code
stringlengths
22
1.05M
apis
listlengths
1
3.31k
extract_api
stringlengths
75
3.25M
#!/usr/bin/env python3 """ Base-Client Class This is the parent-class of all client-classes and holds properties and functions they all depend on. Author: <NAME> """ import src.util.debugger as Debugger import src.util.configmaker as configmaker class BaseClient(object): """Base-Client Class""" def __init__(self, configpath, configtype, debugFlag = False): self._Debug = Debugger.Debugger(debugFlag) self._Debug.write("INIT BaseClient") defaultPrompt = "-" self._prompt = defaultPrompt self._clientConfig = configmaker.getConfig(configpath, configtype) self._Debug.write("INIT_END BaseClient") @property def prompt(self): return self._prompt def get_client_configuration(): """Base Class for getting client configuration""" def load_client_configuration(): """Base Class for loading client configuration into memory"""
[ "src.util.debugger.Debugger", "src.util.configmaker.getConfig" ]
[((392, 420), 'src.util.debugger.Debugger', 'Debugger.Debugger', (['debugFlag'], {}), '(debugFlag)\n', (409, 420), True, 'import src.util.debugger as Debugger\n'), ((562, 607), 'src.util.configmaker.getConfig', 'configmaker.getConfig', (['configpath', 'configtype'], {}), '(configpath, configtype)\n', (583, 607), True, 'import src.util.configmaker as configmaker\n')]
# -*- coding: utf-8 -*- import sys from cryptomon.common import Colors if sys.version_info >= (3, 0): import io else: import StringIO as io ascii_title = """ /$$$$$$ /$$ /$$ /$$ /$$__ $$ | $$ | $$$ /$$$ | $$ \__/ /$$$$$$ /$$ /$$ /$$$$$$ /$$$$$$ /$$$$$$ | $$$$ /$$$$ /$$$$$$ /$$$$$$$ | $$ /$$__ $$| $$ | $$ /$$__ $$|_ $$_/ /$$__ $$| $$ $$/$$ $$ /$$__ $$| $$__ $$ | $$ | $$ \__/| $$ | $$| $$ \ $$ | $$ | $$ \ $$| $$ $$$| $$| $$ \ $$| $$ \ $$ | $$ $$| $$ | $$ | $$| $$ | $$ | $$ /$$| $$ | $$| $$\ $ | $$| $$ | $$| $$ | $$ | $$$$$$/| $$ | $$$$$$$| $$$$$$$/ | $$$$/| $$$$$$/| $$ \/ | $$| $$$$$$/| $$ | $$ \______/ |__/ \____ $$| $$____/ \___/ \______/ |__/ |__/ \______/ |__/ |__/ /$$ | $$| $$ | $$$$$$/| $$ \______/ |__/ """ def process_title(title): buf = io.StringIO(title) lines = buf.readlines() lines = lines[1:-1] colored_lines = [] colored_title = "" for line in lines: colored_lines.append(Colors.BLUE + line[:13] + Colors.YELLOW + line[14:]) for line in colored_lines: colored_title += line return colored_title + Colors.ENDLINE
[ "StringIO.StringIO" ]
[((1247, 1265), 'StringIO.StringIO', 'io.StringIO', (['title'], {}), '(title)\n', (1258, 1265), True, 'import StringIO as io\n')]
import cv2 video=cv2.VideoCapture(r'C:\Users\ISHITA\Desktop\ML project\UEM_PROJECT_COM\pedestrian.mp4') #pre trained pedestrian and car classifier car_tracker_file=(r'C:\Users\ISHITA\Desktop\ML project\UEM_PROJECT_COM\car.xml') pedestrian_tracker_file=(r'C:\Users\ISHITA\Desktop\ML project\UEM_PROJECT_COM\pedestrian.xml') #create car n pedestrian classifier car_tracker=cv2.CascadeClassifier(car_tracker_file) pedestrian_tracker=cv2.CascadeClassifier(pedestrian_tracker_file) #run forever untill car stop while True: (read_successful,frame)=video.read() gr_frame=cv2.cvtColor(frame,cv2.COLOR_BGR2GRAY) #detect cars n pedestrian cars=car_tracker.detectMultiScale(gr_frame) pedestrians=pedestrian_tracker.detectMultiScale(gr_frame) #draw rectangle around cars for(x,y,w,h) in cars: cv2.rectangle(frame,(x+1,y+2),(x+w,y+h),(255,0,0),2) cv2.rectangle(frame,(x,y),(x+w,y+h),(0,0,255),2) #draw rectangle around pedestrian for(x,y,w,h) in pedestrians: cv2.rectangle(frame,(x,y),(x+w,y+h),(0,255,255),2) #display cv2.imshow('car n pedestrians',frame) key = cv2.waitKey(1) #stopping condition if key == 83 or key== 115: break # release the VideoCapture object video.release() print('Press "s" to stop') print('Hey!')
[ "cv2.rectangle", "cv2.imshow", "cv2.VideoCapture", "cv2.cvtColor", "cv2.CascadeClassifier", "cv2.waitKey" ]
[((18, 114), 'cv2.VideoCapture', 'cv2.VideoCapture', (['"""C:\\\\Users\\\\ISHITA\\\\Desktop\\\\ML project\\\\UEM_PROJECT_COM\\\\pedestrian.mp4"""'], {}), "(\n 'C:\\\\Users\\\\ISHITA\\\\Desktop\\\\ML project\\\\UEM_PROJECT_COM\\\\pedestrian.mp4')\n", (34, 114), False, 'import cv2\n'), ((374, 413), 'cv2.CascadeClassifier', 'cv2.CascadeClassifier', (['car_tracker_file'], {}), '(car_tracker_file)\n', (395, 413), False, 'import cv2\n'), ((433, 479), 'cv2.CascadeClassifier', 'cv2.CascadeClassifier', (['pedestrian_tracker_file'], {}), '(pedestrian_tracker_file)\n', (454, 479), False, 'import cv2\n'), ((584, 623), 'cv2.cvtColor', 'cv2.cvtColor', (['frame', 'cv2.COLOR_BGR2GRAY'], {}), '(frame, cv2.COLOR_BGR2GRAY)\n', (596, 623), False, 'import cv2\n'), ((1097, 1135), 'cv2.imshow', 'cv2.imshow', (['"""car n pedestrians"""', 'frame'], {}), "('car n pedestrians', frame)\n", (1107, 1135), False, 'import cv2\n'), ((1145, 1159), 'cv2.waitKey', 'cv2.waitKey', (['(1)'], {}), '(1)\n', (1156, 1159), False, 'import cv2\n'), ((834, 902), 'cv2.rectangle', 'cv2.rectangle', (['frame', '(x + 1, y + 2)', '(x + w, y + h)', '(255, 0, 0)', '(2)'], {}), '(frame, (x + 1, y + 2), (x + w, y + h), (255, 0, 0), 2)\n', (847, 902), False, 'import cv2\n'), ((895, 955), 'cv2.rectangle', 'cv2.rectangle', (['frame', '(x, y)', '(x + w, y + h)', '(0, 0, 255)', '(2)'], {}), '(frame, (x, y), (x + w, y + h), (0, 0, 255), 2)\n', (908, 955), False, 'import cv2\n'), ((1028, 1090), 'cv2.rectangle', 'cv2.rectangle', (['frame', '(x, y)', '(x + w, y + h)', '(0, 255, 255)', '(2)'], {}), '(frame, (x, y), (x + w, y + h), (0, 255, 255), 2)\n', (1041, 1090), False, 'import cv2\n')]
#! /usr/bin/env python # -*- coding: utf-8 -*- # vim:fenc=utf-8 # # # Distributed under terms of the MIT license. """ Strategy base class """ from abc import ABCMeta, abstractmethod from tinydb import TinyDB, Query from node import Node import json class Strategy(object): def __init__(self, this_controller, this_description=None): self.description = this_description self.controller = this_controller self.ledger = TinyDB("ledger.json") self.db = TinyDB("nodes.json") self.nodes = [] @abstractmethod def store_file(self, file_bytes, file_name): pass @abstractmethod def retrieve_file(self, file_name, locations): pass @abstractmethod def get_time(self): pass def getNodes(self): self.nodes = [] for item in self.db: node = Node(item['mac'],item['ip'],item['port'],item['units']) self.nodes.append(node) return self.nodes def getNodesWithFile(self,filename): macs = self.ledger.search(Query().file_name == filename) self.nodes = [] for item in macs: mac = item["location"] dbnode = self.db.get(Query().mac == mac) if(dbnode == None): continue node = Node(dbnode['mac'],dbnode['ip'],dbnode['port'],dbnode['units']) self.nodes.append(node) return self.nodes def getFileSize(self, filename): file = self.ledger.get(Query().file_name == filename) return file['size']
[ "tinydb.Query", "node.Node", "tinydb.TinyDB" ]
[((449, 470), 'tinydb.TinyDB', 'TinyDB', (['"""ledger.json"""'], {}), "('ledger.json')\n", (455, 470), False, 'from tinydb import TinyDB, Query\n'), ((489, 509), 'tinydb.TinyDB', 'TinyDB', (['"""nodes.json"""'], {}), "('nodes.json')\n", (495, 509), False, 'from tinydb import TinyDB, Query\n'), ((857, 915), 'node.Node', 'Node', (["item['mac']", "item['ip']", "item['port']", "item['units']"], {}), "(item['mac'], item['ip'], item['port'], item['units'])\n", (861, 915), False, 'from node import Node\n'), ((1296, 1362), 'node.Node', 'Node', (["dbnode['mac']", "dbnode['ip']", "dbnode['port']", "dbnode['units']"], {}), "(dbnode['mac'], dbnode['ip'], dbnode['port'], dbnode['units'])\n", (1300, 1362), False, 'from node import Node\n'), ((1051, 1058), 'tinydb.Query', 'Query', ([], {}), '()\n', (1056, 1058), False, 'from tinydb import TinyDB, Query\n'), ((1491, 1498), 'tinydb.Query', 'Query', ([], {}), '()\n', (1496, 1498), False, 'from tinydb import TinyDB, Query\n'), ((1200, 1207), 'tinydb.Query', 'Query', ([], {}), '()\n', (1205, 1207), False, 'from tinydb import TinyDB, Query\n')]
#-*- encoding:utf-8 -*- from __future__ import print_function import sys try: reload(sys) sys.setdefaultencoding('utf-8') except: pass import codecs from textrank4zh import TextRank4Keyword, TextRank4Sentence text = codecs.open('../test/doc/01.txt', 'r', 'utf-8').read() tr4w = TextRank4Keyword() tr4w.analyze(text=text, lower=True, window=2) # py2中text必须是utf8编码的str或者unicode对象,py3中必须是utf8编码的bytes或者str对象 print( '关键词:' ) for item in tr4w.get_keywords(20, word_min_len=1): print(item.word, item.weight) print() print( '关键短语:' ) for phrase in tr4w.get_keyphrases(keywords_num=20, min_occur_num= 2): print(phrase) tr4s = TextRank4Sentence() tr4s.analyze(text=text, lower=True, source = 'all_filters') print() print( '摘要:' ) for item in tr4s.get_key_sentences(num=3): print(item.weight, item.sentence)
[ "codecs.open", "sys.setdefaultencoding", "textrank4zh.TextRank4Sentence", "textrank4zh.TextRank4Keyword" ]
[((293, 311), 'textrank4zh.TextRank4Keyword', 'TextRank4Keyword', ([], {}), '()\n', (309, 311), False, 'from textrank4zh import TextRank4Keyword, TextRank4Sentence\n'), ((647, 666), 'textrank4zh.TextRank4Sentence', 'TextRank4Sentence', ([], {}), '()\n', (664, 666), False, 'from textrank4zh import TextRank4Keyword, TextRank4Sentence\n'), ((99, 130), 'sys.setdefaultencoding', 'sys.setdefaultencoding', (['"""utf-8"""'], {}), "('utf-8')\n", (121, 130), False, 'import sys\n'), ((231, 278), 'codecs.open', 'codecs.open', (['"""../test/doc/01.txt"""', '"""r"""', '"""utf-8"""'], {}), "('../test/doc/01.txt', 'r', 'utf-8')\n", (242, 278), False, 'import codecs\n')]
import random import uuid import sys import json from faker import Factory from faker.providers.person.fi_FI import Provider as PersonProvider fake = Factory.create('fi_FI') email_by_user = {} users_by_id = {} def anonymize_users(users): usernames = set() emails = set() for data in users: if data['model'] != 'users.user': continue user = data['fields'] user['password'] = "!" username = fake.user_name() while username in usernames: username = fake.user_name() usernames.add(username) user['username'] = username user['uuid'] = str(uuid.uuid4()) if user['first_name']: user['first_name'] = fake.first_name() if user['last_name']: user['last_name'] = fake.last_name() user['email'] = fake.email() email_by_user[data['pk']] = user['email'] users_by_id[data['pk']] = user def remove_secrets(data): for model in data: fields = model['fields'] if model['model'] == 'socialaccount.socialapp': fields['client_id'] = fake.md5() fields['secret'] = fake.md5() elif model['model'] == 'socialaccount.socialapp': fields['token_secret'] = fake.md5() fields['token'] = fake.md5() elif model['model'] == 'account.emailaddress': fields['email'] = email_by_user[fields['user']] elif model['model'] == 'socialaccount.socialaccount': fields['extra_data'] = '{}' fields['uid'] = users_by_id[fields['user']]['uuid'] elif model['model'] == 'sessions.session': fields['session_data'] = "!" model['pk'] = fake.md5() data = json.load(sys.stdin) anonymize_users(data) remove_secrets(data) json.dump(data, sys.stdout, indent=4)
[ "json.load", "faker.Factory.create", "json.dump", "uuid.uuid4" ]
[((151, 174), 'faker.Factory.create', 'Factory.create', (['"""fi_FI"""'], {}), "('fi_FI')\n", (165, 174), False, 'from faker import Factory\n'), ((1731, 1751), 'json.load', 'json.load', (['sys.stdin'], {}), '(sys.stdin)\n', (1740, 1751), False, 'import json\n'), ((1795, 1832), 'json.dump', 'json.dump', (['data', 'sys.stdout'], {'indent': '(4)'}), '(data, sys.stdout, indent=4)\n', (1804, 1832), False, 'import json\n'), ((639, 651), 'uuid.uuid4', 'uuid.uuid4', ([], {}), '()\n', (649, 651), False, 'import uuid\n')]
import random from typing import Optional, Tuple, Union import numpy as np import torch from torch import Tensor from torch_geometric.utils import coalesce, degree, remove_self_loops from .num_nodes import maybe_num_nodes def negative_sampling(edge_index: Tensor, num_nodes: Optional[Union[int, Tuple[int, int]]] = None, num_neg_samples: Optional[int] = None, method: str = "sparse", force_undirected: bool = False) -> Tensor: r"""Samples random negative edges of a graph given by :attr:`edge_index`. Args: edge_index (LongTensor): The edge indices. num_nodes (int or Tuple[int, int], optional): The number of nodes, *i.e.* :obj:`max_val + 1` of :attr:`edge_index`. If given as a tuple, then :obj:`edge_index` is interpreted as a bipartite graph with shape :obj:`(num_src_nodes, num_dst_nodes)`. (default: :obj:`None`) num_neg_samples (int, optional): The (approximate) number of negative samples to return. If set to :obj:`None`, will try to return a negative edge for every positive edge. (default: :obj:`None`) method (string, optional): The method to use for negative sampling, *i.e.*, :obj:`"sparse"` or :obj:`"dense"`. This is a memory/runtime trade-off. :obj:`"sparse"` will work on any graph of any size, while :obj:`"dense"` can perform faster true-negative checks. (default: :obj:`"sparse"`) force_undirected (bool, optional): If set to :obj:`True`, sampled negative edges will be undirected. (default: :obj:`False`) :rtype: LongTensor """ assert method in ['sparse', 'dense'] size = num_nodes bipartite = isinstance(size, (tuple, list)) size = maybe_num_nodes(edge_index) if size is None else size size = (size, size) if not bipartite else size force_undirected = False if bipartite else force_undirected idx, population = edge_index_to_vector(edge_index, size, bipartite, force_undirected) if idx.numel() >= population: return edge_index.new_empty((2, 0)) if num_neg_samples is None: num_neg_samples = edge_index.size(1) if force_undirected: num_neg_samples = num_neg_samples // 2 prob = 1. - idx.numel() / population # Probability to sample a negative. sample_size = int(1.1 * num_neg_samples / prob) # (Over)-sample size. neg_idx = None if method == 'dense': # The dense version creates a mask of shape `population` to check for # invalid samples. mask = idx.new_ones(population, dtype=torch.bool) mask[idx] = False for _ in range(3): # Number of tries to sample negative indices. rnd = sample(population, sample_size, idx.device) rnd = rnd[mask[rnd]] # Filter true negatives. neg_idx = rnd if neg_idx is None else torch.cat([neg_idx, rnd]) if neg_idx.numel() >= num_neg_samples: neg_idx = neg_idx[:num_neg_samples] break mask[neg_idx] = False else: # 'sparse' # The sparse version checks for invalid samples via `np.isin`. idx = idx.to('cpu') for _ in range(3): # Number of tries to sample negative indices. rnd = sample(population, sample_size, device='cpu') mask = np.isin(rnd, idx) if neg_idx is not None: mask |= np.isin(rnd, neg_idx.to('cpu')) mask = torch.from_numpy(mask).to(torch.bool) rnd = rnd[~mask].to(edge_index.device) neg_idx = rnd if neg_idx is None else torch.cat([neg_idx, rnd]) if neg_idx.numel() >= num_neg_samples: neg_idx = neg_idx[:num_neg_samples] break return vector_to_edge_index(neg_idx, size, bipartite, force_undirected) def batched_negative_sampling( edge_index: Tensor, batch: Union[Tensor, Tuple[Tensor, Tensor]], num_neg_samples: Optional[int] = None, method: str = "sparse", force_undirected: bool = False, ) -> Tensor: r"""Samples random negative edges of multiple graphs given by :attr:`edge_index` and :attr:`batch`. Args: edge_index (LongTensor): The edge indices. batch (LongTensor or Tuple[LongTensor, LongTensor]): Batch vector :math:`\mathbf{b} \in {\{ 0, \ldots, B-1\}}^N`, which assigns each node to a specific example. If given as a tuple, then :obj:`edge_index` is interpreted as a bipartite graph connecting two different node types. num_neg_samples (int, optional): The number of negative samples to return. If set to :obj:`None`, will try to return a negative edge for every positive edge. (default: :obj:`None`) method (string, optional): The method to use for negative sampling, *i.e.*, :obj:`"sparse"` or :obj:`"dense"`. This is a memory/runtime trade-off. :obj:`"sparse"` will work on any graph of any size, while :obj:`"dense"` can perform faster true-negative checks. (default: :obj:`"sparse"`) force_undirected (bool, optional): If set to :obj:`True`, sampled negative edges will be undirected. (default: :obj:`False`) :rtype: LongTensor """ if isinstance(batch, Tensor): src_batch, dst_batch = batch, batch else: src_batch, dst_batch = batch[0], batch[1] split = degree(src_batch[edge_index[0]], dtype=torch.long).tolist() edge_indices = torch.split(edge_index, split, dim=1) num_src = degree(src_batch, dtype=torch.long) cum_src = torch.cat([src_batch.new_zeros(1), num_src.cumsum(0)[:-1]]) if isinstance(batch, Tensor): num_nodes = num_src.tolist() cumsum = cum_src else: num_dst = degree(dst_batch, dtype=torch.long) cum_dst = torch.cat([dst_batch.new_zeros(1), num_dst.cumsum(0)[:-1]]) num_nodes = torch.stack([num_src, num_dst], dim=1).tolist() cumsum = torch.stack([cum_src, cum_dst], dim=1).unsqueeze(-1) neg_edge_indices = [] for i, edge_index in enumerate(edge_indices): edge_index = edge_index - cumsum[i] neg_edge_index = negative_sampling(edge_index, num_nodes[i], num_neg_samples, method, force_undirected) neg_edge_index += cumsum[i] neg_edge_indices.append(neg_edge_index) return torch.cat(neg_edge_indices, dim=1) def structured_negative_sampling(edge_index, num_nodes: Optional[int] = None, contains_neg_self_loops: bool = True): r"""Samples a negative edge :obj:`(i,k)` for every positive edge :obj:`(i,j)` in the graph given by :attr:`edge_index`, and returns it as a tuple of the form :obj:`(i,j,k)`. Args: edge_index (LongTensor): The edge indices. num_nodes (int, optional): The number of nodes, *i.e.* :obj:`max_val + 1` of :attr:`edge_index`. (default: :obj:`None`) contains_neg_self_loops (bool, optional): If set to :obj:`False`, sampled negative edges will not contain self loops. (default: :obj:`True`) :rtype: (LongTensor, LongTensor, LongTensor) """ num_nodes = maybe_num_nodes(edge_index, num_nodes) row, col = edge_index.cpu() pos_idx = row * num_nodes + col if not contains_neg_self_loops: loop_idx = torch.arange(num_nodes) * (num_nodes + 1) pos_idx = torch.cat([pos_idx, loop_idx], dim=0) rand = torch.randint(num_nodes, (row.size(0), ), dtype=torch.long) neg_idx = row * num_nodes + rand mask = torch.from_numpy(np.isin(neg_idx, pos_idx)).to(torch.bool) rest = mask.nonzero(as_tuple=False).view(-1) while rest.numel() > 0: # pragma: no cover tmp = torch.randint(num_nodes, (rest.size(0), ), dtype=torch.long) rand[rest] = tmp neg_idx = row[rest] * num_nodes + tmp mask = torch.from_numpy(np.isin(neg_idx, pos_idx)).to(torch.bool) rest = rest[mask] return edge_index[0], edge_index[1], rand.to(edge_index.device) def structured_negative_sampling_feasible( edge_index: Tensor, num_nodes: Optional[int] = None, contains_neg_self_loops: bool = True) -> bool: r"""Returns :obj:`True` if :meth:`~torch_geometric.utils.structured_negative_sampling` is feasible on the graph given by :obj:`edge_index`. :obj:`~torch_geometric.utils.structured_negative_sampling` is infeasible if atleast one node is connected to all other nodes. Args: edge_index (LongTensor): The edge indices. num_nodes (int, optional): The number of nodes, *i.e.* :obj:`max_val + 1` of :attr:`edge_index`. (default: :obj:`None`) contains_neg_self_loops (bool, optional): If set to :obj:`False`, sampled negative edges will not contain self loops. (default: :obj:`True`) :rtype: bool """ num_nodes = maybe_num_nodes(edge_index, num_nodes) max_num_neighbors = num_nodes edge_index = coalesce(edge_index, num_nodes=num_nodes) if not contains_neg_self_loops: edge_index, _ = remove_self_loops(edge_index) max_num_neighbors -= 1 # Reduce number of valid neighbors deg = degree(edge_index[0], num_nodes) # True if there exists no node that is connected to all other nodes. return bool(torch.all(deg < max_num_neighbors)) ############################################################################### def sample(population: int, k: int, device=None) -> Tensor: if population <= k: return torch.arange(population, device=device) else: return torch.tensor(random.sample(range(population), k), device=device) def edge_index_to_vector( edge_index: Tensor, size: Tuple[int, int], bipartite: bool, force_undirected: bool = False, ) -> Tuple[Tensor, int]: row, col = edge_index if bipartite: # No need to account for self-loops. idx = (row * size[1]).add_(col) population = size[0] * size[1] return idx, population elif force_undirected: assert size[0] == size[1] num_nodes = size[0] # We only operate on the upper triangular matrix: mask = row < col row, col = row[mask], col[mask] offset = torch.arange(1, num_nodes, device=row.device).cumsum(0)[row] idx = row.mul_(num_nodes).add_(col).sub_(offset) population = (num_nodes * (num_nodes + 1)) // 2 - num_nodes return idx, population else: assert size[0] == size[1] num_nodes = size[0] # We remove self-loops as we do not want to take them into account # when sampling negative values. mask = row != col row, col = row[mask], col[mask] col[row < col] -= 1 idx = row.mul_(num_nodes - 1).add_(col) population = num_nodes * num_nodes - num_nodes return idx, population def vector_to_edge_index(idx: Tensor, size: Tuple[int, int], bipartite: bool, force_undirected: bool = False) -> Tensor: if bipartite: # No need to account for self-loops. row = idx.div(size[1], rounding_mode='floor') col = idx % size[1] return torch.stack([row, col], dim=0) elif force_undirected: assert size[0] == size[1] num_nodes = size[0] offset = torch.arange(1, num_nodes, device=idx.device).cumsum(0) end = torch.arange(num_nodes, num_nodes * num_nodes, num_nodes, device=idx.device) row = torch.bucketize(idx, end.sub_(offset), right=True) col = offset[row].add_(idx) % num_nodes return torch.stack([torch.cat([row, col]), torch.cat([col, row])], 0) else: assert size[0] == size[1] num_nodes = size[0] row = idx.div(num_nodes - 1, rounding_mode='floor') col = idx % (num_nodes - 1) col[row <= col] += 1 return torch.stack([row, col], dim=0)
[ "torch.split", "torch_geometric.utils.degree", "torch.all", "torch.stack", "numpy.isin", "torch.from_numpy", "torch_geometric.utils.remove_self_loops", "torch.arange", "torch_geometric.utils.coalesce", "torch.cat" ]
[((5711, 5748), 'torch.split', 'torch.split', (['edge_index', 'split'], {'dim': '(1)'}), '(edge_index, split, dim=1)\n', (5722, 5748), False, 'import torch\n'), ((5764, 5799), 'torch_geometric.utils.degree', 'degree', (['src_batch'], {'dtype': 'torch.long'}), '(src_batch, dtype=torch.long)\n', (5770, 5799), False, 'from torch_geometric.utils import coalesce, degree, remove_self_loops\n'), ((6667, 6701), 'torch.cat', 'torch.cat', (['neg_edge_indices'], {'dim': '(1)'}), '(neg_edge_indices, dim=1)\n', (6676, 6701), False, 'import torch\n'), ((9298, 9339), 'torch_geometric.utils.coalesce', 'coalesce', (['edge_index'], {'num_nodes': 'num_nodes'}), '(edge_index, num_nodes=num_nodes)\n', (9306, 9339), False, 'from torch_geometric.utils import coalesce, degree, remove_self_loops\n'), ((9509, 9541), 'torch_geometric.utils.degree', 'degree', (['edge_index[0]', 'num_nodes'], {}), '(edge_index[0], num_nodes)\n', (9515, 9541), False, 'from torch_geometric.utils import coalesce, degree, remove_self_loops\n'), ((5999, 6034), 'torch_geometric.utils.degree', 'degree', (['dst_batch'], {'dtype': 'torch.long'}), '(dst_batch, dtype=torch.long)\n', (6005, 6034), False, 'from torch_geometric.utils import coalesce, degree, remove_self_loops\n'), ((7712, 7749), 'torch.cat', 'torch.cat', (['[pos_idx, loop_idx]'], {'dim': '(0)'}), '([pos_idx, loop_idx], dim=0)\n', (7721, 7749), False, 'import torch\n'), ((9401, 9430), 'torch_geometric.utils.remove_self_loops', 'remove_self_loops', (['edge_index'], {}), '(edge_index)\n', (9418, 9430), False, 'from torch_geometric.utils import coalesce, degree, remove_self_loops\n'), ((9631, 9665), 'torch.all', 'torch.all', (['(deg < max_num_neighbors)'], {}), '(deg < max_num_neighbors)\n', (9640, 9665), False, 'import torch\n'), ((9850, 9889), 'torch.arange', 'torch.arange', (['population'], {'device': 'device'}), '(population, device=device)\n', (9862, 9889), False, 'import torch\n'), ((11503, 11533), 'torch.stack', 'torch.stack', (['[row, col]'], {'dim': '(0)'}), '([row, col], dim=0)\n', (11514, 11533), False, 'import torch\n'), ((3509, 3526), 'numpy.isin', 'np.isin', (['rnd', 'idx'], {}), '(rnd, idx)\n', (3516, 3526), True, 'import numpy as np\n'), ((5632, 5682), 'torch_geometric.utils.degree', 'degree', (['src_batch[edge_index[0]]'], {'dtype': 'torch.long'}), '(src_batch[edge_index[0]], dtype=torch.long)\n', (5638, 5682), False, 'from torch_geometric.utils import coalesce, degree, remove_self_loops\n'), ((7652, 7675), 'torch.arange', 'torch.arange', (['num_nodes'], {}), '(num_nodes)\n', (7664, 7675), False, 'import torch\n'), ((11712, 11788), 'torch.arange', 'torch.arange', (['num_nodes', '(num_nodes * num_nodes)', 'num_nodes'], {'device': 'idx.device'}), '(num_nodes, num_nodes * num_nodes, num_nodes, device=idx.device)\n', (11724, 11788), False, 'import torch\n'), ((12221, 12251), 'torch.stack', 'torch.stack', (['[row, col]'], {'dim': '(0)'}), '([row, col], dim=0)\n', (12232, 12251), False, 'import torch\n'), ((3045, 3070), 'torch.cat', 'torch.cat', (['[neg_idx, rnd]'], {}), '([neg_idx, rnd])\n', (3054, 3070), False, 'import torch\n'), ((3777, 3802), 'torch.cat', 'torch.cat', (['[neg_idx, rnd]'], {}), '([neg_idx, rnd])\n', (3786, 3802), False, 'import torch\n'), ((6134, 6172), 'torch.stack', 'torch.stack', (['[num_src, num_dst]'], {'dim': '(1)'}), '([num_src, num_dst], dim=1)\n', (6145, 6172), False, 'import torch\n'), ((6199, 6237), 'torch.stack', 'torch.stack', (['[cum_src, cum_dst]'], {'dim': '(1)'}), '([cum_src, cum_dst], dim=1)\n', (6210, 6237), False, 'import torch\n'), ((7888, 7913), 'numpy.isin', 'np.isin', (['neg_idx', 'pos_idx'], {}), '(neg_idx, pos_idx)\n', (7895, 7913), True, 'import numpy as np\n'), ((3638, 3660), 'torch.from_numpy', 'torch.from_numpy', (['mask'], {}), '(mask)\n', (3654, 3660), False, 'import torch\n'), ((8206, 8231), 'numpy.isin', 'np.isin', (['neg_idx', 'pos_idx'], {}), '(neg_idx, pos_idx)\n', (8213, 8231), True, 'import numpy as np\n'), ((11642, 11687), 'torch.arange', 'torch.arange', (['(1)', 'num_nodes'], {'device': 'idx.device'}), '(1, num_nodes, device=idx.device)\n', (11654, 11687), False, 'import torch\n'), ((11957, 11978), 'torch.cat', 'torch.cat', (['[row, col]'], {}), '([row, col])\n', (11966, 11978), False, 'import torch\n'), ((11980, 12001), 'torch.cat', 'torch.cat', (['[col, row]'], {}), '([col, row])\n', (11989, 12001), False, 'import torch\n'), ((10566, 10611), 'torch.arange', 'torch.arange', (['(1)', 'num_nodes'], {'device': 'row.device'}), '(1, num_nodes, device=row.device)\n', (10578, 10611), False, 'import torch\n')]
import sys if sys.version_info[:2] >= (3, 0): # pylint: disable=E0611,F0401,I0011 from urllib.request import build_opener else: from urllib2 import build_opener from . import __version__ urls = { 'gdata': "https://www.googleapis.com/youtube/v3/", 'watchv': "http://www.youtube.com/watch?v=%s", 'playlist': ('http://www.youtube.com/list_ajax?' 'style=json&action_get_list=1&list=%s'), 'thumb': "http://i.ytimg.com/vi/%s/default.jpg", 'bigthumb': "http://i.ytimg.com/vi/%s/mqdefault.jpg", 'bigthumbhd': "http://i.ytimg.com/vi/%s/hqdefault.jpg", # For internal backend 'vidinfo': ('https://www.youtube.com/get_video_info?video_id=%s&' 'eurl=https://youtube.googleapis.com/v/%s&sts=%s'), 'embed': "https://youtube.com/embed/%s" } api_key = "<KEY>" user_agent = "pafy " + __version__ lifespan = 60 * 60 * 5 # 5 hours opener = build_opener() opener.addheaders = [('User-Agent', user_agent)] cache = {} def_ydl_opts = {'quiet': True, 'prefer_insecure': False, 'no_warnings': True} # The following are specific to the internal backend UEFSM = 'url_encoded_fmt_stream_map' AF = 'adaptive_fmts' jsplayer = r';ytplayer\.config\s*=\s*({.*?});' itags = { '5': ('320x240', 'flv', "normal", ''), '17': ('176x144', '3gp', "normal", ''), '18': ('640x360', 'mp4', "normal", ''), '22': ('1280x720', 'mp4', "normal", ''), '34': ('640x360', 'flv', "normal", ''), '35': ('854x480', 'flv', "normal", ''), '36': ('320x240', '3gp', "normal", ''), '37': ('1920x1080', 'mp4', "normal", ''), '38': ('4096x3072', 'mp4', "normal", '4:3 hi-res'), '43': ('640x360', 'webm', "normal", ''), '44': ('854x480', 'webm', "normal", ''), '45': ('1280x720', 'webm', "normal", ''), '46': ('1920x1080', 'webm', "normal", ''), '82': ('640x360-3D', 'mp4', "normal", ''), '83': ('640x480-3D', 'mp4', 'normal', ''), '84': ('1280x720-3D', 'mp4', "normal", ''), '100': ('640x360-3D', 'webm', "normal", ''), '102': ('1280x720-3D', 'webm', "normal", ''), '133': ('426x240', 'm4v', 'video', ''), '134': ('640x360', 'm4v', 'video', ''), '135': ('854x480', 'm4v', 'video', ''), '136': ('1280x720', 'm4v', 'video', ''), '137': ('1920x1080', 'm4v', 'video', ''), '138': ('4096x3072', 'm4v', 'video', ''), '139': ('48k', 'm4a', 'audio', ''), '140': ('128k', 'm4a', 'audio', ''), '141': ('256k', 'm4a', 'audio', ''), '160': ('256x144', 'm4v', 'video', ''), '167': ('640x480', 'webm', 'video', ''), '168': ('854x480', 'webm', 'video', ''), '169': ('1280x720', 'webm', 'video', ''), '170': ('1920x1080', 'webm', 'video', ''), '171': ('128k', 'ogg', 'audio', ''), '172': ('192k', 'ogg', 'audio', ''), '218': ('854x480', 'webm', 'video', 'VP8'), '219': ('854x480', 'webm', 'video', 'VP8'), '242': ('360x240', 'webm', 'video', 'VP9'), '243': ('480x360', 'webm', 'video', 'VP9'), '244': ('640x480', 'webm', 'video', 'VP9 low'), '245': ('640x480', 'webm', 'video', 'VP9 med'), '246': ('640x480', 'webm', 'video', 'VP9 high'), '247': ('720x480', 'webm', 'video', 'VP9'), '248': ('1920x1080', 'webm', 'video', 'VP9'), '249': ('48k', 'opus', 'audio', 'Opus'), '250': ('56k', 'opus', 'audio', 'Opus'), '251': ('128k', 'opus', 'audio', 'Opus'), '256': ('192k', 'm4a', 'audio', '6-channel'), '258': ('320k', 'm4a', 'audio', '6-channel'), '264': ('2560x1440', 'm4v', 'video', ''), '266': ('3840x2160', 'm4v', 'video', 'AVC'), '271': ('1920x1280', 'webm', 'video', 'VP9'), '272': ('3414x1080', 'webm', 'video', 'VP9'), '278': ('256x144', 'webm', 'video', 'VP9'), '298': ('1280x720', 'm4v', 'video', '60fps'), '299': ('1920x1080', 'm4v', 'video', '60fps'), '302': ('1280x720', 'webm', 'video', 'VP9'), '303': ('1920x1080', 'webm', 'video', 'VP9'), }
[ "urllib2.build_opener" ]
[((906, 920), 'urllib2.build_opener', 'build_opener', ([], {}), '()\n', (918, 920), False, 'from urllib2 import build_opener\n')]
from tkinter import * from PIL import ImageGrab import numpy as np import cv2 import time import pyautogui as pg import DirectInputRoutines as DIR from LogKey import key_check last_time = time.time() one_hot = [0, 0, 0, 0, 0, 0] hash_dict = {'w':0, 's':1, 'a':2, 'd':3, 'c':4, 'v':5} X = [] y = [] def auto_canny(image, sigma=0.33): # compute the median of the single channel pixel intensities v = np.median(image) # apply automatic Canny edge detection using the computed median lower = int(max(0, (1.0 - sigma) * v)) upper = int(min(255, (1.0 + sigma) * v)) edged = cv2.Canny(image, lower, upper) # return the edged image return edged def process_img(original_image): processed_img = cv2.cvtColor(original_image, cv2.COLOR_BGR2GRAY) processed_img = cv2.Canny(processed_img, threshold1=200, threshold2=300) processed_img = cv2.Canny(processed_img, threshold1=200, threshold2=300) #processed_img = cv2.Canny(processed_img, threshold1=200, threshold2=300) vertices = np.array([[10,500],[10,300],[300,200],[500,200],[800,300],[800,500], ], np.int32) processed_img = cv2.GaussianBlur(processed_img,(5,5),0) processed_img = roi(processed_img, [vertices]) # more info: http://docs.opencv.org/3.0-beta/doc/py_tutorials/py_imgproc/py_houghlines/py_houghlines.html # edges rho theta thresh # min length, max gap: #lines = cv2.HoughLinesP(processed_img, 1, np.pi/180, 180, 20, 15) #draw_lines(processed_img,lines) return processed_img def roi(img, vertices): #blank mask: mask = np.zeros_like(img) # fill the mask cv2.fillPoly(mask, vertices, 255) # now only show the area that is the mask masked = cv2.bitwise_and(img, mask) return masked def draw_lines(img,lines): for line in lines: coords = line[0] cv2.line(img, (coords[0], coords[1]), (coords[2], coords[3]), [255,255,255], 3) def change_tab(): pg.hotkey("alt","tab") def send_key(e): hash = {"w":DIR.W, "a":DIR.A, "s":DIR.S, "d":DIR.D} return hash[e.keysym] def keyup(e): if(e.keysym == "Alt_L" or e.keysym == "Tab"): return #print('down', e.keysym) change_tab() DIR.ReleaseKey(send_key(e)) change_tab() global last_time one_hot[hash_dict[e.keysym]] = 0 temp = list(one_hot) printscreen = np.array(ImageGrab.grab(bbox=(0,40,800,640))) printscreen = process_img(printscreen) print('loop took {} seconds'.format(time.time()-last_time)) print([printscreen, temp]) last_time = time.time() X.append(printscreen) y.append(temp) #cv2.imshow("image", printscreen) def keydown(e): #print('up', e.keysym) if(e.keysym == "Alt_L" or e.keysym == "Tab"): return change_tab() DIR.ReleaseKey(send_key(e)) change_tab() global last_time one_hot[hash_dict[e.keysym]] = 1 temp = list(one_hot) printscreen = np.array(ImageGrab.grab(bbox=(0,40,800,680))) printscreen = process_img(printscreen) print('loop took {} seconds'.format(time.time()-last_time)) print([printscreen,temp]) last_time = time.time() X.append(printscreen) y.append(temp) root = Tk() frame = Frame(root, width=100, height=100) frame.bind("<KeyPress>", keydown) frame.bind("<KeyRelease>", keyup) frame.pack() frame.focus_set() root.mainloop() np.save("X.npy", X) np.save("y.npy", y)
[ "cv2.fillPoly", "pyautogui.hotkey", "numpy.median", "cv2.GaussianBlur", "PIL.ImageGrab.grab", "cv2.line", "numpy.zeros_like", "cv2.bitwise_and", "numpy.array", "cv2.cvtColor", "cv2.Canny", "time.time", "numpy.save" ]
[((196, 207), 'time.time', 'time.time', ([], {}), '()\n', (205, 207), False, 'import time\n'), ((3513, 3532), 'numpy.save', 'np.save', (['"""X.npy"""', 'X'], {}), "('X.npy', X)\n", (3520, 3532), True, 'import numpy as np\n'), ((3534, 3553), 'numpy.save', 'np.save', (['"""y.npy"""', 'y'], {}), "('y.npy', y)\n", (3541, 3553), True, 'import numpy as np\n'), ((419, 435), 'numpy.median', 'np.median', (['image'], {}), '(image)\n', (428, 435), True, 'import numpy as np\n'), ((597, 627), 'cv2.Canny', 'cv2.Canny', (['image', 'lower', 'upper'], {}), '(image, lower, upper)\n', (606, 627), False, 'import cv2\n'), ((725, 773), 'cv2.cvtColor', 'cv2.cvtColor', (['original_image', 'cv2.COLOR_BGR2GRAY'], {}), '(original_image, cv2.COLOR_BGR2GRAY)\n', (737, 773), False, 'import cv2\n'), ((795, 851), 'cv2.Canny', 'cv2.Canny', (['processed_img'], {'threshold1': '(200)', 'threshold2': '(300)'}), '(processed_img, threshold1=200, threshold2=300)\n', (804, 851), False, 'import cv2\n'), ((873, 929), 'cv2.Canny', 'cv2.Canny', (['processed_img'], {'threshold1': '(200)', 'threshold2': '(300)'}), '(processed_img, threshold1=200, threshold2=300)\n', (882, 929), False, 'import cv2\n'), ((1031, 1126), 'numpy.array', 'np.array', (['[[10, 500], [10, 300], [300, 200], [500, 200], [800, 300], [800, 500]]', 'np.int32'], {}), '([[10, 500], [10, 300], [300, 200], [500, 200], [800, 300], [800, \n 500]], np.int32)\n', (1039, 1126), True, 'import numpy as np\n'), ((1162, 1204), 'cv2.GaussianBlur', 'cv2.GaussianBlur', (['processed_img', '(5, 5)', '(0)'], {}), '(processed_img, (5, 5), 0)\n', (1178, 1204), False, 'import cv2\n'), ((1679, 1697), 'numpy.zeros_like', 'np.zeros_like', (['img'], {}), '(img)\n', (1692, 1697), True, 'import numpy as np\n'), ((1724, 1757), 'cv2.fillPoly', 'cv2.fillPoly', (['mask', 'vertices', '(255)'], {}), '(mask, vertices, 255)\n', (1736, 1757), False, 'import cv2\n'), ((1819, 1845), 'cv2.bitwise_and', 'cv2.bitwise_and', (['img', 'mask'], {}), '(img, mask)\n', (1834, 1845), False, 'import cv2\n'), ((2062, 2085), 'pyautogui.hotkey', 'pg.hotkey', (['"""alt"""', '"""tab"""'], {}), "('alt', 'tab')\n", (2071, 2085), True, 'import pyautogui as pg\n'), ((2684, 2695), 'time.time', 'time.time', ([], {}), '()\n', (2693, 2695), False, 'import time\n'), ((3274, 3285), 'time.time', 'time.time', ([], {}), '()\n', (3283, 3285), False, 'import time\n'), ((1956, 2042), 'cv2.line', 'cv2.line', (['img', '(coords[0], coords[1])', '(coords[2], coords[3])', '[255, 255, 255]', '(3)'], {}), '(img, (coords[0], coords[1]), (coords[2], coords[3]), [255, 255, \n 255], 3)\n', (1964, 2042), False, 'import cv2\n'), ((2489, 2527), 'PIL.ImageGrab.grab', 'ImageGrab.grab', ([], {'bbox': '(0, 40, 800, 640)'}), '(bbox=(0, 40, 800, 640))\n', (2503, 2527), False, 'from PIL import ImageGrab\n'), ((3080, 3118), 'PIL.ImageGrab.grab', 'ImageGrab.grab', ([], {'bbox': '(0, 40, 800, 680)'}), '(bbox=(0, 40, 800, 680))\n', (3094, 3118), False, 'from PIL import ImageGrab\n'), ((2611, 2622), 'time.time', 'time.time', ([], {}), '()\n', (2620, 2622), False, 'import time\n'), ((3202, 3213), 'time.time', 'time.time', ([], {}), '()\n', (3211, 3213), False, 'import time\n')]
# Generated by Django 2.2.5 on 2019-10-05 23:22 from django.db import migrations, models class Migration(migrations.Migration): initial = True dependencies = [ ] operations = [ migrations.CreateModel( name='Password', fields=[ ('id', models.IntegerField(primary_key=True, serialize=False, unique=True)), ('website', models.CharField(max_length=128)), ('username', models.CharField(max_length=128)), ('pwd', models.CharField(max_length=128)), ('time_add', models.DateTimeField(auto_now_add=True, null=True)), ('time_modify', models.DateTimeField(auto_now=True)), ], options={ 'db_table': 'password_tab', }, ), ]
[ "django.db.models.DateTimeField", "django.db.models.CharField", "django.db.models.IntegerField" ]
[((304, 371), 'django.db.models.IntegerField', 'models.IntegerField', ([], {'primary_key': '(True)', 'serialize': '(False)', 'unique': '(True)'}), '(primary_key=True, serialize=False, unique=True)\n', (323, 371), False, 'from django.db import migrations, models\n'), ((402, 434), 'django.db.models.CharField', 'models.CharField', ([], {'max_length': '(128)'}), '(max_length=128)\n', (418, 434), False, 'from django.db import migrations, models\n'), ((466, 498), 'django.db.models.CharField', 'models.CharField', ([], {'max_length': '(128)'}), '(max_length=128)\n', (482, 498), False, 'from django.db import migrations, models\n'), ((525, 557), 'django.db.models.CharField', 'models.CharField', ([], {'max_length': '(128)'}), '(max_length=128)\n', (541, 557), False, 'from django.db import migrations, models\n'), ((589, 639), 'django.db.models.DateTimeField', 'models.DateTimeField', ([], {'auto_now_add': '(True)', 'null': '(True)'}), '(auto_now_add=True, null=True)\n', (609, 639), False, 'from django.db import migrations, models\n'), ((674, 709), 'django.db.models.DateTimeField', 'models.DateTimeField', ([], {'auto_now': '(True)'}), '(auto_now=True)\n', (694, 709), False, 'from django.db import migrations, models\n')]
import pytest from onnx import TensorProto from onnx import helper as oh import finn.core.onnx_exec as oxe from finn.core.modelwrapper import ModelWrapper from finn.transformation.streamline.reorder import MoveTransposePastJoinAdd from finn.util.basic import gen_finn_dt_tensor def create_model(perm): if perm == [0, 3, 1, 2]: in_shape = [1, 128, 1, 256] out_shape = [1, 256, 128, 1] if perm == [0, 2, 3, 1]: in_shape = [1, 256, 128, 1] out_shape = [1, 128, 1, 256] Transpose1_node = oh.make_node( "Transpose", inputs=["in_transpose1"], outputs=["out_transpose1"], perm=perm ) Transpose2_node = oh.make_node( "Transpose", inputs=["in_transpose2"], outputs=["out_transpose2"], perm=perm ) Join1_node = oh.make_node( "Add", inputs=["out_transpose1", "out_transpose2"], outputs=["out_join1"] ) in_transpose1 = oh.make_tensor_value_info( "in_transpose1", TensorProto.FLOAT, in_shape ) in_transpose2 = oh.make_tensor_value_info( "in_transpose2", TensorProto.FLOAT, in_shape ) out_transpose1 = oh.make_tensor_value_info( "out_transpose1", TensorProto.FLOAT, out_shape ) out_transpose2 = oh.make_tensor_value_info( "out_transpose2", TensorProto.FLOAT, out_shape ) out_join1 = oh.make_tensor_value_info("out_join1", TensorProto.FLOAT, out_shape) graph = oh.make_graph( nodes=[Transpose1_node, Transpose2_node, Join1_node], name="test_graph", inputs=[in_transpose1, in_transpose2], outputs=[out_join1], value_info=[ out_transpose1, out_transpose2, ], ) onnx_model = oh.make_model(graph, producer_name="test_model") model = ModelWrapper(onnx_model) return model # Permutation of transpose node @pytest.mark.parametrize("perm", [[0, 3, 1, 2], [0, 2, 3, 1]]) def test_move_identical_op_past_join_op(perm): model = create_model(perm) # Create input data input0_tensor_name = model.graph.input[0].name input1_tensor_name = model.graph.input[1].name # Note: it is assumed that both tensors have the same shape and data type input_shape = model.get_tensor_shape(input0_tensor_name) input_dtype = model.get_tensor_datatype(input0_tensor_name) input_val = gen_finn_dt_tensor(input_dtype, input_shape) input_dict = {} input_dict[input0_tensor_name] = input_val input_dict[input1_tensor_name] = input_val model_transformed = model.transform(MoveTransposePastJoinAdd()) assert oxe.compare_execution(model, model_transformed, input_dict) # Check if order changed node0_input0_model = model.find_consumers(model.graph.input[0].name)[0].op_type node1_input1_model = model.find_consumers(model.graph.input[1].name)[0].op_type node0_input0_model_transformed = model_transformed.find_consumers( model_transformed.graph.input[0].name )[0].op_type node1_input1_model_transformed = model_transformed.find_consumers( model_transformed.graph.input[1].name )[0].op_type assert node0_input0_model != node0_input0_model_transformed assert node1_input1_model != node1_input1_model_transformed
[ "onnx.helper.make_graph", "onnx.helper.make_node", "finn.core.onnx_exec.compare_execution", "finn.util.basic.gen_finn_dt_tensor", "onnx.helper.make_tensor_value_info", "onnx.helper.make_model", "pytest.mark.parametrize", "finn.transformation.streamline.reorder.MoveTransposePastJoinAdd", "finn.core.modelwrapper.ModelWrapper" ]
[((1846, 1907), 'pytest.mark.parametrize', 'pytest.mark.parametrize', (['"""perm"""', '[[0, 3, 1, 2], [0, 2, 3, 1]]'], {}), "('perm', [[0, 3, 1, 2], [0, 2, 3, 1]])\n", (1869, 1907), False, 'import pytest\n'), ((533, 628), 'onnx.helper.make_node', 'oh.make_node', (['"""Transpose"""'], {'inputs': "['in_transpose1']", 'outputs': "['out_transpose1']", 'perm': 'perm'}), "('Transpose', inputs=['in_transpose1'], outputs=[\n 'out_transpose1'], perm=perm)\n", (545, 628), True, 'from onnx import helper as oh\n'), ((661, 756), 'onnx.helper.make_node', 'oh.make_node', (['"""Transpose"""'], {'inputs': "['in_transpose2']", 'outputs': "['out_transpose2']", 'perm': 'perm'}), "('Transpose', inputs=['in_transpose2'], outputs=[\n 'out_transpose2'], perm=perm)\n", (673, 756), True, 'from onnx import helper as oh\n'), ((784, 876), 'onnx.helper.make_node', 'oh.make_node', (['"""Add"""'], {'inputs': "['out_transpose1', 'out_transpose2']", 'outputs': "['out_join1']"}), "('Add', inputs=['out_transpose1', 'out_transpose2'], outputs=[\n 'out_join1'])\n", (796, 876), True, 'from onnx import helper as oh\n'), ((907, 978), 'onnx.helper.make_tensor_value_info', 'oh.make_tensor_value_info', (['"""in_transpose1"""', 'TensorProto.FLOAT', 'in_shape'], {}), "('in_transpose1', TensorProto.FLOAT, in_shape)\n", (932, 978), True, 'from onnx import helper as oh\n'), ((1013, 1084), 'onnx.helper.make_tensor_value_info', 'oh.make_tensor_value_info', (['"""in_transpose2"""', 'TensorProto.FLOAT', 'in_shape'], {}), "('in_transpose2', TensorProto.FLOAT, in_shape)\n", (1038, 1084), True, 'from onnx import helper as oh\n'), ((1120, 1193), 'onnx.helper.make_tensor_value_info', 'oh.make_tensor_value_info', (['"""out_transpose1"""', 'TensorProto.FLOAT', 'out_shape'], {}), "('out_transpose1', TensorProto.FLOAT, out_shape)\n", (1145, 1193), True, 'from onnx import helper as oh\n'), ((1229, 1302), 'onnx.helper.make_tensor_value_info', 'oh.make_tensor_value_info', (['"""out_transpose2"""', 'TensorProto.FLOAT', 'out_shape'], {}), "('out_transpose2', TensorProto.FLOAT, out_shape)\n", (1254, 1302), True, 'from onnx import helper as oh\n'), ((1333, 1401), 'onnx.helper.make_tensor_value_info', 'oh.make_tensor_value_info', (['"""out_join1"""', 'TensorProto.FLOAT', 'out_shape'], {}), "('out_join1', TensorProto.FLOAT, out_shape)\n", (1358, 1401), True, 'from onnx import helper as oh\n'), ((1415, 1616), 'onnx.helper.make_graph', 'oh.make_graph', ([], {'nodes': '[Transpose1_node, Transpose2_node, Join1_node]', 'name': '"""test_graph"""', 'inputs': '[in_transpose1, in_transpose2]', 'outputs': '[out_join1]', 'value_info': '[out_transpose1, out_transpose2]'}), "(nodes=[Transpose1_node, Transpose2_node, Join1_node], name=\n 'test_graph', inputs=[in_transpose1, in_transpose2], outputs=[out_join1\n ], value_info=[out_transpose1, out_transpose2])\n", (1428, 1616), True, 'from onnx import helper as oh\n'), ((1707, 1755), 'onnx.helper.make_model', 'oh.make_model', (['graph'], {'producer_name': '"""test_model"""'}), "(graph, producer_name='test_model')\n", (1720, 1755), True, 'from onnx import helper as oh\n'), ((1768, 1792), 'finn.core.modelwrapper.ModelWrapper', 'ModelWrapper', (['onnx_model'], {}), '(onnx_model)\n', (1780, 1792), False, 'from finn.core.modelwrapper import ModelWrapper\n'), ((2333, 2377), 'finn.util.basic.gen_finn_dt_tensor', 'gen_finn_dt_tensor', (['input_dtype', 'input_shape'], {}), '(input_dtype, input_shape)\n', (2351, 2377), False, 'from finn.util.basic import gen_finn_dt_tensor\n'), ((2573, 2632), 'finn.core.onnx_exec.compare_execution', 'oxe.compare_execution', (['model', 'model_transformed', 'input_dict'], {}), '(model, model_transformed, input_dict)\n', (2594, 2632), True, 'import finn.core.onnx_exec as oxe\n'), ((2533, 2559), 'finn.transformation.streamline.reorder.MoveTransposePastJoinAdd', 'MoveTransposePastJoinAdd', ([], {}), '()\n', (2557, 2559), False, 'from finn.transformation.streamline.reorder import MoveTransposePastJoinAdd\n')]
import quandl import math import numpy as np from sklearn import preprocessing, cross_validation, svm from sklearn.linear_model import LinearRegression import pickle import datetime from matplotlib import style import matplotlib.pyplot as plot # Config isLoadFromLocal = True quandl.ApiConfig.api_key = '<KEY>' style.use('ggplot') # Loading data if isLoadFromLocal: df = pickle.load(open("DataFromQuandl_Stock_Chap2.pickle", "rb")) else: df = quandl.get('WIKI/GOOGL') pickle.dump(df, open("DataFromQuandl_Stock_Chap2.pickle", "wb+")) # Data pre-processing df['HL_PCT'] = (df['Adj. High'] - df['Adj. Close']) / df['Adj. Close'] df['PCT_Change'] = (df['Adj. Close'] - df['Adj. Open']) / df['Adj. Open'] df = df[['Adj. Close', 'HL_PCT', 'PCT_Change', 'Adj. Volume']] forecastCol = 'Adj. Close' df.fillna('-99999', inplace = True) forecastOut = int(math.ceil(0.01*len(df))) df['label'] = df[forecastCol].shift(-forecastOut) # df['label'].plot() # df[forecastCol].plot() # plot.legend(loc = 4) # plot.show() x = np.array(df.drop(['label'], 1)) print(x) x = preprocessing.scale(x) print(x) xLately = x[-forecastOut:] x = x[:-forecastOut] df.dropna(inplace = True) y = np.array(df['label']) # Regression x_train, x_test, y_train, y_test = cross_validation.train_test_split(x, y, test_size=0.1) # classifier = svm.SVR(kernel='linear') # SVM SVR classifier = LinearRegression(n_jobs=3) # Linear Regression classifier.fit(x_train, y_train) accuracy = classifier.score(x_test, y_test) forecastSet = classifier.predict(xLately) print('Accuracy is ', accuracy, '\nForecasted values are ', forecastSet, '\nNumber of values is ', forecastOut) df['Forecast'] = np.nan lastDate = df.iloc[-1].name print(lastDate) lastTime = lastDate.timestamp() print(lastTime) oneDay = 24 * 60 * 60 # seconds in a day nextTime = lastTime + oneDay for iter in forecastSet: nextDate = datetime.datetime.fromtimestamp(nextTime) nextTime += oneDay df.loc[nextDate] = [np.nan for _ in range(len(df.columns) - 1)] + [iter] df['Adj. Close'].plot() df['Forecast'].plot() plot.legend(loc = 4) plot.xlabel('Date') plot.ylabel('Price') plot.show()
[ "datetime.datetime.fromtimestamp", "matplotlib.pyplot.ylabel", "matplotlib.pyplot.legend", "matplotlib.pyplot.xlabel", "numpy.array", "matplotlib.style.use", "quandl.get", "sklearn.cross_validation.train_test_split", "sklearn.linear_model.LinearRegression", "sklearn.preprocessing.scale", "matplotlib.pyplot.show" ]
[((312, 331), 'matplotlib.style.use', 'style.use', (['"""ggplot"""'], {}), "('ggplot')\n", (321, 331), False, 'from matplotlib import style\n'), ((1072, 1094), 'sklearn.preprocessing.scale', 'preprocessing.scale', (['x'], {}), '(x)\n', (1091, 1094), False, 'from sklearn import preprocessing, cross_validation, svm\n'), ((1182, 1203), 'numpy.array', 'np.array', (["df['label']"], {}), "(df['label'])\n", (1190, 1203), True, 'import numpy as np\n'), ((1254, 1308), 'sklearn.cross_validation.train_test_split', 'cross_validation.train_test_split', (['x', 'y'], {'test_size': '(0.1)'}), '(x, y, test_size=0.1)\n', (1287, 1308), False, 'from sklearn import preprocessing, cross_validation, svm\n'), ((1374, 1400), 'sklearn.linear_model.LinearRegression', 'LinearRegression', ([], {'n_jobs': '(3)'}), '(n_jobs=3)\n', (1390, 1400), False, 'from sklearn.linear_model import LinearRegression\n'), ((2070, 2088), 'matplotlib.pyplot.legend', 'plot.legend', ([], {'loc': '(4)'}), '(loc=4)\n', (2081, 2088), True, 'import matplotlib.pyplot as plot\n'), ((2091, 2110), 'matplotlib.pyplot.xlabel', 'plot.xlabel', (['"""Date"""'], {}), "('Date')\n", (2102, 2110), True, 'import matplotlib.pyplot as plot\n'), ((2111, 2131), 'matplotlib.pyplot.ylabel', 'plot.ylabel', (['"""Price"""'], {}), "('Price')\n", (2122, 2131), True, 'import matplotlib.pyplot as plot\n'), ((2132, 2143), 'matplotlib.pyplot.show', 'plot.show', ([], {}), '()\n', (2141, 2143), True, 'import matplotlib.pyplot as plot\n'), ((454, 478), 'quandl.get', 'quandl.get', (['"""WIKI/GOOGL"""'], {}), "('WIKI/GOOGL')\n", (464, 478), False, 'import quandl\n'), ((1881, 1922), 'datetime.datetime.fromtimestamp', 'datetime.datetime.fromtimestamp', (['nextTime'], {}), '(nextTime)\n', (1912, 1922), False, 'import datetime\n')]
import random import sys ntables = 100 ncols = 100 nrows = 10000 def printstderr(s): sys.stderr.write(s + '\n') sys.stderr.flush() def get_value(): return random.randint(-99999999, 99999999) for t in range(ntables): printstderr(f'{t}/{ntables}') print(f"create table x ({','.join(['x int'] * ncols)});") for r in range(nrows): print(f"insert into _last ({','.join(['x'] * ncols)}) values (", end='') for c in range(ncols): print(get_value(), end=('' if c==ncols-1 else ',')) print(');') # 10 min to generate # 3 min to process
[ "sys.stderr.write", "sys.stderr.flush", "random.randint" ]
[((89, 115), 'sys.stderr.write', 'sys.stderr.write', (["(s + '\\n')"], {}), "(s + '\\n')\n", (105, 115), False, 'import sys\n'), ((118, 136), 'sys.stderr.flush', 'sys.stderr.flush', ([], {}), '()\n', (134, 136), False, 'import sys\n'), ((164, 199), 'random.randint', 'random.randint', (['(-99999999)', '(99999999)'], {}), '(-99999999, 99999999)\n', (178, 199), False, 'import random\n')]
import uvicorn from fastapi import FastAPI from fastapi.middleware.cors import CORSMiddleware from routes import items import config from constants import * config.parse_args() app = FastAPI( title="API", description="API boilerplate", version="1.0.0", openapi_tags=API_TAGS_METADATA, ) app.add_middleware( CORSMiddleware, allow_origins=["*"], allow_credentials=True, allow_methods=["*"], allow_headers=["*"], ) app.include_router(items.router) @app.get("/") async def root(): return { "docs": "api documentation at /docs or /redoc", } if __name__ == "__main__": uvicorn.run("main:app", host=config.CONFIG.host, port=int(config.CONFIG.port))
[ "fastapi.FastAPI", "config.parse_args" ]
[((161, 180), 'config.parse_args', 'config.parse_args', ([], {}), '()\n', (178, 180), False, 'import config\n'), ((187, 291), 'fastapi.FastAPI', 'FastAPI', ([], {'title': '"""API"""', 'description': '"""API boilerplate"""', 'version': '"""1.0.0"""', 'openapi_tags': 'API_TAGS_METADATA'}), "(title='API', description='API boilerplate', version='1.0.0',\n openapi_tags=API_TAGS_METADATA)\n", (194, 291), False, 'from fastapi import FastAPI\n')]
from django.db import models from django.utils.translation import ugettext_lazy as _ from django.utils.html import mark_safe # Create your models here. class Gellifinsta(models.Model): class Meta: ordering = ['-taken_at_datetime'] shortcode = models.CharField(_("Shortcode"), max_length=20) taken_at_datetime = models.DateTimeField(_("taken at")) username = models.CharField(_("Username"), max_length=100) is_active = models.BooleanField(_("Active"),default=True) is_video = models.BooleanField(_("Video"),default=False) file_path = models.CharField(_("File Path"), max_length=500) url = models.CharField(_("URL"), max_length=500) created_dt = models.DateTimeField(_("Created Date/Time"), auto_now_add=True, null=True) updated_dt = models.DateTimeField(_("Updated Date/Time"), auto_now=True, null=True) caption = models.TextField(_("Caption"), blank=True, null=True) tags = models.TextField(_("Tags"), blank=True, null=True) def __str__(self): return self.shortcode + ':' + str(self.taken_at_datetime) def image_tag(self): return mark_safe('<img src="%s" width="250" />' % (self.url)) image_tag.short_description = 'Image' def tags_spaced(self): return self.tags.replace(',',' ') tags_spaced.short_description = 'Tags' class Products(models.Model): class Meta: ordering = ['name'] name = models.CharField(_("Name"), max_length=100, unique=True) is_active = models.BooleanField(_("Active"),default=True) def __str__(self): return self.name
[ "django.utils.translation.ugettext_lazy", "django.utils.html.mark_safe" ]
[((279, 293), 'django.utils.translation.ugettext_lazy', '_', (['"""Shortcode"""'], {}), "('Shortcode')\n", (280, 293), True, 'from django.utils.translation import ugettext_lazy as _\n'), ((355, 368), 'django.utils.translation.ugettext_lazy', '_', (['"""taken at"""'], {}), "('taken at')\n", (356, 368), True, 'from django.utils.translation import ugettext_lazy as _\n'), ((402, 415), 'django.utils.translation.ugettext_lazy', '_', (['"""Username"""'], {}), "('Username')\n", (403, 415), True, 'from django.utils.translation import ugettext_lazy as _\n'), ((469, 480), 'django.utils.translation.ugettext_lazy', '_', (['"""Active"""'], {}), "('Active')\n", (470, 480), True, 'from django.utils.translation import ugettext_lazy as _\n'), ((530, 540), 'django.utils.translation.ugettext_lazy', '_', (['"""Video"""'], {}), "('Video')\n", (531, 540), True, 'from django.utils.translation import ugettext_lazy as _\n'), ((589, 603), 'django.utils.translation.ugettext_lazy', '_', (['"""File Path"""'], {}), "('File Path')\n", (590, 603), True, 'from django.utils.translation import ugettext_lazy as _\n'), ((648, 656), 'django.utils.translation.ugettext_lazy', '_', (['"""URL"""'], {}), "('URL')\n", (649, 656), True, 'from django.utils.translation import ugettext_lazy as _\n'), ((712, 734), 'django.utils.translation.ugettext_lazy', '_', (['"""Created Date/Time"""'], {}), "('Created Date/Time')\n", (713, 734), True, 'from django.utils.translation import ugettext_lazy as _\n'), ((804, 826), 'django.utils.translation.ugettext_lazy', '_', (['"""Updated Date/Time"""'], {}), "('Updated Date/Time')\n", (805, 826), True, 'from django.utils.translation import ugettext_lazy as _\n'), ((885, 897), 'django.utils.translation.ugettext_lazy', '_', (['"""Caption"""'], {}), "('Caption')\n", (886, 897), True, 'from django.utils.translation import ugettext_lazy as _\n'), ((950, 959), 'django.utils.translation.ugettext_lazy', '_', (['"""Tags"""'], {}), "('Tags')\n", (951, 959), True, 'from django.utils.translation import ugettext_lazy as _\n'), ((1115, 1168), 'django.utils.html.mark_safe', 'mark_safe', (['(\'<img src="%s" width="250" />\' % self.url)'], {}), '(\'<img src="%s" width="250" />\' % self.url)\n', (1124, 1168), False, 'from django.utils.html import mark_safe\n'), ((1431, 1440), 'django.utils.translation.ugettext_lazy', '_', (['"""Name"""'], {}), "('Name')\n", (1432, 1440), True, 'from django.utils.translation import ugettext_lazy as _\n'), ((1507, 1518), 'django.utils.translation.ugettext_lazy', '_', (['"""Active"""'], {}), "('Active')\n", (1508, 1518), True, 'from django.utils.translation import ugettext_lazy as _\n')]
# -*- coding: utf-8 -*- # Generated by Django 1.11 on 2018-01-16 13:35 from __future__ import unicode_literals from django.db import migrations, models import django.db.models.deletion class Migration(migrations.Migration): dependencies = [ ('scanBase', '0002_auto_20180116_1321'), ] operations = [ migrations.CreateModel( name='IPSection', fields=[ ('id', models.AutoField(auto_created=True, primary_key=True, serialize=False, verbose_name='ID')), ('ip_section', models.CharField(blank=True, max_length=30, null=True, unique=True, verbose_name='ip段')), ('ip_start', models.GenericIPAddressField(blank=True, null=True, verbose_name='开始ip')), ('ip_end', models.GenericIPAddressField(blank=True, null=True, verbose_name='结束ip')), ('total', models.IntegerField(blank=True, null=True, verbose_name='总量')), ('deal_time', models.DateTimeField(blank=True, null=True, verbose_name='处理时间')), ('country', models.ForeignKey(on_delete=django.db.models.deletion.CASCADE, to='scanBase.CountryInfo', verbose_name='所属国家')), ], options={ 'verbose_name_plural': 'ip段信息', 'verbose_name': 'ip段信息', }, ), ]
[ "django.db.models.GenericIPAddressField", "django.db.models.IntegerField", "django.db.models.ForeignKey", "django.db.models.AutoField", "django.db.models.DateTimeField", "django.db.models.CharField" ]
[((430, 523), 'django.db.models.AutoField', 'models.AutoField', ([], {'auto_created': '(True)', 'primary_key': '(True)', 'serialize': '(False)', 'verbose_name': '"""ID"""'}), "(auto_created=True, primary_key=True, serialize=False,\n verbose_name='ID')\n", (446, 523), False, 'from django.db import migrations, models\n'), ((553, 644), 'django.db.models.CharField', 'models.CharField', ([], {'blank': '(True)', 'max_length': '(30)', 'null': '(True)', 'unique': '(True)', 'verbose_name': '"""ip段"""'}), "(blank=True, max_length=30, null=True, unique=True,\n verbose_name='ip段')\n", (569, 644), False, 'from django.db import migrations, models\n'), ((672, 744), 'django.db.models.GenericIPAddressField', 'models.GenericIPAddressField', ([], {'blank': '(True)', 'null': '(True)', 'verbose_name': '"""开始ip"""'}), "(blank=True, null=True, verbose_name='开始ip')\n", (700, 744), False, 'from django.db import migrations, models\n'), ((774, 846), 'django.db.models.GenericIPAddressField', 'models.GenericIPAddressField', ([], {'blank': '(True)', 'null': '(True)', 'verbose_name': '"""结束ip"""'}), "(blank=True, null=True, verbose_name='结束ip')\n", (802, 846), False, 'from django.db import migrations, models\n'), ((875, 936), 'django.db.models.IntegerField', 'models.IntegerField', ([], {'blank': '(True)', 'null': '(True)', 'verbose_name': '"""总量"""'}), "(blank=True, null=True, verbose_name='总量')\n", (894, 936), False, 'from django.db import migrations, models\n'), ((969, 1033), 'django.db.models.DateTimeField', 'models.DateTimeField', ([], {'blank': '(True)', 'null': '(True)', 'verbose_name': '"""处理时间"""'}), "(blank=True, null=True, verbose_name='处理时间')\n", (989, 1033), False, 'from django.db import migrations, models\n'), ((1064, 1179), 'django.db.models.ForeignKey', 'models.ForeignKey', ([], {'on_delete': 'django.db.models.deletion.CASCADE', 'to': '"""scanBase.CountryInfo"""', 'verbose_name': '"""所属国家"""'}), "(on_delete=django.db.models.deletion.CASCADE, to=\n 'scanBase.CountryInfo', verbose_name='所属国家')\n", (1081, 1179), False, 'from django.db import migrations, models\n')]
import unittest from nanoservice import Responder from nanoservice import Requester class BaseTestCase(unittest.TestCase): def setUp(self): addr = 'inproc://test' self.client = Requester(addr) self.service = Responder(addr) self.service.register('divide', lambda x, y: x / y) self.service.register('echo', lambda x: x) def tearDown(self): self.client.socket.close() self.service.socket.close() class TestClient(BaseTestCase): def test_build_payload(self): payload = self.client.build_payload('echo', 'My Name') method, args, ref = payload self.assertTrue(method == 'echo') self.assertTrue(len(payload) == 3) def test_encoder(self): data = {'name': '<NAME>'} encoded = self.client.encode(data) decoded = self.client.decode(encoded) self.assertEqual(data, decoded) def test_call_wo_receive(self): # Requester side ops method, args = 'echo', 'hello world' payload = self.client.build_payload(method, args) self.client.socket.send(self.client.encode(payload)) # Responder side ops method, args, ref = self.service.receive() self.assertEqual(method, 'echo') self.assertEqual(args, 'hello world') self.assertEqual(ref, payload[2]) def test_basic_socket_operation(self): msg = 'abc' self.client.socket.send(msg) res = self.service.socket.recv().decode('utf-8') self.assertEqual(msg, res) def test_timeout(self): c = Requester('inproc://timeout', timeouts=(1, 1)) c.socket.send('hello') self.assertRaises(Exception, c.socket.recv) if __name__ == '__main__': unittest.main()
[ "unittest.main", "nanoservice.Requester", "nanoservice.Responder" ]
[((1743, 1758), 'unittest.main', 'unittest.main', ([], {}), '()\n', (1756, 1758), False, 'import unittest\n'), ((201, 216), 'nanoservice.Requester', 'Requester', (['addr'], {}), '(addr)\n', (210, 216), False, 'from nanoservice import Requester\n'), ((240, 255), 'nanoservice.Responder', 'Responder', (['addr'], {}), '(addr)\n', (249, 255), False, 'from nanoservice import Responder\n'), ((1581, 1627), 'nanoservice.Requester', 'Requester', (['"""inproc://timeout"""'], {'timeouts': '(1, 1)'}), "('inproc://timeout', timeouts=(1, 1))\n", (1590, 1627), False, 'from nanoservice import Requester\n')]
