstr if mesonlib.is_windows(): command_templ = ''' command = %s @$out.rsp rspfile = $out.rsp rspfile_content = $LINK_ARGS %s $in ''' else: command_templ = ' command = %s $LINK_ARGS %s $in\n' command = command_templ %\ (' '.join(static_linker.get_exelist()), ' '.join(static_linker.get_output_args('$out'))) description = ' description = Static linking library $out\n\n' outfile.write(rule) outfile.write(command) outfile.write(description) def generate_dynamic_link_rules(self, outfile): ctypes = [(self.build.compilers, False)] if self.environment.is_cross_build(): if self.environment.cross_info.need_cross_compiler(): ctypes.append((self.build.cross_compilers, True)) else: # Native compiler masquerades as the cross compiler. ctypes.append((self.build.compilers, True)) else: ctypes.append((self.build.cross_compilers, True)) for (complist, is_cross) in ctypes: for compiler in complist: langname = compiler.get_language() if langname == 'java' or langname == 'vala' or\ langname == 'rust' or langname == 'cs': continue crstr = '' cross_args = [] if is_cross: crstr = '_CROSS' try: cross_args = self.environment.cross_info.config['properties'][langname + '_link_args'] except KeyError: pass rule = 'rule %s%s_LINKER\n' % (langname, crstr) if mesonlib.is_windows(): command_template = ''' command = %s @$out.rsp rspfile = $out.rsp rspfile_content = %s $ARGS %s $in $LINK_ARGS $aliasing ''' else: command_template = ' command = %s %s $ARGS %s $in $LINK_ARGS $aliasing\n' command = command_template % \ (' '.join(compiler.get_linker_exelist()),\ ' '.join(cross_args),\ ' '.join(compiler.get_linker_output_args('$out'))) description = ' description = Linking target $out' outfile.write(rule) outfile.write(command) outfile.write(description) outfile.write('\n') scriptdir = self.environment.get_script_dir() outfile.write('\n') symrule = 'rule SHSYM\n' symcmd = ' command = "%s" "%s" %s %s $CROSS\n' % (ninja_quote(sys.executable), ninja_quote(os.path.join(scriptdir, 'symbolextractor.py')), '$in', '$out') synstat = ' restat = 1\n' syndesc = ' description = Generating symbol file $out.\n' outfile.write(symrule) outfile.write(symcmd) outfile.write(synstat) outfile.write(syndesc) outfile.write('\n') def generate_java_compile_rule(self, compiler, outfile): rule = 'rule %s_COMPILER\n' % compiler.get_language() invoc = ' '.join([ninja_quote(i) for i in compiler.get_exelist()]) command = ' command = %s $ARGS $in\n' % invoc description = ' description = Compiling Java object $in.\n' outfile.write(rule) outfile.write(command) outfile.write(description) outfile.write('\n') def generate_cs_compile_rule(self, compiler, outfile): rule = 'rule %s_COMPILER\n' % compiler.get_language() invoc = ' '.join([ninja_quote(i) for i in compiler.get_exelist()]) command = ' command = %s $ARGS $in\n' % invoc description = ' description = Compiling cs target $out.\n' outfile.write(rule) outfile.write(command) outfile.write(description) outfile.write('\n') def generate_vala_compile_rules(self, compiler, outfile): rule = 'rule %s_COMPILER\n' % compiler.get_language() invoc = ' '.join([ninja_quote(i) for i in compiler.get_exelist()]) command = ' command = %s $ARGS $in\n' % invoc description = ' description = Compiling Vala source $in.\n' restat = ' restat = 1\n' # ValaC does this always to take advantage of it. outfile.write(rule) outfile.write(command) outfile.write(description) outfile.write(restat) outfile.write('\n') def generate_rust_compile_rules(self, compiler, outfile): rule = 'rule %s_COMPILER\n' % compiler.get_language() invoc = ' '.join([ninja_quote(i) for i in compiler.get_exelist()]) command = ' command = %s $ARGS $in\n' % invoc description = ' description = Compiling Rust source $in.\n' depfile = ' depfile = $targetdep\n' depstyle = ' deps = gcc\n' outfile.write(rule) outfile.write(command) outfile.write(description) outfile.write(depfile) outfile.write(depstyle) outfile.write('\n') def generate_swift_compile_rules(self, compiler, outfile): rule = 'rule %s_COMPILER\n' % compiler.get_language() full_exe = [sys.executable, os.path.join(self.environment.get_script_dir(), 'dirchanger.py'), '$RUNDIR'] + compiler.get_exelist() invoc = ' '.join([ninja_quote(i) for i in full_exe]) command = ' command = %s $ARGS $in\n' % invoc description = ' description = Compiling Swift source $in.\n' outfile.write(rule) outfile.write(command) outfile.write(description) outfile.write('\n') def generate_fortran_dep_hack(self, outfile): if mesonlib.is_windows(): cmd = 'cmd /C ""' else: cmd = 'true' template = '''# Workaround for these issues: # https://groups.google.com/forum/#!topic/ninja-build/j-2RfBIOd_8 # https://gcc.gnu.org/bugzilla/show_bug.cgi?id=47485 rule FORTRAN_DEP_HACK command = %s description = Dep hack restat = 1 ''' outfile.write(template % cmd) def generate_compile_rule_for(self, langname, compiler, qstr, is_cross, outfile): if langname == 'java': if not is_cross: self.generate_java_compile_rule(compiler, outfile) return if langname == 'cs': if not is_cross: self.generate_cs_compile_rule(compiler, outfile) return if langname == 'vala': if not is_cross: self.generate_vala_compile_rules(compiler, outfile) return if langname == 'rust': if not is_cross: self.generate_rust_compile_rules(compiler, outfile) return if langname == 'swift': if not is_cross: self.generate_swift_compile_rules(compiler, outfile) return if langname == 'fortran': self.generate_fortran_dep_hack(outfile) if is_cross: crstr = '_CROSS' else: crstr = '' rule = 'rule %s%s_COMPILER\n' % (langname, crstr) depargs = compiler.get_dependency_gen_args('$out', '$DEPFILE') quoted_depargs = [] for d in depargs: if d != '$out' and d != '$in': d = qstr % d quoted_depargs.append(d) cross_args = [] if is_cross: try: cross_args = self.environment.cross_info.config['properties'][langname + '_args'] except KeyError: pass if mesonlib.is_windows(): command_template = ''' command = %s @$out.rsp rspfile = $out.rsp rspfile_content = %s $ARGS %s %s %s $in ''' else: command_template = ' command = %s %s $ARGS %s %s %s $in\n' command = command_template % \ (' '.join(compiler.get_exelist()),\ ' '.join(cross_args), ' '.join(quoted_depargs),\ ' '.join(compiler.get_output_args('$out')),\ ' '.join(compiler.get_compile_only_args())) description = ' description = Compiling %s object $out\n' % langname if compiler.get_id() == 'msvc': deps = ' deps = msvc\n' else: deps = ' deps = gcc\n' deps += ' depfile = $DEPFILE\n' outfile.write(rule) outfile.write(command) outfile.write(deps) outfile.write(description) outfile.write('\n') def generate_pch_rule_for(self, langname, compiler, qstr, is_cross, outfile): if langname != 'c' and langname != 'cpp': return if is_cross: crstr = '_CROSS' else: crstr = '' rule = 'rule %s%s_PCH\n' % (langname, crstr) depargs = compiler.get_dependency_gen_args('$out', '$DEPFILE') cross_args = [] if is_cross: try: cross_args = self.environment.cross_info.config['properties'][langname + '_args'] except KeyError: pass quoted_depargs = [] for d in depargs: if d != '$out' and d != '$in': d = qstr % d quoted_depargs.append(d) if compiler.get_id() == 'msvc': output = '' else: output = ' '.join(compiler.get_output_args('$out')) command = " command = %s %s $ARGS %s %s %s $in\n" % \ (' '.join(compiler.get_exelist()),\ ' '.join(cross_args),\ ' '.join(quoted_depargs),\ output,\ ' '.join(compiler.get_compile_only_args())) description = ' description = Precompiling header %s\n' % '$in' if compiler.get_id() == 'msvc': deps = ' deps = msvc\n' else: deps = ' deps = gcc\n' deps += ' depfile = $DEPFILE\n' outfile.write(rule) outfile.write(command) outfile.write(deps) outfile.write(description) outfile.write('\n') def generate_compile_rules(self, outfile): qstr = quote_char + "%s" + quote_char for compiler in self.build.compilers: langname = compiler.get_language() self.generate_compile_rule_for(langname, compiler, qstr, False, outfile) self.generate_pch_rule_for(langname, compiler, qstr, False, outfile) if self.environment.is_cross_build(): # In case we are going a target-only build, make the native compilers # masquerade as cross compilers. if self.environment.cross_info.need_cross_compiler(): cclist = self.build.cross_compilers else: cclist = self.build.compilers for compiler in cclist: langname = compiler.get_language() self.generate_compile_rule_for(langname, compiler, qstr, True, outfile) self.generate_pch_rule_for(langname, compiler, qstr, True, outfile) outfile.write('\n') def replace_outputs(self, args, private_dir, output_list): newargs = [] regex = re.compile('@OUTPUT(\d+)@') for arg in args: m = regex.search(arg) while m is not None: index = int(m.group(1)) src = '@OUTPUT%d@' % index arg = arg.replace(src, os.path.join(private_dir, output_list[index])) m = regex.search(arg) newargs.append(arg) return newargs def generate_custom_generator_rules(self, target, outfile): for genlist in target.get_generated_sources(): if isinstance(genlist, build.CustomTarget): continue # Customtarget has already written its output rules generator = genlist.get_generator() exe = generator.get_exe() exe_arr = self.exe_object_to_cmd_array(exe) infilelist = genlist.get_infilelist() outfilelist = genlist.get_outfilelist() base_args = generator.get_arglist() extra_dependencies = [os.path.join(self.build_to_src, i) for i in genlist.extra_depends] for i in range(len(infilelist)): if len(generator.outputs) == 1: sole_output = os.path.join(self.get_target_private_dir(target), outfilelist[i]) else: sole_output = '' curfile = infilelist[i] infilename = os.path.join(self.build_to_src, curfile) outfiles = genlist.get_outputs_for(curfile) outfiles = [os.path.join(self.get_target_private_dir(target), of) for of in outfiles] args = [x.replace("@INPUT@", infilename).replace('@OUTPUT@', sole_output)\ for x in base_args] args = self.replace_outputs(args, self.get_target_private_dir(target), outfilelist) # We have consumed output files, so drop them from the list of remaining outputs. if sole_output == '': outfilelist = outfilelist[len(generator.outputs):] relout = self.get_target_private_dir(target) args = [x.replace("@SOURCE_DIR@", self.build_to_src).replace("@BUILD_DIR@", relout) for x in args] final_args = [] for a in args: if a == '@EXTRA_ARGS@': final_args += genlist.get_extra_args() else: final_args.append(a) cmdlist = exe_arr + final_args elem = NinjaBuildElement(outfiles, 'CUSTOM_COMMAND', infilename) if len(extra_dependencies) > 0: elem.add_dep(extra_dependencies) elem.add_item('DESC', 'Generating $out') if isinstance(exe, build.BuildTarget): elem.add_dep(self.get_target_filename(exe)) elem.add_item('COMMAND', cmdlist) elem.write(outfile) self.check_outputs(elem) def scan_fortran_module_outputs(self, target): compiler = None for c in self.build.compilers: if c.get_language() == 'fortran': compiler = c break if compiler is None: self.fortran_deps[target.get_basename()] = {} return modre = re.compile(r"\s*module\s+(\w+)", re.IGNORECASE) module_files = {} for s in target.get_sources(): # FIXME, does not work for generated Fortran sources, # but those are really rare. I hope. if not compiler.can_compile(s): continue for line in open(os.path.join(self.environment.get_source_dir(), s.subdir, s.fname)): modmatch = modre.match(line) if modmatch is not None: modname = modmatch.group(1) if modname.lower() == 'procedure': # MODULE PROCEDURE construct continue if modname in module_files: raise InvalidArguments('Namespace collision: module %s defined in two files %s and %s.' % (modname, module_files[modname], s)) module_files[modname] = s self.fortran_deps[target.get_basename()] = module_files def get_fortran_deps(self, compiler, src, target): mod_files = [] usere = re.compile(r"\s*use\s+(\w+)", re.IGNORECASE) dirname = self.get_target_private_dir(target) tdeps= self.fortran_deps[target.get_basename()] for line in open(src): usematch = usere.match(line) if usematch is not None: usename = usematch.group(1) if usename not in tdeps: # The module is not provided by any source file. This is due to # a) missing file/typo/etc # b) using a module provided by the compiler, such as OpenMP # There's no easy way to tell which is which (that I know of) # so just ignore this and go on. Ideally we would print a # warning message to the user but this is a common occurrance, # which would lead to lots of distracting noise. continue mod_source_file = tdeps[usename] # Check if a source uses a module it exports itself. # Potential bug if multiple targets have a file with # the same name. if mod_source_file.fname == os.path.split(src)[1]: continue mod_name = compiler.module_name_to_filename(usematch.group(1)) mod_files.append(os.path.join(dirname, mod_name)) return mod_files def generate_single_compile(self, target, outfile, src, is_generated=False, header_deps=[], order_deps=[]): if(isinstance(src, str) and src.endswith('.h')): raise RuntimeError('Fug') if isinstance(src, RawFilename) and src.fname.endswith('.h'): raise RuntimeError('Fug') extra_orderdeps = [] compiler = self.get_compiler_for_source(src) commands = self.generate_basic_compiler_args(target, compiler) commands += compiler.get_include_args(self.get_target_private_dir(target), False) curdir = target.get_subdir() tmppath = os.path.normpath(os.path.join(self.build_to_src, curdir)) commands += compiler.get_include_args(tmppath, False) if curdir == '': curdir = '.' commands += compiler.get_include_args(curdir, False) for d in target.external_deps: if d.need_threads(): commands += compiler.thread_flags() break if isinstance(src, RawFilename): rel_src = src.fname elif is_generated: if self.has_dir_part(src): rel_src = src else: rel_src = os.path.join(self.get_target_private_dir(target), src) abs_src = os.path.join(self.environment.get_source_dir(), rel_src) else: if isinstance(src, File): rel_src = src.rel_to_builddir(self.build_to_src) else: raise build.InvalidArguments('Invalid source type.') abs_src = os.path.join(self.environment.get_build_dir(), rel_src) if isinstance(src, RawFilename): src_filename = src.fname elif isinstance(src, File): src_filename = src.fname elif os.path.isabs(src): src_filename = os.path.basename(src) else: src_filename = src obj_basename = src_filename.replace('/', '_').replace('\\', '_') rel_obj = os.path.join(self.get_target_private_dir(target), obj_basename) rel_obj += '.' + self.environment.get_object_suffix() dep_file = compiler.depfile_for_object(rel_obj) if self.environment.coredata.get_builtin_option('use_pch'): pchlist = target.get_pch(compiler.language) else: pchlist = [] if len(pchlist) == 0: pch_dep = [] else: arr = [] i = os.path.join(self.get_target_private_dir(target), compiler.get_pch_name(pchlist[0])) arr.append(i) pch_dep = arr for i in target.get_include_dirs(): basedir = i.get_curdir() for d in i.get_incdirs(): expdir = os.path.join(basedir, d) srctreedir = os.path.join(self.build_to_src, expdir) bargs = compiler.get_include_args(expdir, i.is_system) sargs = compiler.get_include_args(srctreedir, i.is_system) commands += bargs commands += sargs for d in i.get_extra_build_dirs(): commands += compiler.get_include_args(d, i.is_system) custom_target_include_dirs = [] for i in target.generated: if isinstance(i, build.CustomTarget): idir = self.get_target_dir(i) if idir not in custom_target_include_dirs: custom_target_include_dirs.append(idir) for i in custom_target_include_dirs: commands+= compiler.get_include_args(i, False) if self.environment.coredata.get_builtin_option('use_pch'): commands += self.get_pch_include_args(compiler, target) crstr = '' if target.is_cross: crstr = '_CROSS' compiler_name = '%s%s_COMPILER' % (compiler.get_language(), crstr) extra_deps = [] if compiler.get_language() == 'fortran': extra_deps += self.get_fortran_deps(compiler, abs_src, target) # Dependency hack. Remove once multiple outputs in Ninja is fixed: # https://groups.google.com/forum/#!topic/ninja-build/j-2RfBIOd_8 for modname, srcfile in self.fortran_deps[target.get_basename()].items(): modfile = os.path.join(self.get_target_private_dir(target), compiler.module_name_to_filename(modname)) if srcfile == src: depelem = NinjaBuildElement(modfile, 'FORTRAN_DEP_HACK', rel_obj) depelem.write(outfile) self.check_outputs(depelem) commands += compiler.get_module_outdir_args(self.get_target_private_dir(target)) element = NinjaBuildElement(rel_obj, compiler_name, rel_src) for d in header_deps: if isinstance(d, RawFilename): d = d.fname elif not self.has_dir_part(d): d = os.path.join(self.get_target_private_dir(target), d) element.add_dep(d) for d in extra_deps: element.add_dep(d) for d in order_deps: if isinstance(d, RawFilename): d = d.fname elif not self.has_dir_part(d): d = os.path.join(self.get_target_private_dir(target), d) element.add_orderdep(d) element.add_orderdep(pch_dep) element.add_orderdep(extra_orderdeps) for i in self.get_fortran_orderdeps(target, compiler): element.add_orderdep(i) element.add_item('DEPFILE', dep_file) element.add_item('ARGS', commands) element.write(outfile) self.check_outputs(element) return rel_obj def has_dir_part(self, fname): return '/' in fname or '\\' in fname # Fortran is a bit weird (again). When you link against a library, just compiling a source file # requires the mod files that are output when single files are built. To do this right we would need to # scan all inputs and write out explicit deps for each file. That is stoo slow and too much effort so # instead just have an ordered dependendy on the library. This ensures all required mod files are created. # The real deps are then detected via dep file generation from the compiler. This breaks on compilers that # produce incorrect dep files but such is life. def get_fortran_orderdeps(self, target, compiler): if compiler.language != 'fortran': return [] return [os.path.join(self.get_target_dir(lt), lt.get_filename()) for lt in target.link_targets] def generate_msvc_pch_command(self, target, compiler, pch): if len(pch) != 2: raise RuntimeError('MSVC requires one header and one source to produce precompiled headers.') header = pch[0] source = pch[1] pchname = compiler.get_pch_name(header) dst = os.path.join(self.get_target_private_dir(target), pchname) commands = [] commands += self.generate_basic_compiler_args(target, compiler) just_name = os.path.split(header)[1] (objname, pch_args) = compiler.gen_pch_args(just_name, source, dst) commands += pch_args dep = dst + '.' + compiler.get_depfile_suffix() return (commands, dep, dst, [objname]) def generate_gcc_pch_command(self, target, compiler, pch): commands = [] commands += self.generate_basic_compiler_args(target, compiler) dst = os.path.join(self.get_target_private_dir(target), os.path.split(pch)[-1] + '.' + compiler.get_pch_suffix()) dep = dst + '.' + compiler.get_depfile_suffix() return (commands, dep, dst, []) # Gcc does not create an object file during pch generation. def generate_pch(self, target, outfile): cstr = '' pch_objects = [] if target.is_cross: cstr = '_CROSS' for lang in ['c', 'cpp']: pch = target.get_pch(lang) if len(pch) == 0: continue if '/' not in pch[0] or '/' not in pch[-1]: raise build.InvalidArguments('Precompiled header of "%s" must not be in the same directory as source, please put it in a subdirectory.' % target.get_basename()) compiler = self.get_compiler_for_lang(lang) if compiler.id == 'msvc': src = os.path.join(self.build_to_src, target.get_source_subdir(), pch[-1]) (commands, dep, dst, objs) = self.generate_msvc_pch_command(target, compiler, pch) extradep = os.path.join(self.build_to_src, target.get_source_subdir(), pch[0]) else: src = os.path.join(self.build_to_src, target.get_source_subdir(), pch[0]) (commands, dep, dst, objs) = self.generate_gcc_pch_command(target, compiler, pch[0]) extradep = None pch_objects += objs rulename = compiler.get_language() + cstr + '_PCH' elem = NinjaBuildElement(dst, rulename, src) if extradep is not None: elem.add_dep(extradep) elem.add_item('ARGS', commands) elem.add_item('DEPFILE', dep) elem.write(outfile) self.check_outputs(elem) return pch_objects def generate_shsym(self, outfile, target): target_name = self.get_target_filename(target) targetdir = self.get_target_private_dir(target) symname = os.path.join(targetdir, target_name + '.symbols') elem = NinjaBuildElement(symname, 'SHSYM', target_name) if self.environment.is_cross_build() and self.environment.cross_info.need_cross_compiler(): elem.add_item('CROSS', '--cross-host=' + self.environment.cross_info.config['host_machine']['system']) elem.write(outfile) self.check_outputs(elem) def generate_link(self, target, outfile, outname, obj_list, linker, extra_args=[]): if isinstance(target, build.StaticLibrary): linker_base = 'STATIC' else: linker_base = linker.get_language() # Fixme. if isinstance(target, build.SharedLibrary): self.generate_shsym(outfile, target) crstr = '' if target.is_cross: crstr = '_CROSS' linker_rule = linker_base + crstr + '_LINKER' abspath = os.path.join(self.environment.get_build_dir(), target.subdir) commands = [] commands += linker.get_linker_always_args() commands += linker.get_buildtype_linker_args(self.environment.coredata.get_builtin_option('buildtype')) commands += linker.get_option_link_args(self.environment.coredata.compiler_options) if not(isinstance(target, build.StaticLibrary)): commands += self.environment.coredata.external_link_args[linker.get_language()] if isinstance(target, build.Executable): commands += linker.get_std_exe_link_args() elif isinstance(target, build.SharedLibrary): commands += linker.get_std_shared_lib_link_args() commands += linker.get_pic_args() if hasattr(target, 'soversion'): soversion = target.soversion else: soversion = None commands += linker.get_soname_args(target.name, abspath, soversion) elif isinstance(target, build.StaticLibrary): commands += linker.get_std_link_args() else: raise RuntimeError('Unknown build target type.') # Link arguments of static libraries are not put in the command line of # the library. They are instead appended to the command line where # the static library is used. if linker_base == 'STATIC': dependencies = [] else: dependencies = target.get_dependencies() commands += self.build_target_link_arguments(linker, dependencies) for d in target.external_deps: if d.need_threads(): commands += linker.thread_link_flags() if not isinstance(target, build.StaticLibrary): commands += target.link_args # External deps must be last because target link libraries may depend on them. if not(isinstance(target, build.StaticLibrary)): for dep in target.get_external_deps(): commands += dep.get_link_args() for d in target.get_dependencies(): if isinstance(d, build.StaticLibrary): for dep in d.get_external_deps(): commands += dep.get_link_args() commands += linker.build_rpath_args(self.environment.get_build_dir(),\ self.determine_rpath_dirs(target), target.install_rpath) if self.environment.coredata.get_builtin_option('coverage'): commands += linker.get_coverage_link_args() custom_target_libraries = self.get_custom_target_provided_libraries(target) commands += extra_args commands += custom_target_libraries commands = linker.unixtype_flags_to_native(commands) dep_targets = [self.get_dependency_filename(t) for t in dependencies] dep_targets += [os.path.join(self.environment.source_dir, target.subdir, t) for t in target.link_depends] elem = NinjaBuildElement(outname, linker_rule, obj_list) elem.add_dep(dep_targets + custom_target_libraries) elem.add_item('LINK_ARGS', commands) self.check_outputs(elem) return elem def get_custom_target_provided_libraries(self, target): libs = [] for t in target.get_generated_sources(): if not isinstance(t, build.CustomTarget): continue for f in t.output: if self.environment.is_library(f): libs.append(os.path.join(self.get_target_dir(t), f)) return libs def determine_rpath_dirs(self, target): link_deps = target.get_all_link_deps() result = [] for ld in link_deps: prospective = self.get_target_dir(ld) if not prospective in result: result.append(prospective) return result def get_dependency_filename(self, t): if isinstance(t, build.SharedLibrary): return os.path.join(self.get_target_private_dir(t), self.get_target_filename(t) + '.symbols') return self.get_target_filename(t) def generate_shlib_aliases(self, target, outdir): basename = target.get_filename() aliases = target.get_aliaslist() if not mesonlib.is_windows(): for alias in aliases: aliasfile = os.path.join(self.environment.get_build_dir(), outdir, alias) try: os.remove(aliasfile) except Exception: pass os.symlink(basename, aliasfile) else: mlog.debug("Library versioning disabled because host does not support symlinks.") def generate_gcov_clean(self, outfile): gcno_elem = NinjaBuildElement('clean-gcno', 'CUSTOM_COMMAND', 'PHONY') script_root = self.environment.get_script_dir() clean_script = os.path.join(script_root, 'delwithsuffix.py') gcno_elem.add_item('COMMAND', [sys.executable, clean_script, '.', 'gcno']) gcno_elem.add_item('description', 'Deleting gcno files') gcno_elem.write(outfile) self.check_outputs(gcno_elem) gcda_elem = NinjaBuildElement('clean-gcda', 'CUSTOM_COMMAND', 'PHONY') script_root = self.environment.get_script_dir() clean_script = os.path.join(script_root, 'delwithsuffix.py') gcda_elem.add_item('COMMAND', [sys.executable, clean_script, '.', 'gcda']) gcda_elem.add_item('description', 'Deleting gcda files') gcda_elem.write(outfile) self.check_outputs(gcda_elem) def is_compilable_file(self, filename): if filename.endswith('.cpp') or\ filename.endswith('.c') or\ filename.endswith('.cxx') or\ filename.endswith('.cc') or\ filename.endswith('.C'): return True return False def process_dep_gens(self, outfile, target): src_deps = [] other_deps = [] for rule in self.dep_rules.values(): srcs = target.get_original_kwargs().get(rule.src_keyword, []) if isinstance(srcs, str): srcs = [srcs] for src in srcs: plainname = os.path.split(src)[1] basename = plainname.split('.')[0] outname = rule.name_templ.replace('@BASENAME@', basename).replace('@PLAINNAME@', plainname) outfilename = os.path.join(self.get_target_private_dir(target), outname) infilename = os.path.join(self.build_to_src, target.get_source_subdir(), src) elem = NinjaBuildElement(outfilename, rule.name, infilename) elem.write(outfile) self.check_outputs(elem) if self.is_compilable_file(outfilename): src_deps.append(outfilename) else: other_deps.append(outfilename) return (src_deps, other_deps) def generate_ending(self, outfile): targetlist = [self.get_target_filename(t) for t in self.build.get_targets().values()\ if not isinstance(t, build.RunTarget)] elem = NinjaBuildElement('all', 'phony', targetlist) elem.write(outfile) self.check_outputs(elem) default = 'default all\n\n' outfile.write(default) ninja_command = environment.detect_ninja() if ninja_command is None: raise MesonException('Could not detect ninja command') elem = NinjaBuildElement('clean', 'CUSTOM_COMMAND', 'PHONY') elem.add_item('COMMAND', [ninja_command, '-t', 'clean']) elem.add_item('description', 'Cleaning') if self.environment.coredata.get_builtin_option('coverage'): self.generate_gcov_clean(outfile) elem.add_dep('clean-gcda') elem.add_dep('clean-gcno') elem.write(outfile) self.check_outputs(elem) deps = self.get_regen_filelist() elem = NinjaBuildElement('build.ninja', 'REGENERATE_BUILD', deps) elem.add_item('pool', 'console') elem.write(outfile) elem = NinjaBuildElement(deps, 'phony', '') elem.write(outfile) self.check_outputs(elem)
[ "mesonlib.is_windows", "re.compile", "environment.detect_ninja", "environment.find_valgrind", "os.remove", "mlog.red", "os.path.split", "subprocess.check_output", "os.path.isabs", "shutil.which", "coredata.MesonException", "os.path.splitext", "pickle.dump", "environment.find_coverage_tools", "mlog.debug", "os.path.join", "os.symlink", "os.replace", "os.path.basename", "build.InvalidArguments" ]
[((875, 896), 'mesonlib.is_windows', 'mesonlib.is_windows', ([], {}), '()\n', (894, 896), False, 'import environment, mesonlib\n'), ((5495, 5565), 'coredata.MesonException', 'MesonException', (['"""Could not determine vs dep dependency prefix string."""'], {}), "('Could not determine vs dep dependency prefix string.')\n", (5509, 5565), False, 'from coredata import MesonException\n'), ((7046, 7083), 'os.replace', 'os.replace', (['tempfilename', 'outfilename'], {}), '(tempfilename, outfilename)\n', (7056, 7083), False, 'import os, sys, pickle, re\n'), ((7229, 7255), 'environment.detect_ninja', 'environment.detect_ninja', ([], {}), '()\n', (7253, 7255), False, 'import environment, mesonlib\n'), ((7325, 7425), 'subprocess.check_output', 'subprocess.check_output', (["[ninja_exe, '-t', 'compdb', 'c_COMPILER', 'cpp_COMPILER']"], {'cwd': 'builddir'}), "([ninja_exe, '-t', 'compdb', 'c_COMPILER',\n 'cpp_COMPILER'], cwd=builddir)\n", (7348, 7425), False, 'import subprocess, shutil\n'), ((19233, 19266), 'environment.find_coverage_tools', 'environment.find_coverage_tools', ([], {}), '()\n', (19264, 19266), False, 'import environment, mesonlib\n'), ((21307, 21352), 'os.path.join', 'os.path.join', (['script_root', '"""meson_install.py"""'], {}), "(script_root, 'meson_install.py')\n", (21319, 21352), False, 'import os, sys, pickle, re\n'), ((21464, 21504), 'os.path.join', 'os.path.join', (['script_root', '"""depfixer.py"""'], {}), "(script_root, 'depfixer.py')\n", (21476, 21504), False, 'import os, sys, pickle, re\n'), ((22403, 22424), 'pickle.dump', 'pickle.dump', (['d', 'ofile'], {}), '(d, ofile)\n', (22414, 22424), False, 'import os, sys, pickle, re\n'), ((26687, 26714), 'environment.find_valgrind', 'environment.find_valgrind', ([], {}), '()\n', (26712, 26714), False, 'import environment, mesonlib\n'), ((26793, 26835), 'os.path.join', 'os.path.join', (['script_root', '"""meson_test.py"""'], {}), "(script_root, 'meson_test.py')\n", (26805, 26835), False, 'import os, sys, pickle, re\n'), ((27738, 27785), 'os.path.join', 'os.path.join', (['script_root', '"""meson_benchmark.py"""'], {}), "(script_root, 'meson_benchmark.py')\n", (27750, 27785), False, 'import os, sys, pickle, re\n'), ((47234, 47255), 'mesonlib.is_windows', 'mesonlib.is_windows', ([], {}), '()\n', (47253, 47255), False, 'import environment, mesonlib\n'), ((52984, 53005), 'mesonlib.is_windows', 'mesonlib.is_windows', ([], {}), '()\n', (53003, 53005), False, 'import environment, mesonlib\n'), ((54867, 54888), 'mesonlib.is_windows', 'mesonlib.is_windows', ([], {}), '()\n', (54886, 54888), False, 'import environment, mesonlib\n'), ((58402, 58430), 're.compile', 're.compile', (['"""@OUTPUT(\\\\d+)@"""'], {}), "('@OUTPUT(\\\\d+)@')\n", (58412, 58430), False, 'import os, sys, pickle, re\n'), ((61703, 61752), 're.compile', 're.compile', (['"""\\\\s*module\\\\s+(\\\\w+)"""', 're.IGNORECASE'], {}), "('\\\\s*module\\\\s+(\\\\w+)', re.IGNORECASE)\n", (61713, 61752), False, 'import os, sys, pickle, re\n'), ((62800, 62846), 're.compile', 're.compile', (['"""\\\\s*use\\\\s+(\\\\w+)"""', 're.IGNORECASE'], {}), "('\\\\s*use\\\\s+(\\\\w+)', re.IGNORECASE)\n", (62810, 62846), False, 'import os, sys, pickle, re\n'), ((73651, 73700), 'os.path.join', 'os.path.join', (['targetdir', "(target_name + '.symbols')"], {}), "(targetdir, target_name + '.symbols')\n", (73663, 73700), False, 'import os, sys, pickle, re\n'), ((79461, 79506), 'os.path.join', 'os.path.join', (['script_root', '"""delwithsuffix.py"""'], {}), "(script_root, 'delwithsuffix.py')\n", (79473, 79506), False, 'import os, sys, pickle, re\n'), ((79913, 79958), 'os.path.join', 'os.path.join', (['script_root', '"""delwithsuffix.py"""'], {}), "(script_root, 'delwithsuffix.py')\n", (79925, 79958), False, 'import os, sys, pickle, re\n'), ((81956, 81982), 'environment.detect_ninja', 'environment.detect_ninja', ([], {}), '()\n', (81980, 81982), False, 'import environment, mesonlib\n'), ((4613, 4631), 'shutil.which', 'shutil.which', (['"""cl"""'], {}), "('cl')\n", (4625, 4631), False, 'import subprocess, shutil\n'), ((18229, 18261), 'os.path.join', 'os.path.join', (['subdir', '"""POTFILES"""'], {}), "(subdir, 'POTFILES')\n", (18241, 18261), False, 'import os, sys, pickle, re\n'), ((31887, 31936), 'os.path.join', 'os.path.join', (['self.build_to_src', 'target.subdir', 'r'], {}), '(self.build_to_src, target.subdir, r)\n', (31899, 31936), False, 'import os, sys, pickle, re\n'), ((64819, 64858), 'os.path.join', 'os.path.join', (['self.build_to_src', 'curdir'], {}), '(self.build_to_src, curdir)\n', (64831, 64858), False, 'import os, sys, pickle, re\n'), ((71242, 71263), 'os.path.split', 'os.path.split', (['header'], {}), '(header)\n', (71255, 71263), False, 'import os, sys, pickle, re\n'), ((77401, 77460), 'os.path.join', 'os.path.join', (['self.environment.source_dir', 'target.subdir', 't'], {}), '(self.environment.source_dir, target.subdir, t)\n', (77413, 77460), False, 'import os, sys, pickle, re\n'), ((78822, 78843), 'mesonlib.is_windows', 'mesonlib.is_windows', ([], {}), '()\n', (78841, 78843), False, 'import environment, mesonlib\n'), ((79164, 79250), 'mlog.debug', 'mlog.debug', (['"""Library versioning disabled because host does not support symlinks."""'], {}), "(\n 'Library versioning disabled because host does not support symlinks.')\n", (79174, 79250), False, 'import mlog\n'), ((82035, 82083), 'coredata.MesonException', 'MesonException', (['"""Could not detect ninja command"""'], {}), "('Could not detect ninja command')\n", (82049, 82083), False, 'from coredata import MesonException\n'), ((4301, 4402), 'coredata.MesonException', 'MesonException', (['(\'Multiple producers for Ninja target "%s". Please rename your targets.\' % n)'], {}), '(\n \'Multiple producers for Ninja target "%s". Please rename your targets.\' % n\n )\n', (4315, 4402), False, 'from coredata import MesonException\n'), ((18849, 18881), 'os.path.join', 'os.path.join', (['subdir', "(l + '.gmo')"], {}), "(subdir, l + '.gmo')\n", (18861, 18881), False, 'import os, sys, pickle, re\n'), ((21098, 21118), 'mlog.red', 'mlog.red', (['"""Warning:"""'], {}), "('Warning:')\n", (21106, 21118), False, 'import mlog\n'), ((22720, 22755), 'os.path.join', 'os.path.join', (['subdir', "(lang + '.gmo')"], {}), "(subdir, lang + '.gmo')\n", (22732, 22755), False, 'import os, sys, pickle, re\n'), ((24827, 24858), 'os.path.join', 'os.path.join', (['subdir', "(f + '.gz')"], {}), "(subdir, f + '.gz')\n", (24839, 24858), False, 'import os, sys, pickle, re\n'), ((25361, 25405), 'os.path.join', 'os.path.join', (['srcprefix', 'de.source_subdir', 'f'], {}), '(srcprefix, de.source_subdir, f)\n', (25373, 25405), False, 'import os, sys, pickle, re\n'), ((25431, 25454), 'os.path.join', 'os.path.join', (['subdir', 'f'], {}), '(subdir, f)\n', (25443, 25454), False, 'import os, sys, pickle, re\n'), ((33631, 33672), 'coredata.MesonException', 'MesonException', (['"""Unknown C# target type."""'], {}), "('Unknown C# target type.')\n", (33645, 33672), False, 'from coredata import MesonException\n'), ((44699, 44715), 'os.path.split', 'os.path.split', (['i'], {}), '(i)\n', (44712, 44715), False, 'import os, sys, pickle, re\n'), ((46517, 46593), 'coredata.MesonException', 'MesonException', (['"""Swift supports only executable and static library targets."""'], {}), "('Swift supports only executable and static library targets.')\n", (46531, 46593), False, 'from coredata import MesonException\n'), ((48953, 48974), 'mesonlib.is_windows', 'mesonlib.is_windows', ([], {}), '()\n', (48972, 48974), False, 'import environment, mesonlib\n'), ((59363, 59397), 'os.path.join', 'os.path.join', (['self.build_to_src', 'i'], {}), '(self.build_to_src, i)\n', (59375, 59397), False, 'import os, sys, pickle, re\n'), ((59751, 59791), 'os.path.join', 'os.path.join', (['self.build_to_src', 'curfile'], {}), '(self.build_to_src, curfile)\n', (59763, 59791), False, 'import os, sys, pickle, re\n'), ((65977, 65995), 'os.path.isabs', 'os.path.isabs', (['src'], {}), '(src)\n', (65990, 65995), False, 'import os, sys, pickle, re\n'), ((66915, 66939), 'os.path.join', 'os.path.join', (['basedir', 'd'], {}), '(basedir, d)\n', (66927, 66939), False, 'import os, sys, pickle, re\n'), ((66969, 67008), 'os.path.join', 'os.path.join', (['self.build_to_src', 'expdir'], {}), '(self.build_to_src, expdir)\n', (66981, 67008), False, 'import os, sys, pickle, re\n'), ((79106, 79137), 'os.symlink', 'os.symlink', (['basename', 'aliasfile'], {}), '(basename, aliasfile)\n', (79116, 79137), False, 'import os, sys, pickle, re\n'), ((7435, 7482), 'os.path.join', 'os.path.join', (['builddir', '"""compile_commands.json"""'], {}), "(builddir, 'compile_commands.json')\n", (7447, 7482), False, 'import os, sys, pickle, re\n'), ((15644, 15678), 'os.path.join', 'os.path.join', (['self.build_to_src', 'i'], {}), '(self.build_to_src, i)\n', (15656, 15678), False, 'import os, sys, pickle, re\n'), ((16844, 16902), 'coredata.MesonException', 'MesonException', (['"""Unreachable code in generate_run_target."""'], {}), "('Unreachable code in generate_run_target.')\n", (16858, 16902), False, 'from coredata import MesonException\n'), ((24668, 24702), 'os.path.join', 'os.path.join', (['manroot', "('man' + num)"], {}), "(manroot, 'man' + num)\n", (24680, 24702), False, 'import os, sys, pickle, re\n'), ((32709, 32758), 'build.InvalidArguments', 'InvalidArguments', (["('Unknown resource file %s.' % r)"], {}), "('Unknown resource file %s.' % r)\n", (32725, 32758), False, 'from build import InvalidArguments\n'), ((34810, 34857), 'os.path.join', 'os.path.join', (['self.build_to_src', 'i.curdir', 'idir'], {}), '(self.build_to_src, i.curdir, idir)\n', (34822, 34857), False, 'import os, sys, pickle, re\n'), ((36932, 36966), 'os.path.split', 'os.path.split', (['vala_input_files[0]'], {}), '(vala_input_files[0])\n', (36945, 36966), False, 'import os, sys, pickle, re\n'), ((39661, 39711), 'build.InvalidArguments', 'InvalidArguments', (['"""Unknown target type for rustc."""'], {}), "('Unknown target type for rustc.')\n", (39677, 39711), False, 'from build import InvalidArguments\n'), ((44739, 44761), 'os.path.splitext', 'os.path.splitext', (['base'], {}), '(base)\n', (44755, 44761), False, 'import os, sys, pickle, re\n'), ((49930, 49975), 'os.path.join', 'os.path.join', (['scriptdir', '"""symbolextractor.py"""'], {}), "(scriptdir, 'symbolextractor.py')\n", (49942, 49975), False, 'import os, sys, pickle, re\n'), ((58644, 58689), 'os.path.join', 'os.path.join', (['private_dir', 'output_list[index]'], {}), '(private_dir, output_list[index])\n', (58656, 58689), False, 'import os, sys, pickle, re\n'), ((64130, 64161), 'os.path.join', 'os.path.join', (['dirname', 'mod_name'], {}), '(dirname, mod_name)\n', (64142, 64161), False, 'import os, sys, pickle, re\n'), ((65688, 65734), 'build.InvalidArguments', 'build.InvalidArguments', (['"""Invalid source type."""'], {}), "('Invalid source type.')\n", (65710, 65734), False, 'import build\n'), ((66024, 66045), 'os.path.basename', 'os.path.basename', (['src'], {}), '(src)\n', (66040, 66045), False, 'import os, sys, pickle, re\n'), ((79010, 79030), 'os.remove', 'os.remove', (['aliasfile'], {}), '(aliasfile)\n', (79019, 79030), False, 'import os, sys, pickle, re\n'), ((80809, 80827), 'os.path.split', 'os.path.split', (['src'], {}), '(src)\n', (80822, 80827), False, 'import os, sys, pickle, re\n'), ((62427, 62557), 'build.InvalidArguments', 'InvalidArguments', (["('Namespace collision: module %s defined in two files %s and %s.' % (\n modname, module_files[modname], s))"], {}), "(\n 'Namespace collision: module %s defined in two files %s and %s.' % (\n modname, module_files[modname], s))\n", (62443, 62557), False, 'from build import InvalidArguments\n'), ((63966, 63984), 'os.path.split', 'os.path.split', (['src'], {}), '(src)\n', (63979, 63984), False, 'import os, sys, pickle, re\n'), ((71724, 71742), 'os.path.split', 'os.path.split', (['pch'], {}), '(pch)\n', (71737, 71742), False, 'import os, sys, pickle, re\n'), ((37408, 37426), 'os.path.split', 'os.path.split', (['src'], {}), '(src)\n', (37421, 37426), False, 'import os, sys, pickle, re\n'), ((32133, 32152), 'os.path.basename', 'os.path.basename', (['r'], {}), '(r)\n', (32149, 32152), False, 'import os, sys, pickle, re\n'), ((36146, 36162), 'os.path.split', 'os.path.split', (['i'], {}), '(i)\n', (36159, 36162), False, 'import os, sys, pickle, re\n')]
# Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or # implied. # See the License for the specific language governing permissions and # limitations under the License. import mock import oslo_messaging as messaging from heat.rpc import api as rpc_api from heat.rpc import listener_client as rpc_client from heat.tests import common class ListenerClientTest(common.HeatTestCase): @mock.patch('heat.common.messaging.get_rpc_client', return_value=mock.Mock()) def test_engine_alive_ok(self, rpc_client_method): mock_rpc_client = rpc_client_method.return_value mock_prepare_method = mock_rpc_client.prepare mock_prepare_client = mock_prepare_method.return_value mock_cnxt = mock.Mock() listener_client = rpc_client.EngineListenerClient('engine-007') rpc_client_method.assert_called_once_with( version=rpc_client.EngineListenerClient.BASE_RPC_API_VERSION, topic=rpc_api.LISTENER_TOPIC, server='engine-007', ) mock_prepare_method.assert_called_once_with(timeout=2) self.assertEqual(mock_prepare_client, listener_client._client, "Failed to create RPC client") ret = listener_client.is_alive(mock_cnxt) self.assertTrue(ret) mock_prepare_client.call.assert_called_once_with(mock_cnxt, 'listening') @mock.patch('heat.common.messaging.get_rpc_client', return_value=mock.Mock()) def test_engine_alive_timeout(self, rpc_client_method): mock_rpc_client = rpc_client_method.return_value mock_prepare_method = mock_rpc_client.prepare mock_prepare_client = mock_prepare_method.return_value mock_cnxt = mock.Mock() listener_client = rpc_client.EngineListenerClient('engine-007') rpc_client_method.assert_called_once_with( version=rpc_client.EngineListenerClient.BASE_RPC_API_VERSION, topic=rpc_api.LISTENER_TOPIC, server='engine-007', ) mock_prepare_method.assert_called_once_with(timeout=2) self.assertEqual(mock_prepare_client, listener_client._client, "Failed to create RPC client") mock_prepare_client.call.side_effect = messaging.MessagingTimeout( 'too slow') ret = listener_client.is_alive(mock_cnxt) self.assertFalse(ret) mock_prepare_client.call.assert_called_once_with(mock_cnxt, 'listening')
[ "mock.Mock", "oslo_messaging.MessagingTimeout", "heat.rpc.listener_client.EngineListenerClient" ]
[((1108, 1119), 'mock.Mock', 'mock.Mock', ([], {}), '()\n', (1117, 1119), False, 'import mock\n'), ((1147, 1192), 'heat.rpc.listener_client.EngineListenerClient', 'rpc_client.EngineListenerClient', (['"""engine-007"""'], {}), "('engine-007')\n", (1178, 1192), True, 'from heat.rpc import listener_client as rpc_client\n'), ((2177, 2188), 'mock.Mock', 'mock.Mock', ([], {}), '()\n', (2186, 2188), False, 'import mock\n'), ((2216, 2261), 'heat.rpc.listener_client.EngineListenerClient', 'rpc_client.EngineListenerClient', (['"""engine-007"""'], {}), "('engine-007')\n", (2247, 2261), True, 'from heat.rpc import listener_client as rpc_client\n'), ((2723, 2761), 'oslo_messaging.MessagingTimeout', 'messaging.MessagingTimeout', (['"""too slow"""'], {}), "('too slow')\n", (2749, 2761), True, 'import oslo_messaging as messaging\n'), ((846, 857), 'mock.Mock', 'mock.Mock', ([], {}), '()\n', (855, 857), False, 'import mock\n'), ((1910, 1921), 'mock.Mock', 'mock.Mock', ([], {}), '()\n', (1919, 1921), False, 'import mock\n')]
import os from subprocess import call from . import glob2 pwd = os.path.dirname(__file__) def get_files_from_path(path, ext): # use set to remove duplicate files. weird...but it happens if os.path.isfile(path): return set([os.path.abspath(path)]) else: # i.e., folder files = glob2.glob(os.path.abspath(os.path.join(path, "**/*.{}".format(ext)))) return set(sorted(files)) # to guarantee the order of files read """ handling javajskparser AST """ def toAST(files, ext, add_libs): prg_files = [] for f in files: prg_files.extend(get_files_from_path(f, "java")) if not prg_files: exit('jskparser.util: File(s) not found!') java_in = os.path.abspath(os.path.join(pwd, '../tests/ir_asts/API.java')) json_out = os.path.abspath(os.path.join(pwd, '../tests/ir_asts/java.json')) if add_libs: obj_path = os.path.abspath(os.path.join(pwd, '../../model/lang/Object.java')) str_path = os.path.abspath(os.path.join(pwd, '../../model/lang/String.java')) num_path = os.path.abspath(os.path.join(pwd, '../../model/lang/Number.java')) int_path = os.path.abspath(os.path.join(pwd, '../../model/lang/Integer.java')) char_path = os.path.abspath(os.path.join(pwd, '../../model/lang/Character.java')) itbl_path = os.path.abspath(os.path.join(pwd, '../../model/lang/Iterable.java')) iter_path = os.path.abspath(os.path.join(pwd, '../../model/util/Iterator.java')) arr_path = os.path.abspath(os.path.join(pwd, '../../model/util/Arrays.java')) list_path = os.path.abspath(os.path.join(pwd, '../../model/util/List.java')) alist_path = os.path.abspath(os.path.join(pwd, '../../model/util/ArrayList.java')) llist_path = os.path.abspath(os.path.join(pwd, '../../model/util/LinkedList.java')) hmap_path = os.path.abspath(os.path.join(pwd, '../../model/util/HashMap.java')) hset_path = os.path.abspath(os.path.join(pwd, '../../model/util/HashSet.java')) if obj_path not in prg_files: prg_files.append(obj_path) if str_path not in prg_files: prg_files.append(str_path) if num_path not in prg_files: prg_files.append(num_path) if int_path not in prg_files: prg_files.append(int_path) if char_path not in prg_files: prg_files.append(char_path) if itbl_path not in prg_files: prg_files.append(itbl_path) if iter_path not in prg_files: prg_files.append(iter_path) if arr_path not in prg_files: prg_files.append(arr_path) if list_path not in prg_files: prg_files.append(list_path) if alist_path not in prg_files: prg_files.append(alist_path) if llist_path not in prg_files: prg_files.append(llist_path) if hmap_path not in prg_files: prg_files.append(hmap_path) if hset_path not in prg_files: prg_files.append(hset_path) api = "" for fname in prg_files: with open(fname, 'r') as fd: api += fd.read() with open(java_in, 'w') as fd: fd.write(api) # this classpath stuff seems awful. Jsonify is hardcoded, passing a # single string to subprocess.call is platform dependant, and shell=True # can be a security vulnerability (if allowed to take user input). # This just got a whole lot nastier cmd = 'cd ' + pwd + '/..; /usr/bin/java -cp .:javaparser/javaparser-core/target/classes:$HOME/.m2/repository/com/cedarsoftware/json-io/4.3.0/json-io-4.3.0.jar jskparser.Jsonify ' + java_in + ' ' + json_out ret = call(cmd, shell=True) if ret != 0: exit('Problem parsing.') return json_out
[ "os.path.join", "os.path.isfile", "os.path.dirname", "subprocess.call", "os.path.abspath" ]
[((66, 91), 'os.path.dirname', 'os.path.dirname', (['__file__'], {}), '(__file__)\n', (81, 91), False, 'import os\n'), ((200, 220), 'os.path.isfile', 'os.path.isfile', (['path'], {}), '(path)\n', (214, 220), False, 'import os\n'), ((3502, 3523), 'subprocess.call', 'call', (['cmd'], {'shell': '(True)'}), '(cmd, shell=True)\n', (3506, 3523), False, 'from subprocess import call\n'), ((705, 751), 'os.path.join', 'os.path.join', (['pwd', '"""../tests/ir_asts/API.java"""'], {}), "(pwd, '../tests/ir_asts/API.java')\n", (717, 751), False, 'import os\n'), ((784, 831), 'os.path.join', 'os.path.join', (['pwd', '"""../tests/ir_asts/java.json"""'], {}), "(pwd, '../tests/ir_asts/java.json')\n", (796, 831), False, 'import os\n'), ((885, 934), 'os.path.join', 'os.path.join', (['pwd', '"""../../model/lang/Object.java"""'], {}), "(pwd, '../../model/lang/Object.java')\n", (897, 934), False, 'import os\n'), ((971, 1020), 'os.path.join', 'os.path.join', (['pwd', '"""../../model/lang/String.java"""'], {}), "(pwd, '../../model/lang/String.java')\n", (983, 1020), False, 'import os\n'), ((1057, 1106), 'os.path.join', 'os.path.join', (['pwd', '"""../../model/lang/Number.java"""'], {}), "(pwd, '../../model/lang/Number.java')\n", (1069, 1106), False, 'import os\n'), ((1143, 1193), 'os.path.join', 'os.path.join', (['pwd', '"""../../model/lang/Integer.java"""'], {}), "(pwd, '../../model/lang/Integer.java')\n", (1155, 1193), False, 'import os\n'), ((1231, 1283), 'os.path.join', 'os.path.join', (['pwd', '"""../../model/lang/Character.java"""'], {}), "(pwd, '../../model/lang/Character.java')\n", (1243, 1283), False, 'import os\n'), ((1321, 1372), 'os.path.join', 'os.path.join', (['pwd', '"""../../model/lang/Iterable.java"""'], {}), "(pwd, '../../model/lang/Iterable.java')\n", (1333, 1372), False, 'import os\n'), ((1410, 1461), 'os.path.join', 'os.path.join', (['pwd', '"""../../model/util/Iterator.java"""'], {}), "(pwd, '../../model/util/Iterator.java')\n", (1422, 1461), False, 'import os\n'), ((1498, 1547), 'os.path.join', 'os.path.join', (['pwd', '"""../../model/util/Arrays.java"""'], {}), "(pwd, '../../model/util/Arrays.java')\n", (1510, 1547), False, 'import os\n'), ((1585, 1632), 'os.path.join', 'os.path.join', (['pwd', '"""../../model/util/List.java"""'], {}), "(pwd, '../../model/util/List.java')\n", (1597, 1632), False, 'import os\n'), ((1671, 1723), 'os.path.join', 'os.path.join', (['pwd', '"""../../model/util/ArrayList.java"""'], {}), "(pwd, '../../model/util/ArrayList.java')\n", (1683, 1723), False, 'import os\n'), ((1762, 1815), 'os.path.join', 'os.path.join', (['pwd', '"""../../model/util/LinkedList.java"""'], {}), "(pwd, '../../model/util/LinkedList.java')\n", (1774, 1815), False, 'import os\n'), ((1853, 1903), 'os.path.join', 'os.path.join', (['pwd', '"""../../model/util/HashMap.java"""'], {}), "(pwd, '../../model/util/HashMap.java')\n", (1865, 1903), False, 'import os\n'), ((1941, 1991), 'os.path.join', 'os.path.join', (['pwd', '"""../../model/util/HashSet.java"""'], {}), "(pwd, '../../model/util/HashSet.java')\n", (1953, 1991), False, 'import os\n'), ((234, 255), 'os.path.abspath', 'os.path.abspath', (['path'], {}), '(path)\n', (249, 255), False, 'import os\n')]
""" Patches views. | Copyright 2017-2021, Voxel51, Inc. | `voxel51.com <https://voxel51.com/>`_ | """ from copy import deepcopy import eta.core.utils as etau import fiftyone.core.aggregations as foa import fiftyone.core.dataset as fod import fiftyone.core.fields as fof import fiftyone.core.labels as fol import fiftyone.core.media as fom import fiftyone.core.sample as fos import fiftyone.core.view as fov _SINGLE_TYPES_MAP = { fol.Detections: fol.Detection, fol.Polylines: fol.Polyline, } _PATCHES_TYPES = (fol.Detections, fol.Polylines) _NO_MATCH_ID = "" class _PatchView(fos.SampleView): @property def _sample_id(self): return self._doc.sample_id def save(self): super().save() self._view._sync_source_sample(self) class PatchView(_PatchView): """A patch in a :class:`PatchesView`. :class:`PatchView` instances should not be created manually; they are generated by iterating over :class:`PatchesView` instances. Args: doc: a :class:`fiftyone.core.odm.DatasetSampleDocument` view: the :class:`PatchesView` that the patch belongs to selected_fields (None): a set of field names that this view is restricted to excluded_fields (None): a set of field names that are excluded from this view filtered_fields (None): a set of field names of list fields that are filtered in this view """ pass class EvaluationPatchView(_PatchView): """A patch in an :class:`EvaluationPatchesView`. :class:`EvaluationPatchView` instances should not be created manually; they are generated by iterating over :class:`EvaluationPatchesView` instances. Args: doc: a :class:`fiftyone.core.odm.DatasetSampleDocument` view: the :class:`EvaluationPatchesView` that the patch belongs to selected_fields (None): a set of field names that this view is restricted to excluded_fields (None): a set of field names that are excluded from this view filtered_fields (None): a set of field names of list fields that are filtered in this view """ pass class _PatchesView(fov.DatasetView): def __init__( self, source_collection, patches_stage, patches_dataset, _stages=None ): if _stages is None: _stages = [] self._source_collection = source_collection self._patches_stage = patches_stage self._patches_dataset = patches_dataset self.__stages = _stages def __copy__(self): return self.__class__( self._source_collection, deepcopy(self._patches_stage), self._patches_dataset, _stages=deepcopy(self.__stages), ) @property def _base_view(self): return self.__class__( self._source_collection, self._patches_stage, self._patches_dataset, ) @property def _dataset(self): return self._patches_dataset @property def _root_dataset(self): return self._source_collection._root_dataset @property def _stages(self): return self.__stages @property def _all_stages(self): return ( self._source_collection.view()._all_stages + [self._patches_stage] + self.__stages ) @property def _label_fields(self): raise NotImplementedError("subclass must implement _label_fields") @property def _element_str(self): return "patch" @property def _elements_str(self): return "patches" @property def name(self): return self.dataset_name + "-patches" @classmethod def _get_default_sample_fields( cls, include_private=False, use_db_fields=False ): fields = super()._get_default_sample_fields( include_private=include_private, use_db_fields=use_db_fields ) if use_db_fields: return fields + ("_sample_id",) return fields + ("sample_id",) def set_values(self, field_name, *args, **kwargs): field = field_name.split(".", 1)[0] must_sync = field in self._label_fields # The `set_values()` operation could change the contents of this view, # so we first record the sample IDs that need to be synced if must_sync and self._stages: ids = self.values("_id") else: ids = None super().set_values(field_name, *args, **kwargs) if must_sync: self._sync_source_field(field, ids=ids) def save(self, fields=None): """Overwrites the object patches in the source dataset with the contents of the view. If this view contains any additional fields that were not extracted from the source dataset, these fields are not saved. .. warning:: This will permanently delete any omitted, filtered, or otherwise modified patches from the source dataset. Args: fields (None): an optional field or list of fields to save. If specified, only these fields are overwritten """ if etau.is_str(fields): fields = [fields] super().save(fields=fields) if fields is None: fields = self._label_fields else: fields = [l for l in fields if l in self._label_fields] # # IMPORTANT: we sync the contents of `_patches_dataset`, not `self` # here because the `save()` call above updated the dataset, which means # this view may no longer have the same contents (e.g., if `skip()` is # involved) # self._sync_source_root(fields) def reload(self): self._root_dataset.reload() # # Regenerate the patches dataset # # This assumes that calling `load_view()` when the current patches # dataset has been deleted will cause a new one to be generated # self._patches_dataset.delete() _view = self._patches_stage.load_view(self._source_collection) self._patches_dataset = _view._patches_dataset def _sync_source_sample(self, sample): for field in self._label_fields: self._sync_source_sample_field(sample, field) def _sync_source_sample_field(self, sample, field): label_type = self._patches_dataset._get_label_field_type(field) is_list_field = issubclass(label_type, fol._LABEL_LIST_FIELDS) doc = sample._doc.field_to_mongo(field) if is_list_field: doc = doc[label_type._LABEL_LIST_FIELD] self._source_collection._set_labels_by_id( field, [sample.sample_id], [doc] ) def _sync_source_field(self, field, ids=None): _, label_path = self._patches_dataset._get_label_field_path(field) if ids is not None: view = self._patches_dataset.mongo( [{"$match": {"_id": {"$in": ids}}}] ) else: view = self._patches_dataset sample_ids, docs = view.aggregate( [foa.Values("sample_id"), foa.Values(label_path, _raw=True)] ) self._source_collection._set_labels_by_id(field, sample_ids, docs) def _sync_source_root(self, fields): for field in fields: self._sync_source_root_field(field) def _sync_source_root_field(self, field): _, id_path = self._get_label_field_path(field, "id") label_path = id_path.rsplit(".", 1)[0] # # Sync label updates # sample_ids, docs, label_ids = self._patches_dataset.aggregate( [ foa.Values("sample_id"), foa.Values(label_path, _raw=True), foa.Values(id_path, unwind=True), ] ) self._source_collection._set_labels_by_id(field, sample_ids, docs) # # Sync label deletions # _, src_id_path = self._source_collection._get_label_field_path( field, "id" ) src_ids = self._source_collection.values(src_id_path, unwind=True) delete_ids = set(src_ids) - set(label_ids) if delete_ids: self._source_collection._dataset.delete_labels( ids=delete_ids, fields=field ) def _get_ids_map(self, field): label_type = self._patches_dataset._get_label_field_type(field) is_list_field = issubclass(label_type, fol._LABEL_LIST_FIELDS) _, id_path = self._get_label_field_path(field, "id") sample_ids, label_ids = self.values(["id", id_path]) ids_map = {} if is_list_field: for sample_id, _label_ids in zip(sample_ids, label_ids): if not _label_ids: continue for label_id in _label_ids: ids_map[label_id] = sample_id else: for sample_id, label_id in zip(sample_ids, label_ids): if not label_id: continue ids_map[label_id] = sample_id return ids_map class PatchesView(_PatchesView): """A :class:`fiftyone.core.view.DatasetView` of patches from a :class:`fiftyone.core.dataset.Dataset`. Patches views contain an ordered collection of patch samples, each of which contains a subset of a sample of the parent dataset corresponding to a single object or logical grouping of of objects. Patches retrieved from patches views are returned as :class:`PatchView` objects. Args: source_collection: the :class:`fiftyone.core.collections.SampleCollection` from which this view was created patches_stage: the :class:`fiftyone.core.stages.ToPatches` stage that defines how the patches were extracted patches_dataset: the :class:`fiftyone.core.dataset.Dataset` that serves the patches in this view """ _SAMPLE_CLS = PatchView def __init__( self, source_collection, patches_stage, patches_dataset, _stages=None ): super().__init__( source_collection, patches_stage, patches_dataset, _stages=_stages ) self._patches_field = patches_stage.field @property def _label_fields(self): return [self._patches_field] @property def patches_field(self): """The field from which the patches in this view were extracted.""" return self._patches_field class EvaluationPatchesView(_PatchesView): """A :class:`fiftyone.core.view.DatasetView` containing evaluation patches from a :class:`fiftyone.core.dataset.Dataset`. Evalation patches views contain an ordered collection of evaluation examples, each of which contains the ground truth and/or predicted labels for a true positive, false positive, or false negative example from an evaluation run on the underlying dataset. Patches retrieved from patches views are returned as :class:`EvaluationPatchView` objects. Args: source_collection: the :class:`fiftyone.core.collections.SampleCollection` from which this view was created patches_stage: the :class:`fiftyone.core.stages.ToEvaluationPatches` stage that defines how the patches were extracted patches_dataset: the :class:`fiftyone.core.dataset.Dataset` that serves the patches in this view """ _SAMPLE_CLS = EvaluationPatchView def __init__( self, source_collection, patches_stage, patches_dataset, _stages=None ): super().__init__( source_collection, patches_stage, patches_dataset, _stages=_stages ) eval_key = patches_stage.eval_key eval_info = source_collection.get_evaluation_info(eval_key) self._gt_field = eval_info.config.gt_field self._pred_field = eval_info.config.pred_field @property def _label_fields(self): return [self._gt_field, self._pred_field] @property def gt_field(self): """The ground truth field for the evaluation patches in this view.""" return self._gt_field @property def pred_field(self): """The predictions field for the evaluation patches in this view.""" return self._pred_field def make_patches_dataset( sample_collection, field, keep_label_lists=False, name=None ): """Creates a dataset that contains one sample per object patch in the specified field of the collection. Fields other than ``field`` and the default sample fields will not be included in the returned dataset. A ``sample_id`` field will be added that records the sample ID from which each patch was taken. Args: sample_collection: a :class:`fiftyone.core.collections.SampleCollection` field: the patches field, which must be of type :class:`fiftyone.core.labels.Detections` or :class:`fiftyone.core.labels.Polylines` keep_label_lists (False): whether to store the patches in label list fields of the same type as the input collection rather than using their single label variants name (None): a name for the returned dataset Returns: a :class:`fiftyone.core.dataset.Dataset` """ if keep_label_lists: field_type = sample_collection._get_label_field_type(field) else: field_type = _get_single_label_field_type(sample_collection, field) dataset = fod.Dataset(name, _patches=True) dataset.media_type = fom.IMAGE dataset.add_sample_field( "sample_id", fof.ObjectIdField, db_field="_sample_id" ) dataset.add_sample_field( field, fof.EmbeddedDocumentField, embedded_doc_type=field_type ) patches_view = _make_patches_view( sample_collection, field, keep_label_lists=keep_label_lists ) _write_samples(dataset, patches_view) return dataset def _get_single_label_field_type(sample_collection, field): label_type = sample_collection._get_label_field_type(field) if label_type not in _SINGLE_TYPES_MAP: raise ValueError("Unsupported label field type %s" % label_type) return _SINGLE_TYPES_MAP[label_type] def make_evaluation_dataset(sample_collection, eval_key, name=None): """Creates a dataset based on the results of the evaluation with the given key that contains one sample for each true positive, false positive, and false negative example in the input collection, respectively. True positive examples will result in samples with both their ground truth and predicted fields populated, while false positive/negative examples will only have one of their corresponding predicted/ground truth fields populated, respectively. If multiple predictions are matched to a ground truth object (e.g., if the evaluation protocol includes a crowd attribute), then all matched predictions will be stored in the single sample along with the ground truth object. The returned dataset will also have top-level ``type`` and ``iou`` fields populated based on the evaluation results for that example, as well as a ``sample_id`` field recording the sample ID of the example, and a ``crowd`` field if the evaluation protocol defines a crowd attribute. .. note:: The returned dataset will contain patches for the contents of the input collection, which may differ from the view on which the ``eval_key`` evaluation was performed. This may exclude some labels that were evaluated and/or include labels that were not evaluated. If you would like to see patches for the exact view on which an evaluation was performed, first call :meth:`load_evaluation_view() <fiftyone.core.collections.SampleCollection.load_evaluation_view>` to load the view and then convert to patches. Args: sample_collection: a :class:`fiftyone.core.collections.SampleCollection` eval_key: an evaluation key that corresponds to the evaluation of ground truth/predicted fields that are of type :class:`fiftyone.core.labels.Detections` or :class:`fiftyone.core.labels.Polylines` name (None): a name for the returned dataset Returns: a :class:`fiftyone.core.dataset.Dataset` """ # Parse evaluation info eval_info = sample_collection.get_evaluation_info(eval_key) pred_field = eval_info.config.pred_field gt_field = eval_info.config.gt_field if hasattr(eval_info.config, "iscrowd"): crowd_attr = eval_info.config.iscrowd else: crowd_attr = None pred_type = sample_collection._get_label_field_type(pred_field) gt_type = sample_collection._get_label_field_type(gt_field) # Setup dataset with correct schema dataset = fod.Dataset(name, _patches=True) dataset.media_type = fom.IMAGE dataset.add_sample_field( pred_field, fof.EmbeddedDocumentField, embedded_doc_type=pred_type ) dataset.add_sample_field( gt_field, fof.EmbeddedDocumentField, embedded_doc_type=gt_type ) dataset.add_sample_field( "sample_id", fof.ObjectIdField, db_field="_sample_id" ) dataset.add_sample_field("type", fof.StringField) dataset.add_sample_field("iou", fof.FloatField) if crowd_attr is not None: dataset.add_sample_field("crowd", fof.BooleanField) # Add ground truth patches gt_view = _make_eval_view( sample_collection, eval_key, gt_field, crowd_attr=crowd_attr ) _write_samples(dataset, gt_view) # Merge matched predictions _merge_matched_labels(dataset, sample_collection, eval_key, pred_field) # Add unmatched predictions unmatched_pred_view = _make_eval_view( sample_collection, eval_key, pred_field, skip_matched=True ) _add_samples(dataset, unmatched_pred_view) return dataset def _make_patches_view(sample_collection, field, keep_label_lists=False): if sample_collection._is_frames: raise ValueError( "Creating patches views into frame views is not yet supported" ) if sample_collection._is_frame_field(field): raise ValueError( "Frame label patches cannot be directly extracted; you must first " "convert your video dataset to frames via `to_frames()`" ) label_type = sample_collection._get_label_field_type(field) if issubclass(label_type, _PATCHES_TYPES): list_field = field + "." + label_type._LABEL_LIST_FIELD else: raise ValueError( "Invalid label field type %s. Extracting patches is only " "supported for the following types: %s" % (label_type, _PATCHES_TYPES) ) pipeline = [ { "$project": { "_id": True, "_sample_id": "$_id", "_media_type": True, "filepath": True, "metadata": True, "tags": True, field + "._cls": True, list_field: True, } }, {"$unwind": "$" + list_field}, {"$set": {"_rand": {"$rand": {}}}}, {"$set": {"_id": "$" + list_field + "._id"}}, ] if keep_label_lists: pipeline.append({"$set": {list_field: ["$" + list_field]}}) else: pipeline.append({"$set": {field: "$" + list_field}}) return sample_collection.mongo(pipeline) def _make_eval_view( sample_collection, eval_key, field, skip_matched=False, crowd_attr=None ): eval_type = field + "." + eval_key eval_id = field + "." + eval_key + "_id" eval_iou = field + "." + eval_key + "_iou" view = _make_patches_view(sample_collection, field) if skip_matched: view = view.mongo( [ { "$match": { "$expr": { "$or": [ {"$eq": ["$" + eval_id, _NO_MATCH_ID]}, {"$not": {"$gt": ["$" + eval_id, None]}}, ] } } } ] ) view = view.mongo( [{"$set": {"type": "$" + eval_type, "iou": "$" + eval_iou}}] ) if crowd_attr is not None: crowd_path1 = "$" + field + "." + crowd_attr # @todo remove Attributes usage crowd_path2 = "$" + field + ".attributes." + crowd_attr + ".value" view = view.mongo( [ { "$set": { "crowd": { "$cond": { "if": {"$gt": [crowd_path1, None]}, "then": {"$toBool": crowd_path1}, "else": { "$cond": { "if": {"$gt": [crowd_path2, None]}, "then": {"$toBool": crowd_path2}, "else": None, } }, } } } } ] ) return _upgrade_labels(view, field) def _upgrade_labels(view, field): tmp_field = "_" + field label_type = view._get_label_field_type(field) return view.mongo( [ {"$set": {tmp_field: "$" + field}}, {"$unset": field}, { "$set": { field: { "_cls": label_type.__name__, label_type._LABEL_LIST_FIELD: ["$" + tmp_field], } } }, {"$unset": tmp_field}, ] ) def _merge_matched_labels(dataset, src_collection, eval_key, field): field_type = src_collection._get_label_field_type(field) list_field = field + "." + field_type._LABEL_LIST_FIELD eval_id = eval_key + "_id" eval_field = list_field + "." + eval_id pipeline = src_collection._pipeline(detach_frames=True) pipeline.extend( [ {"$project": {list_field: True}}, {"$unwind": "$" + list_field}, { "$match": { "$expr": { "$and": [ {"$gt": ["$" + eval_field, None]}, {"$ne": ["$" + eval_field, _NO_MATCH_ID]}, ] } } }, { "$group": { "_id": {"$toObjectId": "$" + eval_field}, "_labels": {"$push": "$" + list_field}, } }, { "$project": { field: { "_cls": field_type.__name__, field_type._LABEL_LIST_FIELD: "$_labels", } }, }, { "$merge": { "into": dataset._sample_collection_name, "on": "_id", "whenMatched": "merge", "whenNotMatched": "discard", } }, ] ) src_collection._dataset._aggregate(pipeline=pipeline, attach_frames=False) def _write_samples(dataset, src_collection): pipeline = src_collection._pipeline(detach_frames=True) pipeline.append({"$out": dataset._sample_collection_name}) src_collection._dataset._aggregate(pipeline=pipeline, attach_frames=False) def _add_samples(dataset, src_collection): pipeline = src_collection._pipeline(detach_frames=True) pipeline.append( { "$merge": { "into": dataset._sample_collection_name, "on": "_id", "whenMatched": "keepExisting", "whenNotMatched": "insert", } } ) src_collection._dataset._aggregate(pipeline=pipeline, attach_frames=False)
[ "eta.core.utils.is_str", "copy.deepcopy", "fiftyone.core.aggregations.Values", "fiftyone.core.dataset.Dataset" ]
[((13620, 13652), 'fiftyone.core.dataset.Dataset', 'fod.Dataset', (['name'], {'_patches': '(True)'}), '(name, _patches=True)\n', (13631, 13652), True, 'import fiftyone.core.dataset as fod\n'), ((17000, 17032), 'fiftyone.core.dataset.Dataset', 'fod.Dataset', (['name'], {'_patches': '(True)'}), '(name, _patches=True)\n', (17011, 17032), True, 'import fiftyone.core.dataset as fod\n'), ((5228, 5247), 'eta.core.utils.is_str', 'etau.is_str', (['fields'], {}), '(fields)\n', (5239, 5247), True, 'import eta.core.utils as etau\n'), ((2651, 2680), 'copy.deepcopy', 'deepcopy', (['self._patches_stage'], {}), '(self._patches_stage)\n', (2659, 2680), False, 'from copy import deepcopy\n'), ((2737, 2760), 'copy.deepcopy', 'deepcopy', (['self.__stages'], {}), '(self.__stages)\n', (2745, 2760), False, 'from copy import deepcopy\n'), ((7185, 7208), 'fiftyone.core.aggregations.Values', 'foa.Values', (['"""sample_id"""'], {}), "('sample_id')\n", (7195, 7208), True, 'import fiftyone.core.aggregations as foa\n'), ((7210, 7243), 'fiftyone.core.aggregations.Values', 'foa.Values', (['label_path'], {'_raw': '(True)'}), '(label_path, _raw=True)\n', (7220, 7243), True, 'import fiftyone.core.aggregations as foa\n'), ((7757, 7780), 'fiftyone.core.aggregations.Values', 'foa.Values', (['"""sample_id"""'], {}), "('sample_id')\n", (7767, 7780), True, 'import fiftyone.core.aggregations as foa\n'), ((7798, 7831), 'fiftyone.core.aggregations.Values', 'foa.Values', (['label_path'], {'_raw': '(True)'}), '(label_path, _raw=True)\n', (7808, 7831), True, 'import fiftyone.core.aggregations as foa\n'), ((7849, 7881), 'fiftyone.core.aggregations.Values', 'foa.Values', (['id_path'], {'unwind': '(True)'}), '(id_path, unwind=True)\n', (7859, 7881), True, 'import fiftyone.core.aggregations as foa\n')]
############################################################################## # # Copyright (c) 2002 Zope Foundation and Contributors. # All Rights Reserved. # # This software is subject to the provisions of the Zope Public License, # Version 2.1 (ZPL). A copy of the ZPL should accompany this distribution. # THIS SOFTWARE IS PROVIDED "AS IS" AND ANY AND ALL EXPRESS OR IMPLIED # WARRANTIES ARE DISCLAIMED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED # WARRANTIES OF TITLE, MERCHANTABILITY, AGAINST INFRINGEMENT, AND FITNESS # FOR A PARTICULAR PURPOSE. # ############################################################################## """Code to initialize the application server """ from __future__ import print_function __docformat__ = 'restructuredtext' import base64 import time import sys from pdb import Pdb from io import BytesIO from zope.publisher.publish import publish as _publish, debug_call from zope.publisher.browser import TestRequest, setDefaultSkin from zope.app.publication.browser import BrowserPublication from zope.app.appsetup import config, database try: from time import process_time as time_process_time # pragma: PY3 except ImportError: from time import clock as time_process_time # pragma: PY2 try: import urllib.parse as urllib # pragma: PY3 except ImportError: import urllib # pragma: PY2 try: text_type = unicode # pragma: PY2 except NameError: text_type = str # pragma: PY3 class Debugger(object): pdb = Pdb def __init__(self, db=None, config_file=None, stdout=None): if db is None and config_file is None: db = 'Data.fs' config_file = 'site.zcml' if config_file is not None: config(config_file) self.db = database(db) self.stdout = stdout @classmethod def fromDatabase(cls, db): inst = cls.__new__(cls) inst.db = db return inst def root(self): """Get the top-level application object The object returned is connected to an open database connection. """ from zope.app.publication.zopepublication import ZopePublication return self.db.open().root()[ZopePublication.root_name] def _request(self, path='/', stdin='', basic=None, environment=None, form=None, request=None, publication=BrowserPublication): """Create a request """ env = {} if isinstance(stdin, text_type): stdin = stdin.encode("utf-8") if isinstance(stdin, bytes): stdin = BytesIO(stdin) p = path.split('?') if len(p) == 1: env['PATH_INFO'] = p[0] elif len(p) == 2: env['PATH_INFO'], env['QUERY_STRING'] = p else: raise ValueError("Too many ?s in path", path) env['PATH_INFO'] = urllib.unquote(env['PATH_INFO']) if environment is not None: env.update(environment) if basic: basic_bytes = basic.encode('ascii') if not isinstance( basic, bytes) else basic basic64_bytes = base64.b64encode(basic_bytes) basic64 = basic64_bytes.decode('ascii').strip() env['HTTP_AUTHORIZATION'] = "Basic %s" % basic64 pub = publication(self.db) if request is not None: request = request(stdin, env) else: request = TestRequest(stdin, env) setDefaultSkin(request) request.setPublication(pub) if form: request.form.update(form) return request def publish(self, path='/', stdin='', *args, **kw): t, pt = time.time(), time_process_time() request = self._request(path, stdin, *args, **kw) # agroszer: 2008.feb.1.: if a retry occurs in the publisher, # the response will be LOST, so we must accept the returned request request = _publish(request) getStatus = getattr(request.response, 'getStatus', lambda: None) headers = sorted(request.response.getHeaders()) print( 'Status %s\r\n%s\r\n\r\n%s' % ( request.response.getStatusString(), '\r\n'.join([("%s: %s" % h) for h in headers]), request.response.consumeBody(), ), file=self.stdout or sys.stdout) return time.time() - t, time_process_time() - pt, getStatus() def run(self, *args, **kw): t, pt = time.time(), time_process_time() request = self._request(*args, **kw) # agroszer: 2008.feb.1.: if a retry occurs in the publisher, # the response will be LOST, so we must accept the returned request request = _publish(request, handle_errors=False) getStatus = getattr(request.response, 'getStatus', lambda: None) return time.time() - t, time_process_time() - pt, getStatus() def debug(self, *args, **kw): out = self.stdout or sys.stdout class ZopePdb(self.Pdb): done_pub = False done_ob = False def do_pub(self, arg): if self.done_pub: print('pub already done.', file=out) return self.do_s('') self.do_s('') self.do_c('') self.done_pub = True def do_ob(self, arg): if self.done_ob: print('ob already done.', file=out) return self.do_pub('') self.do_c('') self.done_ob = True dbg = ZopePdb() request = self._request(*args, **kw) fbreak(dbg, _publish) fbreak(dbg, debug_call) print('* Type c<cr> to jump to published object call.', file=out) dbg.runcall(_publish, request) return dbg def getlineno(code): return code.co_firstlineno def fbreak(db, meth): try: meth = meth.__func__ except AttributeError: pass code = meth.__code__ lineno = getlineno(code) filename = code.co_filename db.set_break(filename, lineno)
