code
stringlengths
22
1.05M
apis
listlengths
1
3.31k
extract_api
stringlengths
75
3.25M
import asyncio from io import BytesIO import pytest from asyncssh.connection import SSHClientConnection from asyncssh.stream import SSHReader from scrapli.exceptions import ScrapliConnectionNotOpened, ScrapliTimeout class DumbContainer: def __init__(self): self.preferred_auth = () def __getattr__(self, item): # options has a billion attributes, just return None, doesnt matter for this test return None def test_close(monkeypatch, asyncssh_transport): def _close(cls): pass monkeypatch.setattr( "asyncssh.connection.SSHClientConnection.close", _close, ) # lie and pretend the session is already assigned options = DumbContainer() asyncssh_transport.session = SSHClientConnection( loop=asyncio.get_event_loop_policy().get_event_loop(), options=options ) asyncssh_transport.close() assert asyncssh_transport.session is None assert asyncssh_transport.stdin is None assert asyncssh_transport.stdout is None def test_close_catch_brokenpipe(monkeypatch, asyncssh_transport): def _close(cls): raise BrokenPipeError monkeypatch.setattr( "asyncssh.connection.SSHClientConnection.close", _close, ) # lie and pretend the session is already assigned options = DumbContainer() asyncssh_transport.session = SSHClientConnection( loop=asyncio.get_event_loop_policy().get_event_loop(), options=options ) asyncssh_transport.close() assert asyncssh_transport.session is None assert asyncssh_transport.stdin is None assert asyncssh_transport.stdout is None def test_isalive_no_session(asyncssh_transport): assert asyncssh_transport.isalive() is False def test_isalive(asyncssh_transport): # lie and pretend the session is already assigned options = DumbContainer() asyncssh_transport.session = SSHClientConnection( loop=asyncio.get_event_loop_policy().get_event_loop(), options=options ) # lie and tell asyncssh auth is done asyncssh_transport.session._auth_complete = True # also have to lie and create a transport and have it return False when is_closing is called asyncssh_transport.session._transport = DumbContainer() asyncssh_transport.session._transport.is_closing = lambda: False assert asyncssh_transport.isalive() is True def test_isalive_attribute_error(asyncssh_transport): # lie and pretend the session is already assigned options = DumbContainer() asyncssh_transport.session = SSHClientConnection( loop=asyncio.get_event_loop_policy().get_event_loop(), options=options ) # lie and tell asyncssh auth is done asyncssh_transport.session._auth_complete = True assert asyncssh_transport.isalive() is False async def test_read(monkeypatch, asyncssh_transport): async def _read(cls, _): return b"somebytes" monkeypatch.setattr( "asyncssh.stream.SSHReader.read", _read, ) # lie and pretend the session is already assigned/stdout is already a thing asyncssh_transport.stdout = SSHReader("", "") assert await asyncssh_transport.read() == b"somebytes" async def test_read_exception_not_open(asyncssh_transport): with pytest.raises(ScrapliConnectionNotOpened): await asyncssh_transport.read() async def test_read_exception_timeout(monkeypatch, asyncssh_transport): async def _read(cls, _): await asyncio.sleep(0.5) monkeypatch.setattr( "asyncssh.stream.SSHReader.read", _read, ) # lie and pretend the session is already assigned/stdout is already a thing asyncssh_transport.stdout = SSHReader("", "") asyncssh_transport._base_transport_args.timeout_transport = 0.1 with pytest.raises(ScrapliTimeout): await asyncssh_transport.read() def test_write(asyncssh_transport): asyncssh_transport.stdin = BytesIO() asyncssh_transport.write(b"blah") asyncssh_transport.stdin.seek(0) assert asyncssh_transport.stdin.read() == b"blah" def test_write_exception(asyncssh_transport): with pytest.raises(ScrapliConnectionNotOpened): asyncssh_transport.write("blah")
[ "asyncssh.stream.SSHReader", "io.BytesIO", "pytest.raises", "asyncio.sleep", "asyncio.get_event_loop_policy" ]
[((3113, 3130), 'asyncssh.stream.SSHReader', 'SSHReader', (['""""""', '""""""'], {}), "('', '')\n", (3122, 3130), False, 'from asyncssh.stream import SSHReader\n'), ((3683, 3700), 'asyncssh.stream.SSHReader', 'SSHReader', (['""""""', '""""""'], {}), "('', '')\n", (3692, 3700), False, 'from asyncssh.stream import SSHReader\n'), ((3919, 3928), 'io.BytesIO', 'BytesIO', ([], {}), '()\n', (3926, 3928), False, 'from io import BytesIO\n'), ((3262, 3303), 'pytest.raises', 'pytest.raises', (['ScrapliConnectionNotOpened'], {}), '(ScrapliConnectionNotOpened)\n', (3275, 3303), False, 'import pytest\n'), ((3779, 3808), 'pytest.raises', 'pytest.raises', (['ScrapliTimeout'], {}), '(ScrapliTimeout)\n', (3792, 3808), False, 'import pytest\n'), ((4115, 4156), 'pytest.raises', 'pytest.raises', (['ScrapliConnectionNotOpened'], {}), '(ScrapliConnectionNotOpened)\n', (4128, 4156), False, 'import pytest\n'), ((3462, 3480), 'asyncio.sleep', 'asyncio.sleep', (['(0.5)'], {}), '(0.5)\n', (3475, 3480), False, 'import asyncio\n'), ((784, 815), 'asyncio.get_event_loop_policy', 'asyncio.get_event_loop_policy', ([], {}), '()\n', (813, 815), False, 'import asyncio\n'), ((1400, 1431), 'asyncio.get_event_loop_policy', 'asyncio.get_event_loop_policy', ([], {}), '()\n', (1429, 1431), False, 'import asyncio\n'), ((1931, 1962), 'asyncio.get_event_loop_policy', 'asyncio.get_event_loop_policy', ([], {}), '()\n', (1960, 1962), False, 'import asyncio\n'), ((2581, 2612), 'asyncio.get_event_loop_policy', 'asyncio.get_event_loop_policy', ([], {}), '()\n', (2610, 2612), False, 'import asyncio\n')]
from plotly.subplots import make_subplots import plotly.graph_objects as go import plotly.io as pio from dataProcessor import parseLabels, parseLangs import plotly.io as pio import os years = parseLabels() langs = parseLangs() #make the plotly results fig = make_subplots( rows=1, cols=2, specs=[[{"type": "xy"}, {"type": "domain"}]], ) fig.add_trace(go.Bar(y = list(langs.values()), x = list(langs.keys()), showlegend=False), row=1, col=1) fig.add_trace(go.Pie(values = list(years.values()), labels = list(years.keys())), row=1, col=2) fig.update_layout(height=600) pio.write_html(fig, 'index.html', auto_open=True)
[ "plotly.io.write_html", "dataProcessor.parseLangs", "plotly.subplots.make_subplots", "dataProcessor.parseLabels" ]
[((194, 207), 'dataProcessor.parseLabels', 'parseLabels', ([], {}), '()\n', (205, 207), False, 'from dataProcessor import parseLabels, parseLangs\n'), ((216, 228), 'dataProcessor.parseLangs', 'parseLangs', ([], {}), '()\n', (226, 228), False, 'from dataProcessor import parseLabels, parseLangs\n'), ((262, 337), 'plotly.subplots.make_subplots', 'make_subplots', ([], {'rows': '(1)', 'cols': '(2)', 'specs': "[[{'type': 'xy'}, {'type': 'domain'}]]"}), "(rows=1, cols=2, specs=[[{'type': 'xy'}, {'type': 'domain'}]])\n", (275, 337), False, 'from plotly.subplots import make_subplots\n'), ((613, 662), 'plotly.io.write_html', 'pio.write_html', (['fig', '"""index.html"""'], {'auto_open': '(True)'}), "(fig, 'index.html', auto_open=True)\n", (627, 662), True, 'import plotly.io as pio\n')]
# Copyright 2019 BDL Benchmarks Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """Diabetic retinopathy diagnosis BDL Benchmark.""" from __future__ import absolute_import from __future__ import division from __future__ import print_function import collections import os from typing import Callable from typing import Dict from typing import Optional from typing import Sequence from typing import Text from typing import Tuple from typing import Union import numpy as np import pandas as pd import tensorflow as tf from absl import logging from ..core import transforms from ..core.benchmark import Benchmark from ..core.benchmark import BenchmarkInfo from ..core.benchmark import DataSplits from ..core.constants import DATA_DIR from ..core.levels import Level tfk = tf.keras _DIABETIC_RETINOPATHY_DIAGNOSIS_DATA_DIR = os.path.join( DATA_DIR, "downloads", "manual", "diabetic_retinopathy_diagnosis") class DiabeticRetinopathyDiagnosisBecnhmark(Benchmark): """Diabetic retinopathy diagnosis benchmark class.""" def __init__( self, level: Union[Text, Level], batch_size: int = 64, data_dir: Optional[Text] = None, download_and_prepare: bool = False, ): """Constructs a benchmark object. Args: level: `Level` or `str, downstream task level. batch_size: (optional) `int`, number of datapoints per mini-batch. data_dir: (optional) `str`, path to parent data directory. download_and_prepare: (optional) `bool`, if the data is not available it downloads and preprocesses it. """ self.__level = level if isinstance(level, Level) else Level.from_str(level) try: self.__ds = self.load(level=level, batch_size=batch_size, data_dir=data_dir or DATA_DIR) except AssertionError: if not download_and_prepare: raise else: logging.info( "Data not found, `DiabeticRetinopathyDiagnosisBecnhmark.download_and_prepare()`" " is now running...") self.download_and_prepare() @classmethod def evaluate( cls, estimator: Callable[[np.ndarray], Tuple[np.ndarray, np.ndarray]], dataset: tf.data.Dataset, output_dir: Optional[Text] = None, name: Optional[Text] = None, ) -> Dict[Text, float]: """Evaluates an `estimator` on the `mode` benchmark dataset. Args: estimator: `lambda x: mu_x, uncertainty_x`, an uncertainty estimation function, which returns `mean_x` and predictive `uncertainty_x`. dataset: `tf.data.Dataset`, on which dataset to performance evaluation. output_dir: (optional) `str`, directory to save figures. name: (optional) `str`, the name of the method. """ import inspect import tqdm import tensorflow_datasets as tfds from sklearn.metrics import roc_auc_score from sklearn.metrics import accuracy_score import matplotlib.pyplot as plt # Containers used for caching performance evaluation y_true = list() y_pred = list() y_uncertainty = list() # Convert to NumPy iterator if necessary ds = dataset if inspect.isgenerator(dataset) else tfds.as_numpy(dataset) for x, y in tqdm.tqdm(ds): # Sample from probabilistic model mean, uncertainty = estimator(x) # Cache predictions y_true.append(y) y_pred.append(mean) y_uncertainty.append(uncertainty) # Use vectorized NumPy containers y_true = np.concatenate(y_true).flatten() y_pred = np.concatenate(y_pred).flatten() y_uncertainty = np.concatenate(y_uncertainty).flatten() fractions = np.asarray([0.5, 0.6, 0.7, 0.8, 0.9, 1.0]) # Metrics for evaluation metrics = zip(["accuracy", "auc"], cls.metrics()) return { metric: cls._evaluate_metric( y_true, y_pred, y_uncertainty, fractions, lambda y_true, y_pred: metric_fn(y_true, y_pred).numpy(), name, ) for (metric, metric_fn) in metrics } @staticmethod def _evaluate_metric( y_true: np.ndarray, y_pred: np.ndarray, y_uncertainty: np.ndarray, fractions: Sequence[float], metric_fn: Callable[[np.ndarray, np.ndarray], float], name=None, ) -> pd.DataFrame: """Evaluate model predictive distribution on `metric_fn` at data retain `fractions`. Args: y_true: `numpy.ndarray`, the ground truth labels, with shape [N]. y_pred: `numpy.ndarray`, the model predictions, with shape [N]. y_uncertainty: `numpy.ndarray`, the model uncertainties, with shape [N]. fractions: `iterable`, the percentages of data to retain for calculating `metric_fn`. metric_fn: `lambda(y_true, y_pred) -> float`, a metric function that provides a score given ground truths and predictions. name: (optional) `str`, the name of the method. Returns: A `pandas.DataFrame` with columns ["retained_data", "mean", "std"], that summarizes the scores at different data retained fractions. """ N = y_true.shape[0] # Sorts indexes by ascending uncertainty I_uncertainties = np.argsort(y_uncertainty) # Score containers mean = np.empty_like(fractions) # TODO(filangel): do bootstrap sampling and estimate standard error std = np.zeros_like(fractions) for i, frac in enumerate(fractions): # Keep only the %-frac of lowest uncertainties I = np.zeros(N, dtype=bool) I[I_uncertainties[:int(N * frac)]] = True mean[i] = metric_fn(y_true[I], y_pred[I]) # Store df = pd.DataFrame(dict(retained_data=fractions, mean=mean, std=std)) df.name = name return df @property def datasets(self) -> tf.data.Dataset: """Pointer to the processed datasets.""" return self.__ds @property def info(self) -> BenchmarkInfo: """Text description of the benchmark.""" return BenchmarkInfo(description="", urls="", setup="", citation="") @property def level(self) -> Level: """The downstream task level.""" return self.__level @staticmethod def loss() -> tfk.losses.Loss: """Loss used for training binary classifiers.""" return tfk.losses.BinaryCrossentropy() @staticmethod def metrics() -> tfk.metrics.Metric: """Evaluation metrics used for monitoring training.""" return [tfk.metrics.BinaryAccuracy(), tfk.metrics.AUC()] @staticmethod def class_weight() -> Sequence[float]: """Class weights used for rebalancing the dataset, by skewing the `loss` accordingly.""" return [1.0, 4.0] @classmethod def load( cls, level: Union[Text, Level] = "realworld", batch_size: int = 64, data_dir: Optional[Text] = None, as_numpy: bool = False, ) -> DataSplits: """Loads the datasets for the benchmark. Args: level: `Level` or `str, downstream task level. batch_size: (optional) `int`, number of datapoints per mini-batch. data_dir: (optional) `str`, path to parent data directory. as_numpy: (optional) `bool`, if True returns python generators with `numpy.ndarray` outputs. Returns: A namedtuple with properties: * train: `tf.data.Dataset`, train dataset. * validation: `tf.data.Dataset`, validation dataset. * test: `tf.data.Dataset`, test dataset. """ import tensorflow_datasets as tfds from .tfds_adapter import DiabeticRetinopathyDiagnosis # Fetch datasets try: ds_train, ds_validation, ds_test = DiabeticRetinopathyDiagnosis( data_dir=data_dir or DATA_DIR, config=level).as_dataset(split=["train", "validation", "test"], shuffle_files=True, batch_size=batch_size) except AssertionError as ae: raise AssertionError( str(ae) + " Run DiabeticRetinopathyDiagnosisBecnhmark.download_and_prepare()" " first and then retry.") # Parse task level level = level if isinstance(level, Level) else Level.from_str(level) # Dataset tranformations transforms_train, transforms_eval = cls._preprocessors() # Apply transformations ds_train = ds_train.map(transforms_train, num_parallel_calls=tf.data.experimental.AUTOTUNE) ds_validation = ds_validation.map( transforms_eval, num_parallel_calls=tf.data.experimental.AUTOTUNE) ds_test = ds_test.map(transforms_eval, num_parallel_calls=tf.data.experimental.AUTOTUNE) # Prefetches datasets to memory ds_train = ds_train.prefetch(tf.data.experimental.AUTOTUNE) ds_validation = ds_validation.prefetch(tf.data.experimental.AUTOTUNE) ds_test = ds_test.prefetch(tf.data.experimental.AUTOTUNE) if as_numpy: # Convert to NumPy iterators ds_train = tfds.as_numpy(ds_train) ds_validation = tfds.as_numpy(ds_validation) ds_test = tfds.as_numpy(ds_test) return DataSplits(ds_train, ds_validation, ds_test) @classmethod def download_and_prepare(cls, levels=None) -> None: """Downloads dataset from Kaggle, extracts zip files and processes it using `tensorflow_datasets`. Args: levels: (optional) `iterable` of `str`, specifies which levels from {'medium', 'realworld'} to prepare, if None it prepares all the levels. Raises: OSError: if `~/.kaggle/kaggle.json` is not set up. """ # Disable GPU for data download, extraction and preparation import os os.environ["CUDA_VISIBLE_DEVICES"] = "-1" cls._download() # cls._extract() #cls._prepare(levels) @staticmethod def _download() -> None: """Downloads data from Kaggle using `tensorflow_datasets`. Raises: OSError: if `~/.kaggle/kaggle.json` is not set up. """ import subprocess as sp import tensorflow_datasets as tfds # Append `/home/$USER/.local/bin` to path os.environ["PATH"] += ":/home/{}/.local/bin/".format(os.environ["USER"]) # Download all files from Kaggle drd = tfds.download.kaggle.KaggleCompetitionDownloader( "diabetic-retinopathy-detection") try: for dfile in drd.competition_files: drd.download_file(dfile, output_dir=_DIABETIC_RETINOPATHY_DIAGNOSIS_DATA_DIR) except sp.CalledProcessError as cpe: raise OSError( str(cpe) + "." + " Make sure you have ~/.kaggle/kaggle.json setup, fetched from the Kaggle website" " https://www.kaggle.com/<username>/account -> 'Create New API Key'." " Also accept the dataset license by going to" " https://www.kaggle.com/c/diabetic-retinopathy-detection/rules" " and look for the button 'I Understand and Accept' (make sure when reloading the" " page that the button does not pop up again).") @staticmethod def _extract() -> None: """Extracts zip files downloaded from Kaggle.""" import glob import tqdm import zipfile import tempfile # Extract train and test original images for split in ["train", "test"]: # Extract "<split>.zip.00*"" files to "<split>" with tempfile.NamedTemporaryFile() as tmp: # Concatenate "<split>.zip.00*" to "<split>.zip" for fname in tqdm.tqdm( sorted( glob.glob( os.path.join(_DIABETIC_RETINOPATHY_DIAGNOSIS_DATA_DIR, "{split}.zip.00*".format(split=split))))): # Unzip "<split>.zip" to "<split>" with open(fname, "rb") as ztmp: tmp.write(ztmp.read()) with zipfile.ZipFile(tmp) as zfile: for image in tqdm.tqdm(iterable=zfile.namelist(), total=len(zfile.namelist())): zfile.extract(member=image, path=_DIABETIC_RETINOPATHY_DIAGNOSIS_DATA_DIR) # Delete "<split>.zip.00*" files for splitzip in os.listdir(_DIABETIC_RETINOPATHY_DIAGNOSIS_DATA_DIR): if "{split}.zip.00".format(split=split) in splitzip: os.remove( os.path.join(_DIABETIC_RETINOPATHY_DIAGNOSIS_DATA_DIR, splitzip)) # Extract "sample.zip", "trainLabels.csv.zip" for fname in ["sample", "trainLabels.csv"]: zfname = os.path.join(_DIABETIC_RETINOPATHY_DIAGNOSIS_DATA_DIR, "{fname}.zip".format(fname=fname)) with zipfile.ZipFile(zfname) as zfile: zfile.extractall(_DIABETIC_RETINOPATHY_DIAGNOSIS_DATA_DIR) os.remove(zfname) @staticmethod def _prepare(levels=None) -> None: """Generates the TFRecord objects for medium and realworld experiments.""" import multiprocessing from absl import logging from .tfds_adapter import DiabeticRetinopathyDiagnosis # Hangle each level individually for level in levels or ["medium", "realworld"]: dtask = DiabeticRetinopathyDiagnosis(data_dir=DATA_DIR, config=level) logging.debug("=== Preparing TFRecords for {} ===".format(level)) dtask.download_and_prepare() @classmethod def _preprocessors(cls) -> Tuple[transforms.Transform, transforms.Transform]: """Applies transformations to the raw data.""" import tensorflow_datasets as tfds # Transformation hyperparameters mean = np.asarray([0.42606387, 0.29752496, 0.21309826]) stddev = np.asarray([0.27662534, 0.20280295, 0.1687619]) class Parse(transforms.Transform): """Parses datapoints from raw `tf.data.Dataset`.""" def __call__(self, x, y=None): """Returns `as_supervised` tuple.""" return x["image"], x["label"] class CastX(transforms.Transform): """Casts image to `dtype`.""" def __init__(self, dtype): """Constructs a type caster.""" self.dtype = dtype def __call__(self, x, y): """Returns casted image (to `dtype`) and its (unchanged) label as tuple.""" return tf.cast(x, self.dtype), y class To01X(transforms.Transform): """Rescales image to [min, max]=[0, 1].""" def __call__(self, x, y): """Returns rescaled image and its (unchanged) label as tuple.""" return x / 255.0, y # Get augmentation schemes [augmentation_config, no_augmentation_config] = cls._ImageDataGenerator_config() # Transformations for train dataset transforms_train = transforms.Compose([ Parse(), CastX(tf.float32), To01X(), transforms.Normalize(mean, stddev), # TODO(filangel): hangle batch with ImageDataGenerator # transforms.RandomAugment(**augmentation_config), ]) # Transformations for validation/test dataset transforms_eval = transforms.Compose([ Parse(), CastX(tf.float32), To01X(), transforms.Normalize(mean, stddev), # TODO(filangel): hangle batch with ImageDataGenerator # transforms.RandomAugment(**no_augmentation_config), ]) return transforms_train, transforms_eval @staticmethod def _ImageDataGenerator_config(): """Returns the configs for the `tensorflow.keras.preprocessing.image.ImageDataGenerator`, used for the random augmentation of the dataset, following the implementation of https://github.com/chleibig/disease-detection/blob/f3401b26aa9b832ff77afe93 e3faa342f7d088e5/scripts/inspect_data_augmentation.py.""" augmentation_config = dict( featurewise_center=False, samplewise_center=False, featurewise_std_normalization=False, samplewise_std_normalization=False, zca_whitening=False, rotation_range=180.0, width_shift_range=0.05, height_shift_range=0.05, shear_range=0., zoom_range=0.10, channel_shift_range=0., fill_mode="constant", cval=0., horizontal_flip=True, vertical_flip=True, data_format="channels_last", ) no_augmentation_config = dict( featurewise_center=False, samplewise_center=False, featurewise_std_normalization=False, samplewise_std_normalization=False, zca_whitening=False, rotation_range=0.0, width_shift_range=0.0, height_shift_range=0.0, shear_range=0., zoom_range=0.0, channel_shift_range=0., fill_mode="nearest", cval=0., horizontal_flip=False, vertical_flip=False, data_format="channels_last", ) return augmentation_config, no_augmentation_config
[ "tensorflow_datasets.as_numpy", "os.listdir", "zipfile.ZipFile", "tqdm.tqdm", "numpy.asarray", "os.path.join", "inspect.isgenerator", "absl.logging.info", "numpy.argsort", "numpy.zeros", "numpy.empty_like", "numpy.concatenate", "tempfile.NamedTemporaryFile", "tensorflow_datasets.download.kaggle.KaggleCompetitionDownloader", "tensorflow.cast", "numpy.zeros_like", "os.remove" ]
[((1435, 1514), 'os.path.join', 'os.path.join', (['DATA_DIR', '"""downloads"""', '"""manual"""', '"""diabetic_retinopathy_diagnosis"""'], {}), "(DATA_DIR, 'downloads', 'manual', 'diabetic_retinopathy_diagnosis')\n", (1447, 1514), False, 'import os\n'), ((3842, 3855), 'tqdm.tqdm', 'tqdm.tqdm', (['ds'], {}), '(ds)\n', (3851, 3855), False, 'import tqdm\n'), ((4258, 4300), 'numpy.asarray', 'np.asarray', (['[0.5, 0.6, 0.7, 0.8, 0.9, 1.0]'], {}), '([0.5, 0.6, 0.7, 0.8, 0.9, 1.0])\n', (4268, 4300), True, 'import numpy as np\n'), ((5816, 5841), 'numpy.argsort', 'np.argsort', (['y_uncertainty'], {}), '(y_uncertainty)\n', (5826, 5841), True, 'import numpy as np\n'), ((5877, 5901), 'numpy.empty_like', 'np.empty_like', (['fractions'], {}), '(fractions)\n', (5890, 5901), True, 'import numpy as np\n'), ((5984, 6008), 'numpy.zeros_like', 'np.zeros_like', (['fractions'], {}), '(fractions)\n', (5997, 6008), True, 'import numpy as np\n'), ((10740, 10827), 'tensorflow_datasets.download.kaggle.KaggleCompetitionDownloader', 'tfds.download.kaggle.KaggleCompetitionDownloader', (['"""diabetic-retinopathy-detection"""'], {}), "(\n 'diabetic-retinopathy-detection')\n", (10788, 10827), True, 'import tensorflow_datasets as tfds\n'), ((13982, 14030), 'numpy.asarray', 'np.asarray', (['[0.42606387, 0.29752496, 0.21309826]'], {}), '([0.42606387, 0.29752496, 0.21309826])\n', (13992, 14030), True, 'import numpy as np\n'), ((14044, 14091), 'numpy.asarray', 'np.asarray', (['[0.27662534, 0.20280295, 0.1687619]'], {}), '([0.27662534, 0.20280295, 0.1687619])\n', (14054, 14091), True, 'import numpy as np\n'), ((3768, 3796), 'inspect.isgenerator', 'inspect.isgenerator', (['dataset'], {}), '(dataset)\n', (3787, 3796), False, 'import inspect\n'), ((3802, 3824), 'tensorflow_datasets.as_numpy', 'tfds.as_numpy', (['dataset'], {}), '(dataset)\n', (3815, 3824), True, 'import tensorflow_datasets as tfds\n'), ((6114, 6137), 'numpy.zeros', 'np.zeros', (['N'], {'dtype': 'bool'}), '(N, dtype=bool)\n', (6122, 6137), True, 'import numpy as np\n'), ((9526, 9549), 'tensorflow_datasets.as_numpy', 'tfds.as_numpy', (['ds_train'], {}), '(ds_train)\n', (9539, 9549), True, 'import tensorflow_datasets as tfds\n'), ((9572, 9600), 'tensorflow_datasets.as_numpy', 'tfds.as_numpy', (['ds_validation'], {}), '(ds_validation)\n', (9585, 9600), True, 'import tensorflow_datasets as tfds\n'), ((9617, 9639), 'tensorflow_datasets.as_numpy', 'tfds.as_numpy', (['ds_test'], {}), '(ds_test)\n', (9630, 9639), True, 'import tensorflow_datasets as tfds\n'), ((12643, 12695), 'os.listdir', 'os.listdir', (['_DIABETIC_RETINOPATHY_DIAGNOSIS_DATA_DIR'], {}), '(_DIABETIC_RETINOPATHY_DIAGNOSIS_DATA_DIR)\n', (12653, 12695), False, 'import os\n'), ((13209, 13226), 'os.remove', 'os.remove', (['zfname'], {}), '(zfname)\n', (13218, 13226), False, 'import os\n'), ((4103, 4125), 'numpy.concatenate', 'np.concatenate', (['y_true'], {}), '(y_true)\n', (4117, 4125), True, 'import numpy as np\n'), ((4149, 4171), 'numpy.concatenate', 'np.concatenate', (['y_pred'], {}), '(y_pred)\n', (4163, 4171), True, 'import numpy as np\n'), ((4202, 4231), 'numpy.concatenate', 'np.concatenate', (['y_uncertainty'], {}), '(y_uncertainty)\n', (4216, 4231), True, 'import numpy as np\n'), ((11855, 11884), 'tempfile.NamedTemporaryFile', 'tempfile.NamedTemporaryFile', ([], {}), '()\n', (11882, 11884), False, 'import tempfile\n'), ((13102, 13125), 'zipfile.ZipFile', 'zipfile.ZipFile', (['zfname'], {}), '(zfname)\n', (13117, 13125), False, 'import zipfile\n'), ((2520, 2642), 'absl.logging.info', 'logging.info', (['"""Data not found, `DiabeticRetinopathyDiagnosisBecnhmark.download_and_prepare()` is now running..."""'], {}), "(\n 'Data not found, `DiabeticRetinopathyDiagnosisBecnhmark.download_and_prepare()` is now running...'\n )\n", (2532, 2642), False, 'from absl import logging\n'), ((12315, 12335), 'zipfile.ZipFile', 'zipfile.ZipFile', (['tmp'], {}), '(tmp)\n', (12330, 12335), False, 'import zipfile\n'), ((14628, 14650), 'tensorflow.cast', 'tf.cast', (['x', 'self.dtype'], {}), '(x, self.dtype)\n', (14635, 14650), True, 'import tensorflow as tf\n'), ((12793, 12857), 'os.path.join', 'os.path.join', (['_DIABETIC_RETINOPATHY_DIAGNOSIS_DATA_DIR', 'splitzip'], {}), '(_DIABETIC_RETINOPATHY_DIAGNOSIS_DATA_DIR, splitzip)\n', (12805, 12857), False, 'import os\n')]
import base64 import logging import msgpack logger = logging.getLogger(__name__) loadargs = {'use_list': False, 'raw': False} if msgpack.version < (1, 0, 0): loadargs['encoding'] = 'utf-8' else: loadargs['strict_map_key'] = False VSIG = b'MSGVIV'.ljust(8, b'\x00') def vivEventsAppendFile(filename, events): with open(filename, 'ab') as f: for event in events: if event[0] == 20: mape = base64.b64encode(event[1][3]) event = (event[0], (event[1][0], event[1][1], event[1][2], mape)) msgpack.pack(event, f, use_bin_type=False) def saveWorkspaceChanges(vw, filename): events = vw.exportWorkspaceChanges() vivEventsAppendFile(filename, events) def vivEventsToFile(filename, events): with open(filename, 'wb') as f: msgpack.pack(VSIG, f, use_bin_type=False) for event in events: if event[0] == 20: mape = base64.b64encode(event[1][3]) event = (event[0], (event[1][0], event[1][1], event[1][2], mape)) msgpack.pack(event, f, use_bin_type=False) def saveWorkspace(vw, filename): events = vw.exportWorkspace() vivEventsToFile(filename, events) def vivEventsFromFile(filename): events = [] with open(filename, 'rb') as f: unpacker = msgpack.Unpacker(f, **loadargs) siggy = next(unpacker) if siggy.encode('utf-8') != VSIG: logger.warning('Invalid file signature of %s', str(siggy)) return for event in unpacker: if event[0] == 20: mape = base64.b64decode(event[1][3]) event = (event[0], (event[1][0], event[1][1], event[1][2], mape)) events.append(event) return events def loadWorkspace(vw, filename): events = vivEventsFromFile(filename) vw.importWorkspace(events)
[ "logging.getLogger", "msgpack.pack", "base64.b64encode", "base64.b64decode", "msgpack.Unpacker" ]
[((55, 82), 'logging.getLogger', 'logging.getLogger', (['__name__'], {}), '(__name__)\n', (72, 82), False, 'import logging\n'), ((818, 859), 'msgpack.pack', 'msgpack.pack', (['VSIG', 'f'], {'use_bin_type': '(False)'}), '(VSIG, f, use_bin_type=False)\n', (830, 859), False, 'import msgpack\n'), ((1323, 1354), 'msgpack.Unpacker', 'msgpack.Unpacker', (['f'], {}), '(f, **loadargs)\n', (1339, 1354), False, 'import msgpack\n'), ((565, 607), 'msgpack.pack', 'msgpack.pack', (['event', 'f'], {'use_bin_type': '(False)'}), '(event, f, use_bin_type=False)\n', (577, 607), False, 'import msgpack\n'), ((1067, 1109), 'msgpack.pack', 'msgpack.pack', (['event', 'f'], {'use_bin_type': '(False)'}), '(event, f, use_bin_type=False)\n', (1079, 1109), False, 'import msgpack\n'), ((441, 470), 'base64.b64encode', 'base64.b64encode', (['event[1][3]'], {}), '(event[1][3])\n', (457, 470), False, 'import base64\n'), ((943, 972), 'base64.b64encode', 'base64.b64encode', (['event[1][3]'], {}), '(event[1][3])\n', (959, 972), False, 'import base64\n'), ((1603, 1632), 'base64.b64decode', 'base64.b64decode', (['event[1][3]'], {}), '(event[1][3])\n', (1619, 1632), False, 'import base64\n')]
import glob from os import walk exclude_folders = [ 'node_modules', 'ios', 'android', '__pycache__' ] exclude_files = [ 'json', 'txt', 'traineddata', 'lstmf', 'yml', 'md' 'log', 'env', 'gitignore', 'dockerignore' ] # get all files in directory dirr = '/home/viktor/Documents/personal-expenses-accounting/app/services/web_service/' folders = glob.glob(dirr + '/**/', recursive=True) # only app related directories directories = [] for folder in folders: current_folder = folder.split('/')[-2] if current_folder not in exclude_folders: files = glob.glob(folder + '*') print(files) directories.append(folder) # num_lines = sum(1 for line in open('myfile.txt'))
[ "glob.glob" ]
[((400, 440), 'glob.glob', 'glob.glob', (["(dirr + '/**/')"], {'recursive': '(True)'}), "(dirr + '/**/', recursive=True)\n", (409, 440), False, 'import glob\n'), ((618, 641), 'glob.glob', 'glob.glob', (["(folder + '*')"], {}), "(folder + '*')\n", (627, 641), False, 'import glob\n')]
from models.contact import Contact testdata = [Contact(first_name="Firstname", last_name="Lastname", mobile_phone="+12345678", work_phone="12345", home_phone="67890", fax="55443322", email_1="<EMAIL>", email_2="<EMAIL>", email_3="<EMAIL>", address="Street, 15 \n 12345 New-York")]
[ "models.contact.Contact" ]
[((49, 298), 'models.contact.Contact', 'Contact', ([], {'first_name': '"""Firstname"""', 'last_name': '"""Lastname"""', 'mobile_phone': '"""+12345678"""', 'work_phone': '"""12345"""', 'home_phone': '"""67890"""', 'fax': '"""55443322"""', 'email_1': '"""<EMAIL>"""', 'email_2': '"""<EMAIL>"""', 'email_3': '"""<EMAIL>"""', 'address': '"""Street, 15 \n 12345 New-York"""'}), '(first_name=\'Firstname\', last_name=\'Lastname\', mobile_phone=\n \'+12345678\', work_phone=\'12345\', home_phone=\'67890\', fax=\'55443322\',\n email_1=\'<EMAIL>\', email_2=\'<EMAIL>\', email_3=\'<EMAIL>\', address=\n """Street, 15 \n 12345 New-York""")\n', (56, 298), False, 'from models.contact import Contact\n')]
"""Implements the generic progress logger class, and the ProgressBar class. """ from tqdm import tqdm, tqdm_notebook from collections import OrderedDict import time SETTINGS = { 'notebook': False } def notebook(turn='on'): SETTINGS['notebook'] = True if (turn == 'on') else False def troncate_string(s, max_length=25): return s if (len(s) < max_length) else (s[:max_length] + "...") class ProgressLogger: """Generic class for progress loggers. A progress logger contains a "state" dictionnary. Parameters ---------- init_state Dictionnary representing the initial state. """ def __init__(self, init_state=None): self.state = {} self.stored = {} self.logs = [] self.log_indent = 0 if init_state is not None: self.state.update(init_state) def log(self, message): self.logs.append((' ' * self.log_indent) + message) def dump_logs(self, filepath=None): if filepath is not None: with open(filepath, 'a') as f: f.write("\n".join(self.logs)) else: return "\n".join(self.logs) def callback(self, **kw): """Execute something after the state has been updated by the given state elements. This default callback does nothing, overwrite it by subclassing """ pass def store(self, **kw): """Store objects in the logger and trigger ``self.store_callback``. This works exactly like ``logger()``, but the later is meant for simple data objects (text, numbers) that will be sent over the network or written to a file. The ``store`` method expects rather large objects which are not necessarily serializable, and will be used eg to draw plots on the fly. """ self.stored.update(kw) self.store_callback(**kw) def store_callback(self, **kw): """Execute something after the store has been updated by the given state elements. This default callback does nothing, overwrite it by subclassing """ pass def iter(self, **kw): """Iterate through a list while updating the state. Examples -------- >>> for username in logger.iter(user=['tom', 'tim', 'lea']: >>> # At every loop, logger.state['user'] is updated >>> print (username) """ for field, iterable in kw.items(): for it in iterable: self(**{field: it}) yield it def __call__(self, **kw): self.state.update(kw) self.callback(**kw) class ProgressBarLogger(ProgressLogger): """Generic class for progress loggers. A progress logger contains a "state" dictionnary Parameters ---------- init_state Initial state of the logger bars Either None (will be initialized with no bar) or a list/tuple of bar names (``['main', 'sub']``) which will be initialized with index -1 and no total, or a dictionary (possibly ordered) of bars, of the form ``{bar_1: {title: 'bar1', index: 2, total:23}, bar_2: {...}}`` ignored_bars Either None (newly met bars will be added) or a list of blacklisted bar names, or ``'all_others'`` to signify that all bar names not already in ``self.bars`` will be ignored. """ bar_indent = 2 def __init__(self, init_state=None, bars=None, ignored_bars=None, logged_bars='all', min_time_interval=0, ignore_bars_under=0): ProgressLogger.__init__(self, init_state) if bars is None: bars = OrderedDict() elif isinstance(bars, (list, tuple)): bars = OrderedDict([ (b, dict(title=b, index=-1, total=None, message=None, indent=0)) for b in bars ]) if isinstance(ignored_bars, (list, tuple)): ignored_bars = set(ignored_bars) self.ignored_bars = ignored_bars self.logged_bars = logged_bars self.state['bars'] = bars self.min_time_interval = min_time_interval self.ignore_bars_under = ignore_bars_under @property def bars(self): """Return ``self.state['bars'].``""" return self.state['bars'] def bar_is_ignored(self, bar): if self.ignored_bars is None: return False elif self.ignored_bars == 'all_others': return (bar not in self.bars) else: return bar in self.ignored_bars def bar_is_logged(self, bar): if (not self.logged_bars): return False elif self.logged_bars == 'all': return True else: return bar in self.logged_bars def iterable_is_too_short(self, iterable): length = len(iterable) if hasattr(iterable, '__len__') else None return (length is not None) and (length < self.ignore_bars_under) def iter_bar(self, bar_prefix='', **kw): """Iterate through a list while updating a state bar. Examples -------- >>> for username in logger.iter_bar(user=['tom', 'tim', 'lea']): >>> # At every loop, logger.state['bars']['user'] is updated >>> # to {index: i, total: 3, title:'user'} >>> print (username) """ if 'bar_message' in kw: bar_message = kw.pop('bar_message') else: bar_message = None bar, iterable = kw.popitem() if self.bar_is_ignored(bar) or self.iterable_is_too_short(iterable): return iterable bar = bar_prefix + bar if hasattr(iterable, '__len__'): self(**{bar + '__total': len(iterable)}) def new_iterable(): last_time = time.time() i = 0 # necessary in case the iterator is empty for i, it in enumerate(iterable): now_time = time.time() if (i == 0) or (now_time - last_time > self.min_time_interval): if bar_message is not None: self(**{bar + '__message': bar_message(it)}) self(**{bar + '__index': i}) last_time = now_time yield it if self.bars[bar]['index'] != i: self(**{bar + '__index': i}) self(**{bar + '__index': i + 1}) return new_iterable() def bars_callback(self, bar, attr, value, old_value=None): """Execute a custom action after the progress bars are updated. Parameters ---------- bar Name/ID of the bar to be modified. attr Attribute of the bar attribute to be modified value New value of the attribute old_value Previous value of this bar's attribute. This default callback does nothing, overwrite it by subclassing. """ pass def __call__(self, **kw): items = sorted(kw.items(), key=lambda kv: not kv[0].endswith('total')) for key, value in items: if '__' in key: bar, attr = key.split('__') if self.bar_is_ignored(bar): continue kw.pop(key) if bar not in self.bars: self.bars[bar] = dict(title=bar, index=-1, total=None, message=None) old_value = self.bars[bar][attr] if self.bar_is_logged(bar): new_bar = (attr == 'index') and (value < old_value) if (attr == 'total') or (new_bar): self.bars[bar]['indent'] = self.log_indent else: self.log_indent = self.bars[bar]['indent'] self.log("[%s] %s: %s" % (bar, attr, value)) self.log_indent += self.bar_indent self.bars[bar][attr] = value self.bars_callback(bar, attr, value, old_value) self.state.update(kw) self.callback(**kw) class TqdmProgressBarLogger(ProgressBarLogger): """Tqdm-powered progress bar for console or Notebooks. Parameters ---------- init_state Initial state of the logger bars Either None (will be initialized with no bar) or a list/tuple of bar names (``['main', 'sub']``) which will be initialized with index -1 and no total, or a dictionary (possibly ordered) of bars, of the form ``{bar_1: {title: 'bar1', index: 2, total:23}, bar_2: {...}}`` ignored_bars Either None (newly met bars will be added) or a list of blacklisted bar names, or ``'all_others'`` to signify that all bar names not already in ``self.bars`` will be ignored. leave_bars notebook True will make the bars look nice (HTML) in the jupyter notebook. It is advised to leave to 'default' as the default can be globally set from inside a notebook with ``import proglog; proglog.notebook_mode()``. print_messages If True, every ``logger(message='something')`` will print a message in the console / notebook """ def __init__(self, init_state=None, bars=None, leave_bars=False, ignored_bars=None, logged_bars='all', notebook='default', print_messages=True, min_time_interval=0, ignore_bars_under=0): ProgressBarLogger.__init__(self, init_state=init_state, bars=bars, ignored_bars=ignored_bars, logged_bars=logged_bars, ignore_bars_under=ignore_bars_under, min_time_interval=min_time_interval) self.leave_bars = leave_bars self.tqdm_bars = OrderedDict([ (bar, None) for bar in self.bars ]) if notebook == 'default': notebook = SETTINGS['notebook'] self.notebook = notebook self.print_messages = print_messages self.tqdm = (tqdm_notebook if self.notebook else tqdm) def new_tqdm_bar(self, bar): """Create a new tqdm bar, possibly replacing an existing one.""" if (bar in self.tqdm_bars) and (self.tqdm_bars[bar] is not None): self.close_tqdm_bar(bar) infos = self.bars[bar] self.tqdm_bars[bar] = self.tqdm( total=infos['total'], desc=infos['title'], postfix=dict(now=troncate_string(str(infos['message']))), leave=self.leave_bars ) def close_tqdm_bar(self, bar): """Close and erase the tqdm bar""" self.tqdm_bars[bar].close() if not self.notebook: self.tqdm_bars[bar] = None def bars_callback(self, bar, attr, value, old_value): if (bar not in self.tqdm_bars) or (self.tqdm_bars[bar] is None): self.new_tqdm_bar(bar) if attr == 'index': if value >= old_value: total = self.bars[bar]['total'] if total and (value >= total): self.close_tqdm_bar(bar) else: self.tqdm_bars[bar].update(value - old_value) else: self.new_tqdm_bar(bar) self.tqdm_bars[bar].update(value + 1) elif attr == 'message': self.tqdm_bars[bar].set_postfix(now=troncate_string(str(value))) self.tqdm_bars[bar].update(0) def callback(self, **kw): if self.print_messages and ('message' in kw) and kw['message']: if self.notebook: print(kw['message']) else: self.tqdm.write(kw['message']) class RqWorkerProgressLogger: def __init__(self, job): self.job = job if 'progress_data' not in self.job.meta: self.job.meta['progress_data'] = {} self.job.save() def callback(self, **kw): self.job.meta['progress_data'] = self.state self.job.save() class RqWorkerBarLogger(RqWorkerProgressLogger, ProgressBarLogger): def __init__(self, job, init_state=None, bars=None, ignored_bars=(), logged_bars='all', min_time_interval=0): RqWorkerProgressLogger.__init__(self, job) ProgressBarLogger.__init__(self, init_state=init_state, bars=bars, ignored_bars=ignored_bars, logged_bars=logged_bars, min_time_interval=min_time_interval) class MuteProgressBarLogger(ProgressBarLogger): def bar_is_ignored(self, bar): return True def default_bar_logger(logger, bars=None, ignored_bars=None, logged_bars='all', min_time_interval=0, ignore_bars_under=0): if logger == 'bar': return TqdmProgressBarLogger( bars=bars, ignored_bars=ignored_bars, logged_bars=logged_bars, min_time_interval=min_time_interval, ignore_bars_under=ignore_bars_under ) elif logger is None: return MuteProgressBarLogger() else: return logger
[ "collections.OrderedDict", "time.time" ]
[((9891, 9938), 'collections.OrderedDict', 'OrderedDict', (['[(bar, None) for bar in self.bars]'], {}), '([(bar, None) for bar in self.bars])\n', (9902, 9938), False, 'from collections import OrderedDict\n'), ((3666, 3679), 'collections.OrderedDict', 'OrderedDict', ([], {}), '()\n', (3677, 3679), False, 'from collections import OrderedDict\n'), ((5832, 5843), 'time.time', 'time.time', ([], {}), '()\n', (5841, 5843), False, 'import time\n'), ((5977, 5988), 'time.time', 'time.time', ([], {}), '()\n', (5986, 5988), False, 'import time\n')]
# -*- coding: utf-8 -*- """ @date Created on Thu Dec 18 13:56:33 2014 @copyright (C) 2014-2015 EOMYS ENGINEERING. @author pierre_b """ from unittest import TestCase from ddt import ddt, data from pyleecan.Classes.Arc1 import Arc1 from pyleecan.Classes.Segment import Segment from pyleecan.Classes.MagnetType11 import MagnetType11 from pyleecan.Classes.LamSlotMag import LamSlotMag from pyleecan.Classes.SlotMPolar import SlotMPolar from numpy import pi, exp, angle, array from pyleecan.Methods.Machine.Magnet.comp_surface import comp_surface Mag11_test = list() # Internal Slot surface lam = LamSlotMag(is_internal=True, Rext=0.5) lam.slot = SlotMPolar(H0=0, W0=pi / 4, Zs=4) lam.slot.magnet = [MagnetType11(Hmag=1, Wmag=pi / 4)] Mag11_test.append({"test_obj": lam, "S_exp": 0.78539616, "Ao": pi / 4, "H_exp": 1}) # Internal Slot inset lam = LamSlotMag(is_internal=True, Rext=0.5) lam.slot = SlotMPolar(H0=40e-3, W0=pi / 4, Zs=4) lam.slot.magnet = [MagnetType11(Hmag=20e-3, Wmag=pi / 4)] Mag11_test.append({"test_obj": lam, "S_exp": 7.3827e-3, "Ao": pi / 4, "H_exp": 20e-3}) # Outward Slot inset lam = LamSlotMag(is_internal=False, Rext=0.1325) lam.slot = SlotMPolar(H0=5e-3, W0=pi / 10, Zs=8) lam.slot.magnet = [MagnetType11(Hmag=8e-3, Wmag=pi / 12)] Mag11_test.append({"test_obj": lam, "S_exp": 2.09439e-6, "Ao": pi / 12, "H_exp": 8e-3}) # For AlmostEqual DELTA = 1e-4 @ddt class test_Magnet_Type_11_meth(TestCase): """unittest for MagnetType11 methods """ @data(*Mag11_test) def test_comp_surface(self, test_dict): """Check that the computation of the surface is correct """ test_obj = test_dict["test_obj"] result = test_obj.slot.magnet[0].comp_surface() a = result b = test_dict["S_exp"] msg = "Return " + str(a) + " expected " + str(b) self.assertAlmostEqual((a - b) / a, 0, delta=DELTA, msg=msg) # Compare numerical and analytical results b = comp_surface(test_obj.slot.magnet[0]) msg = "Analytical: " + str(a) + " Numerical " + str(b) self.assertAlmostEqual((a - b) / a, 0, delta=DELTA, msg=msg) @data(*Mag11_test) def test_comp_height(self, test_dict): """Check that the computation of the height is correct """ test_obj = test_dict["test_obj"] result = test_obj.slot.magnet[0].comp_height() a = result b = test_dict["H_exp"] msg = "Return " + str(a) + " expected " + str(b) self.assertAlmostEqual((a - b) / a, 0, delta=DELTA, msg=msg) @data(*Mag11_test) def test_comp_angle_op(self, test_dict): """Check that the computation of the opening angle is correct """ test_obj = test_dict["test_obj"] result = test_obj.slot.magnet[0].comp_angle_opening() a = result b = test_dict["Ao"] msg = "Return " + str(a) + " expected " + str(b) self.assertAlmostEqual((a - b) / a, 0, delta=DELTA, msg=msg) def test_build_geometry_out(self): """check that curve_list is correct (outwards magnet)""" lam = LamSlotMag( Rint=40e-3, Rext=90e-3, is_internal=False, is_stator=False, L1=0.45, Nrvd=1, Wrvd=0.05, ) magnet = [MagnetType11(Wmag=pi / 10, Hmag=0.2)] lam.slot = SlotMPolar(Zs=8, W0=pi / 10, H0=0.2, magnet=magnet) test_obj = lam.slot.magnet[0] Z1 = (40e-3 + 0.2) * exp(-1j * pi / 10 / 2) Z2 = (40e-3 + 0.2) * exp(1j * pi / 10 / 2) Z = abs(Z1) Z3 = (Z - 0.2) * exp(1j * angle(Z1)) Z4 = (Z - 0.2) * exp(1j * angle(Z2)) # # Creation of curve curve_list = list() curve_list.append(Segment(Z1, Z3)) curve_list.append(Arc1(Z3, Z4, abs(Z3))) curve_list.append(Segment(Z4, Z2)) curve_list.append(Arc1(Z2, Z1, -abs(Z2))) surface = test_obj.build_geometry() result = surface[0].get_lines() for i in range(0, len(result)): a = result[i].begin b = curve_list[i].begin self.assertAlmostEqual((a - b) / a, 0, delta=DELTA) a = result[i].end b = curve_list[i].end self.assertAlmostEqual((a - b) / a, 0, delta=DELTA) def test_build_geometry_in(self): """check that curve_list is correct (inwards magnet)""" lam = LamSlotMag( Rint=40e-1, Rext=90e-1, is_internal=True, is_stator=False, L1=0.45, Nrvd=1, Wrvd=0.05, ) magnet = [MagnetType11(Wmag=pi / 10, Hmag=0.2)] lam.slot = SlotMPolar(Zs=8, W0=pi / 10, H0=0.2, magnet=magnet) test_obj = lam.slot.magnet[0] Z1 = (90e-1 - 0.2) * exp(-1j * pi / 10 / 2) Z2 = (90e-1 - 0.2) * exp(1j * pi / 10 / 2) Z = abs(Z1) Z3 = (Z + 0.2) * exp(1j * angle(Z1)) Z4 = (Z + 0.2) * exp(1j * angle(Z2)) # # Creation of curve curve_list = list() curve_list.append(Segment(Z1, Z3)) curve_list.append(Arc1(Z3, Z4, abs(Z3))) curve_list.append(Segment(Z4, Z2)) curve_list.append(Arc1(Z2, Z1, -abs(Z2))) surface = test_obj.build_geometry() result = surface[0].get_lines() for i in range(0, len(result)): a = result[i].begin b = curve_list[i].begin self.assertAlmostEqual((a - b) / a, 0, delta=DELTA) a = result[i].end b = curve_list[i].end self.assertAlmostEqual((a - b) / a, 0, delta=DELTA)
[ "pyleecan.Methods.Machine.Magnet.comp_surface.comp_surface", "pyleecan.Classes.LamSlotMag.LamSlotMag", "numpy.angle", "numpy.exp", "pyleecan.Classes.Segment.Segment", "ddt.data", "pyleecan.Classes.SlotMPolar.SlotMPolar", "pyleecan.Classes.MagnetType11.MagnetType11" ]
[((598, 636), 'pyleecan.Classes.LamSlotMag.LamSlotMag', 'LamSlotMag', ([], {'is_internal': '(True)', 'Rext': '(0.5)'}), '(is_internal=True, Rext=0.5)\n', (608, 636), False, 'from pyleecan.Classes.LamSlotMag import LamSlotMag\n'), ((648, 681), 'pyleecan.Classes.SlotMPolar.SlotMPolar', 'SlotMPolar', ([], {'H0': '(0)', 'W0': '(pi / 4)', 'Zs': '(4)'}), '(H0=0, W0=pi / 4, Zs=4)\n', (658, 681), False, 'from pyleecan.Classes.SlotMPolar import SlotMPolar\n'), ((849, 887), 'pyleecan.Classes.LamSlotMag.LamSlotMag', 'LamSlotMag', ([], {'is_internal': '(True)', 'Rext': '(0.5)'}), '(is_internal=True, Rext=0.5)\n', (859, 887), False, 'from pyleecan.Classes.LamSlotMag import LamSlotMag\n'), ((899, 935), 'pyleecan.Classes.SlotMPolar.SlotMPolar', 'SlotMPolar', ([], {'H0': '(0.04)', 'W0': '(pi / 4)', 'Zs': '(4)'}), '(H0=0.04, W0=pi / 4, Zs=4)\n', (909, 935), False, 'from pyleecan.Classes.SlotMPolar import SlotMPolar\n'), ((1110, 1152), 'pyleecan.Classes.LamSlotMag.LamSlotMag', 'LamSlotMag', ([], {'is_internal': '(False)', 'Rext': '(0.1325)'}), '(is_internal=False, Rext=0.1325)\n', (1120, 1152), False, 'from pyleecan.Classes.LamSlotMag import LamSlotMag\n'), ((1164, 1202), 'pyleecan.Classes.SlotMPolar.SlotMPolar', 'SlotMPolar', ([], {'H0': '(0.005)', 'W0': '(pi / 10)', 'Zs': '(8)'}), '(H0=0.005, W0=pi / 10, Zs=8)\n', (1174, 1202), False, 'from pyleecan.Classes.SlotMPolar import SlotMPolar\n'), ((701, 734), 'pyleecan.Classes.MagnetType11.MagnetType11', 'MagnetType11', ([], {'Hmag': '(1)', 'Wmag': '(pi / 4)'}), '(Hmag=1, Wmag=pi / 4)\n', (713, 734), False, 'from pyleecan.Classes.MagnetType11 import MagnetType11\n'), ((956, 992), 'pyleecan.Classes.MagnetType11.MagnetType11', 'MagnetType11', ([], {'Hmag': '(0.02)', 'Wmag': '(pi / 4)'}), '(Hmag=0.02, Wmag=pi / 4)\n', (968, 992), False, 'from pyleecan.Classes.MagnetType11 import MagnetType11\n'), ((1221, 1259), 'pyleecan.Classes.MagnetType11.MagnetType11', 'MagnetType11', ([], {'Hmag': '(0.008)', 'Wmag': '(pi / 12)'}), '(Hmag=0.008, Wmag=pi / 12)\n', (1233, 1259), False, 'from pyleecan.Classes.MagnetType11 import MagnetType11\n'), ((1484, 1501), 'ddt.data', 'data', (['*Mag11_test'], {}), '(*Mag11_test)\n', (1488, 1501), False, 'from ddt import ddt, data\n'), ((2136, 2153), 'ddt.data', 'data', (['*Mag11_test'], {}), '(*Mag11_test)\n', (2140, 2153), False, 'from ddt import ddt, data\n'), ((2551, 2568), 'ddt.data', 'data', (['*Mag11_test'], {}), '(*Mag11_test)\n', (2555, 2568), False, 'from ddt import ddt, data\n'), ((1960, 1997), 'pyleecan.Methods.Machine.Magnet.comp_surface.comp_surface', 'comp_surface', (['test_obj.slot.magnet[0]'], {}), '(test_obj.slot.magnet[0])\n', (1972, 1997), False, 'from pyleecan.Methods.Machine.Magnet.comp_surface import comp_surface\n'), ((3092, 3193), 'pyleecan.Classes.LamSlotMag.LamSlotMag', 'LamSlotMag', ([], {'Rint': '(0.04)', 'Rext': '(0.09)', 'is_internal': '(False)', 'is_stator': '(False)', 'L1': '(0.45)', 'Nrvd': '(1)', 'Wrvd': '(0.05)'}), '(Rint=0.04, Rext=0.09, is_internal=False, is_stator=False, L1=\n 0.45, Nrvd=1, Wrvd=0.05)\n', (3102, 3193), False, 'from pyleecan.Classes.LamSlotMag import LamSlotMag\n'), ((3361, 3412), 'pyleecan.Classes.SlotMPolar.SlotMPolar', 'SlotMPolar', ([], {'Zs': '(8)', 'W0': '(pi / 10)', 'H0': '(0.2)', 'magnet': 'magnet'}), '(Zs=8, W0=pi / 10, H0=0.2, magnet=magnet)\n', (3371, 3412), False, 'from pyleecan.Classes.SlotMPolar import SlotMPolar\n'), ((4413, 4510), 'pyleecan.Classes.LamSlotMag.LamSlotMag', 'LamSlotMag', ([], {'Rint': '(4.0)', 'Rext': '(9.0)', 'is_internal': '(True)', 'is_stator': '(False)', 'L1': '(0.45)', 'Nrvd': '(1)', 'Wrvd': '(0.05)'}), '(Rint=4.0, Rext=9.0, is_internal=True, is_stator=False, L1=0.45,\n Nrvd=1, Wrvd=0.05)\n', (4423, 4510), False, 'from pyleecan.Classes.LamSlotMag import LamSlotMag\n'), ((4681, 4732), 'pyleecan.Classes.SlotMPolar.SlotMPolar', 'SlotMPolar', ([], {'Zs': '(8)', 'W0': '(pi / 10)', 'H0': '(0.2)', 'magnet': 'magnet'}), '(Zs=8, W0=pi / 10, H0=0.2, magnet=magnet)\n', (4691, 4732), False, 'from pyleecan.Classes.SlotMPolar import SlotMPolar\n'), ((3304, 3340), 'pyleecan.Classes.MagnetType11.MagnetType11', 'MagnetType11', ([], {'Wmag': '(pi / 10)', 'Hmag': '(0.2)'}), '(Wmag=pi / 10, Hmag=0.2)\n', (3316, 3340), False, 'from pyleecan.Classes.MagnetType11 import MagnetType11\n'), ((3480, 3504), 'numpy.exp', 'exp', (['(-1.0j * pi / 10 / 2)'], {}), '(-1.0j * pi / 10 / 2)\n', (3483, 3504), False, 'from numpy import pi, exp, angle, array\n'), ((3532, 3555), 'numpy.exp', 'exp', (['(1.0j * pi / 10 / 2)'], {}), '(1.0j * pi / 10 / 2)\n', (3535, 3555), False, 'from numpy import pi, exp, angle, array\n'), ((3751, 3766), 'pyleecan.Classes.Segment.Segment', 'Segment', (['Z1', 'Z3'], {}), '(Z1, Z3)\n', (3758, 3766), False, 'from pyleecan.Classes.Segment import Segment\n'), ((3843, 3858), 'pyleecan.Classes.Segment.Segment', 'Segment', (['Z4', 'Z2'], {}), '(Z4, Z2)\n', (3850, 3858), False, 'from pyleecan.Classes.Segment import Segment\n'), ((4624, 4660), 'pyleecan.Classes.MagnetType11.MagnetType11', 'MagnetType11', ([], {'Wmag': '(pi / 10)', 'Hmag': '(0.2)'}), '(Wmag=pi / 10, Hmag=0.2)\n', (4636, 4660), False, 'from pyleecan.Classes.MagnetType11 import MagnetType11\n'), ((4800, 4824), 'numpy.exp', 'exp', (['(-1.0j * pi / 10 / 2)'], {}), '(-1.0j * pi / 10 / 2)\n', (4803, 4824), False, 'from numpy import pi, exp, angle, array\n'), ((4852, 4875), 'numpy.exp', 'exp', (['(1.0j * pi / 10 / 2)'], {}), '(1.0j * pi / 10 / 2)\n', (4855, 4875), False, 'from numpy import pi, exp, angle, array\n'), ((5071, 5086), 'pyleecan.Classes.Segment.Segment', 'Segment', (['Z1', 'Z3'], {}), '(Z1, Z3)\n', (5078, 5086), False, 'from pyleecan.Classes.Segment import Segment\n'), ((5163, 5178), 'pyleecan.Classes.Segment.Segment', 'Segment', (['Z4', 'Z2'], {}), '(Z4, Z2)\n', (5170, 5178), False, 'from pyleecan.Classes.Segment import Segment\n'), ((3610, 3619), 'numpy.angle', 'angle', (['Z1'], {}), '(Z1)\n', (3615, 3619), False, 'from numpy import pi, exp, angle, array\n'), ((3655, 3664), 'numpy.angle', 'angle', (['Z2'], {}), '(Z2)\n', (3660, 3664), False, 'from numpy import pi, exp, angle, array\n'), ((4930, 4939), 'numpy.angle', 'angle', (['Z1'], {}), '(Z1)\n', (4935, 4939), False, 'from numpy import pi, exp, angle, array\n'), ((4975, 4984), 'numpy.angle', 'angle', (['Z2'], {}), '(Z2)\n', (4980, 4984), False, 'from numpy import pi, exp, angle, array\n')]
#!/usr/bin/env python3 # -*- coding: utf-8 -*- """ """ from operator import mod from tomo_encoders.misc.voxel_processing import modified_autocontrast, TimerGPU from tomo_encoders.reconstruction.recon import recon_patches_3d import cupy as cp import numpy as np from skimage.filters import threshold_otsu from tomo_encoders import Grid def get_values_cyl_mask(vol, mask_fac): vol_shape = vol.shape assert vol_shape[1] == vol_shape[2], "must be a tomographic volume where shape y = shape x" shape_yx = vol_shape[1] shape_z = vol_shape[0] rad = int(mask_fac*shape_yx/2) pts = cp.arange(-int(shape_yx//2), int(cp.ceil(shape_yx//2))) yy, xx = cp.meshgrid(pts, pts, indexing = 'ij') circ = (cp.sqrt(yy**2 + xx**2) < rad).astype(cp.uint8) # inside is positive circ = circ[cp.newaxis, ...] cyl = cp.repeat(circ, shape_z, axis = 0) return vol[cyl > 0] def cylindrical_mask(out_vol, mask_fac, mask_val = 0): vol_shape = out_vol.shape assert vol_shape[1] == vol_shape[2], "must be a tomographic volume where shape y = shape x" shape_yx = vol_shape[1] shape_z = vol_shape[0] rad = int(mask_fac*shape_yx/2) pts = cp.arange(-int(shape_yx//2), int(cp.ceil(shape_yx//2))) yy, xx = cp.meshgrid(pts, pts, indexing = 'ij') circ = (cp.sqrt(yy**2 + xx**2) < rad).astype(cp.uint8) # inside is positive circ = circ[cp.newaxis, ...] cyl = cp.repeat(circ, shape_z, axis = 0) out_vol[cyl == 0] = mask_val return def segment_otsu(vol, s = 0.05): '''segment volume with otsu''' timer = TimerGPU() timer.tic() tmp_values = vol[::4,::4,::4].get() # rec_min_max = modified_autocontrast(tmp_values, s = s, normalize_sampling_factor=1) thresh = cp.float32(threshold_otsu(tmp_values.reshape(-1))) vol = (vol < thresh).astype(cp.uint8) timer.toc("otsu thresholding") return vol def edge_map(Y): ''' this algorithm was inspired by: https://github.com/tomochallenge/tomochallenge_utils/blob/master/foam_phantom_utils.py ''' msk = cp.zeros_like(Y) tmp = Y[:-1]!=Y[1:] msk[:-1][tmp] = 1 msk[1:][tmp] = 1 tmp = Y[:,:-1]!=Y[:,1:] msk[:,:-1][tmp] = 1 msk[:,1:][tmp] = 1 tmp = Y[:,:,:-1]!=Y[:,:,1:] msk[:,:,:-1][tmp] = 1 msk[:,:,1:][tmp] = 1 return msk > 0 def guess_surface(V_bin, b, wd): # find patches on surface wdb = int(wd//b) p3d = Grid(V_bin.shape, width = wdb) x = p3d.extract(V_bin) is_surf = (np.std(x, axis = (1,2,3)) > 0.0) is_ones = (np.sum(x, axis = (1,2,3))/(wdb**3) == 1) is_zeros = (np.sum(x, axis = (1,2,3))/(wdb**3) == 0) p3d = p3d.rescale(b) p3d_surf = p3d.filter_by_condition(is_surf) p3d_ones = p3d.filter_by_condition(is_ones) p3d_zeros = p3d.filter_by_condition(is_zeros) eff = len(p3d_surf)*(wd**3)/np.prod(p3d_surf.vol_shape) print(f"\tSTAT: r value: {eff*100.0:.2f}") return p3d_surf, p3d_ones, p3d_zeros def process_patches(projs, theta, center, fe, p_surf, min_max, TIMEIT = False): # SCHEME 1: integrate reconstruction and segmention (segments data on gpu itself) # st_proc = cp.cuda.Event(); end_proc = cp.cuda.Event(); st_proc.record() # x_surf, p_surf = recon_patches_3d(projs, theta, center, p_surf, \ # apply_fbp = True, segmenter = fe, \ # segmenter_batch_size = 256) # end_proc.record(); end_proc.synchronize(); t_surf = cp.cuda.get_elapsed_time(st_proc,end_proc) # SCHEME 2: reconstruct and segment separately (copies rec data from gpu to cpu) st_rec = cp.cuda.Event(); end_rec = cp.cuda.Event(); st_rec.record() x_surf, p_surf = recon_patches_3d(projs, theta, center, p_surf, \ apply_fbp =True) end_rec.record(); end_rec.synchronize(); t_rec = cp.cuda.get_elapsed_time(st_rec,end_rec) st_seg = cp.cuda.Event(); end_seg = cp.cuda.Event(); st_seg.record() x_surf = np.clip(x_surf, *min_max) x_surf = fe.predict_patches("segmenter", x_surf[...,np.newaxis], 256, None, min_max = min_max)[...,0] end_seg.record(); end_seg.synchronize(); t_seg = cp.cuda.get_elapsed_time(st_seg,end_seg) print(f'\tTIME: local reconstruction - {t_rec/1000.0:.2f} secs') print(f'\tTIME: local segmentation - {t_seg/1000.0:.2f} secs') print(f'\tSTAT: total patches in neighborhood: {len(p_surf)}') if TIMEIT: return x_surf, p_surf, t_rec, t_seg else: return x_surf, p_surf
[ "cupy.zeros_like", "numpy.clip", "numpy.prod", "tomo_encoders.misc.voxel_processing.TimerGPU", "tomo_encoders.Grid", "cupy.cuda.get_elapsed_time", "cupy.repeat", "numpy.sum", "tomo_encoders.reconstruction.recon.recon_patches_3d", "cupy.sqrt", "cupy.meshgrid", "numpy.std", "cupy.cuda.Event", "cupy.ceil" ]
[((688, 724), 'cupy.meshgrid', 'cp.meshgrid', (['pts', 'pts'], {'indexing': '"""ij"""'}), "(pts, pts, indexing='ij')\n", (699, 724), True, 'import cupy as cp\n'), ((850, 882), 'cupy.repeat', 'cp.repeat', (['circ', 'shape_z'], {'axis': '(0)'}), '(circ, shape_z, axis=0)\n', (859, 882), True, 'import cupy as cp\n'), ((1276, 1312), 'cupy.meshgrid', 'cp.meshgrid', (['pts', 'pts'], {'indexing': '"""ij"""'}), "(pts, pts, indexing='ij')\n", (1287, 1312), True, 'import cupy as cp\n'), ((1438, 1470), 'cupy.repeat', 'cp.repeat', (['circ', 'shape_z'], {'axis': '(0)'}), '(circ, shape_z, axis=0)\n', (1447, 1470), True, 'import cupy as cp\n'), ((1604, 1614), 'tomo_encoders.misc.voxel_processing.TimerGPU', 'TimerGPU', ([], {}), '()\n', (1612, 1614), False, 'from tomo_encoders.misc.voxel_processing import modified_autocontrast, TimerGPU\n'), ((2085, 2101), 'cupy.zeros_like', 'cp.zeros_like', (['Y'], {}), '(Y)\n', (2098, 2101), True, 'import cupy as cp\n'), ((2446, 2474), 'tomo_encoders.Grid', 'Grid', (['V_bin.shape'], {'width': 'wdb'}), '(V_bin.shape, width=wdb)\n', (2450, 2474), False, 'from tomo_encoders import Grid\n'), ((3673, 3688), 'cupy.cuda.Event', 'cp.cuda.Event', ([], {}), '()\n', (3686, 3688), True, 'import cupy as cp\n'), ((3700, 3715), 'cupy.cuda.Event', 'cp.cuda.Event', ([], {}), '()\n', (3713, 3715), True, 'import cupy as cp\n'), ((3754, 3816), 'tomo_encoders.reconstruction.recon.recon_patches_3d', 'recon_patches_3d', (['projs', 'theta', 'center', 'p_surf'], {'apply_fbp': '(True)'}), '(projs, theta, center, p_surf, apply_fbp=True)\n', (3770, 3816), False, 'from tomo_encoders.reconstruction.recon import recon_patches_3d\n'), ((3911, 3952), 'cupy.cuda.get_elapsed_time', 'cp.cuda.get_elapsed_time', (['st_rec', 'end_rec'], {}), '(st_rec, end_rec)\n', (3935, 3952), True, 'import cupy as cp\n'), ((3965, 3980), 'cupy.cuda.Event', 'cp.cuda.Event', ([], {}), '()\n', (3978, 3980), True, 'import cupy as cp\n'), ((3992, 4007), 'cupy.cuda.Event', 'cp.cuda.Event', ([], {}), '()\n', (4005, 4007), True, 'import cupy as cp\n'), ((4043, 4068), 'numpy.clip', 'np.clip', (['x_surf', '*min_max'], {}), '(x_surf, *min_max)\n', (4050, 4068), True, 'import numpy as np\n'), ((4228, 4269), 'cupy.cuda.get_elapsed_time', 'cp.cuda.get_elapsed_time', (['st_seg', 'end_seg'], {}), '(st_seg, end_seg)\n', (4252, 4269), True, 'import cupy as cp\n'), ((2524, 2549), 'numpy.std', 'np.std', (['x'], {'axis': '(1, 2, 3)'}), '(x, axis=(1, 2, 3))\n', (2530, 2549), True, 'import numpy as np\n'), ((2878, 2905), 'numpy.prod', 'np.prod', (['p3d_surf.vol_shape'], {}), '(p3d_surf.vol_shape)\n', (2885, 2905), True, 'import numpy as np\n'), ((652, 674), 'cupy.ceil', 'cp.ceil', (['(shape_yx // 2)'], {}), '(shape_yx // 2)\n', (659, 674), True, 'import cupy as cp\n'), ((1240, 1262), 'cupy.ceil', 'cp.ceil', (['(shape_yx // 2)'], {}), '(shape_yx // 2)\n', (1247, 1262), True, 'import cupy as cp\n'), ((2572, 2597), 'numpy.sum', 'np.sum', (['x'], {'axis': '(1, 2, 3)'}), '(x, axis=(1, 2, 3))\n', (2578, 2597), True, 'import numpy as np\n'), ((2629, 2654), 'numpy.sum', 'np.sum', (['x'], {'axis': '(1, 2, 3)'}), '(x, axis=(1, 2, 3))\n', (2635, 2654), True, 'import numpy as np\n'), ((739, 765), 'cupy.sqrt', 'cp.sqrt', (['(yy ** 2 + xx ** 2)'], {}), '(yy ** 2 + xx ** 2)\n', (746, 765), True, 'import cupy as cp\n'), ((1327, 1353), 'cupy.sqrt', 'cp.sqrt', (['(yy ** 2 + xx ** 2)'], {}), '(yy ** 2 + xx ** 2)\n', (1334, 1353), True, 'import cupy as cp\n')]
# Generated by Django 2.2.1 on 2019-06-22 11:03 from django.db import migrations, models class Migration(migrations.Migration): initial = True dependencies = [ ] operations = [ migrations.CreateModel( name='SubscribeModel', fields=[ ('id', models.AutoField(auto_created=True, primary_key=True, serialize=False, verbose_name='ID')), ('email', models.EmailField(db_index=True, max_length=255, unique=True, verbose_name='Email')), ('create_time', models.DateTimeField(auto_now_add=True, verbose_name='Subscribe Time')), ], options={ 'verbose_name': 'Subscribe Email', 'verbose_name_plural': 'Subscribe Emails', 'abstract': False, }, ), ]
[ "django.db.models.DateTimeField", "django.db.models.EmailField", "django.db.models.AutoField" ]
[((310, 403), 'django.db.models.AutoField', 'models.AutoField', ([], {'auto_created': '(True)', 'primary_key': '(True)', 'serialize': '(False)', 'verbose_name': '"""ID"""'}), "(auto_created=True, primary_key=True, serialize=False,\n verbose_name='ID')\n", (326, 403), False, 'from django.db import migrations, models\n'), ((428, 516), 'django.db.models.EmailField', 'models.EmailField', ([], {'db_index': '(True)', 'max_length': '(255)', 'unique': '(True)', 'verbose_name': '"""Email"""'}), "(db_index=True, max_length=255, unique=True, verbose_name=\n 'Email')\n", (445, 516), False, 'from django.db import migrations, models\n'), ((546, 616), 'django.db.models.DateTimeField', 'models.DateTimeField', ([], {'auto_now_add': '(True)', 'verbose_name': '"""Subscribe Time"""'}), "(auto_now_add=True, verbose_name='Subscribe Time')\n", (566, 616), False, 'from django.db import migrations, models\n')]
# -*- coding: UTF-8 -*- import json from django.http import HttpResponse from django.views.decorators.csrf import csrf_exempt import tushare as ts from .publiceClass import DateEncoder @csrf_exempt def sh_margins(request): try: start = request.POST.get('start','')#选填 end = request.POST.get('end','')#选填 data = ts.sh_margins(start,end) res = {'columns':[ '信用交易日期', '本日融资余额(元)', '本日融资买入额(元)', '本日融券余量', '本日融券余量金额(元)', '本日融券卖出量', '本日融资融券余额(元)' ],'data':json.loads(json.dumps(data.values,cls=DateEncoder))} except(BaseException): return HttpResponse(BaseException) else: return HttpResponse(json.dumps(res),content_type="application/json")
[ "django.http.HttpResponse", "json.dumps", "tushare.sh_margins" ]
[((341, 366), 'tushare.sh_margins', 'ts.sh_margins', (['start', 'end'], {}), '(start, end)\n', (354, 366), True, 'import tushare as ts\n'), ((676, 703), 'django.http.HttpResponse', 'HttpResponse', (['BaseException'], {}), '(BaseException)\n', (688, 703), False, 'from django.http import HttpResponse\n'), ((743, 758), 'json.dumps', 'json.dumps', (['res'], {}), '(res)\n', (753, 758), False, 'import json\n'), ((592, 632), 'json.dumps', 'json.dumps', (['data.values'], {'cls': 'DateEncoder'}), '(data.values, cls=DateEncoder)\n', (602, 632), False, 'import json\n')]
# Generated by Django 3.1.4 on 2021-05-05 21:16 from django.db import migrations class Migration(migrations.Migration): dependencies = [ ('Main', '0071_auto_20210506_0004'), ] operations = [ migrations.RemoveField( model_name='product', name='chooseColor', ), migrations.RemoveField( model_name='product', name='chooseSize', ), ]
[ "django.db.migrations.RemoveField" ]
[((224, 288), 'django.db.migrations.RemoveField', 'migrations.RemoveField', ([], {'model_name': '"""product"""', 'name': '"""chooseColor"""'}), "(model_name='product', name='chooseColor')\n", (246, 288), False, 'from django.db import migrations\n'), ((333, 396), 'django.db.migrations.RemoveField', 'migrations.RemoveField', ([], {'model_name': '"""product"""', 'name': '"""chooseSize"""'}), "(model_name='product', name='chooseSize')\n", (355, 396), False, 'from django.db import migrations\n')]
import json import setuptools with open("template/README.md", "r") as fh: long_description = fh.read() with open('requirements.txt') as fr: requirements = fr.read().strip().split('\n') with open('metadata.json') as fr: metadata = json.load(fr) setuptools.setup( name="", # Name of the repository version="0.0.1", author=metadata.get("author", ""), author_email=metadata.get("author_email", ""), description=metadata.get("description", ""), long_description=long_description, long_description_content_type="text/markdown", url="", # Repository URL or externally maintained page packages=setuptools.find_packages(), python_requires='>=3.6', install_requires=requirements, )
[ "json.load", "setuptools.find_packages" ]
[((245, 258), 'json.load', 'json.load', (['fr'], {}), '(fr)\n', (254, 258), False, 'import json\n'), ((640, 666), 'setuptools.find_packages', 'setuptools.find_packages', ([], {}), '()\n', (664, 666), False, 'import setuptools\n')]
""" @Time : 201/21/19 10:41 @Author : TaylorMei @Email : <EMAIL> @Project : iccv @File : train_base3.py @Function: """ import datetime import os import torch from torch import nn from torch import optim from torch.autograd import Variable from torch.backends import cudnn from torch.utils.data import DataLoader from torchvision import transforms from tensorboardX import SummaryWriter from tqdm import tqdm import joint_transforms from config import msd_training_root from config import backbone_path from dataset import ImageFolder from misc import AvgMeter, check_mkdir from model.base3 import BASE3 import loss as L cudnn.benchmark = True device_ids = [2] ckpt_path = './ckpt' exp_name = 'BASE3' args = { 'epoch_num': 100, 'train_batch_size': 14, 'last_epoch': 0, 'lr': 5e-3, 'lr_decay': 0.9, 'weight_decay': 5e-4, 'momentum': 0.9, 'snapshot': '', 'scale': 384, 'save_point': [60, 80, 90], 'add_graph': True, 'poly_train': True, 'optimizer': 'SGD' } # Path. check_mkdir(ckpt_path) check_mkdir(os.path.join(ckpt_path, exp_name)) vis_path = os.path.join(ckpt_path, exp_name, 'log') check_mkdir(vis_path) log_path = os.path.join(ckpt_path, exp_name, str(datetime.datetime.now()) + '.txt') writer = SummaryWriter(log_dir=vis_path, comment=exp_name) # Transform Data. joint_transform = joint_transforms.Compose([ joint_transforms.RandomRotate(), joint_transforms.Resize((args['scale'], args['scale'])) ]) img_transform = transforms.Compose([ transforms.ToTensor(), transforms.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225]) # maybe can optimized. ]) target_transform = transforms.ToTensor() # Prepare Data Set. train_set = ImageFolder(msd_training_root, joint_transform, img_transform, target_transform) print("Train set: {}".format(train_set.__len__())) train_loader = DataLoader(train_set, batch_size=args['train_batch_size'], num_workers=0, shuffle=True) def main(): print(args) print(exp_name) net = BASE3(backbone_path).cuda(device_ids[0]).train() if args['add_graph']: writer.add_graph(net, input_to_model=torch.rand( args['train_batch_size'], 3, args['scale'], args['scale']).cuda(device_ids[0])) if args['optimizer'] == 'Adam': print("Adam") optimizer = optim.Adam([ {'params': [param for name, param in net.named_parameters() if name[-4:] == 'bias'], 'lr': 2 * args['lr']}, {'params': [param for name, param in net.named_parameters() if name[-4:] != 'bias'], 'lr': 1 * args['lr'], 'weight_decay': args['weight_decay']} ]) else: print("SGD") optimizer = optim.SGD([ {'params': [param for name, param in net.named_parameters() if name[-4:] == 'bias'], 'lr': 2 * args['lr']}, {'params': [param for name, param in net.named_parameters() if name[-4:] != 'bias'], 'lr': 1 * args['lr'], 'weight_decay': args['weight_decay']} ], momentum=args['momentum']) if len(args['snapshot']) > 0: print('Training Resumes From \'%s\'' % args['snapshot']) net.load_state_dict(torch.load(os.path.join(ckpt_path, exp_name, args['snapshot'] + '.pth'))) net = nn.DataParallel(net, device_ids=device_ids) print("Using {} GPU(s) to Train.".format(len(device_ids))) open(log_path, 'w').write(str(args) + '\n\n') train(net, optimizer) writer.close() def train(net, optimizer): curr_iter = 1 for epoch in range(args['last_epoch'] + 1, args['last_epoch'] + 1 + args['epoch_num']): loss_4_record, loss_3_record, loss_2_record, loss_1_record, \ loss_f_record, loss_record = AvgMeter(), AvgMeter(), AvgMeter(), AvgMeter(), AvgMeter(), AvgMeter() train_iterator = tqdm(train_loader, total=len(train_loader)) for data in train_iterator: if args['poly_train']: base_lr = args['lr'] * (1 - float(curr_iter) / (args['epoch_num'] * len(train_loader))) ** args[ 'lr_decay'] optimizer.param_groups[0]['lr'] = 2 * base_lr optimizer.param_groups[1]['lr'] = 1 * base_lr inputs, labels = data batch_size = inputs.size(0) inputs = Variable(inputs).cuda(device_ids[0]) labels = Variable(labels).cuda(device_ids[0]) optimizer.zero_grad() predict_4, predict_3, predict_2, predict_1, predict_f = net(inputs) loss_4 = L.lovasz_hinge(predict_4, labels) loss_3 = L.lovasz_hinge(predict_3, labels) loss_2 = L.lovasz_hinge(predict_2, labels) loss_1 = L.lovasz_hinge(predict_1, labels) loss_f = L.lovasz_hinge(predict_f, labels) loss = loss_4 + loss_3 + loss_2 + loss_1 + loss_f loss.backward() optimizer.step() loss_record.update(loss.data, batch_size) loss_4_record.update(loss_4.data, batch_size) loss_3_record.update(loss_3.data, batch_size) loss_2_record.update(loss_2.data, batch_size) loss_1_record.update(loss_1.data, batch_size) loss_f_record.update(loss_f.data, batch_size) if curr_iter % 50 == 0: writer.add_scalar('loss', loss, curr_iter) writer.add_scalar('loss_4', loss_4, curr_iter) writer.add_scalar('loss_3', loss_3, curr_iter) writer.add_scalar('loss_2', loss_2, curr_iter) writer.add_scalar('loss_1', loss_1, curr_iter) writer.add_scalar('loss_f', loss_f, curr_iter) log = '[%3d], [%6d], [%.6f], [%.5f], [L4: %.5f], [L3: %.5f], [L2: %.5f], [L1: %.5f], [Lf: %.5f]' % \ (epoch, curr_iter, base_lr, loss_record.avg, loss_4_record.avg, loss_3_record.avg, loss_2_record.avg, loss_1_record.avg, loss_f_record.avg) train_iterator.set_description(log) open(log_path, 'a').write(log + '\n') curr_iter += 1 if epoch in args['save_point']: net.cpu() torch.save(net.module.state_dict(), os.path.join(ckpt_path, exp_name, '%d.pth' % epoch)) net.cuda(device_ids[0]) if epoch >= args['epoch_num']: net.cpu() torch.save(net.module.state_dict(), os.path.join(ckpt_path, exp_name, '%d.pth' % epoch)) print("Optimization Have Done!") return if __name__ == '__main__': main()
[ "dataset.ImageFolder", "joint_transforms.RandomRotate", "loss.lovasz_hinge", "tensorboardX.SummaryWriter", "misc.AvgMeter", "model.base3.BASE3", "os.path.join", "torch.nn.DataParallel", "joint_transforms.Resize", "datetime.datetime.now", "torchvision.transforms.Normalize", "torch.utils.data.DataLoader", "misc.check_mkdir", "torchvision.transforms.ToTensor", "torch.autograd.Variable", "torch.rand" ]
[((1041, 1063), 'misc.check_mkdir', 'check_mkdir', (['ckpt_path'], {}), '(ckpt_path)\n', (1052, 1063), False, 'from misc import AvgMeter, check_mkdir\n'), ((1122, 1162), 'os.path.join', 'os.path.join', (['ckpt_path', 'exp_name', '"""log"""'], {}), "(ckpt_path, exp_name, 'log')\n", (1134, 1162), False, 'import os\n'), ((1163, 1184), 'misc.check_mkdir', 'check_mkdir', (['vis_path'], {}), '(vis_path)\n', (1174, 1184), False, 'from misc import AvgMeter, check_mkdir\n'), ((1278, 1327), 'tensorboardX.SummaryWriter', 'SummaryWriter', ([], {'log_dir': 'vis_path', 'comment': 'exp_name'}), '(log_dir=vis_path, comment=exp_name)\n', (1291, 1327), False, 'from tensorboardX import SummaryWriter\n'), ((1673, 1694), 'torchvision.transforms.ToTensor', 'transforms.ToTensor', ([], {}), '()\n', (1692, 1694), False, 'from torchvision import transforms\n'), ((1728, 1813), 'dataset.ImageFolder', 'ImageFolder', (['msd_training_root', 'joint_transform', 'img_transform', 'target_transform'], {}), '(msd_training_root, joint_transform, img_transform, target_transform\n )\n', (1739, 1813), False, 'from dataset import ImageFolder\n'), ((1875, 1966), 'torch.utils.data.DataLoader', 'DataLoader', (['train_set'], {'batch_size': "args['train_batch_size']", 'num_workers': '(0)', 'shuffle': '(True)'}), "(train_set, batch_size=args['train_batch_size'], num_workers=0,\n shuffle=True)\n", (1885, 1966), False, 'from torch.utils.data import DataLoader\n'), ((1076, 1109), 'os.path.join', 'os.path.join', (['ckpt_path', 'exp_name'], {}), '(ckpt_path, exp_name)\n', (1088, 1109), False, 'import os\n'), ((3267, 3310), 'torch.nn.DataParallel', 'nn.DataParallel', (['net'], {'device_ids': 'device_ids'}), '(net, device_ids=device_ids)\n', (3282, 3310), False, 'from torch import nn\n'), ((1396, 1427), 'joint_transforms.RandomRotate', 'joint_transforms.RandomRotate', ([], {}), '()\n', (1425, 1427), False, 'import joint_transforms\n'), ((1433, 1488), 'joint_transforms.Resize', 'joint_transforms.Resize', (["(args['scale'], args['scale'])"], {}), "((args['scale'], args['scale']))\n", (1456, 1488), False, 'import joint_transforms\n'), ((1533, 1554), 'torchvision.transforms.ToTensor', 'transforms.ToTensor', ([], {}), '()\n', (1552, 1554), False, 'from torchvision import transforms\n'), ((1560, 1626), 'torchvision.transforms.Normalize', 'transforms.Normalize', (['[0.485, 0.456, 0.406]', '[0.229, 0.224, 0.225]'], {}), '([0.485, 0.456, 0.406], [0.229, 0.224, 0.225])\n', (1580, 1626), False, 'from torchvision import transforms\n'), ((1234, 1257), 'datetime.datetime.now', 'datetime.datetime.now', ([], {}), '()\n', (1255, 1257), False, 'import datetime\n'), ((3717, 3727), 'misc.AvgMeter', 'AvgMeter', ([], {}), '()\n', (3725, 3727), False, 'from misc import AvgMeter, check_mkdir\n'), ((3729, 3739), 'misc.AvgMeter', 'AvgMeter', ([], {}), '()\n', (3737, 3739), False, 'from misc import AvgMeter, check_mkdir\n'), ((3741, 3751), 'misc.AvgMeter', 'AvgMeter', ([], {}), '()\n', (3749, 3751), False, 'from misc import AvgMeter, check_mkdir\n'), ((3753, 3763), 'misc.AvgMeter', 'AvgMeter', ([], {}), '()\n', (3761, 3763), False, 'from misc import AvgMeter, check_mkdir\n'), ((3765, 3775), 'misc.AvgMeter', 'AvgMeter', ([], {}), '()\n', (3773, 3775), False, 'from misc import AvgMeter, check_mkdir\n'), ((3777, 3787), 'misc.AvgMeter', 'AvgMeter', ([], {}), '()\n', (3785, 3787), False, 'from misc import AvgMeter, check_mkdir\n'), ((4527, 4560), 'loss.lovasz_hinge', 'L.lovasz_hinge', (['predict_4', 'labels'], {}), '(predict_4, labels)\n', (4541, 4560), True, 'import loss as L\n'), ((4582, 4615), 'loss.lovasz_hinge', 'L.lovasz_hinge', (['predict_3', 'labels'], {}), '(predict_3, labels)\n', (4596, 4615), True, 'import loss as L\n'), ((4637, 4670), 'loss.lovasz_hinge', 'L.lovasz_hinge', (['predict_2', 'labels'], {}), '(predict_2, labels)\n', (4651, 4670), True, 'import loss as L\n'), ((4692, 4725), 'loss.lovasz_hinge', 'L.lovasz_hinge', (['predict_1', 'labels'], {}), '(predict_1, labels)\n', (4706, 4725), True, 'import loss as L\n'), ((4747, 4780), 'loss.lovasz_hinge', 'L.lovasz_hinge', (['predict_f', 'labels'], {}), '(predict_f, labels)\n', (4761, 4780), True, 'import loss as L\n'), ((3193, 3253), 'os.path.join', 'os.path.join', (['ckpt_path', 'exp_name', "(args['snapshot'] + '.pth')"], {}), "(ckpt_path, exp_name, args['snapshot'] + '.pth')\n", (3205, 3253), False, 'import os\n'), ((6187, 6238), 'os.path.join', 'os.path.join', (['ckpt_path', 'exp_name', "('%d.pth' % epoch)"], {}), "(ckpt_path, exp_name, '%d.pth' % epoch)\n", (6199, 6238), False, 'import os\n'), ((6386, 6437), 'os.path.join', 'os.path.join', (['ckpt_path', 'exp_name', "('%d.pth' % epoch)"], {}), "(ckpt_path, exp_name, '%d.pth' % epoch)\n", (6398, 6437), False, 'import os\n'), ((2024, 2044), 'model.base3.BASE3', 'BASE3', (['backbone_path'], {}), '(backbone_path)\n', (2029, 2044), False, 'from model.base3 import BASE3\n'), ((4294, 4310), 'torch.autograd.Variable', 'Variable', (['inputs'], {}), '(inputs)\n', (4302, 4310), False, 'from torch.autograd import Variable\n'), ((4352, 4368), 'torch.autograd.Variable', 'Variable', (['labels'], {}), '(labels)\n', (4360, 4368), False, 'from torch.autograd import Variable\n'), ((2144, 2213), 'torch.rand', 'torch.rand', (["args['train_batch_size']", '(3)', "args['scale']", "args['scale']"], {}), "(args['train_batch_size'], 3, args['scale'], args['scale'])\n", (2154, 2213), False, 'import torch\n')]
import unittest from app.models import Comment, Pitch from app import db class TestPitchComment(unittest.TestCase): def setUp(self): self.new_pitch = Pitch(post = "doit", category='Quotes') self.new_comment = Comment(comment = "good comment", pitch=self.new_pitch) def test_instance(self): self.assertTrue(isinstance(self.new_comment,Comment)) def test_check_instance_variables(self): self.assertEquals(self.new_comment.comment,"good comment") self.assertEquals(self.new_comment.pitch,self.new_pitch, 'do it')
[ "app.models.Comment", "app.models.Pitch" ]
[((164, 201), 'app.models.Pitch', 'Pitch', ([], {'post': '"""doit"""', 'category': '"""Quotes"""'}), "(post='doit', category='Quotes')\n", (169, 201), False, 'from app.models import Comment, Pitch\n'), ((231, 284), 'app.models.Comment', 'Comment', ([], {'comment': '"""good comment"""', 'pitch': 'self.new_pitch'}), "(comment='good comment', pitch=self.new_pitch)\n", (238, 284), False, 'from app.models import Comment, Pitch\n')]
from django.shortcuts import render from django.http import HttpResponse from django.contrib.auth.decorators import login_required from django.views.decorators.csrf import csrf_exempt from django.template import loader from django.db import connection from django.http import HttpResponseRedirect import datetime from django.http import JsonResponse from administrator.models import Course, CourseTeacher, CourseStudent, Student from django.core.exceptions import PermissionDenied def teacher_only(function): #"""Limit view to teacher only.""" def _inner(request, *args, **kwargs): if not request.user.is_staff == False | request.user.is_superuser: raise PermissionDenied return function(request, *args, **kwargs) return _inner @login_required(login_url = '/users') @teacher_only def home(request): current_user = request.user.id teacher_current_courses = Course.objects.select_related().raw('SELECT * ' 'FROM course_teachers as CT, courses as C ' 'WHERE CT.teachers_id = %s AND C.course_id = CT.course_id AND C.is_complete = 0 ', [current_user]) currentdate = datetime.datetime.today().strftime('%Y-%m-%d') with connection.cursor() as cursor: cursor.execute('SELECT CL.course_id, CL.date ' 'FROM classes as CL, course_teachers as CT ' 'WHERE CT.teachers_id = %s AND CL.date >= %s ' 'AND CT.course_id = CL.course_id ' 'GROUP BY CL.course_id ', [current_user, currentdate]) next_class_date = cursor.fetchall() with connection.cursor() as cursor: cursor.execute('SELECT CS.course_id, COUNT(CS.students_id) ' 'FROM course_teachers as CT, course_students as CS ' 'WHERE CT.teachers_id = %s AND CT.course_id = CS.course_id ' 'GROUP BY CS.course_id ', [current_user]) teacher_student_count = cursor.fetchall() with connection.cursor() as cursor: cursor.execute('SELECT C.course_id, C.notes ' 'FROM course_teachers as CT, courses as C ' 'WHERE CT.teachers_id = %s AND C.course_id = CT.course_id ' 'GROUP BY CT.course_id ', [current_user]) teacher_course_notes = cursor.fetchall() template = loader.get_template('teacher/dashboard.html') context = { 'teacher_current_courses': teacher_current_courses, 'teacher_student_count': teacher_student_count, 'next_class_date': next_class_date, 'teacher_course_notes': teacher_course_notes } # Render the template to the user return HttpResponse(template.render(context, request)) @csrf_exempt def update_course_notes(request): # Get the student name that was passed from the web page courseNotes = request.POST.get('courseNotes') courseId = request.POST.get('courseId') # Create a cursor to execute raw SQL queries. with connection.cursor() as cursor: cursor.execute('UPDATE courses ' 'SET notes = %s ' 'WHERE course_id = %s', [courseNotes, courseId]) # Render the response to the user