import unittest class LexerTestCase(unittest.TestCase): def makeLexer(self, text): from spi import Lexer lexer = Lexer(text) return lexer def test_tokens(self): from spi import TokenType records = ( ('234', TokenType.INTEGER_CONST, 234), ('3.14', TokenType.REAL_CONST, 3.14), ('*', TokenType.MUL, '*'), ('DIV', TokenType.INTEGER_DIV, 'DIV'), ('/', TokenType.FLOAT_DIV, '/'), ('+', TokenType.PLUS, '+'), ('-', TokenType.MINUS, '-'), ('(', TokenType.LPAREN, '('), (')', TokenType.RPAREN, ')'), (':=', TokenType.ASSIGN, ':='), ('.', TokenType.DOT, '.'), ('number', TokenType.ID, 'number'), (';', TokenType.SEMI, ';'), ('BEGIN', TokenType.BEGIN, 'BEGIN'), ('END', TokenType.END, 'END'), ('PROCEDURE', TokenType.PROCEDURE, 'PROCEDURE'), ) for text, tok_type, tok_val in records: lexer = self.makeLexer(text) token = lexer.get_next_token() self.assertEqual(token.type, tok_type) self.assertEqual(token.value, tok_val) def test_lexer_exception(self): from spi import LexerError lexer = self.makeLexer('<') with self.assertRaises(LexerError): lexer.get_next_token() class ParserTestCase(unittest.TestCase): def makeParser(self, text): from spi import Lexer, Parser lexer = Lexer(text) parser = Parser(lexer) return parser def test_expression_invalid_syntax_01(self): from spi import ParserError, ErrorCode parser = self.makeParser( """ PROGRAM Test; VAR a : INTEGER; BEGIN a := 10 * ; {Invalid syntax} END. """ ) with self.assertRaises(ParserError) as cm: parser.parse() the_exception = cm.exception self.assertEqual(the_exception.error_code, ErrorCode.UNEXPECTED_TOKEN) self.assertEqual(the_exception.token.value, ';') self.assertEqual(the_exception.token.lineno, 6) def test_expression_invalid_syntax_02(self): from spi import ParserError, ErrorCode parser = self.makeParser( """ PROGRAM Test; VAR a : INTEGER; BEGIN a := 1 (1 + 2); {Invalid syntax} END. """ ) with self.assertRaises(ParserError) as cm: parser.parse() the_exception = cm.exception self.assertEqual(the_exception.error_code, ErrorCode.UNEXPECTED_TOKEN) self.assertEqual(the_exception.token.value, '(') self.assertEqual(the_exception.token.lineno, 6) def test_maximum_one_VAR_block_is_allowed(self): from spi import ParserError, ErrorCode # zero VARs parser = self.makeParser( """ PROGRAM Test; BEGIN END. """ ) parser.parse() # one VAR parser = self.makeParser( """ PROGRAM Test; VAR a : INTEGER; BEGIN END. """ ) parser.parse() parser = self.makeParser( """ PROGRAM Test; VAR a : INTEGER; VAR b : INTEGER; BEGIN a := 5; b := a + 10; END. """ ) with self.assertRaises(ParserError) as cm: parser.parse() the_exception = cm.exception self.assertEqual(the_exception.error_code, ErrorCode.UNEXPECTED_TOKEN) self.assertEqual(the_exception.token.value, 'VAR') self.assertEqual(the_exception.token.lineno, 5) # second VAR class SemanticAnalyzerTestCase(unittest.TestCase): def runSemanticAnalyzer(self, text): from spi import Lexer, Parser, SemanticAnalyzer lexer = Lexer(text) parser = Parser(lexer) tree = parser.parse() semantic_analyzer = SemanticAnalyzer() semantic_analyzer.visit(tree) return semantic_analyzer def test_semantic_duplicate_id_error(self): from spi import SemanticError, ErrorCode with self.assertRaises(SemanticError) as cm: self.runSemanticAnalyzer( """ PROGRAM Test; VAR a : INTEGER; a : REAL; {Duplicate identifier} BEGIN a := 5; END. """ ) the_exception = cm.exception self.assertEqual(the_exception.error_code, ErrorCode.DUPLICATE_ID) self.assertEqual(the_exception.token.value, 'a') self.assertEqual(the_exception.token.lineno, 5) def test_semantic_id_not_found_error(self): from spi import SemanticError, ErrorCode with self.assertRaises(SemanticError) as cm: self.runSemanticAnalyzer( """ PROGRAM Test; VAR a : INTEGER; BEGIN a := 5 + b; END. """ ) the_exception = cm.exception self.assertEqual(the_exception.error_code, ErrorCode.ID_NOT_FOUND) self.assertEqual(the_exception.token.value, 'b') class TestCallStack: def __init__(self): self._records = [] def push(self, ar): self._records.append(ar) def pop(self): # do nothing pass def peek(self): return self._records[-1] class InterpreterTestCase(unittest.TestCase): def makeInterpreter(self, text): from spi import Lexer, Parser, SemanticAnalyzer, Interpreter lexer = Lexer(text) parser = Parser(lexer) tree = parser.parse() semantic_analyzer = SemanticAnalyzer() semantic_analyzer.visit(tree) interpreter = Interpreter(tree) interpreter.call_stack = TestCallStack() return interpreter def test_integer_arithmetic_expressions(self): for expr, result in ( ('3', 3), ('2 + 7 * 4', 30), ('7 - 8 DIV 4', 5), ('14 + 2 * 3 - 6 DIV 2', 17), ('7 + 3 * (10 DIV (12 DIV (3 + 1) - 1))', 22), ('7 + 3 * (10 DIV (12 DIV (3 + 1) - 1)) DIV (2 + 3) - 5 - 3 + (8)', 10), ('7 + (((3 + 2)))', 12), ('- 3', -3), ('+ 3', 3), ('5 - - - + - 3', 8), ('5 - - - + - (3 + 4) - +2', 10), ): interpreter = self.makeInterpreter( """PROGRAM Test; VAR a : INTEGER; BEGIN a := %s END. """ % expr ) interpreter.interpret() ar = interpreter.call_stack.peek() self.assertEqual(ar['a'], result) def test_float_arithmetic_expressions(self): for expr, result in ( ('3.14', 3.14), ('2.14 + 7 * 4', 30.14), ('7.14 - 8 / 4', 5.14), ): interpreter = self.makeInterpreter( """PROGRAM Test; VAR a : REAL; BEGIN a := %s END. """ % expr ) interpreter.interpret() ar = interpreter.call_stack.peek() self.assertEqual(ar['a'], result) def test_procedure_call(self): text = """\ program Main; procedure Alpha(a : integer; b : integer); var x : integer; begin x := (a + b ) * 2; end; begin { Main } Alpha(3 + 5, 7); end. { Main } """ interpreter = self.makeInterpreter(text) interpreter.interpret() ar = interpreter.call_stack.peek() self.assertEqual(ar['a'], 8) self.assertEqual(ar['b'], 7) self.assertEqual(ar['x'], 30) self.assertEqual(ar.nesting_level, 2) def test_program(self): text = """\ PROGRAM Part12; VAR number : INTEGER; a, b : INTEGER; y : REAL; PROCEDURE P1; VAR a : REAL; k : INTEGER; PROCEDURE P2; VAR a, z : INTEGER; BEGIN {P2} z := 777; END; {P2} BEGIN {P1} END; {P1} BEGIN {Part12} number := 2; a := number ; b := 10 * a + 10 * number DIV 4; y := 20 / 7 + 3.14 END. {Part12} """ interpreter = self.makeInterpreter(text) interpreter.interpret() ar = interpreter.call_stack.peek() self.assertEqual(len(ar.members.keys()), 4) self.assertEqual(ar['number'], 2) self.assertEqual(ar['a'], 2) self.assertEqual(ar['b'], 25) self.assertAlmostEqual(ar['y'], float(20) / 7 + 3.14) # 5.9971... if __name__ == '__main__': unittest.main()
[ "spi.Lexer", "spi.SemanticAnalyzer", "spi.Interpreter", "unittest.main", "spi.Parser" ]
[((9013, 9028), 'unittest.main', 'unittest.main', ([], {}), '()\n', (9026, 9028), False, 'import unittest\n'), ((135, 146), 'spi.Lexer', 'Lexer', (['text'], {}), '(text)\n', (140, 146), False, 'from spi import Lexer, Parser, SemanticAnalyzer, Interpreter\n'), ((1535, 1546), 'spi.Lexer', 'Lexer', (['text'], {}), '(text)\n', (1540, 1546), False, 'from spi import Lexer, Parser, SemanticAnalyzer, Interpreter\n'), ((1564, 1577), 'spi.Parser', 'Parser', (['lexer'], {}), '(lexer)\n', (1570, 1577), False, 'from spi import Lexer, Parser, SemanticAnalyzer, Interpreter\n'), ((4138, 4149), 'spi.Lexer', 'Lexer', (['text'], {}), '(text)\n', (4143, 4149), False, 'from spi import Lexer, Parser, SemanticAnalyzer, Interpreter\n'), ((4167, 4180), 'spi.Parser', 'Parser', (['lexer'], {}), '(lexer)\n', (4173, 4180), False, 'from spi import Lexer, Parser, SemanticAnalyzer, Interpreter\n'), ((4240, 4258), 'spi.SemanticAnalyzer', 'SemanticAnalyzer', ([], {}), '()\n', (4256, 4258), False, 'from spi import Lexer, Parser, SemanticAnalyzer, Interpreter\n'), ((5916, 5927), 'spi.Lexer', 'Lexer', (['text'], {}), '(text)\n', (5921, 5927), False, 'from spi import Lexer, Parser, SemanticAnalyzer, Interpreter\n'), ((5945, 5958), 'spi.Parser', 'Parser', (['lexer'], {}), '(lexer)\n', (5951, 5958), False, 'from spi import Lexer, Parser, SemanticAnalyzer, Interpreter\n'), ((6018, 6036), 'spi.SemanticAnalyzer', 'SemanticAnalyzer', ([], {}), '()\n', (6034, 6036), False, 'from spi import Lexer, Parser, SemanticAnalyzer, Interpreter\n'), ((6098, 6115), 'spi.Interpreter', 'Interpreter', (['tree'], {}), '(tree)\n', (6109, 6115), False, 'from spi import Lexer, Parser, SemanticAnalyzer, Interpreter\n')]
from pygame import Surface, font from copy import copy from random import randint, choice import string from lib.transactionButton import TransactionButton SHOP_PREFIX = ["archer", "baker", "fisher", "miller", "rancher", "robber"] SHOP_SUFFIX = ["cave", "creek", "desert", "farm", "field", "forest", "hill", "lake", "mountain", "pass", "valley", "woods"] class Shop(): def __init__(self, name, inventory, priceModifier, groupInventory, groupMoney, itemPrices, position, blitPosition, money, resourcePath): self.yValue = 40 self.groupInventory = groupInventory self.groupMoney = groupMoney self.priceModifier = priceModifier self.itemPrices = itemPrices self.inventory = inventory self.position = position self.blitPosition = blitPosition self.resourcePath = resourcePath self.buyButtonList = [] self.sellButtonList = [] self.xPos = (-self.position * 40) + 1280 self.shopSurface = Surface((500, 300)).convert() self.sepLine = Surface((self.shopSurface.get_width(), 10)).convert() self.sepLine.fill((0, 0, 0)) self.invContainer = Surface((self.shopSurface.get_width() - 20, self.shopSurface.get_height() / 2 - 35)).convert() self.invContainer.fill((255, 255, 255)) self.titleFont = font.Font("res/fonts/west.ttf", 17) self.textFont = font.Font("res/fonts/west.ttf", 15) if (name == ""): self.name = (choice(SHOP_PREFIX) + "'s " + choice(SHOP_SUFFIX)).capitalize() else: self.name = name if (self.inventory == {}): inventoryRandom = copy(self.groupInventory) for key in list(inventoryRandom.keys()): inventoryRandom[key] = randint(0, 10) inventoryRandom["Food"] *= 20 self.inventory = inventoryRandom if (money is None): self.money = randint(200, 500) else: self.name = name self.render() def get_surface(self): self.render() return self.shopSurface def update(self, groupInv, groupMoney): self.groupInventory = groupInv self.groupMoney = groupMoney self.render() def move(self, moveValue): self.xPos += (2 * moveValue) self.render() def render(self): self.yValue = 40 self.shopSurface.fill((133, 94, 66)) self.shopSurface.blit(self.titleFont.render(self.name + " - $" + str(self.money), 1, (0, 0, 255)), (10, 5)) self.shopSurface.blit(self.invContainer, (10, 25)) self.shopSurface.blit(self.invContainer, (10, self.shopSurface.get_height() / 2 + 30)) self.shopSurface.blit(self.textFont.render("Inventory", 1, (255, 0, 0)), (10, 25)) self.shopSurface.blit(self.textFont.render("Amount", 1, (255, 0, 0)), (130, 25)) self.shopSurface.blit(self.textFont.render("Price", 1, (255, 0, 0)), (200, 25)) for key in list(self.inventory.keys()): self.shopSurface.blit(self.textFont.render(key + ":", 1, (0, 0, 0)), (10, self.yValue)) self.shopSurface.blit(self.textFont.render(str(self.inventory[key]), 1, (0, 0, 0)), (150, self.yValue)) self.shopSurface.blit(self.textFont.render("$"+str(self.itemPrices[key] * self.priceModifier), 1, (0, 0, 0)), (200, self.yValue)) if (len(self.buyButtonList) < len(self.inventory.keys())): buttonPos = tuple(map(sum, zip(self.blitPosition, (250, self.yValue)))) self.buyButtonList.append(TransactionButton(transaction = "buy", item = key, imagePosition = (250, self.yValue), rectPosition = buttonPos, resourcePath = self.resourcePath)) self.yValue += 30 for button in self.buyButtonList: self.shopSurface.blit(button.image, button.imagePosition) self.shopSurface.blit(self.sepLine, (0, float(self.shopSurface.get_height()) / 2)) self.shopSurface.blit(self.titleFont.render("You - $" + str(self.groupMoney), 1, (0, 0, 255)), (10, float(self.shopSurface.get_height()) / 2 + 10)) self.shopSurface.blit(self.titleFont.render("Inventory", 1, (255, 0, 0)), (10, float(self.shopSurface.get_height()) / 2 + 30)) self.shopSurface.blit(self.titleFont.render("Amount", 1, (255, 0, 0)), (130, float(self.shopSurface.get_height()) / 2 + 30)) self.shopSurface.blit(self.titleFont.render("Price", 1, (255, 0, 0)), (200, float(self.shopSurface.get_height()) / 2 + 30)) self.yValue = (float(self.shopSurface.get_height()) / 2) + 45 for key in list(self.groupInventory.keys()): self.shopSurface.blit(self.textFont.render(key + ":", 1, (0, 0, 0)), (10, self.yValue)) self.shopSurface.blit(self.textFont.render(str(self.groupInventory[key]), 1, (0, 0, 0)), (150, self.yValue)) self.shopSurface.blit(self.textFont.render("$" + str(self.itemPrices[key] * self.priceModifier), 1, (0, 0, 0)), (200, self.yValue)) if (len(self.sellButtonList) < len(self.inventory.keys())): buttonPos = tuple(map(sum, zip(self.blitPosition, (250, self.yValue)))) self.sellButtonList.append(TransactionButton(transaction = "sell", item = key, imagePosition = (250, self.yValue), rectPosition = buttonPos, resourcePath = self.resourcePath)) self.yValue += 30 for button in self.sellButtonList: self.shopSurface.blit(button.image, button.imagePosition)
[ "random.choice", "pygame.Surface", "copy.copy", "lib.transactionButton.TransactionButton", "pygame.font.Font", "random.randint" ]
[((1236, 1271), 'pygame.font.Font', 'font.Font', (['"""res/fonts/west.ttf"""', '(17)'], {}), "('res/fonts/west.ttf', 17)\n", (1245, 1271), False, 'from pygame import Surface, font\n'), ((1290, 1325), 'pygame.font.Font', 'font.Font', (['"""res/fonts/west.ttf"""', '(15)'], {}), "('res/fonts/west.ttf', 15)\n", (1299, 1325), False, 'from pygame import Surface, font\n'), ((1510, 1535), 'copy.copy', 'copy', (['self.groupInventory'], {}), '(self.groupInventory)\n', (1514, 1535), False, 'from copy import copy\n'), ((1738, 1755), 'random.randint', 'randint', (['(200)', '(500)'], {}), '(200, 500)\n', (1745, 1755), False, 'from random import randint, choice\n'), ((913, 932), 'pygame.Surface', 'Surface', (['(500, 300)'], {}), '((500, 300))\n', (920, 932), False, 'from pygame import Surface, font\n'), ((1607, 1621), 'random.randint', 'randint', (['(0)', '(10)'], {}), '(0, 10)\n', (1614, 1621), False, 'from random import randint, choice\n'), ((3230, 3371), 'lib.transactionButton.TransactionButton', 'TransactionButton', ([], {'transaction': '"""buy"""', 'item': 'key', 'imagePosition': '(250, self.yValue)', 'rectPosition': 'buttonPos', 'resourcePath': 'self.resourcePath'}), "(transaction='buy', item=key, imagePosition=(250, self.\n yValue), rectPosition=buttonPos, resourcePath=self.resourcePath)\n", (3247, 3371), False, 'from lib.transactionButton import TransactionButton\n'), ((4905, 5047), 'lib.transactionButton.TransactionButton', 'TransactionButton', ([], {'transaction': '"""sell"""', 'item': 'key', 'imagePosition': '(250, self.yValue)', 'rectPosition': 'buttonPos', 'resourcePath': 'self.resourcePath'}), "(transaction='sell', item=key, imagePosition=(250, self.\n yValue), rectPosition=buttonPos, resourcePath=self.resourcePath)\n", (4922, 5047), False, 'from lib.transactionButton import TransactionButton\n'), ((1394, 1413), 'random.choice', 'choice', (['SHOP_SUFFIX'], {}), '(SHOP_SUFFIX)\n', (1400, 1413), False, 'from random import randint, choice\n'), ((1364, 1383), 'random.choice', 'choice', (['SHOP_PREFIX'], {}), '(SHOP_PREFIX)\n', (1370, 1383), False, 'from random import randint, choice\n')]
import tkinter.messagebox from tkinter import * import tkinter as tk from tkinter import filedialog import numpy import pytesseract #Python wrapper for Google-owned OCR engine known by the name of Tesseract. import cv2 from PIL import Image, ImageTk import os root = tk.Tk() root.title("Object Character Recognizer") root.geometry("1280x720") test_image = None def browse_image(): fin = filedialog.askopenfilename(initialdir=os.getcwd(), title="Select Image File", filetypes=(("PNG Files", "*.png"), ("JPG Files", "*.jpg"), ("All Files", "*.*"))) global test_image image = Image.open(fin) test_image = image img = ImageTk.PhotoImage(image.resize((650, 400))) lb = tk.Label(image=img) lb.place(x=25, y=50) root.mainloop() def use_ocr_default(): try: global test_image messge = None #OEM stands for OCR Engine Mode and PSM stands for Page Segmentation Mode. #OEM defines what kind of OCR engine is to be used (this defines the dataset that would be used to cross-match #the available data with the testing data). #PSM defines how Tesseract will treat the image that supposedly contains characters and how it will extract the #data from the image. tess = pytesseract.image_to_string(test_image, config='-l eng --oem 1 --psm 3') label = Label(messge, text='Result:') label.place(x=850, y=320) display_message = Text(messge, width=46, height=15) display_message.insert(END, str(tess)) display_message.config(state=DISABLED) display_message.delete(0, END) display_message.place(x=890, y=330) except: #Print a error message when the user inputs an incompatible image. tkinter.messagebox.showinfo('Something\'s Wrong!', 'Your picture may not contain English characters or you may have not selected a picture. Please select a picture with detectable English characters.') def use_ocr_handwriting(): try: global test_image opencv_img = numpy.array(test_image) opencv_img = opencv_img[:, :, ::-1].copy() #This line is used to convert RGB PIL image file to BGR cv2 image file. blurred_img = cv2.medianBlur(opencv_img, 5) gray_img = cv2.cvtColor(blurred_img, cv2.COLOR_BGR2GRAY) thresh, binary = cv2.threshold(gray_img, 122, 255, cv2.THRESH_BINARY) messge = None tess = pytesseract.image_to_string(binary, config='-l eng --oem 1 --psm 3') label = Label(messge, text='Result:') label.place(x=850, y=320) display_message = Text(messge, width=46, height=15) display_message.insert(END, str(tess)) display_message.config(state=DISABLED) display_message.delete(0, END) display_message.place(x=890, y=330) except: tkinter.messagebox.showinfo('Something\'s Wrong!', 'Your picture may not contain English characters or you may have not selected a picture. Please select a picture with detectable English characters.') def use_ocr_singletext(): try: global test_image messge = None tess = pytesseract.image_to_string(test_image, config='-l eng --oem 1 --psm 7') label = Label(messge, text='Result:') label.place(x=850, y=320) display_message = Text(messge, width=46, height=15) display_message.insert(END, str(tess)) display_message.config(state=DISABLED) display_message.delete(0, END) display_message.place(x=890, y=330) except: tkinter.messagebox.showinfo('Something\'s Wrong!', 'Your picture may not contain English characters or you may have not selected a picture. Please select a picture with detectable English characters.') w = tk.LabelFrame(root, text="Image:", width=768, height=600) w.place(x=20, y=10) w.pack_propagate(0) w1 = tk.LabelFrame(root, text="Extracted Text:", width=500, height=310) w1.place(x=800, y=300) w2 = tk.LabelFrame(root, text="Operations:", width=350, height=280) w2.place(x=800, y=10) btn1 = tk.Button(w2, text="Load Image", padx=40, pady=10, command=browse_image) btn1.place(x=22, y=20) btn1 = tk.Button(w2, text="Run Handwritten OCR", padx=40, pady=10, command=use_ocr_handwriting) btn1.place(x=22, y=80) btn1 = tk.Button(w2, text="Run Default OCR", padx=40, pady=10, command=use_ocr_default) btn1.place(x=22, y=140) btn1 = tk.Button(w2, text="Run Single Text OCR", padx=40, pady=10, command=use_ocr_singletext) btn1.place(x=22, y=200) root.mainloop()
[ "tkinter.LabelFrame", "PIL.Image.open", "cv2.threshold", "cv2.medianBlur", "tkinter.Button", "os.getcwd", "numpy.array", "tkinter.Tk", "tkinter.Label", "pytesseract.image_to_string", "cv2.cvtColor" ]
[((268, 275), 'tkinter.Tk', 'tk.Tk', ([], {}), '()\n', (273, 275), True, 'import tkinter as tk\n'), ((3726, 3783), 'tkinter.LabelFrame', 'tk.LabelFrame', (['root'], {'text': '"""Image:"""', 'width': '(768)', 'height': '(600)'}), "(root, text='Image:', width=768, height=600)\n", (3739, 3783), True, 'import tkinter as tk\n'), ((3829, 3895), 'tkinter.LabelFrame', 'tk.LabelFrame', (['root'], {'text': '"""Extracted Text:"""', 'width': '(500)', 'height': '(310)'}), "(root, text='Extracted Text:', width=500, height=310)\n", (3842, 3895), True, 'import tkinter as tk\n'), ((3924, 3986), 'tkinter.LabelFrame', 'tk.LabelFrame', (['root'], {'text': '"""Operations:"""', 'width': '(350)', 'height': '(280)'}), "(root, text='Operations:', width=350, height=280)\n", (3937, 3986), True, 'import tkinter as tk\n'), ((4016, 4088), 'tkinter.Button', 'tk.Button', (['w2'], {'text': '"""Load Image"""', 'padx': '(40)', 'pady': '(10)', 'command': 'browse_image'}), "(w2, text='Load Image', padx=40, pady=10, command=browse_image)\n", (4025, 4088), True, 'import tkinter as tk\n'), ((4119, 4212), 'tkinter.Button', 'tk.Button', (['w2'], {'text': '"""Run Handwritten OCR"""', 'padx': '(40)', 'pady': '(10)', 'command': 'use_ocr_handwriting'}), "(w2, text='Run Handwritten OCR', padx=40, pady=10, command=\n use_ocr_handwriting)\n", (4128, 4212), True, 'import tkinter as tk\n'), ((4238, 4323), 'tkinter.Button', 'tk.Button', (['w2'], {'text': '"""Run Default OCR"""', 'padx': '(40)', 'pady': '(10)', 'command': 'use_ocr_default'}), "(w2, text='Run Default OCR', padx=40, pady=10, command=use_ocr_default\n )\n", (4247, 4323), True, 'import tkinter as tk\n'), ((4350, 4442), 'tkinter.Button', 'tk.Button', (['w2'], {'text': '"""Run Single Text OCR"""', 'padx': '(40)', 'pady': '(10)', 'command': 'use_ocr_singletext'}), "(w2, text='Run Single Text OCR', padx=40, pady=10, command=\n use_ocr_singletext)\n", (4359, 4442), True, 'import tkinter as tk\n'), ((589, 604), 'PIL.Image.open', 'Image.open', (['fin'], {}), '(fin)\n', (599, 604), False, 'from PIL import Image, ImageTk\n'), ((692, 711), 'tkinter.Label', 'tk.Label', ([], {'image': 'img'}), '(image=img)\n', (700, 711), True, 'import tkinter as tk\n'), ((1257, 1329), 'pytesseract.image_to_string', 'pytesseract.image_to_string', (['test_image'], {'config': '"""-l eng --oem 1 --psm 3"""'}), "(test_image, config='-l eng --oem 1 --psm 3')\n", (1284, 1329), False, 'import pytesseract\n'), ((2021, 2044), 'numpy.array', 'numpy.array', (['test_image'], {}), '(test_image)\n', (2032, 2044), False, 'import numpy\n'), ((2190, 2219), 'cv2.medianBlur', 'cv2.medianBlur', (['opencv_img', '(5)'], {}), '(opencv_img, 5)\n', (2204, 2219), False, 'import cv2\n'), ((2239, 2284), 'cv2.cvtColor', 'cv2.cvtColor', (['blurred_img', 'cv2.COLOR_BGR2GRAY'], {}), '(blurred_img, cv2.COLOR_BGR2GRAY)\n', (2251, 2284), False, 'import cv2\n'), ((2310, 2362), 'cv2.threshold', 'cv2.threshold', (['gray_img', '(122)', '(255)', 'cv2.THRESH_BINARY'], {}), '(gray_img, 122, 255, cv2.THRESH_BINARY)\n', (2323, 2362), False, 'import cv2\n'), ((2400, 2468), 'pytesseract.image_to_string', 'pytesseract.image_to_string', (['binary'], {'config': '"""-l eng --oem 1 --psm 3"""'}), "(binary, config='-l eng --oem 1 --psm 3')\n", (2427, 2468), False, 'import pytesseract\n'), ((3108, 3180), 'pytesseract.image_to_string', 'pytesseract.image_to_string', (['test_image'], {'config': '"""-l eng --oem 1 --psm 7"""'}), "(test_image, config='-l eng --oem 1 --psm 7')\n", (3135, 3180), False, 'import pytesseract\n'), ((432, 443), 'os.getcwd', 'os.getcwd', ([], {}), '()\n', (441, 443), False, 'import os\n')]
# Copyright (c) 2017, Lawrence Livermore National Security, LLC. Produced at # the Lawrence Livermore National Laboratory. LLNL-CODE-734707. All Rights # reserved. See files LICENSE and NOTICE for details. # # This file is part of CEED, a collection of benchmarks, miniapps, software # libraries and APIs for efficient high-order finite element and spectral # element discretizations for exascale applications. For more information and # source code availability see http://github.com/ceed. # # The CEED research is supported by the Exascale Computing Project 17-SC-20-SC, # a collaborative effort of two U.S. Department of Energy organizations (Office # of Science and the National Nuclear Security Administration) responsible for # the planning and preparation of a capable exascale ecosystem, including # software, applications, hardware, advanced system engineering and early # testbed platforms, in support of the nation's exascale computing imperative. # @file # Test Ceed Vector functionality import os import libceed import numpy as np import check TOL = libceed.EPSILON * 256 # ------------------------------------------------------------------------------- # Utility # ------------------------------------------------------------------------------- def check_values(ceed, x, value): with x.array_read() as b: for i in range(len(b)): assert b[i] == value # ------------------------------------------------------------------------------- # Test creation, setting, reading, restoring, and destroying of a vector # ------------------------------------------------------------------------------- def test_100(ceed_resource): ceed = libceed.Ceed(ceed_resource) n = 10 x = ceed.Vector(n) a = np.arange(10, 10 + n, dtype=ceed.scalar_type()) x.set_array(a, cmode=libceed.USE_POINTER) with x.array_read() as b: for i in range(n): assert b[i] == 10 + i # ------------------------------------------------------------------------------- # Test setValue # ------------------------------------------------------------------------------- def test_101(ceed_resource): ceed = libceed.Ceed(ceed_resource) n = 10 x = ceed.Vector(n) value = 1 a = np.arange(10, 10 + n, dtype=ceed.scalar_type()) x.set_array(a, cmode=libceed.USE_POINTER) with x.array() as b: for i in range(len(b)): assert b[i] == 10 + i x.set_value(3.0) check_values(ceed, x, 3.0) del x x = ceed.Vector(n) # Set value before setting or getting the array x.set_value(5.0) check_values(ceed, x, 5.0) # ------------------------------------------------------------------------------- # Test getArrayRead state counter # ------------------------------------------------------------------------------- def test_102(ceed_resource): ceed = libceed.Ceed(ceed_resource) n = 10 x = ceed.Vector(n) x.set_value(0) # Two read accesses should not generate an error a = x.get_array_read() b = x.get_array_read() x.restore_array_read() x.restore_array_read() # ------------------------------------------------------------------------------- # Test setting one vector from array of another vector # ------------------------------------------------------------------------------- def test_103(ceed_resource): ceed = libceed.Ceed(ceed_resource) n = 10 x = ceed.Vector(n) y = ceed.Vector(n) a = np.arange(10, 10 + n, dtype=ceed.scalar_type()) x.set_array(a, cmode=libceed.USE_POINTER) with x.array() as x_array: y.set_array(x_array, cmode=libceed.USE_POINTER) with y.array_read() as y_array: for i in range(n): assert y_array[i] == 10 + i # ------------------------------------------------------------------------------- # Test getArray to modify array # ------------------------------------------------------------------------------- def test_104(ceed_resource): ceed = libceed.Ceed(ceed_resource) n = 10 x = ceed.Vector(n) a = np.zeros(n, dtype=ceed.scalar_type()) x.set_array(a, cmode=libceed.USE_POINTER) with x.array() as b: b[3] = -3.14 if libceed.lib.CEED_SCALAR_TYPE == libceed.SCALAR_FP32: assert a[3] == np.float32(-3.14) else: assert a[3] == -3.14 # ------------------------------------------------------------------------------- # Test creation, setting, reading, restoring, and destroying of a vector using # CEED_MEM_DEVICE # ------------------------------------------------------------------------------- def test_105(ceed_resource): # Skip test for non-GPU backend if 'gpu' in ceed_resource: ceed = libceed.Ceed(ceed_resource) n = 10 x = ceed.Vector(n) y = ceed.Vector(n) a = np.arange(10, 10 + n, dtype=ceed.scalar_type()) x.set_array(a, cmode=libceed.USE_POINTER) arr = x.get_array_read(memtype=libceed.MEM_DEVICE) y.set_array(arr, memtype=libceed.MEM_DEVICE) x.restore_array_read() with y.array_read() as b: for i in range(n): assert b[i] == 10 + i # ------------------------------------------------------------------------------- # Test view # ------------------------------------------------------------------------------- def test_107(ceed_resource, capsys): ceed = libceed.Ceed(ceed_resource) n = 10 x = ceed.Vector(n) a = np.arange(10, 10 + n, dtype=ceed.scalar_type()) x.set_array(a, cmode=libceed.USE_POINTER) print(x) stdout, stderr, ref_stdout = check.output(capsys) assert not stderr assert stdout == ref_stdout # ------------------------------------------------------------------------------- # Test norms # ------------------------------------------------------------------------------- def test_108(ceed_resource, capsys): ceed = libceed.Ceed(ceed_resource) n = 10 x = ceed.Vector(n) a = np.arange(0, n, dtype=ceed.scalar_type()) for i in range(n): if (i % 2 == 0): a[i] *= -1 x.set_array(a, cmode=libceed.USE_POINTER) norm = x.norm(normtype=libceed.NORM_1) assert abs(norm - 45.) < TOL norm = x.norm() assert abs(norm - np.sqrt(285.)) < TOL norm = x.norm(normtype=libceed.NORM_MAX) assert abs(norm - 9.) < TOL # ------------------------------------------------------------------------------- # Test taking the reciprocal of a vector # ------------------------------------------------------------------------------- def test_119(ceed_resource): ceed = libceed.Ceed(ceed_resource) n = 10 x = ceed.Vector(n) a = np.arange(10, 10 + n, dtype=ceed.scalar_type()) x.set_array(a, cmode=libceed.USE_POINTER) x.reciprocal() with x.array_read() as b: for i in range(n): assert abs(b[i] - 1. / (10 + i)) < TOL # ------------------------------------------------------------------------------- # Test AXPY # ------------------------------------------------------------------------------- def test_121(ceed_resource, capsys): ceed = libceed.Ceed(ceed_resource) n = 10 x = ceed.Vector(n) y = ceed.Vector(n) a = np.arange(10, 10 + n, dtype=ceed.scalar_type()) x.set_array(a, cmode=libceed.COPY_VALUES) y.set_array(a, cmode=libceed.COPY_VALUES) y.axpy(-0.5, x) with y.array() as b: assert np.allclose(.5 * a, b) # ------------------------------------------------------------------------------- # Test pointwise multiplication # ------------------------------------------------------------------------------- def test_122(ceed_resource, capsys): ceed = libceed.Ceed(ceed_resource) n = 10 w = ceed.Vector(n) x = ceed.Vector(n) y = ceed.Vector(n) a = np.arange(0, n, dtype=ceed.scalar_type()) w.set_array(a, cmode=libceed.COPY_VALUES) x.set_array(a, cmode=libceed.COPY_VALUES) y.set_array(a, cmode=libceed.COPY_VALUES) w.pointwise_mult(x, y) with w.array() as b: for i in range(len(b)): assert abs(b[i] - i * i) < 1e-14 w.pointwise_mult(w, y) with w.array() as b: for i in range(len(b)): assert abs(b[i] - i * i * i) < 1e-14 w.pointwise_mult(x, w) with w.array() as b: for i in range(len(b)): assert abs(b[i] - i * i * i * i) < 1e-14 y.pointwise_mult(y, y) with y.array() as b: for i in range(len(b)): assert abs(b[i] - i * i) < 1e-14 # ------------------------------------------------------------------------------- # Test Scale # ------------------------------------------------------------------------------- def test_123(ceed_resource, capsys): ceed = libceed.Ceed(ceed_resource) n = 10 x = ceed.Vector(n) a = np.arange(10, 10 + n, dtype=ceed.scalar_type()) x.set_array(a, cmode=libceed.COPY_VALUES) x.scale(-0.5) with x.array() as b: assert np.allclose(-.5 * a, b) # ------------------------------------------------------------------------------- # Test getArrayWrite to modify array # ------------------------------------------------------------------------------- def test_124(ceed_resource): ceed = libceed.Ceed(ceed_resource) n = 10 x = ceed.Vector(n) with x.array_write() as a: for i in range(len(a)): a[i] = 3 * i with x.array_read() as a: for i in range(len(a)): assert a[i] == 3 * i # ------------------------------------------------------------------------------- # Test modification of reshaped array # ------------------------------------------------------------------------------- def test_199(ceed_resource): """Modification of reshaped array""" ceed = libceed.Ceed(ceed_resource) vec = ceed.Vector(12) vec.set_value(0.0) with vec.array(4, 3) as x: x[...] = np.eye(4, 3) with vec.array_read(3, 4) as x: assert np.all(x == np.eye(4, 3).reshape(3, 4)) # -------------------------------------------------------------------------------
[ "numpy.eye", "libceed.Ceed", "numpy.allclose", "numpy.sqrt", "check.output", "numpy.float32" ]
[((1674, 1701), 'libceed.Ceed', 'libceed.Ceed', (['ceed_resource'], {}), '(ceed_resource)\n', (1686, 1701), False, 'import libceed\n'), ((2155, 2182), 'libceed.Ceed', 'libceed.Ceed', (['ceed_resource'], {}), '(ceed_resource)\n', (2167, 2182), False, 'import libceed\n'), ((2857, 2884), 'libceed.Ceed', 'libceed.Ceed', (['ceed_resource'], {}), '(ceed_resource)\n', (2869, 2884), False, 'import libceed\n'), ((3364, 3391), 'libceed.Ceed', 'libceed.Ceed', (['ceed_resource'], {}), '(ceed_resource)\n', (3376, 3391), False, 'import libceed\n'), ((3985, 4012), 'libceed.Ceed', 'libceed.Ceed', (['ceed_resource'], {}), '(ceed_resource)\n', (3997, 4012), False, 'import libceed\n'), ((5390, 5417), 'libceed.Ceed', 'libceed.Ceed', (['ceed_resource'], {}), '(ceed_resource)\n', (5402, 5417), False, 'import libceed\n'), ((5604, 5624), 'check.output', 'check.output', (['capsys'], {}), '(capsys)\n', (5616, 5624), False, 'import check\n'), ((5907, 5934), 'libceed.Ceed', 'libceed.Ceed', (['ceed_resource'], {}), '(ceed_resource)\n', (5919, 5934), False, 'import libceed\n'), ((6608, 6635), 'libceed.Ceed', 'libceed.Ceed', (['ceed_resource'], {}), '(ceed_resource)\n', (6620, 6635), False, 'import libceed\n'), ((7129, 7156), 'libceed.Ceed', 'libceed.Ceed', (['ceed_resource'], {}), '(ceed_resource)\n', (7141, 7156), False, 'import libceed\n'), ((7695, 7722), 'libceed.Ceed', 'libceed.Ceed', (['ceed_resource'], {}), '(ceed_resource)\n', (7707, 7722), False, 'import libceed\n'), ((8753, 8780), 'libceed.Ceed', 'libceed.Ceed', (['ceed_resource'], {}), '(ceed_resource)\n', (8765, 8780), False, 'import libceed\n'), ((9246, 9273), 'libceed.Ceed', 'libceed.Ceed', (['ceed_resource'], {}), '(ceed_resource)\n', (9258, 9273), False, 'import libceed\n'), ((9781, 9808), 'libceed.Ceed', 'libceed.Ceed', (['ceed_resource'], {}), '(ceed_resource)\n', (9793, 9808), False, 'import libceed\n'), ((4706, 4733), 'libceed.Ceed', 'libceed.Ceed', (['ceed_resource'], {}), '(ceed_resource)\n', (4718, 4733), False, 'import libceed\n'), ((7425, 7448), 'numpy.allclose', 'np.allclose', (['(0.5 * a)', 'b'], {}), '(0.5 * a, b)\n', (7436, 7448), True, 'import numpy as np\n'), ((8978, 9002), 'numpy.allclose', 'np.allclose', (['(-0.5 * a)', 'b'], {}), '(-0.5 * a, b)\n', (8989, 9002), True, 'import numpy as np\n'), ((9907, 9919), 'numpy.eye', 'np.eye', (['(4)', '(3)'], {}), '(4, 3)\n', (9913, 9919), True, 'import numpy as np\n'), ((4272, 4289), 'numpy.float32', 'np.float32', (['(-3.14)'], {}), '(-3.14)\n', (4282, 4289), True, 'import numpy as np\n'), ((6260, 6274), 'numpy.sqrt', 'np.sqrt', (['(285.0)'], {}), '(285.0)\n', (6267, 6274), True, 'import numpy as np\n'), ((9984, 9996), 'numpy.eye', 'np.eye', (['(4)', '(3)'], {}), '(4, 3)\n', (9990, 9996), True, 'import numpy as np\n')]
from YouTubeFacesDB import generate_ytf_database ############################################################################### # Create the dataset ############################################################################### generate_ytf_database( directory= '../data',#'/scratch/vitay/Datasets/YouTubeFaces', # Location of the YTF dataset filename='ytfdb.h5', # Name of the HDF5 file to write to labels=10, # Number of labels to randomly select max_number=-1, # Maximum number of images to use size=(100, 100), # Size of the images color=False, # Black and white bw_first=True, # Final shape is (1, w, h) cropped=True # The original images are cropped to the faces )
[ "YouTubeFacesDB.generate_ytf_database" ]
[((231, 383), 'YouTubeFacesDB.generate_ytf_database', 'generate_ytf_database', ([], {'directory': '"""../data"""', 'filename': '"""ytfdb.h5"""', 'labels': '(10)', 'max_number': '(-1)', 'size': '(100, 100)', 'color': '(False)', 'bw_first': '(True)', 'cropped': '(True)'}), "(directory='../data', filename='ytfdb.h5', labels=10,\n max_number=-1, size=(100, 100), color=False, bw_first=True, cropped=True)\n", (252, 383), False, 'from YouTubeFacesDB import generate_ytf_database\n')]
from freezegun import freeze_time from rest_framework import test from waldur_mastermind.billing.tests.utils import get_financial_report_url from waldur_mastermind.invoices import models as invoice_models from waldur_mastermind.invoices.tests import factories as invoice_factories from waldur_mastermind.invoices.tests import fixtures as invoice_fixtures @freeze_time('2017-01-10') class PriceCurrentTest(test.APITransactionTestCase): def setUp(self): self.fixture = invoice_fixtures.InvoiceFixture() invoice_factories.InvoiceItemFactory( invoice=self.fixture.invoice, project=self.fixture.project, unit=invoice_models.InvoiceItem.Units.PER_MONTH, unit_price=100, quantity=1, ) invoice_factories.InvoiceItemFactory( invoice=self.fixture.invoice, project=self.fixture.project, unit=invoice_models.InvoiceItem.Units.PER_DAY, unit_price=3, quantity=31, ) def test_current_price(self): self.client.force_authenticate(self.fixture.staff) url = get_financial_report_url(self.fixture.project.customer) response = self.client.get(url) self.assertEqual(response.status_code, 200) data = response.json() self.assertEqual(data['billing_price_estimate']['current'], 100 + 9 * 3) diff = ( data['billing_price_estimate']['total'] - data['billing_price_estimate']['current'] ) self.assertEqual(diff, 22 * 3)
[ "waldur_mastermind.invoices.tests.fixtures.InvoiceFixture", "freezegun.freeze_time", "waldur_mastermind.invoices.tests.factories.InvoiceItemFactory", "waldur_mastermind.billing.tests.utils.get_financial_report_url" ]
[((359, 384), 'freezegun.freeze_time', 'freeze_time', (['"""2017-01-10"""'], {}), "('2017-01-10')\n", (370, 384), False, 'from freezegun import freeze_time\n'), ((482, 515), 'waldur_mastermind.invoices.tests.fixtures.InvoiceFixture', 'invoice_fixtures.InvoiceFixture', ([], {}), '()\n', (513, 515), True, 'from waldur_mastermind.invoices.tests import fixtures as invoice_fixtures\n'), ((525, 707), 'waldur_mastermind.invoices.tests.factories.InvoiceItemFactory', 'invoice_factories.InvoiceItemFactory', ([], {'invoice': 'self.fixture.invoice', 'project': 'self.fixture.project', 'unit': 'invoice_models.InvoiceItem.Units.PER_MONTH', 'unit_price': '(100)', 'quantity': '(1)'}), '(invoice=self.fixture.invoice, project=\n self.fixture.project, unit=invoice_models.InvoiceItem.Units.PER_MONTH,\n unit_price=100, quantity=1)\n', (561, 707), True, 'from waldur_mastermind.invoices.tests import factories as invoice_factories\n'), ((778, 957), 'waldur_mastermind.invoices.tests.factories.InvoiceItemFactory', 'invoice_factories.InvoiceItemFactory', ([], {'invoice': 'self.fixture.invoice', 'project': 'self.fixture.project', 'unit': 'invoice_models.InvoiceItem.Units.PER_DAY', 'unit_price': '(3)', 'quantity': '(31)'}), '(invoice=self.fixture.invoice, project=\n self.fixture.project, unit=invoice_models.InvoiceItem.Units.PER_DAY,\n unit_price=3, quantity=31)\n', (814, 957), True, 'from waldur_mastermind.invoices.tests import factories as invoice_factories\n'), ((1128, 1183), 'waldur_mastermind.billing.tests.utils.get_financial_report_url', 'get_financial_report_url', (['self.fixture.project.customer'], {}), '(self.fixture.project.customer)\n', (1152, 1183), False, 'from waldur_mastermind.billing.tests.utils import get_financial_report_url\n')]
# -*- coding: utf-8 -*- # ------------------------------------------------------------------------------ # # Copyright 2018-2019 Fetch.AI Limited # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # # ------------------------------------------------------------------------------ """This test module contains the tests for aea.cli.utils module.""" from builtins import FileNotFoundError from typing import cast from unittest import TestCase, mock from click import BadParameter, ClickException from jsonschema import ValidationError from yaml import YAMLError from aea.cli.utils.click_utils import AEAJsonPathType, PublicIdParameter from aea.cli.utils.config import ( _init_cli_config, get_or_create_cli_config, update_cli_config, ) from aea.cli.utils.context import Context from aea.cli.utils.decorators import _validate_config_consistency, clean_after from aea.cli.utils.formatting import format_items from aea.cli.utils.generic import is_readme_present from aea.cli.utils.package_utils import ( find_item_in_distribution, find_item_locally, is_fingerprint_correct, try_get_balance, try_get_item_source_path, try_get_item_target_path, validate_author_name, validate_package_name, ) from tests.conftest import FETCHAI from tests.test_cli.tools_for_testing import ( ConfigLoaderMock, ContextMock, PublicIdMock, StopTest, raise_stoptest, ) AUTHOR = "author" class FormatItemsTestCase(TestCase): """Test case for format_items method.""" def testformat_items_positive(self): """Test format_items positive result.""" items = [ { "public_id": "author/name:version", "name": "obj-name", "description": "Some description", "author": "author", "version": "1.0", } ] result = format_items(items) expected_result = ( "------------------------------\n" "Public ID: author/name:version\n" "Name: obj-name\n" "Description: Some description\n" "Author: author\n" "Version: 1.0\n" "------------------------------\n" ) self.assertEqual(result, expected_result) @mock.patch("aea.cli.utils.package_utils.os.path.join", return_value="some-path") class TryGetItemSourcePathTestCase(TestCase): """Test case for try_get_item_source_path method.""" @mock.patch("aea.cli.utils.package_utils.os.path.exists", return_value=True) def test_get_item_source_path_positive(self, exists_mock, join_mock): """Test for get_item_source_path positive result.""" result = try_get_item_source_path("cwd", AUTHOR, "skills", "skill-name") expected_result = "some-path" self.assertEqual(result, expected_result) join_mock.assert_called_once_with("cwd", AUTHOR, "skills", "skill-name") exists_mock.assert_called_once_with("some-path") result = try_get_item_source_path("cwd", None, "skills", "skill-name") self.assertEqual(result, expected_result) @mock.patch("aea.cli.utils.package_utils.os.path.exists", return_value=False) def test_get_item_source_path_not_exists(self, exists_mock, join_mock): """Test for get_item_source_path item already exists.""" with self.assertRaises(ClickException): try_get_item_source_path("cwd", AUTHOR, "skills", "skill-name") @mock.patch("aea.cli.utils.package_utils.os.path.join", return_value="some-path") class TryGetItemTargetPathTestCase(TestCase): """Test case for try_get_item_target_path method.""" @mock.patch("aea.cli.utils.package_utils.os.path.exists", return_value=False) def test_get_item_target_path_positive(self, exists_mock, join_mock): """Test for get_item_source_path positive result.""" result = try_get_item_target_path("packages", AUTHOR, "skills", "skill-name") expected_result = "some-path" self.assertEqual(result, expected_result) join_mock.assert_called_once_with("packages", AUTHOR, "skills", "skill-name") exists_mock.assert_called_once_with("some-path") @mock.patch("aea.cli.utils.package_utils.os.path.exists", return_value=True) def test_get_item_target_path_already_exists(self, exists_mock, join_mock): """Test for get_item_target_path item already exists.""" with self.assertRaises(ClickException): try_get_item_target_path("skills", AUTHOR, "skill-name", "packages_path") class PublicIdParameterTestCase(TestCase): """Test case for PublicIdParameter class.""" def test_get_metavar_positive(self): """Test for get_metavar positive result.""" result = PublicIdParameter.get_metavar("obj", "param") expected_result = "PUBLIC_ID" self.assertEqual(result, expected_result) @mock.patch("aea.cli.utils.config.os.path.dirname", return_value="dir-name") @mock.patch("aea.cli.utils.config.os.path.exists", return_value=False) @mock.patch("aea.cli.utils.config.os.makedirs") @mock.patch("builtins.open") class InitConfigFolderTestCase(TestCase): """Test case for _init_cli_config method.""" def test_init_cli_config_positive( self, open_mock, makedirs_mock, exists_mock, dirname_mock ): """Test for _init_cli_config method positive result.""" _init_cli_config() dirname_mock.assert_called_once() exists_mock.assert_called_once_with("dir-name") makedirs_mock.assert_called_once_with("dir-name") @mock.patch("aea.cli.utils.config.get_or_create_cli_config") @mock.patch("aea.cli.utils.generic.yaml.dump") @mock.patch("builtins.open", mock.mock_open()) class UpdateCLIConfigTestCase(TestCase): """Test case for update_cli_config method.""" def testupdate_cli_config_positive(self, dump_mock, icf_mock): """Test for update_cli_config method positive result.""" update_cli_config({"some": "config"}) icf_mock.assert_called_once() dump_mock.assert_called_once() def _raise_yamlerror(*args): raise YAMLError() def _raise_file_not_found_error(*args): raise FileNotFoundError() @mock.patch("builtins.open", mock.mock_open()) class GetOrCreateCLIConfigTestCase(TestCase): """Test case for read_cli_config method.""" @mock.patch( "aea.cli.utils.generic.yaml.safe_load", return_value={"correct": "output"} ) def testget_or_create_cli_config_positive(self, safe_load_mock): """Test for get_or_create_cli_config method positive result.""" result = get_or_create_cli_config() expected_result = {"correct": "output"} self.assertEqual(result, expected_result) safe_load_mock.assert_called_once() @mock.patch("aea.cli.utils.generic.yaml.safe_load", _raise_yamlerror) def testget_or_create_cli_config_bad_yaml(self): """Test for rget_or_create_cli_config method bad yaml behavior.""" with self.assertRaises(ClickException): get_or_create_cli_config() class CleanAfterTestCase(TestCase): """Test case for clean_after decorator method.""" @mock.patch("aea.cli.utils.decorators.os.path.exists", return_value=True) @mock.patch("aea.cli.utils.decorators._cast_ctx", lambda x: x) @mock.patch("aea.cli.utils.decorators.shutil.rmtree") def test_clean_after_positive(self, rmtree_mock, *mocks): """Test clean_after decorator method for positive result.""" @clean_after def func(click_context): ctx = cast(Context, click_context.obj) ctx.clean_paths.append("clean/path") raise ClickException("Message") with self.assertRaises(ClickException): func(ContextMock()) rmtree_mock.assert_called_once_with("clean/path") @mock.patch("aea.cli.utils.package_utils.click.echo", raise_stoptest) class ValidateAuthorNameTestCase(TestCase): """Test case for validate_author_name method.""" @mock.patch( "aea.cli.utils.package_utils.click.prompt", return_value="correct_author" ) def test_validate_author_name_positive(self, prompt_mock): """Test validate_author_name for positive result.""" author = "valid_author" result = validate_author_name(author=author) self.assertEqual(result, author) result = validate_author_name() self.assertEqual(result, "correct_author") prompt_mock.assert_called_once() @mock.patch( "aea.cli.utils.package_utils.click.prompt", return_value="inv@l1d_@uth&r" ) def test_validate_author_name_negative(self, prompt_mock): """Test validate_author_name for negative result.""" with self.assertRaises(StopTest): validate_author_name() prompt_mock.return_value = "skills" with self.assertRaises(StopTest): validate_author_name() class ValidatePackageNameTestCase(TestCase): """Test case for validate_package_name method.""" def test_validate_package_name_positive(self): """Test validate_package_name for positive result.""" validate_package_name("correct_name") def test_validate_package_name_negative(self): """Test validate_package_name for negative result.""" with self.assertRaises(BadParameter): validate_package_name("incorrect-name") def _raise_validation_error(*args, **kwargs): raise ValidationError("Message.") class FindItemLocallyTestCase(TestCase): """Test case for find_item_locally method.""" @mock.patch("aea.cli.utils.package_utils.Path.exists", return_value=True) @mock.patch( "aea.cli.utils.package_utils.ConfigLoader.from_configuration_type", _raise_validation_error, ) def test_find_item_locally_bad_config(self, *mocks): """Test find_item_locally for bad config result.""" public_id = PublicIdMock.from_str("fetchai/echo:0.5.0") with self.assertRaises(ClickException) as cm: find_item_locally(ContextMock(), "skill", public_id) self.assertIn("configuration file not valid", cm.exception.message) @mock.patch("aea.cli.utils.package_utils.Path.exists", return_value=True) @mock.patch("aea.cli.utils.package_utils.Path.open", mock.mock_open()) @mock.patch( "aea.cli.utils.package_utils.ConfigLoader.from_configuration_type", return_value=ConfigLoaderMock(), ) def test_find_item_locally_cant_find(self, from_conftype_mock, *mocks): """Test find_item_locally for can't find result.""" public_id = PublicIdMock.from_str("fetchai/echo:0.5.0") with self.assertRaises(ClickException) as cm: find_item_locally(ContextMock(), "skill", public_id) self.assertEqual( cm.exception.message, "Cannot find skill with author and version specified." ) class FindItemInDistributionTestCase(TestCase): """Test case for find_item_in_distribution method.""" @mock.patch("aea.cli.utils.package_utils.Path.exists", return_value=True) @mock.patch( "aea.cli.utils.package_utils.ConfigLoader.from_configuration_type", _raise_validation_error, ) def testfind_item_in_distribution_bad_config(self, *mocks): """Test find_item_in_distribution for bad config result.""" public_id = PublicIdMock.from_str("fetchai/echo:0.5.0") with self.assertRaises(ClickException) as cm: find_item_in_distribution(ContextMock(), "skill", public_id) self.assertIn("configuration file not valid", cm.exception.message) @mock.patch("aea.cli.utils.package_utils.Path.exists", return_value=False) def testfind_item_in_distribution_not_found(self, *mocks): """Test find_item_in_distribution for not found result.""" public_id = PublicIdMock.from_str("fetchai/echo:0.5.0") with self.assertRaises(ClickException) as cm: find_item_in_distribution(ContextMock(), "skill", public_id) self.assertIn("Cannot find skill", cm.exception.message) @mock.patch("aea.cli.utils.package_utils.Path.exists", return_value=True) @mock.patch("aea.cli.utils.package_utils.Path.open", mock.mock_open()) @mock.patch( "aea.cli.utils.package_utils.ConfigLoader.from_configuration_type", return_value=ConfigLoaderMock(), ) def testfind_item_in_distribution_cant_find(self, from_conftype_mock, *mocks): """Test find_item_locally for can't find result.""" public_id = PublicIdMock.from_str("fetchai/echo:0.5.0") with self.assertRaises(ClickException) as cm: find_item_in_distribution(ContextMock(), "skill", public_id) self.assertEqual( cm.exception.message, "Cannot find skill with author and version specified." ) class ValidateConfigConsistencyTestCase(TestCase): """Test case for _validate_config_consistency method.""" @mock.patch("aea.cli.utils.config.Path.exists", _raise_validation_error) def test__validate_config_consistency_cant_find(self, *mocks): """Test _validate_config_consistency can't find result""" with self.assertRaises(ValueError) as cm: _validate_config_consistency(ContextMock(protocols=["some"])) self.assertIn("Cannot find", str(cm.exception)) @mock.patch( "aea.cli.utils.package_utils._compute_fingerprint", return_value={"correct": "fingerprint"}, ) class IsFingerprintCorrectTestCase(TestCase): """Test case for adding skill with invalid fingerprint.""" def test_is_fingerprint_correct_positive(self, *mocks): """Test is_fingerprint_correct method for positive result.""" item_config = mock.Mock() item_config.fingerprint = {"correct": "fingerprint"} item_config.fingerprint_ignore_patterns = [] result = is_fingerprint_correct("package_path", item_config) self.assertTrue(result) def test_is_fingerprint_correct_negative(self, *mocks): """Test is_fingerprint_correct method for negative result.""" item_config = mock.Mock() item_config.fingerprint = {"incorrect": "fingerprint"} item_config.fingerprint_ignore_patterns = [] package_path = "package_dir" result = is_fingerprint_correct(package_path, item_config) self.assertFalse(result) @mock.patch("aea.cli.config.click.ParamType") class AEAJsonPathTypeTestCase(TestCase): """Test case for AEAJsonPathType class.""" @mock.patch("aea.cli.utils.click_utils.Path.exists", return_value=True) def test_convert_root_vendor_positive(self, *mocks): """Test for convert method with root "vendor" positive result.""" value = "vendor.author.protocols.package_name.attribute_name" ctx_mock = ContextMock() ctx_mock.obj = mock.Mock() ctx_mock.obj.set_config = mock.Mock() obj = AEAJsonPathType() obj.convert(value, "param", ctx_mock) @mock.patch("aea.cli.utils.click_utils.Path.exists", return_value=False) def test_convert_root_vendor_path_not_exists(self, *mocks): """Test for convert method with root "vendor" path not exists.""" value = "vendor.author.protocols.package_name.attribute_name" obj = AEAJsonPathType() with self.assertRaises(BadParameter): obj.convert(value, "param", "ctx") @mock.patch("aea.cli.utils.package_utils.LedgerApis", mock.MagicMock()) class TryGetBalanceTestCase(TestCase): """Test case for try_get_balance method.""" def test_try_get_balance_positive(self): """Test for try_get_balance method positive result.""" agent_config = mock.Mock() agent_config.default_ledger_config = FETCHAI wallet_mock = mock.Mock() wallet_mock.addresses = {FETCHAI: "some-adress"} try_get_balance(agent_config, wallet_mock, FETCHAI) @mock.patch("aea.cli.utils.generic.os.path.exists", return_value=True) class IsReadmePresentTestCase(TestCase): """Test case for is_readme_present method.""" def test_is_readme_present_positive(self, *mocks): """Test is_readme_present for positive result.""" self.assertTrue(is_readme_present("readme/path"))
[ "tests.test_cli.tools_for_testing.ConfigLoaderMock", "click.ClickException", "aea.cli.utils.package_utils.validate_package_name", "jsonschema.ValidationError", "unittest.mock.patch", "aea.cli.utils.generic.is_readme_present", "aea.cli.utils.package_utils.try_get_item_source_path", "tests.test_cli.tools_for_testing.ContextMock", "aea.cli.utils.config.get_or_create_cli_config", "aea.cli.utils.package_utils.validate_author_name", "aea.cli.utils.package_utils.try_get_balance", "aea.cli.utils.click_utils.PublicIdParameter.get_metavar", "unittest.mock.Mock", "yaml.YAMLError", "unittest.mock.MagicMock", "aea.cli.utils.config.update_cli_config", "builtins.FileNotFoundError", "aea.cli.utils.package_utils.try_get_item_target_path", "typing.cast", "aea.cli.utils.formatting.format_items", "aea.cli.utils.package_utils.is_fingerprint_correct", "unittest.mock.mock_open", "aea.cli.utils.click_utils.AEAJsonPathType", "aea.cli.utils.config._init_cli_config", "tests.test_cli.tools_for_testing.PublicIdMock.from_str" ]
[((2790, 2875), 'unittest.mock.patch', 'mock.patch', (['"""aea.cli.utils.package_utils.os.path.join"""'], {'return_value': '"""some-path"""'}), "('aea.cli.utils.package_utils.os.path.join', return_value='some-path'\n )\n", (2800, 2875), False, 'from unittest import TestCase, mock\n'), ((3979, 4064), 'unittest.mock.patch', 'mock.patch', (['"""aea.cli.utils.package_utils.os.path.join"""'], {'return_value': '"""some-path"""'}), "('aea.cli.utils.package_utils.os.path.join', return_value='some-path'\n )\n", (3989, 4064), False, 'from unittest import TestCase, mock\n'), ((5401, 5476), 'unittest.mock.patch', 'mock.patch', (['"""aea.cli.utils.config.os.path.dirname"""'], {'return_value': '"""dir-name"""'}), "('aea.cli.utils.config.os.path.dirname', return_value='dir-name')\n", (5411, 5476), False, 'from unittest import TestCase, mock\n'), ((5478, 5547), 'unittest.mock.patch', 'mock.patch', (['"""aea.cli.utils.config.os.path.exists"""'], {'return_value': '(False)'}), "('aea.cli.utils.config.os.path.exists', return_value=False)\n", (5488, 5547), False, 'from unittest import TestCase, mock\n'), ((5549, 5595), 'unittest.mock.patch', 'mock.patch', (['"""aea.cli.utils.config.os.makedirs"""'], {}), "('aea.cli.utils.config.os.makedirs')\n", (5559, 5595), False, 'from unittest import TestCase, mock\n'), ((5597, 5624), 'unittest.mock.patch', 'mock.patch', (['"""builtins.open"""'], {}), "('builtins.open')\n", (5607, 5624), False, 'from unittest import TestCase, mock\n'), ((6079, 6138), 'unittest.mock.patch', 'mock.patch', (['"""aea.cli.utils.config.get_or_create_cli_config"""'], {}), "('aea.cli.utils.config.get_or_create_cli_config')\n", (6089, 6138), False, 'from unittest import TestCase, mock\n'), ((6140, 6185), 'unittest.mock.patch', 'mock.patch', (['"""aea.cli.utils.generic.yaml.dump"""'], {}), "('aea.cli.utils.generic.yaml.dump')\n", (6150, 6185), False, 'from unittest import TestCase, mock\n'), ((8344, 8412), 'unittest.mock.patch', 'mock.patch', (['"""aea.cli.utils.package_utils.click.echo"""', 'raise_stoptest'], {}), "('aea.cli.utils.package_utils.click.echo', raise_stoptest)\n", (8354, 8412), False, 'from unittest import TestCase, mock\n'), ((13856, 13964), 'unittest.mock.patch', 'mock.patch', (['"""aea.cli.utils.package_utils._compute_fingerprint"""'], {'return_value': "{'correct': 'fingerprint'}"}), "('aea.cli.utils.package_utils._compute_fingerprint', return_value\n ={'correct': 'fingerprint'})\n", (13866, 13964), False, 'from unittest import TestCase, mock\n'), ((14881, 14925), 'unittest.mock.patch', 'mock.patch', (['"""aea.cli.config.click.ParamType"""'], {}), "('aea.cli.config.click.ParamType')\n", (14891, 14925), False, 'from unittest import TestCase, mock\n'), ((16408, 16477), 'unittest.mock.patch', 'mock.patch', (['"""aea.cli.utils.generic.os.path.exists"""'], {'return_value': '(True)'}), "('aea.cli.utils.generic.os.path.exists', return_value=True)\n", (16418, 16477), False, 'from unittest import TestCase, mock\n'), ((2980, 3055), 'unittest.mock.patch', 'mock.patch', (['"""aea.cli.utils.package_utils.os.path.exists"""'], {'return_value': '(True)'}), "('aea.cli.utils.package_utils.os.path.exists', return_value=True)\n", (2990, 3055), False, 'from unittest import TestCase, mock\n'), ((3634, 3710), 'unittest.mock.patch', 'mock.patch', (['"""aea.cli.utils.package_utils.os.path.exists"""'], {'return_value': '(False)'}), "('aea.cli.utils.package_utils.os.path.exists', return_value=False)\n", (3644, 3710), False, 'from unittest import TestCase, mock\n'), ((4169, 4245), 'unittest.mock.patch', 'mock.patch', (['"""aea.cli.utils.package_utils.os.path.exists"""'], {'return_value': '(False)'}), "('aea.cli.utils.package_utils.os.path.exists', return_value=False)\n", (4179, 4245), False, 'from unittest import TestCase, mock\n'), ((4704, 4779), 'unittest.mock.patch', 'mock.patch', (['"""aea.cli.utils.package_utils.os.path.exists"""'], {'return_value': '(True)'}), "('aea.cli.utils.package_utils.os.path.exists', return_value=True)\n", (4714, 4779), False, 'from unittest import TestCase, mock\n'), ((6215, 6231), 'unittest.mock.mock_open', 'mock.mock_open', ([], {}), '()\n', (6229, 6231), False, 'from unittest import TestCase, mock\n'), ((6621, 6632), 'yaml.YAMLError', 'YAMLError', ([], {}), '()\n', (6630, 6632), False, 'from yaml import YAMLError\n'), ((6685, 6704), 'builtins.FileNotFoundError', 'FileNotFoundError', ([], {}), '()\n', (6702, 6704), False, 'from builtins import FileNotFoundError\n'), ((6854, 6944), 'unittest.mock.patch', 'mock.patch', (['"""aea.cli.utils.generic.yaml.safe_load"""'], {'return_value': "{'correct': 'output'}"}), "('aea.cli.utils.generic.yaml.safe_load', return_value={'correct':\n 'output'})\n", (6864, 6944), False, 'from unittest import TestCase, mock\n'), ((7288, 7356), 'unittest.mock.patch', 'mock.patch', (['"""aea.cli.utils.generic.yaml.safe_load"""', '_raise_yamlerror'], {}), "('aea.cli.utils.generic.yaml.safe_load', _raise_yamlerror)\n", (7298, 7356), False, 'from unittest import TestCase, mock\n'), ((6736, 6752), 'unittest.mock.mock_open', 'mock.mock_open', ([], {}), '()\n', (6750, 6752), False, 'from unittest import TestCase, mock\n'), ((7670, 7742), 'unittest.mock.patch', 'mock.patch', (['"""aea.cli.utils.decorators.os.path.exists"""'], {'return_value': '(True)'}), "('aea.cli.utils.decorators.os.path.exists', return_value=True)\n", (7680, 7742), False, 'from unittest import TestCase, mock\n'), ((7748, 7809), 'unittest.mock.patch', 'mock.patch', (['"""aea.cli.utils.decorators._cast_ctx"""', '(lambda x: x)'], {}), "('aea.cli.utils.decorators._cast_ctx', lambda x: x)\n", (7758, 7809), False, 'from unittest import TestCase, mock\n'), ((7815, 7867), 'unittest.mock.patch', 'mock.patch', (['"""aea.cli.utils.decorators.shutil.rmtree"""'], {}), "('aea.cli.utils.decorators.shutil.rmtree')\n", (7825, 7867), False, 'from unittest import TestCase, mock\n'), ((8516, 8606), 'unittest.mock.patch', 'mock.patch', (['"""aea.cli.utils.package_utils.click.prompt"""'], {'return_value': '"""correct_author"""'}), "('aea.cli.utils.package_utils.click.prompt', return_value=\n 'correct_author')\n", (8526, 8606), False, 'from unittest import TestCase, mock\n'), ((9005, 9095), 'unittest.mock.patch', 'mock.patch', (['"""aea.cli.utils.package_utils.click.prompt"""'], {'return_value': '"""inv@l1d_@uth&r"""'}), "('aea.cli.utils.package_utils.click.prompt', return_value=\n 'inv@l1d_@uth&r')\n", (9015, 9095), False, 'from unittest import TestCase, mock\n'), ((9959, 9986), 'jsonschema.ValidationError', 'ValidationError', (['"""Message."""'], {}), "('Message.')