[ "zope.publisher.browser.TestRequest", "zope.publisher.publish.publish", "time.clock", "urllib.unquote", "zope.app.appsetup.database", "base64.b64encode", "io.BytesIO", "zope.app.appsetup.config", "zope.publisher.browser.setDefaultSkin", "time.time" ]
[((1749, 1761), 'zope.app.appsetup.database', 'database', (['db'], {}), '(db)\n', (1757, 1761), False, 'from zope.app.appsetup import config, database\n'), ((2873, 2905), 'urllib.unquote', 'urllib.unquote', (["env['PATH_INFO']"], {}), "(env['PATH_INFO'])\n", (2887, 2905), False, 'import urllib\n'), ((3936, 3953), 'zope.publisher.publish.publish', '_publish', (['request'], {}), '(request)\n', (3944, 3953), True, 'from zope.publisher.publish import publish as _publish, debug_call\n'), ((4715, 4753), 'zope.publisher.publish.publish', '_publish', (['request'], {'handle_errors': '(False)'}), '(request, handle_errors=False)\n', (4723, 4753), True, 'from zope.publisher.publish import publish as _publish, debug_call\n'), ((1711, 1730), 'zope.app.appsetup.config', 'config', (['config_file'], {}), '(config_file)\n', (1717, 1730), False, 'from zope.app.appsetup import config, database\n'), ((2589, 2603), 'io.BytesIO', 'BytesIO', (['stdin'], {}), '(stdin)\n', (2596, 2603), False, 'from io import BytesIO\n'), ((3134, 3163), 'base64.b64encode', 'base64.b64encode', (['basic_bytes'], {}), '(basic_bytes)\n', (3150, 3163), False, 'import base64\n'), ((3432, 3455), 'zope.publisher.browser.TestRequest', 'TestRequest', (['stdin', 'env'], {}), '(stdin, env)\n', (3443, 3455), False, 'from zope.publisher.browser import TestRequest, setDefaultSkin\n'), ((3468, 3491), 'zope.publisher.browser.setDefaultSkin', 'setDefaultSkin', (['request'], {}), '(request)\n', (3482, 3491), False, 'from zope.publisher.browser import TestRequest, setDefaultSkin\n'), ((3680, 3691), 'time.time', 'time.time', ([], {}), '()\n', (3689, 3691), False, 'import time\n'), ((3693, 3712), 'time.clock', 'time_process_time', ([], {}), '()\n', (3710, 3712), True, 'from time import clock as time_process_time\n'), ((4474, 4485), 'time.time', 'time.time', ([], {}), '()\n', (4483, 4485), False, 'import time\n'), ((4487, 4506), 'time.clock', 'time_process_time', ([], {}), '()\n', (4504, 4506), True, 'from time import clock as time_process_time\n'), ((4370, 4381), 'time.time', 'time.time', ([], {}), '()\n', (4379, 4381), False, 'import time\n'), ((4387, 4406), 'time.clock', 'time_process_time', ([], {}), '()\n', (4404, 4406), True, 'from time import clock as time_process_time\n'), ((4843, 4854), 'time.time', 'time.time', ([], {}), '()\n', (4852, 4854), False, 'import time\n'), ((4860, 4879), 'time.clock', 'time_process_time', ([], {}), '()\n', (4877, 4879), True, 'from time import clock as time_process_time\n')]
""" Unit Tests for the pydisque module. Currently, most of these tests require a fresh instance of Disque to be valid and pass. """ import unittest import json import time import random import six from pydisque.client import Client from redis.exceptions import ResponseError class TestDisque(unittest.TestCase): """TestCase class for pydisque.""" testID = None def setUp(self): """Setup the tests.""" self.client = Client(['localhost:7711']) self.client.connect() self.testID = "%d.%d" % (time.time(), random.randint(1000, 1000000)) def test_publish_and_receive(self): """Test the most important functions of pydisque.""" t1 = str(time.time()) self.client.add_job("test_q", t1, timeout=100) jobs = self.client.get_job(['test_q']) assert len(jobs) == 1 for queue_name, job_id, job in jobs: assert job == six.b(t1) self.client.ack_job(job_id) assert len(self.client.get_job(['test_q'], timeout=100)) == 0 def test_nack(self): """Fetch the queue, return a job, check that it's back.""" t1 = str(time.time()) queuename = "test_nack." + self.testID self.client.add_job(queuename, str(t1), timeout=100) jobs = self.client.get_job([queuename]) # NACK the first read assert len(jobs) == 1 for queue_name, job_id, job in jobs: assert len(jobs) == 1 assert job == six.b(t1) self.client.nack_job(job_id) # this time ACK it jobs = self.client.get_job([queuename]) assert len(jobs) == 1 for queue_name, job_id, job in jobs: assert job == six.b(t1) self.client.ack_job(job_id) assert len(self.client.get_job([queuename], timeout=100)) == 0 def test_qpeek(self): """ Test qpeek. Ran into some problems with an ENQUEUE/DEQUEUE test that was using qpeek, checking core functionality of qpeek(). """ queuename = "test_qpeek-%s" % self.testID job_id = self.client.add_job(queuename, "Peek A Boo") peeked = self.client.qpeek(queuename, 1) assert peeked[0][1] == job_id def test_qscan(self): """ Test the qscan function. This test relies on add_job() being functional, and the local disque not being a disque proxy to a mesh. TODO: unique the queues with self.testID. """ t1 = str(time.time()) self.client.add_job("q1", t1, timeout=100) self.client.add_job("q2", t1, timeout=100) qb = self.client.qscan() assert qb[0] assert qb[1] assert six.b("q1") in qb[1] assert six.b("q2") in qb[1] def test_jscan(self): """Simple test of the jscan function.""" t1 = time.time() queuename = "test_jscan-%s" % self.testID j1 = self.client.add_job(queuename, str(t1), timeout=100) jerbs = self.client.jscan(queue=queuename) assert j1 in jerbs[1] def test_del_job(self): """Simple test of del_job, needs qpeek. FIXME: This function has grown ugly. """ t1 = time.time() queuename = "test_del_job-%s" % self.testID j1 = self.client.add_job(queuename, str(t1)) jerbs = self.client.qpeek(queuename, 1) jlist = [] for item in jerbs: jlist.append(item[1]) assert j1 in jlist self.client.del_job(j1) jerbs = self.client.qpeek(queuename, 1) jlist = [] for item in jerbs: jlist.append(item[1]) assert j1 not in jerbs def test_qlen(self): """Simple test of qlen.""" queuename = "test_qlen-%s" % self.testID lengthOfTest = 100 test_job = "Useless Job." for x in range(lengthOfTest): self.client.add_job(queuename, test_job) assert self.client.qlen(queuename) == lengthOfTest def test_qstat(self): """Testing QSTAT (default behavior).""" queuename = "test_qstat-%s" % self.testID testqueue = ["a", "b", "c"] for x in testqueue: self.client.add_job(queuename, x) stat = self.client.qstat(queuename) # check the basics assert 'jobs-in' in stat assert 'jobs-out' in stat def test_qstat_dict(self): """Testing QSTAT's (new dict behavior).""" queuename = "test_qstat_dict-%s" % self.testID testqueue = ["a", "b", "c"] for x in testqueue: self.client.add_job(queuename, x) stat = self.client.qstat(queuename, True) assert stat.get('jobs-in', None) is not None assert stat.get('jobs-out', None) is not None def test_shownack(self): """Test that NACK and SHOW work appropriately.""" queuename = "test_show-%s" % self.testID test_job = "Show me." self.client.add_job(queuename, test_job) jobs = self.client.get_job([queuename]) for queue_name, job_id, job in jobs: self.client.nack_job(job_id) shown = self.client.show(job_id, True) assert shown.get('body') == test_job assert shown.get('nacks') == 1 def test_pause(self): """Test that a PAUSE message is acknowledged.""" queuename = "test_show-%s" % self.testID test_job = "Jerbs, they are a thing" self.client.pause(queuename, kw_in=True) try: job_id = self.client.add_job(queuename, test_job) except ResponseError: pass # can we add a job again? self.client.pause(queuename, kw_none=True) job_id = self.client.add_job(queuename, test_job) jobs = self.client.get_job([queuename]) # TODO(canardleteer): add a test of PAUSE SHOW def test_get_job(self): queue_name = "test_get_job." + self.testID job = str(time.time()) job_id = self.client.add_job(queue_name, job) expected = [(queue_name, job_id, job)] got = self.client.get_job([queue_name], withcounters=False) assert expected == got def test_get_job_withcounters(self): queue_name = "test_get_job." + self.testID job = str(time.time()) job_id = self.client.add_job(queue_name, job) nacks = 0 additional_deliveries = 0 expected = [(queue_name, job_id, job, nacks, additional_deliveries)] got = self.client.get_job([queue_name], withcounters=True) assert expected == got if __name__ == '__main__': unittest.main()
[ "six.b", "pydisque.client.Client", "unittest.main", "time.time", "random.randint" ]
[((6670, 6685), 'unittest.main', 'unittest.main', ([], {}), '()\n', (6683, 6685), False, 'import unittest\n'), ((450, 476), 'pydisque.client.Client', 'Client', (["['localhost:7711']"], {}), "(['localhost:7711'])\n", (456, 476), False, 'from pydisque.client import Client\n'), ((2895, 2906), 'time.time', 'time.time', ([], {}), '()\n', (2904, 2906), False, 'import time\n'), ((3253, 3264), 'time.time', 'time.time', ([], {}), '()\n', (3262, 3264), False, 'import time\n'), ((736, 747), 'time.time', 'time.time', ([], {}), '()\n', (745, 747), False, 'import time\n'), ((1182, 1193), 'time.time', 'time.time', ([], {}), '()\n', (1191, 1193), False, 'import time\n'), ((2540, 2551), 'time.time', 'time.time', ([], {}), '()\n', (2549, 2551), False, 'import time\n'), ((2749, 2760), 'six.b', 'six.b', (['"""q1"""'], {}), "('q1')\n", (2754, 2760), False, 'import six\n'), ((2785, 2796), 'six.b', 'six.b', (['"""q2"""'], {}), "('q2')\n", (2790, 2796), False, 'import six\n'), ((6017, 6028), 'time.time', 'time.time', ([], {}), '()\n', (6026, 6028), False, 'import time\n'), ((6343, 6354), 'time.time', 'time.time', ([], {}), '()\n', (6352, 6354), False, 'import time\n'), ((540, 551), 'time.time', 'time.time', ([], {}), '()\n', (549, 551), False, 'import time\n'), ((586, 615), 'random.randint', 'random.randint', (['(1000)', '(1000000)'], {}), '(1000, 1000000)\n', (600, 615), False, 'import random\n'), ((952, 961), 'six.b', 'six.b', (['t1'], {}), '(t1)\n', (957, 961), False, 'import six\n'), ((1516, 1525), 'six.b', 'six.b', (['t1'], {}), '(t1)\n', (1521, 1525), False, 'import six\n'), ((1743, 1752), 'six.b', 'six.b', (['t1'], {}), '(t1)\n', (1748, 1752), False, 'import six\n')]
# -*- coding: utf-8 -*- # """*********************************************************************************************""" # FileName [ runner.py ] # Synopsis [ main program that runs the 'Naive Bayes' and 'Decision Tree' training / testing ] # Author [ <NAME> (Andi611) ] # Copyright [ Copyleft(c), NTUEE, NTU, Taiwan ] """*********************************************************************************************""" ############### # IMPORTATION # ############### import os import csv import argparse import numpy as np from data_loader import data_loader from classifiers import naive_bayes_runner from classifiers import decision_tree_runner ################## # CONFIGURATIONS # ################## def get_config(): parser = argparse.ArgumentParser(description='descrip_msg') classifier = parser.add_argument_group('classifier') classifier.add_argument('--classifier', type=str, default='', help='classifier to be specified by user') classifier.add_argument('--naive_bayes', action='store_true', help='enable Naive Bayes classification mode') classifier.add_argument('--decision_tree', action='store_true', help='enable Decision Tree classification mode') mode_args = parser.add_argument_group('mode') mode_args.add_argument('--search_opt', action='store_true', help='search for optimal parameters for classifiers') mode_args.add_argument('--run_all', action='store_true', help='run all distribution assumption for the Naive Bayes classifier') mode_args.add_argument('--visualize_tree', action='store_true', help='plot and visualize the Decision Tree classifier') data_args = parser.add_argument_group('data') data_args.add_argument('--data_news', action='store_true', help='Training and testing on the News dataset') data_args.add_argument('--data_mushroom', action='store_true', help='Training and testing on the Mushroom dataset') data_args.add_argument('--data_income', action='store_true', help='Training and testing on the Income dataset') path_args = parser.add_argument_group('train_path') path_args.add_argument('--train_path', type=str, default='', help='training path to be specified by user') path_args.add_argument('--train_path_news', type=str, default='../data/news/news_train.csv', help='path to the News training dataset') path_args.add_argument('--train_path_mushroom', type=str, default='../data/mushroom/mushroom_train.csv', help='path to the Mushroom training dataset') path_args.add_argument('--train_path_income', type=str, default='../data/income/income_train.csv', help='path to the Income training dataset') path_args = parser.add_argument_group('test_path') path_args.add_argument('--test_path', type=str, default='', help='testing path to be specified by user') path_args.add_argument('--test_path_news', type=str, default='../data/news/news_test.csv', help='path to the News testing dataset') path_args.add_argument('--test_path_mushroom', type=str, default='../data/mushroom/mushroom_test.csv', help='path to the Mushroom testing dataset') path_args.add_argument('--test_path_income', type=str, default='../data/income/income_test.csv', help='path to the Income testing dataset') path_args = parser.add_argument_group('output_path') path_args.add_argument('--output_path', type=str, default='../result/output.csv', help='path to save model prediction') args = parser.parse_args() args = error_handling(args) return args ################## # ERROR HANDLING # ################## def error_handling(args): if args.classifier != '': args.naive_bayes = True if args.classifier == 'N' else False args.decision_tree = True if args.classifier == 'D' else False if args.naive_bayes and args.decision_tree == True: raise AssertionError('Please choose one classifier at once, or specify the correct classifier!') if args.search_opt and args.run_all and args.visualize_tree == True: raise AssertionError('Please choose one mode at a time!') if args.data_news and args.data_mushroom and args.income == True: raise AssertionError('Please choose one and at least one dataset at a time!') if args.train_path != '' and args.test_path != '': if not os.path.isfile(args.train_path) or not os.path.isfile(args.test_path): raise AssertionError('The given file path is invalid!') if args.data_news: args.train_path_news = args.train_path args.test_path_news = args.test_path elif args.data_mushroom: args.train_path_mushroom = args.train_path args.test_path_mushroom = args.test_path elif args.data_income: args.train_path_income = args.train_path args.test_path_income = args.test_path else: raise AssertionError('Must choose a dataset!') return args ################# # OUTPUT WRITER # ################# def output_writer(path, result): with open(path, 'w') as f: file = csv.writer(f, delimiter=',', quotechar='\r') for item in result: file.writerow([int(item)]) print('Results have been successfully saved to: %s' % (path)) return True ######## # MAIN # ######## """ main function """ def main(): args = get_config() loader = data_loader(args) #---fetch data---# if args.data_news: train_x, train_y, test_x, test_y = loader.fetch_news() MODEL = 'NEWS' elif args.data_mushroom: train_x, train_y, test_x, test_y = loader.fetch_mushroom() MODEL = 'MUSHROOM' elif args.data_income: train_x, train_y, test_x, test_y = loader.fetch_income() # -> test_y == None MODEL = 'INCOME' ############### # NAIVE BAYES # ############### if args.naive_bayes: #---construct model---# naive_bayes = naive_bayes_runner(MODEL, train_x, train_y, test_x, test_y) #---modes---# if args.search_opt: naive_bayes.search_alpha() elif args.run_all: naive_bayes.run_best_all() else: pred_y = naive_bayes.run_best() output_writer(args.output_path, pred_y) ################# # DECISION TREE # ################# if args.decision_tree: #---construct model---# decision_tree = decision_tree_runner(MODEL, train_x, train_y, test_x, test_y) #---modes---# if args.search_opt: decision_tree.search_max_depth() elif args.visualize_tree: decision_tree.visualize() else: pred_y = decision_tree.run_best() output_writer(args.output_path, pred_y) if __name__ == '__main__': main()
[ "classifiers.naive_bayes_runner", "argparse.ArgumentParser", "data_loader.data_loader", "csv.writer", "os.path.isfile", "classifiers.decision_tree_runner" ]
[((766, 816), 'argparse.ArgumentParser', 'argparse.ArgumentParser', ([], {'description': '"""descrip_msg"""'}), "(description='descrip_msg')\n", (789, 816), False, 'import argparse\n'), ((5092, 5109), 'data_loader.data_loader', 'data_loader', (['args'], {}), '(args)\n', (5103, 5109), False, 'from data_loader import data_loader\n'), ((4819, 4863), 'csv.writer', 'csv.writer', (['f'], {'delimiter': '""","""', 'quotechar': "'\\r'"}), "(f, delimiter=',', quotechar='\\r')\n", (4829, 4863), False, 'import csv\n'), ((5571, 5630), 'classifiers.naive_bayes_runner', 'naive_bayes_runner', (['MODEL', 'train_x', 'train_y', 'test_x', 'test_y'], {}), '(MODEL, train_x, train_y, test_x, test_y)\n', (5589, 5630), False, 'from classifiers import naive_bayes_runner\n'), ((5963, 6024), 'classifiers.decision_tree_runner', 'decision_tree_runner', (['MODEL', 'train_x', 'train_y', 'test_x', 'test_y'], {}), '(MODEL, train_x, train_y, test_x, test_y)\n', (5983, 6024), False, 'from classifiers import decision_tree_runner\n'), ((4156, 4187), 'os.path.isfile', 'os.path.isfile', (['args.train_path'], {}), '(args.train_path)\n', (4170, 4187), False, 'import os\n'), ((4195, 4225), 'os.path.isfile', 'os.path.isfile', (['args.test_path'], {}), '(args.test_path)\n', (4209, 4225), False, 'import os\n')]
import copy import numpy as np import pybullet as p from igibson.metrics.metric_base import MetricBase class BehaviorRobotMetric(MetricBase): def __init__(self): self.initialized = False self.state_cache = {} self.next_state_cache = {} self.agent_pos = {part: [] for part in ["left_hand", "right_hand", "body"]} self.agent_grasping = {part: [] for part in ["left_hand", "right_hand"]} self.agent_local_pos = {part: [] for part in ["left_hand", "right_hand"]} self.agent_reset = {part: [] for part in ["left_hand", "right_hand", "body"]} self.delta_agent_work = {part: [] for part in ["left_hand", "right_hand", "body"]} self.delta_agent_distance = {part: [] for part in ["left_hand", "right_hand", "body"]} self.delta_agent_grasp_distance = {part: [] for part in ["left_hand", "right_hand"]} self.clip = 0.2 def step_callback(self, igbhvr_act_inst, _): robot = igbhvr_act_inst.simulator.robots[0] agent_work = {part: 0 for part in ["left_hand", "right_hand", "body"]} agent_distance = {part: 0 for part in ["left_hand", "right_hand", "body"]} for part in ["left_hand", "right_hand", "body"]: self.next_state_cache[part] = { "position": np.array(p.getBasePositionAndOrientation(robot.parts[part].get_body_id())[0]), } if not self.initialized: self.state_cache = copy.deepcopy(self.next_state_cache) self.initialized = True if robot.action[19] > 0 and robot.action[27] > 0: self.agent_reset["left_hand"].append(True) self.agent_reset["right_hand"].append(True) self.agent_reset["body"].append(True) if robot.action[19] > 0: self.agent_reset["left_hand"].append(True) self.agent_reset["right_hand"].append(False) self.agent_reset["body"].append(True) elif robot.action[27] > 0: self.agent_reset["left_hand"].append(False) self.agent_reset["right_hand"].append(True) self.agent_reset["body"].append(True) else: self.agent_reset["left_hand"].append(False) self.agent_reset["right_hand"].append(False) self.agent_reset["body"].append(False) for part in self.state_cache: delta_pos = np.linalg.norm(self.next_state_cache[part]["position"] - self.state_cache[part]["position"]) self.agent_pos[part].append(list(self.state_cache[part]["position"])) # Exclude agent teleports delta_pos = np.clip(delta_pos, -self.clip, self.clip) if robot.parts[part].movement_cid is None: force = 0 work = 0 else: force = p.getConstraintState(robot.parts[part].movement_cid) work = np.abs((delta_pos * np.linalg.norm(force))) distance = np.abs(delta_pos) if part in ["left_hand", "right_hand"]: self.agent_local_pos[part].append(list(robot.parts[part].get_local_position_orientation()[0])) if part in ["left_hand", "right_hand"] and ( len(p.getContactPoints(robot.parts[part].get_body_id())) > 0 or robot.parts[part].object_in_hand is not None ): self.delta_agent_grasp_distance[part].append(distance) self.agent_grasping[part].append(True) elif part in ["left_hand", "right_hand"]: self.delta_agent_grasp_distance[part].append(0) self.agent_grasping[part].append(False) agent_work[part] = work agent_distance[part] = distance self.delta_agent_work[part].append(work) self.delta_agent_distance[part].append(distance) self.state_cache = copy.deepcopy(self.next_state_cache) def gather_results(self): return { "agent_distance": { "timestep": self.delta_agent_distance, }, "grasp_distance": { "timestep": self.delta_agent_grasp_distance, }, "work": { "timestep": self.delta_agent_work, }, "pos": { "timestep": self.agent_pos, }, "local_pos": { "timestep": self.agent_local_pos, }, "grasping": { "timestep": self.agent_grasping, }, "reset": { "timestep": self.agent_reset, }, } class FetchRobotMetric(MetricBase): def __init__(self): self.initialized = False self.state_cache = {} self.next_state_cache = {} self.agent_pos = {part: [] for part in ["gripper", "body"]} self.agent_grasping = {part: [] for part in ["gripper"]} self.agent_local_pos = {part: [] for part in ["gripper"]} self.delta_agent_distance = {part: [] for part in ["gripper", "body"]} self.delta_agent_grasp_distance = {part: [] for part in ["gripper"]} self.clip = 0.2 def step_callback(self, igbhvr_act_inst, _): robot = igbhvr_act_inst.simulator.robots[0] agent_distance = {part: 0 for part in self.agent_pos} self.next_state_cache = { "gripper": {"position": robot.get_end_effector_position()}, "body": {"position": robot.get_position()}, } if not self.initialized: self.state_cache = copy.deepcopy(self.next_state_cache) self.initialized = True self.agent_pos["body"].append(list(self.state_cache["body"]["position"])) delta_pos = np.linalg.norm( np.array(self.next_state_cache["body"]["position"]) - self.state_cache["body"]["position"] ) distance = np.abs(delta_pos) self.delta_agent_distance["body"].append(distance) self.agent_pos["gripper"].append(list(self.state_cache["gripper"]["position"])) delta_pos = np.linalg.norm( self.next_state_cache["gripper"]["position"] - self.state_cache["gripper"]["position"] ) gripper_distance = np.abs(delta_pos) self.delta_agent_distance["gripper"].append(gripper_distance) self.agent_local_pos["gripper"].append(list(robot.get_relative_eef_position())) contacts = p.getContactPoints(bodyA=robot.robot_ids[0], linkIndexA=robot.eef_link_id) if len(contacts) > 0: self.delta_agent_grasp_distance["gripper"].append(gripper_distance) self.agent_grasping["gripper"].append(True) else: self.delta_agent_grasp_distance["gripper"].append(0) self.agent_grasping["gripper"].append(False) self.state_cache = copy.deepcopy(self.next_state_cache) def gather_results(self): return { "agent_distance": { "timestep": self.delta_agent_distance, }, "grasp_distance": { "timestep": self.delta_agent_grasp_distance, }, "pos": { "timestep": self.agent_pos, }, "local_pos": { "timestep": self.agent_local_pos, }, "grasping": { "timestep": self.agent_grasping, }, }
[ "numpy.clip", "numpy.abs", "pybullet.getContactPoints", "copy.deepcopy", "pybullet.getConstraintState", "numpy.array", "numpy.linalg.norm" ]
[((3877, 3913), 'copy.deepcopy', 'copy.deepcopy', (['self.next_state_cache'], {}), '(self.next_state_cache)\n', (3890, 3913), False, 'import copy\n'), ((5886, 5903), 'numpy.abs', 'np.abs', (['delta_pos'], {}), '(delta_pos)\n', (5892, 5903), True, 'import numpy as np\n'), ((6072, 6179), 'numpy.linalg.norm', 'np.linalg.norm', (["(self.next_state_cache['gripper']['position'] - self.state_cache['gripper']\n ['position'])"], {}), "(self.next_state_cache['gripper']['position'] - self.\n state_cache['gripper']['position'])\n", (6086, 6179), True, 'import numpy as np\n'), ((6224, 6241), 'numpy.abs', 'np.abs', (['delta_pos'], {}), '(delta_pos)\n', (6230, 6241), True, 'import numpy as np\n'), ((6421, 6495), 'pybullet.getContactPoints', 'p.getContactPoints', ([], {'bodyA': 'robot.robot_ids[0]', 'linkIndexA': 'robot.eef_link_id'}), '(bodyA=robot.robot_ids[0], linkIndexA=robot.eef_link_id)\n', (6439, 6495), True, 'import pybullet as p\n'), ((6826, 6862), 'copy.deepcopy', 'copy.deepcopy', (['self.next_state_cache'], {}), '(self.next_state_cache)\n', (6839, 6862), False, 'import copy\n'), ((1462, 1498), 'copy.deepcopy', 'copy.deepcopy', (['self.next_state_cache'], {}), '(self.next_state_cache)\n', (1475, 1498), False, 'import copy\n'), ((2388, 2485), 'numpy.linalg.norm', 'np.linalg.norm', (["(self.next_state_cache[part]['position'] - self.state_cache[part]['position'])"], {}), "(self.next_state_cache[part]['position'] - self.state_cache[\n part]['position'])\n", (2402, 2485), True, 'import numpy as np\n'), ((2625, 2666), 'numpy.clip', 'np.clip', (['delta_pos', '(-self.clip)', 'self.clip'], {}), '(delta_pos, -self.clip, self.clip)\n', (2632, 2666), True, 'import numpy as np\n'), ((2959, 2976), 'numpy.abs', 'np.abs', (['delta_pos'], {}), '(delta_pos)\n', (2965, 2976), True, 'import numpy as np\n'), ((5562, 5598), 'copy.deepcopy', 'copy.deepcopy', (['self.next_state_cache'], {}), '(self.next_state_cache)\n', (5575, 5598), False, 'import copy\n'), ((2815, 2867), 'pybullet.getConstraintState', 'p.getConstraintState', (['robot.parts[part].movement_cid'], {}), '(robot.parts[part].movement_cid)\n', (2835, 2867), True, 'import pybullet as p\n'), ((5766, 5817), 'numpy.array', 'np.array', (["self.next_state_cache['body']['position']"], {}), "(self.next_state_cache['body']['position'])\n", (5774, 5817), True, 'import numpy as np\n'), ((2911, 2932), 'numpy.linalg.norm', 'np.linalg.norm', (['force'], {}), '(force)\n', (2925, 2932), True, 'import numpy as np\n')]
import argparse import operator import os import re import shutil import spacy import tempfile from nerds.utils import spans_to_tokens, get_logger def segment_text_to_sentences(text_file, sentence_splitter): """ Segment text into sentences. Text is provided by BRAT in .txt file. Args: text_file (str): the full path to the BRAT .txt file. sentence_splitter (spacy LM): SpaCy EN language model. Returns: sentences (list((int, int, str))): list of sentence spans. Spans are triples of (start_offset, end_offset, text), where offset is relative to the text. """ sentences = [] ftext = open(text_file, "r") for line in ftext: splits = sentence_splitter(line.strip()) for sent in splits.sents: sentences.append((sent.start_char, sent.end_char, sent.text)) ftext.close() return sentences def parse_text_annotations(ann_file): """ Parses BRAT annotations provided in the .ann file and converts them to annotation spans of (start_position, end_position, entity_class). Args: ann_file (str): full path to the BRAT .ann file. Returns: annotations (list((int, int, str))): list of annotation spans. Spans are triples of (start_offset, end_offset, entity_class) where offset is relative to the text. """ annots = [] fann = open(ann_file, "r") for line in fann: cols = re.split(r"\s+", line.strip()) if not cols[0].startswith("T"): continue annots.append((int(cols[2]), int(cols[3]), cols[1])) fann.close() return annots def apply_annotations(sentences, annotations, tokenizer): """ Apply annotation spans to the sentence spans to create a list of tokens and tags. Args: sentences (list((int, int, str))): list of sentence spans. annotations (list((int, int, str))): list of annotation spans. tokenizer (spacy LM): SpaCy EN language model. Returns: tokens_tags_list (list((list(str), list(str)))): list of list of token tag pairs. Each list of token-tag pairs corresponds to a single sentence. """ tokens_tags_list = [] for sent_start, sent_end, sent_text in sentences: sent_annots = [a for a in annotations if a[0] >= sent_start and a[1] <= sent_end] # convert document offsets to sentence offsets sent_annots = [(s[0] - sent_start, s[1] - sent_start, s[2]) for s in sent_annots] tokens, tags = spans_to_tokens(sent_text, sent_annots, tokenizer) tokens_tags_list.append(zip(tokens, tags)) return tokens_tags_list def convert_brat_to_iob(input_dir, output_file, nlp): """ Convenience Convertor function. Args: input_dir (str): the directory where the BRAT .txt and .ann files are located. output_file (str): the full path name of file to write output in IOB format to. nlp (SpaCy LM): reference to the SpaCy EN model. Returns: None. """ fout = open(output_file, "w") for text_file in os.listdir(input_dir): # only process .txt and .ann pairs in specified directory if not text_file.endswith(".txt"): continue annot_file = text_file[:-4] + ".ann" if not os.path.exists(os.path.join(input_dir, annot_file)): # do not process file if no corresponding .ann file continue # process file pair logger.info("Processing file: {:s}".format(text_file)) sentences = segment_text_to_sentences(os.path.join(input_dir, text_file), nlp) annotations = parse_text_annotations(os.path.join(input_dir, annot_file)) tokens_tags_list = apply_annotations(sentences, annotations, nlp) for tokens_tags in tokens_tags_list: for token, tag in tokens_tags: fout.write("{:s}\t{:s}\n".format(token, tag)) fout.write("\n") fout.close() def do_self_test(nlp): """ Simple self-test with small dataset to prove that this works okay. """ text = "<NAME>, 61 years old, will join the board as a nonexecutive director, Nov. 29. Mr. Vinken is chairman of Elsevier N.V., the Dutch publishing group." annotations = [ "T1 PER 0 13 <NAME>", "T2 PER 86 96 Mr. Vinken", "T3 DATE 15 27 61 years old", "T4 DATE 77 84 Nov. 29", "T5 ORG 112 125 Elsevier N.V.", "T6 NORP 131 136 Dutch" ] input_dir = tempfile.mkdtemp(dir="/tmp") ftext = open(os.path.join(input_dir, "test.txt"), "w") ftext.write(text) ftext.close() fann = open(os.path.join(input_dir, "test.ann"), "w") for line in annotations: fann.write(line + "\n") fann.close() output_file = os.path.join(input_dir, "test.iob") convert_brat_to_iob(input_dir, output_file, nlp) fout = open(output_file, "r") for line in fout: logger.warn(line.strip()) shutil.rmtree(input_dir) ################################ main ################################ # # usage: brat2iob.py [-h] [-i INPUT_DIR] [-o OUTPUT_FILE] [-t] # Script to convert BRAT annotations to IOB (NERDS) format. # optional arguments: # -h, --help show this help message and exit # -i INPUT_DIR, --input_dir INPUT_DIR # Directory to store BRAT .txt and .ann files. # -o OUTPUT_FILE, --output_file OUTPUT_FILE # Output file to write IOB output to. # -t, --test Runs self test. ###################################################################### parser = argparse.ArgumentParser( description="Script to convert BRAT annotations to IOB (NERDS) format.") parser.add_argument("-i", "--input_dir", help="Directory to store BRAT .txt and .ann files.") parser.add_argument("-o", "--output_file", help="Output file to write IOB output to.") parser.add_argument("-t", "--test", help="Runs self test.", action="store_true") args = parser.parse_args() logger = get_logger() input_dir = args.input_dir output_file = args.output_file self_test = args.test nlp = spacy.load("en") if self_test: logger.info("Executing self test...") do_self_test(nlp) else: logger.info("Reading BRAT .txt and .ann files from: {:s}".format(input_dir)) logger.info("Writing IOB tokens/tags to file: {:s}".format(output_file)) convert_brat_to_iob(input_dir, output_file, nlp)
[ "os.listdir", "nerds.utils.spans_to_tokens", "argparse.ArgumentParser", "spacy.load", "os.path.join", "tempfile.mkdtemp", "nerds.utils.get_logger", "shutil.rmtree" ]
[((5767, 5868), 'argparse.ArgumentParser', 'argparse.ArgumentParser', ([], {'description': '"""Script to convert BRAT annotations to IOB (NERDS) format."""'}), "(description=\n 'Script to convert BRAT annotations to IOB (NERDS) format.')\n", (5790, 5868), False, 'import argparse\n'), ((6168, 6180), 'nerds.utils.get_logger', 'get_logger', ([], {}), '()\n', (6178, 6180), False, 'from nerds.utils import spans_to_tokens, get_logger\n'), ((6269, 6285), 'spacy.load', 'spacy.load', (['"""en"""'], {}), "('en')\n", (6279, 6285), False, 'import spacy\n'), ((3260, 3281), 'os.listdir', 'os.listdir', (['input_dir'], {}), '(input_dir)\n', (3270, 3281), False, 'import os\n'), ((4657, 4685), 'tempfile.mkdtemp', 'tempfile.mkdtemp', ([], {'dir': '"""/tmp"""'}), "(dir='/tmp')\n", (4673, 4685), False, 'import tempfile\n'), ((4939, 4974), 'os.path.join', 'os.path.join', (['input_dir', '"""test.iob"""'], {}), "(input_dir, 'test.iob')\n", (4951, 4974), False, 'import os\n'), ((5122, 5146), 'shutil.rmtree', 'shutil.rmtree', (['input_dir'], {}), '(input_dir)\n', (5135, 5146), False, 'import shutil\n'), ((2643, 2693), 'nerds.utils.spans_to_tokens', 'spans_to_tokens', (['sent_text', 'sent_annots', 'tokenizer'], {}), '(sent_text, sent_annots, tokenizer)\n', (2658, 2693), False, 'from nerds.utils import spans_to_tokens, get_logger\n'), ((4703, 4738), 'os.path.join', 'os.path.join', (['input_dir', '"""test.txt"""'], {}), "(input_dir, 'test.txt')\n", (4715, 4738), False, 'import os\n'), ((4801, 4836), 'os.path.join', 'os.path.join', (['input_dir', '"""test.ann"""'], {}), "(input_dir, 'test.ann')\n", (4813, 4836), False, 'import os\n'), ((3748, 3782), 'os.path.join', 'os.path.join', (['input_dir', 'text_file'], {}), '(input_dir, text_file)\n', (3760, 3782), False, 'import os\n'), ((3834, 3869), 'os.path.join', 'os.path.join', (['input_dir', 'annot_file'], {}), '(input_dir, annot_file)\n', (3846, 3869), False, 'import os\n'), ((3488, 3523), 'os.path.join', 'os.path.join', (['input_dir', 'annot_file'], {}), '(input_dir, annot_file)\n', (3500, 3523), False, 'import os\n')]
""" Ocropus's magic PIL-numpy array conversion routines. They express slightly different behavior from PIL.Image.toarray(). """ import unicodedata import numpy as np from PIL import Image __all__ = ['pil2array', 'array2pil'] def pil2array(im: Image.Image, alpha: int = 0) -> np.array: if im.mode == '1': return np.array(im.convert('L')) return np.array(im) def array2pil(a: np.array) -> Image: if a.dtype == np.dtype("B"): if a.ndim == 2: return Image.frombytes("L", (a.shape[1], a.shape[0]), a.tostring()) elif a.ndim == 3: return Image.frombytes("RGB", (a.shape[1], a.shape[0]), a.tostring()) else: raise Exception("bad image rank") elif a.dtype == np.dtype('float32'): return Image.frombytes("F", (a.shape[1], a.shape[0]), a.tostring()) else: raise Exception("unknown image type") def is_bitonal(im: Image.Image) -> bool: """ Tests a PIL.Image for bitonality. Args: im (PIL.Image.Image): Image to test Returns: True if the image contains only two different color values. False otherwise. """ return im.getcolors(2) is not None and len(im.getcolors(2)) == 2 def get_im_str(im: Image.Image) -> str: return im.filename if hasattr(im, 'filename') else str(im) def is_printable(char: str) -> bool: """ Determines if a chode point is printable/visible when printed. Args: char (str): Input code point. Returns: True if printable, False otherwise. """ letters = ('LC', 'Ll', 'Lm', 'Lo', 'Lt', 'Lu') numbers = ('Nd', 'Nl', 'No') punctuation = ('Pc', 'Pd', 'Pe', 'Pf', 'Pi', 'Po', 'Ps') symbol = ('Sc', 'Sk', 'Sm', 'So') printable = letters + numbers + punctuation + symbol return unicodedata.category(char) in printable def make_printable(char: str) -> str: """ Takes a Unicode code point and return a printable representation of it. Args: char (str): Input code point Returns: Either the original code point, the name of the code point if it is a combining mark, whitespace etc., or the hex code if it is a control symbol. """ if not char or is_printable(char): return char elif unicodedata.category(char) in ('Cc', 'Cs', 'Co'): return '0x{:x}'.format(ord(char)) else: return unicodedata.name(char)