[ "django.db.connection.cursor", "django.contrib.auth.decorators.login_required", "datetime.datetime.today", "django.template.loader.get_template", "administrator.models.Course.objects.select_related" ]
[((776, 810), 'django.contrib.auth.decorators.login_required', 'login_required', ([], {'login_url': '"""/users"""'}), "(login_url='/users')\n", (790, 810), False, 'from django.contrib.auth.decorators import login_required\n'), ((2666, 2711), 'django.template.loader.get_template', 'loader.get_template', (['"""teacher/dashboard.html"""'], {}), "('teacher/dashboard.html')\n", (2685, 2711), False, 'from django.template import loader\n'), ((1306, 1325), 'django.db.connection.cursor', 'connection.cursor', ([], {}), '()\n', (1323, 1325), False, 'from django.db import connection\n'), ((1789, 1808), 'django.db.connection.cursor', 'connection.cursor', ([], {}), '()\n', (1806, 1808), False, 'from django.db import connection\n'), ((2197, 2216), 'django.db.connection.cursor', 'connection.cursor', ([], {}), '()\n', (2214, 2216), False, 'from django.db import connection\n'), ((3355, 3374), 'django.db.connection.cursor', 'connection.cursor', ([], {}), '()\n', (3372, 3374), False, 'from django.db import connection\n'), ((919, 950), 'administrator.models.Course.objects.select_related', 'Course.objects.select_related', ([], {}), '()\n', (948, 950), False, 'from administrator.models import Course, CourseTeacher, CourseStudent, Student\n'), ((1245, 1270), 'datetime.datetime.today', 'datetime.datetime.today', ([], {}), '()\n', (1268, 1270), False, 'import datetime\n')]
import logging import pytest import re from . import text from ... import matchers from ...utils import answer, SimpleTrigger logger = logging.getLogger(__name__) @pytest.mark.asyncio async def test_should_run_story_on_equal_message(): trigger = SimpleTrigger() with answer.Talk() as talk: story = talk.story @story.on('hi there!') def one_story(): @story.part() def then(ctx): trigger.passed() await talk.pure_text('hi there!') assert trigger.is_triggered @pytest.mark.asyncio async def test_should_not_run_story_on_non_equal_message(): trigger = SimpleTrigger() with answer.Talk() as talk: story = talk.story @story.on('hi there!') def one_story(): @story.part() def then(ctx): trigger.passed() await talk.pure_text('buy!') assert not trigger.is_triggered @pytest.mark.asyncio async def test_should_catch_any_text_message(): trigger = SimpleTrigger() with answer.Talk() as talk: story = talk.story @story.on(text.Any()) def one_story(): @story.part() def then(ctx): trigger.passed() await talk.pure_text('hi there!') assert trigger.is_triggered @pytest.mark.asyncio async def test_should_ignore_any_non_text_message(): trigger = SimpleTrigger() with answer.Talk() as talk: story = talk.story @story.on(text.Any()) def one_story(): @story.part() def then(ctx): trigger.passed() await talk.location('some where') assert not trigger.is_triggered def test_serialize_text_any(): m_old = text.Any() m_new = matchers.deserialize(matchers.serialize(m_old)) assert isinstance(m_new, text.Any) @pytest.mark.asyncio async def test_should_catch_equal_text_message(): trigger_hi_there = SimpleTrigger() trigger_see_you = SimpleTrigger() with answer.Talk() as talk: story = talk.story @story.on(text.Equal('hi there!')) def first_story(): @story.part() def then(ctx): trigger_hi_there.passed() @story.on(text.Equal('see you!')) def second_story(): @story.part() def then(ctx): trigger_see_you.passed() await talk.pure_text('see you!') assert not trigger_hi_there.is_triggered assert trigger_see_you.is_triggered def test_equal_handle_should_create_right_type(): assert isinstance(text.Equal.handle(''), text.Equal) def test_serialize_text_equal(): m_old = text.Equal('hats off') m_new = matchers.deserialize(matchers.serialize(m_old)) assert isinstance(m_new, text.Equal) assert m_new.test_string == 'hats off' @pytest.mark.asyncio async def test_should_catch_equal_text_message_case_in_sensitive(): trigger_hi_there = SimpleTrigger() trigger_see_you = SimpleTrigger() with answer.Talk() as talk: story = talk.story @story.on(text.EqualCaseIgnore('hi there!')) def first_story(): @story.part() def then(ctx): trigger_hi_there.passed() @story.on(text.EqualCaseIgnore('see you!')) def second_story(): @story.part() def then(ctx): trigger_see_you.passed() await talk.pure_text('See You!') assert not trigger_hi_there.is_triggered assert trigger_see_you.is_triggered def test_serialize_text_equal_case_ignore(): m_old = text.EqualCaseIgnore('hats off') m_new = matchers.deserialize(matchers.serialize(m_old)) assert isinstance(m_new, text.EqualCaseIgnore) assert m_new.test_string == 'hats off' @pytest.mark.asyncio async def test_should_catch_text_message_that_match_regex(): trigger_buy = SimpleTrigger() trigger_sell = SimpleTrigger() with answer.Talk() as talk: story = talk.story @story.on(text.Match('buy (.*)btc')) def one_story(): @story.part() def then(ctx): trigger_buy.receive(text.get_text(ctx)['matches'][0]) @story.on(text.Match('sell (.*)btc')) def another_story(): @story.part() def then(ctx): trigger_sell.receive(text.get_text(ctx)['matches'][0]) await talk.pure_text('buy 700btc') await talk.pure_text('sell 600btc') assert trigger_buy.result() == '700' assert trigger_sell.result() == '600' @pytest.mark.asyncio async def test_should_catch_text_message_that_match_regex_with_flags(): trigger_destination = SimpleTrigger() with answer.Talk() as talk: story = talk.story @story.on(text.Match('going to (.*)', re.IGNORECASE)) def one_story(): @story.part() def then(ctx): logger.debug('ctx') logger.debug(ctx) trigger_destination.receive(text.get_text(ctx)['matches'][0]) await talk.pure_text('Going to Pripyat') assert trigger_destination.result() == 'Pripyat' @pytest.mark.asyncio async def test_should_not_fail_on_empty_message(): with answer.Talk() as talk: story = talk.story @story.on(text.Match('going to (.*)', re.IGNORECASE)) def one_story(): @story.part() def then(ctx): pass await talk.ask(None) def test_serialize_text_match(): m_old = text.Match('hello (.*)', re.IGNORECASE) m_new = matchers.deserialize(matchers.serialize(m_old)) assert isinstance(m_new, text.Match) assert m_new.matcher.match('Hello Piter!') def test_text_qual_should_handle_text(): assert isinstance(matchers.get_validator('just pure text'), text.Equal)
[ "logging.getLogger" ]
[((136, 163), 'logging.getLogger', 'logging.getLogger', (['__name__'], {}), '(__name__)\n', (153, 163), False, 'import logging\n')]
from flask import Flask from flask import render_template, request from flask import jsonify import requests import json app = Flask(__name__) @app.route("/symbo",methods=['POST']) def symbo(): #import pdb; pdb.set_trace() session = requests.session() token = session.get("https://es.symbolab.com/solver/step-by-step/x%5E%7B2%7D?or=input").cookies.get_dict()["sy2.pub.token"] query = request.json["expression"] #response = json.loads(session.get(f"https://es.symbolab.com/pub_api/steps?subscribed=true&origin=input&language=es&query=%5Cint+tcos%5Cleft(nt%5Cright)dt+&referer=https%3A%2F%2Fes.symbolab.com%2Fsolver%2Fstep-by-step%2F%255Cint_%257B%2520%257Dtcos%255Cleft(nt%255Cright)dt%2520%3For%3Dinput&plotRequest=PlotOptional&page=step-by-step",headers={ response = json.loads(session.get(f"https://es.symbolab.com/pub_api/steps?subscribed=true&origin=input&language=es&query={query}",headers={ "x-requested-with":"XMLHttpRequest", "authorization":f"Bearer {token}" }).content) return { "dym":response["dym"], "solutions":response["solutions"] } @app.route('/') def hello(): return render_template('index.html') app.run(debug=True)
[ "flask.render_template", "requests.session", "flask.Flask" ]
[((128, 143), 'flask.Flask', 'Flask', (['__name__'], {}), '(__name__)\n', (133, 143), False, 'from flask import Flask\n'), ((244, 262), 'requests.session', 'requests.session', ([], {}), '()\n', (260, 262), False, 'import requests\n'), ((1160, 1189), 'flask.render_template', 'render_template', (['"""index.html"""'], {}), "('index.html')\n", (1175, 1189), False, 'from flask import render_template, request\n')]
from pyspark.sql import SparkSession # spark = SparkSession.builder.master("local[*]").getOrCreate() spark = SparkSession.builder.getOrCreate() file_path = "C:\home_work\local_github\Spark-The-Definitive-Guide\data\/flight-data\csv\/2015-summary.csv" # COMMAND ---------- # COMMAND ---------- flightData2015 = spark\ .read\ .option("inferSchema", "true")\ .option("header", "true")\ .csv("./data/flight-data/csv/2015-summary.csv") # COMMAND ---------- flightData2015.createOrReplaceTempView("flight_data_2015") # COMMAND ---------- sqlWay = spark.sql(""" SELECT DEST_COUNTRY_NAME, count(1) FROM flight_data_2015 GROUP BY DEST_COUNTRY_NAME """) dataFrameWay = flightData2015\ .groupBy("DEST_COUNTRY_NAME")\ .count() sqlWay.explain() dataFrameWay.explain() # COMMAND ---------- from pyspark.sql.functions import max, col # flightData2015.select(max(col("count"))).show(1) # COMMAND ---------- maxSql = spark.sql(""" SELECT DEST_COUNTRY_NAME, sum(count) as destination_total FROM flight_data_2015 GROUP BY DEST_COUNTRY_NAME ORDER BY sum(count) DESC LIMIT 5 """) maxSql.show() # COMMAND ---------- from pyspark.sql.functions import desc flightData2015\ .groupBy("DEST_COUNTRY_NAME")\ .sum("count")\ .withColumnRenamed("sum(count)", "destination_total")\ .sort(desc("destination_total"))\ .limit(5)\ .show() # COMMAND ---------- flightData2015\ .groupBy("DEST_COUNTRY_NAME")\ .sum("count")\ .withColumnRenamed("sum(count)", "destination_total")\ .sort(desc("destination_total"))\ .limit(5)\ .explain() # COMMAND ----------
[ "pyspark.sql.functions.col", "pyspark.sql.SparkSession.builder.getOrCreate", "pyspark.sql.functions.desc" ]
[((111, 145), 'pyspark.sql.SparkSession.builder.getOrCreate', 'SparkSession.builder.getOrCreate', ([], {}), '()\n', (143, 145), False, 'from pyspark.sql import SparkSession\n'), ((876, 888), 'pyspark.sql.functions.col', 'col', (['"""count"""'], {}), "('count')\n", (879, 888), False, 'from pyspark.sql.functions import max, col\n'), ((1301, 1326), 'pyspark.sql.functions.desc', 'desc', (['"""destination_total"""'], {}), "('destination_total')\n", (1305, 1326), False, 'from pyspark.sql.functions import desc\n'), ((1507, 1532), 'pyspark.sql.functions.desc', 'desc', (['"""destination_total"""'], {}), "('destination_total')\n", (1511, 1532), False, 'from pyspark.sql.functions import desc\n')]
import os import pickle import pytest import pandas as pd from shapely import wkt from intake_postgres import PostgresSource from intake import open_catalog from .util import verify_datasource_interface TEST_DATA_DIR = 'tests' TEST_DATA = [ ('sample1', 'sample1.csv'), ('sample2_1', 'sample2_1.csv'), ('sample2_2', 'sample2_2.csv'), ] TEST_GIS_DATA = [ ('points', 'sample_points.psql'), ('multipoints', 'sample_multipoints.psql'), ('lines', 'sample_lines.psql'), ('multilines', 'sample_multilines.psql'), ('polygons', 'sample_polygons.psql'), ('multipolygons', 'sample_multipolygons.psql'), # ('triangles', 'sample_triangles.psql'), ] TEST_TEMPLATE_DATA = [ 'jinja2_params_with_env', ] @pytest.fixture(scope='module') def engine(): """Start docker container for PostgreSQL database, yield a tuple (engine, metadata), and cleanup connection afterward.""" from .util import start_postgres, stop_postgres from sqlalchemy import create_engine stop_postgres(let_fail=True) local_port = start_postgres() uri = 'postgresql://postgres@localhost:{}/postgres'.format(local_port) engine = create_engine(uri) for table_name, csv_fname in TEST_DATA: csv_fpath = os.path.join(TEST_DATA_DIR, csv_fname) df = pd.read_csv(csv_fpath) df.to_sql(table_name, engine, index=False) for table_name, psql_fname in TEST_GIS_DATA: psql_fpath = os.path.join(TEST_DATA_DIR, psql_fname) with engine.connect() as conn: with open(psql_fpath, 'r') as fp: cmds = fp.read().strip().split(';') for cmd in cmds: if cmd.strip(): conn.execute(' '.join(cmd.split())) try: yield engine finally: stop_postgres() @pytest.mark.parametrize('table_name,_', TEST_DATA) def test_open(engine, table_name, _): d = PostgresSource(str(engine.url), 'select * from '+table_name) assert d.container == 'dataframe' assert d.description is None verify_datasource_interface(d) @pytest.mark.parametrize('table_name,csv_fpath', TEST_DATA) def test_discover(engine, table_name, csv_fpath): expected_df = pd.read_csv(os.path.join(TEST_DATA_DIR, csv_fpath)) source = PostgresSource(str(engine.url), 'select * from '+table_name) info = source.discover() dt = {k: str(v) for k, v in expected_df.dtypes.to_dict().items()} assert info['dtype'] == dt assert info['shape'] == (None, 3) assert info['npartitions'] == 1 @pytest.mark.parametrize('table_name,csv_fpath', TEST_DATA) def test_read(engine, table_name, csv_fpath): expected_df = pd.read_csv(os.path.join(TEST_DATA_DIR, csv_fpath)) source = PostgresSource(str(engine.url), 'select * from '+table_name) df = source.read() assert expected_df.equals(df) @pytest.mark.parametrize('table_name,csv_fpath', TEST_DATA) def test_discover_after_read(engine, table_name, csv_fpath): """Assert that after reading the dataframe, discover() shows more accurate information. """ expected_df = pd.read_csv(os.path.join(TEST_DATA_DIR, csv_fpath)) source = PostgresSource(str(engine.url), 'select * from '+table_name) info = source.discover() dt = {k: str(v) for k, v in expected_df.dtypes.to_dict().items()} assert info['dtype'] == dt assert info['shape'] == (None, 3) assert info['npartitions'] == 1 df = source.read() assert expected_df.equals(df) info = source.discover() assert info['dtype'] == dt assert info['shape'] == (4, 3) assert info['npartitions'] == 1 assert expected_df.equals(df) @pytest.mark.parametrize('table_name,csv_fpath', TEST_DATA) def test_close(engine, table_name, csv_fpath): expected_df = pd.read_csv(os.path.join(TEST_DATA_DIR, csv_fpath)) source = PostgresSource(str(engine.url), 'select * from '+table_name) source.close() # Can reopen after close df = source.read() assert expected_df.equals(df) @pytest.mark.parametrize('table_name,csv_fpath', TEST_DATA) def test_pickle(engine, table_name, csv_fpath): source = PostgresSource(str(engine.url), 'select * from '+table_name) pickled_source = pickle.dumps(source) source_clone = pickle.loads(pickled_source) expected_df = source.read() df = source_clone.read() assert expected_df.equals(df) @pytest.mark.parametrize('table_name,_1', TEST_DATA) def test_catalog(engine, table_name, _1): catalog_fpath = os.path.join(TEST_DATA_DIR, 'catalog1.yml') catalog = open_catalog(catalog_fpath) ds_name = table_name.rsplit('_idx', 1)[0] src = catalog[ds_name] pgsrc = src.get() pgsrc._uri = str(engine.url) assert src.describe()['container'] == 'dataframe' assert src.describe_open()['plugin'] == 'postgres' assert src.describe_open()['args']['sql_expr'][:6] in ('select', 'SELECT') metadata = pgsrc.discover() assert metadata['npartitions'] == 1 expected_df = pd.read_sql_query(pgsrc._sql_expr, engine) df = pgsrc.read() assert expected_df.equals(df) pgsrc.close() def test_catalog_join(engine): catalog_fpath = os.path.join(TEST_DATA_DIR, 'catalog1.yml') catalog = open_catalog(catalog_fpath) ds_name = 'sample2' src = catalog[ds_name] pgsrc = src.get() pgsrc._uri = str(engine.url) assert src.describe()['container'] == 'dataframe' assert src.describe_open()['plugin'] == 'postgres' assert src.describe_open()['args']['sql_expr'][:6] in ('select', 'SELECT') metadata = pgsrc.discover() assert metadata['npartitions'] == 1 expected_df = pd.read_sql_query(pgsrc._sql_expr, engine) df = pgsrc.read() assert expected_df.equals(df) pgsrc.close() @pytest.mark.parametrize('table_name,_1', TEST_GIS_DATA) def test_postgis_data(engine, table_name, _1): from sqlalchemy import MetaData catalog_fpath = os.path.join(TEST_DATA_DIR, 'catalog1.yml') catalog = open_catalog(catalog_fpath) ds_name = table_name src = catalog[ds_name] pgsrc = src.get() pgsrc._uri = str(engine.url) assert src.describe()['container'] == 'dataframe' assert src.describe_open()['plugin'] == 'postgres' assert src.describe_open()['args']['sql_expr'][:6] in ('select', 'SELECT') metadata = pgsrc.discover() assert metadata['npartitions'] == 1 meta = MetaData() meta.reflect(bind=engine) col_exprs = ['ST_AsText({0}) as {0}'.format(col.name) for col in meta.tables[table_name].columns] _query = pgsrc._sql_expr.replace('*', ', '.join(col_exprs)) expected_df = pd.read_sql_query(_query, engine).applymap( lambda geom: str(wkt.loads(geom)) ) df = pgsrc.read().applymap(lambda geom: str(wkt.loads(geom))) assert expected_df.equals(df) pgsrc.close() @pytest.mark.parametrize('ds_name', TEST_TEMPLATE_DATA) def test_jinja2(engine, ds_name): catalog_fpath = os.path.join(TEST_DATA_DIR, 'catalog1.yml') catalog = open_catalog(catalog_fpath) src = catalog[ds_name] pgsrc = src.get() pgsrc._uri = str(engine.url) assert src.describe()['container'] == 'dataframe' assert src.describe_open()['plugin'] == 'postgres' assert src.describe_open()['args']['sql_expr'][:6] in ('select', 'SELECT') metadata = pgsrc.discover() assert metadata['npartitions'] == 1 expected_df = pd.read_sql_query(pgsrc._sql_expr, engine) df = pgsrc.read() assert expected_df.equals(df) pgsrc.close()
[ "pandas.read_sql_query", "intake.open_catalog", "pandas.read_csv", "pickle.dumps", "pickle.loads", "sqlalchemy.create_engine", "shapely.wkt.loads", "os.path.join", "pytest.mark.parametrize", "sqlalchemy.MetaData", "pytest.fixture" ]
[((736, 766), 'pytest.fixture', 'pytest.fixture', ([], {'scope': '"""module"""'}), "(scope='module')\n", (750, 766), False, 'import pytest\n'), ((1804, 1854), 'pytest.mark.parametrize', 'pytest.mark.parametrize', (['"""table_name,_"""', 'TEST_DATA'], {}), "('table_name,_', TEST_DATA)\n", (1827, 1854), False, 'import pytest\n'), ((2071, 2129), 'pytest.mark.parametrize', 'pytest.mark.parametrize', (['"""table_name,csv_fpath"""', 'TEST_DATA'], {}), "('table_name,csv_fpath', TEST_DATA)\n", (2094, 2129), False, 'import pytest\n'), ((2531, 2589), 'pytest.mark.parametrize', 'pytest.mark.parametrize', (['"""table_name,csv_fpath"""', 'TEST_DATA'], {}), "('table_name,csv_fpath', TEST_DATA)\n", (2554, 2589), False, 'import pytest\n'), ((2840, 2898), 'pytest.mark.parametrize', 'pytest.mark.parametrize', (['"""table_name,csv_fpath"""', 'TEST_DATA'], {}), "('table_name,csv_fpath', TEST_DATA)\n", (2863, 2898), False, 'import pytest\n'), ((3640, 3698), 'pytest.mark.parametrize', 'pytest.mark.parametrize', (['"""table_name,csv_fpath"""', 'TEST_DATA'], {}), "('table_name,csv_fpath', TEST_DATA)\n", (3663, 3698), False, 'import pytest\n'), ((4000, 4058), 'pytest.mark.parametrize', 'pytest.mark.parametrize', (['"""table_name,csv_fpath"""', 'TEST_DATA'], {}), "('table_name,csv_fpath', TEST_DATA)\n", (4023, 4058), False, 'import pytest\n'), ((4372, 4423), 'pytest.mark.parametrize', 'pytest.mark.parametrize', (['"""table_name,_1"""', 'TEST_DATA'], {}), "('table_name,_1', TEST_DATA)\n", (4395, 4423), False, 'import pytest\n'), ((5748, 5803), 'pytest.mark.parametrize', 'pytest.mark.parametrize', (['"""table_name,_1"""', 'TEST_GIS_DATA'], {}), "('table_name,_1', TEST_GIS_DATA)\n", (5771, 5803), False, 'import pytest\n'), ((6831, 6885), 'pytest.mark.parametrize', 'pytest.mark.parametrize', (['"""ds_name"""', 'TEST_TEMPLATE_DATA'], {}), "('ds_name', TEST_TEMPLATE_DATA)\n", (6854, 6885), False, 'import pytest\n'), ((1160, 1178), 'sqlalchemy.create_engine', 'create_engine', (['uri'], {}), '(uri)\n', (1173, 1178), False, 'from sqlalchemy import create_engine\n'), ((4203, 4223), 'pickle.dumps', 'pickle.dumps', (['source'], {}), '(source)\n', (4215, 4223), False, 'import pickle\n'), ((4243, 4271), 'pickle.loads', 'pickle.loads', (['pickled_source'], {}), '(pickled_source)\n', (4255, 4271), False, 'import pickle\n'), ((4486, 4529), 'os.path.join', 'os.path.join', (['TEST_DATA_DIR', '"""catalog1.yml"""'], {}), "(TEST_DATA_DIR, 'catalog1.yml')\n", (4498, 4529), False, 'import os\n'), ((4545, 4572), 'intake.open_catalog', 'open_catalog', (['catalog_fpath'], {}), '(catalog_fpath)\n', (4557, 4572), False, 'from intake import open_catalog\n'), ((4982, 5024), 'pandas.read_sql_query', 'pd.read_sql_query', (['pgsrc._sql_expr', 'engine'], {}), '(pgsrc._sql_expr, engine)\n', (4999, 5024), True, 'import pandas as pd\n'), ((5153, 5196), 'os.path.join', 'os.path.join', (['TEST_DATA_DIR', '"""catalog1.yml"""'], {}), "(TEST_DATA_DIR, 'catalog1.yml')\n", (5165, 5196), False, 'import os\n'), ((5212, 5239), 'intake.open_catalog', 'open_catalog', (['catalog_fpath'], {}), '(catalog_fpath)\n', (5224, 5239), False, 'from intake import open_catalog\n'), ((5627, 5669), 'pandas.read_sql_query', 'pd.read_sql_query', (['pgsrc._sql_expr', 'engine'], {}), '(pgsrc._sql_expr, engine)\n', (5644, 5669), True, 'import pandas as pd\n'), ((5907, 5950), 'os.path.join', 'os.path.join', (['TEST_DATA_DIR', '"""catalog1.yml"""'], {}), "(TEST_DATA_DIR, 'catalog1.yml')\n", (5919, 5950), False, 'import os\n'), ((5966, 5993), 'intake.open_catalog', 'open_catalog', (['catalog_fpath'], {}), '(catalog_fpath)\n', (5978, 5993), False, 'from intake import open_catalog\n'), ((6375, 6385), 'sqlalchemy.MetaData', 'MetaData', ([], {}), '()\n', (6383, 6385), False, 'from sqlalchemy import MetaData\n'), ((6940, 6983), 'os.path.join', 'os.path.join', (['TEST_DATA_DIR', '"""catalog1.yml"""'], {}), "(TEST_DATA_DIR, 'catalog1.yml')\n", (6952, 6983), False, 'import os\n'), ((6999, 7026), 'intake.open_catalog', 'open_catalog', (['catalog_fpath'], {}), '(catalog_fpath)\n', (7011, 7026), False, 'from intake import open_catalog\n'), ((7390, 7432), 'pandas.read_sql_query', 'pd.read_sql_query', (['pgsrc._sql_expr', 'engine'], {}), '(pgsrc._sql_expr, engine)\n', (7407, 7432), True, 'import pandas as pd\n'), ((1243, 1281), 'os.path.join', 'os.path.join', (['TEST_DATA_DIR', 'csv_fname'], {}), '(TEST_DATA_DIR, csv_fname)\n', (1255, 1281), False, 'import os\n'), ((1295, 1317), 'pandas.read_csv', 'pd.read_csv', (['csv_fpath'], {}), '(csv_fpath)\n', (1306, 1317), True, 'import pandas as pd\n'), ((1439, 1478), 'os.path.join', 'os.path.join', (['TEST_DATA_DIR', 'psql_fname'], {}), '(TEST_DATA_DIR, psql_fname)\n', (1451, 1478), False, 'import os\n'), ((2210, 2248), 'os.path.join', 'os.path.join', (['TEST_DATA_DIR', 'csv_fpath'], {}), '(TEST_DATA_DIR, csv_fpath)\n', (2222, 2248), False, 'import os\n'), ((2666, 2704), 'os.path.join', 'os.path.join', (['TEST_DATA_DIR', 'csv_fpath'], {}), '(TEST_DATA_DIR, csv_fpath)\n', (2678, 2704), False, 'import os\n'), ((3094, 3132), 'os.path.join', 'os.path.join', (['TEST_DATA_DIR', 'csv_fpath'], {}), '(TEST_DATA_DIR, csv_fpath)\n', (3106, 3132), False, 'import os\n'), ((3776, 3814), 'os.path.join', 'os.path.join', (['TEST_DATA_DIR', 'csv_fpath'], {}), '(TEST_DATA_DIR, csv_fpath)\n', (3788, 3814), False, 'import os\n'), ((6617, 6650), 'pandas.read_sql_query', 'pd.read_sql_query', (['_query', 'engine'], {}), '(_query, engine)\n', (6634, 6650), True, 'import pandas as pd\n'), ((6686, 6701), 'shapely.wkt.loads', 'wkt.loads', (['geom'], {}), '(geom)\n', (6695, 6701), False, 'from shapely import wkt\n'), ((6757, 6772), 'shapely.wkt.loads', 'wkt.loads', (['geom'], {}), '(geom)\n', (6766, 6772), False, 'from shapely import wkt\n')]
import numpy as np class DataGenerator: def __init__(self, inputs, shuffle=True, batch_size=32): assert len(inputs) > 0 self.inputs = inputs self.idx = np.arange(len(inputs[0])) self.shuffle = shuffle self.batch_size = batch_size self.on_epoch_end() def data_length(self): return len(self.idx) def __len__(self): n = self.data_length() len_ = n // self.batch_size return len_ if n % self.batch_size == 0 else len_ + 1 def __getitem__(self, index): start = index * self.batch_size end = start + self.batch_size index = self.idx[start:end] data = [] for x in self.inputs: data.append(x[index]) return data def on_epoch_end(self): if self.shuffle: np.random.shuffle(self.idx) def set_batch_size(self, batch_size): self.batch_size = batch_size def lr_decay(total_epoch, init_lr, split_val): lr_map = [init_lr] * total_epoch if len(split_val) > 0: assert split_val[0][0] > 1 assert split_val[-1][0] <= total_epoch current_split_index = 0 current_lr = init_lr next_epoch, next_lr = split_val[current_split_index] for i in range(total_epoch): if i < next_epoch - 1: lr_map[i] = current_lr else: current_lr = next_lr lr_map[i] = current_lr current_split_index += 1 if current_split_index >= len(split_val): next_epoch = total_epoch + 1 else: next_epoch, next_lr = split_val[current_split_index] def lr_schedule_fn(epoch, lr): return lr_map[epoch] return lr_schedule_fn
[ "numpy.random.shuffle" ]
[((831, 858), 'numpy.random.shuffle', 'np.random.shuffle', (['self.idx'], {}), '(self.idx)\n', (848, 858), True, 'import numpy as np\n')]
from nltk.tokenize import sent_tokenize, word_tokenize from nltk.corpus import stopwords import speech_recognition as sr import nltk from google_images_download import google_images_download response = google_images_download.googleimagesdownload() r = sr.Recognizer() with sr.Microphone() as source: print("Say something!") audio = r.listen(source) data = r.recognize_google(audio).encode("utf-8") print (data) stopWords = set(stopwords.words('english')) words = word_tokenize(data) wordsFiltered = [] for w in words: if w not in stopWords: wordsFiltered.append(w) into_string = str(wordsFiltered) print(into_string) arguments = {"keywords":into_string,"limit":2,"print_urls":True} #creating list of arguments response.download(arguments) #passing the arguments to the function
[ "nltk.corpus.stopwords.words", "google_images_download.google_images_download.googleimagesdownload", "nltk.tokenize.word_tokenize", "speech_recognition.Recognizer", "speech_recognition.Microphone" ]
[((203, 248), 'google_images_download.google_images_download.googleimagesdownload', 'google_images_download.googleimagesdownload', ([], {}), '()\n', (246, 248), False, 'from google_images_download import google_images_download\n'), ((253, 268), 'speech_recognition.Recognizer', 'sr.Recognizer', ([], {}), '()\n', (266, 268), True, 'import speech_recognition as sr\n'), ((477, 496), 'nltk.tokenize.word_tokenize', 'word_tokenize', (['data'], {}), '(data)\n', (490, 496), False, 'from nltk.tokenize import sent_tokenize, word_tokenize\n'), ((274, 289), 'speech_recognition.Microphone', 'sr.Microphone', ([], {}), '()\n', (287, 289), True, 'import speech_recognition as sr\n'), ((441, 467), 'nltk.corpus.stopwords.words', 'stopwords.words', (['"""english"""'], {}), "('english')\n", (456, 467), False, 'from nltk.corpus import stopwords\n')]
# Copyright (c) 2009-2021 The Regents of the University of Michigan # This file is part of the HOOMD-blue project, released under the BSD 3-Clause # License. """MPI communicator.""" from hoomd import _hoomd import hoomd import contextlib class Communicator(object): """MPI communicator. Args: mpi_comm: Accepts an mpi4py communicator. Use this argument to perform many independent hoomd simulations where you communicate between those simulations using mpi4py. ranks_per_partition (int): (MPI) Number of ranks to include in a partition. `Communicator` initialize MPI communications for a `hoomd.Simulation`. To use MPI, launch your Python script with an MPI launcher (e.g. ``mpirun`` or ``mpiexec``). By default, `Communicator` uses all ranks provided by the launcher ``num_launch_ranks`` for a single `hoomd.Simulation` object which decomposes the state onto that many domains. Set ``ranks_per_partition`` to an integer to partition launched ranks into ``num_launch_ranks / ranks_per_partition`` communicators, each with their own `partition` index. Use this to perform many simulations in parallel, for example by using `partition` as an index into an array of state points to execute. """ def __init__(self, mpi_comm=None, ranks_per_partition=None): # check ranks_per_partition if ranks_per_partition is not None: if not hoomd.version.mpi_enabled: raise RuntimeError( "The ranks_per_partition option is only available in MPI.\n" ) mpi_available = hoomd.version.mpi_enabled self.cpp_mpi_conf = None # create the specified configuration if mpi_comm is None: self.cpp_mpi_conf = _hoomd.MPIConfiguration() else: if not mpi_available: raise RuntimeError("mpi_comm is not supported in serial builds") handled = False # pass in pointer to MPI_Comm object provided by mpi4py try: import mpi4py if isinstance(mpi_comm, mpi4py.MPI.Comm): addr = mpi4py.MPI._addressof(mpi_comm) self.cpp_mpi_conf = \ _hoomd.MPIConfiguration._make_mpi_conf_mpi_comm(addr) handled = True except ImportError: # silently ignore when mpi4py is missing pass # undocumented case: handle plain integers as pointers to MPI_Comm # objects if not handled and isinstance(mpi_comm, int): self.cpp_mpi_conf = \ _hoomd.MPIConfiguration._make_mpi_conf_mpi_comm(mpi_comm) handled = True if not handled: raise RuntimeError( "Invalid mpi_comm object: {}".format(mpi_comm)) if ranks_per_partition is not None: # check validity if (self.cpp_mpi_conf.getNRanksGlobal() % ranks_per_partition): raise RuntimeError('Total number of ranks is not a multiple of ' 'ranks_per_partition.') # split the communicator into partitions self.cpp_mpi_conf.splitPartitions(ranks_per_partition) @property def num_ranks(self): """int: The number of ranks in this partition. When initialized with ``ranks_per_partition=None``, `num_ranks` is equal to the ``num_launch_ranks`` set by the MPI launcher. When using partitions, `num_ranks` is equal to ``ranks_per_partition``. Note: Returns 1 in builds with ENABLE_MPI=off. """ if hoomd.version.mpi_enabled: return self.cpp_mpi_conf.getNRanks() else: return 1 @property def rank(self): """int: The current rank within the partition. Note: Returns 0 in builds with ENABLE_MPI=off. """ if hoomd.version.mpi_enabled: return self.cpp_mpi_conf.getRank() else: return 0 @property def num_partitions(self): """int: The number of partitions in this execution. Create partitions with the ``ranks_per_partition`` argument on initialization. Then, the number of partitions is ``num_launch_ranks / ranks_per_partition``. Note: Returns 1 in builds with ENABLE_MPI=off. """ if hoomd.version.mpi_enabled: return self.cpp_mpi_conf.getNPartitions() else: return 1 @property def partition(self): """int: The current partition. Note: Returns 0 in builds with ENABLE_MPI=off. """ if hoomd.version.mpi_enabled: return self.cpp_mpi_conf.getPartition() else: return 0 def barrier_all(self): """Perform a MPI barrier synchronization across all ranks. Note: Does nothing in builds with ENABLE_MPI=off. """ if hoomd.version.mpi_enabled: _hoomd.mpi_barrier_world() def barrier(self): """Perform a barrier synchronization across all ranks in the partition. Note: Does nothing in builds with ENABLE_MPI=off. """ if hoomd.version.mpi_enabled: self.cpp_mpi_conf.barrier() @contextlib.contextmanager def localize_abort(self): """Localize MPI_Abort to this partition. HOOMD calls ``MPI_Abort`` to tear down all running MPI processes whenever there is an uncaught exception. By default, this will abort the entire MPI execution. When using partitions, an uncaught exception on one partition will therefore abort all of them. Use the return value of :py:meth:`localize_abort()` as a context manager to tell HOOMD that all operations within the context will use only that MPI communicator so that an uncaught exception in one partition will only abort that partition and leave the others running. """ global _current_communicator prev = _current_communicator _current_communicator = self yield None _current_communicator = prev # store the "current" communicator to be used for MPI_Abort calls. This defaults # to the world communicator, but users can opt in to a more specific # communicator using the Device.localize_abort context manager _current_communicator = Communicator()
[ "hoomd._hoomd.MPIConfiguration", "hoomd._hoomd.MPIConfiguration._make_mpi_conf_mpi_comm", "hoomd._hoomd.mpi_barrier_world", "mpi4py.MPI._addressof" ]
[((1818, 1843), 'hoomd._hoomd.MPIConfiguration', '_hoomd.MPIConfiguration', ([], {}), '()\n', (1841, 1843), False, 'from hoomd import _hoomd\n'), ((5167, 5193), 'hoomd._hoomd.mpi_barrier_world', '_hoomd.mpi_barrier_world', ([], {}), '()\n', (5191, 5193), False, 'from hoomd import _hoomd\n'), ((2718, 2775), 'hoomd._hoomd.MPIConfiguration._make_mpi_conf_mpi_comm', '_hoomd.MPIConfiguration._make_mpi_conf_mpi_comm', (['mpi_comm'], {}), '(mpi_comm)\n', (2765, 2775), False, 'from hoomd import _hoomd\n'), ((2203, 2234), 'mpi4py.MPI._addressof', 'mpi4py.MPI._addressof', (['mpi_comm'], {}), '(mpi_comm)\n', (2224, 2234), False, 'import mpi4py\n'), ((2301, 2354), 'hoomd._hoomd.MPIConfiguration._make_mpi_conf_mpi_comm', '_hoomd.MPIConfiguration._make_mpi_conf_mpi_comm', (['addr'], {}), '(addr)\n', (2348, 2354), False, 'from hoomd import _hoomd\n')]
import _ast from peon.src.project.file.function_def.function import FunctionLint class ReflectionAtLineFixture: empty_node = _ast.Pass is_instance_at_first_lvl = _ast.FunctionDef(id='isinstance', lineno=1) type_at_first_lvl = _ast.FunctionDef(id='type', lineno=1) is_instance_at_second_lvl = _ast.FunctionDef(body=[_ast.Expr(id='isinstance', lineno=2)], lineno=1) type_at_second_lvl = _ast.FunctionDef(body=[_ast.Expr(id='type', lineno=2)], lineno=1) def test_empty_node(): assert FunctionLint( definition=ReflectionAtLineFixture.empty_node, ).reflection_at_line() == tuple() def test_is_instance_at_first_lvl(): assert FunctionLint( definition=ReflectionAtLineFixture.is_instance_at_first_lvl, ).reflection_at_line() == (1,) def test_type_at_first_lvl(): assert FunctionLint( definition=ReflectionAtLineFixture.type_at_first_lvl, ).reflection_at_line() == (1,) def test_is_instance_at_second_lvl(): assert FunctionLint( definition=ReflectionAtLineFixture.is_instance_at_second_lvl, ).reflection_at_line() == (2,) def test_type_at_second_lvl(): assert FunctionLint( definition=ReflectionAtLineFixture.type_at_second_lvl, ).reflection_at_line() == (2,)
[ "_ast.Expr", "_ast.FunctionDef", "peon.src.project.file.function_def.function.FunctionLint" ]
[((173, 216), '_ast.FunctionDef', '_ast.FunctionDef', ([], {'id': '"""isinstance"""', 'lineno': '(1)'}), "(id='isinstance', lineno=1)\n", (189, 216), False, 'import _ast\n'), ((241, 278), '_ast.FunctionDef', '_ast.FunctionDef', ([], {'id': '"""type"""', 'lineno': '(1)'}), "(id='type', lineno=1)\n", (257, 278), False, 'import _ast\n'), ((334, 370), '_ast.Expr', '_ast.Expr', ([], {'id': '"""isinstance"""', 'lineno': '(2)'}), "(id='isinstance', lineno=2)\n", (343, 370), False, 'import _ast\n'), ((431, 461), '_ast.Expr', '_ast.Expr', ([], {'id': '"""type"""', 'lineno': '(2)'}), "(id='type', lineno=2)\n", (440, 461), False, 'import _ast\n'), ((510, 569), 'peon.src.project.file.function_def.function.FunctionLint', 'FunctionLint', ([], {'definition': 'ReflectionAtLineFixture.empty_node'}), '(definition=ReflectionAtLineFixture.empty_node)\n', (522, 569), False, 'from peon.src.project.file.function_def.function import FunctionLint\n'), ((667, 740), 'peon.src.project.file.function_def.function.FunctionLint', 'FunctionLint', ([], {'definition': 'ReflectionAtLineFixture.is_instance_at_first_lvl'}), '(definition=ReflectionAtLineFixture.is_instance_at_first_lvl)\n', (679, 740), False, 'from peon.src.project.file.function_def.function import FunctionLint\n'), ((828, 894), 'peon.src.project.file.function_def.function.FunctionLint', 'FunctionLint', ([], {'definition': 'ReflectionAtLineFixture.type_at_first_lvl'}), '(definition=ReflectionAtLineFixture.type_at_first_lvl)\n', (840, 894), False, 'from peon.src.project.file.function_def.function import FunctionLint\n'), ((990, 1064), 'peon.src.project.file.function_def.function.FunctionLint', 'FunctionLint', ([], {'definition': 'ReflectionAtLineFixture.is_instance_at_second_lvl'}), '(definition=ReflectionAtLineFixture.is_instance_at_second_lvl)\n', (1002, 1064), False, 'from peon.src.project.file.function_def.function import FunctionLint\n'), ((1153, 1220), 'peon.src.project.file.function_def.function.FunctionLint', 'FunctionLint', ([], {'definition': 'ReflectionAtLineFixture.type_at_second_lvl'}), '(definition=ReflectionAtLineFixture.type_at_second_lvl)\n', (1165, 1220), False, 'from peon.src.project.file.function_def.function import FunctionLint\n')]
############################################################################### # # '''Website Database-connection-related features''' # # # ############################################################################### import cymysql from conf import website_db from time import gmtime from time import strftime db_host = website_db.ip db_port = website_db.port db = website_db.db db_user = website_db.user db_pw = website_db.pw ############################################################################### # # '''Databse-connect and close''' # # # ############################################################################### def db_con(): conn = cymysql.connect(host=db_host, port=db_port, user=db_user, passwd=db_pw, db=db) cur = conn.cursor() return conn, cur def db_close(conn, cur): cur.close() conn.close() ############################################################################### # # '''Donation-Page data''' # # # ############################################################################### def donate_save(nick): conn, cur = db_con() time = strftime('%Y.%m.%d - %H:%M:%S', gmtime()) cur.execute('INSERT INTO `donate` (`time`, `user`) VALUES (%s, %s)', (time, nick)) conn.commit() db_close(conn, cur) def donate_read(): conn, cur = db_con() cur.execute('SELECT * FROM `donate` ORDER BY `time` DESC LIMIT 20') nicks = list() for r in cur.fetchall(): nicks.append([r[0], r[1]]) db_close(conn, cur) return nicks ############################################################################### # # '''Short-URL data''' # # # ############################################################################### def shorturl_save(surl, url): conn, cur = db_con() cur.execute('INSERT INTO `shorturls` (`surl`, `url`) VALUES (%s, %s)', (surl, url)) conn.commit() db_close(conn, cur) def shorturl_read(): conn, cur = db_con() cur.execute('SELECT * FROM `shorturls`') urls = list() for r in cur.fetchall(): urls.append([r[0], r[0], r[1]]) db_close(conn, cur) return urls ############################################################################### # # '''Old Worlds''' # # # ############################################################################### def get_old_worlds(item): conn, cur = db_con() sql = 'SELECT * FROM `oldworlds` ORDER BY `date` DESC LIMIT {0}, {1}'.format(item, 20) cur.execute(sql) worlds = cur.fetchall() db_close(conn, cur) return worlds ############################################################################### # # '''Server Backup-Size in Dash''' # # # ############################################################################### def backup_size(): conn, cur = db_con() dbtshock = [] tserver = [] htdocs = [] cur.execute('SELECT * FROM `backups`') for r in cur.fetchall(): if r[1] == 'db': dbtshock.append([r[0] * 1000, r[2]]) elif r[1] == 'tserver': tserver.append([r[0] * 1000, r[2]]) elif r[1] == 'htdocs': htdocs.append([r[0] * 1000, r[2]]) db_close(conn, cur) return (dbtshock, tserver, htdocs)
[ "cymysql.connect", "time.gmtime" ]
[((1043, 1121), 'cymysql.connect', 'cymysql.connect', ([], {'host': 'db_host', 'port': 'db_port', 'user': 'db_user', 'passwd': 'db_pw', 'db': 'db'}), '(host=db_host, port=db_port, user=db_user, passwd=db_pw, db=db)\n', (1058, 1121), False, 'import cymysql\n'), ((1722, 1730), 'time.gmtime', 'gmtime', ([], {}), '()\n', (1728, 1730), False, 'from time import gmtime\n')]
""" Proxmox VE exporter for the Prometheus monitoring system. """ import sys from argparse import ArgumentParser from pve_exporter.http import start_http_server def main(args=None): """ Main entry point. """ parser = ArgumentParser() parser.add_argument('config', nargs='?', default='pve.yml', help='Path to configuration file (pve.yml)') parser.add_argument('port', nargs='?', type=int, default='9221', help='Port on which the exporter is listening (9221)') parser.add_argument('address', nargs='?', default='', help='Address to which the exporter will bind') params = parser.parse_args(args if args is None else sys.argv[1:]) start_http_server(params.config, params.port, params.address)
[ "pve_exporter.http.start_http_server", "argparse.ArgumentParser" ]
[((236, 252), 'argparse.ArgumentParser', 'ArgumentParser', ([], {}), '()\n', (250, 252), False, 'from argparse import ArgumentParser\n'), ((741, 802), 'pve_exporter.http.start_http_server', 'start_http_server', (['params.config', 'params.port', 'params.address'], {}), '(params.config, params.port, params.address)\n', (758, 802), False, 'from pve_exporter.http import start_http_server\n')]
#SPDX-License-Identifier: MIT import logging, os, sys, time, requests, json from datetime import datetime from multiprocessing import Process, Queue import pandas as pd import sqlalchemy as s from workers.worker_base import Worker # NOTE: This worker primarily inserts rows into the REPO_INFO table, which serves the primary purposes of # 1. Displaying discrete metadata like "number of forks" and how they change over time # 2. Validating other workers, like those related to pull requests, issues, and commits. Our totals should be at or very near the totals in the repo_info table. # This table also updates the REPO table in 2 cases: # 1. Recognizing when a repository is a forked repository by updating the "forked_from" field and # 2. Recognizing when a repository is archived, and recording the data we observed the change in status. class RepoInfoWorker(Worker): def __init__(self, config={}): worker_type = "repo_info_worker" # Define what this worker can be given and know how to interpret given = [['github_url']] models = ['repo_info'] # Define the tables needed to insert, update, or delete on data_tables = ['repo_info', 'repo'] operations_tables = ['worker_history', 'worker_job'] # Run the general worker initialization super().__init__(worker_type, config, given, models, data_tables, operations_tables) # Define data collection info self.tool_source = 'Repo Info Worker' self.tool_version = '1.0.0' self.data_source = 'GitHub API' def repo_info_model(self, task, repo_id): github_url = task['given']['github_url'] self.logger.info("Beginning filling the repo_info model for repo: " + github_url + "\n") owner, repo = self.get_owner_repo(github_url) url = 'https://api.github.com/graphql' query = """ { repository(owner:"%s", name:"%s"){ updatedAt hasIssuesEnabled issues(states:OPEN) { totalCount } hasWikiEnabled forkCount defaultBranchRef { name } watchers { totalCount } id licenseInfo { name url } stargazers { totalCount } codeOfConduct { name url } issue_count: issues { totalCount } issues_closed: issues(states:CLOSED) { totalCount } pr_count: pullRequests { totalCount } pr_open: pullRequests(states: OPEN) { totalCount } pr_closed: pullRequests(states: CLOSED) { totalCount } pr_merged: pullRequests(states: MERGED) { totalCount } ref(qualifiedName: "master") { target { ... on Commit { history(first: 0){ totalCount } } } } } } """ % (owner, repo) # Hit the graphql endpoint and retry 3 times in case of failure num_attempts = 0 success = False data = None while num_attempts < 3: self.logger.info("Hitting endpoint: {} ...\n".format(url)) r = requests.post(url, json={'query': query}, headers=self.headers) self.update_gh_rate_limit(r) try: data = r.json() except: data = json.loads(json.dumps(r.text)) if 'errors' in data: self.logger.info("Error!: {}".format(data['errors'])) if data['errors'][0]['message'] == 'API rate limit exceeded': self.update_gh_rate_limit(r) continue if 'data' in data: success = True data = data['data']['repository'] break else: self.logger.info("Request returned a non-data dict: {}\n".format(data)) if data['message'] == 'Not Found': self.logger.info("Github repo was not found or does not exist for endpoint: {}\n".format(url)) break if data['message'] == 'You have triggered an abuse detection mechanism. Please wait a few minutes before you try again.': self.update_gh_rate_limit(r, temporarily_disable=True) continue if data['message'] == 'Bad credentials': self.update_gh_rate_limit(r, bad_credentials=True) continue num_attempts += 1 if not success: self.logger.error('Cannot hit endpoint after 3 attempts. \"Completing\" task.\n') self.register_task_completion(self.task, repo_id, 'repo_info') return # Just checking that the data is accessible (would not be if repo no longer exists) try: data['updatedAt'] except Exception as e: self.logger.error('Cannot access repo_info data: {}\nError: {}. \"Completing\" task.'.format(data, e)) self.register_task_completion(self.task, repo_id, 'repo_info') return # Get committers count info that requires seperate endpoint committers_count = self.query_committers_count(owner, repo) # Put all data together in format of the table self.logger.info(f'Inserting repo info for repo with id:{repo_id}, owner:{owner}, name:{repo}\n') rep_inf = { 'repo_id': repo_id, 'last_updated': data['updatedAt'] if 'updatedAt' in data else None, 'issues_enabled': data['hasIssuesEnabled'] if 'hasIssuesEnabled' in data else None, 'open_issues': data['issues']['totalCount'] if data['issues'] else None, 'pull_requests_enabled': None, 'wiki_enabled': data['hasWikiEnabled'] if 'hasWikiEnabled' in data else None, 'pages_enabled': None, 'fork_count': data['forkCount'] if 'forkCount' in data else None, 'default_branch': data['defaultBranchRef']['name'] if data['defaultBranchRef'] else None, 'watchers_count': data['watchers']['totalCount'] if data['watchers'] else None, 'UUID': None, 'license': data['licenseInfo']['name'] if data['licenseInfo'] else None, 'stars_count': data['stargazers']['totalCount'] if data['stargazers'] else None, 'committers_count': committers_count, 'issue_contributors_count': None, 'changelog_file': None, 'contributing_file': None, 'license_file': data['licenseInfo']['url'] if data['licenseInfo'] else None, 'code_of_conduct_file': data['codeOfConduct']['url'] if data['codeOfConduct'] else None, 'security_issue_file': None, 'security_audit_file': None, 'status': None, 'keywords': None, 'commit_count': data['ref']['target']['history']['totalCount'] if data['ref'] else None, 'issues_count': data['issue_count']['totalCount'] if data['issue_count'] else None, 'issues_closed': data['issues_closed']['totalCount'] if data['issues_closed'] else None, 'pull_request_count': data['pr_count']['totalCount'] if data['pr_count'] else None, 'pull_requests_open': data['pr_open']['totalCount'] if data['pr_open'] else None, 'pull_requests_closed': data['pr_closed']['totalCount'] if data['pr_closed'] else None, 'pull_requests_merged': data['pr_merged']['totalCount'] if data['pr_merged'] else None, 'tool_source': self.tool_source, 'tool_version': self.tool_version, 'data_source': self.data_source } result = self.db.execute(self.repo_info_table.insert().values(rep_inf)) self.logger.info(f"Primary Key inserted into repo_info table: {result.inserted_primary_key}\n") self.results_counter += 1 # Note that the addition of information about where a repository may be forked from, and whether a repository is archived, updates the `repo` table, not the `repo_info` table. forked = self.is_forked(owner, repo) archived = self.is_archived(owner, repo) archived_date_collected = None if archived is not False: archived_date_collected = archived archived = 1 else: archived = 0 rep_additional_data = { 'forked_from': forked, 'repo_archived': archived, 'repo_archived_date_collected': archived_date_collected } result = self.db.execute(self.repo_table.update().where( self.repo_table.c.repo_id==repo_id).values(rep_additional_data)) self.logger.info(f"Inserted info for {owner}/{repo}\n") # Register this task as completed self.register_task_completion(self.task, repo_id, "repo_info") def query_committers_count(self, owner, repo): self.logger.info('Querying committers count\n') url = f'https://api.github.com/repos/{owner}/{repo}/contributors?per_page=100' committers = 0 try: while True: r = requests.get(url, headers=self.headers) self.update_gh_rate_limit(r) committers += len(r.json()) if 'next' not in r.links: break else: url = r.links['next']['url'] except Exception: self.logger.exception('An error occured while querying contributor count\n') return committers def is_forked(self, owner, repo): #/repos/:owner/:repo parent self.logger.info('Querying parent info to verify if the repo is forked\n') url = f'https://api.github.com/repos/{owner}/{repo}' r = requests.get(url, headers=self.headers) self.update_gh_rate_limit(r) data = self.get_repo_data(url, r) if 'fork' in data: if 'parent' in data: return data['parent']['full_name'] return 'Parent not available' return False def is_archived(self, owner, repo): self.logger.info('Querying committers count\n') url = f'https://api.github.com/repos/{owner}/{repo}' r = requests.get(url, headers=self.headers) self.update_gh_rate_limit(r) data = self.get_repo_data(url, r) if 'archived' in data: if data['archived']: if 'updated_at' in data: return data['updated_at'] return 'Date not available' return False return False def get_repo_data(self, url, response): success = False try: data = response.json() except: data = json.loads(json.dumps(response.text)) if 'errors' in data: self.logger.info("Error!: {}".format(data['errors'])) if data['errors'][0]['message'] == 'API rate limit exceeded': self.update_gh_rate_limit(response) if 'id' in data: success = True else: self.logger.info("Request returned a non-data dict: {}\n".format(data)) if data['message'] == 'Not Found': self.logger.info("Github repo was not found or does not exist for endpoint: {}\n".format(url)) if data['message'] == 'You have triggered an abuse detection mechanism. Please wait a few minutes before you try again.': self.update_gh_rate_limit(r, temporarily_disable=True) if data['message'] == 'Bad credentials': self.update_gh_rate_limit(r, bad_credentials=True) if not success: self.register_task_failure(self.task, repo_id, "Failed to hit endpoint: {}".format(url)) return data
[ "json.dumps", "requests.post", "requests.get" ]
[((10670, 10709), 'requests.get', 'requests.get', (['url'], {'headers': 'self.headers'}), '(url, headers=self.headers)\n', (10682, 10709), False, 'import logging, os, sys, time, requests, json\n'), ((11137, 11176), 'requests.get', 'requests.get', (['url'], {'headers': 'self.headers'}), '(url, headers=self.headers)\n', (11149, 11176), False, 'import logging, os, sys, time, requests, json\n'), ((4041, 4104), 'requests.post', 'requests.post', (['url'], {'json': "{'query': query}", 'headers': 'self.headers'}), "(url, json={'query': query}, headers=self.headers)\n", (4054, 4104), False, 'import logging, os, sys, time, requests, json\n'), ((10035, 10074), 'requests.get', 'requests.get', (['url'], {'headers': 'self.headers'}), '(url, headers=self.headers)\n', (10047, 10074), False, 'import logging, os, sys, time, requests, json\n'), ((11663, 11688), 'json.dumps', 'json.dumps', (['response.text'], {}), '(response.text)\n', (11673, 11688), False, 'import logging, os, sys, time, requests, json\n'), ((4250, 4268), 'json.dumps', 'json.dumps', (['r.text'], {}), '(r.text)\n', (4260, 4268), False, 'import logging, os, sys, time, requests, json\n')]
# coding: utf-8 from __future__ import print_function from __future__ import division from __future__ import absolute_import from __future__ import unicode_literals import argparse def parse_args_tolerance(): parser = argparse.ArgumentParser(description='just for tolerance') parser.add_argument("--tolerance", type=float, default=0.1, help="tolerance value for Minuit migrad and simplex minimization") args, _ = parser.parse_known_args() return args.tolerance def GB_parse_args(main_description="Training launcher"): parser = argparse.ArgumentParser(description=main_description) parser.add_argument("--verbose", "-v", type=int, choices=[0, 1, 2], default=0, help="increase output verbosity") parser.add_argument("--start-cv", type=int, default=0, help="start of i_cv for range(start, end)") parser.add_argument("--end-cv", type=int, default=30, help="end of i_cv for range(start, end)") parser.add_argument("--tolerance", type=float, default=0.1, help="tolerance value for Minuit migrad and simplex minimization") parser.add_argument('--load-run', help='load saved runs. Do not run the models', action='store_true') parser.add_argument('--estimate-only', help='Turns off conditional estimation for V_stat and V_syst', action='store_true') parser.add_argument('--conditional-only', help='Turns off common estimation', action='store_true') # MODEL HYPER PARAMETERS parser.add_argument('--n-estimators', help='number of estimators', default=100, type=int) parser.add_argument('--max-depth', help='maximum depth of trees', default=3, type=int) parser.add_argument('--learning-rate', '--lr', help='learning rate', default=1e-1, type=float) # OTHER parser.add_argument('--no-cuda', '--no-gpu', help='flag to use or not the gpu', action='store_false', dest='cuda') parser.add_argument('--retrain', help='flag to force retraining', action='store_true') parser.add_argument('--skip-minuit', help='flag to skip minuit NLL minization', action='store_true') args = parser.parse_args() return args def REG_parse_args(main_description="Training launcher"): parser = argparse.ArgumentParser(description=main_description) parser.add_argument("--verbose", "-v", type=int, choices=[0, 1, 2], default=0, help="increase output verbosity") parser.add_argument("--start-cv", type=int, default=0, help="start of i_cv for range(start, end)") parser.add_argument("--end-cv", type=int, default=30, help="end of i_cv for range(start, end)") parser.add_argument("--tolerance", type=float, default=0.1, help="tolerance value for Minuit migrad and simplex minimization") parser.add_argument('--load-run', help='load saved runs. Do not run the models', action='store_true') parser.add_argument('--estimate-only', help='Turns off conditional estimation for V_stat and V_syst', action='store_true') parser.add_argument('--conditional-only', help='Turns off common estimation', action='store_true') # MODEL HYPER PARAMETERS parser.add_argument('--learning-rate', '--lr', help='learning rate', default=1e-4, type=float) parser.add_argument('--beta1', help='beta 1 for Adam', default=0.5, type=float) parser.add_argument('--beta2', help='beta 2 for Adam', default=0.9, type=float) parser.add_argument('--weight-decay', help='weight decay for SGD', default=0.0, type=float) parser.add_argument('--optimizer', help='optimizer name', dest='optimizer_name', default='Adam', type=str, choices=('Adam', 'SGD', 'ADAM', 'sgd', 'adam')) parser.add_argument('--n-unit', help='Number of units in layers. Controls NN width.', default=200, type=int) parser.add_argument('--sample-size', help='data sample size', default=1000, type=int) parser.add_argument('--batch-size', help='mini-batch size', default=20, type=int) parser.add_argument('--n-steps', help='number of update steps', default=1000, type=int) # OTHER parser.add_argument('--no-cuda', '--no-gpu', help='flag to use or not the gpu', action='store_false', dest='cuda') parser.add_argument('--retrain', help='flag to force retraining', action='store_true') args = parser.parse_args() return args def INFERNO_parse_args(main_description="Training launcher"): parser = argparse.ArgumentParser(description=main_description) parser.add_argument("--verbose", "-v", type=int, choices=[0, 1, 2], default=0, help="increase output verbosity") parser.add_argument("--start-cv", type=int, default=0, help="start of i_cv for range(start, end)") parser.add_argument("--end-cv", type=int, default=30, help="end of i_cv for range(start, end)") parser.add_argument("--tolerance", type=float, default=0.1, help="tolerance value for Minuit migrad and simplex minimization") parser.add_argument('--load-run', help='load saved runs. Do not run the models', action='store_true') parser.add_argument('--estimate-only', help='Turns off conditional estimation for V_stat and V_syst', action='store_true') parser.add_argument('--conditional-only', help='Turns off common estimation', action='store_true') # MODEL HYPER PARAMETERS parser.add_argument('--learning-rate', '--lr', help='learning rate', default=1e-3, type=float) parser.add_argument('--temperature', help='control initial softmax steepness', default=1.0, type=float) parser.add_argument('--beta1', help='beta 1 for Adam', default=0.5, type=float) parser.add_argument('--beta2', help='beta 2 for Adam', default=0.9, type=float) parser.add_argument('--weight-decay', help='weight decay for SGD', default=0.0, type=float) parser.add_argument('--optimizer', help='optimizer name', dest='optimizer_name', default='Adam', type=str, choices=('Adam', 'SGD', 'ADAM', 'sgd', 'adam')) parser.add_argument('--n-unit', help='Number of units in layers. Controls NN width.', default=200, type=int) parser.add_argument('--n-bins', help='number of output bins', default=10, type=int) parser.add_argument('--sample-size', help='data sample size', default=1000, type=int) parser.add_argument('--batch-size', help='mini-batch size', default=20, type=int) parser.add_argument('--n-steps', help='number of update steps', default=1000, type=int) # OTHER parser.add_argument('--no-cuda', '--no-gpu', help='flag to use or not the gpu', action='store_false', dest='cuda') parser.add_argument('--retrain', help='flag to force retraining', action='store_true') args = parser.parse_args() return args def NET_parse_args(main_description="Training launcher"): parser = argparse.ArgumentParser(description=main_description) parser.add_argument("--verbose", "-v", type=int, choices=[0, 1, 2], default=0, help="increase output verbosity") parser.add_argument("--start-cv", type=int, default=0, help="start of i_cv for range(start, end)") parser.add_argument("--end-cv", type=int, default=30, help="end of i_cv for range(start, end)") parser.add_argument("--tolerance", type=float, default=0.1, help="tolerance value for Minuit migrad and simplex minimization") parser.add_argument('--load-run', help='load saved runs. Do not run the models', action='store_true') parser.add_argument('--estimate-only', help='Turns off conditional estimation for V_stat and V_syst', action='store_true') parser.add_argument('--conditional-only', help='Turns off common estimation', action='store_true') # MODEL HYPER PARAMETERS parser.add_argument('--learning-rate', '--lr', help='learning rate', default=1e-3, type=float) parser.add_argument('--beta1', help='beta 1 for Adam', default=0.9, type=float) parser.add_argument('--beta2', help='beta 2 for Adam', default=0.999, type=float) parser.add_argument('--weight-decay', help='weight decay for SGD', default=0.0, type=float) parser.add_argument('--optimizer', help='optimizer name', dest='optimizer_name', default='Adam', type=str, choices=('Adam', 'SGD', 'ADAM', 'sgd', 'adam')) parser.add_argument('--n-unit', help='Number of units in layers. Controls NN width.', default=200, type=int) parser.add_argument('--sample-size', help='data sample size', default=1000, type=int) parser.add_argument('--batch-size', help='mini-batch size', default=1000, type=int) parser.add_argument('--n-steps', help='number of update steps', default=1000, type=int) # OTHER parser.add_argument('--no-cuda', '--no-gpu', help='flag to use or not the gpu', action='store_false', dest='cuda') parser.add_argument('--retrain', help='flag to force retraining', action='store_true') args = parser.parse_args() return args def TP_parse_args(main_description="Training launcher"): parser = argparse.ArgumentParser(description=main_description) parser.add_argument("--verbose", "-v", type=int, choices=[0, 1, 2], default=0, help="increase output verbosity") parser.add_argument("--start-cv", type=int, default=0, help="start of i_cv for range(start, end)") parser.add_argument("--end-cv", type=int, default=30, help="end of i_cv for range(start, end)") parser.add_argument("--tolerance", type=float, default=0.1, help="tolerance value for Minuit migrad and simplex minimization") parser.add_argument('--load-run', help='load saved runs. Do not run the models', action='store_true') parser.add_argument('--estimate-only', help='Turns off conditional estimation for V_stat and V_syst', action='store_true') parser.add_argument('--conditional-only', help='Turns off common estimation', action='store_true') # MODEL HYPER PARAMETERS parser.add_argument('--learning-rate', '--lr', help='learning rate', default=1e-3, type=float) parser.add_argument('--trade-off', help='trade-off between classic loss and adversarial loss', default=1.0, type=float) parser.add_argument('--beta1', help='beta 1 for Adam', default=0.9, type=float) parser.add_argument('--beta2', help='beta 2 for Adam', default=0.999, type=float) parser.add_argument('--weight-decay', help='weight decay for SGD', default=0.0, type=float) parser.add_argument('--optimizer', help='optimizer name', dest='optimizer_name', default='Adam', type=str, choices=('Adam', 'SGD', 'ADAM', 'sgd', 'adam')) parser.add_argument('--n-unit', help='Number of units in layers. Controls NN width.', default=200, type=int) parser.add_argument('--sample-size', help='data sample size', default=1000, type=int) parser.add_argument('--batch-size', help='mini-batch size', default=1000, type=int) parser.add_argument('--n-steps', help='number of update steps', default=1000, type=int) # OTHER parser.add_argument('--no-cuda', '--no-gpu', help='flag to use or not the gpu', action='store_false', dest='cuda') parser.add_argument('--retrain', help='flag to force retraining', action='store_true') args = parser.parse_args() return args def PIVOT_parse_args(main_description="Training launcher"): parser = argparse.ArgumentParser(description=main_description) parser.add_argument("--verbose", "-v", type=int, choices=[0, 1, 2], default=0, help="increase output verbosity") parser.add_argument("--start-cv", type=int, default=0, help="start of i_cv for range(start, end)") parser.add_argument("--end-cv", type=int, default=30, help="end of i_cv for range(start, end)") parser.add_argument("--tolerance", type=float, default=0.1, help="tolerance value for Minuit migrad and simplex minimization") parser.add_argument('--load-run', help='load saved runs. Do not run the models', action='store_true') parser.add_argument('--estimate-only', help='Turns off conditional estimation for V_stat and V_syst', action='store_true') parser.add_argument('--conditional-only', help='Turns off common estimation', action='store_true') # MODEL HYPER PARAMETERS parser.add_argument('--learning-rate', '--lr', help='learning rate', default=1e-3, type=float) parser.add_argument('--trade-off', help='trade-off between classic loss and adversarial loss', default=1.0, type=float) parser.add_argument('--beta1', help='beta 1 for Adam', default=0.9, type=float) parser.add_argument('--beta2', help='beta 2 for Adam', default=0.999, type=float) parser.add_argument('--weight-decay', help='weight decay for SGD', default=0.0, type=float) parser.add_argument('--optimizer', help='optimizer name', dest='optimizer_name', default='Adam', type=str, choices=('Adam', 'SGD', 'ADAM', 'sgd', 'adam')) parser.add_argument('--n-unit', help='Number of units in layers. Controls NN width.', default=200, type=int) parser.add_argument('--sample-size', help='data sample size', default=1000, type=int) parser.add_argument('--batch-size', help='mini-batch size', default=1000, type=int) parser.add_argument('--n-steps', help='number of update steps', default=1000, type=int) parser.add_argument('--n-net-pre-training-steps', help='number of update steps for pretraining the classifier', default=1000, type=int) parser.add_argument('--n-adv-pre-training-steps', help='number of update steps for pretraining the adversarial', default=1000, type=int) parser.add_argument('--n-recovery-steps', help='number of update steps for adversarial recovery', default=1, type=int) # OTHER parser.add_argument('--no-cuda', '--no-gpu', help='flag to use or not the gpu', action='store_false', dest='cuda') parser.add_argument('--retrain', help='flag to force retraining', action='store_true') args = parser.parse_args() return args def FF_parse_args(main_description="Training launcher"): parser = argparse.ArgumentParser(description=main_description) parser.add_argument("--verbose", "-v", type=int, choices=[0, 1, 2], default=0, help="increase output verbosity") parser.add_argument("--start-cv", type=int, default=0, help="start of i_cv for range(start, end)") parser.add_argument("--end-cv", type=int, default=30, help="end of i_cv for range(start, end)") parser.add_argument("--tolerance", type=float, default=0.1, help="tolerance value for Minuit migrad and simplex minimization") parser.add_argument('--load-run', help='load saved runs. Do not run the models', action='store_true') parser.add_argument('--estimate-only', help='Turns off conditional estimation for V_stat and V_syst', action='store_true') parser.add_argument('--conditional-only', help='Turns off common estimation', action='store_true') # MODEL HYPER PARAMETERS parser.add_argument('--feature-id', help='feature index to filter on', default=0, type=int) # OTHER parser.add_argument('--no-cuda', '--no-gpu', help='flag to use or not the gpu', action='store_false', dest='cuda') parser.add_argument('--retrain', help='flag to force retraining', action='store_true') parser.add_argument('--skip-minuit', help='flag to skip minuit NLL minization', action='store_true') args = parser.parse_args() return args
[ "argparse.ArgumentParser" ]
[((225, 282), 'argparse.ArgumentParser', 'argparse.ArgumentParser', ([], {'description': '"""just for tolerance"""'}), "(description='just for tolerance')\n", (248, 282), False, 'import argparse\n'), ((575, 628), 'argparse.ArgumentParser', 'argparse.ArgumentParser', ([], {'description': 'main_description'}), '(description=main_description)\n', (598, 628), False, 'import argparse\n'), ((2495, 2548), 'argparse.ArgumentParser', 'argparse.ArgumentParser', ([], {'description': 'main_description'}), '(description=main_description)\n', (2518, 2548), False, 'import argparse\n'), ((5058, 5111), 'argparse.ArgumentParser', 'argparse.ArgumentParser', ([], {'description': 'main_description'}), '(description=main_description)\n', (5081, 5111), False, 'import argparse\n'), ((7862, 7915), 'argparse.ArgumentParser', 'argparse.ArgumentParser', ([], {'description': 'main_description'}), '(description=main_description)\n', (7885, 7915), False, 'import argparse\n'), ((10422, 10475), 'argparse.ArgumentParser', 'argparse.ArgumentParser', ([], {'description': 'main_description'}), '(description=main_description)\n', (10445, 10475), False, 'import argparse\n'), ((13135, 13188), 'argparse.ArgumentParser', 'argparse.ArgumentParser', ([], {'description': 'main_description'}), '(description=main_description)\n', (13158, 13188), False, 'import argparse\n'), ((16320, 16373), 'argparse.ArgumentParser', 'argparse.ArgumentParser', ([], {'description': 'main_description'}), '(description=main_description)\n', (16343, 16373), False, 'import argparse\n')]
import math class Schedule(): def __init__(self, total, batch_size): self._batch_size = batch_size self._state = "" self.total = total self.scheduled = 0 self.finished = 0 @property def _batch(self): return math.ceil(self.scheduled / self._batch_size) @property def _batches(self): return math.ceil(self.total / self._batch_size) @property def _percentage(self): _percentage = self.scheduled / self.total * 100 return "%.1f%%" % _percentage def suffix(self, string): return " ".join(( string, "#%d/%d %s" % ( self._batch, self._batches, self._percentage ) )) def completed(self): if self.finished != self.total: raise ValueError(self.finished, self.total) def __iter__(self): return self def __next__(self): if self.scheduled >= self.total: self._state = "pending, waiting for completion," raise StopIteration() self.scheduled += self._batch_size if self.scheduled > self.total: self.scheduled = self.total self._state = self.suffix("running, on batch") + "," return self._batch def __str__(self): return " ".join(f""" <Schedule {"done" if self.finished >= self.total else self._state} total={self.total} scheduled={self.scheduled} finished={self.finished}> """.split()) def test_01(): schedule = Schedule(100, 10) for batch in schedule: print(batch) print(schedule) def test_02(): schedule = Schedule(25, 10) for batch in schedule: print(batch) print(schedule) print(schedule.suffix("Task")) def test_03(): schedule = Schedule(0, 10) for batch in schedule: print(batch) print(schedule) print(schedule.suffix("Task")) def test_04(): schedule = Schedule(1, 10) for batch in schedule: print(batch) print(schedule) print(schedule.suffix("Task")) if __name__ == "__main__": test_02()
[ "math.ceil" ]
[((272, 316), 'math.ceil', 'math.ceil', (['(self.scheduled / self._batch_size)'], {}), '(self.scheduled / self._batch_size)\n', (281, 316), False, 'import math\n'), ((371, 411), 'math.ceil', 'math.ceil', (['(self.total / self._batch_size)'], {}), '(self.total / self._batch_size)\n', (380, 411), False, 'import math\n')]
# -*- coding: utf-8 -*- """ Function that implement Complement the Complementary Cumulative Distribution Function (CCDF). """ # # written by <NAME> <<EMAIL>> import numpy as np import pandas as pd def ccdf(s): """ Parameters: `s`, series, the values of s should be variable to be handled Return: a new series `s`, index of s will be X axis (number), value of s will be Y axis (probability) """ s = s.copy() s = s.sort_values(ascending=True, inplace=False) s.reset_index(drop=True, inplace=True) n = len(s) s.drop_duplicates(keep='first', inplace=True) X = s.values Y = [n - i for i in s.index] return pd.Series(data=Y, index=X) / n def sum_cdf(s): s = s.copy() s = s.value_counts() s = s.sort_index(ascending=True) cumulative = [] for i in range(len(s)): s0 = s.iloc[:i + 1] cumulative.append(np.inner(s0.index, s0.values)) s = pd.Series(cumulative, index=s.index) return s / s.max() def sum_ccdf(s): """ Parameters: `s`, series, the values of s should be variable to be handled Return: a news series `s`, index of s will be X axis (number), values will be Y axis (sum(X>=x)) """ s = s.copy() s = s.value_counts() s = s.sort_index(ascending=True) cumulative = [] for i in range(len(s)): s1 = s.iloc[i:] cumulative.append(np.inner(s1.index, s1.values)) return pd.Series(cumulative, index=s.index)
[ "pandas.Series", "numpy.inner" ]
[((946, 982), 'pandas.Series', 'pd.Series', (['cumulative'], {'index': 's.index'}), '(cumulative, index=s.index)\n', (955, 982), True, 'import pandas as pd\n'), ((1463, 1499), 'pandas.Series', 'pd.Series', (['cumulative'], {'index': 's.index'}), '(cumulative, index=s.index)\n', (1472, 1499), True, 'import pandas as pd\n'), ((677, 703), 'pandas.Series', 'pd.Series', ([], {'data': 'Y', 'index': 'X'}), '(data=Y, index=X)\n', (686, 703), True, 'import pandas as pd\n'), ((907, 936), 'numpy.inner', 'np.inner', (['s0.index', 's0.values'], {}), '(s0.index, s0.values)\n', (915, 936), True, 'import numpy as np\n'), ((1421, 1450), 'numpy.inner', 'np.inner', (['s1.index', 's1.values'], {}), '(s1.index, s1.values)\n', (1429, 1450), True, 'import numpy as np\n')]
# -*- coding: utf-8 -*- from __future__ import print_function import numpy as np import pandas as pd from lifelines.fitters import UnivariateFitter from lifelines.utils import _preprocess_inputs, _additive_estimate, StatError, inv_normal_cdf,\ median_survival_times from lifelines.plotting import plot_loglogs class KaplanMeierFitter(UnivariateFitter): """ Class for fitting the Kaplan-Meier estimate for the survival function. KaplanMeierFitter( alpha=0.95) alpha: The alpha value associated with the confidence intervals. """ def fit(self, durations, event_observed=None, timeline=None, entry=None, label='KM_estimate', alpha=None, left_censorship=False, ci_labels=None): """ Parameters: duration: an array, or pd.Series, of length n -- duration subject was observed for timeline: return the best estimate at the values in timelines (postively increasing) event_observed: an array, or pd.Series, of length n -- True if the the death was observed, False if the event was lost (right-censored). Defaults all True if event_observed==None entry: an array, or pd.Series, of length n -- relative time when a subject entered the study. This is useful for left-truncated (not left-censored) observations. If None, all members of the population were born at time 0. label: a string to name the column of the estimate. alpha: the alpha value in the confidence intervals. Overrides the initializing alpha for this call to fit only. left_censorship: True if durations and event_observed refer to left censorship events. Default False ci_labels: add custom column names to the generated confidence intervals as a length-2 list: [<lower-bound name>, <upper-bound name>]. Default: <label>_lower_<alpha> Returns: self, with new properties like 'survival_function_'. """ # if the user is interested in left-censorship, we return the cumulative_density_, no survival_function_, estimate_name = 'survival_function_' if not left_censorship else 'cumulative_density_' v = _preprocess_inputs(durations, event_observed, timeline, entry) self.durations, self.event_observed, self.timeline, self.entry, self.event_table = v self._label = label alpha = alpha if alpha else self.alpha log_survival_function, cumulative_sq_ = _additive_estimate(self.event_table, self.timeline, self._additive_f, self._additive_var, left_censorship) if entry is not None: # a serious problem with KM is that when the sample size is small and there are too few early # truncation times, it may happen that is the number of patients at risk and the number of deaths is the same. # we adjust for this using the Breslow-Fleming-Harrington estimator n = self.event_table.shape[0] net_population = (self.event_table['entrance'] - self.event_table['removed']).cumsum() if net_population.iloc[:int(n / 2)].min() == 0: ix = net_population.iloc[:int(n / 2)].argmin() raise StatError("""There are too few early truncation times and too many events. S(t)==0 for all t>%.1f. Recommend BreslowFlemingHarringtonFitter.""" % ix) # estimation setattr(self, estimate_name, pd.DataFrame(np.exp(log_survival_function), columns=[self._label])) self.__estimate = getattr(self, estimate_name) self.confidence_interval_ = self._bounds(cumulative_sq_[:, None], alpha, ci_labels) self.median_ = median_survival_times(self.__estimate, left_censorship=left_censorship) # estimation methods self.predict = self._predict(estimate_name, label) self.subtract = self._subtract(estimate_name) self.divide = self._divide(estimate_name) # plotting functions self.plot = self._plot_estimate(estimate_name) setattr(self, "plot_" + estimate_name, self.plot) self.plot_loglogs = plot_loglogs(self) return self def _bounds(self, cumulative_sq_, alpha, ci_labels): # See http://courses.nus.edu.sg/course/stacar/internet/st3242/handouts/notes2.pdf alpha2 = inv_normal_cdf((1. + alpha) / 2.) df = pd.DataFrame(index=self.timeline) v = np.log(self.__estimate.values) if ci_labels is None: ci_labels = ["%s_upper_%.2f" % (self._label, alpha), "%s_lower_%.2f" % (self._label, alpha)] assert len(ci_labels) == 2, "ci_labels should be a length 2 array." df[ci_labels[0]] = np.exp(-np.exp(np.log(-v) + alpha2 * np.sqrt(cumulative_sq_) / v)) df[ci_labels[1]] = np.exp(-np.exp(np.log(-v) - alpha2 * np.sqrt(cumulative_sq_) / v)) return df def _additive_f(self, population, deaths): np.seterr(invalid='ignore', divide='ignore') return (np.log(population - deaths) - np.log(population)) def _additive_var(self, population, deaths): np.seterr(divide='ignore') return (1. * deaths / (population * (population - deaths))).replace([np.inf], 0)
[ "lifelines.utils._additive_estimate", "numpy.sqrt", "numpy.log", "lifelines.utils._preprocess_inputs", "lifelines.utils.StatError", "numpy.exp", "lifelines.utils.inv_normal_cdf", "pandas.DataFrame", "numpy.seterr", "lifelines.utils.median_survival_times", "lifelines.plotting.plot_loglogs" ]
[((2218, 2280), 'lifelines.utils._preprocess_inputs', '_preprocess_inputs', (['durations', 'event_observed', 'timeline', 'entry'], {}), '(durations, event_observed, timeline, entry)\n', (2236, 2280), False, 'from lifelines.utils import _preprocess_inputs, _additive_estimate, StatError, inv_normal_cdf, median_survival_times\n'), ((2497, 2608), 'lifelines.utils._additive_estimate', '_additive_estimate', (['self.event_table', 'self.timeline', 'self._additive_f', 'self._additive_var', 'left_censorship'], {}), '(self.event_table, self.timeline, self._additive_f, self.\n _additive_var, left_censorship)\n', (2515, 2608), False, 'from lifelines.utils import _preprocess_inputs, _additive_estimate, StatError, inv_normal_cdf, median_survival_times\n'), ((3811, 3882), 'lifelines.utils.median_survival_times', 'median_survival_times', (['self.__estimate'], {'left_censorship': 'left_censorship'}), '(self.__estimate, left_censorship=left_censorship)\n', (3832, 3882), False, 'from lifelines.utils import _preprocess_inputs, _additive_estimate, StatError, inv_normal_cdf, median_survival_times\n'), ((4247, 4265), 'lifelines.plotting.plot_loglogs', 'plot_loglogs', (['self'], {}), '(self)\n', (4259, 4265), False, 'from lifelines.plotting import plot_loglogs\n'), ((4451, 4486), 'lifelines.utils.inv_normal_cdf', 'inv_normal_cdf', (['((1.0 + alpha) / 2.0)'], {}), '((1.0 + alpha) / 2.0)\n', (4465, 4486), False, 'from lifelines.utils import _preprocess_inputs, _additive_estimate, StatError, inv_normal_cdf, median_survival_times\n'), ((4498, 4531), 'pandas.DataFrame', 'pd.DataFrame', ([], {'index': 'self.timeline'}), '(index=self.timeline)\n', (4510, 4531), True, 'import pandas as pd\n'), ((4544, 4574), 'numpy.log', 'np.log', (['self.__estimate.values'], {}), '(self.__estimate.values)\n', (4550, 4574), True, 'import numpy as np\n'), ((5050, 5094), 'numpy.seterr', 'np.seterr', ([], {'invalid': '"""ignore"""', 'divide': '"""ignore"""'}), "(invalid='ignore', divide='ignore')\n", (5059, 5094), True, 'import numpy as np\n'), ((5219, 5245), 'numpy.seterr', 'np.seterr', ([], {'divide': '"""ignore"""'}), "(divide='ignore')\n", (5228, 5245), True, 'import numpy as np\n'), ((5111, 5138), 'numpy.log', 'np.log', (['(population - deaths)'], {}), '(population - deaths)\n', (5117, 5138), True, 'import numpy as np\n'), ((5141, 5159), 'numpy.log', 'np.log', (['population'], {}), '(population)\n', (5147, 5159), True, 'import numpy as np\n'), ((3364, 3519), 'lifelines.utils.StatError', 'StatError', (["('There are too few early truncation times and too many events. S(t)==0 for all t>%.1f. Recommend BreslowFlemingHarringtonFitter.'\n % ix)"], {}), "(\n 'There are too few early truncation times and too many events. S(t)==0 for all t>%.1f. Recommend BreslowFlemingHarringtonFitter.'\n % ix)\n", (3373, 3519), False, 'from lifelines.utils import _preprocess_inputs, _additive_estimate, StatError, inv_normal_cdf, median_survival_times\n'), ((3586, 3615), 'numpy.exp', 'np.exp', (['log_survival_function'], {}), '(log_survival_function)\n', (3592, 3615), True, 'import numpy as np\n'), ((4830, 4840), 'numpy.log', 'np.log', (['(-v)'], {}), '(-v)\n', (4836, 4840), True, 'import numpy as np\n'), ((4924, 4934), 'numpy.log', 'np.log', (['(-v)'], {}), '(-v)\n', (4930, 4934), True, 'import numpy as np\n'), ((4852, 4875), 'numpy.sqrt', 'np.sqrt', (['cumulative_sq_'], {}), '(cumulative_sq_)\n', (4859, 4875), True, 'import numpy as np\n'), ((4946, 4969), 'numpy.sqrt', 'np.sqrt', (['cumulative_sq_'], {}), '(cumulative_sq_)\n', (4953, 4969), True, 'import numpy as np\n')]