\n", (9974, 9986), False, 'from jsonschema import ValidationError\n'), ((10086, 10158), 'unittest.mock.patch', 'mock.patch', (['"""aea.cli.utils.package_utils.Path.exists"""'], {'return_value': '(True)'}), "('aea.cli.utils.package_utils.Path.exists', return_value=True)\n", (10096, 10158), False, 'from unittest import TestCase, mock\n'), ((10164, 10271), 'unittest.mock.patch', 'mock.patch', (['"""aea.cli.utils.package_utils.ConfigLoader.from_configuration_type"""', '_raise_validation_error'], {}), "('aea.cli.utils.package_utils.ConfigLoader.from_configuration_type',\n _raise_validation_error)\n", (10174, 10271), False, 'from unittest import TestCase, mock\n'), ((10674, 10746), 'unittest.mock.patch', 'mock.patch', (['"""aea.cli.utils.package_utils.Path.exists"""'], {'return_value': '(True)'}), "('aea.cli.utils.package_utils.Path.exists', return_value=True)\n", (10684, 10746), False, 'from unittest import TestCase, mock\n'), ((11521, 11593), 'unittest.mock.patch', 'mock.patch', (['"""aea.cli.utils.package_utils.Path.exists"""'], {'return_value': '(True)'}), "('aea.cli.utils.package_utils.Path.exists', return_value=True)\n", (11531, 11593), False, 'from unittest import TestCase, mock\n'), ((11599, 11706), 'unittest.mock.patch', 'mock.patch', (['"""aea.cli.utils.package_utils.ConfigLoader.from_configuration_type"""', '_raise_validation_error'], {}), "('aea.cli.utils.package_utils.ConfigLoader.from_configuration_type',\n _raise_validation_error)\n", (11609, 11706), False, 'from unittest import TestCase, mock\n'), ((12132, 12205), 'unittest.mock.patch', 'mock.patch', (['"""aea.cli.utils.package_utils.Path.exists"""'], {'return_value': '(False)'}), "('aea.cli.utils.package_utils.Path.exists', return_value=False)\n", (12142, 12205), False, 'from unittest import TestCase, mock\n'), ((12599, 12671), 'unittest.mock.patch', 'mock.patch', (['"""aea.cli.utils.package_utils.Path.exists"""'], {'return_value': '(True)'}), "('aea.cli.utils.package_utils.Path.exists', return_value=True)\n", (12609, 12671), False, 'from unittest import TestCase, mock\n'), ((13467, 13538), 'unittest.mock.patch', 'mock.patch', (['"""aea.cli.utils.config.Path.exists"""', '_raise_validation_error'], {}), "('aea.cli.utils.config.Path.exists', _raise_validation_error)\n", (13477, 13538), False, 'from unittest import TestCase, mock\n'), ((15020, 15090), 'unittest.mock.patch', 'mock.patch', (['"""aea.cli.utils.click_utils.Path.exists"""'], {'return_value': '(True)'}), "('aea.cli.utils.click_utils.Path.exists', return_value=True)\n", (15030, 15090), False, 'from unittest import TestCase, mock\n'), ((15490, 15561), 'unittest.mock.patch', 'mock.patch', (['"""aea.cli.utils.click_utils.Path.exists"""'], {'return_value': '(False)'}), "('aea.cli.utils.click_utils.Path.exists', return_value=False)\n", (15500, 15561), False, 'from unittest import TestCase, mock\n'), ((15951, 15967), 'unittest.mock.MagicMock', 'mock.MagicMock', ([], {}), '()\n', (15965, 15967), False, 'from unittest import TestCase, mock\n'), ((2401, 2420), 'aea.cli.utils.formatting.format_items', 'format_items', (['items'], {}), '(items)\n', (2413, 2420), False, 'from aea.cli.utils.formatting import format_items\n'), ((3208, 3271), 'aea.cli.utils.package_utils.try_get_item_source_path', 'try_get_item_source_path', (['"""cwd"""', 'AUTHOR', '"""skills"""', '"""skill-name"""'], {}), "('cwd', AUTHOR, 'skills', 'skill-name')\n", (3232, 3271), False, 'from aea.cli.utils.package_utils import find_item_in_distribution, find_item_locally, is_fingerprint_correct, try_get_balance, try_get_item_source_path, try_get_item_target_path, validate_author_name, validate_package_name\n'), ((3516, 3577), 'aea.cli.utils.package_utils.try_get_item_source_path', 'try_get_item_source_path', (['"""cwd"""', 'None', '"""skills"""', '"""skill-name"""'], {}), "('cwd', None, 'skills', 'skill-name')\n", (3540, 3577), False, 'from aea.cli.utils.package_utils import find_item_in_distribution, find_item_locally, is_fingerprint_correct, try_get_balance, try_get_item_source_path, try_get_item_target_path, validate_author_name, validate_package_name\n'), ((4398, 4466), 'aea.cli.utils.package_utils.try_get_item_target_path', 'try_get_item_target_path', (['"""packages"""', 'AUTHOR', '"""skills"""', '"""skill-name"""'], {}), "('packages', AUTHOR, 'skills', 'skill-name')\n", (4422, 4466), False, 'from aea.cli.utils.package_utils import find_item_in_distribution, find_item_locally, is_fingerprint_correct, try_get_balance, try_get_item_source_path, try_get_item_target_path, validate_author_name, validate_package_name\n'), ((5264, 5309), 'aea.cli.utils.click_utils.PublicIdParameter.get_metavar', 'PublicIdParameter.get_metavar', (['"""obj"""', '"""param"""'], {}), "('obj', 'param')\n", (5293, 5309), False, 'from aea.cli.utils.click_utils import AEAJsonPathType, PublicIdParameter\n'), ((5901, 5919), 'aea.cli.utils.config._init_cli_config', '_init_cli_config', ([], {}), '()\n', (5917, 5919), False, 'from aea.cli.utils.config import _init_cli_config, get_or_create_cli_config, update_cli_config\n'), ((6465, 6502), 'aea.cli.utils.config.update_cli_config', 'update_cli_config', (["{'some': 'config'}"], {}), "({'some': 'config'})\n", (6482, 6502), False, 'from aea.cli.utils.config import _init_cli_config, get_or_create_cli_config, update_cli_config\n'), ((7113, 7139), 'aea.cli.utils.config.get_or_create_cli_config', 'get_or_create_cli_config', ([], {}), '()\n', (7137, 7139), False, 'from aea.cli.utils.config import _init_cli_config, get_or_create_cli_config, update_cli_config\n'), ((8789, 8824), 'aea.cli.utils.package_utils.validate_author_name', 'validate_author_name', ([], {'author': 'author'}), '(author=author)\n', (8809, 8824), False, 'from aea.cli.utils.package_utils import find_item_in_distribution, find_item_locally, is_fingerprint_correct, try_get_balance, try_get_item_source_path, try_get_item_target_path, validate_author_name, validate_package_name\n'), ((8884, 8906), 'aea.cli.utils.package_utils.validate_author_name', 'validate_author_name', ([], {}), '()\n', (8904, 8906), False, 'from aea.cli.utils.package_utils import find_item_in_distribution, find_item_locally, is_fingerprint_correct, try_get_balance, try_get_item_source_path, try_get_item_target_path, validate_author_name, validate_package_name\n'), ((9651, 9688), 'aea.cli.utils.package_utils.validate_package_name', 'validate_package_name', (['"""correct_name"""'], {}), "('correct_name')\n", (9672, 9688), False, 'from aea.cli.utils.package_utils import find_item_in_distribution, find_item_locally, is_fingerprint_correct, try_get_balance, try_get_item_source_path, try_get_item_target_path, validate_author_name, validate_package_name\n'), ((10428, 10471), 'tests.test_cli.tools_for_testing.PublicIdMock.from_str', 'PublicIdMock.from_str', (['"""fetchai/echo:0.5.0"""'], {}), "('fetchai/echo:0.5.0')\n", (10449, 10471), False, 'from tests.test_cli.tools_for_testing import ConfigLoaderMock, ContextMock, PublicIdMock, StopTest, raise_stoptest\n'), ((11118, 11161), 'tests.test_cli.tools_for_testing.PublicIdMock.from_str', 'PublicIdMock.from_str', (['"""fetchai/echo:0.5.0"""'], {}), "('fetchai/echo:0.5.0')\n", (11139, 11161), False, 'from tests.test_cli.tools_for_testing import ConfigLoaderMock, ContextMock, PublicIdMock, StopTest, raise_stoptest\n'), ((10804, 10820), 'unittest.mock.mock_open', 'mock.mock_open', ([], {}), '()\n', (10818, 10820), False, 'from unittest import TestCase, mock\n'), ((11878, 11921), 'tests.test_cli.tools_for_testing.PublicIdMock.from_str', 'PublicIdMock.from_str', (['"""fetchai/echo:0.5.0"""'], {}), "('fetchai/echo:0.5.0')\n", (11899, 11921), False, 'from tests.test_cli.tools_for_testing import ConfigLoaderMock, ContextMock, PublicIdMock, StopTest, raise_stoptest\n'), ((12356, 12399), 'tests.test_cli.tools_for_testing.PublicIdMock.from_str', 'PublicIdMock.from_str', (['"""fetchai/echo:0.5.0"""'], {}), "('fetchai/echo:0.5.0')\n", (12377, 12399), False, 'from tests.test_cli.tools_for_testing import ConfigLoaderMock, ContextMock, PublicIdMock, StopTest, raise_stoptest\n'), ((13050, 13093), 'tests.test_cli.tools_for_testing.PublicIdMock.from_str', 'PublicIdMock.from_str', (['"""fetchai/echo:0.5.0"""'], {}), "('fetchai/echo:0.5.0')\n", (13071, 13093), False, 'from tests.test_cli.tools_for_testing import ConfigLoaderMock, ContextMock, PublicIdMock, StopTest, raise_stoptest\n'), ((12729, 12745), 'unittest.mock.mock_open', 'mock.mock_open', ([], {}), '()\n', (12743, 12745), False, 'from unittest import TestCase, mock\n'), ((14233, 14244), 'unittest.mock.Mock', 'mock.Mock', ([], {}), '()\n', (14242, 14244), False, 'from unittest import TestCase, mock\n'), ((14376, 14427), 'aea.cli.utils.package_utils.is_fingerprint_correct', 'is_fingerprint_correct', (['"""package_path"""', 'item_config'], {}), "('package_path', item_config)\n", (14398, 14427), False, 'from aea.cli.utils.package_utils import find_item_in_distribution, find_item_locally, is_fingerprint_correct, try_get_balance, try_get_item_source_path, try_get_item_target_path, validate_author_name, validate_package_name\n'), ((14613, 14624), 'unittest.mock.Mock', 'mock.Mock', ([], {}), '()\n', (14622, 14624), False, 'from unittest import TestCase, mock\n'), ((14795, 14844), 'aea.cli.utils.package_utils.is_fingerprint_correct', 'is_fingerprint_correct', (['package_path', 'item_config'], {}), '(package_path, item_config)\n', (14817, 14844), False, 'from aea.cli.utils.package_utils import find_item_in_distribution, find_item_locally, is_fingerprint_correct, try_get_balance, try_get_item_source_path, try_get_item_target_path, validate_author_name, validate_package_name\n'), ((15311, 15324), 'tests.test_cli.tools_for_testing.ContextMock', 'ContextMock', ([], {}), '()\n', (15322, 15324), False, 'from tests.test_cli.tools_for_testing import ConfigLoaderMock, ContextMock, PublicIdMock, StopTest, raise_stoptest\n'), ((15348, 15359), 'unittest.mock.Mock', 'mock.Mock', ([], {}), '()\n', (15357, 15359), False, 'from unittest import TestCase, mock\n'), ((15394, 15405), 'unittest.mock.Mock', 'mock.Mock', ([], {}), '()\n', (15403, 15405), False, 'from unittest import TestCase, mock\n'), ((15420, 15437), 'aea.cli.utils.click_utils.AEAJsonPathType', 'AEAJsonPathType', ([], {}), '()\n', (15435, 15437), False, 'from aea.cli.utils.click_utils import AEAJsonPathType, PublicIdParameter\n'), ((15784, 15801), 'aea.cli.utils.click_utils.AEAJsonPathType', 'AEAJsonPathType', ([], {}), '()\n', (15799, 15801), False, 'from aea.cli.utils.click_utils import AEAJsonPathType, PublicIdParameter\n'), ((16188, 16199), 'unittest.mock.Mock', 'mock.Mock', ([], {}), '()\n', (16197, 16199), False, 'from unittest import TestCase, mock\n'), ((16276, 16287), 'unittest.mock.Mock', 'mock.Mock', ([], {}), '()\n', (16285, 16287), False, 'from unittest import TestCase, mock\n'), ((16353, 16404), 'aea.cli.utils.package_utils.try_get_balance', 'try_get_balance', (['agent_config', 'wallet_mock', 'FETCHAI'], {}), '(agent_config, wallet_mock, FETCHAI)\n', (16368, 16404), False, 'from aea.cli.utils.package_utils import find_item_in_distribution, find_item_locally, is_fingerprint_correct, try_get_balance, try_get_item_source_path, try_get_item_target_path, validate_author_name, validate_package_name\n'), ((3912, 3975), 'aea.cli.utils.package_utils.try_get_item_source_path', 'try_get_item_source_path', (['"""cwd"""', 'AUTHOR', '"""skills"""', '"""skill-name"""'], {}), "('cwd', AUTHOR, 'skills', 'skill-name')\n", (3936, 3975), False, 'from aea.cli.utils.package_utils import find_item_in_distribution, find_item_locally, is_fingerprint_correct, try_get_balance, try_get_item_source_path, try_get_item_target_path, validate_author_name, validate_package_name\n'), ((4985, 5058), 'aea.cli.utils.package_utils.try_get_item_target_path', 'try_get_item_target_path', (['"""skills"""', 'AUTHOR', '"""skill-name"""', '"""packages_path"""'], {}), "('skills', AUTHOR, 'skill-name', 'packages_path')\n", (5009, 5058), False, 'from aea.cli.utils.package_utils import find_item_in_distribution, find_item_locally, is_fingerprint_correct, try_get_balance, try_get_item_source_path, try_get_item_target_path, validate_author_name, validate_package_name\n'), ((7545, 7571), 'aea.cli.utils.config.get_or_create_cli_config', 'get_or_create_cli_config', ([], {}), '()\n', (7569, 7571), False, 'from aea.cli.utils.config import _init_cli_config, get_or_create_cli_config, update_cli_config\n'), ((8072, 8104), 'typing.cast', 'cast', (['Context', 'click_context.obj'], {}), '(Context, click_context.obj)\n', (8076, 8104), False, 'from typing import cast\n'), ((8172, 8197), 'click.ClickException', 'ClickException', (['"""Message"""'], {}), "('Message')\n", (8186, 8197), False, 'from click import BadParameter, ClickException\n'), ((9283, 9305), 'aea.cli.utils.package_utils.validate_author_name', 'validate_author_name', ([], {}), '()\n', (9303, 9305), False, 'from aea.cli.utils.package_utils import find_item_in_distribution, find_item_locally, is_fingerprint_correct, try_get_balance, try_get_item_source_path, try_get_item_target_path, validate_author_name, validate_package_name\n'), ((9405, 9427), 'aea.cli.utils.package_utils.validate_author_name', 'validate_author_name', ([], {}), '()\n', (9425, 9427), False, 'from aea.cli.utils.package_utils import find_item_in_distribution, find_item_locally, is_fingerprint_correct, try_get_balance, try_get_item_source_path, try_get_item_target_path, validate_author_name, validate_package_name\n'), ((9861, 9900), 'aea.cli.utils.package_utils.validate_package_name', 'validate_package_name', (['"""incorrect-name"""'], {}), "('incorrect-name')\n", (9882, 9900), False, 'from aea.cli.utils.package_utils import find_item_in_distribution, find_item_locally, is_fingerprint_correct, try_get_balance, try_get_item_source_path, try_get_item_target_path, validate_author_name, validate_package_name\n'), ((10936, 10954), 'tests.test_cli.tools_for_testing.ConfigLoaderMock', 'ConfigLoaderMock', ([], {}), '()\n', (10952, 10954), False, 'from tests.test_cli.tools_for_testing import ConfigLoaderMock, ContextMock, PublicIdMock, StopTest, raise_stoptest\n'), ((12861, 12879), 'tests.test_cli.tools_for_testing.ConfigLoaderMock', 'ConfigLoaderMock', ([], {}), '()\n', (12877, 12879), False, 'from tests.test_cli.tools_for_testing import ConfigLoaderMock, ContextMock, PublicIdMock, StopTest, raise_stoptest\n'), ((16707, 16739), 'aea.cli.utils.generic.is_readme_present', 'is_readme_present', (['"""readme/path"""'], {}), "('readme/path')\n", (16724, 16739), False, 'from aea.cli.utils.generic import is_readme_present\n'), ((8264, 8277), 'tests.test_cli.tools_for_testing.ContextMock', 'ContextMock', ([], {}), '()\n', (8275, 8277), False, 'from tests.test_cli.tools_for_testing import ConfigLoaderMock, ContextMock, PublicIdMock, StopTest, raise_stoptest\n'), ((10556, 10569), 'tests.test_cli.tools_for_testing.ContextMock', 'ContextMock', ([], {}), '()\n', (10567, 10569), False, 'from tests.test_cli.tools_for_testing import ConfigLoaderMock, ContextMock, PublicIdMock, StopTest, raise_stoptest\n'), ((11246, 11259), 'tests.test_cli.tools_for_testing.ContextMock', 'ContextMock', ([], {}), '()\n', (11257, 11259), False, 'from tests.test_cli.tools_for_testing import ConfigLoaderMock, ContextMock, PublicIdMock, StopTest, raise_stoptest\n'), ((12014, 12027), 'tests.test_cli.tools_for_testing.ContextMock', 'ContextMock', ([], {}), '()\n', (12025, 12027), False, 'from tests.test_cli.tools_for_testing import ConfigLoaderMock, ContextMock, PublicIdMock, StopTest, raise_stoptest\n'), ((12492, 12505), 'tests.test_cli.tools_for_testing.ContextMock', 'ContextMock', ([], {}), '()\n', (12503, 12505), False, 'from tests.test_cli.tools_for_testing import ConfigLoaderMock, ContextMock, PublicIdMock, StopTest, raise_stoptest\n'), ((13186, 13199), 'tests.test_cli.tools_for_testing.ContextMock', 'ContextMock', ([], {}), '()\n', (13197, 13199), False, 'from tests.test_cli.tools_for_testing import ConfigLoaderMock, ContextMock, PublicIdMock, StopTest, raise_stoptest\n'), ((13763, 13794), 'tests.test_cli.tools_for_testing.ContextMock', 'ContextMock', ([], {'protocols': "['some']"}), "(protocols=['some'])\n", (13774, 13794), False, 'from tests.test_cli.tools_for_testing import ConfigLoaderMock, ContextMock, PublicIdMock, StopTest, raise_stoptest\n')]
from rest_framework import serializers from punkweb_boards.conf.settings import SHOUTBOX_DISABLED_TAGS from punkweb_boards.models import ( BoardProfile, Category, Subcategory, Thread, Post, Conversation, Message, Report, Shout, ) class BoardProfileSerializer(serializers.ModelSerializer): post_count = serializers.ReadOnlyField() can_shout = serializers.ReadOnlyField() rendered_username = serializers.ReadOnlyField() rendered_rank = serializers.ReadOnlyField() class Meta: model = BoardProfile fields = "__all__" class CategorySerializer(serializers.ModelSerializer): class Meta: model = Category exclude = ("auth_req",) class SubcategorySerializer(serializers.ModelSerializer): last_thread = serializers.ReadOnlyField(source="last_thread.id") last_thread_title = serializers.ReadOnlyField(source="last_thread.title") last_thread_created = serializers.ReadOnlyField( source="last_thread.created" ) last_thread_user = serializers.ReadOnlyField( source="last_thread.user.profile.rendered_username" ) parent_name = serializers.ReadOnlyField(source="parent.name") thread_count = serializers.ReadOnlyField() post_count = serializers.ReadOnlyField() can_post = serializers.SerializerMethodField() def get_can_post(self, obj): return obj.can_post(self.context.get("request").user) class Meta: model = Subcategory exclude = ("auth_req",) class ThreadSerializer(serializers.ModelSerializer): last_post = serializers.ReadOnlyField(source="last_post.id") last_post_created = serializers.ReadOnlyField(source="last_post.created") last_post_username = serializers.ReadOnlyField( source="last_post.user.username" ) last_post_rendered_username = serializers.ReadOnlyField( source="last_post.user.profile.rendered_username" ) user_username = serializers.ReadOnlyField(source="user.username") user_rendered_username = serializers.ReadOnlyField( source="user.profile.rendered_username" ) user_image = serializers.ReadOnlyField(source="user.profile.avatar") user_post_count = serializers.ReadOnlyField( source="user.profile.post_count" ) user_join_date = serializers.ReadOnlyField(source="user.created") flagged = serializers.ReadOnlyField(source="reported") posts_count = serializers.ReadOnlyField() can_edit = serializers.SerializerMethodField() def get_can_edit(self, obj): return obj.can_edit(self.context.get("request").user) class Meta: model = Thread fields = "__all__" read_only_fields = ( "pinned", "closed", "user", "upvoted_by", "downvoted_by", ) class PostSerializer(serializers.ModelSerializer): flagged = serializers.ReadOnlyField(source="reported") can_edit = serializers.SerializerMethodField() def get_can_edit(self, obj): return obj.can_edit(self.context.get("request").user) class Meta: model = Post fields = "__all__" read_only_fields = ("user", "upvoted_by", "downvoted_by") class ConversationSerializer(serializers.ModelSerializer): last_message = serializers.ReadOnlyField(source="last_message.id") last_message_title = serializers.ReadOnlyField(source="last_message.title") last_message_created = serializers.ReadOnlyField( source="last_message.created" ) last_message_user = serializers.ReadOnlyField( source="last_message.user.profile.rendered_username" ) message_count = serializers.ReadOnlyField() class Meta: model = Conversation fields = "__all__" read_only_fields = ("unread_by",) class MessageSerializer(serializers.ModelSerializer): class Meta: model = Message fields = "__all__" read_only_fields = ("user",) class ShoutSerializer(serializers.ModelSerializer): username = serializers.ReadOnlyField(source="user.username") rendered_username = serializers.ReadOnlyField( source="user.profile.rendered_username" ) class Meta: model = Shout fields = ( "id", "user", "username", "rendered_username", "content", "_content_rendered", "created", "modified", ) read_only_fields = ("user",) def create(self, validated_data): for key in SHOUTBOX_DISABLED_TAGS: key_tag = "[{}]".format(key).lower() if ( key_tag[: len(key_tag) - 1] in validated_data.get("content").lower() ): raise serializers.ValidationError( { "notAllowed": "{} is not allowed in the shoutbox".format( key_tag ) } ) return Shout.objects.create(**validated_data)
[ "punkweb_boards.models.Shout.objects.create", "rest_framework.serializers.SerializerMethodField", "rest_framework.serializers.ReadOnlyField" ]
[((344, 371), 'rest_framework.serializers.ReadOnlyField', 'serializers.ReadOnlyField', ([], {}), '()\n', (369, 371), False, 'from rest_framework import serializers\n'), ((388, 415), 'rest_framework.serializers.ReadOnlyField', 'serializers.ReadOnlyField', ([], {}), '()\n', (413, 415), False, 'from rest_framework import serializers\n'), ((440, 467), 'rest_framework.serializers.ReadOnlyField', 'serializers.ReadOnlyField', ([], {}), '()\n', (465, 467), False, 'from rest_framework import serializers\n'), ((488, 515), 'rest_framework.serializers.ReadOnlyField', 'serializers.ReadOnlyField', ([], {}), '()\n', (513, 515), False, 'from rest_framework import serializers\n'), ((797, 847), 'rest_framework.serializers.ReadOnlyField', 'serializers.ReadOnlyField', ([], {'source': '"""last_thread.id"""'}), "(source='last_thread.id')\n", (822, 847), False, 'from rest_framework import serializers\n'), ((872, 925), 'rest_framework.serializers.ReadOnlyField', 'serializers.ReadOnlyField', ([], {'source': '"""last_thread.title"""'}), "(source='last_thread.title')\n", (897, 925), False, 'from rest_framework import serializers\n'), ((952, 1007), 'rest_framework.serializers.ReadOnlyField', 'serializers.ReadOnlyField', ([], {'source': '"""last_thread.created"""'}), "(source='last_thread.created')\n", (977, 1007), False, 'from rest_framework import serializers\n'), ((1045, 1123), 'rest_framework.serializers.ReadOnlyField', 'serializers.ReadOnlyField', ([], {'source': '"""last_thread.user.profile.rendered_username"""'}), "(source='last_thread.user.profile.rendered_username')\n", (1070, 1123), False, 'from rest_framework import serializers\n'), ((1156, 1203), 'rest_framework.serializers.ReadOnlyField', 'serializers.ReadOnlyField', ([], {'source': '"""parent.name"""'}), "(source='parent.name')\n", (1181, 1203), False, 'from rest_framework import serializers\n'), ((1223, 1250), 'rest_framework.serializers.ReadOnlyField', 'serializers.ReadOnlyField', ([], {}), '()\n', (1248, 1250), False, 'from rest_framework import serializers\n'), ((1268, 1295), 'rest_framework.serializers.ReadOnlyField', 'serializers.ReadOnlyField', ([], {}), '()\n', (1293, 1295), False, 'from rest_framework import serializers\n'), ((1311, 1346), 'rest_framework.serializers.SerializerMethodField', 'serializers.SerializerMethodField', ([], {}), '()\n', (1344, 1346), False, 'from rest_framework import serializers\n'), ((1591, 1639), 'rest_framework.serializers.ReadOnlyField', 'serializers.ReadOnlyField', ([], {'source': '"""last_post.id"""'}), "(source='last_post.id')\n", (1616, 1639), False, 'from rest_framework import serializers\n'), ((1664, 1717), 'rest_framework.serializers.ReadOnlyField', 'serializers.ReadOnlyField', ([], {'source': '"""last_post.created"""'}), "(source='last_post.created')\n", (1689, 1717), False, 'from rest_framework import serializers\n'), ((1743, 1802), 'rest_framework.serializers.ReadOnlyField', 'serializers.ReadOnlyField', ([], {'source': '"""last_post.user.username"""'}), "(source='last_post.user.username')\n", (1768, 1802), False, 'from rest_framework import serializers\n'), ((1851, 1927), 'rest_framework.serializers.ReadOnlyField', 'serializers.ReadOnlyField', ([], {'source': '"""last_post.user.profile.rendered_username"""'}), "(source='last_post.user.profile.rendered_username')\n", (1876, 1927), False, 'from rest_framework import serializers\n'), ((1962, 2011), 'rest_framework.serializers.ReadOnlyField', 'serializers.ReadOnlyField', ([], {'source': '"""user.username"""'}), "(source='user.username')\n", (1987, 2011), False, 'from rest_framework import serializers\n'), ((2041, 2107), 'rest_framework.serializers.ReadOnlyField', 'serializers.ReadOnlyField', ([], {'source': '"""user.profile.rendered_username"""'}), "(source='user.profile.rendered_username')\n", (2066, 2107), False, 'from rest_framework import serializers\n'), ((2139, 2194), 'rest_framework.serializers.ReadOnlyField', 'serializers.ReadOnlyField', ([], {'source': '"""user.profile.avatar"""'}), "(source='user.profile.avatar')\n", (2164, 2194), False, 'from rest_framework import serializers\n'), ((2217, 2276), 'rest_framework.serializers.ReadOnlyField', 'serializers.ReadOnlyField', ([], {'source': '"""user.profile.post_count"""'}), "(source='user.profile.post_count')\n", (2242, 2276), False, 'from rest_framework import serializers\n'), ((2312, 2360), 'rest_framework.serializers.ReadOnlyField', 'serializers.ReadOnlyField', ([], {'source': '"""user.created"""'}), "(source='user.created')\n", (2337, 2360), False, 'from rest_framework import serializers\n'), ((2375, 2419), 'rest_framework.serializers.ReadOnlyField', 'serializers.ReadOnlyField', ([], {'source': '"""reported"""'}), "(source='reported')\n", (2400, 2419), False, 'from rest_framework import serializers\n'), ((2438, 2465), 'rest_framework.serializers.ReadOnlyField', 'serializers.ReadOnlyField', ([], {}), '()\n', (2463, 2465), False, 'from rest_framework import serializers\n'), ((2481, 2516), 'rest_framework.serializers.SerializerMethodField', 'serializers.SerializerMethodField', ([], {}), '()\n', (2514, 2516), False, 'from rest_framework import serializers\n'), ((2904, 2948), 'rest_framework.serializers.ReadOnlyField', 'serializers.ReadOnlyField', ([], {'source': '"""reported"""'}), "(source='reported')\n", (2929, 2948), False, 'from rest_framework import serializers\n'), ((2964, 2999), 'rest_framework.serializers.SerializerMethodField', 'serializers.SerializerMethodField', ([], {}), '()\n', (2997, 2999), False, 'from rest_framework import serializers\n'), ((3307, 3358), 'rest_framework.serializers.ReadOnlyField', 'serializers.ReadOnlyField', ([], {'source': '"""last_message.id"""'}), "(source='last_message.id')\n", (3332, 3358), False, 'from rest_framework import serializers\n'), ((3384, 3438), 'rest_framework.serializers.ReadOnlyField', 'serializers.ReadOnlyField', ([], {'source': '"""last_message.title"""'}), "(source='last_message.title')\n", (3409, 3438), False, 'from rest_framework import serializers\n'), ((3466, 3522), 'rest_framework.serializers.ReadOnlyField', 'serializers.ReadOnlyField', ([], {'source': '"""last_message.created"""'}), "(source='last_message.created')\n", (3491, 3522), False, 'from rest_framework import serializers\n'), ((3561, 3640), 'rest_framework.serializers.ReadOnlyField', 'serializers.ReadOnlyField', ([], {'source': '"""last_message.user.profile.rendered_username"""'}), "(source='last_message.user.profile.rendered_username')\n", (3586, 3640), False, 'from rest_framework import serializers\n'), ((3675, 3702), 'rest_framework.serializers.ReadOnlyField', 'serializers.ReadOnlyField', ([], {}), '()\n', (3700, 3702), False, 'from rest_framework import serializers\n'), ((4047, 4096), 'rest_framework.serializers.ReadOnlyField', 'serializers.ReadOnlyField', ([], {'source': '"""user.username"""'}), "(source='user.username')\n", (4072, 4096), False, 'from rest_framework import serializers\n'), ((4121, 4187), 'rest_framework.serializers.ReadOnlyField', 'serializers.ReadOnlyField', ([], {'source': '"""user.profile.rendered_username"""'}), "(source='user.profile.rendered_username')\n", (4146, 4187), False, 'from rest_framework import serializers\n'), ((5042, 5080), 'punkweb_boards.models.Shout.objects.create', 'Shout.objects.create', ([], {}), '(**validated_data)\n', (5062, 5080), False, 'from punkweb_boards.models import BoardProfile, Category, Subcategory, Thread, Post, Conversation, Message, Report, Shout\n')]
import cv2 import ezdxf import numpy as np def draw_hatch(img, entity, color, mask): for poly_path in entity.paths.paths: # print(poly_path.path_type_flags) polygon = np.array([vertex[:-1] for vertex in poly_path.vertices]).astype(int) if poly_path.path_type_flags & 1 == 1: cv2.fillPoly(img, [polygon], color) cv2.fillPoly(mask, [polygon], (255, 255, 255)) else: cv2.fillPoly(img, [polygon], (255, 255, 255)) return color def draw_line(img, entity, color, mask): p1 = entity.dxf.start[:-1] p2 = entity.dxf.end[:-1] cv2.line(img, (int(p1[0]), int(p1[1])), (int(p2[0]), int(p2[1])), color, 1) cv2.line(mask, (int(p1[0]), int(p1[1])), (int(p2[0]), int(p2[1])), (255, 255, 255), 2) return color def draw_lwpolyline(img, entity, color, mask): polyline = [] a = np.array(entity.lwpoints.values).astype(int) while len(a) > 0: polyline.append((a[0], a[1])) a = a[5:] cv2.polylines(img, [np.array(polyline)], entity.closed, color, 1) cv2.polylines(mask, [np.array(polyline)], entity.closed, (255, 255, 255), 2) return color def draw_arc(img, entity, color, mask): s = entity.dxf.start_angle * np.pi / 180 e = entity.dxf.end_angle * np.pi / 180 if s > e: s -= 2 * np.pi d = (e - s) / (int((e - s) * 180 / np.pi) + 1) r = entity.dxf.radius cx, cy = entity.dxf.center.xyz[:-1] angles = np.arange(s, e + d / 2, d) x = cx + r * np.cos(angles) y = cy + r * np.sin(angles) points = np.column_stack((x, y)).astype(int) cv2.polylines(img, [points], abs(s - e) < 1e-9, color, 1) cv2.polylines(mask, [points], abs(s - e) < 1e-9, (255, 255, 255), 2) return color def draw_circle(img, entity, color, mask): r = entity.dxf.radius cx, cy = entity.dxf.center.xyz[:-1] cv2.circle(img, (int(cx), int(cy)), int(r), color, 1) cv2.circle(mask, (int(cx), int(cy)), int(r), (255, 255, 255), -1) return color def draw_ellipse(img, entity, color, mask): cx, cy = entity.dxf.center.xyz[:-1] ma = entity.dxf.major_axis.magnitude angle = entity.dxf.major_axis.angle_deg mi = ma * entity.dxf.ratio s = entity.dxf.start_param * 180 / np.pi e = entity.dxf.end_param * 180 / np.pi if entity.dxf.extrusion.z == -1: s = 360 - s e = 360 - e cv2.ellipse(img, (int(cx), int(cy)), (int(ma), int(mi)), angle, s, e, color, 1) cv2.ellipse(mask, (int(cx), int(cy)), (int(ma), int(mi)), angle, s, e, (255, 255, 255), 1) return color def draw_point(img, entity, color, mask): cx, cy = entity.dxf.location.xyz[:-1] cv2.circle(img, (int(cx), int(cy)), 0, color, 1) cv2.circle(mask, (int(cx), int(cy)), 0, (255, 255, 255), -1) return color draw_map = { 'HATCH': draw_hatch, 'LINE': draw_line, 'LWPOLYLINE': draw_lwpolyline, 'ARC': draw_arc, 'CIRCLE': draw_circle, 'ELLIPSE': draw_ellipse, 'POINT': draw_point, } def paint(in_path, out_path, config): doc = ezdxf.readfile(in_path) extmax, extmin = doc.header['$EXTMAX'], doc.header['$EXTMIN'] xmin, ymin = np.floor(extmin[:-1]).astype(int) xmax, ymax = np.ceil(extmax[:-1]).astype(int) img = np.ones((ymax + ymin, xmax + xmin, 3), np.uint8) * 255 mask = np.zeros_like(img) msp = doc.modelspace() layers = config.get('layers', {}) colors = config.get('colors', {}) # print(doc.layers.entries.keys()) for layer_name, names in layers.items(): color = tuple(colors.get(layer_name, [0, 0, 0])) for name in names: if name not in doc.layers: continue entities = msp.query('*[layer=="%s"]' % name) tmp = np.zeros((ymax + ymin, xmax + xmin), np.uint8) for entity in entities: if entity.DXFTYPE in draw_map: draw_map[entity.DXFTYPE](img, entity, color, tmp) else: print("%s: %s" % (name, entity.DXFTYPE)) contours, hierarchy = cv2.findContours(tmp, cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE) cv2.drawContours(mask, contours, -1, color, -1) res, img_png = cv2.imencode('.png', cv2.flip(img, 0)) res, mask_png = cv2.imencode('.png', cv2.flip(mask, 0)) with open(out_path, 'wb') as f: f.write(img_png.tobytes()) with open(out_path[:-4] + "_mask.png", 'wb') as f: f.write(mask_png.tobytes())
[ "cv2.fillPoly", "numpy.ceil", "cv2.drawContours", "cv2.flip", "numpy.ones", "numpy.floor", "numpy.column_stack", "cv2.findContours", "ezdxf.readfile", "numpy.array", "numpy.zeros", "numpy.cos", "numpy.sin", "numpy.zeros_like", "numpy.arange" ]
[((1455, 1481), 'numpy.arange', 'np.arange', (['s', '(e + d / 2)', 'd'], {}), '(s, e + d / 2, d)\n', (1464, 1481), True, 'import numpy as np\n'), ((3039, 3062), 'ezdxf.readfile', 'ezdxf.readfile', (['in_path'], {}), '(in_path)\n', (3053, 3062), False, 'import ezdxf\n'), ((3306, 3324), 'numpy.zeros_like', 'np.zeros_like', (['img'], {}), '(img)\n', (3319, 3324), True, 'import numpy as np\n'), ((3240, 3288), 'numpy.ones', 'np.ones', (['(ymax + ymin, xmax + xmin, 3)', 'np.uint8'], {}), '((ymax + ymin, xmax + xmin, 3), np.uint8)\n', (3247, 3288), True, 'import numpy as np\n'), ((4220, 4236), 'cv2.flip', 'cv2.flip', (['img', '(0)'], {}), '(img, 0)\n', (4228, 4236), False, 'import cv2\n'), ((4279, 4296), 'cv2.flip', 'cv2.flip', (['mask', '(0)'], {}), '(mask, 0)\n', (4287, 4296), False, 'import cv2\n'), ((317, 352), 'cv2.fillPoly', 'cv2.fillPoly', (['img', '[polygon]', 'color'], {}), '(img, [polygon], color)\n', (329, 352), False, 'import cv2\n'), ((365, 411), 'cv2.fillPoly', 'cv2.fillPoly', (['mask', '[polygon]', '(255, 255, 255)'], {}), '(mask, [polygon], (255, 255, 255))\n', (377, 411), False, 'import cv2\n'), ((438, 483), 'cv2.fillPoly', 'cv2.fillPoly', (['img', '[polygon]', '(255, 255, 255)'], {}), '(img, [polygon], (255, 255, 255))\n', (450, 483), False, 'import cv2\n'), ((867, 899), 'numpy.array', 'np.array', (['entity.lwpoints.values'], {}), '(entity.lwpoints.values)\n', (875, 899), True, 'import numpy as np\n'), ((1014, 1032), 'numpy.array', 'np.array', (['polyline'], {}), '(polyline)\n', (1022, 1032), True, 'import numpy as np\n'), ((1085, 1103), 'numpy.array', 'np.array', (['polyline'], {}), '(polyline)\n', (1093, 1103), True, 'import numpy as np\n'), ((1499, 1513), 'numpy.cos', 'np.cos', (['angles'], {}), '(angles)\n', (1505, 1513), True, 'import numpy as np\n'), ((1531, 1545), 'numpy.sin', 'np.sin', (['angles'], {}), '(angles)\n', (1537, 1545), True, 'import numpy as np\n'), ((1559, 1582), 'numpy.column_stack', 'np.column_stack', (['(x, y)'], {}), '((x, y))\n', (1574, 1582), True, 'import numpy as np\n'), ((3146, 3167), 'numpy.floor', 'np.floor', (['extmin[:-1]'], {}), '(extmin[:-1])\n', (3154, 3167), True, 'import numpy as np\n'), ((3197, 3217), 'numpy.ceil', 'np.ceil', (['extmax[:-1]'], {}), '(extmax[:-1])\n', (3204, 3217), True, 'import numpy as np\n'), ((3736, 3782), 'numpy.zeros', 'np.zeros', (['(ymax + ymin, xmax + xmin)', 'np.uint8'], {}), '((ymax + ymin, xmax + xmin), np.uint8)\n', (3744, 3782), True, 'import numpy as np\n'), ((4053, 4118), 'cv2.findContours', 'cv2.findContours', (['tmp', 'cv2.RETR_EXTERNAL', 'cv2.CHAIN_APPROX_SIMPLE'], {}), '(tmp, cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE)\n', (4069, 4118), False, 'import cv2\n'), ((4131, 4178), 'cv2.drawContours', 'cv2.drawContours', (['mask', 'contours', '(-1)', 'color', '(-1)'], {}), '(mask, contours, -1, color, -1)\n', (4147, 4178), False, 'import cv2\n'), ((189, 245), 'numpy.array', 'np.array', (['[vertex[:-1] for vertex in poly_path.vertices]'], {}), '([vertex[:-1] for vertex in poly_path.vertices])\n', (197, 245), True, 'import numpy as np\n')]
# Generated by Django 2.0.5 on 2019-07-26 06:45 from django.db import migrations class Migration(migrations.Migration): dependencies = [ ('TCS', '0041_auto_20190726_0030'), ] operations = [ migrations.AlterModelOptions( name='modelo', options={'default_permissions': [], 'ordering': ['-id'], 'permissions': [('Can_View__Modelo', 'Ve modelos'), ('Can_Create__Modelo', 'Crea modelos'), ('Can_Update__Modelo', 'Modifica modelos'), ('Can_Delete__Modelo', 'Elimina modelos'), ('Can_Change__ModelTCS', 'Modifica modelos de equipo')], 'verbose_name': 'Modelo', 'verbose_name_plural': 'Modelos'}, ), ]
[ "django.db.migrations.AlterModelOptions" ]
[((223, 645), 'django.db.migrations.AlterModelOptions', 'migrations.AlterModelOptions', ([], {'name': '"""modelo"""', 'options': "{'default_permissions': [], 'ordering': ['-id'], 'permissions': [(\n 'Can_View__Modelo', 'Ve modelos'), ('Can_Create__Modelo',\n 'Crea modelos'), ('Can_Update__Modelo', 'Modifica modelos'), (\n 'Can_Delete__Modelo', 'Elimina modelos'), ('Can_Change__ModelTCS',\n 'Modifica modelos de equipo')], 'verbose_name': 'Modelo',\n 'verbose_name_plural': 'Modelos'}"}), "(name='modelo', options={'default_permissions':\n [], 'ordering': ['-id'], 'permissions': [('Can_View__Modelo',\n 'Ve modelos'), ('Can_Create__Modelo', 'Crea modelos'), (\n 'Can_Update__Modelo', 'Modifica modelos'), ('Can_Delete__Modelo',\n 'Elimina modelos'), ('Can_Change__ModelTCS',\n 'Modifica modelos de equipo')], 'verbose_name': 'Modelo',\n 'verbose_name_plural': 'Modelos'})\n", (251, 645), False, 'from django.db import migrations\n')]
import torch from kornia.geometry.linalg import transform_points from kornia.geometry.transform import remap from kornia.utils import create_meshgrid from .distort import distort_points, tilt_projection # Based on https://github.com/opencv/opencv/blob/master/modules/calib3d/src/undistort.dispatch.cpp#L384 def undistort_points(points: torch.Tensor, K: torch.Tensor, dist: torch.Tensor) -> torch.Tensor: r"""Compensate for lens distortion a set of 2D image points. Radial :math:`(k_1, k_2, k_3, k_4, k_4, k_6)`, tangential :math:`(p_1, p_2)`, thin prism :math:`(s_1, s_2, s_3, s_4)`, and tilt :math:`(\tau_x, \tau_y)` distortion models are considered in this function. Args: points: Input image points with shape :math:`(*, N, 2)`. K: Intrinsic camera matrix with shape :math:`(*, 3, 3)`. dist: Distortion coefficients :math:`(k_1,k_2,p_1,p_2[,k_3[,k_4,k_5,k_6[,s_1,s_2,s_3,s_4[,\tau_x,\tau_y]]]])`. This is a vector with 4, 5, 8, 12 or 14 elements with shape :math:`(*, n)`. Returns: Undistorted 2D points with shape :math:`(*, N, 2)`. Example: >>> _ = torch.manual_seed(0) >>> x = torch.rand(1, 4, 2) >>> K = torch.eye(3)[None] >>> dist = torch.rand(1, 4) >>> undistort_points(x, K, dist) tensor([[[-0.1513, -0.1165], [ 0.0711, 0.1100], [-0.0697, 0.0228], [-0.1843, -0.1606]]]) """ if points.dim() < 2 and points.shape[-1] != 2: raise ValueError(f'points shape is invalid. Got {points.shape}.') if K.shape[-2:] != (3, 3): raise ValueError(f'K matrix shape is invalid. Got {K.shape}.') if dist.shape[-1] not in [4, 5, 8, 12, 14]: raise ValueError(f"Invalid number of distortion coefficients. Got {dist.shape[-1]}") # Adding zeros to obtain vector with 14 coeffs. if dist.shape[-1] < 14: dist = torch.nn.functional.pad(dist, [0, 14 - dist.shape[-1]]) # Convert 2D points from pixels to normalized camera coordinates cx: torch.Tensor = K[..., 0:1, 2] # princial point in x (Bx1) cy: torch.Tensor = K[..., 1:2, 2] # princial point in y (Bx1) fx: torch.Tensor = K[..., 0:1, 0] # focal in x (Bx1) fy: torch.Tensor = K[..., 1:2, 1] # focal in y (Bx1) # This is equivalent to K^-1 [u,v,1]^T x: torch.Tensor = (points[..., 0] - cx) / fx # (BxN - Bx1)/Bx1 -> BxN y: torch.Tensor = (points[..., 1] - cy) / fy # (BxN - Bx1)/Bx1 -> BxN # Compensate for tilt distortion if torch.any(dist[..., 12] != 0) or torch.any(dist[..., 13] != 0): inv_tilt = tilt_projection(dist[..., 12], dist[..., 13], True) # Transposed untilt points (instead of [x,y,1]^T, we obtain [x,y,1]) x, y = transform_points(inv_tilt, torch.stack([x, y], dim=-1)).unbind(-1) # Iteratively undistort points x0, y0 = x, y for _ in range(5): r2 = x * x + y * y inv_rad_poly = (1 + dist[..., 5:6] * r2 + dist[..., 6:7] * r2 * r2 + dist[..., 7:8] * r2 ** 3) / ( 1 + dist[..., 0:1] * r2 + dist[..., 1:2] * r2 * r2 + dist[..., 4:5] * r2 ** 3 ) deltaX = ( 2 * dist[..., 2:3] * x * y + dist[..., 3:4] * (r2 + 2 * x * x) + dist[..., 8:9] * r2 + dist[..., 9:10] * r2 * r2 ) deltaY = ( dist[..., 2:3] * (r2 + 2 * y * y) + 2 * dist[..., 3:4] * x * y + dist[..., 10:11] * r2 + dist[..., 11:12] * r2 * r2 ) x = (x0 - deltaX) * inv_rad_poly y = (y0 - deltaY) * inv_rad_poly # Convert points from normalized camera coordinates to pixel coordinates x = fx * x + cx y = fy * y + cy return torch.stack([x, y], -1) # Based on https://github.com/opencv/opencv/blob/master/modules/calib3d/src/undistort.dispatch.cpp#L287 def undistort_image(image: torch.Tensor, K: torch.Tensor, dist: torch.Tensor) -> torch.Tensor: r"""Compensate an image for lens distortion. Radial :math:`(k_1, k_2, k_3, k_4, k_4, k_6)`, tangential :math:`(p_1, p_2)`, thin prism :math:`(s_1, s_2, s_3, s_4)`, and tilt :math:`(\tau_x, \tau_y)` distortion models are considered in this function. Args: image: Input image with shape :math:`(*, C, H, W)`. K: Intrinsic camera matrix with shape :math:`(*, 3, 3)`. dist: Distortion coefficients :math:`(k_1,k_2,p_1,p_2[,k_3[,k_4,k_5,k_6[,s_1,s_2,s_3,s_4[,\tau_x,\tau_y]]]])`. This is a vector with 4, 5, 8, 12 or 14 elements with shape :math:`(*, n)`. Returns: Undistorted image with shape :math:`(*, C, H, W)`. Example: >>> img = torch.rand(1, 3, 5, 5) >>> K = torch.eye(3)[None] >>> dist_coeff = torch.rand(4) >>> out = undistort_image(img, K, dist_coeff) >>> out.shape torch.Size([1, 3, 5, 5]) """ if len(image.shape) < 2: raise ValueError(f"Image shape is invalid. Got: {image.shape}.") if K.shape[-2:] != (3, 3): raise ValueError(f'K matrix shape is invalid. Got {K.shape}.') if dist.shape[-1] not in [4, 5, 8, 12, 14]: raise ValueError(f'Invalid number of distortion coefficients. Got {dist.shape[-1]}.') if not image.is_floating_point(): raise ValueError(f'Invalid input image data type. Input should be float. Got {image.dtype}.') B, _, rows, cols = image.shape # Create point coordinates for each pixel of the image xy_grid: torch.Tensor = create_meshgrid(rows, cols, False, image.device, image.dtype) pts = xy_grid.reshape(-1, 2) # (rows*cols)x2 matrix of pixel coordinates # Distort points and define maps ptsd: torch.Tensor = distort_points(pts, K, dist) # Bx(rows*cols)x2 mapx: torch.Tensor = ptsd[..., 0].reshape(B, rows, cols) # B x rows x cols, float mapy: torch.Tensor = ptsd[..., 1].reshape(B, rows, cols) # B x rows x cols, float # Remap image to undistort out = remap(image, mapx, mapy, align_corners=True) return out
[ "torch.any", "torch.stack", "kornia.geometry.transform.remap", "torch.nn.functional.pad", "kornia.utils.create_meshgrid" ]
[((3764, 3787), 'torch.stack', 'torch.stack', (['[x, y]', '(-1)'], {}), '([x, y], -1)\n', (3775, 3787), False, 'import torch\n'), ((5543, 5604), 'kornia.utils.create_meshgrid', 'create_meshgrid', (['rows', 'cols', '(False)', 'image.device', 'image.dtype'], {}), '(rows, cols, False, image.device, image.dtype)\n', (5558, 5604), False, 'from kornia.utils import create_meshgrid\n'), ((6010, 6054), 'kornia.geometry.transform.remap', 'remap', (['image', 'mapx', 'mapy'], {'align_corners': '(True)'}), '(image, mapx, mapy, align_corners=True)\n', (6015, 6054), False, 'from kornia.geometry.transform import remap\n'), ((1947, 2002), 'torch.nn.functional.pad', 'torch.nn.functional.pad', (['dist', '[0, 14 - dist.shape[-1]]'], {}), '(dist, [0, 14 - dist.shape[-1]])\n', (1970, 2002), False, 'import torch\n'), ((2561, 2590), 'torch.any', 'torch.any', (['(dist[..., 12] != 0)'], {}), '(dist[..., 12] != 0)\n', (2570, 2590), False, 'import torch\n'), ((2594, 2623), 'torch.any', 'torch.any', (['(dist[..., 13] != 0)'], {}), '(dist[..., 13] != 0)\n', (2603, 2623), False, 'import torch\n'), ((2816, 2843), 'torch.stack', 'torch.stack', (['[x, y]'], {'dim': '(-1)'}), '([x, y], dim=-1)\n', (2827, 2843), False, 'import torch\n')]
# -*- coding: utf-8 -*- # Copyright (c) Vispy Development Team. All Rights Reserved. # Distributed under the (new) BSD License. See LICENSE.txt for more info. import numpy as np from os import path as op from ..util import load_data_file # This is the package data dir, not the dir for config, etc. DATA_DIR = op.join(op.dirname(__file__), '_data') def load_iris(): """Load the iris dataset Returns ------- iris : NpzFile data['data'] : a (150, 4) NumPy array with the iris' features data['group'] : a (150,) NumPy array with the iris' group """ return np.load(load_data_file('iris/iris.npz', force_download='2014-09-04')) def load_crate(): """Load an image of a crate Returns ------- crate : array 256x256x3 crate image. """ return np.load(load_data_file('orig/crate.npz'))['crate'] def pack_unit(value): """Packs float values between [0,1] into 4 unsigned int8 Returns ------- pack: array packed interpolation kernel """ pack = np.zeros(value.shape + (4,), dtype=np.ubyte) for i in range(4): value, pack[..., i] = np.modf(value * 256.) return pack def pack_ieee(value): """Packs float ieee binary representation into 4 unsigned int8 Returns ------- pack: array packed interpolation kernel """ return np.fromstring(value.tobytes(), np.ubyte).reshape((value.shape + (4,))) def load_spatial_filters(packed=True): """Load spatial-filters kernel Parameters ---------- packed : bool Whether or not the data should be in "packed" representation for use in GLSL code. Returns ------- kernel : array 16x1024x4 (packed float in rgba) or 16x1024 (unpacked float) 16 interpolation kernel with length 1024 each. names : tuple of strings Respective interpolation names, plus "Nearest" which does not require a filter but can still be used """ names = ("Bilinear", "Hanning", "Hamming", "Hermite", "Kaiser", "Quadric", "Bicubic", "CatRom", "Mitchell", "Spline16", "Spline36", "Gaussian", "Bessel", "Sinc", "Lanczos", "Blackman", "Nearest") kernel = np.load(op.join(DATA_DIR, 'spatial-filters.npy')) if packed: # convert the kernel to a packed representation kernel = pack_unit(kernel) return kernel, names
[ "os.path.dirname", "numpy.zeros", "os.path.join", "numpy.modf" ]
[((321, 341), 'os.path.dirname', 'op.dirname', (['__file__'], {}), '(__file__)\n', (331, 341), True, 'from os import path as op\n'), ((1080, 1124), 'numpy.zeros', 'np.zeros', (['(value.shape + (4,))'], {'dtype': 'np.ubyte'}), '(value.shape + (4,), dtype=np.ubyte)\n', (1088, 1124), True, 'import numpy as np\n'), ((1178, 1200), 'numpy.modf', 'np.modf', (['(value * 256.0)'], {}), '(value * 256.0)\n', (1185, 1200), True, 'import numpy as np\n'), ((2315, 2355), 'os.path.join', 'op.join', (['DATA_DIR', '"""spatial-filters.npy"""'], {}), "(DATA_DIR, 'spatial-filters.npy')\n", (2322, 2355), True, 'from os import path as op\n')]
#! @@Author : <NAME> #! @@Create : 18 Januari 2019 #! @@Modify : 19 Januari 2019 #! Gambar dari reddit. #! Gunakan VPN karena DNS situs reddit sudah di blokir dari negara Indonesia. import os import json import requests import progressbar from PIL import Image from lxml import html from time import sleep from ImageDeleter import delete_png from InstagramAPI import InstagramAPI InstagramAPI = InstagramAPI(input("Username: "), input("Password: ")) while True: if (InstagramAPI.login()): break else: for x in range(300): os.system('cls') print(300-x) sleep(1) global useable useable = [] os.system('pause') def get_image(): print("Memulai mendapatkan gambar ..") json_raw = requests.get('https://www.reddit.com/r/me_irl/new/.json', headers = {'User-agent': 'Image_Testing_V3'}).json() json_data = json_raw['data'] json_children = json_data['children'] for x in range(len(json_children)): json_current = json_children[x] json_current_data = json_current['data'] json_current_url = json_current_data['url'] if "https://i.redd.it/" not in json_current_url: pass else: if json_current_url not in useable: useable.append(json_current_url) download() else: pass def download(): print("Memulai download ..") global filename new_filename = "" filename = useable[-1] filename = filename.replace("https://i.redd.it/", "") print(filename) f = open(filename, 'wb') f.write(requests.get(useable[-1]).content) f.close() if (filename[-3] + filename[-2] + filename[-1]) != 'jpg': im = Image.open(filename) for x in range(len(filename)-3): new_filename = new_filename + filename[x] im = im.convert("RGB") im.save("edit" + new_filename + 'jpg') new_filename = "edit" + new_filename + "jpg" print(new_filename) else: new_filename = filename upload(new_filename) def delete_image(bad_file): print("Memulai menghapus gambar ..") if (bad_file[0] + bad_file[1] + bad_file[2] + bad_file[3]) == "edit": png_bad_file = '' for x in range(len(bad_file)-3): png_bad_file = png_bad_file + bad_file[x] png_bad_file = png_bad_file + "png" try: os.remove(png_bad_file) except Exception as e: pass os.remove(bad_file) delete_png() print("Selesai.") wait() def upload(file): print("Memulai upload ..") caption = "" InstagramAPI.uploadPhoto(file, caption=caption) delete_image(file) def wait(): for i in progressbar.progressbar(range(1800)): sleep(1) while True: get_image() print("Gambar sukses di upload.") sleep(5) os.system('pause')
[ "InstagramAPI.InstagramAPI.uploadPhoto", "PIL.Image.open", "time.sleep", "ImageDeleter.delete_png", "requests.get", "os.system", "InstagramAPI.InstagramAPI.login", "os.remove" ]
[((651, 669), 'os.system', 'os.system', (['"""pause"""'], {}), "('pause')\n", (660, 669), False, 'import os\n'), ((472, 492), 'InstagramAPI.InstagramAPI.login', 'InstagramAPI.login', ([], {}), '()\n', (490, 492), False, 'from InstagramAPI import InstagramAPI\n'), ((2478, 2497), 'os.remove', 'os.remove', (['bad_file'], {}), '(bad_file)\n', (2487, 2497), False, 'import os\n'), ((2502, 2514), 'ImageDeleter.delete_png', 'delete_png', ([], {}), '()\n', (2512, 2514), False, 'from ImageDeleter import delete_png\n'), ((2619, 2666), 'InstagramAPI.InstagramAPI.uploadPhoto', 'InstagramAPI.uploadPhoto', (['file'], {'caption': 'caption'}), '(file, caption=caption)\n', (2643, 2666), False, 'from InstagramAPI import InstagramAPI\n'), ((2842, 2850), 'time.sleep', 'sleep', (['(5)'], {}), '(5)\n', (2847, 2850), False, 'from time import sleep\n'), ((2855, 2873), 'os.system', 'os.system', (['"""pause"""'], {}), "('pause')\n", (2864, 2873), False, 'import os\n'), ((1726, 1746), 'PIL.Image.open', 'Image.open', (['filename'], {}), '(filename)\n', (1736, 1746), False, 'from PIL import Image\n'), ((2762, 2770), 'time.sleep', 'sleep', (['(1)'], {}), '(1)\n', (2767, 2770), False, 'from time import sleep\n'), ((560, 576), 'os.system', 'os.system', (['"""cls"""'], {}), "('cls')\n", (569, 576), False, 'import os\n'), ((614, 622), 'time.sleep', 'sleep', (['(1)'], {}), '(1)\n', (619, 622), False, 'from time import sleep\n'), ((746, 852), 'requests.get', 'requests.get', (['"""https://www.reddit.com/r/me_irl/new/.json"""'], {'headers': "{'User-agent': 'Image_Testing_V3'}"}), "('https://www.reddit.com/r/me_irl/new/.json', headers={\n 'User-agent': 'Image_Testing_V3'})\n", (758, 852), False, 'import requests\n'), ((1602, 1627), 'requests.get', 'requests.get', (['useable[-1]'], {}), '(useable[-1])\n', (1614, 1627), False, 'import requests\n'), ((2402, 2425), 'os.remove', 'os.remove', (['png_bad_file'], {}), '(png_bad_file)\n', (2411, 2425), False, 'import os\n')]
from collections import MutableMapping, Container from datetime import datetime, timedelta from pyvalid import accepts class LimitedTimeTable(MutableMapping, Container): def __init__(self, time_span): self.__storage = dict() self.__time_span = None self.time_span = time_span @property def time_span(self): return self.__time_span @time_span.setter @accepts(object, timedelta) def time_span(self, value): self.__time_span = value @property def oldest(self): value = None if self.__len__() > 0: value = min(self.__storage.keys()) return value @property def newest(self): value = None if self.__len__() > 0: value = max(self.__storage.keys()) return value def oldest_keys(self, size): for key in self.__get_slice(0, size): yield key def oldest_values(self, size): for key in self.oldest_keys(size): yield self.__storage.get(key) def oldest_items(self, size): for key in self.oldest_keys(size): yield (key, self.__storage.get(key)) def newest_keys(self, size): for key in self.__get_slice(-size, None): yield key def newest_values(self, size): for key in self.newest_keys(size): yield self.__storage.get(key) def newest_items(self, size): for key in self.newest_keys(size): yield (key, self.__storage.get(key)) def __get_slice(self, start, end): keys = sorted(self.keys()) return keys[start:end] def __getitem__(self, item): return self.__storage.__getitem__(item) @accepts(object, datetime, object) def __setitem__(self, key, value): now = datetime.now() if key > now: raise ValueError('Can\'t set item from future!') oldest = self.oldest if (oldest is not None) and (oldest != key): longest_time_span = now - oldest # Item is too old for current timetable if longest_time_span >= self.time_span: self.__delitem__(oldest) return self.__storage.__setitem__(key, value) def __delitem__(self, key): return self.__storage.__delitem__(key) def __len__(self): return self.__storage.__len__() def __iter__(self): return self.__storage.__iter__() def __contains__(self, item): return self.__storage.__contains__(item) __all__ = ['LimitedTimeTable']
[ "datetime.datetime.now", "pyvalid.accepts" ]
[((407, 433), 'pyvalid.accepts', 'accepts', (['object', 'timedelta'], {}), '(object, timedelta)\n', (414, 433), False, 'from pyvalid import accepts\n'), ((1711, 1744), 'pyvalid.accepts', 'accepts', (['object', 'datetime', 'object'], {}), '(object, datetime, object)\n', (1718, 1744), False, 'from pyvalid import accepts\n'), ((1798, 1812), 'datetime.datetime.now', 'datetime.now', ([], {}), '()\n', (1810, 1812), False, 'from datetime import datetime, timedelta\n')]
#!/usr/bin/python # Copyright (C) 2015 Ion Torrent Systems, Inc. All Rights Reserved import subprocess import re pluginName = 'DataExport' pluginDir = "" networkFS = ["nfs", "cifs"] localFS = ["ext4", "ext3", "xfs", "ntfs", "exfat", "vboxsf"] supportedFS = ",".join(localFS + networkFS) def test(bucket): return bucket def runProcess(exe): p = subprocess.Popen(exe, stdout=subprocess.PIPE, stderr=subprocess.STDOUT) return iter(p.stdout.readline, b'') def runProcessAndReturnLastLine(exe): p = subprocess.Popen(exe, stdout=subprocess.PIPE, stderr=subprocess.STDOUT) return p.stdout.readlines()[-1] def backupDevices(bucket): devices = "" cmd = "mount -l -t " + supportedFS for line in runProcess(cmd.split()): line_arr = line.split() folder = line_arr[2] fstype = line_arr[4] perms = line_arr[5] if perms.find('w') != -1: use = True if fstype in localFS: m = re.match('^(/media|/mnt)', folder) if not m: use = False if use: cmd2 = "df -h %s " % folder df = runProcessAndReturnLastLine(cmd2.split()) avail = df.split()[2] devices = devices + "<OPTION VALUE=\"" + folder + "\">" + folder + " (" + avail + " free, " + fstype + ")</option>" return devices
[ "subprocess.Popen", "re.match" ]
[((359, 430), 'subprocess.Popen', 'subprocess.Popen', (['exe'], {'stdout': 'subprocess.PIPE', 'stderr': 'subprocess.STDOUT'}), '(exe, stdout=subprocess.PIPE, stderr=subprocess.STDOUT)\n', (375, 430), False, 'import subprocess\n'), ((519, 590), 'subprocess.Popen', 'subprocess.Popen', (['exe'], {'stdout': 'subprocess.PIPE', 'stderr': 'subprocess.STDOUT'}), '(exe, stdout=subprocess.PIPE, stderr=subprocess.STDOUT)\n', (535, 590), False, 'import subprocess\n'), ((982, 1016), 're.match', 're.match', (['"""^(/media|/mnt)"""', 'folder'], {}), "('^(/media|/mnt)', folder)\n", (990, 1016), False, 'import re\n')]
# Ported from JavaSript version to Python and Pygame Zero # Designed to work well with mu-editor environment. # # The original Javascript version wasdonw by <NAME> # at https://github.com/beneater/boids (MIT License) # No endorsement implied. # # Complex numbers are are used as vectors to integrate x and y positions and velocities # MIT licesense (details in parent directory) import random import time HEIGHT = 500 # window height WIDTH = 900 # window width MARGIN = 150 # disstance to start avoid edge NUM_BOIDS = 75 VISUAL_RANGE = 70 # radius of influence for most algoriths SPEED_LIMIT_UPPER = 13 # boids canonly fly so fast. SPEED_LIMIT_LOWER = 3 # boid will fall if flying too slow SPEED_INIT = 20 # range for random velocity MIN_DISTANCE = 10 # the distance to stay away from other boids AVOID_FACTOR = 0.05 # % location change if too close CENTERING_FACTOR = 0.050 # % location change to pull to center MATCHING_FACTOR = 0.015 # % velocity change if close MARGIN_FACTOR = 0.25+0.0j # rate of turning away from edge HISTORY_LENGTH = 30 BACK_COLOR = (0, 0, 90) BOID_COLOR = (255, 128, 128) BOID_SIZE = 8 TRAIL_COLOR = (255, 255, 64) g_boids = [] class Boid: def __init__(boid) : boid.loc = complex( (random.randint(0, WIDTH)), (random.randint(0, HEIGHT))) boid.vel = complex( (random.randint(-SPEED_INIT, SPEED_INIT)), (random.randint(-SPEED_INIT, SPEED_INIT))) boid.history = [] def keep_within_bounds(boid) : # Constrain a boid to within the window. If it gets too close to an edge, # nudge it back in and reverse its direction. if (boid.loc.real < MARGIN): boid.vel += MARGIN_FACTOR * 1.0 if (boid.loc.real > WIDTH - MARGIN) : boid.vel += MARGIN_FACTOR * -1.0 if (boid.loc.imag < MARGIN) : boid.vel += MARGIN_FACTOR * 1.0j if (boid.loc.imag > HEIGHT - MARGIN) : boid.vel += MARGIN_FACTOR * -1.0j def fly_towards_center(boid): # Find the center of mass of the other boids and # adjust velocity slightly to point towards the # center of mass. center = 0+0j num_neighbors = 0 for other_boid in g_boids : if abs(boid.loc - other_boid.loc) < VISUAL_RANGE : center += other_boid.loc num_neighbors += 1 if num_neighbors > 0 : center = center / num_neighbors boid.loc += (center - boid.loc) * CENTERING_FACTOR def avoid_others(boid): # Move away from other boids that are too close to avoid colliding move = 0+0j for other_boid in g_boids : if not (other_boid is boid) : if abs(boid.loc - other_boid.loc) < MIN_DISTANCE : move += boid.loc - other_boid.loc boid.vel += move * AVOID_FACTOR def match_velocity(boid): # Find the average velocity (speed and direction) # of the other boids and adjust velocity slightly to match. avg_vel = 0+0j num_neighbors = 0 for otherBoid in g_boids: if abs(boid.loc - otherBoid.loc) < VISUAL_RANGE : avg_vel += otherBoid.vel num_neighbors += 1 if num_neighbors > 0: avg_vel /= num_neighbors boid.vel += (avg_vel - boid.vel) * MATCHING_FACTOR def limit_speed(boid): # Speed will naturally vary in flocking behavior, # but real animals can't go arbitrarily fast (or slow) speed = abs(boid.vel) if (speed > SPEED_LIMIT_UPPER) : boid.vel = boid.vel / speed * SPEED_LIMIT_UPPER if (speed < SPEED_LIMIT_LOWER) : boid.vel = boid.vel / speed * SPEED_LIMIT_LOWER return def draw(boid): screen.draw.filled_circle((boid.loc.real, boid.loc.imag), BOID_SIZE, BOID_COLOR) tail = boid.loc + boid.vel * -1.8 screen.draw.line( (boid.loc.real, boid.loc.imag), (tail.real, tail.imag), BOID_COLOR) def draw_trail(boid): pt_from = (boid.loc.real, boid.loc.imag) for p in boid.history: pt_to = (p.real, p.imag) screen.draw.line(pt_from, pt_to, TRAIL_COLOR) pt_from = pt_to def draw(): screen.fill(BACK_COLOR) if keyboard.space: for boid in g_boids: boid.draw_trail() for boid in g_boids: boid.draw() screen.draw.text("space:tails r:restart", (20, 20)) def update(): for boid in g_boids: # Apply rules boid.fly_towards_center() boid.avoid_others() boid.match_velocity() boid.limit_speed() boid.keep_within_bounds() # Update the position based on the current velocity boid.loc += boid.vel boid.history.insert(0, boid.loc) boid.history = boid.history[:HISTORY_LENGTH] def init(): global g_boids g_boids = [Boid() for _ in range(NUM_BOIDS)] def on_key_down(key, mod, unicode): if (key == keys.R): init() init()
[ "random.randint" ]
[((1346, 1370), 'random.randint', 'random.randint', (['(0)', 'WIDTH'], {}), '(0, WIDTH)\n', (1360, 1370), False, 'import random\n'), ((1386, 1411), 'random.randint', 'random.randint', (['(0)', 'HEIGHT'], {}), '(0, HEIGHT)\n', (1400, 1411), False, 'import random\n'), ((1455, 1494), 'random.randint', 'random.randint', (['(-SPEED_INIT)', 'SPEED_INIT'], {}), '(-SPEED_INIT, SPEED_INIT)\n', (1469, 1494), False, 'import random\n'), ((1510, 1549), 'random.randint', 'random.randint', (['(-SPEED_INIT)', 'SPEED_INIT'], {}), '(-SPEED_INIT, SPEED_INIT)\n', (1524, 1549), False, 'import random\n')]
import warnings import numpy as np import torch import torch.nn.functional as F from sklearn import metrics from torch.utils.data import DataLoader, SequentialSampler, TensorDataset from tqdm import tqdm from datasets.bert_processors.abstract_processor import convert_examples_to_features_with_emotion, \ convert_examples_to_hierarchical_features from utils.preprocessing import pad_input_matrix from utils.tokenization import BertTokenizer from utils.emotion import Emotion # Suppress warnings from sklearn.metrics warnings.filterwarnings('ignore') class BertEvaluator(object): def __init__(self, model, processor, args, split='dev'): self.args = args self.model = model self.processor = processor self.tokenizer = BertTokenizer.from_pretrained(args.model, is_lowercase=args.is_lowercase) self.emotioner = Emotion(args.nrc_path, args.max_em_len, args.emotion_filters) if split == 'test': self.eval_examples = self.processor.get_test_examples(args.data_dir, args.test_name) elif split == 'dev': self.eval_examples = self.processor.get_dev_examples(args.data_dir, args.dev_name) else: self.eval_examples = self.processor.get_any_examples(args.data_dir, split) def get_scores(self, silent=False, return_indices=False): all_indices = [] if self.args.is_hierarchical: eval_features = convert_examples_to_hierarchical_features( self.eval_examples, self.args.max_seq_length, self.tokenizer) else: eval_features = convert_examples_to_features_with_emotion( self.eval_examples, self.args.max_seq_length, self.tokenizer, self.emotioner) unpadded_input_ids = [f.input_ids for f in eval_features] unpadded_input_mask = [f.input_mask for f in eval_features] unpadded_segment_ids = [f.segment_ids for f in eval_features] unpadded_emotion_scores = [f.sentiment_scores for f in eval_features] if self.args.is_hierarchical: pad_input_matrix(unpadded_input_ids, self.args.max_doc_length) pad_input_matrix(unpadded_input_mask, self.args.max_doc_length) pad_input_matrix(unpadded_segment_ids, self.args.max_doc_length) padded_input_ids = torch.tensor(unpadded_input_ids, dtype=torch.long) padded_input_mask = torch.tensor(unpadded_input_mask, dtype=torch.long) padded_segment_ids = torch.tensor(unpadded_segment_ids, dtype=torch.long) padded_emotion_ids = torch.tensor(unpadded_emotion_scores, dtype=torch.long) label_ids = torch.tensor([f.label_id for f in eval_features], dtype=torch.long) eval_data = TensorDataset(padded_input_ids, padded_input_mask, padded_segment_ids, padded_emotion_ids, label_ids) eval_sampler = SequentialSampler(eval_data) eval_dataloader = DataLoader(eval_data, sampler=eval_sampler, batch_size=self.args.batch_size) self.model.eval() total_loss = 0 nb_eval_steps, nb_eval_examples = 0, 0 predicted_labels, target_labels = list(), list() for input_ids, input_mask, segment_ids, emotion_ids, label_ids in tqdm(eval_dataloader, desc="Evaluating", disable=silent): input_ids = input_ids.to(self.args.device) input_mask = input_mask.to(self.args.device) segment_ids = segment_ids.to(self.args.device) emotion_ids = emotion_ids.to(self.args.device) label_ids = label_ids.to(self.args.device) with torch.no_grad(): if return_indices: outs = self.model(input_ids, segment_ids, input_mask, emotion_ids=emotion_ids, return_indices=return_indices) else: outs = self.model(input_ids, segment_ids, input_mask, emotion_ids=emotion_ids) if isinstance(outs, tuple): outs, _ = outs if return_indices: logits, indices = outs all_indices.extend(indices.cpu().detach().numpy()) else: logits = outs if self.args.is_multilabel: predicted_labels.extend(F.sigmoid(logits).round().long().cpu().detach().numpy()) target_labels.extend(label_ids.cpu().detach().numpy()) loss = F.binary_cross_entropy_with_logits(logits, label_ids.float(), size_average=False) average, average_mac = 'micro', 'macro' else: predicted_labels.extend(torch.argmax(logits, dim=1).cpu().detach().numpy()) target_labels.extend(torch.argmax(label_ids, dim=1).cpu().detach().numpy()) loss = F.cross_entropy(logits, torch.argmax(label_ids, dim=1)) average, average_mac = 'binary', 'binary' if self.args.n_gpu > 1: loss = loss.mean() if self.args.gradient_accumulation_steps > 1: loss = loss / self.args.gradient_accumulation_steps total_loss += loss.item() nb_eval_examples += input_ids.size(0) nb_eval_steps += 1 predicted_labels, target_labels = np.array(predicted_labels), np.array(target_labels) accuracy = metrics.accuracy_score(target_labels, predicted_labels) precision = metrics.precision_score(target_labels, predicted_labels, average=average) recall = metrics.recall_score(target_labels, predicted_labels, average=average) avg_loss = total_loss / nb_eval_steps hamming_loss = metrics.hamming_loss(target_labels, predicted_labels) jaccard_score = metrics.jaccard_score(target_labels, predicted_labels, average=average) f1_micro = metrics.f1_score(target_labels, predicted_labels, average=average) f1_macro = metrics.f1_score(target_labels, predicted_labels, average=average_mac) if return_indices: return [accuracy, precision, recall, f1_micro, avg_loss, f1_macro, hamming_loss, jaccard_score, predicted_labels, target_labels, all_indices],\ ['accuracy', 'precision', 'recall', 'f1_micro', 'avg_loss', 'f1_macro', 'hamming_loss', 'jaccard', 'predicted_labels', 'target_labels', 'all_indices'] else: return [accuracy, precision, recall, f1_micro, avg_loss, f1_macro, hamming_loss, jaccard_score, predicted_labels, target_labels],\ ['accuracy', 'precision', 'recall', 'f1_micro', 'avg_loss', 'f1_macro', 'hamming_loss', 'jaccard', 'predicted_labels', 'target_labels'] def get_bert_layers(self, silent=False, last_bert_layers=-1): if self.args.is_hierarchical: eval_features = convert_examples_to_hierarchical_features( self.eval_examples, self.args.max_seq_length, self.tokenizer) else: eval_features = convert_examples_to_features_with_emotion( self.eval_examples, self.args.max_seq_length, self.tokenizer, self.emotioner) unpadded_input_ids = [f.input_ids for f in eval_features] unpadded_input_mask = [f.input_mask for f in eval_features] unpadded_segment_ids = [f.segment_ids for f in eval_features] unpadded_emotion_ids = [f.emotioniment_scores for f in eval_features] if self.args.is_hierarchical: pad_input_matrix(unpadded_input_ids, self.args.max_doc_length) pad_input_matrix(unpadded_input_mask, self.args.max_doc_length) pad_input_matrix(unpadded_segment_ids, self.args.max_doc_length) padded_input_ids = torch.tensor(unpadded_input_ids, dtype=torch.long) padded_input_mask = torch.tensor(unpadded_input_mask, dtype=torch.long) padded_segment_ids = torch.tensor(unpadded_segment_ids, dtype=torch.long) padded_emotion_ids = torch.tensor(unpadded_emotion_ids, dtype=torch.long) label_ids = torch.tensor([f.label_id for f in eval_features], dtype=torch.long) eval_data = TensorDataset(padded_input_ids, padded_input_mask, padded_segment_ids, padded_emotion_ids, label_ids) eval_sampler = SequentialSampler(eval_data) eval_dataloader = DataLoader(eval_data, sampler=eval_sampler, batch_size=self.args.batch_size) self.model.eval() bert_layers_l, label_ids_l = [], [] for input_ids, input_mask, segment_ids, emotion_ids, label_ids in tqdm(eval_dataloader, desc="Evaluating", disable=silent): input_ids = input_ids.to(self.args.device) input_mask = input_mask.to(self.args.device) segment_ids = segment_ids.to(self.args.device) emotion_ids = emotion_ids.to(self.args.device) label_ids = label_ids.to(self.args.device) with torch.no_grad(): bert_layers = self.model.get_bert_embedding(input_ids, segment_ids, input_mask, emotion_ids=emotion_ids, last_bert_layers=last_bert_layers) label_ids = torch.argmax(label_ids, dim=1).cpu().detach().numpy() bert_layers_l.extend(bert_layers) label_ids_l.extend(label_ids) bert_layers_l = torch.stack(bert_layers_l, dim=0) return bert_layers_l, label_ids_l
[ "datasets.bert_processors.abstract_processor.convert_examples_to_hierarchical_features", "torch.nn.functional.sigmoid", "sklearn.metrics.precision_score", "sklearn.metrics.recall_score", "numpy.array", "sklearn.metrics.jaccard_score", "utils.emotion.Emotion", "sklearn.metrics.hamming_loss", "datasets.bert_processors.abstract_processor.convert_examples_to_features_with_emotion", "torch.argmax", "torch.utils.data.SequentialSampler", "torch.utils.data.TensorDataset", "sklearn.metrics.accuracy_score", "warnings.filterwarnings", "utils.preprocessing.pad_input_matrix", "sklearn.metrics.f1_score", "tqdm.tqdm", "torch.stack", "torch.tensor", "torch.utils.data.DataLoader", "torch.no_grad", "utils.tokenization.BertTokenizer.from_pretrained" ]