[ "unicodedata.name", "numpy.array", "numpy.dtype", "unicodedata.category" ]
[((364, 376), 'numpy.array', 'np.array', (['im'], {}), '(im)\n', (372, 376), True, 'import numpy as np\n'), ((434, 447), 'numpy.dtype', 'np.dtype', (['"""B"""'], {}), "('B')\n", (442, 447), True, 'import numpy as np\n'), ((1891, 1917), 'unicodedata.category', 'unicodedata.category', (['char'], {}), '(char)\n', (1911, 1917), False, 'import unicodedata\n'), ((811, 830), 'numpy.dtype', 'np.dtype', (['"""float32"""'], {}), "('float32')\n", (819, 830), True, 'import numpy as np\n'), ((2363, 2389), 'unicodedata.category', 'unicodedata.category', (['char'], {}), '(char)\n', (2383, 2389), False, 'import unicodedata\n'), ((2480, 2502), 'unicodedata.name', 'unicodedata.name', (['char'], {}), '(char)\n', (2496, 2502), False, 'import unicodedata\n')]
import sys sys.path.insert(0,'..') from data.whale_data import exchnage_accounts from data.html_helper import check_if_address_name_exists from data.whale_eth_tx_data import * from data.whale_token_tx_data import identify_investor_type_token holding_account = "holding_account" deposit_account = 'deposit_account' withdraw_account = "withdraw_account" in_type = "IN" out_type = "OUT" all_acc_types = dict() for acc in exchnage_accounts: all_acc_types[acc] = exchange_type def update_y_array(X,y,timestamp,amount): target_index = 0 for i in range(len(X)): x_time = X[i] if timestamp < x_time: target_index = i break for i in range(target_index,len(y)): y[i] += amount return y def perform_bfs_on_accounts(out_txs,top_holder_type,acc,m_type='OUT'): print("\t"+m_type) unique_out = set() for out in out_txs: unique_out.add(out[3]) unique_out = list(unique_out)[:5] for out in unique_out: print("\t"+out) if out not in all_acc_types: investor_type = identify_investor_type(out) if investor_type == affliate_type: investor_type = identify_investor_type_token(out) print("\t\t{}".format(investor_type)) else: investor_type = all_acc_types[out] if investor_type == exchange_type: top_holder_type[acc] = deposit_account if m_type == "OUT" else withdraw_account all_acc_types[out] = investor_type if acc not in top_holder_type: top_holder_type[acc] = holding_account return top_holder_type def calculate_holding_amount(X,escape_accounts,txs): top_holder_type = dict() for acc in txs: tx = txs[acc] if acc in escape_accounts: continue #如果当前账户从来没有向外打过token,ignore out_txs = [item for item in tx if item[2] == 'OUT'] if len(out_txs) == 0: print("\tholding account") top_holder_type[acc] = holding_account continue # build all traxe Y: holding_amount, deposit_amount, withdraw_amount amount_trace_y = [0] * len(X) for holder in txs: if holder in escape_accounts: continue if holder not in top_holder_type: print("{} not identified! ".format(holder)) continue holder_type = top_holder_type[holder] holder_txs = txs[holder] print("{} {}".format(holder,holder_type)) for tx in holder_txs: [timestamp,from_a,tx_type,to_a,amount] = tx if holder_type == holding_account: if tx_type == in_type: amount_trace_y = update_y_array(X,amount_trace_y,timestamp,amount) else: amount_trace_y = update_y_array(X,amount_trace_y,timestamp,-amount) return amount_trace_y
[ "data.whale_token_tx_data.identify_investor_type_token", "sys.path.insert" ]
[((11, 35), 'sys.path.insert', 'sys.path.insert', (['(0)', '""".."""'], {}), "(0, '..')\n", (26, 35), False, 'import sys\n'), ((1185, 1218), 'data.whale_token_tx_data.identify_investor_type_token', 'identify_investor_type_token', (['out'], {}), '(out)\n', (1213, 1218), False, 'from data.whale_token_tx_data import identify_investor_type_token\n')]
# @Time : 2020/11/14 # @Author : <NAME>, <NAME> # @Email : <EMAIL> # UPDATE: # @Time : 2020/12/2, 2020/11/27, 2020/12/3, 2020/12/26 # @Author : <NAME>, <NAME>, <NAME>, <NAME> # @Email : <EMAIL>, <EMAIL>, <EMAIL>, <EMAIL> r""" textbox.trainer.trainer ################################ """ import os import torch import torch.optim as optim import numpy as np import matplotlib.pyplot as plt import copy import math from torch.utils.data import DataLoader from time import time from logging import getLogger from textbox.module.Optimizer.optim import ScheduledOptim from textbox.evaluator import NgramEvaluator, TranslationEvaluator, SummarizationEvaluator from textbox.utils import ensure_dir, early_stopping class AbstractTrainer(object): r"""Trainer Class is used to manage the training and evaluation processes of text generation system models. AbstractTrainer is an abstract class in which the fit() and evaluate() method should be implemented according to different training and evaluation strategies. """ def __init__(self, config, model): self.config = config self.model = model def fit(self, train_data): r"""Train the model based on the train data. """ raise NotImplementedError('Method [next] should be implemented.') def evaluate(self, eval_data): r"""Evaluate the model based on the eval data. """ raise NotImplementedError('Method [next] should be implemented.') class Trainer(AbstractTrainer): r"""The basic Trainer for basic training and evaluation strategies in text generation systems. This class defines common functions for training and evaluation processes of most text generation system models, including fit(), evalute(), resume_checkpoint() and some other features helpful for model training and evaluation. Generally speaking, this class can serve most text generation system models, If the training process of the model is to simply optimize a single loss without involving any complex training strategies, such as adversarial learning, pre-training and so on. Initializing the Trainer needs two parameters: `config` and `model`. `config` records the parameters information for controlling training and evaluation, such as `learning_rate`, `epochs`, `eval_step` and so on. More information can be found in [placeholder]. `model` is the instantiated object of a Model Class. """ def __init__(self, config, model): super(Trainer, self).__init__(config, model) self.logger = getLogger() self.learner = config['learner'] self.learning_rate = config['learning_rate'] self.epochs = config['epochs'] self.eval_step = min(config['eval_step'], self.epochs) self.stopping_step = config['stopping_step'] self.test_batch_size = config['eval_batch_size'] self.device = config['device'] self.embedding_size = config['embedding_size'] self.warmup_steps = config['warmup_steps'] self.checkpoint_dir = config['checkpoint_dir'] ensure_dir(self.checkpoint_dir) saved_model_file = self.config['filename'] + '.pth' self.saved_model_file = os.path.join(self.checkpoint_dir, saved_model_file) self.generated_text_dir = config['generated_text_dir'] ensure_dir(self.generated_text_dir) saved_text_file = self.config['filename'] + '.txt' self.saved_text_file = os.path.join(self.generated_text_dir, saved_text_file) self.start_epoch = 0 self.cur_step = 0 self.best_valid_score = 100000000 self.best_valid_result = None self.train_loss_dict = dict() self.optimizer = self._build_optimizer() self.task_type = config['task_type'].lower() if self.task_type == "translation": self.evaluator = TranslationEvaluator(config) elif self.task_type == "summarization": self.evaluator = SummarizationEvaluator(config) else: self.evaluator = NgramEvaluator(config) self.item_tensor = None self.tot_item_num = None self.iid_field = config['ITEM_ID_FIELD'] def _build_optimizer(self): r"""Init the Optimizer Returns: torch.optim: the optimizer """ if self.learner.lower() == 'adam': optimizer = optim.Adam(self.model.parameters(), lr=self.learning_rate) elif self.learner.lower() == 'sgd': optimizer = optim.SGD(self.model.parameters(), lr=self.learning_rate) elif self.learner.lower() == 'adagrad': optimizer = optim.Adagrad(self.model.parameters(), lr=self.learning_rate) elif self.learner.lower() == 'rmsprop': optimizer = optim.RMSprop(self.model.parameters(), lr=self.learning_rate) elif self.learner.lower() == 'schedule': optimizer = ScheduledOptim(optim.Adam(self.model.parameters(), betas=(0.9, 0.98), eps=1e-09), self.learning_rate, self.embedding_size, self.warmup_steps) else: self.logger.warning('Received unrecognized optimizer, set default Adam optimizer') optimizer = optim.Adam(self.model.parameters(), lr=self.learning_rate) return optimizer def _train_epoch(self, train_data, epoch_idx): r"""Train the model in an epoch Args: train_data (DataLoader): the train data epoch_idx (int): the current epoch id Returns: float/tuple: The sum of loss returned by all batches in this epoch. If the loss in each batch contains multiple parts and the model return these multiple parts loss instead of the sum of loss, It will return a tuple which includes the sum of loss in each part. """ self.model.train() total_loss = None for batch_idx, data in enumerate(train_data): self.optimizer.zero_grad() losses = self.model.calculate_loss(data, epoch_idx=epoch_idx) if isinstance(losses, tuple): loss = sum(losses) loss_tuple = tuple(per_loss.item() for per_loss in losses) total_loss = loss_tuple if total_loss is None else tuple(map(sum, zip(total_loss, loss_tuple))) else: loss = losses total_loss = losses.item() if total_loss is None else total_loss + losses.item() self._check_nan(loss) loss.backward() self.optimizer.step() train_loss = total_loss / len(train_data) return train_loss def _valid_epoch(self, valid_data): r"""Valid the model with valid data Args: valid_data (DataLoader): the valid data Returns: float: valid score dict: valid result """ self.model.eval() total_loss = None for batch_idx, data in enumerate(valid_data): losses = self.model.calculate_loss(data) if isinstance(losses, tuple): loss = sum(losses) loss_tuple = tuple(per_loss.item() for per_loss in losses) total_loss = loss_tuple if total_loss is None else tuple(map(sum, zip(total_loss, loss_tuple))) else: loss = losses total_loss = losses.item() if total_loss is None else total_loss + losses.item() self._check_nan(loss) valid_loss = total_loss / len(valid_data) ppl = np.exp(valid_loss) return valid_loss, ppl def _save_checkpoint(self, epoch): r"""Store the model parameters information and training information. Args: epoch (int): the current epoch id """ state = { 'config': self.config, 'epoch': epoch, 'cur_step': self.cur_step, 'best_valid_score': self.best_valid_score, 'state_dict': self.model.state_dict(), 'optimizer': self.optimizer.state_dict(), } torch.save(state, self.saved_model_file) def _save_generated_text(self, generated_corpus): r"""Store the generated text by our model. Args: corpus (list of string list): """ with open(self.saved_text_file, 'w') as fin: for tokens in generated_corpus: fin.write(' '.join(tokens) + '\n') def resume_checkpoint(self, resume_file): r"""Load the model parameters information and training information. Args: resume_file (file): the checkpoint file """ resume_file = str(resume_file) checkpoint = torch.load(resume_file) self.start_epoch = checkpoint['epoch'] + 1 self.cur_step = checkpoint['cur_step'] self.best_valid_score = checkpoint['best_valid_score'] # load architecture params from checkpoint if checkpoint['config']['model'].lower() != self.config['model'].lower(): self.logger.warning('Architecture configuration given in config file is different from that of checkpoint. ' 'This may yield an exception while state_dict is being loaded.') self.model.load_state_dict(checkpoint['state_dict']) # load optimizer state from checkpoint only when optimizer type is not changed self.optimizer.load_state_dict(checkpoint['optimizer']) message_output = 'Checkpoint loaded. Resume training from epoch {}'.format(self.start_epoch) self.logger.info(message_output) def _check_nan(self, loss): if torch.isnan(loss): raise ValueError('Training loss is nan') def _generate_train_loss_output(self, epoch_idx, s_time, e_time, losses, train_info=""): train_loss_output = "epoch %d %straining [time: %.2fs, " % (epoch_idx, train_info, e_time - s_time) if isinstance(losses, tuple): for idx, loss in enumerate(losses): train_loss_output += 'train_loss%d: %.4f, ' % (idx + 1, loss) train_loss_output = train_loss_output[:-2] else: train_loss_output += "train loss: %.4f" % losses return train_loss_output + ']' def fit(self, train_data, valid_data=None, verbose=True, saved=True): r"""Train the model based on the train data and the valid data. Args: train_data (DataLoader): the train data valid_data (DataLoader, optional): the valid data, default: None. If it's None, the early_stopping is invalid. verbose (bool, optional): whether to write training and evaluation information to logger, default: True saved (bool, optional): whether to save the model parameters, default: True Returns: (float, dict): best valid score and best valid result. If valid_data is None, it returns (-1, None) """ for epoch_idx in range(self.start_epoch, self.epochs): # train training_start_time = time() train_loss = self._train_epoch(train_data, epoch_idx) self.train_loss_dict[epoch_idx] = sum(train_loss) if isinstance(train_loss, tuple) else train_loss training_end_time = time() self._save_checkpoint(epoch_idx) train_loss_output = \ self._generate_train_loss_output(epoch_idx, training_start_time, training_end_time, train_loss) if verbose: self.logger.info(train_loss_output) # eval if self.eval_step <= 0 or not valid_data: if saved: self._save_checkpoint(epoch_idx) update_output = 'Saving current: %s' % self.saved_model_file if verbose: self.logger.info(update_output) continue if (epoch_idx + 1) % self.eval_step == 0: valid_start_time = time() with torch.no_grad(): valid_score, valid_result = self._valid_epoch(valid_data) # valid_loss, ppl self.best_valid_score, self.cur_step, stop_flag, update_flag = early_stopping( valid_score, self.best_valid_score, self.cur_step, max_step=self.stopping_step, bigger=False) # better model are supposed to provide smaller perplexity and loss valid_end_time = time() valid_score_output = "epoch %d evaluating [time: %.2fs, valid_loss: %f]" % \ (epoch_idx, valid_end_time - valid_start_time, valid_score) valid_result_output = 'valid ppl: {}'.format(valid_result) if verbose: self.logger.info(valid_score_output) self.logger.info(valid_result_output) if update_flag: if saved: self._save_checkpoint(epoch_idx) update_output = 'Saving current best: %s' % self.saved_model_file if verbose: self.logger.info(update_output) self.best_valid_result = valid_result if stop_flag: stop_output = 'Finished training, best eval result in epoch %d' % \ (epoch_idx - self.cur_step * self.eval_step) if verbose: self.logger.info(stop_output) break return self.best_valid_score, self.best_valid_result def _evaluate_nll_test(self, eval_data): r"""Calculate the negative log-likelihood of the eval_data. Args: eval_data (DataLoader): the eval data. Returns: Float: NLL_test of the eval data. """ total_loss = 0 for epoch_idx, eval_batch in enumerate(eval_data): nll_test = self.model.calculate_nll_test(eval_batch, epoch_idx) total_loss += float(nll_test) return total_loss / len(eval_data) @torch.no_grad() def evaluate(self, eval_data, load_best_model=True, model_file=None): r"""Evaluate the model based on the eval data. Args: eval_data (DataLoader): the eval data load_best_model (bool, optional): whether load the best model in the training process, default: True. It should be set True, if users want to test the model after training. model_file (str, optional): the saved model file, default: None. If users want to test the previously trained model file, they can set this parameter. Returns: dict: eval result, key is the eval metric and value in the corresponding metric value """ if load_best_model: if model_file: checkpoint_file = model_file else: checkpoint_file = self.saved_model_file checkpoint = torch.load(checkpoint_file) self.model.load_state_dict(checkpoint['state_dict']) message_output = 'Loading model structure and parameters from {}'.format(checkpoint_file) self.logger.info(message_output) self.model.eval() with torch.no_grad(): generate_corpus = self.model.generate(eval_data) self._save_generated_text(generate_corpus) reference_corpus = eval_data.get_reference() result = self.evaluator.evaluate(generate_corpus, reference_corpus) result['nll_test'] = self._evaluate_nll_test(eval_data) return result def plot_train_loss(self, show=True, save_path=None): r"""Plot the train loss in each epoch Args: show (bool, optional): whether to show this figure, default: True save_path (str, optional): the data path to save the figure, default: None. If it's None, it will not be saved. """ epochs = list(self.train_loss_dict.keys()) epochs.sort() values = [float(self.train_loss_dict[epoch]) for epoch in epochs] plt.plot(epochs, values) plt.xticks(epochs) plt.xlabel('Epoch') plt.ylabel('Loss') if show: plt.show() if save_path: plt.savefig(save_path) class UnconditionalTrainer(Trainer): r"""UnconditionalTrainer is designed for RNN, which is a typical unconditional generator. """ def __init__(self, config, model): super(UnconditionalTrainer, self).__init__(config, model) class GANTrainer(Trainer): r"""GANTrainer is designed for GAN, which is a generative adversarial net method. """ def __init__(self, config, model): super(GANTrainer, self).__init__(config, model) self.optimizer = None self.g_optimizer = self._build_module_optimizer(self.model.generator) self.d_optimizer = self._build_module_optimizer(self.model.discriminator) self.grad_clip = config['grad_clip'] self.g_pretraining_epochs = config['g_pretraining_epochs'] self.d_pretraining_epochs = config['d_pretraining_epochs'] self.d_sample_num = config['d_sample_num'] self.d_sample_training_epochs = config['d_sample_training_epochs'] self.adversarail_training_epochs = config['adversarail_training_epochs'] self.adversarail_d_epochs = config['adversarail_d_epochs'] self.g_pretraining_loss_dict = dict() self.d_pretraining_loss_dict = dict() self.max_length = config['max_seq_length'] + 2 self.pad_idx = model.pad_idx def _build_module_optimizer(self, module): r"""Init the Module Optimizer Args: module (torch.nn.Mudule): Mudule class of torch.nn needed optimizer Returns: torch.optim: the optimizer """ if self.learner.lower() == 'adam': optimizer = optim.Adam(module.parameters(), lr=self.learning_rate) elif self.learner.lower() == 'sgd': optimizer = optim.SGD(module.parameters(), lr=self.learning_rate) elif self.learner.lower() == 'adagrad': optimizer = optim.Adagrad(module.parameters(), lr=self.learning_rate) elif self.learner.lower() == 'rmsprop': optimizer = optim.RMSprop(module.parameters(), lr=self.learning_rate) else: self.logger.warning('Received unrecognized optimizer, set default Adam optimizer') optimizer = optim.Adam(module.parameters(), lr=self.learning_rate) return optimizer def _optimize_step(self, losses, total_loss, model, opt): r"""The opt uses the cliped losses to conduct an optimize step to optimize model and sum up losses to the total_loss. Args: losses (torch.Tensor or tuple): The loss to be backward. total_loss (Float): Total loss in an epoch. model (torch.nn.Mudule): The model to be optimized. opt (torch.optim): The optimizer of the model. Returns: torch.Tensor or tuple: Total loss in an epoch, shape: []. """ if isinstance(losses, tuple): loss = sum(losses) loss_tuple = tuple(per_loss.item() for per_loss in losses) total_loss = loss_tuple if total_loss is None else tuple(map(sum, zip(total_loss, loss_tuple))) else: loss = losses total_loss = losses.item() if total_loss is None else total_loss + losses.item() self._check_nan(loss) opt.zero_grad() loss.backward() torch.nn.utils.clip_grad_norm_(model.parameters(), self.grad_clip) opt.step() return total_loss def _save_checkpoint(self, epoch): state = { 'config': self.config, 'epoch': epoch, 'cur_step': self.cur_step, 'best_valid_score': self.best_valid_score, 'state_dict': self.model.state_dict() } torch.save(state, self.saved_model_file) def _add_pad(self, data): r"""Pad the data to the max length of corpus. Args: data (torch.Tensor): The data to be padded, shape: [batch_size, max_batch_length]. Returns: torch.Tensor: The padded data, shape: [batch_size, max_seq_length]. """ batch_size = data.shape[0] padded_data = torch.full((batch_size, self.max_length), self.pad_idx, dtype=torch.long, device=self.device) padded_data[:, : data.shape[1]] = data return padded_data def _get_real_data(self, train_data): r"""Get the target text index of the corpus train_datas. Args: train_data (DataLoader): the train data. Returns: torch.Tensor: The target text index, shape: [batch_size, max_batch_length]. """ real_datas = [] for corpus in train_data: real_data = corpus['target_idx'] real_data = self._add_pad(real_data) real_datas.append(real_data) real_datas = torch.cat(real_datas, dim=0) return real_datas def _g_train_epoch(self, train_data, epoch_idx): r"""Train the generator module in an epoch Args: train_data (DataLoader): the train data epoch_idx (int): the current epoch id Returns: float/tuple: The sum of loss returned by all batches in this epoch. If the loss in each batch contains multiple parts and the model return these multiple parts loss instead of the sum of loss, It will return a tuple which includes the sum of loss in each part. """ self.model.generator.train() total_loss = None for batch_idx, data in enumerate(train_data): losses = self.model.calculate_g_train_loss(data, epoch_idx=epoch_idx) total_loss = self._optimize_step(losses, total_loss, self.model.generator, self.g_optimizer) total_loss = [l / len(train_data) for l in total_loss] if isinstance(total_loss, tuple) else total_loss / len( train_data) total_loss = tuple(total_loss) if isinstance(total_loss, list) else total_loss return total_loss def _d_train_epoch(self, train_data, epoch_idx): r"""Train the discriminator module in an epoch Args: train_data (DataLoader): the train data epoch_idx (int): the current epoch id Returns: float/tuple: The sum of loss returned by all batches in this epoch. If the loss in each batch contains multiple parts and the model return these multiple parts loss instead of the sum of loss, It will return a tuple which includes the sum of loss in each part. """ self.model.discriminator.train() total_loss = None real_data = self._get_real_data(train_data) real_dataloader = DataLoader(real_data, batch_size=self.model.batch_size, shuffle=True, drop_last=True) fake_data = self.model.sample(self.d_sample_num) fake_dataloader = DataLoader(fake_data, batch_size=self.model.batch_size, shuffle=True, drop_last=True) for _ in range(self.d_sample_training_epochs): # d_epoch for real_data, fake_data in zip(real_dataloader, fake_dataloader): losses = self.model.calculate_d_train_loss(real_data, fake_data, epoch_idx=epoch_idx) total_loss = self._optimize_step(losses, total_loss, self.model.discriminator, self.d_optimizer) return total_loss / min(len(real_dataloader), len(fake_dataloader)) / self.d_sample_training_epochs def _adversarial_train_epoch(self, train_data, epoch_idx): r"""Adversarial training in an epoch Args: train_data (DataLoader): the train data epoch_idx (int): the current epoch id Returns: float/tuple: The sum of loss returned by all batches in this epoch. If the loss in each batch contains multiple parts and the model return these multiple parts loss instead of the sum of loss, It will return a tuple which includes the sum of loss in each part. """ self.model.generator.train() total_loss = None losses = self.model.calculate_g_adversarial_loss(epoch_idx=epoch_idx) total_loss = self._optimize_step(losses, total_loss, self.model.generator, self.g_optimizer) for epoch_idx in range(self.adversarail_d_epochs): self._d_train_epoch(train_data, epoch_idx=epoch_idx) return total_loss def fit(self, train_data, valid_data=None, verbose=True, saved=True): # generator pretraining if verbose: self.logger.info("Start generator pretraining...") for epoch_idx in range(self.g_pretraining_epochs): training_start_time = time() train_loss = self._g_train_epoch(train_data, epoch_idx) self.g_pretraining_loss_dict[epoch_idx] = sum(train_loss) if isinstance(train_loss, tuple) else train_loss training_end_time = time() train_loss_output = \ self._generate_train_loss_output(epoch_idx, training_start_time, training_end_time, train_loss, "generator pre") if verbose: self.logger.info(train_loss_output) if verbose: self.logger.info("End generator pretraining...") # discriminator pretraining if verbose: self.logger.info("Start discriminator pretraining...") for epoch_idx in range(self.d_pretraining_epochs): training_start_time = time() train_loss = self._d_train_epoch(train_data, epoch_idx) self.d_pretraining_loss_dict[epoch_idx] = sum(train_loss) if isinstance(train_loss, tuple) else train_loss training_end_time = time() train_loss_output = \ self._generate_train_loss_output(epoch_idx, training_start_time, training_end_time, train_loss, "discriminator pre") if verbose: self.logger.info(train_loss_output) if verbose: self.logger.info("End discriminator pretraining...") # adversarial training if verbose: self.logger.info("Start adversarial training...") for epoch_idx in range(self.adversarail_training_epochs): training_start_time = time() train_loss = self._adversarial_train_epoch(train_data, epoch_idx) self.train_loss_dict[epoch_idx] = sum(train_loss) if isinstance(train_loss, tuple) else train_loss training_end_time = time() train_loss_output = \ self._generate_train_loss_output(epoch_idx, training_start_time, training_end_time, train_loss) if verbose: self.logger.info(train_loss_output) if verbose: self.logger.info("End adversarial pretraining...") self._save_checkpoint(self.adversarail_training_epochs) return -1, None class TextGANTrainer(GANTrainer): r"""TextGANTrainer is designed for TextGAN. """ def __init__(self, config, model): super(TextGANTrainer, self).__init__(config, model) self.adversarail_g_epochs = config['adversarail_g_epochs'] def _d_train_epoch(self, train_data, epoch_idx): self.model.discriminator.train() total_loss = None real_data = self._get_real_data(train_data) real_dataloader = DataLoader(real_data, batch_size=self.model.batch_size, shuffle=True, drop_last=True) for _ in range(self.d_sample_training_epochs): for idx, real_data in enumerate(real_dataloader): fake_data, z = self.model.sample() losses = self.model.calculate_d_train_loss(real_data, fake_data, z, epoch_idx=epoch_idx) total_loss = self._optimize_step(losses, total_loss, self.model.discriminator, self.d_optimizer) if (idx * self.model.batch_size >= self.d_sample_num): break return total_loss / min(len(real_dataloader), self.d_sample_num // self.model.batch_size) / self.d_sample_training_epochs def _adversarial_train_epoch(self, train_data, epoch_idx): self.model.generator.train() total_loss = None real_data = self._get_real_data(train_data) real_dataloader = DataLoader(real_data, batch_size=self.model.batch_size, shuffle=True, drop_last=True) for idx, real_data in enumerate(real_dataloader): if (idx == self.adversarail_g_epochs): break losses = self.model.calculate_g_adversarial_loss(real_data, epoch_idx=epoch_idx) total_loss = self._optimize_step(losses, total_loss, self.model.generator, self.g_optimizer) for epoch_idx in range(self.adversarail_d_epochs): self._d_train_epoch(train_data, epoch_idx=epoch_idx) return total_loss / min(len(real_dataloader), self.adversarail_g_epochs) class RankGANTrainer(GANTrainer): r"""RankGANTrainer is designed for RankGAN. """ def __init__(self, config, model): super(RankGANTrainer, self).__init__(config, model) def _d_train_epoch(self, train_data, epoch_idx): r"""Train the discriminator module in an epoch Args: train_data (DataLoader): the train data epoch_idx (int): the current epoch id Returns: float/tuple: The sum of loss returned by all batches in this epoch. If the loss in each batch contains multiple parts and the model return these multiple parts loss instead of the sum of loss, It will return a tuple which includes the sum of loss in each part. """ self.model.discriminator.train() total_loss = None real_data = self._get_real_data(train_data) real_dataloader = DataLoader(real_data, batch_size=self.model.batch_size, shuffle=True, drop_last=True) fake_data = self.model.sample(self.d_sample_num) fake_dataloader = DataLoader(fake_data, batch_size=self.model.batch_size, shuffle=True, drop_last=True) ref_index = np.random.randint(0, real_data.shape[0], size=self.model.ref_size) ref_data = real_data[ref_index] # ref_size * l for _ in range(self.d_sample_training_epochs): for real_data, fake_data in zip(real_dataloader, fake_dataloader): losses = self.model.calculate_d_train_loss(real_data, fake_data, ref_data, epoch_idx=epoch_idx) total_loss = self._optimize_step(losses, total_loss, self.model.discriminator, self.d_optimizer) return total_loss / min(len(real_dataloader), len(fake_dataloader)) / self.d_sample_training_epochs def _adversarial_train_epoch(self, train_data, epoch_idx): r"""Adversarial training in an epoch Args: train_data (DataLoader): the train data epoch_idx (int): the current epoch id Returns: float/tuple: The sum of loss returned by all batches in this epoch. If the loss in each batch contains multiple parts and the model return these multiple parts loss instead of the sum of loss, It will return a tuple which includes the sum of loss in each part. """ self.model.generator.train() total_loss = None real_data = self._get_real_data(train_data) ref_index = np.random.randint(0, real_data.shape[0], size=self.model.ref_size) ref_data = real_data[ref_index] # ref_size * l losses = self.model.calculate_g_adversarial_loss(ref_data, epoch_idx=epoch_idx) total_loss = self._optimize_step(losses, total_loss, self.model.generator, self.g_optimizer) d_loss = 0 for epoch_idx in range(self.adversarail_d_epochs): d_loss += self._d_train_epoch(train_data, epoch_idx=epoch_idx) d_loss = d_loss / self.adversarail_d_epochs return total_loss class ConditionalTrainer(Trainer): r"""ConditionalTrainer is designed for seq2seq testing, which is a typically used setting. """ def __init__(self, config, model): super(ConditionalTrainer, self).__init__(config, model) @torch.no_grad() def evaluate(self, eval_data, load_best_model=True, model_file=None): r"""Evaluate the model based on the eval data. Args: eval_data (DataLoader): the eval data load_best_model (bool, optional): whether load the best model in the training process, default: True. It should be set True, if users want to test the model after training. model_file (str, optional): the saved model file, default: None. If users want to test the previously trained model file, they can set this parameter. Returns: dict: eval result, key is the eval metric and value in the corresponding metric value """ if load_best_model: if model_file: checkpoint_file = model_file else: checkpoint_file = self.saved_model_file checkpoint = torch.load(checkpoint_file) self.model.load_state_dict(checkpoint['state_dict']) message_output = 'Loading model structure and parameters from {}'.format(checkpoint_file) self.logger.info(message_output) self.model.eval() generate_corpus = self.model.generate(eval_data) self._save_generated_text(generate_corpus) reference_corpus = eval_data.get_reference() result = self.evaluator.evaluate(generate_corpus, reference_corpus) return result class MaskGANTrainer(GANTrainer): r""" Trainer specifically designed for MaskGAN training process. """ def __init__(self, config, model): super(MaskGANTrainer, self).__init__(config, model) self.max_length = config["max_seq_length"] self.eos_token_idx = model.eos_idx self.adversarail_c_epochs = config['adversarail_c_epochs'] self.g_mask_pretraining_epochs = config['g_mask_pretraining_epochs'] self.g_lr = config['gen_learning_rate'] self.d_lr = config['dis_learning_rate'] self.c_lr = config['critic_learning_rate'] self.g_optimizer = self._build_module_optimizer_(self.model.generator, self.g_lr) self.d_optimizer = self._build_module_optimizer_(self.model.discriminator, self.d_lr) self.c_optimizer = self._build_module_optimizer_(self.model.discriminator.critic_fc_linear, self.c_lr) self.pre_lm_weight = config["pre_lm_weight"] self.pretrain_lm_epochs = config["pretrain_lm_epochs"] self.checkp = config['checkp'] def _build_module_optimizer_(self, module, lr): r""" Init the Module Optimizer with specified learning rate Returns: torch.optim: the optimizer """ if self.learner.lower() == 'adam': optimizer = optim.Adam(module.parameters(), lr) elif self.learner.lower() == 'sgd': optimizer = optim.SGD(module.parameters(), lr) elif self.learner.lower() == 'adagrad': optimizer = optim.Adagrad(module.parameters(), lr) elif self.learner.lower() == 'rmsprop': optimizer = optim.RMSprop(module.parameters(), lr) else: self.logger.warning('Received unrecognized optimizer, set default Adam optimizer') optimizer = optim.Adam(module.parameters(), lr) return optimizer def _optimize_step(self, losses, total_loss, model, opt, retain_graph=False): r""" Add retain_graph option """ if isinstance(losses, tuple): loss = sum(losses) loss_tuple = tuple(per_loss.item() for per_loss in losses) total_loss = loss_tuple if total_loss is None else tuple(map(sum, zip(total_loss, loss_tuple))) else: loss = losses total_loss = losses.item() if total_loss is None else total_loss + losses.item() self._check_nan(loss) opt.zero_grad() loss.backward(retain_graph=retain_graph) torch.nn.utils.clip_grad_norm_(model.parameters(), self.grad_clip) opt.step() return total_loss def _generate_train_loss_output(self, epoch_idx, s_time, e_time, losses, train_info=""): r""" Specified for maskgan output """ train_loss_output = "%straining [time: %.2fs, " % (train_info, e_time - s_time) if isinstance(losses, dict): for key, loss in losses.items(): train_loss_output += '%s: %.4f, ' % (key, loss) train_loss_output = train_loss_output[:-2] else: train_loss_output += "train loss: %.4f" % losses return train_loss_output + ']' def pretrain_lm(self, train_data, valid_data, verbose): r""" Pretrain rnn-based Language Model with teacher forcing mechanism """ def lm_forward(data): r""" One iteration of LM forward """ input = data[:, :-1] # bs * self.max_len - 1 target = data[:, 1:] bs, seq_len = target.size() lengths = torch.tensor([seq_len] * bs) target_present = torch.ones_like(input).byte() device = target.device lengths = lengths.cuda(device) # pretaining encoder_outputs = pre_train_lm(input, lengths, target, target_present, pretrain=True) logit = pre_train_lm.vocab_linear(encoder_outputs) logit = logit.permute([0, 2, 1]) lossf = torch.nn.CrossEntropyLoss() loss = lossf(logit, target) return loss pre_train_lm = self.model.generator lm_opt = self._build_module_optimizer_(pre_train_lm, lr=0.001) for epoch in range(self.pretrain_lm_epochs): total_loss = None real_data = self._get_real_data(train_data) # bs * self.max_len real_dataloader = DataLoader(real_data, batch_size=self.model.batch_size, shuffle=True, drop_last=True) for batch_idx, data in enumerate(real_dataloader): loss = lm_forward(data) total_loss = self._optimize_step(loss, total_loss, pre_train_lm, lm_opt) total_loss = total_loss / len(real_dataloader) if verbose: self.logger.info("Epoch {}/{} of LM pretraining loss: {} ".format(epoch+1, self.pretrain_lm_epochs, total_loss)) ppl = 0.0 if (epoch+1) % 1 == 0: pre_train_lm.eval() validate_data = self._get_real_data(valid_data) # bs * self.max_len validate_dataloader = DataLoader(validate_data, batch_size=self.model.batch_size, shuffle=True, drop_last=True) ppl = 0.0 for batch_idx, data in enumerate(validate_dataloader): cross_entropy_loss = lm_forward(data) ppl += math.exp(cross_entropy_loss.item()) ppl = ppl / len(validate_dataloader) pre_train_lm.train() if verbose: self.logger.info("Epoch {}/{} of LM pretraining PPL: {}...".format(epoch + 1, self.pretrain_lm_epochs, ppl)) if ppl < 110: state_dict = { 'embedder': pre_train_lm.embedder, 'encoder': pre_train_lm.encoder.encoder, 'vocab_linear': pre_train_lm.vocab_linear } self.pre_lm_weight = "saved/pretrain_lm_weight" + str(epoch+1) + ".pkl" torch.save(state_dict, self.pre_lm_weight) if verbose: self.logger.info("End LM pretraining. PPL: {}".format(ppl)) self.logger.info("Weigth saved in {}".format(self.pre_lm_weight)) return pre_train_lm, ppl def _g_train_epoch(self, train_data, epoch_idx): self.model.generator.train() total_loss = None real_data = self._get_real_data(train_data) # bs * self.max_len real_dataloader = DataLoader(real_data, batch_size=self.model.batch_size, shuffle=True, drop_last=True) for batch_idx, data in enumerate(real_dataloader): loss = self.model.calculate_g_train_loss(data, epoch_idx=epoch_idx) total_loss = self._optimize_step(loss, total_loss, self.model.generator, self.g_optimizer) total_loss = total_loss / len(real_dataloader) return total_loss def _get_validate_ppl(self, validate_data, epoch_idx): self.model.generator.eval() ppl = 0.0 validate_data = self._get_real_data(validate_data) # bs * self.max_len validate_dataloader = DataLoader(validate_data, batch_size=self.model.batch_size, shuffle=True, drop_last=True) for batch_idx, data in