import numpy as np from pydmfet import tools from .fermi import find_efermi, entropy_corr from pyscf import ao2mo, gto, scf, dft, lib from pydmfet.qcwrap import fermi import time from functools import reduce def scf_oei( OEI, Norb, Nelec, smear_sigma = 0.0): OEI = 0.5*(OEI.T + OEI) eigenvals, eigenvecs = np.linalg.eigh( OEI ) idx = np.argmax(abs(eigenvecs), axis=0) eigenvecs[:,eigenvecs[ idx, np.arange(len(eigenvals)) ]<0] *= -1 Nocc = Nelec//2 #closed shell e_homo = eigenvals[Nocc-1] e_lumo = eigenvals[Nocc] print ('HOMO: ', e_homo, 'LUMO: ', e_lumo) print ("mo_energy:") print (eigenvals[:Nocc+5]) e_fermi = e_homo mo_occ = np.zeros((Norb)) if(smear_sigma < 1e-8): #T=0 mo_occ[:Nocc] = 1.0 else: #finite T e_fermi, mo_occ = find_efermi(eigenvals, smear_sigma, Nocc, Norb) mo_occ*=2.0 #closed shell Ne_error = np.sum(mo_occ) - Nelec if(Ne_error > 1e-8): print ('Ne error = ', Ne_error) print ("fermi energy: ", e_fermi) np.set_printoptions(precision=4) flag = mo_occ > 1e-4 print (mo_occ[flag]) np.set_printoptions() RDM1 = reduce(np.dot, (eigenvecs, np.diag(mo_occ), eigenvecs.T)) RDM1 = (RDM1.T + RDM1)/2.0 energy = np.trace(np.dot(RDM1,OEI)) es = entropy_corr(mo_occ, smear_sigma) print ('entropy correction: ', es) energy += es print ('e_tot = ', energy) return ( energy, RDM1, eigenvecs, eigenvals, mo_occ ) # The following is deprecated! class scf_pyscf(): ''' subspace scf wrapper for scf module of pyscf ''' def __init__(self, Ne, Norb, mol=None, oei=None, tei=None, ovlp=1, dm0=None, coredm=0, ao2sub=None, mf_method='HF'): self.mol = mol self.Ne = Ne self.Norb = Norb self.method = mf_method self.oei = oei self.tei = tei self.ovlp = ovlp self.dm0 = dm0 self.coredm = coredm self.ao2sub = ao2sub self.method = mf_method.lower() self.mf = None if(self.mol is None): #what molecule does not matter self.mol = gto.Mole() self.mol.build( verbose=0 ) self.mol.atom.append(('C', (0, 0, 0))) #adjust number of electrons self.mol.nelectron = Ne if(self.tei is not None): self.mol.incore_anyway = True if(self.method == 'hf'): self.mf = scf.RHF(self.mol) self.prep_rhf() else: self.mf = scf.RKS(self.mol) self.mf.xc = self.method self.prep_rhf() self.prep_rks() self.elec_energy = 0.0 self.rdm1 = None self.mo_coeff = None self.mo_energy = None self.mo_occ = None def prep_rhf(self): if(self.ovlp == 1): self.mf.get_ovlp = lambda *args: np.eye( self.Norb ) if(self.oei is not None): self.mf.get_hcore = lambda *args: self.oei if(self.tei is not None): self.mf._eri = ao2mo.restore(8, self.tei, self.Norb) def prep_rks(self): if(self.ao2sub is None): return #overload dft.rks.get_veff if necessary self.mf.get_veff = get_veff_rks_decorator(self.ao2sub, self.coredm) def kernel(self): self.mf.kernel(self.dm0) if ( self.mf.converged == False ): raise Exception("scf not converged!") rdm1 = self.mf.make_rdm1() self.rdm1 = 0.5*(rdm1.T + rdm1) self.elec_energy = self.mf.energy_elec(self.rdm1)[0] self.mo_coeff = self.mf.mo_coeff self.mo_energy = self.mf.mo_energy self.mo_occ = self.mf.mo_occ def get_veff_rks_decorator(ao2sub, coredm): def get_veff(ks, mol=None, dm=None, dm_last=0, vhf_last=0, hermi=1): if mol is None: mol = ks.mol if dm is None: dm = ks.make_rdm1() dm_sub = np.asarray(dm) + coredm dm_ao = tools.dm_sub2ao(dm_sub, ao2sub) if hasattr(dm, 'mo_coeff'): mo_coeff_sub = dm.mo_coeff mo_occ_sub = dm.mo_occ mo_coeff_ao = tools.mo_sub2ao(mo_coeff_sub, ao2sub) mo_occ_ao = mo_occ_sub dm_ao = lib.tag_array(dm_ao, mo_coeff=mo_coeff_ao, mo_occ=mo_occ_ao) n, exc, vxc_ao, hyb = get_vxc(ks, mol, dm_ao) vxc = tools.op_ao2sub(vxc_ao, ao2sub) vj = None vk = None if abs(hyb) < 1e-10: if (ks._eri is None and ks.direct_scf and getattr(vhf_last, 'vj', None) is not None): ddm = numpy.asarray(dm) - numpy.asarray(dm_last) vj = ks.get_jk(mol, ddm, hermi)[0] vj += vhf_last.vj else: vj = ks.get_jk(mol, dm, hermi)[0] vxc += vj else: if (ks._eri is None and ks.direct_scf and getattr(vhf_last, 'vk', None) is not None): ddm = numpy.asarray(dm) - numpy.asarray(dm_last) vj, vk = ks.get_jk(mol, ddm, hermi) vj += vhf_last.vj vk += vhf_last.vk else: vj, vk = ks.get_jk(mol, dm, hermi) vxc += vj - vk * (hyb * .5) exc -= np.einsum('ij,ji', dm, vk) * .5 * hyb*.5 ecoul = np.einsum('ij,ji', dm, vj) * .5 vxc = lib.tag_array(vxc, ecoul=ecoul, exc=exc, vj=vj, vk=vk) return vxc return get_veff def get_vxc(ks, mol, dm, hermi=1): ground_state = (isinstance(dm, numpy.ndarray) and dm.ndim == 2) if(not ground_state): raise Exception("fatal error") if ks.grids.coords is None: ks.grids.build(with_non0tab=True) if ks.small_rho_cutoff > 1e-20 and ground_state: # Filter grids the first time setup grids t0 = (time.clock(), time.time()) ks.grids = dft.rks.prune_small_rho_grids_(ks, mol, dm, ks.grids) t1 = tools.timer("prune grid",t0) if hermi == 2: # because rho = 0 n, exc, vxc = 0, 0, 0 else: n, exc, vxc = ks._numint.nr_rks(mol, ks.grids, ks.xc, dm) hyb = ks._numint.hybrid_coeff(ks.xc, spin=mol.spin) return n, exc, vxc, hyb ''' def rhf(mol, OEI, TEI, Norb, Nelec, OneDM0=None ): # Get the RHF solution OEI = 0.5*(OEI.T + OEI) #mol = gto.Mole() #mol.max_memory = 8000 #mol.build( verbose=0 ) #mol.atom.append(('C', (0, 0, 0))) mol.nelectron = Nelec mol.incore_anyway = True mf = pyscf_scf.RHF( mol ) mf.get_hcore = lambda *args: OEI mf.get_ovlp = lambda *args: np.eye( Norb ) mf._eri = ao2mo.restore(8, TEI, Norb) mf.max_cycle = 100 #mf.conv_tol = 1e-8 #adiis = pyscf_scf.diis.ADIIS() #mf.diis = adiis #mf.verbose = 5 mf.kernel(OneDM0) if ( mf.converged == False ): #RDM1 = mf.make_rdm1() #cdiis = pyscf_scf.diis.SCF_DIIS() #mf.diis = cdiis #mf.max_cycle = 200 #mf.kernel(RDM1) if ( mf.converged == False ): raise Exception(" rhf not converged!") return mf def rks(mol, OEI, TEI, Norb, Nelec, xcfunc, OneDM0=None ): # Get the RKS solution OEI = 0.5*(OEI.T + OEI) #mol = gto.Mole() #mol.build( verbose=5 ) #mol.atom.append(('C', (0, 0, 0))) mol.nelectron = Nelec # mol.incore_anyway = True mf = pyscf_scf.RKS( mol ) mf.xc = xcfunc.lower() # mf.get_hcore = lambda *args: OEI # mf.get_ovlp = lambda *args: np.eye( Norb ) # mf._eri = ao2mo.restore(8, TEI, Norb) OneDM0 = None mf.kernel( OneDM0 ) if ( mf.converged == False ): raise Exception(" rks not converged!") return mf def scf(mol, OEI, TEI, Norb, Nelec, OneDM0=None, mf_method = 'HF' ): # Get the mean-field solution if(mf_method.lower() == 'hf'): mf = rhf(mol, OEI, TEI, Norb, Nelec, OneDM0 ) else: mf = rks(mol, OEI, TEI, Norb, Nelec, mf_method ,OneDM0 ) RDM1 = mf.make_rdm1() RDM1 = 0.5*(RDM1.T + RDM1) mo_coeff = mf.mo_coeff mo_energy = mf.mo_energy energy = mf.energy_elec(RDM1)[0] mo = np.zeros([Norb,Norb+1],dtype=float) mo[:,:-1] = mo_coeff mo[:,-1] = mo_energy #print "mo energy" #print mf.mo_energy #tools.MatPrint(mf.get_fock(),"fock") #JK = mf.get_veff(None, dm=RDM1) #tools.MatPrint(JK,"JK") #tools.MatPrint(np.dot(mf.get_fock(), mf.mo_coeff),"test") #tools.MatPrint(mf.mo_coeff,"mo_coeff") return (energy, RDM1, mo) '''
[ "time.clock", "numpy.einsum", "pyscf.ao2mo.restore", "pydmfet.tools.op_ao2sub", "pydmfet.tools.timer", "numpy.asarray", "numpy.dot", "pydmfet.tools.dm_sub2ao", "numpy.linalg.eigh", "pyscf.dft.rks.prune_small_rho_grids_", "pyscf.scf.RKS", "numpy.eye", "time.time", "numpy.set_printoptions", "pyscf.gto.Mole", "pyscf.lib.tag_array", "numpy.diag", "numpy.sum", "numpy.zeros", "pyscf.scf.RHF", "pydmfet.tools.mo_sub2ao" ]
[((316, 335), 'numpy.linalg.eigh', 'np.linalg.eigh', (['OEI'], {}), '(OEI)\n', (330, 335), True, 'import numpy as np\n'), ((686, 700), 'numpy.zeros', 'np.zeros', (['Norb'], {}), '(Norb)\n', (694, 700), True, 'import numpy as np\n'), ((1036, 1068), 'numpy.set_printoptions', 'np.set_printoptions', ([], {'precision': '(4)'}), '(precision=4)\n', (1055, 1068), True, 'import numpy as np\n'), ((1123, 1144), 'numpy.set_printoptions', 'np.set_printoptions', ([], {}), '()\n', (1142, 1144), True, 'import numpy as np\n'), ((906, 920), 'numpy.sum', 'np.sum', (['mo_occ'], {}), '(mo_occ)\n', (912, 920), True, 'import numpy as np\n'), ((1270, 1287), 'numpy.dot', 'np.dot', (['RDM1', 'OEI'], {}), '(RDM1, OEI)\n', (1276, 1287), True, 'import numpy as np\n'), ((3972, 4003), 'pydmfet.tools.dm_sub2ao', 'tools.dm_sub2ao', (['dm_sub', 'ao2sub'], {}), '(dm_sub, ao2sub)\n', (3987, 4003), False, 'from pydmfet import tools\n'), ((4365, 4396), 'pydmfet.tools.op_ao2sub', 'tools.op_ao2sub', (['vxc_ao', 'ao2sub'], {}), '(vxc_ao, ao2sub)\n', (4380, 4396), False, 'from pydmfet import tools\n'), ((5363, 5417), 'pyscf.lib.tag_array', 'lib.tag_array', (['vxc'], {'ecoul': 'ecoul', 'exc': 'exc', 'vj': 'vj', 'vk': 'vk'}), '(vxc, ecoul=ecoul, exc=exc, vj=vj, vk=vk)\n', (5376, 5417), False, 'from pyscf import ao2mo, gto, scf, dft, lib\n'), ((1185, 1200), 'numpy.diag', 'np.diag', (['mo_occ'], {}), '(mo_occ)\n', (1192, 1200), True, 'import numpy as np\n'), ((2149, 2159), 'pyscf.gto.Mole', 'gto.Mole', ([], {}), '()\n', (2157, 2159), False, 'from pyscf import ao2mo, gto, scf, dft, lib\n'), ((2453, 2470), 'pyscf.scf.RHF', 'scf.RHF', (['self.mol'], {}), '(self.mol)\n', (2460, 2470), False, 'from pyscf import ao2mo, gto, scf, dft, lib\n'), ((2535, 2552), 'pyscf.scf.RKS', 'scf.RKS', (['self.mol'], {}), '(self.mol)\n', (2542, 2552), False, 'from pyscf import ao2mo, gto, scf, dft, lib\n'), ((3058, 3095), 'pyscf.ao2mo.restore', 'ao2mo.restore', (['(8)', 'self.tei', 'self.Norb'], {}), '(8, self.tei, self.Norb)\n', (3071, 3095), False, 'from pyscf import ao2mo, gto, scf, dft, lib\n'), ((3932, 3946), 'numpy.asarray', 'np.asarray', (['dm'], {}), '(dm)\n', (3942, 3946), True, 'import numpy as np\n'), ((4142, 4179), 'pydmfet.tools.mo_sub2ao', 'tools.mo_sub2ao', (['mo_coeff_sub', 'ao2sub'], {}), '(mo_coeff_sub, ao2sub)\n', (4157, 4179), False, 'from pydmfet import tools\n'), ((4235, 4295), 'pyscf.lib.tag_array', 'lib.tag_array', (['dm_ao'], {'mo_coeff': 'mo_coeff_ao', 'mo_occ': 'mo_occ_ao'}), '(dm_ao, mo_coeff=mo_coeff_ao, mo_occ=mo_occ_ao)\n', (4248, 4295), False, 'from pyscf import ao2mo, gto, scf, dft, lib\n'), ((5316, 5342), 'numpy.einsum', 'np.einsum', (['"""ij,ji"""', 'dm', 'vj'], {}), "('ij,ji', dm, vj)\n", (5325, 5342), True, 'import numpy as np\n'), ((5884, 5937), 'pyscf.dft.rks.prune_small_rho_grids_', 'dft.rks.prune_small_rho_grids_', (['ks', 'mol', 'dm', 'ks.grids'], {}), '(ks, mol, dm, ks.grids)\n', (5914, 5937), False, 'from pyscf import ao2mo, gto, scf, dft, lib\n'), ((5955, 5984), 'pydmfet.tools.timer', 'tools.timer', (['"""prune grid"""', 't0'], {}), "('prune grid', t0)\n", (5966, 5984), False, 'from pydmfet import tools\n'), ((2888, 2905), 'numpy.eye', 'np.eye', (['self.Norb'], {}), '(self.Norb)\n', (2894, 2905), True, 'import numpy as np\n'), ((5834, 5846), 'time.clock', 'time.clock', ([], {}), '()\n', (5844, 5846), False, 'import time\n'), ((5848, 5859), 'time.time', 'time.time', ([], {}), '()\n', (5857, 5859), False, 'import time\n'), ((5258, 5284), 'numpy.einsum', 'np.einsum', (['"""ij,ji"""', 'dm', 'vk'], {}), "('ij,ji', dm, vk)\n", (5267, 5284), True, 'import numpy as np\n')]
"""Unit tests.""" import inspect import json from mock import Mock import os import sys import uuid import pytest # Add the lambda directory to the python library search path lambda_dir = os.path.join( os.path.dirname(inspect.getfile(inspect.currentframe())), '..') sys.path.append(lambda_dir) import lambdautils.utils @pytest.mark.parametrize( "key,environment,stage,namespace,table,nkey", [ ("k", "e", "s", None, "e-s-secrets", "k"), ("k", "e", None, None, "e-dummystage-secrets", "k"), ("k", "e", None, "n", "e-dummystage-secrets", "n:k"), ("k", "e", "s", "n", "e-s-secrets", "n:k")]) def test_get_secret_from_vault(key, environment, stage, namespace, table, nkey, boto3_resource, boto3_client, monkeypatch): """Gets a secret from the DynamoDB secrets vault.""" # Call to the DynamoDB client to retrieve the encrypted secret monkeypatch.setattr("boto3.resource", boto3_resource) monkeypatch.setattr("boto3.client", boto3_client) secret = lambdautils.utils.get_secret(key, namespace=namespace, environment=environment, stage=stage) assert secret == "dummy" boto3_client("dynamodb").get_item.assert_called_with( TableName=table, Key={"id": {"S": nkey}}) # Call to the KMS client to decrypt the secret boto3_client('kms').decrypt.assert_called_with(CiphertextBlob="encrypted") def test_get_secret_from_env(monkeypatch): """Get a secret from an (encrypted) environment variable.""" key = str(uuid.uuid4()).replace('-', '.') value = str(uuid.uuid4()) monkeypatch.setenv(key.replace('.', '_').upper(), value) secret = lambdautils.utils.get_secret(key) assert secret == value def test_get_setting(monkeypatch): """Should be an alias for get_secret.""" resp = str(uuid.uuid4()) arg = str(uuid.uuid4()) kwarg = str(uuid.uuid4()) get_secret = Mock(return_value=resp) monkeypatch.setattr("lambdautils.state.get_secret", get_secret) resp2 = lambdautils.state.get_setting(arg, kwarg=kwarg) assert resp2 == resp get_secret.assert_called_with(arg, kwarg=kwarg) @pytest.mark.parametrize( "key,environment,layer,stage,shard_id,namespace,table,consistent,nkey", [ ("k", "e", "l", "s", None, None, "e-l-s-state", False, "k"), ("k", "e", "l", "s", None, "n", "e-l-s-state", False, "n:k"), ("k", "e", "l", "s", "s-012", "n", "e-l-s-state", True, "s-012:n:k"), ("k", "e", "l", "s", "s-0001", None, "e-l-s-state", True, "s-0001:k")]) def test_get_state(boto3_resource, monkeypatch, key, environment, layer, stage, shard_id, namespace, table, consistent, nkey): """Get a state value from DynamoDB.""" monkeypatch.setattr("boto3.resource", boto3_resource) lambdautils.utils.get_state(key, environment=environment, layer=layer, stage=stage, shard_id=shard_id, namespace=namespace, consistent=consistent) boto3_resource("dynamodb").Table.assert_called_with(table) if consistent is None: # The default setting: use consistent reads consistent = True boto3_resource("dynamodb").Table().get_item.assert_called_with( Key={"id": nkey}, ConsistentRead=consistent) def test_no_state_table(boto3_resource, monkeypatch): """Test accessing state variable without having a state table.""" monkeypatch.setattr("boto3.resource", boto3_resource) monkeypatch.delenv("HUMILIS_ENVIRONMENT") with pytest.raises(lambdautils.state.StateTableError): lambdautils.utils.set_state("sample_state_key", "sample_state_value") with pytest.raises(lambdautils.state.StateTableError): lambdautils.utils.delete_state("sample_state_key") with pytest.raises(lambdautils.state.StateTableError): lambdautils.utils.get_state("sample_state_key") @pytest.mark.parametrize( "key,value,environment,layer,stage,shard_id,namespace,table,nkey", [ ("k", "v", "e", "l", "s", None, None, "e-l-s-state", "k"), ("k", "v", "e", "l", "s", None, "n", "e-l-s-state", "n:k"), ("k", "v", "e", "l", "s", "s1", "n", "e-l-s-state", "s1:n:k"), ("k", "v", "e", "l", "s", "s2", None, "e-l-s-state", "s2:k")]) def test_set_state(boto3_resource, monkeypatch, key, value, environment, layer, stage, shard_id, namespace, table, nkey): """Tests setting a state variable.""" monkeypatch.setattr("boto3.resource", boto3_resource) lambdautils.utils.set_state(key, value, environment=environment, layer=layer, stage=stage, shard_id=shard_id, namespace=namespace) boto3_resource("dynamodb").Table.assert_called_with(table) boto3_resource("dynamodb").Table().put_item.assert_called_with( Item={"id": nkey, "value": json.dumps(value)}) @pytest.mark.parametrize( "key,environment,layer,stage,shard_id,namespace,table,nkey", [ ("k", "e", "l", "s", None, None, "e-l-s-state", "k"), ("k", "e", "l", "s", None, "n", "e-l-s-state", "n:k"), ("k", "e", "l", "s", "s1", "n", "e-l-s-state", "s1:n:k"), ("k", "e", "l", "s", "s2", None, "e-l-s-state", "s2:k")]) def test_delete_state(boto3_resource, monkeypatch, key, environment, layer, stage, shard_id, namespace, table, nkey): """Tests setting a state variable.""" monkeypatch.setattr("boto3.resource", boto3_resource) lambdautils.utils.delete_state(key, environment=environment, layer=layer, stage=stage, shard_id=shard_id, namespace=namespace) boto3_resource("dynamodb").Table.assert_called_with(table) boto3_resource("dynamodb").Table().delete_item.assert_called_with( Key={"id": nkey}) def test_sentry_monitor_bad_client(boto3_client, raven_client, context, monkeypatch): """Test that sentry_monitor handles raven client errors gracefully.""" class ClientError(Exception): pass def raise_error(dsn): raise ClientError monkeypatch.setattr("raven.Client", Mock(side_effect=raise_error)) monkeypatch.setattr("boto3.client", boto3_client) @lambdautils.utils.sentry_monitor(environment="dummyenv", stage="dummystage") def lambda_handler(event, context): pass lambda_handler(None, context) raven_client.captureException.assert_not_called() @pytest.mark.parametrize( "kstream, fstream, rcalls, kcalls, fcalls, ev", [ ("a", "b", 1, 0, 0, {"Records": [{}]}), (None, "b", 1, 0, 0, {"Records": [{}]}), (None, None, 1, 0, 0, None), (None, None, 1, 0, 0, None), ("a", "b", 1, 0, 0, None), ("a", None, 1, 0, 0, None)]) def test_sentry_monitor_exception( kstream, fstream, rcalls, kcalls, fcalls, ev, boto3_client, raven_client, context, kinesis_event, monkeypatch): """Tests the sentry_monitor decorator when throwing an exception and lacking an error stream where to dump the errors.""" if ev is None: # Default to a Kinesis event ev = kinesis_event monkeypatch.setattr("boto3.client", boto3_client) monkeypatch.setattr("raven.Client", Mock(return_value=raven_client)) monkeypatch.setattr("lambdautils.monitor.SentryHandler", Mock()) monkeypatch.setattr("lambdautils.utils.get_secret", Mock(return_value="dummydsn")) error_stream = { "kinesis_stream": kstream, "firehose_delivery_stream": fstream} @lambdautils.utils.sentry_monitor(error_stream=error_stream) def lambda_handler(event, context): """Raise an error.""" raise KeyError with pytest.raises(KeyError): lambda_handler(ev, context) # Should have captured only 1 error: # * The original KeyError assert raven_client.captureException.call_count == rcalls # And should have send the events to the Kinesis and FH error streams assert boto3_client("kinesis").put_records.call_count == kcalls assert boto3_client("firehose").put_record_batch.call_count == fcalls def test_send_to_kinesis_stream(search_events, boto3_client, monkeypatch): """Tests sending events to a Kinesis stream.""" monkeypatch.setattr("boto3.client", boto3_client) lambdautils.utils.send_to_kinesis_stream(search_events, "dummy_stream") boto3_client("kinesis").put_records.call_count == 1 def test_send_to_delivery_stream(search_events, boto3_client, monkeypatch): """Tests sending events to a Firehose delivery stream.""" monkeypatch.setattr("boto3.client", boto3_client) lambdautils.utils.send_to_delivery_stream(search_events, "dummy_stream") boto3_client("firehose").put_record_batch.call_count == 1 @pytest.mark.parametrize("deserializer, embed_ts", [ [json.loads, False], [json.loads, "kinesis_timestamp"], [None, False]]) def test_unpack_kinesis_event(kinesis_event, deserializer, embed_ts): """Extracts json-serialized events from a Kinesis events.""" events, shard_id = lambdautils.utils.unpack_kinesis_event( kinesis_event, deserializer=deserializer, embed_timestamp=embed_ts) # There should be one event per kinesis record assert len(events) == len(kinesis_event["Records"]) assert shard_id == kinesis_event["Records"][0]["eventID"].split(":")[0] if embed_ts: assert all(embed_ts in ev for ev in events)
[ "mock.Mock", "inspect.currentframe", "json.dumps", "uuid.uuid4", "pytest.mark.parametrize", "pytest.raises", "sys.path.append" ]
[((273, 300), 'sys.path.append', 'sys.path.append', (['lambda_dir'], {}), '(lambda_dir)\n', (288, 300), False, 'import sys\n'), ((330, 612), 'pytest.mark.parametrize', 'pytest.mark.parametrize', (['"""key,environment,stage,namespace,table,nkey"""', "[('k', 'e', 's', None, 'e-s-secrets', 'k'), ('k', 'e', None, None,\n 'e-dummystage-secrets', 'k'), ('k', 'e', None, 'n',\n 'e-dummystage-secrets', 'n:k'), ('k', 'e', 's', 'n', 'e-s-secrets', 'n:k')]"], {}), "('key,environment,stage,namespace,table,nkey', [('k',\n 'e', 's', None, 'e-s-secrets', 'k'), ('k', 'e', None, None,\n 'e-dummystage-secrets', 'k'), ('k', 'e', None, 'n',\n 'e-dummystage-secrets', 'n:k'), ('k', 'e', 's', 'n', 'e-s-secrets', 'n:k')]\n )\n", (353, 612), False, 'import pytest\n'), ((2272, 2654), 'pytest.mark.parametrize', 'pytest.mark.parametrize', (['"""key,environment,layer,stage,shard_id,namespace,table,consistent,nkey"""', "[('k', 'e', 'l', 's', None, None, 'e-l-s-state', False, 'k'), ('k', 'e',\n 'l', 's', None, 'n', 'e-l-s-state', False, 'n:k'), ('k', 'e', 'l', 's',\n 's-012', 'n', 'e-l-s-state', True, 's-012:n:k'), ('k', 'e', 'l', 's',\n 's-0001', None, 'e-l-s-state', True, 's-0001:k')]"], {}), "(\n 'key,environment,layer,stage,shard_id,namespace,table,consistent,nkey',\n [('k', 'e', 'l', 's', None, None, 'e-l-s-state', False, 'k'), ('k', 'e',\n 'l', 's', None, 'n', 'e-l-s-state', False, 'n:k'), ('k', 'e', 'l', 's',\n 's-012', 'n', 'e-l-s-state', True, 's-012:n:k'), ('k', 'e', 'l', 's',\n 's-0001', None, 'e-l-s-state', True, 's-0001:k')])\n", (2295, 2654), False, 'import pytest\n'), ((4060, 4418), 'pytest.mark.parametrize', 'pytest.mark.parametrize', (['"""key,value,environment,layer,stage,shard_id,namespace,table,nkey"""', "[('k', 'v', 'e', 'l', 's', None, None, 'e-l-s-state', 'k'), ('k', 'v', 'e',\n 'l', 's', None, 'n', 'e-l-s-state', 'n:k'), ('k', 'v', 'e', 'l', 's',\n 's1', 'n', 'e-l-s-state', 's1:n:k'), ('k', 'v', 'e', 'l', 's', 's2',\n None, 'e-l-s-state', 's2:k')]"], {}), "(\n 'key,value,environment,layer,stage,shard_id,namespace,table,nkey', [(\n 'k', 'v', 'e', 'l', 's', None, None, 'e-l-s-state', 'k'), ('k', 'v',\n 'e', 'l', 's', None, 'n', 'e-l-s-state', 'n:k'), ('k', 'v', 'e', 'l',\n 's', 's1', 'n', 'e-l-s-state', 's1:n:k'), ('k', 'v', 'e', 'l', 's',\n 's2', None, 'e-l-s-state', 's2:k')])\n", (4083, 4418), False, 'import pytest\n'), ((5064, 5395), 'pytest.mark.parametrize', 'pytest.mark.parametrize', (['"""key,environment,layer,stage,shard_id,namespace,table,nkey"""', "[('k', 'e', 'l', 's', None, None, 'e-l-s-state', 'k'), ('k', 'e', 'l', 's',\n None, 'n', 'e-l-s-state', 'n:k'), ('k', 'e', 'l', 's', 's1', 'n',\n 'e-l-s-state', 's1:n:k'), ('k', 'e', 'l', 's', 's2', None,\n 'e-l-s-state', 's2:k')]"], {}), "(\n 'key,environment,layer,stage,shard_id,namespace,table,nkey', [('k', 'e',\n 'l', 's', None, None, 'e-l-s-state', 'k'), ('k', 'e', 'l', 's', None,\n 'n', 'e-l-s-state', 'n:k'), ('k', 'e', 'l', 's', 's1', 'n',\n 'e-l-s-state', 's1:n:k'), ('k', 'e', 'l', 's', 's2', None,\n 'e-l-s-state', 's2:k')])\n", (5087, 5395), False, 'import pytest\n'), ((6705, 6985), 'pytest.mark.parametrize', 'pytest.mark.parametrize', (['"""kstream, fstream, rcalls, kcalls, fcalls, ev"""', "[('a', 'b', 1, 0, 0, {'Records': [{}]}), (None, 'b', 1, 0, 0, {'Records': [\n {}]}), (None, None, 1, 0, 0, None), (None, None, 1, 0, 0, None), ('a',\n 'b', 1, 0, 0, None), ('a', None, 1, 0, 0, None)]"], {}), "('kstream, fstream, rcalls, kcalls, fcalls, ev', [(\n 'a', 'b', 1, 0, 0, {'Records': [{}]}), (None, 'b', 1, 0, 0, {'Records':\n [{}]}), (None, None, 1, 0, 0, None), (None, None, 1, 0, 0, None), ('a',\n 'b', 1, 0, 0, None), ('a', None, 1, 0, 0, None)])\n", (6728, 6985), False, 'import pytest\n'), ((9046, 9173), 'pytest.mark.parametrize', 'pytest.mark.parametrize', (['"""deserializer, embed_ts"""', "[[json.loads, False], [json.loads, 'kinesis_timestamp'], [None, False]]"], {}), "('deserializer, embed_ts', [[json.loads, False], [\n json.loads, 'kinesis_timestamp'], [None, False]])\n", (9069, 9173), False, 'import pytest\n'), ((2040, 2063), 'mock.Mock', 'Mock', ([], {'return_value': 'resp'}), '(return_value=resp)\n', (2044, 2063), False, 'from mock import Mock\n'), ((1705, 1717), 'uuid.uuid4', 'uuid.uuid4', ([], {}), '()\n', (1715, 1717), False, 'import uuid\n'), ((1951, 1963), 'uuid.uuid4', 'uuid.uuid4', ([], {}), '()\n', (1961, 1963), False, 'import uuid\n'), ((1979, 1991), 'uuid.uuid4', 'uuid.uuid4', ([], {}), '()\n', (1989, 1991), False, 'import uuid\n'), ((2009, 2021), 'uuid.uuid4', 'uuid.uuid4', ([], {}), '()\n', (2019, 2021), False, 'import uuid\n'), ((3694, 3742), 'pytest.raises', 'pytest.raises', (['lambdautils.state.StateTableError'], {}), '(lambdautils.state.StateTableError)\n', (3707, 3742), False, 'import pytest\n'), ((3832, 3880), 'pytest.raises', 'pytest.raises', (['lambdautils.state.StateTableError'], {}), '(lambdautils.state.StateTableError)\n', (3845, 3880), False, 'import pytest\n'), ((3951, 3999), 'pytest.raises', 'pytest.raises', (['lambdautils.state.StateTableError'], {}), '(lambdautils.state.StateTableError)\n', (3964, 3999), False, 'import pytest\n'), ((6354, 6383), 'mock.Mock', 'Mock', ([], {'side_effect': 'raise_error'}), '(side_effect=raise_error)\n', (6358, 6383), False, 'from mock import Mock\n'), ((7499, 7530), 'mock.Mock', 'Mock', ([], {'return_value': 'raven_client'}), '(return_value=raven_client)\n', (7503, 7530), False, 'from mock import Mock\n'), ((7593, 7599), 'mock.Mock', 'Mock', ([], {}), '()\n', (7597, 7599), False, 'from mock import Mock\n'), ((7681, 7710), 'mock.Mock', 'Mock', ([], {'return_value': '"""dummydsn"""'}), "(return_value='dummydsn')\n", (7685, 7710), False, 'from mock import Mock\n'), ((7983, 8006), 'pytest.raises', 'pytest.raises', (['KeyError'], {}), '(KeyError)\n', (7996, 8006), False, 'import pytest\n'), ((241, 263), 'inspect.currentframe', 'inspect.currentframe', ([], {}), '()\n', (261, 263), False, 'import inspect\n'), ((1657, 1669), 'uuid.uuid4', 'uuid.uuid4', ([], {}), '()\n', (1667, 1669), False, 'import uuid\n'), ((5041, 5058), 'json.dumps', 'json.dumps', (['value'], {}), '(value)\n', (5051, 5058), False, 'import json\n')]
import os from testr.packages import make_regress_files regress_files = ['starcheck.txt', 'starcheck/pcad_att_check.txt'] clean = {'starcheck.txt': [(r'\s*Run on.*[\n\r]*', ''), (os.environ['SKA'], '')], 'starcheck/pcad_att_check.txt': [(os.environ['SKA'], '')]} make_regress_files(regress_files, clean=clean)
[ "testr.packages.make_regress_files" ]
[((319, 365), 'testr.packages.make_regress_files', 'make_regress_files', (['regress_files'], {'clean': 'clean'}), '(regress_files, clean=clean)\n', (337, 365), False, 'from testr.packages import make_regress_files\n')]
from django.test import TestCase from .validators import validate_budget_period from .models import Budget, Expense, Payment from django.contrib.auth.models import User from django.core.exceptions import ValidationError class ExpenseTestCases(TestCase): def setUp(self) -> None: user = User.objects.create_user('joe', email='<EMAIL>', password='<PASSWORD>') budget = Budget.objects.create(name='My budget', creation_date='2019-05-03', owner=user, description='The budget of champions.' ) Expense.objects.create(name='Water park visit', amount=30.00, period='1-monthly', payee='Super awesome Water parks', description='I will go to the water park.', date='2019-06-04', budget=budget ) Payment.objects.create(name='Paycheck', amount=4000.0, period='1-monthly', description='Where the Mullah comes from', date='2017-01-12', origin='The big boss fom up top in HR.', budget=budget ) def test_proper_str_formation(self): budget = Budget.objects.get(pk=1) expense = Expense.objects.get(pk=1) payment = Payment.objects.get(pk=1) self.assertEquals(budget.__str__(), 'My budget: joe', 'The budget was not created properly.') self.assertEquals(expense.__str__(), 'Water park visit: 30.0', 'The expense was not create properly.') self.assertEquals(payment.__str__(), 'Paycheck: 4000.0', 'The string function on payment is not workng properly.') class BudgetPeriodValidatorTestCase(TestCase): valid_cases = [ '1-daily', '1-onetime', '1-annually', '5-quarterly', '7-weekly', '3-annually', '10-monthly', '19-weekly', '99-daily' ] invalid_cases = [ '0.4-daily', '0-weekly', 'ad-annually', '100-weekly', '4.6-quarterly', '-31-daily', 'whoot-quarterly', '59-zoobly', '5-onetime', '03-monthly', ] def test_budget_period_validator(self): for c in self.valid_cases: self.assertEquals(validate_budget_period(c), None, f'failed on {c}') def test_budget_period_validator_fail(self): for c in self.invalid_cases: self.assertRaises(ValidationError, validate_budget_period, c) def test_validator_in_expense_model_creation_invalid(self): user = User.objects.create(username='joe', email='<EMAIL>', password='<PASSWORD>') budget = Budget.objects.create(name='My Budget', creation_date='2019-04-13', owner=user, ) for c in self.invalid_cases: self.assertRaises(Exception, Expense.objects.create, name=c + '1', amount=15.0, date='2014-05-06', period=c, budget=budget )
[ "django.contrib.auth.models.User.objects.create", "django.contrib.auth.models.User.objects.create_user" ]
[((301, 372), 'django.contrib.auth.models.User.objects.create_user', 'User.objects.create_user', (['"""joe"""'], {'email': '"""<EMAIL>"""', 'password': '"""<PASSWORD>"""'}), "('joe', email='<EMAIL>', password='<PASSWORD>')\n", (325, 372), False, 'from django.contrib.auth.models import User\n'), ((2948, 3023), 'django.contrib.auth.models.User.objects.create', 'User.objects.create', ([], {'username': '"""joe"""', 'email': '"""<EMAIL>"""', 'password': '"""<PASSWORD>"""'}), "(username='joe', email='<EMAIL>', password='<PASSWORD>')\n", (2967, 3023), False, 'from django.contrib.auth.models import User\n')]
# Copyright 2013-2022 Lawrence Livermore National Security, LLC and other # Spack Project Developers. See the top-level COPYRIGHT file for details. # # SPDX-License-Identifier: (Apache-2.0 OR MIT) import re from spack.package import * class Abacus(MakefilePackage): """ABACUS (Atomic-orbital Based Ab-initio Computation at UStc) is an open-source computer code package aiming for large-scale electronic-structure simulations from first principles""" maintainers = ["bitllion"] homepage = "http://abacus.ustc.edu.cn/" git = "https://github.com/abacusmodeling/abacus-develop.git" url = "https://github.com/abacusmodeling/abacus-develop/archive/refs/tags/v2.2.1.tar.gz" version("develop", branch="develop") version( "2.2.3", sha256="88dbf6a3bdd907df3e097637ec8e51fde13e2f5e0b44f3667443195481320edf", ) version( "2.2.2", sha256="4a7cf2ec6e43dd5c53d5f877a941367074f4714d93c1977a719782957916169e", ) version( "2.2.1", sha256="14feca1d8d1ce025d3f263b85ebfbebc1a1efff704b6490e95b07603c55c1d63", ) version( "2.2.0", sha256="09d4a2508d903121d29813a85791eeb3a905acbe1c5664b8a88903f8eda64b8f", ) variant("openmp", default=True, description="Enable OpenMP support") depends_on("elpa+openmp", when="+openmp") depends_on("elpa~openmp", when="~openmp") depends_on("cereal") depends_on("libxc") depends_on("fftw") # MPI is a necessary dependency depends_on("mpi", type=("build", "link", "run")) depends_on("mkl") build_directory = "source" def edit(self, spec, prefix): if "+openmp" in spec: inc_var = "_openmp-" system_var = ( "ELPA_LIB = -L${ELPA_LIB_DIR} -lelpa_openmp -Wl, -rpath=${ELPA_LIB_DIR}" ) else: inc_var = "-" system_var = ( "ELPA_LIB = -L${ELPA_LIB_DIR} -lelpa -Wl,-rpath=${ELPA_LIB_DIR}" ) tempInc = ( "\ FORTRAN = ifort\n\ CPLUSPLUS = icpc\n\ CPLUSPLUS_MPI = mpiicpc\n\ LAPACK_DIR = $(MKLROOT)\n\ FFTW_DIR = %s\n\ ELPA_DIR = %s\n\ ELPA_INCLUDE = -I${ELPA_DIR}/include/elpa%s%s\n\ CEREAL_DIR = %s\n\ OBJ_DIR = obj\n\ OBJ_DIR_serial = obj\n\ NP = 14\n" % ( spec["fftw"].prefix, spec["elpa"].prefix, inc_var, "{0}".format(spec["elpa"].version), spec["cereal"].prefix, ) ) with open(self.build_directory + "/Makefile.vars", "w") as f: f.write(tempInc) lineList = [] Pattern1 = re.compile("^ELPA_INCLUDE_DIR") Pattern2 = re.compile("^ELPA_LIB\\s*= ") with open(self.build_directory + "/Makefile.system", "r") as f: while True: line = f.readline() if not line: break elif Pattern1.search(line): pass elif Pattern2.search(line): pass else: lineList.append(line) with open(self.build_directory + "/Makefile.system", "w") as f: for i in lineList: f.write(i) with open(self.build_directory + "/Makefile.system", "a") as f: f.write(system_var) def install(self, spec, prefix): install_tree("bin", prefix.bin)
[ "re.compile" ]
[((2657, 2688), 're.compile', 're.compile', (['"""^ELPA_INCLUDE_DIR"""'], {}), "('^ELPA_INCLUDE_DIR')\n", (2667, 2688), False, 'import re\n'), ((2708, 2737), 're.compile', 're.compile', (['"""^ELPA_LIB\\\\s*= """'], {}), "('^ELPA_LIB\\\\s*= ')\n", (2718, 2737), False, 'import re\n')]
import cv2 import numpy as np def process_core(image): ''' Returns an inverted preprocessed binary image, with noise reduction achieved with greyscaling, Gaussian Blur, Otsu's Threshold, and an open morph. ''' #apply greyscaling, Gaussian Blur, and Otsu's Threshold greyscale = cv2.cvtColor(image, cv2.COLOR_BGR2GRAY) blur = cv2.GaussianBlur(greyscale, (3, 3), 0) threshold = cv2.threshold(blur, 0, 255, cv2.THRESH_BINARY_INV + cv2.THRESH_OTSU)[1] #apply an open morph to invert image to remove noise kernel = cv2.getStructuringElement(cv2.MORPH_RECT, (3, 3)) invert = 255 - cv2.morphologyEx(threshold, cv2.MORPH_OPEN, kernel, iterations=1) return invert def find_houghlines(image, width, height): hough_lines = None lines = cv2.HoughLinesP(image, 1, np.pi/180, 50, minLineLength=50, maxLineGap=5) #generates blank black image with single color layer if lines is not None and len(lines) != 0: hough_lines = np.zeros((height, width), dtype=np.uint8) for line in lines: x1, y1, x2, y2 = line[0] cv2.line(hough_lines, (x1, y1), (x2, y2), (255, 255, 255), 2) return hough_lines def find_bounds(image): rect_bounds = None #Run contour recognition contours, _ = cv2.findContours(image, cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE) #Take list of sorted contours by largest area to smallest area #If at least one contour is identified, can process visual approx. of contour bounds if len(sorted(contours, key=cv2.contourArea, reverse=True)) > 0: contour_bounds = None #Pre-determined image size factor constant SFACTOR = 20 for contour in contours: #Minimum intended size of a single cell is not reached, likely a cutoff, not worth approx. if (image[0] * image[1]) / SFACTOR > cv2.contourArea(contour): break approximation = cv2.approxPolyDP(contour, cv2.arcLength(contour, True), True) #This means that the approximated polygon is a quad if len(approximation) == 4: contour_bounds = approximation break if contour_bounds is not None: rect_bounds = np.zeros((4, 2), dtype=np.float32) corners = contour_bounds.reshape(-1, 2) rect_bounds[0] = corners[np.argmin(contour_bounds.sum(axis=1))] rect_bounds[2] = corners[np.argmax(contour_bounds.sum(axis=1))] rect_bounds[1] = corners[np.argmin(np.diff(corners, axis=1))] rect_bounds[3] = corners[np.argmax(np.diff(corners, axis=1))] return rect_bounds #Transform the perspective to render as if looking down on paper (top-down view) def transform(image, perspective): pass #Process the grid based on expected clean binary image input def process_grid(image, width, height): grid = None detected = False hough_lines = find_houghlines(image, width, height)
[ "cv2.HoughLinesP", "cv2.threshold", "cv2.arcLength", "cv2.line", "numpy.diff", "cv2.contourArea", "cv2.morphologyEx", "numpy.zeros", "cv2.cvtColor", "cv2.findContours", "cv2.GaussianBlur", "cv2.getStructuringElement" ]
[((308, 347), 'cv2.cvtColor', 'cv2.cvtColor', (['image', 'cv2.COLOR_BGR2GRAY'], {}), '(image, cv2.COLOR_BGR2GRAY)\n', (320, 347), False, 'import cv2\n'), ((359, 397), 'cv2.GaussianBlur', 'cv2.GaussianBlur', (['greyscale', '(3, 3)', '(0)'], {}), '(greyscale, (3, 3), 0)\n', (375, 397), False, 'import cv2\n'), ((561, 610), 'cv2.getStructuringElement', 'cv2.getStructuringElement', (['cv2.MORPH_RECT', '(3, 3)'], {}), '(cv2.MORPH_RECT, (3, 3))\n', (586, 610), False, 'import cv2\n'), ((803, 877), 'cv2.HoughLinesP', 'cv2.HoughLinesP', (['image', '(1)', '(np.pi / 180)', '(50)'], {'minLineLength': '(50)', 'maxLineGap': '(5)'}), '(image, 1, np.pi / 180, 50, minLineLength=50, maxLineGap=5)\n', (818, 877), False, 'import cv2\n'), ((1327, 1394), 'cv2.findContours', 'cv2.findContours', (['image', 'cv2.RETR_EXTERNAL', 'cv2.CHAIN_APPROX_SIMPLE'], {}), '(image, cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE)\n', (1343, 1394), False, 'import cv2\n'), ((414, 482), 'cv2.threshold', 'cv2.threshold', (['blur', '(0)', '(255)', '(cv2.THRESH_BINARY_INV + cv2.THRESH_OTSU)'], {}), '(blur, 0, 255, cv2.THRESH_BINARY_INV + cv2.THRESH_OTSU)\n', (427, 482), False, 'import cv2\n'), ((630, 695), 'cv2.morphologyEx', 'cv2.morphologyEx', (['threshold', 'cv2.MORPH_OPEN', 'kernel'], {'iterations': '(1)'}), '(threshold, cv2.MORPH_OPEN, kernel, iterations=1)\n', (646, 695), False, 'import cv2\n'), ((1006, 1047), 'numpy.zeros', 'np.zeros', (['(height, width)'], {'dtype': 'np.uint8'}), '((height, width), dtype=np.uint8)\n', (1014, 1047), True, 'import numpy as np\n'), ((1133, 1194), 'cv2.line', 'cv2.line', (['hough_lines', '(x1, y1)', '(x2, y2)', '(255, 255, 255)', '(2)'], {}), '(hough_lines, (x1, y1), (x2, y2), (255, 255, 255), 2)\n', (1141, 1194), False, 'import cv2\n'), ((2339, 2373), 'numpy.zeros', 'np.zeros', (['(4, 2)'], {'dtype': 'np.float32'}), '((4, 2), dtype=np.float32)\n', (2347, 2373), True, 'import numpy as np\n'), ((1923, 1947), 'cv2.contourArea', 'cv2.contourArea', (['contour'], {}), '(contour)\n', (1938, 1947), False, 'import cv2\n'), ((2038, 2066), 'cv2.arcLength', 'cv2.arcLength', (['contour', '(True)'], {}), '(contour, True)\n', (2051, 2066), False, 'import cv2\n'), ((2651, 2675), 'numpy.diff', 'np.diff', (['corners'], {'axis': '(1)'}), '(corners, axis=1)\n', (2658, 2675), True, 'import numpy as np\n'), ((2725, 2749), 'numpy.diff', 'np.diff', (['corners'], {'axis': '(1)'}), '(corners, axis=1)\n', (2732, 2749), True, 'import numpy as np\n')]
""" MIT License Copyright (c) 2018 <NAME> Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated documentation files (the "Software"), to deal in the Software without restriction, including without limitation the rights to use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of the Software, and to permit persons to whom the Software is furnished to do so, subject to the following conditions: The above copyright notice and this permission notice shall be included in all copies or substantial portions of the Software. THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. """ import datetime import csv import os class CSVReader(object): """Wrapper for reading csv files. Takes just the filepath as an argument. Use the iterrecords() generator method for large data sets for increased performance. """ def __init__(self, file_path, delimiter=','): self.file_path = file_path self.delimiter = delimiter def read_to_list(self): """Returns the records in the csv as a list[] Each record is a dictionary """ records = [] with open(self.file_path) as source: reader = csv.DictReader(source, delimiter=self.delimiter) for row in reader: records.append(row) return records def read_to_dict(self, key_field): """Returns the records in the csv as a dictionary. The key value is specified by the key_field argument for each record """ records = {} with open(self.file_path) as source: reader = csv.DictReader(source, delimiter=self.delimiter) self.headers = reader.fieldnames if key_field in self.headers: for row in reader: if not row[key_field] in records: records[row[key_field]] = row else: raise Exception('The key provided does not have unique values.') else: raise KeyError('The key provided does not exist') return records def iterrecords(self): """Generator method that provides a more efficient way to iterate records. for record in instance.iterrecords(): print(record) """ records = [] with open(self.file_path) as source: reader = csv.DictReader(source, delimiter=self.delimiter) for row in reader: yield row class CSVWriter(object): """Wrapper for writing csv files. takes the file path and a list of headers as arguments """ def __init__(self, file_path, headers): self.headers = headers self.file_path = file_path def write_from_list(self, records=[]): """Writes the csv to the indicated file_path taking a list[] of records as the argument where each record is a dictionary. Only the fields in self.headers will be written to the csv. But extra fields can be passed, they will just be skipped over. """ if isinstance(records, list): with open(self.file_path, 'w') as csvfile: writer = csv.DictWriter(csvfile, fieldnames=self.headers) writer.writeheader() for record in records: if isinstance(record, dict): row = {field: record[field] for field in self.headers} writer.writerow(row) else: raise Exception('Items in list must be of type dict') else: raise Exception('Must pass a list object as the records list') return self.file_path def write_from_dict(self, records={}): """Writes the csv to the indicated file_path taking a dict{} of records as the argument where each item in the dict{} is also a dict{} """ with open(self.file_path, 'w') as csvfile: writer = csv.DictWriter(csvfile, fieldnames=self.headers) writer.writeheader() for key, record in records.items(): row = {field: record[field] for field in self.headers} writer.writerow(row) return self.file_path def reader(file_path='', delimiter=','): """Returns a CSVReader object """ if os.path.isfile(file_path): if os.access(file_path, os.R_OK): return CSVReader(file_path, delimiter=delimiter) else: raise Exception('{fname} exists but is not readable.'.format(fname=file_path)) else: raise Exception('{fname} does not exist'.format(fname=file_path)) def writer(file_path='', headers=[]): """Returns a CSVWriter object """ if not os.path.isfile(file_path): if isinstance(headers, list): return CSVWriter(file_path=file_path, headers=headers) else: raise Exception('Headers need to be in a list object.') else: raise Exception('{fname} is already a file. Please write to a new location.'.format(fname=file_path)) def the_date(): return datetime.date.today().strftime('%m_%d_%Y')
[ "csv.DictWriter", "csv.DictReader", "os.access", "os.path.isfile", "datetime.date.today" ]
[((5034, 5059), 'os.path.isfile', 'os.path.isfile', (['file_path'], {}), '(file_path)\n', (5048, 5059), False, 'import os\n'), ((5072, 5101), 'os.access', 'os.access', (['file_path', 'os.R_OK'], {}), '(file_path, os.R_OK)\n', (5081, 5101), False, 'import os\n'), ((5445, 5470), 'os.path.isfile', 'os.path.isfile', (['file_path'], {}), '(file_path)\n', (5459, 5470), False, 'import os\n'), ((1667, 1715), 'csv.DictReader', 'csv.DictReader', (['source'], {'delimiter': 'self.delimiter'}), '(source, delimiter=self.delimiter)\n', (1681, 1715), False, 'import csv\n'), ((2117, 2165), 'csv.DictReader', 'csv.DictReader', (['source'], {'delimiter': 'self.delimiter'}), '(source, delimiter=self.delimiter)\n', (2131, 2165), False, 'import csv\n'), ((2942, 2990), 'csv.DictReader', 'csv.DictReader', (['source'], {'delimiter': 'self.delimiter'}), '(source, delimiter=self.delimiter)\n', (2956, 2990), False, 'import csv\n'), ((4638, 4686), 'csv.DictWriter', 'csv.DictWriter', (['csvfile'], {'fieldnames': 'self.headers'}), '(csvfile, fieldnames=self.headers)\n', (4652, 4686), False, 'import csv\n'), ((5814, 5835), 'datetime.date.today', 'datetime.date.today', ([], {}), '()\n', (5833, 5835), False, 'import datetime\n'), ((3790, 3838), 'csv.DictWriter', 'csv.DictWriter', (['csvfile'], {'fieldnames': 'self.headers'}), '(csvfile, fieldnames=self.headers)\n', (3804, 3838), False, 'import csv\n')]
from PyQt4.QtGui import QImage, QPainter from PyQt4.QtCore import QSize # configure the output image width = 800 height = 600 dpi = 92 img = QImage(QSize(width, height), QImage.Format_RGB32) img.setDotsPerMeterX(dpi / 25.4 * 1000) img.setDotsPerMeterY(dpi / 25.4 * 1000) # get the map layers and extent layers = [ layer.id() for layer in iface.legendInterface().layers() ] extent = iface.mapCanvas().extent() # configure map settings for export mapSettings = QgsMapSettings() mapSettings.setMapUnits(0) mapSettings.setExtent(extent) mapSettings.setOutputDpi(dpi) mapSettings.setOutputSize(QSize(width, height)) mapSettings.setLayers(layers) mapSettings.setFlags(QgsMapSettings.Antialiasing | QgsMapSettings.UseAdvancedEffects | QgsMapSettings.ForceVectorOutput | QgsMapSettings.DrawLabeling) # configure and run painter p = QPainter() p.begin(img) mapRenderer = QgsMapRendererCustomPainterJob(mapSettings, p) mapRenderer.start() mapRenderer.waitForFinished() p.end() # save the result img.save("C:/temp/custom_export.png","png")
[ "PyQt4.QtGui.QPainter", "PyQt4.QtCore.QSize" ]
[((845, 855), 'PyQt4.QtGui.QPainter', 'QPainter', ([], {}), '()\n', (853, 855), False, 'from PyQt4.QtGui import QImage, QPainter\n'), ((154, 174), 'PyQt4.QtCore.QSize', 'QSize', (['width', 'height'], {}), '(width, height)\n', (159, 174), False, 'from PyQt4.QtCore import QSize\n'), ((606, 626), 'PyQt4.QtCore.QSize', 'QSize', (['width', 'height'], {}), '(width, height)\n', (611, 626), False, 'from PyQt4.QtCore import QSize\n')]
from django.db import router from django.db.models import Q, Manager from django.db import connections from .contenttypes import ct, get_content_type from .query import GM2MTgtQuerySet class GM2MBaseManager(Manager): use_in_migration = True def __init__(self, instance): super(GM2MBaseManager, self).__init__() self.model = self._model # see create_gm2m_related_manager self.instance = instance self.pk = instance.pk self.core_filters = {} def get_queryset(self): try: return self.instance \ ._prefetched_objects_cache[self.prefetch_cache_name] except (AttributeError, KeyError): db = self._db or router.db_for_read(self.instance.__class__, instance=self.instance) return self._get_queryset(using=db)._next_is_sticky() \ .filter(**self.core_filters) def _get_queryset(self, using): return super(GM2MBaseManager, self).get_queryset().using(using) def get_prefetch_queryset(self, instances, queryset=None): db = self._db or router.db_for_read(self.model, instance=instances[0]) if queryset is None: queryset = self._get_queryset(db) qs, rel_obj_attr, instance_attr = \ self._get_prefetch_queryset_params(instances, queryset, db) return (qs, rel_obj_attr, instance_attr, False, self.prefetch_cache_name) def _get_extra_queryset(self, queryset, q, extra_fields, db): join_table = self.through._meta.db_table connection = connections[db] qn = connection.ops.quote_name extra = dict(select=dict( ('_prefetch_related_val_%s' % f.attname, '%s.%s' % (qn(join_table), qn(f.column))) for f in extra_fields)) return queryset.using(db)._next_is_sticky().filter(q).extra(**extra) def _check_through_model(self, method_name): # If the GM2M relation has an intermediary model, # the add and remove methods are not available. if not self.through._meta.auto_created: opts = self.through._meta raise AttributeError( 'Cannot use %s() on a ManyToManyField which specifies an ' 'intermediary model. Use %s.%s\'s Manager instead.' % (method_name, opts.app_label, opts.object_name)) def _do_add(self, db, through_objs): """ Performs items addition """ # Add the new entries in the db table self.through._default_manager.using(db).bulk_create(through_objs) def add(self, *objs): """ Adds objects to the GM2M field :param *objs: object instances to add """ # self._check_through_model('add') if not objs: return db = router.db_for_write(self.through, instance=self.instance) self._do_add(db, self._to_add(objs, db)) add.alters_data = True def _do_remove(self, db, q): """ Perfoms items removal from a Q object """ self.through._default_manager.using(db).filter(q).delete() def remove(self, *objs): """ Removes objects from the GM2M field """ # *objs - objects to remove self._check_through_model('remove') if not objs: return db = router.db_for_write(self.through, instance=self.instance) self._do_remove(db, self._to_remove(objs)) remove.alters_data = True def _do_clear(self, db, filter=None): self.through._default_manager.using(db).filter(**(filter or {})) \ .delete() def set(self, objs, **kwargs): """ Sets the objs iterable as the set of related objects (Added for compatibility with Django 1.9) """ self._check_through_model('set') objs = tuple(objs) clear = kwargs.pop('clear', False) db = router.db_for_write(self.through, instance=self.instance) if clear: # clears all and re-adds self._do_clear(db) self._do_add(db, *objs) else: # just removes the necessary items and adds the missing ones to_add, to_remove = self._to_change(objs, db) self._do_remove(db, to_remove) self._do_add(db, to_add) set.alters_data = True def clear(self): db = router.db_for_write(self.through, instance=self.instance) self._do_clear(db, self._to_clear()) clear.alters_data = True class GM2MBaseSrcManager(Manager): def __init__(self, instance): # the manager's model is the source model super(GM2MBaseSrcManager, self).__init__(instance) self.core_filters['%s__%s' % (self.query_field_name, self.field_names['tgt_ct'])] = \ get_content_type(self.instance) self.core_filters['%s__%s' % (self.query_field_name, self.field_names['tgt_fk'])] = \ self.instance.pk def _get_prefetch_queryset_params(self, instances, queryset, db): # we're looking for generic target instances, which should be # converted to (content_type, primary_key) tuples q = Q() for obj in instances: q = q | Q(**{ '%s__%s' % (self.query_field_name, self.field_names['tgt_ct']):get_content_type(obj), '%s__%s' % (self.query_field_name, self.field_names['tgt_fk']): obj.pk }) # Annotating the query in order to retrieve the primary model # content type and id in the same query # content type must be the 1st element, see rel_obj_attr below extra_fields = ( self.through._meta.get_field(self.field_names['tgt_ct']), self.through._meta.get_field(self.field_names['tgt_fk']) ) qs = self._get_extra_queryset(queryset, q, extra_fields, db) # primary model retrieval function def rel_obj_attr(relobj): t = [] for f in extra_fields: try: # t already contains the content type id # we use get_for_id to retrieve the cached content type model = ct.ContentType.objects.get_for_id(t[0]) \ .model_class() except IndexError: # t is empty model = ct.ContentType t.append(model._meta.pk.to_python( getattr(relobj, '_prefetch_related_val_%s' % f.attname) )) return tuple(t) # model attribute retrieval function instance_attr = lambda inst: \ (get_content_type(inst).pk, inst.pk) return qs, rel_obj_attr, instance_attr def _to_add(self, objs, db): # we're using the reverse relation to add source model # instances inst_ct = get_content_type(self.instance) vals = self.through._default_manager.using(db) \ .values_list(self.field_names['src'], flat=True) \ .filter(**{ self.field_names['tgt_ct']: inst_ct, self.field_names['tgt_fk']: self.pk }) to_add = [] for obj in objs: if obj.pk not in vals: to_add.append(self.through(**{ '%s_id' % self.field_names['src']: obj.pk, self.field_names['tgt_ct']: inst_ct, self.field_names['tgt_fk']: self.pk })) return to_add def _to_remove(self, objs): # we're using the reverse relation to delete source model # instances inst_ct = get_content_type(self.instance) return Q(**{ '%s_id__in' % self.field_names['src']: [obj.pk for obj in objs], self.field_names['tgt_ct']: inst_ct, self.field_names['tgt_fk']: self.pk }) def _to_change(self, objs, db): """ Returns the sets of items to be added and a Q object for removal """ inst_ct = get_content_type(self.instance) vals = list(self.through._default_manager.using(db) .values_list(self.field_names['src'], flat=True) .filter(**{ self.field_names['tgt_ct']: inst_ct, self.field_names['tgt_fk']: self.pk })) to_add = set() to_remove = set() for obj in objs: try: vals.remove(obj.pk) except ValueError: # obj.pk is not in vals and must be added to_add.add(self.through(**{ '%s_id' % self.field_names['src']: obj.pk, self.field_names['tgt_ct']: inst_ct, self.field_names['tgt_fk']: self.pk })) for v in vals: to_remove.add(v) return to_add, Q(pk__in=to_remove) def _to_clear(self): return { self.field_names['tgt_ct']: get_content_type(self.instance), self.field_names['tgt_fk']: self.instance.pk } class GM2MBaseTgtManager(Manager): def __init__(self, instance): # the manager's model is the through model super(GM2MBaseTgtManager, self).__init__(instance) source_field = self.through._meta.get_field( self.field_names['src']) self.source_related_fields = source_field.related_fields for __, rh_field in self.source_related_fields: key = '%s__%s' % (self.query_field_name, rh_field.name) self.core_filters[key] = getattr(self.instance, rh_field.attname) def _get_queryset(self, using): return GM2MTgtQuerySet(self.model, using=using) def _get_prefetch_queryset_params(self, instances, queryset, db): # we're looking for through model instances query = {} for lh_field, rh_field in self.source_related_fields: query['%s__in' % lh_field.name] = \ set(getattr(obj, rh_field.attname) for obj in instances) q = Q(**query) # Annotating the query in order to retrieve the primary model # id in the same query fk = self.through._meta.get_field(self.field_names['src']) extra_fields = fk.local_related_fields qs = self._get_extra_queryset(queryset, q, extra_fields, db) # marking the queryset so that the original queryset should # be returned when evaluated the first time qs._related_prefetching = True # primary model retrieval function def rel_obj_attr(relobj): t = [] for f in extra_fields: v = getattr(relobj, '_prefetch_related_val_%s' % f.attname) try: v = v.pop() except AttributeError: # v is not a list pass t.append(f.related_model._meta.pk.to_python(v)) return tuple(t) # model attribute retrieval function select_fields = fk.foreign_related_fields instance_attr = lambda inst: tuple([getattr(inst, f.attname) for f in select_fields]) return qs, rel_obj_attr, instance_attr def _to_add(self, objs, db): models = [] objs_set = set() for obj in objs: # extract content type and primary key for each object objs_set.add((get_content_type(obj), obj.pk)) m = obj.__class__ if m not in models: # call field.add_relation for each model models.append(m) self.field.add_relation(m, auto=True) vals = self.through._default_manager.using(db) \ .filter(**{self.field_names['src']: self.pk}) \ .values_list(self.field_names['tgt_ct'], self.field_names['tgt_fk']) to_add = [] for ct, pk in objs_set.difference(vals): to_add.append(self.through(**{ '%s_id' % self.field_names['src']: self.pk, self.field_names['tgt_ct']: ct, self.field_names['tgt_fk']: pk })) return to_add def _to_remove(self, objs): q = Q() for obj in objs: # Convert the obj to (content_type, primary_key) q = q | Q(**{ self.field_names['tgt_ct']: get_content_type(obj), self.field_names['tgt_fk']: obj.pk }) return q & Q(**{ '%s_id' % self.field_names['src']: self.pk }) def _to_clear(self): return { '%s_id' % self.field_names['src']: self.pk } def _to_change(self, objs, db): """ Returns the sets of items to be added and a Q object for removal """ to_add = set() src_fname = self.field_names['src'] ct_fname = self.field_names['tgt_ct'] fk_fname = self.field_names['tgt_fk'] vals = list(self.through._default_manager.using(db) .filter(**{self.field_names['src']: self.pk}) .values_list(ct_fname, fk_fname)) known_cts = set(v[0] for v in vals) for obj in objs: ct = get_content_type(obj) val = (ct, obj.pk) try: vals.remove(val) except ValueError: # val is not in vals # extract content type and primary key for each object to_add.add((ct, obj.pk)) if ct.pk not in known_cts: # call field.add_relation for each unknown model self.field.add_relation(obj.__class__, auto=True) known_cts.add(ct.pk) rem_q = Q() for val in vals: # Convert the obj to (content_type, primary_key) rem_q = rem_q | Q(**{ ct_fname: val[0], fk_fname: val[1] }) return [ self.through(**{ '%s_id' % src_fname: self.pk, ct_fname: t[0], fk_fname: t[1] }) for t in to_add ], \ rem_q & Q(**{ '%s_id' % src_fname: self.pk }) def create_gm2m_related_manager(superclass=None, **kwargs): """ Dynamically create a manager class that only concerns an instance (source or target) """ bases = [GM2MBaseManager] if superclass is None: # no superclass provided, the manager is a generic target model manager bases.insert(0, GM2MBaseTgtManager) else: # superclass provided, the manager is a source model manager and also # derives from superclass bases.insert(0, GM2MBaseSrcManager) bases.append(superclass) # Django's Manager constructor sets model to None, we store it under the # class's attribute '_model' and it is retrieved in __init__ kwargs['_model'] = kwargs.pop('model') return type(Manager)('GM2MManager', tuple(bases), kwargs)
[ "django.db.models.Q", "django.db.router.db_for_read", "django.db.router.db_for_write" ]
[((3080, 3137), 'django.db.router.db_for_write', 'router.db_for_write', (['self.through'], {'instance': 'self.instance'}), '(self.through, instance=self.instance)\n', (3099, 3137), False, 'from django.db import router\n'), ((3642, 3699), 'django.db.router.db_for_write', 'router.db_for_write', (['self.through'], {'instance': 'self.instance'}), '(self.through, instance=self.instance)\n', (3661, 3699), False, 'from django.db import router\n'), ((4238, 4295), 'django.db.router.db_for_write', 'router.db_for_write', (['self.through'], {'instance': 'self.instance'}), '(self.through, instance=self.instance)\n', (4257, 4295), False, 'from django.db import router\n'), ((4720, 4777), 'django.db.router.db_for_write', 'router.db_for_write', (['self.through'], {'instance': 'self.instance'}), '(self.through, instance=self.instance)\n', (4739, 4777), False, 'from django.db import router\n'), ((5611, 5614), 'django.db.models.Q', 'Q', ([], {}), '()\n', (5612, 5614), False, 'from django.db.models import Q, Manager\n'), ((8424, 8574), 'django.db.models.Q', 'Q', ([], {}), "(**{('%s_id__in' % self.field_names['src']): [obj.pk for obj in objs],\n self.field_names['tgt_ct']: inst_ct, self.field_names['tgt_fk']: self.pk})\n", (8425, 8574), False, 'from django.db.models import Q, Manager\n'), ((11089, 11099), 'django.db.models.Q', 'Q', ([], {}), '(**query)\n', (11090, 11099), False, 'from django.db.models import Q, Manager\n'), ((13394, 13397), 'django.db.models.Q', 'Q', ([], {}), '()\n', (13395, 13397), False, 'from django.db.models import Q, Manager\n'), ((14986, 14989), 'django.db.models.Q', 'Q', ([], {}), '()\n', (14987, 14989), False, 'from django.db.models import Q, Manager\n'), ((1186, 1239), 'django.db.router.db_for_read', 'router.db_for_read', (['self.model'], {'instance': 'instances[0]'}), '(self.model, instance=instances[0])\n', (1204, 1239), False, 'from django.db import router\n'), ((9801, 9820), 'django.db.models.Q', 'Q', ([], {'pk__in': 'to_remove'}), '(pk__in=to_remove)\n', (9802, 9820), False, 'from django.db.models import Q, Manager\n'), ((13669, 13720), 'django.db.models.Q', 'Q', ([], {}), "(**{('%s_id' % self.field_names['src']): self.pk})\n", (13670, 13720), False, 'from django.db.models import Q, Manager\n'), ((15107, 15148), 'django.db.models.Q', 'Q', ([], {}), '(**{ct_fname: val[0], fk_fname: val[1]})\n', (15108, 15148), False, 'from django.db.models import Q, Manager\n'), ((15423, 15460), 'django.db.models.Q', 'Q', ([], {}), "(**{('%s_id' % src_fname): self.pk})\n", (15424, 15460), False, 'from django.db.models import Q, Manager\n'), ((743, 810), 'django.db.router.db_for_read', 'router.db_for_read', (['self.instance.__class__'], {'instance': 'self.instance'}), '(self.instance.__class__, instance=self.instance)\n', (761, 810), False, 'from django.db import router\n')]
from selenium.webdriver.chrome.options import Options from selenium import webdriver import logging import coloredlogs import os import pathlib import time import twitter as tt from utils import retry from fetch_likes import get_user_likes, login from conf.settings import USER_ID, USERNAME, PASSWORD CURR_PATH = pathlib.Path(__file__).parent.absolute() TWEETS_FOLDER = os.path.join(CURR_PATH, 'screenshots') LIKED_FOLDER = os.path.join(CURR_PATH, 'screenshots', 'liked') class TwitterListener(): def __init__(self, user_id=USER_ID, search_base=40): # Configure log coloredlogs.install() logging.basicConfig() self.logger = logging.getLogger('TwitterListener') self.logger.setLevel(logging.DEBUG) # Set chrome options chrome_options = Options() chrome_options.add_argument('--headless') chrome_options.add_argument("--no-sandbox") self.driver = webdriver.Chrome(options=chrome_options) # Create formatter, file handler and add they to the handlers formatter = logging.Formatter( '%(asctime)s - %(name)s - %(levelname)s - %(message)s') fh = logging.FileHandler('twitter.log') fh.setFormatter(formatter) self.logger.addHandler(fh) self.search_base = search_base self.user_id = user_id self.target = tt.get_username_from_id(user_id) self.is_logged = False, self.has_previous_tweets = False self.has_previous_friends = False self.has_previous_likes = False def _get_new_tweets(self): if(not self.has_previous_tweets): self.previous_tweets_ids = tt.get_ids_from_tweets( tt.get_tweets(user_id=self.user_id, count=self.search_base)) self.has_previous_tweets = True last_tweets = tt.get_tweets(user_id=self.user_id, count=self.search_base) last_tweets_ids = tt.get_ids_from_tweets(last_tweets) diff_tweets = self._get_new_diff( last_tweets_ids, self.previous_tweets_ids) if diff_tweets: new_tweets = [last_tweets[i] for i in range(len(diff_tweets))] self.previous_tweets_ids = last_tweets_ids new_tweets.reverse() return new_tweets return [] def _get_new_likes(self): count = self.search_base/2 if(not self.is_logged): login(self.driver, USERNAME, PASSWORD) self.is_logged = True if(not self.has_previous_likes): self.previous_likes_ids = get_user_likes( self.driver, self.target, count=count) self.has_previous_likes = True new_likes_ids = get_user_likes( self.driver, self.target, count=count) diff_tweets = self._get_new_diff( new_likes_ids, self.previous_likes_ids) if diff_tweets: self.previous_likes_ids = new_likes_ids diff_tweets.reverse() return diff_tweets return [] def _get_new_diff(self, curr, old): count = len(old) return list(set(curr[:count//2]) - set(old)) def _get_abs_diff(self, first_list, second_list): return list(set(first_list) - set(second_list)) def print_new_tweets(self): try: new_tweets = self._get_new_tweets() for tweet in new_tweets: tweet_id = str(tweet['id']) tweet_url = tt.get_url(tweet) # Get image self.logger.info('New tweet %s', tweet_url) img_path = os.path.join(TWEETS_FOLDER, f'{tweet_id}.png') retry(tt.print_tweet, tweet_url, self.driver, output_path=img_path) self.logger.debug('Take a screenshot of tweet') # Tweet image tweet_msg = '<NAME> acabou de twittar' self.logger.debug( f'Is a retweet: {"retweeted_status" in tweet}') if('retweeted_status' in tweet): tweet_msg = '<NAME> acabou de retweetar' tt.tweet_print(img_path, tweet_url, tweet_msg) self.logger.debug('Tweet the screenshot') except Exception as e: self.logger.error(e) def print_new_likes(self): try: new_likes = self._get_new_likes() for t_id in new_likes: t_url = f'https://twitter.com/{self.target}/status/{t_id}' # Get image self.logger.info('New like %s', t_url) img_path = os.path.join(LIKED_FOLDER, f'{t_id}.png') retry(tt.print_tweet, t_url, self.driver, output_path=img_path) self.logger.debug('Take a screenshot of tweet') # Tweet image t_msg = '<NAME> acabou de curtir esse tweet' tt.tweet_print(img_path, t_url, t_msg) self.logger.debug('Tweet the screenshot') except Exception as e: self.logger.error(e) def watch_friends(self): try: if(not self.has_previous_friends): self.previous_friends = tt.get_friends_ids( user_id=self.user_id) self.has_previous_friends = True last_friends = tt.get_friends_ids() new_friends = self._get_abs_diff( last_friends, self.previous_friends) unfriends = self._get_abs_diff(self.previous_friends, last_friends) for user_id in new_friends: username = tt.get_username_from_id(user_id=user_id) self.logger.info(f'New friend: @{username}') retry( tt.update_status, status=( f'<NAME> aparentemente está seguindo @{username}.' '\n(Esse bot não consegue verificar se essa atualização foi gerada ' 'por um follow ou por uma reativação de conta)' ) ) for user_id in unfriends: username = tt.get_username_from_id(user_id=user_id) self.logger.info(f'Unfriend: @{username}') retry( tt.update_status, status=( f'<NAME> aparentemente deixou de seguir @{username}.' '\n(Esse bot não consegue verificar se essa atualização foi gerada ' 'por um unfollow, suspensão ou block.)' ) ) self.previous_friends = last_friends except Exception as e: self.logger.error(e)
[ "logging.basicConfig", "selenium.webdriver.chrome.options.Options", "logging.getLogger", "twitter.get_username_from_id", "twitter.get_url", "coloredlogs.install", "twitter.get_tweets", "pathlib.Path", "selenium.webdriver.Chrome", "logging.Formatter", "os.path.join", "fetch_likes.get_user_likes", "fetch_likes.login", "twitter.get_friends_ids", "logging.FileHandler", "twitter.get_ids_from_tweets", "twitter.tweet_print", "utils.retry" ]
[((373, 411), 'os.path.join', 'os.path.join', (['CURR_PATH', '"""screenshots"""'], {}), "(CURR_PATH, 'screenshots')\n", (385, 411), False, 'import os\n'), ((427, 474), 'os.path.join', 'os.path.join', (['CURR_PATH', '"""screenshots"""', '"""liked"""'], {}), "(CURR_PATH, 'screenshots', 'liked')\n", (439, 474), False, 'import os\n'), ((591, 612), 'coloredlogs.install', 'coloredlogs.install', ([], {}), '()\n', (610, 612), False, 'import coloredlogs\n'), ((621, 642), 'logging.basicConfig', 'logging.basicConfig', ([], {}), '()\n', (640, 642), False, 'import logging\n'), ((665, 701), 'logging.getLogger', 'logging.getLogger', (['"""TwitterListener"""'], {}), "('TwitterListener')\n", (682, 701), False, 'import logging\n'), ((801, 810), 'selenium.webdriver.chrome.options.Options', 'Options', ([], {}), '()\n', (808, 810), False, 'from selenium.webdriver.chrome.options import Options\n'), ((935, 975), 'selenium.webdriver.Chrome', 'webdriver.Chrome', ([], {'options': 'chrome_options'}), '(options=chrome_options)\n', (951, 975), False, 'from selenium import webdriver\n'), ((1066, 1139), 'logging.Formatter', 'logging.Formatter', (['"""%(asctime)s - %(name)s - %(levelname)s - %(message)s"""'], {}), "('%(asctime)s - %(name)s - %(levelname)s - %(message)s')\n", (1083, 1139), False, 'import logging\n'), ((1166, 1200), 'logging.FileHandler', 'logging.FileHandler', (['"""twitter.log"""'], {}), "('twitter.log')\n", (1185, 1200), False, 'import logging\n'), ((1364, 1396), 'twitter.get_username_from_id', 'tt.get_username_from_id', (['user_id'], {}), '(user_id)\n', (1387, 1396), True, 'import twitter as tt\n'), ((1834, 1893), 'twitter.get_tweets', 'tt.get_tweets', ([], {'user_id': 'self.user_id', 'count': 'self.search_base'}), '(user_id=self.user_id, count=self.search_base)\n', (1847, 1893), True, 'import twitter as tt\n'), ((1956, 1991), 'twitter.get_ids_from_tweets', 'tt.get_ids_from_tweets', (['last_tweets'], {}), '(last_tweets)\n', (1978, 1991), True, 'import twitter as tt\n'), ((2728, 2781), 'fetch_likes.get_user_likes', 'get_user_likes', (['self.driver', 'self.target'], {'count': 'count'}), '(self.driver, self.target, count=count)\n', (2742, 2781), False, 'from fetch_likes import get_user_likes, login\n'), ((316, 338), 'pathlib.Path', 'pathlib.Path', (['__file__'], {}), '(__file__)\n', (328, 338), False, 'import pathlib\n'), ((2437, 2475), 'fetch_likes.login', 'login', (['self.driver', 'USERNAME', 'PASSWORD'], {}), '(self.driver, USERNAME, PASSWORD)\n', (2442, 2475), False, 'from fetch_likes import get_user_likes, login\n'), ((2589, 2642), 'fetch_likes.get_user_likes', 'get_user_likes', (['self.driver', 'self.target'], {'count': 'count'}), '(self.driver, self.target, count=count)\n', (2603, 2642), False, 'from fetch_likes import get_user_likes, login\n'), ((5376, 5396), 'twitter.get_friends_ids', 'tt.get_friends_ids', ([], {}), '()\n', (5394, 5396), True, 'import twitter as tt\n'), ((1706, 1765), 'twitter.get_tweets', 'tt.get_tweets', ([], {'user_id': 'self.user_id', 'count': 'self.search_base'}), '(user_id=self.user_id, count=self.search_base)\n', (1719, 1765), True, 'import twitter as tt\n'), ((3503, 3520), 'twitter.get_url', 'tt.get_url', (['tweet'], {}), '(tweet)\n', (3513, 3520), True, 'import twitter as tt\n'), ((3637, 3683), 'os.path.join', 'os.path.join', (['TWEETS_FOLDER', 'f"""{tweet_id}.png"""'], {}), "(TWEETS_FOLDER, f'{tweet_id}.png')\n", (3649, 3683), False, 'import os\n'), ((3700, 3767), 'utils.retry', 'retry', (['tt.print_tweet', 'tweet_url', 'self.driver'], {'output_path': 'img_path'}), '(tt.print_tweet, tweet_url, self.driver, output_path=img_path)\n', (3705, 3767), False, 'from utils import retry\n'), ((4171, 4217), 'twitter.tweet_print', 'tt.tweet_print', (['img_path', 'tweet_url', 'tweet_msg'], {}), '(img_path, tweet_url, tweet_msg)\n', (4185, 4217), True, 'import twitter as tt\n'), ((4652, 4693), 'os.path.join', 'os.path.join', (['LIKED_FOLDER', 'f"""{t_id}.png"""'], {}), "(LIKED_FOLDER, f'{t_id}.png')\n", (4664, 4693), False, 'import os\n'), ((4710, 4773), 'utils.retry', 'retry', (['tt.print_tweet', 't_url', 'self.driver'], {'output_path': 'img_path'}), '(tt.print_tweet, t_url, self.driver, output_path=img_path)\n', (4715, 4773), False, 'from utils import retry\n'), ((4946, 4984), 'twitter.tweet_print', 'tt.tweet_print', (['img_path', 't_url', 't_msg'], {}), '(img_path, t_url, t_msg)\n', (4960, 4984), True, 'import twitter as tt\n'), ((5237, 5277), 'twitter.get_friends_ids', 'tt.get_friends_ids', ([], {'user_id': 'self.user_id'}), '(user_id=self.user_id)\n', (5255, 5277), True, 'import twitter as tt\n'), ((5645, 5685), 'twitter.get_username_from_id', 'tt.get_username_from_id', ([], {'user_id': 'user_id'}), '(user_id=user_id)\n', (5668, 5685), True, 'import twitter as tt\n'), ((5763, 5969), 'utils.retry', 'retry', (['tt.update_status'], {'status': 'f"""<NAME> aparentemente está seguindo @{username}.\n(Esse bot não consegue verificar se essa atualização foi gerada por um follow ou por uma reativação de conta)"""'}), '(tt.update_status, status=\n f"""<NAME> aparentemente está seguindo @{username}.\n(Esse bot não consegue verificar se essa atualização foi gerada por um follow ou por uma reativação de conta)"""\n )\n', (5768, 5969), False, 'from utils import retry\n'), ((6183, 6223), 'twitter.get_username_from_id', 'tt.get_username_from_id', ([], {'user_id': 'user_id'}), '(user_id=user_id)\n', (6206, 6223), True, 'import twitter as tt\n'), ((6299, 6500), 'utils.retry', 'retry', (['tt.update_status'], {'status': 'f"""<NAME> aparentemente deixou de seguir @{username}.\n(Esse bot não consegue verificar se essa atualização foi gerada por um unfollow, suspensão ou block.)"""'}), '(tt.update_status, status=\n f"""<NAME> aparentemente deixou de seguir @{username}.\n(Esse bot não consegue verificar se essa atualização foi gerada por um unfollow, suspensão ou block.)"""\n )\n', (6304, 6500), False, 'from utils import retry\n')]
from runner import runner if __name__ == '__main__': r = runner() p = 'public class main{public static void main (String[] args){' \ 'public String StudentAnswer(String myInput){' \ 'return "myOutput"; ' \ '}System.out.println("hello world!");}}' print (r.sendCode(p, ''))
[ "runner.runner" ]
[((62, 70), 'runner.runner', 'runner', ([], {}), '()\n', (68, 70), False, 'from runner import runner\n')]
# Copyright (c) Microsoft Corporation. All rights reserved. # Licensed under the MIT License. import pytest import numpy as np import sklearn.metrics as skm import fairlearn.metrics as metrics # ====================================================== a = "a" b = "b" c = "c" Y_true = [0, 0, 0, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1] Y_pred = [1, 0, 1, 0, 1, 0, 0, 1, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1] Y_true_ternary = [a, b, c, c, c, b, b, b, c, c, a, a, a, a, a, b, c, c] Y_pred_ternary = [b, c, c, c, b, b, b, b, b, c, a, a, c, a, a, b, c, c] groups = [3, 4, 1, 0, 0, 0, 3, 2, 0, 1, 2, 3, 4, 0, 1, 2, 3, 4] weight = [1, 2, 3, 1, 2, 3, 4, 2, 3, 3, 2, 1, 2, 3, 1, 2, 3, 4] group2 = [0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1] # ======================================================= # Define as a dictionary so that the actual name can be seen # when pytest builds the tests supported_metrics_weighted = [(skm.accuracy_score, metrics.group_accuracy_score), (skm.confusion_matrix, metrics.group_confusion_matrix), (skm.zero_one_loss, metrics.group_zero_one_loss)] # The following only work with binary data when called with their default arguments supported_metrics_weighted_binary = [(skm.precision_score, metrics.group_precision_score), (skm.recall_score, metrics.group_recall_score), (skm.roc_auc_score, metrics.group_roc_auc_score), (skm.mean_squared_error, metrics.group_mean_squared_error), (skm.r2_score, metrics.group_r2_score)] supported_metrics_weighted_binary = supported_metrics_weighted_binary + supported_metrics_weighted metrics_no_sample_weights = [(skm.max_error, metrics.group_max_error), (skm.mean_absolute_error, metrics.group_mean_absolute_error), (skm.mean_squared_log_error, metrics.group_mean_squared_log_error), (skm.median_absolute_error, metrics.group_median_absolute_error)] supported_metrics_unweighted = metrics_no_sample_weights + supported_metrics_weighted_binary # ======================================================= @pytest.mark.parametrize("func_tuple", supported_metrics_unweighted) def test_metric_unweighted(func_tuple): metric_func = func_tuple[0] group_metric_func = func_tuple[1] result = group_metric_func(Y_true, Y_pred, groups) # We don't really care about the numbers (sklearn is responsible) # We just want to make sure we got a result assert len(result.by_group) == 5 expected_overall = metric_func(Y_true, Y_pred) if isinstance(expected_overall, np.ndarray): assert np.array_equal(expected_overall, result.overall) else: assert expected_overall == result.overall @pytest.mark.parametrize("func_tuple", supported_metrics_weighted_binary) def test_metric_weighted(func_tuple): metric_func = func_tuple[0] group_metric_func = func_tuple[1] result = group_metric_func(Y_true, Y_pred, groups, sample_weight=weight) assert len(result.by_group) == 5 expected_overall = metric_func(Y_true, Y_pred, sample_weight=weight) if isinstance(expected_overall, np.ndarray): assert np.array_equal(expected_overall, result.overall) else: assert expected_overall == result.overall @pytest.mark.parametrize("func_tuple", supported_metrics_weighted) def test_metric_weighted_ternary(func_tuple): metric_func = func_tuple[0] group_metric_func = func_tuple[1] result = group_metric_func(Y_true_ternary, Y_pred_ternary, groups, sample_weight=weight) assert len(result.by_group) == 5 expected_overall = metric_func(Y_true_ternary, Y_pred_ternary, sample_weight=weight) if isinstance(expected_overall, np.ndarray): assert np.array_equal(expected_overall, result.overall) else: assert expected_overall == result.overall # ====================================================================================== def test_group_accuracy_score_unnormalized(): result = metrics.group_accuracy_score(Y_true, Y_pred, groups, normalize=False) expected_overall = skm.accuracy_score(Y_true, Y_pred, False) assert result.overall == expected_overall # ====================================================================================== def test_group_confusion_matrix_labels(): labels = [0, 4] result = metrics.group_confusion_matrix(Y_true, Y_pred, groups, labels=labels) expected_overall = skm.confusion_matrix(Y_true, Y_pred, labels=labels) assert np.array_equal(result.overall, expected_overall) # ====================================================================================== def test_group_precision_score_ternary(): result = metrics.group_precision_score(Y_true_ternary, Y_pred_ternary, group2, average=None) expected_overall = skm.precision_score(Y_true_ternary, Y_pred_ternary, average=None) assert np.array_equal(result.overall, expected_overall) def test_group_precision_score_pos_label(): result = metrics.group_precision_score(Y_true, Y_pred, groups, pos_label=0) expected_overall = skm.precision_score(Y_true, Y_pred, pos_label=0) assert np.array_equal(result.overall, expected_overall) # ====================================================================================== def test_group_recall_score_ternary(): result = metrics.group_recall_score(Y_true_ternary, Y_pred_ternary, group2, average=None) expected_overall = skm.recall_score(Y_true_ternary, Y_pred_ternary, average=None) assert np.array_equal(result.overall, expected_overall) def test_group_recall_score_pos_label(): result = metrics.group_recall_score(Y_true, Y_pred, groups, pos_label=0) expected_overall = skm.recall_score(Y_true, Y_pred, pos_label=0) assert np.array_equal(result.overall, expected_overall) # ====================================================================================== def test_group_roc_auc_score_average(): result = metrics.group_roc_auc_score(Y_true, Y_pred, groups, average='samples') expected_overall = skm.roc_auc_score(Y_true, Y_pred, average='samples') assert expected_overall == result.overall def test_group_roc_auc_score_max_fpr(): result = metrics.group_roc_auc_score(Y_true, Y_pred, groups, max_fpr=0.5) expected_overall = skm.roc_auc_score(Y_true, Y_pred, max_fpr=0.5) assert expected_overall == result.overall # ====================================================================================== def test_group_zero_one_loss_unnormalized(): result = metrics.group_zero_one_loss(Y_true, Y_pred, groups, normalize=False) expected_overall = skm.zero_one_loss(Y_true, Y_pred, False) assert result.overall == expected_overall # ============================================================================================= def test_group_mean_squared_error_multioutput_single_ndarray(): y_t = np.random.rand(len(groups), 2) y_p = np.random.rand(len(groups), 2) result = metrics.group_mean_squared_error(y_t, y_p, groups, multioutput='raw_values') expected_overall = skm.mean_squared_error(y_t, y_p, multioutput='raw_values') assert np.array_equal(result.overall, expected_overall) # ============================================================================================= def test_group_r2_score_multioutput(): y_t = np.random.rand(len(groups), 2) y_p = np.random.rand(len(groups), 2) result = metrics.group_r2_score(y_t, y_p, groups, multioutput='raw_values') expected_overall = skm.r2_score(y_t, y_p, multioutput='raw_values') assert np.array_equal(result.overall, expected_overall) for target_group in np.unique(groups): mask = np.asarray(groups) == target_group expected = skm.r2_score(y_t[mask], y_p[mask], multioutput='raw_values') assert np.array_equal(result.by_group[target_group], expected) # ============================================================================================= def test_group_mean_squared_error_multioutput_list_ndarray(): y_t = [np.random.rand(2) for x in groups] y_p = [np.random.rand(2) for x in groups] result = metrics.group_mean_squared_error(y_t, y_p, groups, multioutput='raw_values') expected_overall = skm.mean_squared_error(y_t, y_p, multioutput='raw_values') assert np.array_equal(result.overall, expected_overall) for target_group in np.unique(groups): y_true = [] y_pred = [] for i in range(len(groups)): if groups[i] == target_group: y_true.append(y_t[i]) y_pred.append(y_p[i]) expected = skm.mean_squared_error(y_true, y_pred, multioutput='raw_values') assert np.array_equal(result.by_group[target_group], expected)
[ "numpy.random.rand", "sklearn.metrics.precision_score", "sklearn.metrics.recall_score", "sklearn.metrics.roc_auc_score", "sklearn.metrics.r2_score", "sklearn.metrics.zero_one_loss", "fairlearn.metrics.group_accuracy_score", "numpy.asarray", "fairlearn.metrics.group_roc_auc_score", "fairlearn.metrics.group_precision_score", "fairlearn.metrics.group_mean_squared_error", "sklearn.metrics.confusion_matrix", "fairlearn.metrics.group_confusion_matrix", "fairlearn.metrics.group_zero_one_loss", "sklearn.metrics.mean_squared_error", "fairlearn.metrics.group_r2_score", "sklearn.metrics.accuracy_score", "numpy.unique", "pytest.mark.parametrize", "numpy.array_equal", "fairlearn.metrics.group_recall_score" ]