[((539, 572), 'warnings.filterwarnings', 'warnings.filterwarnings', (['"""ignore"""'], {}), "('ignore')\n", (562, 572), False, 'import warnings\n'), ((785, 858), 'utils.tokenization.BertTokenizer.from_pretrained', 'BertTokenizer.from_pretrained', (['args.model'], {'is_lowercase': 'args.is_lowercase'}), '(args.model, is_lowercase=args.is_lowercase)\n', (814, 858), False, 'from utils.tokenization import BertTokenizer\n'), ((885, 946), 'utils.emotion.Emotion', 'Emotion', (['args.nrc_path', 'args.max_em_len', 'args.emotion_filters'], {}), '(args.nrc_path, args.max_em_len, args.emotion_filters)\n', (892, 946), False, 'from utils.emotion import Emotion\n'), ((2358, 2408), 'torch.tensor', 'torch.tensor', (['unpadded_input_ids'], {'dtype': 'torch.long'}), '(unpadded_input_ids, dtype=torch.long)\n', (2370, 2408), False, 'import torch\n'), ((2438, 2489), 'torch.tensor', 'torch.tensor', (['unpadded_input_mask'], {'dtype': 'torch.long'}), '(unpadded_input_mask, dtype=torch.long)\n', (2450, 2489), False, 'import torch\n'), ((2520, 2572), 'torch.tensor', 'torch.tensor', (['unpadded_segment_ids'], {'dtype': 'torch.long'}), '(unpadded_segment_ids, dtype=torch.long)\n', (2532, 2572), False, 'import torch\n'), ((2603, 2658), 'torch.tensor', 'torch.tensor', (['unpadded_emotion_scores'], {'dtype': 'torch.long'}), '(unpadded_emotion_scores, dtype=torch.long)\n', (2615, 2658), False, 'import torch\n'), ((2680, 2747), 'torch.tensor', 'torch.tensor', (['[f.label_id for f in eval_features]'], {'dtype': 'torch.long'}), '([f.label_id for f in eval_features], dtype=torch.long)\n', (2692, 2747), False, 'import torch\n'), ((2771, 2876), 'torch.utils.data.TensorDataset', 'TensorDataset', (['padded_input_ids', 'padded_input_mask', 'padded_segment_ids', 'padded_emotion_ids', 'label_ids'], {}), '(padded_input_ids, padded_input_mask, padded_segment_ids,\n padded_emotion_ids, label_ids)\n', (2784, 2876), False, 'from torch.utils.data import DataLoader, SequentialSampler, TensorDataset\n'), ((2897, 2925), 'torch.utils.data.SequentialSampler', 'SequentialSampler', (['eval_data'], {}), '(eval_data)\n', (2914, 2925), False, 'from torch.utils.data import DataLoader, SequentialSampler, TensorDataset\n'), ((2953, 3029), 'torch.utils.data.DataLoader', 'DataLoader', (['eval_data'], {'sampler': 'eval_sampler', 'batch_size': 'self.args.batch_size'}), '(eval_data, sampler=eval_sampler, batch_size=self.args.batch_size)\n', (2963, 3029), False, 'from torch.utils.data import DataLoader, SequentialSampler, TensorDataset\n'), ((3268, 3324), 'tqdm.tqdm', 'tqdm', (['eval_dataloader'], {'desc': '"""Evaluating"""', 'disable': 'silent'}), "(eval_dataloader, desc='Evaluating', disable=silent)\n", (3272, 3324), False, 'from tqdm import tqdm\n'), ((5390, 5445), 'sklearn.metrics.accuracy_score', 'metrics.accuracy_score', (['target_labels', 'predicted_labels'], {}), '(target_labels, predicted_labels)\n', (5412, 5445), False, 'from sklearn import metrics\n'), ((5467, 5540), 'sklearn.metrics.precision_score', 'metrics.precision_score', (['target_labels', 'predicted_labels'], {'average': 'average'}), '(target_labels, predicted_labels, average=average)\n', (5490, 5540), False, 'from sklearn import metrics\n'), ((5559, 5629), 'sklearn.metrics.recall_score', 'metrics.recall_score', (['target_labels', 'predicted_labels'], {'average': 'average'}), '(target_labels, predicted_labels, average=average)\n', (5579, 5629), False, 'from sklearn import metrics\n'), ((5703, 5756), 'sklearn.metrics.hamming_loss', 'metrics.hamming_loss', (['target_labels', 'predicted_labels'], {}), '(target_labels, predicted_labels)\n', (5723, 5756), False, 'from sklearn import metrics\n'), ((5782, 5853), 'sklearn.metrics.jaccard_score', 'metrics.jaccard_score', (['target_labels', 'predicted_labels'], {'average': 'average'}), '(target_labels, predicted_labels, average=average)\n', (5803, 5853), False, 'from sklearn import metrics\n'), ((5874, 5940), 'sklearn.metrics.f1_score', 'metrics.f1_score', (['target_labels', 'predicted_labels'], {'average': 'average'}), '(target_labels, predicted_labels, average=average)\n', (5890, 5940), False, 'from sklearn import metrics\n'), ((5961, 6031), 'sklearn.metrics.f1_score', 'metrics.f1_score', (['target_labels', 'predicted_labels'], {'average': 'average_mac'}), '(target_labels, predicted_labels, average=average_mac)\n', (5977, 6031), False, 'from sklearn import metrics\n'), ((7734, 7784), 'torch.tensor', 'torch.tensor', (['unpadded_input_ids'], {'dtype': 'torch.long'}), '(unpadded_input_ids, dtype=torch.long)\n', (7746, 7784), False, 'import torch\n'), ((7814, 7865), 'torch.tensor', 'torch.tensor', (['unpadded_input_mask'], {'dtype': 'torch.long'}), '(unpadded_input_mask, dtype=torch.long)\n', (7826, 7865), False, 'import torch\n'), ((7896, 7948), 'torch.tensor', 'torch.tensor', (['unpadded_segment_ids'], {'dtype': 'torch.long'}), '(unpadded_segment_ids, dtype=torch.long)\n', (7908, 7948), False, 'import torch\n'), ((7979, 8031), 'torch.tensor', 'torch.tensor', (['unpadded_emotion_ids'], {'dtype': 'torch.long'}), '(unpadded_emotion_ids, dtype=torch.long)\n', (7991, 8031), False, 'import torch\n'), ((8053, 8120), 'torch.tensor', 'torch.tensor', (['[f.label_id for f in eval_features]'], {'dtype': 'torch.long'}), '([f.label_id for f in eval_features], dtype=torch.long)\n', (8065, 8120), False, 'import torch\n'), ((8144, 8249), 'torch.utils.data.TensorDataset', 'TensorDataset', (['padded_input_ids', 'padded_input_mask', 'padded_segment_ids', 'padded_emotion_ids', 'label_ids'], {}), '(padded_input_ids, padded_input_mask, padded_segment_ids,\n padded_emotion_ids, label_ids)\n', (8157, 8249), False, 'from torch.utils.data import DataLoader, SequentialSampler, TensorDataset\n'), ((8270, 8298), 'torch.utils.data.SequentialSampler', 'SequentialSampler', (['eval_data'], {}), '(eval_data)\n', (8287, 8298), False, 'from torch.utils.data import DataLoader, SequentialSampler, TensorDataset\n'), ((8326, 8402), 'torch.utils.data.DataLoader', 'DataLoader', (['eval_data'], {'sampler': 'eval_sampler', 'batch_size': 'self.args.batch_size'}), '(eval_data, sampler=eval_sampler, batch_size=self.args.batch_size)\n', (8336, 8402), False, 'from torch.utils.data import DataLoader, SequentialSampler, TensorDataset\n'), ((8556, 8612), 'tqdm.tqdm', 'tqdm', (['eval_dataloader'], {'desc': '"""Evaluating"""', 'disable': 'silent'}), "(eval_dataloader, desc='Evaluating', disable=silent)\n", (8560, 8612), False, 'from tqdm import tqdm\n'), ((9304, 9337), 'torch.stack', 'torch.stack', (['bert_layers_l'], {'dim': '(0)'}), '(bert_layers_l, dim=0)\n', (9315, 9337), False, 'import torch\n'), ((1462, 1570), 'datasets.bert_processors.abstract_processor.convert_examples_to_hierarchical_features', 'convert_examples_to_hierarchical_features', (['self.eval_examples', 'self.args.max_seq_length', 'self.tokenizer'], {}), '(self.eval_examples, self.args.\n max_seq_length, self.tokenizer)\n', (1503, 1570), False, 'from datasets.bert_processors.abstract_processor import convert_examples_to_features_with_emotion, convert_examples_to_hierarchical_features\n'), ((1628, 1752), 'datasets.bert_processors.abstract_processor.convert_examples_to_features_with_emotion', 'convert_examples_to_features_with_emotion', (['self.eval_examples', 'self.args.max_seq_length', 'self.tokenizer', 'self.emotioner'], {}), '(self.eval_examples, self.args.\n max_seq_length, self.tokenizer, self.emotioner)\n', (1669, 1752), False, 'from datasets.bert_processors.abstract_processor import convert_examples_to_features_with_emotion, convert_examples_to_hierarchical_features\n'), ((2110, 2172), 'utils.preprocessing.pad_input_matrix', 'pad_input_matrix', (['unpadded_input_ids', 'self.args.max_doc_length'], {}), '(unpadded_input_ids, self.args.max_doc_length)\n', (2126, 2172), False, 'from utils.preprocessing import pad_input_matrix\n'), ((2186, 2249), 'utils.preprocessing.pad_input_matrix', 'pad_input_matrix', (['unpadded_input_mask', 'self.args.max_doc_length'], {}), '(unpadded_input_mask, self.args.max_doc_length)\n', (2202, 2249), False, 'from utils.preprocessing import pad_input_matrix\n'), ((2263, 2327), 'utils.preprocessing.pad_input_matrix', 'pad_input_matrix', (['unpadded_segment_ids', 'self.args.max_doc_length'], {}), '(unpadded_segment_ids, self.args.max_doc_length)\n', (2279, 2327), False, 'from utils.preprocessing import pad_input_matrix\n'), ((5318, 5344), 'numpy.array', 'np.array', (['predicted_labels'], {}), '(predicted_labels)\n', (5326, 5344), True, 'import numpy as np\n'), ((5346, 5369), 'numpy.array', 'np.array', (['target_labels'], {}), '(target_labels)\n', (5354, 5369), True, 'import numpy as np\n'), ((6838, 6946), 'datasets.bert_processors.abstract_processor.convert_examples_to_hierarchical_features', 'convert_examples_to_hierarchical_features', (['self.eval_examples', 'self.args.max_seq_length', 'self.tokenizer'], {}), '(self.eval_examples, self.args.\n max_seq_length, self.tokenizer)\n', (6879, 6946), False, 'from datasets.bert_processors.abstract_processor import convert_examples_to_features_with_emotion, convert_examples_to_hierarchical_features\n'), ((7004, 7128), 'datasets.bert_processors.abstract_processor.convert_examples_to_features_with_emotion', 'convert_examples_to_features_with_emotion', (['self.eval_examples', 'self.args.max_seq_length', 'self.tokenizer', 'self.emotioner'], {}), '(self.eval_examples, self.args.\n max_seq_length, self.tokenizer, self.emotioner)\n', (7045, 7128), False, 'from datasets.bert_processors.abstract_processor import convert_examples_to_features_with_emotion, convert_examples_to_hierarchical_features\n'), ((7486, 7548), 'utils.preprocessing.pad_input_matrix', 'pad_input_matrix', (['unpadded_input_ids', 'self.args.max_doc_length'], {}), '(unpadded_input_ids, self.args.max_doc_length)\n', (7502, 7548), False, 'from utils.preprocessing import pad_input_matrix\n'), ((7562, 7625), 'utils.preprocessing.pad_input_matrix', 'pad_input_matrix', (['unpadded_input_mask', 'self.args.max_doc_length'], {}), '(unpadded_input_mask, self.args.max_doc_length)\n', (7578, 7625), False, 'from utils.preprocessing import pad_input_matrix\n'), ((7639, 7703), 'utils.preprocessing.pad_input_matrix', 'pad_input_matrix', (['unpadded_segment_ids', 'self.args.max_doc_length'], {}), '(unpadded_segment_ids, self.args.max_doc_length)\n', (7655, 7703), False, 'from utils.preprocessing import pad_input_matrix\n'), ((3636, 3651), 'torch.no_grad', 'torch.no_grad', ([], {}), '()\n', (3649, 3651), False, 'import torch\n'), ((8924, 8939), 'torch.no_grad', 'torch.no_grad', ([], {}), '()\n', (8937, 8939), False, 'import torch\n'), ((4855, 4885), 'torch.argmax', 'torch.argmax', (['label_ids'], {'dim': '(1)'}), '(label_ids, dim=1)\n', (4867, 4885), False, 'import torch\n'), ((9127, 9157), 'torch.argmax', 'torch.argmax', (['label_ids'], {'dim': '(1)'}), '(label_ids, dim=1)\n', (9139, 9157), False, 'import torch\n'), ((4662, 4689), 'torch.argmax', 'torch.argmax', (['logits'], {'dim': '(1)'}), '(logits, dim=1)\n', (4674, 4689), False, 'import torch\n'), ((4752, 4782), 'torch.argmax', 'torch.argmax', (['label_ids'], {'dim': '(1)'}), '(label_ids, dim=1)\n', (4764, 4782), False, 'import torch\n'), ((4308, 4325), 'torch.nn.functional.sigmoid', 'F.sigmoid', (['logits'], {}), '(logits)\n', (4317, 4325), True, 'import torch.nn.functional as F\n')]
import torch.nn as nn import torch.nn.functional as F class Model(nn.Module): def __init__(self, config): super(Model, self).__init__() self.drop = nn.Dropout(config['dropout']) self.fc1 = nn.Linear(784, 2000) self.fc2 = nn.Linear(2000, 2000) self.fc3 = nn.Linear(2000, 2000) self.fc4 = nn.Linear(2000, 2000) self.fc5 = nn.Linear(2000, 10) def forward(self, x): # 784 -> 2000 x = F.relu(self.drop(self.fc1(x))) # 2000 -> 2000 x = F.relu(self.drop(self.fc2(x))) # 2000 -> 2000 x = F.relu(self.drop(self.fc3(x))) # 2000 -> 2000 x = F.relu(self.drop(self.fc4(x))) # 2000 -> 100 x = self.fc5(x) return x
[ "torch.nn.Dropout", "torch.nn.Linear" ]
[((177, 206), 'torch.nn.Dropout', 'nn.Dropout', (["config['dropout']"], {}), "(config['dropout'])\n", (187, 206), True, 'import torch.nn as nn\n'), ((229, 249), 'torch.nn.Linear', 'nn.Linear', (['(784)', '(2000)'], {}), '(784, 2000)\n', (238, 249), True, 'import torch.nn as nn\n'), ((270, 291), 'torch.nn.Linear', 'nn.Linear', (['(2000)', '(2000)'], {}), '(2000, 2000)\n', (279, 291), True, 'import torch.nn as nn\n'), ((312, 333), 'torch.nn.Linear', 'nn.Linear', (['(2000)', '(2000)'], {}), '(2000, 2000)\n', (321, 333), True, 'import torch.nn as nn\n'), ((354, 375), 'torch.nn.Linear', 'nn.Linear', (['(2000)', '(2000)'], {}), '(2000, 2000)\n', (363, 375), True, 'import torch.nn as nn\n'), ((396, 415), 'torch.nn.Linear', 'nn.Linear', (['(2000)', '(10)'], {}), '(2000, 10)\n', (405, 415), True, 'import torch.nn as nn\n')]
#!/usr/bin/env python # coding: utf-8 """ Learning Koopman Invariant Subspace (c) <NAME>, 2017. <EMAIL> """ import numpy as np np.random.seed(1234567890) from argparse import ArgumentParser from os import path import time from lkis import TimeSeriesBatchMaker, KoopmanInvariantSubspaceLearner from losses import combined_loss from torch import device, save, manual_seed from torch.optim import SGD import matplotlib.pyplot as plt import seaborn as sns # -- Parse arguments t = time.time() parser = ArgumentParser(description='Learning Koopman Invariant Subspace (Now with PyTorch!)') parser.add_argument("--name", "-n", type=str, default=f"lkis-{int(time.time())}", help="name of experiment") parser.add_argument("--data-path", type=str, default="./train.npy", help="time-series data to model") parser.add_argument("--epochs", "-e", type=int, default=1000, help="number of epochs to train for") parser.add_argument("--num-batches", "-b", type=int, default=1, help="how many batchs for break the data up into") parser.add_argument("--gpu", action="store_true", default=False, help="use a GPU or no") parser.add_argument("--intermediate-observable", "-i", type=int, default=-1, help="intermediate dimensional observation space") parser.add_argument("--save-model", "-m", action="store_true", default=False, help="whether or not you want the model saved to $name$.torch.mdl") parser.add_argument("--save-training-plot", "-p", action="store_true", default=False, help="where to save plotting") parser.add_argument("--max-lag", "-l", type=int, default=-1, help="maximum_lag") parser.add_argument("--state-space", "-s", type=int, default=1, help="dimensionality of the underlying state space") parser.add_argument("--alpha", "-a", type=float, default=1.0, help="value to score the reconstruction loss by") parser.add_argument("--learning-rate", "-r", type=float, default=0.001, help="Optimizer learning rate") parser.add_argument("--validation-data-path", "-v", type=str, default="") #ToDo: Implement parser.add_argument("--dmd", action="store_true", default=False, help="Execute and save the DMD on the training set") if __name__ == "__main__": # grab the command line arguments cli_args = parser.parse_args() manual_seed(216) # find and load the training data data_path = cli_args.data_path print(f"Loading training data from {data_path}") data_train = np.load(data_path) if len(data_train.shape) == 1: data_train = data_train.reshape(-1, 1) print(f"Loaded a dataset with dimension: {data_train.shape}") validate = cli_args.validation_data_path != "" data_val = None if validate: data_path = cli_args.validation_data_path print(f"Loading validation data from {data_path}") data_val = np.load(data_path) # process the delay either set by the user or is set to one 10th of the data delay = cli_args.max_lag if cli_args.max_lag > 0 else (data_train.shape[0] // 10) # based on the number of batches, delay, and size of the data compute the samples per batch samples_per_batch = (data_train.shape[0] - delay) // cli_args.num_batches # construct the data preparer batch_iterator = TimeSeriesBatchMaker( y=data_train, batch_size=samples_per_batch, max_lag=delay ) if validate: val_batch_iterator = TimeSeriesBatchMaker( y=data_val, max_lag=delay ) # construct the end-to-end model lkis = KoopmanInvariantSubspaceLearner( observable_dim=data_train.shape[1], latent_dim=cli_args.state_space, intermediate_observable=cli_args.intermediate_observable, delay=delay ) if cli_args.gpu: device = device("cuda") # initialize the optimizer optimizer = SGD(lkis.parameters(), lr=cli_args.learning_rate) losses = [] val_losses = [] for epoch in range(cli_args.epochs): loss = 0 for b in range(cli_args.num_batches): optimizer.zero_grad() time_delayed_ys, y_true = next(batch_iterator) if cli_args.gpu: time_delayed_ys.to(device) y_true.to(device) g_pred, y_pred = lkis(time_delayed_ys) g_0 = g_pred[:-1] g_1 = g_pred[1:] batch_loss = combined_loss(y_pred=y_pred, y_true=y_true, g_0=g_0, g_1=g_1) batch_loss.backward() optimizer.step() loss += batch_loss.item() # display the epoch training loss print(f"epoch : {epoch + 1}/{cli_args.epochs}, loss = {loss:.6f}") losses.append(loss) if validate: y_time_delayed_val, y_true = next(val_batch_iterator) if cli_args.gpu: y_time_delayed_val.to(device) y_true.to(device) g_pred, y_pred = lkis(y_time_delayed_val) g_0 = g_pred[:-1] g_1 = g_pred[1:] batch_loss = combined_loss(y_pred=y_pred, y_true=y_true, g_0=g_0, g_1=g_1) val_loss = batch_loss.item() print(f"\tval-loss = {val_loss:.6f}") val_losses.append(val_loss) if cli_args.save_model: save(lkis, f"{cli_args.name}.torch.mdl") if cli_args.save_training_plot: sns.lineplot(x=list(range(cli_args.epochs)), y=losses, label="training loss") if validate: sns.lineplot(x=list(range(cli_args.epochs)), y=val_losses, label="validation loss") plt.xlabel("Epochs") plt.ylabel("Combined Reconstruction and DMD Loss") plt.title(f"Training Loss for {cli_args.name}") plt.savefig(f"{cli_args.name}-training-loss.png")
[ "torch.manual_seed", "matplotlib.pyplot.savefig", "argparse.ArgumentParser", "lkis.TimeSeriesBatchMaker", "matplotlib.pyplot.ylabel", "matplotlib.pyplot.xlabel", "lkis.KoopmanInvariantSubspaceLearner", "losses.combined_loss", "numpy.random.seed", "torch.save", "matplotlib.pyplot.title", "numpy.load", "time.time", "torch.device" ]
[((131, 157), 'numpy.random.seed', 'np.random.seed', (['(1234567890)'], {}), '(1234567890)\n', (145, 157), True, 'import numpy as np\n'), ((485, 496), 'time.time', 'time.time', ([], {}), '()\n', (494, 496), False, 'import time\n'), ((506, 596), 'argparse.ArgumentParser', 'ArgumentParser', ([], {'description': '"""Learning Koopman Invariant Subspace (Now with PyTorch!)"""'}), "(description=\n 'Learning Koopman Invariant Subspace (Now with PyTorch!)')\n", (520, 596), False, 'from argparse import ArgumentParser\n'), ((2227, 2243), 'torch.manual_seed', 'manual_seed', (['(216)'], {}), '(216)\n', (2238, 2243), False, 'from torch import device, save, manual_seed\n'), ((2388, 2406), 'numpy.load', 'np.load', (['data_path'], {}), '(data_path)\n', (2395, 2406), True, 'import numpy as np\n'), ((3189, 3268), 'lkis.TimeSeriesBatchMaker', 'TimeSeriesBatchMaker', ([], {'y': 'data_train', 'batch_size': 'samples_per_batch', 'max_lag': 'delay'}), '(y=data_train, batch_size=samples_per_batch, max_lag=delay)\n', (3209, 3268), False, 'from lkis import TimeSeriesBatchMaker, KoopmanInvariantSubspaceLearner\n'), ((3476, 3656), 'lkis.KoopmanInvariantSubspaceLearner', 'KoopmanInvariantSubspaceLearner', ([], {'observable_dim': 'data_train.shape[1]', 'latent_dim': 'cli_args.state_space', 'intermediate_observable': 'cli_args.intermediate_observable', 'delay': 'delay'}), '(observable_dim=data_train.shape[1],\n latent_dim=cli_args.state_space, intermediate_observable=cli_args.\n intermediate_observable, delay=delay)\n', (3507, 3656), False, 'from lkis import TimeSeriesBatchMaker, KoopmanInvariantSubspaceLearner\n'), ((2771, 2789), 'numpy.load', 'np.load', (['data_path'], {}), '(data_path)\n', (2778, 2789), True, 'import numpy as np\n'), ((3345, 3392), 'lkis.TimeSeriesBatchMaker', 'TimeSeriesBatchMaker', ([], {'y': 'data_val', 'max_lag': 'delay'}), '(y=data_val, max_lag=delay)\n', (3365, 3392), False, 'from lkis import TimeSeriesBatchMaker, KoopmanInvariantSubspaceLearner\n'), ((3725, 3739), 'torch.device', 'device', (['"""cuda"""'], {}), "('cuda')\n", (3731, 3739), False, 'from torch import device, save, manual_seed\n'), ((5195, 5235), 'torch.save', 'save', (['lkis', 'f"""{cli_args.name}.torch.mdl"""'], {}), "(lkis, f'{cli_args.name}.torch.mdl')\n", (5199, 5235), False, 'from torch import device, save, manual_seed\n'), ((5484, 5504), 'matplotlib.pyplot.xlabel', 'plt.xlabel', (['"""Epochs"""'], {}), "('Epochs')\n", (5494, 5504), True, 'import matplotlib.pyplot as plt\n'), ((5513, 5563), 'matplotlib.pyplot.ylabel', 'plt.ylabel', (['"""Combined Reconstruction and DMD Loss"""'], {}), "('Combined Reconstruction and DMD Loss')\n", (5523, 5563), True, 'import matplotlib.pyplot as plt\n'), ((5572, 5619), 'matplotlib.pyplot.title', 'plt.title', (['f"""Training Loss for {cli_args.name}"""'], {}), "(f'Training Loss for {cli_args.name}')\n", (5581, 5619), True, 'import matplotlib.pyplot as plt\n'), ((5628, 5677), 'matplotlib.pyplot.savefig', 'plt.savefig', (['f"""{cli_args.name}-training-loss.png"""'], {}), "(f'{cli_args.name}-training-loss.png')\n", (5639, 5677), True, 'import matplotlib.pyplot as plt\n'), ((4315, 4376), 'losses.combined_loss', 'combined_loss', ([], {'y_pred': 'y_pred', 'y_true': 'y_true', 'g_0': 'g_0', 'g_1': 'g_1'}), '(y_pred=y_pred, y_true=y_true, g_0=g_0, g_1=g_1)\n', (4328, 4376), False, 'from losses import combined_loss\n'), ((4964, 5025), 'losses.combined_loss', 'combined_loss', ([], {'y_pred': 'y_pred', 'y_true': 'y_true', 'g_0': 'g_0', 'g_1': 'g_1'}), '(y_pred=y_pred, y_true=y_true, g_0=g_0, g_1=g_1)\n', (4977, 5025), False, 'from losses import combined_loss\n'), ((658, 669), 'time.time', 'time.time', ([], {}), '()\n', (667, 669), False, 'import time\n')]
from telethon.tl.functions.photos import DeletePhotosRequest, GetUserPhotosRequest from telethon.tl.types import InputPhoto from userbot.cmdhelp import CmdHelp from userbot.utils import admin_cmd, edit_or_reply, sudo_cmd CmdHelp("delfp").add_command("delpfp", None, "delete ur currnt profile picture").add() @borg.on(admin_cmd(pattern="delpfp ?(.*)")) @borg.on(sudo_cmd(pattern="delpfp ?(.*)", allow_sudo=True)) async def remove_profilepic(delpfp): """For .delpfp command, delete your current profile picture in Telegram.""" group = delpfp.text[8:] if group == "all": lim = 0 elif group.isdigit(): lim = int(group) else: lim = 1 pfplist = await delpfp.client( GetUserPhotosRequest(user_id=delpfp.from_id, offset=0, max_id=0, limit=lim) ) input_photos = [InputPhoto( id=sep.id, access_hash=sep.access_hash, file_reference=sep.file_reference, ) for sep in pfplist.photos] await delpfp.client(DeletePhotosRequest(id=input_photos)) await edit_or_reply( delpfp, f"`Successfully deleted {len(input_photos)} profile picture(s).`" )
[ "userbot.utils.admin_cmd", "userbot.cmdhelp.CmdHelp", "telethon.tl.functions.photos.DeletePhotosRequest", "telethon.tl.functions.photos.GetUserPhotosRequest", "telethon.tl.types.InputPhoto", "userbot.utils.sudo_cmd" ]
[((321, 354), 'userbot.utils.admin_cmd', 'admin_cmd', ([], {'pattern': '"""delpfp ?(.*)"""'}), "(pattern='delpfp ?(.*)')\n", (330, 354), False, 'from userbot.utils import admin_cmd, edit_or_reply, sudo_cmd\n'), ((365, 414), 'userbot.utils.sudo_cmd', 'sudo_cmd', ([], {'pattern': '"""delpfp ?(.*)"""', 'allow_sudo': '(True)'}), "(pattern='delpfp ?(.*)', allow_sudo=True)\n", (373, 414), False, 'from userbot.utils import admin_cmd, edit_or_reply, sudo_cmd\n'), ((823, 913), 'telethon.tl.types.InputPhoto', 'InputPhoto', ([], {'id': 'sep.id', 'access_hash': 'sep.access_hash', 'file_reference': 'sep.file_reference'}), '(id=sep.id, access_hash=sep.access_hash, file_reference=sep.\n file_reference)\n', (833, 913), False, 'from telethon.tl.types import InputPhoto\n'), ((721, 796), 'telethon.tl.functions.photos.GetUserPhotosRequest', 'GetUserPhotosRequest', ([], {'user_id': 'delpfp.from_id', 'offset': '(0)', 'max_id': '(0)', 'limit': 'lim'}), '(user_id=delpfp.from_id, offset=0, max_id=0, limit=lim)\n', (741, 796), False, 'from telethon.tl.functions.photos import DeletePhotosRequest, GetUserPhotosRequest\n'), ((1023, 1059), 'telethon.tl.functions.photos.DeletePhotosRequest', 'DeletePhotosRequest', ([], {'id': 'input_photos'}), '(id=input_photos)\n', (1042, 1059), False, 'from telethon.tl.functions.photos import DeletePhotosRequest, GetUserPhotosRequest\n'), ((223, 239), 'userbot.cmdhelp.CmdHelp', 'CmdHelp', (['"""delfp"""'], {}), "('delfp')\n", (230, 239), False, 'from userbot.cmdhelp import CmdHelp\n')]
# Copyright (C) 2006, 2008 Canonical Ltd # # Dulwich is dual-licensed under the Apache License, Version 2.0 and the GNU # General Public License as public by the Free Software Foundation; version 2.0 # or (at your option) any later version. You can redistribute it and/or # modify it under the terms of either of these two licenses. # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # # You should have received a copy of the licenses; if not, see # <http://www.gnu.org/licenses/> for a copy of the GNU General Public License # and <http://www.apache.org/licenses/LICENSE-2.0> for a copy of the Apache # License, Version 2.0. # """Tests for the lru_cache module.""" from dulwich import ( lru_cache, ) from dulwich.tests import ( TestCase, ) class TestLRUCache(TestCase): """Test that LRU cache properly keeps track of entries.""" def test_cache_size(self): cache = lru_cache.LRUCache(max_cache=10) self.assertEqual(10, cache.cache_size()) cache = lru_cache.LRUCache(max_cache=256) self.assertEqual(256, cache.cache_size()) cache.resize(512) self.assertEqual(512, cache.cache_size()) def test_missing(self): cache = lru_cache.LRUCache(max_cache=10) self.assertFalse('foo' in cache) self.assertRaises(KeyError, cache.__getitem__, 'foo') cache['foo'] = 'bar' self.assertEqual('bar', cache['foo']) self.assertTrue('foo' in cache) self.assertFalse('bar' in cache) def test_map_None(self): # Make sure that we can properly map None as a key. cache = lru_cache.LRUCache(max_cache=10) self.assertFalse(None in cache) cache[None] = 1 self.assertEqual(1, cache[None]) cache[None] = 2 self.assertEqual(2, cache[None]) # Test the various code paths of __getitem__, to make sure that we can # handle when None is the key for the LRU and the MRU cache[1] = 3 cache[None] = 1 cache[None] cache[1] cache[None] self.assertEqual([None, 1], [n.key for n in cache._walk_lru()]) def test_add__null_key(self): cache = lru_cache.LRUCache(max_cache=10) self.assertRaises(ValueError, cache.add, lru_cache._null_key, 1) def test_overflow(self): """Adding extra entries will pop out old ones.""" cache = lru_cache.LRUCache(max_cache=1, after_cleanup_count=1) cache['foo'] = 'bar' # With a max cache of 1, adding 'baz' should pop out 'foo' cache['baz'] = 'biz' self.assertFalse('foo' in cache) self.assertTrue('baz' in cache) self.assertEqual('biz', cache['baz']) def test_by_usage(self): """Accessing entries bumps them up in priority.""" cache = lru_cache.LRUCache(max_cache=2) cache['baz'] = 'biz' cache['foo'] = 'bar' self.assertEqual('biz', cache['baz']) # This must kick out 'foo' because it was the last accessed cache['nub'] = 'in' self.assertFalse('foo' in cache) def test_cleanup(self): """Test that we can use a cleanup function.""" cleanup_called = [] def cleanup_func(key, val): cleanup_called.append((key, val)) cache = lru_cache.LRUCache(max_cache=2, after_cleanup_count=2) cache.add('baz', '1', cleanup=cleanup_func) cache.add('foo', '2', cleanup=cleanup_func) cache.add('biz', '3', cleanup=cleanup_func) self.assertEqual([('baz', '1')], cleanup_called) # 'foo' is now most recent, so final cleanup will call it last cache['foo'] cache.clear() self.assertEqual([('baz', '1'), ('biz', '3'), ('foo', '2')], cleanup_called) def test_cleanup_on_replace(self): """Replacing an object should cleanup the old value.""" cleanup_called = [] def cleanup_func(key, val): cleanup_called.append((key, val)) cache = lru_cache.LRUCache(max_cache=2) cache.add(1, 10, cleanup=cleanup_func) cache.add(2, 20, cleanup=cleanup_func) cache.add(2, 25, cleanup=cleanup_func) self.assertEqual([(2, 20)], cleanup_called) self.assertEqual(25, cache[2]) # Even __setitem__ should make sure cleanup() is called cache[2] = 26 self.assertEqual([(2, 20), (2, 25)], cleanup_called) def test_len(self): cache = lru_cache.LRUCache(max_cache=10, after_cleanup_count=10) cache[1] = 10 cache[2] = 20 cache[3] = 30 cache[4] = 40 self.assertEqual(4, len(cache)) cache[5] = 50 cache[6] = 60 cache[7] = 70 cache[8] = 80 self.assertEqual(8, len(cache)) cache[1] = 15 # replacement self.assertEqual(8, len(cache)) cache[9] = 90 cache[10] = 100 cache[11] = 110 # We hit the max self.assertEqual(10, len(cache)) self.assertEqual([11, 10, 9, 1, 8, 7, 6, 5, 4, 3], [n.key for n in cache._walk_lru()]) def test_cleanup_shrinks_to_after_clean_count(self): cache = lru_cache.LRUCache(max_cache=5, after_cleanup_count=3) cache.add(1, 10) cache.add(2, 20) cache.add(3, 25) cache.add(4, 30) cache.add(5, 35) self.assertEqual(5, len(cache)) # This will bump us over the max, which causes us to shrink down to # after_cleanup_cache size cache.add(6, 40) self.assertEqual(3, len(cache)) def test_after_cleanup_larger_than_max(self): cache = lru_cache.LRUCache(max_cache=5, after_cleanup_count=10) self.assertEqual(5, cache._after_cleanup_count) def test_after_cleanup_none(self): cache = lru_cache.LRUCache(max_cache=5, after_cleanup_count=None) # By default _after_cleanup_size is 80% of the normal size self.assertEqual(4, cache._after_cleanup_count) def test_cleanup_2(self): cache = lru_cache.LRUCache(max_cache=5, after_cleanup_count=2) # Add these in order cache.add(1, 10) cache.add(2, 20) cache.add(3, 25) cache.add(4, 30) cache.add(5, 35) self.assertEqual(5, len(cache)) # Force a compaction cache.cleanup() self.assertEqual(2, len(cache)) def test_preserve_last_access_order(self): cache = lru_cache.LRUCache(max_cache=5) # Add these in order cache.add(1, 10) cache.add(2, 20) cache.add(3, 25) cache.add(4, 30) cache.add(5, 35) self.assertEqual([5, 4, 3, 2, 1], [n.key for n in cache._walk_lru()]) # Now access some randomly cache[2] cache[5] cache[3] cache[2] self.assertEqual([2, 3, 5, 4, 1], [n.key for n in cache._walk_lru()]) def test_get(self): cache = lru_cache.LRUCache(max_cache=5) cache.add(1, 10) cache.add(2, 20) self.assertEqual(20, cache.get(2)) self.assertEqual(None, cache.get(3)) obj = object() self.assertTrue(obj is cache.get(3, obj)) self.assertEqual([2, 1], [n.key for n in cache._walk_lru()]) self.assertEqual(10, cache.get(1)) self.assertEqual([1, 2], [n.key for n in cache._walk_lru()]) def test_keys(self): cache = lru_cache.LRUCache(max_cache=5, after_cleanup_count=5) cache[1] = 2 cache[2] = 3 cache[3] = 4 self.assertEqual([1, 2, 3], sorted(cache.keys())) cache[4] = 5 cache[5] = 6 cache[6] = 7 self.assertEqual([2, 3, 4, 5, 6], sorted(cache.keys())) def test_resize_smaller(self): cache = lru_cache.LRUCache(max_cache=5, after_cleanup_count=4) cache[1] = 2 cache[2] = 3 cache[3] = 4 cache[4] = 5 cache[5] = 6 self.assertEqual([1, 2, 3, 4, 5], sorted(cache.keys())) cache[6] = 7 self.assertEqual([3, 4, 5, 6], sorted(cache.keys())) # Now resize to something smaller, which triggers a cleanup cache.resize(max_cache=3, after_cleanup_count=2) self.assertEqual([5, 6], sorted(cache.keys())) # Adding something will use the new size cache[7] = 8 self.assertEqual([5, 6, 7], sorted(cache.keys())) cache[8] = 9 self.assertEqual([7, 8], sorted(cache.keys())) def test_resize_larger(self): cache = lru_cache.LRUCache(max_cache=5, after_cleanup_count=4) cache[1] = 2 cache[2] = 3 cache[3] = 4 cache[4] = 5 cache[5] = 6 self.assertEqual([1, 2, 3, 4, 5], sorted(cache.keys())) cache[6] = 7 self.assertEqual([3, 4, 5, 6], sorted(cache.keys())) cache.resize(max_cache=8, after_cleanup_count=6) self.assertEqual([3, 4, 5, 6], sorted(cache.keys())) cache[7] = 8 cache[8] = 9 cache[9] = 10 cache[10] = 11 self.assertEqual([3, 4, 5, 6, 7, 8, 9, 10], sorted(cache.keys())) cache[11] = 12 # triggers cleanup back to new after_cleanup_count self.assertEqual([6, 7, 8, 9, 10, 11], sorted(cache.keys())) class TestLRUSizeCache(TestCase): def test_basic_init(self): cache = lru_cache.LRUSizeCache() self.assertEqual(2048, cache._max_cache) self.assertEqual(int(cache._max_size*0.8), cache._after_cleanup_size) self.assertEqual(0, cache._value_size) def test_add__null_key(self): cache = lru_cache.LRUSizeCache() self.assertRaises(ValueError, cache.add, lru_cache._null_key, 1) def test_add_tracks_size(self): cache = lru_cache.LRUSizeCache() self.assertEqual(0, cache._value_size) cache.add('my key', 'my value text') self.assertEqual(13, cache._value_size) def test_remove_tracks_size(self): cache = lru_cache.LRUSizeCache() self.assertEqual(0, cache._value_size) cache.add('my key', 'my value text') self.assertEqual(13, cache._value_size) node = cache._cache['my key'] cache._remove_node(node) self.assertEqual(0, cache._value_size) def test_no_add_over_size(self): """Adding a large value may not be cached at all.""" cache = lru_cache.LRUSizeCache(max_size=10, after_cleanup_size=5) self.assertEqual(0, cache._value_size) self.assertEqual({}, cache.items()) cache.add('test', 'key') self.assertEqual(3, cache._value_size) self.assertEqual({'test': 'key'}, cache.items()) cache.add('test2', 'key that is too big') self.assertEqual(3, cache._value_size) self.assertEqual({'test':'key'}, cache.items()) # If we would add a key, only to cleanup and remove all cached entries, # then obviously that value should not be stored cache.add('test3', 'bigkey') self.assertEqual(3, cache._value_size) self.assertEqual({'test':'key'}, cache.items()) cache.add('test4', 'bikey') self.assertEqual(3, cache._value_size) self.assertEqual({'test':'key'}, cache.items()) def test_no_add_over_size_cleanup(self): """If a large value is not cached, we will call cleanup right away.""" cleanup_calls = [] def cleanup(key, value): cleanup_calls.append((key, value)) cache = lru_cache.LRUSizeCache(max_size=10, after_cleanup_size=5) self.assertEqual(0, cache._value_size) self.assertEqual({}, cache.items()) cache.add('test', 'key that is too big', cleanup=cleanup) # key was not added self.assertEqual(0, cache._value_size) self.assertEqual({}, cache.items()) # and cleanup was called self.assertEqual([('test', 'key that is too big')], cleanup_calls) def test_adding_clears_cache_based_on_size(self): """The cache is cleared in LRU order until small enough""" cache = lru_cache.LRUSizeCache(max_size=20) cache.add('key1', 'value') # 5 chars cache.add('key2', 'value2') # 6 chars cache.add('key3', 'value23') # 7 chars self.assertEqual(5+6+7, cache._value_size) cache['key2'] # reference key2 so it gets a newer reference time cache.add('key4', 'value234') # 8 chars, over limit # We have to remove 2 keys to get back under limit self.assertEqual(6+8, cache._value_size) self.assertEqual({'key2':'value2', 'key4':'value234'}, cache.items()) def test_adding_clears_to_after_cleanup_size(self): cache = lru_cache.LRUSizeCache(max_size=20, after_cleanup_size=10) cache.add('key1', 'value') # 5 chars cache.add('key2', 'value2') # 6 chars cache.add('key3', 'value23') # 7 chars self.assertEqual(5+6+7, cache._value_size) cache['key2'] # reference key2 so it gets a newer reference time cache.add('key4', 'value234') # 8 chars, over limit # We have to remove 3 keys to get back under limit self.assertEqual(8, cache._value_size) self.assertEqual({'key4':'value234'}, cache.items()) def test_custom_sizes(self): def size_of_list(lst): return sum(len(x) for x in lst) cache = lru_cache.LRUSizeCache(max_size=20, after_cleanup_size=10, compute_size=size_of_list) cache.add('key1', ['val', 'ue']) # 5 chars cache.add('key2', ['val', 'ue2']) # 6 chars cache.add('key3', ['val', 'ue23']) # 7 chars self.assertEqual(5+6+7, cache._value_size) cache['key2'] # reference key2 so it gets a newer reference time cache.add('key4', ['value', '234']) # 8 chars, over limit # We have to remove 3 keys to get back under limit self.assertEqual(8, cache._value_size) self.assertEqual({'key4':['value', '234']}, cache.items()) def test_cleanup(self): cache = lru_cache.LRUSizeCache(max_size=20, after_cleanup_size=10) # Add these in order cache.add('key1', 'value') # 5 chars cache.add('key2', 'value2') # 6 chars cache.add('key3', 'value23') # 7 chars self.assertEqual(5+6+7, cache._value_size) cache.cleanup() # Only the most recent fits after cleaning up self.assertEqual(7, cache._value_size) def test_keys(self): cache = lru_cache.LRUSizeCache(max_size=10) cache[1] = 'a' cache[2] = 'b' cache[3] = 'cdef' self.assertEqual([1, 2, 3], sorted(cache.keys())) def test_resize_smaller(self): cache = lru_cache.LRUSizeCache(max_size=10, after_cleanup_size=9) cache[1] = 'abc' cache[2] = 'def' cache[3] = 'ghi' cache[4] = 'jkl' # Triggers a cleanup self.assertEqual([2, 3, 4], sorted(cache.keys())) # Resize should also cleanup again cache.resize(max_size=6, after_cleanup_size=4) self.assertEqual([4], sorted(cache.keys())) # Adding should use the new max size cache[5] = 'mno' self.assertEqual([4, 5], sorted(cache.keys())) cache[6] = 'pqr' self.assertEqual([6], sorted(cache.keys())) def test_resize_larger(self): cache = lru_cache.LRUSizeCache(max_size=10, after_cleanup_size=9) cache[1] = 'abc' cache[2] = 'def' cache[3] = 'ghi' cache[4] = 'jkl' # Triggers a cleanup self.assertEqual([2, 3, 4], sorted(cache.keys())) cache.resize(max_size=15, after_cleanup_size=12) self.assertEqual([2, 3, 4], sorted(cache.keys())) cache[5] = 'mno' cache[6] = 'pqr' self.assertEqual([2, 3, 4, 5, 6], sorted(cache.keys())) cache[7] = 'stu' self.assertEqual([4, 5, 6, 7], sorted(cache.keys()))
[ "dulwich.lru_cache.LRUSizeCache", "dulwich.lru_cache.LRUCache" ]
[((1169, 1201), 'dulwich.lru_cache.LRUCache', 'lru_cache.LRUCache', ([], {'max_cache': '(10)'}), '(max_cache=10)\n', (1187, 1201), False, 'from dulwich import lru_cache\n'), ((1268, 1301), 'dulwich.lru_cache.LRUCache', 'lru_cache.LRUCache', ([], {'max_cache': '(256)'}), '(max_cache=256)\n', (1286, 1301), False, 'from dulwich import lru_cache\n'), ((1474, 1506), 'dulwich.lru_cache.LRUCache', 'lru_cache.LRUCache', ([], {'max_cache': '(10)'}), '(max_cache=10)\n', (1492, 1506), False, 'from dulwich import lru_cache\n'), ((1874, 1906), 'dulwich.lru_cache.LRUCache', 'lru_cache.LRUCache', ([], {'max_cache': '(10)'}), '(max_cache=10)\n', (1892, 1906), False, 'from dulwich import lru_cache\n'), ((2443, 2475), 'dulwich.lru_cache.LRUCache', 'lru_cache.LRUCache', ([], {'max_cache': '(10)'}), '(max_cache=10)\n', (2461, 2475), False, 'from dulwich import lru_cache\n'), ((2653, 2707), 'dulwich.lru_cache.LRUCache', 'lru_cache.LRUCache', ([], {'max_cache': '(1)', 'after_cleanup_count': '(1)'}), '(max_cache=1, after_cleanup_count=1)\n', (2671, 2707), False, 'from dulwich import lru_cache\n'), ((3068, 3099), 'dulwich.lru_cache.LRUCache', 'lru_cache.LRUCache', ([], {'max_cache': '(2)'}), '(max_cache=2)\n', (3086, 3099), False, 'from dulwich import lru_cache\n'), ((3556, 3610), 'dulwich.lru_cache.LRUCache', 'lru_cache.LRUCache', ([], {'max_cache': '(2)', 'after_cleanup_count': '(2)'}), '(max_cache=2, after_cleanup_count=2)\n', (3574, 3610), False, 'from dulwich import lru_cache\n'), ((4282, 4313), 'dulwich.lru_cache.LRUCache', 'lru_cache.LRUCache', ([], {'max_cache': '(2)'}), '(max_cache=2)\n', (4300, 4313), False, 'from dulwich import lru_cache\n'), ((4736, 4792), 'dulwich.lru_cache.LRUCache', 'lru_cache.LRUCache', ([], {'max_cache': '(10)', 'after_cleanup_count': '(10)'}), '(max_cache=10, after_cleanup_count=10)\n', (4754, 4792), False, 'from dulwich import lru_cache\n'), ((5463, 5517), 'dulwich.lru_cache.LRUCache', 'lru_cache.LRUCache', ([], {'max_cache': '(5)', 'after_cleanup_count': '(3)'}), '(max_cache=5, after_cleanup_count=3)\n', (5481, 5517), False, 'from dulwich import lru_cache\n'), ((5928, 5983), 'dulwich.lru_cache.LRUCache', 'lru_cache.LRUCache', ([], {'max_cache': '(5)', 'after_cleanup_count': '(10)'}), '(max_cache=5, after_cleanup_count=10)\n', (5946, 5983), False, 'from dulwich import lru_cache\n'), ((6096, 6153), 'dulwich.lru_cache.LRUCache', 'lru_cache.LRUCache', ([], {'max_cache': '(5)', 'after_cleanup_count': 'None'}), '(max_cache=5, after_cleanup_count=None)\n', (6114, 6153), False, 'from dulwich import lru_cache\n'), ((6324, 6378), 'dulwich.lru_cache.LRUCache', 'lru_cache.LRUCache', ([], {'max_cache': '(5)', 'after_cleanup_count': '(2)'}), '(max_cache=5, after_cleanup_count=2)\n', (6342, 6378), False, 'from dulwich import lru_cache\n'), ((6732, 6763), 'dulwich.lru_cache.LRUCache', 'lru_cache.LRUCache', ([], {'max_cache': '(5)'}), '(max_cache=5)\n', (6750, 6763), False, 'from dulwich import lru_cache\n'), ((7221, 7252), 'dulwich.lru_cache.LRUCache', 'lru_cache.LRUCache', ([], {'max_cache': '(5)'}), '(max_cache=5)\n', (7239, 7252), False, 'from dulwich import lru_cache\n'), ((7688, 7742), 'dulwich.lru_cache.LRUCache', 'lru_cache.LRUCache', ([], {'max_cache': '(5)', 'after_cleanup_count': '(5)'}), '(max_cache=5, after_cleanup_count=5)\n', (7706, 7742), False, 'from dulwich import lru_cache\n'), ((8044, 8098), 'dulwich.lru_cache.LRUCache', 'lru_cache.LRUCache', ([], {'max_cache': '(5)', 'after_cleanup_count': '(4)'}), '(max_cache=5, after_cleanup_count=4)\n', (8062, 8098), False, 'from dulwich import lru_cache\n'), ((8785, 8839), 'dulwich.lru_cache.LRUCache', 'lru_cache.LRUCache', ([], {'max_cache': '(5)', 'after_cleanup_count': '(4)'}), '(max_cache=5, after_cleanup_count=4)\n', (8803, 8839), False, 'from dulwich import lru_cache\n'), ((9597, 9621), 'dulwich.lru_cache.LRUSizeCache', 'lru_cache.LRUSizeCache', ([], {}), '()\n', (9619, 9621), False, 'from dulwich import lru_cache\n'), ((9847, 9871), 'dulwich.lru_cache.LRUSizeCache', 'lru_cache.LRUSizeCache', ([], {}), '()\n', (9869, 9871), False, 'from dulwich import lru_cache\n'), ((9998, 10022), 'dulwich.lru_cache.LRUSizeCache', 'lru_cache.LRUSizeCache', ([], {}), '()\n', (10020, 10022), False, 'from dulwich import lru_cache\n'), ((10219, 10243), 'dulwich.lru_cache.LRUSizeCache', 'lru_cache.LRUSizeCache', ([], {}), '()\n', (10241, 10243), False, 'from dulwich import lru_cache\n'), ((10617, 10674), 'dulwich.lru_cache.LRUSizeCache', 'lru_cache.LRUSizeCache', ([], {'max_size': '(10)', 'after_cleanup_size': '(5)'}), '(max_size=10, after_cleanup_size=5)\n', (10639, 10674), False, 'from dulwich import lru_cache\n'), ((11722, 11779), 'dulwich.lru_cache.LRUSizeCache', 'lru_cache.LRUSizeCache', ([], {'max_size': '(10)', 'after_cleanup_size': '(5)'}), '(max_size=10, after_cleanup_size=5)\n', (11744, 11779), False, 'from dulwich import lru_cache\n'), ((12302, 12337), 'dulwich.lru_cache.LRUSizeCache', 'lru_cache.LRUSizeCache', ([], {'max_size': '(20)'}), '(max_size=20)\n', (12324, 12337), False, 'from dulwich import lru_cache\n'), ((12944, 13002), 'dulwich.lru_cache.LRUSizeCache', 'lru_cache.LRUSizeCache', ([], {'max_size': '(20)', 'after_cleanup_size': '(10)'}), '(max_size=20, after_cleanup_size=10)\n', (12966, 13002), False, 'from dulwich import lru_cache\n'), ((13617, 13707), 'dulwich.lru_cache.LRUSizeCache', 'lru_cache.LRUSizeCache', ([], {'max_size': '(20)', 'after_cleanup_size': '(10)', 'compute_size': 'size_of_list'}), '(max_size=20, after_cleanup_size=10, compute_size=\n size_of_list)\n', (13639, 13707), False, 'from dulwich import lru_cache\n'), ((14307, 14365), 'dulwich.lru_cache.LRUSizeCache', 'lru_cache.LRUSizeCache', ([], {'max_size': '(20)', 'after_cleanup_size': '(10)'}), '(max_size=20, after_cleanup_size=10)\n', (14329, 14365), False, 'from dulwich import lru_cache\n'), ((14753, 14788), 'dulwich.lru_cache.LRUSizeCache', 'lru_cache.LRUSizeCache', ([], {'max_size': '(10)'}), '(max_size=10)\n', (14775, 14788), False, 'from dulwich import lru_cache\n'), ((14972, 15029), 'dulwich.lru_cache.LRUSizeCache', 'lru_cache.LRUSizeCache', ([], {'max_size': '(10)', 'after_cleanup_size': '(9)'}), '(max_size=10, after_cleanup_size=9)\n', (14994, 15029), False, 'from dulwich import lru_cache\n'), ((15620, 15677), 'dulwich.lru_cache.LRUSizeCache', 'lru_cache.LRUSizeCache', ([], {'max_size': '(10)', 'after_cleanup_size': '(9)'}), '(max_size=10, after_cleanup_size=9)\n', (15642, 15677), False, 'from dulwich import lru_cache\n')]
# coding: utf-8 import logging import requests import mimetypes from io import BytesIO from urllib.parse import urlparse from datetime import datetime, timedelta from collections import OrderedDict from flask_babelex import gettext as _ from flask import ( render_template, abort, current_app, request, session, redirect, jsonify, url_for, Response, send_from_directory, g, make_response, ) from werkzeug.contrib.atom import AtomFeed from urllib.parse import urljoin from legendarium.formatter import descriptive_short_format from . import main from webapp import babel from webapp import cache from webapp import controllers from webapp.choices import STUDY_AREAS from webapp.utils import utils from webapp.utils.caching import cache_key_with_lang, cache_key_with_lang_with_qs from webapp import forms from webapp.config.lang_names import display_original_lang_name from opac_schema.v1.models import Journal, Issue, Article, Collection from lxml import etree from packtools import HTMLGenerator logger = logging.getLogger(__name__) JOURNAL_UNPUBLISH = _("O periódico está indisponível por motivo de: ") ISSUE_UNPUBLISH = _("O número está indisponível por motivo de: ") ARTICLE_UNPUBLISH = _("O artigo está indisponível por motivo de: ") IAHX_LANGS = dict( p='pt', e='es', i='en', ) def url_external(endpoint, **kwargs): url = url_for(endpoint, **kwargs) return urljoin(request.url_root, url) class RetryableError(Exception): """Erro recuperável sem que seja necessário modificar o estado dos dados na parte cliente, e.g., timeouts, erros advindos de particionamento de rede etc. """ class NonRetryableError(Exception): """Erro do qual não pode ser recuperado sem modificar o estado dos dados na parte cliente, e.g., recurso solicitado não exite, URI inválida etc. """ def fetch_data(url: str, timeout: float = 2) -> bytes: try: response = requests.get(url, timeout=timeout) except (requests.ConnectionError, requests.Timeout) as exc: raise RetryableError(exc) from exc except (requests.InvalidSchema, requests.MissingSchema, requests.InvalidURL) as exc: raise NonRetryableError(exc) from exc else: try: response.raise_for_status() except requests.HTTPError as exc: if 400 <= exc.response.status_code < 500: raise NonRetryableError(exc) from exc elif 500 <= exc.response.status_code < 600: raise RetryableError(exc) from exc else: raise return response.content @main.before_app_request def add_collection_to_g(): if not hasattr(g, 'collection'): try: collection = controllers.get_current_collection() setattr(g, 'collection', collection) except Exception: # discutir o que fazer aqui setattr(g, 'collection', {}) @main.after_request def add_header(response): response.headers['x-content-type-options'] = 'nosniff' return response @main.after_request def add_language_code(response): language = session.get('lang', get_locale()) response.set_cookie('language', language) return response @main.before_app_request def add_forms_to_g(): setattr(g, 'email_share', forms.EmailShareForm()) setattr(g, 'email_contact', forms.ContactForm()) setattr(g, 'error', forms.ErrorForm()) @main.before_app_request def add_scielo_org_config_to_g(): language = session.get('lang', get_locale()) scielo_org_links = { key: url[language] for key, url in current_app.config.get('SCIELO_ORG_URIS', {}).items() } setattr(g, 'scielo_org', scielo_org_links) @babel.localeselector def get_locale(): langs = current_app.config.get('LANGUAGES') lang_from_headers = request.accept_languages.best_match(list(langs.keys())) if 'lang' not in list(session.keys()): session['lang'] = lang_from_headers if not lang_from_headers and not session['lang']: # Caso não seja possível detectar o idioma e não tenhamos a chave lang # no seção, fixamos o idioma padrão. session['lang'] = current_app.config.get('BABEL_DEFAULT_LOCALE') return session['lang'] @main.route('/set_locale/<string:lang_code>/') def set_locale(lang_code): langs = current_app.config.get('LANGUAGES') if lang_code not in list(langs.keys()): abort(400, _('Código de idioma inválido')) referrer = request.referrer hash = request.args.get('hash') if hash: referrer += "#" + hash # salvar o lang code na sessão session['lang'] = lang_code return redirect(referrer) def get_lang_from_session(): """ Tenta retornar o idioma da seção, caso não consiga retorna BABEL_DEFAULT_LOCALE. """ try: return session['lang'] except KeyError: return current_app.config.get('BABEL_DEFAULT_LOCALE') @main.route('/') @cache.cached(key_prefix=cache_key_with_lang) def index(): language = session.get('lang', get_locale()) news = controllers.get_latest_news_by_lang(language) tweets = controllers.get_collection_tweets() press_releases = controllers.get_press_releases({'language': language}) urls = { 'downloads': '{0}/w/accesses?collection={1}'.format( current_app.config['METRICS_URL'], current_app.config['OPAC_COLLECTION']), 'references': '{0}/w/publication/size?collection={1}'.format( current_app.config['METRICS_URL'], current_app.config['OPAC_COLLECTION']), 'other': '{0}/?collection={1}'.format( current_app.config['METRICS_URL'], current_app.config['OPAC_COLLECTION']) } if ( g.collection is not None and isinstance(g.collection, Collection) and g.collection.metrics is not None and current_app.config['USE_HOME_METRICS'] ): g.collection.metrics.total_journal = Journal.objects.filter( is_public=True, current_status="current" ).count() g.collection.metrics.total_article = Article.objects.filter( is_public=True ).count() context = { 'news': news, 'urls': urls, 'tweets': tweets, 'press_releases': press_releases, } return render_template("collection/index.html", **context) # ##################################Collection################################### @main.route('/journals/alpha') @cache.cached(key_prefix=cache_key_with_lang) def collection_list(): allowed_filters = ["current", "no-current", ""] query_filter = request.args.get("status", "") if not query_filter in allowed_filters: query_filter = "" journals_list = [ controllers.get_journal_json_data(journal) for journal in controllers.get_journals(query_filter=query_filter) ] return render_template("collection/list_journal.html", **{'journals_list': journals_list, 'query_filter': query_filter}) @main.route("/journals/thematic") @cache.cached(key_prefix=cache_key_with_lang) def collection_list_thematic(): allowed_query_filters = ["current", "no-current", ""] allowed_thematic_filters = ["areas", "wos", "publisher"] thematic_table = { "areas": "study_areas", "wos": "subject_categories", "publisher": "publisher_name", } query_filter = request.args.get("status", "") title_query = request.args.get("query", "") thematic_filter = request.args.get("filter", "areas") if not query_filter in allowed_query_filters: query_filter = "" if not thematic_filter in allowed_thematic_filters: thematic_filter = "areas" lang = get_lang_from_session()[:2].lower() objects = controllers.get_journals_grouped_by( thematic_table[thematic_filter], title_query, query_filter=query_filter, lang=lang, ) return render_template( "collection/list_thematic.html", **{"objects": objects, "query_filter": query_filter, "filter": thematic_filter} ) @main.route('/journals/feed/') @cache.cached(key_prefix=cache_key_with_lang) def collection_list_feed(): language = session.get('lang', get_locale()) collection = controllers.get_current_collection() title = 'SciELO - %s - %s' % (collection.name, _('Últimos periódicos inseridos na coleção')) subtitle = _('10 últimos periódicos inseridos na coleção %s' % collection.name) feed = AtomFeed(title, subtitle=subtitle, feed_url=request.url, url=request.url_root) journals = controllers.get_journals_paginated( title_query='', page=1, order_by='-created', per_page=10) if not journals.items: feed.add('Nenhum periódico encontrado', url=request.url, updated=datetime.now()) for journal in journals.items: issues = controllers.get_issues_by_jid(journal.jid, is_public=True) last_issue = issues[0] if issues else None articles = [] if last_issue: articles = controllers.get_articles_by_iid(last_issue.iid, is_public=True) result_dict = OrderedDict() for article in articles: section = article.get_section_by_lang(language[:2]) result_dict.setdefault(section, []) result_dict[section].append(article) context = { 'journal': journal, 'articles': result_dict, 'language': language, 'last_issue': last_issue } feed.add(journal.title, render_template("collection/list_feed_content.html", **context), content_type='html', author=journal.publisher_name, url=url_external('main.journal_detail', url_seg=journal.url_segment), updated=journal.updated, published=journal.created) return feed.get_response() @main.route("/about/", methods=['GET']) @main.route('/about/<string:slug_name>', methods=['GET']) @cache.cached(key_prefix=cache_key_with_lang_with_qs) def about_collection(slug_name=None): language = session.get('lang', get_locale()) context = {} page = None if slug_name: # caso seja uma página page = controllers.get_page_by_slug_name(slug_name, language) if not page: abort(404, _('Página não encontrada')) context['page'] = page else: # caso não seja uma página é uma lista pages = controllers.get_pages_by_lang(language) context['pages'] = pages return render_template("collection/about.html", **context) # ###################################Journal##################################### @main.route('/scielo.php/') @cache.cached(key_prefix=cache_key_with_lang_with_qs) def router_legacy(): script_php = request.args.get('script', None) pid = request.args.get('pid', None) tlng = request.args.get('tlng', None) allowed_scripts = [ 'sci_serial', 'sci_issuetoc', 'sci_arttext', 'sci_abstract', 'sci_issues', 'sci_pdf' ] if (script_php is not None) and (script_php in allowed_scripts) and not pid: # se tem pelo menos um param: pid ou script_php abort(400, _(u'Requsição inválida ao tentar acessar o artigo com pid: %s' % pid)) elif script_php and pid: if script_php == 'sci_serial': # pid = issn journal = controllers.get_journal_by_issn(pid) if not journal: abort(404, _('Periódico não encontrado')) if not journal.is_public: abort(404, JOURNAL_UNPUBLISH + _(journal.unpublish_reason)) return redirect(url_for('main.journal_detail', url_seg=journal.url_segment), code=301) elif script_php == 'sci_issuetoc': issue = controllers.get_issue_by_pid(pid) if not issue: abort(404, _('Número não encontrado')) if not issue.is_public: abort(404, ISSUE_UNPUBLISH + _(issue.unpublish_reason)) if not issue.journal.is_public: abort(404, JOURNAL_UNPUBLISH + _(issue.journal.unpublish_reason)) if issue.url_segment and "ahead" in issue.url_segment: return redirect( url_for('main.aop_toc', url_seg=url_seg), code=301) return redirect( url_for( "main.issue_toc", url_seg=issue.journal.url_segment, url_seg_issue=issue.url_segment), 301 ) elif script_php == 'sci_arttext' or script_php == 'sci_abstract': article = controllers.get_article_by_pid_v2(pid) if not article: abort(404, _('Artigo não encontrado')) # 'abstract' or None (not False, porque False converterá a string 'False') part = (script_php == 'sci_abstract' and 'abstract') or None if tlng not in article.languages: tlng = article.original_language return redirect(url_for('main.article_detail_v3', url_seg=article.journal.url_segment, article_pid_v3=article.aid, part=part, lang=tlng), code=301) elif script_php == 'sci_issues': journal = controllers.get_journal_by_issn(pid) if not journal: abort(404, _('Periódico não encontrado')) if not journal.is_public: abort(404, JOURNAL_UNPUBLISH + _(journal.unpublish_reason)) return redirect(url_for('main.issue_grid', url_seg=journal.url_segment), 301) elif script_php == 'sci_pdf': # accesso ao pdf do artigo: article = controllers.get_article_by_pid_v2(pid) if not article: abort(404, _('Artigo não encontrado')) return redirect( url_for( 'main.article_detail_v3', url_seg=article.journal.url_segment, article_pid_v3=article.aid, format='pdf', ), code=301 ) else: abort(400, _(u'Requsição inválida ao tentar acessar o artigo com pid: %s' % pid)) else: return redirect('/') @main.route('/<string:journal_seg>') @main.route('/journal/<string:journal_seg>') def journal_detail_legacy_url(journal_seg): return redirect(url_for('main.journal_detail', url_seg=journal_seg), code=301) @main.route('/j/<string:url_seg>/') @cache.cached(key_prefix=cache_key_with_lang) def journal_detail(url_seg): journal = controllers.get_journal_by_url_seg(url_seg) if not journal: abort(404, _('Periódico não encontrado')) if not journal.is_public: abort(404, JOURNAL_UNPUBLISH + _(journal.unpublish_reason)) utils.fix_journal_last_issue(journal) # todo: ajustar para que seja só noticias relacionadas ao periódico language = session.get('lang', get_locale()) news = controllers.get_latest_news_by_lang(language) # Press releases press_releases = controllers.get_press_releases({ 'journal': journal, 'language': language}) # Lista de seções # Mantendo sempre o idioma inglês para as seções na página incial do periódico if journal.last_issue and journal.current_status == "current": sections = [section for section in journal.last_issue.sections if section.language == 'en'] recent_articles = controllers.get_recent_articles_of_issue(journal.last_issue.iid, is_public=True) else: sections = [] recent_articles = [] latest_issue = journal.last_issue if latest_issue: latest_issue_legend = descriptive_short_format( title=journal.title, short_title=journal.short_title, pubdate=str(latest_issue.year), volume=latest_issue.volume, number=latest_issue.number, suppl=latest_issue.suppl_text, language=language[:2].lower()) else: latest_issue_legend = '' journal_metrics = controllers.get_journal_metrics(journal) context = { 'journal': journal, 'press_releases': press_releases, 'recent_articles': recent_articles, 'journal_study_areas': [ STUDY_AREAS.get(study_area.upper()) for study_area in journal.study_areas ], # o primiero item da lista é o último número. # condicional para verificar se issues contém itens 'last_issue': latest_issue, 'latest_issue_legend': latest_issue_legend, 'sections': sections if sections else None, 'news': news, 'journal_metrics': journal_metrics } return render_template("journal/detail.html", **context) @main.route('/journal/<string:url_seg>/feed/') @cache.cached(key_prefix=cache_key_with_lang) def journal_feed(url_seg): journal = controllers.get_journal_by_url_seg(url_seg) if not journal: abort(404, _('Periódico não encontrado')) if not journal.is_public: abort(404, JOURNAL_UNPUBLISH + _(journal.unpublish_reason)) issues = controllers.get_issues_by_jid(journal.jid, is_public=True) last_issue = issues[0] if issues else None articles = controllers.get_articles_by_iid(last_issue.iid, is_public=True) feed = AtomFeed(journal.title, feed_url=request.url, url=request.url_root, subtitle=utils.get_label_issue(last_issue)) feed_language = session.get('lang', get_locale()) feed_language = feed_language[:2].lower() for article in articles: # ######### TODO: Revisar ######### article_lang = feed_language if feed_language not in article.languages: article_lang = article.original_language feed.add(article.title or _('Artigo sem título'), render_template("issue/feed_content.html", article=article), content_type='html', id=article.doi or article.pid, author=article.authors, url=url_external('main.article_detail_v3', url_seg=journal.url_segment, article_pid_v3=article.aid, lang=article_lang), updated=journal.updated, published=journal.created) return feed.get_response() @main.route("/journal/<string:url_seg>/about/", methods=['GET']) @cache.cached(key_prefix=cache_key_with_lang) def about_journal(url_seg): language = session.get('lang', get_locale()) journal = controllers.get_journal_by_url_seg(url_seg) if not journal: abort(404, _('Periódico não encontrado')) if not journal.is_public: abort(404, JOURNAL_UNPUBLISH + _(journal.unpublish_reason)) latest_issue = utils.fix_journal_last_issue(journal) if latest_issue: latest_issue_legend = descriptive_short_format( title=journal.title, short_title=journal.short_title, pubdate=str(latest_issue.year), volume=latest_issue.volume, number=latest_issue.number, suppl=latest_issue.suppl_text, language=language[:2].lower()) else: latest_issue_legend = None page = controllers.get_page_by_journal_acron_lang(journal.acronym, language) context = { 'journal': journal, 'latest_issue_legend': latest_issue_legend, 'last_issue': latest_issue, 'journal_study_areas': [ STUDY_AREAS.get(study_area.upper()) for study_area in journal.study_areas ], } if page: context['content'] = page.content if page.updated_at: context['page_updated_at'] = page.updated_at return render_template("journal/about.html", **context) @main.route("/journals/search/alpha/ajax/", methods=['GET', ]) @cache.cached(key_prefix=cache_key_with_lang_with_qs) def journals_search_alpha_ajax(): if not request.is_xhr: abort(400, _('Requisição inválida. Deve ser por ajax')) query = request.args.get('query', '', type=str) query_filter = request.args.get('query_filter', '', type=str) page = request.args.get('page', 1, type=int) lang = get_lang_from_session()[:2].lower() response_data = controllers.get_alpha_list_from_paginated_journals( title_query=query, query_filter=query_filter, page=page, lang=lang) return jsonify(response_data) @main.route("/journals/search/group/by/filter/ajax/", methods=['GET']) @cache.cached(key_prefix=cache_key_with_lang_with_qs) def journals_search_by_theme_ajax(): if not request.is_xhr: abort(400, _('Requisição inválida. Deve ser por ajax')) query = request.args.get('query', '', type=str) query_filter = request.args.get('query_filter', '', type=str) filter = request.args.get('filter', 'areas', type=str) lang = get_lang_from_session()[:2].lower() if filter == 'areas': objects = controllers.get_journals_grouped_by('study_areas', query, query_filter=query_filter, lang=lang) elif filter == 'wos': objects = controllers.get_journals_grouped_by('subject_categories', query, query_filter=query_filter, lang=lang) elif filter == 'publisher': objects = controllers.get_journals_grouped_by('publisher_name', query, query_filter=query_filter, lang=lang) else: return jsonify({ 'error': 401, 'message': _('Parámetro "filter" é inválido, deve ser "areas", "wos" ou "publisher".') }) return jsonify(objects) @main.route("/journals/download/<string:list_type>/<string:extension>/", methods=['GET', ]) @cache.cached(key_prefix=cache_key_with_lang_with_qs) def download_journal_list(list_type, extension): if extension.lower() not in ['csv', 'xls']: abort(401, _('Parámetro "extension" é inválido, deve ser "csv" ou "xls".')) elif list_type.lower() not in ['alpha', 'areas', 'wos', 'publisher']: abort(401, _('Parámetro "list_type" é inválido, deve ser: "alpha", "areas", "wos" ou "publisher".')) else: if extension.lower() == 'xls': mimetype = 'application/vnd.ms-excel' else: mimetype = 'text/csv' query = request.args.get('query', '', type=str) data = controllers.get_journal_generator_for_csv(list_type=list_type, title_query=query, extension=extension.lower()) timestamp = datetime.now().strftime('%Y-%m-%d_%H-%M-%S') filename = 'journals_%s_%s.