enumerate(validate_dataloader): loss = self.model.calculate_g_train_loss(data, epoch_idx=epoch_idx, validate=True) ppl += math.exp(loss.item()) ppl = ppl / len(validate_dataloader) self.model.generator.train() return ppl def _d_train_epoch(self, train_data, epoch_idx): self.model.discriminator.train() total_loss = None real_data = self._get_real_data(train_data) real_dataloader = DataLoader(real_data, batch_size=self.model.batch_size, shuffle=True, drop_last=True) for batch_idx, data in enumerate(real_dataloader): losses = self.model.calculate_d_train_loss(data, epoch_idx=epoch_idx) total_loss = self._optimize_step(losses, total_loss, self.model.discriminator, self.d_optimizer) return total_loss / len(real_dataloader) def _adversarial_train_epoch(self, train_data, epoch_idx): r""" Specified for MaskGAN adversarial training """ dis_total_loss = None gen_total_loss = None critic_total_loss = None g_num = 0.0 d_num = 0.0 real_data = self._get_real_data(train_data) real_dataloader = DataLoader(real_data, batch_size=self.model.batch_size, shuffle=True, drop_last=True) dis_train_data = copy.deepcopy(real_dataloader) gen_train_data = copy.deepcopy(real_dataloader) c_train_data = copy.deepcopy(real_dataloader) dis_train_data = iter(dis_train_data) gen_train_data = iter(gen_train_data) _ = next(dis_train_data) # have one offset for g_x in gen_train_data: g_num += 1 for _ in range(3): d_num += 1 try: d_x = next(dis_train_data) except StopIteration: del dis_train_data dis_train_data = copy.deepcopy(real_dataloader) dis_train_data = iter(dis_train_data) d_x = next(dis_train_data) losses = self.model.calculate_d_train_loss(d_x, epoch_idx=_) dis_total_loss = self._optimize_step(losses, dis_total_loss, self.model.discriminator, self.d_optimizer) gen_losses, critic_losses = self.model.calculate_g_adversarial_loss(g_x, epoch_idx=g_num) gen_total_loss = self._optimize_step(gen_losses, gen_total_loss, self.model.generator, self.g_optimizer) critic_total_loss = self._optimize_step(critic_losses, critic_total_loss, self.model.discriminator.critic_fc_linear, self.c_optimizer) return {"dis_loss": dis_total_loss / d_num, "gen_loss": gen_total_loss / g_num, "critic_loss": critic_total_loss / g_num} def _evaluate_nll_test(self, eval_data): total_loss = 0 real_data = self._get_real_data(eval_data) real_dataloader = DataLoader(real_data, batch_size=self.model.batch_size, shuffle=True, drop_last=True) for batch_idx, data in enumerate(real_dataloader): nll_test = self.model.calculate_nll_test(data, batch_idx) total_loss += float(nll_test) return total_loss / len(eval_data) def _add_eos(self, data, length): batch_size, pad_seq_len = data.size() padded_data = torch.full((batch_size, self.max_length), self.eos_token_idx, dtype=torch.long, device=self.device) for i in range(batch_size): l = int(length[i].cpu().data) if l == self.max_length+2: padded_data[i, :] = data[i, 1:l-1] else: padded_data[i, 0:l-1] = data[i, 1:l] return padded_data def _get_real_data(self, train_data): real_datas = [] for corpus in train_data: real_data = corpus['target_idx'] # bs*batch_max_seq_len length = corpus['target_length'] real_data = self._add_eos(real_data, length) real_datas.append(real_data) real_datas = torch.cat(real_datas, dim=0) return real_datas def _save_checkpoint(self, epoch, postfix=None): state = { 'config': self.config, 'epoch': epoch, 'cur_step': self.cur_step, 'best_valid_score': self.best_valid_score, 'state_dict': self.model.state_dict(), 'g_opt': self.g_optimizer.state_dict(), 'd_opt': self.d_optimizer.state_dict(), 'c_opt':self.c_optimizer.state_dict() } if postfix is not None: path = self.saved_model_file + "_" + str(epoch) + "_" + postfix torch.save(state, path) return path else: torch.save(state, self.saved_model_file) def _load_generated_text(self): r""" Load the generated text by our model to log. """ with open(self.saved_text_file, 'r') as fin: samples = [] for i in range(5): text = fin.readline() samples.append(text) return samples def fit(self, train_data, valid_data=None, verbose=True, saved=True): # generator pretraining if self.checkp is not None: checkpoint = torch.load(self.checkp) self.model.load_state_dict(checkpoint['state_dict']) self.d_optimizer.load_state_dict(checkpoint["d_opt"]) self.g_optimizer.load_state_dict(checkpoint["g_opt"]) epoch_check = checkpoint['epoch'] if verbose: self.logger.info("Load checkpoint file from: {}".format(self.checkp)) else: if self.pre_lm_weight is None: if verbose: self.logger.info("Start LM pretraining...") pretrain_lm, ppl = self.pretrain_lm(train_data, valid_data, verbose) pretrain_lm = torch.load(self.pre_lm_weight) embedder = pretrain_lm['embedder'].state_dict() lstm = pretrain_lm['encoder'].state_dict() vocab_linear = pretrain_lm['vocab_linear'].state_dict() self.model.generator.embedder.load_state_dict(embedder) self.model.generator.encoder.encoder.load_state_dict(lstm) self.model.generator.decoder.decoder.load_state_dict(lstm) self.model.generator.vocab_linear.load_state_dict(vocab_linear) self.model.discriminator.encoder.encoder.load_state_dict(lstm) self.model.discriminator.decoder.decoder.load_state_dict(lstm) if verbose: self.logger.info("Load pretrained LM weight") else: pretrain_lm = torch.load(self.pre_lm_weight) embedder = pretrain_lm['embedder'].state_dict() lstm = pretrain_lm['encoder'].state_dict() vocab_linear = pretrain_lm['vocab_linear'].state_dict() self.model.generator.embedder.load_state_dict(embedder) self.model.generator.encoder.encoder.load_state_dict(lstm) self.model.generator.decoder.decoder.load_state_dict(lstm) self.model.generator.vocab_linear.load_state_dict(vocab_linear) self.model.discriminator.encoder.encoder.load_state_dict(lstm) self.model.discriminator.decoder.decoder.load_state_dict(lstm) if verbose: self.logger.info("Load pretrained LM weight from: {}".format(self.pre_lm_weight)) if verbose: self.logger.info("Start generator mask pretraining...") for epoch_idx in range(self.g_mask_pretraining_epochs): training_start_time = time() train_loss = self._g_train_epoch(train_data, epoch_idx) self.g_pretraining_loss_dict[epoch_idx] = sum(train_loss) if isinstance(train_loss, tuple) else train_loss training_end_time = time() train_loss_output = \ self._generate_train_loss_output(epoch_idx, training_start_time, training_end_time, train_loss, "generator pre") if verbose: self.logger.info(train_loss_output) ppl = self._get_validate_ppl(valid_data, epoch_idx) if verbose: self.logger.info( "Epoch {}/{} of mask pretraining PPL: {}...".format(epoch_idx + 1, self.g_mask_pretraining_epochs, ppl)) if ppl <= 90: if verbose: path = self._save_checkpoint(epoch_idx + 1, postfix="pretrain_gen") self.logger.info(">>>> [Pretrain Gen] PPL: {} save weight in {}".format(ppl, path)) self.logger.info("End generator mask pretraining...") break if (epoch_idx) % 10 == 0: self.logger.info(">>>> [Pretrain Gen] Save pretrain gen check in epoch %d ..." % (epoch_idx + 1)) path = self._save_checkpoint(epoch_idx + 1, postfix="pretrain_gen") self.model.eval() test_result = self.evaluate(valid_data, model_file=path) self.model.train() sample = self._load_generated_text() tmp = "\n" for i, s in enumerate(sample): tmp += str(i) tmp += ": " tmp += s.strip() tmp += "\n" self.logger.info('>>>> [Pretrain Gen] test result: {}'.format(test_result)) self.logger.info('>>>> [Pretrain Gen] test result samples: {}'.format(tmp)) # discriminator pretraining if verbose: self.logger.info("Start discriminator pretraining...") for epoch_idx in range(self.d_pretraining_epochs): training_start_time = time() train_loss = self._d_train_epoch(train_data, epoch_idx) self.d_pretraining_loss_dict[epoch_idx] = sum(train_loss) if isinstance(train_loss, tuple) else train_loss training_end_time = time() train_loss_output = \ self._generate_train_loss_output(epoch_idx, training_start_time, training_end_time, train_loss, "discriminator pre") if verbose: self.logger.info(train_loss_output) if verbose: self.logger.info("End discriminator pretraining...") # adversarial training if verbose: self.logger.info("Start adversarial training...") for epoch_idx in range(self.adversarail_training_epochs): training_start_time = time() train_loss = self._adversarial_train_epoch(train_data, epoch_idx) self.train_loss_dict[epoch_idx] = sum(train_loss) if isinstance(train_loss, tuple) else train_loss training_end_time = time() train_loss_output = \ self._generate_train_loss_output(epoch_idx, training_start_time, training_end_time, train_loss) if verbose: self.logger.info(train_loss_output) if (epoch_idx+1) % 10 == 0: path = self._save_checkpoint((epoch_idx + 1), postfix="adv_train") self.model.eval() test_result = self.evaluate(valid_data, model_file=path) self.model.train() sample = self._load_generated_text() tmp = "\n" for i, s in enumerate(sample): tmp += str(i) tmp += ": " tmp += s.strip() tmp += "\n" self.logger.info('>>>>>> [Adv] test result: {}'.format(test_result)) self.logger.info('>>>>>> [Adv] test result samples: {}'.format(tmp)) if verbose: self.logger.info("End adversarial pretraining...") self._save_checkpoint(self.adversarail_training_epochs) return -1, None class LeakGANTrainer(GANTrainer): r"""Specified for leakgan trainer """ def __init__(self, config, model): super(LeakGANTrainer, self).__init__(config, model) self.interleaved_pretrain_epoch = config['interleaved_pretrain_epoch'] self.adversarail_g_epochs = config['adversarail_g_epochs'] gen_lr = config['generator_lr'] # 0.001 dis_lr = config['discriminator_lr'] # 0.00005 self.g_optimizer = self._build_module_optimizer_(self.model.generator, gen_lr) # (manager_opt, worker_opt) self.d_optimizer = self._build_module_optimizer_(self.model.discriminator, dis_lr) self.iters_num = config['iter_num'] self.end_idx = model.end_idx def _build_module_optimizer_(self, module, learing_rate): r"""Specified for leakgan """ multi_flag = False if module._get_name() == 'LeakGANGenerator': manager_params, worker_params = module.split_params() multi_flag = True if self.learner.lower() == 'adam': if multi_flag: manager_opt = optim.Adam(manager_params, lr=learing_rate) worker_opt = optim.Adam(worker_params, lr=learing_rate) else: optimizer = optim.Adam(module.parameters(), lr=learing_rate) elif self.learner.lower() == 'sgd': if multi_flag: manager_opt = optim.SGD(manager_params, lr=learing_rate) worker_opt = optim.SGD(worker_params, lr=learing_rate) else: optimizer = optim.SGD(module.parameters(), lr=learing_rate) elif self.learner.lower() == 'adagrad': if multi_flag: manager_opt = optim.Adagrad(manager_params, lr=learing_rate) worker_opt = optim.Adagrad(worker_params, lr=learing_rate) else: optimizer = optim.Adagrad(module.parameters(), lr=learing_rate) elif self.learner.lower() == 'rmsprop': if multi_flag: manager_opt = optim.RMSprop(manager_params, lr=learing_rate) worker_opt = optim.RMSprop(worker_params, lr=learing_rate) else: optimizer = optim.RMSprop(module.parameters(), lr=learing_rate) else: self.logger.warning('Received unrecognized optimizer, set default Adam optimizer') if multi_flag: manager_opt = optim.Adam(manager_params, lr=learing_rate) worker_opt = optim.Adam(worker_params, lr=learing_rate) else: optimizer = optim.Adam(module.parameters(), lr=learing_rate) if multi_flag: return (manager_opt, worker_opt) else: return optimizer def _optimize_step(self, losses, total_loss, model, opt): r"""Specified for leakgan optimize """ if isinstance(losses, tuple): loss = sum(losses) loss_tuple = tuple(per_loss.item() for per_loss in losses) total_loss = loss_tuple if total_loss is None else tuple(map(sum, zip(total_loss, loss_tuple))) else: loss = losses total_loss = losses.item() if total_loss is None else total_loss + losses.item() self._check_nan(loss) if isinstance(losses, tuple): for i, (o, loss) in enumerate(zip(opt, losses)): o.zero_grad() loss.backward(retain_graph=True if i < len(opt) - 1 else False) torch.nn.utils.clip_grad_norm_(model.parameters(), self.grad_clip) o.step() else: opt.zero_grad() losses.backward() torch.nn.utils.clip_grad_norm_(model.parameters(), self.grad_clip) opt.step() return total_loss def _generate_train_loss_output(self, epoch_idx, s_time, e_time, losses, train_info=""): r"""Specified for leakgan output format """ train_loss_output = "%straining [time: %.2fs, " % (train_info, e_time - s_time) if isinstance(losses, dict): for key, loss in losses.items(): train_loss_output += '%s: %.4f, ' % (key, loss) train_loss_output = train_loss_output[:-2] else: train_loss_output += "train loss: %.4f" % losses return train_loss_output + ']' def _add_eos(self, data, length): batch_size = data.shape[0] padded_data = torch.full((batch_size, self.max_length), self.end_idx, dtype=torch.long, device=self.device) for i in range(batch_size): len = length[i].cpu().data padded_data[i, :len] = data[i, :len] return padded_data def _get_real_data(self, train_data): r"""Specified for leakgan which use eos_idx pad not pad_idx """ real_datas = [] for corpus in train_data: real_data = corpus['target_idx'] length = corpus['target_length'] real_data = self._add_eos(real_data, length) real_datas.append(real_data) real_datas = torch.cat(real_datas, dim=0) return real_datas def _adversarial_train_epoch(self, train_data, epoch_idx): r"""Specified for leakgan adversarial training """ self.model.generator.train() total_g_loss = None total_d_loss = 0 total_d_acc = 0 adv_mana_loss = 0 adv_work_loss = 0 adv_d_loss = 0 for e in range(self.adversarail_g_epochs): losses = self.model.calculate_g_adversarial_loss(epoch_idx=e) total_g_loss = self._optimize_step(losses, total_g_loss, self.model.generator, self.g_optimizer) adv_mana_loss, adv_work_loss = total_g_loss adv_mana_loss = adv_mana_loss / self.adversarail_g_epochs adv_work_loss = adv_work_loss / self.adversarail_g_epochs for e in range(self.adversarail_d_epochs): loss_dict = self._d_train_epoch(train_data, epoch_idx=epoch_idx) total_d_loss = total_d_loss + loss_dict['total_loss'] total_d_acc = total_d_acc + loss_dict['train_acc'] adv_d_loss = total_d_loss / self.adversarail_d_epochs adv_c_loss = total_d_acc / self.adversarail_d_epochs return {"mana_loss": adv_mana_loss, "work_loss": adv_work_loss, "dis_loss": adv_d_loss, "train_acc": adv_c_loss} def _g_train_epoch(self, train_data, epoch_idx): total_loss = None real_data = self._get_real_data(train_data) real_dataloader = DataLoader(real_data, batch_size=self.model.batch_size, shuffle=True, drop_last=True) for batch_idx, data in enumerate(real_dataloader): # interaction = interaction.to(self.device) losses = self.model.calculate_g_train_loss(data, epoch_idx=epoch_idx) total_loss = self._optimize_step(losses, total_loss, self.model.generator, self.g_optimizer) total_loss = [l / len(real_dataloader) for l in total_loss] if isinstance(total_loss, tuple) else total_loss / len( train_data) mana_loss, work_loss = total_loss return {"mana_loss": mana_loss, "work_loss": work_loss} def _d_train_epoch(self, train_data, epoch_idx): total_loss = None total_acc = 0 real_data = self._get_real_data(train_data) real_dataloader = DataLoader(real_data, batch_size=self.model.batch_size, shuffle=True, drop_last=True) # not need sample self.d_sample_num numbers becauese only train discriminator 5 batch d_sample_num = (self.d_sample_training_epochs + 1) * self.model.batch_size fake_data = self.model.sample(d_sample_num) fake_dataloader = DataLoader(fake_data, batch_size=self.model.batch_size, shuffle=True, drop_last=True) idx = 0 for real_data, fake_data in zip(real_dataloader, fake_dataloader): # self.model.discriminator.eval() # pretraining not use dropout if idx == self.d_sample_training_epochs: break losses, acc = self.model.calculate_d_train_loss(real_data, fake_data, epoch_idx=epoch_idx) total_loss = self._optimize_step(losses, total_loss, self.model.discriminator, self.d_optimizer) total_acc = total_acc + acc idx += 1 total_loss = total_loss / self.d_sample_training_epochs total_acc = total_acc / self.d_sample_training_epochs return {"total_loss": total_loss, "train_acc": total_acc} def fit(self, train_data, valid_data=None, verbose=True, saved=True): # pretraining if verbose: self.logger.info(">> Start pretraining") # generator pretraining for epoch_idx in range(self.g_pretraining_epochs): # 80 if verbose: self.logger.info(">>>> [Pretrain Gen] Start %d / %d epochs generator pretraining" % ( epoch_idx + 1, self.g_pretraining_epochs)) training_start_time = time() train_loss = self._g_train_epoch(train_data, epoch_idx) training_end_time = time() train_loss_output = \ self._generate_train_loss_output(epoch_idx + 1, training_start_time, training_end_time, train_loss, "generator pre") train_loss_output = ">>>> " + train_loss_output if verbose: self.logger.info(train_loss_output) # discriminator pretraining for epoch_idx in range(self.d_pretraining_epochs): # 5 if verbose: self.logger.info(">>>> [Pretrain Dis]Start %d / %d epochs discriminator pretraining..." % ( epoch_idx + 1, self.d_pretraining_epochs)) training_start_time = time() train_loss = self._d_train_epoch(train_data, epoch_idx) training_end_time = time() train_loss_output = \ self._generate_train_loss_output(epoch_idx, training_start_time, training_end_time, train_loss, "discriminator pre") train_loss_output = ">>>> " + train_loss_output if verbose: self.logger.info(train_loss_output) if verbose: self.logger.info(">> End pretraining") # adversarial training if verbose: self.logger.info(">> Start adversarial training") for epoch in range(int(self.iters_num / self.adversarail_training_epochs)): if verbose: self.logger.info(">>>> [Adv] Start epoch %d / 10 interleaved adversarial training" % (epoch + 1)) for epoch_idx in range(self.adversarail_training_epochs): if verbose: self.logger.info(">>>>>> [Adv] Start epoch %d / %d adversarial training" % ( epoch_idx + 1, self.adversarail_training_epochs)) training_start_time = time() train_loss = self._adversarial_train_epoch(train_data, epoch_idx) # self.train_loss_dict[epoch_idx] = sum(train_loss) if isinstance(train_loss, tuple) else train_loss training_end_time = time() train_loss_output = \ self._generate_train_loss_output((epoch_idx + 1), training_start_time, training_end_time, train_loss, train_info="adv ") train_loss_output = ">>>>>> " + train_loss_output if verbose: self.logger.info(train_loss_output) # gen pretrain for epoch_idx in range(5): if verbose: self.logger.info(">>>>>> [Adv] Start epoch %d / 5 pretrain generator" % (epoch_idx + 1)) training_start_time = time() train_loss = self._g_train_epoch(train_data, epoch_idx) training_end_time = time() train_loss_output = \ self._generate_train_loss_output((epoch_idx + 1), training_start_time, training_end_time, train_loss, "adv generator pre") train_loss_output = ">>>>>> " + train_loss_output if verbose: self.logger.info(train_loss_output) # dis pretrain for epoch_idx in range(5): # d_steps if verbose: self.logger.info(">>>>>> [Adv] Start epoch %d / 5 pretrain discriminator" % (epoch_idx + 1)) training_start_time = time() train_loss = self._d_train_epoch(train_data, epoch_idx) training_end_time = time() train_loss_output = \ self._generate_train_loss_output((epoch_idx + 1), training_start_time, training_end_time, train_loss, "adv discriminator pre") train_loss_output = ">>>>>> " + train_loss_output if verbose: self.logger.info(train_loss_output) self._save_checkpoint(self.adversarail_training_epochs) return -1, None
[ "logging.getLogger", "textbox.utils.early_stopping", "torch.nn.CrossEntropyLoss", "matplotlib.pyplot.ylabel", "textbox.evaluator.TranslationEvaluator", "copy.deepcopy", "matplotlib.pyplot.xlabel", "matplotlib.pyplot.plot", "numpy.exp", "torch.optim.RMSprop", "textbox.evaluator.SummarizationEvaluator", "torch.ones_like", "torch.optim.SGD", "matplotlib.pyplot.savefig", "matplotlib.pyplot.xticks", "torch.save", "textbox.evaluator.NgramEvaluator", "time.time", "torch.cat", "matplotlib.pyplot.show", "torch.optim.Adam", "torch.optim.Adagrad", "torch.full", "torch.load", "os.path.join", "torch.tensor", "textbox.utils.ensure_dir", "numpy.random.randint", "torch.utils.data.DataLoader", "torch.no_grad", "torch.isnan" ]
[((14204, 14219), 'torch.no_grad', 'torch.no_grad', ([], {}), '()\n', (14217, 14219), False, 'import torch\n'), ((32618, 32633), 'torch.no_grad', 'torch.no_grad', ([], {}), '()\n', (32631, 32633), False, 'import torch\n'), ((2571, 2582), 'logging.getLogger', 'getLogger', ([], {}), '()\n', (2580, 2582), False, 'from logging import getLogger\n'), ((3097, 3128), 'textbox.utils.ensure_dir', 'ensure_dir', (['self.checkpoint_dir'], {}), '(self.checkpoint_dir)\n', (3107, 3128), False, 'from textbox.utils import ensure_dir, early_stopping\n'), ((3221, 3272), 'os.path.join', 'os.path.join', (['self.checkpoint_dir', 'saved_model_file'], {}), '(self.checkpoint_dir, saved_model_file)\n', (3233, 3272), False, 'import os\n'), ((3345, 3380), 'textbox.utils.ensure_dir', 'ensure_dir', (['self.generated_text_dir'], {}), '(self.generated_text_dir)\n', (3355, 3380), False, 'from textbox.utils import ensure_dir, early_stopping\n'), ((3471, 3525), 'os.path.join', 'os.path.join', (['self.generated_text_dir', 'saved_text_file'], {}), '(self.generated_text_dir, saved_text_file)\n', (3483, 3525), False, 'import os\n'), ((7564, 7582), 'numpy.exp', 'np.exp', (['valid_loss'], {}), '(valid_loss)\n', (7570, 7582), True, 'import numpy as np\n'), ((8103, 8143), 'torch.save', 'torch.save', (['state', 'self.saved_model_file'], {}), '(state, self.saved_model_file)\n', (8113, 8143), False, 'import torch\n'), ((8730, 8753), 'torch.load', 'torch.load', (['resume_file'], {}), '(resume_file)\n', (8740, 8753), False, 'import torch\n'), ((9666, 9683), 'torch.isnan', 'torch.isnan', (['loss'], {}), '(loss)\n', (9677, 9683), False, 'import torch\n'), ((16328, 16352), 'matplotlib.pyplot.plot', 'plt.plot', (['epochs', 'values'], {}), '(epochs, values)\n', (16336, 16352), True, 'import matplotlib.pyplot as plt\n'), ((16361, 16379), 'matplotlib.pyplot.xticks', 'plt.xticks', (['epochs'], {}), '(epochs)\n', (16371, 16379), True, 'import matplotlib.pyplot as plt\n'), ((16388, 16407), 'matplotlib.pyplot.xlabel', 'plt.xlabel', (['"""Epoch"""'], {}), "('Epoch')\n", (16398, 16407), True, 'import matplotlib.pyplot as plt\n'), ((16416, 16434), 'matplotlib.pyplot.ylabel', 'plt.ylabel', (['"""Loss"""'], {}), "('Loss')\n", (16426, 16434), True, 'import matplotlib.pyplot as plt\n'), ((20219, 20259), 'torch.save', 'torch.save', (['state', 'self.saved_model_file'], {}), '(state, self.saved_model_file)\n', (20229, 20259), False, 'import torch\n'), ((20622, 20719), 'torch.full', 'torch.full', (['(batch_size, self.max_length)', 'self.pad_idx'], {'dtype': 'torch.long', 'device': 'self.device'}), '((batch_size, self.max_length), self.pad_idx, dtype=torch.long,\n device=self.device)\n', (20632, 20719), False, 'import torch\n'), ((21299, 21327), 'torch.cat', 'torch.cat', (['real_datas'], {'dim': '(0)'}), '(real_datas, dim=0)\n', (21308, 21327), False, 'import torch\n'), ((23162, 23251), 'torch.utils.data.DataLoader', 'DataLoader', (['real_data'], {'batch_size': 'self.model.batch_size', 'shuffle': '(True)', 'drop_last': '(True)'}), '(real_data, batch_size=self.model.batch_size, shuffle=True,\n drop_last=True)\n', (23172, 23251), False, 'from torch.utils.data import DataLoader\n'), ((23331, 23420), 'torch.utils.data.DataLoader', 'DataLoader', (['fake_data'], {'batch_size': 'self.model.batch_size', 'shuffle': '(True)', 'drop_last': '(True)'}), '(fake_data, batch_size=self.model.batch_size, shuffle=True,\n drop_last=True)\n', (23341, 23420), False, 'from torch.utils.data import DataLoader\n'), ((27847, 27936), 'torch.utils.data.DataLoader', 'DataLoader', (['real_data'], {'batch_size': 'self.model.batch_size', 'shuffle': '(True)', 'drop_last': '(True)'}), '(real_data, batch_size=self.model.batch_size, shuffle=True,\n drop_last=True)\n', (27857, 27936), False, 'from torch.utils.data import DataLoader\n'), ((28753, 28842), 'torch.utils.data.DataLoader', 'DataLoader', (['real_data'], {'batch_size': 'self.model.batch_size', 'shuffle': '(True)', 'drop_last': '(True)'}), '(real_data, batch_size=self.model.batch_size, shuffle=True,\n drop_last=True)\n', (28763, 28842), False, 'from torch.utils.data import DataLoader\n'), ((30266, 30355), 'torch.utils.data.DataLoader', 'DataLoader', (['real_data'], {'batch_size': 'self.model.batch_size', 'shuffle': '(True)', 'drop_last': '(True)'}), '(real_data, batch_size=self.model.batch_size, shuffle=True,\n drop_last=True)\n', (30276, 30355), False, 'from torch.utils.data import DataLoader\n'), ((30435, 30524), 'torch.utils.data.DataLoader', 'DataLoader', (['fake_data'], {'batch_size': 'self.model.batch_size', 'shuffle': '(True)', 'drop_last': '(True)'}), '(fake_data, batch_size=self.model.batch_size, shuffle=True,\n drop_last=True)\n', (30445, 30524), False, 'from torch.utils.data import DataLoader\n'), ((30542, 30608), 'numpy.random.randint', 'np.random.randint', (['(0)', 'real_data.shape[0]'], {'size': 'self.model.ref_size'}), '(0, real_data.shape[0], size=self.model.ref_size)\n', (30559, 30608), True, 'import numpy as np\n'), ((31822, 31888), 'numpy.random.randint', 'np.random.randint', (['(0)', 'real_data.shape[0]'], {'size': 'self.model.ref_size'}), '(0, real_data.shape[0], size=self.model.ref_size)\n', (31839, 31888), True, 'import numpy as np\n'), ((40638, 40727), 'torch.utils.data.DataLoader', 'DataLoader', (['real_data'], {'batch_size': 'self.model.batch_size', 'shuffle': '(True)', 'drop_last': '(True)'}), '(real_data, batch_size=self.model.batch_size, shuffle=True,\n drop_last=True)\n', (40648, 40727), False, 'from torch.utils.data import DataLoader\n'), ((41271, 41364), 'torch.utils.data.DataLoader', 'DataLoader', (['validate_data'], {'batch_size': 'self.model.batch_size', 'shuffle': '(True)', 'drop_last': '(True)'}), '(validate_data, batch_size=self.model.batch_size, shuffle=True,\n drop_last=True)\n', (41281, 41364), False, 'from torch.utils.data import DataLoader\n'), ((41860, 41949), 'torch.utils.data.DataLoader', 'DataLoader', (['real_data'], {'batch_size': 'self.model.batch_size', 'shuffle': '(True)', 'drop_last': '(True)'}), '(real_data, batch_size=self.model.batch_size, shuffle=True,\n drop_last=True)\n', (41870, 41949), False, 'from torch.utils.data import DataLoader\n'), ((42589, 42678), 'torch.utils.data.DataLoader', 'DataLoader', (['real_data'], {'batch_size': 'self.model.batch_size', 'shuffle': '(True)', 'drop_last': '(True)'}), '(real_data, batch_size=self.model.batch_size, shuffle=True,\n drop_last=True)\n', (42599, 42678), False, 'from torch.utils.data import DataLoader\n'), ((42701, 42731), 'copy.deepcopy', 'copy.deepcopy', (['real_dataloader'], {}), '(real_dataloader)\n', (42714, 42731), False, 'import copy\n'), ((42757, 42787), 'copy.deepcopy', 'copy.deepcopy', (['real_dataloader'], {}), '(real_dataloader)\n', (42770, 42787), False, 'import copy\n'), ((42811, 42841), 'copy.deepcopy', 'copy.deepcopy', (['real_dataloader'], {}), '(real_dataloader)\n', (42824, 42841), False, 'import copy\n'), ((44262, 44351), 'torch.utils.data.DataLoader', 'DataLoader', (['real_data'], {'batch_size': 'self.model.batch_size', 'shuffle': '(True)', 'drop_last': '(True)'}), '(real_data, batch_size=self.model.batch_size, shuffle=True,\n drop_last=True)\n', (44272, 44351), False, 'from torch.utils.data import DataLoader\n'), ((44669, 44773), 'torch.full', 'torch.full', (['(batch_size, self.max_length)', 'self.eos_token_idx'], {'dtype': 'torch.long', 'device': 'self.device'}), '((batch_size, self.max_length), self.eos_token_idx, dtype=torch.\n long, device=self.device)\n', (44679, 44773), False, 'import torch\n'), ((45369, 45397), 'torch.cat', 'torch.cat', (['real_datas'], {'dim': '(0)'}), '(real_datas, dim=0)\n', (45378, 45397), False, 'import torch\n'), ((57835, 57932), 'torch.full', 'torch.full', (['(batch_size, self.max_length)', 'self.end_idx'], {'dtype': 'torch.long', 'device': 'self.device'}), '((batch_size, self.max_length), self.end_idx, dtype=torch.long,\n device=self.device)\n', (57845, 57932), False, 'import torch\n'), ((58471, 58499), 'torch.cat', 'torch.cat', (['real_datas'], {'dim': '(0)'}), '(real_datas, dim=0)\n', (58480, 58499), False, 'import torch\n'), ((59924, 60013), 'torch.utils.data.DataLoader', 'DataLoader', (['real_data'], {'batch_size': 'self.model.batch_size', 'shuffle': '(True)', 'drop_last': '(True)'}), '(real_data, batch_size=self.model.batch_size, shuffle=True,\n drop_last=True)\n', (59934, 60013), False, 'from torch.utils.data import DataLoader\n'), ((60828, 60917), 'torch.utils.data.DataLoader', 'DataLoader', (['real_data'], {'batch_size': 'self.model.batch_size', 'shuffle': '(True)', 'drop_last': '(True)'}), '(real_data, batch_size=self.model.batch_size, shuffle=True,\n drop_last=True)\n', (60838, 60917), False, 'from torch.utils.data import DataLoader\n'), ((61170, 61259), 'torch.utils.data.DataLoader', 'DataLoader', (['fake_data'], {'batch_size': 'self.model.batch_size', 'shuffle': '(True)', 'drop_last': '(True)'}), '(fake_data, batch_size=self.model.batch_size, shuffle=True,\n drop_last=True)\n', (61180, 61259), False, 'from torch.utils.data import DataLoader\n'), ((3875, 3903), 'textbox.evaluator.TranslationEvaluator', 'TranslationEvaluator', (['config'], {}), '(config)\n', (3895, 3903), False, 'from textbox.evaluator import NgramEvaluator, TranslationEvaluator, SummarizationEvaluator\n'), ((11121, 11127), 'time.time', 'time', ([], {}), '()\n', (11125, 11127), False, 'from time import time\n'), ((11337, 11343), 'time.time', 'time', ([], {}), '()\n', (11341, 11343), False, 'from time import time\n'), ((15175, 15202), 'torch.load', 'torch.load', (['checkpoint_file'], {}), '(checkpoint_file)\n', (15185, 15202), False, 'import torch\n'), ((15455, 15470), 'torch.no_grad', 'torch.no_grad', ([], {}), '()\n', (15468, 15470), False, 'import torch\n'), ((16464, 16474), 'matplotlib.pyplot.show', 'plt.show', ([], {}), '()\n', (16472, 16474), True, 'import matplotlib.pyplot as plt\n'), ((16509, 16531), 'matplotlib.pyplot.savefig', 'plt.savefig', (['save_path'], {}), '(save_path)\n', (16520, 16531), True, 'import matplotlib.pyplot as plt\n'), ((25117, 25123), 'time.time', 'time', ([], {}), '()\n', (25121, 25123), False, 'from time import time\n'), ((25343, 25349), 'time.time', 'time', ([], {}), '()\n', (25347, 25349), False, 'from time import time\n'), ((25936, 25942), 'time.time', 'time', ([], {}), '()\n', (25940, 25942), False, 'from time import time\n'), ((26162, 26168), 'time.time', 'time', ([], {}), '()\n', (26166, 26168), False, 'from time import time\n'), ((26760, 26766), 'time.time', 'time', ([], {}), '()\n', (26764, 26766), False, 'from time import time\n'), ((26988, 26994), 'time.time', 'time', ([], {}), '()\n', (26992, 26994), False, 'from time import time\n'), ((33589, 33616), 'torch.load', 'torch.load', (['checkpoint_file'], {}), '(checkpoint_file)\n', (33599, 33616), False, 'import torch\n'), ((37659, 37687), 'torch.tensor', 'torch.tensor', (['([seq_len] * bs)'], {}), '([seq_len] * bs)\n', (37671, 37687), False, 'import torch\n'), ((38077, 38104), 'torch.nn.CrossEntropyLoss', 'torch.nn.CrossEntropyLoss', ([], {}), '()\n', (38102, 38104), False, 'import torch\n'), ((38475, 38564), 'torch.utils.data.DataLoader', 'DataLoader', (['real_data'], {'batch_size': 'self.model.batch_size', 'shuffle': '(True)', 'drop_last': '(True)'}), '(real_data, batch_size=self.model.batch_size, shuffle=True,\n drop_last=True)\n', (38485, 38564), False, 'from torch.utils.data import DataLoader\n'), ((45988, 46011), 'torch.save', 'torch.save', (['state', 'path'], {}), '(state, path)\n', (45998, 46011), False, 'import torch\n'), ((46062, 46102), 'torch.save', 'torch.save', (['state', 'self.saved_model_file'], {}), '(state, self.saved_model_file)\n', (46072, 46102), False, 'import torch\n'), ((46589, 46612), 'torch.load', 'torch.load', (['self.checkp'], {}), '(self.checkp)\n', (46599, 46612), False, 'import torch\n'), ((49064, 49070), 'time.time', 'time', ([], {}), '()\n', (49068, 49070), False, 'from time import time\n'), ((49290, 49296), 'time.time', 'time', ([], {}), '()\n', (49294, 49296), False, 'from time import time\n'), ((51221, 51227), 'time.time', 'time', ([], {}), '()\n', (51225, 51227), False, 'from time import time\n'), ((51447, 51453), 'time.time', 'time', ([], {}), '()\n', (51451, 51453), False, 'from time import time\n'), ((52045, 52051), 'time.time', 'time', ([], {}), '()\n', (52049, 52051), False, 'from time import time\n'), ((52273, 52279), 'time.time', 'time', ([], {}), '()\n', (52277, 52279), False, 'from time import time\n'), ((62456, 62462), 'time.time', 'time', ([], {}), '()\n', (62460, 62462), False, 'from time import time\n'), ((62563, 62569), 'time.time', 'time', ([], {}), '()\n', (62567, 62569), False, 'from time import time\n'), ((63248, 63254), 'time.time', 'time', ([], {}), '()\n', (63252, 63254), False, 'from time import time\n'), ((63355, 63361), 'time.time', 'time', ([], {}), '()\n', (63359, 63361), False, 'from time import time\n'), ((3981, 4011), 'textbox.evaluator.SummarizationEvaluator', 'SummarizationEvaluator', (['config'], {}), '(config)\n', (4003, 4011), False, 'from textbox.evaluator import NgramEvaluator, TranslationEvaluator, SummarizationEvaluator\n'), ((4055, 4077), 'textbox.evaluator.NgramEvaluator', 'NgramEvaluator', (['config'], {}), '(config)\n', (4069, 4077), False, 'from textbox.evaluator import NgramEvaluator, TranslationEvaluator, SummarizationEvaluator\n'), ((12047, 12053), 'time.time', 'time', ([], {}), '()\n', (12051, 12053), False, 'from time import time\n'), ((12283, 12396), 'textbox.utils.early_stopping', 'early_stopping', (['valid_score', 'self.best_valid_score', 'self.cur_step'], {'max_step': 'self.stopping_step', 'bigger': '(False)'}), '(valid_score, self.best_valid_score, self.cur_step, max_step=\n self.stopping_step, bigger=False)\n', (12297, 12396), False, 'from textbox.utils import ensure_dir, early_stopping\n'), ((12549, 12555), 'time.time', 'time', ([], {}), '()\n', (12553, 12555), False, 'from time import time\n'), ((39184, 39277), 'torch.utils.data.DataLoader', 'DataLoader', (['validate_data'], {'batch_size': 'self.model.batch_size', 'shuffle': '(True)', 'drop_last': '(True)'}), '(validate_data, batch_size=self.model.batch_size, shuffle=True,\n drop_last=True)\n', (39194, 39277), False, 'from torch.utils.data import DataLoader\n'), ((47231, 47261), 'torch.load', 'torch.load', (['self.pre_lm_weight'], {}), '(self.pre_lm_weight)\n', (47241, 47261), False, 'import torch\n'), ((48060, 48090), 'torch.load', 'torch.load', (['self.pre_lm_weight'], {}), '(self.pre_lm_weight)\n', (48070, 48090), False, 'import torch\n'), ((54476, 54519), 'torch.optim.Adam', 'optim.Adam', (['manager_params'], {'lr': 'learing_rate'}), '(manager_params, lr=learing_rate)\n', (54486, 54519), True, 'import torch.optim as optim\n'), ((54549, 54591), 'torch.optim.Adam', 'optim.Adam', (['worker_params'], {'lr': 'learing_rate'}), '(worker_params, lr=learing_rate)\n', (54559, 54591), True, 'import torch.optim as optim\n'), ((64425, 64431), 'time.time', 'time', ([], {}), '()\n', (64429, 64431), False, 'from time import time\n'), ((64667, 64673), 'time.time', 'time', ([], {}), '()\n', (64671, 64673), False, 'from time import time\n'), ((65351, 65357), 'time.time', 'time', ([], {}), '()\n', (65355, 65357), False, 'from time import time\n'), ((65466, 65472), 'time.time', 'time', ([], {}), '()\n', (65470, 65472), False, 'from time import time\n'), ((66167, 66173), 'time.time', 'time', ([], {}), '()\n', (66171, 66173), False, 'from time import time\n'), ((66282, 66288), 'time.time', 'time', ([], {}), '()\n', (66286, 66288), False, 'from time import time\n'), ((12075, 12090), 'torch.no_grad', 'torch.no_grad', ([], {}), '()\n', (12088, 12090), False, 'import torch\n'), ((37717, 37739), 'torch.ones_like', 'torch.ones_like', (['input'], {}), '(input)\n', (37732, 37739), False, 'import torch\n'), ((40128, 40170), 'torch.save', 'torch.save', (['state_dict', 'self.pre_lm_weight'], {}), '(state_dict, self.pre_lm_weight)\n', (40138, 40170), False, 'import torch\n'), ((54788, 54830), 'torch.optim.SGD', 'optim.SGD', (['manager_params'], {'lr': 'learing_rate'}), '(manager_params, lr=learing_rate)\n', (54797, 54830), True, 'import torch.optim as optim\n'), ((54860, 54901), 'torch.optim.SGD', 'optim.SGD', (['worker_params'], {'lr': 'learing_rate'}), '(worker_params, lr=learing_rate)\n', (54869, 54901), True, 'import torch.optim as optim\n'), ((43285, 43315), 'copy.deepcopy', 'copy.deepcopy', (['real_dataloader'], {}), '(real_dataloader)\n', (43298, 43315), False, 'import copy\n'), ((55101, 55147), 'torch.optim.Adagrad', 'optim.Adagrad', (['manager_params'], {'lr': 'learing_rate'}), '(manager_params, lr=learing_rate)\n', (55114, 55147), True, 'import torch.optim as optim\n'), ((55177, 55222), 'torch.optim.Adagrad', 'optim.Adagrad', (['worker_params'], {'lr': 'learing_rate'}), '(worker_params, lr=learing_rate)\n', (55190, 55222), True, 'import torch.optim as optim\n'), ((55426, 55472), 'torch.optim.RMSprop', 'optim.RMSprop', (['manager_params'], {'lr': 'learing_rate'}), '(manager_params, lr=learing_rate)\n', (55439, 55472), True, 'import torch.optim as optim\n'), ((55502, 55547), 'torch.optim.RMSprop', 'optim.RMSprop', (['worker_params'], {'lr': 'learing_rate'}), '(worker_params, lr=learing_rate)\n', (55515, 55547), True, 'import torch.optim as optim\n'), ((55812, 55855), 'torch.optim.Adam', 'optim.Adam', (['manager_params'], {'lr': 'learing_rate'}), '(manager_params, lr=learing_rate)\n', (55822, 55855), True, 'import torch.optim as optim\n'), ((55885, 55927), 'torch.optim.Adam', 'optim.Adam', (['worker_params'], {'lr': 'learing_rate'}), '(worker_params, lr=learing_rate)\n', (55895, 55927), True, 'import torch.optim as optim\n')]