[((2279, 2346), 'pytest.mark.parametrize', 'pytest.mark.parametrize', (['"""func_tuple"""', 'supported_metrics_unweighted'], {}), "('func_tuple', supported_metrics_unweighted)\n", (2302, 2346), False, 'import pytest\n'), ((2896, 2968), 'pytest.mark.parametrize', 'pytest.mark.parametrize', (['"""func_tuple"""', 'supported_metrics_weighted_binary'], {}), "('func_tuple', supported_metrics_weighted_binary)\n", (2919, 2968), False, 'import pytest\n'), ((3442, 3507), 'pytest.mark.parametrize', 'pytest.mark.parametrize', (['"""func_tuple"""', 'supported_metrics_weighted'], {}), "('func_tuple', supported_metrics_weighted)\n", (3465, 3507), False, 'import pytest\n'), ((4169, 4238), 'fairlearn.metrics.group_accuracy_score', 'metrics.group_accuracy_score', (['Y_true', 'Y_pred', 'groups'], {'normalize': '(False)'}), '(Y_true, Y_pred, groups, normalize=False)\n', (4197, 4238), True, 'import fairlearn.metrics as metrics\n'), ((4263, 4304), 'sklearn.metrics.accuracy_score', 'skm.accuracy_score', (['Y_true', 'Y_pred', '(False)'], {}), '(Y_true, Y_pred, False)\n', (4281, 4304), True, 'import sklearn.metrics as skm\n'), ((4520, 4589), 'fairlearn.metrics.group_confusion_matrix', 'metrics.group_confusion_matrix', (['Y_true', 'Y_pred', 'groups'], {'labels': 'labels'}), '(Y_true, Y_pred, groups, labels=labels)\n', (4550, 4589), True, 'import fairlearn.metrics as metrics\n'), ((4613, 4664), 'sklearn.metrics.confusion_matrix', 'skm.confusion_matrix', (['Y_true', 'Y_pred'], {'labels': 'labels'}), '(Y_true, Y_pred, labels=labels)\n', (4633, 4664), True, 'import sklearn.metrics as skm\n'), ((4677, 4725), 'numpy.array_equal', 'np.array_equal', (['result.overall', 'expected_overall'], {}), '(result.overall, expected_overall)\n', (4691, 4725), True, 'import numpy as np\n'), ((4873, 4960), 'fairlearn.metrics.group_precision_score', 'metrics.group_precision_score', (['Y_true_ternary', 'Y_pred_ternary', 'group2'], {'average': 'None'}), '(Y_true_ternary, Y_pred_ternary, group2,\n average=None)\n', (4902, 4960), True, 'import fairlearn.metrics as metrics\n'), ((4980, 5045), 'sklearn.metrics.precision_score', 'skm.precision_score', (['Y_true_ternary', 'Y_pred_ternary'], {'average': 'None'}), '(Y_true_ternary, Y_pred_ternary, average=None)\n', (4999, 5045), True, 'import sklearn.metrics as skm\n'), ((5058, 5106), 'numpy.array_equal', 'np.array_equal', (['result.overall', 'expected_overall'], {}), '(result.overall, expected_overall)\n', (5072, 5106), True, 'import numpy as np\n'), ((5166, 5232), 'fairlearn.metrics.group_precision_score', 'metrics.group_precision_score', (['Y_true', 'Y_pred', 'groups'], {'pos_label': '(0)'}), '(Y_true, Y_pred, groups, pos_label=0)\n', (5195, 5232), True, 'import fairlearn.metrics as metrics\n'), ((5256, 5304), 'sklearn.metrics.precision_score', 'skm.precision_score', (['Y_true', 'Y_pred'], {'pos_label': '(0)'}), '(Y_true, Y_pred, pos_label=0)\n', (5275, 5304), True, 'import sklearn.metrics as skm\n'), ((5317, 5365), 'numpy.array_equal', 'np.array_equal', (['result.overall', 'expected_overall'], {}), '(result.overall, expected_overall)\n', (5331, 5365), True, 'import numpy as np\n'), ((5510, 5595), 'fairlearn.metrics.group_recall_score', 'metrics.group_recall_score', (['Y_true_ternary', 'Y_pred_ternary', 'group2'], {'average': 'None'}), '(Y_true_ternary, Y_pred_ternary, group2, average=None\n )\n', (5536, 5595), True, 'import fairlearn.metrics as metrics\n'), ((5614, 5676), 'sklearn.metrics.recall_score', 'skm.recall_score', (['Y_true_ternary', 'Y_pred_ternary'], {'average': 'None'}), '(Y_true_ternary, Y_pred_ternary, average=None)\n', (5630, 5676), True, 'import sklearn.metrics as skm\n'), ((5689, 5737), 'numpy.array_equal', 'np.array_equal', (['result.overall', 'expected_overall'], {}), '(result.overall, expected_overall)\n', (5703, 5737), True, 'import numpy as np\n'), ((5794, 5857), 'fairlearn.metrics.group_recall_score', 'metrics.group_recall_score', (['Y_true', 'Y_pred', 'groups'], {'pos_label': '(0)'}), '(Y_true, Y_pred, groups, pos_label=0)\n', (5820, 5857), True, 'import fairlearn.metrics as metrics\n'), ((5881, 5926), 'sklearn.metrics.recall_score', 'skm.recall_score', (['Y_true', 'Y_pred'], {'pos_label': '(0)'}), '(Y_true, Y_pred, pos_label=0)\n', (5897, 5926), True, 'import sklearn.metrics as skm\n'), ((5939, 5987), 'numpy.array_equal', 'np.array_equal', (['result.overall', 'expected_overall'], {}), '(result.overall, expected_overall)\n', (5953, 5987), True, 'import numpy as np\n'), ((6133, 6203), 'fairlearn.metrics.group_roc_auc_score', 'metrics.group_roc_auc_score', (['Y_true', 'Y_pred', 'groups'], {'average': '"""samples"""'}), "(Y_true, Y_pred, groups, average='samples')\n", (6160, 6203), True, 'import fairlearn.metrics as metrics\n'), ((6227, 6279), 'sklearn.metrics.roc_auc_score', 'skm.roc_auc_score', (['Y_true', 'Y_pred'], {'average': '"""samples"""'}), "(Y_true, Y_pred, average='samples')\n", (6244, 6279), True, 'import sklearn.metrics as skm\n'), ((6382, 6446), 'fairlearn.metrics.group_roc_auc_score', 'metrics.group_roc_auc_score', (['Y_true', 'Y_pred', 'groups'], {'max_fpr': '(0.5)'}), '(Y_true, Y_pred, groups, max_fpr=0.5)\n', (6409, 6446), True, 'import fairlearn.metrics as metrics\n'), ((6470, 6516), 'sklearn.metrics.roc_auc_score', 'skm.roc_auc_score', (['Y_true', 'Y_pred'], {'max_fpr': '(0.5)'}), '(Y_true, Y_pred, max_fpr=0.5)\n', (6487, 6516), True, 'import sklearn.metrics as skm\n'), ((6714, 6782), 'fairlearn.metrics.group_zero_one_loss', 'metrics.group_zero_one_loss', (['Y_true', 'Y_pred', 'groups'], {'normalize': '(False)'}), '(Y_true, Y_pred, groups, normalize=False)\n', (6741, 6782), True, 'import fairlearn.metrics as metrics\n'), ((6807, 6847), 'sklearn.metrics.zero_one_loss', 'skm.zero_one_loss', (['Y_true', 'Y_pred', '(False)'], {}), '(Y_true, Y_pred, False)\n', (6824, 6847), True, 'import sklearn.metrics as skm\n'), ((7153, 7229), 'fairlearn.metrics.group_mean_squared_error', 'metrics.group_mean_squared_error', (['y_t', 'y_p', 'groups'], {'multioutput': '"""raw_values"""'}), "(y_t, y_p, groups, multioutput='raw_values')\n", (7185, 7229), True, 'import fairlearn.metrics as metrics\n'), ((7254, 7312), 'sklearn.metrics.mean_squared_error', 'skm.mean_squared_error', (['y_t', 'y_p'], {'multioutput': '"""raw_values"""'}), "(y_t, y_p, multioutput='raw_values')\n", (7276, 7312), True, 'import sklearn.metrics as skm\n'), ((7325, 7373), 'numpy.array_equal', 'np.array_equal', (['result.overall', 'expected_overall'], {}), '(result.overall, expected_overall)\n', (7339, 7373), True, 'import numpy as np\n'), ((7607, 7673), 'fairlearn.metrics.group_r2_score', 'metrics.group_r2_score', (['y_t', 'y_p', 'groups'], {'multioutput': '"""raw_values"""'}), "(y_t, y_p, groups, multioutput='raw_values')\n", (7629, 7673), True, 'import fairlearn.metrics as metrics\n'), ((7698, 7746), 'sklearn.metrics.r2_score', 'skm.r2_score', (['y_t', 'y_p'], {'multioutput': '"""raw_values"""'}), "(y_t, y_p, multioutput='raw_values')\n", (7710, 7746), True, 'import sklearn.metrics as skm\n'), ((7759, 7807), 'numpy.array_equal', 'np.array_equal', (['result.overall', 'expected_overall'], {}), '(result.overall, expected_overall)\n', (7773, 7807), True, 'import numpy as np\n'), ((7832, 7849), 'numpy.unique', 'np.unique', (['groups'], {}), '(groups)\n', (7841, 7849), True, 'import numpy as np\n'), ((8318, 8394), 'fairlearn.metrics.group_mean_squared_error', 'metrics.group_mean_squared_error', (['y_t', 'y_p', 'groups'], {'multioutput': '"""raw_values"""'}), "(y_t, y_p, groups, multioutput='raw_values')\n", (8350, 8394), True, 'import fairlearn.metrics as metrics\n'), ((8419, 8477), 'sklearn.metrics.mean_squared_error', 'skm.mean_squared_error', (['y_t', 'y_p'], {'multioutput': '"""raw_values"""'}), "(y_t, y_p, multioutput='raw_values')\n", (8441, 8477), True, 'import sklearn.metrics as skm\n'), ((8490, 8538), 'numpy.array_equal', 'np.array_equal', (['result.overall', 'expected_overall'], {}), '(result.overall, expected_overall)\n', (8504, 8538), True, 'import numpy as np\n'), ((8564, 8581), 'numpy.unique', 'np.unique', (['groups'], {}), '(groups)\n', (8573, 8581), True, 'import numpy as np\n'), ((2784, 2832), 'numpy.array_equal', 'np.array_equal', (['expected_overall', 'result.overall'], {}), '(expected_overall, result.overall)\n', (2798, 2832), True, 'import numpy as np\n'), ((3330, 3378), 'numpy.array_equal', 'np.array_equal', (['expected_overall', 'result.overall'], {}), '(expected_overall, result.overall)\n', (3344, 3378), True, 'import numpy as np\n'), ((3909, 3957), 'numpy.array_equal', 'np.array_equal', (['expected_overall', 'result.overall'], {}), '(expected_overall, result.overall)\n', (3923, 3957), True, 'import numpy as np\n'), ((7920, 7980), 'sklearn.metrics.r2_score', 'skm.r2_score', (['y_t[mask]', 'y_p[mask]'], {'multioutput': '"""raw_values"""'}), "(y_t[mask], y_p[mask], multioutput='raw_values')\n", (7932, 7980), True, 'import sklearn.metrics as skm\n'), ((7996, 8051), 'numpy.array_equal', 'np.array_equal', (['result.by_group[target_group]', 'expected'], {}), '(result.by_group[target_group], expected)\n', (8010, 8051), True, 'import numpy as np\n'), ((8224, 8241), 'numpy.random.rand', 'np.random.rand', (['(2)'], {}), '(2)\n', (8238, 8241), True, 'import numpy as np\n'), ((8270, 8287), 'numpy.random.rand', 'np.random.rand', (['(2)'], {}), '(2)\n', (8284, 8287), True, 'import numpy as np\n'), ((8797, 8861), 'sklearn.metrics.mean_squared_error', 'skm.mean_squared_error', (['y_true', 'y_pred'], {'multioutput': '"""raw_values"""'}), "(y_true, y_pred, multioutput='raw_values')\n", (8819, 8861), True, 'import sklearn.metrics as skm\n'), ((8877, 8932), 'numpy.array_equal', 'np.array_equal', (['result.by_group[target_group]', 'expected'], {}), '(result.by_group[target_group], expected)\n', (8891, 8932), True, 'import numpy as np\n'), ((7866, 7884), 'numpy.asarray', 'np.asarray', (['groups'], {}), '(groups)\n', (7876, 7884), True, 'import numpy as np\n')]
""" Adapted from OpenAI Baselines. """ import numpy as np import tensorflow as tf # pylint: ignore-module import random import copy import os import functools import collections import multiprocessing def switch(condition, then_expression, else_expression): """Switches between two operations depending on a scalar value (int or bool). Note that both `then_expression` and `else_expression` should be symbolic tensors of the *same shape*. # Arguments condition: scalar tensor. then_expression: TensorFlow operation. else_expression: TensorFlow operation. """ x_shape = copy.copy(then_expression.get_shape()) x = tf.cond(tf.cast(condition, 'bool'), lambda: then_expression, lambda: else_expression) x.set_shape(x_shape) return x # ================================================================ # Extras # ================================================================ def lrelu(x, leak=0.2): f1 = 0.5 * (1 + leak) f2 = 0.5 * (1 - leak) return f1 * x + f2 * abs(x) # ================================================================ # Mathematical utils # ================================================================ def huber_loss(x, delta=1.0): """Reference: https://en.wikipedia.org/wiki/Huber_loss""" return tf.where( tf.abs(x) < delta, tf.square(x) * 0.5, delta * (tf.abs(x) - 0.5 * delta) ) # ================================================================ # Global session # ================================================================ def make_session(num_cpu=None, make_default=False): """Returns a session that will use <num_cpu> CPU's only""" if num_cpu is None: num_cpu = int(os.getenv('RCALL_NUM_CPU', multiprocessing.cpu_count())) tf_config = tf.ConfigProto( inter_op_parallelism_threads=num_cpu, intra_op_parallelism_threads=num_cpu) tf_config.gpu_options.allocator_type = 'BFC' if make_default: return tf.InteractiveSession(config=tf_config) else: return tf.Session(config=tf_config) def single_threaded_session(): """Returns a session which will only use a single CPU""" return make_session(num_cpu=1) def in_session(f): @functools.wraps(f) def newfunc(*args, **kwargs): with tf.Session(): f(*args, **kwargs) return newfunc ALREADY_INITIALIZED = set() def initialize(): """Initialize all the uninitialized variables in the global scope.""" new_variables = set(tf.global_variables()) - ALREADY_INITIALIZED tf.get_default_session().run(tf.variables_initializer(new_variables)) ALREADY_INITIALIZED.update(new_variables) # ================================================================ # Saving variables and setting up experiment directories # ================================================================ def load_state(fname): saver = tf.train.Saver() saver.restore(tf.get_default_session(), fname) def save_state(fname): os.makedirs(os.path.dirname(fname), exist_ok=True) saver = tf.train.Saver() saver.save(tf.get_default_session(), fname) def load(fname): import cloudpickle with open(fname, 'rb') as f: return cloudpickle.load(f) def save(fname, obj): import cloudpickle os.makedirs(os.path.dirname(fname), exist_ok=True) with open(fname, 'wb') as fh: cloudpickle.dump(obj, fh) class Experiment(object): def __init__(self, logdir): self.logdir = logdir os.makedirs(os.path.join(logdir, 'checkpoints'), exist_ok=True) def load(self, timestep=None): if timestep is None: # get latest ckpt import glob fs = glob.glob(os.path.join(self.logdir, 'checkpoints/*')) timesteps = [] for f in fs: try: timesteps.append(int(os.path.basename(f))) except: pass if len(timesteps) == 0: return 0 timestep = max(timesteps) fname = os.path.join(self.logdir, 'checkpoints', str(timestep), 'model') load_state(fname) return timestep def save(self, timestep): fname = os.path.join(self.logdir, 'checkpoints', str(timestep), 'model') save_state(fname) def load_model_fn(self): fname = os.path.join(self.logdir, 'checkpoints/model_fn.pkl') assert os.path.exists(fname), "No model file saved." return load(fname) def save_model_fn(self, model_fn): fname = os.path.join(self.logdir, 'checkpoints/model_fn.pkl') save(fname, model_fn) # ================================================================ # Model components # ================================================================ def batch_to_seq(h, nbatch, nsteps, flat=False): """ Assumes Time major data!! x.shape = [nsteps, nbatch, *obs_shape] h = x.reshape([-1, *x.shape[2:]])) """ if flat: h = tf.reshape(h, [nsteps, nbatch]) else: h = tf.reshape(h, [nsteps, nbatch, -1]) return [tf.squeeze(v, [0]) for v in tf.split(axis=0, num_or_size_splits=nsteps, value=h)] def seq_to_batch(h, flat = False): """ Assumes Time major data!! x.shape = [nsteps, nbatch, *obs_shape] x = output.reshape(nsteps, nbatch, *obs_shape), where output is the output of this function. """ shape = h[0].get_shape().as_list() if not flat: assert(len(shape) > 1) nh = h[0].get_shape()[-1].value return tf.reshape(tf.concat(axis=0, values=h), [-1, nh]) else: return tf.reshape(tf.stack(values=h, axis=0), [-1]) def ortho_init(scale=1.0): def _ortho_init(shape, dtype, partition_info=None): #lasagne ortho init for tf shape = tuple(shape) if len(shape) == 2: flat_shape = shape elif len(shape) == 4: # assumes NHWC flat_shape = (np.prod(shape[:-1]), shape[-1]) else: raise NotImplementedError a = np.random.normal(0.0, 1.0, flat_shape) u, _, v = np.linalg.svd(a, full_matrices=False) q = u if u.shape == flat_shape else v # pick the one with the correct shape q = q.reshape(shape) return (scale * q[:shape[0], :shape[1]]).astype(np.float32) return _ortho_init def normc_initializer(std=1.0): def _initializer(shape, dtype=None, partition_info=None): # pylint: disable=W0613 out = np.random.randn(*shape).astype(np.float32) out *= std / np.sqrt(np.square(out).sum(axis=0, keepdims=True)) return tf.constant(out) return _initializer def lstm(xs, ms, s, scope, nh, init_scale=1.0): nbatch, nin = [v.value for v in xs[0].get_shape()] nsteps = len(xs) with tf.variable_scope(scope): wx = tf.get_variable("wx", [nin, nh*4], initializer=ortho_init(init_scale)) wh = tf.get_variable("wh", [nh, nh*4], initializer=ortho_init(init_scale)) b = tf.get_variable("b", [nh*4], initializer=tf.constant_initializer(0.0)) c, h = tf.split(axis=1, num_or_size_splits=2, value=s) for idx, (x, m) in enumerate(zip(xs, ms)): c = c*(1-m) h = h*(1-m) z = tf.matmul(x, wx) + tf.matmul(h, wh) + b i, f, o, u = tf.split(axis=1, num_or_size_splits=4, value=z) i = tf.nn.sigmoid(i) f = tf.nn.sigmoid(f) o = tf.nn.sigmoid(o) u = tf.tanh(u) c = f*c + i*u h = o*tf.tanh(c) xs[idx] = h s = tf.concat(axis=1, values=[c, h]) return xs, s # ================================================================ # Theano-like Function # ================================================================ def function(inputs, outputs, updates=None, givens=None): """Just like Theano function. Take a bunch of tensorflow placeholders and expressions computed based on those placeholders and produces f(inputs) -> outputs. Function f takes values to be fed to the input's placeholders and produces the values of the expressions in outputs. Input values can be passed in the same order as inputs or can be provided as kwargs based on placeholder name (passed to constructor or accessible via placeholder.op.name). Example: x = tf.placeholder(tf.int32, (), name="x") y = tf.placeholder(tf.int32, (), name="y") z = 3 * x + 2 * y lin = function([x, y], z, givens={y: 0}) with single_threaded_session(): initialize() assert lin(2) == 6 assert lin(x=3) == 9 assert lin(2, 2) == 10 assert lin(x=2, y=3) == 12 Parameters ---------- inputs: [tf.placeholder, tf.constant, or object with make_feed_dict method] list of input arguments outputs: [tf.Variable] or tf.Variable list of outputs or a single output to be returned from function. Returned value will also have the same shape. """ if isinstance(outputs, list): return _Function(inputs, outputs, updates, givens=givens) elif isinstance(outputs, (dict, collections.OrderedDict)): f = _Function(inputs, outputs.values(), updates, givens=givens) return lambda *args, **kwargs: type(outputs)(zip(outputs.keys(), f(*args, **kwargs))) else: f = _Function(inputs, [outputs], updates, givens=givens) return lambda *args, **kwargs: f(*args, **kwargs)[0] class _Function(object): def __init__(self, inputs, outputs, updates, givens): # for inpt in inputs: # if not hasattr(inpt, 'make_feed_dict') and not (type(inpt) is tf.Tensor and len(inpt.op.inputs) == 0): # assert False, "inputs should all be placeholders, constants, or have a make_feed_dict method" self.inputs = inputs updates = updates or [] self.update_group = tf.group(*updates) self.outputs_update = list(outputs) + [self.update_group] self.givens = {} if givens is None else givens def _feed_input(self, feed_dict, inpt, value): if hasattr(inpt, 'make_feed_dict'): feed_dict.update(inpt.make_feed_dict(value)) else: feed_dict[inpt] = value def __call__(self, *args): assert len(args) <= len(self.inputs), "Too many arguments provided" feed_dict = {} # Update the args for inpt, value in zip(self.inputs, args): if value is not None: self._feed_input(feed_dict, inpt, value) # Update feed dict with givens. for inpt in self.givens: feed_dict[inpt] = feed_dict.get(inpt, self.givens[inpt]) results = tf.get_default_session().run(self.outputs_update, feed_dict=feed_dict)[:-1] return results # ================================================================ # Flat vectors # ================================================================ def var_shape(x): out = x.get_shape().as_list() assert all(isinstance(a, int) for a in out), \ "shape function assumes that shape is fully known" return out def numel(x): return intprod(var_shape(x)) def intprod(x): return int(np.prod(x)) def flatgrad(loss, var_list, clip_norm=None): grads = tf.gradients(loss, var_list) if clip_norm is not None: grads, _ = tf.clip_by_global_norm(grads, clip_norm=clip_norm) return tf.concat(axis=0, values=[ tf.reshape(grad if grad is not None else tf.zeros_like(v), [numel(v)]) for (v, grad) in zip(var_list, grads) ]) class SetFromFlat(object): def __init__(self, var_list, dtype=tf.float32): assigns = [] shapes = list(map(var_shape, var_list)) total_size = np.sum([intprod(shape) for shape in shapes]) self.theta = theta = tf.placeholder(dtype, [total_size]) start = 0 assigns = [] for (shape, v) in zip(shapes, var_list): size = intprod(shape) assigns.append(tf.assign(v, tf.reshape(theta[start:start + size], shape))) start += size self.op = tf.group(*assigns) def __call__(self, theta): tf.get_default_session().run(self.op, feed_dict={self.theta: theta}) class GetFlat(object): def __init__(self, var_list): self.op = tf.concat(axis=0, values=[tf.reshape(v, [numel(v)]) for v in var_list]) def __call__(self): return tf.get_default_session().run(self.op) def flattenallbut0(x): return tf.reshape(x, [-1, intprod(x.get_shape().as_list()[1:])]) def reset(): global ALREADY_INITIALIZED ALREADY_INITIALIZED = set() tf.reset_default_graph() """ Random Seeds """ def set_global_seeds(i): try: import tensorflow as tf except ImportError: pass else: tf.set_random_seed(i) np.random.seed(i) random.seed(i)
[ "numpy.prod", "tensorflow.tanh", "tensorflow.split", "tensorflow.get_default_session", "multiprocessing.cpu_count", "tensorflow.gradients", "tensorflow.group", "tensorflow.cast", "tensorflow.variables_initializer", "tensorflow.set_random_seed", "tensorflow.clip_by_global_norm", "cloudpickle.load", "os.path.exists", "tensorflow.Session", "tensorflow.placeholder", "functools.wraps", "tensorflow.concat", "tensorflow.nn.sigmoid", "numpy.random.seed", "tensorflow.matmul", "tensorflow.square", "tensorflow.zeros_like", "tensorflow.ConfigProto", "tensorflow.stack", "numpy.random.normal", "tensorflow.InteractiveSession", "tensorflow.variable_scope", "tensorflow.global_variables", "numpy.square", "os.path.dirname", "cloudpickle.dump", "tensorflow.reshape", "numpy.linalg.svd", "numpy.random.randn", "tensorflow.reset_default_graph", "tensorflow.train.Saver", "os.path.join", "random.seed", "tensorflow.constant", "tensorflow.constant_initializer", "os.path.basename", "tensorflow.squeeze", "tensorflow.abs" ]
[((1837, 1931), 'tensorflow.ConfigProto', 'tf.ConfigProto', ([], {'inter_op_parallelism_threads': 'num_cpu', 'intra_op_parallelism_threads': 'num_cpu'}), '(inter_op_parallelism_threads=num_cpu,\n intra_op_parallelism_threads=num_cpu)\n', (1851, 1931), True, 'import tensorflow as tf\n'), ((2277, 2295), 'functools.wraps', 'functools.wraps', (['f'], {}), '(f)\n', (2292, 2295), False, 'import functools\n'), ((2946, 2962), 'tensorflow.train.Saver', 'tf.train.Saver', ([], {}), '()\n', (2960, 2962), True, 'import tensorflow as tf\n'), ((3105, 3121), 'tensorflow.train.Saver', 'tf.train.Saver', ([], {}), '()\n', (3119, 3121), True, 'import tensorflow as tf\n'), ((7065, 7112), 'tensorflow.split', 'tf.split', ([], {'axis': '(1)', 'num_or_size_splits': '(2)', 'value': 's'}), '(axis=1, num_or_size_splits=2, value=s)\n', (7073, 7112), True, 'import tensorflow as tf\n'), ((7506, 7538), 'tensorflow.concat', 'tf.concat', ([], {'axis': '(1)', 'values': '[c, h]'}), '(axis=1, values=[c, h])\n', (7515, 7538), True, 'import tensorflow as tf\n'), ((11241, 11269), 'tensorflow.gradients', 'tf.gradients', (['loss', 'var_list'], {}), '(loss, var_list)\n', (11253, 11269), True, 'import tensorflow as tf\n'), ((12602, 12626), 'tensorflow.reset_default_graph', 'tf.reset_default_graph', ([], {}), '()\n', (12624, 12626), True, 'import tensorflow as tf\n'), ((12796, 12813), 'numpy.random.seed', 'np.random.seed', (['i'], {}), '(i)\n', (12810, 12813), True, 'import numpy as np\n'), ((12818, 12832), 'random.seed', 'random.seed', (['i'], {}), '(i)\n', (12829, 12832), False, 'import random\n'), ((676, 702), 'tensorflow.cast', 'tf.cast', (['condition', '"""bool"""'], {}), "(condition, 'bool')\n", (683, 702), True, 'import tensorflow as tf\n'), ((2030, 2069), 'tensorflow.InteractiveSession', 'tf.InteractiveSession', ([], {'config': 'tf_config'}), '(config=tf_config)\n', (2051, 2069), True, 'import tensorflow as tf\n'), ((2095, 2123), 'tensorflow.Session', 'tf.Session', ([], {'config': 'tf_config'}), '(config=tf_config)\n', (2105, 2123), True, 'import tensorflow as tf\n'), ((2631, 2670), 'tensorflow.variables_initializer', 'tf.variables_initializer', (['new_variables'], {}), '(new_variables)\n', (2655, 2670), True, 'import tensorflow as tf\n'), ((2981, 3005), 'tensorflow.get_default_session', 'tf.get_default_session', ([], {}), '()\n', (3003, 3005), True, 'import tensorflow as tf\n'), ((3054, 3076), 'os.path.dirname', 'os.path.dirname', (['fname'], {}), '(fname)\n', (3069, 3076), False, 'import os\n'), ((3137, 3161), 'tensorflow.get_default_session', 'tf.get_default_session', ([], {}), '()\n', (3159, 3161), True, 'import tensorflow as tf\n'), ((3259, 3278), 'cloudpickle.load', 'cloudpickle.load', (['f'], {}), '(f)\n', (3275, 3278), False, 'import cloudpickle\n'), ((3341, 3363), 'os.path.dirname', 'os.path.dirname', (['fname'], {}), '(fname)\n', (3356, 3363), False, 'import os\n'), ((3422, 3447), 'cloudpickle.dump', 'cloudpickle.dump', (['obj', 'fh'], {}), '(obj, fh)\n', (3438, 3447), False, 'import cloudpickle\n'), ((4357, 4410), 'os.path.join', 'os.path.join', (['self.logdir', '"""checkpoints/model_fn.pkl"""'], {}), "(self.logdir, 'checkpoints/model_fn.pkl')\n", (4369, 4410), False, 'import os\n'), ((4426, 4447), 'os.path.exists', 'os.path.exists', (['fname'], {}), '(fname)\n', (4440, 4447), False, 'import os\n'), ((4555, 4608), 'os.path.join', 'os.path.join', (['self.logdir', '"""checkpoints/model_fn.pkl"""'], {}), "(self.logdir, 'checkpoints/model_fn.pkl')\n", (4567, 4608), False, 'import os\n'), ((4997, 5028), 'tensorflow.reshape', 'tf.reshape', (['h', '[nsteps, nbatch]'], {}), '(h, [nsteps, nbatch])\n', (5007, 5028), True, 'import tensorflow as tf\n'), ((5051, 5086), 'tensorflow.reshape', 'tf.reshape', (['h', '[nsteps, nbatch, -1]'], {}), '(h, [nsteps, nbatch, -1])\n', (5061, 5086), True, 'import tensorflow as tf\n'), ((5099, 5117), 'tensorflow.squeeze', 'tf.squeeze', (['v', '[0]'], {}), '(v, [0])\n', (5109, 5117), True, 'import tensorflow as tf\n'), ((6039, 6077), 'numpy.random.normal', 'np.random.normal', (['(0.0)', '(1.0)', 'flat_shape'], {}), '(0.0, 1.0, flat_shape)\n', (6055, 6077), True, 'import numpy as np\n'), ((6096, 6133), 'numpy.linalg.svd', 'np.linalg.svd', (['a'], {'full_matrices': '(False)'}), '(a, full_matrices=False)\n', (6109, 6133), True, 'import numpy as np\n'), ((6602, 6618), 'tensorflow.constant', 'tf.constant', (['out'], {}), '(out)\n', (6613, 6618), True, 'import tensorflow as tf\n'), ((6777, 6801), 'tensorflow.variable_scope', 'tf.variable_scope', (['scope'], {}), '(scope)\n', (6794, 6801), True, 'import tensorflow as tf\n'), ((7273, 7320), 'tensorflow.split', 'tf.split', ([], {'axis': '(1)', 'num_or_size_splits': '(4)', 'value': 'z'}), '(axis=1, num_or_size_splits=4, value=z)\n', (7281, 7320), True, 'import tensorflow as tf\n'), ((7333, 7349), 'tensorflow.nn.sigmoid', 'tf.nn.sigmoid', (['i'], {}), '(i)\n', (7346, 7349), True, 'import tensorflow as tf\n'), ((7362, 7378), 'tensorflow.nn.sigmoid', 'tf.nn.sigmoid', (['f'], {}), '(f)\n', (7375, 7378), True, 'import tensorflow as tf\n'), ((7391, 7407), 'tensorflow.nn.sigmoid', 'tf.nn.sigmoid', (['o'], {}), '(o)\n', (7404, 7407), True, 'import tensorflow as tf\n'), ((7420, 7430), 'tensorflow.tanh', 'tf.tanh', (['u'], {}), '(u)\n', (7427, 7430), True, 'import tensorflow as tf\n'), ((9861, 9879), 'tensorflow.group', 'tf.group', (['*updates'], {}), '(*updates)\n', (9869, 9879), True, 'import tensorflow as tf\n'), ((11170, 11180), 'numpy.prod', 'np.prod', (['x'], {}), '(x)\n', (11177, 11180), True, 'import numpy as np\n'), ((11319, 11369), 'tensorflow.clip_by_global_norm', 'tf.clip_by_global_norm', (['grads'], {'clip_norm': 'clip_norm'}), '(grads, clip_norm=clip_norm)\n', (11341, 11369), True, 'import tensorflow as tf\n'), ((11785, 11820), 'tensorflow.placeholder', 'tf.placeholder', (['dtype', '[total_size]'], {}), '(dtype, [total_size])\n', (11799, 11820), True, 'import tensorflow as tf\n'), ((12074, 12092), 'tensorflow.group', 'tf.group', (['*assigns'], {}), '(*assigns)\n', (12082, 12092), True, 'import tensorflow as tf\n'), ((12770, 12791), 'tensorflow.set_random_seed', 'tf.set_random_seed', (['i'], {}), '(i)\n', (12788, 12791), True, 'import tensorflow as tf\n'), ((1355, 1364), 'tensorflow.abs', 'tf.abs', (['x'], {}), '(x)\n', (1361, 1364), True, 'import tensorflow as tf\n'), ((1382, 1394), 'tensorflow.square', 'tf.square', (['x'], {}), '(x)\n', (1391, 1394), True, 'import tensorflow as tf\n'), ((2343, 2355), 'tensorflow.Session', 'tf.Session', ([], {}), '()\n', (2353, 2355), True, 'import tensorflow as tf\n'), ((2553, 2574), 'tensorflow.global_variables', 'tf.global_variables', ([], {}), '()\n', (2572, 2574), True, 'import tensorflow as tf\n'), ((2602, 2626), 'tensorflow.get_default_session', 'tf.get_default_session', ([], {}), '()\n', (2624, 2626), True, 'import tensorflow as tf\n'), ((3556, 3591), 'os.path.join', 'os.path.join', (['logdir', '"""checkpoints"""'], {}), "(logdir, 'checkpoints')\n", (3568, 3591), False, 'import os\n'), ((5127, 5179), 'tensorflow.split', 'tf.split', ([], {'axis': '(0)', 'num_or_size_splits': 'nsteps', 'value': 'h'}), '(axis=0, num_or_size_splits=nsteps, value=h)\n', (5135, 5179), True, 'import tensorflow as tf\n'), ((5556, 5583), 'tensorflow.concat', 'tf.concat', ([], {'axis': '(0)', 'values': 'h'}), '(axis=0, values=h)\n', (5565, 5583), True, 'import tensorflow as tf\n'), ((5631, 5657), 'tensorflow.stack', 'tf.stack', ([], {'values': 'h', 'axis': '(0)'}), '(values=h, axis=0)\n', (5639, 5657), True, 'import tensorflow as tf\n'), ((7467, 7477), 'tensorflow.tanh', 'tf.tanh', (['c'], {}), '(c)\n', (7474, 7477), True, 'import tensorflow as tf\n'), ((1419, 1428), 'tensorflow.abs', 'tf.abs', (['x'], {}), '(x)\n', (1425, 1428), True, 'import tensorflow as tf\n'), ((1791, 1818), 'multiprocessing.cpu_count', 'multiprocessing.cpu_count', ([], {}), '()\n', (1816, 1818), False, 'import multiprocessing\n'), ((3754, 3796), 'os.path.join', 'os.path.join', (['self.logdir', '"""checkpoints/*"""'], {}), "(self.logdir, 'checkpoints/*')\n", (3766, 3796), False, 'import os\n'), ((6472, 6495), 'numpy.random.randn', 'np.random.randn', (['*shape'], {}), '(*shape)\n', (6487, 6495), True, 'import numpy as np\n'), ((7023, 7051), 'tensorflow.constant_initializer', 'tf.constant_initializer', (['(0.0)'], {}), '(0.0)\n', (7046, 7051), True, 'import tensorflow as tf\n'), ((7212, 7228), 'tensorflow.matmul', 'tf.matmul', (['x', 'wx'], {}), '(x, wx)\n', (7221, 7228), True, 'import tensorflow as tf\n'), ((7231, 7247), 'tensorflow.matmul', 'tf.matmul', (['h', 'wh'], {}), '(h, wh)\n', (7240, 7247), True, 'import tensorflow as tf\n'), ((12133, 12157), 'tensorflow.get_default_session', 'tf.get_default_session', ([], {}), '()\n', (12155, 12157), True, 'import tensorflow as tf\n'), ((12390, 12414), 'tensorflow.get_default_session', 'tf.get_default_session', ([], {}), '()\n', (12412, 12414), True, 'import tensorflow as tf\n'), ((5943, 5962), 'numpy.prod', 'np.prod', (['shape[:-1]'], {}), '(shape[:-1])\n', (5950, 5962), True, 'import numpy as np\n'), ((10663, 10687), 'tensorflow.get_default_session', 'tf.get_default_session', ([], {}), '()\n', (10685, 10687), True, 'import tensorflow as tf\n'), ((11983, 12027), 'tensorflow.reshape', 'tf.reshape', (['theta[start:start + size]', 'shape'], {}), '(theta[start:start + size], shape)\n', (11993, 12027), True, 'import tensorflow as tf\n'), ((6544, 6558), 'numpy.square', 'np.square', (['out'], {}), '(out)\n', (6553, 6558), True, 'import numpy as np\n'), ((11457, 11473), 'tensorflow.zeros_like', 'tf.zeros_like', (['v'], {}), '(v)\n', (11470, 11473), True, 'import tensorflow as tf\n'), ((3892, 3911), 'os.path.basename', 'os.path.basename', (['f'], {}), '(f)\n', (3908, 3911), False, 'import os\n')]
from functools import wraps from werkzeug.exceptions import HTTPException from api.exceptions import MessageNotFound def api_error_handler(func): @wraps(func) def handle_errors(*args, **kwargs): try: return func(*args, **kwargs) except MessageNotFound as e: return e.message, 404 except HTTPException: raise except Exception: return "API Internal error", 500 return handle_errors
[ "functools.wraps" ]
[((153, 164), 'functools.wraps', 'wraps', (['func'], {}), '(func)\n', (158, 164), False, 'from functools import wraps\n')]
"""Command to run Nile scripts.""" import logging from importlib.machinery import SourceFileLoader from nile.nre import NileRuntimeEnvironment def run(path, network): """Run nile scripts passing on the NRE object.""" logger = logging.getLogger() logger.disabled = True script = SourceFileLoader("script", path).load_module() nre = NileRuntimeEnvironment(network) script.run(nre)
[ "logging.getLogger", "importlib.machinery.SourceFileLoader", "nile.nre.NileRuntimeEnvironment" ]
[((237, 256), 'logging.getLogger', 'logging.getLogger', ([], {}), '()\n', (254, 256), False, 'import logging\n'), ((354, 385), 'nile.nre.NileRuntimeEnvironment', 'NileRuntimeEnvironment', (['network'], {}), '(network)\n', (376, 385), False, 'from nile.nre import NileRuntimeEnvironment\n'), ((297, 329), 'importlib.machinery.SourceFileLoader', 'SourceFileLoader', (['"""script"""', 'path'], {}), "('script', path)\n", (313, 329), False, 'from importlib.machinery import SourceFileLoader\n')]
#!/usr/bin/env python import setuptools from setuptools import setup from os import path # Read the package requirements with open("requirements.txt", "r") as f: requirements = [line.rstrip("\n") for line in f if line != "\n"] # Read the contents of the README file this_directory = path.abspath(path.dirname(__file__)) with open(path.join(this_directory, 'README.md'), encoding='utf-8') as f: long_description = f.read() setup(name='access-spotify', version="1.1", author="pancham_banerjee", author_email="<EMAIL>", packages=setuptools.find_packages(), scripts=["./bin/access_script.py"], install_requires=requirements, license="MIT", description="A package to get all album and track info for an artist by querying the Spotify API", long_description=long_description, long_description_content_type='text/markdown' )
[ "os.path.dirname", "setuptools.find_packages", "os.path.join" ]
[((303, 325), 'os.path.dirname', 'path.dirname', (['__file__'], {}), '(__file__)\n', (315, 325), False, 'from os import path\n'), ((337, 375), 'os.path.join', 'path.join', (['this_directory', '"""README.md"""'], {}), "(this_directory, 'README.md')\n", (346, 375), False, 'from os import path\n'), ((562, 588), 'setuptools.find_packages', 'setuptools.find_packages', ([], {}), '()\n', (586, 588), False, 'import setuptools\n')]
import os import pandas as pd class LiveProjectPopularityBasedRecs: def __init__(self): self.charts = {} charts_folder = "charts" if os.path.isdir(charts_folder): for file in os.listdir("charts"): name, ext = file.split('.') if ext == "csv" and len(name) > 0: self.charts[name] = pd.read_csv("{}/{}".format(charts_folder, file), index_col=0) else: print("Genre Global and Charts not implemented!") def genre_chart(self, genre): if genre in self.charts: return self.charts[genre] elif "Top" in self.charts: return self.charts["Top"] else: return ""
[ "os.listdir", "os.path.isdir" ]
[((165, 193), 'os.path.isdir', 'os.path.isdir', (['charts_folder'], {}), '(charts_folder)\n', (178, 193), False, 'import os\n'), ((220, 240), 'os.listdir', 'os.listdir', (['"""charts"""'], {}), "('charts')\n", (230, 240), False, 'import os\n')]
#!../env/bin/python """A simple test script for the PCE portion of OnRamp. Usage: ./test_pce.py This script is only intended to be run in a fresh install of the repository. It has side-effects that could corrupt module and user data if run in a production setting. Prior to running this script, ensure that onramp/pce/bin/onramp_pce_install.py has been called and that the server is running. Also Ensure ./test_pce_config.cfg contains the proper settings. """ import nose import sys if __name__ == '__main__': print (__doc__) response = raw_input('(C)ontinue or (A)bort? ') if response != 'C': sys.exit(0) nose.main()
[ "nose.main", "sys.exit" ]
[((635, 646), 'nose.main', 'nose.main', ([], {}), '()\n', (644, 646), False, 'import nose\n'), ((618, 629), 'sys.exit', 'sys.exit', (['(0)'], {}), '(0)\n', (626, 629), False, 'import sys\n')]
from sanic import Blueprint from sanic_transmute import add_route from .views import ( get_all, get_status_by_country_id, get_status_by_country_name, get_deaths, get_active_cases, get_recovered_cases, get_confirmed_cases, list_countries, ) cases = Blueprint("cases", url_prefix="/cases") add_route(cases, get_all) add_route(cases, get_status_by_country_id) add_route(cases, get_status_by_country_name) add_route(cases, get_deaths) add_route(cases, get_active_cases) add_route(cases, get_recovered_cases) add_route(cases, get_confirmed_cases) add_route(cases, list_countries)
[ "sanic.Blueprint", "sanic_transmute.add_route" ]
[((281, 320), 'sanic.Blueprint', 'Blueprint', (['"""cases"""'], {'url_prefix': '"""/cases"""'}), "('cases', url_prefix='/cases')\n", (290, 320), False, 'from sanic import Blueprint\n'), ((321, 346), 'sanic_transmute.add_route', 'add_route', (['cases', 'get_all'], {}), '(cases, get_all)\n', (330, 346), False, 'from sanic_transmute import add_route\n'), ((347, 389), 'sanic_transmute.add_route', 'add_route', (['cases', 'get_status_by_country_id'], {}), '(cases, get_status_by_country_id)\n', (356, 389), False, 'from sanic_transmute import add_route\n'), ((390, 434), 'sanic_transmute.add_route', 'add_route', (['cases', 'get_status_by_country_name'], {}), '(cases, get_status_by_country_name)\n', (399, 434), False, 'from sanic_transmute import add_route\n'), ((435, 463), 'sanic_transmute.add_route', 'add_route', (['cases', 'get_deaths'], {}), '(cases, get_deaths)\n', (444, 463), False, 'from sanic_transmute import add_route\n'), ((464, 498), 'sanic_transmute.add_route', 'add_route', (['cases', 'get_active_cases'], {}), '(cases, get_active_cases)\n', (473, 498), False, 'from sanic_transmute import add_route\n'), ((499, 536), 'sanic_transmute.add_route', 'add_route', (['cases', 'get_recovered_cases'], {}), '(cases, get_recovered_cases)\n', (508, 536), False, 'from sanic_transmute import add_route\n'), ((537, 574), 'sanic_transmute.add_route', 'add_route', (['cases', 'get_confirmed_cases'], {}), '(cases, get_confirmed_cases)\n', (546, 574), False, 'from sanic_transmute import add_route\n'), ((575, 607), 'sanic_transmute.add_route', 'add_route', (['cases', 'list_countries'], {}), '(cases, list_countries)\n', (584, 607), False, 'from sanic_transmute import add_route\n')]
# -*- coding:utf-8 -*- # edit by fuzongfei import base64 import datetime # Create your views here. import json from django.http import Http404, HttpResponse from django.utils import timezone from django_filters.rest_framework import DjangoFilterBackend from rest_framework import filters from rest_framework.exceptions import PermissionDenied from rest_framework.generics import ListAPIView, GenericAPIView, CreateAPIView, UpdateAPIView, DestroyAPIView from rest_framework.views import APIView from rest_framework.viewsets import ViewSet from libs import permissions from libs.Pagination import Pagination from libs.RenderColumns import render_dynamic_columns from libs.response import JsonResponseV1 from sqlorders import models, serializers from sqlorders.filters import SqlOrderListFilter, GetTasksListFilter class GetDBEnvironment(ListAPIView): queryset = models.DbEnvironment.objects.all() serializer_class = serializers.DbEnvironmentSerializer # 获取工单环境 def get(self, request, *args, **kwargs): serializer = self.get_serializer(self.get_queryset(), many=True) return JsonResponseV1(data=serializer.data) class GetDbSchemas(APIView): # 获取指定环境指定用途的schemas列表 def get(self, request): serializer = serializers.DbSchemasSerializer(data=request.query_params) if serializer.is_valid(): return JsonResponseV1(data=serializer.query) return JsonResponseV1(message=serializer.errors, code='0001') class IncepSyntaxCheckView(APIView): def post(self, request, *args, **kwargs): serializer = serializers.IncepSyntaxCheckSerializer(data=request.data) if serializer.is_valid(): s, data = serializer.check() render_columns = [ {'key': 'order_id', 'value': '序号'}, {'key': 'stage', 'value': '阶段'}, {'key': 'stage_status', 'value': '阶段状态'}, {'key': 'error_level', 'value': '错误级别'}, {'key': 'error_message', 'value': '错误信息', 'width': '35%'}, {'key': 'sql', 'value': 'SQL内容', 'width': '25%', 'ellipsis': True}, {'key': 'affected_rows', 'value': '影响/扫描行数'} ] columns = render_dynamic_columns(render_columns) message = '语法检查未发现异常,可以提交' if not s: message = '语法检查发现异常,详情请查看输出,更正后在提交' d = { 'status': 0 if s else 1, 'data': data } data = {'columns': columns, 'data': d} return JsonResponseV1(data=data, message=message) return JsonResponseV1(message=serializer.errors, code='0001', flat=True) class SqlOrdersCommit(GenericAPIView): permission_classes = (permissions.CanCommitOrdersPermission,) serializer_class = serializers.SqlOrdersCommitSerializer def post(self, request, *args, **kwargs): serializer = self.get_serializer(data=request.data) if serializer.is_valid(): serializer.save() return JsonResponseV1(message="提交成功") return JsonResponseV1(message=serializer.errors, code='0001', flat=True) class SqlOrdersList(ListAPIView): permission_classes = (permissions.CanViewOrdersPermission,) queryset = models.DbOrders.objects.all() serializer_class = serializers.SqlOrdersListSerializer pagination_class = Pagination filter_backends = [DjangoFilterBackend, filters.SearchFilter, filters.OrderingFilter] filter_class = SqlOrderListFilter ordering = ['-created_at'] search_fields = ['title', 'database', 'remark', 'applicant', 'progress', 'contents'] def get(self, request, *args, **kwargs): queryset = self.filter_queryset(self.get_queryset()) page = self.paginate_queryset(queryset) serializer = self.get_serializer(page, many=True) render_columns = [ {'key': 'progress', 'value': '进度', 'width': '8%'}, {'key': 'applicant', 'value': '申请人'}, {'key': 'department', 'value': '部门'}, {'key': 'env_name', 'value': '环境'}, {'key': 'escape_title', 'value': '标题', 'width': '18%', 'ellipsis': True}, {'key': 'sql_type', 'value': '类型'}, {'key': 'remark', 'value': '备注'}, {'key': 'version', 'value': '版本'}, {'key': 'host', 'value': '实例/库'}, {'key': 'auditor', 'value': '审核人'}, {'key': 'reviewer', 'value': '复核人'}, ] columns = render_dynamic_columns(render_columns) data = {'columns': columns, 'data': serializer.data} return self.get_paginated_response(data) class SqlOrdersDetail(ListAPIView): """SQL工单详情""" permission_classes = (permissions.CanViewOrdersPermission,) queryset = models.DbOrders.objects.all() serializer_class = serializers.SqlOrderDetailSerializer lookup_field = 'order_id' def get(self, request, *args, **kwargs): queryset = self.get_object() serializer = self.get_serializer(queryset, context={"request": request}) return JsonResponseV1(data=serializer.data) class OpSqlOrderView(ViewSet): """更新SQL工单状态,如:审核,关闭等""" permission_classes = (permissions.CanViewOrdersPermission,) def get_obj(self, pk): try: obj = models.DbOrders.objects.get(pk=pk) return obj except models.DbOrders.DoesNotExist: raise Http404 def approve(self, request, pk): serializer = serializers.OpSqlOrderSerializer(instance=self.get_obj(pk), data=request.data, context={"request": request, "handler": "_approve"}) if serializer.is_valid(): serializer.save() return JsonResponseV1(data=serializer.data, message="操作成功") return JsonResponseV1(message=serializer.errors, code='0001') def feedback(self, request, pk): serializer = serializers.OpSqlOrderSerializer(instance=self.get_obj(pk), data=request.data, context={"request": request, "handler": "_feedback"}) if serializer.is_valid(): serializer.save() return JsonResponseV1(data=serializer.data, message="操作成功") return JsonResponseV1(message=serializer.errors, code='0001') def close(self, request, pk): serializer = serializers.OpSqlOrderSerializer(instance=self.get_obj(pk), data=request.data, context={"request": request, "handler": "_close"}) if serializer.is_valid(): serializer.save() return JsonResponseV1(data=serializer.data, message="操作成功") return JsonResponseV1(message=serializer.errors, code='0001') def review(self, request, pk): serializer = serializers.OpSqlOrderSerializer(instance=self.get_obj(pk), data=request.data, context={"request": request, "handler": "_review"}) if serializer.is_valid(): serializer.save() return JsonResponseV1(data=serializer.data, message="操作成功") return JsonResponseV1(message=serializer.errors, code='0001') class GenerateTasksView(APIView): permission_classes = (permissions.CanExecuteOrdersPermission,) def post(self, request, *args, **kwargs): serializer = serializers.GenerateSqlOrdersTasksSerializer(data=request.data) if serializer.is_valid(): data = serializer.save(request) return JsonResponseV1(data=data) return JsonResponseV1(message=serializer.errors, code='0001', flat=True) class GetTaskIdView(APIView): def get(self, request, *args, **kwargs): """根据order id返回taskid""" order_id = kwargs.get('order_id') task_id = models.DbOrdersExecuteTasks.objects.filter(order_id=order_id).first().task_id return JsonResponseV1(data=task_id) class GetTasksPreviewView(ListAPIView): permission_classes = (permissions.CanViewOrdersPermission,) queryset = models.DbOrdersExecuteTasks.objects.all() serializer_class = serializers.SqlOrdersTasksListSerializer pagination_class = Pagination filter_backends = [DjangoFilterBackend, filters.SearchFilter, filters.OrderingFilter] filter_class = GetTasksListFilter search_fields = ['sql'] ordering = ['created_time'] def get(self, request, *args, **kwargs): task_id = kwargs.get('task_id') queryset = self.filter_queryset(self.get_queryset().filter(task_id=task_id)) # 数据隐藏按钮打开了 # 仅允许申请人、审核人、复核人和超权用户查看数据 obj = models.DbOrders.objects.get( pk=models.DbOrdersExecuteTasks.objects.filter(task_id=task_id).first().order_id ) if obj.is_hide == 'ON' and not request.user.is_superuser: allowed_view_users = [obj.applicant] allowed_view_users.extend([x['user'] for x in json.loads(obj.auditor)]) allowed_view_users.extend([x['user'] for x in json.loads(obj.reviewer)]) if request.user.username not in allowed_view_users: raise PermissionDenied(detail='您没有权限查看该工单的数据,5s后,自动跳转到工单列表页面') origin_queryset = self.queryset.filter(task_id=task_id) total = origin_queryset.count() progress_0 = origin_queryset.filter(progress=0).count() progress_1 = origin_queryset.filter(progress=1).count() progress_3 = origin_queryset.filter(progress=3).count() page = self.paginate_queryset(queryset) serializer = self.get_serializer(page, context={'request': request}, many=True) render_columns = [ {'key': 'num', 'value': '序号'}, # 自定义num,前台显示序号使用 {'key': 'applicant', 'value': '申请人'}, {'key': 'sql', 'value': 'SQL', 'ellipsis': True, 'width': '50%'}, {'key': 'progress', 'value': '进度'}, {'key': 'result', 'value': '查看结果'}, # 自定义result ] columns = render_dynamic_columns(render_columns) data = {'columns': columns, 'data': {'data': serializer.data, 'total': total, 'progress_0': progress_0, 'progress_1': progress_1, 'progress_3': progress_3}} return self.get_paginated_response(data) class GetTasksListView(ListAPIView): permission_classes = (permissions.CanViewOrdersPermission,) queryset = models.DbOrdersExecuteTasks.objects.all() serializer_class = serializers.SqlOrdersTasksListSerializer pagination_class = Pagination filter_backends = [DjangoFilterBackend, filters.SearchFilter, filters.OrderingFilter] filter_class = GetTasksListFilter search_fields = ['sql'] ordering = ['created_time'] def get(self, request, *args, **kwargs): task_id = kwargs.get('task_id') queryset = self.filter_queryset(self.get_queryset().filter(task_id=task_id)) # 数据隐藏按钮打开了 # 仅允许申请人、审核人、复核人和超权用户查看数据 obj = models.DbOrders.objects.get( pk=models.DbOrdersExecuteTasks.objects.filter(task_id=task_id).first().order_id ) if obj.is_hide == 'ON' and not request.user.is_superuser: allowed_view_users = [obj.applicant] allowed_view_users.extend([x['user'] for x in json.loads(obj.auditor)]) allowed_view_users.extend([x['user'] for x in json.loads(obj.reviewer)]) if request.user.username not in allowed_view_users: raise PermissionDenied(detail='您没有权限查看该工单的数据,5s后,自动跳转到工单列表页面') page = self.paginate_queryset(queryset) serializer = self.get_serializer(page, context={'request': request}, many=True) render_columns = [ {'key': 'num', 'value': '序号'}, # 自定义num,前台显示序号使用 {'key': 'applicant', 'value': '申请人'}, {'key': 'sql', 'value': 'SQL', 'ellipsis': True, 'width': '50%'}, {'key': 'progress', 'value': '进度'}, {'key': 'execute', 'value': '执行'}, # 自定义execute {'key': 'result', 'value': '查看结果'}, # 自定义result ] if queryset.exists(): if queryset.first().sql_type == 'DDL': render_columns.insert(-1, {'key': 'ghost_pause', 'value': '暂停(gh-ost)'}) render_columns.insert(-1, {'key': 'ghost_recovery', 'value': '恢复(gh-ost)'}) columns = render_dynamic_columns(render_columns) data = {'columns': columns, 'data': serializer.data} return self.get_paginated_response(data) class ExecuteSingleTaskView(APIView): permission_classes = (permissions.CanExecuteOrdersPermission,) def post(self, request, *args, **kwargs): serializer = serializers.ExecuteSingleTaskSerializer(data=request.data) if serializer.is_valid(): serializer.execute(request) return JsonResponseV1(message="任务提交成功,请查看输出") return JsonResponseV1(message=serializer.errors, code='0001', flat=True) class ExecuteMultiTasksView(APIView): permission_classes = (permissions.CanExecuteOrdersPermission,) def post(self, request, *args, **kwargs): serializer = serializers.ExecuteMultiTasksSerializer(data=request.data) if serializer.is_valid(): serializer.execute(request) return JsonResponseV1(message="任务提交成功,请查看输出") return JsonResponseV1(message=serializer.errors, code='0001', flat=True) class ThrottleTaskView(APIView): permission_classes = (permissions.CanExecuteOrdersPermission,) def post(self, request, *args, **kwargs): serializer = serializers.ThrottleTaskSerializer(data=request.data) if serializer.is_valid(): message = serializer.execute(request) return JsonResponseV1(message=message) return JsonResponseV1(message=serializer.errors, code='0001', flat=True) class GetTasksResultView(ListAPIView): """SQL工单详情""" permission_classes = (permissions.CanViewOrdersPermission,) queryset = models.DbOrdersExecuteTasks.objects.all() serializer_class = serializers.GetTasksResultSerializer lookup_field = 'id' def get(self, request, *args, **kwargs): queryset = self.get_object() serializer = self.get_serializer(queryset, context={"request": request}) return JsonResponseV1(data=serializer.data) class HookSqlOrdersView(APIView): permission_classes = (permissions.anyof(permissions.CanCommitOrdersPermission, permissions.CanViewOrdersPermission, permissions.CanExecuteOrdersPermission, permissions.CanAuditOrdersPermission), ) def post(self, request, *args, **kwargs): serializer = serializers.HookSqlOrdersSerializer(data=request.data) if serializer.is_valid(): serializer.save() return JsonResponseV1(message="任务提交成功,请查看输出") return JsonResponseV1(message=serializer.errors, code='0001', flat=True) class DownloadExportFilesView(APIView): """下载导出文件""" permission_classes = (permissions.CanViewOrdersPermission,) def get(self, request, base64_filename): file_name = base64.b64decode(base64_filename).decode() if not models.DbExportFiles.objects.filter(file_name=file_name).exists(): raise Http404 obj = models.DbExportFiles.objects.get(file_name=file_name) if not models.DbOrdersExecuteTasks.objects.get(pk=obj.task_id).applicant == request.user.username: raise PermissionDenied(detail='您没有权限') fsock = open(f"media/{obj.files}", 'rb') response = HttpResponse(fsock, content_type="application/zip") response['Content-Disposition'] = f'attachment; filename={file_name}' return response class ReleaseVersionsGet(APIView): """获取上线版本号,提交工单使用""" def get(self, request): before_30_days = (timezone.now() - datetime.timedelta(days=30)) queryset = models.ReleaseVersions.objects.filter( expire_time__gte=before_30_days ).values('id', 'version', 'expire_time').order_by('-created_at') for row in queryset: row['disabled'] = 0 if row['expire_time'] < datetime.datetime.date(timezone.now()): row['disabled'] = 1 return JsonResponseV1(data=queryset) class ReleaseVersionsList(ListAPIView): """获取上线版本号列表,管理上线版本号使用""" permission_classes = (permissions.CanViewVersionPermission,) queryset = models.ReleaseVersions.objects.all() serializer_class = serializers.ReleaseVersionsListSerializer pagination_class = Pagination filter_backends = [filters.SearchFilter, filters.OrderingFilter] search_fields = ['username', 'version', 'expire_time'] ordering = ['-created_at'] def get(self, request, *args, **kwargs): queryset = self.filter_queryset(self.get_queryset()) page = self.paginate_queryset(queryset) serializer = self.get_serializer(page, many=True) render_columns = [ {'key': 'version', 'value': '版本'}, {'key': 'username', 'value': '创建人'}, {'key': 'expire_time', 'value': '截止日期'}, {'key': 'created_at', 'value': '创建时间'}, {'key': 'key', 'value': '操作'}, {'key': 'id', 'value': '详情'}, ] columns = render_dynamic_columns(render_columns) data = {'columns': columns, 'data': serializer.data} return self.get_paginated_response(data) class ReleaseVersionsCreate(CreateAPIView): """创建版本""" permission_classes = (permissions.CanCreateVersionsPermission,) serializer_class = serializers.ReleaseVersionsCreateSerializer def create(self, request, *args, **kwargs): serializer = self.get_serializer(data=request.data) if serializer.is_valid(): self.perform_create(serializer) return JsonResponseV1(message="创建成功") return JsonResponseV1(code='0001', message=serializer.errors, flat=True) class ReleaseVersionsUpdate(UpdateAPIView): """更新版本号,该类只更新单条记录""" permission_classes = (permissions.CanUpdateVersionsPermission,) def put(self, request, *args, **kwargs): serializer = serializers.ReleaseVersionsSerializer( instance=models.ReleaseVersions.objects.get(pk=kwargs['key']), # 返回单条记录 data=request.data ) if serializer.is_valid(): serializer.save() return JsonResponseV1(message="更新成功") return JsonResponseV1(code='0001', message=serializer.errors, flat=True) class ReleaseVersionsDelete(DestroyAPIView): """删除版本""" permission_classes = (permissions.CanDeleteVersionsPermission,) queryset = models.ReleaseVersions.objects.all() lookup_field = 'id' # 默认为主键,可不写 def destroy(self, request, *args, **kwargs): instance = self.get_object() self.perform_destroy(instance) return JsonResponseV1(message="删除成功") class ReleaseVersionsView(APIView): """获取指定版本内工单在所有环境的进度""" def get(self, request, *args, **kwargs): # 获取版本对应的主键 version = kwargs.get('version') version_id = models.ReleaseVersions.objects.get(version=version).pk # 获取环境,行转为动态列 obj = models.DbEnvironment.objects.values('id', 'name') row2columns = '' for row in obj: row2columns += f"max(if(env_id={row['id']}, progress, -1)) as {row['name']}," # 获取任务下所有工单分别在各个环境中的状态,此处的环境为动态环境 # id没有实际意义 query = f"select " + row2columns + \ f"substring(MD5(RAND()),1,20) as id,title as escape_title,order_id, applicant " \ f"from yasql_dborders where version_id='{version_id}' group by escape_title,order_id,applicant" rawquery = models.DbOrders.objects.raw(query) # 获取环境列名 dynamic_columns = list(rawquery.columns)[:-4] data = [] for row in rawquery: columns = { 'id': row.id, 'escape_title': row.escape_title, 'order_id': row.order_id, 'applicant': row.applicant, } for col in dynamic_columns: columns[col] = getattr(row, col) data.append(columns) render_columns = [ {'key': 'escape_title', 'ellipsis': True, 'value': '标题'}, {'key': 'applicant', 'value': '申请人'}, ] render_columns.extend([{'key': x, 'value': x} for x in dynamic_columns]) columns = render_dynamic_columns(render_columns) data = {'columns': columns, 'data': data} return JsonResponseV1(data=data)
[ "sqlorders.models.ReleaseVersions.objects.filter", "sqlorders.serializers.ExecuteMultiTasksSerializer", "sqlorders.models.DbEnvironment.objects.all", "sqlorders.serializers.IncepSyntaxCheckSerializer", "sqlorders.models.DbOrdersExecuteTasks.objects.filter", "datetime.timedelta", "sqlorders.models.ReleaseVersions.objects.get", "sqlorders.models.DbOrders.objects.get", "django.http.HttpResponse", "django.utils.timezone.now", "sqlorders.serializers.ThrottleTaskSerializer", "sqlorders.models.DbExportFiles.objects.get", "sqlorders.models.DbOrdersExecuteTasks.objects.get", "sqlorders.serializers.DbSchemasSerializer", "json.loads", "sqlorders.models.DbEnvironment.objects.values", "libs.response.JsonResponseV1", "sqlorders.models.ReleaseVersions.objects.all", "sqlorders.models.DbExportFiles.objects.filter", "rest_framework.exceptions.PermissionDenied", "sqlorders.models.DbOrdersExecuteTasks.objects.all", "sqlorders.serializers.ExecuteSingleTaskSerializer", "sqlorders.models.DbOrders.objects.raw", "sqlorders.serializers.HookSqlOrdersSerializer", "sqlorders.serializers.GenerateSqlOrdersTasksSerializer", "sqlorders.models.DbOrders.objects.all", "base64.b64decode", "libs.permissions.anyof", "libs.RenderColumns.render_dynamic_columns" ]
[((868, 902), 'sqlorders.models.DbEnvironment.objects.all', 'models.DbEnvironment.objects.all', ([], {}), '()\n', (900, 902), False, 'from sqlorders import models, serializers\n'), ((3250, 3279), 'sqlorders.models.DbOrders.objects.all', 'models.DbOrders.objects.all', ([], {}), '()\n', (3277, 3279), False, 'from sqlorders import models, serializers\n'), ((4754, 4783), 'sqlorders.models.DbOrders.objects.all', 'models.DbOrders.objects.all', ([], {}), '()\n', (4781, 4783), False, 'from sqlorders import models, serializers\n'), ((8270, 8311), 'sqlorders.models.DbOrdersExecuteTasks.objects.all', 'models.DbOrdersExecuteTasks.objects.all', ([], {}), '()\n', (8309, 8311), False, 'from sqlorders import models, serializers\n'), ((10671, 10712), 'sqlorders.models.DbOrdersExecuteTasks.objects.all', 'models.DbOrdersExecuteTasks.objects.all', ([], {}), '()\n', (10710, 10712), False, 'from sqlorders import models, serializers\n'), ((14235, 14276), 'sqlorders.models.DbOrdersExecuteTasks.objects.all', 'models.DbOrdersExecuteTasks.objects.all', ([], {}), '()\n', (14274, 14276), False, 'from sqlorders import models, serializers\n'), ((16798, 16834), 'sqlorders.models.ReleaseVersions.objects.all', 'models.ReleaseVersions.objects.all', ([], {}), '()\n', (16832, 16834), False, 'from sqlorders import models, serializers\n'), ((19021, 19057), 'sqlorders.models.ReleaseVersions.objects.all', 'models.ReleaseVersions.objects.all', ([], {}), '()\n', (19055, 19057), False, 'from sqlorders import models, serializers\n'), ((1109, 1145), 'libs.response.JsonResponseV1', 'JsonResponseV1', ([], {'data': 'serializer.data'}), '(data=serializer.data)\n', (1123, 1145), False, 'from libs.response import JsonResponseV1\n'), ((1253, 1311), 'sqlorders.serializers.DbSchemasSerializer', 'serializers.DbSchemasSerializer', ([], {'data': 'request.query_params'}), '(data=request.query_params)\n', (1284, 1311), False, 'from sqlorders import models, serializers\n'), ((1418, 1472), 'libs.response.JsonResponseV1', 'JsonResponseV1', ([], {'message': 'serializer.errors', 'code': '"""0001"""'}), "(message=serializer.errors, code='0001')\n", (1432, 1472), False, 'from libs.response import JsonResponseV1\n'), ((1579, 1636), 'sqlorders.serializers.IncepSyntaxCheckSerializer', 'serializers.IncepSyntaxCheckSerializer', ([], {'data': 'request.data'}), '(data=request.data)\n', (1617, 1636), False, 'from sqlorders import models, serializers\n'), ((2598, 2663), 'libs.response.JsonResponseV1', 'JsonResponseV1', ([], {'message': 'serializer.errors', 'code': '"""0001"""', 'flat': '(True)'}), "(message=serializer.errors, code='0001', flat=True)\n", (2612, 2663), False, 'from libs.response import JsonResponseV1\n'), ((3069, 3134), 'libs.response.JsonResponseV1', 'JsonResponseV1', ([], {'message': 'serializer.errors', 'code': '"""0001"""', 'flat': '(True)'}), "(message=serializer.errors, code='0001', flat=True)\n", (3083, 3134), False, 'from libs.response import JsonResponseV1\n'), ((4470, 4508), 'libs.RenderColumns.render_dynamic_columns', 'render_dynamic_columns', (['render_columns'], {}), '(render_columns)\n', (4492, 4508), False, 'from libs.RenderColumns import render_dynamic_columns\n'), ((5053, 5089), 'libs.response.JsonResponseV1', 'JsonResponseV1', ([], {'data': 'serializer.data'}), '(data=serializer.data)\n', (5067, 5089), False, 'from libs.response import JsonResponseV1\n'), ((5854, 5908), 'libs.response.JsonResponseV1', 'JsonResponseV1', ([], {'message': 'serializer.errors', 'code': '"""0001"""'}), "(message=serializer.errors, code='0001')\n", (5868, 5908), False, 'from libs.response import JsonResponseV1\n'), ((6360, 6414), 'libs.response.JsonResponseV1', 'JsonResponseV1', ([], {'message': 'serializer.errors', 'code': '"""0001"""'}), "(message=serializer.errors, code='0001')\n", (6374, 6414), False, 'from libs.response import JsonResponseV1\n'), ((6860, 6914), 'libs.response.JsonResponseV1', 'JsonResponseV1', ([], {'message': 'serializer.errors', 'code': '"""0001"""'}), "(message=serializer.errors, code='0001')\n", (6874, 6914), False, 'from libs.response import JsonResponseV1\n'), ((7362, 7416), 'libs.response.JsonResponseV1', 'JsonResponseV1', ([], {'message': 'serializer.errors', 'code': '"""0001"""'}), "(message=serializer.errors, code='0001')\n", (7376, 7416), False, 'from libs.response import JsonResponseV1\n'), ((7588, 7651), 'sqlorders.serializers.GenerateSqlOrdersTasksSerializer', 'serializers.GenerateSqlOrdersTasksSerializer', ([], {'data': 'request.data'}), '(data=request.data)\n', (7632, 7651), False, 'from sqlorders import models, serializers\n'), ((7791, 7856), 'libs.response.JsonResponseV1', 'JsonResponseV1', ([], {'message': 'serializer.errors', 'code': '"""0001"""', 'flat': '(True)'}), "(message=serializer.errors, code='0001', flat=True)\n", (7805, 7856), False, 'from libs.response import JsonResponseV1\n'), ((8120, 8148), 'libs.response.JsonResponseV1', 'JsonResponseV1', ([], {'data': 'task_id'}), '(data=task_id)\n', (8134, 8148), False, 'from libs.response import JsonResponseV1\n'), ((10184, 10222), 'libs.RenderColumns.render_dynamic_columns', 'render_dynamic_columns', (['render_columns'], {}), '(render_columns)\n', (10206, 10222), False, 'from libs.RenderColumns import render_dynamic_columns\n'), ((12611, 12649), 'libs.RenderColumns.render_dynamic_columns', 'render_dynamic_columns', (['render_columns'], {}), '(render_columns)\n', (12633, 12649), False, 'from libs.RenderColumns import render_dynamic_columns\n'), ((12935, 12993), 'sqlorders.serializers.ExecuteSingleTaskSerializer', 'serializers.ExecuteSingleTaskSerializer', ([], {'data': 'request.data'}), '(data=request.data)\n', (12974, 12993), False, 'from sqlorders import models, serializers\n'), ((13142, 13207), 'libs.response.JsonResponseV1', 'JsonResponseV1', ([], {'message': 'serializer.errors', 'code': '"""0001"""', 'flat': '(True)'}), "(message=serializer.errors, code='0001', flat=True)\n", (13156, 13207), False, 'from libs.response import JsonResponseV1\n'), ((13383, 13441), 'sqlorders.serializers.ExecuteMultiTasksSerializer', 'serializers.ExecuteMultiTasksSerializer', ([], {'data': 'request.data'}), '(data=request.data)\n', (13422, 13441), False, 'from sqlorders import models, serializers\n'), ((13590, 13655), 'libs.response.JsonResponseV1', 'JsonResponseV1', ([], {'message': 'serializer.errors', 'code': '"""0001"""', 'flat': '(True)'}), "(message=serializer.errors, code='0001', flat=True)\n", (13604, 13655), False, 'from libs.response import JsonResponseV1\n'), ((13826, 13879), 'sqlorders.serializers.ThrottleTaskSerializer', 'serializers.ThrottleTaskSerializer', ([], {'data': 'request.data'}), '(data=request.data)\n', (13860, 13879), False, 'from sqlorders import models, serializers\n'), ((14031, 14096), 'libs.response.JsonResponseV1', 'JsonResponseV1', ([], {'message': 'serializer.errors', 'code': '"""0001"""', 'flat': '(True)'}), "(message=serializer.errors, code='0001', flat=True)\n", (14045, 14096), False, 'from libs.response import JsonResponseV1\n'), ((14540, 14576), 'libs.response.JsonResponseV1', 'JsonResponseV1', ([], {'data': 'serializer.data'}), '(data=serializer.data)\n', (14554, 14576), False, 'from libs.response import JsonResponseV1\n'), ((14639, 14819), 'libs.permissions.anyof', 'permissions.anyof', (['permissions.CanCommitOrdersPermission', 'permissions.CanViewOrdersPermission', 'permissions.CanExecuteOrdersPermission', 'permissions.CanAuditOrdersPermission'], {}), '(permissions.CanCommitOrdersPermission, permissions.\n CanViewOrdersPermission, permissions.CanExecuteOrdersPermission,\n permissions.CanAuditOrdersPermission)\n', (14656, 14819), False, 'from libs import permissions\n'), ((15040, 15094), 'sqlorders.serializers.HookSqlOrdersSerializer', 'serializers.HookSqlOrdersSerializer', ([], {'data': 'request.data'}), '(data=request.data)\n', (15075, 15094), False, 'from sqlorders import models, serializers\n'), ((15233, 15298), 'libs.response.JsonResponseV1', 'JsonResponseV1', ([], {'message': 'serializer.errors', 'code': '"""0001"""', 'flat': '(True)'}), "(message=serializer.errors, code='0001', flat=True)\n", (15247, 15298), False, 'from libs.response import JsonResponseV1\n'), ((15655, 15708), 'sqlorders.models.DbExportFiles.objects.get', 'models.DbExportFiles.objects.get', ([], {'file_name': 'file_name'}), '(file_name=file_name)\n', (15687, 15708), False, 'from sqlorders import models, serializers\n'), ((15936, 15987), 'django.http.HttpResponse', 'HttpResponse', (['fsock'], {'content_type': '"""application/zip"""'}), "(fsock, content_type='application/zip')\n", (15948, 15987), False, 'from django.http import Http404, HttpResponse\n'), ((16616, 16645), 'libs.response.JsonResponseV1', 'JsonResponseV1', ([], {'data': 'queryset'}), '(data=queryset)\n', (16630, 16645), False, 'from libs.response import JsonResponseV1\n'), ((17647, 17685), 'libs.RenderColumns.render_dynamic_columns', 'render_dynamic_columns', (['render_columns'], {}), '(render_columns)\n', (17669, 17685), False, 'from libs.RenderColumns import render_dynamic_columns\n'), ((18244, 18309), 'libs.response.JsonResponseV1', 'JsonResponseV1', ([], {'code': '"""0001"""', 'message': 'serializer.errors', 'flat': '(True)'}), "(code='0001', message=serializer.errors, flat=True)\n", (18258, 18309), False, 'from libs.response import JsonResponseV1\n'), ((18810, 18875), 'libs.response.JsonResponseV1', 'JsonResponseV1', ([], {'code': '"""0001"""', 'message': 'serializer.errors', 'flat': '(True)'}), "(code='0001', message=serializer.errors, flat=True)\n", (18824, 18875), False, 'from libs.response import JsonResponseV1\n'), ((19236, 19266), 'libs.response.JsonResponseV1', 'JsonResponseV1', ([], {'message': '"""删除成功"""'}), "(message='删除成功')\n", (19250, 19266), False, 'from libs.response import JsonResponseV1\n'), ((19551, 19600), 'sqlorders.models.DbEnvironment.objects.values', 'models.DbEnvironment.objects.values', (['"""id"""', '"""name"""'], {}), "('id', 'name')\n", (19586, 19600), False, 'from sqlorders import models, serializers\n'), ((20075, 20109), 'sqlorders.models.DbOrders.objects.raw', 'models.DbOrders.objects.raw', (['query'], {}), '(query)\n', (20102, 20109), False, 'from sqlorders import models, serializers\n'), ((20811, 20849), 'libs.RenderColumns.render_dynamic_columns', 'render_dynamic_columns', (['render_columns'], {}), '(render_columns)\n', (20833, 20849), False, 'from libs.RenderColumns import render_dynamic_columns\n'), ((20915, 20940), 'libs.response.JsonResponseV1', 'JsonResponseV1', ([], {'data': 'data'}), '(data=data)\n', (20929, 20940), False, 'from libs.response import JsonResponseV1\n'), ((1365, 1402), 'libs.response.JsonResponseV1', 'JsonResponseV1', ([], {'data': 'serializer.query'}), '(data=serializer.query)\n', (1379, 1402), False, 'from libs.response import JsonResponseV1\n'), ((2216, 2254), 'libs.RenderColumns.render_dynamic_columns', 'render_dynamic_columns', (['render_columns'], {}), '(render_columns)\n', (2238, 2254), False, 'from libs.RenderColumns import render_dynamic_columns\n'), ((2540, 2582), 'libs.response.JsonResponseV1', 'JsonResponseV1', ([], {'data': 'data', 'message': 'message'}), '(data=data, message=message)\n', (2554, 2582), False, 'from libs.response import JsonResponseV1\n'), ((3023, 3053), 'libs.response.JsonResponseV1', 'JsonResponseV1', ([], {'message': '"""提交成功"""'}), "(message='提交成功')\n", (3037, 3053), False, 'from libs.response import JsonResponseV1\n'), ((5275, 5309), 'sqlorders.models.DbOrders.objects.get', 'models.DbOrders.objects.get', ([], {'pk': 'pk'}), '(pk=pk)\n', (5302, 5309), False, 'from sqlorders import models, serializers\n'), ((5786, 5838), 'libs.response.JsonResponseV1', 'JsonResponseV1', ([], {'data': 'serializer.data', 'message': '"""操作成功"""'}), "(data=serializer.data, message='操作成功')\n", (5800, 5838), False, 'from libs.response import JsonResponseV1\n'), ((6292, 6344), 'libs.response.JsonResponseV1', 'JsonResponseV1', ([], {'data': 'serializer.data', 'message': '"""操作成功"""'}), "(data=serializer.data, message='操作成功')\n", (6306, 6344), False, 'from libs.response import JsonResponseV1\n'), ((6792, 6844), 'libs.response.JsonResponseV1', 'JsonResponseV1', ([], {'data': 'serializer.data', 'message': '"""操作成功"""'}), "(data=serializer.data, message='操作成功')\n", (6806, 6844), False, 'from libs.response import JsonResponseV1\n'), ((7294, 7346), 'libs.response.JsonResponseV1', 'JsonResponseV1', ([], {'data': 'serializer.data', 'message': '"""操作成功"""'}), "(data=serializer.data, message='操作成功')\n", (7308, 7346), False, 'from libs.response import JsonResponseV1\n'), ((7750, 7775), 'libs.response.JsonResponseV1', 'JsonResponseV1', ([], {'data': 'data'}), '(data=data)\n', (7764, 7775), False, 'from libs.response import JsonResponseV1\n'), ((13088, 13126), 'libs.response.JsonResponseV1', 'JsonResponseV1', ([], {'message': '"""任务提交成功,请查看输出"""'}), "(message='任务提交成功,请查看输出')\n", (13102, 13126), False, 'from libs.response import JsonResponseV1\n'), ((13536, 13574), 'libs.response.JsonResponseV1', 'JsonResponseV1', ([], {'message': '"""任务提交成功,请查看输出"""'}), "(message='任务提交成功,请查看输出')\n", (13550, 13574), False, 'from libs.response import JsonResponseV1\n'), ((13984, 14015), 'libs.response.JsonResponseV1', 'JsonResponseV1', ([], {'message': 'message'}), '(message=message)\n', (13998, 14015), False, 'from libs.response import JsonResponseV1\n'), ((15179, 15217), 'libs.response.JsonResponseV1', 'JsonResponseV1', ([], {'message': '"""任务提交成功,请查看输出"""'}), "(message='任务提交成功,请查看输出')\n", (15193, 15217), False, 'from libs.response import JsonResponseV1\n'), ((15834, 15866), 'rest_framework.exceptions.PermissionDenied', 'PermissionDenied', ([], {'detail': '"""您没有权限"""'}), "(detail='您没有权限')\n", (15850, 15866), False, 'from rest_framework.exceptions import PermissionDenied\n'), ((16207, 16221), 'django.utils.timezone.now', 'timezone.now', ([], {}), '()\n', (16219, 16221), False, 'from django.utils import timezone\n'), ((16224, 16251), 'datetime.timedelta', 'datetime.timedelta', ([], {'days': '(30)'}), '(days=30)\n', (16242, 16251), False, 'import datetime\n'), ((18198, 18228), 'libs.response.JsonResponseV1', 'JsonResponseV1', ([], {'message': '"""创建成功"""'}), "(message='创建成功')\n", (18212, 18228), False, 'from libs.response import JsonResponseV1\n'), ((18764, 18794), 'libs.response.JsonResponseV1', 'JsonResponseV1', ([], {'message': '"""更新成功"""'}), "(message='更新成功')\n", (18778, 18794), False, 'from libs.response import JsonResponseV1\n'), ((19460, 19511), 'sqlorders.models.ReleaseVersions.objects.get', 'models.ReleaseVersions.objects.get', ([], {'version': 'version'}), '(version=version)\n', (19494, 19511), False, 'from sqlorders import models, serializers\n'), ((9339, 9395), 'rest_framework.exceptions.PermissionDenied', 'PermissionDenied', ([], {'detail': '"""您没有权限查看该工单的数据,5s后,自动跳转到工单列表页面"""'}), "(detail='您没有权限查看该工单的数据,5s后,自动跳转到工单列表页面')\n", (9355, 9395), False, 'from rest_framework.exceptions import PermissionDenied\n'), ((11740, 11796), 'rest_framework.exceptions.PermissionDenied', 'PermissionDenied', ([], {'detail': '"""您没有权限查看该工单的数据,5s后,自动跳转到工单列表页面"""'}), "(detail='您没有权限查看该工单的数据,5s后,自动跳转到工单列表页面')\n", (11756, 11796), False, 'from rest_framework.exceptions import PermissionDenied\n'), ((15488, 15521), 'base64.b64decode', 'base64.b64decode', (['base64_filename'], {}), '(base64_filename)\n', (15504, 15521), False, 'import base64\n'), ((18577, 18629), 'sqlorders.models.ReleaseVersions.objects.get', 'models.ReleaseVersions.objects.get', ([], {'pk': "kwargs['key']"}), "(pk=kwargs['key'])\n", (18611, 18629), False, 'from sqlorders import models, serializers\n'), ((8027, 8088), 'sqlorders.models.DbOrdersExecuteTasks.objects.filter', 'models.DbOrdersExecuteTasks.objects.filter', ([], {'order_id': 'order_id'}), '(order_id=order_id)\n', (8069, 8088), False, 'from sqlorders import models, serializers\n'), ((15547, 15603), 'sqlorders.models.DbExportFiles.objects.filter', 'models.DbExportFiles.objects.filter', ([], {'file_name': 'file_name'}), '(file_name=file_name)\n', (15582, 15603), False, 'from sqlorders import models, serializers\n'), ((15724, 15779), 'sqlorders.models.DbOrdersExecuteTasks.objects.get', 'models.DbOrdersExecuteTasks.objects.get', ([], {'pk': 'obj.task_id'}), '(pk=obj.task_id)\n', (15763, 15779), False, 'from sqlorders import models, serializers\n'), ((16548, 16562), 'django.utils.timezone.now', 'timezone.now', ([], {}), '()\n', (16560, 16562), False, 'from django.utils import timezone\n'), ((9142, 9165), 'json.loads', 'json.loads', (['obj.auditor'], {}), '(obj.auditor)\n', (9152, 9165), False, 'import json\n'), ((9226, 9250), 'json.loads', 'json.loads', (['obj.reviewer'], {}), '(obj.reviewer)\n', (9236, 9250), False, 'import json\n'), ((11543, 11566), 'json.loads', 'json.loads', (['obj.auditor'], {}), '(obj.auditor)\n', (11553, 11566), False, 'import json\n'), ((11627, 11651), 'json.loads', 'json.loads', (['obj.reviewer'], {}), '(obj.reviewer)\n', (11637, 11651), False, 'import json\n'), ((16272, 16342), 'sqlorders.models.ReleaseVersions.objects.filter', 'models.ReleaseVersions.objects.filter', ([], {'expire_time__gte': 'before_30_days'}), '(expire_time__gte=before_30_days)\n', (16309, 16342), False, 'from sqlorders import models, serializers\n'), ((8882, 8941), 'sqlorders.models.DbOrdersExecuteTasks.objects.filter', 'models.DbOrdersExecuteTasks.objects.filter', ([], {'task_id': 'task_id'}), '(task_id=task_id)\n', (8924, 8941), False, 'from sqlorders import models, serializers\n'), ((11283, 11342), 'sqlorders.models.DbOrdersExecuteTasks.objects.filter', 'models.DbOrdersExecuteTasks.objects.filter', ([], {'task_id': 'task_id'}), '(task_id=task_id)\n', (11325, 11342), False, 'from sqlorders import models, serializers\n')]
# Importing Fernet class from cryptography.fernet import Fernet # Importing dump and load function from pickle import dump,load # To generate a strong pw def generate_pw(): from random import choice choices = list("ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz0123456789!@#$%^&*()_-+=.,/<>?;:\\|[]}{") pw = "" for i in range(25): pw += choice(choices) return pw del pw,choice # To get master pw from the file def get_masterpw(): # Opening the file storing master pw with open("key.key",'rb') as file: # Loading data keys = load(file) # Master pw is converted from bytes to string key = keys[0].decode() del keys # Return keys return key # To get key from the file def get_key(): # Opening the file storing master pw with open("key.key",'rb') as file: # Loading data keys = load(file) # Key is converted from bytes to string key = keys[1].decode() del keys # Return keys return key # To store master pw in the file def add_keys(masterpw,key): # Opening the file to store master pw with open("key.key",'wb') as file: # Making list of value to upload # key is already in bytes # Converting to bytes is not necessary keys = [masterpw.encode(),key] # Dumping the master pw to file dump(keys,file) # Deleting the variable del masterpw,key,keys # Checking if user is running program for first time def is_1st_time(): # Trying to open bytes file # If file is opened means program was executed once or more try: with open("key.key",'rb') as file: pass return False # FileNotFound means its first time # Or either its not in directory of this file or user deleted it :) # except FileNotFoundError: return True # Function to copy pw to clipboard def copy2clip(pw): # Importing copy function from pyperclip import copy # Copying pw to clipboard copy(pw) del pw,copy # Encrypting the text def encrypt(text, key): try: # Defining Fernet(class) using the key fernet = Fernet(key) # Encryption # Text is converted to bytes encrypted_text = fernet.encrypt(text.encode()) del key # Return encrypted text return encrypted_text # Error message if any except Exception as e: print(f"Error occured:{e}\nProcess failed!") # Decrypting the text def decrypt(text, key): try: # Defining Fernet(class) using the key fernet = Fernet(key) # Decryption # Text is converted from bytes to string decrypted_text = fernet.decrypt(text).decode() del key # Return decrypted text return decrypted_text # Error message if any except Exception as e: print(f"Error occured:{e}\nProcess failed!")