%s' % (list_type, timestamp, extension) response = Response(data, mimetype=mimetype) response.headers['Content-Disposition'] = 'attachment; filename=%s' % filename return response @main.route("/<string:url_seg>/contact", methods=['POST']) def contact(url_seg): if not request.is_xhr: abort(403, _('Requisição inválida, deve ser ajax.')) if utils.is_recaptcha_valid(request): form = forms.ContactForm(request.form) journal = controllers.get_journal_by_url_seg(url_seg) if not journal.enable_contact: abort(403, _('Periódico não permite envio de email.')) recipients = journal.editor_email if form.validate(): sent, message = controllers.send_email_contact(recipients, form.data['name'], form.data['your_email'], form.data['message']) return jsonify({'sent': sent, 'message': str(message), 'fields': [key for key in form.data.keys()]}) else: return jsonify({'sent': False, 'message': form.errors, 'fields': [key for key in form.data.keys()]}) else: abort(400, _('Requisição inválida, captcha inválido.')) @main.route("/form_contact/<string:url_seg>/", methods=['GET']) def form_contact(url_seg): journal = controllers.get_journal_by_url_seg(url_seg) if not journal: abort(404, _('Periódico não encontrado')) context = { 'journal': journal } return render_template("journal/includes/contact_form.html", **context) # ###################################Issue####################################### @main.route('/grid/<string:url_seg>/') def issue_grid_legacy(url_seg): return redirect(url_for('main.issue_grid', url_seg=url_seg), 301) @main.route('/j/<string:url_seg>/grid') @cache.cached(key_prefix=cache_key_with_lang) def issue_grid(url_seg): journal = controllers.get_journal_by_url_seg(url_seg) if not journal: abort(404, _('Periódico não encontrado')) if not journal.is_public: abort(404, JOURNAL_UNPUBLISH + _(journal.unpublish_reason)) # idioma da sessão language = session.get('lang', get_locale()) # A ordenação padrão da função ``get_issues_by_jid``: "-year", "-volume", "-order" issues_data = controllers.get_issues_for_grid_by_jid(journal.id, is_public=True) latest_issue = issues_data['last_issue'] if latest_issue: latest_issue_legend = descriptive_short_format( title=journal.title, short_title=journal.short_title, pubdate=str(latest_issue.year), volume=latest_issue.volume, number=latest_issue.number, suppl=latest_issue.suppl_text, language=language[:2].lower()) else: latest_issue_legend = None context = { 'journal': journal, 'last_issue': issues_data['last_issue'], 'latest_issue_legend': latest_issue_legend, 'volume_issue': issues_data['volume_issue'], 'ahead': issues_data['ahead'], 'result_dict': issues_data['ordered_for_grid'], 'journal_study_areas': [ STUDY_AREAS.get(study_area.upper()) for study_area in journal.study_areas ], } return render_template("issue/grid.html", **context) @main.route('/toc/<string:url_seg>/<string:url_seg_issue>/') def issue_toc_legacy(url_seg, url_seg_issue): if url_seg_issue and "ahead" in url_seg_issue: return redirect(url_for('main.aop_toc', url_seg=url_seg), code=301) return redirect( url_for('main.issue_toc', url_seg=url_seg, url_seg_issue=url_seg_issue), code=301) @main.route('/j/<string:url_seg>/i/<string:url_seg_issue>/') @cache.cached(key_prefix=cache_key_with_lang_with_qs) def issue_toc(url_seg, url_seg_issue): section_filter = None goto = request.args.get("goto", None, type=str) if goto not in ("previous", "next"): goto = None if goto in (None, "next") and "ahead" in url_seg_issue: # redireciona para `aop_toc` return redirect(url_for('main.aop_toc', url_seg=url_seg), code=301) # idioma da sessão language = session.get('lang', get_locale()) if current_app.config["FILTER_SECTION_ENABLE"]: # seção dos documentos, se selecionada section_filter = request.args.get('section', '', type=str).upper() # obtém o issue issue = controllers.get_issue_by_url_seg(url_seg, url_seg_issue) if not issue: abort(404, _('Número não encontrado')) if not issue.is_public: abort(404, ISSUE_UNPUBLISH + _(issue.unpublish_reason)) # obtém o journal journal = issue.journal if not journal.is_public: abort(404, JOURNAL_UNPUBLISH + _(journal.unpublish_reason)) # completa url_segment do last_issue utils.fix_journal_last_issue(journal) # goto_next_or_previous_issue (redireciona) goto_url = goto_next_or_previous_issue( issue, request.args.get('goto', None, type=str)) if goto_url: return redirect(goto_url, code=301) # obtém os documentos articles = controllers.get_articles_by_iid(issue.iid, is_public=True) if articles: # obtém TODAS as seções dos documentos deste sumário sections = sorted({a.section.upper() for a in articles if a.section}) else: # obtém as seções dos documentos deste sumário sections = [] if current_app.config["FILTER_SECTION_ENABLE"] and section_filter != '': # obtém somente os documentos da seção selecionada articles = [a for a in articles if a.section.upper() == section_filter] # obtém PDF e TEXT de cada documento has_math_content = False for article in articles: article_text_languages = [doc['lang'] for doc in article.htmls] article_pdf_languages = [(doc['lang'], doc['url']) for doc in article.pdfs] setattr(article, "article_text_languages", article_text_languages) setattr(article, "article_pdf_languages", article_pdf_languages) if 'mml:' in article.title: has_math_content = True # obtém a legenda bibliográfica issue_bibliographic_strip = descriptive_short_format( title=journal.title, short_title=journal.short_title, pubdate=str(issue.year), volume=issue.volume, number=issue.number, suppl=issue.suppl_text, language=language[:2].lower()) context = { 'this_page_url': url_for( 'main.issue_toc', url_seg=url_seg, url_seg_issue=url_seg_issue), 'has_math_content': has_math_content, 'journal': journal, 'issue': issue, 'issue_bibliographic_strip': issue_bibliographic_strip, 'articles': articles, 'sections': sections, 'section_filter': section_filter, 'journal_study_areas': [ STUDY_AREAS.get(study_area.upper()) for study_area in journal.study_areas ], 'last_issue': journal.last_issue } return render_template("issue/toc.html", **context) def goto_next_or_previous_issue(current_issue, goto_param): if goto_param not in ["next", "previous"]: return None all_issues = list( controllers.get_issues_by_jid(current_issue.journal.id, is_public=True)) if goto_param == "next": selected_issue = utils.get_next_issue(all_issues, current_issue) elif goto_param == "previous": selected_issue = utils.get_prev_issue(all_issues, current_issue) if selected_issue in (None, current_issue): # nao precisa redirecionar return None try: url_seg_issue = selected_issue.url_segment except AttributeError: return None else: return url_for('main.issue_toc', url_seg=selected_issue.journal.url_segment, url_seg_issue=url_seg_issue) def get_next_or_previous_issue(current_issue, goto_param): if goto_param not in ["next", "previous"]: return current_issue all_issues = list( controllers.get_issues_by_jid(current_issue.journal.id, is_public=True)) if goto_param == "next": return utils.get_next_issue(all_issues, current_issue) return utils.get_prev_issue(all_issues, current_issue) @main.route('/j/<string:url_seg>/aop') @cache.cached(key_prefix=cache_key_with_lang_with_qs) def aop_toc(url_seg): section_filter = request.args.get('section', '', type=str).upper() aop_issues = controllers.get_aop_issues(url_seg) or [] if not aop_issues: abort(404, _('Artigos ahead of print não encontrados')) goto = request.args.get("goto", None, type=str) if goto == "previous": url = goto_next_or_previous_issue(aop_issues[-1], goto) if url: redirect(url, code=301) journal = aop_issues[0].journal if not journal.is_public: abort(404, JOURNAL_UNPUBLISH + _(journal.unpublish_reason)) utils.fix_journal_last_issue(journal) articles = [] for aop_issue in aop_issues: _articles = controllers.get_articles_by_iid( aop_issue.iid, is_public=True) if _articles: articles.extend(_articles) if not articles: abort(404, _('Artigos ahead of print não encontrados')) sections = sorted({a.section.upper() for a in articles if a.section}) if section_filter != '': articles = [a for a in articles if a.section.upper() == section_filter] for article in articles: article_text_languages = [doc['lang'] for doc in article.htmls] article_pdf_languages = [(doc['lang'], doc['url']) for doc in article.pdfs] setattr(article, "article_text_languages", article_text_languages) setattr(article, "article_pdf_languages", article_pdf_languages) context = { 'this_page_url': url_for("main.aop_toc", url_seg=url_seg), 'journal': journal, 'issue': aop_issues[0], 'issue_bibliographic_strip': "ahead of print", 'articles': articles, 'sections': sections, 'section_filter': section_filter, 'journal_study_areas': [ STUDY_AREAS.get(study_area.upper()) for study_area in journal.study_areas ], # o primeiro item da lista é o último número. 'last_issue': journal.last_issue } return render_template("issue/toc.html", **context) @main.route('/feed/<string:url_seg>/<string:url_seg_issue>/') @cache.cached(key_prefix=cache_key_with_lang) def issue_feed(url_seg, url_seg_issue): issue = controllers.get_issue_by_url_seg(url_seg, url_seg_issue) if not issue: abort(404, _('Número não encontrado')) if not issue.is_public: abort(404, ISSUE_UNPUBLISH + _(issue.unpublish_reason)) if not issue.journal.is_public: abort(404, JOURNAL_UNPUBLISH + _(issue.journal.unpublish_reason)) journal = issue.journal articles = controllers.get_articles_by_iid(issue.iid, is_public=True) feed = AtomFeed(journal.title or "", feed_url=request.url, url=request.url_root, subtitle=utils.get_label_issue(issue)) feed_language = session.get('lang', get_locale()) for article in articles: # ######### TODO: Revisar ######### article_lang = feed_language if feed_language not in article.languages: article_lang = article.original_language feed.add(article.title or 'Unknow title', render_template("issue/feed_content.html", article=article), content_type='html', author=article.authors, id=article.doi or article.pid, url=url_external('main.article_detail_v3', url_seg=journal.url_segment, article_pid_v3=article.aid, lang=article_lang), updated=journal.updated, published=journal.created) return feed.get_response() # ##################################Article###################################### @main.route('/article/<regex("S\d{4}-\d{3}[0-9xX][0-2][0-9]{3}\d{4}\d{5}"):pid>/') @cache.cached(key_prefix=cache_key_with_lang) def article_detail_pid(pid): article = controllers.get_article_by_pid(pid) if not article: article = controllers.get_article_by_oap_pid(pid) if not article: abort(404, _('Artigo não encontrado')) return redirect(url_for('main.article_detail_v3', url_seg=article.journal.acronym, article_pid_v3=article.aid)) def render_html_from_xml(article, lang, gs_abstract=False): logger.debug("Get XML: %s", article.xml) if current_app.config["SSM_XML_URL_REWRITE"]: result = fetch_data(use_ssm_url(article.xml)) else: result = fetch_data(article.xml) xml = etree.parse(BytesIO(result)) generator = HTMLGenerator.parse( xml, valid_only=False, gs_abstract=gs_abstract, output_style="website") return generator.generate(lang), generator.languages def render_html_from_html(article, lang): html_url = [html for html in article.htmls if html['lang'] == lang] try: html_url = html_url[0]['url'] except IndexError: raise ValueError('Artigo não encontrado') from None result = fetch_data(use_ssm_url(html_url)) html = result.decode('utf8') text_languages = [html['lang'] for html in article.htmls] return html, text_languages def render_html_abstract(article, lang): abstract_text = '' for abstract in article.abstracts: if abstract['language'] == lang: abstract_text = abstract["text"] break return abstract_text, article.abstract_languages def render_html(article, lang, gs_abstract=False): if article.xml: return render_html_from_xml(article, lang, gs_abstract) elif article.htmls: if gs_abstract: return render_html_abstract(article, lang) return render_html_from_html(article, lang) else: # TODO: Corrigir os teste que esperam ter o atributo ``htmls`` # O ideal seria levantar um ValueError. return '', [] # TODO: Remover assim que o valor Article.xml estiver consistente na base de # dados def use_ssm_url(url): """Normaliza a string `url` de acordo com os valores das diretivas de configuração OPAC_SSM_SCHEME, OPAC_SSM_DOMAIN e OPAC_SSM_PORT. A normalização busca obter uma URL absoluta em função de uma relativa, ou uma absoluta em função de uma absoluta, mas com as partes *scheme* e *authority* trocadas pelas definidas nas diretivas citadas anteriormente. Este código deve ser removido assim que o valor de Article.xml estiver consistente, i.e., todos os registros possuirem apenas URLs absolutas. """ if url.startswith("http"): parsed_url = urlparse(url) return current_app.config["SSM_BASE_URI"] + parsed_url.path else: return current_app.config["SSM_BASE_URI"] + url @main.route('/article/<string:url_seg>/<string:url_seg_issue>/<string:url_seg_article>/') @main.route('/article/<string:url_seg>/<string:url_seg_issue>/<string:url_seg_article>/<regex("(?:\w{2})"):lang_code>/') @main.route('/article/<string:url_seg>/<string:url_seg_issue>/<regex("(.*)"):url_seg_article>/') @main.route('/article/<string:url_seg>/<string:url_seg_issue>/<regex("(.*)"):url_seg_article>/<regex("(?:\w{2})"):lang_code>/') @cache.cached(key_prefix=cache_key_with_lang) def article_detail(url_seg, url_seg_issue, url_seg_article, lang_code=''): issue = controllers.get_issue_by_url_seg(url_seg, url_seg_issue) if not issue: abort(404, _('Issue não encontrado')) article = controllers.get_article_by_issue_article_seg(issue.iid, url_seg_article) if article is None: article = controllers.get_article_by_aop_url_segs( issue.journal, url_seg_issue, url_seg_article ) if article is None: abort(404, _('Artigo não encontrado')) req_params = { "url_seg": article.journal.acronym, "article_pid_v3": article.aid, } if lang_code: req_params["lang"] = lang_code return redirect(url_for('main.article_detail_v3', **req_params)) @main.route('/j/<string:url_seg>/a/<string:article_pid_v3>/') @main.route('/j/<string:url_seg>/a/<string:article_pid_v3>/<string:part>/') @cache.cached(key_prefix=cache_key_with_lang) def article_detail_v3(url_seg, article_pid_v3, part=None): qs_lang = request.args.get('lang', type=str) or None qs_goto = request.args.get('goto', type=str) or None qs_stop = request.args.get('stop', type=str) or None qs_format = request.args.get('format', 'html', type=str) gs_abstract = (part == "abstract") if part and not gs_abstract: abort(404, _("Não existe '{}'. No seu lugar use '{}'" ).format(part, 'abstract')) try: qs_lang, article = controllers.get_article( article_pid_v3, url_seg, qs_lang, gs_abstract, qs_goto) if qs_goto: return redirect( url_for( 'main.article_detail_v3', url_seg=url_seg, article_pid_v3=article.aid, part=part, format=qs_format, lang=qs_lang, stop=getattr(article, 'stop', None), ), code=301 ) except (controllers.PreviousOrNextArticleNotFoundError) as e: if gs_abstract: abort(404, _('Resumo inexistente')) abort(404, _('Artigo inexistente')) except (controllers.ArticleNotFoundError, controllers.ArticleJournalNotFoundError): abort(404, _('Artigo não encontrado')) except controllers.ArticleLangNotFoundError: return redirect( url_for( 'main.article_detail_v3', url_seg=url_seg, article_pid_v3=article_pid_v3, format=qs_format, ), code=301 ) except controllers.ArticleAbstractNotFoundError: abort(404, _('Recurso não encontrado')) except controllers.ArticleIsNotPublishedError as e: abort(404, "{}{}".format(ARTICLE_UNPUBLISH, e)) except controllers.IssueIsNotPublishedError as e: abort(404, "{}{}".format(ISSUE_UNPUBLISH, e)) except controllers.JournalIsNotPublishedError as e: abort(404, "{}{}".format(JOURNAL_UNPUBLISH, e)) except ValueError as e: abort(404, str(e)) def _handle_html(): citation_pdf_url = None for pdf_data in article.pdfs: if pdf_data.get("lang") == qs_lang: citation_pdf_url = url_for( 'main.article_detail_v3', url_seg=article.journal.url_segment, article_pid_v3=article_pid_v3, lang=qs_lang, format="pdf", ) break website = request.url if website: parsed_url = urlparse(request.url) if current_app.config["FORCE_USE_HTTPS_GOOGLE_TAGS"]: website = "{}://{}".format('https', parsed_url.netloc) else: website = "{}://{}".format(parsed_url.scheme, parsed_url.netloc) if citation_pdf_url: citation_pdf_url = "{}{}".format(website, citation_pdf_url) try: html, text_languages = render_html(article, qs_lang, gs_abstract) except (ValueError, NonRetryableError): abort(404, _('HTML do Artigo não encontrado ou indisponível')) except RetryableError: abort(500, _('Erro inesperado')) text_versions = sorted( [ ( lang, display_original_lang_name(lang), url_for( 'main.article_detail_v3', url_seg=article.journal.url_segment, article_pid_v3=article_pid_v3, lang=lang ) ) for lang in text_languages ] ) citation_xml_url = "{}{}".format( website, url_for( 'main.article_detail_v3', url_seg=article.journal.url_segment, article_pid_v3=article_pid_v3, format="xml", lang=article.original_language, ) ) context = { 'next_article': qs_stop != 'next', 'previous_article': qs_stop != 'previous', 'article': article, 'journal': article.journal, 'issue': article.issue, 'html': html, 'citation_pdf_url': citation_pdf_url, 'citation_xml_url': citation_xml_url, 'article_lang': qs_lang, 'text_versions': text_versions, 'related_links': controllers.related_links(article), 'gs_abstract': gs_abstract, 'part': part, } return render_template("article/detail.html", **context) def _handle_pdf(): if not article.pdfs: abort(404, _('PDF do Artigo não encontrado')) pdf_info = [pdf for pdf in article.pdfs if pdf['lang'] == qs_lang] if len(pdf_info) != 1: abort(404, _('PDF do Artigo não encontrado')) try: pdf_url = pdf_info[0]['url'] except (IndexError, KeyError, ValueError, TypeError): abort(404, _('PDF do Artigo não encontrado')) if pdf_url: return get_pdf_content(pdf_url) raise abort(404, _('Recurso do Artigo não encontrado. Caminho inválido!')) def _handle_xml(): if current_app.config["SSM_XML_URL_REWRITE"]: result = fetch_data(use_ssm_url(article.xml)) else: result = fetch_data(article.xml) response = make_response(result) response.headers['Content-Type'] = 'application/xml' return response if 'html' == qs_format: return _handle_html() elif 'pdf' == qs_format: return _handle_pdf() elif 'xml' == qs_format: return _handle_xml() else: abort(400, _('Formato não suportado')) @main.route('/readcube/epdf/') @main.route('/readcube/epdf.php') @cache.cached(key_prefix=cache_key_with_lang_with_qs) def article_epdf(): doi = request.args.get('doi', None, type=str) pid = request.args.get('pid', None, type=str) pdf_path = request.args.get('pdf_path', None, type=str) lang = request.args.get('lang', None, type=str) if not all([doi, pid, pdf_path, lang]): abort(400, _('Parâmetros insuficientes para obter o EPDF do artigo')) else: context = { 'doi': doi, 'pid': pid, 'pdf_path': pdf_path, 'lang': lang, } return render_template("article/epdf.html", **context) def get_pdf_content(url): logger.debug("Get PDF: %s", url) if current_app.config["SSM_ARTICLE_ASSETS_OR_RENDITIONS_URL_REWRITE"]: url = use_ssm_url(url) try: response = fetch_data(url) except NonRetryableError: abort(404, _('PDF não encontrado')) except RetryableError: abort(500, _('Erro inesperado')) else: mimetype, __ = mimetypes.guess_type(url) return Response(response, mimetype=mimetype) @cache.cached(key_prefix=cache_key_with_lang_with_qs) def get_content_from_ssm(resource_ssm_media_path): resource_ssm_full_url = current_app.config['SSM_BASE_URI'] + resource_ssm_media_path url = resource_ssm_full_url.strip() mimetype, __ = mimetypes.guess_type(url) try: ssm_response = fetch_data(url) except NonRetryableError: abort(404, _('Recurso não encontrado')) except RetryableError: abort(500, _('Erro inesperado')) else: return Response(ssm_response, mimetype=mimetype) @main.route('/media/assets/<regex("(.*)"):relative_media_path>') @cache.cached(key_prefix=cache_key_with_lang) def media_assets_proxy(relative_media_path): resource_ssm_path = '{ssm_media_path}{resource_path}'.format( ssm_media_path=current_app.config['SSM_MEDIA_PATH'], resource_path=relative_media_path) return get_content_from_ssm(resource_ssm_path) @main.route('/article/ssm/content/raw/') @cache.cached(key_prefix=cache_key_with_lang_with_qs) def article_ssm_content_raw(): resource_ssm_path = request.args.get('resource_ssm_path', None) if not resource_ssm_path: raise abort(404, _('Recurso do Artigo não encontrado. Caminho inválido!')) else: return get_content_from_ssm(resource_ssm_path) @main.route('/pdf/<string:url_seg>/<string:url_seg_issue>/<string:url_seg_article>') @main.route('/pdf/<string:url_seg>/<string:url_seg_issue>/<string:url_seg_article>/<regex("(?:\w{2})"):lang_code>') @main.route('/pdf/<string:url_seg>/<string:url_seg_issue>/<regex("(.*)"):url_seg_article>') @main.route('/pdf/<string:url_seg>/<string:url_seg_issue>/<regex("(.*)"):url_seg_article>/<regex("(?:\w{2})"):lang_code>') @cache.cached(key_prefix=cache_key_with_lang) def article_detail_pdf(url_seg, url_seg_issue, url_seg_article, lang_code=''): """ Padrões esperados: `/pdf/csc/2021.v26suppl1/2557-2558` `/pdf/csc/2021.v26suppl1/2557-2558/en` """ if not lang_code and "." not in url_seg_issue: return router_legacy_pdf(url_seg, url_seg_issue, url_seg_article) issue = controllers.get_issue_by_url_seg(url_seg, url_seg_issue) if not issue: abort(404, _('Issue não encontrado')) article = controllers.get_article_by_issue_article_seg(issue.iid, url_seg_article) if not article: abort(404, _('Artigo não encontrado')) req_params = { 'url_seg': article.journal.url_segment, 'article_pid_v3': article.aid, 'format': 'pdf', } if lang_code: req_params['lang'] = lang_code return redirect(url_for('main.article_detail_v3', **req_params), code=301) @main.route('/pdf/<string:journal_acron>/<string:issue_info>/<string:pdf_filename>.pdf') @cache.cached(key_prefix=cache_key_with_lang_with_qs) def router_legacy_pdf(journal_acron, issue_info, pdf_filename): pdf_filename = '%s.pdf' % pdf_filename journal = controllers.get_journal_by_url_seg(journal_acron) if not journal: abort(404, _('Este PDF não existe em http://www.scielo.br. Consulte http://search.scielo.org')) article = controllers.get_article_by_pdf_filename( journal_acron, issue_info, pdf_filename) if not article: abort(404, _('PDF do artigo não foi encontrado')) return redirect( url_for( 'main.article_detail_v3', url_seg=article.journal.url_segment, article_pid_v3=article.aid, format='pdf', lang=article._pdf_lang, ), code=301 ) @main.route('/cgi-bin/fbpe/<string:text_or_abstract>/') @cache.cached(key_prefix=cache_key_with_lang_with_qs) def router_legacy_article(text_or_abstract): pid = request.args.get('pid', None) lng = request.args.get('lng', None) if not (text_or_abstract in ['fbtext', 'fbabs'] and pid): # se tem pid abort(400, _('Requsição inválida ao tentar acessar o artigo com pid: %s' % pid)) article = controllers.get_article_by_pid_v1(pid) if not article: abort(404, _('Artigo não encontrado')) return redirect( url_for( 'main.article_detail_v3', url_seg=article.journal.url_segment, article_pid_v3=article.aid, ), code=301 ) # ###############################E-mail share################################## @main.route("/email_share_ajax/", methods=['POST']) def email_share_ajax(): if not request.is_xhr: abort(400, _('Requisição inválida.')) form = forms.EmailShareForm(request.form) if form.validate(): recipients = [email.strip() for email in form.data['recipients'].split(';') if email.strip() != ''] sent, message = controllers.send_email_share(form.data['your_email'], recipients, form.data['share_url'], form.data['subject'], form.data['comment']) return jsonify({'sent': sent, 'message': str(message), 'fields': [key for key in form.data.keys()]}) else: return jsonify({'sent': False, 'message': form.errors, 'fields': [key for key in form.data.keys()]}) @main.route("/form_mail/", methods=['GET']) def email_form(): context = {'url': request.args.get('url')} return render_template("email/email_form.html", **context) @main.route("/email_error_ajax/", methods=['POST']) def email_error_ajax(): if not request.is_xhr: abort(400, _('Requisição inválida.')) form = forms.ErrorForm(request.form) if form.validate(): recipients = [email.strip() for email in current_app.config.get('EMAIL_ACCOUNTS_RECEIVE_ERRORS') if email.strip() != ''] sent, message = controllers.send_email_error(form.data['name'], form.data['your_email'], recipients, form.data['url'], form.data['error_type'], form.data['message'], form.data['page_title']) return jsonify({'sent': sent, 'message': str(message), 'fields': [key for key in form.data.keys()]}) else: return jsonify({'sent': False, 'message': form.errors, 'fields': [key for key in form.data.keys()]}) @main.route("/error_mail/", methods=['GET']) def error_form(): context = {'url': request.args.get('url')} return render_template("includes/error_form.html", **context) # ###############################Others######################################## @main.route("/media/<path:filename>/", methods=['GET']) @cache.cached(key_prefix=cache_key_with_lang) def download_file_by_filename(filename): media_root = current_app.config['MEDIA_ROOT'] return send_from_directory(media_root, filename) @main.route("/img/scielo.gif", methods=['GET']) def full_text_image(): return send_from_directory('static', 'img/full_text_scielo_img.gif') @main.route("/robots.txt", methods=['GET']) def get_robots_txt_file(): return send_from_directory('static', 'robots.txt') @main.route("/revistas/<path:journal_seg>/<string:page>.htm", methods=['GET']) def router_legacy_info_pages(journal_seg, page): """ Essa view function realiza o redirecionamento das URLs antigas para as novas URLs. Mantém um dicionário como uma tabela relacionamento entre o nome das páginas que pode ser: Página âncora [iaboutj.htm, eaboutj.htm, paboutj.htm] -> #about [iedboard.htm, eedboard.htm, pedboard.htm] -> #editors [iinstruc.htm einstruc.htm, pinstruc.htm]-> #instructions isubscrp.htm -> Sem âncora """ page_anchor = { 'iaboutj': '#about', 'eaboutj': '#about', 'paboutj': '#about', 'eedboard': '#editors', 'iedboard': '#editors', 'pedboard': '#editors', 'iinstruc': '#instructions', 'pinstruc': '#instructions', 'einstruc': '#instructions' } return redirect('%s%s' % (url_for('main.about_journal', url_seg=journal_seg), page_anchor.get(page, '')), code=301) @main.route("/api/v1/counter_dict", methods=['GET']) def router_counter_dicts(): """ Essa view function retorna um dicionário, em formato JSON, que mapeia PIDs a insumos necessários para o funcionamento das aplicações Matomo & COUNTER & SUSHI. """ end_date = request.args.get('end_date', '', type=str) try: end_date = datetime.strptime(end_date, '%Y-%m-%d') except ValueError: end_date = datetime.now() begin_date = end_date - timedelta(days=30) page = request.args.get('page', type=int) if not page: page = 1 limit = request.args.get('limit', type=int) if not limit or limit > 100 or limit < 0: limit = 100 results = {'dictionary_date': end_date, 'end_date': end_date.strftime('%Y-%m-%d %H-%M-%S'), 'begin_date': begin_date.strftime('%Y-%m-%d %H-%M-%S'), 'documents': {}, 'collection': current_app.config['OPAC_COLLECTION']} articles = controllers.get_articles_by_date_range(begin_date, end_date, page, limit) for a in articles.items: results['documents'].update(get_article_counter_data(a)) results['total'] = articles.total results['pages'] = articles.pages results['limit'] = articles.per_page results['page'] = articles.page return jsonify(results) def get_article_counter_data(article): return { article.aid: { "journal_acronym": article.journal.acronym, "pid": article.pid if article.pid else '', "aop_pid": article.aop_pid if article.aop_pid else '', "pid_v1": article.scielo_pids.get('v1', ''), "pid_v2": article.scielo_pids.get('v2', ''), "pid_v3": article.scielo_pids.get('v3', ''), "publication_date": article.publication_date, "default_language": article.original_language, "create": article.created, "update": article.updated } } @main.route('/cgi-bin/wxis.exe/iah/') def author_production(): # http://www.scielo.br/cgi-bin/wxis.exe/iah/ # ?IsisScript=iah/iah.xis&base=article%5Edlibrary&format=iso.pft& # lang=p&nextAction=lnk& # indexSearch=AU&exprSearch=MEIERHOFFER,+LILIAN+KOZSLOWSKI # -> # //search.scielo.org/?lang=pt&q=au:MEIERHOFFER,+LILIAN+KOZSLOWSKI search_url = current_app.config.get('URL_SEARCH') if not search_url: abort(404, "URL_SEARCH: {}".format(_('Página não encontrada'))) qs_exprSearch = request.args.get('exprSearch', type=str) or '' qs_indexSearch = request.args.get('indexSearch', type=str) or '' qs_lang = request.args.get('lang', type=str) or '' _lang = IAHX_LANGS.get(qs_lang) or '' _lang = _lang and "lang={}".format(_lang) _expr = "{}{}".format( qs_indexSearch == "AU" and "au:" or '', qs_exprSearch) _expr = _expr and "q={}".format(_expr.replace(" ", "+")) _and = _lang and _expr and "&" or '' _question_mark = (_lang or _expr) and "?" or "" if search_url.startswith("//"): protocol = "https:" elif search_url.startswith("http"): protocol = "" else: protocol = "https://" url = "{}{}{}{}{}{}".format( protocol, search_url, _question_mark, _lang, _and, _expr) return redirect(url, code=301)
[ "logging.getLogger", "flask.request.args.get", "webapp.controllers.get_press_releases", "flask.render_template", "webapp.controllers.get_article_by_oap_pid", "webapp.utils.utils.get_next_issue", "webapp.controllers.send_email_error", "webapp.controllers.get_page_by_journal_acron_lang", "webapp.controllers.get_article_by_pdf_filename", "webapp.controllers.get_recent_articles_of_issue", "io.BytesIO", "webapp.controllers.get_alpha_list_from_paginated_journals", "mimetypes.guess_type", "datetime.timedelta", "webapp.controllers.get_issue_by_pid", "webapp.controllers.get_page_by_slug_name", "werkzeug.contrib.atom.AtomFeed", "flask.current_app.config.get", "flask.jsonify", "webapp.controllers.get_journal_by_url_seg", "webapp.controllers.get_issue_by_url_seg", "webapp.cache.cached", "flask.send_from_directory", "webapp.controllers.get_aop_issues", "flask.session.keys", "webapp.controllers.get_current_collection", "webapp.utils.utils.is_recaptcha_valid", "webapp.controllers.get_journal_by_issn", "webapp.controllers.get_article_by_pid", "flask_babelex.gettext", "webapp.controllers.get_journal_json_data", "webapp.controllers.send_email_share", "webapp.controllers.get_pages_by_lang", "webapp.controllers.get_journal_metrics", "webapp.controllers.get_articles_by_iid", "webapp.controllers.get_article_by_aop_url_segs", "webapp.controllers.get_article", "webapp.controllers.send_email_contact", "collections.OrderedDict", "packtools.HTMLGenerator.parse", "webapp.controllers.get_collection_tweets", "requests.get", "flask.redirect", "webapp.config.lang_names.display_original_lang_name", "webapp.forms.ContactForm", "webapp.forms.EmailShareForm", "opac_schema.v1.models.Article.objects.filter", "flask.Response", "urllib.parse.urljoin", "opac_schema.v1.models.Journal.objects.filter", "flask.make_response", "webapp.forms.ErrorForm", "webapp.controllers.get_issues_by_jid", "webapp.controllers.get_journals", "webapp.utils.utils.get_prev_issue", "urllib.parse.urlparse", "webapp.controllers.get_article_by_issue_article_seg", "datetime.datetime.strptime", "webapp.controllers.get_article_by_pid_v2", "flask.url_for", "webapp.controllers.get_journals_grouped_by", "webapp.controllers.get_article_by_pid_v1", "webapp.controllers.get_issues_for_grid_by_jid", "webapp.controllers.get_articles_by_date_range", "webapp.controllers.related_links", "webapp.controllers.get_latest_news_by_lang", "webapp.utils.utils.fix_journal_last_issue", "webapp.utils.utils.get_label_issue", "datetime.datetime.now", "webapp.controllers.get_journals_paginated" ]
[((1059, 1086), 'logging.getLogger', 'logging.getLogger', (['__name__'], {}), '(__name__)\n', (1076, 1086), False, 'import logging\n'), ((1108, 1158), 'flask_babelex.gettext', '_', (['"""O periódico está indisponível por motivo de: """'], {}), "('O periódico está indisponível por motivo de: ')\n", (1109, 1158), True, 'from flask_babelex import gettext as _\n'), ((1177, 1224), 'flask_babelex.gettext', '_', (['"""O número está indisponível por motivo de: """'], {}), "('O número está indisponível por motivo de: ')\n", (1178, 1224), True, 'from flask_babelex import gettext as _\n'), ((1245, 1292), 'flask_babelex.gettext', '_', (['"""O artigo está indisponível por motivo de: """'], {}), "('O artigo está indisponível por motivo de: ')\n", (1246, 1292), True, 'from flask_babelex import gettext as _\n'), ((4989, 5033), 'webapp.cache.cached', 'cache.cached', ([], {'key_prefix': 'cache_key_with_lang'}), '(key_prefix=cache_key_with_lang)\n', (5001, 5033), False, 'from webapp import cache\n'), ((6539, 6583), 'webapp.cache.cached', 'cache.cached', ([], {'key_prefix': 'cache_key_with_lang'}), '(key_prefix=cache_key_with_lang)\n', (6551, 6583), False, 'from webapp import cache\n'), ((7125, 7169), 'webapp.cache.cached', 'cache.cached', ([], {'key_prefix': 'cache_key_with_lang'}), '(key_prefix=cache_key_with_lang)\n', (7137, 7169), False, 'from webapp import cache\n'), ((8201, 8245), 'webapp.cache.cached', 'cache.cached', ([], {'key_prefix': 'cache_key_with_lang'}), '(key_prefix=cache_key_with_lang)\n', (8213, 8245), False, 'from webapp import cache\n'), ((10219, 10271), 'webapp.cache.cached', 'cache.cached', ([], {'key_prefix': 'cache_key_with_lang_with_qs'}), '(key_prefix=cache_key_with_lang_with_qs)\n', (10231, 10271), False, 'from webapp import cache\n'), ((10940, 10992), 'webapp.cache.cached', 'cache.cached', ([], {'key_prefix': 'cache_key_with_lang_with_qs'}), '(key_prefix=cache_key_with_lang_with_qs)\n', (10952, 10992), False, 'from webapp import cache\n'), ((14994, 15038), 'webapp.cache.cached', 'cache.cached', ([], {'key_prefix': 'cache_key_with_lang'}), '(key_prefix=cache_key_with_lang)\n', (15006, 15038), False, 'from webapp import cache\n'), ((17256, 17300), 'webapp.cache.cached', 'cache.cached', ([], {'key_prefix': 'cache_key_with_lang'}), '(key_prefix=cache_key_with_lang)\n', (17268, 17300), False, 'from webapp import cache\n'), ((18945, 18989), 'webapp.cache.cached', 'cache.cached', ([], {'key_prefix': 'cache_key_with_lang'}), '(key_prefix=cache_key_with_lang)\n', (18957, 18989), False, 'from webapp import cache\n'), ((20336, 20388), 'webapp.cache.cached', 'cache.cached', ([], {'key_prefix': 'cache_key_with_lang_with_qs'}), '(key_prefix=cache_key_with_lang_with_qs)\n', (20348, 20388), False, 'from webapp import cache\n'), ((21076, 21128), 'webapp.cache.cached', 'cache.cached', ([], {'key_prefix': 'cache_key_with_lang_with_qs'}), '(key_prefix=cache_key_with_lang_with_qs)\n', (21088, 21128), False, 'from webapp import cache\n'), ((22214, 22266), 'webapp.cache.cached', 'cache.cached', ([], {'key_prefix': 'cache_key_with_lang_with_qs'}), '(key_prefix=cache_key_with_lang_with_qs)\n', (22226, 22266), False, 'from webapp import cache\n'), ((25187, 25231), 'webapp.cache.cached', 'cache.cached', ([], {'key_prefix': 'cache_key_with_lang'}), '(key_prefix=cache_key_with_lang)\n', (25199, 25231), False, 'from webapp import cache\n'), ((27079, 27131), 'webapp.cache.cached', 'cache.cached', ([], {'key_prefix': 'cache_key_with_lang_with_qs'}), '(key_prefix=cache_key_with_lang_with_qs)\n', (27091, 27131), False, 'from webapp import cache\n'), ((31711, 31763), 'webapp.cache.cached', 'cache.cached', ([], {'key_prefix': 'cache_key_with_lang_with_qs'}), '(key_prefix=cache_key_with_lang_with_qs)\n', (31723, 31763), False, 'from webapp import cache\n'), ((33858, 33902), 'webapp.cache.cached', 'cache.cached', ([], {'key_prefix': 'cache_key_with_lang'}), '(key_prefix=cache_key_with_lang)\n', (33870, 33902), False, 'from webapp import cache\n'), ((35622, 35666), 'webapp.cache.cached', 'cache.cached', ([], {'key_prefix': 'cache_key_with_lang'}), '(key_prefix=cache_key_with_lang)\n', (35634, 35666), False, 'from webapp import cache\n'), ((38986, 39030), 'webapp.cache.cached', 'cache.cached', ([], {'key_prefix': 'cache_key_with_lang'}), '(key_prefix=cache_key_with_lang)\n', (38998, 39030), False, 'from webapp import cache\n'), ((39934, 39978), 'webapp.cache.cached', 'cache.cached', ([], {'key_prefix': 'cache_key_with_lang'}), '(key_prefix=cache_key_with_lang)\n', (39946, 39978), False, 'from webapp import cache\n'), ((46053, 46105), 'webapp.cache.cached', 'cache.cached', ([], {'key_prefix': 'cache_key_with_lang_with_qs'}), '(key_prefix=cache_key_with_lang_with_qs)\n', (46065, 46105), False, 'from webapp import cache\n'), ((47144, 47196), 'webapp.cache.cached', 'cache.cached', ([], {'key_prefix': 'cache_key_with_lang_with_qs'}), '(key_prefix=cache_key_with_lang_with_qs)\n', (47156, 47196), False, 'from webapp import cache\n'), ((47753, 47797), 'webapp.cache.cached', 'cache.cached', ([], {'key_prefix': 'cache_key_with_lang'}), '(key_prefix=cache_key_with_lang)\n', (47765, 47797), False, 'from webapp import cache\n'), ((48108, 48160), 'webapp.cache.cached', 'cache.cached', ([], {'key_prefix': 'cache_key_with_lang_with_qs'}), '(key_prefix=cache_key_with_lang_with_qs)\n', (48120, 48160), False, 'from webapp import cache\n'), ((48857, 48901), 'webapp.cache.cached', 'cache.cached', ([], {'key_prefix': 'cache_key_with_lang'}), '(key_prefix=cache_key_with_lang)\n', (48869, 48901), False, 'from webapp import cache\n'), ((49892, 49944), 'webapp.cache.cached', 'cache.cached', ([], {'key_prefix': 'cache_key_with_lang_with_qs'}), '(key_prefix=cache_key_with_lang_with_qs)\n', (49904, 49944), False, 'from webapp import cache\n'), ((50746, 50798), 'webapp.cache.cached', 'cache.cached', ([], {'key_prefix': 'cache_key_with_lang_with_qs'}), '(key_prefix=cache_key_with_lang_with_qs)\n', (50758, 50798), False, 'from webapp import cache\n'), ((54118, 54162), 'webapp.cache.cached', 'cache.cached', ([], {'key_prefix': 'cache_key_with_lang'}), '(key_prefix=cache_key_with_lang)\n', (54130, 54162), False, 'from webapp import cache\n'), ((1401, 1428), 'flask.url_for', 'url_for', (['endpoint'], {}), '(endpoint, **kwargs)\n', (1408, 1428), False, 'from flask import render_template, abort, current_app, request, session, redirect, jsonify, url_for, Response, send_from_directory, g, make_response\n'), ((1440, 1470), 'urllib.parse.urljoin', 'urljoin', (['request.url_root', 'url'], {}), '(request.url_root, url)\n', (1447, 1470), False, 'from urllib.parse import urljoin\n'), ((3795, 3830), 'flask.current_app.config.get', 'current_app.config.get', (['"""LANGUAGES"""'], {}), "('LANGUAGES')\n", (3817, 3830), False, 'from flask import render_template, abort, current_app, request, session, redirect, jsonify, url_for, Response, send_from_directory, g, make_response\n'), ((4367, 4402), 'flask.current_app.config.get', 'current_app.config.get', (['"""LANGUAGES"""'], {}), "('LANGUAGES')\n", (4389, 4402), False, 'from flask import render_template, abort, current_app, request, session, redirect, jsonify, url_for, Response, send_from_directory, g, make_response\n'), ((4543, 4567), 'flask.request.args.get', 'request.args.get', (['"""hash"""'], {}), "('hash')\n", (4559, 4567), False, 'from flask import render_template, abort, current_app, request, session, redirect, jsonify, url_for, Response, send_from_directory, g, make_response\n'), ((4691, 4709), 'flask.redirect', 'redirect', (['referrer'], {}), '(referrer)\n', (4699, 4709), False, 'from flask import render_template, abort, current_app, request, session, redirect, jsonify, url_for, Response, send_from_directory, g, make_response\n'), ((5107, 5152), 'webapp.controllers.get_latest_news_by_lang', 'controllers.get_latest_news_by_lang', (['language'], {}), '(language)\n', (5142, 5152), False, 'from webapp import controllers\n'), ((5167, 5202), 'webapp.controllers.get_collection_tweets', 'controllers.get_collection_tweets', ([], {}), '()\n', (5200, 5202), False, 'from webapp import controllers\n'), ((5224, 5278), 'webapp.controllers.get_press_releases', 'controllers.get_press_releases', (["{'language': language}"], {}), "({'language': language})\n", (5254, 5278), False, 'from webapp import controllers\n'), ((6369, 6420), 'flask.render_template', 'render_template', (['"""collection/index.html"""'], {}), "('collection/index.html', **context)\n", (6384, 6420), False, 'from flask import render_template, abort, current_app, request, session, redirect, jsonify, url_for, Response, send_from_directory, g, make_response\n'), ((6678, 6708), 'flask.request.args.get', 'request.args.get', (['"""status"""', '""""""'], {}), "('status', '')\n", (6694, 6708), False, 'from flask import render_template, abort, current_app, request, session, redirect, jsonify, url_for, Response, send_from_directory, g, make_response\n'), ((6947, 7064), 'flask.render_template', 'render_template', (['"""collection/list_journal.html"""'], {}), "('collection/list_journal.html', **{'journals_list':\n journals_list, 'query_filter': query_filter})\n", (6962, 7064), False, 'from flask import render_template, abort, current_app, request, session, redirect, jsonify, url_for, Response, send_from_directory, g, make_response\n'), ((7477, 7507), 'flask.request.args.get', 'request.args.get', (['"""status"""', '""""""'], {}), "('status', '')\n", (7493, 7507), False, 'from flask import render_template, abort, current_app, request, session, redirect, jsonify, url_for, Response, send_from_directory, g, make_response\n'), ((7526, 7555), 'flask.request.args.get', 'request.args.get', (['"""query"""', '""""""'], {}), "('query', '')\n", (7542, 7555), False, 'from flask import render_template, abort, current_app, request, session, redirect, jsonify, url_for, Response, send_from_directory, g, make_response\n'), ((7578, 7613), 'flask.request.args.get', 'request.args.get', (['"""filter"""', '"""areas"""'], {}), "('filter', 'areas')\n", (7594, 7613), False, 'from flask import render_template, abort, current_app, request, session, redirect, jsonify, url_for, Response, send_from_directory, g, make_response\n'), ((7844, 7967), 'webapp.controllers.get_journals_grouped_by', 'controllers.get_journals_grouped_by', (['thematic_table[thematic_filter]', 'title_query'], {'query_filter': 'query_filter', 'lang': 'lang'}), '(thematic_table[thematic_filter],\n title_query, query_filter=query_filter, lang=lang)\n', (7879, 7967), False, 'from webapp import controllers\n'), ((8015, 8148), 'flask.render_template', 'render_template', (['"""collection/list_thematic.html"""'], {}), "('collection/list_thematic.html', **{'objects': objects,\n 'query_filter': query_filter, 'filter': thematic_filter})\n", (8030, 8148), False, 'from flask import render_template, abort, current_app, request, session, redirect, jsonify, url_for, Response, send_from_directory, g, make_response\n'), ((8340, 8376), 'webapp.controllers.get_current_collection', 'controllers.get_current_collection', ([], {}), '()\n', (8374, 8376), False, 'from webapp import controllers\n'), ((8490, 8558), 'flask_babelex.gettext', '_', (["('10 últimos periódicos inseridos na coleção %s' % collection.name)"], {}), "('10 últimos periódicos inseridos na coleção %s' % collection.name)\n", (8491, 8558), True, 'from flask_babelex import gettext as _\n'), ((8571, 8649), 'werkzeug.contrib.atom.AtomFeed', 'AtomFeed', (['title'], {'subtitle': 'subtitle', 'feed_url': 'request.url', 'url': 'request.url_root'}), '(title, subtitle=subtitle, feed_url=request.url, url=request.url_root)\n', (8579, 8649), False, 'from werkzeug.contrib.atom import AtomFeed\n'), ((8706, 8803), 'webapp.controllers.get_journals_paginated', 'controllers.get_journals_paginated', ([], {'title_query': '""""""', 'page': '(1)', 'order_by': '"""-created"""', 'per_page': '(10)'}), "(title_query='', page=1, order_by=\n '-created', per_page=10)\n", (8740, 8803), False, 'from webapp import controllers\n'), ((10773, 10824), 'flask.render_template', 'render_template', (['"""collection/about.html"""'], {}), "('collection/about.html', **context)\n", (10788, 10824), False, 'from flask import render_template, abort, current_app, request, session, redirect, jsonify, url_for, Response, send_from_directory, g, make_response\n'), ((11032, 11064), 'flask.request.args.get', 'request.args.get', (['"""script"""', 'None'], {}), "('script', None)\n", (11048, 11064), False, 'from flask import render_template, abort, current_app, request, session, redirect, jsonify, url_for, Response, send_from_directory, g, make_response\n'), ((11075, 11104), 'flask.request.args.get', 'request.args.get', (['"""pid"""', 'None'], {}), "('pid', None)\n", (11091, 11104), False, 'from flask import render_template, abort, current_app, request, session, redirect, jsonify, url_for, Response, send_from_directory, g, make_response\n'), ((11116, 11146), 'flask.request.args.get', 'request.args.get', (['"""tlng"""', 'None'], {}), "('tlng', None)\n", (11132, 11146), False, 'from flask import render_template, abort, current_app, request, session, redirect, jsonify, url_for, Response, send_from_directory, g, make_response\n'), ((15082, 15125), 'webapp.controllers.get_journal_by_url_seg', 'controllers.get_journal_by_url_seg', (['url_seg'], {}), '(url_seg)\n', (15116, 15125), False, 'from webapp import controllers\n'), ((15301, 15338), 'webapp.utils.utils.fix_journal_last_issue', 'utils.fix_journal_last_issue', (['journal'], {}), '(journal)\n', (15329, 15338), False, 'from webapp.utils import utils\n'), ((15472, 15517), 'webapp.controllers.get_latest_news_by_lang', 'controllers.get_latest_news_by_lang', (['language'], {}), '(language)\n', (15507, 15517), False, 'from webapp import controllers\n'), ((15561, 15635), 'webapp.controllers.get_press_releases', 'controllers.get_press_releases', (["{'journal': journal, 'language': language}"], {}), "({'journal': journal, 'language': language})\n", (15591, 15635), False, 'from webapp import controllers\n'), ((16517, 16557), 'webapp.controllers.get_journal_metrics', 'controllers.get_journal_metrics', (['journal'], {}), '(journal)\n', (16548, 16557), False, 'from webapp import controllers\n'), ((17156, 17205), 'flask.render_template', 'render_template', (['"""journal/detail.html"""'], {}), "('journal/detail.html', **context)\n", (17171, 17205), False, 'from flask import render_template, abort, current_app, request, session, redirect, jsonify, url_for, Response, send_from_directory, g, make_response\n'), ((17342, 17385), 'webapp.controllers.get_journal_by_url_seg', 'controllers.get_journal_by_url_seg', (['url_seg'], {}), '(url_seg)\n', (17376, 17385), False, 'from webapp import controllers\n'), ((17570, 17628), 'webapp.controllers.get_issues_by_jid', 'controllers.get_issues_by_jid', (['journal.jid'], {'is_public': '(True)'}), '(journal.jid, is_public=True)\n', (17599, 17628), False, 'from webapp import controllers\n'), ((17691, 17754), 'webapp.controllers.get_articles_by_iid', 'controllers.get_articles_by_iid', (['last_issue.iid'], {'is_public': '(True)'}), '(last_issue.iid, is_public=True)\n', (17722, 17754), False, 'from webapp import controllers\n'), ((19082, 19125), 'webapp.controllers.get_journal_by_url_seg', 'controllers.get_journal_by_url_seg', (['url_seg'], {}), '(url_seg)\n', (19116, 19125), False, 'from webapp import controllers\n'), ((19316, 19353), 'webapp.utils.utils.fix_journal_last_issue', 'utils.fix_journal_last_issue', (['journal'], {}), '(journal)\n', (19344, 19353), False, 'from webapp.utils import utils\n'), ((19729, 19798), 'webapp.controllers.get_page_by_journal_acron_lang', 'controllers.get_page_by_journal_acron_lang', (['journal.acronym', 'language'], {}), '(journal.acronym, language)\n', (19771, 19798), False, 'from webapp import controllers\n'), ((20221, 20269), 'flask.render_template', 'render_template', (['"""journal/about.html"""'], {}), "('journal/about.html', **context)\n", (20236, 20269), False, 'from flask import render_template, abort, current_app, request, session, redirect, jsonify, url_for, Response, send_from_directory, g, make_response\n'), ((20528, 20567), 'flask.request.args.get', 'request.args.get', (['"""query"""', '""""""'], {'type': 'str'}), "('query', '', type=str)\n", (20544, 20567), False, 'from flask import render_template, abort, current_app, request, session, redirect, jsonify, url_for, Response, send_from_directory, g, make_response\n'), ((20587, 20633), 'flask.request.args.get', 'request.args.get', (['"""query_filter"""', '""""""'], {'type': 'str'}), "('query_filter', '', type=str)\n", (20603, 20633), False, 'from flask import render_template, abort, current_app, request, session, redirect, jsonify, url_for, Response, send_from_directory, g, make_response\n'), ((20645, 20682), 'flask.request.args.get', 'request.args.get', (['"""page"""', '(1)'], {'type': 'int'}), "('page', 1, type=int)\n", (20661, 20682), False, 'from flask import render_template, abort, current_app, request, session, redirect, jsonify, url_for, Response, send_from_directory, g, make_response\n'), ((20751, 20873), 'webapp.controllers.get_alpha_list_from_paginated_journals', 'controllers.get_alpha_list_from_paginated_journals', ([], {'title_query': 'query', 'query_filter': 'query_filter', 'page': 'page', 'lang': 'lang'}), '(title_query=query,\n query_filter=query_filter, page=page, lang=lang)\n', (20801, 20873), False, 'from webapp import controllers\n'), ((20979, 21001), 'flask.jsonify', 'jsonify', (['response_data'], {}), '(response_data)\n', (20986, 21001), False, 'from flask import render_template, abort, current_app, request, session, redirect, jsonify, url_for, Response, send_from_directory, g, make_response\n'), ((21271, 21310), 'flask.request.args.get', 'request.args.get', (['"""query"""', '""""""'], {'type': 'str'}), "('query', '', type=str)\n", (21287, 21310), False, 'from flask import render_template, abort, current_app, request, session, redirect, jsonify, url_for, Response, send_from_directory, g, make_response\n'), ((21330, 21376), 'flask.request.args.get', 'request.args.get', (['"""query_filter"""', '""""""'], {'type': 'str'}), "('query_filter', '', type=str)\n", (21346, 21376), False, 'from flask import render_template, abort, current_app, request, session, redirect, jsonify, url_for, Response, send_from_directory, g, make_response\n'), ((21390, 21435), 'flask.request.args.get', 'request.args.get', (['"""filter"""', '"""areas"""'], {'type': 'str'}), "('filter', 'areas', type=str)\n", (21406, 21435), False, 'from flask import render_template, abort, current_app, request, session, redirect, jsonify, url_for, Response, send_from_directory, g, make_response\n'), ((22102, 22118), 'flask.jsonify', 'jsonify', (['objects'], {}), '(objects)\n', (22109, 22118), False, 'from flask import render_template, abort, current_app, request, session, redirect, jsonify, url_for, Response, send_from_directory, g, make_response\n'), ((23558, 23591), 'webapp.utils.utils.is_recaptcha_valid', 'utils.is_recaptcha_valid', (['request'], {}), '(request)\n', (23582, 23591), False, 'from webapp.utils import utils\n'), ((24677, 24720), 'webapp.controllers.get_journal_by_url_seg', 'controllers.get_journal_by_url_seg', (['url_seg'], {}), '(url_seg)\n', (24711, 24720), False, 'from webapp import controllers\n'), ((24852, 24916), 'flask.render_template', 'render_template', (['"""journal/includes/contact_form.html"""'], {}), "('journal/includes/contact_form.html', **context)\n", (24867, 24916), False, 'from flask import render_template, abort, current_app, request, session, redirect, jsonify, url_for, Response, send_from_directory, g, make_response\n'), ((25271, 25314), 'webapp.controllers.get_journal_by_url_seg', 'controllers.get_journal_by_url_seg', (['url_seg'], {}), '(url_seg)\n', (25305, 25314), False, 'from webapp import controllers\n'), ((25664, 25730), 'webapp.controllers.get_issues_for_grid_by_jid', 'controllers.get_issues_for_grid_by_jid', (['journal.id'], {'is_public': '(True)'}), '(journal.id, is_public=True)\n', (25702, 25730), False, 'from webapp import controllers\n'), ((26580, 26625), 'flask.render_template', 'render_template', (['"""issue/grid.html"""'], {}), "('issue/grid.html', **context)\n", (26595, 26625), False, 'from flask import render_template, abort, current_app, request, session, redirect, jsonify, url_for, Response, send_from_directory, g, make_response\n'), ((27208, 27248), 'flask.request.args.get', 'request.args.get', (['"""goto"""', 'None'], {'type': 'str'}), "('goto', None, type=str)\n", (27224, 27248), False, 'from flask import render_template, abort, current_app, request, session, redirect, jsonify, url_for, Response, send_from_directory, g, make_response\n'), ((27765, 27821), 'webapp.controllers.get_issue_by_url_seg', 'controllers.get_issue_by_url_seg', (['url_seg', 'url_seg_issue'], {}), '(url_seg, url_seg_issue)\n', (27797, 27821), False, 'from webapp import controllers\n'), ((28174, 28211), 'webapp.utils.utils.fix_journal_last_issue', 'utils.fix_journal_last_issue', (['journal'], {}), '(journal)\n', (28202, 28211), False, 'from webapp.utils import utils\n'), ((28465, 28523), 'webapp.controllers.get_articles_by_iid', 'controllers.get_articles_by_iid', (['issue.iid'], {'is_public': '(True)'}), '(issue.iid, is_public=True)\n', (28496, 28523), False, 'from webapp import controllers\n'), ((30407, 30451), 'flask.render_template', 'render_template', (['"""issue/toc.html"""'], {}), "('issue/toc.html', **context)\n", (30422, 30451), False, 'from flask import render_template, abort, current_app, request, session, redirect, jsonify, url_for, Response, send_from_directory, g, make_response\n'), ((31621, 31668), 'webapp.utils.utils.get_prev_issue', 'utils.get_prev_issue', (['all_issues', 'current_issue'], {}), '(all_issues, current_issue)\n', (31641, 31668), False, 'from webapp.utils import utils\n'), ((32017, 32057), 'flask.request.args.get', 'request.args.get', (['"""goto"""', 'None'], {'type': 'str'}), "('goto', None, type=str)\n", (32033, 32057), False, 'from flask import render_template, abort, current_app, request, session, redirect, jsonify, url_for, Response, send_from_directory, g, make_response\n'), ((32341, 32378), 'webapp.utils.utils.fix_journal_last_issue', 'utils.fix_journal_last_issue', (['journal'], {}), '(journal)\n', (32369, 32378), False, 'from webapp.utils import utils\n'), ((33748, 33792), 'flask.render_template', 'render_template', (['"""issue/toc.html"""'], {}), "('issue/toc.html', **context)\n", (33763, 33792), False, 'from flask import render_template, abort, current_app, request, session, redirect, jsonify, url_for, Response, send_from_directory, g, make_response\n'), ((33955, 34011), 'webapp.controllers.get_issue_by_url_seg', 'controllers.get_issue_by_url_seg', (['url_seg', 'url_seg_issue'], {}), '(url_seg, url_seg_issue)\n', (33987, 34011), False, 'from webapp import controllers\n'), ((34326, 34384), 'webapp.controllers.get_articles_by_iid', 'controllers.get_articles_by_iid', (['issue.iid'], {'is_public': '(True)'}), '(issue.iid, is_public=True)\n', (34357, 34384), False, 'from webapp import controllers\n'), ((35711, 35746), 'webapp.controllers.get_article_by_pid', 'controllers.get_article_by_pid', (['pid'], {}), '(pid)\n', (35741, 35746), False, 'from webapp import controllers\n'), ((36387, 36482), 'packtools.HTMLGenerator.parse', 'HTMLGenerator.parse', (['xml'], {'valid_only': '(False)', 'gs_abstract': 'gs_abstract', 'output_style': '"""website"""'}), "(xml, valid_only=False, gs_abstract=gs_abstract,\n output_style='website')\n", (36406, 36482), False, 'from packtools import HTMLGenerator\n'), ((39118, 39174), 'webapp.controllers.get_issue_by_url_seg', 'controllers.get_issue_by_url_seg', (['url_seg', 'url_seg_issue'], {}), '(url_seg, url_seg_issue)\n', (39150, 39174), False, 'from webapp import controllers\n'), ((39254, 39326), 'webapp.controllers.get_article_by_issue_article_seg', 'controllers.get_article_by_issue_article_seg', (['issue.iid', 'url_seg_article'], {}), '(issue.iid, url_seg_article)\n', (39298, 39326), False, 'from webapp import controllers\n'), ((40225, 40269), 'flask.request.args.get', 'request.args.get', (['"""format"""', '"""html"""'], {'type': 'str'}), "('format', 'html', type=str)\n", (40241, 40269), False, 'from flask import render_template, abort, current_app, request, session, redirect, jsonify, url_for, Response, send_from_directory, g, make_response\n'), ((46136, 46175), 'flask.request.args.get', 'request.args.get', (['"""doi"""', 'None'], {'type': 'str'}), "('doi', None, type=str)\n", (46152, 46175), False, 'from flask import render_template, abort, current_app, request, session, redirect, jsonify, url_for, Response, send_from_directory, g, make_response\n'), ((46186, 46225), 'flask.request.args.get', 'request.args.get', (['"""pid"""', 'None'], {'type': 'str'}), "('pid', None, type=str)\n", (46202, 46225), False, 'from flask import render_template, abort, current_app, request, session, redirect, jsonify, url_for, Response, send_from_directory, g, make_response\n'), ((46241, 46285), 'flask.request.args.get', 'request.args.get', (['"""pdf_path"""', 'None'], {'type': 'str'}), "('pdf_path', None, type=str)\n", (46257, 46285), False, 'from flask import render_template, abort, current_app, request, session, redirect, jsonify, url_for, Response, send_from_directory, g, make_response\n'), ((46297, 46337), 'flask.request.args.get', 'request.args.get', (['"""lang"""', 'None'], {'type': 'str'}), "('lang', None, type=str)\n", (46313, 46337), False, 'from flask import render_template, abort, current_app, request, session, redirect, jsonify, url_for, Response, send_from_directory, g, make_response\n'), ((47397, 47422), 'mimetypes.guess_type', 'mimetypes.guess_type', (['url'], {}), '(url)\n', (47417, 47422), False, 'import mimetypes\n'), ((48216, 48259), 'flask.request.args.get', 'request.args.get', (['"""resource_ssm_path"""', 'None'], {}), "('resource_ssm_path', None)\n", (48232, 48259), False, 'from flask import render_template, abort, current_app, request, session, redirect, jsonify, url_for, Response, send_from_directory, g, make_response\n'), ((49249, 49305), 'webapp.controllers.get_issue_by_url_seg', 'controllers.get_issue_by_url_seg', (['url_seg', 'url_seg_issue'], {}), '(url_seg, url_seg_issue)\n', (49281, 49305), False, 'from webapp import controllers\n'), ((49385, 49457), 'webapp.controllers.get_article_by_issue_article_seg', 'controllers.get_article_by_issue_article_seg', (['issue.iid', 'url_seg_article'], {}), '(issue.iid, url_seg_article)\n', (49429, 49457), False, 'from webapp import controllers\n'), ((50067, 50116), 'webapp.controllers.get_journal_by_url_seg', 'controllers.get_journal_by_url_seg', (['journal_acron'], {}), '(journal_acron)\n', (50101, 50116), False, 'from webapp import controllers\n'), ((50257, 50342), 'webapp.controllers.get_article_by_pdf_filename', 'controllers.get_article_by_pdf_filename', (['journal_acron', 'issue_info', 'pdf_filename'], {}), '(journal_acron, issue_info, pdf_filename\n )\n', (50296, 50342), False, 'from webapp import controllers\n'), ((50854, 50883), 'flask.request.args.get', 'request.args.get', (['"""pid"""', 'None'], {}), "('pid', None)\n", (50870, 50883), False, 'from flask import render_template, abort, current_app, request, session, redirect, jsonify, url_for, Response, send_from_directory, g, make_response\n'), ((50894, 50923), 'flask.request.args.get', 'request.args.get', (['"""lng"""', 'None'], {}), "('lng', None)\n", (50910, 50923), False, 'from flask import render_template, abort, current_app, request, session, redirect, jsonify, url_for, Response, send_from_directory, g, make_response\n'), ((51111, 51149), 'webapp.controllers.get_article_by_pid_v1', 'controllers.get_article_by_pid_v1', (['pid'], {}), '(pid)\n', (51144, 51149), False, 'from webapp import controllers\n'), ((51663, 51697), 'webapp.forms.EmailShareForm', 'forms.EmailShareForm', (['request.form'], {}), '(request.form)\n', (51683, 51697), False, 'from webapp import forms\n'), ((52602, 52653), 'flask.render_template', 'render_template', (['"""email/email_form.html"""'], {}), "('email/email_form.html', **context)\n", (52617, 52653), False, 'from flask import render_template, abort, current_app, request, session, redirect, jsonify, url_for, Response, send_from_directory, g, make_response\n'), ((52818, 52847), 'webapp.forms.ErrorForm', 'forms.ErrorForm', (['request.form'], {}), '(request.form)\n', (52833, 52847), False, 'from webapp import forms\n'), ((53922, 53976), 'flask.render_template', 'render_template', (['"""includes/error_form.html"""'], {}), "('includes/error_form.html', **context)\n", (53937, 53976), False, 'from flask import render_template, abort, current_app, request, session, redirect, jsonify, url_for, Response, send_from_directory, g, make_response\n'), ((54265, 54306), 'flask.send_from_directory', 'send_from_directory', (['media_root', 'filename'], {}), '(media_root, filename)\n', (54284, 54306), False, 'from flask import render_template, abort, current_app, request, session, redirect, jsonify, url_for, Response, send_from_directory, g, make_response\n'), ((54391, 54452), 'flask.send_from_directory', 'send_from_directory', (['"""static"""', '"""img/full_text_scielo_img.gif"""'], {}), "('static', 'img/full_text_scielo_img.gif')\n", (54410, 54452), False, 'from flask import render_template, abort, current_app, request, session, redirect, jsonify, url_for, Response, send_from_directory, g, make_response\n'), ((54537, 54580), 'flask.send_from_directory', 'send_from_directory', (['"""static"""', '"""robots.txt"""'], {}), "('static', 'robots.txt')\n", (54556, 54580), False, 'from flask import render_template, abort, current_app, request, session, redirect, jsonify, url_for, Response, send_from_directory, g, make_response\n'), ((55907, 55949), 'flask.request.args.get', 'request.args.get', (['"""end_date"""', '""""""'], {'type': 'str'}), "('end_date', '', type=str)\n", (55923, 55949), False, 'from flask import render_template, abort, current_app, request, session, redirect, jsonify, url_for, Response, send_from_directory, g, make_response\n'), ((56134, 56168), 'flask.request.args.get', 'request.args.get', (['"""page"""'], {'type': 'int'}), "('page', type=int)\n", (56150, 56168), False, 'from flask import render_template, abort, current_app, request, session, redirect, jsonify, url_for, Response, send_from_directory, g, make_response\n'), ((56216, 56251), 'flask.request.args.get', 'request.args.get', (['"""limit"""'], {'type': 'int'}), "('limit', type=int)\n", (56232, 56251), False, 'from flask import render_template, abort, current_app, request, session, redirect, jsonify, url_for, Response, send_from_directory, g, make_response\n'), ((56617, 56690), 'webapp.controllers.get_articles_by_date_range', 'controllers.get_articles_by_date_range', (['begin_date', 'end_date', 'page', 'limit'], {}), '(begin_date, end_date, page, limit)\n', (56655, 56690), False, 'from webapp import controllers\n'), ((56951, 56967), 'flask.jsonify', 'jsonify', (['results'], {}), '(results)\n', (56958, 56967), False, 'from flask import render_template, abort, current_app, request, session, redirect, jsonify, url_for, Response, send_from_directory, g, make_response\n'), ((57978, 58014), 'flask.current_app.config.get', 'current_app.config.get', (['"""URL_SEARCH"""'], {}), "('URL_SEARCH')\n", (58000, 58014), False, 'from flask import render_template, abort, current_app, request, session, redirect, jsonify, url_for, Response, send_from_directory, g, make_response\n'), ((58915, 58938), 'flask.redirect', 'redirect', (['url'], {'code': '(301)'}), '(url, code=301)\n', (58923, 58938), False, 'from flask import render_template, abort, current_app, request, session, redirect, jsonify, url_for, Response, send_from_directory, g, make_response\n'), ((1964, 1998), 'requests.get', 'requests.get', (['url'], {'timeout': 'timeout'}), '(url, timeout=timeout)\n', (1976, 1998), False, 'import requests\n'), ((3328, 3350), 'webapp.forms.EmailShareForm', 'forms.EmailShareForm', ([], {}), '()\n', (3348, 3350), False, 'from webapp import forms\n'), ((3384, 3403), 'webapp.forms.ContactForm', 'forms.ContactForm', ([], {}), '()\n', (3401, 3403), False, 'from webapp import forms\n'), ((3429, 3446), 'webapp.forms.ErrorForm', 'forms.ErrorForm', ([], {}), '()\n', (3444, 3446), False, 'from webapp import forms\n'), ((4204, 4250), 'flask.current_app.config.get', 'current_app.config.get', (['"""BABEL_DEFAULT_LOCALE"""'], {}), "('BABEL_DEFAULT_LOCALE')\n", (4226, 