import pandas as pd # Define our header col_names = [ "year", "num_males_with_income", "male_median_income_curr_dollars", "male_median_income_2019_dollars", "num_females_with_income", "female_median_income_curr_dollars", "female_median_income_2019_dollars", ] # Load Asian census data XLS, skipping all headers dfa = pd.read_excel( r'p08a.xlsx', skiprows=8, # Make sure PD doesn't use header row for our DF header=None, # Define col names names=col_names, ) # Load White census data XLS, skipping all headers dfw = pd.read_excel( r'p08w.xlsx', skiprows=8, # Make sure PD doesn't use header row for our DF header=None, # Define cold names names=col_names ) # Splinter off rows into age group DFs for both sets of data dfa1524 = dfa.iloc[:20] dfa2534 = dfa.iloc[25:45] dfa3544 = dfa.iloc[50:70] dfa4554 = dfa.iloc[75:95] dfa5564 = dfa.iloc[100:120] dfa6574 = dfa.iloc[125:145] dfa75 = dfa.iloc[150:170] dfw1524 = dfw.iloc[:20] dfw2534 = dfw.iloc[25:45] dfw3544 = dfw.iloc[50:70] dfw4554 = dfw.iloc[75:95] dfw5564 = dfw.iloc[100:120] dfw6574 = dfw.iloc[125:145] dfw75 = dfw.iloc[150:170] # Add Age Range col to each DF dfa1524.insert(0, 'age_range', '15-24') dfa2534.insert(0, 'age_range', '25-34') dfa3544.insert(0, 'age_range', '35-44') dfa4554.insert(0, 'age_range', '45-54') dfa5564.insert(0, 'age_range', '55-64') dfa6574.insert(0, 'age_range', '65-74') dfa75.insert(0, 'age_range', 'Over 75') dfw1524.insert(0, 'age_range', '15-24') dfw2534.insert(0, 'age_range', '25-34') dfw3544.insert(0, 'age_range', '35-44') dfw4554.insert(0, 'age_range', '45-54') dfw5564.insert(0, 'age_range', '55-64') dfw6574.insert(0, 'age_range', '65-74') dfw75.insert(0, 'age_range', 'Over 75') # Stack cleaned DF's vertically dfa = pd.concat([ dfa1524, dfa2534, dfa3544, dfa4554, dfa5564, dfa6574, dfa75 ], axis=0) dfw = pd.concat([ dfw1524, dfw2534, dfw3544, dfw4554, dfw5564, dfw6574, dfw75 ], axis=0) # Add Race col dfa.insert(0, 'race', 'asian') dfw.insert(0, 'race', 'white') # Clean garbage chars in Year col using regex dfa['year'] = dfa['year'].replace(to_replace=r'(\s\(\d+\))', value='', regex=True) dfw['year'] = dfw['year'].replace(to_replace=r'(\s\(\d+\))', value='', regex=True) # Stack our cleaned + normalized data into a single DF df = pd.concat([ dfa, dfw ], axis=0) # Convert the DF col types to conform to our CensusRecord model df = df.astype({ "race": str, "age_range": str, "year": int, "num_males_with_income": int, "male_median_income_curr_dollars": float, "male_median_income_2019_dollars": float, "num_females_with_income": int, "female_median_income_curr_dollars": float, "female_median_income_2019_dollars": float, }) # Pickle the DF df.to_pickle("./res.pkl")
[ "pandas.concat", "pandas.read_excel" ]
[((347, 415), 'pandas.read_excel', 'pd.read_excel', (['"""p08a.xlsx"""'], {'skiprows': '(8)', 'header': 'None', 'names': 'col_names'}), "('p08a.xlsx', skiprows=8, header=None, names=col_names)\n", (360, 415), True, 'import pandas as pd\n'), ((569, 637), 'pandas.read_excel', 'pd.read_excel', (['"""p08w.xlsx"""'], {'skiprows': '(8)', 'header': 'None', 'names': 'col_names'}), "('p08w.xlsx', skiprows=8, header=None, names=col_names)\n", (582, 637), True, 'import pandas as pd\n'), ((1796, 1881), 'pandas.concat', 'pd.concat', (['[dfa1524, dfa2534, dfa3544, dfa4554, dfa5564, dfa6574, dfa75]'], {'axis': '(0)'}), '([dfa1524, dfa2534, dfa3544, dfa4554, dfa5564, dfa6574, dfa75], axis=0\n )\n', (1805, 1881), True, 'import pandas as pd\n'), ((1914, 1999), 'pandas.concat', 'pd.concat', (['[dfw1524, dfw2534, dfw3544, dfw4554, dfw5564, dfw6574, dfw75]'], {'axis': '(0)'}), '([dfw1524, dfw2534, dfw3544, dfw4554, dfw5564, dfw6574, dfw75], axis=0\n )\n', (1923, 1999), True, 'import pandas as pd\n'), ((2377, 2406), 'pandas.concat', 'pd.concat', (['[dfa, dfw]'], {'axis': '(0)'}), '([dfa, dfw], axis=0)\n', (2386, 2406), True, 'import pandas as pd\n')]
from AndroidSpider import url_manager, html_downloader, html_parser, html_output ''' 爬取百度百科 Android 关键词相关词及简介并输出为一个HTML tab网页 Extra module: BeautifulSoup ''' class SpiderMain(object): def __init__(self): self.urls = url_manager.UrlManager() self.downloader = html_downloader.HtmlDownLoader() self.parser = html_parser.HtmlParser() self.out_put = html_output.HtmlOutput() def craw(self, root_url): count = 1 self.urls.add_new_url(root_url) while self.urls.has_new_url(): try: new_url = self.urls.get_new_url() print("craw %d : %s" % (count, new_url)) headers = { "User-Agent": "Mozilla/5.0 (X11; Linux x86_64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/54.0.2840.100 Safari/537.36" } html_content = self.downloader.download(new_url, retry_count=2, headers=headers) new_urls, new_data = self.parser.parse(new_url, html_content, "utf-8") self.urls.add_new_urls(new_urls) self.out_put.collect_data(new_data) if count >= 30: break count = count + 1 except Exception as e: print("craw failed!\n"+str(e)) self.out_put.output_html() if __name__ == "__main__": rootUrl = "http://baike.baidu.com/item/Android" objSpider = SpiderMain() objSpider.craw(rootUrl)
[ "AndroidSpider.url_manager.UrlManager", "AndroidSpider.html_downloader.HtmlDownLoader", "AndroidSpider.html_output.HtmlOutput", "AndroidSpider.html_parser.HtmlParser" ]
[((230, 254), 'AndroidSpider.url_manager.UrlManager', 'url_manager.UrlManager', ([], {}), '()\n', (252, 254), False, 'from AndroidSpider import url_manager, html_downloader, html_parser, html_output\n'), ((281, 313), 'AndroidSpider.html_downloader.HtmlDownLoader', 'html_downloader.HtmlDownLoader', ([], {}), '()\n', (311, 313), False, 'from AndroidSpider import url_manager, html_downloader, html_parser, html_output\n'), ((336, 360), 'AndroidSpider.html_parser.HtmlParser', 'html_parser.HtmlParser', ([], {}), '()\n', (358, 360), False, 'from AndroidSpider import url_manager, html_downloader, html_parser, html_output\n'), ((384, 408), 'AndroidSpider.html_output.HtmlOutput', 'html_output.HtmlOutput', ([], {}), '()\n', (406, 408), False, 'from AndroidSpider import url_manager, html_downloader, html_parser, html_output\n')]
import boto import boto3 from config import Config dynamodb = boto3.resource('dynamodb', aws_access_key_id=Config.AWS_KEY, aws_secret_access_key=Config.AWS_SECRET_KEY, region_name=Config.REGION) table = dynamodb.Table('user_details') tables = boto3.resource('dynamodb', aws_access_key_id=Config.AWS_KEY, aws_secret_access_key=Config.AWS_SECRET_KEY, region_name=Config.REGION).Table('user_details') print(tables.creation_date_time) def main(): print("29.7604267") def insert_into_db(user): print(user.lastname) try: table.put_item( Item={ 'pin': user.pin, 'firstname': user.firstname, 'lastname': user.lastname, } ) except Exception as E: print(E) return False return True if __name__ == "__main__": main()
[ "boto3.resource" ]
[((63, 199), 'boto3.resource', 'boto3.resource', (['"""dynamodb"""'], {'aws_access_key_id': 'Config.AWS_KEY', 'aws_secret_access_key': 'Config.AWS_SECRET_KEY', 'region_name': 'Config.REGION'}), "('dynamodb', aws_access_key_id=Config.AWS_KEY,\n aws_secret_access_key=Config.AWS_SECRET_KEY, region_name=Config.REGION)\n", (77, 199), False, 'import boto3\n'), ((323, 459), 'boto3.resource', 'boto3.resource', (['"""dynamodb"""'], {'aws_access_key_id': 'Config.AWS_KEY', 'aws_secret_access_key': 'Config.AWS_SECRET_KEY', 'region_name': 'Config.REGION'}), "('dynamodb', aws_access_key_id=Config.AWS_KEY,\n aws_secret_access_key=Config.AWS_SECRET_KEY, region_name=Config.REGION)\n", (337, 459), False, 'import boto3\n')]
from logging import warning from requests import get from .info import Info from .provider import Provider from .providers import get_provider class Parser: def __init__(self, args: dict): self.params = args def init_provider( self, chapter_progress: callable = None, global_progress: callable = None, log: callable = None, quest: callable = None, info: Info = None, quest_password: callable = None, ): original_url = self.params.get('url', '') provider_url = self.params.get('force_provider', None) provider = get_provider(provider_url or original_url) if isinstance(provider, bool): raise AttributeError('Provider not found') # update url (if redirect) self.provider = provider(info) # type: Provider self.provider.original_url = original_url real_url = self.check_url(original_url) if self.provider.allow_auto_change_url(): if real_url != original_url: warning('Manga url changed! New url: {}'.format(real_url)) self.params['url'] = real_url self.provider.quiet = self.params.get('quiet', False) self.provider.set_chapter_progress_callback(chapter_progress) self.provider.set_global_progress_callback(global_progress) self.provider.set_log_callback(log) self.provider.set_quest_callback(quest) self.provider.set_quest_password_callback(quest_password) def start(self): self.provider.process(self.params['url'], self.params) def check_url(self, url): proxy = self.params.get('proxy', None) proxies = { 'http': proxy, 'https': proxy, } if proxy else None with get(url, stream=True, proxies=proxies) as response: _url = response.url if url != _url: url = _url return url
[ "requests.get" ]
[((1827, 1865), 'requests.get', 'get', (['url'], {'stream': '(True)', 'proxies': 'proxies'}), '(url, stream=True, proxies=proxies)\n', (1830, 1865), False, 'from requests import get\n')]
"""Holds configurations to read and write with Spark to AWS S3.""" import os from typing import Any, Dict, List, Optional from pyspark.sql import DataFrame from butterfree.configs import environment from butterfree.configs.db import AbstractWriteConfig from butterfree.dataframe_service import extract_partition_values class MetastoreConfig(AbstractWriteConfig): """Configuration for Spark metastore database stored. By default the configuration is for AWS S3. Attributes: path: database root location. mode: writing mode used be writers. format_: expected stored file format. file_system: file schema uri, like: s3a, file. """ def __init__( self, path: str = None, mode: str = None, format_: str = None, file_system: str = None, ): self.path = path self.mode = mode self.format_ = format_ self.file_system = file_system @property def path(self) -> Optional[str]: """Bucket name.""" return self.__path @path.setter def path(self, value: str) -> None: self.__path = value or environment.get_variable("FEATURE_STORE_S3_BUCKET") @property def format_(self) -> Optional[str]: """Expected stored file format.""" return self.__format @format_.setter def format_(self, value: str) -> None: self.__format = value or "parquet" @property def mode(self) -> Optional[str]: """Writing mode used be writers.""" return self.__mode @mode.setter def mode(self, value: str) -> None: self.__mode = value or "overwrite" @property def file_system(self) -> Optional[str]: """Writing mode used be writers.""" return self.__file_system @file_system.setter def file_system(self, value: str) -> None: self.__file_system = value or "s3a" def get_options(self, key: str) -> Dict[Optional[str], Optional[str]]: """Get options for Metastore. Options will be a dictionary with the write and read configuration for Spark Metastore. Args: key: path to save data into Metastore. Returns: Options configuration for Metastore. """ return { "mode": self.mode, "format_": self.format_, "path": os.path.join(f"{self.file_system}://{self.path}/", key), } def get_path_with_partitions(self, key: str, dataframe: DataFrame) -> List: """Get options for AWS S3 from partitioned parquet file. Options will be a dictionary with the write and read configuration for Spark to AWS S3. Args: key: path to save data into AWS S3 bucket. dataframe: spark dataframe containing data from a feature set. Returns: A list of string for file-system backed data sources. """ path_list = [] dataframe_values = extract_partition_values( dataframe, partition_columns=["year", "month", "day"] ) for row in dataframe_values: path_list.append( f"{self.file_system}://{self.path}/{key}/year={row['year']}/" f"month={row['month']}/day={row['day']}" ) return path_list def translate(self, schema: List[Dict[str, Any]]) -> List[Dict[str, Any]]: """Translate feature set spark schema to the corresponding database.""" pass
[ "butterfree.dataframe_service.extract_partition_values", "butterfree.configs.environment.get_variable", "os.path.join" ]
[((2995, 3074), 'butterfree.dataframe_service.extract_partition_values', 'extract_partition_values', (['dataframe'], {'partition_columns': "['year', 'month', 'day']"}), "(dataframe, partition_columns=['year', 'month', 'day'])\n", (3019, 3074), False, 'from butterfree.dataframe_service import extract_partition_values\n'), ((1153, 1204), 'butterfree.configs.environment.get_variable', 'environment.get_variable', (['"""FEATURE_STORE_S3_BUCKET"""'], {}), "('FEATURE_STORE_S3_BUCKET')\n", (1177, 1204), False, 'from butterfree.configs import environment\n'), ((2386, 2441), 'os.path.join', 'os.path.join', (['f"""{self.file_system}://{self.path}/"""', 'key'], {}), "(f'{self.file_system}://{self.path}/', key)\n", (2398, 2441), False, 'import os\n')]
#!/usr/bin/env python3 import sys sys.path.append('..') import specrel.geom as geom import specrel.spacetime.physical as phy import specrel.visualize as vis # Shared parameters include_grid = True include_legend = True tlim = (0, 2) xlim = (-2, 2) # A stationary point object stationary = phy.MovingObject(0, draw_options={'label': '$v = 0$'}) ## Alternate: # direction = (1, 0) # point = (0, 0) # stationary = geom.Line(direction, point, draw_options={'label': '$v = 0$'}) title='Stationary object' p = vis.stplot(stationary, title=title, tlim=tlim, xlim=xlim, grid=include_grid, legend=include_legend) p.save('2-objects_stationary_point.png') p.show() # A stationary point object, animated anim = vis.stanimate(stationary, title=title, tlim=tlim, xlim=xlim, grid=include_grid, legend=include_legend) anim.save('2-objects_stationary_point_anim.mp4') anim.show() # A stationary point object, animated with worldline anim = vis.stanimate_with_worldline(stationary, title=title, tlim=tlim, xlim=xlim, grid=include_grid, legend=include_legend, legend_loc='upper right') anim.save('2-objects_stationary_point_anim_worldline.mp4') anim.show() # A bunch of moving point objects, animated moving = phy.MovingObject(0, velocity=1/2, draw_options={'color': 'red', 'label': '$v = c/2$'}) light = phy.MovingObject(0, velocity=1, draw_options={'color': 'gold', 'label': '$v = c$'}) ftl = phy.MovingObject(0, velocity=3/2, draw_options={'color': 'cyan', 'label': '$v = 3c/2$'}) objects = geom.Collection([stationary, moving, light, ftl]) title = 'Various objects' anim = vis.stanimate_with_worldline(objects, title=title, current_time_color='magenta', tlim=tlim, xlim=xlim, grid=include_grid, legend=include_legend, legend_loc='upper left') anim.save('2-objects_moving_points.mp4') anim.show() # A moving meterstick meterstick = phy.MovingObject(-1/2, length=1, velocity=1/2, draw_options={'label': 'Meterstick'}) # # Alternate: # direction = (1, 1/2) # left = geom.Line(direction, (0, -1/2)) # right = geom.Line(direction, (0, 1/2)) # meterstick = geom.Ribbon(left, right, draw_options={'label': 'Meterstick'}) title = 'Moving meterstick ($v = c/2$)' anim = vis.stanimate_with_worldline(meterstick, title=title, tlim=tlim, xlim=xlim, grid=include_grid, legend=include_legend, legend_loc='upper left') anim.save('2-objects_moving_meterstick.mp4') anim.show()
[ "specrel.visualize.stplot", "specrel.spacetime.physical.MovingObject", "specrel.visualize.stanimate_with_worldline", "specrel.geom.Collection", "specrel.visualize.stanimate", "sys.path.append" ]
[((34, 55), 'sys.path.append', 'sys.path.append', (['""".."""'], {}), "('..')\n", (49, 55), False, 'import sys\n'), ((292, 346), 'specrel.spacetime.physical.MovingObject', 'phy.MovingObject', (['(0)'], {'draw_options': "{'label': '$v = 0$'}"}), "(0, draw_options={'label': '$v = 0$'})\n", (308, 346), True, 'import specrel.spacetime.physical as phy\n'), ((507, 610), 'specrel.visualize.stplot', 'vis.stplot', (['stationary'], {'title': 'title', 'tlim': 'tlim', 'xlim': 'xlim', 'grid': 'include_grid', 'legend': 'include_legend'}), '(stationary, title=title, tlim=tlim, xlim=xlim, grid=include_grid,\n legend=include_legend)\n', (517, 610), True, 'import specrel.visualize as vis\n'), ((707, 814), 'specrel.visualize.stanimate', 'vis.stanimate', (['stationary'], {'title': 'title', 'tlim': 'tlim', 'xlim': 'xlim', 'grid': 'include_grid', 'legend': 'include_legend'}), '(stationary, title=title, tlim=tlim, xlim=xlim, grid=\n include_grid, legend=include_legend)\n', (720, 814), True, 'import specrel.visualize as vis\n'), ((936, 1083), 'specrel.visualize.stanimate_with_worldline', 'vis.stanimate_with_worldline', (['stationary'], {'title': 'title', 'tlim': 'tlim', 'xlim': 'xlim', 'grid': 'include_grid', 'legend': 'include_legend', 'legend_loc': '"""upper right"""'}), "(stationary, title=title, tlim=tlim, xlim=xlim,\n grid=include_grid, legend=include_legend, legend_loc='upper right')\n", (964, 1083), True, 'import specrel.visualize as vis\n'), ((1213, 1305), 'specrel.spacetime.physical.MovingObject', 'phy.MovingObject', (['(0)'], {'velocity': '(1 / 2)', 'draw_options': "{'color': 'red', 'label': '$v = c/2$'}"}), "(0, velocity=1 / 2, draw_options={'color': 'red', 'label':\n '$v = c/2$'})\n", (1229, 1305), True, 'import specrel.spacetime.physical as phy\n'), ((1312, 1399), 'specrel.spacetime.physical.MovingObject', 'phy.MovingObject', (['(0)'], {'velocity': '(1)', 'draw_options': "{'color': 'gold', 'label': '$v = c$'}"}), "(0, velocity=1, draw_options={'color': 'gold', 'label':\n '$v = c$'})\n", (1328, 1399), True, 'import specrel.spacetime.physical as phy\n'), ((1406, 1500), 'specrel.spacetime.physical.MovingObject', 'phy.MovingObject', (['(0)'], {'velocity': '(3 / 2)', 'draw_options': "{'color': 'cyan', 'label': '$v = 3c/2$'}"}), "(0, velocity=3 / 2, draw_options={'color': 'cyan', 'label':\n '$v = 3c/2$'})\n", (1422, 1500), True, 'import specrel.spacetime.physical as phy\n'), ((1509, 1558), 'specrel.geom.Collection', 'geom.Collection', (['[stationary, moving, light, ftl]'], {}), '([stationary, moving, light, ftl])\n', (1524, 1558), True, 'import specrel.geom as geom\n'), ((1592, 1771), 'specrel.visualize.stanimate_with_worldline', 'vis.stanimate_with_worldline', (['objects'], {'title': 'title', 'current_time_color': '"""magenta"""', 'tlim': 'tlim', 'xlim': 'xlim', 'grid': 'include_grid', 'legend': 'include_legend', 'legend_loc': '"""upper left"""'}), "(objects, title=title, current_time_color=\n 'magenta', tlim=tlim, xlim=xlim, grid=include_grid, legend=\n include_legend, legend_loc='upper left')\n", (1620, 1771), True, 'import specrel.visualize as vis\n'), ((1859, 1951), 'specrel.spacetime.physical.MovingObject', 'phy.MovingObject', (['(-1 / 2)'], {'length': '(1)', 'velocity': '(1 / 2)', 'draw_options': "{'label': 'Meterstick'}"}), "(-1 / 2, length=1, velocity=1 / 2, draw_options={'label':\n 'Meterstick'})\n", (1875, 1951), True, 'import specrel.spacetime.physical as phy\n'), ((2193, 2339), 'specrel.visualize.stanimate_with_worldline', 'vis.stanimate_with_worldline', (['meterstick'], {'title': 'title', 'tlim': 'tlim', 'xlim': 'xlim', 'grid': 'include_grid', 'legend': 'include_legend', 'legend_loc': '"""upper left"""'}), "(meterstick, title=title, tlim=tlim, xlim=xlim,\n grid=include_grid, legend=include_legend, legend_loc='upper left')\n", (2221, 2339), True, 'import specrel.visualize as vis\n')]
from __future__ import absolute_import from six.moves.urllib.parse import urlencode from django.test import RequestFactory from django.contrib.auth.models import AnonymousUser from sentry.auth.helper import handle_new_user from sentry.models import AuthProvider, InviteStatus, OrganizationMember from sentry.testutils import TestCase from sentry.utils.compat import mock class HandleNewUserTest(TestCase): @mock.patch("sentry.analytics.record") def test_simple(self, mock_record): provider = "dummy" request = RequestFactory().post("/auth/sso/") request.user = AnonymousUser() auth_provider = AuthProvider.objects.create( organization=self.organization, provider=provider ) identity = {"id": "1234", "email": "<EMAIL>", "name": "Morty"} auth_identity = handle_new_user(auth_provider, self.organization, request, identity) user = auth_identity.user assert user.email == identity["email"] assert OrganizationMember.objects.filter(organization=self.organization, user=user).exists() signup_record = [r for r in mock_record.call_args_list if r[0][0] == "user.signup"] assert signup_record == [ mock.call( "user.signup", user_id=user.id, source="sso", provider=provider, referrer="in-app" ) ] def test_associated_existing_member_invite_by_email(self): request = RequestFactory().post("/auth/sso/") request.user = AnonymousUser() provider = AuthProvider.objects.create(organization=self.organization, provider="dummy") identity = {"id": "1234", "email": "<EMAIL>", "name": "Morty"} member = OrganizationMember.objects.create( organization=self.organization, email=identity["email"] ) auth_identity = handle_new_user(provider, self.organization, request, identity) assigned_member = OrganizationMember.objects.get( organization=self.organization, user=auth_identity.user ) assert assigned_member.id == member.id def test_associated_existing_member_invite_request(self): request = RequestFactory().post("/auth/sso/") request.user = AnonymousUser() provider = AuthProvider.objects.create(organization=self.organization, provider="dummy") identity = {"id": "1234", "email": "<EMAIL>", "name": "Morty"} member = self.create_member( organization=self.organization, email=identity["email"], invite_status=InviteStatus.REQUESTED_TO_BE_INVITED.value, ) auth_identity = handle_new_user(provider, self.organization, request, identity) assert OrganizationMember.objects.filter( organization=self.organization, user=auth_identity.user, invite_status=InviteStatus.APPROVED.value, ).exists() assert not OrganizationMember.objects.filter(id=member.id).exists() def test_associate_pending_invite(self): provider = AuthProvider.objects.create(organization=self.organization, provider="dummy") identity = {"id": "1234", "email": "<EMAIL>", "name": "Morty"} # The org member invite should have a non matching email, but the # member id and token will match from the cookie, allowing association member = OrganizationMember.objects.create( organization=self.organization, email="<EMAIL>", token="abc" ) request = RequestFactory().post("/auth/sso/") request.user = AnonymousUser() request.COOKIES["pending-invite"] = urlencode( {"memberId": member.id, "token": member.token, "url": ""} ) auth_identity = handle_new_user(provider, self.organization, request, identity) assigned_member = OrganizationMember.objects.get( organization=self.organization, user=auth_identity.user ) assert assigned_member.id == member.id
[ "django.test.RequestFactory", "sentry.models.OrganizationMember.objects.create", "sentry.utils.compat.mock.call", "django.contrib.auth.models.AnonymousUser", "sentry.models.AuthProvider.objects.create", "sentry.models.OrganizationMember.objects.get", "sentry.utils.compat.mock.patch", "six.moves.urllib.parse.urlencode", "sentry.models.OrganizationMember.objects.filter", "sentry.auth.helper.handle_new_user" ]
[((415, 452), 'sentry.utils.compat.mock.patch', 'mock.patch', (['"""sentry.analytics.record"""'], {}), "('sentry.analytics.record')\n", (425, 452), False, 'from sentry.utils.compat import mock\n'), ((597, 612), 'django.contrib.auth.models.AnonymousUser', 'AnonymousUser', ([], {}), '()\n', (610, 612), False, 'from django.contrib.auth.models import AnonymousUser\n'), ((638, 716), 'sentry.models.AuthProvider.objects.create', 'AuthProvider.objects.create', ([], {'organization': 'self.organization', 'provider': 'provider'}), '(organization=self.organization, provider=provider)\n', (665, 716), False, 'from sentry.models import AuthProvider, InviteStatus, OrganizationMember\n'), ((835, 903), 'sentry.auth.helper.handle_new_user', 'handle_new_user', (['auth_provider', 'self.organization', 'request', 'identity'], {}), '(auth_provider, self.organization, request, identity)\n', (850, 903), False, 'from sentry.auth.helper import handle_new_user\n'), ((1501, 1516), 'django.contrib.auth.models.AnonymousUser', 'AnonymousUser', ([], {}), '()\n', (1514, 1516), False, 'from django.contrib.auth.models import AnonymousUser\n'), ((1537, 1614), 'sentry.models.AuthProvider.objects.create', 'AuthProvider.objects.create', ([], {'organization': 'self.organization', 'provider': '"""dummy"""'}), "(organization=self.organization, provider='dummy')\n", (1564, 1614), False, 'from sentry.models import AuthProvider, InviteStatus, OrganizationMember\n'), ((1704, 1799), 'sentry.models.OrganizationMember.objects.create', 'OrganizationMember.objects.create', ([], {'organization': 'self.organization', 'email': "identity['email']"}), "(organization=self.organization, email=\n identity['email'])\n", (1737, 1799), False, 'from sentry.models import AuthProvider, InviteStatus, OrganizationMember\n'), ((1842, 1905), 'sentry.auth.helper.handle_new_user', 'handle_new_user', (['provider', 'self.organization', 'request', 'identity'], {}), '(provider, self.organization, request, identity)\n', (1857, 1905), False, 'from sentry.auth.helper import handle_new_user\n'), ((1933, 2025), 'sentry.models.OrganizationMember.objects.get', 'OrganizationMember.objects.get', ([], {'organization': 'self.organization', 'user': 'auth_identity.user'}), '(organization=self.organization, user=\n auth_identity.user)\n', (1963, 2025), False, 'from sentry.models import AuthProvider, InviteStatus, OrganizationMember\n'), ((2231, 2246), 'django.contrib.auth.models.AnonymousUser', 'AnonymousUser', ([], {}), '()\n', (2244, 2246), False, 'from django.contrib.auth.models import AnonymousUser\n'), ((2267, 2344), 'sentry.models.AuthProvider.objects.create', 'AuthProvider.objects.create', ([], {'organization': 'self.organization', 'provider': '"""dummy"""'}), "(organization=self.organization, provider='dummy')\n", (2294, 2344), False, 'from sentry.models import AuthProvider, InviteStatus, OrganizationMember\n'), ((2640, 2703), 'sentry.auth.helper.handle_new_user', 'handle_new_user', (['provider', 'self.organization', 'request', 'identity'], {}), '(provider, self.organization, request, identity)\n', (2655, 2703), False, 'from sentry.auth.helper import handle_new_user\n'), ((3052, 3129), 'sentry.models.AuthProvider.objects.create', 'AuthProvider.objects.create', ([], {'organization': 'self.organization', 'provider': '"""dummy"""'}), "(organization=self.organization, provider='dummy')\n", (3079, 3129), False, 'from sentry.models import AuthProvider, InviteStatus, OrganizationMember\n'), ((3372, 3472), 'sentry.models.OrganizationMember.objects.create', 'OrganizationMember.objects.create', ([], {'organization': 'self.organization', 'email': '"""<EMAIL>"""', 'token': '"""abc"""'}), "(organization=self.organization, email=\n '<EMAIL>', token='abc')\n", (3405, 3472), False, 'from sentry.models import AuthProvider, InviteStatus, OrganizationMember\n'), ((3568, 3583), 'django.contrib.auth.models.AnonymousUser', 'AnonymousUser', ([], {}), '()\n', (3581, 3583), False, 'from django.contrib.auth.models import AnonymousUser\n'), ((3628, 3696), 'six.moves.urllib.parse.urlencode', 'urlencode', (["{'memberId': member.id, 'token': member.token, 'url': ''}"], {}), "({'memberId': member.id, 'token': member.token, 'url': ''})\n", (3637, 3696), False, 'from six.moves.urllib.parse import urlencode\n'), ((3744, 3807), 'sentry.auth.helper.handle_new_user', 'handle_new_user', (['provider', 'self.organization', 'request', 'identity'], {}), '(provider, self.organization, request, identity)\n', (3759, 3807), False, 'from sentry.auth.helper import handle_new_user\n'), ((3835, 3927), 'sentry.models.OrganizationMember.objects.get', 'OrganizationMember.objects.get', ([], {'organization': 'self.organization', 'user': 'auth_identity.user'}), '(organization=self.organization, user=\n auth_identity.user)\n', (3865, 3927), False, 'from sentry.models import AuthProvider, InviteStatus, OrganizationMember\n'), ((538, 554), 'django.test.RequestFactory', 'RequestFactory', ([], {}), '()\n', (552, 554), False, 'from django.test import RequestFactory\n'), ((1001, 1077), 'sentry.models.OrganizationMember.objects.filter', 'OrganizationMember.objects.filter', ([], {'organization': 'self.organization', 'user': 'user'}), '(organization=self.organization, user=user)\n', (1034, 1077), False, 'from sentry.models import AuthProvider, InviteStatus, OrganizationMember\n'), ((1226, 1323), 'sentry.utils.compat.mock.call', 'mock.call', (['"""user.signup"""'], {'user_id': 'user.id', 'source': '"""sso"""', 'provider': 'provider', 'referrer': '"""in-app"""'}), "('user.signup', user_id=user.id, source='sso', provider=provider,\n referrer='in-app')\n", (1235, 1323), False, 'from sentry.utils.compat import mock\n'), ((1442, 1458), 'django.test.RequestFactory', 'RequestFactory', ([], {}), '()\n', (1456, 1458), False, 'from django.test import RequestFactory\n'), ((2172, 2188), 'django.test.RequestFactory', 'RequestFactory', ([], {}), '()\n', (2186, 2188), False, 'from django.test import RequestFactory\n'), ((2720, 2858), 'sentry.models.OrganizationMember.objects.filter', 'OrganizationMember.objects.filter', ([], {'organization': 'self.organization', 'user': 'auth_identity.user', 'invite_status': 'InviteStatus.APPROVED.value'}), '(organization=self.organization, user=\n auth_identity.user, invite_status=InviteStatus.APPROVED.value)\n', (2753, 2858), False, 'from sentry.models import AuthProvider, InviteStatus, OrganizationMember\n'), ((3509, 3525), 'django.test.RequestFactory', 'RequestFactory', ([], {}), '()\n', (3523, 3525), False, 'from django.test import RequestFactory\n'), ((2930, 2977), 'sentry.models.OrganizationMember.objects.filter', 'OrganizationMember.objects.filter', ([], {'id': 'member.id'}), '(id=member.id)\n', (2963, 2977), False, 'from sentry.models import AuthProvider, InviteStatus, OrganizationMember\n')]
import datetime import requests from mbta_python.models import Stop, Direction, Schedule, Mode, \ TripSchedule, Alert, StopWithMode, Prediction HOST = "http://realtime.mbta.com/developer/api/v2" def datetime_to_epoch(dt): epoch = datetime.datetime.utcfromtimestamp(0) return int((dt - epoch).total_seconds()) class MBTASDK(object): """Wrapper around calls to the MBTA Realtime API """ def __init__(self, api_key): self.api_key = api_key def _make_request(self, path, params): url = "{}/{}".format(HOST, path) response = requests.get(url, params=params) data = response.json() error = data.get("error") if error: raise Exception(error["message"]) return response.json() def get_stops_by_location(self, latitude, longitude): """Get a List of Stops sorted by proximity to the given latitude and longitude """ params = { "lat": latitude, "lon": longitude, "api_key": self.api_key, "format": "json" } data = self._make_request("stopsbylocation", params) stops = [Stop(stop_data) for stop_data in data["stop"]] return stops def get_stops_by_route(self, route_id): """Return a List of Directions for the route_id that contain a list of Stops that Direction and Route serve """ params = { "route": route_id, "api_key": self.api_key, "format": "json" } data = self._make_request("stopsbyroute", params) return [Direction(d) for d in data["direction"]] def get_routes_by_stop(self, stop_id): """Return a list of routes that serve a particular stop """ params = { "stop": stop_id, "api_key": self.api_key, "format": "json" } data = self._make_request("routesbystop", params) return StopWithMode(data) def get_schedules_by_stop(self, stop_id, route_id=None, direction_id=None, date=None, max_time=None, max_trips=None): """Return scheduled arrivals and departures for a direction and route for a particular stop. stop_id - Stop ID route_id - Route ID, If not included then schedule for all routes serving the stop will be returned, direction_id - Direction ID, If included then route must also be included if not included then schedule for all directions of the route serving the stop will be returned date - Time after which schedule should be returned. If included then must be within the next seven (7) days If not included then schedule starting from the current datetime will be returned max_time - Defines maximum range of time (in minutes) within which trips will be returned. If not included defaults to 60. max_trips - Defines number of trips to return. Integer between 1 and 100. If not included defaults to 5. """ params = { "stop": stop_id, "api_key": self.api_key, "format": "json", "route": route_id, "direction": direction_id, "datetime": datetime_to_epoch(date) if date else None, "max_time": max_time, "max_trips": max_trips } data = self._make_request("schedulebystop", params) return Schedule(data) def get_schedules_by_routes(self, route_ids, date=None, max_time=None, max_trips=None): """Return the scheduled arrivals and departures in a direction for a particular route or routes. route_ids - List of Route IDs, or single Route ID date - Time after which schedule should be returned. If included then must be within the next seven (7) days If not included then schedule starting from the current datetime will be returned max_time - Defines maximum range of time (in minutes) within which trips will be returned. If not included defaults to 60. max_trips - Defines number of trips to return. Integer between 1 and 100. If not included defaults to 5. """ if not isinstance(route_ids, list): route_ids = [route_ids] params = { "routes": ",".join(route_ids), "api_key": self.api_key, "format": "json", "datetime": datetime_to_epoch(date) if date else None, "max_time": max_time, "max_trips": max_trips } data = self._make_request("schedulebyroutes", params) return [Mode(m) for m in data["mode"]] def get_schedules_by_trip(self, trip_id, date=None): """Return the scheduled arrivals and departures in a direction for a particular route or routes. route_ids - List of Route IDs, or single Route ID date - Time after which schedule should be returned. If included then must be within the next seven (7) days. If not included then schedule starting from the current datetime will be returned max_time - Defines maximum range of time (in minutes) within which trips will be returned. If not included defaults to 60. max_trips - Defines number of trips to return. Integer between 1 and 100. If not included defaults to 5. """ params = { "trip": trip_id, "api_key": self.api_key, "format": "json", "datetime": datetime_to_epoch(date) if date else None, } data = self._make_request("schedulebytrip", params) return TripSchedule(data) def get_predictions_by_stop(self, stop_id, include_access_alerts=False, include_service_alerts=True): """Return predicted arrivals and departures in the next hour for a direction and route for a particular stop. stop_id - Stop ID include_access_alerts - Whether or not alerts pertaining to accessibility (elevators, escalators) should be returned include_service_alerts - Whether or not service alerts should be returned """ params = { "stop": stop_id, "api_key": self.api_key, "format": "json", "include_access_alerts": include_access_alerts, "include_service_alerts": include_service_alerts } data = self._make_request("predictionsbystop", params) return Prediction(data) def get_predictions_by_routes(self, route_ids, include_access_alerts=False, include_service_alerts=True): """Return predictions for upcoming trips (including trips already underway) in a direction for a particular route or routes. route_ids - List of Route IDs, or single Route ID include_access_alerts - Whether or not alerts pertaining to accessibility (elevators, escalators) should be returned include_service_alerts - Whether or not service alerts should be returned """ if not isinstance(route_ids, list): route_ids = [route_ids] params = { "routes": ",".join(route_ids), "api_key": self.api_key, "format": "json", "include_access_alerts": include_access_alerts, "include_service_alerts": include_service_alerts } data = self._make_request("predictionsbyroutes", params) return Prediction(data) def get_vehicles_by_routes(self, route_ids, include_access_alerts=False, include_service_alerts=True): """Return vehicle positions for upcoming trips (including trips already underway) in a direction for a particular route or routes. route_ids - List of Route IDs, or single Route ID include_access_alerts - Whether or not alerts pertaining to accessibility (elevators, escalators) should be returned include_service_alerts - Whether or not service alerts should be returned """ if not isinstance(route_ids, list): route_ids = [route_ids] params = { "routes": ",".join(route_ids), "api_key": self.api_key, "format": "json", "include_access_alerts": include_access_alerts, "include_service_alerts": include_service_alerts } data = self._make_request("vehiclesbyroutes", params) return [Mode(m) for m in data] def get_predictions_by_trip(self, trip_id): """Return the predicted arrivals and departures for a particular trip. trip_id - TripID """ params = { "trip": trip_id, "api_key": self.api_key, "format": "json" } data = self._make_request("predictionsbytrip", params) return TripSchedule(data) def get_vehicles_by_trip(self, trip_id): """Return the predicted vehicle positions for a particular trip. trip_id - TripID """ params = { "trip": trip_id, "api_key": self.api_key, "format": "json" } data = self._make_request("vehiclesbytrip", params) return TripSchedule(data)