[ "random.choice", "pickle.dump", "pickle.load", "pyperclip.copy", "cryptography.fernet.Fernet" ]
[((2100, 2108), 'pyperclip.copy', 'copy', (['pw'], {}), '(pw)\n', (2104, 2108), False, 'from pyperclip import copy\n'), ((379, 394), 'random.choice', 'choice', (['choices'], {}), '(choices)\n', (385, 394), False, 'from random import choice\n'), ((608, 618), 'pickle.load', 'load', (['file'], {}), '(file)\n', (612, 618), False, 'from pickle import dump, load\n'), ((927, 937), 'pickle.load', 'load', (['file'], {}), '(file)\n', (931, 937), False, 'from pickle import dump, load\n'), ((1427, 1443), 'pickle.dump', 'dump', (['keys', 'file'], {}), '(keys, file)\n', (1431, 1443), False, 'from pickle import dump, load\n'), ((2252, 2263), 'cryptography.fernet.Fernet', 'Fernet', (['key'], {}), '(key)\n', (2258, 2263), False, 'from cryptography.fernet import Fernet\n'), ((2688, 2699), 'cryptography.fernet.Fernet', 'Fernet', (['key'], {}), '(key)\n', (2694, 2699), False, 'from cryptography.fernet import Fernet\n')]
from django.db import models from django.utils import timezone # Course Category class Course_category(models.Model): category_id = models.AutoField(primary_key=True) category_name = models.CharField(max_length=100) date_of_creation = models.DateTimeField(default=timezone.now) # Course Subcategory class Course_subcategory(models.Model): subcategory_id = models.AutoField(primary_key=True) category = models.ForeignKey(Course_category, on_delete=models.CASCADE) subcategory_name = models.CharField(max_length=100) date_of_creation = models.DateTimeField(default=timezone.now) # Course class Course(models.Model): course_id = models.AutoField(primary_key=True) subcategory = models.ForeignKey(Course_subcategory, on_delete=models.CASCADE) subcategory_name = models.CharField(max_length=100) category_name = models.CharField(max_length=100) course_name = models.CharField(max_length=100) date_of_creation = models.DateTimeField(default=timezone.now) course_description = models.TextField(default="") course_difficulty = models.CharField(max_length=30) # Course resources class Course_resource(models.Model): course = models.ForeignKey(Course, on_delete=models.CASCADE) resourse_content = models.TextField(default="NIL") resourse_name = models.CharField(max_length=100) resourse_link = models.CharField(max_length=200) resourse_length = models.CharField(max_length=10) date_of_creation = models.DateTimeField(default=timezone.now)
[ "django.db.models.TextField", "django.db.models.ForeignKey", "django.db.models.AutoField", "django.db.models.DateTimeField", "django.db.models.CharField" ]
[((137, 171), 'django.db.models.AutoField', 'models.AutoField', ([], {'primary_key': '(True)'}), '(primary_key=True)\n', (153, 171), False, 'from django.db import models\n'), ((192, 224), 'django.db.models.CharField', 'models.CharField', ([], {'max_length': '(100)'}), '(max_length=100)\n', (208, 224), False, 'from django.db import models\n'), ((248, 290), 'django.db.models.DateTimeField', 'models.DateTimeField', ([], {'default': 'timezone.now'}), '(default=timezone.now)\n', (268, 290), False, 'from django.db import models\n'), ((375, 409), 'django.db.models.AutoField', 'models.AutoField', ([], {'primary_key': '(True)'}), '(primary_key=True)\n', (391, 409), False, 'from django.db import models\n'), ((425, 485), 'django.db.models.ForeignKey', 'models.ForeignKey', (['Course_category'], {'on_delete': 'models.CASCADE'}), '(Course_category, on_delete=models.CASCADE)\n', (442, 485), False, 'from django.db import models\n'), ((509, 541), 'django.db.models.CharField', 'models.CharField', ([], {'max_length': '(100)'}), '(max_length=100)\n', (525, 541), False, 'from django.db import models\n'), ((565, 607), 'django.db.models.DateTimeField', 'models.DateTimeField', ([], {'default': 'timezone.now'}), '(default=timezone.now)\n', (585, 607), False, 'from django.db import models\n'), ((662, 696), 'django.db.models.AutoField', 'models.AutoField', ([], {'primary_key': '(True)'}), '(primary_key=True)\n', (678, 696), False, 'from django.db import models\n'), ((715, 778), 'django.db.models.ForeignKey', 'models.ForeignKey', (['Course_subcategory'], {'on_delete': 'models.CASCADE'}), '(Course_subcategory, on_delete=models.CASCADE)\n', (732, 778), False, 'from django.db import models\n'), ((802, 834), 'django.db.models.CharField', 'models.CharField', ([], {'max_length': '(100)'}), '(max_length=100)\n', (818, 834), False, 'from django.db import models\n'), ((855, 887), 'django.db.models.CharField', 'models.CharField', ([], {'max_length': '(100)'}), '(max_length=100)\n', (871, 887), False, 'from django.db import models\n'), ((906, 938), 'django.db.models.CharField', 'models.CharField', ([], {'max_length': '(100)'}), '(max_length=100)\n', (922, 938), False, 'from django.db import models\n'), ((962, 1004), 'django.db.models.DateTimeField', 'models.DateTimeField', ([], {'default': 'timezone.now'}), '(default=timezone.now)\n', (982, 1004), False, 'from django.db import models\n'), ((1030, 1058), 'django.db.models.TextField', 'models.TextField', ([], {'default': '""""""'}), "(default='')\n", (1046, 1058), False, 'from django.db import models\n'), ((1083, 1114), 'django.db.models.CharField', 'models.CharField', ([], {'max_length': '(30)'}), '(max_length=30)\n', (1099, 1114), False, 'from django.db import models\n'), ((1185, 1236), 'django.db.models.ForeignKey', 'models.ForeignKey', (['Course'], {'on_delete': 'models.CASCADE'}), '(Course, on_delete=models.CASCADE)\n', (1202, 1236), False, 'from django.db import models\n'), ((1260, 1291), 'django.db.models.TextField', 'models.TextField', ([], {'default': '"""NIL"""'}), "(default='NIL')\n", (1276, 1291), False, 'from django.db import models\n'), ((1312, 1344), 'django.db.models.CharField', 'models.CharField', ([], {'max_length': '(100)'}), '(max_length=100)\n', (1328, 1344), False, 'from django.db import models\n'), ((1365, 1397), 'django.db.models.CharField', 'models.CharField', ([], {'max_length': '(200)'}), '(max_length=200)\n', (1381, 1397), False, 'from django.db import models\n'), ((1420, 1451), 'django.db.models.CharField', 'models.CharField', ([], {'max_length': '(10)'}), '(max_length=10)\n', (1436, 1451), False, 'from django.db import models\n'), ((1475, 1517), 'django.db.models.DateTimeField', 'models.DateTimeField', ([], {'default': 'timezone.now'}), '(default=timezone.now)\n', (1495, 1517), False, 'from django.db import models\n')]
from django.conf import settings from django.conf.urls import include, url from django.conf.urls.static import static urlpatterns = [ # Examples: # url(r'^$', 'evetool.views.home', name='home'), url(r'^', include('users.urls')), url(r'^', include('apis.urls')), ] + static(settings.STATIC_URL, document_root=settings.STATIC_ROOT)
[ "django.conf.urls.include", "django.conf.urls.static.static" ]
[((283, 346), 'django.conf.urls.static.static', 'static', (['settings.STATIC_URL'], {'document_root': 'settings.STATIC_ROOT'}), '(settings.STATIC_URL, document_root=settings.STATIC_ROOT)\n', (289, 346), False, 'from django.conf.urls.static import static\n'), ((218, 239), 'django.conf.urls.include', 'include', (['"""users.urls"""'], {}), "('users.urls')\n", (225, 239), False, 'from django.conf.urls import include, url\n'), ((256, 276), 'django.conf.urls.include', 'include', (['"""apis.urls"""'], {}), "('apis.urls')\n", (263, 276), False, 'from django.conf.urls import include, url\n')]
from rest_framework import serializers from applications.models import Application class ApplicationSerializer(serializers.Serializer): content = serializers.JSONField() portfolio = serializers.FileField() class ApplicationAdminSerializer(serializers.ModelSerializer): class Meta: model = Application fields = ['content', 'user', 'status', 'created_at', 'updated_at', 'recruits'] class ApplicationAdminPatchSerializer(serializers.ModelSerializer): class Meta: model = Application fields = ['status']
[ "rest_framework.serializers.FileField", "rest_framework.serializers.JSONField" ]
[((154, 177), 'rest_framework.serializers.JSONField', 'serializers.JSONField', ([], {}), '()\n', (175, 177), False, 'from rest_framework import serializers\n'), ((194, 217), 'rest_framework.serializers.FileField', 'serializers.FileField', ([], {}), '()\n', (215, 217), False, 'from rest_framework import serializers\n')]
from pathlib import Path import requests from requests_toolbelt.multipart.encoder import MultipartEncoder # api_token = "<KEY>" # brand_center = "mdanderson.co1" # data_center = "iad1" # headers = {"x-api-token": api_token} class QualtricsTool: """Data model to manage Qualtrics-related tools Parameters: ----------- api_token: str, the API token for the user data_center: str, the data center for the user brand_center: str, the brand center for the user """ def __init__(self, api_token=None, data_center=None, brand_center=None): self.api_token = api_token self.data_center = data_center self.brand_center = brand_center @property def api_headers(self): """The default API headers""" return {"x-api-token": self.api_token} @property def base_url(self): """The default base URL""" return f"https://{self.data_center}.qualtrics.com" @property def api_base_url(self): """The default base API URL""" return f"{self.base_url}/API/v3" def upload_images_api(self, local_image_folder, library_id, creating_full_url=True, qualtrics_folder=None, filename_pattern="*"): """Upload images from the local folder to the Qualtrics server :param local_image_folder: str, Path, the local folder containing the images :param library_id: str, Qualtrics library ID number :param creating_full_url: bool, whether returns the IDs only or the full URLs :param qualtrics_folder: str, the Qualtrics Graphics folder for the uploaded images :param filename_pattern: str, the pattern using which to select the images for uploading :return list[str], the list of image IDs or URLs """ upload_url = f"{self.api_base_url}/libraries/{library_id}/graphics" image_urls = list() for file in Path(local_image_folder).glob(filename_pattern): file_type = Path(file)[1:] if file_type not in ("png", "gif", "jpg", "jpeg"): raise ValueError("Qualtrics only accepts PNG, GIF, and JPEG images.") encoded_fields = {'file': (file.name, open(file, 'rb'), f'image/{file_type}')} image_url_id = self._upload_image(encoded_fields, qualtrics_folder, upload_url, file, creating_full_url) image_urls.append(image_url_id) return image_urls def upload_images_web(self, image_files, library_id, creating_full_url, qualtrics_folder, image_type): """Upload images from the web app to the Qualtrics server :param image_files: Bytes, the uploaded bytes data from the web app :param library_id: str, Qualtrics library ID number :param creating_full_url: bool, whether returns the IDs only or the full URLs :param qualtrics_folder: str, the Qualtrics Graphics folder for the uploaded images :param image_type: str, the image file type :return list[str], the list of image IDs or URLs """ image_urls = list() upload_url = f"{self.api_base_url}/libraries/{library_id}/graphics" file_count_digit = len(str(len(image_files))) for file_i, file in enumerate(image_files, start=1): encoded_fields = {'file': (f"image{file_i:0>{file_count_digit}}.{image_type}", file, f'image/{image_type}')} image_url_id = self._upload_image(encoded_fields, qualtrics_folder, upload_url, file, creating_full_url) image_urls.append(image_url_id) return image_urls def _upload_image(self, encoded_fields, qualtrics_folder, upload_url, file, creating_full_url): if qualtrics_folder: encoded_fields['folder'] = qualtrics_folder mp_encoder = MultipartEncoder(fields=encoded_fields) post_request = requests.post( upload_url, data=mp_encoder, headers={'Content-Type': mp_encoder.content_type, **self.api_headers} ) try: image_url_id = post_request.json()['result']['id'] except KeyError: raise Exception(f"Failed to upload image {file.name}") if creating_full_url: image_url_id = f"{self.base_url}/ControlPanel/Graphic.php?IM={image_url_id}" return image_url_id def delete_images(self, library_id, image_url_ids): """Delete images from the specified library :param library_id: str, the library ID number :param image_url_ids: list[str], the image IDs or full URLs :return dict, the deletion report""" report = dict() for image_url_id in image_url_ids: if image_url_id.find("=") > 0: image_url_id = image_url_id[image_url_id.index("=") + 1:] url = f'{self.api_base_url}/libraries/{library_id}/graphics/{image_url_id}' delete_response = requests.delete(url, headers=self.api_headers) try: http_status = delete_response.json()['meta']['httpStatus'] except KeyError: raise Exception(f"Failed to delete image: {image_url_id}") else: report[image_url_id] = "Deleted" if http_status.startswith('200') else "Error" return report def create_survey(self, template_json): """Create the survey using the JSON template :param template_json: str in the JSON format, the JSON file for the qsf file :return str, the created Survey ID number """ upload_url = f"{self.api_base_url}/survey-definitions" creation_response = requests.post( upload_url, json=template_json, headers={**self.api_headers, "content-type": "application/json"} ) try: survey_id = creation_response.json()['result']['SurveyID'] except KeyError: raise Exception("Couldn't create the survey. Please check the params.") return survey_id def delete_survey(self, survey_id): """Delete the survey :param survey_id: str, the survey ID number :return dict, the deletion report """ report = dict() delete_url = f"{self.api_base_url}/survey-definitions/{survey_id}" delete_response = requests.delete(delete_url, headers=self.api_headers) try: http_status = delete_response.json()['meta']['httpStatus'] except KeyError: raise Exception(f"Failed to delete survey: {survey_id}") else: report[survey_id] = "Deleted" if http_status.startswith('200') else "Error" return report def export_responses(self, survey_id, file_format="csv", data_folder=None): """Export responses from the Qualtrics survey""" download_url = f"{self.api_base_url}/surveys/{survey_id}/export-responses/" download_payload = f'{{"format": "{file_format}"}}' download_response = requests.post( download_url, data=download_payload, headers={**self.api_headers, "content-type": "application/json"} ) try: progress_id = download_response.json()["result"]["progressId"] file_id = self._monitor_progress(download_url, progress_id) file_content = self._download_file(download_url, file_id) except KeyError: raise Exception("Can't download the responses. Please check the params.") return file_content def _monitor_progress(self, download_url, progress_id): progress_status = "inProgress" while progress_status != "complete" and progress_status != "failed": progress_response = requests.get(download_url + progress_id, headers=self.api_headers) progress_status = progress_response.json()["result"]["status"] return progress_response.json()["result"]["fileId"] def _download_file(self, download_url, file_id): file_url = f"{download_url}/{file_id}/file" file_response = requests.get(file_url, headers=self.api_headers, stream=True) return file_response.content
[ "requests.post", "pathlib.Path", "requests_toolbelt.multipart.encoder.MultipartEncoder", "requests.get", "requests.delete" ]
[((4027, 4066), 'requests_toolbelt.multipart.encoder.MultipartEncoder', 'MultipartEncoder', ([], {'fields': 'encoded_fields'}), '(fields=encoded_fields)\n', (4043, 4066), False, 'from requests_toolbelt.multipart.encoder import MultipartEncoder\n'), ((4090, 4207), 'requests.post', 'requests.post', (['upload_url'], {'data': 'mp_encoder', 'headers': "{'Content-Type': mp_encoder.content_type, **self.api_headers}"}), "(upload_url, data=mp_encoder, headers={'Content-Type':\n mp_encoder.content_type, **self.api_headers})\n", (4103, 4207), False, 'import requests\n'), ((5865, 5980), 'requests.post', 'requests.post', (['upload_url'], {'json': 'template_json', 'headers': "{**self.api_headers, 'content-type': 'application/json'}"}), "(upload_url, json=template_json, headers={**self.api_headers,\n 'content-type': 'application/json'})\n", (5878, 5980), False, 'import requests\n'), ((6555, 6608), 'requests.delete', 'requests.delete', (['delete_url'], {'headers': 'self.api_headers'}), '(delete_url, headers=self.api_headers)\n', (6570, 6608), False, 'import requests\n'), ((7225, 7346), 'requests.post', 'requests.post', (['download_url'], {'data': 'download_payload', 'headers': "{**self.api_headers, 'content-type': 'application/json'}"}), "(download_url, data=download_payload, headers={**self.\n api_headers, 'content-type': 'application/json'})\n", (7238, 7346), False, 'import requests\n'), ((8306, 8367), 'requests.get', 'requests.get', (['file_url'], {'headers': 'self.api_headers', 'stream': '(True)'}), '(file_url, headers=self.api_headers, stream=True)\n', (8318, 8367), False, 'import requests\n'), ((5147, 5193), 'requests.delete', 'requests.delete', (['url'], {'headers': 'self.api_headers'}), '(url, headers=self.api_headers)\n', (5162, 5193), False, 'import requests\n'), ((7970, 8036), 'requests.get', 'requests.get', (['(download_url + progress_id)'], {'headers': 'self.api_headers'}), '(download_url + progress_id, headers=self.api_headers)\n', (7982, 8036), False, 'import requests\n'), ((2031, 2055), 'pathlib.Path', 'Path', (['local_image_folder'], {}), '(local_image_folder)\n', (2035, 2055), False, 'from pathlib import Path\n'), ((2104, 2114), 'pathlib.Path', 'Path', (['file'], {}), '(file)\n', (2108, 2114), False, 'from pathlib import Path\n')]
#!/usr/bin/env python3 from app.lib.utils.request import request from app.lib.utils.encode import base64encode from app.lib.utils.common import get_capta, get_useragent class S2_052_BaseVerify: def __init__(self, url): self.info = { 'name': 'S2-052漏洞,又名CVE-2017-9805漏洞', 'description': 'Struts2 Remote Code Execution Vulnerability, Struts 2.1.6 - Struts 2.3.33, Struts 2.5 - Struts 2.5.12', 'date': '2017-09-05', 'exptype': 'check', 'type': 'RCE' } self.url = url if not self.url.startswith("http") and not self.url.startswith("https"): self.url = "http://" + self.url self.capta = get_capta() self.headers = { 'User-Agent': get_useragent(), 'Content-Type': "application/xml", } self.payload =''' <map> <entry> <jdk.nashorn.internal.objects.NativeString> <flags>0</flags> <value class="com.sun.xml.internal.bind.v2.runtime.unmarshaller.Base64Data"> <dataHandler> <dataSource class="com.sun.xml.internal.ws.encoding.xml.XMLMessage$XmlDataSource"> <is class="javax.crypto.CipherInputStream"> <cipher class="javax.crypto.NullCipher"> <initialized>false</initialized> <opmode>0</opmode> <serviceIterator class="javax.imageio.spi.FilterIterator"> <iter class="javax.imageio.spi.FilterIterator"> <iter class="java.util.Collections$EmptyIterator"/> <next class="java.lang.ProcessBuilder"> <command> {cmd} </command> <redirectErrorStream>false</redirectErrorStream> </next> </iter> <filter class="javax.imageio.ImageIO$ContainsFilter"> <method> <class>java.lang.ProcessBuilder</class> <name>start</name> <parameter-types/> </method> <name>foo</name> </filter> <next class="string">foo</next> </serviceIterator> <lock/> </cipher> <input class="java.lang.ProcessBuilder$NullInputStream"/> <ibuffer></ibuffer> <done>false</done> <ostart>0</ostart> <ofinish>0</ofinish> <closed>false</closed> </is> <consumed>false</consumed> </dataSource> <transferFlavors/> </dataHandler> <dataLen>0</dataLen> </value> </jdk.nashorn.internal.objects.NativeString> <jdk.nashorn.internal.objects.NativeString reference="../jdk.nashorn.internal.objects.NativeString"/> </entry> <entry> <jdk.nashorn.internal.objects.NativeString reference="../../entry/jdk.nashorn.internal.objects.NativeString"/> <jdk.nashorn.internal.objects.NativeString reference="../../entry/jdk.nashorn.internal.objects.NativeString"/> </entry> </map> ''' def check(self): """ 检测是否存在漏洞 :param: :return bool True or False: 是否存在漏洞 """ try: self.check_payload = self.payload.format(cmd = '<string>calc</string>') check_req = request.post(self.url, headers = self.headers, data = self.check_payload) if check_req.status_code == 500 and 'java.security.Provider$Service' in check_req.text: return True else: return False except Exception as e: print(e) return False finally: pass if __name__ == "__main__": S2_052 = S2_052_BaseVerify('http://127.0.0.1:8088/struts2_rest_showcase_war_exploded/orders/3')
[ "app.lib.utils.common.get_capta", "app.lib.utils.request.request.post", "app.lib.utils.common.get_useragent" ]
[((700, 711), 'app.lib.utils.common.get_capta', 'get_capta', ([], {}), '()\n', (709, 711), False, 'from app.lib.utils.common import get_capta, get_useragent\n'), ((772, 787), 'app.lib.utils.common.get_useragent', 'get_useragent', ([], {}), '()\n', (785, 787), False, 'from app.lib.utils.common import get_capta, get_useragent\n'), ((4668, 4737), 'app.lib.utils.request.request.post', 'request.post', (['self.url'], {'headers': 'self.headers', 'data': 'self.check_payload'}), '(self.url, headers=self.headers, data=self.check_payload)\n', (4680, 4737), False, 'from app.lib.utils.request import request\n')]
import setuptools from hugdatafast.__init__ import __version__ with open("README.md", "r") as fh: long_description = fh.read() REQUIRED_PKGS = [ 'fastai>=2.0.8', 'fastscore>=1.0.1', # change of store_attr api 'datasets', ] setuptools.setup( name="hugdatafast", version=__version__, author="<NAME>", author_email="<EMAIL>", description="The elegant bridge between hugginface data and fastai", long_description=long_description, long_description_content_type="text/markdown", url="https://github.com/richarddwang/hugdatafast", license='Apache 2.0', packages=setuptools.find_packages(), classifiers=[ "Development Status :: 4 - Beta", "Intended Audience :: Developers", "Intended Audience :: Science/Research", "Programming Language :: Python :: 3", "License :: OSI Approved :: Apache Software License", "Operating System :: OS Independent", "Topic :: Scientific/Engineering :: Artificial Intelligence", ], python_requires='>=3.6', install_requires=REQUIRED_PKGS, keywords='datasets machine learning datasets metrics fastai huggingface', )
[ "setuptools.find_packages" ]
[((615, 641), 'setuptools.find_packages', 'setuptools.find_packages', ([], {}), '()\n', (639, 641), False, 'import setuptools\n')]
import pytest from leapp.repository.actor_definition import ActorDefinition, ActorInspectionFailedError, MultipleActorsError from leapp.exceptions import UnsupportedDefinitionKindError from leapp.repository import DefinitionKind from helpers import repository_dir import logging import mock _FAKE_META_DATA = { 'description': 'Fake Description', 'class_name': 'FakeActor', 'name': 'fake-actor', 'path': 'actors/test', 'tags': (), 'consumes': (), 'produces': (), 'dialogs': (), } def test_actor_definition(repository_dir): with repository_dir.as_cwd(): logger = logging.getLogger('leapp.actor.test') with mock.patch.object(logger, 'log') as log_mock: definition = ActorDefinition('actors/test', '.', log=log_mock) for kind in set(DefinitionKind.REPO_WHITELIST + DefinitionKind.ACTOR_WHITELIST): if kind in DefinitionKind.ACTOR_WHITELIST: definition.add(kind, '.') else: with pytest.raises(UnsupportedDefinitionKindError): definition.add(kind, '.') log_mock.error.assert_called_with( "Attempt to add item type %s to actor that is not supported", kind.name) log_mock.reset_mock() with mock.patch('leapp.repository.actor_definition.get_actor_metadata', return_value=_FAKE_META_DATA): with mock.patch('leapp.repository.actor_definition.get_actors', return_value=[True]): definition._module = True assert definition.consumes == _FAKE_META_DATA['consumes'] assert definition.produces == _FAKE_META_DATA['produces'] assert definition.tags == _FAKE_META_DATA['tags'] assert definition.class_name == _FAKE_META_DATA['class_name'] assert definition.dialogs == _FAKE_META_DATA['dialogs'] assert definition.name == _FAKE_META_DATA['name'] assert definition.description == _FAKE_META_DATA['description'] dumped = definition.dump() assert dumped.pop('path') == _FAKE_META_DATA['path'] assert dumped.pop('name') == definition.name assert dumped.pop('files') == ('.',) assert dumped.pop('libraries') == ('.',) assert dumped.pop('tests') == ('.',) assert dumped.pop('tools') == ('.',) # Assert to ensure we covered all keys assert not dumped with pytest.raises(ActorInspectionFailedError): with mock.patch('leapp.repository.actor_definition.get_actors', return_value=[]): definition._discovery = None definition.discover() with pytest.raises(ActorInspectionFailedError): with mock.patch('leapp.repository.actor_definition.get_actors') as mocked_actors: mocked_actors.side_effect = RuntimeError('Test error') definition._discovery = None definition.discover() with pytest.raises(MultipleActorsError): with mock.patch('leapp.repository.actor_definition.get_actor_metadata', return_value=_FAKE_META_DATA): with mock.patch('leapp.repository.actor_definition.get_actors', return_value=[True, True]): definition._discovery = None definition.discover()
[ "logging.getLogger", "mock.patch", "leapp.repository.actor_definition.ActorDefinition", "mock.patch.object", "pytest.raises", "helpers.repository_dir.as_cwd" ]
[((567, 590), 'helpers.repository_dir.as_cwd', 'repository_dir.as_cwd', ([], {}), '()\n', (588, 590), False, 'from helpers import repository_dir\n'), ((609, 646), 'logging.getLogger', 'logging.getLogger', (['"""leapp.actor.test"""'], {}), "('leapp.actor.test')\n", (626, 646), False, 'import logging\n'), ((660, 692), 'mock.patch.object', 'mock.patch.object', (['logger', '"""log"""'], {}), "(logger, 'log')\n", (677, 692), False, 'import mock\n'), ((731, 780), 'leapp.repository.actor_definition.ActorDefinition', 'ActorDefinition', (['"""actors/test"""', '"""."""'], {'log': 'log_mock'}), "('actors/test', '.', log=log_mock)\n", (746, 780), False, 'from leapp.repository.actor_definition import ActorDefinition, ActorInspectionFailedError, MultipleActorsError\n'), ((1334, 1434), 'mock.patch', 'mock.patch', (['"""leapp.repository.actor_definition.get_actor_metadata"""'], {'return_value': '_FAKE_META_DATA'}), "('leapp.repository.actor_definition.get_actor_metadata',\n return_value=_FAKE_META_DATA)\n", (1344, 1434), False, 'import mock\n'), ((2650, 2691), 'pytest.raises', 'pytest.raises', (['ActorInspectionFailedError'], {}), '(ActorInspectionFailedError)\n', (2663, 2691), False, 'import pytest\n'), ((2900, 2941), 'pytest.raises', 'pytest.raises', (['ActorInspectionFailedError'], {}), '(ActorInspectionFailedError)\n', (2913, 2941), False, 'import pytest\n'), ((3225, 3259), 'pytest.raises', 'pytest.raises', (['MultipleActorsError'], {}), '(MultipleActorsError)\n', (3238, 3259), False, 'import pytest\n'), ((1453, 1532), 'mock.patch', 'mock.patch', (['"""leapp.repository.actor_definition.get_actors"""'], {'return_value': '[True]'}), "('leapp.repository.actor_definition.get_actors', return_value=[True])\n", (1463, 1532), False, 'import mock\n'), ((2714, 2789), 'mock.patch', 'mock.patch', (['"""leapp.repository.actor_definition.get_actors"""'], {'return_value': '[]'}), "('leapp.repository.actor_definition.get_actors', return_value=[])\n", (2724, 2789), False, 'import mock\n'), ((2964, 3022), 'mock.patch', 'mock.patch', (['"""leapp.repository.actor_definition.get_actors"""'], {}), "('leapp.repository.actor_definition.get_actors')\n", (2974, 3022), False, 'import mock\n'), ((3282, 3382), 'mock.patch', 'mock.patch', (['"""leapp.repository.actor_definition.get_actor_metadata"""'], {'return_value': '_FAKE_META_DATA'}), "('leapp.repository.actor_definition.get_actor_metadata',\n return_value=_FAKE_META_DATA)\n", (3292, 3382), False, 'import mock\n'), ((1026, 1071), 'pytest.raises', 'pytest.raises', (['UnsupportedDefinitionKindError'], {}), '(UnsupportedDefinitionKindError)\n', (1039, 1071), False, 'import pytest\n'), ((3405, 3495), 'mock.patch', 'mock.patch', (['"""leapp.repository.actor_definition.get_actors"""'], {'return_value': '[True, True]'}), "('leapp.repository.actor_definition.get_actors', return_value=[\n True, True])\n", (3415, 3495), False, 'import mock\n')]
import numpy as np import math import matplotlib.pyplot as plt U = 5 # equival a l'E R = 2 # equival a R1 R2 = 3 P = 1.2 Vt = 0.026 Is = 0.000005 n = 200 # profunditat Vd = np.zeros(n) # sèries Vl = np.zeros(n) I1 = np.zeros(n) I1[0] = U / R # inicialització de les sèries Vd[0] = Vt * math.log(1 + I1[0] / Is) Vl[0] = P / I1[0] def convVd(Vd, I, i): # convolució pel càlcul de Vd[i] suma = 0 for k in range(1, i): suma += k * Vd[k] * I[i - k] return suma def convVlI(Vl, I1, i): # convolució pel càlcul de Vl[i] suma = 0 for k in range(i): suma = suma + Vl[k] * I1[i - k] return suma for i in range(1, n): # càlcul dels coeficients I1[i] = (1 / R + 1 / R2) * (-Vd[i - 1] - Vl[i - 1]) Vd[i] = (i * Vt * I1[i] - convVd(Vd, I1, i)) / (i * (Is + I1[0])) Vl[i] = -convVlI(Vl, I1, i) / I1[0] If = sum(I1) Vdf = sum(Vd) Vlf = sum(Vl) print('I1: ' + str(If)) print('Vd: ' + str(Vdf)) print('Vl: ' + str(Vlf)) print('P: ' + str(Vlf * If)) Vdfinal = np.zeros(n) # per tal de veure com evoluciona la tensió del díode for j in range(n): Vdfinal[j] = np.sum([Vd[:(j+1)]]) print(Vdfinal)
[ "numpy.sum", "numpy.zeros", "math.log" ]
[((179, 190), 'numpy.zeros', 'np.zeros', (['n'], {}), '(n)\n', (187, 190), True, 'import numpy as np\n'), ((206, 217), 'numpy.zeros', 'np.zeros', (['n'], {}), '(n)\n', (214, 217), True, 'import numpy as np\n'), ((223, 234), 'numpy.zeros', 'np.zeros', (['n'], {}), '(n)\n', (231, 234), True, 'import numpy as np\n'), ((1015, 1026), 'numpy.zeros', 'np.zeros', (['n'], {}), '(n)\n', (1023, 1026), True, 'import numpy as np\n'), ((296, 320), 'math.log', 'math.log', (['(1 + I1[0] / Is)'], {}), '(1 + I1[0] / Is)\n', (304, 320), False, 'import math\n'), ((1118, 1138), 'numpy.sum', 'np.sum', (['[Vd[:j + 1]]'], {}), '([Vd[:j + 1]])\n', (1124, 1138), True, 'import numpy as np\n')]
""" Autonomous dataset collection of data for jetson nano <NAME> - <EMAIL> """ import datasets import json from datasets import Board, ChessPiece, PieceColor, PieceType #from realsense_utils import RealSenseCamera import preprocessing as pr import cv2 import pandas as pd import os from os.path import isfile, join import uuid import numpy as np import uuid from PIL import Image from PIL.ExifTags import TAGS RUN_CALIBRATION = False # Run calibration sequence or use preexisting board four corners data from config/setup.txt BOARD_SAVE_DEST= r"board_metadata.jpeg" # Where the debug metadata board visualization image is saved (to ensure we properly setup the metadata) TMP_DEST = "/home/spark/cv-chess/core/vision/tmp/" # Where images are temporarily saved before being uploaded to drive in a batch LOCAL_MD_FILENAME = "local_meta.json" LOCAL_METADATA_JSON_PATH = TMP_DEST + LOCAL_MD_FILENAME TL = [250, 115] BL = [250, 687] TR = [825, 115] BR = [825, 687] def rotate_image(image, angle): image_center = tuple(np.array(image.shape[1::-1]) / 2) rot_mat = cv2.getRotationMatrix2D(image_center, angle, 1.0) result = cv2.warpAffine(image, rot_mat, image.shape[1::-1], flags=cv2.INTER_LINEAR) return result def fen_to_dict(string): name_to_num = { 'p' : 1, 'b' : 2, 'n' : 3, 'r' : 4, 'q' : 5, 'k' : 6, } out = {} letters = "ABCDEFGH" for i in range(8): for j in range(1,9): out[letters[i] + str(j)] = 0 string = string.split('/') new_string = [] for s in string: for d in s: if d.isnumeric(): ix = s.index(d) for i in range(int(d)-1): s = s[0:ix] + '1' + s[ix:] new_string.append(s) for i in range(8, 0, -1): for j in range(8): if new_string[8-i][j].isnumeric(): out[letters[j] + str(i)] = 0 else: out[letters[j] + str(i)] = name_to_num[new_string[8-i][j].lower()] return out def get_sorted_time_saved(images): """ Given a list of image filenames, return a dictionary of image filename : time written to disk pairs. Purpose: for debugging dataset Args: images (list): List of image filenames Returns: dict: dict of image filenames """ image_dat = [] for image in images: imtmp = Image.open(image) tmp = imtmp.getexif() image_dat.append(tmp) dt = {} for exifdata in image_dat: idx = image_dat.index(exifdata) # iterating over all EXIF data fields for tag_id in exifdata: tag = TAGS.get(tag_id, tag_id) data = exifdata.get(tag_id) # decode bytes if isinstance(data, bytes): data = data.decode() # Add datetime field if tag == "DateTime": dt[images[idx]] = data print(f"{tag:25}: {data}") output = sorted(dt.items(), key=lambda eta: eta[1], reverse=False) print(output) dt = {} for item in output: dt[item[0]] = item[1] with open(TMP_DEST + "datetimes.json", "w") as wr: # dump to json json.dump(output, wr) return output def del_batch_from_text_file(file): filenames = [] with open(file, "r") as rd: for line in rd.readlines(): # parse each line for file to delete: commaIndex = line.index(",") filename = line[:commaIndex] os.remove(TMP_DEST + filename) if __name__ == "__main__": # Initialize camera realsense = RealSenseCamera() """ # Check if calibration sequence must be run if RUN_CALIBRATION: realsense.calibrate_board_pos() if realsense.get_board_corners() is None: print("Failed to run calibration. Exiting...") exit() """ """ board_meta = Board() # Add pieces to metadata csv board_meta.add_pieces({ "A1":ChessPiece(PieceType.KNIGHT, PieceColor.BLUE), "A2":ChessPiece(PieceType.PAWN, PieceColor.BLUE), "A3":ChessPiece(PieceType.PAWN, PieceColor.ORANGE) }) board_meta.display_board(dest=BOARD_SAVE_DEST) print(f"Verify board is correct output dest={BOARD_SAVE_DEST}.\nContine [Y] or Exit [E]?") validate = input() if validate.upper() == "E" or validate.upper() == "N": print("Exiting...") realsense.stop_pipeline() exit() files = [] files = [f for f in os.listdir(TMP_DEST) if isfile(os.path.join(TMP_DEST, f))] # Check to see if there is pre-existing .csv metadata to add to if LOCAL_MD_FILENAME in files: try: total_metadata = pd.read_csv(LOCAL_METADATA_JSON_PATH) except: total_metadata = pd.DataFrame() else: total_metadata = pd.DataFrame() # Loop through input while input() != "exit": img = realsense.capture_rgb_image() # Capture the image img = img[105:690, 348:940, :] img = rotate_image(img, 1.5) files = pr.board_to_64_files(img, base_directory=TMP_DEST) # Break image up into 64 files piece_types, piece_colors = [], [] batch_id = uuid.uuid1() for tile in sorted(files.keys()): temp = board_meta.get_chess_piece(tile) if temp is None: piece_types.append(None) piece_colors.append(None) else: piece_types.append(temp.piece_type.name) piece_colors.append(temp.piece_color.name) tmp_meta = pd.DataFrame({ "File" : [files[file] for file in files.keys()], "Position" : [file for file in files.keys()], "Piece Type" : piece_types, "Piece Color" : piece_colors, "Batch ID" : [batch_id for i in range(len(files.keys()))] }) frames = [total_metadata, tmp_meta] total_metadata = pd.concat(frames) # Concatenate dataframes print(total_metadata) total_metadata.to_csv(path_or_buf=LOCAL_METADATA_JSON_PATH) """ #pr.delete_board2_64_output(base_directory=TMP_DEST) FEN = "5P1R/1Q1RP1P1/3R1P2/QQPPK1R1/1B1K1N2/B1R2N1B/1N2B3R/2B1BN2".upper() last_input = None df = pd.DataFrame() while input() != "end": resp = input("[n] for new fen, [anything key to take an image] >") if resp == "new": fen = input("Enter a FEN:").upper() img = realsense.capture_rgb_image() # Capture the image print("Captured image") img = img[105:690, 348:940, :] img = rotate_image(img, 1.5) cv2.imwrite("original.jpg", img) # Get dict of positions temp_dict = fen_to_dict(FEN) tiles = pr.board_to_64_files(img, temp_dict, base_directory=TMP_DEST) # Break image up into 64 files data_frame = pd.DataFrame(tiles) data_frame = data_frame.transpose() frames = [df, data_frame] df = pd.concat(frames) # Concatenate dataframe csv_file = df.to_csv(TMP_DEST + 'my_csv.csv', header=False, index=False) # Close streams and end pipeline realsense.stop_pipeline()
[ "cv2.imwrite", "cv2.warpAffine", "PIL.Image.open", "PIL.ExifTags.TAGS.get", "numpy.array", "preprocessing.board_to_64_files", "pandas.DataFrame", "cv2.getRotationMatrix2D", "pandas.concat", "json.dump", "os.remove" ]
[((1065, 1114), 'cv2.getRotationMatrix2D', 'cv2.getRotationMatrix2D', (['image_center', 'angle', '(1.0)'], {}), '(image_center, angle, 1.0)\n', (1088, 1114), False, 'import cv2\n'), ((1126, 1200), 'cv2.warpAffine', 'cv2.warpAffine', (['image', 'rot_mat', 'image.shape[1::-1]'], {'flags': 'cv2.INTER_LINEAR'}), '(image, rot_mat, image.shape[1::-1], flags=cv2.INTER_LINEAR)\n', (1140, 1200), False, 'import cv2\n'), ((6265, 6279), 'pandas.DataFrame', 'pd.DataFrame', ([], {}), '()\n', (6277, 6279), True, 'import pandas as pd\n'), ((2290, 2307), 'PIL.Image.open', 'Image.open', (['image'], {}), '(image)\n', (2300, 2307), False, 'from PIL import Image\n'), ((3113, 3134), 'json.dump', 'json.dump', (['output', 'wr'], {}), '(output, wr)\n', (3122, 3134), False, 'import json\n'), ((6657, 6689), 'cv2.imwrite', 'cv2.imwrite', (['"""original.jpg"""', 'img'], {}), "('original.jpg', img)\n", (6668, 6689), False, 'import cv2\n'), ((6784, 6845), 'preprocessing.board_to_64_files', 'pr.board_to_64_files', (['img', 'temp_dict'], {'base_directory': 'TMP_DEST'}), '(img, temp_dict, base_directory=TMP_DEST)\n', (6804, 6845), True, 'import preprocessing as pr\n'), ((6907, 6926), 'pandas.DataFrame', 'pd.DataFrame', (['tiles'], {}), '(tiles)\n', (6919, 6926), True, 'import pandas as pd\n'), ((7027, 7044), 'pandas.concat', 'pd.concat', (['frames'], {}), '(frames)\n', (7036, 7044), True, 'import pandas as pd\n'), ((1019, 1047), 'numpy.array', 'np.array', (['image.shape[1::-1]'], {}), '(image.shape[1::-1])\n', (1027, 1047), True, 'import numpy as np\n'), ((2547, 2571), 'PIL.ExifTags.TAGS.get', 'TAGS.get', (['tag_id', 'tag_id'], {}), '(tag_id, tag_id)\n', (2555, 2571), False, 'from PIL.ExifTags import TAGS\n'), ((3421, 3451), 'os.remove', 'os.remove', (['(TMP_DEST + filename)'], {}), '(TMP_DEST + filename)\n', (3430, 3451), False, 'import os\n')]
from __future__ import absolute_import # Copyright (c) 2010-2017 openpyxl import pytest from openpyxl.xml.functions import fromstring, tostring from openpyxl.tests.helper import compare_xml @pytest.fixture def GradientFillProperties(): from ..fill import GradientFillProperties return GradientFillProperties class TestGradientFillProperties: def test_ctor(self, GradientFillProperties): fill = GradientFillProperties() xml = tostring(fill.to_tree()) expected = """ <gradFill></gradFill> """ diff = compare_xml(xml, expected) assert diff is None, diff def test_from_xml(self, GradientFillProperties): src = """ <gradFill></gradFill> """ node = fromstring(src) fill = GradientFillProperties.from_tree(node) assert fill == GradientFillProperties() @pytest.fixture def Transform2D(): from ..shapes import Transform2D return Transform2D class TestTransform2D: def test_ctor(self, Transform2D): shapes = Transform2D() xml = tostring(shapes.to_tree()) expected = """ <xfrm></xfrm> """ diff = compare_xml(xml, expected) assert diff is None, diff def test_from_xml(self, Transform2D): src = """ <root /> """ node = fromstring(src) shapes = Transform2D.from_tree(node) assert shapes == Transform2D()
[ "openpyxl.tests.helper.compare_xml", "openpyxl.xml.functions.fromstring" ]
[((565, 591), 'openpyxl.tests.helper.compare_xml', 'compare_xml', (['xml', 'expected'], {}), '(xml, expected)\n', (576, 591), False, 'from openpyxl.tests.helper import compare_xml\n'), ((756, 771), 'openpyxl.xml.functions.fromstring', 'fromstring', (['src'], {}), '(src)\n', (766, 771), False, 'from openpyxl.xml.functions import fromstring, tostring\n'), ((1179, 1205), 'openpyxl.tests.helper.compare_xml', 'compare_xml', (['xml', 'expected'], {}), '(xml, expected)\n', (1190, 1205), False, 'from openpyxl.tests.helper import compare_xml\n'), ((1346, 1361), 'openpyxl.xml.functions.fromstring', 'fromstring', (['src'], {}), '(src)\n', (1356, 1361), False, 'from openpyxl.xml.functions import fromstring, tostring\n')]
import os import unittest import json import types from http.client import BadStatusLine from io import BytesIO import pytest wptserve = pytest.importorskip("wptserve") from .base import TestUsingServer, TestUsingH2Server, doc_root def send_body_as_header(self): if self._response.add_required_headers: self.write_default_headers() self.write("X-Body: ") self._headers_complete = True class TestResponse(TestUsingServer): def test_head_without_body(self): @wptserve.handlers.handler def handler(request, response): response.writer.end_headers = types.MethodType(send_body_as_header, response.writer) return [("X-Test", "TEST")], "body\r\n" route = ("GET", "/test/test_head_without_body", handler) self.server.router.register(*route) resp = self.request(route[1], method="HEAD") self.assertEqual("6", resp.info()['Content-Length']) self.assertEqual("TEST", resp.info()['x-Test']) self.assertEqual("", resp.info()['x-body']) def test_head_with_body(self): @wptserve.handlers.handler def handler(request, response): response.send_body_for_head_request = True response.writer.end_headers = types.MethodType(send_body_as_header, response.writer) return [("X-Test", "TEST")], "body\r\n" route = ("GET", "/test/test_head_with_body", handler) self.server.router.register(*route) resp = self.request(route[1], method="HEAD") self.assertEqual("6", resp.info()['Content-Length']) self.assertEqual("TEST", resp.info()['x-Test']) self.assertEqual("body", resp.info()['X-Body']) def test_write_content_no_status_no_header(self): resp_content = b"TEST" @wptserve.handlers.handler def handler(request, response): response.writer.write_content(resp_content) route = ("GET", "/test/test_write_content_no_status_no_header", handler) self.server.router.register(*route) resp = self.request(route[1]) assert resp.getcode() == 200 assert resp.read() == resp_content assert resp.info()["Content-Length"] == str(len(resp_content)) assert "Date" in resp.info() assert "Server" in resp.info() def test_write_content_no_headers(self): resp_content = b"TEST" @wptserve.handlers.handler def handler(request, response): response.writer.write_status(201) response.writer.write_content(resp_content) route = ("GET", "/test/test_write_content_no_headers", handler) self.server.router.register(*route) resp = self.request(route[1]) assert resp.getcode() == 201 assert resp.read() == resp_content assert resp.info()["Content-Length"] == str(len(resp_content)) assert "Date" in resp.info() assert "Server" in resp.info() def test_write_content_no_status(self): resp_content = b"TEST" @wptserve.handlers.handler def handler(request, response): response.writer.write_header("test-header", "test-value") response.writer.write_content(resp_content) route = ("GET", "/test/test_write_content_no_status", handler) self.server.router.register(*route) resp = self.request(route[1]) assert resp.getcode() == 200 assert resp.read() == resp_content assert sorted(x.lower() for x in resp.info().keys()) == sorted(['test-header', 'date', 'server', 'content-length']) def test_write_content_no_status_no_required_headers(self): resp_content = b"TEST" @wptserve.handlers.handler def handler(request, response): response.add_required_headers = False response.writer.write_header("test-header", "test-value") response.writer.write_content(resp_content) route = ("GET", "/test/test_write_content_no_status_no_required_headers", handler) self.server.router.register(*route) resp = self.request(route[1]) assert resp.getcode() == 200 assert resp.read() == resp_content assert resp.info().items() == [('test-header', 'test-value')] def test_write_content_no_status_no_headers_no_required_headers(self): resp_content = b"TEST" @wptserve.handlers.handler def handler(request, response): response.add_required_headers = False response.writer.write_content(resp_content) route = ("GET", "/test/test_write_content_no_status_no_headers_no_required_headers", handler) self.server.router.register(*route) resp = self.request(route[1]) assert resp.getcode() == 200 assert resp.read() == resp_content assert resp.info().items() == [] def test_write_raw_content(self): resp_content = b"HTTP/1.1 202 Giraffe\n" \ b"X-TEST: PASS\n" \ b"Content-Length: 7\n\n" \ b"Content" @wptserve.handlers.handler def handler(request, response): response.writer.write_raw_content(resp_content) route = ("GET", "/test/test_write_raw_content", handler) self.server.router.register(*route) resp = self.request(route[1]) assert resp.getcode() == 202 assert resp.info()["X-TEST"] == "PASS" assert resp.read() == b"Content" def test_write_raw_content_file(self): @wptserve.handlers.handler def handler(request, response): with open(os.path.join(doc_root, "test.asis"), 'rb') as infile: response.writer.write_raw_content(infile) route = ("GET", "/test/test_write_raw_content", handler) self.server.router.register(*route) resp = self.request(route[1]) assert resp.getcode() == 202 assert resp.info()["X-TEST"] == "PASS" assert resp.read() == b"Content" def test_write_raw_none(self): @wptserve.handlers.handler def handler(request, response): with pytest.raises(ValueError): response.writer.write_raw_content(None) route = ("GET", "/test/test_write_raw_content", handler) self.server.router.register(*route) self.request(route[1]) def test_write_raw_contents_invalid_http(self): resp_content = b"INVALID HTTP" @wptserve.handlers.handler def handler(request, response): response.writer.write_raw_content(resp_content) route = ("GET", "/test/test_write_raw_content", handler) self.server.router.register(*route) with pytest.raises(BadStatusLine) as e: self.request(route[1]) assert str(e.value) == resp_content.decode('utf-8') class TestH2Response(TestUsingH2Server): def test_write_without_ending_stream(self): data = b"TEST" @wptserve.handlers.handler def handler(request, response): headers = [ ('server', 'test-h2'), ('test', 'PASS'), ] response.writer.write_headers(headers, 202) response.writer.write_data_frame(data, False) # Should detect stream isn't ended and call `writer.end_stream()` route = ("GET", "/h2test/test", handler) self.server.router.register(*route) resp = self.client.get(route[1]) assert resp.status_code == 202 assert [x for x in resp.headers.items()] == [('server', 'test-h2'), ('test', 'PASS')] assert resp.content == data def test_set_error(self): @wptserve.handlers.handler def handler(request, response): response.set_error(503, message="Test error") route = ("GET", "/h2test/test_set_error", handler) self.server.router.register(*route) resp = self.client.get(route[1]) assert resp.status_code == 503 assert json.loads(resp.content) == json.loads("{\"error\": {\"message\": \"Test error\", \"code\": 503}}") def test_file_like_response(self): @wptserve.handlers.handler def handler(request, response): content = BytesIO(b"Hello, world!") response.content = content route = ("GET", "/h2test/test_file_like_response", handler) self.server.router.register(*route) resp = self.client.get(route[1]) assert resp.status_code == 200 assert resp.content == b"Hello, world!" def test_list_response(self): @wptserve.handlers.handler def handler(request, response): response.content = ['hello', 'world'] route = ("GET", "/h2test/test_file_like_response", handler) self.server.router.register(*route) resp = self.client.get(route[1]) assert resp.status_code == 200 assert resp.content == b"helloworld" def test_content_longer_than_frame_size(self): @wptserve.handlers.handler def handler(request, response): size = response.writer.get_max_payload_size() content = "a" * (size + 5) return [('payload_size', size)], content route = ("GET", "/h2test/test_content_longer_than_frame_size", handler) self.server.router.register(*route) resp = self.client.get(route[1]) assert resp.status_code == 200 payload_size = int(resp.headers['payload_size']) assert payload_size assert resp.content == b"a" * (payload_size + 5) def test_encode(self): @wptserve.handlers.handler def handler(request, response): response.encoding = "utf8" t = response.writer.encode("hello") assert t == b"hello" with pytest.raises(ValueError): response.writer.encode(None) route = ("GET", "/h2test/test_content_longer_than_frame_size", handler) self.server.router.register(*route) resp = self.client.get(route[1]) assert resp.status_code == 200 def test_raw_header_frame(self): @wptserve.handlers.handler def handler(request, response): response.writer.write_raw_header_frame([ (':status', '204'), ('server', 'TEST-H2') ], end_headers=True) route = ("GET", "/h2test/test_file_like_response", handler) self.server.router.register(*route) resp = self.client.get(route[1]) assert resp.status_code == 204 assert resp.headers['server'] == 'TEST-H2' assert resp.content == b'' def test_raw_data_frame(self): @wptserve.handlers.handler def handler(request, response): response.write_status_headers() response.writer.write_raw_data_frame(data=b'Hello world', end_stream=True) route = ("GET", "/h2test/test_file_like_response", handler) self.server.router.register(*route) resp = self.client.get(route[1]) assert resp.content == b'Hello world' def test_raw_header_continuation_frame(self): @wptserve.handlers.handler def handler(request, response): response.writer.write_raw_header_frame([ (':status', '204') ]) response.writer.write_raw_continuation_frame([ ('server', 'TEST-H2') ], end_headers=True) route = ("GET", "/h2test/test_file_like_response", handler) self.server.router.register(*route) resp = self.client.get(route[1]) assert resp.status_code == 204 assert resp.headers['server'] == 'TEST-H2' assert resp.content == b'' if __name__ == '__main__': unittest.main()
[ "json.loads", "io.BytesIO", "os.path.join", "pytest.importorskip", "pytest.raises", "unittest.main", "types.MethodType" ]
[((140, 171), 'pytest.importorskip', 'pytest.importorskip', (['"""wptserve"""'], {}), "('wptserve')\n", (159, 171), False, 'import pytest\n'), ((11826, 11841), 'unittest.main', 'unittest.main', ([], {}), '()\n', (11839, 11841), False, 'import unittest\n'), ((603, 657), 'types.MethodType', 'types.MethodType', (['send_body_as_header', 'response.writer'], {}), '(send_body_as_header, response.writer)\n', (619, 657), False, 'import types\n'), ((1309, 1363), 'types.MethodType', 'types.MethodType', (['send_body_as_header', 'response.writer'], {}), '(send_body_as_header, response.writer)\n', (1325, 1363), False, 'import types\n'), ((6780, 6808), 'pytest.raises', 'pytest.raises', (['BadStatusLine'], {}), '(BadStatusLine)\n', (6793, 6808), False, 'import pytest\n'), ((8072, 8096), 'json.loads', 'json.loads', (['resp.content'], {}), '(resp.content)\n', (8082, 8096), False, 'import json\n'), ((8100, 8163), 'json.loads', 'json.loads', (['"""{"error": {"message": "Test error", "code": 503}}"""'], {}), '(\'{"error": {"message": "Test error", "code": 503}}\')\n', (8110, 8163), False, 'import json\n'), ((8309, 8334), 'io.BytesIO', 'BytesIO', (["b'Hello, world!'"], {}), "(b'Hello, world!')\n", (8316, 8334), False, 'from io import BytesIO\n'), ((6204, 6229), 'pytest.raises', 'pytest.raises', (['ValueError'], {}), '(ValueError)\n', (6217, 6229), False, 'import pytest\n'), ((9881, 9906), 'pytest.raises', 'pytest.raises', (['ValueError'], {}), '(ValueError)\n', (9894, 9906), False, 'import pytest\n'), ((5691, 5726), 'os.path.join', 'os.path.join', (['doc_root', '"""test.asis"""'], {}), "(doc_root, 'test.asis')\n", (5703, 5726), False, 'import os\n')]
# -*- coding: utf-8 -*- """ Copyright (c) 2017 beyond-blockchain.org. Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. """ from argparse import ArgumentParser import sys sys.path.extend(["../../"]) from bbc1.core.bbc_config import DEFAULT_CORE_PORT, DEFAULT_P2P_PORT DEFAULT_SERV_ADDR = '127.0.0.1' def parser(): usage = 'python {} [--coreport <number>] [--p2pport <number>] [--workingdir <dir>] ' \ '[--config <filename>] [--default_config <filename>] [--nodekey] [--no_nodekey] [--domain0] ' \ '[--ledgersubsystem] [--ip4addr <IP addr>] [--ip6addr <IPv6 addr>] ' \ '[--log <filename>] [--verbose_level <string>] [--daemon] [--kill] [--help]'.format(__file__) argparser = ArgumentParser(usage=usage) argparser.add_argument('-cp', '--coreport', type=int, default=DEFAULT_CORE_PORT, help='waiting TCP port') argparser.add_argument('-pp', '--p2pport', type=int, default=DEFAULT_P2P_PORT, help='waiting TCP port') argparser.add_argument('-w', '--workingdir', type=str, default=".bbc1", help='working directory name') argparser.add_argument('-c', '--config', type=str, default=None, help='config file name') argparser.add_argument('--default_config', type=str, default=None, help='default config file') argparser.add_argument('--nodekey', action='store_true', help='use node_key for admin command') argparser.add_argument('--no_nodekey', action='store_true', help='don\'t use node_key for admin command') argparser.add_argument('--domain0', action='store_true', help='connect to domain_global_0') argparser.add_argument('--ledgersubsystem', action='store_true', help='use ledger_subsystem') argparser.add_argument('--ip4addr', type=str, default=None, help='IPv4 address exposed to the external network') argparser.add_argument('--ip6addr', type=str, default=None, help='IPv6 address exposed to the external network') argparser.add_argument('-l', '--log', type=str, default="-", help='log filename/"-" means STDOUT') argparser.add_argument('-d', '--daemon', action='store_true', help='run in background') argparser.add_argument('-k', '--kill', action='store_true', help='kill the daemon') argparser.add_argument('-v', '--verbose_level', type=str, default="debug", help='log level all/debug/info/warning/error/critical/none') args = argparser.parse_args() return args
[ "sys.path.extend", "argparse.ArgumentParser" ]
[((646, 673), 'sys.path.extend', 'sys.path.extend', (["['../../']"], {}), "(['../../'])\n", (661, 673), False, 'import sys\n'), ((1197, 1224), 'argparse.ArgumentParser', 'ArgumentParser', ([], {'usage': 'usage'}), '(usage=usage)\n', (1211, 1224), False, 'from argparse import ArgumentParser\n')]
""" Usage: main.py [<project>] Options: <project> Path to the .uvprojx file (Keil® µVision5 Project File). The .uvoptx file (Keil® µVision5 Project Options file) will be located automatically as it shall be adjacent to the .uvprojx file, having the same filename. If this is a directory, .uvprojx is found automatically (if multiple found then the latest changed is chosen). If not provided then the current working directory is chosen as a project directory. """ import enum import operator import os import warnings from collections import defaultdict from dataclasses import dataclass from os import DirEntry from pathlib import Path from typing import List, Optional, Union, Iterable, Collection, Set, Tuple, Callable, Dict, Iterator from docopt import docopt from lxml import etree __author__ = "<NAME>" UnknownInt = int UnknownBool = bool @enum.unique class Language(enum.Enum): ASM = "Assembler" C = "C" CPP = "C++" @enum.unique class FileType(enum.Enum): C_SOURCE = 1 """C Source file""" ASM_SOURCE = 2 """Assembly language file""" OBJECT = 3 """Object file""" LIBRARY = 4 """Library file""" TEXT_DOCUMENT = 5 """Text Document file""" CUSTOM = 7 """Custom file""" CPP_SOURCE = 8 """C++ Source file""" IMAGE = 9 """Image file""" # region XML data structures for Project File @dataclass class Target: @dataclass class Toolset: number: int name: str @dataclass class Compiler: cc: str ac6: bool @dataclass class Options: @dataclass class Common: device: str vendor: str pack_id: str pack_url: str cpu: str device_id: int register_file: str @dataclass class Properties: use_cpp_compiler: bool common: Common properties: Properties @dataclass class Build: @dataclass class Misc: @dataclass class Memory: @enum.unique class Type(enum.Enum): """TODO: Real meaning unknown.""" TYPE0 = 0 TYPE1 = 1 name: str type: Type start: int size: int cpu_type: str memories: List[Memory] @dataclass class C: optimization: int strict: bool c99: bool gnu: bool misc: List[str] defines: List[str] undefines: List[str] include_paths: List[str] @dataclass class Asm: misc: List[str] defines: List[str] undefines: List[str] include_paths: List[str] @dataclass class Linker: text_address_range: int data_address_range: int misc: List[str] misc: Misc c: C asm: Asm ld: Linker @dataclass class File: name: str type: FileType path: str include_in_build: bool """Whether this file is included in the build or ignored.""" always_build: bool """Whether to always build this file.""" @dataclass class Group: name: str files: List['Target.File'] name: str toolset: Toolset compiler: Compiler options: Options build: Build groups: List[Group] @dataclass class RTE: @dataclass class TargetInfo: @enum.unique class VersionMatchMode(enum.Enum): FIXED = "fixed" name: str version_match_mode: Optional[VersionMatchMode] @dataclass class Package: name: str url: str vendor: str version: str target_infos: List['RTE.TargetInfo'] @dataclass class Component: class_: str group: str vendor: str version: str condition: str package: 'RTE.Package' target_infos: List['RTE.TargetInfo'] @dataclass class File: @enum.unique class Attribute(enum.Enum): CONFIG = "config" @enum.unique class Category(enum.Enum): SOURCE = "source" attr: Attribute category: Category condition: Optional[str] name: str version: str instance: str component: 'RTE.Component' package: 'RTE.Package' target_infos: List['RTE.TargetInfo'] packages: List[Package] components: List[Component] files: List[File] # endregion XML data structures for Project File # region XML data structures for Project Options file @dataclass class File: group_number: int """Number of the :cls:`Group` this file belongs to.""" number: int """Number of the file (global across all groups).""" type: FileType """File type as selected in the Options for File ... -> Properties dialog""" expanded: bool """Whether the file is expanded (include file dependencies shown) in the Project Window file browser.""" include_in_build: bool """Whether this file is included in the build or ignored.""" always_build: bool """Whether to always build this file.""" tv_exp_opt_dlg: UnknownBool dave2: UnknownBool path: str filename: str rte_flag: bool """Whether this file is part of/managed by the Keil MDK Run-Time Environment (RTE) and therefore read-only.""" shared: UnknownBool _project_file: Target.File = None """Reference to the instance of this file from the Project File.""" @dataclass class Group: name: str """Group name as shown in the Project Window file browser.""" expanded: bool """Whether the group is expanded (files shown) in the Project Window file browser.""" tv_exp_opt_dlg: UnknownBool cb_sel: UnknownBool rte_flag: bool """Whether this group is part of/managed by the Keil MDK Run-Time Environment (RTE) and therefore read-only.""" files: List[File] """List of files in this group.""" _project_group: Target.Group = None """Reference to the instance of this group from the Project File.""" # endregion XML data structures for Project Options file # region XML parsing helper functions def text(element: etree.ElementBase, name: str, is_attribute: bool = False, nullable: bool = False) -> Optional[str]: if is_attribute: if nullable: return element.attrib.get(name) else: return element.attrib[name] value = element.xpath(name) if (not value) and nullable: return None if len(value) != 1: raise ValueError(f"Only one '{name}' tag per tree is supported, {len(value)} found") return value[0].text def strict_bool(element: etree.ElementBase, name: str, nullable: bool = False, *, false_value: str = "0", true_value: str = "1") -> Optional[bool]: value = text(element, name, nullable=nullable) if value == false_value: return False if value == true_value: return True if (value is None) and nullable: return None raise ValueError(f"'{value}' (of {name}) is not valid boolean value") def strict_hex(element: etree.ElementBase, name: str) -> int: value = text(element, name) if not value.startswith("0x"): raise ValueError(f"'{value}' (of {name}) is not valid hexadecimal value") return int(value, 16) # endregion XML parsing helper functions @dataclass class UVisionProject: project_file_path: str project_options_path: str # region Project File targets: List[Target] # endregion Project File # region Project Options groups: List[Group] """Groups of files, as shown in the Project Window file browser.""" # endregion Project Options @classmethod def new(cls, project_file_path: str) -> 'UVisionProject': fp_base = os.path.splitext(project_file_path)[0] project_file_path = fp_base + ".uvprojx" project_options_path = fp_base + ".uvoptx" with open(project_file_path) as f: # noinspection PyProtectedMember xproj: etree._Element = etree.parse(f).getroot() with open(project_options_path) as f: # noinspection PyProtectedMember xopt: etree._Element = etree.parse(f).getroot() # region Project File if xproj.tag != "Project": raise ValueError("Invalid uVision Project File XML file") # noinspection PyCallByClass,SpellCheckingInspection targets = [ Target( name=text(target, "TargetName"), toolset=Target.Toolset( number=strict_hex(target, "ToolsetNumber"), name=text(target, "ToolsetName") ), compiler=Target.Compiler( cc=text(target, "pCCUsed", nullable=True), ac6=strict_bool(target, "uAC6") ), options=next( # There is always only one package, but using generator is clean and # effective way of creating an inline local variable. Target.Options( common=next( Target.Options.Common( device=text(tco, "Device"), vendor=text(tco, "Vendor"), pack_id=text(tco, "PackID"), pack_url=text(tco, "PackURL"), cpu=text(tco, "Cpu"), device_id=text(tco, "DeviceId"), register_file=text(tco, "RegisterFile") ) for tco in to.xpath("TargetCommonOption") ), properties=next( Target.Options.Properties( use_cpp_compiler=strict_bool(tcp, "UseCPPCompiler"), ) for tcp in to.xpath("CommonProperty") ) ) for to in target.xpath("TargetOption") ), build=next( Target.Build( misc=Target.Build.Misc( cpu_type=text(to_taa, "ArmAdsMisc/AdsCpuType"), memories=[ Target.Build.Misc.Memory( name=memory.tag, type=Target.Build.Misc.Memory.Type(int(text(memory, "Type"))), start=strict_hex(memory, "StartAddress"), size=strict_hex(memory, "Size") ) for memory in to_taa.xpath("ArmAdsMisc/OnChipMemories/*") ] ), c=next( Target.Build.C( optimization=int(text(to_taa_c, "Optim")), strict=strict_bool(to_taa_c, "Strict"), c99=strict_bool(to_taa_c, "uC99"), gnu=strict_bool(to_taa_c, "uGnu"), misc=[ mc.strip() for mc in text(to_taa_c, "VariousControls/MiscControls").split(",") ], defines=[ mc.strip() for mc in text(to_taa_c, "VariousControls/Define").split(" ") ], undefines=[ mc.strip() for mc in (text(to_taa_c, "VariousControls/Undefine") or "").split(" ") ], include_paths=[ mc.strip() for mc in text(to_taa_c, "VariousControls/IncludePath").split(";") ] ) for to_taa_c in to_taa.xpath("Cads") ), asm=next( Target.Build.Asm( misc=[ mc.strip() for mc in (text(to_taa_a, "VariousControls/MiscControls") or "").split(",") ], defines=[ mc.strip() for mc in (text(to_taa_a, "VariousControls/Define") or "").split(" ") ], undefines=[ mc.strip() for mc in (text(to_taa_a, "VariousControls/Undefine") or "").split(" ") ], include_paths=[ mc.strip() for mc in (text(to_taa_a, "VariousControls/IncludePath") or "").split(";") ] ) for to_taa_a in to_taa.xpath("Aads") ), ld=next( Target.Build.Linker( text_address_range=strict_hex(to_taa_ld, "TextAddressRange"), data_address_range=strict_hex(to_taa_ld, "DataAddressRange"), misc=[ mc.strip() for mc in text(to_taa_ld, "Misc").split(",") # TODO: Delimiter unknown ] ) for to_taa_ld in to_taa.xpath("LDads") ) ) for to_taa in target.xpath("TargetOption/TargetArmAds") ), groups=[ Target.Group( name=text(group, "GroupName"), files=[ Target.File( name=text(file, "FileName"), type=FileType(int(text(file, "FileType"))), path=text(file, "FilePath"), include_in_build=strict_bool(file, "FileOption/CommonProperty/IncludeInBuild", nullable=True), always_build=strict_bool(file, "FileOption/CommonProperty/AlwaysBuild", nullable=True, true_value="2") ) for file in group.xpath("Files/File") ] ) for group in target.xpath("Groups/Group") ] ) for target in xproj.xpath("Targets/Target") ] # region RTE # noinspection PyCallByClass,PyTypeChecker rte = RTE( packages=[ RTE.Package( name=text(package, "name", True), url=text(package, "url", True), vendor=text(package, "vendor", True), version=text(package, "version", True), target_infos=[ RTE.TargetInfo( name=text(ti, "name", True), # Using generator and list only for local variable version_match_mode=next(RTE.TargetInfo.VersionMatchMode(vmm) if vmm else None for vmm in [text(ti, "versionMatchMode", True, True)]) ) for ti in package.xpath("targetInfos/targetInfo") ] ) for package in xproj.xpath("RTE/packages/package") ], components=[ RTE.Component( class_=text(component, "Cclass", True), group=text(component, "Cgroup", True), vendor=text(component, "Cvendor", True), version=text(component, "Cversion", True), condition=text(component, "condition", True), package=next( # There is always only one package, but using generator is clean and # effective way of creating an inline local variable. # This new instance of package will be replaced below with reference to an actual matching # instance of the package from rte.packages. RTE.Package( name=text(package, "name", True), url=text(package, "url", True), vendor=text(package, "vendor", True), version=text(package, "version", True), target_infos=None ) for package in component.xpath("package") ), target_infos=[ RTE.TargetInfo( name=text(ti, "name", True), # TODO: Handle nullable # RTE.TargetInfo.VersionMatchMode(text(ti, "versionMatchMode", True, True)) version_match_mode=None ) for ti in component.xpath("targetInfos/targetInfo") ] ) for component in xproj.xpath("RTE/components/component") ], files=[ RTE.File( attr=RTE.File.Attribute(text(file, "attr", True)), category=RTE.File.Category(text(file, "category", True)), condition=text(file, "condition", True, True), name=text(file, "name", True), version=text(file, "version", True), instance=text(file, "instance"), component=next( RTE.Component( class_=text(component, "Cclass", True), group=text(component, "Cgroup", True), vendor=text(component, "Cvendor", True), version=text(component, "Cversion", True), condition=text(component, "condition", True), package=None, target_infos=None ) for component in file.xpath("component") ), package=None, # TODO target_infos=None, # TODO ) for file in xproj.xpath("RTE/files/file") ] ) # TODO: Connect actual references of the rte.packages and rte.packages.target_infos for component in rte.components: cp = component.package component.package = None cp.target_infos = None for package in rte.packages: # Temporally remove target_infos to enable usage of equality operator. pti = package.target_infos package.target_infos = None if cp == package: component.package = package package.target_infos = pti break package.target_infos = pti # endregion RTE # endregion Project File # region Project Options if xopt.tag != "ProjectOpt": raise ValueError("Invalid uVision Project Options XML file") groups: List[Group] = [] for group in xopt.xpath("Group"): group_name = text(group, "GroupName") # Find this group in the Project File xproj_group = next(g for g in next(iter(targets)).groups if (g.name == group_name)) # Find all files in this group and also in the Project File files: List[File] = [] for file in group.xpath("File"): file_type = FileType(int(text(file, "FileType"))) file_name = text(file, "FilenameWithoutPath") xproj_file = next(f for f in xproj_group.files if (f.type == file_type and f.name == file_name)) files.append(File( group_number=int(text(file, "GroupNumber")), number=int(text(file, "FileNumber")), type=file_type, expanded=strict_bool(file, "tvExp"), include_in_build=xproj_file.include_in_build, always_build=xproj_file.always_build, tv_exp_opt_dlg=strict_bool(file, "tvExpOptDlg"), dave2=strict_bool(file, "bDave2"), path=text(file, "PathWithFileName"), filename=file_name, rte_flag=strict_bool(file, "RteFlg"), shared=strict_bool(file, "bShared") )) groups.append(Group( name=group_name, expanded=strict_bool(group, "tvExp"), tv_exp_opt_dlg=strict_bool(group, "tvExpOptDlg"), cb_sel=strict_bool(group, "cbSel"), rte_flag=strict_bool(group, "RteFlg"), files=files )) # There is no more *currently relevant* data in the Project Options file. # endregion Project Options # Add RTE files to the file groups to actually match the Project Window file browser. for file in rte.files: # Find the group to which this file belongs to (there shall be one and only one). group = None group_number = 1 for group_number, group in enumerate(groups, 1): if group.files and group.files[0].group_number != group_number: warnings.warn(f"Inconsistent group number {group.files[0].group_number} for group {group.name}" f" (expected to be {group_number})") if group.rte_flag and group.name.strip(":") == file.component.class_: break filename = os.path.basename(file.instance) # Detect file type (this information is not provided for RTE files) if filename.endswith(".s"): file_type = FileType.ASM_SOURCE elif filename.endswith(".c"): file_type = FileType.C_SOURCE elif filename.endswith(".cpp"): file_type = FileType.CPP_SOURCE elif filename.endswith(".h"): file_type = FileType.TEXT_DOCUMENT else: warnings.warn(f"Unknown RTE file type '{file.instance}': {file}") continue group.files.append(File( group_number=group_number, number=max(f.number for g in groups for f in g.files) + 1, type=file_type, expanded=False, include_in_build=True, # TODO: This information is available for RTE files always_build=None, tv_exp_opt_dlg=False, # TODO dave2=False, # TODO path=file.instance, filename=os.path.basename(file.instance), rte_flag=True, shared=False )) return cls( project_file_path=project_file_path, project_options_path=project_options_path, targets=targets, groups=groups ) def source_files(self) -> Iterator[Tuple[File, Optional[Language], Optional[str]]]: """ Get all files grouped by the file type with group names as a comments. """ # Add source files for group in self.groups: comment = group.name if group.rte_flag: # RTE groups start with double colon (::). comment = "RTE" + comment # Group files by type and add one comment for every file type as they are in the separate sections. files: Dict[Union[Language, None], List[File]] = defaultdict(list) for file in group.files: if file.type == FileType.ASM_SOURCE: lang = Language.ASM elif file.type == FileType.C_SOURCE: lang = Language.C elif file.type == FileType.TEXT_DOCUMENT: lang = None else: warnings.warn(f"Unsupported file type: {file.type} for {file}") continue files[lang].append(file) for lang, files in files.items(): comment_per_type = comment for file in files: yield file, lang, comment_per_type comment_per_type = None class CMake: @dataclass class String: value: str """The actual string value.""" languages: Set[Language] """Set of all build configs in which this value is present.""" common: bool = False comment: Optional[str] = None """Comment which will be added to the line before""" def __eq__(self, o: 'CMake.String') -> bool: if isinstance(o, type(self)): return self.value == o.value elif isinstance(o, str): return self.value == o return NotImplemented def __init__(self) -> None: self.include_paths: List[CMake.String] = [] self.defines: List[CMake.String] = [] self.undefines: List[CMake.String] = [] self.source_file_paths: List[CMake.String] = [] self.other_file_paths: List[CMake.String] = [] @classmethod def _get(cls, lst: List[String], obj: str) -> String: """Get existing object from the list or append a new one to the end.""" try: # noinspection PyTypeChecker itm = lst[lst.index(obj)] except ValueError: # noinspection PyCallByClass itm = cls.String(obj, set()) lst.append(itm) return itm @classmethod def _add_values(cls, where: List[String], values: Union[str, Iterable[str]], languages: Union[Language, Collection[Language], None], comment: Optional[str] = None) -> None: if isinstance(languages, Language): languages = [languages] for val in values: obj = cls._get(where, val) if comment is not None: # Add comment to the first value only obj.comment = comment comment = None if languages: obj.languages.update(languages) @staticmethod def _clean_paths(paths: Union[str, Iterable[str]]) -> List[str]: if isinstance(paths, (str, Path)): paths = [paths] return [Path(p).as_posix() for p in map(os.path.normpath, paths)] def add_include_paths(self, paths: Union[str, Iterable[str]], languages: Union[Language, Collection[Language]], comment: str = None) -> None: self._add_values(self.include_paths, self._clean_paths(paths), languages, comment) def add_defines(self, defines: Union[str, Iterable[str]], languages: Union[Language, Collection[Language]], comment: str = None) -> None: self._add_values(self.defines, defines, languages, comment) def add_undefines(self, undefines: Union[str, Iterable[str]], languages: Union[Language, Collection[Language]], comment: str = None) -> None: self._add_values(self.undefines, undefines, languages, comment) def add_source_files(self, paths: Union[None, str, Iterable[str]], languages: Union[Language, Collection[Language], None], comment: str = None, include_in_build: bool = True) -> None: paths = self._clean_paths(paths) # If file is not included in the build, comment it if include_in_build is False: paths = ["# " + path for path in paths] self._add_values(self.source_file_paths if languages else self.other_file_paths, paths, languages, comment) def add_other_files(self, paths: Union[str, Iterable[str]], comment: str = None) -> None: self.add_source_files(paths, None, comment) def check_common(self) -> Set[Language]: """ Check which properties are common to all language configurations. :return: Set of all used languages (languages with at least one property) """ all_props = (self.include_paths, self.defines, self.undefines, self.source_file_paths) # Get all of the defined languages used languages = {lang for props in all_props for prop in props for lang in prop.languages} for props in all_props: for prop in props: prop.common = (prop.languages == languages) return languages def __str__(self) -> str: languages = sorted(self.check_common(), key=operator.attrgetter('value')) ret_str = [ "# Made with CMake <> uVision project file synchronizer" "# https://github.com/bojanpotocnik/cmake-uvision-syncer" ] # Set of the build properties prop_sets: List[Tuple[str, str, List[CMake.String], str]] = [ ("definitions", "DEFINES", self.defines, "-D"), ("un-defines", "UNDEFINES", self.undefines, ""), ("include directories", "INCLUDE_DIRS", self.include_paths, ""), ("source files", "SOURCES", self.source_file_paths, ""), ] # Set of the language configs per build property sub_prop_sets: List[Tuple[str, str, Callable[[CMake.String], bool]]] = [ ("Common", "COMMON", lambda prop: prop.common), *((lang.value + " specific", lang.name, lambda prop, lang_=lang: (not prop.common) and (lang_ in prop.languages)) for lang in languages) ] def _add_section_files(comment: str, var_name: str, value_iterator: Iterable[CMake.String], value_prefix: str = "") -> str: s = (f"# {comment}\n" f"set({var_name}") value_str = '' for value in value_iterator: if value.comment is not None: value_str += f"\n\t# {value.comment}" value_str += f"\n\t{value_prefix}{value.value}" if len(value_str) is not 0: return s + value_str + "\n)" else: return None for section_comment, section_var_prefix, section_props, val_prefix in prop_sets: ss_str = [] for prop_set_comment, var_suffix, filter_fun in sub_prop_sets: section_files = _add_section_files( comment=f"{prop_set_comment} {section_comment}", var_name=f"{section_var_prefix}_{var_suffix}", value_iterator=filter(filter_fun, section_props), value_prefix=val_prefix ) if section_files is not None: ss_str.append(section_files) ret_str.append("\n\n".join(ss_str)) other_files = _add_section_files( comment="Other files", var_name="OTHER_FILES", value_iterator=self.other_file_paths ) if other_files is not None: ret_str.append(other_files) return "\n\n\n".join(ret_str) def main() -> None: # region Parse arguments arguments = docopt(__doc__) project_path: str = arguments["<project>"] or "." if not os.path.isfile(project_path): with os.scandir(project_path) as dirs: # type: Iterator[DirEntry] projects = [de.path for de in dirs if (de.is_file() and (os.path.splitext(de.name)[1] == ".uvprojx"))] if not projects: raise FileNotFoundError(f"Could not find any .uvprojx file in '{project_path}'") elif len(projects) > 1: # Choose the latest file by modification time. project_path = max(projects, key=os.path.getmtime) else: project_path = projects[0] project_path = os.path.realpath(project_path) # endregion Parse arguments print(f"Using µVision5 Project File '{project_path}'") # Parse uVision project XML files uvp = UVisionProject.new(project_path) # Generate CMake file and populate it with information from uVision project cmake = CMake() # Add Assembler properties cmake.add_include_paths(uvp.targets[0].build.asm.include_paths, Language.ASM) cmake.add_defines(uvp.targets[0].build.asm.defines, Language.ASM) cmake.add_undefines(uvp.targets[0].build.asm.undefines, Language.ASM) # Add C properties cmake.add_include_paths(uvp.targets[0].build.c.include_paths, Language.C) cmake.add_defines(uvp.targets[0].build.c.defines, Language.C) cmake.add_undefines(uvp.targets[0].build.c.undefines, Language.C) # Add source and other files for file, lang, comment in uvp.source_files(): cmake.add_source_files(file.path, lang, comment, file.include_in_build) fp_proj_cmake = os.path.join(os.path.dirname(uvp.project_file_path), os.path.splitext(os.path.basename(uvp.project_file_path))[0] + ".cmake") with open(fp_proj_cmake, 'w') as f: print(cmake, file=f) print(f"Generated CMake file '{fp_proj_cmake}'") if __name__ == "__main__": main()
[ "operator.attrgetter", "pathlib.Path", "os.scandir", "os.path.splitext", "lxml.etree.parse", "os.path.realpath", "os.path.dirname", "os.path.isfile", "collections.defaultdict", "os.path.basename", "warnings.warn", "docopt.docopt" ]
[((31964, 31979), 'docopt.docopt', 'docopt', (['__doc__'], {}), '(__doc__)\n', (31970, 31979), False, 'from docopt import docopt\n'), ((32611, 32641), 'os.path.realpath', 'os.path.realpath', (['project_path'], {}), '(project_path)\n', (32627, 32641), False, 'import os\n'), ((32046, 32074), 'os.path.isfile', 'os.path.isfile', (['project_path'], {}), '(project_path)\n', (32060, 32074), False, 'import os\n'), ((33612, 33650), 'os.path.dirname', 'os.path.dirname', (['uvp.project_file_path'], {}), '(uvp.project_file_path)\n', (33627, 33650), False, 'import os\n'), ((8140, 8175), 'os.path.splitext', 'os.path.splitext', (['project_file_path'], {}), '(project_file_path)\n', (8156, 8175), False, 'import os\n'), ((22374, 22405), 'os.path.basename', 'os.path.basename', (['file.instance'], {}), '(file.instance)\n', (22390, 22405), False, 'import os\n'), ((24352, 24369), 'collections.defaultdict', 'defaultdict', (['list'], {}), '(list)\n', (24363, 24369), False, 'from collections import defaultdict\n'), ((32089, 32113), 'os.scandir', 'os.scandir', (['project_path'], {}), '(project_path)\n', (32099, 32113), False, 'import os\n'), ((29383, 29411), 'operator.attrgetter', 'operator.attrgetter', (['"""value"""'], {}), "('value')\n", (29402, 29411), False, 'import operator\n'), ((8404, 8418), 'lxml.etree.parse', 'etree.parse', (['f'], {}), '(f)\n', (8415, 8418), False, 'from lxml import etree\n'), ((8556, 8570), 'lxml.etree.parse', 'etree.parse', (['f'], {}), '(f)\n', (8567, 8570), False, 'from lxml import etree\n'), ((22072, 22210), 'warnings.warn', 'warnings.warn', (['f"""Inconsistent group number {group.files[0].group_number} for group {group.name} (expected to be {group_number})"""'], {}), "(\n f'Inconsistent group number {group.files[0].group_number} for group {group.name} (expected to be {group_number})'\n )\n", (22085, 22210), False, 'import warnings\n'), ((27135, 27142), 'pathlib.Path', 'Path', (['p'], {}), '(p)\n', (27139, 27142), False, 'from pathlib import Path\n'), ((33702, 33741), 'os.path.basename', 'os.path.basename', (['uvp.project_file_path'], {}), '(uvp.project_file_path)\n', (33718, 33741), False, 'import os\n'), ((23462, 23493), 'os.path.basename', 'os.path.basename', (['file.instance'], {}), '(file.instance)\n', (23478, 23493), False, 'import os\n'), ((22881, 22946), 'warnings.warn', 'warnings.warn', (['f"""Unknown RTE file type \'{file.instance}\': {file}"""'], {}), '(f"Unknown RTE file type \'{file.instance}\': {file}")\n', (22894, 22946), False, 'import warnings\n'), ((24724, 24787), 'warnings.warn', 'warnings.warn', (['f"""Unsupported file type: {file.type} for {file}"""'], {}), "(f'Unsupported file type: {file.type} for {file}')\n", (24737, 24787), False, 'import warnings\n'), ((32220, 32245), 'os.path.splitext', 'os.path.splitext', (['de.name'], {}), '(de.name)\n', (32236, 32245), False, 'import os\n')]
#!/usr/bin/python """ (C) Copyright 2018 Intel Corporation. Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. GOVERNMENT LICENSE RIGHTS-OPEN SOURCE SOFTWARE The Government's rights to use, modify, reproduce, release, perform, display, or disclose this software are subject to the terms of the Apache License as provided in Contract No. B609815. Any reproduction of computer software, computer software documentation, or portions thereof marked with this legend must also reproduce the markings. """ import ctypes import uuid def c_uuid_to_str(uuid): """ utility function to convert a C uuid into a standard string format """ uuid_str = '{:02X}{:02X}{:02X}{:02X}-{:02X}{:02X}-{:02X}{:02X}-{:02X}'\ '{:02X}-{:02X}{:02X}{:02X}{:02X}{:02X}{:02X}'.format( uuid[0], uuid[1], uuid[2], uuid[3], uuid[4], uuid[5], uuid[6], uuid[7], uuid[8], uuid[9], uuid[10], uuid[11], uuid[12], uuid[13], uuid[14], uuid[15]) return uuid_str def c_uuid(p_uuid, c_uuid): """ utility function to create a UUID in C format from a python UUID """ hexstr = p_uuid.hex for i in range(0, 31, 2): c_uuid[int(i/2)] = int(hexstr[i:i+2], 16) def str_to_c_uuid(uuidstr): """ utility function to convert string format uuid to a C uuid """ uuidstr2 = '{' + uuidstr + '}' puuid = uuid.UUID(uuidstr2) cuuid = (ctypes.c_ubyte * 16)() c_uuid(puuid, cuuid) return cuuid
[ "uuid.UUID" ]
[((1866, 1885), 'uuid.UUID', 'uuid.UUID', (['uuidstr2'], {}), '(uuidstr2)\n', (1875, 1885), False, 'import uuid\n')]
# encoding: utf-8 import datetime from south.db import db from south.v2 import SchemaMigration from django.db import models class Migration(SchemaMigration): def forwards(self, orm): # Adding model 'ProductType' db.create_table('inventory_producttype', ( ('id', self.gf('django.db.models.fields.AutoField')(primary_key=True)), )) db.send_create_signal('inventory', ['ProductType']) # Adding model 'Product' db.create_table('inventory_product', ( ('id', self.gf('django.db.models.fields.AutoField')(primary_key=True)), ('shop', self.gf('django.db.models.fields.related.ForeignKey')(to=orm['shops.Shop'])), ('title', self.gf('django.db.models.fields.CharField')(max_length=200)), ('description', self.gf('django.db.models.fields.TextField')()), ('category', self.gf('django.db.models.fields.related.ForeignKey')(to=orm['market.MarketCategory'])), ('subcategory', self.gf('django.db.models.fields.related.ForeignKey')(to=orm['market.MarketSubCategory'])), ('date_time', self.gf('django.db.models.fields.DateTimeField')(auto_now_add=True, blank=True)), ('weight', self.gf('django.db.models.fields.DecimalField')(default='0', max_digits=11, decimal_places=2)), ('type', self.gf('django.db.models.fields.related.ForeignKey')(to=orm['inventory.ProductType'], null=True, blank=True)), )) db.send_create_signal('inventory', ['Product']) # Adding model 'Coin' db.create_table('inventory_coin', ( ('producttype_ptr', self.gf('django.db.models.fields.related.OneToOneField')(to=orm['inventory.ProductType'], unique=True, primary_key=True)), ('category', self.gf('django.db.models.fields.related.ForeignKey')(to=orm['market.MarketCategory'], null=True, blank=True)), ('subcategory', self.gf('django.db.models.fields.related.ForeignKey')(to=orm['market.MarketSubCategory'], null=True, blank=True)), ('country_code', self.gf('django.db.models.fields.CharField')(default='us', max_length=2)), ('pcgs_number', self.gf('django.db.models.fields.IntegerField')(null=True, blank=True)), ('description', self.gf('django.db.models.fields.TextField')(default='', blank='')), ('year_issued', self.gf('django.db.models.fields.CharField')(default='', max_length=24, blank='')), ('actual_year', self.gf('django.db.models.fields.CharField')(default='', max_length=24, blank='')), ('denomination', self.gf('django.db.models.fields.CharField')(default='', max_length=60, blank='')), ('major_variety', self.gf('django.db.models.fields.CharField')(default='', max_length=60, blank='')), ('die_variety', self.gf('django.db.models.fields.CharField')(default='', max_length=60, blank='')), ('prefix', self.gf('django.db.models.fields.CharField')(default='', max_length=60, blank='')), ('suffix', self.gf('django.db.models.fields.CharField')(default='', max_length=60, blank='')), ('sort_order', self.gf('django.db.models.fields.CharField')(default='', max_length=60, blank='')), ('heading', self.gf('django.db.models.fields.CharField')(default='', max_length=60, blank='')), ('holder_variety', self.gf('django.db.models.fields.CharField')(default='', max_length=60, blank='')), ('holder_variety_2', self.gf('django.db.models.fields.CharField')(default='', max_length=60, blank='')), ('additional_data', self.gf('django.db.models.fields.TextField')(default='', blank='')), ('last_update', self.gf('django.db.models.fields.DateTimeField')(auto_now=True, blank=True)), )) db.send_create_signal('inventory', ['Coin']) def backwards(self, orm): # Deleting model 'ProductType' db.delete_table('inventory_producttype') # Deleting model 'Product' db.delete_table('inventory_product') # Deleting model 'Coin' db.delete_table('inventory_coin') models = { 'auth.group': { 'Meta': {'object_name': 'Group'}, 'id': ('django.db.models.fields.AutoField', [], {'primary_key': 'True'}), 'name': ('django.db.models.fields.CharField', [], {'unique': 'True', 'max_length': '80'}), 'permissions': ('django.db.models.fields.related.ManyToManyField', [], {'to': "orm['auth.Permission']", 'symmetrical': 'False', 'blank': 'True'}) }, 'auth.permission': { 'Meta': {'unique_together': "(('content_type', 'codename'),)", 'object_name': 'Permission'}, 'codename': ('django.db.models.fields.CharField', [], {'max_length': '100'}), 'content_type': ('django.db.models.fields.related.ForeignKey', [], {'to': "orm['contenttypes.ContentType']"}), 'id': ('django.db.models.fields.AutoField', [], {'primary_key': 'True'}), 'name': ('django.db.models.fields.CharField', [], {'max_length': '50'}) }, 'auth.user': { 'Meta': {'object_name': 'User'}, 'date_joined': ('django.db.models.fields.DateTimeField', [], {'default': 'datetime.datetime.now'}), 'email': ('django.db.models.fields.EmailField', [], {'max_length': '75'}), 'first_name': ('django.db.models.fields.CharField', [], {'max_length': '30', 'blank': 'True'}), 'groups': ('django.db.models.fields.related.ManyToManyField', [], {'to': "orm['auth.Group']", 'symmetrical': 'False', 'blank': 'True'}), 'id': ('django.db.models.fields.AutoField', [], {'primary_key': 'True'}), 'is_active': ('django.db.models.fields.BooleanField', [], {'default': 'True', 'blank': 'True'}), 'is_staff': ('django.db.models.fields.BooleanField', [], {'default': 'False', 'blank': 'True'}), 'is_superuser': ('django.db.models.fields.BooleanField', [], {'default': 'False', 'blank': 'True'}), 'last_login': ('django.db.models.fields.DateTimeField', [], {'default': 'datetime.datetime.now'}), 'last_name': ('django.db.models.fields.CharField', [], {'max_length': '30', 'blank': 'True'}), 'password': ('<PASSWORD>', [], {'max_length': '128'}), 'user_permissions': ('django.db.models.fields.related.ManyToManyField', [], {'to': "orm['auth.Permission']", 'symmetrical': 'False', 'blank': 'True'}), 'username': ('django.db.models.fields.CharField', [], {'unique': 'True', 'max_length': '32'}) }, 'contenttypes.contenttype': { 'Meta': {'unique_together': "(('app_label', 'model'),)", 'object_name': 'ContentType', 'db_table': "'django_content_type'"}, 'app_label': ('django.db.models.fields.CharField', [], {'max_length': '100'}), 'id': ('django.db.models.fields.AutoField', [], {'primary_key': 'True'}), 'model': ('django.db.models.fields.CharField', [], {'max_length': '100'}), 'name': ('django.db.models.fields.CharField', [], {'max_length': '100'}) }, 'inventory.coin': { 'Meta': {'object_name': 'Coin', '_ormbases': ['inventory.ProductType']}, 'actual_year': ('django.db.models.fields.CharField', [], {'default': "''", 'max_length': '24', 'blank': "''"}), 'additional_data': ('django.db.models.fields.TextField', [], {'default': "''", 'blank': "''"}), 'category': ('django.db.models.fields.related.ForeignKey', [], {'to': "orm['market.MarketCategory']", 'null': 'True', 'blank': 'True'}), 'country_code': ('django.db.models.fields.CharField', [], {'default': "'us'", 'max_length': '2'}), 'denomination': ('django.db.models.fields.CharField', [], {'default': "''", 'max_length': '60', 'blank': "''"}), 'description': ('django.db.models.fields.TextField', [], {'default': "''", 'blank': "''"}), 'die_variety': ('django.db.models.fields.CharField', [], {'default': "''", 'max_length': '60', 'blank': "''"}), 'heading': ('django.db.models.fields.CharField', [], {'default': "''", 'max_length': '60', 'blank': "''"}), 'holder_variety': ('django.db.models.fields.CharField', [], {'default': "''", 'max_length': '60', 'blank': "''"}), 'holder_variety_2': ('django.db.models.fields.CharField', [], {'default': "''", 'max_length': '60', 'blank': "''"}), 'last_update': ('django.db.models.fields.DateTimeField', [], {'auto_now': 'True', 'blank': 'True'}), 'major_variety': ('django.db.models.fields.CharField', [], {'default': "''", 'max_length': '60', 'blank': "''"}), 'pcgs_number': ('django.db.models.fields.IntegerField', [], {'null': 'True', 'blank': 'True'}), 'prefix': ('django.db.models.fields.CharField', [], {'default': "''", 'max_length': '60', 'blank': "''"}), 'producttype_ptr': ('django.db.models.fields.related.OneToOneField', [], {'to': "orm['inventory.ProductType']", 'unique': 'True', 'primary_key': 'True'}), 'sort_order': ('django.db.models.fields.CharField', [], {'default': "''", 'max_length': '60', 'blank': "''"}), 'subcategory': ('django.db.models.fields.related.ForeignKey', [], {'to': "orm['market.MarketSubCategory']", 'null': 'True', 'blank': 'True'}), 'suffix': ('django.db.models.fields.CharField', [], {'default': "''", 'max_length': '60', 'blank': "''"}), 'year_issued': ('django.db.models.fields.CharField', [], {'default': "''", 'max_length': '24', 'blank': "''"}) }, 'inventory.product': { 'Meta': {'object_name': 'Product'}, 'category': ('django.db.models.fields.related.ForeignKey', [], {'to': "orm['market.MarketCategory']"}), 'date_time': ('django.db.models.fields.DateTimeField', [], {'auto_now_add': 'True', 'blank': 'True'}), 'description': ('django.db.models.fields.TextField', [], {}), 'id': ('django.db.models.fields.AutoField', [], {'primary_key': 'True'}), 'shop': ('django.db.models.fields.related.ForeignKey', [], {'to': "orm['shops.Shop']"}), 'subcategory': ('django.db.models.fields.related.ForeignKey', [], {'to': "orm['market.MarketSubCategory']"}), 'title': ('django.db.models.fields.CharField', [], {'max_length': '200'}), 'type': ('django.db.models.fields.related.ForeignKey', [], {'to': "orm['inventory.ProductType']", 'null': 'True', 'blank': 'True'}), 'weight': ('django.db.models.fields.DecimalField', [], {'default': "'0'", 'max_digits': '11', 'decimal_places': '2'}) }, 'inventory.producttype': { 'Meta': {'object_name': 'ProductType'}, 'id': ('django.db.models.fields.AutoField', [], {'primary_key': 'True'}) }, 'market.marketcategory': { 'Meta': {'object_name': 'MarketCategory'}, 'id': ('django.db.models.fields.AutoField', [], {'primary_key': 'True'}), 'marketplace': ('django.db.models.fields.related.ForeignKey', [], {'to': "orm['market.MarketPlace']"}), 'name': ('django.db.models.fields.CharField', [], {'max_length': '60'}), 'order': ('django.db.models.fields.IntegerField', [], {'default': '255'}), 'slug': ('django.db.models.fields.SlugField', [], {'unique': 'True', 'max_length': '60', 'db_index': 'True'}) }, 'market.marketplace': { 'Meta': {'object_name': 'MarketPlace'}, 'base_domain': ('django.db.models.fields.CharField', [], {'unique': 'True', 'max_length': '128'}), 'id': ('django.db.models.fields.AutoField', [], {'primary_key': 'True'}), 'name': ('django.db.models.fields.CharField', [], {'max_length': '92'}), 'slug': ('django.db.models.fields.SlugField', [], {'unique': 'True', 'max_length': '92', 'db_index': 'True'}), 'template_prefix': ('django.db.models.fields.SlugField', [], {'unique': 'True', 'max_length': '92', 'db_index': 'True'}), 'title': ('django.db.models.fields.CharField', [], {'max_length': '92'}) }, 'market.marketsubcategory': { 'Meta': {'unique_together': "(('parent', 'slug'),)", 'object_name': 'MarketSubCategory'}, 'id': ('django.db.models.fields.AutoField', [], {'primary_key': 'True'}), 'marketplace': ('django.db.models.fields.related.ForeignKey', [], {'to': "orm['market.MarketPlace']"}), 'name': ('django.db.models.fields.CharField', [], {'max_length': '60'}), 'order': ('django.db.models.fields.IntegerField', [], {'default': '255'}), 'parent': ('django.db.models.fields.related.ForeignKey', [], {'blank': 'True', 'related_name': "'subcategories'", 'null': 'True', 'to': "orm['market.MarketCategory']"}), 'slug': ('django.db.models.fields.SlugField', [], {'max_length': '60', 'db_index': 'True'}) }, 'shops.shop': { 'Meta': {'object_name': 'Shop'}, 'admin': ('django.db.models.fields.related.ForeignKey', [], {'to': "orm['auth.User']"}), 'bids': ('django.db.models.fields.IntegerField', [], {'default': '0'}), 'date_time': ('django.db.models.fields.DateTimeField', [], {'auto_now_add': 'True', 'blank': 'True'}), 'id': ('django.db.models.fields.AutoField', [], {'primary_key': 'True'}), 'location': ('django.db.models.fields.CharField', [], {'default': "'39.29038,-76.61219'", 'max_length': '255'}), 'marketplace': ('django.db.models.fields.related.ForeignKey', [], {'to': "orm['market.MarketPlace']"}), 'name': ('django.db.models.fields.CharField', [], {'max_length': '60'}), 'views': ('django.db.models.fields.IntegerField', [], {'default': '0'}) } } complete_apps = ['inventory']
[ "south.db.db.send_create_signal", "south.db.db.delete_table" ]