4250), False, 'from flask import render_template, abort, current_app, request, session, redirect, jsonify, url_for, Response, send_from_directory, g, make_response\n'), ((6811, 6853), 'webapp.controllers.get_journal_json_data', 'controllers.get_journal_json_data', (['journal'], {}), '(journal)\n', (6844, 6853), False, 'from webapp import controllers\n'), ((9012, 9070), 'webapp.controllers.get_issues_by_jid', 'controllers.get_issues_by_jid', (['journal.jid'], {'is_public': '(True)'}), '(journal.jid, is_public=True)\n', (9041, 9070), False, 'from webapp import controllers\n'), ((9333, 9346), 'collections.OrderedDict', 'OrderedDict', ([], {}), '()\n', (9344, 9346), False, 'from collections import OrderedDict\n'), ((10457, 10511), 'webapp.controllers.get_page_by_slug_name', 'controllers.get_page_by_slug_name', (['slug_name', 'language'], {}), '(slug_name, language)\n', (10490, 10511), False, 'from webapp import controllers\n'), ((10688, 10727), 'webapp.controllers.get_pages_by_lang', 'controllers.get_pages_by_lang', (['language'], {}), '(language)\n', (10717, 10727), False, 'from webapp import controllers\n'), ((14864, 14915), 'flask.url_for', 'url_for', (['"""main.journal_detail"""'], {'url_seg': 'journal_seg'}), "('main.journal_detail', url_seg=journal_seg)\n", (14871, 14915), False, 'from flask import render_template, abort, current_app, request, session, redirect, jsonify, url_for, Response, send_from_directory, g, make_response\n'), ((15952, 16037), 'webapp.controllers.get_recent_articles_of_issue', 'controllers.get_recent_articles_of_issue', (['journal.last_issue.iid'], {'is_public': '(True)'}), '(journal.last_issue.iid, is_public=True\n )\n', (15992, 16037), False, 'from webapp import controllers\n'), ((21528, 21628), 'webapp.controllers.get_journals_grouped_by', 'controllers.get_journals_grouped_by', (['"""study_areas"""', 'query'], {'query_filter': 'query_filter', 'lang': 'lang'}), "('study_areas', query, query_filter=\n query_filter, lang=lang)\n", (21563, 21628), False, 'from webapp import controllers\n'), ((23609, 23640), 'webapp.forms.ContactForm', 'forms.ContactForm', (['request.form'], {}), '(request.form)\n', (23626, 23640), False, 'from webapp import forms\n'), ((23660, 23703), 'webapp.controllers.get_journal_by_url_seg', 'controllers.get_journal_by_url_seg', (['url_seg'], {}), '(url_seg)\n', (23694, 23703), False, 'from webapp import controllers\n'), ((25094, 25137), 'flask.url_for', 'url_for', (['"""main.issue_grid"""'], {'url_seg': 'url_seg'}), "('main.issue_grid', url_seg=url_seg)\n", (25101, 25137), False, 'from flask import render_template, abort, current_app, request, session, redirect, jsonify, url_for, Response, send_from_directory, g, make_response\n'), ((26892, 26963), 'flask.url_for', 'url_for', (['"""main.issue_toc"""'], {'url_seg': 'url_seg', 'url_seg_issue': 'url_seg_issue'}), "('main.issue_toc', url_seg=url_seg, url_seg_issue=url_seg_issue)\n", (26899, 26963), False, 'from flask import render_template, abort, current_app, request, session, redirect, jsonify, url_for, Response, send_from_directory, g, make_response\n'), ((28320, 28360), 'flask.request.args.get', 'request.args.get', (['"""goto"""', 'None'], {'type': 'str'}), "('goto', None, type=str)\n", (28336, 28360), False, 'from flask import render_template, abort, current_app, request, session, redirect, jsonify, url_for, Response, send_from_directory, g, make_response\n'), ((28394, 28422), 'flask.redirect', 'redirect', (['goto_url'], {'code': '(301)'}), '(goto_url, code=301)\n', (28402, 28422), False, 'from flask import render_template, abort, current_app, request, session, redirect, jsonify, url_for, Response, send_from_directory, g, make_response\n'), ((29797, 29868), 'flask.url_for', 'url_for', (['"""main.issue_toc"""'], {'url_seg': 'url_seg', 'url_seg_issue': 'url_seg_issue'}), "('main.issue_toc', url_seg=url_seg, url_seg_issue=url_seg_issue)\n", (29804, 29868), False, 'from flask import render_template, abort, current_app, request, session, redirect, jsonify, url_for, Response, send_from_directory, g, make_response\n'), ((30613, 30684), 'webapp.controllers.get_issues_by_jid', 'controllers.get_issues_by_jid', (['current_issue.journal.id'], {'is_public': '(True)'}), '(current_issue.journal.id, is_public=True)\n', (30642, 30684), False, 'from webapp import controllers\n'), ((30740, 30787), 'webapp.utils.utils.get_next_issue', 'utils.get_next_issue', (['all_issues', 'current_issue'], {}), '(all_issues, current_issue)\n', (30760, 30787), False, 'from webapp.utils import utils\n'), ((31131, 31233), 'flask.url_for', 'url_for', (['"""main.issue_toc"""'], {'url_seg': 'selected_issue.journal.url_segment', 'url_seg_issue': 'url_seg_issue'}), "('main.issue_toc', url_seg=selected_issue.journal.url_segment,\n url_seg_issue=url_seg_issue)\n", (31138, 31233), False, 'from flask import render_template, abort, current_app, request, session, redirect, jsonify, url_for, Response, send_from_directory, g, make_response\n'), ((31445, 31516), 'webapp.controllers.get_issues_by_jid', 'controllers.get_issues_by_jid', (['current_issue.journal.id'], {'is_public': '(True)'}), '(current_issue.journal.id, is_public=True)\n', (31474, 31516), False, 'from webapp import controllers\n'), ((31562, 31609), 'webapp.utils.utils.get_next_issue', 'utils.get_next_issue', (['all_issues', 'current_issue'], {}), '(all_issues, current_issue)\n', (31582, 31609), False, 'from webapp.utils import utils\n'), ((31876, 31911), 'webapp.controllers.get_aop_issues', 'controllers.get_aop_issues', (['url_seg'], {}), '(url_seg)\n', (31902, 31911), False, 'from webapp import controllers\n'), ((32451, 32513), 'webapp.controllers.get_articles_by_iid', 'controllers.get_articles_by_iid', (['aop_issue.iid'], {'is_public': '(True)'}), '(aop_issue.iid, is_public=True)\n', (32482, 32513), False, 'from webapp import controllers\n'), ((33234, 33274), 'flask.url_for', 'url_for', (['"""main.aop_toc"""'], {'url_seg': 'url_seg'}), "('main.aop_toc', url_seg=url_seg)\n", (33241, 33274), False, 'from flask import render_template, abort, current_app, request, session, redirect, jsonify, url_for, Response, send_from_directory, g, make_response\n'), ((35786, 35825), 'webapp.controllers.get_article_by_oap_pid', 'controllers.get_article_by_oap_pid', (['pid'], {}), '(pid)\n', (35820, 35825), False, 'from webapp import controllers\n'), ((35915, 36013), 'flask.url_for', 'url_for', (['"""main.article_detail_v3"""'], {'url_seg': 'article.journal.acronym', 'article_pid_v3': 'article.aid'}), "('main.article_detail_v3', url_seg=article.journal.acronym,\n article_pid_v3=article.aid)\n", (35922, 36013), False, 'from flask import render_template, abort, current_app, request, session, redirect, jsonify, url_for, Response, send_from_directory, g, make_response\n'), ((36353, 36368), 'io.BytesIO', 'BytesIO', (['result'], {}), '(result)\n', (36360, 36368), False, 'from io import BytesIO\n'), ((38399, 38412), 'urllib.parse.urlparse', 'urlparse', (['url'], {}), '(url)\n', (38407, 38412), False, 'from urllib.parse import urlparse\n'), ((39369, 39459), 'webapp.controllers.get_article_by_aop_url_segs', 'controllers.get_article_by_aop_url_segs', (['issue.journal', 'url_seg_issue', 'url_seg_article'], {}), '(issue.journal, url_seg_issue,\n url_seg_article)\n', (39408, 39459), False, 'from webapp import controllers\n'), ((39744, 39791), 'flask.url_for', 'url_for', (['"""main.article_detail_v3"""'], {}), "('main.article_detail_v3', **req_params)\n", (39751, 39791), False, 'from flask import render_template, abort, current_app, request, session, redirect, jsonify, url_for, Response, send_from_directory, g, make_response\n'), ((40052, 40086), 'flask.request.args.get', 'request.args.get', (['"""lang"""'], {'type': 'str'}), "('lang', type=str)\n", (40068, 40086), False, 'from flask import render_template, abort, current_app, request, session, redirect, jsonify, url_for, Response, send_from_directory, g, make_response\n'), ((40109, 40143), 'flask.request.args.get', 'request.args.get', (['"""goto"""'], {'type': 'str'}), "('goto', type=str)\n", (40125, 40143), False, 'from flask import render_template, abort, current_app, request, session, redirect, jsonify, url_for, Response, send_from_directory, g, make_response\n'), ((40166, 40200), 'flask.request.args.get', 'request.args.get', (['"""stop"""'], {'type': 'str'}), "('stop', type=str)\n", (40182, 40200), False, 'from flask import render_template, abort, current_app, request, session, redirect, jsonify, url_for, Response, send_from_directory, g, make_response\n'), ((40501, 40580), 'webapp.controllers.get_article', 'controllers.get_article', (['article_pid_v3', 'url_seg', 'qs_lang', 'gs_abstract', 'qs_goto'], {}), '(article_pid_v3, url_seg, qs_lang, gs_abstract, qs_goto)\n', (40524, 40580), False, 'from webapp import controllers\n'), ((44783, 44832), 'flask.render_template', 'render_template', (['"""article/detail.html"""'], {}), "('article/detail.html', **context)\n", (44798, 44832), False, 'from flask import render_template, abort, current_app, request, session, redirect, jsonify, url_for, Response, send_from_directory, g, make_response\n'), ((45646, 45667), 'flask.make_response', 'make_response', (['result'], {}), '(result)\n', (45659, 45667), False, 'from flask import render_template, abort, current_app, request, session, redirect, jsonify, url_for, Response, send_from_directory, g, make_response\n'), ((46624, 46671), 'flask.render_template', 'render_template', (['"""article/epdf.html"""'], {}), "('article/epdf.html', **context)\n", (46639, 46671), False, 'from flask import render_template, abort, current_app, request, session, redirect, jsonify, url_for, Response, send_from_directory, g, make_response\n'), ((47062, 47087), 'mimetypes.guess_type', 'mimetypes.guess_type', (['url'], {}), '(url)\n', (47082, 47087), False, 'import mimetypes\n'), ((47103, 47140), 'flask.Response', 'Response', (['response'], {'mimetype': 'mimetype'}), '(response, mimetype=mimetype)\n', (47111, 47140), False, 'from flask import render_template, abort, current_app, request, session, redirect, jsonify, url_for, Response, send_from_directory, g, make_response\n'), ((47643, 47684), 'flask.Response', 'Response', (['ssm_response'], {'mimetype': 'mimetype'}), '(ssm_response, mimetype=mimetype)\n', (47651, 47684), False, 'from flask import render_template, abort, current_app, request, session, redirect, jsonify, url_for, Response, send_from_directory, g, make_response\n'), ((49741, 49788), 'flask.url_for', 'url_for', (['"""main.article_detail_v3"""'], {}), "('main.article_detail_v3', **req_params)\n", (49748, 49788), False, 'from flask import render_template, abort, current_app, request, session, redirect, jsonify, url_for, Response, send_from_directory, g, make_response\n'), ((50456, 50596), 'flask.url_for', 'url_for', (['"""main.article_detail_v3"""'], {'url_seg': 'article.journal.url_segment', 'article_pid_v3': 'article.aid', 'format': '"""pdf"""', 'lang': 'article._pdf_lang'}), "('main.article_detail_v3', url_seg=article.journal.url_segment,\n article_pid_v3=article.aid, format='pdf', lang=article._pdf_lang)\n", (50463, 50596), False, 'from flask import render_template, abort, current_app, request, session, redirect, jsonify, url_for, Response, send_from_directory, g, make_response\n'), ((51247, 51349), 'flask.url_for', 'url_for', (['"""main.article_detail_v3"""'], {'url_seg': 'article.journal.url_segment', 'article_pid_v3': 'article.aid'}), "('main.article_detail_v3', url_seg=article.journal.url_segment,\n article_pid_v3=article.aid)\n", (51254, 51349), False, 'from flask import render_template, abort, current_app, request, session, redirect, jsonify, url_for, Response, send_from_directory, g, make_response\n'), ((51856, 51994), 'webapp.controllers.send_email_share', 'controllers.send_email_share', (["form.data['your_email']", 'recipients', "form.data['share_url']", "form.data['subject']", "form.data['comment']"], {}), "(form.data['your_email'], recipients, form.data\n ['share_url'], form.data['subject'], form.data['comment'])\n", (51884, 51994), False, 'from webapp import controllers\n'), ((52566, 52589), 'flask.request.args.get', 'request.args.get', (['"""url"""'], {}), "('url')\n", (52582, 52589), False, 'from flask import render_template, abort, current_app, request, session, redirect, jsonify, url_for, Response, send_from_directory, g, make_response\n'), ((53028, 53211), 'webapp.controllers.send_email_error', 'controllers.send_email_error', (["form.data['name']", "form.data['your_email']", 'recipients', "form.data['url']", "form.data['error_type']", "form.data['message']", "form.data['page_title']"], {}), "(form.data['name'], form.data['your_email'],\n recipients, form.data['url'], form.data['error_type'], form.data[\n 'message'], form.data['page_title'])\n", (53056, 53211), False, 'from webapp import controllers\n'), ((53886, 53909), 'flask.request.args.get', 'request.args.get', (['"""url"""'], {}), "('url')\n", (53902, 53909), False, 'from flask import render_template, abort, current_app, request, session, redirect, jsonify, url_for, Response, send_from_directory, g, make_response\n'), ((55978, 56017), 'datetime.datetime.strptime', 'datetime.strptime', (['end_date', '"""%Y-%m-%d"""'], {}), "(end_date, '%Y-%m-%d')\n", (55995, 56017), False, 'from datetime import datetime, timedelta\n'), ((56103, 56121), 'datetime.timedelta', 'timedelta', ([], {'days': '(30)'}), '(days=30)\n', (56112, 56121), False, 'from datetime import datetime, timedelta\n'), ((58131, 58171), 'flask.request.args.get', 'request.args.get', (['"""exprSearch"""'], {'type': 'str'}), "('exprSearch', type=str)\n", (58147, 58171), False, 'from flask import render_template, abort, current_app, request, session, redirect, jsonify, url_for, Response, send_from_directory, g, make_response\n'), ((58199, 58240), 'flask.request.args.get', 'request.args.get', (['"""indexSearch"""'], {'type': 'str'}), "('indexSearch', type=str)\n", (58215, 58240), False, 'from flask import render_template, abort, current_app, request, session, redirect, jsonify, url_for, Response, send_from_directory, g, make_response\n'), ((58261, 58295), 'flask.request.args.get', 'request.args.get', (['"""lang"""'], {'type': 'str'}), "('lang', type=str)\n", (58277, 58295), False, 'from flask import render_template, abort, current_app, request, session, redirect, jsonify, url_for, Response, send_from_directory, g, make_response\n'), ((2760, 2796), 'webapp.controllers.get_current_collection', 'controllers.get_current_collection', ([], {}), '()\n', (2794, 2796), False, 'from webapp import controllers\n'), ((3938, 3952), 'flask.session.keys', 'session.keys', ([], {}), '()\n', (3950, 3952), False, 'from flask import render_template, abort, current_app, request, session, redirect, jsonify, url_for, Response, send_from_directory, g, make_response\n'), ((4467, 4497), 'flask_babelex.gettext', '_', (['"""Código de idioma inválido"""'], {}), "('Código de idioma inválido')\n", (4468, 4497), True, 'from flask_babelex import gettext as _\n'), ((4922, 4968), 'flask.current_app.config.get', 'current_app.config.get', (['"""BABEL_DEFAULT_LOCALE"""'], {}), "('BABEL_DEFAULT_LOCALE')\n", (4944, 4968), False, 'from flask import render_template, abort, current_app, request, session, redirect, jsonify, url_for, Response, send_from_directory, g, make_response\n'), ((6877, 6928), 'webapp.controllers.get_journals', 'controllers.get_journals', ([], {'query_filter': 'query_filter'}), '(query_filter=query_filter)\n', (6901, 6928), False, 'from webapp import controllers\n'), ((8429, 8473), 'flask_babelex.gettext', '_', (['"""Últimos periódicos inseridos na coleção"""'], {}), "('Últimos periódicos inseridos na coleção')\n", (8430, 8473), True, 'from flask_babelex import gettext as _\n'), ((9191, 9254), 'webapp.controllers.get_articles_by_iid', 'controllers.get_articles_by_iid', (['last_issue.iid'], {'is_public': '(True)'}), '(last_issue.iid, is_public=True)\n', (9222, 9254), False, 'from webapp import controllers\n'), ((9762, 9825), 'flask.render_template', 'render_template', (['"""collection/list_feed_content.html"""'], {}), "('collection/list_feed_content.html', **context)\n", (9777, 9825), False, 'from flask import render_template, abort, current_app, request, session, redirect, jsonify, url_for, Response, send_from_directory, g, make_response\n'), ((11426, 11495), 'flask_babelex.gettext', '_', (["(u'Requsição inválida ao tentar acessar o artigo com pid: %s' % pid)"], {}), "(u'Requsição inválida ao tentar acessar o artigo com pid: %s' % pid)\n", (11427, 11495), True, 'from flask_babelex import gettext as _\n'), ((14702, 14715), 'flask.redirect', 'redirect', (['"""/"""'], {}), "('/')\n", (14710, 14715), False, 'from flask import render_template, abort, current_app, request, session, redirect, jsonify, url_for, Response, send_from_directory, g, make_response\n'), ((15166, 15195), 'flask_babelex.gettext', '_', (['"""Periódico não encontrado"""'], {}), "('Periódico não encontrado')\n", (15167, 15195), True, 'from flask_babelex import gettext as _\n'), ((17426, 17455), 'flask_babelex.gettext', '_', (['"""Periódico não encontrado"""'], {}), "('Periódico não encontrado')\n", (17427, 17455), True, 'from flask_babelex import gettext as _\n'), ((17904, 17937), 'webapp.utils.utils.get_label_issue', 'utils.get_label_issue', (['last_issue'], {}), '(last_issue)\n', (17925, 17937), False, 'from webapp.utils import utils\n'), ((18332, 18391), 'flask.render_template', 'render_template', (['"""issue/feed_content.html"""'], {'article': 'article'}), "('issue/feed_content.html', article=article)\n", (18347, 18391), False, 'from flask import render_template, abort, current_app, request, session, redirect, jsonify, url_for, Response, send_from_directory, g, make_response\n'), ((19166, 19195), 'flask_babelex.gettext', '_', (['"""Periódico não encontrado"""'], {}), "('Periódico não encontrado')\n", (19167, 19195), True, 'from flask_babelex import gettext as _\n'), ((20470, 20513), 'flask_babelex.gettext', '_', (['"""Requisição inválida. Deve ser por ajax"""'], {}), "('Requisição inválida. Deve ser por ajax')\n", (20471, 20513), True, 'from flask_babelex import gettext as _\n'), ((21213, 21256), 'flask_babelex.gettext', '_', (['"""Requisição inválida. Deve ser por ajax"""'], {}), "('Requisição inválida. Deve ser por ajax')\n", (21214, 21256), True, 'from flask_babelex import gettext as _\n'), ((21668, 21774), 'webapp.controllers.get_journals_grouped_by', 'controllers.get_journals_grouped_by', (['"""subject_categories"""', 'query'], {'query_filter': 'query_filter', 'lang': 'lang'}), "('subject_categories', query,\n query_filter=query_filter, lang=lang)\n", (21703, 21774), False, 'from webapp import controllers\n'), ((22383, 22446), 'flask_babelex.gettext', '_', (['"""Parámetro "extension" é inválido, deve ser "csv" ou "xls"."""'], {}), '(\'Parámetro "extension" é inválido, deve ser "csv" ou "xls".\')\n', (22384, 22446), True, 'from flask_babelex import gettext as _\n'), ((22794, 22833), 'flask.request.args.get', 'request.args.get', (['"""query"""', '""""""'], {'type': 'str'}), "('query', '', type=str)\n", (22810, 22833), False, 'from flask import render_template, abort, current_app, request, session, redirect, jsonify, url_for, Response, send_from_directory, g, make_response\n'), ((23233, 23266), 'flask.Response', 'Response', (['data'], {'mimetype': 'mimetype'}), '(data, mimetype=mimetype)\n', (23241, 23266), False, 'from flask import render_template, abort, current_app, request, session, redirect, jsonify, url_for, Response, send_from_directory, g, make_response\n'), ((23508, 23548), 'flask_babelex.gettext', '_', (['"""Requisição inválida, deve ser ajax."""'], {}), "('Requisição inválida, deve ser ajax.')\n", (23509, 23548), True, 'from flask_babelex import gettext as _\n'), ((23911, 24024), 'webapp.controllers.send_email_contact', 'controllers.send_email_contact', (['recipients', "form.data['name']", "form.data['your_email']", "form.data['message']"], {}), "(recipients, form.data['name'], form.data[\n 'your_email'], form.data['message'])\n", (23941, 24024), False, 'from webapp import controllers\n'), ((24525, 24568), 'flask_babelex.gettext', '_', (['"""Requisição inválida, captcha inválido."""'], {}), "('Requisição inválida, captcha inválido.')\n", (24526, 24568), True, 'from flask_babelex import gettext as _\n'), ((24760, 24789), 'flask_babelex.gettext', '_', (['"""Periódico não encontrado"""'], {}), "('Periódico não encontrado')\n", (24761, 24789), True, 'from flask_babelex import gettext as _\n'), ((25355, 25384), 'flask_babelex.gettext', '_', (['"""Periódico não encontrado"""'], {}), "('Periódico não encontrado')\n", (25356, 25384), True, 'from flask_babelex import gettext as _\n'), ((26810, 26850), 'flask.url_for', 'url_for', (['"""main.aop_toc"""'], {'url_seg': 'url_seg'}), "('main.aop_toc', url_seg=url_seg)\n", (26817, 26850), False, 'from flask import render_template, abort, current_app, request, session, redirect, jsonify, url_for, Response, send_from_directory, g, make_response\n'), ((27432, 27472), 'flask.url_for', 'url_for', (['"""main.aop_toc"""'], {'url_seg': 'url_seg'}), "('main.aop_toc', url_seg=url_seg)\n", (27439, 27472), False, 'from flask import render_template, abort, current_app, request, session, redirect, jsonify, url_for, Response, send_from_directory, g, make_response\n'), ((27859, 27885), 'flask_babelex.gettext', '_', (['"""Número não encontrado"""'], {}), "('Número não encontrado')\n", (27860, 27885), True, 'from flask_babelex import gettext as _\n'), ((30848, 30895), 'webapp.utils.utils.get_prev_issue', 'utils.get_prev_issue', (['all_issues', 'current_issue'], {}), '(all_issues, current_issue)\n', (30868, 30895), False, 'from webapp.utils import utils\n'), ((31808, 31849), 'flask.request.args.get', 'request.args.get', (['"""section"""', '""""""'], {'type': 'str'}), "('section', '', type=str)\n", (31824, 31849), False, 'from flask import render_template, abort, current_app, request, session, redirect, jsonify, url_for, Response, send_from_directory, g, make_response\n'), ((31960, 32003), 'flask_babelex.gettext', '_', (['"""Artigos ahead of print não encontrados"""'], {}), "('Artigos ahead of print não encontrados')\n", (31961, 32003), True, 'from flask_babelex import gettext as _\n'), ((32177, 32200), 'flask.redirect', 'redirect', (['url'], {'code': '(301)'}), '(url, code=301)\n', (32185, 32200), False, 'from flask import render_template, abort, current_app, request, session, redirect, jsonify, url_for, Response, send_from_directory, g, make_response\n'), ((32628, 32671), 'flask_babelex.gettext', '_', (['"""Artigos ahead of print não encontrados"""'], {}), "('Artigos ahead of print não encontrados')\n", (32629, 32671), True, 'from flask_babelex import gettext as _\n'), ((34050, 34076), 'flask_babelex.gettext', '_', (['"""Número não encontrado"""'], {}), "('Número não encontrado')\n", (34051, 34076), True, 'from flask_babelex import gettext as _\n'), ((34540, 34568), 'webapp.utils.utils.get_label_issue', 'utils.get_label_issue', (['issue'], {}), '(issue)\n', (34561, 34568), False, 'from webapp.utils import utils\n'), ((34908, 34967), 'flask.render_template', 'render_template', (['"""issue/feed_content.html"""'], {'article': 'article'}), "('issue/feed_content.html', article=article)\n", (34923, 34967), False, 'from flask import render_template, abort, current_app, request, session, redirect, jsonify, url_for, Response, send_from_directory, g, make_response\n'), ((35866, 35892), 'flask_babelex.gettext', '_', (['"""Artigo não encontrado"""'], {}), "('Artigo não encontrado')\n", (35867, 35892), True, 'from flask_babelex import gettext as _\n'), ((39212, 39237), 'flask_babelex.gettext', '_', (['"""Issue não encontrado"""'], {}), "('Issue não encontrado')\n", (39213, 39237), True, 'from flask_babelex import gettext as _\n'), ((39521, 39547), 'flask_babelex.gettext', '_', (['"""Artigo não encontrado"""'], {}), "('Artigo não encontrado')\n", (39522, 39547), True, 'from flask_babelex import gettext as _\n'), ((42694, 42715), 'urllib.parse.urlparse', 'urlparse', (['request.url'], {}), '(request.url)\n', (42702, 42715), False, 'from urllib.parse import urlparse\n'), ((43937, 44093), 'flask.url_for', 'url_for', (['"""main.article_detail_v3"""'], {'url_seg': 'article.journal.url_segment', 'article_pid_v3': 'article_pid_v3', 'format': '"""xml"""', 'lang': 'article.original_language'}), "('main.article_detail_v3', url_seg=article.journal.url_segment,\n article_pid_v3=article_pid_v3, format='xml', lang=article.original_language\n )\n", (43944, 44093), False, 'from flask import render_template, abort, current_app, request, session, redirect, jsonify, url_for, Response, send_from_directory, g, make_response\n'), ((44656, 44690), 'webapp.controllers.related_links', 'controllers.related_links', (['article'], {}), '(article)\n', (44681, 44690), False, 'from webapp import controllers\n'), ((45374, 45430), 'flask_babelex.gettext', '_', (['"""Recurso do Artigo não encontrado. Caminho inválido!"""'], {}), "('Recurso do Artigo não encontrado. Caminho inválido!')\n", (45375, 45430), True, 'from flask_babelex import gettext as _\n'), ((46402, 46459), 'flask_babelex.gettext', '_', (['"""Parâmetros insuficientes para obter o EPDF do artigo"""'], {}), "('Parâmetros insuficientes para obter o EPDF do artigo')\n", (46403, 46459), True, 'from flask_babelex import gettext as _\n'), ((48315, 48371), 'flask_babelex.gettext', '_', (['"""Recurso do Artigo não encontrado. Caminho inválido!"""'], {}), "('Recurso do Artigo não encontrado. Caminho inválido!')\n", (48316, 48371), True, 'from flask_babelex import gettext as _\n'), ((49343, 49368), 'flask_babelex.gettext', '_', (['"""Issue não encontrado"""'], {}), "('Issue não encontrado')\n", (49344, 49368), True, 'from flask_babelex import gettext as _\n'), ((49497, 49523), 'flask_babelex.gettext', '_', (['"""Artigo não encontrado"""'], {}), "('Artigo não encontrado')\n", (49498, 49523), True, 'from flask_babelex import gettext as _\n'), ((50157, 50245), 'flask_babelex.gettext', '_', (['"""Este PDF não existe em http://www.scielo.br. Consulte http://search.scielo.org"""'], {}), "('Este PDF não existe em http://www.scielo.br. Consulte http://search.scielo.org'\n )\n", (50158, 50245), True, 'from flask_babelex import gettext as _\n'), ((50387, 50424), 'flask_babelex.gettext', '_', (['"""PDF do artigo não foi encontrado"""'], {}), "('PDF do artigo não foi encontrado')\n", (50388, 50424), True, 'from flask_babelex import gettext as _\n'), ((51026, 51094), 'flask_babelex.gettext', '_', (["('Requsição inválida ao tentar acessar o artigo com pid: %s' % pid)"], {}), "('Requsição inválida ao tentar acessar o artigo com pid: %s' % pid)\n", (51027, 51094), True, 'from flask_babelex import gettext as _\n'), ((51189, 51215), 'flask_babelex.gettext', '_', (['"""Artigo não encontrado"""'], {}), "('Artigo não encontrado')\n", (51190, 51215), True, 'from flask_babelex import gettext as _\n'), ((51624, 51649), 'flask_babelex.gettext', '_', (['"""Requisição inválida."""'], {}), "('Requisição inválida.')\n", (51625, 51649), True, 'from flask_babelex import gettext as _\n'), ((52779, 52804), 'flask_babelex.gettext', '_', (['"""Requisição inválida."""'], {}), "('Requisição inválida.')\n", (52780, 52804), True, 'from flask_babelex import gettext as _\n'), ((56060, 56074), 'datetime.datetime.now', 'datetime.now', ([], {}), '()\n', (56072, 56074), False, 'from datetime import datetime, timedelta\n'), ((6013, 6077), 'opac_schema.v1.models.Journal.objects.filter', 'Journal.objects.filter', ([], {'is_public': '(True)', 'current_status': '"""current"""'}), "(is_public=True, current_status='current')\n", (6035, 6077), False, 'from opac_schema.v1.models import Journal, Issue, Article, Collection\n'), ((6153, 6191), 'opac_schema.v1.models.Article.objects.filter', 'Article.objects.filter', ([], {'is_public': '(True)'}), '(is_public=True)\n', (6175, 6191), False, 'from opac_schema.v1.models import Journal, Issue, Article, Collection\n'), ((8943, 8957), 'datetime.datetime.now', 'datetime.now', ([], {}), '()\n', (8955, 8957), False, 'from datetime import datetime, timedelta\n'), ((10556, 10582), 'flask_babelex.gettext', '_', (['"""Página não encontrada"""'], {}), "('Página não encontrada')\n", (10557, 10582), True, 'from flask_babelex import gettext as _\n'), ((11613, 11649), 'webapp.controllers.get_journal_by_issn', 'controllers.get_journal_by_issn', (['pid'], {}), '(pid)\n', (11644, 11649), False, 'from webapp import controllers\n'), ((15267, 15294), 'flask_babelex.gettext', '_', (['journal.unpublish_reason'], {}), '(journal.unpublish_reason)\n', (15268, 15294), True, 'from flask_babelex import gettext as _\n'), ((17527, 17554), 'flask_babelex.gettext', '_', (['journal.unpublish_reason'], {}), '(journal.unpublish_reason)\n', (17528, 17554), True, 'from flask_babelex import gettext as _\n'), ((18291, 18313), 'flask_babelex.gettext', '_', (['"""Artigo sem título"""'], {}), "('Artigo sem título')\n", (18292, 18313), True, 'from flask_babelex import gettext as _\n'), ((19267, 19294), 'flask_babelex.gettext', '_', (['journal.unpublish_reason'], {}), '(journal.unpublish_reason)\n', (19268, 19294), True, 'from flask_babelex import gettext as _\n'), ((21821, 21924), 'webapp.controllers.get_journals_grouped_by', 'controllers.get_journals_grouped_by', (['"""publisher_name"""', 'query'], {'query_filter': 'query_filter', 'lang': 'lang'}), "('publisher_name', query, query_filter=\n query_filter, lang=lang)\n", (21856, 21924), False, 'from webapp import controllers\n'), ((22541, 22634), 'flask_babelex.gettext', '_', (['"""Parámetro "list_type" é inválido, deve ser: "alpha", "areas", "wos" ou "publisher"."""'], {}), '(\'Parámetro "list_type" é inválido, deve ser: "alpha", "areas", "wos" ou "publisher".\'\n )\n', (22542, 22634), True, 'from flask_babelex import gettext as _\n'), ((23767, 23809), 'flask_babelex.gettext', '_', (['"""Periódico não permite envio de email."""'], {}), "('Periódico não permite envio de email.')\n", (23768, 23809), True, 'from flask_babelex import gettext as _\n'), ((25456, 25483), 'flask_babelex.gettext', '_', (['journal.unpublish_reason'], {}), '(journal.unpublish_reason)\n', (25457, 25483), True, 'from flask_babelex import gettext as _\n'), ((27682, 27723), 'flask.request.args.get', 'request.args.get', (['"""section"""', '""""""'], {'type': 'str'}), "('section', '', type=str)\n", (27698, 27723), False, 'from flask import render_template, abort, current_app, request, session, redirect, jsonify, url_for, Response, send_from_directory, g, make_response\n'), ((27952, 27977), 'flask_babelex.gettext', '_', (['issue.unpublish_reason'], {}), '(issue.unpublish_reason)\n', (27953, 27977), True, 'from flask_babelex import gettext as _\n'), ((28099, 28126), 'flask_babelex.gettext', '_', (['journal.unpublish_reason'], {}), '(journal.unpublish_reason)\n', (28100, 28126), True, 'from flask_babelex import gettext as _\n'), ((32307, 32334), 'flask_babelex.gettext', '_', (['journal.unpublish_reason'], {}), '(journal.unpublish_reason)\n', (32308, 32334), True, 'from flask_babelex import gettext as _\n'), ((34144, 34169), 'flask_babelex.gettext', '_', (['issue.unpublish_reason'], {}), '(issue.unpublish_reason)\n', (34145, 34169), True, 'from flask_babelex import gettext as _\n'), ((34247, 34280), 'flask_babelex.gettext', '_', (['issue.journal.unpublish_reason'], {}), '(issue.journal.unpublish_reason)\n', (34248, 34280), True, 'from flask_babelex import gettext as _\n'), ((41174, 41197), 'flask_babelex.gettext', '_', (['"""Artigo inexistente"""'], {}), "('Artigo inexistente')\n", (41175, 41197), True, 'from flask_babelex import gettext as _\n'), ((41318, 41344), 'flask_babelex.gettext', '_', (['"""Artigo não encontrado"""'], {}), "('Artigo não encontrado')\n", (41319, 41344), True, 'from flask_babelex import gettext as _\n'), ((41432, 41536), 'flask.url_for', 'url_for', (['"""main.article_detail_v3"""'], {'url_seg': 'url_seg', 'article_pid_v3': 'article_pid_v3', 'format': 'qs_format'}), "('main.article_detail_v3', url_seg=url_seg, article_pid_v3=\n article_pid_v3, format=qs_format)\n", (41439, 41536), False, 'from flask import render_template, abort, current_app, request, session, redirect, jsonify, url_for, Response, send_from_directory, g, make_response\n'), ((41715, 41742), 'flask_babelex.gettext', '_', (['"""Recurso não encontrado"""'], {}), "('Recurso não encontrado')\n", (41716, 41742), True, 'from flask_babelex import gettext as _\n'), ((42310, 42443), 'flask.url_for', 'url_for', (['"""main.article_detail_v3"""'], {'url_seg': 'article.journal.url_segment', 'article_pid_v3': 'article_pid_v3', 'lang': 'qs_lang', 'format': '"""pdf"""'}), "('main.article_detail_v3', url_seg=article.journal.url_segment,\n article_pid_v3=article_pid_v3, lang=qs_lang, format='pdf')\n", (42317, 42443), False, 'from flask import render_template, abort, current_app, request, session, redirect, jsonify, url_for, Response, send_from_directory, g, make_response\n'), ((44909, 44942), 'flask_babelex.gettext', '_', (['"""PDF do Artigo não encontrado"""'], {}), "('PDF do Artigo não encontrado')\n", (44910, 44942), True, 'from flask_babelex import gettext as _\n'), ((45074, 45107), 'flask_babelex.gettext', '_', (['"""PDF do Artigo não encontrado"""'], {}), "('PDF do Artigo não encontrado')\n", (45075, 45107), True, 'from flask_babelex import gettext as _\n'), ((46936, 46959), 'flask_babelex.gettext', '_', (['"""PDF não encontrado"""'], {}), "('PDF não encontrado')\n", (46937, 46959), True, 'from flask_babelex import gettext as _\n'), ((47007, 47027), 'flask_babelex.gettext', '_', (['"""Erro inesperado"""'], {}), "('Erro inesperado')\n", (47008, 47027), True, 'from flask_babelex import gettext as _\n'), ((47521, 47548), 'flask_babelex.gettext', '_', (['"""Recurso não encontrado"""'], {}), "('Recurso não encontrado')\n", (47522, 47548), True, 'from flask_babelex import gettext as _\n'), ((47596, 47616), 'flask_babelex.gettext', '_', (['"""Erro inesperado"""'], {}), "('Erro inesperado')\n", (47597, 47616), True, 'from flask_babelex import gettext as _\n'), ((52923, 52978), 'flask.current_app.config.get', 'current_app.config.get', (['"""EMAIL_ACCOUNTS_RECEIVE_ERRORS"""'], {}), "('EMAIL_ACCOUNTS_RECEIVE_ERRORS')\n", (52945, 52978), False, 'from flask import render_template, abort, current_app, request, session, redirect, jsonify, url_for, Response, send_from_directory, g, make_response\n'), ((55498, 55548), 'flask.url_for', 'url_for', (['"""main.about_journal"""'], {'url_seg': 'journal_seg'}), "('main.about_journal', url_seg=journal_seg)\n", (55505, 55548), False, 'from flask import render_template, abort, current_app, request, session, redirect, jsonify, url_for, Response, send_from_directory, g, make_response\n'), ((58081, 58107), 'flask_babelex.gettext', '_', (['"""Página não encontrada"""'], {}), "('Página não encontrada')\n", (58082, 58107), True, 'from flask_babelex import gettext as _\n'), ((3634, 3679), 'flask.current_app.config.get', 'current_app.config.get', (['"""SCIELO_ORG_URIS"""', '{}'], {}), "('SCIELO_ORG_URIS', {})\n", (3656, 3679), False, 'from flask import render_template, abort, current_app, request, session, redirect, jsonify, url_for, Response, send_from_directory, g, make_response\n'), ((11881, 11940), 'flask.url_for', 'url_for', (['"""main.journal_detail"""'], {'url_seg': 'journal.url_segment'}), "('main.journal_detail', url_seg=journal.url_segment)\n", (11888, 11940), False, 'from flask import render_template, abort, current_app, request, session, redirect, jsonify, url_for, Response, send_from_directory, g, make_response\n'), ((12045, 12078), 'webapp.controllers.get_issue_by_pid', 'controllers.get_issue_by_pid', (['pid'], {}), '(pid)\n', (12073, 12078), False, 'from webapp import controllers\n'), ((23094, 23108), 'datetime.datetime.now', 'datetime.now', ([], {}), '()\n', (23106, 23108), False, 'from datetime import datetime, timedelta\n'), ((40377, 40420), 'flask_babelex.gettext', '_', (['"""Não existe \'{}\'. No seu lugar use \'{}\'"""'], {}), '("Não existe \'{}\'. No seu lugar use \'{}\'")\n', (40378, 40420), True, 'from flask_babelex import gettext as _\n'), ((41130, 41153), 'flask_babelex.gettext', '_', (['"""Resumo inexistente"""'], {}), "('Resumo inexistente')\n", (41131, 41153), True, 'from flask_babelex import gettext as _\n'), ((43215, 43265), 'flask_babelex.gettext', '_', (['"""HTML do Artigo não encontrado ou indisponível"""'], {}), "('HTML do Artigo não encontrado ou indisponível')\n", (43216, 43265), True, 'from flask_babelex import gettext as _\n'), ((43321, 43341), 'flask_babelex.gettext', '_', (['"""Erro inesperado"""'], {}), "('Erro inesperado')\n", (43322, 43341), True, 'from flask_babelex import gettext as _\n'), ((43466, 43498), 'webapp.config.lang_names.display_original_lang_name', 'display_original_lang_name', (['lang'], {}), '(lang)\n', (43492, 43498), False, 'from webapp.config.lang_names import display_original_lang_name\n'), ((43523, 43639), 'flask.url_for', 'url_for', (['"""main.article_detail_v3"""'], {'url_seg': 'article.journal.url_segment', 'article_pid_v3': 'article_pid_v3', 'lang': 'lang'}), "('main.article_detail_v3', url_seg=article.journal.url_segment,\n article_pid_v3=article_pid_v3, lang=lang)\n", (43530, 43639), False, 'from flask import render_template, abort, current_app, request, session, redirect, jsonify, url_for, Response, send_from_directory, g, make_response\n'), ((45249, 45282), 'flask_babelex.gettext', '_', (['"""PDF do Artigo não encontrado"""'], {}), "('PDF do Artigo não encontrado')\n", (45250, 45282), True, 'from flask_babelex import gettext as _\n'), ((45957, 45983), 'flask_babelex.gettext', '_', (['"""Formato não suportado"""'], {}), "('Formato não suportado')\n", (45958, 45983), True, 'from flask_babelex import gettext as _\n'), ((11706, 11735), 'flask_babelex.gettext', '_', (['"""Periódico não encontrado"""'], {}), "('Periódico não encontrado')\n", (11707, 11735), True, 'from flask_babelex import gettext as _\n'), ((12616, 12714), 'flask.url_for', 'url_for', (['"""main.issue_toc"""'], {'url_seg': 'issue.journal.url_segment', 'url_seg_issue': 'issue.url_segment'}), "('main.issue_toc', url_seg=issue.journal.url_segment, url_seg_issue=\n issue.url_segment)\n", (12623, 12714), False, 'from flask import render_template, abort, current_app, request, session, redirect, jsonify, url_for, Response, send_from_directory, g, make_response\n'), ((12903, 12941), 'webapp.controllers.get_article_by_pid_v2', 'controllers.get_article_by_pid_v2', (['pid'], {}), '(pid)\n', (12936, 12941), False, 'from webapp import controllers\n'), ((22004, 22079), 'flask_babelex.gettext', '_', (['"""Parámetro "filter" é inválido, deve ser "areas", "wos" ou "publisher"."""'], {}), '(\'Parámetro "filter" é inválido, deve ser "areas", "wos" ou "publisher".\')\n', (22005, 22079), True, 'from flask_babelex import gettext as _\n'), ((11823, 11850), 'flask_babelex.gettext', '_', (['journal.unpublish_reason'], {}), '(journal.unpublish_reason)\n', (11824, 11850), True, 'from flask_babelex import gettext as _\n'), ((12133, 12159), 'flask_babelex.gettext', '_', (['"""Número não encontrado"""'], {}), "('Número não encontrado')\n", (12134, 12159), True, 'from flask_babelex import gettext as _\n'), ((12518, 12558), 'flask.url_for', 'url_for', (['"""main.aop_toc"""'], {'url_seg': 'url_seg'}), "('main.aop_toc', url_seg=url_seg)\n", (12525, 12558), False, 'from flask import render_template, abort, current_app, request, session, redirect, jsonify, url_for, Response, send_from_directory, g, make_response\n'), ((13311, 13435), 'flask.url_for', 'url_for', (['"""main.article_detail_v3"""'], {'url_seg': 'article.journal.url_segment', 'article_pid_v3': 'article.aid', 'part': 'part', 'lang': 'tlng'}), "('main.article_detail_v3', url_seg=article.journal.url_segment,\n article_pid_v3=article.aid, part=part, lang=tlng)\n", (13318, 13435), False, 'from flask import render_template, abort, current_app, request, session, redirect, jsonify, url_for, Response, send_from_directory, g, make_response\n'), ((13680, 13716), 'webapp.controllers.get_journal_by_issn', 'controllers.get_journal_by_issn', (['pid'], {}), '(pid)\n', (13711, 13716), False, 'from webapp import controllers\n'), ((12243, 12268), 'flask_babelex.gettext', '_', (['issue.unpublish_reason'], {}), '(issue.unpublish_reason)\n', (12244, 12268), True, 'from flask_babelex import gettext as _\n'), ((12362, 12395), 'flask_babelex.gettext', '_', (['issue.journal.unpublish_reason'], {}), '(issue.journal.unpublish_reason)\n', (12363, 12395), True, 'from flask_babelex import gettext as _\n'), ((12997, 13023), 'flask_babelex.gettext', '_', (['"""Artigo não encontrado"""'], {}), "('Artigo não encontrado')\n", (12998, 13023), True, 'from flask_babelex import gettext as _\n'), ((13948, 14003), 'flask.url_for', 'url_for', (['"""main.issue_grid"""'], {'url_seg': 'journal.url_segment'}), "('main.issue_grid', url_seg=journal.url_segment)\n", (13955, 14003), False, 'from flask import render_template, abort, current_app, request, session, redirect, jsonify, url_for, Response, send_from_directory, g, make_response\n'), ((14147, 14185), 'webapp.controllers.get_article_by_pid_v2', 'controllers.get_article_by_pid_v2', (['pid'], {}), '(pid)\n', (14180, 14185), False, 'from webapp import controllers\n'), ((13773, 13802), 'flask_babelex.gettext', '_', (['"""Periódico não encontrado"""'], {}), "('Periódico não encontrado')\n", (13774, 13802), True, 'from flask_babelex import gettext as _\n'), ((14315, 14431), 'flask.url_for', 'url_for', (['"""main.article_detail_v3"""'], {'url_seg': 'article.journal.url_segment', 'article_pid_v3': 'article.aid', 'format': '"""pdf"""'}), "('main.article_detail_v3', url_seg=article.journal.url_segment,\n article_pid_v3=article.aid, format='pdf')\n", (14322, 14431), False, 'from flask import render_template, abort, current_app, request, session, redirect, jsonify, url_for, Response, send_from_directory, g, make_response\n'), ((14605, 14674), 'flask_babelex.gettext', '_', (["(u'Requsição inválida ao tentar acessar o artigo com pid: %s' % pid)"], {}), "(u'Requsição inválida ao tentar acessar o artigo com pid: %s' % pid)\n", (14606, 14674), True, 'from flask_babelex import gettext as _\n'), ((13890, 13917), 'flask_babelex.gettext', '_', (['journal.unpublish_reason'], {}), '(journal.unpublish_reason)\n', (13891, 13917), True, 'from flask_babelex import gettext as _\n'), ((14241, 14267), 'flask_babelex.gettext', '_', (['"""Artigo não encontrado"""'], {}), "('Artigo não encontrado')\n", (14242, 14267), True, 'from flask_babelex import gettext as _\n')]
""" Converter um DataFrame para CSV """ import pandas as pd dataset = pd.DataFrame({'Frutas': ["Abacaxi", "Mamão"], "Nomes": ["Éverton", "Márcia"]}, index=["Linha 1", "Linha 2"]) dataset.to_csv("dataset.csv")
[ "pandas.DataFrame" ]
[((71, 184), 'pandas.DataFrame', 'pd.DataFrame', (["{'Frutas': ['Abacaxi', 'Mamão'], 'Nomes': ['Éverton', 'Márcia']}"], {'index': "['Linha 1', 'Linha 2']"}), "({'Frutas': ['Abacaxi', 'Mamão'], 'Nomes': ['Éverton', 'Márcia'\n ]}, index=['Linha 1', 'Linha 2'])\n", (83, 184), True, 'import pandas as pd\n')]
import os import dj_database_url BASE_DIR = os.path.dirname(os.path.dirname(os.path.abspath(__file__))) DEBUG = True ALLOWED_HOSTS = [] ROOT_URLCONF = 'groups.tests.urls' STATIC_URL = '/static/' SECRET_KEY = '<KEY>' PASSWORD_HASHERS = ('django.contrib.auth.hashers.MD5PasswordHasher',) DATABASES = { 'default': dj_database_url.config(default='postgres://localhost/groups') } DEFAULT_FILE_STORAGE = 'inmemorystorage.InMemoryStorage' INSTALLED_APPS = ( 'groups', 'crispy_forms', 'pagination', 'polymorphic', # Put contenttypes before auth to work around test issue. # See: https://code.djangoproject.com/ticket/10827#comment:12 'django.contrib.contenttypes', 'django.contrib.auth', 'django.contrib.admin', 'django.contrib.sessions', 'django.contrib.messages', 'django.contrib.staticfiles', ) MIDDLEWARE_CLASSES = ( 'django.contrib.sessions.middleware.SessionMiddleware', 'django.contrib.auth.middleware.AuthenticationMiddleware', ) TEMPLATES = [ { 'BACKEND': 'django.template.backends.django.DjangoTemplates', 'DIRS': [ os.path.join(BASE_DIR, 'groups', 'tests', 'templates') ], 'APP_DIRS': True, 'OPTIONS': { 'context_processors': [ 'django.contrib.auth.context_processors.auth', 'django.template.context_processors.debug', 'django.template.context_processors.i18n', 'django.template.context_processors.media', 'django.template.context_processors.request', 'django.template.context_processors.static', 'django.template.context_processors.tz', 'django.contrib.messages.context_processors.messages', ], }, }, ] CRISPY_TEMPLATE_PACK = 'bootstrap3' TEST_RUNNER = 'test_project.test_runner.Runner'
[ "os.path.abspath", "dj_database_url.config", "os.path.join" ]
[((321, 382), 'dj_database_url.config', 'dj_database_url.config', ([], {'default': '"""postgres://localhost/groups"""'}), "(default='postgres://localhost/groups')\n", (343, 382), False, 'import dj_database_url\n'), ((79, 104), 'os.path.abspath', 'os.path.abspath', (['__file__'], {}), '(__file__)\n', (94, 104), False, 'import os\n'), ((1120, 1174), 'os.path.join', 'os.path.join', (['BASE_DIR', '"""groups"""', '"""tests"""', '"""templates"""'], {}), "(BASE_DIR, 'groups', 'tests', 'templates')\n", (1132, 1174), False, 'import os\n')]
import bluetooth import time bt = bluetooth.BLE() # singleton bt.active(True) # activate BT stack UART_UUID = bluetooth.UUID('6E400001-B5A3-F393-E0A9-E50E24DCCA9E') UART_TX = (bluetooth.UUID('6E400003-B5A3-F393-E0A9-E50E24DCCA9E'), bluetooth.FLAG_READ | bluetooth.FLAG_NOTIFY,) UART_RX = (bluetooth.UUID('6E400002-B5A3-F393-E0A9-E50E24DCCA9E'), bluetooth.FLAG_WRITE,) UART_SERVICE = (UART_UUID, (UART_TX, UART_RX,),) SERVICES = (UART_SERVICE,) ( (tx, rx,), ) = bt.gatts_register_services(SERVICES) bt.gap_advertise(100)
[ "bluetooth.BLE", "bluetooth.UUID" ]
[((34, 49), 'bluetooth.BLE', 'bluetooth.BLE', ([], {}), '()\n', (47, 49), False, 'import bluetooth\n'), ((149, 203), 'bluetooth.UUID', 'bluetooth.UUID', (['"""6E400001-B5A3-F393-E0A9-E50E24DCCA9E"""'], {}), "('6E400001-B5A3-F393-E0A9-E50E24DCCA9E')\n", (163, 203), False, 'import bluetooth\n'), ((215, 269), 'bluetooth.UUID', 'bluetooth.UUID', (['"""6E400003-B5A3-F393-E0A9-E50E24DCCA9E"""'], {}), "('6E400003-B5A3-F393-E0A9-E50E24DCCA9E')\n", (229, 269), False, 'import bluetooth\n'), ((328, 382), 'bluetooth.UUID', 'bluetooth.UUID', (['"""6E400002-B5A3-F393-E0A9-E50E24DCCA9E"""'], {}), "('6E400002-B5A3-F393-E0A9-E50E24DCCA9E')\n", (342, 382), False, 'import bluetooth\n')]
import optparse import sys def make_set(data, s, e_vocab, f_vocab, aligned, reverse): for pair in data.split(): cur = pair.split('-') if reverse: e_vocab.add(int(cur[1])) f_vocab.add(int(cur[0])) aligned.add(int(cur[0])) s.add((int(cur[1]), int(cur[0]))) else: e_vocab.add(int(cur[0])) f_vocab.add(int(cur[1])) aligned.add(int(cur[0])) s.add((int(cur[0]), int(cur[1]))) def grow_diag_final_and(e2f_data, f2e_data): directions = [(-1,0),(0,-1),(1,0),(0,1),(-1,-1),(-1,1),(1,-1),(1,1)] for (i, (e2f, f2e)) in enumerate(zip(open(e2f_data), open(f2e_data))): e2f_set, f2e_set, e_vocab, f_vocab, e_aligned, f_aligned = set(), set(), set(), set(), set(), set() make_set(e2f, e2f_set, e_vocab, f_vocab, e_aligned, False) make_set(f2e, f2e_set, e_vocab, f_vocab, f_aligned, True) alignment = e2f_set & f2e_set union_alignment = e2f_set | f2e_set grow_diag(e_vocab, f_vocab, e_aligned, f_aligned, alignment, union_alignment, directions) final(e_vocab, f_vocab, e_aligned, f_aligned, alignment, union_alignment, True) for e, f in alignment: sys.stdout.write("%i-%i " % (e,f)) sys.stdout.write("\n") def grow_diag(e_vocab, f_vocab, e_alignment, f_alignment, alignment, union_alignment, directions): prev_len = 0 while prev_len != len(alignment): prev_len = len(alignment) for e in e_vocab: for f in f_vocab: if (e, f) in alignment: for d in directions: en, fn = e + d[0], f + d[1] if (en not in e_alignment or fn not in f_alignment) and (en, fn) in union_alignment: alignment.add((en, fn)) e_alignment.add(en) f_alignment.add(fn) def final(e_vocab, f_vocab, e_alignment, f_alignment, alignment, union_alignment, final_and): for e in e_vocab: for f in f_vocab: c = False if final_and: c = e not in e_alignment and f not in f_alignment else: c = e not in e_alignment or f not in f_alignment if c and (e, f) in union_alignment: alignment.add((e, f)) e_alignment.add(e) f_alignment.add(f) def main(): optparser = optparse.OptionParser() optparser.add_option("-d", "--data", dest="train", default="data/alignment", help="Data filename prefix (default=data)") optparser.add_option("-e", "--e2f", dest="e2f", default="ef", help="Suffix of English to French filename (default=ef)") optparser.add_option("-f", "--f2e", dest="f2e", default="fe", help="Suffix of French to English filename (default=fe)") optparser.add_option("-a", "--final_and", dest="final_and", action="store_true", help="Whether to use Final-And version of the algorithm") (opts, args) = optparser.parse_args() e2f_data = "%s.%s" % (opts.train, opts.e2f) f2e_data = "%s.%s" % (opts.train, opts.f2e) grow_diag_final_and(e2f_data, f2e_data) if __name__ == "__main__": main()
[ "optparse.OptionParser", "sys.stdout.write" ]
[((2468, 2491), 'optparse.OptionParser', 'optparse.OptionParser', ([], {}), '()\n', (2489, 2491), False, 'import optparse\n'), ((1285, 1307), 'sys.stdout.write', 'sys.stdout.write', (['"""\n"""'], {}), "('\\n')\n", (1301, 1307), False, 'import sys\n'), ((1242, 1277), 'sys.stdout.write', 'sys.stdout.write', (["('%i-%i ' % (e, f))"], {}), "('%i-%i ' % (e, f))\n", (1258, 1277), False, 'import sys\n')]
# -*- coding: utf-8 -*- # Copyright 2017-2018 ICON Foundation # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import os import shutil import unittest from tbears.block_manager.tbears_db import TbearsDB DIRECTORY_PATH = os.path.abspath((os.path.dirname(__file__))) DB_PATH = os.path.join(DIRECTORY_PATH, './.tbears_db') class TestTBearsDB(unittest.TestCase): def setUp(self): self.TBEARS_DB = TbearsDB(TbearsDB.make_db(DB_PATH)) self.test_key = b'test_key' self.test_value = b'test_value' def tearDown(self): self.TBEARS_DB.close() shutil.rmtree(DB_PATH) def test_put_and_get(self): # Put and get self.TBEARS_DB.put(self.test_key, self.test_value) ret = self.TBEARS_DB.get(self.test_key) self.assertEqual(ret, self.test_value) # overwrite overwrite_value = b'test_value_overwrite' self.TBEARS_DB.put(self.test_key, overwrite_value) ret = self.TBEARS_DB.get(self.test_key) self.assertEqual(ret, overwrite_value) # get invalid key ret = self.TBEARS_DB.get(b'invalid_key') self.assertIsNone(ret) # put invalid type self.assertRaises(TypeError, self.TBEARS_DB.put, 'test_key', self.test_value) self.assertRaises(TypeError, self.TBEARS_DB.put, self.test_key, 123) def test_delete(self): self.TBEARS_DB.put(self.test_key, self.test_value) ret = self.TBEARS_DB.get(self.test_key) self.assertEqual(ret, self.test_value) self.TBEARS_DB.delete(self.test_key) ret = self.TBEARS_DB.get(self.test_key) self.assertIsNone(ret) def test_iterator(self): self.TBEARS_DB.put(b'key1', b'value1') self.TBEARS_DB.put(b'key2', b'value2') self.TBEARS_DB.put(b'key3', b'value3') self.TBEARS_DB.put(b'key4', b'value4') i = 1 for _, actual_value in self.TBEARS_DB.iterator(): expected_value = ('value' + str(i)).encode() self.assertEqual(expected_value, actual_value) i += 1
[ "tbears.block_manager.tbears_db.TbearsDB.make_db", "os.path.dirname", "os.path.join", "shutil.rmtree" ]
[((771, 815), 'os.path.join', 'os.path.join', (['DIRECTORY_PATH', '"""./.tbears_db"""'], {}), "(DIRECTORY_PATH, './.tbears_db')\n", (783, 815), False, 'import os\n'), ((733, 758), 'os.path.dirname', 'os.path.dirname', (['__file__'], {}), '(__file__)\n', (748, 758), False, 'import os\n'), ((1080, 1102), 'shutil.rmtree', 'shutil.rmtree', (['DB_PATH'], {}), '(DB_PATH)\n', (1093, 1102), False, 'import shutil\n'), ((913, 938), 'tbears.block_manager.tbears_db.TbearsDB.make_db', 'TbearsDB.make_db', (['DB_PATH'], {}), '(DB_PATH)\n', (929, 938), False, 'from tbears.block_manager.tbears_db import TbearsDB\n')]
# encoding: utf-8 """ mplsmask.py Created by <NAME> on 2016-12-01. Copyright (c) 2014-2017 Exa Networks. All rights reserved. """ from exabgp.bgp.message.notification import Notify from exabgp.bgp.message.update.attribute.bgpls.linkstate import LinkState from exabgp.bgp.message.update.attribute.bgpls.linkstate import FlagLS # 0 1 2 3 # 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 # +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ # | Type | Length | # +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ # |L|R| Reserved | # +-+-+-+-+-+-+-+-+ # https://tools.ietf.org/html/rfc7752#section-3.3.2.2 MPLS Protocol Mask # # +------------+------------------------------------------+-----------+ # | Bit | Description | Reference | # +------------+------------------------------------------+-----------+ # | 'L' | Label Distribution Protocol (LDP) | [RFC5036] | # | 'R' | Extension to RSVP for LSP Tunnels | [RFC3209] | # | | (RSVP-TE) | | # | 'Reserved' | Reserved for future use | | # +------------+------------------------------------------+-----------+ # RFC 7752 3.3.2.2. MPLS Protocol Mask TLV @LinkState.register() class MplsMask(FlagLS): REPR = 'MPLS Protocol mask' JSON = 'mpls-mask' TLV = 1094 FLAGS = ['LDP', 'RSVP-TE', 'RSV', 'RSV', 'RSV', 'RSV', 'RSV', 'RSV'] LEN = 1
[ "exabgp.bgp.message.update.attribute.bgpls.linkstate.LinkState.register" ]
[((1453, 1473), 'exabgp.bgp.message.update.attribute.bgpls.linkstate.LinkState.register', 'LinkState.register', ([], {}), '()\n', (1471, 1473), False, 'from exabgp.bgp.message.update.attribute.bgpls.linkstate import LinkState\n')]
import unittest from opencmiss.utils.zinc.finiteelement import evaluateFieldNodesetRange from opencmiss.utils.zinc.general import ChangeManager from opencmiss.zinc.context import Context from opencmiss.zinc.element import Element from opencmiss.zinc.field import Field from opencmiss.zinc.result import RESULT_OK from scaffoldmaker.meshtypes.meshtype_3d_cecum1 import MeshType_3d_cecum1 from scaffoldmaker.utils.zinc_utils import createFaceMeshGroupExteriorOnFace from testutils import assertAlmostEqualList class CecumScaffoldTestCase(unittest.TestCase): def test_cecum1(self): """ Test creation of cecum scaffold. """ parameterSetNames = MeshType_3d_cecum1.getParameterSetNames() self.assertEqual(parameterSetNames, ["Default", "Pig 1"]) options = MeshType_3d_cecum1.getDefaultOptions("Pig 1") self.assertEqual(30, len(options)) self.assertEqual(5, options.get("Number of segments")) self.assertEqual(2, options.get("Number of elements around tenia coli")) self.assertEqual(8, options.get("Number of elements along segment")) self.assertEqual(1, options.get("Number of elements through wall")) self.assertEqual(35.0, options.get("Start inner radius")) self.assertEqual(3.0, options.get("Start inner radius derivative")) self.assertEqual(38.0, options.get("End inner radius")) self.assertEqual(3.0, options.get("End inner radius derivative")) self.assertEqual(0.5, options.get("Corner inner radius factor")) self.assertEqual(0.25, options.get("Haustrum inner radius factor")) self.assertEqual(4.0, options.get("Segment length mid derivative factor")) self.assertEqual(3, options.get("Number of tenia coli")) self.assertEqual(5.0, options.get("Start tenia coli width")) self.assertEqual(0.0, options.get("End tenia coli width derivative")) self.assertEqual(2.0, options.get("Wall thickness")) ostiumOptions = options['Ileocecal junction'] ostiumSettings = ostiumOptions.getScaffoldSettings() self.assertEqual(1, ostiumSettings.get("Number of vessels")) self.assertEqual(8, ostiumSettings.get("Number of elements around ostium")) self.assertEqual(1, ostiumSettings.get("Number of elements through wall")) self.assertEqual(20.0, ostiumSettings.get("Ostium diameter")) self.assertEqual(10.0, ostiumSettings.get("Vessel inner diameter")) self.assertEqual(60, options.get("Ileocecal junction angular position degrees")) self.assertEqual(0.5, options.get("Ileocecal junction position along factor")) context = Context("Test") region = context.getDefaultRegion() self.assertTrue(region.isValid()) annotationGroups = MeshType_3d_cecum1.generateBaseMesh(region, options) self.assertEqual(2, len(annotationGroups)) fieldmodule = region.getFieldmodule() self.assertEqual(RESULT_OK, fieldmodule.defineAllFaces()) mesh3d = fieldmodule.findMeshByDimension(3) self.assertEqual(1492, mesh3d.getSize()) mesh2d = fieldmodule.findMeshByDimension(2) self.assertEqual(5617, mesh2d.getSize()) mesh1d = fieldmodule.findMeshByDimension(1) self.assertEqual(6767, mesh1d.getSize()) nodes = fieldmodule.findNodesetByFieldDomainType(Field.DOMAIN_TYPE_NODES) self.assertEqual(2642, nodes.getSize()) datapoints = fieldmodule.findNodesetByFieldDomainType(Field.DOMAIN_TYPE_DATAPOINTS) self.assertEqual(0, datapoints.getSize()) coordinates = fieldmodule.findFieldByName("coordinates").castFiniteElement() self.assertTrue(coordinates.isValid()) minimums, maximums = evaluateFieldNodesetRange(coordinates, nodes) assertAlmostEqualList(self, minimums, [-49.01658984455258, -46.89686037622053, -2.343256155753525], 1.0E-6) assertAlmostEqualList(self, maximums, [42.18085849205387, 54.89264119402881, 180.0], 1.0E-6) with ChangeManager(fieldmodule): one = fieldmodule.createFieldConstant(1.0) faceMeshGroup = createFaceMeshGroupExteriorOnFace(fieldmodule, Element.FACE_TYPE_XI3_1) surfaceAreaField = fieldmodule.createFieldMeshIntegral(one, coordinates, faceMeshGroup) surfaceAreaField.setNumbersOfPoints(4) volumeField = fieldmodule.createFieldMeshIntegral(one, coordinates, mesh3d) volumeField.setNumbersOfPoints(3) fieldcache = fieldmodule.createFieldcache() result, surfaceArea = surfaceAreaField.evaluateReal(fieldcache, 1) self.assertEqual(result, RESULT_OK) self.assertAlmostEqual(surfaceArea, 65960.20655074248, delta=1.0E-6) result, volume = volumeField.evaluateReal(fieldcache, 1) self.assertEqual(result, RESULT_OK) self.assertAlmostEqual(volume, 127905.28250502056, delta=1.0E-6) if __name__ == "__main__": unittest.main()
[ "opencmiss.zinc.context.Context", "scaffoldmaker.meshtypes.meshtype_3d_cecum1.MeshType_3d_cecum1.getParameterSetNames", "scaffoldmaker.meshtypes.meshtype_3d_cecum1.MeshType_3d_cecum1.generateBaseMesh", "testutils.assertAlmostEqualList", "scaffoldmaker.utils.zinc_utils.createFaceMeshGroupExteriorOnFace", "scaffoldmaker.meshtypes.meshtype_3d_cecum1.MeshType_3d_cecum1.getDefaultOptions", "opencmiss.utils.zinc.general.ChangeManager", "unittest.main", "opencmiss.utils.zinc.finiteelement.evaluateFieldNodesetRange" ]
[((4961, 4976), 'unittest.main', 'unittest.main', ([], {}), '()\n', (4974, 4976), False, 'import unittest\n'), ((681, 722), 'scaffoldmaker.meshtypes.meshtype_3d_cecum1.MeshType_3d_cecum1.getParameterSetNames', 'MeshType_3d_cecum1.getParameterSetNames', ([], {}), '()\n', (720, 722), False, 'from scaffoldmaker.meshtypes.meshtype_3d_cecum1 import MeshType_3d_cecum1\n'), ((807, 852), 'scaffoldmaker.meshtypes.meshtype_3d_cecum1.MeshType_3d_cecum1.getDefaultOptions', 'MeshType_3d_cecum1.getDefaultOptions', (['"""Pig 1"""'], {}), "('Pig 1')\n", (843, 852), False, 'from scaffoldmaker.meshtypes.meshtype_3d_cecum1 import MeshType_3d_cecum1\n'), ((2670, 2685), 'opencmiss.zinc.context.Context', 'Context', (['"""Test"""'], {}), "('Test')\n", (2677, 2685), False, 'from opencmiss.zinc.context import Context\n'), ((2799, 2851), 'scaffoldmaker.meshtypes.meshtype_3d_cecum1.MeshType_3d_cecum1.generateBaseMesh', 'MeshType_3d_cecum1.generateBaseMesh', (['region', 'options'], {}), '(region, options)\n', (2834, 2851), False, 'from scaffoldmaker.meshtypes.meshtype_3d_cecum1 import MeshType_3d_cecum1\n'), ((3753, 3798), 'opencmiss.utils.zinc.finiteelement.evaluateFieldNodesetRange', 'evaluateFieldNodesetRange', (['coordinates', 'nodes'], {}), '(coordinates, nodes)\n', (3778, 3798), False, 'from opencmiss.utils.zinc.finiteelement import evaluateFieldNodesetRange\n'), ((3807, 3918), 'testutils.assertAlmostEqualList', 'assertAlmostEqualList', (['self', 'minimums', '[-49.01658984455258, -46.89686037622053, -2.343256155753525]', '(1e-06)'], {}), '(self, minimums, [-49.01658984455258, -\n 46.89686037622053, -2.343256155753525], 1e-06)\n', (3828, 3918), False, 'from testutils import assertAlmostEqualList\n'), ((3923, 4018), 'testutils.assertAlmostEqualList', 'assertAlmostEqualList', (['self', 'maximums', '[42.18085849205387, 54.89264119402881, 180.0]', '(1e-06)'], {}), '(self, maximums, [42.18085849205387, 54.89264119402881,\n 180.0], 1e-06)\n', (3944, 4018), False, 'from testutils import assertAlmostEqualList\n'), ((4030, 4056), 'opencmiss.utils.zinc.general.ChangeManager', 'ChangeManager', (['fieldmodule'], {}), '(fieldmodule)\n', (4043, 4056), False, 'from opencmiss.utils.zinc.general import ChangeManager\n'), ((4141, 4212), 'scaffoldmaker.utils.zinc_utils.createFaceMeshGroupExteriorOnFace', 'createFaceMeshGroupExteriorOnFace', (['fieldmodule', 'Element.FACE_TYPE_XI3_1'], {}), '(fieldmodule, Element.FACE_TYPE_XI3_1)\n', (4174, 4212), False, 'from scaffoldmaker.utils.zinc_utils import createFaceMeshGroupExteriorOnFace\n')]
import sys class Screen: def __init__(self) -> None: pass def handle_events(self, events): for event in events: if event.type == self.pygame.QUIT: sys.exit() def draw(self, screen): pass
[ "sys.exit" ]
[((201, 211), 'sys.exit', 'sys.exit', ([], {}), '()\n', (209, 211), False, 'import sys\n')]