[ "datetime.datetime.utcfromtimestamp", "mbta_python.models.Stop", "mbta_python.models.TripSchedule", "mbta_python.models.Mode", "mbta_python.models.Direction", "mbta_python.models.Schedule", "requests.get", "mbta_python.models.StopWithMode", "mbta_python.models.Prediction" ]
[((242, 279), 'datetime.datetime.utcfromtimestamp', 'datetime.datetime.utcfromtimestamp', (['(0)'], {}), '(0)\n', (276, 279), False, 'import datetime\n'), ((579, 611), 'requests.get', 'requests.get', (['url'], {'params': 'params'}), '(url, params=params)\n', (591, 611), False, 'import requests\n'), ((1986, 2004), 'mbta_python.models.StopWithMode', 'StopWithMode', (['data'], {}), '(data)\n', (1998, 2004), False, 'from mbta_python.models import Stop, Direction, Schedule, Mode, TripSchedule, Alert, StopWithMode, Prediction\n'), ((3616, 3630), 'mbta_python.models.Schedule', 'Schedule', (['data'], {}), '(data)\n', (3624, 3630), False, 'from mbta_python.models import Stop, Direction, Schedule, Mode, TripSchedule, Alert, StopWithMode, Prediction\n'), ((5956, 5974), 'mbta_python.models.TripSchedule', 'TripSchedule', (['data'], {}), '(data)\n', (5968, 5974), False, 'from mbta_python.models import Stop, Direction, Schedule, Mode, TripSchedule, Alert, StopWithMode, Prediction\n'), ((6908, 6924), 'mbta_python.models.Prediction', 'Prediction', (['data'], {}), '(data)\n', (6918, 6924), False, 'from mbta_python.models import Stop, Direction, Schedule, Mode, TripSchedule, Alert, StopWithMode, Prediction\n'), ((8008, 8024), 'mbta_python.models.Prediction', 'Prediction', (['data'], {}), '(data)\n', (8018, 8024), False, 'from mbta_python.models import Stop, Direction, Schedule, Mode, TripSchedule, Alert, StopWithMode, Prediction\n'), ((9497, 9515), 'mbta_python.models.TripSchedule', 'TripSchedule', (['data'], {}), '(data)\n', (9509, 9515), False, 'from mbta_python.models import Stop, Direction, Schedule, Mode, TripSchedule, Alert, StopWithMode, Prediction\n'), ((9872, 9890), 'mbta_python.models.TripSchedule', 'TripSchedule', (['data'], {}), '(data)\n', (9884, 9890), False, 'from mbta_python.models import Stop, Direction, Schedule, Mode, TripSchedule, Alert, StopWithMode, Prediction\n'), ((1175, 1190), 'mbta_python.models.Stop', 'Stop', (['stop_data'], {}), '(stop_data)\n', (1179, 1190), False, 'from mbta_python.models import Stop, Direction, Schedule, Mode, TripSchedule, Alert, StopWithMode, Prediction\n'), ((1627, 1639), 'mbta_python.models.Direction', 'Direction', (['d'], {}), '(d)\n', (1636, 1639), False, 'from mbta_python.models import Stop, Direction, Schedule, Mode, TripSchedule, Alert, StopWithMode, Prediction\n'), ((4902, 4909), 'mbta_python.models.Mode', 'Mode', (['m'], {}), '(m)\n', (4906, 4909), False, 'from mbta_python.models import Stop, Direction, Schedule, Mode, TripSchedule, Alert, StopWithMode, Prediction\n'), ((9106, 9113), 'mbta_python.models.Mode', 'Mode', (['m'], {}), '(m)\n', (9110, 9113), False, 'from mbta_python.models import Stop, Direction, Schedule, Mode, TripSchedule, Alert, StopWithMode, Prediction\n')]
"""Computation of ensemble anomalies based on a desired value.""" import os import numpy as np from scipy import stats # User-defined packages from read_netcdf import read_iris, save_n_2d_fields from sel_season_area import sel_area, sel_season def ens_anom(filenames, dir_output, name_outputs, varname, numens, season, area, extreme): """Ensemble anomalies. Computation of the ensemble anomalies based on the desired value from the input variable (it can be the percentile, mean, maximum, standard deviation or trend) OUTPUT: NetCDF files of ensemble mean of climatology, selected value and anomaly maps. """ print('The name of the output files will be <variable>_{0}.txt' .format(name_outputs)) print('Number of ensemble members: {0}'.format(numens)) outfiles = [] # Reading the netCDF file of 3Dfield, for all the ensemble members var_ens = [] for ens in range(numens): ifile = filenames[ens] # print('ENSEMBLE MEMBER %s' %ens) var, varunits, lat, lon, dates, _ = read_iris(ifile) # Convertion from kg m-2 s-1 to mm/day if varunits == 'kg m-2 s-1': var = var * 86400 # there are 86400 seconds in a day varunits = 'mm/day' # Selecting a season (DJF,DJFM,NDJFM,JJA) var_season, _ = sel_season(var, dates, season) # Selecting only [latS-latN, lonW-lonE] box region var_area, lat_area, lon_area = sel_area(lat, lon, var_season, area) var_ens.append(var_area) if varunits == 'kg m-2 s-1': print('\nPrecipitation rate units were converted from kg m-2 s-1 ' 'to mm/day') print('The variable is {0} ({1})'.format(varname, varunits)) print('Original var shape: (time x lat x lon)={0}'.format(var.shape)) print('var shape after selecting season {0} and area {1}: ' '(time x lat x lon)={2}'.format(season, area, var_area.shape)) if extreme == 'mean': # Compute the time mean over the entire period, for each ens member varextreme_ens = [np.nanmean(var_ens[i], axis=0) for i in range(numens)] elif len(extreme.split("_")) == 2: # Compute the chosen percentile over the period, for each ens member quant = int(extreme.partition("th")[0]) varextreme_ens = [np.nanpercentile(var_ens[i], quant, axis=0) for i in range(numens)] elif extreme == 'maximum': # Compute the maximum value over the period, for each ensemble member varextreme_ens = [np.nanmax(var_ens[i], axis=0) for i in range(numens)] elif extreme == 'std': # Compute the standard deviation over the period, for each ens member varextreme_ens = [np.nanstd(var_ens[i], axis=0) for i in range(numens)] elif extreme == 'trend': # Compute the linear trend over the period, for each ensemble member trendmap = np.empty((var_ens[0].shape[1], var_ens[0].shape[2])) trendmap_ens = [] for i in range(numens): for jla in range(var_ens[0].shape[1]): for jlo in range(var_ens[0].shape[2]): slope, _, _, _, _ = \ stats.linregress(range(var_ens[0].shape[0]), var_ens[i][:, jla, jlo]) trendmap[jla, jlo] = slope trendmap_ens.append(trendmap.copy()) varextreme_ens = trendmap_ens varextreme_ens_np = np.array(varextreme_ens) print('Anomalies are computed with respect to the {0}'.format(extreme)) # Compute and save the anomalies with respect to the ensemble ens_anomalies = varextreme_ens_np - np.nanmean(varextreme_ens_np, axis=0) varsave = 'ens_anomalies' ofile = os.path.join(dir_output, 'ens_anomalies_{0}.nc' .format(name_outputs)) # print(ofile) print('ens_anomalies shape: (numens x lat x lon)={0}' .format(ens_anomalies.shape)) save_n_2d_fields(lat_area, lon_area, ens_anomalies, varsave, varunits, ofile) outfiles.append(ofile) # Compute and save the climatology vartimemean_ens = [np.mean(var_ens[i], axis=0) for i in range(numens)] ens_climatologies = np.array(vartimemean_ens) varsave = 'ens_climatologies' ofile = os.path.join(dir_output, 'ens_climatologies_{0}.nc' .format(name_outputs)) save_n_2d_fields(lat_area, lon_area, ens_climatologies, varsave, varunits, ofile) outfiles.append(ofile) ens_extreme = varextreme_ens_np varsave = 'ens_extreme' ofile = os.path.join(dir_output, 'ens_extreme_{0}.nc'.format(name_outputs)) save_n_2d_fields(lat_area, lon_area, ens_extreme, varsave, varunits, ofile) outfiles.append(ofile) return outfiles
[ "numpy.mean", "numpy.nanstd", "numpy.nanpercentile", "sel_season_area.sel_area", "read_netcdf.save_n_2d_fields", "numpy.array", "numpy.nanmean", "read_netcdf.read_iris", "numpy.nanmax", "numpy.empty", "sel_season_area.sel_season" ]
[((3510, 3534), 'numpy.array', 'np.array', (['varextreme_ens'], {}), '(varextreme_ens)\n', (3518, 3534), True, 'import numpy as np\n'), ((4015, 4092), 'read_netcdf.save_n_2d_fields', 'save_n_2d_fields', (['lat_area', 'lon_area', 'ens_anomalies', 'varsave', 'varunits', 'ofile'], {}), '(lat_area, lon_area, ens_anomalies, varsave, varunits, ofile)\n', (4031, 4092), False, 'from read_netcdf import read_iris, save_n_2d_fields\n'), ((4279, 4304), 'numpy.array', 'np.array', (['vartimemean_ens'], {}), '(vartimemean_ens)\n', (4287, 4304), True, 'import numpy as np\n'), ((4455, 4540), 'read_netcdf.save_n_2d_fields', 'save_n_2d_fields', (['lat_area', 'lon_area', 'ens_climatologies', 'varsave', 'varunits', 'ofile'], {}), '(lat_area, lon_area, ens_climatologies, varsave, varunits,\n ofile)\n', (4471, 4540), False, 'from read_netcdf import read_iris, save_n_2d_fields\n'), ((4733, 4808), 'read_netcdf.save_n_2d_fields', 'save_n_2d_fields', (['lat_area', 'lon_area', 'ens_extreme', 'varsave', 'varunits', 'ofile'], {}), '(lat_area, lon_area, ens_extreme, varsave, varunits, ofile)\n', (4749, 4808), False, 'from read_netcdf import read_iris, save_n_2d_fields\n'), ((1071, 1087), 'read_netcdf.read_iris', 'read_iris', (['ifile'], {}), '(ifile)\n', (1080, 1087), False, 'from read_netcdf import read_iris, save_n_2d_fields\n'), ((1346, 1376), 'sel_season_area.sel_season', 'sel_season', (['var', 'dates', 'season'], {}), '(var, dates, season)\n', (1356, 1376), False, 'from sel_season_area import sel_area, sel_season\n'), ((1476, 1512), 'sel_season_area.sel_area', 'sel_area', (['lat', 'lon', 'var_season', 'area'], {}), '(lat, lon, var_season, area)\n', (1484, 1512), False, 'from sel_season_area import sel_area, sel_season\n'), ((3718, 3755), 'numpy.nanmean', 'np.nanmean', (['varextreme_ens_np'], {'axis': '(0)'}), '(varextreme_ens_np, axis=0)\n', (3728, 3755), True, 'import numpy as np\n'), ((4203, 4230), 'numpy.mean', 'np.mean', (['var_ens[i]'], {'axis': '(0)'}), '(var_ens[i], axis=0)\n', (4210, 4230), True, 'import numpy as np\n'), ((2089, 2119), 'numpy.nanmean', 'np.nanmean', (['var_ens[i]'], {'axis': '(0)'}), '(var_ens[i], axis=0)\n', (2099, 2119), True, 'import numpy as np\n'), ((2361, 2404), 'numpy.nanpercentile', 'np.nanpercentile', (['var_ens[i]', 'quant'], {'axis': '(0)'}), '(var_ens[i], quant, axis=0)\n', (2377, 2404), True, 'import numpy as np\n'), ((2591, 2620), 'numpy.nanmax', 'np.nanmax', (['var_ens[i]'], {'axis': '(0)'}), '(var_ens[i], axis=0)\n', (2600, 2620), True, 'import numpy as np\n'), ((2777, 2806), 'numpy.nanstd', 'np.nanstd', (['var_ens[i]'], {'axis': '(0)'}), '(var_ens[i], axis=0)\n', (2786, 2806), True, 'import numpy as np\n'), ((2957, 3009), 'numpy.empty', 'np.empty', (['(var_ens[0].shape[1], var_ens[0].shape[2])'], {}), '((var_ens[0].shape[1], var_ens[0].shape[2]))\n', (2965, 3009), True, 'import numpy as np\n')]
import csv from testdata import SOCIALHISTORY_FILE from testdata import rndDate from patient import Patient SMOKINGCODES = { '428041000124106': 'Current some day smoker', '266919005' : 'Never smoker', '449868002' : 'Current every day smoker', '266927001' : 'Unknown if ever smoked', '8517006' : 'Former smoker' } class SocialHistory(object): """Create instances of SocialHistory; also maintains socialHistory by patient id""" socialHistories = {} # Dictionary of socialHistory by patient ID @classmethod def load(cls): """Loads patient SocialHistory""" # Loop through socialHistories and build patient socialHistory lists: histories = csv.reader(open(SOCIALHISTORY_FILE, 'U'), dialect='excel-tab') header = next(histories) for history in histories: cls(dict(zip(header, history))) # Create a socialHistory instance def __init__(self, p): self.pid = p['PID'] self.id = p['ID'] self.smokingStatusCode = p['SMOKINGSTATUSCODE'] self.smokingStatusText = SMOKINGCODES[self.smokingStatusCode] # Append socialHistory to the patient's socialHistory list: if self.pid in self.__class__.socialHistories: raise "Found >1 socialHistory for a patient" else: self.__class__.socialHistories[self.pid] = self def toJSON(self, prefix=""): if prefix: prefix += "-" patient = Patient.mpi[self.pid] return { "request": { "method": "PUT", "url": "Observation/" + prefix + "smokingstatus-" + self.id }, "resource": { "id": prefix + "smokingstatus-" + self.id, "resourceType": "Observation", "status": "final", "identifier": [ { "use" : "official", "system": "http://www.bmc.nl/zorgportal/identifiers/observations", "value" : prefix + self.id } ], "text": { "status": "generated", "div": '<div xmlns="http://www.w3.org/1999/xhtml">' + 'Tobacco smoking status: %s</div>'%self.smokingStatusText }, "performer": [ { "reference": "Practitioner/" + prefix + "Practitioner-" + patient.gp } ], "effectiveDateTime": rndDate(2016).isoformat(), "code": { "coding": [ { "system" : "http://loinc.org", "code" : "72166-2", "display": "Tobacco smoking status" } ], "text": "Tobacco smoking status" }, "subject": { "reference": "Patient/" + prefix + self.pid }, "category": [ { "coding": [ { "system" : "http://hl7.org/fhir/observation-category", "code" : "social-history", "display": "Social History" } ], "text": "Social History" } ], "valueCodeableConcept": { "coding": [ { "system" : "http://snomed.info/sct", "code" : self.smokingStatusCode, "display": self.smokingStatusText } ], "text": self.smokingStatusText } } }
[ "testdata.rndDate" ]
[((2604, 2617), 'testdata.rndDate', 'rndDate', (['(2016)'], {}), '(2016)\n', (2611, 2617), False, 'from testdata import rndDate\n')]
# Copyright 2013-2021 Lawrence Livermore National Security, LLC and other # Spack Project Developers. See the top-level COPYRIGHT file for details. # # SPDX-License-Identifier: (Apache-2.0 OR MIT) import os import pytest from llnl.util.filesystem import mkdirp, touch import spack.config from spack.fetch_strategy import CacheURLFetchStrategy, NoCacheError from spack.stage import Stage @pytest.mark.parametrize('_fetch_method', ['curl', 'urllib']) def test_fetch_missing_cache(tmpdir, _fetch_method): """Ensure raise a missing cache file.""" testpath = str(tmpdir) with spack.config.override('config:url_fetch_method', _fetch_method): fetcher = CacheURLFetchStrategy(url='file:///not-a-real-cache-file') with Stage(fetcher, path=testpath): with pytest.raises(NoCacheError, match=r'No cache'): fetcher.fetch() @pytest.mark.parametrize('_fetch_method', ['curl', 'urllib']) def test_fetch(tmpdir, _fetch_method): """Ensure a fetch after expanding is effectively a no-op.""" testpath = str(tmpdir) cache = os.path.join(testpath, 'cache.tar.gz') touch(cache) url = 'file:///{0}'.format(cache) with spack.config.override('config:url_fetch_method', _fetch_method): fetcher = CacheURLFetchStrategy(url=url) with Stage(fetcher, path=testpath) as stage: source_path = stage.source_path mkdirp(source_path) fetcher.fetch()
[ "llnl.util.filesystem.touch", "os.path.join", "pytest.mark.parametrize", "spack.stage.Stage", "pytest.raises", "spack.fetch_strategy.CacheURLFetchStrategy", "llnl.util.filesystem.mkdirp" ]
[((394, 454), 'pytest.mark.parametrize', 'pytest.mark.parametrize', (['"""_fetch_method"""', "['curl', 'urllib']"], {}), "('_fetch_method', ['curl', 'urllib'])\n", (417, 454), False, 'import pytest\n'), ((875, 935), 'pytest.mark.parametrize', 'pytest.mark.parametrize', (['"""_fetch_method"""', "['curl', 'urllib']"], {}), "('_fetch_method', ['curl', 'urllib'])\n", (898, 935), False, 'import pytest\n'), ((1079, 1117), 'os.path.join', 'os.path.join', (['testpath', '"""cache.tar.gz"""'], {}), "(testpath, 'cache.tar.gz')\n", (1091, 1117), False, 'import os\n'), ((1122, 1134), 'llnl.util.filesystem.touch', 'touch', (['cache'], {}), '(cache)\n', (1127, 1134), False, 'from llnl.util.filesystem import mkdirp, touch\n'), ((672, 730), 'spack.fetch_strategy.CacheURLFetchStrategy', 'CacheURLFetchStrategy', ([], {'url': '"""file:///not-a-real-cache-file"""'}), "(url='file:///not-a-real-cache-file')\n", (693, 730), False, 'from spack.fetch_strategy import CacheURLFetchStrategy, NoCacheError\n'), ((1265, 1295), 'spack.fetch_strategy.CacheURLFetchStrategy', 'CacheURLFetchStrategy', ([], {'url': 'url'}), '(url=url)\n', (1286, 1295), False, 'from spack.fetch_strategy import CacheURLFetchStrategy, NoCacheError\n'), ((744, 773), 'spack.stage.Stage', 'Stage', (['fetcher'], {'path': 'testpath'}), '(fetcher, path=testpath)\n', (749, 773), False, 'from spack.stage import Stage\n'), ((1309, 1338), 'spack.stage.Stage', 'Stage', (['fetcher'], {'path': 'testpath'}), '(fetcher, path=testpath)\n', (1314, 1338), False, 'from spack.stage import Stage\n'), ((1405, 1424), 'llnl.util.filesystem.mkdirp', 'mkdirp', (['source_path'], {}), '(source_path)\n', (1411, 1424), False, 'from llnl.util.filesystem import mkdirp, touch\n'), ((792, 837), 'pytest.raises', 'pytest.raises', (['NoCacheError'], {'match': '"""No cache"""'}), "(NoCacheError, match='No cache')\n", (805, 837), False, 'import pytest\n')]
from typing_extensions import Required #from sqlalchemy.sql.sqltypes import Boolean from graphene import ObjectType, String, Field, ID, List, DateTime, Mutation, Boolean, Int from models.EventsRelated.EventModel import EventModel from graphqltypes.Utils import extractSession class EventType(ObjectType): id = ID() name = String() lastchange = DateTime() externalId = String() users = List('graphqltypes.User.UserType') def resolve_users(parent, info): session = extractSession(info) dbRecord = session.query(EventModel).get(parent.id) return dbRecord.users groups = List('graphqltypes.Group.GroupType') def resolve_users(parent, info): session = extractSession(info) dbRecord = session.query(EventModel).get(parent.id) return dbRecord.groups rooms = List('graphqltypes.Room.RoomType') def resolve_rooms(parent, info): session = extractSession(info) dbRecord = session.query(EventModel).get(parent.id) return dbRecord.rooms
[ "graphene.String", "graphene.List", "graphqltypes.Utils.extractSession", "graphene.ID", "graphene.DateTime" ]
[((317, 321), 'graphene.ID', 'ID', ([], {}), '()\n', (319, 321), False, 'from graphene import ObjectType, String, Field, ID, List, DateTime, Mutation, Boolean, Int\n'), ((333, 341), 'graphene.String', 'String', ([], {}), '()\n', (339, 341), False, 'from graphene import ObjectType, String, Field, ID, List, DateTime, Mutation, Boolean, Int\n'), ((360, 370), 'graphene.DateTime', 'DateTime', ([], {}), '()\n', (368, 370), False, 'from graphene import ObjectType, String, Field, ID, List, DateTime, Mutation, Boolean, Int\n'), ((388, 396), 'graphene.String', 'String', ([], {}), '()\n', (394, 396), False, 'from graphene import ObjectType, String, Field, ID, List, DateTime, Mutation, Boolean, Int\n'), ((410, 444), 'graphene.List', 'List', (['"""graphqltypes.User.UserType"""'], {}), "('graphqltypes.User.UserType')\n", (414, 444), False, 'from graphene import ObjectType, String, Field, ID, List, DateTime, Mutation, Boolean, Int\n'), ((633, 669), 'graphene.List', 'List', (['"""graphqltypes.Group.GroupType"""'], {}), "('graphqltypes.Group.GroupType')\n", (637, 669), False, 'from graphene import ObjectType, String, Field, ID, List, DateTime, Mutation, Boolean, Int\n'), ((858, 892), 'graphene.List', 'List', (['"""graphqltypes.Room.RoomType"""'], {}), "('graphqltypes.Room.RoomType')\n", (862, 892), False, 'from graphene import ObjectType, String, Field, ID, List, DateTime, Mutation, Boolean, Int\n'), ((500, 520), 'graphqltypes.Utils.extractSession', 'extractSession', (['info'], {}), '(info)\n', (514, 520), False, 'from graphqltypes.Utils import extractSession\n'), ((725, 745), 'graphqltypes.Utils.extractSession', 'extractSession', (['info'], {}), '(info)\n', (739, 745), False, 'from graphqltypes.Utils import extractSession\n'), ((948, 968), 'graphqltypes.Utils.extractSession', 'extractSession', (['info'], {}), '(info)\n', (962, 968), False, 'from graphqltypes.Utils import extractSession\n')]
from django.shortcuts import render from .models import Disk import os def index(request): context = {} disk_list = Disk.objects.all() context['disk_list'] = disk_list return render(request, 'index.html', context) #def index(request): # module_dir = os.path.dirname(__file__) # file_path = os.path.join(module_dir, 'data.txt') # disk_list = open(file_path , 'r') # data = data_file.read() # context = {'disk_list': data} # return render(request, 'index.html', context)
[ "django.shortcuts.render" ]
[((193, 231), 'django.shortcuts.render', 'render', (['request', '"""index.html"""', 'context'], {}), "(request, 'index.html', context)\n", (199, 231), False, 'from django.shortcuts import render\n')]
# Copyright (c) 2021-Present (<NAME>) # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # http://www.apache.org/licenses/LICENSE-2.0 # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import requests as re import infapy from infapy.exceptions import InvalidDetailsProvided class AgentService(): def __init__(self,v3,v3BaseURL,v3SessionID): self._v3 = v3 self._v3BaseURL = v3BaseURL self._v3SessionID = v3SessionID def updateAgentService(self,serviceName, serviceAction, agentId): url=self._v3BaseURL + "/public/core/v3/agent/service" headers = {'Content-Type': "application/json", 'Accept': "application/json","INFA-SESSION-ID":self._v3SessionID} body = { 'serviceName':serviceName, 'serviceAction':serviceAction, 'agentId':agentId} infapy.log.info("agentService API URL - " + url) infapy.log.info("API Headers: " + str(headers)) infapy.log.info("Body: " + str(body)) try: response = re.post(url=url, json=body, headers=headers) data = response.json() infapy.log.debug(str(data)) try: if ("error" in data): infapy.log.error("Please validate the details passed") infapy.log.error(str(data)) raise InvalidDetailsProvided except Exception as e: infapy.log.exception(e) raise except Exception as e: infapy.log.exception(e) raise infapy.log.info(data["message"]) return data
[ "requests.post", "infapy.log.error", "infapy.log.exception", "infapy.log.info" ]
[((1238, 1286), 'infapy.log.info', 'infapy.log.info', (["('agentService API URL - ' + url)"], {}), "('agentService API URL - ' + url)\n", (1253, 1286), False, 'import infapy\n'), ((1963, 1995), 'infapy.log.info', 'infapy.log.info', (["data['message']"], {}), "(data['message'])\n", (1978, 1995), False, 'import infapy\n'), ((1426, 1470), 'requests.post', 're.post', ([], {'url': 'url', 'json': 'body', 'headers': 'headers'}), '(url=url, json=body, headers=headers)\n', (1433, 1470), True, 'import requests as re\n'), ((1913, 1936), 'infapy.log.exception', 'infapy.log.exception', (['e'], {}), '(e)\n', (1933, 1936), False, 'import infapy\n'), ((1621, 1675), 'infapy.log.error', 'infapy.log.error', (['"""Please validate the details passed"""'], {}), "('Please validate the details passed')\n", (1637, 1675), False, 'import infapy\n'), ((1824, 1847), 'infapy.log.exception', 'infapy.log.exception', (['e'], {}), '(e)\n', (1844, 1847), False, 'import infapy\n')]
# Copyright 2021 Google LLC. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Tests for tfx.orchestration.experimental.core.service_jobs.""" from absl.testing.absltest import mock import tensorflow as tf from tfx.orchestration.experimental.core import service_jobs from tfx.orchestration.experimental.core import test_utils class ExceptionHandlingServiceJobManagerWrapperTest(test_utils.TfxTest): def setUp(self): super().setUp() self._mock_service_job_manager = mock.create_autospec( service_jobs.ServiceJobManager, instance=True) self._mock_service_job_manager.ensure_node_services.return_value = ( service_jobs.ServiceStatus.SUCCESS) self._mock_service_job_manager.stop_node_services.return_value = True self._mock_service_job_manager.is_pure_service_node.return_value = True self._mock_service_job_manager.is_mixed_service_node.return_value = False self._wrapper = service_jobs.ExceptionHandlingServiceJobManagerWrapper( self._mock_service_job_manager) def test_calls_forwarded_to_underlying_instance(self): self.assertEqual(service_jobs.ServiceStatus.SUCCESS, self._wrapper.ensure_node_services(mock.Mock(), 'node1')) self.assertTrue(self._wrapper.stop_node_services(mock.Mock(), 'node2')) self.assertTrue(self._wrapper.is_pure_service_node(mock.Mock(), 'node3')) self.assertFalse(self._wrapper.is_mixed_service_node(mock.Mock(), 'node4')) self._mock_service_job_manager.ensure_node_services.assert_called_once_with( mock.ANY, 'node1') self._mock_service_job_manager.stop_node_services.assert_called_once_with( mock.ANY, 'node2') self._mock_service_job_manager.is_pure_service_node.assert_called_once_with( mock.ANY, 'node3') self._mock_service_job_manager.is_mixed_service_node.assert_called_once_with( mock.ANY, 'node4') def test_ensure_node_services_exception_handling(self): self._mock_service_job_manager.ensure_node_services.side_effect = RuntimeError( 'test error') self.assertEqual(service_jobs.ServiceStatus.FAILED, self._wrapper.ensure_node_services(mock.Mock(), 'node1')) self._mock_service_job_manager.ensure_node_services.assert_called_once_with( mock.ANY, 'node1') def test_stop_node_services_exception_handling(self): self._mock_service_job_manager.stop_node_services.side_effect = RuntimeError( 'test error') self.assertFalse(self._wrapper.stop_node_services(mock.Mock(), 'node2')) self._mock_service_job_manager.stop_node_services.assert_called_once_with( mock.ANY, 'node2') if __name__ == '__main__': tf.test.main()
[ "absl.testing.absltest.mock.create_autospec", "tfx.orchestration.experimental.core.service_jobs.ExceptionHandlingServiceJobManagerWrapper", "absl.testing.absltest.mock.Mock", "tensorflow.test.main" ]
[((3178, 3192), 'tensorflow.test.main', 'tf.test.main', ([], {}), '()\n', (3190, 3192), True, 'import tensorflow as tf\n'), ((998, 1065), 'absl.testing.absltest.mock.create_autospec', 'mock.create_autospec', (['service_jobs.ServiceJobManager'], {'instance': '(True)'}), '(service_jobs.ServiceJobManager, instance=True)\n', (1018, 1065), False, 'from absl.testing.absltest import mock\n'), ((1440, 1531), 'tfx.orchestration.experimental.core.service_jobs.ExceptionHandlingServiceJobManagerWrapper', 'service_jobs.ExceptionHandlingServiceJobManagerWrapper', (['self._mock_service_job_manager'], {}), '(self.\n _mock_service_job_manager)\n', (1494, 1531), False, 'from tfx.orchestration.experimental.core import service_jobs\n'), ((1707, 1718), 'absl.testing.absltest.mock.Mock', 'mock.Mock', ([], {}), '()\n', (1716, 1718), False, 'from absl.testing.absltest import mock\n'), ((1783, 1794), 'absl.testing.absltest.mock.Mock', 'mock.Mock', ([], {}), '()\n', (1792, 1794), False, 'from absl.testing.absltest import mock\n'), ((1861, 1872), 'absl.testing.absltest.mock.Mock', 'mock.Mock', ([], {}), '()\n', (1870, 1872), False, 'from absl.testing.absltest import mock\n'), ((1941, 1952), 'absl.testing.absltest.mock.Mock', 'mock.Mock', ([], {}), '()\n', (1950, 1952), False, 'from absl.testing.absltest import mock\n'), ((2672, 2683), 'absl.testing.absltest.mock.Mock', 'mock.Mock', ([], {}), '()\n', (2681, 2683), False, 'from absl.testing.absltest import mock\n'), ((3018, 3029), 'absl.testing.absltest.mock.Mock', 'mock.Mock', ([], {}), '()\n', (3027, 3029), False, 'from absl.testing.absltest import mock\n')]
from api import get_result import os import shutil from glob import glob from PIL import Image if __name__ == '__main__': image_files = glob('./test_images/*.*') result_dir = './test_results' if os.path.exists(result_dir): shutil.rmtree(result_dir) os.mkdir(result_dir) txt_file = os.path.join(result_dir, 'result.txt') txt_f = open(txt_file, 'w') for image_file in sorted(image_files): if ".gitkeep" in image_files: continue print("Finded file", image_file, end=" ") result = get_result(Image.open(image_file)) print(":", result) txt_f.write(image_file.split('/')[-1].split('.')[0] + ':' + result + '\n') txt_f.close()
[ "os.path.exists", "PIL.Image.open", "os.path.join", "os.mkdir", "shutil.rmtree", "glob.glob" ]
[((141, 166), 'glob.glob', 'glob', (['"""./test_images/*.*"""'], {}), "('./test_images/*.*')\n", (145, 166), False, 'from glob import glob\n'), ((208, 234), 'os.path.exists', 'os.path.exists', (['result_dir'], {}), '(result_dir)\n', (222, 234), False, 'import os\n'), ((274, 294), 'os.mkdir', 'os.mkdir', (['result_dir'], {}), '(result_dir)\n', (282, 294), False, 'import os\n'), ((311, 349), 'os.path.join', 'os.path.join', (['result_dir', '"""result.txt"""'], {}), "(result_dir, 'result.txt')\n", (323, 349), False, 'import os\n'), ((244, 269), 'shutil.rmtree', 'shutil.rmtree', (['result_dir'], {}), '(result_dir)\n', (257, 269), False, 'import shutil\n'), ((563, 585), 'PIL.Image.open', 'Image.open', (['image_file'], {}), '(image_file)\n', (573, 585), False, 'from PIL import Image\n')]
# Copyright 2020 Curtin University # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # Author: <NAME> import os import unittest from unittest.mock import patch import pendulum from azure.common import AzureMissingResourceHttpError from azure.cosmosdb.table.tableservice import TableService from azure.storage.blob import ContainerProperties from mag_archiver.azure import create_table from mag_archiver.mag import make_mag_query, MagState, MagDateType, MagRelease, MagTask, MagArchiverClient, \ hide_if_not_none class TestMag(unittest.TestCase): def test_hide_if_not_none(self): # Test that None is returned for None value = hide_if_not_none(None) self.assertEqual(value, None) # Test that 'hidden' is returned: string value = hide_if_not_none('hello world') self.assertEqual(value, 'hidden') # Test that 'hidden' is returned: integer value = hide_if_not_none(123) self.assertEqual(value, 'hidden') def test_make_mag_query(self): start_date = pendulum.datetime(year=2020, month=4, day=1) end_date = pendulum.datetime(year=2020, month=5, day=1) # No parameters query = make_mag_query() self.assertEqual(query, '') # State parameter query = make_mag_query(state=MagState.discovered) self.assertEqual(query, "State eq 'discovered'") query = make_mag_query(state=MagState.archived) self.assertEqual(query, "State eq 'archived'") query = make_mag_query(state=MagState.done) self.assertEqual(query, "State eq 'done'") # Start date parameter query = make_mag_query(start_date=start_date, date_type=MagDateType.release) self.assertEqual(query, "ReleaseDate ge datetime'2020-04-01T00:00Z'") query = make_mag_query(start_date=start_date, date_type=MagDateType.discovered) self.assertEqual(query, "DiscoveredDate ge datetime'2020-04-01T00:00Z'") query = make_mag_query(start_date=start_date, date_type=MagDateType.archived) self.assertEqual(query, "ArchivedDate ge datetime'2020-04-01T00:00Z'") query = make_mag_query(start_date=start_date, date_type=MagDateType.done) self.assertEqual(query, "DoneDate ge datetime'2020-04-01T00:00Z'") # End date parameter query = make_mag_query(end_date=end_date, date_type=MagDateType.release) self.assertEqual(query, "ReleaseDate lt datetime'2020-05-01T00:00Z'") query = make_mag_query(end_date=end_date, date_type=MagDateType.discovered) self.assertEqual(query, "DiscoveredDate lt datetime'2020-05-01T00:00Z'") query = make_mag_query(end_date=end_date, date_type=MagDateType.archived) self.assertEqual(query, "ArchivedDate lt datetime'2020-05-01T00:00Z'") query = make_mag_query(end_date=end_date, date_type=MagDateType.done) self.assertEqual(query, "DoneDate lt datetime'2020-05-01T00:00Z'") # Start date, end date and date type query = make_mag_query(start_date=start_date, end_date=end_date, date_type=MagDateType.release) self.assertEqual(query, "ReleaseDate ge datetime'2020-04-01T00:00Z' and ReleaseDate lt " "datetime'2020-05-01T00:00Z'") query = make_mag_query(start_date=start_date, end_date=end_date, date_type=MagDateType.discovered) self.assertEqual(query, "DiscoveredDate ge datetime'2020-04-01T00:00Z' and DiscoveredDate lt " "datetime'2020-05-01T00:00Z'") query = make_mag_query(start_date=start_date, end_date=end_date, date_type=MagDateType.archived) self.assertEqual(query, "ArchivedDate ge datetime'2020-04-01T00:00Z' and ArchivedDate lt " "datetime'2020-05-01T00:00Z'") query = make_mag_query(start_date=start_date, end_date=end_date, date_type=MagDateType.done) self.assertEqual(query, "DoneDate ge datetime'2020-04-01T00:00Z' and DoneDate lt " "datetime'2020-05-01T00:00Z'") # State, start date, end date and date type query = make_mag_query(state=MagState.discovered, start_date=start_date, end_date=end_date, date_type=MagDateType.discovered) self.assertEqual(query, "State eq 'discovered' and DiscoveredDate ge datetime'2020-04-01T00:00Z' " "and DiscoveredDate lt datetime'2020-05-01T00:00Z'") query = make_mag_query(state=MagState.archived, start_date=start_date, end_date=end_date, date_type=MagDateType.archived) self.assertEqual(query, "State eq 'archived' and ArchivedDate ge datetime'2020-04-01T00:00Z' " "and ArchivedDate lt datetime'2020-05-01T00:00Z'") query = make_mag_query(state=MagState.done, start_date=start_date, end_date=end_date, date_type=MagDateType.done) self.assertEqual(query, "State eq 'done' and DoneDate ge datetime'2020-04-01T00:00Z' " "and DoneDate lt datetime'2020-05-01T00:00Z'") def make_mag_release(account_name: str, account_key: str, year: int, month: int, day: int): min_date = pendulum.datetime(1601, 1, 1) partition_key_ = 'mag' row_key_ = f'mag-{year:0>4d}-{month:0>2d}-{day:0>2d}' state_ = MagState.discovered task_ = MagTask.not_started release_date_ = pendulum.datetime(year=year, month=month, day=day) source_container_ = row_key_ source_container_last_modified_ = pendulum.datetime(year=year, month=month, day=day, hour=1) release_container_ = '' release_path_ = '' discovered_date_ = pendulum.datetime(year=year, month=month, day=day, hour=2) archived_date_ = min_date done_date_ = min_date return MagRelease(partition_key_, row_key_, state_, task_, release_date_, source_container_, source_container_last_modified_, release_container_, release_path_, discovered_date_, archived_date_, done_date_, account_name=account_name, account_key=account_key) class TestMagRelease(unittest.TestCase): def __init__(self, *args, **kwargs): super(TestMagRelease, self).__init__(*args, **kwargs) self.account_name = os.getenv('STORAGE_ACCOUNT_NAME') self.account_key = os.getenv('STORAGE_ACCOUNT_KEY') create_table(self.account_name, self.account_key, MagRelease.TABLE_NAME) def test_secrets_hidden(self): # Check that account key is hidden account_name = 'myaccountname' secret = 'secret' # Check that account_key and sas_token are hidden release = make_mag_release(account_name, secret, 2020, 1, 1) self.assertIn('account_key=hidden', release.__repr__()) self.assertNotIn(secret, release.__str__()) self.assertNotIn(secret, release.__repr__()) # Check that account_key is None release = make_mag_release(account_name, None, 2020, 1, 1) self.assertIn('account_key=None', release.__repr__()) def test_create(self): release = make_mag_release(self.account_name, self.account_key, 2019, 6, 1) try: success = release.create() self.assertTrue(success) finally: release.delete() def test_delete(self): release = make_mag_release(self.account_name, self.account_key, 2019, 6, 1) # Check that we can create and then delete release.create() release.delete() # Check that second delete fails with self.assertRaises(AzureMissingResourceHttpError): release.delete() def test_update(self): release = make_mag_release(self.account_name, self.account_key, 2019, 6, 1) try: release.create() # Update release release.state = MagState.archived release.archived_date = pendulum.utcnow().microsecond_(0) release.update() # Verify that release is updated service = TableService(account_name=self.account_name, account_key=self.account_key) entity = service.get_entity(MagRelease.TABLE_NAME, release.partition_key, release.row_key) updated_release = MagRelease.from_entity(entity) self.assertEqual(release.state, updated_release.state) self.assertEqual(release.archived_date, updated_release.archived_date) finally: release.delete() def make_containers(): containers = [] cp1 = ContainerProperties() cp1.name = 'mag-2020-04-17' cp1.last_modified = pendulum.datetime(year=2020, month=4, day=18) containers.append(cp1) cp3 = ContainerProperties() cp3.name = 'mag-2020-05-01' cp3.last_modified = pendulum.datetime(year=2020, month=5, day=1) containers.append(cp3) cp2 = ContainerProperties() cp2.name = 'mag-2020-04-24' cp2.last_modified = pendulum.datetime(year=2020, month=4, day=25) containers.append(cp2) return containers class TestMagArchiverClient(unittest.TestCase): def __init__(self, *args, **kwargs): super(TestMagArchiverClient, self).