[((389, 440), 'south.db.db.send_create_signal', 'db.send_create_signal', (['"""inventory"""', "['ProductType']"], {}), "('inventory', ['ProductType'])\n", (410, 440), False, 'from south.db import db\n'), ((1480, 1527), 'south.db.db.send_create_signal', 'db.send_create_signal', (['"""inventory"""', "['Product']"], {}), "('inventory', ['Product'])\n", (1501, 1527), False, 'from south.db import db\n'), ((3794, 3838), 'south.db.db.send_create_signal', 'db.send_create_signal', (['"""inventory"""', "['Coin']"], {}), "('inventory', ['Coin'])\n", (3815, 3838), False, 'from south.db import db\n'), ((3927, 3967), 'south.db.db.delete_table', 'db.delete_table', (['"""inventory_producttype"""'], {}), "('inventory_producttype')\n", (3942, 3967), False, 'from south.db import db\n'), ((4012, 4048), 'south.db.db.delete_table', 'db.delete_table', (['"""inventory_product"""'], {}), "('inventory_product')\n", (4027, 4048), False, 'from south.db import db\n'), ((4090, 4123), 'south.db.db.delete_table', 'db.delete_table', (['"""inventory_coin"""'], {}), "('inventory_coin')\n", (4105, 4123), False, 'from south.db import db\n')]
import numpy as np import sys sys.path.append('/homes/rlreed/workspace/unotran/src') from coarseBounds import computeBounds, Grouping import pickle from makeDLPbasis import makeBasis as makeDLP from makeKLTbasis import makeBasis as makeKLT import sph import sph_dgm import pydgm def buildGEO(ass_map): fine_map = [1] coarse_map = [1.26] material_map = [[1], [2], [3], [4], [5], [6], [7], [8], [9], [10]] npins = len(ass_map) cm = [0.0] fm = [] mm = [] for i, ass in enumerate(ass_map): mm += material_map[ass] cm += coarse_map fm += fine_map cm = np.cumsum(cm) return npins, fm, cm, mm def makeDGMXS(G, refXS, dgmstructure, basisType): if 'klt' in basisType: makeKLT(basisType, dgmstructure) else: makeDLP(dgmstructure) dgmstructure.fname = '{}_{}'.format(basisType, dgmstructure.fname) fname = '_homo.'.join(xs_name.split('.')) refXS.write_homogenized_XS(fname) nPin, fm, cm, mm = buildGEO(pin_map) dgm = sph_dgm.DGMSOLVER(G, fname, fm, cm, mm, nPin, dgmstructure, solveFlag=False) pydgm.dgmsolver.initialize_dgmsolver() dgm.extractInfo() pydgm.dgmsolver.finalize_dgmsolver() pydgm.control.finalize_control() nCellPerPin = dgm.phi.shape[2] // dgm.npin return sph_dgm.XS(G, nCellPerPin, dgm.sig_t, dgm.vsig_f, dgm.chi, dgm.sig_s) if __name__ == '__main__': np.set_printoptions(precision=6) G = 44 dgmstructure = computeBounds(G, 'full', 1, 0.0, 1.3, 60) fname = dgmstructure.fname xs_name = 'XS/{}gXS.anlxs'.format(G) pin_map = [0, 1, 2, 3, 4, 5, 6, 7, 8, 9] data_path = 'data2' # Get the homogenized cross sections refXS = pickle.load(open('{}/refXS_sph_space_{}.p'.format(data_path, G), 'rb')) for basis in ['dlp', 'klt_full', 'klt_combine', 'klt_pins_full']: dgmstructure.fname = fname XS = makeDGMXS(G, refXS, dgmstructure, basis) pickle.dump(XS, open('{}/refXS_dgm_{}_{}_h{}.p'.format(data_path, dgmstructure.fname, 'fine_mu', 0), 'wb'))
[ "sph_dgm.DGMSOLVER", "coarseBounds.computeBounds", "makeDLPbasis.makeBasis", "pydgm.dgmsolver.initialize_dgmsolver", "pydgm.control.finalize_control", "numpy.cumsum", "sph_dgm.XS", "sys.path.append", "makeKLTbasis.makeBasis", "pydgm.dgmsolver.finalize_dgmsolver", "numpy.set_printoptions" ]
[((30, 84), 'sys.path.append', 'sys.path.append', (['"""/homes/rlreed/workspace/unotran/src"""'], {}), "('/homes/rlreed/workspace/unotran/src')\n", (45, 84), False, 'import sys\n'), ((612, 625), 'numpy.cumsum', 'np.cumsum', (['cm'], {}), '(cm)\n', (621, 625), True, 'import numpy as np\n'), ((1025, 1101), 'sph_dgm.DGMSOLVER', 'sph_dgm.DGMSOLVER', (['G', 'fname', 'fm', 'cm', 'mm', 'nPin', 'dgmstructure'], {'solveFlag': '(False)'}), '(G, fname, fm, cm, mm, nPin, dgmstructure, solveFlag=False)\n', (1042, 1101), False, 'import sph_dgm\n'), ((1106, 1144), 'pydgm.dgmsolver.initialize_dgmsolver', 'pydgm.dgmsolver.initialize_dgmsolver', ([], {}), '()\n', (1142, 1144), False, 'import pydgm\n'), ((1172, 1208), 'pydgm.dgmsolver.finalize_dgmsolver', 'pydgm.dgmsolver.finalize_dgmsolver', ([], {}), '()\n', (1206, 1208), False, 'import pydgm\n'), ((1213, 1245), 'pydgm.control.finalize_control', 'pydgm.control.finalize_control', ([], {}), '()\n', (1243, 1245), False, 'import pydgm\n'), ((1306, 1375), 'sph_dgm.XS', 'sph_dgm.XS', (['G', 'nCellPerPin', 'dgm.sig_t', 'dgm.vsig_f', 'dgm.chi', 'dgm.sig_s'], {}), '(G, nCellPerPin, dgm.sig_t, dgm.vsig_f, dgm.chi, dgm.sig_s)\n', (1316, 1375), False, 'import sph_dgm\n'), ((1408, 1440), 'numpy.set_printoptions', 'np.set_printoptions', ([], {'precision': '(6)'}), '(precision=6)\n', (1427, 1440), True, 'import numpy as np\n'), ((1473, 1514), 'coarseBounds.computeBounds', 'computeBounds', (['G', '"""full"""', '(1)', '(0.0)', '(1.3)', '(60)'], {}), "(G, 'full', 1, 0.0, 1.3, 60)\n", (1486, 1514), False, 'from coarseBounds import computeBounds, Grouping\n'), ((742, 774), 'makeKLTbasis.makeBasis', 'makeKLT', (['basisType', 'dgmstructure'], {}), '(basisType, dgmstructure)\n', (749, 774), True, 'from makeKLTbasis import makeBasis as makeKLT\n'), ((793, 814), 'makeDLPbasis.makeBasis', 'makeDLP', (['dgmstructure'], {}), '(dgmstructure)\n', (800, 814), True, 'from makeDLPbasis import makeBasis as makeDLP\n')]
# coding: utf-8 # Copyright (c) 2016, 2021, Oracle and/or its affiliates. All rights reserved. # This software is dual-licensed to you under the Universal Permissive License (UPL) 1.0 as shown at https://oss.oracle.com/licenses/upl or Apache License 2.0 as shown at http://www.apache.org/licenses/LICENSE-2.0. You may choose either license. from oci.util import formatted_flat_dict, NONE_SENTINEL, value_allowed_none_or_none_sentinel # noqa: F401 from oci.decorators import init_model_state_from_kwargs @init_model_state_from_kwargs class ManagementAgentAggregationDimensions(object): """ The Aggregation of Management Agent Dimensions """ #: A constant which can be used with the availability_status property of a ManagementAgentAggregationDimensions. #: This constant has a value of "ACTIVE" AVAILABILITY_STATUS_ACTIVE = "ACTIVE" #: A constant which can be used with the availability_status property of a ManagementAgentAggregationDimensions. #: This constant has a value of "SILENT" AVAILABILITY_STATUS_SILENT = "SILENT" #: A constant which can be used with the availability_status property of a ManagementAgentAggregationDimensions. #: This constant has a value of "NOT_AVAILABLE" AVAILABILITY_STATUS_NOT_AVAILABLE = "NOT_AVAILABLE" #: A constant which can be used with the platform_type property of a ManagementAgentAggregationDimensions. #: This constant has a value of "LINUX" PLATFORM_TYPE_LINUX = "LINUX" #: A constant which can be used with the platform_type property of a ManagementAgentAggregationDimensions. #: This constant has a value of "WINDOWS" PLATFORM_TYPE_WINDOWS = "WINDOWS" #: A constant which can be used with the install_type property of a ManagementAgentAggregationDimensions. #: This constant has a value of "AGENT" INSTALL_TYPE_AGENT = "AGENT" #: A constant which can be used with the install_type property of a ManagementAgentAggregationDimensions. #: This constant has a value of "GATEWAY" INSTALL_TYPE_GATEWAY = "GATEWAY" def __init__(self, **kwargs): """ Initializes a new ManagementAgentAggregationDimensions object with values from keyword arguments. The following keyword arguments are supported (corresponding to the getters/setters of this class): :param availability_status: The value to assign to the availability_status property of this ManagementAgentAggregationDimensions. Allowed values for this property are: "ACTIVE", "SILENT", "NOT_AVAILABLE", 'UNKNOWN_ENUM_VALUE'. Any unrecognized values returned by a service will be mapped to 'UNKNOWN_ENUM_VALUE'. :type availability_status: str :param platform_type: The value to assign to the platform_type property of this ManagementAgentAggregationDimensions. Allowed values for this property are: "LINUX", "WINDOWS", 'UNKNOWN_ENUM_VALUE'. Any unrecognized values returned by a service will be mapped to 'UNKNOWN_ENUM_VALUE'. :type platform_type: str :param version: The value to assign to the version property of this ManagementAgentAggregationDimensions. :type version: str :param has_plugins: The value to assign to the has_plugins property of this ManagementAgentAggregationDimensions. :type has_plugins: bool :param install_type: The value to assign to the install_type property of this ManagementAgentAggregationDimensions. Allowed values for this property are: "AGENT", "GATEWAY", 'UNKNOWN_ENUM_VALUE'. Any unrecognized values returned by a service will be mapped to 'UNKNOWN_ENUM_VALUE'. :type install_type: str """ self.swagger_types = { 'availability_status': 'str', 'platform_type': 'str', 'version': 'str', 'has_plugins': 'bool', 'install_type': 'str' } self.attribute_map = { 'availability_status': 'availabilityStatus', 'platform_type': 'platformType', 'version': 'version', 'has_plugins': 'hasPlugins', 'install_type': 'installType' } self._availability_status = None self._platform_type = None self._version = None self._has_plugins = None self._install_type = None @property def availability_status(self): """ Gets the availability_status of this ManagementAgentAggregationDimensions. The availability status of managementAgent Allowed values for this property are: "ACTIVE", "SILENT", "NOT_AVAILABLE", 'UNKNOWN_ENUM_VALUE'. Any unrecognized values returned by a service will be mapped to 'UNKNOWN_ENUM_VALUE'. :return: The availability_status of this ManagementAgentAggregationDimensions. :rtype: str """ return self._availability_status @availability_status.setter def availability_status(self, availability_status): """ Sets the availability_status of this ManagementAgentAggregationDimensions. The availability status of managementAgent :param availability_status: The availability_status of this ManagementAgentAggregationDimensions. :type: str """ allowed_values = ["ACTIVE", "SILENT", "NOT_AVAILABLE"] if not value_allowed_none_or_none_sentinel(availability_status, allowed_values): availability_status = 'UNKNOWN_ENUM_VALUE' self._availability_status = availability_status @property def platform_type(self): """ Gets the platform_type of this ManagementAgentAggregationDimensions. Platform Type Allowed values for this property are: "LINUX", "WINDOWS", 'UNKNOWN_ENUM_VALUE'. Any unrecognized values returned by a service will be mapped to 'UNKNOWN_ENUM_VALUE'. :return: The platform_type of this ManagementAgentAggregationDimensions. :rtype: str """ return self._platform_type @platform_type.setter def platform_type(self, platform_type): """ Sets the platform_type of this ManagementAgentAggregationDimensions. Platform Type :param platform_type: The platform_type of this ManagementAgentAggregationDimensions. :type: str """ allowed_values = ["LINUX", "WINDOWS"] if not value_allowed_none_or_none_sentinel(platform_type, allowed_values): platform_type = 'UNKNOWN_ENUM_VALUE' self._platform_type = platform_type @property def version(self): """ Gets the version of this ManagementAgentAggregationDimensions. Agent image version :return: The version of this ManagementAgentAggregationDimensions. :rtype: str """ return self._version @version.setter def version(self, version): """ Sets the version of this ManagementAgentAggregationDimensions. Agent image version :param version: The version of this ManagementAgentAggregationDimensions. :type: str """ self._version = version @property def has_plugins(self): """ Gets the has_plugins of this ManagementAgentAggregationDimensions. Whether or not a managementAgent has at least one plugin :return: The has_plugins of this ManagementAgentAggregationDimensions. :rtype: bool """ return self._has_plugins @has_plugins.setter def has_plugins(self, has_plugins): """ Sets the has_plugins of this ManagementAgentAggregationDimensions. Whether or not a managementAgent has at least one plugin :param has_plugins: The has_plugins of this ManagementAgentAggregationDimensions. :type: bool """ self._has_plugins = has_plugins @property def install_type(self): """ Gets the install_type of this ManagementAgentAggregationDimensions. The install type, either AGENT or GATEWAY Allowed values for this property are: "AGENT", "GATEWAY", 'UNKNOWN_ENUM_VALUE'. Any unrecognized values returned by a service will be mapped to 'UNKNOWN_ENUM_VALUE'. :return: The install_type of this ManagementAgentAggregationDimensions. :rtype: str """ return self._install_type @install_type.setter def install_type(self, install_type): """ Sets the install_type of this ManagementAgentAggregationDimensions. The install type, either AGENT or GATEWAY :param install_type: The install_type of this ManagementAgentAggregationDimensions. :type: str """ allowed_values = ["AGENT", "GATEWAY"] if not value_allowed_none_or_none_sentinel(install_type, allowed_values): install_type = 'UNKNOWN_ENUM_VALUE' self._install_type = install_type def __repr__(self): return formatted_flat_dict(self) def __eq__(self, other): if other is None: return False return self.__dict__ == other.__dict__ def __ne__(self, other): return not self == other
[ "oci.util.formatted_flat_dict", "oci.util.value_allowed_none_or_none_sentinel" ]
[((9062, 9087), 'oci.util.formatted_flat_dict', 'formatted_flat_dict', (['self'], {}), '(self)\n', (9081, 9087), False, 'from oci.util import formatted_flat_dict, NONE_SENTINEL, value_allowed_none_or_none_sentinel\n'), ((5437, 5509), 'oci.util.value_allowed_none_or_none_sentinel', 'value_allowed_none_or_none_sentinel', (['availability_status', 'allowed_values'], {}), '(availability_status, allowed_values)\n', (5472, 5509), False, 'from oci.util import formatted_flat_dict, NONE_SENTINEL, value_allowed_none_or_none_sentinel\n'), ((6480, 6546), 'oci.util.value_allowed_none_or_none_sentinel', 'value_allowed_none_or_none_sentinel', (['platform_type', 'allowed_values'], {}), '(platform_type, allowed_values)\n', (6515, 6546), False, 'from oci.util import formatted_flat_dict, NONE_SENTINEL, value_allowed_none_or_none_sentinel\n'), ((8865, 8930), 'oci.util.value_allowed_none_or_none_sentinel', 'value_allowed_none_or_none_sentinel', (['install_type', 'allowed_values'], {}), '(install_type, allowed_values)\n', (8900, 8930), False, 'from oci.util import formatted_flat_dict, NONE_SENTINEL, value_allowed_none_or_none_sentinel\n')]
from sympy import ( limit, Symbol, oo, sqrt, Rational, log, exp, cos, sin, tan, pi, asin, together, root, S, ) # Numbers listed with the tests refer to problem numbers in the book # "Anti-demidovich, problemas resueltos, Ed. URSS" x = Symbol("x") def test_leadterm(): assert (3 + 2 * x ** (log(3) / log(2) - 1)).leadterm(x) == (3, 0) def root3(x): return root(x, 3) def root4(x): return root(x, 4) def test_Limits_simple_0(): assert limit((2 ** (x + 1) + 3 ** (x + 1)) / (2 ** x + 3 ** x), x, oo) == 3 # 175 def test_Limits_simple_1(): assert limit((x + 1) * (x + 2) * (x + 3) / x ** 3, x, oo) == 1 # 172 assert limit(sqrt(x + 1) - sqrt(x), x, oo) == 0 # 179 assert ( limit((2 * x - 3) * (3 * x + 5) * (4 * x - 6) / (3 * x ** 3 + x - 1), x, oo) == 8 ) # Primjer 1 assert limit(x / root3(x ** 3 + 10), x, oo) == 1 # Primjer 2 assert limit((x + 1) ** 2 / (x ** 2 + 1), x, oo) == 1 # 181 def test_Limits_simple_2(): assert limit(1000 * x / (x ** 2 - 1), x, oo) == 0 # 182 assert limit((x ** 2 - 5 * x + 1) / (3 * x + 7), x, oo) is oo # 183 assert limit((2 * x ** 2 - x + 3) / (x ** 3 - 8 * x + 5), x, oo) == 0 # 184 assert limit((2 * x ** 2 - 3 * x - 4) / sqrt(x ** 4 + 1), x, oo) == 2 # 186 assert limit((2 * x + 3) / (x + root3(x)), x, oo) == 2 # 187 assert limit(x ** 2 / (10 + x * sqrt(x)), x, oo) is oo # 188 assert limit(root3(x ** 2 + 1) / (x + 1), x, oo) == 0 # 189 assert limit(sqrt(x) / sqrt(x + sqrt(x + sqrt(x))), x, oo) == 1 # 190 def test_Limits_simple_3a(): a = Symbol("a") # issue 3513 assert together(limit((x ** 2 - (a + 1) * x + a) / (x ** 3 - a ** 3), x, a)) == ( a - 1 ) / ( 3 * a ** 2 ) # 196 def test_Limits_simple_3b(): h = Symbol("h") assert limit(((x + h) ** 3 - x ** 3) / h, h, 0) == 3 * x ** 2 # 197 assert limit((1 / (1 - x) - 3 / (1 - x ** 3)), x, 1) == -1 # 198 assert ( limit((sqrt(1 + x) - 1) / (root3(1 + x) - 1), x, 0) == Rational(3) / 2 ) # Primer 4 assert limit((sqrt(x) - 1) / (x - 1), x, 1) == Rational(1) / 2 # 199 assert limit((sqrt(x) - 8) / (root3(x) - 4), x, 64) == 3 # 200 assert limit((root3(x) - 1) / (root4(x) - 1), x, 1) == Rational(4) / 3 # 201 assert ( limit((root3(x ** 2) - 2 * root3(x) + 1) / (x - 1) ** 2, x, 1) == Rational(1) / 9 ) # 202 def test_Limits_simple_4a(): a = Symbol("a") assert limit((sqrt(x) - sqrt(a)) / (x - a), x, a) == 1 / (2 * sqrt(a)) # Primer 5 assert limit((sqrt(x) - 1) / (root3(x) - 1), x, 1) == Rational(3, 2) # 205 assert limit((sqrt(1 + x) - sqrt(1 - x)) / x, x, 0) == 1 # 207 assert limit(sqrt(x ** 2 - 5 * x + 6) - x, x, oo) == Rational(-5, 2) # 213 def test_limits_simple_4aa(): assert limit(x * (sqrt(x ** 2 + 1) - x), x, oo) == Rational(1) / 2 # 214 def test_Limits_simple_4b(): # issue 3511 assert limit(x - root3(x ** 3 - 1), x, oo) == 0 # 215 def test_Limits_simple_4c(): assert limit(log(1 + exp(x)) / x, x, -oo) == 0 # 267a assert limit(log(1 + exp(x)) / x, x, oo) == 1 # 267b def test_bounded(): assert limit(sin(x) / x, x, oo) == 0 # 216b assert limit(x * sin(1 / x), x, 0) == 0 # 227a def test_f1a(): # issue 3508: assert limit((sin(2 * x) / x) ** (1 + x), x, 0) == 2 # Primer 7 def test_f1a2(): # issue 3509: assert limit(((x - 1) / (x + 1)) ** x, x, oo) == exp(-2) # Primer 9 def test_f1b(): m = Symbol("m") n = Symbol("n") h = Symbol("h") a = Symbol("a") assert limit(sin(x) / x, x, 2) == sin(2) / 2 # 216a assert limit(sin(3 * x) / x, x, 0) == 3 # 217 assert limit(sin(5 * x) / sin(2 * x), x, 0) == Rational(5, 2) # 218 assert limit(sin(pi * x) / sin(3 * pi * x), x, 0) == Rational(1, 3) # 219 assert limit(x * sin(pi / x), x, oo) == pi # 220 assert limit((1 - cos(x)) / x ** 2, x, 0) == S.Half # 221 assert limit(x * sin(1 / x), x, oo) == 1 # 227b assert limit((cos(m * x) - cos(n * x)) / x ** 2, x, 0) == ( (n ** 2 - m ** 2) / 2 ) # 232 assert limit((tan(x) - sin(x)) / x ** 3, x, 0) == S.Half # 233 assert limit((x - sin(2 * x)) / (x + sin(3 * x)), x, 0) == -Rational(1, 4) # 237 assert limit((1 - sqrt(cos(x))) / x ** 2, x, 0) == Rational(1, 4) # 239 assert limit((sqrt(1 + sin(x)) - sqrt(1 - sin(x))) / x, x, 0) == 1 # 240 assert limit((1 + h / x) ** x, x, oo) == exp(h) # Primer 9 assert limit((sin(x) - sin(a)) / (x - a), x, a) == cos(a) # 222, *176 assert limit((cos(x) - cos(a)) / (x - a), x, a) == -sin(a) # 223 assert limit((sin(x + h) - sin(x)) / h, h, 0) == cos(x) # 225 def test_f2a(): assert limit(((x + 1) / (2 * x + 1)) ** (x ** 2), x, oo) == 0 # Primer 8 def test_f2(): assert limit((sqrt(cos(x)) - root3(cos(x))) / (sin(x) ** 2), x, 0) == -Rational( 1, 12 ) # *184 def test_f3(): a = Symbol("a") # issue 3504 assert limit(asin(a * x) / x, x, 0) == a
[ "sympy.sin", "sympy.Symbol", "sympy.cos", "sympy.root", "sympy.sqrt", "sympy.limit", "sympy.tan", "sympy.log", "sympy.exp", "sympy.asin", "sympy.Rational" ]
[((297, 308), 'sympy.Symbol', 'Symbol', (['"""x"""'], {}), "('x')\n", (303, 308), False, 'from sympy import limit, Symbol, oo, sqrt, Rational, log, exp, cos, sin, tan, pi, asin, together, root, S\n'), ((429, 439), 'sympy.root', 'root', (['x', '(3)'], {}), '(x, 3)\n', (433, 439), False, 'from sympy import limit, Symbol, oo, sqrt, Rational, log, exp, cos, sin, tan, pi, asin, together, root, S\n'), ((467, 477), 'sympy.root', 'root', (['x', '(4)'], {}), '(x, 4)\n', (471, 477), False, 'from sympy import limit, Symbol, oo, sqrt, Rational, log, exp, cos, sin, tan, pi, asin, together, root, S\n'), ((1656, 1667), 'sympy.Symbol', 'Symbol', (['"""a"""'], {}), "('a')\n", (1662, 1667), False, 'from sympy import limit, Symbol, oo, sqrt, Rational, log, exp, cos, sin, tan, pi, asin, together, root, S\n'), ((1866, 1877), 'sympy.Symbol', 'Symbol', (['"""h"""'], {}), "('h')\n", (1872, 1877), False, 'from sympy import limit, Symbol, oo, sqrt, Rational, log, exp, cos, sin, tan, pi, asin, together, root, S\n'), ((2518, 2529), 'sympy.Symbol', 'Symbol', (['"""a"""'], {}), "('a')\n", (2524, 2529), False, 'from sympy import limit, Symbol, oo, sqrt, Rational, log, exp, cos, sin, tan, pi, asin, together, root, S\n'), ((3574, 3585), 'sympy.Symbol', 'Symbol', (['"""m"""'], {}), "('m')\n", (3580, 3585), False, 'from sympy import limit, Symbol, oo, sqrt, Rational, log, exp, cos, sin, tan, pi, asin, together, root, S\n'), ((3594, 3605), 'sympy.Symbol', 'Symbol', (['"""n"""'], {}), "('n')\n", (3600, 3605), False, 'from sympy import limit, Symbol, oo, sqrt, Rational, log, exp, cos, sin, tan, pi, asin, together, root, S\n'), ((3614, 3625), 'sympy.Symbol', 'Symbol', (['"""h"""'], {}), "('h')\n", (3620, 3625), False, 'from sympy import limit, Symbol, oo, sqrt, Rational, log, exp, cos, sin, tan, pi, asin, together, root, S\n'), ((3634, 3645), 'sympy.Symbol', 'Symbol', (['"""a"""'], {}), "('a')\n", (3640, 3645), False, 'from sympy import limit, Symbol, oo, sqrt, Rational, log, exp, cos, sin, tan, pi, asin, together, root, S\n'), ((5020, 5031), 'sympy.Symbol', 'Symbol', (['"""a"""'], {}), "('a')\n", (5026, 5031), False, 'from sympy import limit, Symbol, oo, sqrt, Rational, log, exp, cos, sin, tan, pi, asin, together, root, S\n'), ((519, 582), 'sympy.limit', 'limit', (['((2 ** (x + 1) + 3 ** (x + 1)) / (2 ** x + 3 ** x))', 'x', 'oo'], {}), '((2 ** (x + 1) + 3 ** (x + 1)) / (2 ** x + 3 ** x), x, oo)\n', (524, 582), False, 'from sympy import limit, Symbol, oo, sqrt, Rational, log, exp, cos, sin, tan, pi, asin, together, root, S\n'), ((636, 686), 'sympy.limit', 'limit', (['((x + 1) * (x + 2) * (x + 3) / x ** 3)', 'x', 'oo'], {}), '((x + 1) * (x + 2) * (x + 3) / x ** 3, x, oo)\n', (641, 686), False, 'from sympy import limit, Symbol, oo, sqrt, Rational, log, exp, cos, sin, tan, pi, asin, together, root, S\n'), ((779, 855), 'sympy.limit', 'limit', (['((2 * x - 3) * (3 * x + 5) * (4 * x - 6) / (3 * x ** 3 + x - 1))', 'x', 'oo'], {}), '((2 * x - 3) * (3 * x + 5) * (4 * x - 6) / (3 * x ** 3 + x - 1), x, oo)\n', (784, 855), False, 'from sympy import limit, Symbol, oo, sqrt, Rational, log, exp, cos, sin, tan, pi, asin, together, root, S\n'), ((965, 1006), 'sympy.limit', 'limit', (['((x + 1) ** 2 / (x ** 2 + 1))', 'x', 'oo'], {}), '((x + 1) ** 2 / (x ** 2 + 1), x, oo)\n', (970, 1006), False, 'from sympy import limit, Symbol, oo, sqrt, Rational, log, exp, cos, sin, tan, pi, asin, together, root, S\n'), ((1060, 1097), 'sympy.limit', 'limit', (['(1000 * x / (x ** 2 - 1))', 'x', 'oo'], {}), '(1000 * x / (x ** 2 - 1), x, oo)\n', (1065, 1097), False, 'from sympy import limit, Symbol, oo, sqrt, Rational, log, exp, cos, sin, tan, pi, asin, together, root, S\n'), ((1121, 1169), 'sympy.limit', 'limit', (['((x ** 2 - 5 * x + 1) / (3 * x + 7))', 'x', 'oo'], {}), '((x ** 2 - 5 * x + 1) / (3 * x + 7), x, oo)\n', (1126, 1169), False, 'from sympy import limit, Symbol, oo, sqrt, Rational, log, exp, cos, sin, tan, pi, asin, together, root, S\n'), ((1194, 1251), 'sympy.limit', 'limit', (['((2 * x ** 2 - x + 3) / (x ** 3 - 8 * x + 5))', 'x', 'oo'], {}), '((2 * x ** 2 - x + 3) / (x ** 3 - 8 * x + 5), x, oo)\n', (1199, 1251), False, 'from sympy import limit, Symbol, oo, sqrt, Rational, log, exp, cos, sin, tan, pi, asin, together, root, S\n'), ((1889, 1929), 'sympy.limit', 'limit', (['(((x + h) ** 3 - x ** 3) / h)', 'h', '(0)'], {}), '(((x + h) ** 3 - x ** 3) / h, h, 0)\n', (1894, 1929), False, 'from sympy import limit, Symbol, oo, sqrt, Rational, log, exp, cos, sin, tan, pi, asin, together, root, S\n'), ((1962, 2005), 'sympy.limit', 'limit', (['(1 / (1 - x) - 3 / (1 - x ** 3))', 'x', '(1)'], {}), '(1 / (1 - x) - 3 / (1 - x ** 3), x, 1)\n', (1967, 2005), False, 'from sympy import limit, Symbol, oo, sqrt, Rational, log, exp, cos, sin, tan, pi, asin, together, root, S\n'), ((2675, 2689), 'sympy.Rational', 'Rational', (['(3)', '(2)'], {}), '(3, 2)\n', (2683, 2689), False, 'from sympy import limit, Symbol, oo, sqrt, Rational, log, exp, cos, sin, tan, pi, asin, together, root, S\n'), ((2822, 2837), 'sympy.Rational', 'Rational', (['(-5)', '(2)'], {}), '(-5, 2)\n', (2830, 2837), False, 'from sympy import limit, Symbol, oo, sqrt, Rational, log, exp, cos, sin, tan, pi, asin, together, root, S\n'), ((3486, 3524), 'sympy.limit', 'limit', (['(((x - 1) / (x + 1)) ** x)', 'x', 'oo'], {}), '(((x - 1) / (x + 1)) ** x, x, oo)\n', (3491, 3524), False, 'from sympy import limit, Symbol, oo, sqrt, Rational, log, exp, cos, sin, tan, pi, asin, together, root, S\n'), ((3528, 3535), 'sympy.exp', 'exp', (['(-2)'], {}), '(-2)\n', (3531, 3535), False, 'from sympy import limit, Symbol, oo, sqrt, Rational, log, exp, cos, sin, tan, pi, asin, together, root, S\n'), ((3805, 3819), 'sympy.Rational', 'Rational', (['(5)', '(2)'], {}), '(5, 2)\n', (3813, 3819), False, 'from sympy import limit, Symbol, oo, sqrt, Rational, log, exp, cos, sin, tan, pi, asin, together, root, S\n'), ((3884, 3898), 'sympy.Rational', 'Rational', (['(1)', '(3)'], {}), '(1, 3)\n', (3892, 3898), False, 'from sympy import limit, Symbol, oo, sqrt, Rational, log, exp, cos, sin, tan, pi, asin, together, root, S\n'), ((4392, 4406), 'sympy.Rational', 'Rational', (['(1)', '(4)'], {}), '(1, 4)\n', (4400, 4406), False, 'from sympy import limit, Symbol, oo, sqrt, Rational, log, exp, cos, sin, tan, pi, asin, together, root, S\n'), ((4504, 4534), 'sympy.limit', 'limit', (['((1 + h / x) ** x)', 'x', 'oo'], {}), '((1 + h / x) ** x, x, oo)\n', (4509, 4534), False, 'from sympy import limit, Symbol, oo, sqrt, Rational, log, exp, cos, sin, tan, pi, asin, together, root, S\n'), ((4538, 4544), 'sympy.exp', 'exp', (['h'], {}), '(h)\n', (4541, 4544), False, 'from sympy import limit, Symbol, oo, sqrt, Rational, log, exp, cos, sin, tan, pi, asin, together, root, S\n'), ((4612, 4618), 'sympy.cos', 'cos', (['a'], {}), '(a)\n', (4615, 4618), False, 'from sympy import limit, Symbol, oo, sqrt, Rational, log, exp, cos, sin, tan, pi, asin, together, root, S\n'), ((4755, 4761), 'sympy.cos', 'cos', (['x'], {}), '(x)\n', (4758, 4761), False, 'from sympy import limit, Symbol, oo, sqrt, Rational, log, exp, cos, sin, tan, pi, asin, together, root, S\n'), ((4798, 4845), 'sympy.limit', 'limit', (['(((x + 1) / (2 * x + 1)) ** x ** 2)', 'x', 'oo'], {}), '(((x + 1) / (2 * x + 1)) ** x ** 2, x, oo)\n', (4803, 4845), False, 'from sympy import limit, Symbol, oo, sqrt, Rational, log, exp, cos, sin, tan, pi, asin, together, root, S\n'), ((1705, 1764), 'sympy.limit', 'limit', (['((x ** 2 - (a + 1) * x + a) / (x ** 3 - a ** 3))', 'x', 'a'], {}), '((x ** 2 - (a + 1) * x + a) / (x ** 3 - a ** 3), x, a)\n', (1710, 1764), False, 'from sympy import limit, Symbol, oo, sqrt, Rational, log, exp, cos, sin, tan, pi, asin, together, root, S\n'), ((2097, 2108), 'sympy.Rational', 'Rational', (['(3)'], {}), '(3)\n', (2105, 2108), False, 'from sympy import limit, Symbol, oo, sqrt, Rational, log, exp, cos, sin, tan, pi, asin, together, root, S\n'), ((2182, 2193), 'sympy.Rational', 'Rational', (['(1)'], {}), '(1)\n', (2190, 2193), False, 'from sympy import limit, Symbol, oo, sqrt, Rational, log, exp, cos, sin, tan, pi, asin, together, root, S\n'), ((2332, 2343), 'sympy.Rational', 'Rational', (['(4)'], {}), '(4)\n', (2340, 2343), False, 'from sympy import limit, Symbol, oo, sqrt, Rational, log, exp, cos, sin, tan, pi, asin, together, root, S\n'), ((2450, 2461), 'sympy.Rational', 'Rational', (['(1)'], {}), '(1)\n', (2458, 2461), False, 'from sympy import limit, Symbol, oo, sqrt, Rational, log, exp, cos, sin, tan, pi, asin, together, root, S\n'), ((2932, 2943), 'sympy.Rational', 'Rational', (['(1)'], {}), '(1)\n', (2940, 2943), False, 'from sympy import limit, Symbol, oo, sqrt, Rational, log, exp, cos, sin, tan, pi, asin, together, root, S\n'), ((3684, 3690), 'sympy.sin', 'sin', (['(2)'], {}), '(2)\n', (3687, 3690), False, 'from sympy import limit, Symbol, oo, sqrt, Rational, log, exp, cos, sin, tan, pi, asin, together, root, S\n'), ((4315, 4329), 'sympy.Rational', 'Rational', (['(1)', '(4)'], {}), '(1, 4)\n', (4323, 4329), False, 'from sympy import limit, Symbol, oo, sqrt, Rational, log, exp, cos, sin, tan, pi, asin, together, root, S\n'), ((4688, 4694), 'sympy.sin', 'sin', (['a'], {}), '(a)\n', (4691, 4694), False, 'from sympy import limit, Symbol, oo, sqrt, Rational, log, exp, cos, sin, tan, pi, asin, together, root, S\n'), ((4957, 4972), 'sympy.Rational', 'Rational', (['(1)', '(12)'], {}), '(1, 12)\n', (4965, 4972), False, 'from sympy import limit, Symbol, oo, sqrt, Rational, log, exp, cos, sin, tan, pi, asin, together, root, S\n'), ((716, 727), 'sympy.sqrt', 'sqrt', (['(x + 1)'], {}), '(x + 1)\n', (720, 727), False, 'from sympy import limit, Symbol, oo, sqrt, Rational, log, exp, cos, sin, tan, pi, asin, together, root, S\n'), ((730, 737), 'sympy.sqrt', 'sqrt', (['x'], {}), '(x)\n', (734, 737), False, 'from sympy import limit, Symbol, oo, sqrt, Rational, log, exp, cos, sin, tan, pi, asin, together, root, S\n'), ((1308, 1324), 'sympy.sqrt', 'sqrt', (['(x ** 4 + 1)'], {}), '(x ** 4 + 1)\n', (1312, 1324), False, 'from sympy import limit, Symbol, oo, sqrt, Rational, log, exp, cos, sin, tan, pi, asin, together, root, S\n'), ((1559, 1566), 'sympy.sqrt', 'sqrt', (['x'], {}), '(x)\n', (1563, 1566), False, 'from sympy import limit, Symbol, oo, sqrt, Rational, log, exp, cos, sin, tan, pi, asin, together, root, S\n'), ((2596, 2603), 'sympy.sqrt', 'sqrt', (['a'], {}), '(a)\n', (2600, 2603), False, 'from sympy import limit, Symbol, oo, sqrt, Rational, log, exp, cos, sin, tan, pi, asin, together, root, S\n'), ((2782, 2806), 'sympy.sqrt', 'sqrt', (['(x ** 2 - 5 * x + 6)'], {}), '(x ** 2 - 5 * x + 6)\n', (2786, 2806), False, 'from sympy import limit, Symbol, oo, sqrt, Rational, log, exp, cos, sin, tan, pi, asin, together, root, S\n'), ((3249, 3255), 'sympy.sin', 'sin', (['x'], {}), '(x)\n', (3252, 3255), False, 'from sympy import limit, Symbol, oo, sqrt, Rational, log, exp, cos, sin, tan, pi, asin, together, root, S\n'), ((3302, 3312), 'sympy.sin', 'sin', (['(1 / x)'], {}), '(1 / x)\n', (3305, 3312), False, 'from sympy import limit, Symbol, oo, sqrt, Rational, log, exp, cos, sin, tan, pi, asin, together, root, S\n'), ((3663, 3669), 'sympy.sin', 'sin', (['x'], {}), '(x)\n', (3666, 3669), False, 'from sympy import limit, Symbol, oo, sqrt, Rational, log, exp, cos, sin, tan, pi, asin, together, root, S\n'), ((3720, 3730), 'sympy.sin', 'sin', (['(3 * x)'], {}), '(3 * x)\n', (3723, 3730), False, 'from sympy import limit, Symbol, oo, sqrt, Rational, log, exp, cos, sin, tan, pi, asin, together, root, S\n'), ((3771, 3781), 'sympy.sin', 'sin', (['(5 * x)'], {}), '(5 * x)\n', (3774, 3781), False, 'from sympy import limit, Symbol, oo, sqrt, Rational, log, exp, cos, sin, tan, pi, asin, together, root, S\n'), ((3784, 3794), 'sympy.sin', 'sin', (['(2 * x)'], {}), '(2 * x)\n', (3787, 3794), False, 'from sympy import limit, Symbol, oo, sqrt, Rational, log, exp, cos, sin, tan, pi, asin, together, root, S\n'), ((3844, 3855), 'sympy.sin', 'sin', (['(pi * x)'], {}), '(pi * x)\n', (3847, 3855), False, 'from sympy import limit, Symbol, oo, sqrt, Rational, log, exp, cos, sin, tan, pi, asin, together, root, S\n'), ((3858, 3873), 'sympy.sin', 'sin', (['(3 * pi * x)'], {}), '(3 * pi * x)\n', (3861, 3873), False, 'from sympy import limit, Symbol, oo, sqrt, Rational, log, exp, cos, sin, tan, pi, asin, together, root, S\n'), ((3927, 3938), 'sympy.sin', 'sin', (['(pi / x)'], {}), '(pi / x)\n', (3930, 3938), False, 'from sympy import limit, Symbol, oo, sqrt, Rational, log, exp, cos, sin, tan, pi, asin, together, root, S\n'), ((4044, 4054), 'sympy.sin', 'sin', (['(1 / x)'], {}), '(1 / x)\n', (4047, 4054), False, 'from sympy import limit, Symbol, oo, sqrt, Rational, log, exp, cos, sin, tan, pi, asin, together, root, S\n'), ((5066, 5077), 'sympy.asin', 'asin', (['(a * x)'], {}), '(a * x)\n', (5070, 5077), False, 'from sympy import limit, Symbol, oo, sqrt, Rational, log, exp, cos, sin, tan, pi, asin, together, root, S\n'), ((2049, 2060), 'sympy.sqrt', 'sqrt', (['(1 + x)'], {}), '(1 + x)\n', (2053, 2060), False, 'from sympy import limit, Symbol, oo, sqrt, Rational, log, exp, cos, sin, tan, pi, asin, together, root, S\n'), ((2149, 2156), 'sympy.sqrt', 'sqrt', (['x'], {}), '(x)\n', (2153, 2156), False, 'from sympy import limit, Symbol, oo, sqrt, Rational, log, exp, cos, sin, tan, pi, asin, together, root, S\n'), ((2223, 2230), 'sympy.sqrt', 'sqrt', (['x'], {}), '(x)\n', (2227, 2230), False, 'from sympy import limit, Symbol, oo, sqrt, Rational, log, exp, cos, sin, tan, pi, asin, together, root, S\n'), ((2548, 2555), 'sympy.sqrt', 'sqrt', (['x'], {}), '(x)\n', (2552, 2555), False, 'from sympy import limit, Symbol, oo, sqrt, Rational, log, exp, cos, sin, tan, pi, asin, together, root, S\n'), ((2558, 2565), 'sympy.sqrt', 'sqrt', (['a'], {}), '(a)\n', (2562, 2565), False, 'from sympy import limit, Symbol, oo, sqrt, Rational, log, exp, cos, sin, tan, pi, asin, together, root, S\n'), ((2635, 2642), 'sympy.sqrt', 'sqrt', (['x'], {}), '(x)\n', (2639, 2642), False, 'from sympy import limit, Symbol, oo, sqrt, Rational, log, exp, cos, sin, tan, pi, asin, together, root, S\n'), ((2715, 2726), 'sympy.sqrt', 'sqrt', (['(1 + x)'], {}), '(1 + x)\n', (2719, 2726), False, 'from sympy import limit, Symbol, oo, sqrt, Rational, log, exp, cos, sin, tan, pi, asin, together, root, S\n'), ((2729, 2740), 'sympy.sqrt', 'sqrt', (['(1 - x)'], {}), '(1 - x)\n', (2733, 2740), False, 'from sympy import limit, Symbol, oo, sqrt, Rational, log, exp, cos, sin, tan, pi, asin, together, root, S\n'), ((2899, 2915), 'sympy.sqrt', 'sqrt', (['(x ** 2 + 1)'], {}), '(x ** 2 + 1)\n', (2903, 2915), False, 'from sympy import limit, Symbol, oo, sqrt, Rational, log, exp, cos, sin, tan, pi, asin, together, root, S\n'), ((3387, 3397), 'sympy.sin', 'sin', (['(2 * x)'], {}), '(2 * x)\n', (3390, 3397), False, 'from sympy import limit, Symbol, oo, sqrt, Rational, log, exp, cos, sin, tan, pi, asin, together, root, S\n'), ((3982, 3988), 'sympy.cos', 'cos', (['x'], {}), '(x)\n', (3985, 3988), False, 'from sympy import limit, Symbol, oo, sqrt, Rational, log, exp, cos, sin, tan, pi, asin, together, root, S\n'), ((4094, 4104), 'sympy.cos', 'cos', (['(m * x)'], {}), '(m * x)\n', (4097, 4104), False, 'from sympy import limit, Symbol, oo, sqrt, Rational, log, exp, cos, sin, tan, pi, asin, together, root, S\n'), ((4107, 4117), 'sympy.cos', 'cos', (['(n * x)'], {}), '(n * x)\n', (4110, 4117), False, 'from sympy import limit, Symbol, oo, sqrt, Rational, log, exp, cos, sin, tan, pi, asin, together, root, S\n'), ((4201, 4207), 'sympy.tan', 'tan', (['x'], {}), '(x)\n', (4204, 4207), False, 'from sympy import limit, Symbol, oo, sqrt, Rational, log, exp, cos, sin, tan, pi, asin, together, root, S\n'), ((4210, 4216), 'sympy.sin', 'sin', (['x'], {}), '(x)\n', (4213, 4216), False, 'from sympy import limit, Symbol, oo, sqrt, Rational, log, exp, cos, sin, tan, pi, asin, together, root, S\n'), ((4273, 4283), 'sympy.sin', 'sin', (['(2 * x)'], {}), '(2 * x)\n', (4276, 4283), False, 'from sympy import limit, Symbol, oo, sqrt, Rational, log, exp, cos, sin, tan, pi, asin, together, root, S\n'), ((4292, 4302), 'sympy.sin', 'sin', (['(3 * x)'], {}), '(3 * x)\n', (4295, 4302), False, 'from sympy import limit, Symbol, oo, sqrt, Rational, log, exp, cos, sin, tan, pi, asin, together, root, S\n'), ((4575, 4581), 'sympy.sin', 'sin', (['x'], {}), '(x)\n', (4578, 4581), False, 'from sympy import limit, Symbol, oo, sqrt, Rational, log, exp, cos, sin, tan, pi, asin, together, root, S\n'), ((4584, 4590), 'sympy.sin', 'sin', (['a'], {}), '(a)\n', (4587, 4590), False, 'from sympy import limit, Symbol, oo, sqrt, Rational, log, exp, cos, sin, tan, pi, asin, together, root, S\n'), ((4650, 4656), 'sympy.cos', 'cos', (['x'], {}), '(x)\n', (4653, 4656), False, 'from sympy import limit, Symbol, oo, sqrt, Rational, log, exp, cos, sin, tan, pi, asin, together, root, S\n'), ((4659, 4665), 'sympy.cos', 'cos', (['a'], {}), '(a)\n', (4662, 4665), False, 'from sympy import limit, Symbol, oo, sqrt, Rational, log, exp, cos, sin, tan, pi, asin, together, root, S\n'), ((4720, 4730), 'sympy.sin', 'sin', (['(x + h)'], {}), '(x + h)\n', (4723, 4730), False, 'from sympy import limit, Symbol, oo, sqrt, Rational, log, exp, cos, sin, tan, pi, asin, together, root, S\n'), ((4733, 4739), 'sympy.sin', 'sin', (['x'], {}), '(x)\n', (4736, 4739), False, 'from sympy import limit, Symbol, oo, sqrt, Rational, log, exp, cos, sin, tan, pi, asin, together, root, S\n'), ((4933, 4939), 'sympy.sin', 'sin', (['x'], {}), '(x)\n', (4936, 4939), False, 'from sympy import limit, Symbol, oo, sqrt, Rational, log, exp, cos, sin, tan, pi, asin, together, root, S\n'), ((1447, 1454), 'sympy.sqrt', 'sqrt', (['x'], {}), '(x)\n', (1451, 1454), False, 'from sympy import limit, Symbol, oo, sqrt, Rational, log, exp, cos, sin, tan, pi, asin, together, root, S\n'), ((3118, 3124), 'sympy.exp', 'exp', (['x'], {}), '(x)\n', (3121, 3124), False, 'from sympy import limit, Symbol, oo, sqrt, Rational, log, exp, cos, sin, tan, pi, asin, together, root, S\n'), ((3177, 3183), 'sympy.exp', 'exp', (['x'], {}), '(x)\n', (3180, 3183), False, 'from sympy import limit, Symbol, oo, sqrt, Rational, log, exp, cos, sin, tan, pi, asin, together, root, S\n'), ((4364, 4370), 'sympy.cos', 'cos', (['x'], {}), '(x)\n', (4367, 4370), False, 'from sympy import limit, Symbol, oo, sqrt, Rational, log, exp, cos, sin, tan, pi, asin, together, root, S\n'), ((4905, 4911), 'sympy.cos', 'cos', (['x'], {}), '(x)\n', (4908, 4911), False, 'from sympy import limit, Symbol, oo, sqrt, Rational, log, exp, cos, sin, tan, pi, asin, together, root, S\n'), ((4921, 4927), 'sympy.cos', 'cos', (['x'], {}), '(x)\n', (4924, 4927), False, 'from sympy import limit, Symbol, oo, sqrt, Rational, log, exp, cos, sin, tan, pi, asin, together, root, S\n'), ((4441, 4447), 'sympy.sin', 'sin', (['x'], {}), '(x)\n', (4444, 4447), False, 'from sympy import limit, Symbol, oo, sqrt, Rational, log, exp, cos, sin, tan, pi, asin, together, root, S\n'), ((4460, 4466), 'sympy.sin', 'sin', (['x'], {}), '(x)\n', (4463, 4466), False, 'from sympy import limit, Symbol, oo, sqrt, Rational, log, exp, cos, sin, tan, pi, asin, together, root, S\n'), ((1587, 1594), 'sympy.sqrt', 'sqrt', (['x'], {}), '(x)\n', (1591, 1594), False, 'from sympy import limit, Symbol, oo, sqrt, Rational, log, exp, cos, sin, tan, pi, asin, together, root, S\n'), ((358, 364), 'sympy.log', 'log', (['(3)'], {}), '(3)\n', (361, 364), False, 'from sympy import limit, Symbol, oo, sqrt, Rational, log, exp, cos, sin, tan, pi, asin, together, root, S\n'), ((367, 373), 'sympy.log', 'log', (['(2)'], {}), '(2)\n', (370, 373), False, 'from sympy import limit, Symbol, oo, sqrt, Rational, log, exp, cos, sin, tan, pi, asin, together, root, S\n')]
from notion.client import NotionClient from notion.settings import Settings class Context: def __init__(self): self.settings = Settings.from_file() self._client = None def get_client(self): if not self._client: self.settings.validate() self._client = NotionClient(token_v2=self.settings.token, monitor=False) return self._client def update_settings(self, **kwargs): self.settings = self.settings.update(**kwargs)
[ "notion.settings.Settings.from_file", "notion.client.NotionClient" ]
[((141, 161), 'notion.settings.Settings.from_file', 'Settings.from_file', ([], {}), '()\n', (159, 161), False, 'from notion.settings import Settings\n'), ((310, 367), 'notion.client.NotionClient', 'NotionClient', ([], {'token_v2': 'self.settings.token', 'monitor': '(False)'}), '(token_v2=self.settings.token, monitor=False)\n', (322, 367), False, 'from notion.client import NotionClient\n')]
import unittest from Observers import Observer, ObserverMailServer, ObserverPbx from Subjects import Subject, SubjectEflow class UtVisitor(unittest.TestCase): def test_observer(self): # Create observers pbx = ObserverPbx() ms = ObserverMailServer() # Create subject subject = SubjectEflow() subject.attach(pbx) subject.attach(ms) # Notify when JB is leave of absence subject.notify("JB", "Hachi") self.assertTrue(True) if __name__ == '__main__': unittest.main()
[ "unittest.main", "Observers.ObserverMailServer", "Subjects.SubjectEflow", "Observers.ObserverPbx" ]
[((567, 582), 'unittest.main', 'unittest.main', ([], {}), '()\n', (580, 582), False, 'import unittest\n'), ((233, 246), 'Observers.ObserverPbx', 'ObserverPbx', ([], {}), '()\n', (244, 246), False, 'from Observers import Observer, ObserverMailServer, ObserverPbx\n'), ((260, 280), 'Observers.ObserverMailServer', 'ObserverMailServer', ([], {}), '()\n', (278, 280), False, 'from Observers import Observer, ObserverMailServer, ObserverPbx\n'), ((337, 351), 'Subjects.SubjectEflow', 'SubjectEflow', ([], {}), '()\n', (349, 351), False, 'from Subjects import Subject, SubjectEflow\n')]
from durations import Duration from typing import Any, Dict, Optional from timeeval import Algorithm, TrainingType, InputDimensionality from timeeval.adapters import DockerAdapter from timeeval.params import ParameterConfig _eif_parameters: Dict[str, Dict[str, Any]] = { "extension_level": { "defaultValue": None, "description": "Extension level 0 resembles standard isolation forest. If unspecified (`None`), then `extension_level=X.shape[1] - 1`.", "name": "extension_level", "type": "int" }, "limit": { "defaultValue": None, "description": "The maximum allowed tree depth. This is by default set to average length of unsucessful search in a binary tree.", "name": "limit", "type": "int" }, "max_samples": { "defaultValue": None, "description": "The number of samples to draw from X to train each base estimator: `max_samples * X.shape[0]`. If unspecified (`None`), then `max_samples=min(256, X.shape[0])`.", "name": "max_samples", "type": "float" }, "n_trees": { "defaultValue": 200, "description": "The number of decision trees (base estimators) in the forest (ensemble).", "name": "n_trees", "type": "int" }, "random_state": { "defaultValue": 42, "description": "Seed for random number generation.", "name": "random_state", "type": "int" } } def eif(params: ParameterConfig = None, skip_pull: bool = False, timeout: Optional[Duration] = None) -> Algorithm: return Algorithm( name="Extended Isolation Forest (EIF)", main=DockerAdapter( image_name="registry.gitlab.hpi.de/akita/i/eif", skip_pull=skip_pull, timeout=timeout, group_privileges="akita", ), preprocess=None, postprocess=None, param_schema=_eif_parameters, param_config=params or ParameterConfig.defaults(), data_as_file=True, training_type=TrainingType.UNSUPERVISED, input_dimensionality=InputDimensionality("multivariate") )
[ "timeeval.adapters.DockerAdapter", "timeeval.params.ParameterConfig.defaults", "timeeval.InputDimensionality" ]
[((1500, 1631), 'timeeval.adapters.DockerAdapter', 'DockerAdapter', ([], {'image_name': '"""registry.gitlab.hpi.de/akita/i/eif"""', 'skip_pull': 'skip_pull', 'timeout': 'timeout', 'group_privileges': '"""akita"""'}), "(image_name='registry.gitlab.hpi.de/akita/i/eif', skip_pull=\n skip_pull, timeout=timeout, group_privileges='akita')\n", (1513, 1631), False, 'from timeeval.adapters import DockerAdapter\n'), ((1940, 1975), 'timeeval.InputDimensionality', 'InputDimensionality', (['"""multivariate"""'], {}), "('multivariate')\n", (1959, 1975), False, 'from timeeval import Algorithm, TrainingType, InputDimensionality\n'), ((1807, 1833), 'timeeval.params.ParameterConfig.defaults', 'ParameterConfig.defaults', ([], {}), '()\n', (1831, 1833), False, 'from timeeval.params import ParameterConfig\n')]
""" Convenience classes for assembling graph models. """ from __future__ import print_function from __future__ import division from __future__ import unicode_literals __author__ = "<NAME> and <NAME>" __copyright__ = "Copyright 2016, Stanford University" __license__ = "MIT" import tensorflow as tf from deepchem.nn.layers import GraphGather from deepchem.models.tf_new_models.graph_topology import GraphTopology class SequentialGraph(object): """An analog of Keras Sequential class for Graph data. Like the Sequential class from Keras, but automatically passes topology placeholders from GraphTopology to each graph layer (from layers) added to the network. Non graph layers don't get the extra placeholders. """ def __init__(self, n_feat): """ Parameters ---------- n_feat: int Number of features per atom. """ self.graph = tf.Graph() with self.graph.as_default(): self.graph_topology = GraphTopology(n_feat) self.output = self.graph_topology.get_atom_features_placeholder() # Keep track of the layers self.layers = [] def add(self, layer): """Adds a new layer to model.""" with self.graph.as_default(): ############################################# DEBUG #print("start - add()") #print("self.output") #print(self.output) ############################################# DEBUG # For graphical layers, add connectivity placeholders if type(layer).__name__ in ['GraphConv', 'GraphGather', 'GraphPool']: if (len(self.layers) > 0 and hasattr(self.layers[-1], "__name__")): assert self.layers[-1].__name__ != "GraphGather", \ 'Cannot use GraphConv or GraphGather layers after a GraphGather' self.output = layer([self.output] + self.graph_topology.get_topology_placeholders()) else: self.output = layer(self.output) ############################################# DEBUG #print("end- add()") #print("self.output") #print(self.output) ############################################# DEBUG # Add layer to the layer list self.layers.append(layer) def get_graph_topology(self): return self.graph_topology def get_num_output_features(self): """Gets the output shape of the featurization layers of the network""" return self.layers[-1].output_shape[1] def return_outputs(self): return self.output def return_inputs(self): return self.graph_topology.get_input_placeholders() def get_layer(self, layer_id): return self.layers[layer_id] class SequentialSupportGraph(object): """An analog of Keras Sequential model for test/support models.""" def __init__(self, n_feat): """ Parameters ---------- n_feat: int Number of atomic features. """ self.graph = tf.Graph() with self.graph.as_default(): # Create graph topology and x self.test_graph_topology = GraphTopology(n_feat, name='test') self.support_graph_topology = GraphTopology(n_feat, name='support') self.test = self.test_graph_topology.get_atom_features_placeholder() self.support = self.support_graph_topology.get_atom_features_placeholder() # Keep track of the layers self.layers = [] # Whether or not we have used the GraphGather layer yet self.bool_pre_gather = True def add(self, layer): """Adds a layer to both test/support stacks. Note that the layer transformation is performed independently on the test/support tensors. """ with self.graph.as_default(): self.layers.append(layer) # Update new value of x if type(layer).__name__ in ['GraphConv', 'GraphGather', 'GraphPool']: assert self.bool_pre_gather, "Cannot apply graphical layers after gather." self.test = layer([self.test] + self.test_graph_topology.topology) self.support = layer([self.support] + self.support_graph_topology.topology) else: self.test = layer(self.test) self.support = layer(self.support) if type(layer).__name__ == 'GraphGather': self.bool_pre_gather = False # Set flag to stop adding topology def add_test(self, layer): """Adds a layer to test.""" with self.graph.as_default(): self.layers.append(layer) # Update new value of x if type(layer).__name__ in ['GraphConv', 'GraphPool', 'GraphGather']: self.test = layer([self.test] + self.test_graph_topology.topology) else: self.test = layer(self.test) def add_support(self, layer): """Adds a layer to support.""" with self.graph.as_default(): self.layers.append(layer) # Update new value of x if type(layer).__name__ in ['GraphConv', 'GraphPool', 'GraphGather']: self.support = layer([self.support] + self.support_graph_topology.topology) else: self.support = layer(self.support) def join(self, layer): """Joins test and support to a two input two output layer""" with self.graph.as_default(): self.layers.append(layer) self.test, self.support = layer([self.test, self.support]) def get_test_output(self): return self.test def get_support_output(self): return self.support def return_outputs(self): return [self.test] + [self.support] def return_inputs(self): return (self.test_graph_topology.get_inputs() + self.support_graph_topology.get_inputs())
[ "tensorflow.Graph", "deepchem.models.tf_new_models.graph_topology.GraphTopology" ]
[((874, 884), 'tensorflow.Graph', 'tf.Graph', ([], {}), '()\n', (882, 884), True, 'import tensorflow as tf\n'), ((2863, 2873), 'tensorflow.Graph', 'tf.Graph', ([], {}), '()\n', (2871, 2873), True, 'import tensorflow as tf\n'), ((947, 968), 'deepchem.models.tf_new_models.graph_topology.GraphTopology', 'GraphTopology', (['n_feat'], {}), '(n_feat)\n', (960, 968), False, 'from deepchem.models.tf_new_models.graph_topology import GraphTopology\n'), ((2977, 3011), 'deepchem.models.tf_new_models.graph_topology.GraphTopology', 'GraphTopology', (['n_feat'], {'name': '"""test"""'}), "(n_feat, name='test')\n", (2990, 3011), False, 'from deepchem.models.tf_new_models.graph_topology import GraphTopology\n'), ((3048, 3085), 'deepchem.models.tf_new_models.graph_topology.GraphTopology', 'GraphTopology', (['n_feat'], {'name': '"""support"""'}), "(n_feat, name='support')\n", (3061, 3085), False, 'from deepchem.models.tf_new_models.graph_topology import GraphTopology\n')]
""" Cement generate extension module. """ import re import os import inspect import yaml import shutil from .. import Controller, minimal_logger, shell from ..utils.version import VERSION, get_version LOG = minimal_logger(__name__) class GenerateTemplateAbstractBase(Controller): class Meta: pass def _generate(self, source, dest): msg = 'Generating %s %s in %s' % ( self.app._meta.label, self._meta.label, dest ) self.app.log.info(msg) data = {} # builtin vars maj_min = float('%s.%s' % (VERSION[0], VERSION[1])) data['cement'] = {} data['cement']['version'] = get_version() data['cement']['major_version'] = VERSION[0] data['cement']['minor_version'] = VERSION[1] data['cement']['major_minor_version'] = maj_min f = open(os.path.join(source, '.generate.yml')) yaml_load = yaml.full_load if hasattr(yaml, 'full_load') else yaml.load g_config = yaml_load(f) f.close() vars = g_config.get('variables', {}) exclude_list = g_config.get('exclude', []) ignore_list = g_config.get('ignore', []) # default ignore the .generate.yml config g_config_yml = r'^(.*)[\/\\\\]%s[\/\\\\]\.generate\.yml$' % \ self._meta.label ignore_list.append(g_config_yml) var_defaults = { 'name': None, 'prompt': None, 'validate': None, 'case': None, 'default': None, } for defined_var in vars: var = var_defaults.copy() var.update(defined_var) for key in ['name', 'prompt']: assert var[key] is not None, \ "Required generate config key missing: %s" % key val = None if var['default'] is not None and self.app.pargs.defaults: val = var['default'] elif var['default'] is not None: default_text = ' [%s]' % var['default'] else: default_text = '' # pragma: nocover if val is None: class MyPrompt(shell.Prompt): class Meta: text = "%s%s:" % (var['prompt'], default_text) default = var.get('default', None) p = MyPrompt() val = p.prompt() # pragma: nocover if var['case'] in ['lower', 'upper', 'title']: val = getattr(val, var['case'])() elif var['case'] is not None: self.app.log.warning( "Invalid configuration for variable " + "'%s': " % var['name'] + "case must be one of lower, upper, or title." ) if var['validate'] is not None: assert re.match(var['validate'], val), \ "Invalid Response (must match: '%s')" % var['validate'] data[var['name']] = val try: self.app.template.copy(source, dest, data, force=self.app.pargs.force, ignore=ignore_list, exclude=exclude_list) except AssertionError as e: if re.match('(.*)already exists(.*)', e.args[0]): raise AssertionError(e.args[0] + ' (try: --force)') else: raise # pragma: nocover def _clone(self, source, dest): msg = 'Cloning %s %s template to %s' % ( self.app._meta.label, self._meta.label, dest ) self.app.log.info(msg) if os.path.exists(dest) and self.app.pargs.force is True: shutil.rmtree(dest) elif os.path.exists(dest): msg = "Destination path already exists: %s (try: --force)" % dest raise AssertionError(msg) shutil.copytree(source, dest) def _default(self): source = self._meta.source_path dest = self.app.pargs.dest if self.app.pargs.clone is True: self._clone(source, dest) else: self._generate(source, dest) def setup_template_items(app): template_dirs = [] template_items = [] # look in app template dirs for path in app._meta.template_dirs: subpath = os.path.join(path, 'generate') if os.path.exists(subpath) and subpath not in template_dirs: template_dirs.append(subpath) # use app template module, find it's path on filesystem if app._meta.template_module is not None: mod_parts = app._meta.template_module.split('.') mod = mod_parts.pop() try: mod = app.__import__(mod, from_module='.'.join(mod_parts)) mod_path = os.path.dirname(inspect.getfile(mod)) subpath = os.path.join(mod_path, 'generate') if os.path.exists(subpath) and subpath not in template_dirs: template_dirs.append(subpath) # FIXME: not exactly sure how to test for this so not covering except AttributeError: # pragma: nocover msg = 'unable to load template module' + \ '%s from %s' % (mod, '.'.join(mod_parts)) # pragma: nocover app.log.debug(msg) # pragma: nocover for path in template_dirs: for item in os.listdir(path): if item not in template_items: template_items.append(item) class GenerateTemplate(GenerateTemplateAbstractBase): class Meta: label = item stacked_on = 'generate' stacked_type = 'nested' help = 'generate %s from template' % item arguments = [ # ------------------------------------------------------ (['dest'], {'help': 'destination directory path'}), # ------------------------------------------------------ (['-f', '--force'], {'help': 'force operation if destination exists', 'dest': 'force', 'action': 'store_true'}), # ------------------------------------------------------ (['-D', '--defaults'], {'help': 'use all default variable values', 'dest': 'defaults', 'action': 'store_true'}), # ------------------------------------------------------ (['--clone'], {'help': 'clone this template to destination path', 'dest': 'clone', 'action': 'store_true'}), ] source_path = os.path.join(path, item) app.handler.register(GenerateTemplate) class Generate(Controller): class Meta: label = 'generate' stacked_on = 'base' stacked_type = 'nested' config_section = 'generate' def _setup(self, app): super(Generate, self)._setup(app) def _default(self): self._parser.print_help() def load(app): app.handler.register(Generate) app.hook.register('pre_run', setup_template_items)
[ "os.path.exists", "os.listdir", "os.path.join", "re.match", "inspect.getfile", "shutil.copytree", "shutil.rmtree" ]
[((3977, 4006), 'shutil.copytree', 'shutil.copytree', (['source', 'dest'], {}), '(source, dest)\n', (3992, 4006), False, 'import shutil\n'), ((4414, 4444), 'os.path.join', 'os.path.join', (['path', '"""generate"""'], {}), "(path, 'generate')\n", (4426, 4444), False, 'import os\n'), ((5491, 5507), 'os.listdir', 'os.listdir', (['path'], {}), '(path)\n', (5501, 5507), False, 'import os\n'), ((868, 905), 'os.path.join', 'os.path.join', (['source', '""".generate.yml"""'], {}), "(source, '.generate.yml')\n", (880, 905), False, 'import os\n'), ((3730, 3750), 'os.path.exists', 'os.path.exists', (['dest'], {}), '(dest)\n', (3744, 3750), False, 'import os\n'), ((3797, 3816), 'shutil.rmtree', 'shutil.rmtree', (['dest'], {}), '(dest)\n', (3810, 3816), False, 'import shutil\n'), ((3830, 3850), 'os.path.exists', 'os.path.exists', (['dest'], {}), '(dest)\n', (3844, 3850), False, 'import os\n'), ((4456, 4479), 'os.path.exists', 'os.path.exists', (['subpath'], {}), '(subpath)\n', (4470, 4479), False, 'import os\n'), ((4917, 4951), 'os.path.join', 'os.path.join', (['mod_path', '"""generate"""'], {}), "(mod_path, 'generate')\n", (4929, 4951), False, 'import os\n'), ((2904, 2934), 're.match', 're.match', (["var['validate']", 'val'], {}), "(var['validate'], val)\n", (2912, 2934), False, 'import re\n'), ((3346, 3391), 're.match', 're.match', (['"""(.*)already exists(.*)"""', 'e.args[0]'], {}), "('(.*)already exists(.*)', e.args[0])\n", (3354, 3391), False, 'import re\n'), ((4873, 4893), 'inspect.getfile', 'inspect.getfile', (['mod'], {}), '(mod)\n', (4888, 4893), False, 'import inspect\n'), ((4968, 4991), 'os.path.exists', 'os.path.exists', (['subpath'], {}), '(subpath)\n', (4982, 4991), False, 'import os\n'), ((7027, 7051), 'os.path.join', 'os.path.join', (['path', 'item'], {}), '(path, item)\n', (7039, 7051), False, 'import os\n')]
from .gpxfile import get_hr_measurements from .utils import interpolate from operator import itemgetter def __calculate_moving_sums(points, window): """ Calculates hr moving sums of the window len """ time, hrs = zip(*points) moving_sum = sum(hrs[0:window]) sums = [(time[0], moving_sum)] for i, t in enumerate(time[1:-1 * window]): moving_sum += hrs[i + window] - hrs[i] sums.append((t, moving_sum)) return sums def calculate_lactate_threshold(hrdata): """ Given list of (time, hr), returns lactate threshold and selected data""" test_period = 60 * 30 # test time measured_period = 60 * 20 # measured period in seconds hrs = interpolate(hrdata) time_stamp, max_sum = max(__calculate_moving_sums(hrs, test_period), key=itemgetter(1)) # your lactate threshold is average of last 20 in 30 minutes of tempo run start_measure = time_stamp + (test_period - measured_period) stop_measure = start_measure + measured_period measured_time, measured_hrs = zip(*hrs[start_measure:stop_measure]) lactate_thr = round(sum(measured_hrs) / measured_period) return (lactate_thr, measured_time, measured_hrs)
[ "operator.itemgetter" ]
[((819, 832), 'operator.itemgetter', 'itemgetter', (['(1)'], {}), '(1)\n', (829, 832), False, 'from operator import itemgetter\n')]
#! /usr/bin/env python3 # This Source Code Form is subject to the terms of the Mozilla Public # License, v. 2.0. If a copy of the MPL was not distributed with this # file, You can obtain one at http://mozilla.org/MPL/2.0/. import argparse import xml.etree.ElementTree as ET import os import sys import shutil import atexit import subprocess # Use the project root as the working directory prevdir = os.getcwd() workdir = os.path.join(os.path.dirname(__file__), '..', '..') os.chdir(workdir) atexit.register(os.chdir, prevdir) # Include only locales above this threshold (e.g. 70%) in production l10n_threshold = 0.70 parser = argparse.ArgumentParser() parser.add_argument( '-m', '--macos', default=False, action="store_true", dest="ismacos", help='Include the MacOS bundle data') parser.add_argument( '-q', '--qt_path', default=None, dest="qtpath", help='The QT binary path. If not set, we try to guess.') args = parser.parse_args() stepnum = 1 def title(text): global stepnum print(f"\033[96m\033[1mStep {stepnum}\033[0m: \033[97m{text}\033[0m") stepnum = stepnum+1 # Step 0 title("Find the Qt localization tools...") def qtquery(qmake, propname): try: qtquery = os.popen(f'{qmake} -query {propname}') qtpath = qtquery.read().strip() if len(qtpath) > 0: return qtpath finally: pass return None qtbinpath = args.qtpath if qtbinpath is None: qtbinpath = qtquery('qmake', 'QT_INSTALL_BINS') if qtbinpath is None: qtbinpath = qtquery('qmake6', 'QT_INSTALL_BINS') if qtbinpath is None: qtbinpath = qtquery('qmake5', 'QT_INSTALL_BINS') if qtbinpath is None: qtbinpath = qtquery('qmake-qt5', 'QT_INSTALL_BINS') if qtbinpath is None: print('Unable to locate qmake tool.') sys.exit(1) if not os.path.isdir(qtbinpath): print(f"QT path is not a diretory: {qtbinpath}") sys.exit(1) lupdate = os.path.join(qtbinpath, 'lupdate') lconvert = os.path.join(qtbinpath, 'lconvert') lrelease = os.path.join(qtbinpath, 'lrelease') # Step 0 # Let's update the i18n repo os.system(f"git submodule init") os.system(f"git submodule update --remote --depth 1 i18n") # Step 1 # Go through the i18n repo, check each XLIFF file and take # note which locale is complete above the minimum threshold. # Adds path of .xliff and .ts to l10n_files. title("Validate the XLIFF file...") l10n_files = [] for locale in os.listdir('i18n'): # Skip non folders if not os.path.isdir(os.path.join('i18n', locale)): continue # Skip hidden folders if locale.startswith('.'): continue xliff_path = os.path.join('i18n', locale, 'mozillavpn.xliff') # If it's the source locale (en), ignore parsing for completeness and # add it to the list. if locale == 'en': print(f'OK\t- en added (reference locale)') l10n_files.append({ 'locale': 'en', 'ts': os.path.join('translations', 'generated', 'mozillavpn_en.ts'), 'xliff': xliff_path }) continue tree = ET.parse(xliff_path) root = tree.getroot() sources = 0 translations = 0 for element in root.iter('{urn:oasis:names:tc:xliff:document:1.2}source'): sources += 1 for element in root.iter('{urn:oasis:names:tc:xliff:document:1.2}target'): translations += 1 completeness = translations/(sources*1.0) # Ignore locale with less than 70% of completeness if completeness < l10n_threshold: print(f'KO\t- {locale} is translated at {round(completeness*100, 2)}%, at least {l10n_threshold*100}% is needed') continue # Not enough translations next file please print(f'OK\t- {locale} added ({round(completeness*100, 2)}% translated)') l10n_files.append({ 'locale': locale, 'ts': os.path.join('translations', 'generated', f'mozillavpn_{locale}.ts'), 'xliff': xliff_path }) # Step 2 title("Create folders and localization files for the languages...") for file in l10n_files: locdirectory = os.path.join('translations', 'generated', file['locale']) os.makedirs(locdirectory, exist_ok=True) locversion = os.path.join(locdirectory, f'locversion.plist') with open(locversion, 'w') as locversion_file: locversion_file.write(f"""<?xml version=\"1.0\" encoding=\"UTF-8\"?> <!DOCTYPE plist PUBLIC \"-//Apple Computer//DTD PLIST 1.0//EN\" \"http://www.apple.com/DTDs/PropertyList-1.0.dtd\"> <plist version=\"1.0\"> <dict> <key>LprojCompatibleVersion</key> <string>123</string> <key>LprojLocale</key> <string>{file['locale']}</string> <key>LprojRevisionLevel</key> <string>1</string> <key>LprojVersion</key> <string>123</string> </dict> </plist>""") with open(os.path.join('translations', 'generated', 'macos.pri'), 'w') as macospri: macospri.write('### AUTOGENERATED! DO NOT EDIT!! ###\n') for file in l10n_files: macospri.write(f"LANGUAGES_FILES_{file['locale']}.files += $$PWD/{file['locale']}/locversion.plist\n") macospri.write(f"LANGUAGES_FILES_{file['locale']}.path = Contents/Resources/{file['locale']}.lproj\n") macospri.write(f"QMAKE_BUNDLE_DATA += LANGUAGES_FILES_{file['locale']}\n\n") # Step 3 title("Write resource file to import the locales that are ready...") with open('translations/generated/translations.qrc', 'w') as qrcfile: qrcfile.write('<!-- AUTOGENERATED! DO NOT EDIT!! -->\n') qrcfile.write('<RCC>\n') qrcfile.write(' <qresource prefix="/i18n">\n') for file in l10n_files: qrcfile.write(f' <file>mozillavpn_{file["locale"]}.qm</file>\n') qrcfile.write(' </qresource>\n') qrcfile.write('</RCC>\n') # Step 4 title("Generate the Js/C++ string definitions...") try: subprocess.call([sys.executable, os.path.join('scripts', 'utils', 'generate_strings.py'), '-o', os.path.join('translations', 'generated'), os.path.join('translations', 'strings.yaml')]) except Exception as e: print("generate_strings.py failed. Try with:\n\tpip3 install -r requirements.txt --user") print(e) exit(1) # Build a dummy project to glob together everything that might contain strings. title("Scanning for new strings...") def scan_sources(projfile, dirpath): projfile.write(f"HEADERS += $$files({dirpath}/*.h, true)\n") projfile.write(f"SOURCES += $$files({dirpath}/*.cpp, true)\n") projfile.write(f"RESOURCES += $$files({dirpath}/*.qrc, true)\n\n") with open('translations/generated/dummy.pro', 'w') as dummyproj: dummyproj.write('### AUTOGENERATED! DO NOT EDIT!! ###\n') dummyproj.write(f"HEADERS += l18nstrings.h\n") dummyproj.write(f"SOURCES += l18nstrings_p.cpp\n") dummyproj.write(f"SOURCES += ../l18nstrings.cpp\n\n") for l10n_file in l10n_files: dummyproj.write(f"TRANSLATIONS += {os.path.basename(l10n_file['ts'])}\n") dummyproj.write("\n") scan_sources(dummyproj, '../../src') scan_sources(dummyproj, '../../nebula') # Step 5 title("Generate translation resources...") for l10n_file in l10n_files: os.system(f"{lconvert} -if xlf -i {l10n_file['xliff']} -o {l10n_file['ts']}") os.system(f"{lupdate} translations/generated/dummy.pro") for l10n_file in l10n_files: os.system(f"{lrelease} -idbased {l10n_file['ts']}") print(f'Imported {len(l10n_files)} locales') git = os.popen(f'git submodule status i18n') git_commit_hash = git.read().strip().replace("+","").split(' ')[0] print(f'Current commit: https://github.com/mozilla-l10n/mozilla-vpn-client-l10n/commit/{git_commit_hash}')
[ "os.listdir", "xml.etree.ElementTree.parse", "argparse.ArgumentParser", "os.makedirs", "os.path.join", "os.getcwd", "os.chdir", "os.path.dirname", "os.popen", "os.path.isdir", "os.path.basename", "sys.exit", "os.system", "atexit.register" ]
[((401, 412), 'os.getcwd', 'os.getcwd', ([], {}), '()\n', (410, 412), False, 'import os\n'), ((475, 492), 'os.chdir', 'os.chdir', (['workdir'], {}), '(workdir)\n', (483, 492), False, 'import os\n'), ((493, 527), 'atexit.register', 'atexit.register', (['os.chdir', 'prevdir'], {}), '(os.chdir, prevdir)\n', (508, 527), False, 'import atexit\n'), ((630, 655), 'argparse.ArgumentParser', 'argparse.ArgumentParser', ([], {}), '()\n', (653, 655), False, 'import argparse\n'), ((1905, 1939), 'os.path.join', 'os.path.join', (['qtbinpath', '"""lupdate"""'], {}), "(qtbinpath, 'lupdate')\n", (1917, 1939), False, 'import os\n'), ((1951, 1986), 'os.path.join', 'os.path.join', (['qtbinpath', '"""lconvert"""'], {}), "(qtbinpath, 'lconvert')\n", (1963, 1986), False, 'import os\n'), ((1998, 2033), 'os.path.join', 'os.path.join', (['qtbinpath', '"""lrelease"""'], {}), "(qtbinpath, 'lrelease')\n", (2010, 2033), False, 'import os\n'), ((2073, 2105), 'os.system', 'os.system', (['f"""git submodule init"""'], {}), "(f'git submodule init')\n", (2082, 2105), False, 'import os\n'), ((2106, 2164), 'os.system', 'os.system', (['f"""git submodule update --remote --depth 1 i18n"""'], {}), "(f'git submodule update --remote --depth 1 i18n')\n", (2115, 2164), False, 'import os\n'), ((2406, 2424), 'os.listdir', 'os.listdir', (['"""i18n"""'], {}), "('i18n')\n", (2416, 2424), False, 'import os\n'), ((7168, 7224), 'os.system', 'os.system', (['f"""{lupdate} translations/generated/dummy.pro"""'], {}), "(f'{lupdate} translations/generated/dummy.pro')\n", (7177, 7224), False, 'import os\n'), ((7363, 7401), 'os.popen', 'os.popen', (['f"""git submodule status i18n"""'], {}), "(f'git submodule status i18n')\n", (7371, 7401), False, 'import os\n'), ((436, 461), 'os.path.dirname', 'os.path.dirname', (['__file__'], {}), '(__file__)\n', (451, 461), False, 'import os\n'), ((1779, 1790), 'sys.exit', 'sys.exit', (['(1)'], {}), '(1)\n', (1787, 1790), False, 'import sys\n'), ((1799, 1823), 'os.path.isdir', 'os.path.isdir', (['qtbinpath'], {}), '(qtbinpath)\n', (1812, 1823), False, 'import os\n'), ((1882, 1893), 'sys.exit', 'sys.exit', (['(1)'], {}), '(1)\n', (1890, 1893), False, 'import sys\n'), ((2615, 2663), 'os.path.join', 'os.path.join', (['"""i18n"""', 'locale', '"""mozillavpn.xliff"""'], {}), "('i18n', locale, 'mozillavpn.xliff')\n", (2627, 2663), False, 'import os\n'), ((3049, 3069), 'xml.etree.ElementTree.parse', 'ET.parse', (['xliff_path'], {}), '(xliff_path)\n', (3057, 3069), True, 'import xml.etree.ElementTree as ET\n'), ((4033, 4090), 'os.path.join', 'os.path.join', (['"""translations"""', '"""generated"""', "file['locale']"], {}), "('translations', 'generated', file['locale'])\n", (4045, 4090), False, 'import os\n'), ((4095, 4135), 'os.makedirs', 'os.makedirs', (['locdirectory'], {'exist_ok': '(True)'}), '(locdirectory, exist_ok=True)\n', (4106, 4135), False, 'import os\n'), ((4153, 4200), 'os.path.join', 'os.path.join', (['locdirectory', 'f"""locversion.plist"""'], {}), "(locdirectory, f'locversion.plist')\n", (4165, 4200), False, 'import os\n'), ((7090, 7167), 'os.system', 'os.system', (['f"""{lconvert} -if xlf -i {l10n_file[\'xliff\']} -o {l10n_file[\'ts\']}"""'], {}), '(f"{lconvert} -if xlf -i {l10n_file[\'xliff\']} -o {l10n_file[\'ts\']}")\n', (7099, 7167), False, 'import os\n'), ((7258, 7309), 'os.system', 'os.system', (['f"""{lrelease} -idbased {l10n_file[\'ts\']}"""'], {}), '(f"{lrelease} -idbased {l10n_file[\'ts\']}")\n', (7267, 7309), False, 'import os\n'), ((1211, 1249), 'os.popen', 'os.popen', (['f"""{qmake} -query {propname}"""'], {}), "(f'{qmake} -query {propname}')\n", (1219, 1249), False, 'import os\n'), ((4746, 4800), 'os.path.join', 'os.path.join', (['"""translations"""', '"""generated"""', '"""macos.pri"""'], {}), "('translations', 'generated', 'macos.pri')\n", (4758, 4800), False, 'import os\n'), ((2474, 2502), 'os.path.join', 'os.path.join', (['"""i18n"""', 'locale'], {}), "('i18n', locale)\n", (2486, 2502), False, 'import os\n'), ((3807, 3875), 'os.path.join', 'os.path.join', (['"""translations"""', '"""generated"""', 'f"""mozillavpn_{locale}.ts"""'], {}), "('translations', 'generated', f'mozillavpn_{locale}.ts')\n", (3819, 3875), False, 'import os\n'), ((5790, 5845), 'os.path.join', 'os.path.join', (['"""scripts"""', '"""utils"""', '"""generate_strings.py"""'], {}), "('scripts', 'utils', 'generate_strings.py')\n", (5802, 5845), False, 'import os\n'), ((5874, 5915), 'os.path.join', 'os.path.join', (['"""translations"""', '"""generated"""'], {}), "('translations', 'generated')\n", (5886, 5915), False, 'import os\n'), ((5938, 5982), 'os.path.join', 'os.path.join', (['"""translations"""', '"""strings.yaml"""'], {}), "('translations', 'strings.yaml')\n", (5950, 5982), False, 'import os\n'), ((2914, 2975), 'os.path.join', 'os.path.join', (['"""translations"""', '"""generated"""', '"""mozillavpn_en.ts"""'], {}), "('translations', 'generated', 'mozillavpn_en.ts')\n", (2926, 2975), False, 'import os\n'), ((6853, 6886), 'os.path.basename', 'os.path.basename', (["l10n_file['ts']"], {}), "(l10n_file['ts'])\n", (6869, 6886), False, 'import os\n')]
from discord.ext import commands import discord def setup(client): client.add_cog(KeyWordFilter(client)) class KeyWordFilter(commands.Cog): def __init__(self, client): self.client = client self.log_ch = self.client.get_channel(int(self.client.SETTINGS.LOG_CHANNEL)) @commands.Cog.listener() async def on_message(self, msg): if any(x in msg.content.split() for x in self.client.SETTINGS.BLACKLIST): ctx = await self.client.get_context(msg) await self.event_log(ctx, msg, "A blacklisted phrase was used!") await msg.delete() async def event_log(self, ctx, msg, event): embed = discord.Embed() embed.colour = discord.Colour.red() embed.title = event embed.add_field(name='User', value=msg.author, inline=True) embed.add_field(name='Channel', value=msg.channel.name, inline=True) embed.add_field(name='Message', value=f"> {msg.content}", inline=False) await self.log_ch.send(embed=embed)
[ "discord.ext.commands.Cog.listener", "discord.Embed", "discord.Colour.red" ]
[((300, 323), 'discord.ext.commands.Cog.listener', 'commands.Cog.listener', ([], {}), '()\n', (321, 323), False, 'from discord.ext import commands\n'), ((669, 684), 'discord.Embed', 'discord.Embed', ([], {}), '()\n', (682, 684), False, 'import discord\n'), ((708, 728), 'discord.Colour.red', 'discord.Colour.red', ([], {}), '()\n', (726, 728), False, 'import discord\n')]
import os import compas from compas.datastructures import Mesh from compas_rhino.artists import MeshArtist HERE = os.path.dirname(__file__) DATA = os.path.join(HERE, 'data') FILE = os.path.join(DATA, 'faces.obj') mesh = Mesh.from_obj(FILE) artist = MeshArtist(mesh, layer="Mesh") artist.draw_vertices( color={key: (255, 0, 0) for key in mesh.vertices_on_boundary()}) artist.draw_vertexlabels( text={key: str(mesh.vertex_degree(key)) for key in mesh.vertices()}) artist.draw_edges( keys=list(mesh.edges_on_boundary()), color=(255, 0, 0)) artist.draw_faces( color={key: (150, 255, 150) for key in mesh.faces() if not mesh.is_face_on_boundary(key)})
[ "os.path.dirname", "compas_rhino.artists.MeshArtist", "os.path.join", "compas.datastructures.Mesh.from_obj" ]
[((116, 141), 'os.path.dirname', 'os.path.dirname', (['__file__'], {}), '(__file__)\n', (131, 141), False, 'import os\n'), ((149, 175), 'os.path.join', 'os.path.join', (['HERE', '"""data"""'], {}), "(HERE, 'data')\n", (161, 175), False, 'import os\n'), ((183, 214), 'os.path.join', 'os.path.join', (['DATA', '"""faces.obj"""'], {}), "(DATA, 'faces.obj')\n", (195, 214), False, 'import os\n'), ((223, 242), 'compas.datastructures.Mesh.from_obj', 'Mesh.from_obj', (['FILE'], {}), '(FILE)\n', (236, 242), False, 'from compas.datastructures import Mesh\n'), ((253, 283), 'compas_rhino.artists.MeshArtist', 'MeshArtist', (['mesh'], {'layer': '"""Mesh"""'}), "(mesh, layer='Mesh')\n", (263, 283), False, 'from compas_rhino.artists import MeshArtist\n')]
"""Tests for the pandas helpers in the pd_helpers.py module.""" import pytest from pandas.testing import assert_frame_equal from tests.conftest import create_dataframe from ons_utils.pandas import * def test_nested_dict_to_df(): """Test for nested_dict_to_df.""" input_d = { 'bones': { 'femur': {'tendons': 24}, 'humerus': {'tendons': 14}, }, 'muscles': { 'gluteus_maximus': {'tendons': 18}, }, 'cars': 7, } actual = nested_dict_to_df( input_d, columns=['number'], level_names=('a', 'b', 'c'), ) expected = create_dataframe([ ('a', 'b', 'c', 'number'), ('bones', 'femur', 'tendons', 24), ('bones', 'humerus', 'tendons', 14), ('cars', None, None, 7), ('muscles', 'gluteus_maximus', 'tendons', 18), ]) assert_frame_equal( # Sort values as dict order not preserved. actual.sort_values(['a', 'b']), # Set index because function returns a MultiIndex. expected.set_index(['a', 'b', 'c']) ) class TestStacker: """Group of tests for Stacker.""" @pytest.mark.skip(reason="test shell") def test_Stacker(self): """Test for Stacker.""" pass @pytest.mark.skip(reason="test shell") def test_convert_level_to_datetime(): """Test for this.""" pass class TestMultiIndexSlicer: """Group of tests for MultiIndexSlicer.""" @pytest.mark.skip(reason="test shell") def test_MultiIndexSlicer(self): """Test for MultiIndexSlicer.""" pass @pytest.mark.skip(reason="test shell") def test_get_index_level_values(): """Test for this.""" pass @pytest.mark.skip(reason="test shell") def test_shifted_within_year_apply(): """Test for this.""" pass @pytest.mark.skip(reason="test shell") def test_shifted_within_year_ffill(): """Test for this.""" pass
[ "pytest.mark.skip", "tests.conftest.create_dataframe" ]
[((1278, 1315), 'pytest.mark.skip', 'pytest.mark.skip', ([], {'reason': '"""test shell"""'}), "(reason='test shell')\n", (1294, 1315), False, 'import pytest\n'), ((1603, 1640), 'pytest.mark.skip', 'pytest.mark.skip', ([], {'reason': '"""test shell"""'}), "(reason='test shell')\n", (1619, 1640), False, 'import pytest\n'), ((1713, 1750), 'pytest.mark.skip', 'pytest.mark.skip', ([], {'reason': '"""test shell"""'}), "(reason='test shell')\n", (1729, 1750), False, 'import pytest\n'), ((1826, 1863), 'pytest.mark.skip', 'pytest.mark.skip', ([], {'reason': '"""test shell"""'}), "(reason='test shell')\n", (1842, 1863), False, 'import pytest\n'), ((637, 836), 'tests.conftest.create_dataframe', 'create_dataframe', (["[('a', 'b', 'c', 'number'), ('bones', 'femur', 'tendons', 24), ('bones',\n 'humerus', 'tendons', 14), ('cars', None, None, 7), ('muscles',\n 'gluteus_maximus', 'tendons', 18)]"], {}), "([('a', 'b', 'c', 'number'), ('bones', 'femur', 'tendons', \n 24), ('bones', 'humerus', 'tendons', 14), ('cars', None, None, 7), (\n 'muscles', 'gluteus_maximus', 'tendons', 18)])\n", (653, 836), False, 'from tests.conftest import create_dataframe\n'), ((1164, 1201), 'pytest.mark.skip', 'pytest.mark.skip', ([], {'reason': '"""test shell"""'}), "(reason='test shell')\n", (1180, 1201), False, 'import pytest\n'), ((1471, 1508), 'pytest.mark.skip', 'pytest.mark.skip', ([], {'reason': '"""test shell"""'}), "(reason='test shell')\n", (1487, 1508), False, 'import pytest\n')]
# # Created by <NAME>. # Copyright 2018 Intuition. All rights reserved. # import os import platform from setuptools import setup from setuptools.command.build_ext import build_ext from distutils.extension import Extension from Cython.Build import cythonize from rbp_setup_tools.code_generation import generate_from_cython_src from rbp_setup_tools.types import TYPES if platform.system() == 'Darwin': compile_opts = [ '-std=c++11', '-mmacosx-version-min={:}'.format( platform.mac_ver()[0] ), '-Ofast' ] elif platform.system() == 'Linux': compile_opts = [ '-std=c++11', '-Ofast' ] elif platform.system() == 'Windows': compile_opts = [ '-std=c++11', '-Ofast' ] else: raise EnvironmentError( 'Not supported platform: {plat}'.format(plat=platform.system()) ) #-------------------------------------------------------------------------------------------- # Generate cython code for all supporting types #-------------------------------------------------------------------------------------------- src_1 = './redblackpy/cython_source/__dtype_tree_processing.pxi' src_2 = './redblackpy/cython_source/__tree_series_dtype.pxi' src_3 = './redblackpy/cython_source/__interpolation.pxi' src_4 = './redblackpy/cython_source/__arithmetic.pxi' src_1 = open(src_1, 'r') src_2 = open(src_2, 'r') src_3 = open(src_3, 'r') src_4 = open(src_4, 'r') output_1 = open('./redblackpy/cython_source/dtype_tree_processing.pxi', 'w') output_2 = open('./redblackpy/cython_source/tree_series_dtype.pxi', 'w') output_3 = open('./redblackpy/cython_source/interpolation.pxi', 'w') output_4 = open('./redblackpy/cython_source/arithmetic.pxi', 'w') generate_from_cython_src(src_1, output_1, TYPES[:-1], 0) generate_from_cython_src(src_2, output_2, TYPES, 14) generate_from_cython_src(src_3, output_3, TYPES, 0) generate_from_cython_src(src_4, output_4, TYPES, 0) src_1.close() src_2.close() src_3.close() src_4.close() output_1.close() output_2.close() output_3.close() output_4.close() #-------------------------------------------------------------------------------------------- ext_modules=[ Extension( "redblackpy.series.tree_series", sources=["redblackpy/series/tree_series.pyx"], extra_compile_args=compile_opts, extra_link_args=compile_opts[:-1], language = "c++", include_dirs=['./redblackpy'], depends=[ 'core/tree/tree.hpp', 'core/tree/rb_tree.tpp' 'core/tree/rb_node.tpp', 'core/tree/rb_node_valued.tpp', 'core/trees_iterator/iterator.hpp', 'core/trees_iterator/iterator.tpp' ], ), Extension( "redblackpy.series.series_iterator", sources=["redblackpy/series/series_iterator.pyx"], extra_compile_args=compile_opts, extra_link_args=compile_opts[:-1], language = "c++", include_dirs=['./redblackpy'], depends=[ 'core/tree/tree.hpp', 'core/tree/rb_tree.tpp' 'core/tree/rb_node.tpp', 'core/tree/rb_node_valued.tpp', 'core/trees_iterator/iterator.hpp', 'core/trees_iterator/iterator.tpp' ], ), Extension( "redblackpy.benchmark.timer", sources=["redblackpy/benchmark/timer.pyx"], extra_compile_args=compile_opts, extra_link_args=compile_opts[:-1], language = "c++", include_dirs=['./redblackpy'] ) ] setup( name='redblackpy', ext_modules = cythonize(ext_modules), version='0.1.3.0', author='<NAME>', author_email='<EMAIL>', maintainer='Intuition', maintainer_email='<EMAIL>', install_requires=['cython'], description='Data structures based on red-black trees.', url='https://intuitionengineeringteam.github.io/RedBlackPy/', download_url='https://github.com/IntuitionEngineeringTeam/RedBlackPy/archive/master.zip', zip_safe=False, packages=[ 'redblackpy', 'redblackpy.series', 'redblackpy.benchmark', 'redblackpy.tree_cython_api'], package_data={'redblackpy.series': ['*.pxd']}, include_package_data=True, license='Apache License 2.0', long_description='RedBlackPy is a light Python library that provides data structures \ aimed to fast insertion, removal and self sorting to manipulating ordered data in efficient way.\ The core part of the library had been written on C++ and then was wrapped in Cython. \ Hope that many would find the primary data structures of this library very handy in working \ with time series. One of the main feature of this structures is an access by arbitrary \ key using interpolation, what makes processing of multiple non synchronized time series very simple.\ All data structures based on red black trees.', classifiers = [ 'Programming Language :: Python :: 2.7', 'Programming Language :: Python :: 3' ] )
[ "Cython.Build.cythonize", "platform.mac_ver", "rbp_setup_tools.code_generation.generate_from_cython_src", "platform.system", "distutils.extension.Extension" ]
[((1740, 1796), 'rbp_setup_tools.code_generation.generate_from_cython_src', 'generate_from_cython_src', (['src_1', 'output_1', 'TYPES[:-1]', '(0)'], {}), '(src_1, output_1, TYPES[:-1], 0)\n', (1764, 1796), False, 'from rbp_setup_tools.code_generation import generate_from_cython_src\n'), ((1797, 1849), 'rbp_setup_tools.code_generation.generate_from_cython_src', 'generate_from_cython_src', (['src_2', 'output_2', 'TYPES', '(14)'], {}), '(src_2, output_2, TYPES, 14)\n', (1821, 1849), False, 'from rbp_setup_tools.code_generation import generate_from_cython_src\n'), ((1850, 1901), 'rbp_setup_tools.code_generation.generate_from_cython_src', 'generate_from_cython_src', (['src_3', 'output_3', 'TYPES', '(0)'], {}), '(src_3, output_3, TYPES, 0)\n', (1874, 1901), False, 'from rbp_setup_tools.code_generation import generate_from_cython_src\n'), ((1902, 1953), 'rbp_setup_tools.code_generation.generate_from_cython_src', 'generate_from_cython_src', (['src_4', 'output_4', 'TYPES', '(0)'], {}), '(src_4, output_4, TYPES, 0)\n', (1926, 1953), False, 'from rbp_setup_tools.code_generation import generate_from_cython_src\n'), ((374, 391), 'platform.system', 'platform.system', ([], {}), '()\n', (389, 391), False, 'import platform\n'), ((2189, 2601), 'distutils.extension.Extension', 'Extension', (['"""redblackpy.series.tree_series"""'], {'sources': "['redblackpy/series/tree_series.pyx']", 'extra_compile_args': 'compile_opts', 'extra_link_args': 'compile_opts[:-1]', 'language': '"""c++"""', 'include_dirs': "['./redblackpy']", 'depends': "['core/tree/tree.hpp', 'core/tree/rb_tree.tppcore/tree/rb_node.tpp',\n 'core/tree/rb_node_valued.tpp', 'core/trees_iterator/iterator.hpp',\n 'core/trees_iterator/iterator.tpp']"}), "('redblackpy.series.tree_series', sources=[\n 'redblackpy/series/tree_series.pyx'], extra_compile_args=compile_opts,\n extra_link_args=compile_opts[:-1], language='c++', include_dirs=[\n './redblackpy'], depends=['core/tree/tree.hpp',\n 'core/tree/rb_tree.tppcore/tree/rb_node.tpp',\n 'core/tree/rb_node_valued.tpp', 'core/trees_iterator/iterator.hpp',\n 'core/trees_iterator/iterator.tpp'])\n", (2198, 2601), False, 'from distutils.extension import Extension\n'), ((2927, 3347), 'distutils.extension.Extension', 'Extension', (['"""redblackpy.series.series_iterator"""'], {'sources': "['redblackpy/series/series_iterator.pyx']", 'extra_compile_args': 'compile_opts', 'extra_link_args': 'compile_opts[:-1]', 'language': '"""c++"""', 'include_dirs': "['./redblackpy']", 'depends': "['core/tree/tree.hpp', 'core/tree/rb_tree.tppcore/tree/rb_node.tpp',\n 'core/tree/rb_node_valued.tpp', 'core/trees_iterator/iterator.hpp',\n 'core/trees_iterator/iterator.tpp']"}), "('redblackpy.series.series_iterator', sources=[\n 'redblackpy/series/series_iterator.pyx'], extra_compile_args=\n compile_opts, extra_link_args=compile_opts[:-1], language='c++',\n include_dirs=['./redblackpy'], depends=['core/tree/tree.hpp',\n 'core/tree/rb_tree.tppcore/tree/rb_node.tpp',\n 'core/tree/rb_node_valued.tpp', 'core/trees_iterator/iterator.hpp',\n 'core/trees_iterator/iterator.tpp'])\n", (2936, 3347), False, 'from distutils.extension import Extension\n'), ((3687, 3899), 'distutils.extension.Extension', 'Extension', (['"""redblackpy.benchmark.timer"""'], {'sources': "['redblackpy/benchmark/timer.pyx']", 'extra_compile_args': 'compile_opts', 'extra_link_args': 'compile_opts[:-1]', 'language': '"""c++"""', 'include_dirs': "['./redblackpy']"}), "('redblackpy.benchmark.timer', sources=[\n 'redblackpy/benchmark/timer.pyx'], extra_compile_args=compile_opts,\n extra_link_args=compile_opts[:-1], language='c++', include_dirs=[\n './redblackpy'])\n", (3696, 3899), False, 'from distutils.extension import Extension\n'), ((561, 578), 'platform.system', 'platform.system', ([], {}), '()\n', (576, 578), False, 'import platform\n'), ((4065, 4087), 'Cython.Build.cythonize', 'cythonize', (['ext_modules'], {}), '(ext_modules)\n', (4074, 4087), False, 'from Cython.Build import cythonize\n'), ((667, 684), 'platform.system', 'platform.system', ([], {}), '()\n', (682, 684), False, 'import platform\n'), ((498, 516), 'platform.mac_ver', 'platform.mac_ver', ([], {}), '()\n', (514, 516), False, 'import platform\n'), ((858, 875), 'platform.system', 'platform.system', ([], {}), '()\n', (873, 875), False, 'import platform\n')]
import numpy as np from PIL import Image from keras.models import load_model img_gray = Image.open('1002.png') number = np.array(img_gray) print(number.shape) print('准备的图片的shape:',number.flatten().shape) print('原number:',number) number = number.astype('float32') number = number/255 #归一化 number = number.flatten() print('处理过后的number.shape:',number.shape) model = load_model('mnist-dnn.h5') # model.load_weights('mnist.model.best.hdf5') # def recognize(photo_data): # return clf.predict(photo_data) print(model.predict_classes(np.array([number]))) #print('测试标签为:',test_target[8000])
[ "numpy.array", "PIL.Image.open", "keras.models.load_model" ]
[((89, 111), 'PIL.Image.open', 'Image.open', (['"""1002.png"""'], {}), "('1002.png')\n", (99, 111), False, 'from PIL import Image\n'), ((121, 139), 'numpy.array', 'np.array', (['img_gray'], {}), '(img_gray)\n', (129, 139), True, 'import numpy as np\n'), ((367, 393), 'keras.models.load_model', 'load_model', (['"""mnist-dnn.h5"""'], {}), "('mnist-dnn.h5')\n", (377, 393), False, 'from keras.models import load_model\n'), ((535, 553), 'numpy.array', 'np.array', (['[number]'], {}), '([number])\n', (543, 553), True, 'import numpy as np\n')]