import numpy as np from math import pi,exp def static_stability(height,area,theta,s_et=None,n_et=None): """ The function "static_stability" computes the vertical gradient (z-derivative) of hemispheric-averaged potential temperature, i.e. d\tilde{theta}/dz in the def- inition of QGPV in eq.(3) of Huang and Nakamura (2016), by central differencing. At the boundary, the static stability is estimated by forward/backward differen- cing involving two adjacent z-grid points: i.e. stat_n[0] = (t0_n[1]-t0_n[0])/(height[1]-height[0]) stat_n[-1] = (t0_n[-2]-t0_n[-1])/(height[-2]-height[-1]) Please make inquiries and report issues via Github: https://github.com/csyhuang/hn2016_falwa/issues Parameters ---------- height : sequence or array_like Array of z-coordinate [in meters] with dimension = (kmax), equally spaced area : ndarray Two-dimension numpy array specifying differential areal element of each grid point; dimension = (nlat, nlon). theta : ndarray Matrix of potential temperature [K] with dimension (kmax,nlat,nlon) or (kmax,nlat) s_et : int, optional Index of the latitude that defines the boundary of the Southern hemispheric domain; initialized as nlat/2 if not input n_et : int, optional Index of the latitude that defines the boundary of the Southern hemispheric domain; initialized as nlat/2 if not input Returns ------- t0_n : sequence or array_like Area-weighted average of potential temperature (\tilde{\theta} in HN16) in the Northern hemispheric domain with dimension = (kmax) t0_s : sequence or array_like Area-weighted average of potential temperature (\tilde{\theta} in HN16) in the Southern hemispheric domain with dimension = (kmax) stat_n : sequence or array_like Static stability (d\tilde{\theta}/dz in HN16) in the Northern hemispheric domain with dimension = (kmax) stat_s : sequence or array_like Static stability (d\tilde{\theta}/dz in HN16) in the Southern hemispheric domain with dimension = (kmax) """ nlat = theta.shape[1] if s_et==None: s_et = nlat//2 if n_et==None: n_et = nlat//2 stat_n = np.zeros(theta.shape[0]) stat_s = np.zeros(theta.shape[0]) if theta.ndim==3: zonal_mean = np.mean(theta,axis=-1) elif theta.ndim==2: zonal_mean = theta if area.ndim==2: area_zonal_mean = np.mean(area,axis=-1) elif area.ndim==1: area_zonal_mean = area csm_n_et = np.sum(area_zonal_mean[-n_et:]) csm_s_et = np.sum(area_zonal_mean[:s_et]) t0_n = np.sum(zonal_mean[:,-n_et:]*area_zonal_mean[np.newaxis,-n_et:],axis=-1)/csm_n_et t0_s = np.sum(zonal_mean[:,:s_et]*area_zonal_mean[np.newaxis,:s_et],axis=-1)/csm_s_et stat_n[1:-1] = (t0_n[2:]-t0_n[:-2])/(height[2:]-height[:-2]) stat_s[1:-1] = (t0_s[2:]-t0_s[:-2])/(height[2:]-height[:-2]) stat_n[0] = (t0_n[1]-t0_n[0])/(height[1]-height[0]) stat_n[-1] = (t0_n[-2]-t0_n[-1])/(height[-2]-height[-1]) stat_s[0] = (t0_s[1]-t0_s[0])/(height[1]-height[0]) stat_s[-1] = (t0_s[-2]-t0_s[-1])/(height[-2]-height[-1]) return t0_n,t0_s,stat_n,stat_s def compute_qgpv_givenvort(omega,nlat,nlon,kmax,unih,ylat,avort,potential_temp, t0_cn,t0_cs,stat_cn,stat_cs,nlat_s=None,scale_height=7000.): """ The function "compute_qgpv_givenvort" computes the quasi-geostrophic potential vorticity based on the absolute vorticity, potential temperature and static stability given. Please make inquiries and report issues via Github: https://github.com/csyhuang/hn2016_falwa/issues Parameters ---------- omega : float, optional Rotation rate of the planet. nlat : int Latitudinal dimension of the latitude grid. nlon : int Longitudinal dimension of the longitude grid. kmax : int Vertical dimension of the height grid. unih : sequence or array_like Numpy array of height in [meters]; dimension = (kmax) ylat : sequence or array_like Numpy array of latitudes in [degrees]; dimension = (nlat) avort : ndarray Three-dimension numpy array of absolute vorticity (i.e. relative vorticity + 2*Omega*sin(lat)) in [1/s]; dimension = (kmax x nlat x nlon) potential_temp : ndarray Three-dimension numpy array of potential temperature in [K]; dimension = (kmax x nlat x nlon) t0_cn : sequence or array_like Area-weighted average of potential temperature (\tilde{\theta} in HN16) in the Northern hemispheric domain with dimension = (kmax) t0_cs : sequence or array_like Area-weighted average of potential temperature (\tilde{\theta} in HN16) in the Southern hemispheric domain with dimension = (kmax) stat_cn : sequence or array_like Static stability (d\tilde{\theta}/dz in HN16) in the Northern hemispheric domain with dimension = (kmax) stat_cs : sequence or array_like Static stability (d\tilde{\theta}/dz in HN16) in the Southern hemispheric domain with dimension = (kmax) scale_height : float Scale height of the atmosphere in [m] with default value 7000. Returns ------- QGPV : ndarray Three-dimension numpy array of quasi-geostrophic potential vorticity; dimension = (kmax x nlat x nlon) dzdiv : ndarray Three-dimension numpy array of the stretching term in QGPV; dimension = (kmax x nlat x nlon) """ if nlat_s==None: nlat_s=nlat//2 clat = np.cos(ylat*pi/180.) clat = np.abs(clat) # Just to avoid the negative value at poles # --- Next, calculate PV --- av2 = np.empty_like(potential_temp) # dv/d(lon) av3 = np.empty_like(potential_temp) # du/d(lat) qgpv = np.empty_like(potential_temp) # av1+av2+av3+dzdiv av1 = np.ones((kmax,nlat,nlon)) * 2*omega*np.sin(ylat[np.newaxis,:,np.newaxis]*pi/180.) # Calculate the z-divergence term zdiv = np.empty_like(potential_temp) dzdiv = np.empty_like(potential_temp) for kk in range(kmax): # This is more efficient zdiv[kk,:nlat_s,:] = exp(-unih[kk]/scale_height)*(potential_temp[kk,:nlat_s,:]-t0_cs[kk])/stat_cs[kk] zdiv[kk,-nlat_s:,:] = exp(-unih[kk]/scale_height)*(potential_temp[kk,-nlat_s:,:]-t0_cn[kk])/stat_cn[kk] dzdiv[1:kmax-1,:,:] = np.exp(unih[1:kmax-1,np.newaxis,np.newaxis]/scale_height)* \ (zdiv[2:kmax,:,:]-zdiv[0:kmax-2,:,:]) \ /(unih[2:kmax,np.newaxis,np.newaxis]-unih[0:kmax-2,np.newaxis,np.newaxis]) dzdiv[0,:,:] = exp(unih[0]/scale_height)*(zdiv[1,:,:]-zdiv[0,:,:])/ \ (unih[1,np.newaxis,np.newaxis]-unih[0,np.newaxis,np.newaxis]) dzdiv[kmax-1,:,:] = exp(unih[kmax-1]/scale_height)*(zdiv[kmax-1,:,:]-zdiv[kmax-2,:,:])/ \ (unih[kmax-1,np.newaxis,np.newaxis]-unih[kmax-2,np.newaxis,np.newaxis]) qgpv = avort+dzdiv * av1 return qgpv, dzdiv
[ "numpy.abs", "numpy.mean", "numpy.ones", "numpy.exp", "numpy.sum", "numpy.zeros", "numpy.empty_like", "numpy.cos", "numpy.sin", "math.exp" ]
[((2300, 2324), 'numpy.zeros', 'np.zeros', (['theta.shape[0]'], {}), '(theta.shape[0])\n', (2308, 2324), True, 'import numpy as np\n'), ((2338, 2362), 'numpy.zeros', 'np.zeros', (['theta.shape[0]'], {}), '(theta.shape[0])\n', (2346, 2362), True, 'import numpy as np\n'), ((2621, 2652), 'numpy.sum', 'np.sum', (['area_zonal_mean[-n_et:]'], {}), '(area_zonal_mean[-n_et:])\n', (2627, 2652), True, 'import numpy as np\n'), ((2668, 2698), 'numpy.sum', 'np.sum', (['area_zonal_mean[:s_et]'], {}), '(area_zonal_mean[:s_et])\n', (2674, 2698), True, 'import numpy as np\n'), ((5689, 5714), 'numpy.cos', 'np.cos', (['(ylat * pi / 180.0)'], {}), '(ylat * pi / 180.0)\n', (5695, 5714), True, 'import numpy as np\n'), ((5721, 5733), 'numpy.abs', 'np.abs', (['clat'], {}), '(clat)\n', (5727, 5733), True, 'import numpy as np\n'), ((5822, 5851), 'numpy.empty_like', 'np.empty_like', (['potential_temp'], {}), '(potential_temp)\n', (5835, 5851), True, 'import numpy as np\n'), ((5874, 5903), 'numpy.empty_like', 'np.empty_like', (['potential_temp'], {}), '(potential_temp)\n', (5887, 5903), True, 'import numpy as np\n'), ((5927, 5956), 'numpy.empty_like', 'np.empty_like', (['potential_temp'], {}), '(potential_temp)\n', (5940, 5956), True, 'import numpy as np\n'), ((6120, 6149), 'numpy.empty_like', 'np.empty_like', (['potential_temp'], {}), '(potential_temp)\n', (6133, 6149), True, 'import numpy as np\n'), ((6162, 6191), 'numpy.empty_like', 'np.empty_like', (['potential_temp'], {}), '(potential_temp)\n', (6175, 6191), True, 'import numpy as np\n'), ((2407, 2430), 'numpy.mean', 'np.mean', (['theta'], {'axis': '(-1)'}), '(theta, axis=-1)\n', (2414, 2430), True, 'import numpy as np\n'), ((2529, 2551), 'numpy.mean', 'np.mean', (['area'], {'axis': '(-1)'}), '(area, axis=-1)\n', (2536, 2551), True, 'import numpy as np\n'), ((2711, 2787), 'numpy.sum', 'np.sum', (['(zonal_mean[:, -n_et:] * area_zonal_mean[np.newaxis, -n_et:])'], {'axis': '(-1)'}), '(zonal_mean[:, -n_et:] * area_zonal_mean[np.newaxis, -n_et:], axis=-1)\n', (2717, 2787), True, 'import numpy as np\n'), ((2803, 2877), 'numpy.sum', 'np.sum', (['(zonal_mean[:, :s_et] * area_zonal_mean[np.newaxis, :s_et])'], {'axis': '(-1)'}), '(zonal_mean[:, :s_et] * area_zonal_mean[np.newaxis, :s_et], axis=-1)\n', (2809, 2877), True, 'import numpy as np\n'), ((6024, 6076), 'numpy.sin', 'np.sin', (['(ylat[np.newaxis, :, np.newaxis] * pi / 180.0)'], {}), '(ylat[np.newaxis, :, np.newaxis] * pi / 180.0)\n', (6030, 6076), True, 'import numpy as np\n'), ((6493, 6556), 'numpy.exp', 'np.exp', (['(unih[1:kmax - 1, np.newaxis, np.newaxis] / scale_height)'], {}), '(unih[1:kmax - 1, np.newaxis, np.newaxis] / scale_height)\n', (6499, 6556), True, 'import numpy as np\n'), ((6697, 6724), 'math.exp', 'exp', (['(unih[0] / scale_height)'], {}), '(unih[0] / scale_height)\n', (6700, 6724), False, 'from math import pi, exp\n'), ((6842, 6876), 'math.exp', 'exp', (['(unih[kmax - 1] / scale_height)'], {}), '(unih[kmax - 1] / scale_height)\n', (6845, 6876), False, 'from math import pi, exp\n'), ((5988, 6015), 'numpy.ones', 'np.ones', (['(kmax, nlat, nlon)'], {}), '((kmax, nlat, nlon))\n', (5995, 6015), True, 'import numpy as np\n'), ((6273, 6302), 'math.exp', 'exp', (['(-unih[kk] / scale_height)'], {}), '(-unih[kk] / scale_height)\n', (6276, 6302), False, 'from math import pi, exp\n'), ((6384, 6413), 'math.exp', 'exp', (['(-unih[kk] / scale_height)'], {}), '(-unih[kk] / scale_height)\n', (6387, 6413), False, 'from math import pi, exp\n')]
import numpy as np import scipy.interpolate import scipy.ndimage from sklearn.feature_extraction.image import extract_patches_2d, reconstruct_from_patches_2d def _calc_patch_grid_dims(shape, patch_size, patch_stride): x_w, x_h, x_c = shape num_rows = 1 + (x_h - patch_size) // patch_stride num_cols = 1 + (x_w - patch_size) // patch_stride return num_rows, num_cols def make_patch_grid(x, patch_size, patch_stride=1): '''x shape: (num_channels, rows, cols)''' x = x.transpose(2, 1, 0) patches = extract_patches_2d(x, (patch_size, patch_size)) x_w, x_h, x_c = x.shape num_rows, num_cols = _calc_patch_grid_dims(x.shape, patch_size, patch_stride) patches = patches.reshape((num_rows, num_cols, patch_size, patch_size, x_c)) patches = patches.transpose((0, 1, 4, 2, 3)) #patches = np.rollaxis(patches, -1, 2) return patches def combine_patches_grid(in_patches, out_shape): '''Reconstruct an image from these `patches` input shape: (rows, cols, channels, patch_row, patch_col) ''' num_rows, num_cols = in_patches.shape[:2] num_channels = in_patches.shape[-3] patch_size = in_patches.shape[-1] num_patches = num_rows * num_cols in_patches = np.reshape(in_patches, (num_patches, num_channels, patch_size, patch_size)) # (patches, channels, pr, pc) in_patches = np.transpose(in_patches, (0, 2, 3, 1)) # (patches, p, p, channels) recon = reconstruct_from_patches_2d(in_patches, out_shape) return recon.transpose(2, 1, 0).astype(np.float32) class PatchMatcher(object): '''A matcher of image patches inspired by the PatchMatch algorithm. image shape: (width, height, channels) ''' def __init__(self, input_shape, target_img, patch_size=1, patch_stride=1, jump_size=0.5, num_propagation_steps=5, num_random_steps=5, random_max_radius=1.0, random_scale=0.5): self.input_shape = input_shape self.patch_size = patch_size self.patch_stride = patch_stride self.jump_size = jump_size self.num_propagation_steps = num_propagation_steps self.num_random_steps = num_random_steps self.random_max_radius = random_max_radius self.random_scale = random_scale self.num_input_rows, self.num_input_cols = _calc_patch_grid_dims(input_shape, patch_size, patch_stride) self.target_patches = make_patch_grid(target_img, patch_size) self.target_patches_normed = self.normalize_patches(self.target_patches) self.coords = np.random.uniform(0.0, 1.0, # TODO: switch to pixels (2, self.num_input_rows, self.num_input_cols))# * [[[self.num_input_rows]],[[self.num_input_cols]]] self.similarity = np.zeros(input_shape[:2:-1], dtype=np.float32) self.min_propagration_row = 1.0 / self.num_input_rows self.min_propagration_col = 1.0 / self.num_input_cols self.delta_row = np.array([[[self.min_propagration_row]], [[0.0]]]) self.delta_col = np.array([[[0.0]], [[self.min_propagration_col]]]) def update(self, input_img, reverse_propagation=False): input_patches = self.get_patches_for(input_img) self.update_with_patches(self.normalize_patches(input_patches), reverse_propagation=reverse_propagation) def update_with_patches(self, input_patches, reverse_propagation=False): self._propagate(input_patches, reverse_propagation=reverse_propagation) self._random_update(input_patches) def get_patches_for(self, img): return make_patch_grid(img, self.patch_size); def normalize_patches(self, patches): norm = np.sqrt(np.sum(np.square(patches), axis=(2, 3, 4), keepdims=True)) return patches / norm def _propagate(self, input_patches, reverse_propagation=False): if reverse_propagation: roll_direction = 1 else: roll_direction = -1 sign = float(roll_direction) for step_i in range(self.num_propagation_steps): new_coords = self.clip_coords(np.roll(self.coords, roll_direction, 1) + self.delta_row * sign) coords_row, similarity_row = self.eval_state(new_coords, input_patches) new_coords = self.clip_coords(np.roll(self.coords, roll_direction, 2) + self.delta_col * sign) coords_col, similarity_col = self.eval_state(new_coords, input_patches) self.coords, self.similarity = self.take_best(coords_row, similarity_row, coords_col, similarity_col) def _random_update(self, input_patches): for alpha in range(1, self.num_random_steps + 1): # NOTE this should actually stop when the move is < 1 new_coords = self.clip_coords(self.coords + np.random.uniform(-self.random_max_radius, self.random_max_radius, self.coords.shape) * self.random_scale ** alpha) self.coords, self.similarity = self.eval_state(new_coords, input_patches) def eval_state(self, new_coords, input_patches): new_similarity = self.patch_similarity(input_patches, new_coords) delta_similarity = new_similarity - self.similarity coords = np.where(delta_similarity > 0, new_coords, self.coords) best_similarity = np.where(delta_similarity > 0, new_similarity, self.similarity) return coords, best_similarity def take_best(self, coords_a, similarity_a, coords_b, similarity_b): delta_similarity = similarity_a - similarity_b best_coords = np.where(delta_similarity > 0, coords_a, coords_b) best_similarity = np.where(delta_similarity > 0, similarity_a, similarity_b) return best_coords, best_similarity def patch_similarity(self, source, coords): '''Check the similarity of the patches specified in coords.''' target_vals = self.lookup_coords(self.target_patches_normed, coords) err = source * target_vals return np.sum(err, axis=(2, 3, 4)) def clip_coords(self, coords): # TODO: should this all be in pixel space? coords = np.clip(coords, 0.0, 1.0) return coords def lookup_coords(self, x, coords): x_shape = np.expand_dims(np.expand_dims(x.shape, -1), -1) i_coords = np.round(coords * (x_shape[:2] - 1)).astype('int32') return x[i_coords[0], i_coords[1]] def get_reconstruction(self, patches=None, combined=None): if combined is not None: patches = make_patch_grid(combined, self.patch_size) if patches is None: patches = self.target_patches patches = self.lookup_coords(patches, self.coords) recon = combine_patches_grid(patches, self.input_shape) return recon def scale(self, new_shape, new_target_img): '''Create a new matcher of the given shape and replace its state with a scaled up version of the current matcher's state. ''' new_matcher = PatchMatcher(new_shape, new_target_img, patch_size=self.patch_size, patch_stride=self.patch_stride, jump_size=self.jump_size, num_propagation_steps=self.num_propagation_steps, num_random_steps=self.num_random_steps, random_max_radius=self.random_max_radius, random_scale=self.random_scale) new_matcher.coords = congrid(self.coords, new_matcher.coords.shape, method='neighbour') new_matcher.similarity = congrid(self.similarity, new_matcher.coords.shape, method='neighbour') return new_matcher def congrid(a, newdims, method='linear', centre=False, minusone=False): '''Arbitrary resampling of source array to new dimension sizes. Currently only supports maintaining the same number of dimensions. To use 1-D arrays, first promote them to shape (x,1). Uses the same parameters and creates the same co-ordinate lookup points as IDL''s congrid routine, which apparently originally came from a VAX/VMS routine of the same name. method: neighbour - closest value from original data nearest and linear - uses n x 1-D interpolations using scipy.interpolate.interp1d (see Numerical Recipes for validity of use of n 1-D interpolations) spline - uses ndimage.map_coordinates centre: True - interpolation points are at the centres of the bins False - points are at the front edge of the bin minusone: For example- inarray.shape = (i,j) & new dimensions = (x,y) False - inarray is resampled by factors of (i/x) * (j/y) True - inarray is resampled by(i-1)/(x-1) * (j-1)/(y-1) This prevents extrapolation one element beyond bounds of input array. ''' if not a.dtype in [np.float64, np.float32]: a = np.cast[float](a) m1 = np.cast[int](minusone) ofs = np.cast[int](centre) * 0.5 old = np.array( a.shape ) ndims = len( a.shape ) if len( newdims ) != ndims: print("[congrid] dimensions error. " \ "This routine currently only support " \ "rebinning to the same number of dimensions.") return None newdims = np.asarray( newdims, dtype=float ) dimlist = [] if method == 'neighbour': for i in range( ndims ): base = np.indices(newdims)[i] dimlist.append( (old[i] - m1) / (newdims[i] - m1) \ * (base + ofs) - ofs ) cd = np.array( dimlist ).round().astype(int) newa = a[list( cd )] return newa elif method in ['nearest','linear']: # calculate new dims for i in range( ndims ): base = np.arange( newdims[i] ) dimlist.append( (old[i] - m1) / (newdims[i] - m1) \ * (base + ofs) - ofs ) # specify old dims olddims = [np.arange(i, dtype = np.float) for i in list( a.shape )] # first interpolation - for ndims = any mint = scipy.interpolate.interp1d( olddims[-1], a, kind=method ) newa = mint( dimlist[-1] ) trorder = [ndims - 1] + range( ndims - 1 ) for i in range( ndims - 2, -1, -1 ): newa = newa.transpose( trorder ) mint = scipy.interpolate.interp1d( olddims[i], newa, kind=method ) newa = mint( dimlist[i] ) if ndims > 1: # need one more transpose to return to original dimensions newa = newa.transpose( trorder ) return newa elif method in ['spline']: oslices = [ slice(0,j) for j in old ] oldcoords = np.ogrid[oslices] nslices = [ slice(0,j) for j in list(newdims) ] newcoords = np.mgrid[nslices] newcoords_dims = range(np.rank(newcoords)) #make first index last newcoords_dims.append(newcoords_dims.pop(0)) newcoords_tr = newcoords.transpose(newcoords_dims) # makes a view that affects newcoords newcoords_tr += ofs deltas = (np.asarray(old) - m1) / (newdims - m1) newcoords_tr *= deltas newcoords_tr -= ofs newa = scipy.ndimage.map_coordinates(a, newcoords) return newa else: print("Congrid error: Unrecognized interpolation type.\n", \ "Currently only \'neighbour\', \'nearest\',\'linear\',", \ "and \'spline\' are supported.") return None if __name__ == '__main__': import sys import time from scipy.misc import imsave from image_analogy.img_utils import load_image, preprocess_image, deprocess_image content_image_path, style_image_path, output_prefix = sys.argv[1:] jump_size = 1.0 num_steps = 7 patch_size = 1 patch_stride = 1 feat_chans = 512 feat_style_shape = (feat_chans, 12, 18) feat_style = np.random.uniform(0.0, 1.0, feat_style_shape) feat_in_shape = (feat_chans, 17, 10) feat_in = np.random.uniform(0.0, 1.0, feat_in_shape) matcher = PatchMatcher(feat_in_shape[::-1], feat_style, patch_size=patch_size) feat_in_normed = matcher.normalize_patches(matcher.get_patches_for(feat_in)) for i in range(num_steps): matcher.update_with_patches(feat_in_normed) r = matcher.get_reconstruction() content_img_img = load_image(content_image_path) content_n_channels, content_n_rows, content_n_cols = content_img_img.shape[::-1] content_img = preprocess_image(content_img_img, content_n_cols, content_n_rows)[0]#.transpose((2,1,0)) style_img = load_image(style_image_path) style_n_channels, style_n_rows, style_n_cols = content_img_img.shape[::-1] style_img = preprocess_image( load_image(style_image_path), style_n_cols, style_n_rows)[0]#.transpose((2,1,0)) pg = make_patch_grid(content_img, patch_size) result = combine_patches_grid(pg, content_img.shape[::-1]) outimg = deprocess_image(result, contrast_percent=0) imsave(output_prefix + '_bestre.png', outimg) # # # matcher = PatchMatcher((content_n_cols, content_n_rows, content_n_channels), style_img, patch_size=patch_size) for i in range(num_steps): start = time.time() matcher.update(content_img, reverse_propagation=bool(i % 2)) print(matcher.similarity.min(), matcher.similarity.max(), matcher.similarity.mean()) end = time.time() #print end-start start = time.time() result = matcher.get_reconstruction(patches=matcher.target_patches) print(result.shape) end = time.time() print(end-start) outimg = deprocess_image(result, contrast_percent=0) # # imsave takes (rows, cols, channels) imsave(output_prefix + '_best.png', outimg)
[ "numpy.clip", "sklearn.feature_extraction.image.extract_patches_2d", "numpy.array", "image_analogy.img_utils.preprocess_image", "numpy.arange", "numpy.rank", "numpy.reshape", "numpy.where", "scipy.misc.imsave", "numpy.asarray", "image_analogy.img_utils.load_image", "image_analogy.img_utils.deprocess_image", "numpy.round", "numpy.indices", "numpy.square", "numpy.transpose", "time.time", "numpy.roll", "sklearn.feature_extraction.image.reconstruct_from_patches_2d", "numpy.sum", "numpy.zeros", "numpy.expand_dims", "numpy.random.uniform" ]
[((527, 574), 'sklearn.feature_extraction.image.extract_patches_2d', 'extract_patches_2d', (['x', '(patch_size, patch_size)'], {}), '(x, (patch_size, patch_size))\n', (545, 574), False, 'from sklearn.feature_extraction.image import extract_patches_2d, reconstruct_from_patches_2d\n'), ((1228, 1303), 'numpy.reshape', 'np.reshape', (['in_patches', '(num_patches, num_channels, patch_size, patch_size)'], {}), '(in_patches, (num_patches, num_channels, patch_size, patch_size))\n', (1238, 1303), True, 'import numpy as np\n'), ((1352, 1390), 'numpy.transpose', 'np.transpose', (['in_patches', '(0, 2, 3, 1)'], {}), '(in_patches, (0, 2, 3, 1))\n', (1364, 1390), True, 'import numpy as np\n'), ((1431, 1481), 'sklearn.feature_extraction.image.reconstruct_from_patches_2d', 'reconstruct_from_patches_2d', (['in_patches', 'out_shape'], {}), '(in_patches, out_shape)\n', (1458, 1481), False, 'from sklearn.feature_extraction.image import extract_patches_2d, reconstruct_from_patches_2d\n'), ((8773, 8790), 'numpy.array', 'np.array', (['a.shape'], {}), '(a.shape)\n', (8781, 8790), True, 'import numpy as np\n'), ((9049, 9081), 'numpy.asarray', 'np.asarray', (['newdims'], {'dtype': 'float'}), '(newdims, dtype=float)\n', (9059, 9081), True, 'import numpy as np\n'), ((11676, 11721), 'numpy.random.uniform', 'np.random.uniform', (['(0.0)', '(1.0)', 'feat_style_shape'], {}), '(0.0, 1.0, feat_style_shape)\n', (11693, 11721), True, 'import numpy as np\n'), ((11777, 11819), 'numpy.random.uniform', 'np.random.uniform', (['(0.0)', '(1.0)', 'feat_in_shape'], {}), '(0.0, 1.0, feat_in_shape)\n', (11794, 11819), True, 'import numpy as np\n'), ((12127, 12157), 'image_analogy.img_utils.load_image', 'load_image', (['content_image_path'], {}), '(content_image_path)\n', (12137, 12157), False, 'from image_analogy.img_utils import load_image, preprocess_image, deprocess_image\n'), ((12366, 12394), 'image_analogy.img_utils.load_image', 'load_image', (['style_image_path'], {}), '(style_image_path)\n', (12376, 12394), False, 'from image_analogy.img_utils import load_image, preprocess_image, deprocess_image\n'), ((12724, 12767), 'image_analogy.img_utils.deprocess_image', 'deprocess_image', (['result'], {'contrast_percent': '(0)'}), '(result, contrast_percent=0)\n', (12739, 12767), False, 'from image_analogy.img_utils import load_image, preprocess_image, deprocess_image\n'), ((12772, 12817), 'scipy.misc.imsave', 'imsave', (["(output_prefix + '_bestre.png')", 'outimg'], {}), "(output_prefix + '_bestre.png', outimg)\n", (12778, 12817), False, 'from scipy.misc import imsave\n'), ((13228, 13239), 'time.time', 'time.time', ([], {}), '()\n', (13237, 13239), False, 'import time\n'), ((13346, 13357), 'time.time', 'time.time', ([], {}), '()\n', (13355, 13357), False, 'import time\n'), ((13392, 13435), 'image_analogy.img_utils.deprocess_image', 'deprocess_image', (['result'], {'contrast_percent': '(0)'}), '(result, contrast_percent=0)\n', (13407, 13435), False, 'from image_analogy.img_utils import load_image, preprocess_image, deprocess_image\n'), ((13484, 13527), 'scipy.misc.imsave', 'imsave', (["(output_prefix + '_best.png')", 'outimg'], {}), "(output_prefix + '_best.png', outimg)\n", (13490, 13527), False, 'from scipy.misc import imsave\n'), ((2520, 2594), 'numpy.random.uniform', 'np.random.uniform', (['(0.0)', '(1.0)', '(2, self.num_input_rows, self.num_input_cols)'], {}), '(0.0, 1.0, (2, self.num_input_rows, self.num_input_cols))\n', (2537, 2594), True, 'import numpy as np\n'), ((2712, 2758), 'numpy.zeros', 'np.zeros', (['input_shape[:2:-1]'], {'dtype': 'np.float32'}), '(input_shape[:2:-1], dtype=np.float32)\n', (2720, 2758), True, 'import numpy as np\n'), ((2908, 2958), 'numpy.array', 'np.array', (['[[[self.min_propagration_row]], [[0.0]]]'], {}), '([[[self.min_propagration_row]], [[0.0]]])\n', (2916, 2958), True, 'import numpy as np\n'), ((2984, 3034), 'numpy.array', 'np.array', (['[[[0.0]], [[self.min_propagration_col]]]'], {}), '([[[0.0]], [[self.min_propagration_col]]])\n', (2992, 3034), True, 'import numpy as np\n'), ((5102, 5157), 'numpy.where', 'np.where', (['(delta_similarity > 0)', 'new_coords', 'self.coords'], {}), '(delta_similarity > 0, new_coords, self.coords)\n', (5110, 5157), True, 'import numpy as np\n'), ((5184, 5247), 'numpy.where', 'np.where', (['(delta_similarity > 0)', 'new_similarity', 'self.similarity'], {}), '(delta_similarity > 0, new_similarity, self.similarity)\n', (5192, 5247), True, 'import numpy as np\n'), ((5438, 5488), 'numpy.where', 'np.where', (['(delta_similarity > 0)', 'coords_a', 'coords_b'], {}), '(delta_similarity > 0, coords_a, coords_b)\n', (5446, 5488), True, 'import numpy as np\n'), ((5515, 5573), 'numpy.where', 'np.where', (['(delta_similarity > 0)', 'similarity_a', 'similarity_b'], {}), '(delta_similarity > 0, similarity_a, similarity_b)\n', (5523, 5573), True, 'import numpy as np\n'), ((5865, 5892), 'numpy.sum', 'np.sum', (['err'], {'axis': '(2, 3, 4)'}), '(err, axis=(2, 3, 4))\n', (5871, 5892), True, 'import numpy as np\n'), ((5997, 6022), 'numpy.clip', 'np.clip', (['coords', '(0.0)', '(1.0)'], {}), '(coords, 0.0, 1.0)\n', (6004, 6022), True, 'import numpy as np\n'), ((12261, 12326), 'image_analogy.img_utils.preprocess_image', 'preprocess_image', (['content_img_img', 'content_n_cols', 'content_n_rows'], {}), '(content_img_img, content_n_cols, content_n_rows)\n', (12277, 12326), False, 'from image_analogy.img_utils import load_image, preprocess_image, deprocess_image\n'), ((12991, 13002), 'time.time', 'time.time', ([], {}), '()\n', (13000, 13002), False, 'import time\n'), ((13179, 13190), 'time.time', 'time.time', ([], {}), '()\n', (13188, 13190), False, 'import time\n'), ((6119, 6146), 'numpy.expand_dims', 'np.expand_dims', (['x.shape', '(-1)'], {}), '(x.shape, -1)\n', (6133, 6146), True, 'import numpy as np\n'), ((12517, 12545), 'image_analogy.img_utils.load_image', 'load_image', (['style_image_path'], {}), '(style_image_path)\n', (12527, 12545), False, 'from image_analogy.img_utils import load_image, preprocess_image, deprocess_image\n'), ((3630, 3648), 'numpy.square', 'np.square', (['patches'], {}), '(patches)\n', (3639, 3648), True, 'import numpy as np\n'), ((6171, 6207), 'numpy.round', 'np.round', (['(coords * (x_shape[:2] - 1))'], {}), '(coords * (x_shape[:2] - 1))\n', (6179, 6207), True, 'import numpy as np\n'), ((9184, 9203), 'numpy.indices', 'np.indices', (['newdims'], {}), '(newdims)\n', (9194, 9203), True, 'import numpy as np\n'), ((9547, 9568), 'numpy.arange', 'np.arange', (['newdims[i]'], {}), '(newdims[i])\n', (9556, 9568), True, 'import numpy as np\n'), ((9732, 9760), 'numpy.arange', 'np.arange', (['i'], {'dtype': 'np.float'}), '(i, dtype=np.float)\n', (9741, 9760), True, 'import numpy as np\n'), ((4026, 4065), 'numpy.roll', 'np.roll', (['self.coords', 'roll_direction', '(1)'], {}), '(self.coords, roll_direction, 1)\n', (4033, 4065), True, 'import numpy as np\n'), ((4217, 4256), 'numpy.roll', 'np.roll', (['self.coords', 'roll_direction', '(2)'], {}), '(self.coords, roll_direction, 2)\n', (4224, 4256), True, 'import numpy as np\n'), ((10607, 10625), 'numpy.rank', 'np.rank', (['newcoords'], {}), '(newcoords)\n', (10614, 10625), True, 'import numpy as np\n'), ((4695, 4785), 'numpy.random.uniform', 'np.random.uniform', (['(-self.random_max_radius)', 'self.random_max_radius', 'self.coords.shape'], {}), '(-self.random_max_radius, self.random_max_radius, self.\n coords.shape)\n', (4712, 4785), True, 'import numpy as np\n'), ((9335, 9352), 'numpy.array', 'np.array', (['dimlist'], {}), '(dimlist)\n', (9343, 9352), True, 'import numpy as np\n'), ((10864, 10879), 'numpy.asarray', 'np.asarray', (['old'], {}), '(old)\n', (10874, 10879), True, 'import numpy as np\n')]
#!/usr/bin/env python3 import socket, threading from queue import Queue import sys, struct # NOTE: Use this path to create the UDS Server socket SERVER_SOCKET_PATH = "./socket"; class Result: def __init__(self): self._evt = threading.Event() self._result = None def set_result(self, value): self._result = value self._evt.set() def result(self): self._evt.wait() return self._result class ActorExit(Exception): pass class Actor(object): def __init__(self): self._mailbox = Queue() def send(self, msg): self._mailbox.put(msg) def recv(self): msg = self._mailbox.get() if msg is ActorExit: raise ActorExit() return msg def close(self): self.send(ActorExit) def start(self): self._terminated = threading.Event() t = threading.Thread(target=self._bootstrap) t.daemon = True t.start() def _bootstrap(self): try: self.run() except ActorExit: pass finally: self._terminated.set() def join(self): self._terminated.wait() def run(self): while True: msg = self.recv() class Worker(Actor): def __init__(self): super().__init__() self.db = {} def submit(self, values): r = Result() self.send((values, r)) return r def run(self): while True: values, r = self.recv() r.set_result(self.execute(values)) def execute(self, values): cmd, *opts = values print('[*]', cmd, opts) if cmd == 1: #add s, k, v = opts self.db.setdefault(s, {}) self.db[s][k] = v return [0] elif cmd == 2: #remove s, k = opts if s in self.db and k in self.db[s]: self.db[s].pop(k) return [0] elif cmd == 3: #get size s = opts[0] size = len(self.db[s]) if s in self.db else 0 return [1, size] elif cmd == 4: #get value s, k = opts if s in self.db and k in self.db[s]: score = self.db[s][k] else: score = 0 return [1, score] elif cmd == 5: #range *sets, _, lower, upper = opts res = [] for s in sets: if s not in self.db: continue for k,v in self.db[s].items(): if lower <= v <= upper: res.append((k,v)) res.sort() return [len(res)*2] + [e for kv in res for e in kv] elif cmd == 6: #disconnect return None else: raise Exception("Not supported CMD(%s)" % (cmd)) FMT = "!L" def read_number_from_socket(connection): return struct.unpack(FMT, connection.recv(4))[0] def write_number_to_socket(connection, number): connection.send(struct.pack(FMT, number)) def process_client_connection(connection, worker): while True: value_num = read_number_from_socket(connection) values = [] for _ in range(value_num): values.append(read_number_from_socket(connection)) res = worker.submit(values) if res.result() == None: break for num in res.result(): write_number_to_socket(connection, num) connection.close() def main(): worker = Worker() worker.start() s = socket.socket(socket.AF_UNIX) s.bind(SERVER_SOCKET_PATH) s.listen(1) while True: cl, addr = s.accept() t = threading.Thread(target = process_client_connection, args=(cl, worker)) t.start() #worker.close() s.close() if __name__ == '__main__': main()
[ "socket.socket", "struct.pack", "threading.Event", "threading.Thread", "queue.Queue" ]
[((3692, 3721), 'socket.socket', 'socket.socket', (['socket.AF_UNIX'], {}), '(socket.AF_UNIX)\n', (3705, 3721), False, 'import socket, threading\n'), ((239, 256), 'threading.Event', 'threading.Event', ([], {}), '()\n', (254, 256), False, 'import socket, threading\n'), ((564, 571), 'queue.Queue', 'Queue', ([], {}), '()\n', (569, 571), False, 'from queue import Queue\n'), ((886, 903), 'threading.Event', 'threading.Event', ([], {}), '()\n', (901, 903), False, 'import socket, threading\n'), ((916, 956), 'threading.Thread', 'threading.Thread', ([], {'target': 'self._bootstrap'}), '(target=self._bootstrap)\n', (932, 956), False, 'import socket, threading\n'), ((3114, 3138), 'struct.pack', 'struct.pack', (['FMT', 'number'], {}), '(FMT, number)\n', (3125, 3138), False, 'import sys, struct\n'), ((3827, 3896), 'threading.Thread', 'threading.Thread', ([], {'target': 'process_client_connection', 'args': '(cl, worker)'}), '(target=process_client_connection, args=(cl, worker))\n', (3843, 3896), False, 'import socket, threading\n')]
""" Calibrate with the ROS package aruco_detect """ import rospy import roslib from geometry_msgs.msg import Transform class ROSArUcoCalibrate: def __init__(self, aruco_tag_len=0.0795): print("Please roslaunch roslaunch aruco_detect aruco_detect.launch before you run!") self.aruco_tf_topic = "/fiducial_transforms" self._aruco_tf_info_sub = rospy.Subscriber(self.aruco_tf_topic, Transform, self._tfCb) self.aruco_tf = None def _tfCb(self, tf_msg): if tf_msg is None: rospy.logwarn("_tfCb: tf_msg is None!") self.aruco_tf = tf_msg def get_tf(self): aruco_tf = self.aruco_tf return aruco_tf
[ "rospy.Subscriber", "rospy.logwarn" ]
[((374, 434), 'rospy.Subscriber', 'rospy.Subscriber', (['self.aruco_tf_topic', 'Transform', 'self._tfCb'], {}), '(self.aruco_tf_topic, Transform, self._tfCb)\n', (390, 434), False, 'import rospy\n'), ((533, 572), 'rospy.logwarn', 'rospy.logwarn', (['"""_tfCb: tf_msg is None!"""'], {}), "('_tfCb: tf_msg is None!')\n", (546, 572), False, 'import rospy\n')]
from __future__ import absolute_import __author__ = 'marafi' def SolutionAlgorithim(OData, Dt, Tol, Steps): #Insert within the While loop, make sure parameter "ok" is defined import OpenSeesAPI OData.AddObject(OpenSeesAPI.TCL.TCLScript('if {$ok != 0} {')) OData.AddObject(OpenSeesAPI.TCL.TCLScript('puts "Trying Lower Dt: %f and Tol: %f ... "'%(Dt,Tol))) OData.AddObject(OpenSeesAPI.TCL.TCLScript('puts "Trying Newton Line Search ... "')) OData.AddObject(OpenSeesAPI.Analysis.Test.EnergyIncr(Tol,1000,0)) OData.AddObject(OpenSeesAPI.Analysis.Algorithm.NewtonLineSearch(Tolerance=0.8)) OData.AddObject(OpenSeesAPI.TCL.TCLScript('set ok [analyze %d %f ]'%(Steps,Dt))) OData.AddObject(OpenSeesAPI.TCL.TCLScript('}')) OData.AddObject(OpenSeesAPI.TCL.TCLScript('if {$ok != 0} {')) OData.AddObject(OpenSeesAPI.TCL.TCLScript('puts "Trying Newton with Initial Tangent ... "')) OData.AddObject(OpenSeesAPI.Analysis.Test.NormDispIncr(Tol,1000,0)) OData.AddObject(OpenSeesAPI.Analysis.Algorithm.Newton(Initial=True)) OData.AddObject(OpenSeesAPI.TCL.TCLScript('set ok [analyze %d %f ]'%(Steps,Dt))) OData.AddObject(OpenSeesAPI.TCL.TCLScript('}')) OData.AddObject(OpenSeesAPI.TCL.TCLScript('if {$ok != 0} {')) OData.AddObject(OpenSeesAPI.TCL.TCLScript('puts "Trying Broyden ... "')) OData.AddObject(OpenSeesAPI.Analysis.Test.EnergyIncr(Tol,1000,0)) OData.AddObject(OpenSeesAPI.Analysis.Algorithm.Broyden(8)) OData.AddObject(OpenSeesAPI.TCL.TCLScript('set ok [analyze %d %f ]'%(Steps,Dt))) OData.AddObject(OpenSeesAPI.TCL.TCLScript('}')) OData.AddObject(OpenSeesAPI.TCL.TCLScript('if {$ok != 0} {')) OData.AddObject(OpenSeesAPI.TCL.TCLScript('puts "Trying KrylovNewton ... "')) OData.AddObject(OpenSeesAPI.Analysis.Test.EnergyIncr(Tol,1000,0)) OData.AddObject(OpenSeesAPI.Analysis.Algorithm.KrylovNewton()) OData.AddObject(OpenSeesAPI.TCL.TCLScript('set ok [analyze %d %f ]'%(Steps,Dt))) OData.AddObject(OpenSeesAPI.TCL.TCLScript('}')) def SolutionAlgorithimV2(OData, Dt, Tol, Steps): #Insert within the While loop, make sure parameter "ok" is defined import OpenSeesAPI OData.AddObject(OpenSeesAPI.TCL.TCLScript('if {$ok != 0} {')) OData.AddObject(OpenSeesAPI.TCL.TCLScript('puts "Trying Lower Dt: %f and Tol: %f ... "'%(Dt,Tol))) OData.AddObject(OpenSeesAPI.TCL.TCLScript('puts "Trying Krylov... "')) OData.AddObject(OpenSeesAPI.Analysis.Test.EnergyIncr(Tol,1000,0)) OData.AddObject(OpenSeesAPI.Analysis.Algorithm.KrylovNewton(MaxDim = 6)) OData.AddObject(OpenSeesAPI.TCL.TCLScript('set ok [analyze %d %f ]'%(Steps,Dt))) OData.AddObject(OpenSeesAPI.TCL.TCLScript('}')) OData.AddObject(OpenSeesAPI.TCL.TCLScript('if {$ok != 0} {')) OData.AddObject(OpenSeesAPI.TCL.TCLScript('puts "Trying NewtonLineSearch... "')) OData.AddObject(OpenSeesAPI.Analysis.Test.NormDispIncr(Tol,1000,0)) OData.AddObject(OpenSeesAPI.Analysis.Algorithm.NewtonLineSearch(Tolerance=0.8)) OData.AddObject(OpenSeesAPI.TCL.TCLScript('set ok [analyze %d %f ]'%(Steps,Dt))) OData.AddObject(OpenSeesAPI.TCL.TCLScript('}')) OData.AddObject(OpenSeesAPI.TCL.TCLScript('if {$ok != 0} {')) OData.AddObject(OpenSeesAPI.TCL.TCLScript('puts "Trying NewtonLineSearch Bisection... "')) OData.AddObject(OpenSeesAPI.Analysis.Test.EnergyIncr(Tol,1000,0)) OData.AddObject(OpenSeesAPI.Analysis.Algorithm.NewtonLineSearch('Bisection')) OData.AddObject(OpenSeesAPI.TCL.TCLScript('set ok [analyze %d %f ]'%(Steps,Dt))) OData.AddObject(OpenSeesAPI.TCL.TCLScript('}')) OData.AddObject(OpenSeesAPI.TCL.TCLScript('if {$ok != 0} {')) OData.AddObject(OpenSeesAPI.TCL.TCLScript('puts "Trying NewtonLineSearch Secant... "')) OData.AddObject(OpenSeesAPI.Analysis.Test.EnergyIncr(Tol,1000,0)) OData.AddObject(OpenSeesAPI.Analysis.Algorithm.NewtonLineSearch('Secant')) OData.AddObject(OpenSeesAPI.TCL.TCLScript('set ok [analyze %d %f ]'%(Steps,Dt))) OData.AddObject(OpenSeesAPI.TCL.TCLScript('}')) OData.AddObject(OpenSeesAPI.TCL.TCLScript('if {$ok != 0} {')) OData.AddObject(OpenSeesAPI.TCL.TCLScript('puts "Trying NewtonLineSearch RegulaFalsi... "')) OData.AddObject(OpenSeesAPI.Analysis.Test.EnergyIncr(Tol,1000,0)) OData.AddObject(OpenSeesAPI.Analysis.Algorithm.NewtonLineSearch('RegulaFalsi')) OData.AddObject(OpenSeesAPI.TCL.TCLScript('set ok [analyze %d %f ]'%(Steps,Dt))) OData.AddObject(OpenSeesAPI.TCL.TCLScript('}')) def SolutionAlgorithimKrylovOnly(OData, Dt, Tol, Steps, MaxDim = 6): #Insert within the While loop, make sure parameter "ok" is defined import OpenSeesAPI OData.AddObject(OpenSeesAPI.TCL.TCLScript('if {$ok != 0} {')) OData.AddObject(OpenSeesAPI.TCL.TCLScript('puts "Trying Lower Dt: %e and Tol: %e ... "'%(Dt,Tol))) OData.AddObject(OpenSeesAPI.TCL.TCLScript('puts "Trying Krylov... "')) OData.AddObject(OpenSeesAPI.Analysis.Test.NormDispIncr(Tol, 1000, 2)) # OData.AddObject(OpenSeesAPI.Analysis.Test.EnergyIncr(Tol,1000,0)) OData.AddObject(OpenSeesAPI.Analysis.Algorithm.KrylovNewton(MaxDim = MaxDim)) OData.AddObject(OpenSeesAPI.TCL.TCLScript('set ok [analyze %d %e ]'%(Steps,Dt))) OData.AddObject(OpenSeesAPI.TCL.TCLScript('}')) def SenSolutionAlgorithim(OData, Dt, Steps, Tol = 1e-12, KrylovMaxDim = 12, MinDt = 1e-12, NoOfIterations=3000): import OpenSeesAPI OData.AddObject(OpenSeesAPI.TCL.TCLScript('set conv_tol %e'%Tol)) OData.AddObject(OpenSeesAPI.TCL.TCLScript('set max_iter %d;'%NoOfIterations)) OData.AddObject(OpenSeesAPI.Analysis.Test.NormDispIncr(Tol, 3000, 0)) # OData.AddObject(OpenSeesAPI.TCL.TCLScript('test EnergyIncr $conv_tol $max_iter;')) # OData.AddObject(OpenSeesAPI.TCL.TCLScript('algorithm Newton;')) # OData.AddObject(OpenSeesAPI.TCL.TCLScript('integrator Newmark 0.5 0.25;')) # OData.AddObject(OpenSeesAPI.TCL.TCLScript('analysis Transient;')) OData.AddObject(OpenSeesAPI.TCL.TCLScript('set dt %e;'%Dt)) OData.AddObject(OpenSeesAPI.TCL.TCLScript('set min_dt %e;'%MinDt)) OData.AddObject(OpenSeesAPI.TCL.TCLScript('set n_steps %d;'%Steps)) OData.AddObject(OpenSeesAPI.TCL.TCLScript('set cur_step 1;')) OData.AddObject(OpenSeesAPI.TCL.TCLScript('set div 10.0;')) OData.AddObject(OpenSeesAPI.TCL.TCLScript('set tol 1.0e-12;')) # OData.AddObject(OpenSeesAPI.TCL.TCLScript('set eigenvalue [eigen 9];')) # OData.AddObject(OpenSeesAPI.TCL.TCLScript('modalDamping 0.02;')) OData.AddObject(OpenSeesAPI.TCL.TCLScript('while {$cur_step < $n_steps} {')) OData.AddObject(OpenSeesAPI.Analysis.Test.NormDispIncr(Tol, NoOfIterations, 0)) # OData.AddObject(OpenSeesAPI.TCL.TCLScript(' test EnergyIncr $conv_tol $max_iter;')) OData.AddObject(OpenSeesAPI.TCL.TCLScript(' algorithm Newton;')) OData.AddObject(OpenSeesAPI.TCL.TCLScript(' set ok [analyze 1 $dt];')) OData.AddObject(OpenSeesAPI.TCL.TCLScript(' if {$ok != 0} {')) OData.AddObject(OpenSeesAPI.TCL.TCLScript(' set dt_temp [expr $dt];')) OData.AddObject(OpenSeesAPI.TCL.TCLScript(' puts "> analysis failed to converge at step $cur_step";')) OData.AddObject(OpenSeesAPI.TCL.TCLScript(' puts "> trying KrylovNewton";')) OData.AddObject(OpenSeesAPI.TCL.TCLScript(' algorithm KrylovNewton -maxDim %d;'%KrylovMaxDim)) OData.AddObject(OpenSeesAPI.TCL.TCLScript(' set ok [analyze 1 $dt];')) OData.AddObject(OpenSeesAPI.TCL.TCLScript(' if {$ok != 0} {')) OData.AddObject(OpenSeesAPI.TCL.TCLScript(' set t 0.0;')) OData.AddObject(OpenSeesAPI.TCL.TCLScript(' set mini_t 0.0;')) OData.AddObject(OpenSeesAPI.TCL.TCLScript(' set dt_temp [expr round($dt/$div/$tol)*$tol];')) OData.AddObject(OpenSeesAPI.TCL.TCLScript(' set mini_dt_temp 0.0;')) OData.AddObject(OpenSeesAPI.TCL.TCLScript(' while {$t < $dt} {')) OData.AddObject(OpenSeesAPI.TCL.TCLScript(' if {$dt_temp < $min_dt} {')) OData.AddObject(OpenSeesAPI.TCL.TCLScript(' puts "<< model did not converge (reason: time step less than $min_dt)";')) OData.AddObject(OpenSeesAPI.TCL.TCLScript(' puts "<< exiting safely";')) OData.AddObject(OpenSeesAPI.TCL.TCLScript(' wipe;')) OData.AddObject(OpenSeesAPI.TCL.TCLScript(' exit;')) OData.AddObject(OpenSeesAPI.TCL.TCLScript(' };')) OData.AddObject(OpenSeesAPI.TCL.TCLScript(' if {$dt_temp < [expr $dt/pow($div, 2)]} {')) OData.AddObject(OpenSeesAPI.Analysis.Test.NormDispIncr(Tol*10, NoOfIterations, 0)) # OData.AddObject(OpenSeesAPI.TCL.TCLScript(' test EnergyIncr [expr $conv_tol*10.0] $max_iter;')) OData.AddObject(OpenSeesAPI.TCL.TCLScript(' };')) OData.AddObject(OpenSeesAPI.TCL.TCLScript(' set ok [analyze 1 $dt_temp];')) OData.AddObject(OpenSeesAPI.TCL.TCLScript(' if {$ok == 0} {')) OData.AddObject(OpenSeesAPI.TCL.TCLScript(' set t [expr round(($t + $dt_temp)/$tol)*$tol];')) OData.AddObject(OpenSeesAPI.TCL.TCLScript(' set mini_t [expr round(($mini_t + $dt_temp)/$tol)*$tol];')) OData.AddObject(OpenSeesAPI.TCL.TCLScript(' if {$mini_t >= $mini_dt_temp} {set dt_temp [expr round($dt_temp*$div/$tol)*$tol]};')) OData.AddObject(OpenSeesAPI.TCL.TCLScript(' } else {')) OData.AddObject(OpenSeesAPI.TCL.TCLScript(' set mini_t 0.0;')) OData.AddObject(OpenSeesAPI.TCL.TCLScript(' set mini_dt_temp [expr round($dt_temp/$tol)*$tol];')) OData.AddObject(OpenSeesAPI.TCL.TCLScript(' set dt_temp [expr round($dt_temp/$div/$tol)*$tol];')) OData.AddObject(OpenSeesAPI.TCL.TCLScript(' };')) OData.AddObject(OpenSeesAPI.TCL.TCLScript(' };')) OData.AddObject(OpenSeesAPI.TCL.TCLScript(' };')) OData.AddObject(OpenSeesAPI.TCL.TCLScript(' };')) OData.AddObject(OpenSeesAPI.TCL.TCLScript(' if {$cur_step % 1 == 0} {')) OData.AddObject(OpenSeesAPI.TCL.TCLScript(' puts "Running Tim History Step: $cur_step out of %d (Sen Algo.)";'%Steps)) OData.AddObject(OpenSeesAPI.TCL.TCLScript(' };')) OData.AddObject(OpenSeesAPI.TCL.TCLScript(' incr cur_step;')) OData.AddObject(OpenSeesAPI.TCL.TCLScript('};')) def PushOverSolutionAlgorithim(OData, StepSize, Tol, ControlNode): #Insert within the While loop, make sure parameter "ok" is defined import OpenSeesAPI OData.AddObject(OpenSeesAPI.TCL.TCLScript('if {$ok != 0} {')) OData.AddObject(OpenSeesAPI.TCL.TCLScript('puts "Trying Smaller Step: %f and Tol: %f ... "'%(StepSize,Tol))) OData.AddObject(OpenSeesAPI.Analysis.Integrator.Static.DisplacementControl(ControlNode, 1, StepSize)) OData.AddObject(OpenSeesAPI.TCL.TCLScript('}')) OData.AddObject(OpenSeesAPI.TCL.TCLScript('if {$ok != 0} {')) OData.AddObject(OpenSeesAPI.TCL.TCLScript('puts "Trying KrylovNewton ... "')) OData.AddObject(OpenSeesAPI.Analysis.Test.EnergyIncr(Tol,1000,0)) OData.AddObject(OpenSeesAPI.Analysis.Algorithm.KrylovNewton()) OData.AddObject(OpenSeesAPI.TCL.TCLScript('set ok [analyze 1]')) OData.AddObject(OpenSeesAPI.TCL.TCLScript('}')) OData.AddObject(OpenSeesAPI.TCL.TCLScript('if {$ok != 0} {')) OData.AddObject(OpenSeesAPI.TCL.TCLScript('puts "Trying Newton Line Search ... "')) OData.AddObject(OpenSeesAPI.Analysis.Test.EnergyIncr(Tol,1000,0)) OData.AddObject(OpenSeesAPI.Analysis.Algorithm.NewtonLineSearch(Tolerance=0.8)) OData.AddObject(OpenSeesAPI.TCL.TCLScript('set ok [analyze 1]')) OData.AddObject(OpenSeesAPI.TCL.TCLScript('}')) # OData.AddObject(OpenSeesAPI.TCL.TCLScript('if {$ok != 0} {')) # OData.AddObject(OpenSeesAPI.TCL.TCLScript('puts "Trying Newton with Initial Tangent ... "')) # OData.AddObject(OpenSeesAPI.Analysis.Test.NormDispIncr(Tol,1000,0)) # OData.AddObject(OpenSeesAPI.Analysis.Algorithm.Newton(Initial=True)) # OData.AddObject(OpenSeesAPI.TCL.TCLScript('set ok [analyze 1]')) # OData.AddObject(OpenSeesAPI.TCL.TCLScript('}')) # # OData.AddObject(OpenSeesAPI.TCL.TCLScript('if {$ok != 0} {')) # OData.AddObject(OpenSeesAPI.TCL.TCLScript('puts "Trying Broyden ... "')) # OData.AddObject(OpenSeesAPI.Analysis.Test.EnergyIncr(Tol,1000,0)) # OData.AddObject(OpenSeesAPI.Analysis.Algorithm.Broyden(8)) # OData.AddObject(OpenSeesAPI.TCL.TCLScript('set ok [analyze 1]')) # OData.AddObject(OpenSeesAPI.TCL.TCLScript('}')) OData.AddObject(OpenSeesAPI.TCL.TCLScript('if {$ok != 0} {')) OData.AddObject(OpenSeesAPI.TCL.TCLScript('puts "Trying Newton Line Search BiSection ... "')) OData.AddObject(OpenSeesAPI.Analysis.Test.EnergyIncr(Tol,1000,0)) OData.AddObject(OpenSeesAPI.Analysis.Algorithm.NewtonLineSearch('Bisection')) OData.AddObject(OpenSeesAPI.TCL.TCLScript('set ok [analyze 1]')) OData.AddObject(OpenSeesAPI.TCL.TCLScript('}')) OData.AddObject(OpenSeesAPI.TCL.TCLScript('if {$ok != 0} {')) OData.AddObject(OpenSeesAPI.TCL.TCLScript('puts "Trying Newton Line Search Secant... "')) OData.AddObject(OpenSeesAPI.Analysis.Test.EnergyIncr(Tol,1000,0)) OData.AddObject(OpenSeesAPI.Analysis.Algorithm.NewtonLineSearch('Secant')) OData.AddObject(OpenSeesAPI.TCL.TCLScript('set ok [analyze 1]')) OData.AddObject(OpenSeesAPI.TCL.TCLScript('}')) OData.AddObject(OpenSeesAPI.TCL.TCLScript('if {$ok != 0} {')) OData.AddObject(OpenSeesAPI.TCL.TCLScript('puts "Trying Newton Line Search RegulaFalsi ... "')) OData.AddObject(OpenSeesAPI.Analysis.Test.EnergyIncr(Tol,1000,0)) OData.AddObject(OpenSeesAPI.Analysis.Algorithm.NewtonLineSearch('RegulaFalsi')) OData.AddObject(OpenSeesAPI.TCL.TCLScript('set ok [analyze 1]')) OData.AddObject(OpenSeesAPI.TCL.TCLScript('}')) def PushOverSolutionAlgorithimDispIncr(OData, StepSize, Tol, ControlNode): #Insert within the While loop, make sure parameter "ok" is defined import OpenSeesAPI OData.AddObject(OpenSeesAPI.TCL.TCLScript('if {$ok != 0} {')) OData.AddObject(OpenSeesAPI.TCL.TCLScript('puts "Trying Smaller Step: %f and Tol: %f ... "'%(StepSize,Tol))) OData.AddObject(OpenSeesAPI.Analysis.Integrator.Static.DisplacementControl(ControlNode, 1, StepSize)) OData.AddObject(OpenSeesAPI.TCL.TCLScript('}')) OData.AddObject(OpenSeesAPI.TCL.TCLScript('if {$ok != 0} {')) OData.AddObject(OpenSeesAPI.TCL.TCLScript('puts "Trying KrylovNewton ... "')) OData.AddObject(OpenSeesAPI.Analysis.Test.NormDispIncr(Tol,1000,0)) OData.AddObject(OpenSeesAPI.Analysis.Algorithm.KrylovNewton()) OData.AddObject(OpenSeesAPI.TCL.TCLScript('set ok [analyze 1]')) OData.AddObject(OpenSeesAPI.TCL.TCLScript('}')) OData.AddObject(OpenSeesAPI.TCL.TCLScript('if {$ok != 0} {')) OData.AddObject(OpenSeesAPI.TCL.TCLScript('puts "Trying Newton Line Search ... "')) OData.AddObject(OpenSeesAPI.Analysis.Test.NormDispIncr(Tol,1000,0)) OData.AddObject(OpenSeesAPI.Analysis.Algorithm.NewtonLineSearch(Tolerance=0.8)) OData.AddObject(OpenSeesAPI.TCL.TCLScript('set ok [analyze 1]')) OData.AddObject(OpenSeesAPI.TCL.TCLScript('}')) OData.AddObject(OpenSeesAPI.TCL.TCLScript('if {$ok != 0} {')) OData.AddObject(OpenSeesAPI.TCL.TCLScript('puts "Trying Newton Line Search BiSection ... "')) OData.AddObject(OpenSeesAPI.Analysis.Test.NormDispIncr(Tol,1000,0)) OData.AddObject(OpenSeesAPI.Analysis.Algorithm.NewtonLineSearch('Bisection')) OData.AddObject(OpenSeesAPI.TCL.TCLScript('set ok [analyze 1]')) OData.AddObject(OpenSeesAPI.TCL.TCLScript('}')) OData.AddObject(OpenSeesAPI.TCL.TCLScript('if {$ok != 0} {')) OData.AddObject(OpenSeesAPI.TCL.TCLScript('puts "Trying Newton Line Search Secant... "')) OData.AddObject(OpenSeesAPI.Analysis.Test.NormDispIncr(Tol,1000,0)) OData.AddObject(OpenSeesAPI.Analysis.Algorithm.NewtonLineSearch('Secant')) OData.AddObject(OpenSeesAPI.TCL.TCLScript('set ok [analyze 1]')) OData.AddObject(OpenSeesAPI.TCL.TCLScript('}')) OData.AddObject(OpenSeesAPI.TCL.TCLScript('if {$ok != 0} {')) OData.AddObject(OpenSeesAPI.TCL.TCLScript('puts "Trying Newton Line Search RegulaFalsi ... "')) OData.AddObject(OpenSeesAPI.Analysis.Test.NormDispIncr(Tol,1000,0)) OData.AddObject(OpenSeesAPI.Analysis.Algorithm.NewtonLineSearch('RegulaFalsi')) OData.AddObject(OpenSeesAPI.TCL.TCLScript('set ok [analyze 1]')) OData.AddObject(OpenSeesAPI.TCL.TCLScript('}')) def PushOverSolutionAlgorithimConstantAlgorithm(OData, StepSize, Tol, ControlNode, Iter=1000): import OpenSeesAPI OData.AddObject(OpenSeesAPI.TCL.TCLScript('if {$ok != 0} {')) OData.AddObject(OpenSeesAPI.TCL.TCLScript('puts "Trying Smaller Step: %f and Tol: %f ... "'%(StepSize,Tol))) OData.AddObject(OpenSeesAPI.TCL.TCLScript('}')) OData.AddObject(OpenSeesAPI.Analysis.Integrator.Static.DisplacementControl(ControlNode, 1, StepSize)) OData.AddObject(OpenSeesAPI.TCL.TCLScript('if {$ok != 0} {')) OData.AddObject(OpenSeesAPI.TCL.TCLScript('puts "Trying KrylovNewton ... "')) OData.AddObject(OpenSeesAPI.Analysis.Test.EnergyIncr(Tol,1000,0)) OData.AddObject(OpenSeesAPI.Analysis.Algorithm.KrylovNewton()) OData.AddObject(OpenSeesAPI.TCL.TCLScript('set ok [analyze 1]')) OData.AddObject(OpenSeesAPI.TCL.TCLScript('}')) def PushOverSolutionAlgorithimConstantAlgorithmDispIncr(OData, StepSize, Tol, ControlNode, NoOfIterations=1000): import OpenSeesAPI OData.AddObject(OpenSeesAPI.TCL.TCLScript('if {$ok != 0} {')) OData.AddObject(OpenSeesAPI.TCL.TCLScript('puts "Trying Smaller Step: %f and Tol: %f ... "'%(StepSize,Tol))) OData.AddObject(OpenSeesAPI.TCL.TCLScript('}')) OData.AddObject(OpenSeesAPI.Analysis.Integrator.Static.DisplacementControl(ControlNode, 1, StepSize)) OData.AddObject(OpenSeesAPI.TCL.TCLScript('if {$ok != 0} {')) OData.AddObject(OpenSeesAPI.TCL.TCLScript('puts "Trying KrylovNewton ... "')) OData.AddObject(OpenSeesAPI.Analysis.Test.NormDispIncr(Tol,NoOfIterations,2)) OData.AddObject(OpenSeesAPI.Analysis.Algorithm.KrylovNewton()) OData.AddObject(OpenSeesAPI.TCL.TCLScript('set ok [analyze 1]')) OData.AddObject(OpenSeesAPI.TCL.TCLScript('}')) def PushOverSolutionAlgorithimConstantTol(OData, Tol, Iter=1000): import OpenSeesAPI OData.AddObject(OpenSeesAPI.TCL.TCLScript('if {$ok != 0} {')) OData.AddObject(OpenSeesAPI.TCL.TCLScript('puts "Trying KrylovNewton ... "')) OData.AddObject(OpenSeesAPI.Analysis.Test.EnergyIncr(Tol,Iter,0)) OData.AddObject(OpenSeesAPI.Analysis.Algorithm.KrylovNewton()) OData.AddObject(OpenSeesAPI.TCL.TCLScript('set ok [analyze 1]')) OData.AddObject(OpenSeesAPI.TCL.TCLScript('}')) OData.AddObject(OpenSeesAPI.TCL.TCLScript('if {$ok != 0} {')) OData.AddObject(OpenSeesAPI.TCL.TCLScript('puts "Trying Newton Line Search ... "')) OData.AddObject(OpenSeesAPI.Analysis.Test.EnergyIncr(Tol,Iter,0)) OData.AddObject(OpenSeesAPI.Analysis.Algorithm.NewtonLineSearch(Tolerance=0.8)) OData.AddObject(OpenSeesAPI.TCL.TCLScript('set ok [analyze 1]')) OData.AddObject(OpenSeesAPI.TCL.TCLScript('}')) OData.AddObject(OpenSeesAPI.TCL.TCLScript('if {$ok != 0} {')) OData.AddObject(OpenSeesAPI.TCL.TCLScript('puts "Trying Newton Line Search BiSection ... "')) OData.AddObject(OpenSeesAPI.Analysis.Test.EnergyIncr(Tol,Iter,0)) OData.AddObject(OpenSeesAPI.Analysis.Algorithm.NewtonLineSearch('Bisection')) OData.AddObject(OpenSeesAPI.TCL.TCLScript('set ok [analyze 1]')) OData.AddObject(OpenSeesAPI.TCL.TCLScript('}')) OData.AddObject(OpenSeesAPI.TCL.TCLScript('if {$ok != 0} {')) OData.AddObject(OpenSeesAPI.TCL.TCLScript('puts "Trying Newton Line Search Secant... "')) OData.AddObject(OpenSeesAPI.Analysis.Test.EnergyIncr(Tol,Iter,0)) OData.AddObject(OpenSeesAPI.Analysis.Algorithm.NewtonLineSearch('Secant')) OData.AddObject(OpenSeesAPI.TCL.TCLScript('set ok [analyze 1]')) OData.AddObject(OpenSeesAPI.TCL.TCLScript('}')) OData.AddObject(OpenSeesAPI.TCL.TCLScript('if {$ok != 0} {')) OData.AddObject(OpenSeesAPI.TCL.TCLScript('puts "Trying Newton Line Search RegulaFalsi ... "')) OData.AddObject(OpenSeesAPI.Analysis.Test.EnergyIncr(Tol,Iter,0)) OData.AddObject(OpenSeesAPI.Analysis.Algorithm.NewtonLineSearch('RegulaFalsi')) OData.AddObject(OpenSeesAPI.TCL.TCLScript('set ok [analyze 1]')) OData.AddObject(OpenSeesAPI.TCL.TCLScript('}'))
[ "OpenSeesAPI.TCL.TCLScript", "OpenSeesAPI.Analysis.Algorithm.KrylovNewton", "OpenSeesAPI.Analysis.Algorithm.Newton", "OpenSeesAPI.Analysis.Algorithm.Broyden", "OpenSeesAPI.Analysis.Algorithm.NewtonLineSearch", "OpenSeesAPI.Analysis.Test.EnergyIncr", "OpenSeesAPI.Analysis.Integrator.Static.DisplacementControl", "OpenSeesAPI.Analysis.Test.NormDispIncr" ]
[((224, 268), 'OpenSeesAPI.TCL.TCLScript', 'OpenSeesAPI.TCL.TCLScript', (['"""if {$ok != 0} {"""'], {}), "('if {$ok != 0} {')\n", (249, 268), False, 'import OpenSeesAPI\n'), ((290, 379), 'OpenSeesAPI.TCL.TCLScript', 'OpenSeesAPI.TCL.TCLScript', (['(\'puts "Trying Lower Dt: %f and Tol: %f ... "\' % (Dt, Tol))'], {}), '(\'puts "Trying Lower Dt: %f and Tol: %f ... "\' % (\n Dt, Tol))\n', (315, 379), False, 'import OpenSeesAPI\n'), ((393, 459), 'OpenSeesAPI.TCL.TCLScript', 'OpenSeesAPI.TCL.TCLScript', (['"""puts "Trying Newton Line Search ... \\""""'], {}), '(\'puts "Trying Newton Line Search ... "\')\n', (418, 459), False, 'import OpenSeesAPI\n'), ((481, 531), 'OpenSeesAPI.Analysis.Test.EnergyIncr', 'OpenSeesAPI.Analysis.Test.EnergyIncr', (['Tol', '(1000)', '(0)'], {}), '(Tol, 1000, 0)\n', (517, 531), False, 'import OpenSeesAPI\n'), ((551, 613), 'OpenSeesAPI.Analysis.Algorithm.NewtonLineSearch', 'OpenSeesAPI.Analysis.Algorithm.NewtonLineSearch', ([], {'Tolerance': '(0.8)'}), '(Tolerance=0.8)\n', (598, 613), False, 'import OpenSeesAPI\n'), ((635, 701), 'OpenSeesAPI.TCL.TCLScript', 'OpenSeesAPI.TCL.TCLScript', (["('set ok [analyze %d %f ]' % (Steps, Dt))"], {}), "('set ok [analyze %d %f ]' % (Steps, Dt))\n", (660, 701), False, 'import OpenSeesAPI\n'), ((720, 750), 'OpenSeesAPI.TCL.TCLScript', 'OpenSeesAPI.TCL.TCLScript', (['"""}"""'], {}), "('}')\n", (745, 750), False, 'import OpenSeesAPI\n'), ((773, 817), 'OpenSeesAPI.TCL.TCLScript', 'OpenSeesAPI.TCL.TCLScript', (['"""if {$ok != 0} {"""'], {}), "('if {$ok != 0} {')\n", (798, 817), False, 'import OpenSeesAPI\n'), ((839, 914), 'OpenSeesAPI.TCL.TCLScript', 'OpenSeesAPI.TCL.TCLScript', (['"""puts "Trying Newton with Initial Tangent ... \\""""'], {}), '(\'puts "Trying Newton with Initial Tangent ... "\')\n', (864, 914), False, 'import OpenSeesAPI\n'), ((936, 988), 'OpenSeesAPI.Analysis.Test.NormDispIncr', 'OpenSeesAPI.Analysis.Test.NormDispIncr', (['Tol', '(1000)', '(0)'], {}), '(Tol, 1000, 0)\n', (974, 988), False, 'import OpenSeesAPI\n'), ((1008, 1059), 'OpenSeesAPI.Analysis.Algorithm.Newton', 'OpenSeesAPI.Analysis.Algorithm.Newton', ([], {'Initial': '(True)'}), '(Initial=True)\n', (1045, 1059), False, 'import OpenSeesAPI\n'), ((1081, 1147), 'OpenSeesAPI.TCL.TCLScript', 'OpenSeesAPI.TCL.TCLScript', (["('set ok [analyze %d %f ]' % (Steps, Dt))"], {}), "('set ok [analyze %d %f ]' % (Steps, Dt))\n", (1106, 1147), False, 'import OpenSeesAPI\n'), ((1166, 1196), 'OpenSeesAPI.TCL.TCLScript', 'OpenSeesAPI.TCL.TCLScript', (['"""}"""'], {}), "('}')\n", (1191, 1196), False, 'import OpenSeesAPI\n'), ((1219, 1263), 'OpenSeesAPI.TCL.TCLScript', 'OpenSeesAPI.TCL.TCLScript', (['"""if {$ok != 0} {"""'], {}), "('if {$ok != 0} {')\n", (1244, 1263), False, 'import OpenSeesAPI\n'), ((1285, 1340), 'OpenSeesAPI.TCL.TCLScript', 'OpenSeesAPI.TCL.TCLScript', (['"""puts "Trying Broyden ... \\""""'], {}), '(\'puts "Trying Broyden ... "\')\n', (1310, 1340), False, 'import OpenSeesAPI\n'), ((1362, 1412), 'OpenSeesAPI.Analysis.Test.EnergyIncr', 'OpenSeesAPI.Analysis.Test.EnergyIncr', (['Tol', '(1000)', '(0)'], {}), '(Tol, 1000, 0)\n', (1398, 1412), False, 'import OpenSeesAPI\n'), ((1432, 1473), 'OpenSeesAPI.Analysis.Algorithm.Broyden', 'OpenSeesAPI.Analysis.Algorithm.Broyden', (['(8)'], {}), '(8)\n', (1470, 1473), False, 'import OpenSeesAPI\n'), ((1495, 1561), 'OpenSeesAPI.TCL.TCLScript', 'OpenSeesAPI.TCL.TCLScript', (["('set ok [analyze %d %f ]' % (Steps, Dt))"], {}), "('set ok [analyze %d %f ]' % (Steps, Dt))\n", (1520, 1561), False, 'import OpenSeesAPI\n'), ((1580, 1610), 'OpenSeesAPI.TCL.TCLScript', 'OpenSeesAPI.TCL.TCLScript', (['"""}"""'], {}), "('}')\n", (1605, 1610), False, 'import OpenSeesAPI\n'), ((1633, 1677), 'OpenSeesAPI.TCL.TCLScript', 'OpenSeesAPI.TCL.TCLScript', (['"""if {$ok != 0} {"""'], {}), "('if {$ok != 0} {')\n", (1658, 1677), False, 'import OpenSeesAPI\n'), ((1699, 1759), 'OpenSeesAPI.TCL.TCLScript', 'OpenSeesAPI.TCL.TCLScript', (['"""puts "Trying KrylovNewton ... \\""""'], {}), '(\'puts "Trying KrylovNewton ... "\')\n', (1724, 1759), False, 'import OpenSeesAPI\n'), ((1781, 1831), 'OpenSeesAPI.Analysis.Test.EnergyIncr', 'OpenSeesAPI.Analysis.Test.EnergyIncr', (['Tol', '(1000)', '(0)'], {}), '(Tol, 1000, 0)\n', (1817, 1831), False, 'import OpenSeesAPI\n'), ((1851, 1896), 'OpenSeesAPI.Analysis.Algorithm.KrylovNewton', 'OpenSeesAPI.Analysis.Algorithm.KrylovNewton', ([], {}), '()\n', (1894, 1896), False, 'import OpenSeesAPI\n'), ((1918, 1984), 'OpenSeesAPI.TCL.TCLScript', 'OpenSeesAPI.TCL.TCLScript', (["('set ok [analyze %d %f ]' % (Steps, Dt))"], {}), "('set ok [analyze %d %f ]' % (Steps, Dt))\n", (1943, 1984), False, 'import OpenSeesAPI\n'), ((2003, 2033), 'OpenSeesAPI.TCL.TCLScript', 'OpenSeesAPI.TCL.TCLScript', (['"""}"""'], {}), "('}')\n", (2028, 2033), False, 'import OpenSeesAPI\n'), ((2199, 2243), 'OpenSeesAPI.TCL.TCLScript', 'OpenSeesAPI.TCL.TCLScript', (['"""if {$ok != 0} {"""'], {}), "('if {$ok != 0} {')\n", (2224, 2243), False, 'import OpenSeesAPI\n'), ((2265, 2354), 'OpenSeesAPI.TCL.TCLScript', 'OpenSeesAPI.TCL.TCLScript', (['(\'puts "Trying Lower Dt: %f and Tol: %f ... "\' % (Dt, Tol))'], {}), '(\'puts "Trying Lower Dt: %f and Tol: %f ... "\' % (\n Dt, Tol))\n', (2290, 2354), False, 'import OpenSeesAPI\n'), ((2368, 2421), 'OpenSeesAPI.TCL.TCLScript', 'OpenSeesAPI.TCL.TCLScript', (['"""puts "Trying Krylov... \\""""'], {}), '(\'puts "Trying Krylov... "\')\n', (2393, 2421), False, 'import OpenSeesAPI\n'), ((2443, 2493), 'OpenSeesAPI.Analysis.Test.EnergyIncr', 'OpenSeesAPI.Analysis.Test.EnergyIncr', (['Tol', '(1000)', '(0)'], {}), '(Tol, 1000, 0)\n', (2479, 2493), False, 'import OpenSeesAPI\n'), ((2513, 2566), 'OpenSeesAPI.Analysis.Algorithm.KrylovNewton', 'OpenSeesAPI.Analysis.Algorithm.KrylovNewton', ([], {'MaxDim': '(6)'}), '(MaxDim=6)\n', (2556, 2566), False, 'import OpenSeesAPI\n'), ((2590, 2656), 'OpenSeesAPI.TCL.TCLScript', 'OpenSeesAPI.TCL.TCLScript', (["('set ok [analyze %d %f ]' % (Steps, Dt))"], {}), "('set ok [analyze %d %f ]' % (Steps, Dt))\n", (2615, 2656), False, 'import OpenSeesAPI\n'), ((2675, 2705), 'OpenSeesAPI.TCL.TCLScript', 'OpenSeesAPI.TCL.TCLScript', (['"""}"""'], {}), "('}')\n", (2700, 2705), False, 'import OpenSeesAPI\n'), ((2728, 2772), 'OpenSeesAPI.TCL.TCLScript', 'OpenSeesAPI.TCL.TCLScript', (['"""if {$ok != 0} {"""'], {}), "('if {$ok != 0} {')\n", (2753, 2772), False, 'import OpenSeesAPI\n'), ((2794, 2857), 'OpenSeesAPI.TCL.TCLScript', 'OpenSeesAPI.TCL.TCLScript', (['"""puts "Trying NewtonLineSearch... \\""""'], {}), '(\'puts "Trying NewtonLineSearch... "\')\n', (2819, 2857), False, 'import OpenSeesAPI\n'), ((2879, 2931), 'OpenSeesAPI.Analysis.Test.NormDispIncr', 'OpenSeesAPI.Analysis.Test.NormDispIncr', (['Tol', '(1000)', '(0)'], {}), '(Tol, 1000, 0)\n', (2917, 2931), False, 'import OpenSeesAPI\n'), ((2951, 3013), 'OpenSeesAPI.Analysis.Algorithm.NewtonLineSearch', 'OpenSeesAPI.Analysis.Algorithm.NewtonLineSearch', ([], {'Tolerance': '(0.8)'}), '(Tolerance=0.8)\n', (2998, 3013), False, 'import OpenSeesAPI\n'), ((3035, 3101), 'OpenSeesAPI.TCL.TCLScript', 'OpenSeesAPI.TCL.TCLScript', (["('set ok [analyze %d %f ]' % (Steps, Dt))"], {}), "('set ok [analyze %d %f ]' % (Steps, Dt))\n", (3060, 3101), False, 'import OpenSeesAPI\n'), ((3120, 3150), 'OpenSeesAPI.TCL.TCLScript', 'OpenSeesAPI.TCL.TCLScript', (['"""}"""'], {}), "('}')\n", (3145, 3150), False, 'import OpenSeesAPI\n'), ((3173, 3217), 'OpenSeesAPI.TCL.TCLScript', 'OpenSeesAPI.TCL.TCLScript', (['"""if {$ok != 0} {"""'], {}), "('if {$ok != 0} {')\n", (3198, 3217), False, 'import OpenSeesAPI\n'), ((3239, 3312), 'OpenSeesAPI.TCL.TCLScript', 'OpenSeesAPI.TCL.TCLScript', (['"""puts "Trying NewtonLineSearch Bisection... \\""""'], {}), '(\'puts "Trying NewtonLineSearch Bisection... "\')\n', (3264, 3312), False, 'import OpenSeesAPI\n'), ((3334, 3384), 'OpenSeesAPI.Analysis.Test.EnergyIncr', 'OpenSeesAPI.Analysis.Test.EnergyIncr', (['Tol', '(1000)', '(0)'], {}), '(Tol, 1000, 0)\n', (3370, 3384), False, 'import OpenSeesAPI\n'), ((3404, 3464), 'OpenSeesAPI.Analysis.Algorithm.NewtonLineSearch', 'OpenSeesAPI.Analysis.Algorithm.NewtonLineSearch', (['"""Bisection"""'], {}), "('Bisection')\n", (3451, 3464), False, 'import OpenSeesAPI\n'), ((3486, 3552), 'OpenSeesAPI.TCL.TCLScript', 'OpenSeesAPI.TCL.TCLScript', (["('set ok [analyze %d %f ]' % (Steps, Dt))"], {}), "('set ok [analyze %d %f ]' % (Steps, Dt))\n", (3511, 3552), False, 'import OpenSeesAPI\n'), ((3571, 3601), 'OpenSeesAPI.TCL.TCLScript', 'OpenSeesAPI.TCL.TCLScript', (['"""}"""'], {}), "('}')\n", (3596, 3601), False, 'import OpenSeesAPI\n'), ((3624, 3668), 'OpenSeesAPI.TCL.TCLScript', 'OpenSeesAPI.TCL.TCLScript', (['"""if {$ok != 0} {"""'], {}), "('if {$ok != 0} {')\n", (3649, 3668), False, 'import OpenSeesAPI\n'), ((3690, 3760), 'OpenSeesAPI.TCL.TCLScript', 'OpenSeesAPI.TCL.TCLScript', (['"""puts "Trying NewtonLineSearch Secant... \\""""'], {}), '(\'puts "Trying NewtonLineSearch Secant... "\')\n', (3715, 3760), False, 'import OpenSeesAPI\n'), ((3782, 3832), 'OpenSeesAPI.Analysis.Test.EnergyIncr', 'OpenSeesAPI.Analysis.Test.EnergyIncr', (['Tol', '(1000)', '(0)'], {}), '(Tol, 1000, 0)\n', (3818, 3832), False, 'import OpenSeesAPI\n'), ((3852, 3909), 'OpenSeesAPI.Analysis.Algorithm.NewtonLineSearch', 'OpenSeesAPI.Analysis.Algorithm.NewtonLineSearch', (['"""Secant"""'], {}), "('Secant')\n", (3899, 3909), False, 'import OpenSeesAPI\n'), ((3931, 3997), 'OpenSeesAPI.TCL.TCLScript', 'OpenSeesAPI.TCL.TCLScript', (["('set ok [analyze %d %f ]' % (Steps, Dt))"], {}), "('set ok [analyze %d %f ]' % (Steps, Dt))\n", (3956, 3997), False, 'import OpenSeesAPI\n'), ((4016, 4046), 'OpenSeesAPI.TCL.TCLScript', 'OpenSeesAPI.TCL.TCLScript', (['"""}"""'], {}), "('}')\n", (4041, 4046), False, 'import OpenSeesAPI\n'), ((4069, 4113), 'OpenSeesAPI.TCL.TCLScript', 'OpenSeesAPI.TCL.TCLScript', (['"""if {$ok != 0} {"""'], {}), "('if {$ok != 0} {')\n", (4094, 4113), False, 'import OpenSeesAPI\n'), ((4135, 4210), 'OpenSeesAPI.TCL.TCLScript', 'OpenSeesAPI.TCL.TCLScript', (['"""puts "Trying NewtonLineSearch RegulaFalsi... \\""""'], {}), '(\'puts "Trying NewtonLineSearch RegulaFalsi... "\')\n', (4160, 4210), False, 'import OpenSeesAPI\n'), ((4232, 4282), 'OpenSeesAPI.Analysis.Test.EnergyIncr', 'OpenSeesAPI.Analysis.Test.EnergyIncr', (['Tol', '(1000)', '(0)'], {}), '(Tol, 1000, 0)\n', (4268, 4282), False, 'import OpenSeesAPI\n'), ((4302, 4364), 'OpenSeesAPI.Analysis.Algorithm.NewtonLineSearch', 'OpenSeesAPI.Analysis.Algorithm.NewtonLineSearch', (['"""RegulaFalsi"""'], {}), "('RegulaFalsi')\n", (4349, 4364), False, 'import OpenSeesAPI\n'), ((4386, 4452), 'OpenSeesAPI.TCL.TCLScript', 'OpenSeesAPI.TCL.TCLScript', (["('set ok [analyze %d %f ]' % (Steps, Dt))"], {}), "('set ok [analyze %d %f ]' % (Steps, Dt))\n", (4411, 4452), False, 'import OpenSeesAPI\n'), ((4471, 4501), 'OpenSeesAPI.TCL.TCLScript', 'OpenSeesAPI.TCL.TCLScript', (['"""}"""'], {}), "('}')\n", (4496, 4501), False, 'import OpenSeesAPI\n'), ((4687, 4731), 'OpenSeesAPI.TCL.TCLScript', 'OpenSeesAPI.TCL.TCLScript', (['"""if {$ok != 0} {"""'], {}), "('if {$ok != 0} {')\n", (4712, 4731), False, 'import OpenSeesAPI\n'), ((4753, 4842), 'OpenSeesAPI.TCL.TCLScript', 'OpenSeesAPI.TCL.TCLScript', (['(\'puts "Trying Lower Dt: %e and Tol: %e ... "\' % (Dt, Tol))'], {}), '(\'puts "Trying Lower Dt: %e and Tol: %e ... "\' % (\n Dt, Tol))\n', (4778, 4842), False, 'import OpenSeesAPI\n'), ((4856, 4909), 'OpenSeesAPI.TCL.TCLScript', 'OpenSeesAPI.TCL.TCLScript', (['"""puts "Trying Krylov... \\""""'], {}), '(\'puts "Trying Krylov... "\')\n', (4881, 4909), False, 'import OpenSeesAPI\n'), ((4931, 4983), 'OpenSeesAPI.Analysis.Test.NormDispIncr', 'OpenSeesAPI.Analysis.Test.NormDispIncr', (['Tol', '(1000)', '(2)'], {}), '(Tol, 1000, 2)\n', (4969, 4983), False, 'import OpenSeesAPI\n'), ((5077, 5135), 'OpenSeesAPI.Analysis.Algorithm.KrylovNewton', 