__init__(*args, **kwargs) self.account_name = os.getenv('STORAGE_ACCOUNT_NAME') self.account_key = os.getenv('STORAGE_ACCOUNT_KEY') create_table(self.account_name, self.account_key, MagRelease.TABLE_NAME) def test_secrets_hidden(self): # Check that account key is hidden account_name = 'myaccountname' secret = 'secret' # Check that account_key and sas_token are hidden client = MagArchiverClient(account_name=account_name, account_key=secret, sas_token=secret) expected = f'MagArchiverClient(account_name={account_name}, account_key=hidden, sas_token=hidden)' self.assertEqual(client.__str__(), expected) self.assertEqual(client.__repr__(), expected) self.assertNotIn(secret, client.__str__()) self.assertNotIn(secret, client.__repr__()) # Check that account_key and sas_token are None client = MagArchiverClient(account_name=account_name) expected = f'MagArchiverClient(account_name={account_name}, account_key=None, sas_token=None)' self.assertEqual(client.__str__(), expected) self.assertEqual(client.__repr__(), expected) @patch('mag_archiver.mag.list_containers') @patch('pendulum.datetime.now') def test_list_containers(self, mock_now, mock_list_containers): # Mock time mock_now.return_value = pendulum.datetime(year=2020, month=5, day=1, minute=10) # Mock containers containers_in = make_containers() mock_list_containers.return_value = containers_in # Test that 2 containers are returned when last_modified_thresh=1 client = MagArchiverClient(account_name=self.account_name, account_key=self.account_key) containers_out = client.list_containers(last_modified_thresh=1) self.assertEqual(len(containers_out), 2) # Test that 3 containers are returned when last_modified_thresh=0 containers_out = client.list_containers(last_modified_thresh=0) self.assertEqual(len(containers_out), 3) # Test sort order reverse=False self.assertEqual(containers_in[0].name, containers_out[0].name) self.assertEqual(containers_in[2].name, containers_out[1].name) self.assertEqual(containers_in[1].name, containers_out[2].name) # Test sort order reverse=True containers_out = client.list_containers(last_modified_thresh=0, reverse=True) self.assertEqual(len(containers_out), 3) self.assertEqual(containers_in[1].name, containers_out[0].name) self.assertEqual(containers_in[2].name, containers_out[1].name) self.assertEqual(containers_in[0].name, containers_out[2].name) @patch('mag_archiver.mag.list_containers') @patch('pendulum.datetime.now') def test_update_releases(self, mock_now, mock_list_containers): # Mock time mock_now.return_value = pendulum.datetime(year=2020, month=5, day=1, minute=10) # Mock containers containers_in = make_containers() mock_list_containers.return_value = containers_in # Mock fetching of containers client = MagArchiverClient(account_name=self.account_name, account_key=self.account_key) containers = client.list_containers(last_modified_thresh=1) try: # Update releases based on containers num_updated, num_errors = client.update_releases(containers) self.assertEqual(num_updated, 2) self.assertEqual(num_errors, 0) finally: # Clean up service = TableService(account_name=self.account_name, account_key=self.account_key) for container in containers: service.delete_entity(MagRelease.TABLE_NAME, 'mag', container.name.replace("mag-", "")) @patch('mag_archiver.mag.list_containers') @patch('pendulum.datetime.now') def test_list_releases(self, mock_now, mock_list_containers): # Mock time mock_now.return_value = pendulum.datetime(year=2020, month=5, day=1, hour=1) # Mock containers containers_in = make_containers() mock_list_containers.return_value = containers_in # Mock fetching of containers client = MagArchiverClient(account_name=self.account_name, account_key=self.account_key) containers = client.list_containers(last_modified_thresh=1) try: # Update releases based on containers num_updated, num_errors = client.update_releases(containers) self.assertEqual(num_updated, 3) self.assertEqual(num_errors, 0) # Two releases start_date = pendulum.datetime(year=2020, month=4, day=17) end_date = pendulum.datetime(year=2020, month=5, day=1) releases = client.list_releases(start_date=start_date, end_date=end_date, state=MagState.discovered, date_type=MagDateType.release) self.assertEqual(len(releases), 2) # 1 release start_date = pendulum.datetime(year=2020, month=4, day=17, minute=1) end_date = pendulum.datetime(year=2020, month=5, day=1) releases = client.list_releases(start_date=start_date, end_date=end_date, state=MagState.discovered, date_type=MagDateType.release) self.assertEqual(len(releases), 1) # Three releases start_date = pendulum.datetime(year=2020, month=4, day=17) end_date = pendulum.datetime(year=2020, month=5, day=1, minute=1) releases = client.list_releases(start_date=start_date, end_date=end_date, state=MagState.discovered, date_type=MagDateType.release, reverse=False) self.assertEqual(len(releases), 3) # Sorting reverse=False self.assertEqual(releases[0].row_key, '2020-04-17') self.assertEqual(releases[1].row_key, '2020-04-24') self.assertEqual(releases[2].row_key, '2020-05-01') # Sorting reverse=True releases = client.list_releases(start_date=start_date, end_date=end_date, state=MagState.discovered, date_type=MagDateType.release, reverse=True) self.assertEqual(releases[0].row_key, '2020-05-01') self.assertEqual(releases[1].row_key, '2020-04-24') self.assertEqual(releases[2].row_key, '2020-04-17') finally: # Clean up service = TableService(account_name=self.account_name, account_key=self.account_key) for container in containers: service.delete_entity(MagRelease.TABLE_NAME, 'mag', container.name.replace("mag-", ""))
[ "mag_archiver.mag.hide_if_not_none", "mag_archiver.mag.make_mag_query", "mag_archiver.mag.MagRelease.from_entity", "mag_archiver.azure.create_table", "os.getenv", "pendulum.utcnow", "azure.storage.blob.ContainerProperties", "azure.cosmosdb.table.tableservice.TableService", "pendulum.datetime", "mag_archiver.mag.MagArchiverClient", "mag_archiver.mag.MagRelease", "unittest.mock.patch" ]
[((5764, 5793), 'pendulum.datetime', 'pendulum.datetime', (['(1601)', '(1)', '(1)'], {}), '(1601, 1, 1)\n', (5781, 5793), False, 'import pendulum\n'), ((5964, 6014), 'pendulum.datetime', 'pendulum.datetime', ([], {'year': 'year', 'month': 'month', 'day': 'day'}), '(year=year, month=month, day=day)\n', (5981, 6014), False, 'import pendulum\n'), ((6086, 6144), 'pendulum.datetime', 'pendulum.datetime', ([], {'year': 'year', 'month': 'month', 'day': 'day', 'hour': '(1)'}), '(year=year, month=month, day=day, hour=1)\n', (6103, 6144), False, 'import pendulum\n'), ((6219, 6277), 'pendulum.datetime', 'pendulum.datetime', ([], {'year': 'year', 'month': 'month', 'day': 'day', 'hour': '(2)'}), '(year=year, month=month, day=day, hour=2)\n', (6236, 6277), False, 'import pendulum\n'), ((6345, 6608), 'mag_archiver.mag.MagRelease', 'MagRelease', (['partition_key_', 'row_key_', 'state_', 'task_', 'release_date_', 'source_container_', 'source_container_last_modified_', 'release_container_', 'release_path_', 'discovered_date_', 'archived_date_', 'done_date_'], {'account_name': 'account_name', 'account_key': 'account_key'}), '(partition_key_, row_key_, state_, task_, release_date_,\n source_container_, source_container_last_modified_, release_container_,\n release_path_, discovered_date_, archived_date_, done_date_,\n account_name=account_name, account_key=account_key)\n', (6355, 6608), False, 'from mag_archiver.mag import make_mag_query, MagState, MagDateType, MagRelease, MagTask, MagArchiverClient, hide_if_not_none\n'), ((9084, 9105), 'azure.storage.blob.ContainerProperties', 'ContainerProperties', ([], {}), '()\n', (9103, 9105), False, 'from azure.storage.blob import ContainerProperties\n'), ((9162, 9207), 'pendulum.datetime', 'pendulum.datetime', ([], {'year': '(2020)', 'month': '(4)', 'day': '(18)'}), '(year=2020, month=4, day=18)\n', (9179, 9207), False, 'import pendulum\n'), ((9246, 9267), 'azure.storage.blob.ContainerProperties', 'ContainerProperties', ([], {}), '()\n', (9265, 9267), False, 'from azure.storage.blob import ContainerProperties\n'), ((9324, 9368), 'pendulum.datetime', 'pendulum.datetime', ([], {'year': '(2020)', 'month': '(5)', 'day': '(1)'}), '(year=2020, month=5, day=1)\n', (9341, 9368), False, 'import pendulum\n'), ((9407, 9428), 'azure.storage.blob.ContainerProperties', 'ContainerProperties', ([], {}), '()\n', (9426, 9428), False, 'from azure.storage.blob import ContainerProperties\n'), ((9485, 9530), 'pendulum.datetime', 'pendulum.datetime', ([], {'year': '(2020)', 'month': '(4)', 'day': '(25)'}), '(year=2020, month=4, day=25)\n', (9502, 9530), False, 'import pendulum\n'), ((10900, 10941), 'unittest.mock.patch', 'patch', (['"""mag_archiver.mag.list_containers"""'], {}), "('mag_archiver.mag.list_containers')\n", (10905, 10941), False, 'from unittest.mock import patch\n'), ((10947, 10977), 'unittest.mock.patch', 'patch', (['"""pendulum.datetime.now"""'], {}), "('pendulum.datetime.now')\n", (10952, 10977), False, 'from unittest.mock import patch\n'), ((12424, 12465), 'unittest.mock.patch', 'patch', (['"""mag_archiver.mag.list_containers"""'], {}), "('mag_archiver.mag.list_containers')\n", (12429, 12465), False, 'from unittest.mock import patch\n'), ((12471, 12501), 'unittest.mock.patch', 'patch', (['"""pendulum.datetime.now"""'], {}), "('pendulum.datetime.now')\n", (12476, 12501), False, 'from unittest.mock import patch\n'), ((13523, 13564), 'unittest.mock.patch', 'patch', (['"""mag_archiver.mag.list_containers"""'], {}), "('mag_archiver.mag.list_containers')\n", (13528, 13564), False, 'from unittest.mock import patch\n'), ((13570, 13600), 'unittest.mock.patch', 'patch', (['"""pendulum.datetime.now"""'], {}), "('pendulum.datetime.now')\n", (13575, 13600), False, 'from unittest.mock import patch\n'), ((1151, 1173), 'mag_archiver.mag.hide_if_not_none', 'hide_if_not_none', (['None'], {}), '(None)\n', (1167, 1173), False, 'from mag_archiver.mag import make_mag_query, MagState, MagDateType, MagRelease, MagTask, MagArchiverClient, hide_if_not_none\n'), ((1278, 1309), 'mag_archiver.mag.hide_if_not_none', 'hide_if_not_none', (['"""hello world"""'], {}), "('hello world')\n", (1294, 1309), False, 'from mag_archiver.mag import make_mag_query, MagState, MagDateType, MagRelease, MagTask, MagArchiverClient, hide_if_not_none\n'), ((1419, 1440), 'mag_archiver.mag.hide_if_not_none', 'hide_if_not_none', (['(123)'], {}), '(123)\n', (1435, 1440), False, 'from mag_archiver.mag import make_mag_query, MagState, MagDateType, MagRelease, MagTask, MagArchiverClient, hide_if_not_none\n'), ((1540, 1584), 'pendulum.datetime', 'pendulum.datetime', ([], {'year': '(2020)', 'month': '(4)', 'day': '(1)'}), '(year=2020, month=4, day=1)\n', (1557, 1584), False, 'import pendulum\n'), ((1604, 1648), 'pendulum.datetime', 'pendulum.datetime', ([], {'year': '(2020)', 'month': '(5)', 'day': '(1)'}), '(year=2020, month=5, day=1)\n', (1621, 1648), False, 'import pendulum\n'), ((1690, 1706), 'mag_archiver.mag.make_mag_query', 'make_mag_query', ([], {}), '()\n', (1704, 1706), False, 'from mag_archiver.mag import make_mag_query, MagState, MagDateType, MagRelease, MagTask, MagArchiverClient, hide_if_not_none\n'), ((1786, 1827), 'mag_archiver.mag.make_mag_query', 'make_mag_query', ([], {'state': 'MagState.discovered'}), '(state=MagState.discovered)\n', (1800, 1827), False, 'from mag_archiver.mag import make_mag_query, MagState, MagDateType, MagRelease, MagTask, MagArchiverClient, hide_if_not_none\n'), ((1902, 1941), 'mag_archiver.mag.make_mag_query', 'make_mag_query', ([], {'state': 'MagState.archived'}), '(state=MagState.archived)\n', (1916, 1941), False, 'from mag_archiver.mag import make_mag_query, MagState, MagDateType, MagRelease, MagTask, MagArchiverClient, hide_if_not_none\n'), ((2014, 2049), 'mag_archiver.mag.make_mag_query', 'make_mag_query', ([], {'state': 'MagState.done'}), '(state=MagState.done)\n', (2028, 2049), False, 'from mag_archiver.mag import make_mag_query, MagState, MagDateType, MagRelease, MagTask, MagArchiverClient, hide_if_not_none\n'), ((2149, 2217), 'mag_archiver.mag.make_mag_query', 'make_mag_query', ([], {'start_date': 'start_date', 'date_type': 'MagDateType.release'}), '(start_date=start_date, date_type=MagDateType.release)\n', (2163, 2217), False, 'from mag_archiver.mag import make_mag_query, MagState, MagDateType, MagRelease, MagTask, MagArchiverClient, hide_if_not_none\n'), ((2313, 2384), 'mag_archiver.mag.make_mag_query', 'make_mag_query', ([], {'start_date': 'start_date', 'date_type': 'MagDateType.discovered'}), '(start_date=start_date, date_type=MagDateType.discovered)\n', (2327, 2384), False, 'from mag_archiver.mag import make_mag_query, MagState, MagDateType, MagRelease, MagTask, MagArchiverClient, hide_if_not_none\n'), ((2483, 2552), 'mag_archiver.mag.make_mag_query', 'make_mag_query', ([], {'start_date': 'start_date', 'date_type': 'MagDateType.archived'}), '(start_date=start_date, date_type=MagDateType.archived)\n', (2497, 2552), False, 'from mag_archiver.mag import make_mag_query, MagState, MagDateType, MagRelease, MagTask, MagArchiverClient, hide_if_not_none\n'), ((2649, 2714), 'mag_archiver.mag.make_mag_query', 'make_mag_query', ([], {'start_date': 'start_date', 'date_type': 'MagDateType.done'}), '(start_date=start_date, date_type=MagDateType.done)\n', (2663, 2714), False, 'from mag_archiver.mag import make_mag_query, MagState, MagDateType, MagRelease, MagTask, MagArchiverClient, hide_if_not_none\n'), ((2836, 2900), 'mag_archiver.mag.make_mag_query', 'make_mag_query', ([], {'end_date': 'end_date', 'date_type': 'MagDateType.release'}), '(end_date=end_date, date_type=MagDateType.release)\n', (2850, 2900), False, 'from mag_archiver.mag import make_mag_query, MagState, MagDateType, MagRelease, MagTask, MagArchiverClient, hide_if_not_none\n'), ((2996, 3063), 'mag_archiver.mag.make_mag_query', 'make_mag_query', ([], {'end_date': 'end_date', 'date_type': 'MagDateType.discovered'}), '(end_date=end_date, date_type=MagDateType.discovered)\n', (3010, 3063), False, 'from mag_archiver.mag import make_mag_query, MagState, MagDateType, MagRelease, MagTask, MagArchiverClient, hide_if_not_none\n'), ((3162, 3227), 'mag_archiver.mag.make_mag_query', 'make_mag_query', ([], {'end_date': 'end_date', 'date_type': 'MagDateType.archived'}), '(end_date=end_date, date_type=MagDateType.archived)\n', (3176, 3227), False, 'from mag_archiver.mag import make_mag_query, MagState, MagDateType, MagRelease, MagTask, MagArchiverClient, hide_if_not_none\n'), ((3324, 3385), 'mag_archiver.mag.make_mag_query', 'make_mag_query', ([], {'end_date': 'end_date', 'date_type': 'MagDateType.done'}), '(end_date=end_date, date_type=MagDateType.done)\n', (3338, 3385), False, 'from mag_archiver.mag import make_mag_query, MagState, MagDateType, MagRelease, MagTask, MagArchiverClient, hide_if_not_none\n'), ((3523, 3615), 'mag_archiver.mag.make_mag_query', 'make_mag_query', ([], {'start_date': 'start_date', 'end_date': 'end_date', 'date_type': 'MagDateType.release'}), '(start_date=start_date, end_date=end_date, date_type=\n MagDateType.release)\n', (3537, 3615), False, 'from mag_archiver.mag import make_mag_query, MagState, MagDateType, MagRelease, MagTask, MagArchiverClient, hide_if_not_none\n'), ((3788, 3883), 'mag_archiver.mag.make_mag_query', 'make_mag_query', ([], {'start_date': 'start_date', 'end_date': 'end_date', 'date_type': 'MagDateType.discovered'}), '(start_date=start_date, end_date=end_date, date_type=\n MagDateType.discovered)\n', (3802, 3883), False, 'from mag_archiver.mag import make_mag_query, MagState, MagDateType, MagRelease, MagTask, MagArchiverClient, hide_if_not_none\n'), ((4062, 4155), 'mag_archiver.mag.make_mag_query', 'make_mag_query', ([], {'start_date': 'start_date', 'end_date': 'end_date', 'date_type': 'MagDateType.archived'}), '(start_date=start_date, end_date=end_date, date_type=\n MagDateType.archived)\n', (4076, 4155), False, 'from mag_archiver.mag import make_mag_query, MagState, MagDateType, MagRelease, MagTask, MagArchiverClient, hide_if_not_none\n'), ((4330, 4419), 'mag_archiver.mag.make_mag_query', 'make_mag_query', ([], {'start_date': 'start_date', 'end_date': 'end_date', 'date_type': 'MagDateType.done'}), '(start_date=start_date, end_date=end_date, date_type=\n MagDateType.done)\n', (4344, 4419), False, 'from mag_archiver.mag import make_mag_query, MagState, MagDateType, MagRelease, MagTask, MagArchiverClient, hide_if_not_none\n'), ((4638, 4760), 'mag_archiver.mag.make_mag_query', 'make_mag_query', ([], {'state': 'MagState.discovered', 'start_date': 'start_date', 'end_date': 'end_date', 'date_type': 'MagDateType.discovered'}), '(state=MagState.discovered, start_date=start_date, end_date=\n end_date, date_type=MagDateType.discovered)\n', (4652, 4760), False, 'from mag_archiver.mag import make_mag_query, MagState, MagDateType, MagRelease, MagTask, MagArchiverClient, hide_if_not_none\n'), ((4996, 5114), 'mag_archiver.mag.make_mag_query', 'make_mag_query', ([], {'state': 'MagState.archived', 'start_date': 'start_date', 'end_date': 'end_date', 'date_type': 'MagDateType.archived'}), '(state=MagState.archived, start_date=start_date, end_date=\n end_date, date_type=MagDateType.archived)\n', (5010, 5114), False, 'from mag_archiver.mag import make_mag_query, MagState, MagDateType, MagRelease, MagTask, MagArchiverClient, hide_if_not_none\n'), ((5344, 5454), 'mag_archiver.mag.make_mag_query', 'make_mag_query', ([], {'state': 'MagState.done', 'start_date': 'start_date', 'end_date': 'end_date', 'date_type': 'MagDateType.done'}), '(state=MagState.done, start_date=start_date, end_date=\n end_date, date_type=MagDateType.done)\n', (5358, 5454), False, 'from mag_archiver.mag import make_mag_query, MagState, MagDateType, MagRelease, MagTask, MagArchiverClient, hide_if_not_none\n'), ((6815, 6848), 'os.getenv', 'os.getenv', (['"""STORAGE_ACCOUNT_NAME"""'], {}), "('STORAGE_ACCOUNT_NAME')\n", (6824, 6848), False, 'import os\n'), ((6876, 6908), 'os.getenv', 'os.getenv', (['"""STORAGE_ACCOUNT_KEY"""'], {}), "('STORAGE_ACCOUNT_KEY')\n", (6885, 6908), False, 'import os\n'), ((6917, 6989), 'mag_archiver.azure.create_table', 'create_table', (['self.account_name', 'self.account_key', 'MagRelease.TABLE_NAME'], {}), '(self.account_name, self.account_key, MagRelease.TABLE_NAME)\n', (6929, 6989), False, 'from mag_archiver.azure import create_table\n'), ((9770, 9803), 'os.getenv', 'os.getenv', (['"""STORAGE_ACCOUNT_NAME"""'], {}), "('STORAGE_ACCOUNT_NAME')\n", (9779, 9803), False, 'import os\n'), ((9831, 9863), 'os.getenv', 'os.getenv', (['"""STORAGE_ACCOUNT_KEY"""'], {}), "('STORAGE_ACCOUNT_KEY')\n", (9840, 9863), False, 'import os\n'), ((9872, 9944), 'mag_archiver.azure.create_table', 'create_table', (['self.account_name', 'self.account_key', 'MagRelease.TABLE_NAME'], {}), '(self.account_name, self.account_key, MagRelease.TABLE_NAME)\n', (9884, 9944), False, 'from mag_archiver.azure import create_table\n'), ((10165, 10252), 'mag_archiver.mag.MagArchiverClient', 'MagArchiverClient', ([], {'account_name': 'account_name', 'account_key': 'secret', 'sas_token': 'secret'}), '(account_name=account_name, account_key=secret, sas_token=\n secret)\n', (10182, 10252), False, 'from mag_archiver.mag import make_mag_query, MagState, MagDateType, MagRelease, MagTask, MagArchiverClient, hide_if_not_none\n'), ((10639, 10683), 'mag_archiver.mag.MagArchiverClient', 'MagArchiverClient', ([], {'account_name': 'account_name'}), '(account_name=account_name)\n', (10656, 10683), False, 'from mag_archiver.mag import make_mag_query, MagState, MagDateType, MagRelease, MagTask, MagArchiverClient, hide_if_not_none\n'), ((11098, 11153), 'pendulum.datetime', 'pendulum.datetime', ([], {'year': '(2020)', 'month': '(5)', 'day': '(1)', 'minute': '(10)'}), '(year=2020, month=5, day=1, minute=10)\n', (11115, 11153), False, 'import pendulum\n'), ((11373, 11452), 'mag_archiver.mag.MagArchiverClient', 'MagArchiverClient', ([], {'account_name': 'self.account_name', 'account_key': 'self.account_key'}), '(account_name=self.account_name, account_key=self.account_key)\n', (11390, 11452), False, 'from mag_archiver.mag import make_mag_query, MagState, MagDateType, MagRelease, MagTask, MagArchiverClient, hide_if_not_none\n'), ((12622, 12677), 'pendulum.datetime', 'pendulum.datetime', ([], {'year': '(2020)', 'month': '(5)', 'day': '(1)', 'minute': '(10)'}), '(year=2020, month=5, day=1, minute=10)\n', (12639, 12677), False, 'import pendulum\n'), ((12861, 12940), 'mag_archiver.mag.MagArchiverClient', 'MagArchiverClient', ([], {'account_name': 'self.account_name', 'account_key': 'self.account_key'}), '(account_name=self.account_name, account_key=self.account_key)\n', (12878, 12940), False, 'from mag_archiver.mag import make_mag_query, MagState, MagDateType, MagRelease, MagTask, MagArchiverClient, hide_if_not_none\n'), ((13719, 13771), 'pendulum.datetime', 'pendulum.datetime', ([], {'year': '(2020)', 'month': '(5)', 'day': '(1)', 'hour': '(1)'}), '(year=2020, month=5, day=1, hour=1)\n', (13736, 13771), False, 'import pendulum\n'), ((13955, 14034), 'mag_archiver.mag.MagArchiverClient', 'MagArchiverClient', ([], {'account_name': 'self.account_name', 'account_key': 'self.account_key'}), '(account_name=self.account_name, account_key=self.account_key)\n', (13972, 14034), False, 'from mag_archiver.mag import make_mag_query, MagState, MagDateType, MagRelease, MagTask, MagArchiverClient, hide_if_not_none\n'), ((8594, 8668), 'azure.cosmosdb.table.tableservice.TableService', 'TableService', ([], {'account_name': 'self.account_name', 'account_key': 'self.account_key'}), '(account_name=self.account_name, account_key=self.account_key)\n', (8606, 8668), False, 'from azure.cosmosdb.table.tableservice import TableService\n'), ((8802, 8832), 'mag_archiver.mag.MagRelease.from_entity', 'MagRelease.from_entity', (['entity'], {}), '(entity)\n', (8824, 8832), False, 'from mag_archiver.mag import make_mag_query, MagState, MagDateType, MagRelease, MagTask, MagArchiverClient, hide_if_not_none\n'), ((13297, 13371), 'azure.cosmosdb.table.tableservice.TableService', 'TableService', ([], {'account_name': 'self.account_name', 'account_key': 'self.account_key'}), '(account_name=self.account_name, account_key=self.account_key)\n', (13309, 13371), False, 'from azure.cosmosdb.table.tableservice import TableService\n'), ((14382, 14427), 'pendulum.datetime', 'pendulum.datetime', ([], {'year': '(2020)', 'month': '(4)', 'day': '(17)'}), '(year=2020, month=4, day=17)\n', (14399, 14427), False, 'import pendulum\n'), ((14451, 14495), 'pendulum.datetime', 'pendulum.datetime', ([], {'year': '(2020)', 'month': '(5)', 'day': '(1)'}), '(year=2020, month=5, day=1)\n', (14468, 14495), False, 'import pendulum\n'), ((14781, 14836), 'pendulum.datetime', 'pendulum.datetime', ([], {'year': '(2020)', 'month': '(4)', 'day': '(17)', 'minute': '(1)'}), '(year=2020, month=4, day=17, minute=1)\n', (14798, 14836), False, 'import pendulum\n'), ((14860, 14904), 'pendulum.datetime', 'pendulum.datetime', ([], {'year': '(2020)', 'month': '(5)', 'day': '(1)'}), '(year=2020, month=5, day=1)\n', (14877, 14904), False, 'import pendulum\n'), ((15195, 15240), 'pendulum.datetime', 'pendulum.datetime', ([], {'year': '(2020)', 'month': '(4)', 'day': '(17)'}), '(year=2020, month=4, day=17)\n', (15212, 15240), False, 'import pendulum\n'), ((15264, 15318), 'pendulum.datetime', 'pendulum.datetime', ([], {'year': '(2020)', 'month': '(5)', 'day': '(1)', 'minute': '(1)'}), '(year=2020, month=5, day=1, minute=1)\n', (15281, 15318), False, 'import pendulum\n'), ((16335, 16409), 'azure.cosmosdb.table.tableservice.TableService', 'TableService', ([], {'account_name': 'self.account_name', 'account_key': 'self.account_key'}), '(account_name=self.account_name, account_key=self.account_key)\n', (16347, 16409), False, 'from azure.cosmosdb.table.tableservice import TableService\n'), ((8463, 8480), 'pendulum.utcnow', 'pendulum.utcnow', ([], {}), '()\n', (8478, 8480), False, 'import pendulum\n')]
''' Created on Mar 22, 2018 Edited on Jan 11, 2019 @author: npvance2 @author: curtisd2 Variables that will need to be edited/personalized: monitorID in Variables() (line 27) projectStartDate in Variables() (line 28) projectEndDate in Variables() (line 29) authToken in getAuthToken() (line 49) consumer_key in twitterAPI() (line 62) consumer_secret in twitterAPI() (line 63) access_token in twitterAPI() (line 64) access_secret in twitterAPI() (line 65) ''' from datetime import date, timedelta import urllib.request import json import csv import tweepy from tweepy import OAuthHandler def Variables(): monitorID = "9926183772" # The numerical ID for your Crimson Hexagon monitor startDate = "yyyy-mm-dd" # Date must be in yyyy-mm-dd format endDate = "yyyy-mm-dd" # Date must be in yyyy-mm-dd format variableMap = {} variableMap['monitorID'] = monitorID variableMap['startDate'] = startDate variableMap['endDate'] = endDate return variableMap def getURL(): #provides URL for Crimson API urlStart = "https://api.crimsonhexagon.com/api" return urlStart ########### # # You'll need to generate your own Crimson API key/token from here: # https://apidocs.crimsonhexagon.com/reference # ########### def getAuthToken(): #provides auth token needed to access Crimson API authToken = '' authToken = "&auth="+authToken return authToken ########### # # You'll need to add your own Twitter API keys here. # Instructions on generating API keys: https://developer.twitter.com/en/docs/basics/authentication/guides/access-tokens.html # API reference guide: https://developer.twitter.com/en/docs/api-reference-index.html # ########### def twitterAPI(): #Provides access keys for Twitter API consumer_key = '2S1Z7Giq0oOf3w0R0sJUPnLFx' consumer_secret = '<KEY>' access_token = '<KEY>' access_secret = '<KEY>' if (consumer_key == '') or (consumer_secret =='') or (access_token =='') or (access_secret ==''): print("Not all Twitter keys have been entered, please add them to the script and try again") auth = OAuthHandler(consumer_key, consumer_secret) auth.set_access_token(access_token, access_secret) api = tweepy.API(auth, wait_on_rate_limit=True, wait_on_rate_limit_notify=True) return api def getTwitterURL(): #provides URL for Twitter api urlStart = "https://api.twitter.com/1.1/statuses/lookup.json?id=" return urlStart def DatePull(startdate, enddate): listArray = [] startdate = date(int(startdate[0:4]), int(startdate[5:7]), int(startdate[8:10])) enddate = date(int(enddate[0:4]), int(enddate[5:7]), int(enddate[8:10])) while startdate <= enddate: listArray.append(str(startdate)) startdate += timedelta(days=1) return listArray def main(): monitorID = Variables()['monitorID'] projectStartDate = Variables()['startDate'] projectEndDate = Variables()['endDate'] fPath = "Monitor-"+monitorID+'-from-'+projectStartDate+'-to-'+projectEndDate+'.csv' lineArray = DatePull(projectStartDate, projectEndDate) print("------------------------------") print("MonitorID is "+monitorID) print(lineArray[0],lineArray[-1]) with open(fPath, 'w', newline = '', encoding = 'utf-8') as f: writer = csv.writer(f) header = ["PostType","PostDate","PostTime","URL","TweetID","Contents","RetweetCount","FavoriteCount","Location","Language","Sentiment","NeutralScore","PositiveScore","NegativeScore","Followers","Friends","Author","AuthorGender","AuthorTweets"] writer.writerow(header) for i in range(len(lineArray)-1): print(lineArray[i]) startDate = lineArray[i] endDate = lineArray[i+1] dates = "&start="+startDate+"&end="+endDate #Combines start and end date into format needed for API call urlStart = getURL() #Gets URL authToken = getAuthToken() #Gets auth token endpoint = "/monitor/posts?id="; #endpoint needed for this query extendLimit = "&extendLimit=true" #extends call number from 500 to 10,000 fullContents = "&fullContents=true" #Brings back full contents for Blog and Tumblr posts which are usually truncated around search keywords. This can occasionally disrupt CSV formatting. urlData = urlStart+endpoint+monitorID+authToken+dates+extendLimit+fullContents #Combines all API calls parts into full URL webURL = urllib.request.urlopen(urlData) if (webURL.getcode() == 200): with open(fPath, 'a', newline='', encoding='utf-8') as f: writer = csv.writer(f) data = webURL.read().decode('utf8') theJSON = json.loads(data) postDates = [] #These initialize the attributes of the final output postTimes = [] urls = [] contents = [] authors = [] authorGenders = [] locations = [] languages = [] postTypes = [] sentiments = [] neutralScore = [] positiveScore = [] negativeScore = [] tweetIDs = [] followers = [] friends = [] retweetCounts = [] favoritesCount = [] statusesCount = [] tweetCount = 0 tempTweetIDs = [] api = twitterAPI() c = 0 for i in theJSON["posts"]: postDates.append("") postTimes.append("") if ('date' in i): #identifies date posted tempDate = str(i["date"]) dateTime = tempDate.split("T") postDates[c] = dateTime[0] postTimes[c] = dateTime[1] urls.append(i["url"]) contents.append("") if ('contents' in i): #identifies post contents contents[c] = i["contents"].replace(",","").replace("\n"," ") #replaces commas and new lines to facilitate CSV formatting, this occasionally missed new lines in some blog posts which I'm working to fix authors.append("") if ('author' in i): #identifies author authors[c] = i["author"].replace(",","") authorGenders.append("") if ('authorGender' in i): #identifies author gender authorGenders[c] = i["authorGender"] locations.append("") if ('location' in i): #identifies location locations[c] = i["location"].replace(",","") languages.append("") if ('language' in i): #identifies language specified in the author's profile languages[c] = i["language"] postTypes.append(i["type"]) #identifies the type of post, i.e. Twitter, Tumblr, Blog tweetIDs.append("") followers.append("") friends.append("") retweetCounts.append("") favoritesCount.append("") statusesCount.append("") if postTypes[c] == "Twitter": #if the post type is Twitter it goes through more processing tweetCount = tweetCount + 1 #counts number of tweets tweetSplit = urls[c].split("status/") #splits URL to get tweetID tweetIDs[c] = tweetSplit[1] tempTweetIDs.append(tweetIDs[c]) if tweetCount == 100: #the max number of TweetIDs in one API call is 100 so a call is run every 100 tweets identified tweepys = api.statuses_lookup(id_=tempTweetIDs) #call to Twitter API for tweet in tweepys: tempID = tweet.id_str #finds tweetsID postMatch = 0 for idMatch in tweetIDs: if idMatch==tempID: #matches tweetID in Twitter API call to tweetID stored from Crimson API tempDate = str(tweet.created_at).replace(" "," ") #These all fill the matching Crimson attributes to those found in the Twitter API dateTime = tempDate.split(" ") postDates[postMatch] = dateTime[0] postTimes[postMatch] = dateTime[1] contents[postMatch] = tweet.text.replace(",","") authors[postMatch] = tweet.author.screen_name followers[postMatch] = str(tweet.author.followers_count) friends[postMatch] = str(tweet.author.friends_count) retweetCounts[postMatch] = str(tweet.retweet_count) favoritesCount[postMatch] = str(tweet.favorite_count) statusesCount[postMatch] = str(tweet.author.statuses_count) postMatch = postMatch + 1 tweetCount = 0 #clears tweet count for a new 100 tempTweetIDs = [] #clears tweetIDs for next call sentiments.append("") neutralScore.append("") positiveScore.append("") negativeScore.append("") if ('categoryScores' in i): #finds sentiment value and matching attribute for l in i["categoryScores"]: catName = l["categoryName"] if catName == "Basic Neutral": neutralScore[c] = l["score"] elif catName =="Basic Positive": positiveScore[c] = l["score"] elif catName == "Basic Negative": negativeScore[c] = l["score"] if neutralScore[c] > positiveScore[c] and neutralScore[c] > negativeScore[c]: sentiments[c] = "Basic Neutral" if positiveScore[c] > neutralScore[c] and positiveScore[c] > negativeScore[c]: sentiments[c] = "Basic Positive" if negativeScore[c] > positiveScore[c] and negativeScore[c] > neutralScore[c]: sentiments[c] = "Basic Negative" c = c + 1 if len(tempTweetIDs) != 0: #after loop the Twitter API call must run one more time to clean up all the tweets since the last 100 try: tweepys = api.statuses_lookup(id_=tempTweetIDs) for tweet in tweepys: tempID = tweet.id_str postMatch = 0 for idMatch in tweetIDs: if idMatch==tempID: tempDate = str(tweet.created_at).replace(" "," ") dateTime = tempDate.split(" ") postDates[postMatch] = dateTime[0] postTimes[postMatch] = dateTime[1] contents[postMatch] = tweet.text.replace(",","") authors[postMatch] = tweet.author.screen_name followers[postMatch] = str(tweet.author.followers_count) friends[postMatch] = str(tweet.author.friends_count) retweetCounts[postMatch] = str(tweet.retweet_count) favoritesCount[postMatch] = str(tweet.favorite_count) statusesCount[postMatch] = str(tweet.author.statuses_count) postMatch = postMatch + 1 tweetCount = 0 except: print("Tweepy error: skipping cleanup") pC = 0 for pDate in postDates: #iterates through the word lists and prints matching posts to CSV csvRow=[postTypes[pC], pDate, postTimes[pC], urls[pC], str(tweetIDs[pC]), contents[pC].replace("\n"," "), retweetCounts[pC], favoritesCount[pC], locations[pC], languages[pC], sentiments[pC], str(neutralScore[pC]), str(positiveScore[pC]), str(negativeScore[pC]), followers[pC], friends[pC], authors[pC], authorGenders[pC], statusesCount[pC]] writer.writerow(csvRow) pC = pC + 1 else: print("Server Error, No Data" + str(webURL.getcode())) #displays error if Crimson URL fails if __name__ == '__main__': main()
[ "json.loads", "csv.writer", "tweepy.API", "datetime.timedelta", "tweepy.OAuthHandler" ]
[((2155, 2198), 'tweepy.OAuthHandler', 'OAuthHandler', (['consumer_key', 'consumer_secret'], {}), '(consumer_key, consumer_secret)\n', (2167, 2198), False, 'from tweepy import OAuthHandler\n'), ((2264, 2337), 'tweepy.API', 'tweepy.API', (['auth'], {'wait_on_rate_limit': '(True)', 'wait_on_rate_limit_notify': '(True)'}), '(auth, wait_on_rate_limit=True, wait_on_rate_limit_notify=True)\n', (2274, 2337), False, 'import tweepy\n'), ((2811, 2828), 'datetime.timedelta', 'timedelta', ([], {'days': '(1)'}), '(days=1)\n', (2820, 2828), False, 'from datetime import date, timedelta\n'), ((3363, 3376), 'csv.writer', 'csv.writer', (['f'], {}), '(f)\n', (3373, 3376), False, 'import csv\n'), ((4680, 4693), 'csv.writer', 'csv.writer', (['f'], {}), '(f)\n', (4690, 4693), False, 'import csv\n'), ((4783, 4799), 'json.loads', 'json.loads', (['data'], {}), '(data)\n', (4793, 4799), False, 'import json\n')]
#! /opt/cloud_sdk/bin/python import asyncio import logging import subprocess import sys import citc_cloud def handle_exception(exc_type, exc_value, exc_traceback): if issubclass(exc_type, KeyboardInterrupt): sys.__excepthook__(exc_type, exc_value, exc_traceback) return log.critical("Uncaught exception", exc_info=(exc_type, exc_value, exc_traceback)) async def main() -> None: nodespace = citc_cloud.get_nodespace() keys_file = "/home/slurm/opc_authorized_keys" with open(keys_file) as kf: ssh_keys = kf.read() hosts = subprocess.run(["scontrol", "show", "hostnames", sys.argv[1]], stdout=subprocess.PIPE).stdout.decode().split() await asyncio.gather(*( citc_cloud.start_node( log, host, nodespace, ssh_keys) for host in hosts )) sys.excepthook = handle_exception if __name__ == "__main__": log = logging.getLogger("startnode") log.setLevel(logging.INFO) handler = logging.FileHandler('/var/log/slurm/elastic.log') formatter = logging.Formatter('%(asctime)s %(name)-10s %(levelname)-8s %(message)s') handler.setFormatter(formatter) log.addHandler(handler) loop = asyncio.get_event_loop() try: loop.run_until_complete(main()) finally: loop.close()
[ "logging.getLogger", "logging.Formatter", "subprocess.run", "logging.FileHandler", "citc_cloud.start_node", "citc_cloud.get_nodespace", "asyncio.get_event_loop", "sys.__excepthook__" ]
[((425, 451), 'citc_cloud.get_nodespace', 'citc_cloud.get_nodespace', ([], {}), '()\n', (449, 451), False, 'import citc_cloud\n'), ((887, 917), 'logging.getLogger', 'logging.getLogger', (['"""startnode"""'], {}), "('startnode')\n", (904, 917), False, 'import logging\n'), ((963, 1012), 'logging.FileHandler', 'logging.FileHandler', (['"""/var/log/slurm/elastic.log"""'], {}), "('/var/log/slurm/elastic.log')\n", (982, 1012), False, 'import logging\n'), ((1029, 1101), 'logging.Formatter', 'logging.Formatter', (['"""%(asctime)s %(name)-10s %(levelname)-8s %(message)s"""'], {}), "('%(asctime)s %(name)-10s %(levelname)-8s %(message)s')\n", (1046, 1101), False, 'import logging\n'), ((1178, 1202), 'asyncio.get_event_loop', 'asyncio.get_event_loop', ([], {}), '()\n', (1200, 1202), False, 'import asyncio\n'), ((224, 278), 'sys.__excepthook__', 'sys.__excepthook__', (['exc_type', 'exc_value', 'exc_traceback'], {}), '(exc_type, exc_value, exc_traceback)\n', (242, 278), False, 'import sys\n'), ((726, 779), 'citc_cloud.start_node', 'citc_cloud.start_node', (['log', 'host', 'nodespace', 'ssh_keys'], {}), '(log, host, nodespace, ssh_keys)\n', (747, 779), False, 'import citc_cloud\n'), ((578, 669), 'subprocess.run', 'subprocess.run', (["['scontrol', 'show', 'hostnames', sys.argv[1]]"], {'stdout': 'subprocess.PIPE'}), "(['scontrol', 'show', 'hostnames', sys.argv[1]], stdout=\n subprocess.PIPE)\n", (592, 669), False, 'import subprocess\n')]