from dataclasses import dataclass, field from typing import Mapping, List, Any from datetime import datetime import logging import pandas as pd import glob import numpy as np import logging import os from collections import OrderedDict import nrrd import vtk import vedo from vtk.util.numpy_support import numpy_to_vtk from iblviewer.collection import Collection import iblviewer.objects as obj import iblviewer.utils as utils @dataclass class VolumeModel: RAW = 'raw' SEGMENTED = 'segmented' NORMALIZED_SUFFIX = '_norm' DATA_TYPE = {RAW:0, SEGMENTED:1} PREFIX = 'Volume' __count = 0 def unique_name(): VolumeModel.__count += 1 return f'{VolumeModel.PREFIX}_{VolumeModel.__count}' name: str = field(default_factory=unique_name) file_path: str = None scalars: Collection = field(default_factory=Collection) axes: List = field(default_factory=lambda: [1, 1, 1]) data_min: float = None data_max: float = None data_map_step: float = 1.0 data: np.ndarray = None data_type: str = RAW resolution: int = 1 # Default units are microns. units: float = 1e-06 base_color_map: Any = None # At IBL, volume mappings are used from ibllib: ibllib.atlas.regions.mappings mapping_name: str = None lateralized: bool = False # Mapping function. If None, the volume will be given as it is. mapping: Any = None luts: Collection = field(default_factory=Collection) slicers: Collection = field(default_factory=Collection) isosurfaces: Collection = field(default_factory=Collection) interactive_subsampling: bool = True volume_visible: bool = True slices_visible: bool = True transpose_shape: Any = None dimensions: np.ndarray = np.zeros(3).astype(float) center: np.ndarray = np.zeros(3).astype(float) def compute_size(self): """ Compute volume size """ if self.data is None: return self.dimensions = np.array(self.data.shape)[:3] if self.resolution is None: return self.resolution = int(self.resolution) # TODO: move this to constructor or init self.dimensions *= self.resolution self.center = np.ones(3) * self.resolution / 2 + self.dimensions / 2 def compute_range(self, force=False): """ Compute min and max range in the volume :return: Min and max values """ if self.data_min is not None and self.data_max is not None and not force: return self.data_min, self.data_max self.data_min = np.min(self.data) self.data_max = np.max(self.data) #print('Volume min-max', self.data_min, self.data_max) return self.data_min, self.data_max def guess_volume_type(self): """ Infer the volume type when it was not specified by the user. We assume here that typical values between -1 and 1 are raw volumes. """ if self.data_type is None: if self.data_min is None or self.data_max is None: self.compute_range() if self.data_min >= -1 and self.data_max <= 1: guess = VolumeModel.RAW else: guess = VolumeModel.SEGMENTED self.data_type = guess def is_segmented(self, auto_guess=True): """ Get whether current volume/image is segmented :return: Boolean """ if self.data_type is None and auto_guess: self.guess_volume_type() return self.data_type == VolumeModel.SEGMENTED def read_volume(self, file_path): """ Read local volume. Downloads the file first if it's remote. :param file_path: Volume path :return: 3D array """ if file_path.startswith('http') or file_path.startswith('ftp'): downloaded_temp_file_path = vedo.download(file_path, verbose=False) if file_path.endswith('nrrd'): data, header = nrrd.read(downloaded_temp_file_path) else: data = vedo.loadImageData(downloaded_temp_file_path) else: if file_path.endswith('nrrd'): data, header = nrrd.read(file_path, index_order='C') else: data = vedo.loadImageData(file_path) return data def load_volume(self, file_path, remap_scalars=False, mapping=None, make_current=True): """ Load a volume data file. Supports NRRD and many other formats thanks to vedo/VTK :param file_path: Volume file path. Could support other file types easily. :param remap_scalars: Whether scalar values in the volume are replaced by their row id from a mapping that stores. This is necessary in the case of segmented volumes with regions that have a discontinuous id. :param mapping: Pandas Series or a Dictionary :param make_current: Set the volume data as the current one :return: 3D array """ data = None if not remap_scalars or mapping is None: data = self.import_volume(file_path) else: time = datetime.now() new_file_path = utils.change_file_name(file_path, None, None, VolumeModel.NORMALIZED_SUFFIX) if os.path.exists(new_file_path): data = self.import_volume(new_file_path) else: data = self.import_volume(file_path) data, mapping = self.remap_slow(data, mapping, new_file_path) logging.info('Remapped scalar values in: ' + str(utils.time_diff(time)) + 's') ''' if volume is not None: logging.info('Opened atlas ' + new_file_path + ' in ' + str(utils.time_diff(time)) + 's') min_value, max_value = np.amin(data), np.amax(data) logging.info('Min max scalar values in volume ' + str(min_value) + ' -> ' + str(max_value)) else: logging.error('Failed to open atlas ' + new_file_path) ''' if make_current and data is not None: self.data = data return data, mapping def transpose(self, shape=None): """ Transpose the volume for visualization in VTK :param shape: The new shape. If None, will default to self.transpose_shape """ if shape is None: shape = self.transpose_shape if shape is None: return self.data = np.transpose(self.data, shape) def remap_slow(self, data, mapping=None, write_path=None): """ Reassign volume values (slow on large volumes!) so that they're continuous :param data: Volume ndarray :param write_path: Where the modified volume will be stored (to spare going through this method next time) :param mapping: Pandas Series or a Dictionary that maps raw volume scalars to new ones :return: Modified volume data """ logging.info('\nBuilding appropriate volume from Allen data source...') #volume = np.vectorize(self.f)(data) labels = np.sort(np.unique(data)) num_labels = len(labels) if mapping is None: mapping = pd.Series(labels) logging.info('Num regions labeled in volume ' + str(num_labels) + ' from ' + str(mapping.size) + ' in atlas') logging.info('Reassigning ' + str(num_labels) + ' scalar values...') for iter_id in range(num_labels): label = labels[iter_id] ids = mapping.index[mapping == label].to_list() if len(ids) < 1: continue # On a large volume, this takes a long time data[data == label] = ids[0] if num_labels > 10000 and iter_id % 10 == 0: logging.info(' Progress: ' + str(int(iter_id/num_labels)*100) + '%') if write_path is not None: logging.info('Saving volume data under ' + write_path) nrrd.write(write_path, data, index_order='C') return data, mapping def build_lut(self, scalar_map=None, scalar_range=None, color_map=None, alpha_map=None, zero_is_transparent=True, noise_amount=0.0, nan_rgba=None, make_active=True): """ Build a look-up table (LUT, sometimes known as transfer function) for the volume :param scalar_map: A 2D list with values in first column from the volume itself and values from the second column being your scalar values that correspond to such region :param scalar_range: Min and max values in a list :param color_map: Color map name to apply :param alpha_map: Alpha map, either None or a list of values the same length as scalar_map, that says how transparent a scalar value should be :param zero_is_transparent: Whether zero values are made transparent, True by default :param noise_amount: Whether a noise value is applied on the colors :param nan_rgba: Color and transparency (RGBA) to assign to invalid (out of range or None) scalar values :param make_active: Whether this one is made active (you still have to update the views after that) :return: LUTModel """ lut_model = LUTModel() lut_model.build(scalar_map, scalar_range, color_map, alpha_map, zero_is_transparent, noise_amount, nan_rgba) self.luts.store(lut_model, set_current=make_active) return lut_model def blend_maps(map1, map2, time, total_time): """ Blend color maps """ weight1 = max(0.0, total_time - time) weight2 = max(0.0, time) return map1 * weight1 + map2 * weight2 class Volume(vedo.Volume): """ Overwriting of vedo.Volume constructor that is ill-designed as it transposes the given numpy array without us knowing about it, not giving us the option to choose about that. """ def __init__(self, inputobj=None, c='RdBu_r', alpha=(0.0, 0.0, 0.2, 0.4, 0.8, 1.0), alphaGradient=None, alphaUnit=1, mode=0, shade=False, spacing=None, dims=None, origin=None, mapper='smart'): vtk.vtkVolume.__init__(self) vedo.BaseGrid.__init__(self) self.axes = [1, 1, 1] ################### if isinstance(inputobj, str): if "https://" in inputobj: from vedo.io import download inputobj = download(inputobj, verbose=False) # fpath elif os.path.isfile(inputobj): pass else: inputobj = sorted(glob.glob(inputobj)) ################### if 'gpu' in mapper: self._mapper = vtk.vtkGPUVolumeRayCastMapper() elif 'opengl_gpu' in mapper: self._mapper = vtk.vtkOpenGLGPUVolumeRayCastMapper() elif 'smart' in mapper: self._mapper = vtk.vtkSmartVolumeMapper() elif 'fixed' in mapper: self._mapper = vtk.vtkFixedPointVolumeRayCastMapper() elif isinstance(mapper, vtk.vtkMapper): self._mapper = mapper else: print("Error unknown mapper type", [mapper]) raise RuntimeError() self.SetMapper(self._mapper) ################### inputtype = str(type(inputobj)) #colors.printc('Volume inputtype', inputtype) if inputobj is None: img = vtk.vtkImageData() elif vedo.utils.isSequence(inputobj): if isinstance(inputobj[0], str): # scan sequence of BMP files ima = vtk.vtkImageAppend() ima.SetAppendAxis(2) pb = vedo.utils.ProgressBar(0, len(inputobj)) for i in pb.range(): f = inputobj[i] picr = vtk.vtkBMPReader() picr.SetFileName(f) picr.Update() mgf = vtk.vtkImageMagnitude() mgf.SetInputData(picr.GetOutput()) mgf.Update() ima.AddInputData(mgf.GetOutput()) pb.print('loading...') ima.Update() img = ima.GetOutput() else: if "ndarray" not in inputtype: inputobj = np.array(inputobj) if len(inputobj.shape)==1: varr = vedo.numpy2vtk(inputobj, dtype=np.float) else: # ------------------------------ Nasty lines commented here #if len(inputobj.shape)>2: #inputobj = np.transpose(inputobj, axes=[2, 1, 0]) varr = vedo.numpy2vtk(inputobj.ravel(order='F'), dtype=np.float) varr.SetName('input_scalars') img = vtk.vtkImageData() if dims is not None: img.SetDimensions(dims) else: if len(inputobj.shape)==1: vedo.colors.printc("Error: must set dimensions (dims keyword) in Volume.", c='r') raise RuntimeError() img.SetDimensions(inputobj.shape) img.GetPointData().SetScalars(varr) #to convert rgb to numpy # img_scalar = data.GetPointData().GetScalars() # dims = data.GetDimensions() # n_comp = img_scalar.GetNumberOfComponents() # temp = utils.vtk2numpy(img_scalar) # numpy_data = temp.reshape(dims[1],dims[0],n_comp) # numpy_data = numpy_data.transpose(0,1,2) # numpy_data = np.flipud(numpy_data) elif "ImageData" in inputtype: img = inputobj elif isinstance(inputobj, vedo.Volume): img = inputobj.GetMapper().GetInput() elif "UniformGrid" in inputtype: img = inputobj elif hasattr(inputobj, "GetOutput"): # passing vtk object, try extract imagdedata if hasattr(inputobj, "Update"): inputobj.Update() img = inputobj.GetOutput() elif isinstance(inputobj, str): from vedo.io import loadImageData, download if "https://" in inputobj: inputobj = download(inputobj, verbose=False) img = loadImageData(inputobj) else: vedo.colors.printc("Volume(): cannot understand input type:\n", inputtype, c='r') return if dims is not None: img.SetDimensions(dims) if origin is not None: img.SetOrigin(origin) ### DIFFERENT from volume.origin()! if spacing is not None: img.SetSpacing(spacing) self._data = img self._mapper.SetInputData(img) self.mode(mode).color(c).alpha(alpha).alphaGradient(alphaGradient) self.GetProperty().SetShade(True) self.GetProperty().SetInterpolationType(1) self.GetProperty().SetScalarOpacityUnitDistance(alphaUnit) # remember stuff: self._mode = mode self._color = c self._alpha = alpha self._alphaGrad = alphaGradient self._alphaUnit = alphaUnit @dataclass class LUTModel: """ This class might look slightly convoluted but it's actually simple. We use double mapping here in order to enable live/interactive visualization of volumetric data. Instead of replacing values in a 3D volume, we only replace the colors in the 1D LUT list. The point is that it's too slow to update a given data, like a segmented volume with custom values. Instead, we map such custom values to a 1D array (our LUT) that maps colors to raw volume values. This is much faster in terms of rendering and it enables interactive visualization. The scalar_lut is the original LUT for the given scalars (custom values) and the mapped_lut is the LUT assigned to the surfaces (like slices) that have copied data from the volume. The volume is given color_map and alpha_map through vedo methods. You might say "ok for double mapping, it's the only way for interactive rendering of a volume, but what about color_map and mapped_lut? Aren't they the same?". The answer is: they're the same but VTK does not accept a vtkLookupTable for a volume. Instead, it wants a vtkColorTransferFunction and a vtkPiecewiseFunction for alpha. There's no way around it. The color_map will be computed as a vtkColorTransferFunction and the alpha_map as the vtkPiecewiseFunction. """ name: str = NotImplementedError color_map_function: Any = None scalar_map: np.ndarray = None scalar_min: float = 0.0 scalar_max: float = 1.0 scalar_lut: vtk.vtkLookupTable = None mapped_lut: vtk.vtkLookupTable = None color_map: np.ndarray = None alpha_map: np.ndarray = None base_color_map: np.ndarray = None def build(self, scalar_map=None, scalar_range=None, color_map=None, alpha_map=None, zero_is_transparent=True, noise_amount=0.0, nan_rgba=None): """ Build several look-up tables (LUT, sometimes known as transfer function) for the volume. This is where double-mapping occurs for segmented volumes that have values from 0 to n where each value defines a sub-volume or region. If we want to assign values (say from another model) to these regions, we'd have to change the volume values and it would be too slow iterating over each voxel in 3D. Instead we define colors that represent these values and assign them to segmented regions in a 1D list. :param scalar_map: A 2D list with values in first column from the volume itself and values from the second column being your scalar values that correspond to such region :param scalar_range: Min and max values in a list :param color_map: Color map name to apply :param alpha_map: Alpha map, either None or a list of values the same length as scalar_map, that says how transparent a scalar value should be :param zero_is_transparent: Whether zero values are made transparent, True by default :param noise_amount: Whether a noise value is applied on the colors :param nan_rgba: Color and alpha values to assign to invalid (out of range or None) scalar values :return: LUTModel """ if color_map is None: return if nan_rgba is None: nan_rgba = [0.0, 0.0, 0.0, 0.0] if self.base_color_map is None: self.base_color_map = color_map colors = [] alphas = [] lut = vtk.vtkLookupTable() scalar_lut = vtk.vtkLookupTable() # Use the number of values in the volume num_steps = len(self.base_color_map) if self.base_color_map is not None else len(color_map) num_steps = 2655 s_min = 0 s_max = num_steps if scalar_map is None: if color_map is None and self.base_color_map is not None: color_map = self.base_color_map loop = range(num_steps) noise = None if isinstance(noise_amount, float) and noise_amount > 0: noise = np.random.rand(num_steps) * noise_amount - noise_amount / 2 # Vedo works with nested lists: # [region_id, [r, g, b]] for color, and [region_id, a] for alpha if scalar_map is None: # Standard volume that is not segmented lut.SetRange(s_min, s_max) lut.SetNumberOfTableValues(num_steps) scalar_lut.SetRange(s_min, s_max) scalar_lut.SetNumberOfTableValues(num_steps) for r_id in loop: color = vedo.colors.getColor(color_map[r_id]) color = np.array(color) if noise is not None: color = color + noise[r_id] color = np.maximum(color, 0.0) color = np.minimum(color, 1.0) colors.append([r_id, color]) alpha = 1.0 if alpha_map is None else alpha_map[r_id] if r_id == 0 and zero_is_transparent: alpha = 0.0 alphas.append([r_id, alpha]) lut.SetTableValue(r_id, *color, alpha) scalar_lut.SetTableValue(r_id, *color, alpha) #scalar_map[r_id] = color_map[r_id] else: # Segmented volume s_min, s_max = scalar_range lut.SetRange(0, num_steps) lut.SetNumberOfTableValues(num_steps) color = None for r_id in range(num_steps): try: value = scalar_map[r_id] except Exception: value = None if value is None:# or s_min > value or s_max < value: color = nan_rgba[:3] alpha = nan_rgba[3] else: color = vedo.colorMap(value, color_map, s_min, s_max) alpha = 1.0 if alpha_map is None else alpha_map[r_id] if value == 0 and zero_is_transparent: alpha = 0.0 colors.append([r_id, color]) alphas.append([r_id, alpha]) lut.SetTableValue(r_id, *color, alpha) # Real scalar LUT, mainly as a reference for the user # Here the colors resulting from the given scalar min to max # are assigned to segmented values in the volume mock_values = np.linspace(s_min, s_max, num_steps) scalar_lut.SetRange(s_min, s_max) scalar_lut.SetNumberOfTableValues(len(mock_values)) for r_id in range(len(mock_values)): color = list(vedo.colorMap(mock_values[r_id], color_map, s_min, s_max)) alpha = 0.0 if mock_values[r_id] == 0 and zero_is_transparent else 1.0 scalar_lut.SetTableValue(r_id, *color, 1.0) lut.Build() scalar_lut.Build() # Just to avoid confusion: the user can give a string as a color map, like 'viridis' # but the real color map object is stored in self.color_map. The name 'viridis' # is stored under self.color_map_function (if needed later on) self.color_map_function = color_map self.color_map = colors self.alpha_map = alphas self.scalar_map = scalar_map self.mapped_lut = lut self.scalar_lut = scalar_lut def get_sorted_scalars(self): """ Get a numpy 2D array of key-value pairs sorted by value :return: 2D array """ sorted_scalars = np.zeros((len(self.scalar_map), 2)) values = list(self.scalar_map.values()) keys = list(self.scalar_map.keys()) sorted_scalars[:, 0] = keys sorted_scalars[:, 1] = values sorted_mask = sorted_scalars[:, 1].argsort() sorted_scalars = sorted_scalars[sorted_mask] return sorted_scalars class VolumeController(): """ Wrapper class that handles both the volume and its slices """ def __init__(self, plot, model, initialize=True, clipping=True, slicer_box=True, center_on_edges=False, alpha_unit_upper_offset=0.0, add_to_scene=True): """ Constructor :param plot: Plot instance :param model: VolumeModel instance :param initialize: Whether the initalization :param clipping: Whether clipping is enabled at init time :param slicer_box: Whether the slicer box is enabled at init :param center_on_edges: Whether the volume is offest by half a voxel or not :param alpha_unit_upper_offset: The offset to apply to alpha unit computation. If greater than 0, the volume will be less opaque :param add_to_scene: Whether the volume is added to scene after init """ self.plot = plot self.model = model self.actor = None self.picker = None self.scalars = None self.mask = None self.bounding_mesh = None self.alpha_unit_upper_offset = alpha_unit_upper_offset self.alpha_factor = 0.001 # * self.model.resolution self.clipping_planes = None self.enable_volume_clipping = True self.clipping_axes = [] self.slicers = OrderedDict() self.slicers_selectable = False self.scalar_bar = None if initialize: self.initialize(clipping, slicer_box, center_on_edges, add_to_scene) #msg = 'Volume abs center', self.volume_center, 'position', np.array(self.volume_actor.pos()) #logging.info(msg) def get_related_actors(self): """ Get all 3D actors related to this view (for registering it in the application) :return: List of VTK objects """ actors = [] for slicer_id in self.slicers: actor = self.slicers[slicer_id].actor if actor is not None: actors.append(actor) for iso_id in self.model.isosurfaces: actors.append(self.model.isosurfaces[iso_id]) actors.append(self.actor) return actors def initialize(self, clipping=True, slicer_box=True, center_on_edges=False, add_to_scene=True): """ Set the volume actor for visualization in VTK :param clipping: Whether clipping is enabled :param slicer_box: Whether the slicer box mode is enabled (6 clipping planes) :param center_on_edges: Whether the volume's center is aligned to its edges rather than the voxel center :param add_to_scene: Whether the object is added to the scene """ self.build_actor(center_on_edges, add_to_scene) self.initialize_picker() if slicer_box: self.initialize_slicer_box() self.initialize_clipping_planes() self.set_volume_clipping(clipping) self.set_color_map() ''' if use_mask: self.mask = self.actor.clone() self.mask.threshold(1, replace=1, replaceOut=0) self.actor.mapper().SetMaskTypeToBinary() self.actor.mapper().SetMaskInput(self.mask) ''' def set_volume_visibility(self, on=True): """ Set volume visibility :param on: Visibility boolean """ if self.actor is not None: self.actor.SetVisibility(on) def set_slices_visibility(self, on=True): """ Set the visibility of slices :param on: Visibility boolean """ for slicer_id in self.slicers: slicer_view = self.slicers.get(slicer_id) slicer_view.actor.SetVisibility(on) def get_slices_opacity(self): """ Get the opacity of slices (should be the same value for all slices) A mean calculation is performed on all slices alpha, just in case :return: Alpha value """ value = 0 num_values = 0 for slicer_id in self.slicers: slicer = self.slicers[slicer_id] if slicer.actor is not None: slice_alpha = slicer.actor.GetProperty().GetOpacity() if slice_alpha is None: continue value += slice_alpha num_values += 1 if num_values == 0 or value == 0: return None return value / num_values def set_slices_opacity(self, value): """ Set the opacity of slices :param value: Alpha value """ for slicer_id in self.slicers: slicer = self.slicers[slicer_id] if slicer.actor is not None: slicer.actor.alpha(value) def get_opacity(self): """ Get the relative opacity unit :return: Float """ return self.get_relative_opacity_unit() def get_relative_opacity_unit(self): """ Get the alpha unit relative value :return: Float """ alpha_unit = self.actor.alphaUnit() r = self.model.resolution # Inverse function of set_opacity_unit() value = 1.1 - (alpha_unit / r)**0.5 return value def set_opacity(self, value): """ Set the opacity of the volume like in set_opacity_unit() :param value: Opacity value between 0.0 and 1.0 :return: Resulting alpha unit """ self.set_opacity_unit(value) def set_opacity_unit(self, value): """ Set the opacity of the volume by modifying its alpha unit (a VTK thing). The alpha unit defines how much a voxel is transparent to incoming ray. This method normalizes the range between 0.0 and 1.0 as it depends on the resolution of the volume :param value: Opacity value between 0.0 and 1.0 :return: Resulting alpha unit """ r = self.model.resolution # 1 is chosen and not 1.0 because when value == 1.0, that would # mean that the volume is fully opaque and this yields artifacts with VTK alpha_unit = (1 + self.alpha_unit_upper_offset - value)**2 * r # vedo calls it "alpha" unit, vtk "opacity" unit. same-same! self.actor.alphaUnit(alpha_unit) return alpha_unit def get_spacing(self): """ Get the spacing/resolution of the volume """ res = self.model.resolution spacing = None if isinstance(res, int) or isinstance(res, float): spacing = np.array([res]*3) elif len(res) == 3: spacing = res else: raise ValueError(f'Given volume resolution {self.model.resolution} is invalid') return spacing def build_actor(self, center_on_edges=False, add_to_scene=True): #[1, 2] """ Set the volume actor for visualization in VTK :param center_on_edges: Whether alignment by one voxel is applied :param add_to_scene: Whether the object is added to the scene """ spacing = self.get_spacing() self.actor = Volume(self.model.data, spacing=spacing, mapper='smart') self.scalars = self.actor._data.GetPointData().GetScalars() self.actor.name = self.model.name self.actor.shade(False) self.actor.mode(0) self.actor.pickable(True) self.set_interactive_subsampling(False) if center_on_edges: # Moving the volume by one voxel. This is possibly due the use of custom spacing. self.actor.pos(self.actor.pos() + spacing) center = np.array(self.actor.pos()) + self.actor.center() if np.linalg.norm(center - self.model.center) > 0: #print('Adjusting volume center from', self.model.center, 'to', center) self.model.center = center self.set_opacity_unit(0.9) self.actor.jittering(True) #self.actor._mapper.AutoAdjustSampleDistancesOn() #self.actor._mapper.SetBlendModeToAverageIntensity() #self.actor._mapper.SetSampleDistance(100) if add_to_scene: self.plot.add(self.actor, render=False) def set_position(self, position): """ Set the position of the volume """ self.actor.pos(position) # TODO: we're entering in unstable things when we move the volume # because there is not yet a guaranteed support for updating the slices # with the correct position self.reset_clipping_planes() def mirror_volume(self, axes): """ Mirror the volume on given axes :param mirror_axes: A list of axes (either 0, 1, 2 or 'x', 'y', 'z') on which the volume will be mirrored. Optional """ if axes is None or self.actor is None: return axes_str = ['x', 'y', 'z'] for axis in axes: if isinstance(axis, int) and 0 <= axis <= 2: axis = axes_str[axis] if isinstance(axis, str) and len(axis) == 1: self.actor.mirror(axis=axis.lower()) def initialize_picker(self, opacity_iso_value=0.0001): """ Initialize the volume picker :param opacity_iso_value: Threshold that defines at what accumulated opacity the picker hits the volume. In the case of a segmented volume, you want to keep this value very low as the default one. """ # As per C++ doc https://vtk.org/Wiki/VTK/Examples/Cxx/VTKConcepts/Scalars # https://stackoverflow.com/questions/35378796/vtk-value-at-x-y-z-point picker = vtk.vtkVolumePicker() picker.PickCroppingPlanesOn() picker.UseVolumeGradientOpacityOff() picker.SetTolerance(opacity_iso_value) # A low OpacityIsoValue is necessary in the case of segmented volumes picker.SetVolumeOpacityIsovalue(opacity_iso_value) picker.AddPickList(self.actor) picker.PickFromListOn() self.picker = picker def initialize_slicer_box(self): """ Initialize 6 slicing planes as a box. """ for axis_id in range(6): slicer_model = SlicerModel(axis=axis_id) slicer_model.align_to_axis(axis_id, self.model.dimensions) self.model.slicers.store(slicer_model) # It's important in this case to have standalone=False self.slicers[axis_id] = SlicerView(self.plot, self, slicer_model, standalone=False) def update_slicer(self, slicer_id, value=None, normal=None): """ Update a given slicer with the given value :param slicer_id: SlicerView id :param value: Value or 3D point :param normal: Normal """ slicer_view = self.slicers.get(slicer_id) if slicer_view is None: return # This is an important part where the slicing plane is itself sliced by other planes slicer_model = slicer_view.model slicer_model.clipping_planes = self.get_clipping_planes(slicer_model.axis) # Use given value (or point) and normal to guide the below code result = slicer_model.update(value, normal) if not result: return # Update slicing image slicer_view.update() def initialize_clipping_planes(self): """ Initialize X, Y and Z clipping planes with two planes per axis for positive and negative slicing """ self.clipping_planes = vtk.vtkPlaneCollection() slicer_models = self.model.slicers for slicer_id in slicer_models: self.clipping_planes.AddItem(vtk.vtkPlane()) self.reset_clipping_planes() return def get_clipping_planes(self, except_axis=None): """ Get the current clipping planes except the ones on the given axis :param except_axis: Axis id to ignore. If None, all clipping planes will be returned :return: vtkPlaneCollection """ if not isinstance(except_axis, int): return self.clipping_planes exceptions = [except_axis * 2, except_axis * 2 + 1] planes = vtk.vtkPlaneCollection() for plane_id in range(self.clipping_planes.GetNumberOfItems()): if plane_id in exceptions: continue plane = self.clipping_planes.GetItem(plane_id) planes.AddItem(plane) return planes def reset_clipping_planes(self): """ Reset clipping planes """ slicer_models = self.model.slicers for slicer_id in slicer_models: slicer_model = slicer_models[slicer_id] plane_id = slicer_model.get_box_plane_id() plane = self.clipping_planes.GetItem(plane_id) plane.SetOrigin(slicer_model.origin + self.actor.pos()) plane.SetNormal(slicer_model.normal) def clip_on_axis(self, position=None, axis=None, normal=None): """ Apply clipping on a single axis :param position: Position :param axis: Clipping axis, defaults to 0 (X axis) :param thickness: Whether a thickness (so two clipping planes) are applied """ axis_offset = 0 # This should already be sorted in the model but in case it isn't, we double check here if normal is not None and normal[axis] < 0: # This means that the given axis has two # clipping planes and we take the negative one axis_offset += 1 #position = self.model.dimensions - position axis_storage_id = axis * 2 + axis_offset plane = self.clipping_planes.GetItem(axis_storage_id) plane.SetOrigin(position) plane.SetNormal(normal) def set_volume_clipping(self, on=None): """ Set volume clipping on or off. :param on: Whether clipping is enabled or disabled. If None, then the state is toggled. """ if on is None: self.enable_volume_clipping = not self.enable_volume_clipping else: self.enable_volume_clipping = on if self.enable_volume_clipping: self.actor.mapper().SetClippingPlanes(self.clipping_planes) else: self.actor.mapper().SetClippingPlanes(None) def clip_to_bounds(self, bounds): """ Clip the volume and move the slicing planes according to 6 boundary points :param bounds: Six values in a list (xmin, xmax, ymin, ymax, zmin, zmax) """ planes = vtk.vtkPlanes() planes.SetBounds(bounds) # Normals are reversed with the above code # so we fix that here with flip_normals=True self.set_clipping_planes(planes, flip_normals=True) def box_widget_update(self, widget=None, event=None): """ Clip the volume with the current box widget :param widget: vtkBoxCutter :param event: vtkEvent """ if widget is None: return planes = vtk.vtkPlanes() widget.GetPlanes(planes) self.set_clipping_planes(planes) def set_clipping_planes(self, planes, flip_normals=False): """ Clip the volume and move the slicing planes according the given planes :param planes: vtkPlanes """ vtk_n = planes.GetNormals() vtk_pts = planes.GetPoints() num_pts = vtk_pts.GetNumberOfPoints() for plane_id in range(num_pts): normal = vtk_n.GetTuple(plane_id) origin = vtk_pts.GetPoint(plane_id) plane = self.clipping_planes.GetItem(plane_id) current_origin = np.array(plane.GetOrigin()) # We don't need to check the normal because # we prevent box cutter rotation in our case if np.linalg.norm(current_origin - origin) < 0.1: continue plane.SetOrigin(origin) if flip_normals: normal = np.array(normal)*-1 plane.SetNormal(normal) self.update_slicer(plane_id, origin, normal) self.clipping_planes.Modified() self.actor.GetMapper().Update() def set_alpha_map(self, alpha_map, alpha_factor=None): """ Set alpha map to the volume view :param alpha_map: 2D list of scalar values and alpha values :param alpha_factor: Alpha factor """ if alpha_map is None: if self.model.luts.current is None: return alpha_map = self.model.luts.current.alpha_map if alpha_factor is None: alpha_factor = self.alpha_factor if len(np.array(alpha_map).shape) > 1: volume_alpha_map = np.ones_like(alpha_map).astype(float) volume_alpha_map[:] = alpha_map[:] volume_alpha_map[:, 1] *= alpha_factor self.actor.alpha(volume_alpha_map) else: self.actor.alpha(np.array(alpha_map) * alpha_factor) def set_color_map(self, color_map=None, alpha_map=None): """ Set the color and alpha map to the view objects :param color_map: Nested list of scalar values and rgb colors like [[0, [0.0, 0.0, 0.0]], [8, [0.5, 0.8, 0.3]], ...] :param alpha_map: 2D list of scalar values and alpha values """ lut = self.model.luts.current if color_map is None and lut is not None: color_map = lut.color_map if alpha_map is None and lut is not None: alpha_map = lut.alpha_map if color_map is None: return self.actor.cmap(color_map) self.set_alpha_map(alpha_map) if lut is not None: for surface in self.model.isosurfaces: surface._mapper.SetLookupTable(lut.opaque_lut) for slicer_id in self.slicers: slicer = self.slicers[slicer_id] slicer.apply_lut(lut.mapped_lut) else: for slicer_id in self.slicers: slicer = self.slicers[slicer_id] slicer.set_color_map(color_map, alpha_map) def disable_shading(self): """ Disable volume shading """ volumeProperty = self.actor.GetProperty() volumeProperty.ShadeOff() self.actor.SetProperty(volumeProperty) def enable_shading(self, ambient=0.6, diffuse=0.8, specular=0.9): """ Enable volume shading TODO: See if this method is useful """ volumeProperty = self.actor.GetProperty() volumeProperty.SetInterpolationTypeToLinear() volumeProperty.ShadeOn() volumeProperty.SetAmbient(ambient) volumeProperty.SetDiffuse(diffuse) volumeProperty.SetSpecular(specular) volumeProperty.SetScalarOpacityUnitDistance(1) self.actor.SetProperty(volumeProperty) def toggle_slices_visibility(self): """ Toggle slices visibility """ self.model.slices_visible = not self.model.slices_visible for slicer_id in self.slicers: slicer = self.slicers[slicer_id] self.update_slicer(slicer) if slicer.actor is not None: slicer.actor.SetVisibility(self.model.slices_visible) def toggle_hollow(self): """ Toggle hollow mode for volume rendering. This is intended to work only on segmented (annotated) volumes. """ volume_property = self.actor.GetProperty() # Shout at VTK devs: it's twisted to name properties Disable and then have DisableOff... disabled = bool(volume_property.GetDisableGradientOpacity()) if disabled: volume_property.DisableGradientOpacityOff() alpha_gradient = vtk.vtkPiecewiseFunction() alpha_gradient.AddPoint(0, 0.0) alpha_gradient.AddPoint(1, 0.75) alpha_gradient.AddPoint(2, 1.0) volume_property.SetGradientOpacity(alpha_gradient) else: volume_property.DisableGradientOpacityOn() return not disabled def get_value_from_xyz(self, position, normal_step=None, avoid_values=0, cast_to_int=True, none_as_zero=False): """ Get a scalar value from the volume with respect to XYZ coordinates and a optionally a normal step, that is the normal on which to probe multiplied by the distance you want to travel further into the volume to pick a correct value. Often the "surface point" on a volume with non uniform transparency is at the boundary between transparent (let's say a 0 value is transparent) and more opaque parts. So you need to go further into the "cloud" so to speak, in order to find the values you want. :param position: 3D array :param normal_step: A vector normal multiplied by the lookup distance, in case the raw position yields bad or unwanted results :param avoid_values: Try and find other values than this :param cast_to_int: Whether the value should be cast to integer :return: Scalar value """ if isinstance(avoid_values, int) or isinstance(avoid_values, float): avoid_values = [avoid_values] # TODO: see if this is faster? To be tested # ijk_result = [0.0, 0.0, 0.0] # volume_actor._data.TransformPhysicalPointToContinuousIndex(xyz, ijk_result) # volume_actor._data.GetPoint(ijk_result) pt_id = self.actor._data.FindPoint(*position) valid_id = 0 < pt_id < self.scalars.GetNumberOfValues() value = self.scalars.GetValue(pt_id) if valid_id else None if not valid_id or (value in avoid_values): if normal_step is not None: position += normal_step pt_id = self.actor._data.FindPoint(*position) valid_id = 0 < pt_id < self.scalars.GetNumberOfValues() value = self.scalars.GetValue(pt_id) if valid_id else None if cast_to_int and value is not None: value = int(value) if value is None and none_as_zero: value = 0 return value def raycast(self, origin, screen_position): """ Shorthand for pick() method """ return self.pick(origin, screen_position) def pick(self, origin, screen_position): """ Find the nearest intersection – even on sliced volume – with the ray formed by an origin and a screen-space position (given by VTK when you click on an actor) :param origin: Origin of the vector :param screen_position: 2D position on screen. This is given by vtk events like MouseRelease :return: The nearest position and its related value queried in the volume image """ self.picker.Pick(*screen_position[:2], 0, self.plot.renderer) position = np.array(self.picker.GetPickPosition()) ray = position - origin distance = np.linalg.norm(ray) normal = ray / distance # Go half a voxel further to make sure we don't hit "void" vol_position = position # + normal * self.model.resolution / 2 probe_position = position + normal * self.model.resolution * 10 closest_dist = distance slice_position = None # See if the line hits any of the slicers (that are image planes) for slicer_id in self.slicers: slicer = self.slicers[slicer_id] if slicer.got_slice: hits = slicer.actor.intersectWithLine(origin, probe_position) if len(hits) != 1: continue new_dist = np.linalg.norm(position - hits[0]) if new_dist < closest_dist and new_dist < self.model.resolution * 2: closest_dist = new_dist slice_position = hits[0] if slice_position is None: position = vol_position else: position = slice_position value = self.get_value_from_xyz(position, normal * self.model.resolution * 4) return position, value def add_probe(self, origin, destination, resolution=40, radius=10, color_map=None, screen_space=True, min_v=None, max_v=None, add_to_scene=True): """ Add a series of points along a line probe :param origin: Probe origin :param destination: Probe destination point :param resolution: Number of (equidistant) points that will be probed along that line :param radius: Radius of the points :param color_map: Scalars color map :param screen_space: Whether the points are screen space or spheres :param min_v: Min scalar value :param max_v: Max scalar value :param add_to_scene: Whether the new probe is added to scene :return: Points """ if color_map is None: color_map = self.model.luts.current.color_map positions, values = self.probe(origin, destination, resolution) points_obj = obj.Points(positions, values=values, radius=radius, screen_space=screen_space, color_map=color_map, min_v=min_v, max_v=max_v) points_obj.origin = origin points_obj.destination = destination # Dynamic properties assignment points_obj.target = self.actor points_obj.target_controller = self if add_to_scene: self.plot.add(points_obj) return points_obj def update_probe(self, origin, destination, points_obj): """ Update a probe with given start and end points :param origin: Start point :param destination: End point :param points_obj: Points object """ resolution = points_obj._polydata.GetPoints().GetNumberOfPoints() positions, values = self.probe(origin, destination, resolution) points_obj.update_data(positions, values) def probe(self, origin, destination, resolution=40): """ Probe a volume with a line :param origin: Origin of the line probe :param destination: Destination of the line probe :param resolution: Number of point samples along the probe :return: Positions and values """ origin = np.array(origin) destination = np.array(destination) distance = np.linalg.norm(destination - origin) ray = destination - origin ray_norm = ray / distance step = distance / resolution positions = [origin + ray_norm * p_id * step for p_id in range(resolution)] values = np.array([self.get_value_from_xyz(point, none_as_zero=True) for point in positions]) return positions, values def set_interactive_subsampling(self, on=False): """ Set volume subsampling on or off. This is enabled by default in VTK and we disable it by default in IBLViewer :param on: Whether volume subsampling in interactive mode is on or off """ #self.plot.window.SetDesiredUpdateRate(0) #self.actor._mapper.SetInteractiveUpdateRate(0) self.model.interactive_subsampling = on self.actor._mapper.SetAutoAdjustSampleDistances(on) if on: self.actor._mapper.InteractiveAdjustSampleDistancesOn() else: self.actor._mapper.InteractiveAdjustSampleDistancesOff() def isosurface(self, label, exceptions=[0], force_rebuild=False, set_current=True, to_int=True, split_meshes=True): """ Creates a surface mesh (isosurface) of a segmented/labelled volume for the given value. Unlike general isosurfacing, this method extracts only the surface mesh of the desired region/label/segmentation, not of all values from 0 to label. :param label: Label (scalar) value found in the volume :param exceptions: If the label is found in the exceptions list, isosurfacing will not occur :param force_rebuild: Whether rebuilding is forced in case we find an existing mesh for the given label :param set_current: Whether the label is set as the current one in the model :param to_int: Whether the label is cast to integer :param split_meshes: Whether we split meshes when multiple ones are found :return: A list of all manifold meshes for the given label """ if label is None or label in exceptions: return if to_int: label = int(label) existing_meshes = self.model.isosurfaces.get(label) if existing_meshes is not None and not force_rebuild: return existing_meshes lut = self.model.luts.current simple_lut = vtk.vtkLookupTable() simple_lut.SetNumberOfColors(1) simple_lut.SetTableRange(0, 1) simple_lut.SetScaleToLinear() simple_lut.SetTableValue(0, 0, 0, 0, 0) simple_lut.SetTableValue(1, *lut.mapped_lut.GetTableValue(label)) simple_lut.Build() # Generate object boundaries from labelled volume discrete = vtk.vtkDiscreteMarchingCubes() discrete.SetInputData(self.actor.imagedata()) discrete.GenerateValues(1, label, label) smoothing_iterations = 15 pass_band = 0.001 feature_angle = 120.0 smoother = vtk.vtkWindowedSincPolyDataFilter() smoother.SetInputConnection(discrete.GetOutputPort()) smoother.SetNumberOfIterations(smoothing_iterations) smoother.BoundarySmoothingOff() smoother.FeatureEdgeSmoothingOff() smoother.SetFeatureAngle(feature_angle) smoother.SetPassBand(pass_band) smoother.NonManifoldSmoothingOn() smoother.NormalizeCoordinatesOn() smoother.Update() self.model.isosurfaces[label] = [] #splitter = vtk.vtkExtractPolyDataGeometry() if split_meshes: splitter = vtk.vtkPolyDataConnectivityFilter() splitter.SetInputConnection(smoother.GetOutputPort()) splitter.SetExtractionModeToAllRegions() splitter.ColorRegionsOn() splitter.Update() for region_id in range(splitter.GetNumberOfExtractedRegions()): #splitter.AddSpecifiedRegion(region_id) #splitter.Update() #poly = vtk.vtkPolyData() #poly.ShallowCopy(splitter.GetOutput()) threshold = vtk.vtkThreshold() threshold.SetInputConnection(splitter.GetOutputPort()) threshold.ThresholdBetween(region_id, region_id) threshold.Update() actor = vedo.Mesh(threshold.GetOutput()) #actor._mapper.SetScalarRange(min_value, lut.scalar_max) #actor._mapper.SetUseLookupTableScalarRange(True) actor._mapper.SetLookupTable(simple_lut) actor._mapper.ScalarVisibilityOn() actor.name = 'Isosurface_' + str(label) self.model.isosurfaces[label].append(actor) #actor.cmap(lut.scalar_lut, np.ones(poly.GetNumberOfVerts())*label) else: poly = smoother.GetOutput() actor = vedo.Mesh(poly) actor._mapper.SetLookupTable(simple_lut) actor._mapper.ScalarVisibilityOn() actor.name = 'Isosurface_' + str(label) self.model.isosurfaces[label].append(actor) ''' pdnorm = vtk.vtkPolyDataNormals() pdnorm.SetInputData(smoother.GetOutput()) pdnorm.ComputePointNormalsOn() pdnorm.ComputeCellNormalsOn() pdnorm.FlipNormalsOff() pdnorm.ConsistencyOn() pdnorm.Update() mapper = vtk.vtkPolyDataMapper() mapper.SetInputConnection(smoother.GetOutputPort()) mapper.SetLookupTable(lut.scalar_lut) mapper.SetScalarRange(min_value, lut.scalar_max) ''' if set_current: self.model.isosurfaces.set_current(label) return self.model.isosurfaces[label] @dataclass class SlicerModel: PREFIX = '[Slicer]_' MIN_SLAB_THICKNESS = 1.0 #um __count = 0 def unique_name(): SlicerModel.__count += 1 return f'{SlicerModel.PREFIX}_{SlicerModel.__count}' name: str = field(default_factory=unique_name) # 0, 1 or 2. See the normal for axis orientation axis: int = None value: float = 0.0 bounds: np.ndarray = None #thickness: float = 0.0 origin: np.ndarray = np.array([0.0, 0.0, 0.0]) normal: np.ndarray = np.array([1.0, 0.0, 0.0]) clipping_planes: vtk.vtkPlaneCollection = None def get_box_plane_id(self): """ Get the plane id :return: Int """ if self.axis is None: return offset = 0 if self.normal[self.axis] < 0 else 1 return self.axis * 2 + offset def get_axis_aligned_info(self, vtk_axis): """ VTK stores box clipping planes in the order: -X to +X: 0, 1 -Y to +Y: 2, 3 -Z to +Z: 4, 5 This method retrieves what is the XYZ axis (0, 1 or 2) and its orientation sign :return: Int axis and float orientation """ orientation = -1.0 if vtk_axis % 2 == 0 else 1.0 axis = (vtk_axis - vtk_axis % 2) // 2 return axis, orientation def align_to_axis(self, axis, dimensions=None): """ Set the axis of the slicer :param axis: See parameter vtk_axis in SlicerModel.get_axis_aligned_info() :param dimensions: Dimensions of the volume """ if not isinstance(axis, int): return normal = np.zeros(3).astype(float) xyz_axis, orientation = self.get_axis_aligned_info(axis) normal[xyz_axis] = orientation self.axis = xyz_axis if dimensions is not None and orientation < 0: self.origin = np.zeros(3) self.origin[xyz_axis] = dimensions[xyz_axis] self.normal = normal def flip_normal(self): """ Flip the normal of the slicer """ self.normal *= -1.0 self.check_normal() if isinstance(self.axis, int): self.axis *= -1 def check_normal(self): """ Check if the normal is axis-aligned. If not, the axis is set to None. """ zeros = self.normal == 0 if len(self.normal[zeros]) >= 2: self.axis = 0 def update(self, value=None, normal=None, axis=None): """ Update slicer :param value: Origin of the slicing plane :param normal: Normal of the slicing plane :param axis: Axis, if the plane is axis-aligned :return: True if model changed, False if it didn't """ if not(isinstance(value, int) or isinstance(value, float)): if normal is None: normal = self.normal if normal is None: return False if normal[1] == 0 and normal[2] == 0: axis = 0 #if normal[0] > 0 else 1 elif normal[0] == 0 and normal[2] == 0: axis = 1 #if normal[1] > 0 else 1 elif normal[0] == 0 and normal[1] == 0: axis = 2 #if normal[2] > 0 else 1 if axis is not None: value = value[axis] if axis is None: axis = self.axis if self.value == value: return False if axis is not None: self.value = value self.origin = np.array(normal) * value else: self.value = None self.origin = value self.normal = normal self.axis = axis return True class SlicerView(): slices = {} def __init__(self, plot, volume_view, slicer_model, standalone=True): """ Constructor :param plot: Plot instance :param volume_view: VolumeView instance :param slicer_model: SlicerModel instance :param standalone: Whether the slice is a standalone actor that can be clicked. Set this to False if you want to use transparency, at the expense that because of a VTK bug, you won't be able to click on it anymore, requiring you to code another way of detecting where the user clicked. See more in initialize_mapper() """ self.plot = plot self.volume_view = volume_view self.model = slicer_model self.actor = None self.filter = None self.filter = None self.actor = None self.reslice = None self.slice_type = -1 self.depth_peeling_enabled = None self.standalone = standalone self.got_slice = False self.color_map = None self.alpha_map = None self.initialize() def initialize(self, render=False): """ Initialize the slicer object """ if self.filter is None: self.filter = vtk.vtkImageDataGeometryFilter() if self.actor is None: self.actor = vedo.Mesh(self.filter.GetOutput()) # Adding empty actor so that it's updated later on self.plot.add(self.actor, render=render) self.actor.lighting('off') self.actor.name = self.model.name self.initialize_mapper() def initialize_mapper(self): """ Initialize the object mapper """ mapper = self.actor._mapper mapper.SetScalarModeToUsePointData() #SetScalarModeToUsePointFieldData mapper.SetColorModeToMapScalars() mapper.ScalarVisibilityOn() # We operate on static volumes thanks to the double LUT mapping implemented here mapper.SetStatic(True) # Without using scalar range, the mapping will be off mapper.SetUseLookupTableScalarRange(True) # We prevent this actor from being pickable as a result of the bug described below # when we want to use transparency on the slice. self.actor.pickable(self.standalone) if self.standalone: # There is a bug in VTK 9 that prevents clicking on transparent objects # as reported on vedo's tracker https://github.com/marcomusy/vedo/issues/291 # The "Force opaque fix" below should be gone with the next VTK update hopefully. # In the meantime, we use this. # TODO: remove this when this bug is fixed in VTK self.actor.ForceOpaqueOn() else: # We bypass the transparent selection bug when a VolumeView has multiple slicers # like in box mode because the click detection occurs on the volume and we perform # an additional test to see if a slicer yields a nearby result. If it does, # the result is like clicking on the slice and we get transparency for free. pass # Make sure we have depth peeling activated, otherwise transparency with volumes # will look weird and in the wrong order self.plot.renderer.UseDepthPeelingOn() self.plot.renderer.UseDepthPeelingForVolumesOn() segmented = self.volume_view.model.is_segmented() if segmented: # This very line below will mess up the entire slice coloring if: # - you have a segmented volume and this is set to True # - you have a non-segmented (like raw MRI, CT) volume and this is set to False mapper.SetInterpolateScalarsBeforeMapping(not segmented) mapper.Update() def set_color_map(self, color_map, alpha_map=None): """ Set a color map to the slice :param color_map: Color map, can be a string, a list of colors or more. See vedo documentation. """ self.color_map = color_map if alpha_map is not None: self.alpha_map = alpha_map if self.got_slice and color_map is not None: self.actor.cmap(self.color_map, alpha=self.alpha_map) def set_slice_type(self, slice_type): """ Set the slice type. 0 for axial, 1 for free slicing :param slice_type: Int value """ if slice_type == 0 and self.slice_type != slice_type: self.slice_type = slice_type self.filter.SetInputData(self.volume_view.actor.imagedata()) elif slice_type == 1 and self.slice_type != slice_type: self.slice_type = slice_type self.filter.SetInputData(self.reslice.GetOutput()) def slice_on_normal(self, origin, normal): """ Slice a volume with a plane oriented by the given normal. This allows slicing in all directions. :param origin: Origin of the slicing plane :param normal: Normal of the slicing plane :return: Mesh object with the slice as an image texture """ ''' mapper = vtk.vtkImageResliceMapper() mapper.SetInputData(self.volume_view.actor._data) mapper.SliceFacesCameraOff() mapper.SliceAtFocalPointOff() mapper.JumpToNearestSliceOn() mapper.SetImageSampleFactor(2) mapper.BorderOn() mapper.BackgroundOff() mapper.UpdateInformation() mapper.GetSlicePlane().SetOrigin(*origin) mapper.GetSlicePlane().SetNormal(*normal) mapper.GetSlicePlane().Modified() mapper.Modified() mapper.Update() self.actor = vtk.vtkImageSlice() self.actor.SetMapper(mapper) prop = vtk.vtkImageProperty() if True: prop.SetInterpolationTypeToLinear() else: prop.SetInterpolationTypeToNearest() self.actor.SetProperty(prop) return ''' if self.reslice is None: reslice = vtk.vtkImageReslice() reslice.SetInputData(self.volume_view.actor._data) #reslice.SetInputData(image) reslice.SetOutputDimensionality(2) reslice.SetAutoCropOutput(False) #reslice.SetInterpolationModeToLinear() reslice.SetInterpolationModeToNearestNeighbor() reslice.SetSlabNumberOfSlices(1) reslice.SetOutputSpacing(self.volume_view.get_spacing()) reslice.ReleaseDataFlagOn() self.reslice = reslice self.set_slice_type(1) M, T = utils.get_transformation_matrix(origin, normal) self.reslice.SetResliceAxes(M) self.reslice.Update() self.filter.Update() if self.actor is None: self.actor = vedo.Mesh(self.filter.GetOutput()) self.initialize_mapper() else: self.actor._update(self.filter.GetOutput()) self.initialize_mapper() self.actor.SetOrientation(T.GetOrientation()) self.actor.SetPosition(origin) self.got_slice = True return self.actor def x_slice(self, i): """ Extract the slice at index `i` of volume along x-axis. :param i: I index """ self.set_slice_type(0) nx, ny, nz = self.volume_view.actor.GetMapper().GetInput().GetDimensions() if i <= 1 or i > nx - 1: return False self.filter.SetExtent(i, i, 0, ny, 0, nz) self.filter.Update() if self.actor is not None: self.actor._update(self.filter.GetOutput()) else: self.actor = vedo.Mesh(self.filter.GetOutput()) self.initialize_mapper() self.got_slice = True return True def y_slice(self, j): """ Extract the slice at index `j` of volume along y-axis. :param j: J index """ self.set_slice_type(0) #nx, ny, nz = self.volume_view.model.dimensions / resolution nx, ny, nz = self.volume_view.actor.GetMapper().GetInput().GetDimensions() if j <= 1 or j > ny - 1: return False self.filter.SetExtent(0, nx, j, j, 0, nz) self.filter.Update() if self.actor is not None: self.actor._update(self.filter.GetOutput()) else: self.actor = vedo.Mesh(self.filter.GetOutput()) self.initialize_mapper() self.got_slice = True return True def z_slice(self, k): """ Extract the slice at index `k` of volume along z-axis. :param k: K index """ self.set_slice_type(0) nx, ny, nz = self.volume_view.actor.GetMapper().GetInput().GetDimensions() if k <= 1 or k > nz - 1: return False self.filter.SetExtent(0, nx, 0, ny, k, k) self.filter.Update() if self.actor is not None: self.actor._update(self.filter.GetOutput()) else: self.actor = vedo.Mesh(self.filter.GetOutput()) self.initialize_mapper() self.got_slice = True return True def slice_on_axis(self, value=None, normal=None, axis=None, use_reslice=False): """ Slice on standard X, Y or Z axis :param value: Value on the given axis :param normal: Axis normal, can be either +1.0 or -1.0 along that axis :param axis: Axis integer, 0 for X, 1 for Y, 2 for Z :param use_reslice: if True, this enables vtkImageReslice which is useful when the normal is not aligned to either X, Y or Z. If you use it on an axis-aligned normal, some color inaccuracies will appear if you don't tweak the vtkImageResliceMapper. This is why the default is False. :return: Result boolean, whether slice occured or not """ resolution = self.volume_view.model.resolution volume_dimensions = self.volume_view.model.dimensions ''' if normal[axis] < 0: if value > 0: # Make value consistent with given normal. value *= normal[axis] value = volume_dimensions[axis] + value ''' in_volume_slice = int(value) // resolution if use_reslice: self.slice_on_normal(normal * value, normal) return if axis == 0: result = self.x_slice(in_volume_slice) elif axis == 1: result = self.y_slice(in_volume_slice) elif axis == 2: result = self.z_slice(in_volume_slice) return result def update(self): """ Update slice object according to data in the model """ had_slice = self.got_slice result = True if isinstance(self.model.axis, int) and 0 <= self.model.axis <= 2: result = self.slice_on_axis(self.model.value, self.model.normal, self.model.axis) else: self.slice_on_normal(self.model.origin, self.model.normal) if not result: self.plot.remove(self.actor) self.got_slice = False return #self.actor.pos(*(self.volume_view.actor.pos()-self.actor.pos())) lut = self.volume_view.model.luts.current if lut is not None: ''' This is VTK for you...a mesh can use a vtkLookupTable for RGBA mapping BUT volumes require vtkColorTransferFunction (RGB) and vtkPiecewiseFunction (alpha) So we have to put a color map, alpha map and a vtkLookupTable built from both maps in a LUTModel. Alternatively, we could update the LUT with alpha values but it's a pain. ctf = self.volume_view.actor.GetProperty().GetRGBTransferFunction() lut = vedo.utils.ctf2lut(self.volume_view.actor) otf = self.volume_view.actor.GetProperty().GetScalarOpacity # using "ctf" would work only for colors, not for transparency! self.apply_lut(ctf) ''' self.apply_lut(lut.mapped_lut) else: if self.alpha_map is None: self.actor.cmap(self.color_map) else: self.actor.cmap(self.color_map, alpha=self.alpha_map) if self.model.clipping_planes is not None: self.actor.mapper().SetClippingPlanes(self.model.clipping_planes) if not had_slice: self.plot.add(self.actor, render=True) def apply_lut(self, lut=None): """ Apply a LUT to the volume :param lut: vtkLookupTable :param actor: The actor to receive this """ if self.actor is None or lut is None: return mapper = self.actor._mapper mapper.SetLookupTable(lut)
[ "vedo.colors.getColor", "numpy.random.rand", "iblviewer.utils.get_transformation_matrix", "nrrd.read", "vtk.vtkPlane", "iblviewer.objects.Points", "vtk.vtkImageAppend", "numpy.array", "vedo.io.loadImageData", "vtk.vtkImageReslice", "vedo.colorMap", "numpy.linalg.norm", "vedo.loadImageData", "logging.info", "os.path.exists", "vedo.download", "iblviewer.utils.change_file_name", "vtk.vtkDiscreteMarchingCubes", "numpy.max", "numpy.linspace", "numpy.min", "iblviewer.utils.time_diff", "numpy.maximum", "vtk.vtkPiecewiseFunction", "vtk.vtkPlanes", "dataclasses.field", "glob.glob", "collections.OrderedDict", "vtk.vtkLookupTable", "vtk.vtkVolumePicker", "numpy.ones", "vedo.colors.printc", "vtk.vtkWindowedSincPolyDataFilter", "vtk.vtkImageDataGeometryFilter", "vtk.vtkGPUVolumeRayCastMapper", "os.path.isfile", "vtk.vtkImageMagnitude", "vtk.vtkPlaneCollection", "vtk.vtkImageData", "vedo.utils.isSequence", "vtk.vtkBMPReader", "numpy.transpose", "pandas.Series", "nrrd.write", "vtk.vtkVolume.__init__", "numpy.ones_like", "vtk.vtkFixedPointVolumeRayCastMapper", "numpy.unique", "numpy.minimum", "vtk.vtkPolyDataConnectivityFilter", "vedo.io.download", "vtk.vtkThreshold", "datetime.datetime.now", "numpy.zeros", "vedo.numpy2vtk", "vedo.BaseGrid.__init__", "vtk.vtkSmartVolumeMapper", "vtk.vtkOpenGLGPUVolumeRayCastMapper", "vedo.Mesh" ]
[((753, 787), 'dataclasses.field', 'field', ([], {'default_factory': 'unique_name'}), '(default_factory=unique_name)\n', (758, 787), False, 'from dataclasses import dataclass, field\n'), ((841, 874), 'dataclasses.field', 'field', ([], {'default_factory': 'Collection'}), '(default_factory=Collection)\n', (846, 874), False, 'from dataclasses import dataclass, field\n'), ((892, 933), 'dataclasses.field', 'field', ([], {'default_factory': '(lambda : [1, 1, 1])'}), '(default_factory=lambda : [1, 1, 1])\n', (897, 933), False, 'from dataclasses import dataclass, field\n'), ((1442, 1475), 'dataclasses.field', 'field', ([], {'default_factory': 'Collection'}), '(default_factory=Collection)\n', (1447, 1475), False, 'from dataclasses import dataclass, field\n'), ((1502, 1535), 'dataclasses.field', 'field', ([], {'default_factory': 'Collection'}), '(default_factory=Collection)\n', (1507, 1535), False, 'from dataclasses import dataclass, field\n'), ((1566, 1599), 'dataclasses.field', 'field', ([], {'default_factory': 'Collection'}), '(default_factory=Collection)\n', (1571, 1599), False, 'from dataclasses import dataclass, field\n'), ((55813, 55847), 'dataclasses.field', 'field', ([], {'default_factory': 'unique_name'}), '(default_factory=unique_name)\n', (55818, 55847), False, 'from dataclasses import dataclass, field\n'), ((56028, 56053), 'numpy.array', 'np.array', (['[0.0, 0.0, 0.0]'], {}), '([0.0, 0.0, 0.0])\n', (56036, 56053), True, 'import numpy as np\n'), ((56079, 56104), 'numpy.array', 'np.array', (['[1.0, 0.0, 0.0]'], {}), '([1.0, 0.0, 0.0])\n', (56087, 56104), True, 'import numpy as np\n'), ((2599, 2616), 'numpy.min', 'np.min', (['self.data'], {}), '(self.data)\n', (2605, 2616), True, 'import numpy as np\n'), ((2641, 2658), 'numpy.max', 'np.max', (['self.data'], {}), '(self.data)\n', (2647, 2658), True, 'import numpy as np\n'), ((6526, 6556), 'numpy.transpose', 'np.transpose', (['self.data', 'shape'], {}), '(self.data, shape)\n', (6538, 6556), True, 'import numpy as np\n'), ((7033, 7107), 'logging.info', 'logging.info', (['"""\nBuilding appropriate volume from Allen data source..."""'], {}), '("""\nBuilding appropriate volume from Allen data source...""")\n', (7045, 7107), False, 'import logging\n'), ((10414, 10442), 'vtk.vtkVolume.__init__', 'vtk.vtkVolume.__init__', (['self'], {}), '(self)\n', (10436, 10442), False, 'import vtk\n'), ((10451, 10479), 'vedo.BaseGrid.__init__', 'vedo.BaseGrid.__init__', (['self'], {}), '(self)\n', (10473, 10479), False, 'import vedo\n'), ((19031, 19051), 'vtk.vtkLookupTable', 'vtk.vtkLookupTable', ([], {}), '()\n', (19049, 19051), False, 'import vtk\n'), ((19073, 19093), 'vtk.vtkLookupTable', 'vtk.vtkLookupTable', ([], {}), '()\n', (19091, 19093), False, 'import vtk\n'), ((24790, 24803), 'collections.OrderedDict', 'OrderedDict', ([], {}), '()\n', (24801, 24803), False, 'from collections import OrderedDict\n'), ((33103, 33124), 'vtk.vtkVolumePicker', 'vtk.vtkVolumePicker', ([], {}), '()\n', (33122, 33124), False, 'import vtk\n'), ((35001, 35025), 'vtk.vtkPlaneCollection', 'vtk.vtkPlaneCollection', ([], {}), '()\n', (35023, 35025), False, 'import vtk\n'), ((35661, 35685), 'vtk.vtkPlaneCollection', 'vtk.vtkPlaneCollection', ([], {}), '()\n', (35683, 35685), False, 'import vtk\n'), ((38045, 38060), 'vtk.vtkPlanes', 'vtk.vtkPlanes', ([], {}), '()\n', (38058, 38060), False, 'import vtk\n'), ((38523, 38538), 'vtk.vtkPlanes', 'vtk.vtkPlanes', ([], {}), '()\n', (38536, 38538), False, 'import vtk\n'), ((46463, 46482), 'numpy.linalg.norm', 'np.linalg.norm', (['ray'], {}), '(ray)\n', (46477, 46482), True, 'import numpy as np\n'), ((48549, 48679), 'iblviewer.objects.Points', 'obj.Points', (['positions'], {'values': 'values', 'radius': 'radius', 'screen_space': 'screen_space', 'color_map': 'color_map', 'min_v': 'min_v', 'max_v': 'max_v'}), '(positions, values=values, radius=radius, screen_space=\n screen_space, color_map=color_map, min_v=min_v, max_v=max_v)\n', (48559, 48679), True, 'import iblviewer.objects as obj\n'), ((49805, 49821), 'numpy.array', 'np.array', (['origin'], {}), '(origin)\n', (49813, 49821), True, 'import numpy as np\n'), ((49844, 49865), 'numpy.array', 'np.array', (['destination'], {}), '(destination)\n', (49852, 49865), True, 'import numpy as np\n'), ((49885, 49921), 'numpy.linalg.norm', 'np.linalg.norm', (['(destination - origin)'], {}), '(destination - origin)\n', (49899, 49921), True, 'import numpy as np\n'), ((52223, 52243), 'vtk.vtkLookupTable', 'vtk.vtkLookupTable', ([], {}), '()\n', (52241, 52243), False, 'import vtk\n'), ((52589, 52619), 'vtk.vtkDiscreteMarchingCubes', 'vtk.vtkDiscreteMarchingCubes', ([], {}), '()\n', (52617, 52619), False, 'import vtk\n'), ((52834, 52869), 'vtk.vtkWindowedSincPolyDataFilter', 'vtk.vtkWindowedSincPolyDataFilter', ([], {}), '()\n', (52867, 52869), False, 'import vtk\n'), ((65918, 65965), 'iblviewer.utils.get_transformation_matrix', 'utils.get_transformation_matrix', (['origin', 'normal'], {}), '(origin, normal)\n', (65949, 65965), True, 'import iblviewer.utils as utils\n'), ((1768, 1779), 'numpy.zeros', 'np.zeros', (['(3)'], {}), '(3)\n', (1776, 1779), True, 'import numpy as np\n'), ((1819, 1830), 'numpy.zeros', 'np.zeros', (['(3)'], {}), '(3)\n', (1827, 1830), True, 'import numpy as np\n'), ((2001, 2026), 'numpy.array', 'np.array', (['self.data.shape'], {}), '(self.data.shape)\n', (2009, 2026), True, 'import numpy as np\n'), ((3901, 3940), 'vedo.download', 'vedo.download', (['file_path'], {'verbose': '(False)'}), '(file_path, verbose=False)\n', (3914, 3940), False, 'import vedo\n'), ((5186, 5200), 'datetime.datetime.now', 'datetime.now', ([], {}), '()\n', (5198, 5200), False, 'from datetime import datetime\n'), ((5229, 5305), 'iblviewer.utils.change_file_name', 'utils.change_file_name', (['file_path', 'None', 'None', 'VolumeModel.NORMALIZED_SUFFIX'], {}), '(file_path, None, None, VolumeModel.NORMALIZED_SUFFIX)\n', (5251, 5305), True, 'import iblviewer.utils as utils\n'), ((5321, 5350), 'os.path.exists', 'os.path.exists', (['new_file_path'], {}), '(new_file_path)\n', (5335, 5350), False, 'import os\n'), ((7175, 7190), 'numpy.unique', 'np.unique', (['data'], {}), '(data)\n', (7184, 7190), True, 'import numpy as np\n'), ((7275, 7292), 'pandas.Series', 'pd.Series', (['labels'], {}), '(labels)\n', (7284, 7292), True, 'import pandas as pd\n'), ((7976, 8030), 'logging.info', 'logging.info', (["('Saving volume data under ' + write_path)"], {}), "('Saving volume data under ' + write_path)\n", (7988, 8030), False, 'import logging\n'), ((8043, 8088), 'nrrd.write', 'nrrd.write', (['write_path', 'data'], {'index_order': '"""C"""'}), "(write_path, data, index_order='C')\n", (8053, 8088), False, 'import nrrd\n'), ((10953, 10984), 'vtk.vtkGPUVolumeRayCastMapper', 'vtk.vtkGPUVolumeRayCastMapper', ([], {}), '()\n', (10982, 10984), False, 'import vtk\n'), ((11665, 11683), 'vtk.vtkImageData', 'vtk.vtkImageData', ([], {}), '()\n', (11681, 11683), False, 'import vtk\n'), ((11698, 11729), 'vedo.utils.isSequence', 'vedo.utils.isSequence', (['inputobj'], {}), '(inputobj)\n', (11719, 11729), False, 'import vedo\n'), ((21981, 22017), 'numpy.linspace', 'np.linspace', (['s_min', 's_max', 'num_steps'], {}), '(s_min, s_max, num_steps)\n', (21992, 22017), True, 'import numpy as np\n'), ((30005, 30024), 'numpy.array', 'np.array', (['([res] * 3)'], {}), '([res] * 3)\n', (30013, 30024), True, 'import numpy as np\n'), ((43270, 43296), 'vtk.vtkPiecewiseFunction', 'vtk.vtkPiecewiseFunction', ([], {}), '()\n', (43294, 43296), False, 'import vtk\n'), ((53427, 53462), 'vtk.vtkPolyDataConnectivityFilter', 'vtk.vtkPolyDataConnectivityFilter', ([], {}), '()\n', (53460, 53462), False, 'import vtk\n'), ((54730, 54745), 'vedo.Mesh', 'vedo.Mesh', (['poly'], {}), '(poly)\n', (54739, 54745), False, 'import vedo\n'), ((57437, 57448), 'numpy.zeros', 'np.zeros', (['(3)'], {}), '(3)\n', (57445, 57448), True, 'import numpy as np\n'), ((60515, 60547), 'vtk.vtkImageDataGeometryFilter', 'vtk.vtkImageDataGeometryFilter', ([], {}), '()\n', (60545, 60547), False, 'import vtk\n'), ((65344, 65365), 'vtk.vtkImageReslice', 'vtk.vtkImageReslice', ([], {}), '()\n', (65363, 65365), False, 'import vtk\n'), ((4015, 4051), 'nrrd.read', 'nrrd.read', (['downloaded_temp_file_path'], {}), '(downloaded_temp_file_path)\n', (4024, 4051), False, 'import nrrd\n'), ((4093, 4138), 'vedo.loadImageData', 'vedo.loadImageData', (['downloaded_temp_file_path'], {}), '(downloaded_temp_file_path)\n', (4111, 4138), False, 'import vedo\n'), ((4227, 4264), 'nrrd.read', 'nrrd.read', (['file_path'], {'index_order': '"""C"""'}), "(file_path, index_order='C')\n", (4236, 4264), False, 'import nrrd\n'), ((4306, 4335), 'vedo.loadImageData', 'vedo.loadImageData', (['file_path'], {}), '(file_path)\n', (4324, 4335), False, 'import vedo\n'), ((10690, 10723), 'vedo.io.download', 'download', (['inputobj'], {'verbose': '(False)'}), '(inputobj, verbose=False)\n', (10698, 10723), False, 'from vedo.io import loadImageData, download\n'), ((10749, 10773), 'os.path.isfile', 'os.path.isfile', (['inputobj'], {}), '(inputobj)\n', (10763, 10773), False, 'import os\n'), ((11049, 11086), 'vtk.vtkOpenGLGPUVolumeRayCastMapper', 'vtk.vtkOpenGLGPUVolumeRayCastMapper', ([], {}), '()\n', (11084, 11086), False, 'import vtk\n'), ((20122, 20159), 'vedo.colors.getColor', 'vedo.colors.getColor', (['color_map[r_id]'], {}), '(color_map[r_id])\n', (20142, 20159), False, 'import vedo\n'), ((20184, 20199), 'numpy.array', 'np.array', (['color'], {}), '(color)\n', (20192, 20199), True, 'import numpy as np\n'), ((31135, 31177), 'numpy.linalg.norm', 'np.linalg.norm', (['(center - self.model.center)'], {}), '(center - self.model.center)\n', (31149, 31177), True, 'import numpy as np\n'), ((35150, 35164), 'vtk.vtkPlane', 'vtk.vtkPlane', ([], {}), '()\n', (35162, 35164), False, 'import vtk\n'), ((39310, 39349), 'numpy.linalg.norm', 'np.linalg.norm', (['(current_origin - origin)'], {}), '(current_origin - origin)\n', (39324, 39349), True, 'import numpy as np\n'), ((47149, 47183), 'numpy.linalg.norm', 'np.linalg.norm', (['(position - hits[0])'], {}), '(position - hits[0])\n', (47163, 47183), True, 'import numpy as np\n'), ((53962, 53980), 'vtk.vtkThreshold', 'vtk.vtkThreshold', ([], {}), '()\n', (53978, 53980), False, 'import vtk\n'), ((57197, 57208), 'numpy.zeros', 'np.zeros', (['(3)'], {}), '(3)\n', (57205, 57208), True, 'import numpy as np\n'), ((59074, 59090), 'numpy.array', 'np.array', (['normal'], {}), '(normal)\n', (59082, 59090), True, 'import numpy as np\n'), ((2239, 2249), 'numpy.ones', 'np.ones', (['(3)'], {}), '(3)\n', (2246, 2249), True, 'import numpy as np\n'), ((11146, 11172), 'vtk.vtkSmartVolumeMapper', 'vtk.vtkSmartVolumeMapper', ([], {}), '()\n', (11170, 11172), False, 'import vtk\n'), ((11828, 11848), 'vtk.vtkImageAppend', 'vtk.vtkImageAppend', ([], {}), '()\n', (11846, 11848), False, 'import vtk\n'), ((13049, 13067), 'vtk.vtkImageData', 'vtk.vtkImageData', ([], {}), '()\n', (13065, 13067), False, 'import vtk\n'), ((19617, 19642), 'numpy.random.rand', 'np.random.rand', (['num_steps'], {}), '(num_steps)\n', (19631, 19642), True, 'import numpy as np\n'), ((20314, 20336), 'numpy.maximum', 'np.maximum', (['color', '(0.0)'], {}), '(color, 0.0)\n', (20324, 20336), True, 'import numpy as np\n'), ((20365, 20387), 'numpy.minimum', 'np.minimum', (['color', '(1.0)'], {}), '(color, 1.0)\n', (20375, 20387), True, 'import numpy as np\n'), ((21378, 21423), 'vedo.colorMap', 'vedo.colorMap', (['value', 'color_map', 's_min', 's_max'], {}), '(value, color_map, s_min, s_max)\n', (21391, 21423), False, 'import vedo\n'), ((22206, 22263), 'vedo.colorMap', 'vedo.colorMap', (['mock_values[r_id]', 'color_map', 's_min', 's_max'], {}), '(mock_values[r_id], color_map, s_min, s_max)\n', (22219, 22263), False, 'import vedo\n'), ((39472, 39488), 'numpy.array', 'np.array', (['normal'], {}), '(normal)\n', (39480, 39488), True, 'import numpy as np\n'), ((40152, 40171), 'numpy.array', 'np.array', (['alpha_map'], {}), '(alpha_map)\n', (40160, 40171), True, 'import numpy as np\n'), ((40215, 40238), 'numpy.ones_like', 'np.ones_like', (['alpha_map'], {}), '(alpha_map)\n', (40227, 40238), True, 'import numpy as np\n'), ((40441, 40460), 'numpy.array', 'np.array', (['alpha_map'], {}), '(alpha_map)\n', (40449, 40460), True, 'import numpy as np\n'), ((10848, 10867), 'glob.glob', 'glob.glob', (['inputobj'], {}), '(inputobj)\n', (10857, 10867), False, 'import glob\n'), ((11232, 11270), 'vtk.vtkFixedPointVolumeRayCastMapper', 'vtk.vtkFixedPointVolumeRayCastMapper', ([], {}), '()\n', (11268, 11270), False, 'import vtk\n'), ((12048, 12066), 'vtk.vtkBMPReader', 'vtk.vtkBMPReader', ([], {}), '()\n', (12064, 12066), False, 'import vtk\n'), ((12167, 12190), 'vtk.vtkImageMagnitude', 'vtk.vtkImageMagnitude', ([], {}), '()\n', (12188, 12190), False, 'import vtk\n'), ((12540, 12558), 'numpy.array', 'np.array', (['inputobj'], {}), '(inputobj)\n', (12548, 12558), True, 'import numpy as np\n'), ((12630, 12670), 'vedo.numpy2vtk', 'vedo.numpy2vtk', (['inputobj'], {'dtype': 'np.float'}), '(inputobj, dtype=np.float)\n', (12644, 12670), False, 'import vedo\n'), ((13242, 13327), 'vedo.colors.printc', 'vedo.colors.printc', (['"""Error: must set dimensions (dims keyword) in Volume."""'], {'c': '"""r"""'}), "('Error: must set dimensions (dims keyword) in Volume.',\n c='r')\n", (13260, 13327), False, 'import vedo\n'), ((5623, 5644), 'iblviewer.utils.time_diff', 'utils.time_diff', (['time'], {}), '(time)\n', (5638, 5644), True, 'import iblviewer.utils as utils\n'), ((14629, 14652), 'vedo.io.loadImageData', 'loadImageData', (['inputobj'], {}), '(inputobj)\n', (14642, 14652), False, 'from vedo.io import loadImageData, download\n'), ((14680, 14765), 'vedo.colors.printc', 'vedo.colors.printc', (['"""Volume(): cannot understand input type:\n"""', 'inputtype'], {'c': '"""r"""'}), "('Volume(): cannot understand input type:\\n', inputtype,\n c='r')\n", (14698, 14765), False, 'import vedo\n'), ((14577, 14610), 'vedo.io.download', 'download', (['inputobj'], {'verbose': '(False)'}), '(inputobj, verbose=False)\n', (14585, 14610), False, 'from vedo.io import loadImageData, download\n')]
# Copyright (c) 2013 <NAME> <<EMAIL>> # # Permission is hereby granted, free of charge, to any person obtaining a # copy of this software and associated documentation files (the "Software"), # to deal in the Software without restriction, including without limitation # the rights to use, copy, modify, merge, publish, distribute, sublicense, # and/or sell copies of the Software, and to permit persons to whom the # Software is furnished to do so, subject to the following conditions: # # The above copyright notice and this permission notice shall be included in # all copies or substantial portions of the Software. # # THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR # IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, # FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL # THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER # LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING # FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER # DEALINGS IN THE SOFTWARE. from rply import LexerGenerator lg = LexerGenerator() # A regexp for something that should end a quoting/unquoting operator # i.e. a space or a closing brace/paren/curly end_quote = r'(?![\s\)\]\}])' lg.add('LPAREN', r'\(') lg.add('RPAREN', r'\)') lg.add('LBRACKET', r'\[') lg.add('RBRACKET', r'\]') lg.add('LCURLY', r'\{') lg.add('RCURLY', r'\}') lg.add('HLCURLY', r'#\{') lg.add('QUOTE', r'\'%s' % end_quote) lg.add('QUASIQUOTE', r'`%s' % end_quote) lg.add('UNQUOTESPLICE', r'~@%s' % end_quote) lg.add('UNQUOTE', r'~%s' % end_quote) lg.add('HASHBANG', r'#!.*[^\r\n]') lg.add('HASHREADER', r'#[^{]') # A regexp which matches incomplete strings, used to support # multi-line strings in the interpreter partial_string = r'''(?x) (?:u|r|ur|ru)? # prefix " # start string (?: | [^"\\] # non-quote or backslash | \\(.|\n) # or escaped single character or newline | \\x[0-9a-fA-F]{2} # or escaped raw character | \\u[0-9a-fA-F]{4} # or unicode escape | \\U[0-9a-fA-F]{8} # or long unicode escape )* # one or more times ''' lg.add('STRING', r'%s"' % partial_string) lg.add('PARTIAL_STRING', partial_string) lg.add('IDENTIFIER', r'[^()\[\]{}\'"\s;]+') lg.ignore(r';.*(?=\r|\n|$)') lg.ignore(r'\s+') lexer = lg.build()
[ "rply.LexerGenerator" ]
[((1136, 1152), 'rply.LexerGenerator', 'LexerGenerator', ([], {}), '()\n', (1150, 1152), False, 'from rply import LexerGenerator\n')]
# Python provides a built-in method called random.shuffle that will shuffle the list data type. Do not use this. # For this assignment, you are to create your own shuffle algorithm that will take as input a sorted list and randomly shuffle the items before returning the list. Try to make your algorithm as efficient as possible. # Add a comment to your code stating what the time complexity of your algorithm is and why. # Display list before and after shuffle. Call your shuffle function multiple times, each time on the original sorted list to show the random order of the list items. data = [7, 20, 26, 31, 40, 51, 55, 63, 74, 81] ndata = len(data) import random def shuffleAlgorithm(data, ndata): for i in range(ndata-1, 0, -1): r = random.randint(0, i) data[i], data[r] = data[r], data[i] return data print(data) print(shuffleAlgorithm(data,ndata)) print(shuffleAlgorithm(data,ndata)) print(shuffleAlgorithm(data,ndata)) print(shuffleAlgorithm(data,ndata)) # fisher yates algorithm - O(n) time complexity because i'm not creating a copy of the list to shuffle through it. # instead i'm modifying the list in place or at a 'constant space' making it O(n) # swapping the last item with a random -not previously selected- item and repeating until all items in list have been selected
[ "random.randint" ]
[((755, 775), 'random.randint', 'random.randint', (['(0)', 'i'], {}), '(0, i)\n', (769, 775), False, 'import random\n')]
from typing import Callable, TypeVar, Union, Tuple from krogon.infix import Infix A = TypeVar('A') B = TypeVar('B') E = TypeVar('E') Maybe = Union[Tuple['just', A], Tuple['nothing']] def just(value=None): return "just", value def nothing(): return "nothing", None def from_value(value) -> Maybe[B]: return _cast_to_maybe(value) def from_value_or_default(value, default) -> Maybe[B]: return from_maybe( _cast_to_maybe(value), dict(if_just=lambda x: just(x), if_nothing=lambda: _cast_to_maybe(default))) @Infix def then(maybe: Maybe[A], func: Callable[[A], Maybe[B]]) -> Maybe[B]: if maybe[0] == "just": return _cast_to_maybe(func(maybe[1])) elif maybe[0] == "nothing": return maybe @Infix def catch_nothing(maybe: Maybe[A], func: Callable[[A], Maybe[B]]) -> Maybe[B]: if maybe[0] == "nothing": return _cast_to_maybe(func()) elif maybe[0] == "just": return maybe @Infix def map(maybe: Maybe[A], mapper: Callable[[A], B]) -> Maybe[B]: if maybe[0] == "just": return just(mapper(maybe[1])) elif maybe[0] == "nothing": return maybe @Infix def value_or_default(maybe: Maybe[A], default_value: B): return maybe | from_maybe | (dict(if_just=lambda x: x, if_nothing=lambda: default_value)) @Infix def from_maybe(maybe: Maybe[A], dict_args: dict) -> B: if_just: Callable = dict_args['if_just'] if_nothing: Callable = dict_args['if_nothing'] if maybe[0] == "just" and if_just is not None: return if_just(maybe[1]) elif maybe[0] == "nothing" and if_nothing is not None: return if_nothing() else: raise Exception('Invalid Maybe: {}, {}'.format(maybe, dict_args)) def _cast_to_maybe(result): if result is None: return nothing() if isinstance(result, tuple) and len(result) == 2: maybe_type, value = result if maybe_type == "just" or maybe_type == "nothing": return result return just(result)
[ "typing.TypeVar" ]
[((87, 99), 'typing.TypeVar', 'TypeVar', (['"""A"""'], {}), "('A')\n", (94, 99), False, 'from typing import Callable, TypeVar, Union, Tuple\n'), ((104, 116), 'typing.TypeVar', 'TypeVar', (['"""B"""'], {}), "('B')\n", (111, 116), False, 'from typing import Callable, TypeVar, Union, Tuple\n'), ((121, 133), 'typing.TypeVar', 'TypeVar', (['"""E"""'], {}), "('E')\n", (128, 133), False, 'from typing import Callable, TypeVar, Union, Tuple\n')]
# Copyright (c) 2015 Red Hat, Inc. # # Licensed under the Apache License, Version 2.0 (the "License"); you may # not use this file except in compliance with the License. You may obtain # a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, WITHOUT # WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the # License for the specific language governing permissions and limitations # under the License. import functools from oslo_config import cfg from neutron.conf.agent import ovs_conf as agent_ovs_conf from neutron.conf.plugins.ml2.drivers import ovs_conf as ml2_ovs_conf from neutron.privileged.agent.ovsdb.native import helpers as priv_helpers agent_ovs_conf.register_ovs_agent_opts(cfg.CONF) ml2_ovs_conf.register_ovs_opts(cfg=cfg.CONF) enable_connection_uri = functools.partial( priv_helpers.enable_connection_uri, log_fail_as_error=False, check_exit_code=False, timeout=cfg.CONF.OVS.ovsdb_timeout, inactivity_probe=cfg.CONF.OVS.of_inactivity_probe * 1000)
[ "functools.partial", "neutron.conf.agent.ovs_conf.register_ovs_agent_opts", "neutron.conf.plugins.ml2.drivers.ovs_conf.register_ovs_opts" ]
[((861, 909), 'neutron.conf.agent.ovs_conf.register_ovs_agent_opts', 'agent_ovs_conf.register_ovs_agent_opts', (['cfg.CONF'], {}), '(cfg.CONF)\n', (899, 909), True, 'from neutron.conf.agent import ovs_conf as agent_ovs_conf\n'), ((910, 954), 'neutron.conf.plugins.ml2.drivers.ovs_conf.register_ovs_opts', 'ml2_ovs_conf.register_ovs_opts', ([], {'cfg': 'cfg.CONF'}), '(cfg=cfg.CONF)\n', (940, 954), True, 'from neutron.conf.plugins.ml2.drivers import ovs_conf as ml2_ovs_conf\n'), ((980, 1184), 'functools.partial', 'functools.partial', (['priv_helpers.enable_connection_uri'], {'log_fail_as_error': '(False)', 'check_exit_code': '(False)', 'timeout': 'cfg.CONF.OVS.ovsdb_timeout', 'inactivity_probe': '(cfg.CONF.OVS.of_inactivity_probe * 1000)'}), '(priv_helpers.enable_connection_uri, log_fail_as_error=\n False, check_exit_code=False, timeout=cfg.CONF.OVS.ovsdb_timeout,\n inactivity_probe=cfg.CONF.OVS.of_inactivity_probe * 1000)\n', (997, 1184), False, 'import functools\n')]
import json from .base_serializer import BaseSerializer class JsonSerializer(BaseSerializer): '''Json serializer.''' def _serialize(self, data: dict, **kwargs) -> str: return json.dumps(data) def _deserialize(self, data: str, **kwargs) -> dict: return json.loads(data)
[ "json.loads", "json.dumps" ]
[((195, 211), 'json.dumps', 'json.dumps', (['data'], {}), '(data)\n', (205, 211), False, 'import json\n'), ((285, 301), 'json.loads', 'json.loads', (['data'], {}), '(data)\n', (295, 301), False, 'import json\n')]
from datetime import datetime import warnings import logging from django.db.models import Q, Case, Value, When from django.core.cache import caches, CacheKeyWarning import django.apps from usaspending_api.references.models import Agency, Location, RefCountryCode from usaspending_api.references.helpers import canonicalize_location_dict from usaspending_api.submissions.models import SubmissionAttributes from usaspending_api.data.daims_maps import daims_maps warnings.simplefilter("ignore", CacheKeyWarning) def clear_caches(): for cache_name in ('default', 'locations', 'awards'): caches[cache_name].clear() def cleanse_values(row): """ Remove textual quirks from CSV values. """ row = {k: v.strip() for (k, v) in row.items()} row = {k: (None if v.lower() == 'null' else v) for (k, v) in row.items()} return row def convert_date(date): if date == "": return None return datetime.strptime(date, '%m/%d/%Y').strftime('%Y-%m-%d') def get_subtier_agency_dict(): """Returns a dictionary with key = subtier agency code and value = agency id.""" # there's no unique constraint on subtier_code, so the order by below ensures that in the case of duplicate subtier # codes, the dictionary we return will reflect the most recently updated one agencies = Agency.objects.all().values( 'id', 'subtier_agency__subtier_code').order_by('subtier_agency__update_date') subtier_agency_dict = { a['subtier_agency__subtier_code']: a['id'] for a in agencies } return subtier_agency_dict def fetch_country_code(vendor_country_code): code_str = up2colon(vendor_country_code) if code_str == "": return None country_code = RefCountryCode.objects.filter(Q(country_code=code_str) | Q(country_name__iexact=code_str)).first() if not country_code: # We don't have an exact match on the name or the code, so we need to # chain filter on the name query_set = RefCountryCode.objects for word in code_str.split(): query_set = query_set.filter(country_name__icontains=word) country_code = query_set.first() return country_code location_cache = caches['locations'] def get_or_create_location(row, mapper): location_dict = mapper(row) # Country-specific adjustments if location_dict["location_country_code"] == "USA": # Apparently zip codes are optional... if location_dict["location_zip"]: location_dict.update( zip5=location_dict["location_zip"][:5], zip_last4=location_dict["location_zip"][5:]) location_dict.pop("location_zip") else: location_dict.update( foreign_postal_code=location_dict.pop("location_zip", None), foreign_province=location_dict.pop("state_code", None)) if "city_name" in location_dict: location_dict['foreign_city_name'] = location_dict.pop("city_name") location_dict = canonicalize_location_dict(location_dict) location_tup = tuple(location_dict.items()) location = location_cache.get(location_tup) if location: return location location = Location.objects.filter(**location_dict).first() if not location: location = Location.objects.create(**location_dict) location_cache.set(location_tup, location) return location def up2colon(input_string): 'Takes the part of a string before `:`, if any.' if input_string: return input_string.split(':')[0].strip() return '' def parse_numeric_value(string): try: return float(string) except Exception: return None def get_fiscal_quarter(fiscal_reporting_period): """ Return the fiscal quarter. Note: the reporting period being passed should already be in "federal fiscal format", where period 1 = Oct. and period 12 = Sept. """ if fiscal_reporting_period in [1, 2, 3]: return 1 elif fiscal_reporting_period in [4, 5, 6]: return 2 elif fiscal_reporting_period in [7, 8, 9]: return 3 elif fiscal_reporting_period in [10, 11, 12]: return 4 def get_previous_submission(cgac_code, fiscal_year, fiscal_period): """ For the specified CGAC (e.g., department/top-tier agency) and specified fiscal year and quarter, return the previous submission within the same fiscal year. """ previous_submission = SubmissionAttributes.objects \ .filter( cgac_code=cgac_code, reporting_fiscal_year=fiscal_year, reporting_fiscal_period__lt=fiscal_period, quarter_format_flag=True) \ .order_by('-reporting_fiscal_period') \ .first() return previous_submission def update_model_description_fields(): """ This method searches through every model Django has registered, checks if it belongs to a list of apps we should update, and updates all fields with '_description' at the end with their relevant information. Dictionaries for DAIMS definitions should be stored in: usaspending_api/data/daims_maps.py Each map should be <field_name>_map for discoverability. If there are conflicting maps (i.e., two models use type_description, but different enumerations) prepend the map name with the model name and a dot. For examples of these situations, see the documentation in daims_maps.py """ logger = logging.getLogger('console') # This is a list of apps whose models will be checked for description fields updatable_apps = [ "accounts", "awards", "common", "financial_activities", "references", "submissions" ] # This iterates over every model that Django has registered for model in django.apps.apps.get_models(): # This checks the app_label of the model, and thus we can skip it if it is not in one of our updatable_apps. # Thus, we'll skip any django admin apps, like auth, corsheaders, etc. if model._meta.app_label not in updatable_apps: continue if model.__name__[:10] == "Historical": continue model_fields = [f.name for f in model._meta.get_fields()] # This supports multi-case DAIMS # We must filter on the model level rather than add them to the when clauses, because if there is a FK in the # when clause Django is not guaranteed to join on that table properly. # # This is an array of tuples of the following format # (Q object of filter, field_names -> case objects map for this filter) # # It is initialized with a blank filter and empty list, which is where default updates are stored model_filtered_update_case_map = [(Q(), {})] desc_fields = [field for field in model_fields if field.split('_')[-1] == "description"[:len(field.split('_')[-1])]] non_desc_fields = [field for field in model_fields if field not in desc_fields] desc_fields_mapping = {} for desc_field in desc_fields: actual_field_short = "_".join(desc_field.split('_')[:-1]) actual_field = None for field in non_desc_fields: if actual_field_short == field: actual_field = field elif actual_field_short == field[:len(actual_field_short)]: actual_field = field desc_fields_mapping[desc_field] = actual_field # Loop through each of the models fields to construct a case for each applicable field for field in model_fields: # We're looking for field names ending in _description split_name = field.split("_") # If the last element in our split name isn't description, skip it if len(split_name) == 1 or split_name[-1] != "description"[:len(split_name[-1])]: continue source_field = "_".join(split_name[:-1]) destination_field = field # This is the map name, prefixed by model name for when there are non-unique description fields source_field = desc_fields_mapping[field] if field in desc_fields_mapping else source_field model_map_name = "{}.{}_map".format(model.__name__, source_field) map_name = "{}_map".format(source_field) # This stores a direct reference to the enumeration mapping code_map = None # Validate we have the source field if source_field not in model_fields: logger.debug("Tried to update '{}' on model '{}', but source field '{}' does not exist.". format(destination_field, model.__name__, source_field)) continue # Validate we have a map # Prefer model_map_name over map_name if model_map_name in daims_maps.keys(): code_map = daims_maps[model_map_name] elif map_name in daims_maps.keys(): code_map = daims_maps[map_name] else: logger.warn("Tried to update '{}' on model '{}', but neither map '{}' nor '{}' exists.". format(destination_field, model.__name__, model_map_name, map_name)) continue # Cases start from 1 case_number = 1 case_name = "case_1" case_map = "case_1_map" while case_name in code_map.keys(): case_object = create_case(code_map[case_map], source_field) # Construct a Q filter for this case case_filter = Q(**code_map[case_name]) # See if we already have a tuple for this filter case_tuple = [x for x in model_filtered_update_case_map if x[0] == case_filter] if len(case_tuple) == 0: # We don't, so create the tuple temp_case_dict = {} temp_case_dict[field] = case_object model_filtered_update_case_map.append((case_filter, temp_case_dict)) else: # We do, so just add our case object to that dictionary case_tuple[0][1][field] = case_object # Check for the next case case_number += 1 case_name = "case_{}".format(case_number) case_map = "case_{}_map".format(case_number) # If our case number is still 1, then we didn't have any cases. Therefore, we perform the default if case_number == 1: case_object = create_case(code_map, source_field) # Grab the first tuple, which has no filters case_tuple = model_filtered_update_case_map[0] # Add it to our dictionary case_tuple[1][field] = case_object for filter_tuple in model_filtered_update_case_map: # For each filter tuple, check if the dictionary has any entries if len(filter_tuple[1].keys()) > 0: print("Updating model {}\n FILTERS:\n {}\n FIELDS:\n {}". format(model.__name__, str(filter_tuple[0]), "\n ".join(filter_tuple[1].keys()))) try: model.objects.filter(filter_tuple[0]).update(**filter_tuple[1]) except django.db.utils.ProgrammingError as e: logger.warn(str(e)) logger.warn("(OK if invoked from a migration, when the table may not yet have been created)") # Utility method for update_model_description_fields, creates the Case object def create_case(code_map, source_field): when_list = [] default = None for code in code_map.keys(): when_args = {} when_args[source_field] = code when_args["then"] = Value(code_map[code]) # If our code is blank, change the comparison to "" if code == "_BLANK": when_args[source_field] = Value("") # We handle the default case later if code == "_DEFAULT": default = Value(code_map[code]) continue # Append a new when to our when-list when_list.append(When(**when_args)) return Case(*when_list, default=default)
[ "logging.getLogger", "usaspending_api.references.models.Location.objects.filter", "datetime.datetime.strptime", "usaspending_api.submissions.models.SubmissionAttributes.objects.filter", "usaspending_api.references.models.Location.objects.create", "usaspending_api.references.helpers.canonicalize_location_dict", "django.db.models.Case", "django.db.models.Value", "warnings.simplefilter", "django.db.models.When", "django.db.models.Q", "usaspending_api.data.daims_maps.daims_maps.keys", "usaspending_api.references.models.Agency.objects.all" ]
[((463, 511), 'warnings.simplefilter', 'warnings.simplefilter', (['"""ignore"""', 'CacheKeyWarning'], {}), "('ignore', CacheKeyWarning)\n", (484, 511), False, 'import warnings\n'), ((3005, 3046), 'usaspending_api.references.helpers.canonicalize_location_dict', 'canonicalize_location_dict', (['location_dict'], {}), '(location_dict)\n', (3031, 3046), False, 'from usaspending_api.references.helpers import canonicalize_location_dict\n'), ((5468, 5496), 'logging.getLogger', 'logging.getLogger', (['"""console"""'], {}), "('console')\n", (5485, 5496), False, 'import logging\n'), ((12330, 12363), 'django.db.models.Case', 'Case', (['*when_list'], {'default': 'default'}), '(*when_list, default=default)\n', (12334, 12363), False, 'from django.db.models import Q, Case, Value, When\n'), ((3290, 3330), 'usaspending_api.references.models.Location.objects.create', 'Location.objects.create', ([], {}), '(**location_dict)\n', (3313, 3330), False, 'from usaspending_api.references.models import Agency, Location, RefCountryCode\n'), ((11928, 11949), 'django.db.models.Value', 'Value', (['code_map[code]'], {}), '(code_map[code])\n', (11933, 11949), False, 'from django.db.models import Q, Case, Value, When\n'), ((933, 968), 'datetime.datetime.strptime', 'datetime.strptime', (['date', '"""%m/%d/%Y"""'], {}), "(date, '%m/%d/%Y')\n", (950, 968), False, 'from datetime import datetime\n'), ((3201, 3241), 'usaspending_api.references.models.Location.objects.filter', 'Location.objects.filter', ([], {}), '(**location_dict)\n', (3224, 3241), False, 'from usaspending_api.references.models import Agency, Location, RefCountryCode\n'), ((12078, 12087), 'django.db.models.Value', 'Value', (['""""""'], {}), "('')\n", (12083, 12087), False, 'from django.db.models import Q, Case, Value, When\n'), ((12185, 12206), 'django.db.models.Value', 'Value', (['code_map[code]'], {}), '(code_map[code])\n', (12190, 12206), False, 'from django.db.models import Q, Case, Value, When\n'), ((12299, 12316), 'django.db.models.When', 'When', ([], {}), '(**when_args)\n', (12303, 12316), False, 'from django.db.models import Q, Case, Value, When\n'), ((6812, 6815), 'django.db.models.Q', 'Q', ([], {}), '()\n', (6813, 6815), False, 'from django.db.models import Q, Case, Value, When\n'), ((8951, 8968), 'usaspending_api.data.daims_maps.daims_maps.keys', 'daims_maps.keys', ([], {}), '()\n', (8966, 8968), False, 'from usaspending_api.data.daims_maps import daims_maps\n'), ((9703, 9727), 'django.db.models.Q', 'Q', ([], {}), '(**code_map[case_name])\n', (9704, 9727), False, 'from django.db.models import Q, Case, Value, When\n'), ((1324, 1344), 'usaspending_api.references.models.Agency.objects.all', 'Agency.objects.all', ([], {}), '()\n', (1342, 1344), False, 'from usaspending_api.references.models import Agency, Location, RefCountryCode\n'), ((1766, 1790), 'django.db.models.Q', 'Q', ([], {'country_code': 'code_str'}), '(country_code=code_str)\n', (1767, 1790), False, 'from django.db.models import Q, Case, Value, When\n'), ((1793, 1825), 'django.db.models.Q', 'Q', ([], {'country_name__iexact': 'code_str'}), '(country_name__iexact=code_str)\n', (1794, 1825), False, 'from django.db.models import Q, Case, Value, When\n'), ((4456, 4625), 'usaspending_api.submissions.models.SubmissionAttributes.objects.filter', 'SubmissionAttributes.objects.filter', ([], {'cgac_code': 'cgac_code', 'reporting_fiscal_year': 'fiscal_year', 'reporting_fiscal_period__lt': 'fiscal_period', 'quarter_format_flag': '(True)'}), '(cgac_code=cgac_code,\n reporting_fiscal_year=fiscal_year, reporting_fiscal_period__lt=\n fiscal_period, quarter_format_flag=True)\n', (4491, 4625), False, 'from usaspending_api.submissions.models import SubmissionAttributes\n'), ((9053, 9070), 'usaspending_api.data.daims_maps.daims_maps.keys', 'daims_maps.keys', ([], {}), '()\n', (9068, 9070), False, 'from usaspending_api.data.daims_maps import daims_maps\n')]
#!/usr/bin/env python3 # -*- coding: utf-8 -*- """ Created on Wed Oct 21 11:11:56 2020 This program is use to plot polarization map from vlbi fits image. You should specify the input fits images by -i or --infile, output file by -o or --output, contour levs by -l or --levs contour base by -c or --cmul polarization parameters by -p or --pol: "icut pcut inc scale" plot window by -w or --win restore beam position by -b or --bpos figsize by -f or --figsize Installation: 1. copy file chmod a+x mapplot.py cp mapplot.py ~/myapp 2. set envioment parameters Add the following line to ~/.bashrc export PATH=$PATH:/home/usename/myapp source ~/.bashrc Running like this: mapplot.py -w <win> -f <figsize> -n <normalize> <infile> <cmul> mapplot.py i <input file list> -o <out.pdf> -c <cmul> -w <win> -p <pol> Examples: 1. mapplot.py -i cta102.fits -o cta102-color.pdf -c 1.8e-3 -w '18 -8 -20 6' -f '7 6' -n 'power 0.5' 2. mapplot.py -w '18 -8 -20 6' -f '4.0 6' -n 'power 0.5' cta102.fits 1.8e-3 https://matplotlib.org/3.1.1/tutorials/colors/colormaps.html https://matplotlib.org/3.2.1/api/_as_gen/matplotlib.colors.Normalize.html#matplotlib.colors.Normalize @author: <NAME> Shanghai Astronomical Observatory, Chinese Academy of Sciences E-mail: <EMAIL>; <EMAIL> """ import sys import getopt from astropy.io import fits from astropy.table import Table import numpy as np import matplotlib.pyplot as plt from matplotlib.patches import Ellipse import matplotlib.colors as mcolors def add_beam(ax, win, h, bpos=None, pad=2.0): if bpos==None : x = win[0] - pad * h['bmaj']*3.6E6 y = win[2] + pad * h['bmaj']*3.6E6 bpos = (x, y) bmaj = h['bmaj'] * 3.6E6 bmin = h['bmin'] * 3.6E6 bpa = 90 - h['bpa'] e = Ellipse(bpos, bmaj, bmin, angle=bpa, ec='k', facecolor='gray') ax.add_artist(e) def annotate(ax, notefile=''): if notefile != '': tab = Table.read(notefile, format='csv') for t in tab: ax.text(t['x'], t['y'], t['text']) # ax.annotate('%s' % h['object'], xy=(0.125,0.91), xycoords='figure fraction') # ax.annotate('%.1f GHz' % (h['crval3']/1.0E9), xy=(0.83, 0.91), xycoords='figure fraction') def cut_cmap(cmap, N_cut=0): # cmap = mcolors.Colormap(cmap) cmap = plt.get_cmap(cmap) x = np.arange(N_cut, 256) / 256.0 color_index = cmap(x) cmap = mcolors.ListedColormap(color_index) return cmap def get_normalize(args, vmin=0.0, vmax=1.0): if args == '': norm = mcolors.Normalize(vmin, vmax) args = args.split(' ') name = args[0] if name == 'linear': if len(args)==3: vmin, vmax = np.array(args[1:], dtype='f4') norm = mcolors.Normalize(vmin, vmax, True) elif name == 'power': if len(args)==1: gamma = 0.5 if len(args)==2: gamma = float(args[1]) elif len(args)==4: gamma, vmin, vmax = np.array(args[1:], dtype='f4') if gamma < 1.0 and vmin < 0.0: vmin = 0.0 norm = mcolors.PowerNorm(gamma, vmin, vmax, True) elif name == 'log': if len(args)==3: vmin, vmax = np.array(args[1:], dtype='f4') norm = mcolors.LogNorm(vmin, vmax) elif name == 'symlog': if len(args)==2: linthresh = float(args[1]) linscale = 1.0 elif len(args)==3: linthresh, linscale = np.array(args[1:], dtype='f4') elif len(args)==5: linthresh, linscale, vmin, vmax = np.array(args[1:], dtype='f4') norm = mcolors.SymLogNorm(linthresh, linscale, vmin, vmax) elif name == 'twoslope': if len(args)==2: vcenter = float(args[1]) elif len(args)==4: vcenter, vmin, vmax = np.array(args[1:], dtype='f4') norm = mcolors.TwoSlopeNorm(vcenter, vmin, vmax) return norm def add_annotation(ax, infile=''): if infile == '': return with open(infile, 'r') as f: for line in f.readlines(): row = line.split(',') row = [col.strip() for col in row] typ = row[0] args = row[1:] if typ == 'text': x, y, text = args x, y = float(x), float(y) ax.text(x, y, text) elif typ == 'arrow': x1, y1, x2, y2 = np.array(args, dtype='f4') ax.annotate("", xy=(x1, y1), xytext=(x2, y2), arrowprops=dict(arrowstyle="->", connectionstyle="arc3")) elif typ == 'annotation': x1, y1, x2, y2 = np.array(args[:-1], dtype='f4') text = args[-1] ax.annotate(text, xy=(x1, y1), xytext=(x2, y2), arrowprops=dict(arrowstyle="->", connectionstyle="arc3")) elif typ == 'ellipse': x, y, majax, minax, pa = np.array(args, dtype='f4') e = Ellipse((x,y), majax, minax, angle=pa, lw=0.5, fc='none', ec='k', ls='-') ax.add_artist(e) def set_axis(ax, w): ax.set_aspect('equal') ax.set_xlabel('Relative R.A. (mas)') ax.set_ylabel('Relative Dec. (mas)') ax.set_xlim(w[0],w[1]) ax.set_ylim(w[2],w[3]) ax.tick_params(which='both', direction='in', length=6, right=True, top=True) ax.tick_params(which='minor',length=4) ax.minorticks_on() def word2pix(w, h): if w == None: W = [0, h['naxis1'], 0, h['naxis2']] else: x0, x1, y0, y1 = w X0 = h['crpix1'] + x0/(h['cdelt1']*3.6E6) Y0 = h['crpix2'] + y0/(h['cdelt2']*3.6E6) X1 = h['crpix1'] + x1/(h['cdelt1']*3.6E6) Y1 = h['crpix2'] + y1/(h['cdelt2']*3.6E6) W = [int(X0), int(X1), int(Y0), int(Y1)] return W def pix2word(W, h): if W == None: W = [0, h['naxis1'], 0, h['naxis2']] X0, X1, Y0, Y1 = W x0 = h['cdelt1']*3.6E6 * (X0-h['crpix1']) y0 = h['cdelt2']*3.6E6 * (Y0-h['crpix2']) x1 = h['cdelt1']*3.6E6 * (X1-h['crpix1']) y1 = h['cdelt2']*3.6E6 * (Y1-h['crpix2']) w = [x0, x1, y0, y1] return w def savefig(outfile, dpi=100): if outfile.lower().endswith('.pdf') : plt.savefig(outfile) elif outfile.lower().endswith('.jpg') or outfile.lower().endswith('.jpeg'): plt.savefig(outfile, dpi=dpi) elif outfile.lower().endswith('.png'): plt.savefig(outfile, dpi=dpi) def mapplot(infile, cmul, outfile='', win=None, levs=None, bpos=None, figsize=None, dpi=100, annotationfile='', cmap='', N_cut=0, norm='', fraction=0.05): hdul = fits.open(infile) h = hdul[0].header # img = hdul[0].data[0, 0, :, :] if levs==None: levs = cmul*np.array([-1,1,2,4,8,16,32,64,128,256,512,1024,2048,4096]) # print(win) if figsize == None : figsize = (6, 6) if win == None: win = pix2word(None, h) W = word2pix(None, h) else: W = word2pix(win, h) img = hdul[0].data[0, 0, W[2]:W[3], W[0]:W[1]] if cmap == '': cmap = 'rainbow' cmap = cut_cmap(cmap, N_cut) vmin, vmax = np.min(img), np.max(img) if norm == '': norm = 'linear %.3f %.3f' % (vmin, vmax) norm = get_normalize(norm, vmin, vmax) fig, ax = plt.subplots() fig.set_size_inches(figsize) set_axis(ax, win) add_beam(ax, win, h, bpos=bpos) add_annotation(ax, annotationfile) ax.contour(img, levs, extent=win, linewidths=0.5, colors='k') pcm = ax.imshow(img, extent=win, origin='lower', interpolation='none', cmap=cmap, norm=norm) cbar = fig.colorbar(pcm, ax=ax, fraction=fraction) # cbar.ax.minorticks_off() cbar.ax.tick_params('both',direction='in',right=True,top=True,which='both') cbar.ax.tick_params(axis='y', labelrotation=90) fig.tight_layout(pad=0.5) if outfile != '': savefig(outfile, dpi) hdul.close() def myhelp(): print('Help: mapplot.py -w "18 -8 -20 6" -f "7 6" -n "power 0.5" <cta102.fits> <1.8e-3>') print(' or: mapplot.py -i cta102.fits -o cta102.png -w "18 -8 -20 6" -f "7 6" -n "power 0.5"') def main(argv): # infile = r'3c66a-calib/circe-beam.fits' infile = '' outfile = '' annotationfile = '' cmul = '' win = None levs = None bpos = None figsize = None dpi = 100 colormap = '' N_cut = 0 norm = '' fraction = 0.05 try: opts, args = getopt.getopt(argv, "hi:c:o:w:l:b:f:d:a:n:N:", ['help', 'infile=', 'cmul=', 'outfile=', 'win=', 'bpos=', 'figsize=', 'dpi=', 'annotatefile=', 'levs=', 'colormap=', 'N_cut=', 'norm=', 'fraction=']) except getopt.GetoptError: myhelp() sys.exit(2) for opt, arg in opts: if opt in ('-h', '--help'): myhelp() elif opt in ('-i', '--infile'): infile = arg elif opt in ('-c', '--cmul'): cmul = arg elif opt in ('-o', '--outfile'): outfile = arg elif opt in ('-w', '--win'): win = arg elif opt in ('-l', '--levs'): levs = np.array(arg.split(), dtype=np.float64).tolist() elif opt in ('-b', '--bpos'): bpos = np.array(arg.split(), dtype=np.float64).tolist() elif opt in ('-f', '--figsize'): figsize = np.array(arg.split(), dtype=np.float64).tolist() elif opt in ('-d', '--dpi'): dpi = int(arg) elif opt in ('-a', '--annotatefile'): annotationfile = arg elif opt in ('--colormap', ): colormap = arg elif opt in ('-N', '--N_cut'): N_cut = int(arg) elif opt in ('-n', '--norm'): norm = arg elif opt in ('--fraction',): fraction = float(arg) if infile=='' and len(args)==2: infile, cmul = args if infile=='' and len(args)==3: infile, outfile, cmul = args if infile=='' and len(args)==4: infile, outfile, cmul, win = args if outfile == '': outfile = infile.split('.')[0] + '.pdf' cmul = float(cmul) if type(win) == str: win = np.array(win.split(), dtype=np.float64).tolist() mapplot(infile, cmul, outfile=outfile, win=win, levs=levs, bpos=bpos, figsize=figsize, dpi=dpi, annotationfile=annotationfile, cmap=colormap, N_cut=N_cut, norm=norm, fraction=fraction) if __name__ == '__main__' : main(sys.argv[1:])
[ "getopt.getopt", "matplotlib.pyplot.savefig", "sys.exit", "matplotlib.colors.LogNorm", "numpy.min", "matplotlib.colors.ListedColormap", "numpy.max", "numpy.array", "matplotlib.colors.PowerNorm", "matplotlib.colors.SymLogNorm", "astropy.table.Table.read", "astropy.io.fits.open", "matplotlib.colors.Normalize", "matplotlib.patches.Ellipse", "matplotlib.colors.TwoSlopeNorm", "matplotlib.pyplot.subplots", "numpy.arange", "matplotlib.pyplot.get_cmap" ]
[((1726, 1788), 'matplotlib.patches.Ellipse', 'Ellipse', (['bpos', 'bmaj', 'bmin'], {'angle': 'bpa', 'ec': '"""k"""', 'facecolor': '"""gray"""'}), "(bpos, bmaj, bmin, angle=bpa, ec='k', facecolor='gray')\n", (1733, 1788), False, 'from matplotlib.patches import Ellipse\n'), ((2198, 2216), 'matplotlib.pyplot.get_cmap', 'plt.get_cmap', (['cmap'], {}), '(cmap)\n', (2210, 2216), True, 'import matplotlib.pyplot as plt\n'), ((2283, 2318), 'matplotlib.colors.ListedColormap', 'mcolors.ListedColormap', (['color_index'], {}), '(color_index)\n', (2305, 2318), True, 'import matplotlib.colors as mcolors\n'), ((5830, 5847), 'astropy.io.fits.open', 'fits.open', (['infile'], {}), '(infile)\n', (5839, 5847), False, 'from astropy.io import fits\n'), ((6405, 6419), 'matplotlib.pyplot.subplots', 'plt.subplots', ([], {}), '()\n', (6417, 6419), True, 'import matplotlib.pyplot as plt\n'), ((1867, 1901), 'astropy.table.Table.read', 'Table.read', (['notefile'], {'format': '"""csv"""'}), "(notefile, format='csv')\n", (1877, 1901), False, 'from astropy.table import Table\n'), ((2222, 2243), 'numpy.arange', 'np.arange', (['N_cut', '(256)'], {}), '(N_cut, 256)\n', (2231, 2243), True, 'import numpy as np\n'), ((2403, 2432), 'matplotlib.colors.Normalize', 'mcolors.Normalize', (['vmin', 'vmax'], {}), '(vmin, vmax)\n', (2420, 2432), True, 'import matplotlib.colors as mcolors\n'), ((2570, 2605), 'matplotlib.colors.Normalize', 'mcolors.Normalize', (['vmin', 'vmax', '(True)'], {}), '(vmin, vmax, True)\n', (2587, 2605), True, 'import matplotlib.colors as mcolors\n'), ((5455, 5475), 'matplotlib.pyplot.savefig', 'plt.savefig', (['outfile'], {}), '(outfile)\n', (5466, 5475), True, 'import matplotlib.pyplot as plt\n'), ((6270, 6281), 'numpy.min', 'np.min', (['img'], {}), '(img)\n', (6276, 6281), True, 'import numpy as np\n'), ((6283, 6294), 'numpy.max', 'np.max', (['img'], {}), '(img)\n', (6289, 6294), True, 'import numpy as np\n'), ((7457, 7661), 'getopt.getopt', 'getopt.getopt', (['argv', '"""hi:c:o:w:l:b:f:d:a:n:N:"""', "['help', 'infile=', 'cmul=', 'outfile=', 'win=', 'bpos=', 'figsize=',\n 'dpi=', 'annotatefile=', 'levs=', 'colormap=', 'N_cut=', 'norm=',\n 'fraction=']"], {}), "(argv, 'hi:c:o:w:l:b:f:d:a:n:N:', ['help', 'infile=', 'cmul=',\n 'outfile=', 'win=', 'bpos=', 'figsize=', 'dpi=', 'annotatefile=',\n 'levs=', 'colormap=', 'N_cut=', 'norm=', 'fraction='])\n", (7470, 7661), False, 'import getopt\n'), ((2530, 2560), 'numpy.array', 'np.array', (['args[1:]'], {'dtype': '"""f4"""'}), "(args[1:], dtype='f4')\n", (2538, 2560), True, 'import numpy as np\n'), ((2839, 2881), 'matplotlib.colors.PowerNorm', 'mcolors.PowerNorm', (['gamma', 'vmin', 'vmax', '(True)'], {}), '(gamma, vmin, vmax, True)\n', (2856, 2881), True, 'import matplotlib.colors as mcolors\n'), ((5555, 5584), 'matplotlib.pyplot.savefig', 'plt.savefig', (['outfile'], {'dpi': 'dpi'}), '(outfile, dpi=dpi)\n', (5566, 5584), True, 'import matplotlib.pyplot as plt\n'), ((5933, 6004), 'numpy.array', 'np.array', (['[-1, 1, 2, 4, 8, 16, 32, 64, 128, 256, 512, 1024, 2048, 4096]'], {}), '([-1, 1, 2, 4, 8, 16, 32, 64, 128, 256, 512, 1024, 2048, 4096])\n', (5941, 6004), True, 'import numpy as np\n'), ((7712, 7723), 'sys.exit', 'sys.exit', (['(2)'], {}), '(2)\n', (7720, 7723), False, 'import sys\n'), ((2978, 3005), 'matplotlib.colors.LogNorm', 'mcolors.LogNorm', (['vmin', 'vmax'], {}), '(vmin, vmax)\n', (2993, 3005), True, 'import matplotlib.colors as mcolors\n'), ((5627, 5656), 'matplotlib.pyplot.savefig', 'plt.savefig', (['outfile'], {'dpi': 'dpi'}), '(outfile, dpi=dpi)\n', (5638, 5656), True, 'import matplotlib.pyplot as plt\n'), ((2752, 2782), 'numpy.array', 'np.array', (['args[1:]'], {'dtype': '"""f4"""'}), "(args[1:], dtype='f4')\n", (2760, 2782), True, 'import numpy as np\n'), ((2938, 2968), 'numpy.array', 'np.array', (['args[1:]'], {'dtype': '"""f4"""'}), "(args[1:], dtype='f4')\n", (2946, 2968), True, 'import numpy as np\n'), ((3272, 3323), 'matplotlib.colors.SymLogNorm', 'mcolors.SymLogNorm', (['linthresh', 'linscale', 'vmin', 'vmax'], {}), '(linthresh, linscale, vmin, vmax)\n', (3290, 3323), True, 'import matplotlib.colors as mcolors\n'), ((3901, 3927), 'numpy.array', 'np.array', (['args'], {'dtype': '"""f4"""'}), "(args, dtype='f4')\n", (3909, 3927), True, 'import numpy as np\n'), ((3483, 3524), 'matplotlib.colors.TwoSlopeNorm', 'mcolors.TwoSlopeNorm', (['vcenter', 'vmin', 'vmax'], {}), '(vcenter, vmin, vmax)\n', (3503, 3524), True, 'import matplotlib.colors as mcolors\n'), ((4091, 4122), 'numpy.array', 'np.array', (['args[:-1]'], {'dtype': '"""f4"""'}), "(args[:-1], dtype='f4')\n", (4099, 4122), True, 'import numpy as np\n'), ((3143, 3173), 'numpy.array', 'np.array', (['args[1:]'], {'dtype': '"""f4"""'}), "(args[1:], dtype='f4')\n", (3151, 3173), True, 'import numpy as np\n'), ((4313, 4339), 'numpy.array', 'np.array', (['args'], {'dtype': '"""f4"""'}), "(args, dtype='f4')\n", (4321, 4339), True, 'import numpy as np\n'), ((4348, 4422), 'matplotlib.patches.Ellipse', 'Ellipse', (['(x, y)', 'majax', 'minax'], {'angle': 'pa', 'lw': '(0.5)', 'fc': '"""none"""', 'ec': '"""k"""', 'ls': '"""-"""'}), "((x, y), majax, minax, angle=pa, lw=0.5, fc='none', ec='k', ls='-')\n", (4355, 4422), False, 'from matplotlib.patches import Ellipse\n'), ((3232, 3262), 'numpy.array', 'np.array', (['args[1:]'], {'dtype': '"""f4"""'}), "(args[1:], dtype='f4')\n", (3240, 3262), True, 'import numpy as np\n'), ((3443, 3473), 'numpy.array', 'np.array', (['args[1:]'], {'dtype': '"""f4"""'}), "(args[1:], dtype='f4')\n", (3451, 3473), True, 'import numpy as np\n')]
from rest_framework.viewsets import ModelViewSet,GenericViewSet from rest_framework.response import Response from api.serializers.domain import * from api.pagination.page import MyPageNumberPagination from api.models import * class MDomainListViewSet(ModelViewSet): queryset = MasterDomainName.objects.all().order_by('id') pagination_class = MyPageNumberPagination serializer_class = MDomainListSerializers class DnsListViewSet(GenericViewSet): def list(self, request, *args, **kwargs): res = {"count": 0, 'results': None} domain_id = request.query_params.get('domain') dns_list = Dns.objects.all().filter(master_domain_name=domain_id) dns_count = Dns.objects.all().filter(master_domain_name=domain_id).count() page = MyPageNumberPagination() page_dns_list = page.paginate_queryset(dns_list,request,self) ser = DnsListSerializers(instance=page_dns_list,many=True) res['results'] = ser.data res['count'] = dns_count return Response(res) class DnsUpdataViewSet(ModelViewSet): queryset = Dns.objects.all().order_by('id') serializer_class = DnsUpdataSerializers
[ "rest_framework.response.Response", "api.pagination.page.MyPageNumberPagination" ]
[((779, 803), 'api.pagination.page.MyPageNumberPagination', 'MyPageNumberPagination', ([], {}), '()\n', (801, 803), False, 'from api.pagination.page import MyPageNumberPagination\n'), ((1023, 1036), 'rest_framework.response.Response', 'Response', (['res'], {}), '(res)\n', (1031, 1036), False, 'from rest_framework.response import Response\n')]
import json from .accuracy_tool import gen_micro_macro_result def null_output_function(data, config, *args, **params): return "" def basic_output_function(data, config, *args, **params): which = config.get("output", "output_value").replace(" ", "").split(",") temp = gen_micro_macro_result(data) result = {} for name in which: result[name] = temp[name] return json.dumps(result, sort_keys=True)
[ "json.dumps" ]
[((414, 448), 'json.dumps', 'json.dumps', (['result'], {'sort_keys': '(True)'}), '(result, sort_keys=True)\n', (424, 448), False, 'import json\n')]
# Copyright 2017 AT&T Intellectual Property. All other rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """This data ingester will consume YAML site topology documents.""" import yaml import logging import jsonschema import os import pkg_resources import copy import hashlib import drydock_provisioner.objects.fields as hd_fields from beaker.cache import CacheManager from beaker.util import parse_cache_config_options from drydock_provisioner import error as errors from drydock_provisioner import objects from drydock_provisioner.ingester.plugins import IngesterPlugin cache_opts = { 'cache.type': 'memory', 'expire': 1800, } cache = CacheManager(**parse_cache_config_options(cache_opts)) class DeckhandIngester(IngesterPlugin): def __init__(self): super().__init__() self.logger = logging.getLogger('drydock.ingester.deckhand') self.load_schemas() def get_name(self): return "deckhand" def ingest_data(self, **kwargs): """Parse and save design data. :param content: String of valid Deckhand YAML :returns: a tuple of a status response and a list of parsed objects from drydock_provisioner.objects """ def local_parse(): return self.parse_docs(kwargs.get('content')) if 'content' in kwargs: try: # Hash the input to use as the cache key. This is not a security # related hash, so use cheap and fast MD5 hv = hashlib.md5(kwargs.get('content', b'')).hexdigest() local_cache = cache.get_cache('parsed_docs') results = local_cache.get(key=hv, createfunc=local_parse) parse_status, models = results except Exception as ex: self.logger.debug("Error parsing design - hash %s", hv, exc_info=ex) raise ex else: raise ValueError('Missing parameter "content"') return parse_status, models def parse_docs(self, doc_blob): """Translate a YAML string into the internal Drydock model. Returns a tuple of a objects.TaskStatus instance to summarize all document processing and a list of models yielded by successful processing :param doc_blob: bytes representing a utf-8 encoded YAML string """ models = [] yaml_string = doc_blob.decode() self.logger.debug("yamlingester:parse_docs - Parsing YAML string.") try: parsed_data = yaml.safe_load_all(yaml_string) except yaml.YAMLError as err: if hasattr(err, 'problem_mark'): mark = err.problem_mark raise errors.IngesterError( "Error parsing YAML at (l:%s, c:%s): %s" % (mark.line + 1, mark.column + 1, err)) else: raise errors.IngesterError("Error parsing YAML: %s" % (err)) # tracking processing status to provide a complete summary of issues ps = objects.Validation() ps.set_status(hd_fields.ValidationResult.Success) for d in parsed_data: try: (schema_ns, doc_kind, doc_version) = d.get('schema', '').split('/') except ValueError as ex: self.logger.error( "Error with document structure.", exc_info=ex) self.logger.debug("Error document\n%s" % yaml.dump(d)) continue if schema_ns == 'drydock': try: doc_ref = objects.DocumentReference( doc_type=hd_fields.DocumentType.Deckhand, doc_schema=d.get('schema'), doc_name=d.get('metadata', {}).get('name', 'Unknown')) doc_errors = self.validate_drydock_document(d) if len(doc_errors) > 0: for e in doc_errors: ps.add_detail_msg( objects.ValidationMessage( msg="%s:%s schema validation error: %s" % (doc_kind, doc_version, e), name="DD001", docs=[doc_ref], error=True, level=hd_fields.MessageLevels.ERROR, diagnostic= "Invalid input file - see Drydock Troubleshooting Guide for DD001" )) ps.set_status(hd_fields.ActionResult.Failure) continue model = self.process_drydock_document(d) model.doc_ref = doc_ref models.append(model) except errors.IngesterError as ie: msg = "Error processing document: %s" % str(ie) self.logger.warning(msg) ps.add_detail_msg( objects.ValidationMessage( msg=msg, name="DD000", error=True, level=hd_fields.MessageLevels.ERROR, docs=[doc_ref], diagnostic="Exception during document processing " "- see Drydock Troubleshooting Guide " "for DD000")) ps.set_status(hd_fields.ActionResult.Failure) except Exception as ex: msg = "Unexpected error processing document: %s" % str(ex) self.logger.error(msg, exc_info=True) ps.add_detail_msg( objects.ValidationMessage( msg=msg, name="DD000", error=True, level=hd_fields.MessageLevels.ERROR, docs=[doc_ref], diagnostic="Unexpected exception during document " "processing - see Drydock Troubleshooting " "Guide for DD000")) ps.set_status(hd_fields.ActionResult.Failure) return (ps, models) def process_drydock_document(self, doc): """Process a parsed YAML document. :param doc: The dictionary from parsing the YAML document """ (schema_ns, kind, version) = doc.get('schema', '').split('/') if version == 'v1': doc_processor = DeckhandIngester.v1_doc_handlers.get(kind, None) else: doc_processor = None if doc_processor is None: raise errors.IngesterError( "Invalid document - Kind %s and Version %s" % (kind, version)) metadata = doc.get('metadata', {}) doc_name = metadata.get('name') return doc_processor(self, doc_name, doc.get('data', {})) def validate_drydock_document(self, doc): """Validate a parsed document via jsonschema. If a schema for a document Kind is not available, the document is considered valid. Schema is chosen by the doc['kind'] field. Returns a empty list for valid documents, otherwise returns a list of all found errors :param doc: dictionary of the parsed document. """ schemaname = doc.get('schema', '') (schema_ns, doc_kind, doc_version) = schemaname.split('/') errors_found = [] if doc_version == 'v1': if schemaname in self.v1_doc_schemas: validator = jsonschema.Draft4Validator( self.v1_doc_schemas.get(schemaname)) for error in validator.iter_errors(doc.get('data', [])): errors_found.append(error.message) return errors_found def process_drydock_region(self, name, data): """Process the data/spec section of a Region document. :param name: the document name attribute :param data: the dictionary of the data/spec section """ model = objects.Site() # Need to add validation logic, we'll assume the input is # valid for now model.name = name model.status = hd_fields.SiteStatus.Unknown model.source = hd_fields.ModelSource.Designed model.tag_definitions = objects.NodeTagDefinitionList() tag_defs = data.get('tag_definitions', []) for t in tag_defs: tag_model = objects.NodeTagDefinition() tag_model.tag = t.get('tag', '') tag_model.type = t.get('definition_type', '') tag_model.definition = t.get('definition', '') if tag_model.type not in ['lshw_xpath']: raise errors.IngesterError( 'Unknown definition_type in ' 'tag_definition instance: %s' % (t.definition_type)) model.tag_definitions.append(tag_model) auth_keys = data.get('authorized_keys', []) model.authorized_keys = [k for k in auth_keys] repos = data.get('repositories', None) if repos: model.repositories = self.process_drydock_region_repo_list(repos) return model def process_drydock_region_repo_list(self, data): """Process a package repository list. :param data: The data from the ``repositories`` key in a Region document """ model = objects.RepositoryList() for k, v in data.items(): if k == 'remove_unlisted': model.remove_unlisted = v else: model.append(objects.Repository(name=k, **v)) return model def process_drydock_rack(self, name, data): """Process the data/spec section of a Rack document. :param name: the document name attribute :param data: the dictionary of the data/spec section """ model = objects.Rack() model.source = hd_fields.ModelSource.Designed model.name = name model.tor_switches = objects.TorSwitchList() tors = data.get('tor_switches', {}) for k, v in tors.items(): tor = objects.TorSwitch() tor.switch_name = k tor.mgmt_ip = v.get('mgmt_ip', None) tor.sdn_api_uri = v.get('sdn_api_url', None) model.tor_switches.append(tor) model.location = copy.deepcopy(data.get('location', {})) model.local_networks = [n for n in data.get('local_networks', [])] return model def process_drydock_networklink(self, name, data): """Process the data/spec section of a NetworkLink document. :param name: the document name attribute :param data: the dictionary of the data/spec section """ model = objects.NetworkLink() model.source = hd_fields.ModelSource.Designed model.name = name model.metalabels = data.get('labels', {}) bonding = data.get('bonding', {}) model.bonding_mode = bonding.get( 'mode', hd_fields.NetworkLinkBondingMode.Disabled) if model.bonding_mode in \ (hd_fields.NetworkLinkBondingMode.LACP, hd_fields.NetworkLinkBondingMode.RoundRobin, hd_fields.NetworkLinkBondingMode.Standby): model.bonding_mon_rate = bonding.get('mon_rate', '100') model.bonding_up_delay = bonding.get('up_delay', '200') model.bonding_down_delay = bonding.get('down_delay', '200') if model.bonding_mode == hd_fields.NetworkLinkBondingMode.LACP: model.bonding_xmit_hash = bonding.get('hash', 'layer3+4') model.bonding_peer_rate = bonding.get('peer_rate', 'fast') model.mtu = data.get('mtu', None) model.linkspeed = data.get('linkspeed', None) trunking = data.get('trunking', {}) model.trunk_mode = trunking.get( 'mode', hd_fields.NetworkLinkTrunkingMode.Disabled) model.native_network = trunking.get('default_network', None) model.allowed_networks = data.get('allowed_networks', None) return model def process_drydock_network(self, name, data): """Process the data/spec section of a Network document. :param name: the document name attribute :param data: the dictionary of the data/spec section """ model = objects.Network() model.source = hd_fields.ModelSource.Designed model.name = name model.metalabels = data.get('labels', {}) model.cidr = data.get('cidr', None) model.vlan_id = data.get('vlan', None) model.mtu = data.get('mtu', None) model.routedomain = data.get('routedomain', None) dns = data.get('dns', {}) model.dns_domain = dns.get('domain', 'local') model.dns_servers = dns.get('servers', None) ranges = data.get('ranges', []) model.ranges = [] for r in ranges: model.ranges.append({ 'type': r.get('type', None), 'start': r.get('start', None), 'end': r.get('end', None), }) routes = data.get('routes', []) model.routes = [] for r in routes: model.routes.append({ 'subnet': r.get('subnet', None), 'gateway': r.get('gateway', None), 'metric': r.get('metric', None), 'routedomain': r.get('routedomain', None), }) dhcp_relay = data.get('dhcp_relay', None) if dhcp_relay is not None: model.dhcp_relay_self_ip = dhcp_relay.get('self_ip', None) model.dhcp_relay_upstream_target = dhcp_relay.get( 'upstream_target', None) return model def process_drydock_hwprofile(self, name, data): """Process the data/spec section of a HardwareProfile document. :param name: the document name attribute :param data: the dictionary of the data/spec section """ model = objects.HardwareProfile() model.name = name model.source = hd_fields.ModelSource.Designed model.vendor = data.get('vendor', None) model.generation = data.get('generation', None) model.hw_version = data.get('hw_version', None) model.bios_version = data.get('bios_version', None) model.boot_mode = data.get('boot_mode', None) model.bootstrap_protocol = data.get('bootstrap_protocol', None) model.pxe_interface = data.get('pxe_interface', None) model.devices = objects.HardwareDeviceAliasList() device_aliases = data.get('device_aliases', {}) for d, v in device_aliases.items(): dev_model = objects.HardwareDeviceAlias() dev_model.source = hd_fields.ModelSource.Designed dev_model.alias = d dev_model.bus_type = v.get('bus_type', None) dev_model.dev_type = v.get('dev_type', None) dev_model.address = v.get('address', None) model.devices.append(dev_model) model.cpu_sets = data.get('cpu_sets', None) or dict() model.hugepages_confs = objects.HugepagesConfList() for c, d in data.get('hugepages', {}).items(): conf = objects.HugepagesConf( name=c, size=d.get('size'), count=d.get('count')) model.hugepages_confs.append(conf) return model def process_drydock_hostprofile(self, name, data): """Process the data/spec section of a HostProfile document. :param name: the document name attribute :param data: the dictionary of the data/spec section """ model = objects.HostProfile() model.name = name model.source = hd_fields.ModelSource.Designed self.process_host_common_fields(data, model) return model def process_drydock_bootaction(self, name, data): """Process the data/spec section of a BootAction document. :param name: the document name attribute :Param data: the dictionary of the parsed data/spec section """ model = objects.BootAction() model.name = name model.source = hd_fields.ModelSource.Designed assets = data.get('assets') model.asset_list = objects.BootActionAssetList() for a in assets: ba = self.process_bootaction_asset(a) model.asset_list.append(ba) node_filter = data.get('node_filter', None) if node_filter is not None: nfs = self.process_bootaction_nodefilter(node_filter) model.node_filter = nfs model.signaling = data.get('signaling', None) return model def process_bootaction_asset(self, asset_dict): """Process a dictionary representing a BootAction Data Asset. :param asset_dict: dictionary representing the bootaction asset """ model = objects.BootActionAsset(**asset_dict) return model def process_bootaction_nodefilter(self, nf): """Process a dictionary representing a BootAction NodeFilter Set. :param nf: dictionary representing the bootaction nodefilter set. """ model = objects.NodeFilterSet() model.filter_set_type = nf.get('filter_set_type', None) model.filter_set = [] for nf in nf.get('filter_set', []): nf_model = objects.NodeFilter(**nf) model.filter_set.append(nf_model) return model def process_drydock_node(self, name, data): """Process the data/spec section of a BaremetalNode document. :param name: the document name attribute :param data: the dictionary of the data/spec section """ model = objects.BaremetalNode() model.name = name model.source = hd_fields.ModelSource.Designed self.process_host_common_fields(data, model) node_metadata = data.get('metadata', {}) model.boot_mac = node_metadata.get('boot_mac', None) addresses = data.get('addressing', []) if len(addresses) == 0: raise errors.IngesterError('BaremetalNode needs at least' ' 1 assigned address') model.addressing = objects.IpAddressAssignmentList() for a in addresses: assignment = objects.IpAddressAssignment() address = a.get('address', '') if address == 'dhcp': assignment.type = 'dhcp' assignment.address = None assignment.network = a.get('network') model.addressing.append(assignment) elif address != '': assignment.type = 'static' assignment.address = a.get('address') assignment.network = a.get('network') model.addressing.append(assignment) else: self.log.error("Invalid address assignment %s on Node %s" % (address, self.name)) return model def process_host_common_fields(self, data, model): """Process fields common to the host-based documents. Update the provided model with the values of fields common to BaremetalNode and HostProfile documents. :param data: dictionary from YAML parsing of the document data/spec section :param model: instance of objects.HostProfile or objects.BaremetalNode to update """ model.parent_profile = data.get('host_profile', None) model.hardware_profile = data.get('hardware_profile', None) oob = data.get('oob', {}) model.oob_parameters = {} for k, v in oob.items(): if k == 'type': model.oob_type = oob.get('type', None) else: model.oob_parameters[k] = v (model.storage_devices, model.volume_groups) = self.process_node_storage( data.get('storage', {})) interfaces = data.get('interfaces', {}) model.interfaces = objects.HostInterfaceList() for k, v in interfaces.items(): int_model = objects.HostInterface() # A null value indicates this interface should be removed # from any parent profiles if v is None: int_model.device_name = '!' + k continue int_model.device_name = k int_model.network_link = v.get('device_link', None) int_model.hardware_slaves = [] slaves = v.get('slaves', []) for s in slaves: int_model.hardware_slaves.append(s) int_model.networks = [] networks = v.get('networks', []) for n in networks: int_model.networks.append(n) if 'sriov' in v: int_model.sriov = True int_model.vf_count = v.get('sriov', {}).get('vf_count', 0) int_model.trustedmode = v.get('sriov', {}).get( 'trustedmode', False) model.interfaces.append(int_model) platform = data.get('platform', {}) model.image = platform.get('image', None) model.kernel = platform.get('kernel', None) model.kernel_params = {} for k, v in platform.get('kernel_params', {}).items(): model.kernel_params[k] = v model.primary_network = data.get('primary_network', None) node_metadata = data.get('metadata', {}) metadata_tags = node_metadata.get('tags', []) model.tags = metadata_tags owner_data = node_metadata.get('owner_data', {}) model.owner_data = {} for k, v in owner_data.items(): model.owner_data[k] = v model.rack = node_metadata.get('rack', None) return model def process_node_storage(self, storage): """Process the storage data for a node-based document. Return a tuple of of two lists the first is a StorageDeviceList, the second is a VolumeGroupList. :param storage: dictionary of the storage section of a document """ phys_devs = storage.get('physical_devices', {}) storage_devices = objects.HostStorageDeviceList() for k, v in phys_devs.items(): sd = objects.HostStorageDevice(name=k) sd.source = hd_fields.ModelSource.Designed if 'labels' in v: sd.labels = v.get('labels').copy() if 'volume_group' in v: vg = v.get('volume_group') sd.volume_group = vg elif 'partitions' in v: sd.partitions = objects.HostPartitionList() for vv in v.get('partitions', []): part_model = objects.HostPartition() part_model.name = vv.get('name') part_model.source = hd_fields.ModelSource.Designed part_model.part_uuid = vv.get('part_uuid', None) part_model.size = vv.get('size', None) if 'labels' in vv: part_model.labels = vv.get('labels').copy() if 'volume_group' in vv: part_model.volume_group = vv.get('vg') elif 'filesystem' in vv: fs_info = vv.get('filesystem', {}) part_model.mountpoint = fs_info.get('mountpoint', None) part_model.fstype = fs_info.get('fstype', 'ext4') part_model.mount_options = fs_info.get( 'mount_options', 'defaults') part_model.fs_uuid = fs_info.get('fs_uuid', None) part_model.fs_label = fs_info.get('fs_label', None) sd.partitions.append(part_model) storage_devices.append(sd) volume_groups = objects.HostVolumeGroupList() vol_groups = storage.get('volume_groups', {}) for k, v in vol_groups.items(): vg = objects.HostVolumeGroup(name=k) vg.vg_uuid = v.get('vg_uuid', None) vg.logical_volumes = objects.HostVolumeList() volume_groups.append(vg) for vv in v.get('logical_volumes', []): lv = objects.HostVolume(name=vv.get('name')) lv.size = vv.get('size', None) lv.lv_uuid = vv.get('lv_uuid', None) if 'filesystem' in vv: fs_info = vv.get('filesystem', {}) lv.mountpoint = fs_info.get('mountpoint', None) lv.fstype = fs_info.get('fstype', 'ext4') lv.mount_options = fs_info.get('mount_options', 'defaults') lv.fs_uuid = fs_info.get('fs_uuid', None) lv.fs_label = fs_info.get('fs_label', None) vg.logical_volumes.append(lv) return (storage_devices, volume_groups) def load_schemas(self): self.v1_doc_schemas = dict() schema_dir = self._get_schema_dir() for schema_file in os.listdir(schema_dir): f = open(os.path.join(schema_dir, schema_file), 'r') for schema in yaml.safe_load_all(f): schema_for = schema['metadata']['name'] if schema_for in self.v1_doc_schemas: self.logger.warning( "Duplicate document schemas found for document kind %s." % schema_for) self.logger.debug( "Loaded schema for document kind %s." % schema_for) self.v1_doc_schemas[schema_for] = schema.get('data') f.close() def _get_schema_dir(self): return pkg_resources.resource_filename('drydock_provisioner', 'schemas') # Mapping of handlers for different document kinds v1_doc_handlers = { 'Region': process_drydock_region, 'Rack': process_drydock_rack, 'NetworkLink': process_drydock_networklink, 'Network': process_drydock_network, 'HardwareProfile': process_drydock_hwprofile, 'HostProfile': process_drydock_hostprofile, 'BaremetalNode': process_drydock_node, 'BootAction': process_drydock_bootaction, }
[ "logging.getLogger", "drydock_provisioner.objects.NodeTagDefinition", "drydock_provisioner.objects.HostVolumeGroupList", "drydock_provisioner.objects.HostVolumeGroup", "drydock_provisioner.objects.ValidationMessage", "drydock_provisioner.objects.IpAddressAssignmentList", "drydock_provisioner.objects.BootAction", "drydock_provisioner.objects.HardwareDeviceAlias", "drydock_provisioner.objects.HostProfile", "drydock_provisioner.objects.IpAddressAssignment", "drydock_provisioner.error.IngesterError", "os.listdir", "drydock_provisioner.objects.Validation", "drydock_provisioner.objects.BootActionAsset", "drydock_provisioner.objects.HostStorageDeviceList", "drydock_provisioner.objects.HardwareDeviceAliasList", "drydock_provisioner.objects.BaremetalNode", "drydock_provisioner.objects.HostVolumeList", "drydock_provisioner.objects.HardwareProfile", "drydock_provisioner.objects.HostStorageDevice", "drydock_provisioner.objects.Site", "drydock_provisioner.objects.TorSwitch", "drydock_provisioner.objects.BootActionAssetList", "drydock_provisioner.objects.RepositoryList", "drydock_provisioner.objects.Network", "drydock_provisioner.objects.HostInterfaceList", "drydock_provisioner.objects.HostInterface", "drydock_provisioner.objects.Repository", "yaml.dump", "drydock_provisioner.objects.Rack", "drydock_provisioner.objects.TorSwitchList", "drydock_provisioner.objects.NetworkLink", "beaker.util.parse_cache_config_options", "drydock_provisioner.objects.NodeFilterSet", "drydock_provisioner.objects.HostPartitionList", "drydock_provisioner.objects.NodeTagDefinitionList", "yaml.safe_load_all", "os.path.join", "pkg_resources.resource_filename", "drydock_provisioner.objects.NodeFilter", "drydock_provisioner.objects.HugepagesConfList", "drydock_provisioner.objects.HostPartition" ]
[((1180, 1218), 'beaker.util.parse_cache_config_options', 'parse_cache_config_options', (['cache_opts'], {}), '(cache_opts)\n', (1206, 1218), False, 'from beaker.util import parse_cache_config_options\n'), ((1334, 1380), 'logging.getLogger', 'logging.getLogger', (['"""drydock.ingester.deckhand"""'], {}), "('drydock.ingester.deckhand')\n", (1351, 1380), False, 'import logging\n'), ((3530, 3550), 'drydock_provisioner.objects.Validation', 'objects.Validation', ([], {}), '()\n', (3548, 3550), False, 'from drydock_provisioner import objects\n'), ((8787, 8801), 'drydock_provisioner.objects.Site', 'objects.Site', ([], {}), '()\n', (8799, 8801), False, 'from drydock_provisioner import objects\n'), ((9058, 9089), 'drydock_provisioner.objects.NodeTagDefinitionList', 'objects.NodeTagDefinitionList', ([], {}), '()\n', (9087, 9089), False, 'from drydock_provisioner import objects\n'), ((10144, 10168), 'drydock_provisioner.objects.RepositoryList', 'objects.RepositoryList', ([], {}), '()\n', (10166, 10168), False, 'from drydock_provisioner import objects\n'), ((10636, 10650), 'drydock_provisioner.objects.Rack', 'objects.Rack', ([], {}), '()\n', (10648, 10650), False, 'from drydock_provisioner import objects\n'), ((10762, 10785), 'drydock_provisioner.objects.TorSwitchList', 'objects.TorSwitchList', ([], {}), '()\n', (10783, 10785), False, 'from drydock_provisioner import objects\n'), ((11511, 11532), 'drydock_provisioner.objects.NetworkLink', 'objects.NetworkLink', ([], {}), '()\n', (11530, 11532), False, 'from drydock_provisioner import objects\n'), ((13100, 13117), 'drydock_provisioner.objects.Network', 'objects.Network', ([], {}), '()\n', (13115, 13117), False, 'from drydock_provisioner import objects\n'), ((14760, 14785), 'drydock_provisioner.objects.HardwareProfile', 'objects.HardwareProfile', ([], {}), '()\n', (14783, 14785), False, 'from drydock_provisioner import objects\n'), ((15301, 15334), 'drydock_provisioner.objects.HardwareDeviceAliasList', 'objects.HardwareDeviceAliasList', ([], {}), '()\n', (15332, 15334), False, 'from drydock_provisioner import objects\n'), ((15894, 15921), 'drydock_provisioner.objects.HugepagesConfList', 'objects.HugepagesConfList', ([], {}), '()\n', (15919, 15921), False, 'from drydock_provisioner import objects\n'), ((16418, 16439), 'drydock_provisioner.objects.HostProfile', 'objects.HostProfile', ([], {}), '()\n', (16437, 16439), False, 'from drydock_provisioner import objects\n'), ((16864, 16884), 'drydock_provisioner.objects.BootAction', 'objects.BootAction', ([], {}), '()\n', (16882, 16884), False, 'from drydock_provisioner import objects\n'), ((17030, 17059), 'drydock_provisioner.objects.BootActionAssetList', 'objects.BootActionAssetList', ([], {}), '()\n', (17057, 17059), False, 'from drydock_provisioner import objects\n'), ((17668, 17705), 'drydock_provisioner.objects.BootActionAsset', 'objects.BootActionAsset', ([], {}), '(**asset_dict)\n', (17691, 17705), False, 'from drydock_provisioner import objects\n'), ((17954, 17977), 'drydock_provisioner.objects.NodeFilterSet', 'objects.NodeFilterSet', ([], {}), '()\n', (17975, 17977), False, 'from drydock_provisioner import objects\n'), ((18491, 18514), 'drydock_provisioner.objects.BaremetalNode', 'objects.BaremetalNode', ([], {}), '()\n', (18512, 18514), False, 'from drydock_provisioner import objects\n'), ((19001, 19034), 'drydock_provisioner.objects.IpAddressAssignmentList', 'objects.IpAddressAssignmentList', ([], {}), '()\n', (19032, 19034), False, 'from drydock_provisioner import objects\n'), ((20800, 20827), 'drydock_provisioner.objects.HostInterfaceList', 'objects.HostInterfaceList', ([], {}), '()\n', (20825, 20827), False, 'from drydock_provisioner import objects\n'), ((22977, 23008), 'drydock_provisioner.objects.HostStorageDeviceList', 'objects.HostStorageDeviceList', ([], {}), '()\n', (23006, 23008), False, 'from drydock_provisioner import objects\n'), ((24675, 24704), 'drydock_provisioner.objects.HostVolumeGroupList', 'objects.HostVolumeGroupList', ([], {}), '()\n', (24702, 24704), False, 'from drydock_provisioner import objects\n'), ((25869, 25891), 'os.listdir', 'os.listdir', (['schema_dir'], {}), '(schema_dir)\n', (25879, 25891), False, 'import os\n'), ((26522, 26587), 'pkg_resources.resource_filename', 'pkg_resources.resource_filename', (['"""drydock_provisioner"""', '"""schemas"""'], {}), "('drydock_provisioner', 'schemas')\n", (26553, 26587), False, 'import pkg_resources\n'), ((3023, 3054), 'yaml.safe_load_all', 'yaml.safe_load_all', (['yaml_string'], {}), '(yaml_string)\n', (3041, 3054), False, 'import yaml\n'), ((7377, 7464), 'drydock_provisioner.error.IngesterError', 'errors.IngesterError', (["('Invalid document - Kind %s and Version %s' % (kind, version))"], {}), "('Invalid document - Kind %s and Version %s' % (kind,\n version))\n", (7397, 7464), True, 'from drydock_provisioner import error as errors\n'), ((9194, 9221), 'drydock_provisioner.objects.NodeTagDefinition', 'objects.NodeTagDefinition', ([], {}), '()\n', (9219, 9221), False, 'from drydock_provisioner import objects\n'), ((10883, 10902), 'drydock_provisioner.objects.TorSwitch', 'objects.TorSwitch', ([], {}), '()\n', (10900, 10902), False, 'from drydock_provisioner import objects\n'), ((15461, 15490), 'drydock_provisioner.objects.HardwareDeviceAlias', 'objects.HardwareDeviceAlias', ([], {}), '()\n', (15488, 15490), False, 'from drydock_provisioner import objects\n'), ((18140, 18164), 'drydock_provisioner.objects.NodeFilter', 'objects.NodeFilter', ([], {}), '(**nf)\n', (18158, 18164), False, 'from drydock_provisioner import objects\n'), ((18859, 18930), 'drydock_provisioner.error.IngesterError', 'errors.IngesterError', (['"""BaremetalNode needs at least 1 assigned address"""'], {}), "('BaremetalNode needs at least 1 assigned address')\n", (18879, 18930), True, 'from drydock_provisioner import error as errors\n'), ((19089, 19118), 'drydock_provisioner.objects.IpAddressAssignment', 'objects.IpAddressAssignment', ([], {}), '()\n', (19116, 19118), False, 'from drydock_provisioner import objects\n'), ((20893, 20916), 'drydock_provisioner.objects.HostInterface', 'objects.HostInterface', ([], {}), '()\n', (20914, 20916), False, 'from drydock_provisioner import objects\n'), ((23066, 23099), 'drydock_provisioner.objects.HostStorageDevice', 'objects.HostStorageDevice', ([], {'name': 'k'}), '(name=k)\n', (23091, 23099), False, 'from drydock_provisioner import objects\n'), ((24817, 24848), 'drydock_provisioner.objects.HostVolumeGroup', 'objects.HostVolumeGroup', ([], {'name': 'k'}), '(name=k)\n', (24840, 24848), False, 'from drydock_provisioner import objects\n'), ((24930, 24954), 'drydock_provisioner.objects.HostVolumeList', 'objects.HostVolumeList', ([], {}), '()\n', (24952, 24954), False, 'from drydock_provisioner import objects\n'), ((25984, 26005), 'yaml.safe_load_all', 'yaml.safe_load_all', (['f'], {}), '(f)\n', (26002, 26005), False, 'import yaml\n'), ((9460, 9568), 'drydock_provisioner.error.IngesterError', 'errors.IngesterError', (["('Unknown definition_type in tag_definition instance: %s' % t.definition_type)"], {}), "(\n 'Unknown definition_type in tag_definition instance: %s' % t.\n definition_type)\n", (9480, 9568), True, 'from drydock_provisioner import error as errors\n'), ((25914, 25951), 'os.path.join', 'os.path.join', (['schema_dir', 'schema_file'], {}), '(schema_dir, schema_file)\n', (25926, 25951), False, 'import os\n'), ((3200, 3306), 'drydock_provisioner.error.IngesterError', 'errors.IngesterError', (["('Error parsing YAML at (l:%s, c:%s): %s' % (mark.line + 1, mark.column + 1,\n err))"], {}), "('Error parsing YAML at (l:%s, c:%s): %s' % (mark.line +\n 1, mark.column + 1, err))\n", (3220, 3306), True, 'from drydock_provisioner import error as errors\n'), ((3384, 3436), 'drydock_provisioner.error.IngesterError', 'errors.IngesterError', (["('Error parsing YAML: %s' % err)"], {}), "('Error parsing YAML: %s' % err)\n", (3404, 3436), True, 'from drydock_provisioner import error as errors\n'), ((10332, 10363), 'drydock_provisioner.objects.Repository', 'objects.Repository', ([], {'name': 'k'}), '(name=k, **v)\n', (10350, 10363), False, 'from drydock_provisioner import objects\n'), ((23422, 23449), 'drydock_provisioner.objects.HostPartitionList', 'objects.HostPartitionList', ([], {}), '()\n', (23447, 23449), False, 'from drydock_provisioner import objects\n'), ((23534, 23557), 'drydock_provisioner.objects.HostPartition', 'objects.HostPartition', ([], {}), '()\n', (23555, 23557), False, 'from drydock_provisioner import objects\n'), ((3995, 4007), 'yaml.dump', 'yaml.dump', (['d'], {}), '(d)\n', (4004, 4007), False, 'import yaml\n'), ((5637, 5862), 'drydock_provisioner.objects.ValidationMessage', 'objects.ValidationMessage', ([], {'msg': 'msg', 'name': '"""DD000"""', 'error': '(True)', 'level': 'hd_fields.MessageLevels.ERROR', 'docs': '[doc_ref]', 'diagnostic': '"""Exception during document processing - see Drydock Troubleshooting Guide for DD000"""'}), "(msg=msg, name='DD000', error=True, level=\n hd_fields.MessageLevels.ERROR, docs=[doc_ref], diagnostic=\n 'Exception during document processing - see Drydock Troubleshooting Guide for DD000'\n )\n", (5662, 5862), False, 'from drydock_provisioner import objects\n'), ((6386, 6622), 'drydock_provisioner.objects.ValidationMessage', 'objects.ValidationMessage', ([], {'msg': 'msg', 'name': '"""DD000"""', 'error': '(True)', 'level': 'hd_fields.MessageLevels.ERROR', 'docs': '[doc_ref]', 'diagnostic': '"""Unexpected exception during document processing - see Drydock Troubleshooting Guide for DD000"""'}), "(msg=msg, name='DD000', error=True, level=\n hd_fields.MessageLevels.ERROR, docs=[doc_ref], diagnostic=\n 'Unexpected exception during document processing - see Drydock Troubleshooting Guide for DD000'\n )\n", (6411, 6622), False, 'from drydock_provisioner import objects\n'), ((4583, 4850), 'drydock_provisioner.objects.ValidationMessage', 'objects.ValidationMessage', ([], {'msg': "('%s:%s schema validation error: %s' % (doc_kind, doc_version, e))", 'name': '"""DD001"""', 'docs': '[doc_ref]', 'error': '(True)', 'level': 'hd_fields.MessageLevels.ERROR', 'diagnostic': '"""Invalid input file - see Drydock Troubleshooting Guide for DD001"""'}), "(msg='%s:%s schema validation error: %s' % (\n doc_kind, doc_version, e), name='DD001', docs=[doc_ref], error=True,\n level=hd_fields.MessageLevels.ERROR, diagnostic=\n 'Invalid input file - see Drydock Troubleshooting Guide for DD001')\n", (4608, 4850), False, 'from drydock_provisioner import objects\n')]
# Copyright 2019 Amazon.com, Inc. or its affiliates. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"). # You may not use this file except in compliance with the License. # A copy of the License is located at # # http://www.apache.org/licenses/LICENSE-2.0 # # or in the "license" file accompanying this file. This file is distributed # on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either # express or implied. See the License for the specific language governing # permissions and limitations under the License. """ Contains a class and method for porting a package.xml file from catkin to ament""" import xml.etree.ElementTree as etree from .constants import CatkinToAmentMigration, PACKAGE_XML_ELEMENT_ORDER from .utils import get_functions_with def new_element(tag, text="", tail="\n", attrib=None): """ Helper function to make creating an element with a text and tail easier """ if not attrib: attrib = {} element = etree.Element(tag, attrib=attrib) element.text = text element.tail = tail return element def tag_order(tag): """ Returns integer to order tags """ if tag in PACKAGE_XML_ELEMENT_ORDER: return PACKAGE_XML_ELEMENT_ORDER.index(tag) return float("inf") class PackageXMLPorter: """A class for porting a package.xml file from catkin to ament""" @staticmethod def port(tree, extra_rules=[]): """ Ports package.xml from catkin to ament Arguments: tree - the xml tree representing the package.xml file (output of etree.parse("package.xml")) extra_rules - a list of functions to apply to the xml tree Returns: The new xml tree """ # Pulls out all methods in this class with name starting with "rule" rules = get_functions_with(criteria=lambda name: name.startswith("rule"), from_class=PackageXMLPorter) package_root = tree.getroot() for rule in rules + extra_rules: rule(package_root) # Make sure there's a final newline package_root.tail = "\n" # Reorder the elements package_root[:] = sorted(list(package_root), key=lambda elem: tag_order(elem.tag)) # Correct indentation PackageXMLPorter.indent_tree(elem=package_root, level=0) ######################### # RULES # ######################### @staticmethod def rule_set_format(package_root): # ROS 2 supports formats 2,3 package_root.set("format", "3") @staticmethod def rule_set_build_tool(package_root): for elem in package_root.findall("buildtool_depend"): if elem.text and elem.text.strip() == "catkin": package_root.remove(elem) package_root.append(new_element(tag="buildtool_depend", text="ament_cmake")) @staticmethod def rule_set_client_library(package_root): for elem in list(package_root): if elem.text and elem.text.strip() in CatkinToAmentMigration.CLIENT_CONVERSION: elem.text = CatkinToAmentMigration.CLIENT_CONVERSION[elem.text.strip()] @staticmethod def rule_add_export_build_type(package_root): build_elem = new_element(tag="build_type", text="ament_cmake", tail="\n ") export_elem = new_element(tag="export", text="\n ") export_elem.append(build_elem) package_root.append(export_elem) @staticmethod def rule_set_run_to_exec_depend(package_root): for elem in package_root.findall("run_depend"): elem.tag = "exec_depend" @staticmethod def rule_set_depend_to_run_exec(package_root): for elem in package_root.findall("depend"): elem.tag = "build_depend" package_root.append(new_element(tag="exec_depend", text=elem.text, attrib=elem.attrib)) @staticmethod def rule_update_message_gen_dependency(package_root): message_generation_used = False for elem in list(package_root): if elem.text and elem.text == "message_generation" or elem.text == "message_runtime": package_root.remove(elem) message_generation_used = True if message_generation_used: package_root.append(new_element(tag="buildtool_depend", text="rosidl_default_generators")) package_root.append(new_element(tag="build_depend", text="builtin_interfaces")) package_root.append(new_element(tag="exec_depend", text="builtin_interfaces")) package_root.append(new_element(tag="exec_depend", text="rosidl_default_runtime")) package_root.append(new_element(tag="member_of_group", text="rosidl_interface_packages")) ######################### # HELPERS # ######################### @staticmethod def indent_tree(elem, level): if len(elem) > 0: # element has children if elem.text is None or len(elem.text) == 0: elem.text = "\n" + (" "*(level+1)) # sets the indent for the children list(elem)[-1].tail = "\n" + " "*level for child in list(elem)[:-1]: child.tail = "\n" + (" "*(level+1)) PackageXMLPorter.indent_tree(elem=child, level=level+1) if __name__ == '__main__': tree = etree.parse("package.xml") PackageXMLPorter.port(tree=tree) tree.write("updated_package.xml", encoding="utf-8", xml_declaration=True)
[ "xml.etree.ElementTree.Element", "xml.etree.ElementTree.parse" ]
[((1008, 1041), 'xml.etree.ElementTree.Element', 'etree.Element', (['tag'], {'attrib': 'attrib'}), '(tag, attrib=attrib)\n', (1021, 1041), True, 'import xml.etree.ElementTree as etree\n'), ((5375, 5401), 'xml.etree.ElementTree.parse', 'etree.parse', (['"""package.xml"""'], {}), "('package.xml')\n", (5386, 5401), True, 'import xml.etree.ElementTree as etree\n')]
# -*- coding: utf-8 -*- from __future__ import unicode_literals import random from random import choice from string import digits from faker import Faker fake = Faker("fi_FI") def sanitize_address(value): return fake.address() def sanitize_address_if_exist(value): if value: return sanitize_address(value) def sanitize_business_id(value): return fake.pystr_format(string_format="#######-#", letters="0123456789") def sanitize_business_id_if_exist(value): if value: return sanitize_business_id(value) def sanitize_city(value): return fake.city() def sanitize_city_if_exist(value): if value: return sanitize_city(value) def sanitize_company(value): return fake.company() def sanitize_company_if_exist(value): if value: return sanitize_company(value) def sanitize_email(value): return fake.email() def sanitize_email_if_exist(value): if value: return sanitize_email(value) def sanitize_first_name(value): return fake.first_name() def sanitize_first_name_if_exist(value): if value: return sanitize_first_name(value) def sanitize_generate_random_numbers(value): return "".join([choice(digits) for i in range(random.randint(0, 10))]) def sanitize_generate_random_numbers_if_exist(value): if value: return sanitize_generate_random_numbers(value) def sanitize_last_name(value): return fake.first_name() def sanitize_last_name_if_exist(value): if value: return sanitize_last_name(value) def sanitize_national_identification_number(value): return fake.pystr_format(string_format="######-####", letters="0123456789") def sanitize_national_identification_number_if_exist(value): if value: return sanitize_national_identification_number(value) def sanitize_name(value): return fake.name() def sanitize_paragraph(value): return fake.paragraph() def sanitize_paragraph_if_exist(value): if value: return sanitize_paragraph(value) def sanitize_phone_number(value): return fake.phone_number() def sanitize_phone_number_if_exist(value): if value: return sanitize_phone_number(value) def sanitize_postcode(value): return fake.postcode() def sanitize_postcode_if_exist(value): if value: return sanitize_postcode(value) def sanitize_url(value): return fake.url()
[ "faker.Faker", "random.choice", "random.randint" ]
[((164, 178), 'faker.Faker', 'Faker', (['"""fi_FI"""'], {}), "('fi_FI')\n", (169, 178), False, 'from faker import Faker\n'), ((1202, 1216), 'random.choice', 'choice', (['digits'], {}), '(digits)\n', (1208, 1216), False, 'from random import choice\n'), ((1232, 1253), 'random.randint', 'random.randint', (['(0)', '(10)'], {}), '(0, 10)\n', (1246, 1253), False, 'import random\n')]
# Copyright 2012 Grid Dynamics # All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); you may # not use this file except in compliance with the License. You may obtain # a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, WITHOUT # WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the # License for the specific language governing permissions and limitations # under the License. import collections import functools import os import fixtures import mock from nova.virt.libvirt import config from nova.virt.libvirt import driver from nova.virt.libvirt import imagebackend from nova.virt.libvirt import utils as libvirt_utils class ImageBackendFixture(fixtures.Fixture): def __init__(self, got_files=None, imported_files=None, exists=None): """This fixture mocks imagebackend.Backend.backend, which is the only entry point to libvirt.imagebackend from libvirt.driver. :param got_files: A list of {'filename': path, 'size': size} for every file which was created. :param imported_files: A list of (local_filename, remote_filename) for every invocation of import_file(). :param exists: An optional lambda which takes the disk name as an argument, and returns True if the disk exists, False otherwise. """ self.got_files = got_files self.imported_files = imported_files self.disks = collections.defaultdict(self._mock_disk) """A dict of name -> Mock image object. This is a defaultdict, so tests may access it directly before a disk has been created.""" self._exists = exists def setUp(self): super(ImageBackendFixture, self).setUp() # Mock template functions passed to cache self.mock_fetch_image = mock.create_autospec(libvirt_utils.fetch_image) self.useFixture(fixtures.MonkeyPatch( 'nova.virt.libvirt.utils.fetch_image', self.mock_fetch_image)) self.mock_fetch_raw_image = \ mock.create_autospec(libvirt_utils.fetch_raw_image) self.useFixture(fixtures.MonkeyPatch( 'nova.virt.libvirt.utils.fetch_raw_image', self.mock_fetch_raw_image)) self.mock_create_ephemeral = \ mock.create_autospec(driver.LibvirtDriver._create_ephemeral) self.useFixture(fixtures.MonkeyPatch( 'nova.virt.libvirt.driver.LibvirtDriver._create_ephemeral', self.mock_create_ephemeral)) self.mock_create_swap = \ mock.create_autospec(driver.LibvirtDriver._create_swap) self.useFixture(fixtures.MonkeyPatch( 'nova.virt.libvirt.driver.LibvirtDriver._create_swap', self.mock_create_swap)) # Backend.backend creates all Image objects self.useFixture(fixtures.MonkeyPatch( 'nova.virt.libvirt.imagebackend.Backend.backend', self._mock_backend)) @property def created_disks(self): """disks, filtered to contain only disks which were actually created by calling a relevant method. """ # A disk was created iff either cache() or import_file() was called. return {name: disk for name, disk in self.disks.items() if any([disk.cache.called, disk.import_file.called])} def _mock_disk(self): # This is the generator passed to the disks defaultdict. It returns # a mocked Image object, but note that the returned object has not # yet been 'constructed'. We don't know at this stage what arguments # will be passed to the constructor, so we don't know, eg, its type # or path. # # The reason for this 2 phase construction is to allow tests to # manipulate mocks for disks before they have been created. eg a # test can do the following before executing the method under test: # # disks['disk'].cache.side_effect = ImageNotFound... # # When the 'constructor' (image_init in _mock_backend) later runs, # it will return the same object we created here, and when the # caller calls cache() it will raise the requested exception. disk = mock.create_autospec(imagebackend.Image) # NOTE(mdbooth): fake_cache and fake_import_file are for compatibility # with existing tests which test got_files and imported_files. They # should be removed when they have no remaining users. disk.cache.side_effect = self._fake_cache disk.import_file.side_effect = self._fake_import_file # NOTE(mdbooth): test_virt_drivers assumes libvirt_info has functional # output disk.libvirt_info.side_effect = \ functools.partial(self._fake_libvirt_info, disk) return disk def _mock_backend(self, backend_self, image_type=None): # This method mocks Backend.backend, which returns a subclass of Image # (it returns a class, not an instance). This mocked method doesn't # return a class; it returns a function which returns a Mock. IOW, # instead of the getting a QCow2, the caller gets image_init, # so instead of: # # QCow2(instance, disk_name='disk') # # the caller effectively does: # # image_init(instance, disk_name='disk') # # Therefore image_init() must have the same signature as an Image # subclass constructor, and return a mocked Image object. # # The returned mocked Image object has the following additional # properties which are useful for testing: # # * Calls with the same disk_name return the same object from # self.disks. This means tests can assert on multiple calls for # the same disk without worrying about whether they were also on # the same object. # # * Mocked objects have an additional image_type attribute set to # the image_type originally passed to Backend.backend() during # their construction. Tests can use this to assert that disks were # created of the expected type. def image_init(instance=None, disk_name=None, path=None): # There's nothing special about this path except that it's # predictable and unique for (instance, disk). if path is None: path = os.path.join( libvirt_utils.get_instance_path(instance), disk_name) else: disk_name = os.path.basename(path) disk = self.disks[disk_name] # Used directly by callers. These would have been set if called # the real constructor. setattr(disk, 'path', path) setattr(disk, 'is_block_dev', mock.sentinel.is_block_dev) # Used by tests. Note that image_init is a closure over image_type. setattr(disk, 'image_type', image_type) # Used by tests to manipulate which disks exist. if self._exists is not None: # We don't just cache the return value here because the # caller may want, eg, a test where the disk initially does not # exist and later exists. disk.exists.side_effect = lambda: self._exists(disk_name) else: disk.exists.return_value = True return disk # Set the SUPPORTS_CLONE member variable to mimic the Image base # class. image_init.SUPPORTS_CLONE = False # Ditto for the 'is_shared_block_storage' function and # 'is_file_in_instance_path' def is_shared_block_storage(): return False def is_file_in_instance_path(): return False setattr(image_init, 'is_shared_block_storage', is_shared_block_storage) setattr(image_init, 'is_file_in_instance_path', is_file_in_instance_path) return image_init def _fake_cache(self, fetch_func, filename, size=None, *args, **kwargs): # Execute the template function so we can test the arguments it was # called with. fetch_func(target=filename, *args, **kwargs) # For legacy tests which use got_files if self.got_files is not None: self.got_files.append({'filename': filename, 'size': size}) def _fake_import_file(self, instance, local_filename, remote_filename): # For legacy tests which use imported_files if self.imported_files is not None: self.imported_files.append((local_filename, remote_filename)) def _fake_libvirt_info(self, mock_disk, disk_info, cache_mode, extra_specs, hypervisor_version, disk_unit=None): # For tests in test_virt_drivers which expect libvirt_info to be # functional info = config.LibvirtConfigGuestDisk() info.source_type = 'file' info.source_device = disk_info['type'] info.target_bus = disk_info['bus'] info.target_dev = disk_info['dev'] info.driver_cache = cache_mode info.driver_format = 'raw' info.source_path = mock_disk.path return info
[ "fixtures.MonkeyPatch", "nova.virt.libvirt.config.LibvirtConfigGuestDisk", "mock.create_autospec", "functools.partial", "collections.defaultdict", "os.path.basename", "nova.virt.libvirt.utils.get_instance_path" ]
[((1711, 1751), 'collections.defaultdict', 'collections.defaultdict', (['self._mock_disk'], {}), '(self._mock_disk)\n', (1734, 1751), False, 'import collections\n'), ((2083, 2130), 'mock.create_autospec', 'mock.create_autospec', (['libvirt_utils.fetch_image'], {}), '(libvirt_utils.fetch_image)\n', (2103, 2130), False, 'import mock\n'), ((2303, 2354), 'mock.create_autospec', 'mock.create_autospec', (['libvirt_utils.fetch_raw_image'], {}), '(libvirt_utils.fetch_raw_image)\n', (2323, 2354), False, 'import mock\n'), ((2548, 2608), 'mock.create_autospec', 'mock.create_autospec', (['driver.LibvirtDriver._create_ephemeral'], {}), '(driver.LibvirtDriver._create_ephemeral)\n', (2568, 2608), False, 'import mock\n'), ((2815, 2870), 'mock.create_autospec', 'mock.create_autospec', (['driver.LibvirtDriver._create_swap'], {}), '(driver.LibvirtDriver._create_swap)\n', (2835, 2870), False, 'import mock\n'), ((4492, 4532), 'mock.create_autospec', 'mock.create_autospec', (['imagebackend.Image'], {}), '(imagebackend.Image)\n', (4512, 4532), False, 'import mock\n'), ((5015, 5063), 'functools.partial', 'functools.partial', (['self._fake_libvirt_info', 'disk'], {}), '(self._fake_libvirt_info, disk)\n', (5032, 5063), False, 'import functools\n'), ((9178, 9209), 'nova.virt.libvirt.config.LibvirtConfigGuestDisk', 'config.LibvirtConfigGuestDisk', ([], {}), '()\n', (9207, 9209), False, 'from nova.virt.libvirt import config\n'), ((2155, 2242), 'fixtures.MonkeyPatch', 'fixtures.MonkeyPatch', (['"""nova.virt.libvirt.utils.fetch_image"""', 'self.mock_fetch_image'], {}), "('nova.virt.libvirt.utils.fetch_image', self.\n mock_fetch_image)\n", (2175, 2242), False, 'import fixtures\n'), ((2379, 2474), 'fixtures.MonkeyPatch', 'fixtures.MonkeyPatch', (['"""nova.virt.libvirt.utils.fetch_raw_image"""', 'self.mock_fetch_raw_image'], {}), "('nova.virt.libvirt.utils.fetch_raw_image', self.\n mock_fetch_raw_image)\n", (2399, 2474), False, 'import fixtures\n'), ((2633, 2746), 'fixtures.MonkeyPatch', 'fixtures.MonkeyPatch', (['"""nova.virt.libvirt.driver.LibvirtDriver._create_ephemeral"""', 'self.mock_create_ephemeral'], {}), "('nova.virt.libvirt.driver.LibvirtDriver._create_ephemeral'\n , self.mock_create_ephemeral)\n", (2653, 2746), False, 'import fixtures\n'), ((2895, 2997), 'fixtures.MonkeyPatch', 'fixtures.MonkeyPatch', (['"""nova.virt.libvirt.driver.LibvirtDriver._create_swap"""', 'self.mock_create_swap'], {}), "('nova.virt.libvirt.driver.LibvirtDriver._create_swap',\n self.mock_create_swap)\n", (2915, 2997), False, 'import fixtures\n'), ((3097, 3192), 'fixtures.MonkeyPatch', 'fixtures.MonkeyPatch', (['"""nova.virt.libvirt.imagebackend.Backend.backend"""', 'self._mock_backend'], {}), "('nova.virt.libvirt.imagebackend.Backend.backend', self\n ._mock_backend)\n", (3117, 3192), False, 'import fixtures\n'), ((6835, 6857), 'os.path.basename', 'os.path.basename', (['path'], {}), '(path)\n', (6851, 6857), False, 'import os\n'), ((6735, 6776), 'nova.virt.libvirt.utils.get_instance_path', 'libvirt_utils.get_instance_path', (['instance'], {}), '(instance)\n', (6766, 6776), True, 'from nova.virt.libvirt import utils as libvirt_utils\n')]
""" 第二版:多进程二手房信息爬虫 1. 将爬虫分解为下载任务和解析任务(可以继续分解,但在本案中意义不大)两部分,两部分各使用一个子进程,相互通过数据管道通信 2. 下载任务内部不使用队列,使用任务管道实现(在多进程:主进程、子进程、子进程内部进程池等场景下,队列并不好用)任务管理和通信 3. 解析任务从与下载任务间的管道中获取数据,解析并保存 问题:当目标被爬完后,怎样让爬虫停止? """ import csv import datetime import logging import multiprocessing as mp import re import time from collections import OrderedDict import requests from pyquery import PyQuery from requests import RequestException base_url = r'https://sh.lianjia.com/ershoufang' # 已处理URL集合没有很好的表示方法,这里使用普通集合+锁来实现多进程场景下应用 seen_urls = set() lock = mp.Lock() # 下载失败重试次数 retries = 3 # 当前日期 today = datetime.date.today() # 列表页、明细页URL正则表达式 list_page_pattern = '^{}/(pg\d+/)?$'.format(base_url) item_page_pattern = '^{}/\d+.html$'.format(base_url) # 数据存储路径 csv_file_path = r'../.data/ershoufang-{}.csv'.format(today) # 日志配置 logging.basicConfig(level=logging.INFO, format='%(asctime)s - %(process)05d - %(levelname)s - %(message)s') def start_download_job(data_writer, init_tasks): """ 下载任务(作业) :param data_writer: 数据管道(写) :param init_tasks: 初始任务集合 :return: """ # 构造进程池,按CPU核数初始化进程池大小,小于4核以4为准,否则以CPU核数为准 pool_size = mp.cpu_count() > 4 and mp.cpu_count() or 4 pool = mp.Pool(pool_size) # 任务不使用队列(在这种进程中使用子进程和进程池的应用中,队列会遇到各种问题),使用管道实现 (task_reader, task_writer) = mp.Pipe(duplex=False) # 为了简化代码,初始任务直接通过任务管道发送出去,再接收 # 也可以直接在循环代码中实现,当初始任务集合为空时,再使用任务管道接收任务 task_writer.send(init_tasks) # 循环从任务管道中读取任务数据,并进行处理 while True: # 任务是一组URL urls = task_reader.recv() # 使用进程池,分别下载这些URL,将下载后的文档内容和url构成的元组通过管道发出 for url in urls: # 判断任务是否重复 with lock: if url in seen_urls: continue else: seen_urls.add(url) # 执行下载任务 pool.apply_async(download, (url, task_writer, data_writer)) pool.close() pool.join() def download(url, task_writer, data_writer): """ 下载网页,最多重试3次 :param url: 下载url地址 :param task_writer: 任务管道(写) :param data_writer: 数据管道(写) :return: """ for _ in range(retries + 1): try: logging.info('download page {}'.format(url)) content = requests.get(url).text if content is None: continue # 抽取列表页的中链接列表 if is_list_page(url): links = parse_list_page(content, url) # 将详情页链接列表通过管道发出去 if links and len(links) > 0: task_writer.send(links) else: data_writer.send((content, url)) return except RequestException: # 异常时休眠2秒 time.sleep(2) # 超过重试次数则打印错误消息 logging.error('重试{}次下载仍失败:{}'.format(retries, url)) # 将失败url重新加入任务队列 task_writer.send(set([url])) def is_list_page(url): """ 判断是否列表页 :param url: :return: """ return re.match(list_page_pattern, url) def parse_list_page(content, url): """ 列表网页解析器 :param content: :param url: :return: 详情页链接集合 """ pq = PyQuery(content, url=url) return set([li.attr('href') for li in pq('ul.sellListContent div.title > a').items()]) def parse_item_page(content, url): """ 详情页解析器 :param content: :param url: :return: 返回详情数据 """ pq = PyQuery(content, url=url) return OrderedDict({'title': pq('div.content > div.title > h1').text().strip(), 'sub_title': pq('div.content > div.title > div.sub').text().strip(), 'price': pq('div.price > span.total').text().strip(), 'unit_price': pq('div.unitPrice > span.unitPriceValue').text().replace('元/平米', '').strip(), 'down_payment_info': pq('div.tax > span.taxtext').text().strip(), 'area': re.search('(\d+\.?\d*)', pq('div.area > div.mainInfo').text()).group(1), 'year_info': pq('div.area > div.subInfo').text().strip(), 'house_type': pq('div.room > div.mainInfo').text().strip(), 'floor': pq('div.room > div.subInfo').text().strip(), 'towards': pq('div.type > div.mainInfo').text().strip(), 'housing_estate': pq('div.communityName > a:first').text().strip(), 'housing_estate_link': pq('div.communityName > a:first').attr('href'), 'location': tuple([i.text().strip() for i in pq('div.areaName > span > a').items()]), 'broker': pq('div.brokerName > a').text().strip(), 'broker_homepage': pq('div.brokerName > a').attr('href'), 'number': pq('div.houseRecord > span.info').text().replace('举报', '').strip()}) def start_parse_job(data_reader): """ 解析任务(作业) :param data_reader: 数据管道(读) :return: """ # 构造进程池,按CPU核数初始化进程池大小,小于4核以4为准,否则以CPU核数为准 pool_size = mp.cpu_count() > 4 and mp.cpu_count() or 4 # 解析任务只使用下载任务进程池规模的一半(视情况而定,目前其处理速度要远大于下载任务,也避免进程过多) pool = mp.Pool(pool_size // 2) while True: args = data_reader.recv() if args is not None: pool.apply_async(parse, args, callback=process) pool.close() pool.join() def parse(content, url): """ 解析网页 :param content: :param url: :return: """ if content is None or url is None: return try: # 解析详情页,返回数据 return parse_item_page(content, url) except Exception as e: logging.error(e) def process(data): """ 处理数据 :param data: :return: """ if data is None: return # 数据基本处理 # 处理小区链接不完整问题 if 'housing_estate_link' in data and not data['housing_estate_link'].startswith('https://'): data['housing_estate_link'] = 'https://sh.lianjia.com' + data['housing_estate_link'] # 数据转换 # 提取户型中的室数 if 'house_type' in data: data['house_type'] = (data['house_type'].split('室')[0], data['house_type']) # 数据存储(写入CSV文件,文件按日期生成) with open(csv_file_path, 'a', encoding='utf-8', newline='') as f: writer = csv.writer(f) writer.writerow(data.values()) if __name__ == '__main__': # 初始任务集合 init_tasks = set([base_url + '/'] + ['{}/pg{}/'.format(base_url, i) for i in range(2, 101)]) # 创建管道,用于任务(进程)间通信 (data_reader, data_writer) = mp.Pipe(duplex=False) # 启动下载任务(写端) mp.Process(target=start_download_job, args=(data_writer, init_tasks)).start() # 启动解析任务(读端) mp.Process(target=start_parse_job, args=(data_reader,)).start() logging.info('--running--')
[ "logging.basicConfig", "multiprocessing.Process", "pyquery.PyQuery", "re.match", "csv.writer", "multiprocessing.cpu_count", "requests.get", "time.sleep", "multiprocessing.Pool", "multiprocessing.Lock", "datetime.date.today", "multiprocessing.Pipe", "logging.info", "logging.error" ]
[((530, 539), 'multiprocessing.Lock', 'mp.Lock', ([], {}), '()\n', (537, 539), True, 'import multiprocessing as mp\n'), ((578, 599), 'datetime.date.today', 'datetime.date.today', ([], {}), '()\n', (597, 599), False, 'import datetime\n'), ((804, 916), 'logging.basicConfig', 'logging.basicConfig', ([], {'level': 'logging.INFO', 'format': '"""%(asctime)s - %(process)05d - %(levelname)s - %(message)s"""'}), "(level=logging.INFO, format=\n '%(asctime)s - %(process)05d - %(levelname)s - %(message)s')\n", (823, 916), False, 'import logging\n'), ((1204, 1222), 'multiprocessing.Pool', 'mp.Pool', (['pool_size'], {}), '(pool_size)\n', (1211, 1222), True, 'import multiprocessing as mp\n'), ((1309, 1330), 'multiprocessing.Pipe', 'mp.Pipe', ([], {'duplex': '(False)'}), '(duplex=False)\n', (1316, 1330), True, 'import multiprocessing as mp\n'), ((2927, 2959), 're.match', 're.match', (['list_page_pattern', 'url'], {}), '(list_page_pattern, url)\n', (2935, 2959), False, 'import re\n'), ((3091, 3116), 'pyquery.PyQuery', 'PyQuery', (['content'], {'url': 'url'}), '(content, url=url)\n', (3098, 3116), False, 'from pyquery import PyQuery\n'), ((3337, 3362), 'pyquery.PyQuery', 'PyQuery', (['content'], {'url': 'url'}), '(content, url=url)\n', (3344, 3362), False, 'from pyquery import PyQuery\n'), ((5095, 5118), 'multiprocessing.Pool', 'mp.Pool', (['(pool_size // 2)'], {}), '(pool_size // 2)\n', (5102, 5118), True, 'import multiprocessing as mp\n'), ((6430, 6451), 'multiprocessing.Pipe', 'mp.Pipe', ([], {'duplex': '(False)'}), '(duplex=False)\n', (6437, 6451), True, 'import multiprocessing as mp\n'), ((6643, 6670), 'logging.info', 'logging.info', (['"""--running--"""'], {}), "('--running--')\n", (6655, 6670), False, 'import logging\n'), ((6181, 6194), 'csv.writer', 'csv.writer', (['f'], {}), '(f)\n', (6191, 6194), False, 'import csv\n'), ((1173, 1187), 'multiprocessing.cpu_count', 'mp.cpu_count', ([], {}), '()\n', (1185, 1187), True, 'import multiprocessing as mp\n'), ((5007, 5021), 'multiprocessing.cpu_count', 'mp.cpu_count', ([], {}), '()\n', (5019, 5021), True, 'import multiprocessing as mp\n'), ((5557, 5573), 'logging.error', 'logging.error', (['e'], {}), '(e)\n', (5570, 5573), False, 'import logging\n'), ((6474, 6543), 'multiprocessing.Process', 'mp.Process', ([], {'target': 'start_download_job', 'args': '(data_writer, init_tasks)'}), '(target=start_download_job, args=(data_writer, init_tasks))\n', (6484, 6543), True, 'import multiprocessing as mp\n'), ((6574, 6629), 'multiprocessing.Process', 'mp.Process', ([], {'target': 'start_parse_job', 'args': '(data_reader,)'}), '(target=start_parse_job, args=(data_reader,))\n', (6584, 6629), True, 'import multiprocessing as mp\n'), ((1150, 1164), 'multiprocessing.cpu_count', 'mp.cpu_count', ([], {}), '()\n', (1162, 1164), True, 'import multiprocessing as mp\n'), ((2220, 2237), 'requests.get', 'requests.get', (['url'], {}), '(url)\n', (2232, 2237), False, 'import requests\n'), ((2690, 2703), 'time.sleep', 'time.sleep', (['(2)'], {}), '(2)\n', (2700, 2703), False, 'import time\n'), ((4984, 4998), 'multiprocessing.cpu_count', 'mp.cpu_count', ([], {}), '()\n', (4996, 4998), True, 'import multiprocessing as mp\n')]
# Copyright 2016 Google Inc. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Class to offload the end to end flow of U2F signing.""" import base64 import hashlib import json import os import struct import subprocess import sys from pyu2f import errors from pyu2f import model from pyu2f.convenience import baseauthenticator SK_SIGNING_PLUGIN_ENV_VAR = 'SK_SIGNING_PLUGIN' U2F_SIGNATURE_TIMEOUT_SECONDS = 5 SK_SIGNING_PLUGIN_NO_ERROR = 0 SK_SIGNING_PLUGIN_TOUCH_REQUIRED = 0x6985 SK_SIGNING_PLUGIN_WRONG_DATA = 0x6A80 class CustomAuthenticator(baseauthenticator.BaseAuthenticator): """Offloads U2F signing to a pluggable command-line tool. Offloads U2F signing to a signing plugin which takes the form of a command-line tool. The command-line tool is configurable via the SK_SIGNING_PLUGIN environment variable. The signing plugin should implement the following interface: Communication occurs over stdin/stdout, and messages are both sent and received in the form: [4 bytes - payload size (little-endian)][variable bytes - json payload] Signing Request JSON { "type": "sign_helper_request", "signData": [{ "keyHandle": <url-safe base64-encoded key handle>, "appIdHash": <url-safe base64-encoded SHA-256 hash of application ID>, "challengeHash": <url-safe base64-encoded SHA-256 hash of ClientData>, "version": U2F protocol version (usually "U2F_V2") },...], "timeoutSeconds": <security key touch timeout> } Signing Response JSON { "type": "sign_helper_reply", "code": <result code>. "errorDetail": <text description of error>, "responseData": { "appIdHash": <url-safe base64-encoded SHA-256 hash of application ID>, "challengeHash": <url-safe base64-encoded SHA-256 hash of ClientData>, "keyHandle": <url-safe base64-encoded key handle>, "version": <U2F protocol version>, "signatureData": <url-safe base64-encoded signature> } } Possible response error codes are: NoError = 0 UnknownError = -127 TouchRequired = 0x6985 WrongData = 0x6a80 """ def __init__(self, origin): self.origin = origin def Authenticate(self, app_id, challenge_data, print_callback=sys.stderr.write): """See base class.""" # Ensure environment variable is present plugin_cmd = os.environ.get(SK_SIGNING_PLUGIN_ENV_VAR) if plugin_cmd is None: raise errors.PluginError('{} env var is not set' .format(SK_SIGNING_PLUGIN_ENV_VAR)) # Prepare input to signer client_data_map, signing_input = self._BuildPluginRequest( app_id, challenge_data, self.origin) # Call plugin print_callback('Please insert and touch your security key\n') response = self._CallPlugin([plugin_cmd], signing_input) # Handle response key_challenge_pair = (response['keyHandle'], response['challengeHash']) client_data_json = client_data_map[key_challenge_pair] client_data = client_data_json.encode() return self._BuildAuthenticatorResponse(app_id, client_data, response) def IsAvailable(self): """See base class.""" return os.environ.get(SK_SIGNING_PLUGIN_ENV_VAR) is not None def _BuildPluginRequest(self, app_id, challenge_data, origin): """Builds a JSON request in the form that the plugin expects.""" client_data_map = {} encoded_challenges = [] app_id_hash_encoded = self._Base64Encode(self._SHA256(app_id)) for challenge_item in challenge_data: key = challenge_item['key'] key_handle_encoded = self._Base64Encode(key.key_handle) raw_challenge = challenge_item['challenge'] client_data_json = model.ClientData( model.ClientData.TYP_AUTHENTICATION, raw_challenge, origin).GetJson() challenge_hash_encoded = self._Base64Encode( self._SHA256(client_data_json)) # Populate challenges list encoded_challenges.append({ 'appIdHash': app_id_hash_encoded, 'challengeHash': challenge_hash_encoded, 'keyHandle': key_handle_encoded, 'version': key.version, }) # Populate ClientData map key_challenge_pair = (key_handle_encoded, challenge_hash_encoded) client_data_map[key_challenge_pair] = client_data_json signing_request = { 'type': 'sign_helper_request', 'signData': encoded_challenges, 'timeoutSeconds': U2F_SIGNATURE_TIMEOUT_SECONDS, 'localAlways': True } return client_data_map, json.dumps(signing_request) def _BuildAuthenticatorResponse(self, app_id, client_data, plugin_response): """Builds the response to return to the caller.""" encoded_client_data = self._Base64Encode(client_data) signature_data = str(plugin_response['signatureData']) key_handle = str(plugin_response['keyHandle']) response = { 'clientData': encoded_client_data, 'signatureData': signature_data, 'applicationId': app_id, 'keyHandle': key_handle, } return response def _CallPlugin(self, cmd, input_json): """Calls the plugin and validates the response.""" # Calculate length of input input_length = len(input_json) length_bytes_le = struct.pack('<I', input_length) request = length_bytes_le + input_json.encode() # Call plugin sign_process = subprocess.Popen(cmd, stdin=subprocess.PIPE, stdout=subprocess.PIPE) stdout = sign_process.communicate(request)[0] exit_status = sign_process.wait() # Parse and validate response size response_len_le = stdout[:4] response_len = struct.unpack('<I', response_len_le)[0] response = stdout[4:] if response_len != len(response): raise errors.PluginError( 'Plugin response length {} does not match data {} (exit_status={})' .format(response_len, len(response), exit_status)) # Ensure valid json try: json_response = json.loads(response.decode()) except ValueError: raise errors.PluginError('Plugin returned invalid output (exit_status={})' .format(exit_status)) # Ensure response type if json_response.get('type') != 'sign_helper_reply': raise errors.PluginError('Plugin returned invalid response type ' '(exit_status={})' .format(exit_status)) # Parse response codes result_code = json_response.get('code') if result_code is None: raise errors.PluginError('Plugin missing result code (exit_status={})' .format(exit_status)) # Handle errors if result_code == SK_SIGNING_PLUGIN_TOUCH_REQUIRED: raise errors.U2FError(errors.U2FError.TIMEOUT) elif result_code == SK_SIGNING_PLUGIN_WRONG_DATA: raise errors.U2FError(errors.U2FError.DEVICE_INELIGIBLE) elif result_code != SK_SIGNING_PLUGIN_NO_ERROR: raise errors.PluginError( 'Plugin failed with error {} - {} (exit_status={})' .format(result_code, json_response.get('errorDetail'), exit_status)) # Ensure response data is present response_data = json_response.get('responseData') if response_data is None: raise errors.PluginErrors( 'Plugin returned output with missing responseData (exit_status={})' .format(exit_status)) return response_data def _SHA256(self, string): """Helper method to perform SHA256.""" md = hashlib.sha256() md.update(string.encode()) return md.digest() def _Base64Encode(self, bytes_data): """Helper method to base64 encode, strip padding, and return str result.""" return base64.urlsafe_b64encode(bytes_data).decode().rstrip('=')
[ "hashlib.sha256", "base64.urlsafe_b64encode", "subprocess.Popen", "json.dumps", "os.environ.get", "struct.pack", "pyu2f.model.ClientData", "struct.unpack", "pyu2f.errors.U2FError" ]
[((2908, 2949), 'os.environ.get', 'os.environ.get', (['SK_SIGNING_PLUGIN_ENV_VAR'], {}), '(SK_SIGNING_PLUGIN_ENV_VAR)\n', (2922, 2949), False, 'import os\n'), ((5811, 5842), 'struct.pack', 'struct.pack', (['"""<I"""', 'input_length'], {}), "('<I', input_length)\n", (5822, 5842), False, 'import struct\n'), ((5933, 6001), 'subprocess.Popen', 'subprocess.Popen', (['cmd'], {'stdin': 'subprocess.PIPE', 'stdout': 'subprocess.PIPE'}), '(cmd, stdin=subprocess.PIPE, stdout=subprocess.PIPE)\n', (5949, 6001), False, 'import subprocess\n'), ((8145, 8161), 'hashlib.sha256', 'hashlib.sha256', ([], {}), '()\n', (8159, 8161), False, 'import hashlib\n'), ((3724, 3765), 'os.environ.get', 'os.environ.get', (['SK_SIGNING_PLUGIN_ENV_VAR'], {}), '(SK_SIGNING_PLUGIN_ENV_VAR)\n', (3738, 3765), False, 'import os\n'), ((5099, 5126), 'json.dumps', 'json.dumps', (['signing_request'], {}), '(signing_request)\n', (5109, 5126), False, 'import json\n'), ((6255, 6291), 'struct.unpack', 'struct.unpack', (['"""<I"""', 'response_len_le'], {}), "('<I', response_len_le)\n", (6268, 6291), False, 'import struct\n'), ((7352, 7392), 'pyu2f.errors.U2FError', 'errors.U2FError', (['errors.U2FError.TIMEOUT'], {}), '(errors.U2FError.TIMEOUT)\n', (7367, 7392), False, 'from pyu2f import errors\n'), ((7459, 7509), 'pyu2f.errors.U2FError', 'errors.U2FError', (['errors.U2FError.DEVICE_INELIGIBLE'], {}), '(errors.U2FError.DEVICE_INELIGIBLE)\n', (7474, 7509), False, 'from pyu2f import errors\n'), ((4248, 4324), 'pyu2f.model.ClientData', 'model.ClientData', (['model.ClientData.TYP_AUTHENTICATION', 'raw_challenge', 'origin'], {}), '(model.ClientData.TYP_AUTHENTICATION, raw_challenge, origin)\n', (4264, 4324), False, 'from pyu2f import model\n'), ((8357, 8393), 'base64.urlsafe_b64encode', 'base64.urlsafe_b64encode', (['bytes_data'], {}), '(bytes_data)\n', (8381, 8393), False, 'import base64\n')]
import itertools import os from django.conf import settings from django.core.management import call_command from django.core.management.base import BaseCommand class Command(BaseCommand): help = 'Generates class diagrams.' def handle(self, *args, **options): if 'django_extensions' not in settings.INSTALLED_APPS: exit('django_extensions not found, try using --setting kive.UML_settings') docs_path = os.path.join(os.path.pardir, 'docs', 'models') apps = [app for app in settings.INSTALLED_APPS if not (app.startswith('django') or app == 'rest_framework')] apps.sort() for app in apps: print(app) exclude_models = ['User', 'Group'] if app != 'metadata': exclude_models.append('AccessControl') call_command("graph_models", app, pygraphviz=True, group_models=True, outputfile=os.path.join(docs_path, app+'.png'), exclude_models=','.join(exclude_models)) readme_path = os.path.join(docs_path, 'README.md') with open(readme_path, 'rU+') as f: models_section = '### Models ###\n' header = itertools.takewhile(lambda line: line != models_section, f.readlines()) f.seek(0) for line in header: f.write(line) f.write(models_section) for app in apps: f.write('#### {} ####\n'.format(app)) f.write('![{} classes]({}.png)\n\n'.format(app, app))
[ "os.path.join" ]
[((442, 488), 'os.path.join', 'os.path.join', (['os.path.pardir', '"""docs"""', '"""models"""'], {}), "(os.path.pardir, 'docs', 'models')\n", (454, 488), False, 'import os\n'), ((1145, 1181), 'os.path.join', 'os.path.join', (['docs_path', '"""README.md"""'], {}), "(docs_path, 'README.md')\n", (1157, 1181), False, 'import os\n'), ((1019, 1056), 'os.path.join', 'os.path.join', (['docs_path', "(app + '.png')"], {}), "(docs_path, app + '.png')\n", (1031, 1056), False, 'import os\n')]
#!/usr/bin/python3 # -*- coding: utf-8 -*- import time import json import os import sys import time import urllib import socket import argparse import requests import lib.common as common base_url = 'http://localhost:24879/player/' #------------------------------------------------------------------------------# # do something on startup # #------------------------------------------------------------------------------# def init(): global port check_port() script_path = os.path.dirname(os.path.abspath(__file__)) os.chdir(script_path) parser = argparse.ArgumentParser(description='media manager spotify connect service') parser.add_argument('-p', '--port', type=int, help='WEB server port', required=True) args = parser.parse_args() port = args.port #------------------------------------------------------------------------------# # check if librespot-java is running # #------------------------------------------------------------------------------# def check_port(): sock = socket.socket(socket.AF_INET, socket.SOCK_STREAM) result = sock.connect_ex(('localhost', 24879)) if result == 0: sock.close() return print("Please check if SpoCon is configured correctly and running", file = sys.stderr ) sock.close() exit(1) #------------------------------------------------------------------------------# # get metadata from spotify # #------------------------------------------------------------------------------# def get_metadata(): meta_data = {} global current_cover try: current_track = get_player() album = current_track['item']['album'] current_cover = album['images'][0]['url'] tmp_cover = current_cover tmp_cover=tmp_cover.replace('https://i.scdn.co/image/','') meta_data['track'] = current_track['item']['name'] meta_data['album'] = album['name'] meta_data['artist'] = album['artists'][0]['name'] meta_data['cover'] = 'external_' + tmp_cover meta_data['playstatus'] = get_play_status() if meta_data['playstatus'] == False: meta_data['track'] = '' meta_data['album'] = '' meta_data['artist'] = '' meta_data['cover'] = 'images/pause.png' return(bytes(json.dumps(meta_data), 'utf-8')) except: meta_data['track'] = '' meta_data['album'] = '' meta_data['artist'] = '' meta_data['cover'] = 'images/pause.png' meta_data['playstatus'] = False return(bytes(json.dumps(meta_data), 'utf-8')) #------------------------------------------------------------------------------# # get play status # #------------------------------------------------------------------------------# def get_play_status(mode=False): playing = False ret_val = False ret_str = 'NO' try: current_track = get_player() playing = current_track['is_playing'] except: pass if playing == True: try: path = 'http://localhost:24879/player/current/' ret = requests.post(url = path) data = ret.json() if 'current' in data: ret_str = 'YES' ret_val = True get_player() except: pass if mode: return(bytes(ret_str, 'utf-8')) return(ret_val) #------------------------------------------------------------------------------# # get whats currently playing # #------------------------------------------------------------------------------# def get_current(): path = 'http://localhost:24879/player/current/' ret = requests.post(url = path) return ret.json() #------------------------------------------------------------------------------# # get player data from API # #------------------------------------------------------------------------------# def get_player(): path = 'http://localhost:24879/web-api/v1/me/player' ret = requests.get(url = path) return ret.json() #------------------------------------------------------------------------------# # read cover image fom spotify connect web # #------------------------------------------------------------------------------# def read_cover_image(): webURL = urllib.request.urlopen(current_cover) data = webURL.read() return(data) #------------------------------------------------------------------------------# # play next song # #------------------------------------------------------------------------------# def next(): requests.post(url = base_url + 'next') #------------------------------------------------------------------------------# # play previuous song # #------------------------------------------------------------------------------# def prev(): requests.post(url = base_url + 'prev') #------------------------------------------------------------------------------# # start playing # #------------------------------------------------------------------------------# def play(): requests.post(url = base_url + 'resume') #------------------------------------------------------------------------------# # stop playing # #------------------------------------------------------------------------------# def pause(): requests.post(url = base_url + 'pause') #------------------------------------------------------------------------------# # handle http get request # #------------------------------------------------------------------------------# def respond_to_get_request(data): if 'action' not in data: return(bytes('failed', 'utf-8')) if data['action'] == 'play': play() elif data['action'] == 'pause': pause() elif data['action'] == 'prev': get_metadata() prev() elif data['action'] == 'next': get_metadata() next() elif data['action'] == 'metadata': return(get_metadata()) elif data['action'] == 'coverimage': return(read_cover_image()) elif data['action'] == 'getplaystatus': return(get_play_status(True)) return(bytes('OK', 'utf-8')) #------------------------------------------------------------------------------# # main program # #------------------------------------------------------------------------------# init() common.http_get_handler = respond_to_get_request common.run_http(port) while True: time.sleep(2000)
[ "requests.post", "socket.socket", "argparse.ArgumentParser", "json.dumps", "requests.get", "time.sleep", "os.chdir", "lib.common.run_http", "os.path.abspath", "urllib.request.urlopen" ]
[((7049, 7070), 'lib.common.run_http', 'common.run_http', (['port'], {}), '(port)\n', (7064, 7070), True, 'import lib.common as common\n'), ((587, 608), 'os.chdir', 'os.chdir', (['script_path'], {}), '(script_path)\n', (595, 608), False, 'import os\n'), ((622, 698), 'argparse.ArgumentParser', 'argparse.ArgumentParser', ([], {'description': '"""media manager spotify connect service"""'}), "(description='media manager spotify connect service')\n", (645, 698), False, 'import argparse\n'), ((1113, 1162), 'socket.socket', 'socket.socket', (['socket.AF_INET', 'socket.SOCK_STREAM'], {}), '(socket.AF_INET, socket.SOCK_STREAM)\n', (1126, 1162), False, 'import socket\n'), ((3909, 3932), 'requests.post', 'requests.post', ([], {'url': 'path'}), '(url=path)\n', (3922, 3932), False, 'import requests\n'), ((4286, 4308), 'requests.get', 'requests.get', ([], {'url': 'path'}), '(url=path)\n', (4298, 4308), False, 'import requests\n'), ((4614, 4651), 'urllib.request.urlopen', 'urllib.request.urlopen', (['current_cover'], {}), '(current_cover)\n', (4636, 4651), False, 'import urllib\n'), ((4954, 4990), 'requests.post', 'requests.post', ([], {'url': "(base_url + 'next')"}), "(url=base_url + 'next')\n", (4967, 4990), False, 'import requests\n'), ((5253, 5289), 'requests.post', 'requests.post', ([], {'url': "(base_url + 'prev')"}), "(url=base_url + 'prev')\n", (5266, 5289), False, 'import requests\n'), ((5552, 5590), 'requests.post', 'requests.post', ([], {'url': "(base_url + 'resume')"}), "(url=base_url + 'resume')\n", (5565, 5590), False, 'import requests\n'), ((5854, 5891), 'requests.post', 'requests.post', ([], {'url': "(base_url + 'pause')"}), "(url=base_url + 'pause')\n", (5867, 5891), False, 'import requests\n'), ((7087, 7103), 'time.sleep', 'time.sleep', (['(2000)'], {}), '(2000)\n', (7097, 7103), False, 'import time\n'), ((556, 581), 'os.path.abspath', 'os.path.abspath', (['__file__'], {}), '(__file__)\n', (571, 581), False, 'import os\n'), ((2441, 2462), 'json.dumps', 'json.dumps', (['meta_data'], {}), '(meta_data)\n', (2451, 2462), False, 'import json\n'), ((3296, 3319), 'requests.post', 'requests.post', ([], {'url': 'path'}), '(url=path)\n', (3309, 3319), False, 'import requests\n'), ((2695, 2716), 'json.dumps', 'json.dumps', (['meta_data'], {}), '(meta_data)\n', (2705, 2716), False, 'import json\n')]