'OpenSeesAPI.Analysis.Algorithm.KrylovNewton', ([], {'MaxDim': 'MaxDim'}), '(MaxDim=MaxDim)\n', (5120, 5135), False, 'import OpenSeesAPI\n'), ((5159, 5225), 'OpenSeesAPI.TCL.TCLScript', 'OpenSeesAPI.TCL.TCLScript', (["('set ok [analyze %d %e ]' % (Steps, Dt))"], {}), "('set ok [analyze %d %e ]' % (Steps, Dt))\n", (5184, 5225), False, 'import OpenSeesAPI\n'), ((5244, 5274), 'OpenSeesAPI.TCL.TCLScript', 'OpenSeesAPI.TCL.TCLScript', (['"""}"""'], {}), "('}')\n", (5269, 5274), False, 'import OpenSeesAPI\n'), ((5433, 5483), 'OpenSeesAPI.TCL.TCLScript', 'OpenSeesAPI.TCL.TCLScript', (["('set conv_tol %e' % Tol)"], {}), "('set conv_tol %e' % Tol)\n", (5458, 5483), False, 'import OpenSeesAPI\n'), ((5503, 5565), 'OpenSeesAPI.TCL.TCLScript', 'OpenSeesAPI.TCL.TCLScript', (["('set max_iter %d;' % NoOfIterations)"], {}), "('set max_iter %d;' % NoOfIterations)\n", (5528, 5565), False, 'import OpenSeesAPI\n'), ((5585, 5637), 'OpenSeesAPI.Analysis.Test.NormDispIncr', 'OpenSeesAPI.Analysis.Test.NormDispIncr', (['Tol', '(3000)', '(0)'], {}), '(Tol, 3000, 0)\n', (5623, 5637), False, 'import OpenSeesAPI\n'), ((5971, 6015), 'OpenSeesAPI.TCL.TCLScript', 'OpenSeesAPI.TCL.TCLScript', (["('set dt %e;' % Dt)"], {}), "('set dt %e;' % Dt)\n", (5996, 6015), False, 'import OpenSeesAPI\n'), ((6035, 6086), 'OpenSeesAPI.TCL.TCLScript', 'OpenSeesAPI.TCL.TCLScript', (["('set min_dt %e;' % MinDt)"], {}), "('set min_dt %e;' % MinDt)\n", (6060, 6086), False, 'import OpenSeesAPI\n'), ((6106, 6158), 'OpenSeesAPI.TCL.TCLScript', 'OpenSeesAPI.TCL.TCLScript', (["('set n_steps %d;' % Steps)"], {}), "('set n_steps %d;' % Steps)\n", (6131, 6158), False, 'import OpenSeesAPI\n'), ((6178, 6222), 'OpenSeesAPI.TCL.TCLScript', 'OpenSeesAPI.TCL.TCLScript', (['"""set cur_step 1;"""'], {}), "('set cur_step 1;')\n", (6203, 6222), False, 'import OpenSeesAPI\n'), ((6244, 6286), 'OpenSeesAPI.TCL.TCLScript', 'OpenSeesAPI.TCL.TCLScript', (['"""set div 10.0;"""'], {}), "('set div 10.0;')\n", (6269, 6286), False, 'import OpenSeesAPI\n'), ((6308, 6353), 'OpenSeesAPI.TCL.TCLScript', 'OpenSeesAPI.TCL.TCLScript', (['"""set tol 1.0e-12;"""'], {}), "('set tol 1.0e-12;')\n", (6333, 6353), False, 'import OpenSeesAPI\n'), ((6524, 6583), 'OpenSeesAPI.TCL.TCLScript', 'OpenSeesAPI.TCL.TCLScript', (['"""while {$cur_step < $n_steps} {"""'], {}), "('while {$cur_step < $n_steps} {')\n", (6549, 6583), False, 'import OpenSeesAPI\n'), ((6605, 6667), 'OpenSeesAPI.Analysis.Test.NormDispIncr', 'OpenSeesAPI.Analysis.Test.NormDispIncr', (['Tol', 'NoOfIterations', '(0)'], {}), '(Tol, NoOfIterations, 0)\n', (6643, 6667), False, 'import OpenSeesAPI\n'), ((6779, 6827), 'OpenSeesAPI.TCL.TCLScript', 'OpenSeesAPI.TCL.TCLScript', (['"""\talgorithm Newton;"""'], {}), "('\\talgorithm Newton;')\n", (6804, 6827), False, 'import OpenSeesAPI\n'), ((6848, 6902), 'OpenSeesAPI.TCL.TCLScript', 'OpenSeesAPI.TCL.TCLScript', (['"""\tset ok [analyze 1 $dt];"""'], {}), "('\\tset ok [analyze 1 $dt];')\n", (6873, 6902), False, 'import OpenSeesAPI\n'), ((6923, 6969), 'OpenSeesAPI.TCL.TCLScript', 'OpenSeesAPI.TCL.TCLScript', (['"""\tif {$ok != 0} {"""'], {}), "('\\tif {$ok != 0} {')\n", (6948, 6969), False, 'import OpenSeesAPI\n'), ((6990, 7046), 'OpenSeesAPI.TCL.TCLScript', 'OpenSeesAPI.TCL.TCLScript', (['"""\t\tset dt_temp [expr $dt];"""'], {}), "('\\t\\tset dt_temp [expr $dt];')\n", (7015, 7046), False, 'import OpenSeesAPI\n'), ((7066, 7159), 'OpenSeesAPI.TCL.TCLScript', 'OpenSeesAPI.TCL.TCLScript', (['"""\t\tputs "> analysis failed to converge at step $cur_step";"""'], {}), '(\n \'\\t\\tputs "> analysis failed to converge at step $cur_step";\')\n', (7091, 7159), False, 'import OpenSeesAPI\n'), ((7174, 7236), 'OpenSeesAPI.TCL.TCLScript', 'OpenSeesAPI.TCL.TCLScript', (['"""\t\tputs "> trying KrylovNewton";"""'], {}), '(\'\\t\\tputs "> trying KrylovNewton";\')\n', (7199, 7236), False, 'import OpenSeesAPI\n'), ((7256, 7342), 'OpenSeesAPI.TCL.TCLScript', 'OpenSeesAPI.TCL.TCLScript', (["('\\t\\talgorithm KrylovNewton -maxDim %d;' % KrylovMaxDim)"], {}), "('\\t\\talgorithm KrylovNewton -maxDim %d;' %\n KrylovMaxDim)\n", (7281, 7342), False, 'import OpenSeesAPI\n'), ((7356, 7412), 'OpenSeesAPI.TCL.TCLScript', 'OpenSeesAPI.TCL.TCLScript', (['"""\t\tset ok [analyze 1 $dt];"""'], {}), "('\\t\\tset ok [analyze 1 $dt];')\n", (7381, 7412), False, 'import OpenSeesAPI\n'), ((7432, 7480), 'OpenSeesAPI.TCL.TCLScript', 'OpenSeesAPI.TCL.TCLScript', (['"""\t\tif {$ok != 0} {"""'], {}), "('\\t\\tif {$ok != 0} {')\n", (7457, 7480), False, 'import OpenSeesAPI\n'), ((7500, 7545), 'OpenSeesAPI.TCL.TCLScript', 'OpenSeesAPI.TCL.TCLScript', (['"""\t\t\tset t 0.0;"""'], {}), "('\\t\\t\\tset t 0.0;')\n", (7525, 7545), False, 'import OpenSeesAPI\n'), ((7564, 7614), 'OpenSeesAPI.TCL.TCLScript', 'OpenSeesAPI.TCL.TCLScript', (['"""\t\t\tset mini_t 0.0;"""'], {}), "('\\t\\t\\tset mini_t 0.0;')\n", (7589, 7614), False, 'import OpenSeesAPI\n'), ((7633, 7718), 'OpenSeesAPI.TCL.TCLScript', 'OpenSeesAPI.TCL.TCLScript', (['"""\t\t\tset dt_temp [expr round($dt/$div/$tol)*$tol];"""'], {}), "('\\t\\t\\tset dt_temp [expr round($dt/$div/$tol)*$tol];'\n )\n", (7658, 7718), False, 'import OpenSeesAPI\n'), ((7732, 7788), 'OpenSeesAPI.TCL.TCLScript', 'OpenSeesAPI.TCL.TCLScript', (['"""\t\t\tset mini_dt_temp 0.0;"""'], {}), "('\\t\\t\\tset mini_dt_temp 0.0;')\n", (7757, 7788), False, 'import OpenSeesAPI\n'), ((7807, 7860), 'OpenSeesAPI.TCL.TCLScript', 'OpenSeesAPI.TCL.TCLScript', (['"""\t\t\twhile {$t < $dt} {"""'], {}), "('\\t\\t\\twhile {$t < $dt} {')\n", (7832, 7860), False, 'import OpenSeesAPI\n'), ((7879, 7941), 'OpenSeesAPI.TCL.TCLScript', 'OpenSeesAPI.TCL.TCLScript', (['"""\t\t\t\tif {$dt_temp < $min_dt} {"""'], {}), "('\\t\\t\\t\\tif {$dt_temp < $min_dt} {')\n", (7904, 7941), False, 'import OpenSeesAPI\n'), ((7959, 8079), 'OpenSeesAPI.TCL.TCLScript', 'OpenSeesAPI.TCL.TCLScript', (['"""\t\t\t\t\tputs "<< model did not converge (reason: time step less than $min_dt)";"""'], {}), '(\n \'\\t\\t\\t\\t\\tputs "<< model did not converge (reason: time step less than $min_dt)";\'\n )\n', (7984, 8079), False, 'import OpenSeesAPI\n'), ((8086, 8150), 'OpenSeesAPI.TCL.TCLScript', 'OpenSeesAPI.TCL.TCLScript', (['"""\t\t\t\t\tputs "<< exiting safely";"""'], {}), '(\'\\t\\t\\t\\t\\tputs "<< exiting safely";\')\n', (8111, 8150), False, 'import OpenSeesAPI\n'), ((8167, 8211), 'OpenSeesAPI.TCL.TCLScript', 'OpenSeesAPI.TCL.TCLScript', (['"""\t\t\t\t\twipe;"""'], {}), "('\\t\\t\\t\\t\\twipe;')\n", (8192, 8211), False, 'import OpenSeesAPI\n'), ((8228, 8272), 'OpenSeesAPI.TCL.TCLScript', 'OpenSeesAPI.TCL.TCLScript', (['"""\t\t\t\t\texit;"""'], {}), "('\\t\\t\\t\\t\\texit;')\n", (8253, 8272), False, 'import OpenSeesAPI\n'), ((8289, 8328), 'OpenSeesAPI.TCL.TCLScript', 'OpenSeesAPI.TCL.TCLScript', (['"""\t\t\t\t};"""'], {}), "('\\t\\t\\t\\t};')\n", (8314, 8328), False, 'import OpenSeesAPI\n'), ((8346, 8424), 'OpenSeesAPI.TCL.TCLScript', 'OpenSeesAPI.TCL.TCLScript', (['"""\t\t\t\tif {$dt_temp < [expr $dt/pow($div, 2)]} {"""'], {}), "('\\t\\t\\t\\tif {$dt_temp < [expr $dt/pow($div, 2)]} {')\n", (8371, 8424), False, 'import OpenSeesAPI\n'), ((8442, 8509), 'OpenSeesAPI.Analysis.Test.NormDispIncr', 'OpenSeesAPI.Analysis.Test.NormDispIncr', (['(Tol * 10)', 'NoOfIterations', '(0)'], {}), '(Tol * 10, NoOfIterations, 0)\n', (8480, 8509), False, 'import OpenSeesAPI\n'), ((8635, 8674), 'OpenSeesAPI.TCL.TCLScript', 'OpenSeesAPI.TCL.TCLScript', (['"""\t\t\t\t};"""'], {}), "('\\t\\t\\t\\t};')\n", (8660, 8674), False, 'import OpenSeesAPI\n'), ((8692, 8757), 'OpenSeesAPI.TCL.TCLScript', 'OpenSeesAPI.TCL.TCLScript', (['"""\t\t\t\tset ok [analyze 1 $dt_temp];"""'], {}), "('\\t\\t\\t\\tset ok [analyze 1 $dt_temp];')\n", (8717, 8757), False, 'import OpenSeesAPI\n'), ((8775, 8827), 'OpenSeesAPI.TCL.TCLScript', 'OpenSeesAPI.TCL.TCLScript', (['"""\t\t\t\tif {$ok == 0} {"""'], {}), "('\\t\\t\\t\\tif {$ok == 0} {')\n", (8800, 8827), False, 'import OpenSeesAPI\n'), ((8845, 8935), 'OpenSeesAPI.TCL.TCLScript', 'OpenSeesAPI.TCL.TCLScript', (['"""\t\t\t\t\tset t [expr round(($t + $dt_temp)/$tol)*$tol];"""'], {}), "(\n '\\t\\t\\t\\t\\tset t [expr round(($t + $dt_temp)/$tol)*$tol];')\n", (8870, 8935), False, 'import OpenSeesAPI\n'), ((8947, 9047), 'OpenSeesAPI.TCL.TCLScript', 'OpenSeesAPI.TCL.TCLScript', (['"""\t\t\t\t\tset mini_t [expr round(($mini_t + $dt_temp)/$tol)*$tol];"""'], {}), "(\n '\\t\\t\\t\\t\\tset mini_t [expr round(($mini_t + $dt_temp)/$tol)*$tol];')\n", (8972, 9047), False, 'import OpenSeesAPI\n'), ((9059, 9190), 'OpenSeesAPI.TCL.TCLScript', 'OpenSeesAPI.TCL.TCLScript', (['"""\t\t\t\t\tif {$mini_t >= $mini_dt_temp} {set dt_temp [expr round($dt_temp*$div/$tol)*$tol]};"""'], {}), "(\n '\\t\\t\\t\\t\\tif {$mini_t >= $mini_dt_temp} {set dt_temp [expr round($dt_temp*$div/$tol)*$tol]};'\n )\n", (9084, 9190), False, 'import OpenSeesAPI\n'), ((9197, 9242), 'OpenSeesAPI.TCL.TCLScript', 'OpenSeesAPI.TCL.TCLScript', (['"""\t\t\t\t} else {"""'], {}), "('\\t\\t\\t\\t} else {')\n", (9222, 9242), False, 'import OpenSeesAPI\n'), ((9260, 9314), 'OpenSeesAPI.TCL.TCLScript', 'OpenSeesAPI.TCL.TCLScript', (['"""\t\t\t\t\tset mini_t 0.0;"""'], {}), "('\\t\\t\\t\\t\\tset mini_t 0.0;')\n", (9285, 9314), False, 'import OpenSeesAPI\n'), ((9331, 9425), 'OpenSeesAPI.TCL.TCLScript', 'OpenSeesAPI.TCL.TCLScript', (['"""\t\t\t\t\tset mini_dt_temp [expr round($dt_temp/$tol)*$tol];"""'], {}), "(\n '\\t\\t\\t\\t\\tset mini_dt_temp [expr round($dt_temp/$tol)*$tol];')\n", (9356, 9425), False, 'import OpenSeesAPI\n'), ((9437, 9531), 'OpenSeesAPI.TCL.TCLScript', 'OpenSeesAPI.TCL.TCLScript', (['"""\t\t\t\t\tset dt_temp [expr round($dt_temp/$div/$tol)*$tol];"""'], {}), "(\n '\\t\\t\\t\\t\\tset dt_temp [expr round($dt_temp/$div/$tol)*$tol];')\n", (9462, 9531), False, 'import OpenSeesAPI\n'), ((9543, 9582), 'OpenSeesAPI.TCL.TCLScript', 'OpenSeesAPI.TCL.TCLScript', (['"""\t\t\t\t};"""'], {}), "('\\t\\t\\t\\t};')\n", (9568, 9582), False, 'import OpenSeesAPI\n'), ((9600, 9637), 'OpenSeesAPI.TCL.TCLScript', 'OpenSeesAPI.TCL.TCLScript', (['"""\t\t\t};"""'], {}), "('\\t\\t\\t};')\n", (9625, 9637), False, 'import OpenSeesAPI\n'), ((9656, 9691), 'OpenSeesAPI.TCL.TCLScript', 'OpenSeesAPI.TCL.TCLScript', (['"""\t\t};"""'], {}), "('\\t\\t};')\n", (9681, 9691), False, 'import OpenSeesAPI\n'), ((9711, 9744), 'OpenSeesAPI.TCL.TCLScript', 'OpenSeesAPI.TCL.TCLScript', (['"""\t};"""'], {}), "('\\t};')\n", (9736, 9744), False, 'import OpenSeesAPI\n'), ((9765, 9821), 'OpenSeesAPI.TCL.TCLScript', 'OpenSeesAPI.TCL.TCLScript', (['"""\tif {$cur_step % 1 == 0} {"""'], {}), "('\\tif {$cur_step % 1 == 0} {')\n", (9790, 9821), False, 'import OpenSeesAPI\n'), ((9842, 9957), 'OpenSeesAPI.TCL.TCLScript', 'OpenSeesAPI.TCL.TCLScript', (['(\'\\t\\tputs "Running Tim History Step: $cur_step out of %d (Sen Algo.)";\' %\n Steps)'], {}), '(\n \'\\t\\tputs "Running Tim History Step: $cur_step out of %d (Sen Algo.)";\' %\n Steps)\n', (9867, 9957), False, 'import OpenSeesAPI\n'), ((9966, 9999), 'OpenSeesAPI.TCL.TCLScript', 'OpenSeesAPI.TCL.TCLScript', (['"""\t};"""'], {}), "('\\t};')\n", (9991, 9999), False, 'import OpenSeesAPI\n'), ((10020, 10065), 'OpenSeesAPI.TCL.TCLScript', 'OpenSeesAPI.TCL.TCLScript', (['"""\tincr cur_step;"""'], {}), "('\\tincr cur_step;')\n", (10045, 10065), False, 'import OpenSeesAPI\n'), ((10086, 10117), 'OpenSeesAPI.TCL.TCLScript', 'OpenSeesAPI.TCL.TCLScript', (['"""};"""'], {}), "('};')\n", (10111, 10117), False, 'import OpenSeesAPI\n'), ((10302, 10346), 'OpenSeesAPI.TCL.TCLScript', 'OpenSeesAPI.TCL.TCLScript', (['"""if {$ok != 0} {"""'], {}), "('if {$ok != 0} {')\n", (10327, 10346), False, 'import OpenSeesAPI\n'), ((10368, 10466), 'OpenSeesAPI.TCL.TCLScript', 'OpenSeesAPI.TCL.TCLScript', (['(\'puts "Trying Smaller Step: %f and Tol: %f ... "\' % (StepSize, Tol))'], {}), '(\'puts "Trying Smaller Step: %f and Tol: %f ... "\' %\n (StepSize, Tol))\n', (10393, 10466), False, 'import OpenSeesAPI\n'), ((10482, 10570), 'OpenSeesAPI.Analysis.Integrator.Static.DisplacementControl', 'OpenSeesAPI.Analysis.Integrator.Static.DisplacementControl', (['ControlNode', '(1)', 'StepSize'], {}), '(ControlNode, 1,\n StepSize)\n', (10540, 10570), False, 'import OpenSeesAPI\n'), ((10589, 10619), 'OpenSeesAPI.TCL.TCLScript', 'OpenSeesAPI.TCL.TCLScript', (['"""}"""'], {}), "('}')\n", (10614, 10619), False, 'import OpenSeesAPI\n'), ((10642, 10686), 'OpenSeesAPI.TCL.TCLScript', 'OpenSeesAPI.TCL.TCLScript', (['"""if {$ok != 0} {"""'], {}), "('if {$ok != 0} {')\n", (10667, 10686), False, 'import OpenSeesAPI\n'), ((10708, 10768), 'OpenSeesAPI.TCL.TCLScript', 'OpenSeesAPI.TCL.TCLScript', (['"""puts "Trying KrylovNewton ... \\""""'], {}), '(\'puts "Trying KrylovNewton ... "\')\n', (10733, 10768), False, 'import OpenSeesAPI\n'), ((10790, 10840), 'OpenSeesAPI.Analysis.Test.EnergyIncr', 'OpenSeesAPI.Analysis.Test.EnergyIncr', (['Tol', '(1000)', '(0)'], {}), '(Tol, 1000, 0)\n', (10826, 10840), False, 'import OpenSeesAPI\n'), ((10860, 10905), 'OpenSeesAPI.Analysis.Algorithm.KrylovNewton', 'OpenSeesAPI.Analysis.Algorithm.KrylovNewton', ([], {}), '()\n', (10903, 10905), False, 'import OpenSeesAPI\n'), ((10927, 10974), 'OpenSeesAPI.TCL.TCLScript', 'OpenSeesAPI.TCL.TCLScript', (['"""set ok [analyze 1]"""'], {}), "('set ok [analyze 1]')\n", (10952, 10974), False, 'import OpenSeesAPI\n'), ((10996, 11026), 'OpenSeesAPI.TCL.TCLScript', 'OpenSeesAPI.TCL.TCLScript', (['"""}"""'], {}), "('}')\n", (11021, 11026), False, 'import OpenSeesAPI\n'), ((11049, 11093), 'OpenSeesAPI.TCL.TCLScript', 'OpenSeesAPI.TCL.TCLScript', (['"""if {$ok != 0} {"""'], {}), "('if {$ok != 0} {')\n", (11074, 11093), False, 'import OpenSeesAPI\n'), ((11115, 11181), 'OpenSeesAPI.TCL.TCLScript', 'OpenSeesAPI.TCL.TCLScript', (['"""puts "Trying Newton Line Search ... \\""""'], {}), '(\'puts "Trying Newton Line Search ... "\')\n', (11140, 11181), False, 'import OpenSeesAPI\n'), ((11203, 11253), 'OpenSeesAPI.Analysis.Test.EnergyIncr', 'OpenSeesAPI.Analysis.Test.EnergyIncr', (['Tol', '(1000)', '(0)'], {}), '(Tol, 1000, 0)\n', (11239, 11253), False, 'import OpenSeesAPI\n'), ((11273, 11335), 'OpenSeesAPI.Analysis.Algorithm.NewtonLineSearch', 'OpenSeesAPI.Analysis.Algorithm.NewtonLineSearch', ([], {'Tolerance': '(0.8)'}), '(Tolerance=0.8)\n', (11320, 11335), False, 'import OpenSeesAPI\n'), ((11357, 11404), 'OpenSeesAPI.TCL.TCLScript', 'OpenSeesAPI.TCL.TCLScript', (['"""set ok [analyze 1]"""'], {}), "('set ok [analyze 1]')\n", (11382, 11404), False, 'import OpenSeesAPI\n'), ((11426, 11456), 'OpenSeesAPI.TCL.TCLScript', 'OpenSeesAPI.TCL.TCLScript', (['"""}"""'], {}), "('}')\n", (11451, 11456), False, 'import OpenSeesAPI\n'), ((12336, 12380), 'OpenSeesAPI.TCL.TCLScript', 'OpenSeesAPI.TCL.TCLScript', (['"""if {$ok != 0} {"""'], {}), "('if {$ok != 0} {')\n", (12361, 12380), False, 'import OpenSeesAPI\n'), ((12402, 12478), 'OpenSeesAPI.TCL.TCLScript', 'OpenSeesAPI.TCL.TCLScript', (['"""puts "Trying Newton Line Search BiSection ... \\""""'], {}), '(\'puts "Trying Newton Line Search BiSection ... "\')\n', (12427, 12478), False, 'import OpenSeesAPI\n'), ((12500, 12550), 'OpenSeesAPI.Analysis.Test.EnergyIncr', 'OpenSeesAPI.Analysis.Test.EnergyIncr', (['Tol', '(1000)', '(0)'], {}), '(Tol, 1000, 0)\n', (12536, 12550), False, 'import OpenSeesAPI\n'), ((12570, 12630), 'OpenSeesAPI.Analysis.Algorithm.NewtonLineSearch', 'OpenSeesAPI.Analysis.Algorithm.NewtonLineSearch', (['"""Bisection"""'], {}), "('Bisection')\n", (12617, 12630), False, 'import OpenSeesAPI\n'), ((12652, 12699), 'OpenSeesAPI.TCL.TCLScript', 'OpenSeesAPI.TCL.TCLScript', (['"""set ok [analyze 1]"""'], {}), "('set ok [analyze 1]')\n", (12677, 12699), False, 'import OpenSeesAPI\n'), ((12721, 12751), 'OpenSeesAPI.TCL.TCLScript', 'OpenSeesAPI.TCL.TCLScript', (['"""}"""'], {}), "('}')\n", (12746, 12751), False, 'import OpenSeesAPI\n'), ((12774, 12818), 'OpenSeesAPI.TCL.TCLScript', 'OpenSeesAPI.TCL.TCLScript', (['"""if {$ok != 0} {"""'], {}), "('if {$ok != 0} {')\n", (12799, 12818), False, 'import OpenSeesAPI\n'), ((12840, 12912), 'OpenSeesAPI.TCL.TCLScript', 'OpenSeesAPI.TCL.TCLScript', (['"""puts "Trying Newton Line Search Secant... \\""""'], {}), '(\'puts "Trying Newton Line Search Secant... "\')\n', (12865, 12912), False, 'import OpenSeesAPI\n'), ((12934, 12984), 'OpenSeesAPI.Analysis.Test.EnergyIncr', 'OpenSeesAPI.Analysis.Test.EnergyIncr', (['Tol', '(1000)', '(0)'], {}), '(Tol, 1000, 0)\n', (12970, 12984), False, 'import OpenSeesAPI\n'), ((13004, 13061), 'OpenSeesAPI.Analysis.Algorithm.NewtonLineSearch', 'OpenSeesAPI.Analysis.Algorithm.NewtonLineSearch', (['"""Secant"""'], {}), "('Secant')\n", (13051, 13061), False, 'import OpenSeesAPI\n'), ((13083, 13130), 'OpenSeesAPI.TCL.TCLScript', 'OpenSeesAPI.TCL.TCLScript', (['"""set ok [analyze 1]"""'], {}), "('set ok [analyze 1]')\n", (13108, 13130), False, 'import OpenSeesAPI\n'), ((13152, 13182), 'OpenSeesAPI.TCL.TCLScript', 'OpenSeesAPI.TCL.TCLScript', (['"""}"""'], {}), "('}')\n", (13177, 13182), False, 'import OpenSeesAPI\n'), ((13205, 13249), 'OpenSeesAPI.TCL.TCLScript', 'OpenSeesAPI.TCL.TCLScript', (['"""if {$ok != 0} {"""'], {}), "('if {$ok != 0} {')\n", (13230, 13249), False, 'import OpenSeesAPI\n'), ((13271, 13349), 'OpenSeesAPI.TCL.TCLScript', 'OpenSeesAPI.TCL.TCLScript', (['"""puts "Trying Newton Line Search RegulaFalsi ... \\""""'], {}), '(\'puts "Trying Newton Line Search RegulaFalsi ... "\')\n', (13296, 13349), False, 'import OpenSeesAPI\n'), ((13371, 13421), 'OpenSeesAPI.Analysis.Test.EnergyIncr', 'OpenSeesAPI.Analysis.Test.EnergyIncr', (['Tol', '(1000)', '(0)'], {}), '(Tol, 1000, 0)\n', (13407, 13421), False, 'import OpenSeesAPI\n'), ((13441, 13503), 'OpenSeesAPI.Analysis.Algorithm.NewtonLineSearch', 'OpenSeesAPI.Analysis.Algorithm.NewtonLineSearch', (['"""RegulaFalsi"""'], {}), "('RegulaFalsi')\n", (13488, 13503), False, 'import OpenSeesAPI\n'), ((13525, 13572), 'OpenSeesAPI.TCL.TCLScript', 'OpenSeesAPI.TCL.TCLScript', (['"""set ok [analyze 1]"""'], {}), "('set ok [analyze 1]')\n", (13550, 13572), False, 'import OpenSeesAPI\n'), ((13594, 13624), 'OpenSeesAPI.TCL.TCLScript', 'OpenSeesAPI.TCL.TCLScript', (['"""}"""'], {}), "('}')\n", (13619, 13624), False, 'import OpenSeesAPI\n'), ((13816, 13860), 'OpenSeesAPI.TCL.TCLScript', 'OpenSeesAPI.TCL.TCLScript', (['"""if {$ok != 0} {"""'], {}), "('if {$ok != 0} {')\n", (13841, 13860), False, 'import OpenSeesAPI\n'), ((13882, 13980), 'OpenSeesAPI.TCL.TCLScript', 'OpenSeesAPI.TCL.TCLScript', (['(\'puts "Trying Smaller Step: %f and Tol: %f ... "\' % (StepSize, Tol))'], {}), '(\'puts "Trying Smaller Step: %f and Tol: %f ... "\' %\n (StepSize, Tol))\n', (13907, 13980), False, 'import OpenSeesAPI\n'), ((13996, 14084), 'OpenSeesAPI.Analysis.Integrator.Static.DisplacementControl', 'OpenSeesAPI.Analysis.Integrator.Static.DisplacementControl', (['ControlNode', '(1)', 'StepSize'], {}), '(ControlNode, 1,\n StepSize)\n', (14054, 14084), False, 'import OpenSeesAPI\n'), ((14103, 14133), 'OpenSeesAPI.TCL.TCLScript', 'OpenSeesAPI.TCL.TCLScript', (['"""}"""'], {}), "('}')\n", (14128, 14133), False, 'import OpenSeesAPI\n'), ((14156, 14200), 'OpenSeesAPI.TCL.TCLScript', 'OpenSeesAPI.TCL.TCLScript', (['"""if {$ok != 0} {"""'], {}), "('if {$ok != 0} {')\n", (14181, 14200), False, 'import OpenSeesAPI\n'), ((14222, 14282), 'OpenSeesAPI.TCL.TCLScript', 'OpenSeesAPI.TCL.TCLScript', (['"""puts "Trying KrylovNewton ... \\""""'], {}), '(\'puts "Trying KrylovNewton ... "\')\n', (14247, 14282), False, 'import OpenSeesAPI\n'), ((14304, 14356), 'OpenSeesAPI.Analysis.Test.NormDispIncr', 'OpenSeesAPI.Analysis.Test.NormDispIncr', (['Tol', '(1000)', '(0)'], {}), '(Tol, 1000, 0)\n', (14342, 14356), False, 'import OpenSeesAPI\n'), ((14376, 14421), 'OpenSeesAPI.Analysis.Algorithm.KrylovNewton', 'OpenSeesAPI.Analysis.Algorithm.KrylovNewton', ([], {}), '()\n', (14419, 14421), False, 'import OpenSeesAPI\n'), ((14443, 14490), 'OpenSeesAPI.TCL.TCLScript', 'OpenSeesAPI.TCL.TCLScript', (['"""set ok [analyze 1]"""'], {}), "('set ok [analyze 1]')\n", (14468, 14490), False, 'import OpenSeesAPI\n'), ((14512, 14542), 'OpenSeesAPI.TCL.TCLScript', 'OpenSeesAPI.TCL.TCLScript', (['"""}"""'], {}), "('}')\n", (14537, 14542), False, 'import OpenSeesAPI\n'), ((14565, 14609), 'OpenSeesAPI.TCL.TCLScript', 'OpenSeesAPI.TCL.TCLScript', (['"""if {$ok != 0} {"""'], {}), "('if {$ok != 0} {')\n", (14590, 14609), False, 'import OpenSeesAPI\n'), ((14631, 14697), 'OpenSeesAPI.TCL.TCLScript', 'OpenSeesAPI.TCL.TCLScript', (['"""puts "Trying Newton Line Search ... \\""""'], {}), '(\'puts "Trying Newton Line Search ... "\')\n', (14656, 14697), False, 'import OpenSeesAPI\n'), ((14719, 14771), 'OpenSeesAPI.Analysis.Test.NormDispIncr', 'OpenSeesAPI.Analysis.Test.NormDispIncr', (['Tol', '(1000)', '(0)'], {}), '(Tol, 1000, 0)\n', (14757, 14771), False, 'import OpenSeesAPI\n'), ((14791, 14853), 'OpenSeesAPI.Analysis.Algorithm.NewtonLineSearch', 'OpenSeesAPI.Analysis.Algorithm.NewtonLineSearch', ([], {'Tolerance': '(0.8)'}), '(Tolerance=0.8)\n', (14838, 14853), False, 'import OpenSeesAPI\n'), ((14875, 14922), 'OpenSeesAPI.TCL.TCLScript', 'OpenSeesAPI.TCL.TCLScript', (['"""set ok [analyze 1]"""'], {}), "('set ok [analyze 1]')\n", (14900, 14922), False, 'import OpenSeesAPI\n'), ((14944, 14974), 'OpenSeesAPI.TCL.TCLScript', 'OpenSeesAPI.TCL.TCLScript', (['"""}"""'], {}), "('}')\n", (14969, 14974), False, 'import OpenSeesAPI\n'), ((14997, 15041), 'OpenSeesAPI.TCL.TCLScript', 'OpenSeesAPI.TCL.TCLScript', (['"""if {$ok != 0} {"""'], {}), "('if {$ok != 0} {')\n", (15022, 15041), False, 'import OpenSeesAPI\n'), ((15063, 15139), 'OpenSeesAPI.TCL.TCLScript', 'OpenSeesAPI.TCL.TCLScript', (['"""puts "Trying Newton Line Search BiSection ... \\""""'], {}), '(\'puts "Trying Newton Line Search BiSection ... "\')\n', (15088, 15139), False, 'import OpenSeesAPI\n'), ((15161, 15213), 'OpenSeesAPI.Analysis.Test.NormDispIncr', 'OpenSeesAPI.Analysis.Test.NormDispIncr', (['Tol', '(1000)', '(0)'], {}), '(Tol, 1000, 0)\n', (15199, 15213), False, 'import OpenSeesAPI\n'), ((15233, 15293), 'OpenSeesAPI.Analysis.Algorithm.NewtonLineSearch', 'OpenSeesAPI.Analysis.Algorithm.NewtonLineSearch', (['"""Bisection"""'], {}), "('Bisection')\n", (15280, 15293), False, 'import OpenSeesAPI\n'), ((15315, 15362), 'OpenSeesAPI.TCL.TCLScript', 'OpenSeesAPI.TCL.TCLScript', (['"""set ok [analyze 1]"""'], {}), "('set ok [analyze 1]')\n", (15340, 15362), False, 'import OpenSeesAPI\n'), ((15384, 15414), 'OpenSeesAPI.TCL.TCLScript', 'OpenSeesAPI.TCL.TCLScript', (['"""}"""'], {}), "('}')\n", (15409, 15414), False, 'import OpenSeesAPI\n'), ((15437, 15481), 'OpenSeesAPI.TCL.TCLScript', 'OpenSeesAPI.TCL.TCLScript', (['"""if {$ok != 0} {"""'], {}), "('if {$ok != 0} {')\n", (15462, 15481), False, 'import OpenSeesAPI\n'), ((15503, 15575), 'OpenSeesAPI.TCL.TCLScript', 'OpenSeesAPI.TCL.TCLScript', (['"""puts "Trying Newton Line Search Secant... \\""""'], {}), '(\'puts "Trying Newton Line Search Secant... "\')\n', (15528, 15575), False, 'import OpenSeesAPI\n'), ((15597, 15649), 'OpenSeesAPI.Analysis.Test.NormDispIncr', 'OpenSeesAPI.Analysis.Test.NormDispIncr', (['Tol', '(1000)', '(0)'], {}), '(Tol, 1000, 0)\n', (15635, 15649), False, 'import OpenSeesAPI\n'), ((15669, 15726), 'OpenSeesAPI.Analysis.Algorithm.NewtonLineSearch', 'OpenSeesAPI.Analysis.Algorithm.NewtonLineSearch', (['"""Secant"""'], {}), "('Secant')\n", (15716, 15726), False, 'import OpenSeesAPI\n'), ((15748, 15795), 'OpenSeesAPI.TCL.TCLScript', 'OpenSeesAPI.TCL.TCLScript', (['"""set ok [analyze 1]"""'], {}), "('set ok [analyze 1]')\n", (15773, 15795), False, 'import OpenSeesAPI\n'), ((15817, 15847), 'OpenSeesAPI.TCL.TCLScript', 'OpenSeesAPI.TCL.TCLScript', (['"""}"""'], {}), "('}')\n", (15842, 15847), False, 'import OpenSeesAPI\n'), ((15870, 15914), 'OpenSeesAPI.TCL.TCLScript', 'OpenSeesAPI.TCL.TCLScript', (['"""if {$ok != 0} {"""'], {}), "('if {$ok != 0} {')\n", (15895, 15914), False, 'import OpenSeesAPI\n'), ((15936, 16014), 'OpenSeesAPI.TCL.TCLScript', 'OpenSeesAPI.TCL.TCLScript', (['"""puts "Trying Newton Line Search RegulaFalsi ... \\""""'], {}), '(\'puts "Trying Newton Line Search RegulaFalsi ... "\')\n', (15961, 16014), False, 'import OpenSeesAPI\n'), ((16036, 16088), 'OpenSeesAPI.Analysis.Test.NormDispIncr', 'OpenSeesAPI.Analysis.Test.NormDispIncr', (['Tol', '(1000)', '(0)'], {}), '(Tol, 1000, 0)\n', (16074, 16088), False, 'import OpenSeesAPI\n'), ((16108, 16170), 'OpenSeesAPI.Analysis.Algorithm.NewtonLineSearch', 'OpenSeesAPI.Analysis.Algorithm.NewtonLineSearch', (['"""RegulaFalsi"""'], {}), "('RegulaFalsi')\n", (16155, 16170), False, 'import OpenSeesAPI\n'), ((16192, 16239), 'OpenSeesAPI.TCL.TCLScript', 'OpenSeesAPI.TCL.TCLScript', (['"""set ok [analyze 1]"""'], {}), "('set ok [analyze 1]')\n", (16217, 16239), False, 'import OpenSeesAPI\n'), ((16261, 16291), 'OpenSeesAPI.TCL.TCLScript', 'OpenSeesAPI.TCL.TCLScript', (['"""}"""'], {}), "('}')\n", (16286, 16291), False, 'import OpenSeesAPI\n'), ((16432, 16476), 'OpenSeesAPI.TCL.TCLScript', 'OpenSeesAPI.TCL.TCLScript', (['"""if {$ok != 0} {"""'], {}), "('if {$ok != 0} {')\n", (16457, 16476), False, 'import OpenSeesAPI\n'), ((16498, 16596), 'OpenSeesAPI.TCL.TCLScript', 'OpenSeesAPI.TCL.TCLScript', (['(\'puts "Trying Smaller Step: %f and Tol: %f ... "\' % (StepSize, Tol))'], {}), '(\'puts "Trying Smaller Step: %f and Tol: %f ... "\' %\n (StepSize, Tol))\n', (16523, 16596), False, 'import OpenSeesAPI\n'), ((16611, 16641), 'OpenSeesAPI.TCL.TCLScript', 'OpenSeesAPI.TCL.TCLScript', (['"""}"""'], {}), "('}')\n", (16636, 16641), False, 'import OpenSeesAPI\n'), ((16664, 16752), 'OpenSeesAPI.Analysis.Integrator.Static.DisplacementControl', 'OpenSeesAPI.Analysis.Integrator.Static.DisplacementControl', (['ControlNode', '(1)', 'StepSize'], {}), '(ControlNode, 1,\n StepSize)\n', (16722, 16752), False, 'import OpenSeesAPI\n'), ((16771, 16815), 'OpenSeesAPI.TCL.TCLScript', 'OpenSeesAPI.TCL.TCLScript', (['"""if {$ok != 0} {"""'], {}), "('if {$ok != 0} {')\n", (16796, 16815), False, 'import OpenSeesAPI\n'), ((16837, 16897), 'OpenSeesAPI.TCL.TCLScript', 'OpenSeesAPI.TCL.TCLScript', (['"""puts "Trying KrylovNewton ... \\""""'], {}), '(\'puts "Trying KrylovNewton ... "\')\n', (16862, 16897), False, 'import OpenSeesAPI\n'), ((16919, 16969), 'OpenSeesAPI.Analysis.Test.EnergyIncr', 'OpenSeesAPI.Analysis.Test.EnergyIncr', (['Tol', '(1000)', '(0)'], {}), '(Tol, 1000, 0)\n', (16955, 16969), False, 'import OpenSeesAPI\n'), ((16989, 17034), 'OpenSeesAPI.Analysis.Algorithm.KrylovNewton', 'OpenSeesAPI.Analysis.Algorithm.KrylovNewton', ([], {}), '()\n', (17032, 17034), False, 'import OpenSeesAPI\n'), ((17056, 17103), 'OpenSeesAPI.TCL.TCLScript', 'OpenSeesAPI.TCL.TCLScript', (['"""set ok [analyze 1]"""'], {}), "('set ok [analyze 1]')\n", (17081, 17103), False, 'import OpenSeesAPI\n'), ((17125, 17155), 'OpenSeesAPI.TCL.TCLScript', 'OpenSeesAPI.TCL.TCLScript', (['"""}"""'], {}), "('}')\n", (17150, 17155), False, 'import OpenSeesAPI\n'), ((17314, 17358), 'OpenSeesAPI.TCL.TCLScript', 'OpenSeesAPI.TCL.TCLScript', (['"""if {$ok != 0} {"""'], {}), "('if {$ok != 0} {')\n", (17339, 17358), False, 'import OpenSeesAPI\n'), ((17380, 17478), 'OpenSeesAPI.TCL.TCLScript', 'OpenSeesAPI.TCL.TCLScript', (['(\'puts "Trying Smaller Step: %f and Tol: %f ... "\' % (StepSize, Tol))'], {}), '(\'puts "Trying Smaller Step: %f and Tol: %f ... "\' %\n (StepSize, Tol))\n', (17405, 17478), False, 'import OpenSeesAPI\n'), ((17493, 17523), 'OpenSeesAPI.TCL.TCLScript', 'OpenSeesAPI.TCL.TCLScript', (['"""}"""'], {}), "('}')\n", (17518, 17523), False, 'import OpenSeesAPI\n'), ((17546, 17634), 'OpenSeesAPI.Analysis.Integrator.Static.DisplacementControl', 'OpenSeesAPI.Analysis.Integrator.Static.DisplacementControl', (['ControlNode', '(1)', 'StepSize'], {}), '(ControlNode, 1,\n StepSize)\n', (17604, 17634), False, 'import OpenSeesAPI\n'), ((17653, 17697), 'OpenSeesAPI.TCL.TCLScript', 'OpenSeesAPI.TCL.TCLScript', (['"""if {$ok != 0} {"""'], {}), "('if {$ok != 0} {')\n", (17678, 17697), False, 'import OpenSeesAPI\n'), ((17719, 17779), 'OpenSeesAPI.TCL.TCLScript', 'OpenSeesAPI.TCL.TCLScript', (['"""puts "Trying KrylovNewton ... \\""""'], {}), '(\'puts "Trying KrylovNewton ... "\')\n', (17744, 17779), False, 'import OpenSeesAPI\n'), ((17801, 17863), 'OpenSeesAPI.Analysis.Test.NormDispIncr', 'OpenSeesAPI.Analysis.Test.NormDispIncr', (['Tol', 'NoOfIterations', '(2)'], {}), '(Tol, NoOfIterations, 2)\n', (17839, 17863), False, 'import OpenSeesAPI\n'), ((17883, 17928), 'OpenSeesAPI.Analysis.Algorithm.KrylovNewton', 'OpenSeesAPI.Analysis.Algorithm.KrylovNewton', ([], {}), '()\n', (17926, 17928), False, 'import OpenSeesAPI\n'), ((17950, 17997), 'OpenSeesAPI.TCL.TCLScript', 'OpenSeesAPI.TCL.TCLScript', (['"""set ok [analyze 1]"""'], {}), "('set ok [analyze 1]')\n", (17975, 17997), False, 'import OpenSeesAPI\n'), ((18019, 18049), 'OpenSeesAPI.TCL.TCLScript', 'OpenSeesAPI.TCL.TCLScript', (['"""}"""'], {}), "('}')\n", (18044, 18049), False, 'import OpenSeesAPI\n'), ((18161, 18205), 'OpenSeesAPI.TCL.TCLScript', 'OpenSeesAPI.TCL.TCLScript', (['"""if {$ok != 0} {"""'], {}), "('if {$ok != 0} {')\n", (18186, 18205), False, 'import OpenSeesAPI\n'), ((18227, 18287), 'OpenSeesAPI.TCL.TCLScript', 'OpenSeesAPI.TCL.TCLScript', (['"""puts "Trying KrylovNewton ... \\""""'], {}), '(\'puts "Trying KrylovNewton ... "\')\n', (18252, 18287), False, 'import OpenSeesAPI\n'), ((18309, 18359), 'OpenSeesAPI.Analysis.Test.EnergyIncr', 'OpenSeesAPI.Analysis.Test.EnergyIncr', (['Tol', 'Iter', '(0)'], {}), '(Tol, Iter, 0)\n', (18345, 18359), False, 'import OpenSeesAPI\n'), ((18379, 18424), 'OpenSeesAPI.Analysis.Algorithm.KrylovNewton', 'OpenSeesAPI.Analysis.Algorithm.KrylovNewton', ([], {}), '()\n', (18422, 18424), False, 'import OpenSeesAPI\n'), ((18446, 18493), 'OpenSeesAPI.TCL.TCLScript', 'OpenSeesAPI.TCL.TCLScript', (['"""set ok [analyze 1]"""'], {}), "('set ok [analyze 1]')\n", (18471, 18493), False, 'import OpenSeesAPI\n'), ((18515, 18545), 'OpenSeesAPI.TCL.TCLScript', 'OpenSeesAPI.TCL.TCLScript', (['"""}"""'], {}), "('}')\n", (18540, 18545), False, 'import OpenSeesAPI\n'), ((18568, 18612), 'OpenSeesAPI.TCL.TCLScript', 'OpenSeesAPI.TCL.TCLScript', (['"""if {$ok != 0} {"""'], {}), "('if {$ok != 0} {')\n", (18593, 18612), False, 'import OpenSeesAPI\n'), ((18634, 18700), 'OpenSeesAPI.TCL.TCLScript', 'OpenSeesAPI.TCL.TCLScript', (['"""puts "Trying Newton Line Search ... \\""""'], {}), '(\'puts "Trying Newton Line Search ... "\')\n', (18659, 18700), False, 'import OpenSeesAPI\n'), ((18722, 18772), 'OpenSeesAPI.Analysis.Test.EnergyIncr', 'OpenSeesAPI.Analysis.Test.EnergyIncr', (['Tol', 'Iter', '(0)'], {}), '(Tol, Iter, 0)\n', (18758, 18772), False, 'import OpenSeesAPI\n'), ((18792, 18854), 'OpenSeesAPI.Analysis.Algorithm.NewtonLineSearch', 'OpenSeesAPI.Analysis.Algorithm.NewtonLineSearch', ([], {'Tolerance': '(0.8)'}), '(Tolerance=0.8)\n', (18839, 18854), False, 'import OpenSeesAPI\n'), ((18876, 18923), 'OpenSeesAPI.TCL.TCLScript', 'OpenSeesAPI.TCL.TCLScript', (['"""set ok [analyze 1]"""'], {}), "('set ok [analyze 1]')\n", (18901, 18923), False, 'import OpenSeesAPI\n'), ((18945, 18975), 'OpenSeesAPI.TCL.TCLScript', 'OpenSeesAPI.TCL.TCLScript', (['"""}"""'], {}), "('}')\n", (18970, 18975), False, 'import OpenSeesAPI\n'), ((18998, 19042), 'OpenSeesAPI.TCL.TCLScript', 'OpenSeesAPI.TCL.TCLScript', (['"""if {$ok != 0} {"""'], {}), "('if {$ok != 0} {')\n", (19023, 19042), False, 'import OpenSeesAPI\n'), ((19064, 19140), 'OpenSeesAPI.TCL.TCLScript', 'OpenSeesAPI.TCL.TCLScript', (['"""puts "Trying Newton Line Search BiSection ... \\""""'], {}), '(\'puts "Trying Newton Line Search BiSection ... "\')\n', (19089, 19140), False, 'import OpenSeesAPI\n'), ((19162, 19212), 'OpenSeesAPI.Analysis.Test.EnergyIncr', 'OpenSeesAPI.Analysis.Test.EnergyIncr', (['Tol', 'Iter', '(0)'], {}), '(Tol, Iter, 0)\n', (19198, 19212), False, 'import OpenSeesAPI\n'), ((19232, 19292), 'OpenSeesAPI.Analysis.Algorithm.NewtonLineSearch', 'OpenSeesAPI.Analysis.Algorithm.NewtonLineSearch', (['"""Bisection"""'], {}), "('Bisection')\n", (19279, 19292), False, 'import OpenSeesAPI\n'), ((19314, 19361), 'OpenSeesAPI.TCL.TCLScript', 'OpenSeesAPI.TCL.TCLScript', (['"""set ok [analyze 1]"""'], {}), "('set ok [analyze 1]')\n", (19339, 19361), False, 'import OpenSeesAPI\n'), ((19383, 19413), 'OpenSeesAPI.TCL.TCLScript', 'OpenSeesAPI.TCL.TCLScript', (['"""}"""'], {}), "('}')\n", (19408, 19413), False, 'import OpenSeesAPI\n'), ((19436, 19480), 'OpenSeesAPI.TCL.TCLScript', 'OpenSeesAPI.TCL.TCLScript', (['"""if {$ok != 0} {"""'], {}), "('if {$ok != 0} {')\n", (19461, 19480), False, 'import OpenSeesAPI\n'), ((19502, 19574), 'OpenSeesAPI.TCL.TCLScript', 'OpenSeesAPI.TCL.TCLScript', (['"""puts "Trying Newton Line Search Secant... \\""""'], {}), '(\'puts "Trying Newton Line Search Secant... "\')\n', (19527, 19574), False, 'import OpenSeesAPI\n'), ((19596, 19646), 'OpenSeesAPI.Analysis.Test.EnergyIncr', 'OpenSeesAPI.Analysis.Test.EnergyIncr', (['Tol', 'Iter', '(0)'], {}), '(Tol, Iter, 0)\n', (19632, 19646), False, 'import OpenSeesAPI\n'), ((19666, 19723), 'OpenSeesAPI.Analysis.Algorithm.NewtonLineSearch', 'OpenSeesAPI.Analysis.Algorithm.NewtonLineSearch', (['"""Secant"""'], {}), "('Secant')\n", (19713, 19723), False, 'import OpenSeesAPI\n'), ((19745, 19792), 'OpenSeesAPI.TCL.TCLScript', 'OpenSeesAPI.TCL.TCLScript', (['"""set ok [analyze 1]"""'], {}), "('set ok [analyze 1]')\n", (19770, 19792), False, 'import OpenSeesAPI\n'), ((19814, 19844), 'OpenSeesAPI.TCL.TCLScript', 'OpenSeesAPI.TCL.TCLScript', (['"""}"""'], {}), "('}')\n", (19839, 19844), False, 'import OpenSeesAPI\n'), ((19867, 19911), 'OpenSeesAPI.TCL.TCLScript', 'OpenSeesAPI.TCL.TCLScript', (['"""if {$ok != 0} {"""'], {}), "('if {$ok != 0} {')\n", (19892, 19911), False, 'import OpenSeesAPI\n'), ((19933, 20011), 'OpenSeesAPI.TCL.TCLScript', 'OpenSeesAPI.TCL.TCLScript', (['"""puts "Trying Newton Line Search RegulaFalsi ... \\""""'], {}), '(\'puts "Trying Newton Line Search RegulaFalsi ... "\')\n', (19958, 20011), False, 'import OpenSeesAPI\n'), ((20033, 20083), 'OpenSeesAPI.Analysis.Test.EnergyIncr', 'OpenSeesAPI.Analysis.Test.EnergyIncr', (['Tol', 'Iter', '(0)'], {}), '(Tol, Iter, 0)\n', (20069, 20083), False, 'import OpenSeesAPI\n'), ((20103, 20165), 'OpenSeesAPI.Analysis.Algorithm.NewtonLineSearch', 'OpenSeesAPI.Analysis.Algorithm.NewtonLineSearch', (['"""RegulaFalsi"""'], {}), "('RegulaFalsi')\n", (20150, 20165), False, 'import OpenSeesAPI\n'), ((20187, 20234), 'OpenSeesAPI.TCL.TCLScript', 'OpenSeesAPI.TCL.TCLScript', (['"""set ok [analyze 1]"""'], {}), "('set ok [analyze 1]')\n", (20212, 20234), False, 'import OpenSeesAPI\n'), ((20256, 20286), 'OpenSeesAPI.TCL.TCLScript', 'OpenSeesAPI.TCL.TCLScript', (['"""}"""'], {}), "('}')\n", (20281, 20286), False, 'import OpenSeesAPI\n')]
# -*- coding: utf-8 -*- # Copyright (c) Polyconseil SAS. All rights reserved. import hashlib import json import logging import os import re from .html import html_config, HtmlHarvester # pylint: disable=unused-import from .sphinx import ( # pylint: disable=unused-import sphinx_config, sphinx_rtd_config, SphinxHarvester, ReadTheDocsSphinxHarvester ) logger = logging.getLogger(__name__) def _must_process_path(path, include, exclude): for exp in include: if exp.match(path): return True for exp in exclude: if exp.match(path): return False return True def _compute_hash(path): h = hashlib.md5() with open(path, 'rb') as fp: while 1: buff = fp.read(8192) if not buff: break h.update(buff) return h.hexdigest() def harvest_set(base_dir, doc_set, config, hashes, force): """Harvest a document set and return documents as dictionaries. ``config`` is the harvester configuration. It should contain a key for each supported file extensions. ``hashes`` is a dictionary that links the path of each indexed file to its hash. It is used to decide whether the document should be indexed again. ``force`` indicates whether to reindex a document even if it has not ben modified since the last indexation. This function is a generator. It yields dictionaries. Each dictionary should represent a document and contain the following keys in addition to the keys returned by the harvester itself. Each text-like value should be a string (in Python 3) or a unicode object (in Python 2). path The path of the document relative to the root of the document set. set The id of the document set. It should be ``doc_set``. """ config_copy = config.copy() include = [re.compile(exp) for exp in config_copy.pop('include') or ()] exclude = [re.compile(exp) for exp in config_copy.pop('exclude') or ()] extensions = config_copy for dir_path, _dir_names, file_names in os.walk(base_dir): for filename in file_names: path = os.path.join(dir_path, filename) relative_path = os.path.relpath(path, base_dir) if not _must_process_path(relative_path, include, exclude): logger.debug('Excluded file "%s": include/exclude rules.', relative_path) continue _, extension = os.path.splitext(filename) extension = extension.lstrip('.') # remove leading dot harvester_class = extensions.get(extension) if harvester_class is None: logger.debug('Excluded file "%s": no harvester found for %s.', relative_path, extension) continue current_hash = _compute_hash(path) indexed_hash = hashes.get(relative_path) if not force and (indexed_hash == current_hash): logger.debug('Excluded file: "%s": not modified since last indexation.', relative_path) continue try: logger.debug('Indexing file "%s"', relative_path) doc = harvester_class().harvest_file(path) except Exception: # pylint: disable=broad-except logger.exception("Could not index document %s", path) else: if doc: if relative_path == 'index.html': with open(os.path.join(base_dir, '.dokang'), 'w') as fp: json.dump({'title': doc['title']}, fp) doc['path'] = relative_path doc['set'] = doc_set doc['hash'] = current_hash yield doc
[ "logging.getLogger", "hashlib.md5", "re.compile", "json.dump", "os.path.join", "os.path.splitext", "os.walk", "os.path.relpath" ]
[((374, 401), 'logging.getLogger', 'logging.getLogger', (['__name__'], {}), '(__name__)\n', (391, 401), False, 'import logging\n'), ((656, 669), 'hashlib.md5', 'hashlib.md5', ([], {}), '()\n', (667, 669), False, 'import hashlib\n'), ((2091, 2108), 'os.walk', 'os.walk', (['base_dir'], {}), '(base_dir)\n', (2098, 2108), False, 'import os\n'), ((1881, 1896), 're.compile', 're.compile', (['exp'], {}), '(exp)\n', (1891, 1896), False, 'import re\n'), ((1957, 1972), 're.compile', 're.compile', (['exp'], {}), '(exp)\n', (1967, 1972), False, 'import re\n'), ((2165, 2197), 'os.path.join', 'os.path.join', (['dir_path', 'filename'], {}), '(dir_path, filename)\n', (2177, 2197), False, 'import os\n'), ((2226, 2257), 'os.path.relpath', 'os.path.relpath', (['path', 'base_dir'], {}), '(path, base_dir)\n', (2241, 2257), False, 'import os\n'), ((2472, 2498), 'os.path.splitext', 'os.path.splitext', (['filename'], {}), '(filename)\n', (2488, 2498), False, 'import os\n'), ((3562, 3600), 'json.dump', 'json.dump', (["{'title': doc['title']}", 'fp'], {}), "({'title': doc['title']}, fp)\n", (3571, 3600), False, 'import json\n'), ((3487, 3520), 'os.path.join', 'os.path.join', (['base_dir', '""".dokang"""'], {}), "(base_dir, '.dokang')\n", (3499, 3520), False, 'import os\n')]
# Generated by Django 2.0.4 on 2019-05-21 16:51 from django.db import migrations, models class Migration(migrations.Migration): dependencies = [ ('carPooling', '0017_carpoolingrecunbook'), ] operations = [ migrations.AlterField( model_name='carpoolinguserconf', name='c_name', field=models.CharField(max_length=128, null=True, verbose_name='真实姓名'), ), migrations.AlterField( model_name='carpoolinguserconf', name='c_phone', field=models.CharField(db_index=True, max_length=11, verbose_name='电话号码'), ), migrations.AlterField( model_name='carpoolinguserconf', name='c_weixin_id', field=models.CharField(db_index=True, max_length=128, null=True, verbose_name='微信id'), ), ]
[ "django.db.models.CharField" ]
[((352, 416), 'django.db.models.CharField', 'models.CharField', ([], {'max_length': '(128)', 'null': '(True)', 'verbose_name': '"""真实姓名"""'}), "(max_length=128, null=True, verbose_name='真实姓名')\n", (368, 416), False, 'from django.db import migrations, models\n'), ((551, 618), 'django.db.models.CharField', 'models.CharField', ([], {'db_index': '(True)', 'max_length': '(11)', 'verbose_name': '"""电话号码"""'}), "(db_index=True, max_length=11, verbose_name='电话号码')\n", (567, 618), False, 'from django.db import migrations, models\n'), ((757, 836), 'django.db.models.CharField', 'models.CharField', ([], {'db_index': '(True)', 'max_length': '(128)', 'null': '(True)', 'verbose_name': '"""微信id"""'}), "(db_index=True, max_length=128, null=True, verbose_name='微信id')\n", (773, 836), False, 'from django.db import migrations, models\n')]
import bz2 import csv import collections import math from enum import Enum class Select(Enum): FIRST = 'first' RANGE_KEY = 'range_key' RANGE_VALUE = 'range_value' class SelectPolicy: def __init__(self, policy, field=None): self.policy = policy self.field = field class StateSet: """ Wrapper for set of episode val/test states """ def __init__(self, scenes_file=None, states_files=None, scene_filter=None, episode_filter=None, max_states_per_scene=None, select_policy=SelectPolicy(Select.FIRST)): self.states = [] self.scenes = [] self.scenes_by_id = {} self.states_by_scene = {} self.select_policy = select_policy if scenes_file: self._load_scenes(scenes_file, scene_filter) if states_files: if type(states_files) is str: self._load_states(states_files, max_states_per_scene, episode_filter) elif isinstance(states_files, collections.Iterable): for states_file in states_files: self._load_states(states_file, max_states_per_scene, episode_filter) self._embed_states_in_scenes() def get_splits(self, max_states_per_scene=None): """Get dictionary of StateSets keyed by scene 'set' i.e. dataset split""" scenes_by_split = {} for scene in self.scenes: scenes_by_split.setdefault(scene['set'], []).append(scene) state_sets_dict = {} for split, scenes in scenes_by_split.items(): ss = StateSet() ss._populate_from_lists(scenes, self.states_by_scene, max_states_per_scene) state_sets_dict[split] = ss return state_sets_dict def get_scenes(self): return self.scenes def get_states(self): return self.states def get_states_by_scene_id(self, scene_id): return self.states_by_scene[scene_id] def _select_n_states(self, states, n): # Select n states from big list of states policy = self.select_policy.policy field = self.select_policy.field if n is not None and n < len(states): if policy == Select.FIRST: if field is not None: # sort by field states = sorted(states, key=lambda x: x[field]) return states[:n] elif policy == Select.RANGE_KEY: # sort by field states = sorted(states, key=lambda x: x[field]) # select by evenly dividing indices r = len(states)/float(n) selected = [] for i in range(n): si = int(math.floor(math.ceil(r*i)/2)) selected.append(states[si]) return selected elif policy == Select.RANGE_VALUE: # sort by field and get range (value) states = sorted(states, key=lambda x: x[field]) fmin = states[0][field] fmax = states[-1][field] # print('Range is %f to %f' % (fmin,fmax)) # from range, divide up into n buckets r = (fmax-fmin)/float(n) buckets = [] for i in range(n): buckets.append([]) for state in states: bi = int(min(math.ceil((state[field] - fmin)/r), n-1)) buckets[bi].append(state) # make sure all buckets have something for i, bucket in enumerate(buckets): if len(bucket) == 0: # print('Nothing in bucket %d' % i) # still some from other buckets pi = max(i-1, 0) ni = min(i+1, n-1) nlen = len(buckets[ni]) plen = len(buckets[pi]) if nlen > plen: # take half from bucket[ni] and put in current bucket k = math.floor(nlen/2) buckets[i] = buckets[ni][:k] buckets[ni] = buckets[ni][k:] else: k = math.floor(plen/2) buckets[i] = buckets[pi][:k] buckets[pi] = buckets[pi][k:] selected = [] for bucket in buckets: bii = math.floor(len(bucket)/2) selected.append(bucket[bii]) return selected else: raise ValueError('Unsupported select_policy ' + policy) else: return states def _populate_from_lists(self, my_scenes, my_states_by_scene, max_states_per_scene): self.scenes = my_scenes for scene in my_scenes: scene_id = scene['id'] self.scenes_by_id[scene_id] = scene if scene_id in my_states_by_scene: my_states = self._select_n_states(my_states_by_scene[scene_id], max_states_per_scene) self.states_by_scene[scene_id] = my_states self.states += my_states def _load_scenes(self, filename, scene_filter): with bz2.open(filename, 'rt') if filename.endswith('bz2') else open(filename) as f: reader = csv.DictReader(f) self.scenes = [] for r in reader: for v in ['nrooms', 'nobjects', 'nlevels']: if v in r: r[v] = int(r[v]) for v in ['dimX', 'dimY', 'dimZ', 'floorArea']: if v in r: r[v] = float(r[v]) if scene_filter and not scene_filter(r): continue self.scenes.append(r) self.scenes_by_id[r['id']] = r self.scenes.sort(key=lambda x: x['nobjects']) def _load_states(self, filename, max_states_per_scene, state_filter): with bz2.open(filename, 'rt') if filename.endswith('bz2') else open(filename) as f: reader = csv.DictReader(f) all_states = [r for r in reader] # Convert scene state and group by sceneId counter = 0 for r in all_states: for v in ['startX', 'startY', 'startZ', 'startAngle', 'goalX', 'goalY', 'goalZ', 'dist', 'pathDist']: r[v] = float(r[v]) if v in r else None for v in ['episodeId', 'pathNumDoors', 'pathNumRooms', 'level']: r[v] = int(r[v]) if v in r else None scene_id = r['sceneId'] scene_states = self.states_by_scene.setdefault(scene_id, []) rec = { 'episode_id': counter, 'scene_id': r['sceneId'], 'room_id': r['roomId'], 'start': {'position': [r['startX'], r['startY'], r['startZ']], 'angle': r['startAngle']}, 'goal': {'id': r['goalObjectId'], 'position': [r['goalX'], r['goalY'], r['goalZ']]}, 'dist': r['dist'] } for k in ['pathDist', 'pathNumRooms', 'pathRoomIds', 'pathNumDoors', 'pathDoorIds', 'level']: if k in r: rec[k] = r[k] if not state_filter or state_filter(rec): scene_states.append(rec) counter = counter + 1 # Filter down to states per scene and create big list of all scenes states = [] for scene_id, scene_states in self.states_by_scene.items(): self.states_by_scene[scene_id] = self._select_n_states(scene_states, max_states_per_scene) states += self.states_by_scene[scene_id] self.states = states def _embed_states_in_scenes(self): for state in self.states: scene_id = state['scene_id'] if scene_id in self.scenes_by_id: self.scenes_by_id[scene_id].setdefault('states', []).append(state) scenes_with_no_states = [] for i, scene in enumerate(self.scenes): if 'states' not in scene or len(scene['states']) == 0: scenes_with_no_states.append(scene['id']) del self.scenes_by_id[scene['id']] self.scenes = [s for s in self.scenes if s['id'] not in scenes_with_no_states] #print('Removed scenes with no episode states: ' + ','.join(scenes_with_no_states)) def main(): import argparse # Argument processing parser = argparse.ArgumentParser(description='Load state set') parser.add_argument('-n', '--limit', type=int, help='Number of states per scene') parser.add_argument('--select', default=Select.FIRST, type=Select, help='Number of states per scene') parser.add_argument('--field', default=None, help='Field to use for selection') parser.add_argument('--scenes', type=str, default=None, help='Scenes file to load') parser.add_argument('input', help='Input file to load') args = parser.parse_args() state_set = StateSet(scenes_file=args.scenes, states_files=args.input, max_states_per_scene=args.limit, select_policy=SelectPolicy(args.select, args.field)) for state in state_set.states: print(state) if __name__ == "__main__": main()
[ "csv.DictReader", "math.ceil", "argparse.ArgumentParser", "math.floor", "bz2.open" ]
[((8663, 8716), 'argparse.ArgumentParser', 'argparse.ArgumentParser', ([], {'description': '"""Load state set"""'}), "(description='Load state set')\n", (8686, 8716), False, 'import argparse\n'), ((5410, 5427), 'csv.DictReader', 'csv.DictReader', (['f'], {}), '(f)\n', (5424, 5427), False, 'import csv\n'), ((6173, 6190), 'csv.DictReader', 'csv.DictReader', (['f'], {}), '(f)\n', (6187, 6190), False, 'import csv\n'), ((5310, 5334), 'bz2.open', 'bz2.open', (['filename', '"""rt"""'], {}), "(filename, 'rt')\n", (5318, 5334), False, 'import bz2\n'), ((6073, 6097), 'bz2.open', 'bz2.open', (['filename', '"""rt"""'], {}), "(filename, 'rt')\n", (6081, 6097), False, 'import bz2\n'), ((2736, 2752), 'math.ceil', 'math.ceil', (['(r * i)'], {}), '(r * i)\n', (2745, 2752), False, 'import math\n'), ((3409, 3445), 'math.ceil', 'math.ceil', (['((state[field] - fmin) / r)'], {}), '((state[field] - fmin) / r)\n', (3418, 3445), False, 'import math\n'), ((4096, 4116), 'math.floor', 'math.floor', (['(nlen / 2)'], {}), '(nlen / 2)\n', (4106, 4116), False, 'import math\n'), ((4292, 4312), 'math.floor', 'math.floor', (['(plen / 2)'], {}), '(plen / 2)\n', (4302, 4312), False, 'import math\n')]
from hpcrocket.core.filesystem import Filesystem, FilesystemFactory from hpcrocket.core.launchoptions import Options from hpcrocket.pyfilesystem.localfilesystem import LocalFilesystem from hpcrocket.pyfilesystem.sshfilesystem import SSHFilesystem class PyFilesystemFactory(FilesystemFactory): def __init__(self, options: Options) -> None: self._options = options def create_local_filesystem(self) -> Filesystem: return LocalFilesystem(".") def create_ssh_filesystem(self) -> Filesystem: connection = self._options.connection proxyjumps = self._options.proxyjumps return SSHFilesystem(connection, proxyjumps)
[ "hpcrocket.pyfilesystem.localfilesystem.LocalFilesystem", "hpcrocket.pyfilesystem.sshfilesystem.SSHFilesystem" ]
[((447, 467), 'hpcrocket.pyfilesystem.localfilesystem.LocalFilesystem', 'LocalFilesystem', (['"""."""'], {}), "('.')\n", (462, 467), False, 'from hpcrocket.pyfilesystem.localfilesystem import LocalFilesystem\n'), ((627, 664), 'hpcrocket.pyfilesystem.sshfilesystem.SSHFilesystem', 'SSHFilesystem', (['connection', 'proxyjumps'], {}), '(connection, proxyjumps)\n', (640, 664), False, 'from hpcrocket.pyfilesystem.sshfilesystem import SSHFilesystem\n')]
# Copyright Amazon.com, Inc. or its affiliates. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"). You # may not use this file except in compliance with the License. A copy of # the License is located at # # http://aws.amazon.com/apache2.0/ # # or in the "license" file accompanying this file. This file is # distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF # ANY KIND, either express or implied. See the License for the specific # language governing permissions and limitations under the License. from __future__ import absolute_import from mock import Mock, patch from packaging import version import pytest from sagemaker.tensorflow import TensorFlow REGION = "us-west-2" ENV_INPUT = {"env_key1": "env_val1", "env_key2": "env_val2", "env_key3": "env_val3"} @pytest.fixture() def sagemaker_session(): return Mock(name="sagemaker_session", boto_region_name=REGION) def _build_tf(sagemaker_session, **kwargs): return TensorFlow( sagemaker_session=sagemaker_session, entry_point="dummy.py", role="dummy-role", instance_count=1, instance_type="ml.c4.xlarge", **kwargs, ) @patch("sagemaker.fw_utils.python_deprecation_warning") def test_estimator_py2_deprecation_warning(warning, sagemaker_session): estimator = _build_tf(sagemaker_session, framework_version="2.1.1", py_version="py2") assert estimator.py_version == "py2" warning.assert_called_with("tensorflow", "2.1.1") def test_py2_version_deprecated(sagemaker_session): with pytest.raises(AttributeError) as e: _build_tf(sagemaker_session, framework_version="2.1.2", py_version="py2") msg = ( "Python 2 containers are only available with 2.1.1 and lower versions. " "Please use a Python 3 container." ) assert msg in str(e.value) def test_py2_version_is_not_deprecated(sagemaker_session): estimator = _build_tf(sagemaker_session, framework_version="1.15.0", py_version="py2") assert estimator.py_version == "py2" estimator = _build_tf(sagemaker_session, framework_version="2.0.0", py_version="py2") assert estimator.py_version == "py2" def test_framework_name(sagemaker_session): tf = _build_tf(sagemaker_session, framework_version="1.15.2", py_version="py3") assert tf._framework_name == "tensorflow" def test_tf_add_environment_variables(sagemaker_session): tf = _build_tf( sagemaker_session, framework_version="1.15.2", py_version="py3", environment=ENV_INPUT, ) assert tf.environment == ENV_INPUT def test_tf_miss_environment_variables(sagemaker_session): tf = _build_tf( sagemaker_session, framework_version="1.15.2", py_version="py3", environment=None, ) assert not tf.environment def test_enable_sm_metrics(sagemaker_session): tf = _build_tf( sagemaker_session, framework_version="1.15.2", py_version="py3", enable_sagemaker_metrics=True, ) assert tf.enable_sagemaker_metrics def test_disable_sm_metrics(sagemaker_session): tf = _build_tf( sagemaker_session, framework_version="1.15.2", py_version="py3", enable_sagemaker_metrics=False, ) assert not tf.enable_sagemaker_metrics def test_disable_sm_metrics_if_fw_ver_is_less_than_1_15( sagemaker_session, tensorflow_training_version, tensorflow_training_py_version ): if version.Version(tensorflow_training_version) > version.Version("1.14"): pytest.skip("This test is for TF 1.14 and lower.") tf = _build_tf( sagemaker_session, framework_version=tensorflow_training_version, py_version=tensorflow_training_py_version, image_uri="old-image", ) assert tf.enable_sagemaker_metrics is None def test_enable_sm_metrics_if_fw_ver_is_at_least_1_15( sagemaker_session, tensorflow_training_version, tensorflow_training_py_version ): if version.Version(tensorflow_training_version) < version.Version("1.15"): pytest.skip("This test is for TF 1.15 and higher.") tf = _build_tf( sagemaker_session, framework_version=tensorflow_training_version, py_version=tensorflow_training_py_version, ) assert tf.enable_sagemaker_metrics def test_require_image_uri_if_fw_ver_is_less_than_1_11( sagemaker_session, tensorflow_training_version, tensorflow_training_py_version ): if version.Version(tensorflow_training_version) > version.Version("1.10"): pytest.skip("This test is for TF 1.10 and lower.") with pytest.raises(ValueError) as e: _build_tf( sagemaker_session, framework_version=tensorflow_training_version, py_version=tensorflow_training_py_version, ) expected_msg = ( "TF {version} supports only legacy mode. Please supply the image URI directly with " "'image_uri=520713654638.dkr.ecr.{region}.amazonaws.com/" "sagemaker-tensorflow:{version}-cpu-py2' and set 'model_dir=False'. If you are using any " "legacy parameters (training_steps, evaluation_steps, checkpoint_path, requirements_file), " "make sure to pass them directly as hyperparameters instead." ).format(version=tensorflow_training_version, region=REGION) assert expected_msg in str(e.value)
[ "mock.patch", "sagemaker.tensorflow.TensorFlow", "mock.Mock", "pytest.raises", "packaging.version.Version", "pytest.fixture", "pytest.skip" ]
[((829, 845), 'pytest.fixture', 'pytest.fixture', ([], {}), '()\n', (843, 845), False, 'import pytest\n'), ((1202, 1256), 'mock.patch', 'patch', (['"""sagemaker.fw_utils.python_deprecation_warning"""'], {}), "('sagemaker.fw_utils.python_deprecation_warning')\n", (1207, 1256), False, 'from mock import Mock, patch\n'), ((882, 937), 'mock.Mock', 'Mock', ([], {'name': '"""sagemaker_session"""', 'boto_region_name': 'REGION'}), "(name='sagemaker_session', boto_region_name=REGION)\n", (886, 937), False, 'from mock import Mock, patch\n'), ((995, 1152), 'sagemaker.tensorflow.TensorFlow', 'TensorFlow', ([], {'sagemaker_session': 'sagemaker_session', 'entry_point': '"""dummy.py"""', 'role': '"""dummy-role"""', 'instance_count': '(1)', 'instance_type': '"""ml.c4.xlarge"""'}), "(sagemaker_session=sagemaker_session, entry_point='dummy.py',\n role='dummy-role', instance_count=1, instance_type='ml.c4.xlarge', **kwargs\n )\n", (1005, 1152), False, 'from sagemaker.tensorflow import TensorFlow\n'), ((1578, 1607), 'pytest.raises', 'pytest.raises', (['AttributeError'], {}), '(AttributeError)\n', (1591, 1607), False, 'import pytest\n'), ((3489, 3533), 'packaging.version.Version', 'version.Version', (['tensorflow_training_version'], {}), '(tensorflow_training_version)\n', (3504, 3533), False, 'from packaging import version\n'), ((3536, 3559), 'packaging.version.Version', 'version.Version', (['"""1.14"""'], {}), "('1.14')\n", (3551, 3559), False, 'from packaging import version\n'), ((3569, 3619), 'pytest.skip', 'pytest.skip', (['"""This test is for TF 1.14 and lower."""'], {}), "('This test is for TF 1.14 and lower.')\n", (3580, 3619), False, 'import pytest\n'), ((4008, 4052), 'packaging.version.Version', 'version.Version', (['tensorflow_training_version'], {}), '(tensorflow_training_version)\n', (4023, 4052), False, 'from packaging import version\n'), ((4055, 4078), 'packaging.version.Version', 'version.Version', (['"""1.15"""'], {}), "('1.15')\n", (4070, 4078), False, 'from packaging import version\n'), ((4088, 4139), 'pytest.skip', 'pytest.skip', (['"""This test is for TF 1.15 and higher."""'], {}), "('This test is for TF 1.15 and higher.')\n", (4099, 4139), False, 'import pytest\n'), ((4490, 4534), 'packaging.version.Version', 'version.Version', (['tensorflow_training_version'], {}), '(tensorflow_training_version)\n', (4505, 4534), False, 'from packaging import version\n'), ((4537, 4560), 'packaging.version.Version', 'version.Version', (['"""1.10"""'], {}), "('1.10')\n", (4552, 4560), False, 'from packaging import version\n'), ((4570, 4620), 'pytest.skip', 'pytest.skip', (['"""This test is for TF 1.10 and lower."""'], {}), "('This test is for TF 1.10 and lower.')\n", (4581, 4620), False, 'import pytest\n'), ((4631, 4656), 'pytest.raises', 'pytest.raises', (['ValueError'], {}), '(ValueError)\n', (4644, 4656), False, 'import pytest\n')]
import subprocess proc = subprocess.Popen(['python3', 'articlekeywords.py', 'aih.txt' , '5'], stdout=subprocess.PIPE ) #print(type(proc.communicate()[0])) # path = '/opt/mycroft/skills/mycroft-bitcoinprice-skill/' text = proc.stdout.read() rows = text.splitlines() #print(text.splitlines()) count = 0 s = "" for row in rows: divide = row.split() wordCount = len(divide) if wordCount > 1: count = count + 1 s += str(count) s += " " s += str(divide[1]) s += " " print(s) # with open(path + 'out.csv', 'r') as content_file: # text = content_file.read() # self.speak_dialog("bitcoin.price", data={'price': str(text)}) #file_path = '/opt/mycroft/skills/mycroft-bitcoinprice-skill/out.csv' #wordCount = 10 # # text = Path(file_path).read_text() # #print(exit_code)
[ "subprocess.Popen" ]
[((27, 123), 'subprocess.Popen', 'subprocess.Popen', (["['python3', 'articlekeywords.py', 'aih.txt', '5']"], {'stdout': 'subprocess.PIPE'}), "(['python3', 'articlekeywords.py', 'aih.txt', '5'], stdout=\n subprocess.PIPE)\n", (43, 123), False, 'import subprocess\n')]
# Python 2.7.1 import RPi.GPIO as GPIO from twython import Twython import time import sys import os import pygame APP_KEY='zmmlyAJzMDIntLpDYmSH98gbw' APP_SECRET='<KEY>' OAUTH_TOKEN='<KEY>' OAUTH_TOKEN_SECRET='<KEY>' applepislcy = Twython(APP_KEY, APP_SECRET, OAUTH_TOKEN, OAUTH_TOKEN_SECRET) ### GENERAL ### def Cleanup(): GPIO.cleanup() def Sleep(seconds): """Puts the program to sleep""" time.sleep(seconds) def Alert(channel): """Simple alert function for testing event interrupts""" print('Alert on channel',channel) def TimeString(): """Returns the current time""" t = time.localtime() return str(t[0])+'.'+str(t[1])+'.'+str(t[2])+'.'+str(t[3])+'.'+str(t[4])+'.'+str(t[5]) def LoadPins(mapping,inp): """Organizes an input into a pin mapping dict mapping <list>, ['IA','IB'] inp <dict>, <list>, <int> {'IA':1,'IB':2}, [1,2] """ if type(inp) is int and len(mapping) == 1: return {mapping[0]:inp} elif type(inp) is list and len(mapping) == len(inp): o = {} for i in range(len(inp)): o[mapping[i]] = inp[i] return o elif type(inp) is dict: return inp else: print('Invalid input for pins:',inp,type(inp)) print('Expected:',mapping) return {} def BoolToSign(inp): """Converts boolean bits into signed bits 0 -> -1 1 -> 1""" return (inp * 2) - 1 def SignToBool(inp): """Converts signed bits into boolean bits -1 -> 0 1 -> 1""" return (inp + 1) / 2 ### PYGAME ### def WindowSetup(size=(300,50),caption='',text='',background=(0,0,0),foreground=(255,255,255)): """Sets up a pygame window to take keyboard input size <tuple>, width by height caption <str>, window title bar text <str>, text to display in window, accepts \n background <tuple>, foreground <tuple>, (r,g,b) color """ pygame.init() screen = pygame.display.set_mode(size,0,32) pygame.display.set_caption(caption) myfont = pygame.font.SysFont('Monospace',15) labels = [] lines = text.split('\n') for line in lines: labels.append(myfont.render(line,1,foreground)) screen.fill(background) y = 0 for label in labels: screen.blit(label, (0,y)) y += 15 pygame.display.update() def InputLoop(eventmap): """Begins a pygame loop, mapping key inputs to functions eventmap <dict>, {pygame.K_t:myfunction} """ index = 0 while True: events = pygame.event.get() for event in events: if event.type == pygame.KEYDOWN: #print("{0}: You pressed {1:c}".format ( index , event.key )) if event.key in eventmap: eventmap[event.key]() elif event.type == pygame.QUIT: pygame.quit() sys.exit() def InputLoopDemo(): def dog(): print('woof') def cat(): print('meow') def fish(): print('blub') WindowSetup(caption='pet simulator',text='d for dog\nc for cat\nf for fish') InputLoop({pygame.K_d:dog, pygame.K_c:cat, pygame.K_f:fish}) ### TWITTER ### def Tweet(twit,statustext): """Tweets a message twit <Twython>, create with Twython(APP_KEY, APP_SECRET, OAUTH_TOKEN, OAUTH_TOKEN_SECRET) statustext <str>, must be <= 140 characters """ if len(statustext) > 140: print('ERROR: Character limit 140 exceeded:',len(statustext)) else: twit.update_status(status=statustext) def TweetPicture(twit,file,statustext): """Tweets a message with a picture twit <Twython>, create with Twython(APP_KEY, APP_SECRET, OAUTH_TOKEN, OAUTH_TOKEN_SECRET) file <str>, path and filename to picture statustext <str>, must be <= 140 characters """ photo = open(file, 'rb') response = twitter.upload_media(media=photo) twit.update_status(status=statustext, media_ids=[response['media_id']]) def TweetVideo(twit,file,statustext): """Tweets a message with a video twit <Twython>, create with Twython(APP_KEY, APP_SECRET, OAUTH_TOKEN, OAUTH_TOKEN_SECRET) file <str>, path and filename to video statustext <str>, must be <= 140 characters """ video = open(file, 'rb') response = twitter.upload_video(media=video, media_type='video/mp4') twit.update_status(status=statustext, media_ids=[response['media_id']])
[ "RPi.GPIO.cleanup", "sys.exit", "pygame.init", "twython.Twython", "pygame.event.get", "pygame.quit", "pygame.display.set_mode", "time.sleep", "pygame.display.set_caption", "time.localtime", "pygame.display.update", "pygame.font.SysFont" ]
[((232, 293), 'twython.Twython', 'Twython', (['APP_KEY', 'APP_SECRET', 'OAUTH_TOKEN', 'OAUTH_TOKEN_SECRET'], {}), '(APP_KEY, APP_SECRET, OAUTH_TOKEN, OAUTH_TOKEN_SECRET)\n', (239, 293), False, 'from twython import Twython\n'), ((331, 345), 'RPi.GPIO.cleanup', 'GPIO.cleanup', ([], {}), '()\n', (343, 345), True, 'import RPi.GPIO as GPIO\n'), ((407, 426), 'time.sleep', 'time.sleep', (['seconds'], {}), '(seconds)\n', (417, 426), False, 'import time\n'), ((609, 625), 'time.localtime', 'time.localtime', ([], {}), '()\n', (623, 625), False, 'import time\n'), ((1888, 1901), 'pygame.init', 'pygame.init', ([], {}), '()\n', (1899, 1901), False, 'import pygame\n'), ((1915, 1951), 'pygame.display.set_mode', 'pygame.display.set_mode', (['size', '(0)', '(32)'], {}), '(size, 0, 32)\n', (1938, 1951), False, 'import pygame\n'), ((1954, 1989), 'pygame.display.set_caption', 'pygame.display.set_caption', (['caption'], {}), '(caption)\n', (1980, 1989), False, 'import pygame\n'), ((2003, 2039), 'pygame.font.SysFont', 'pygame.font.SysFont', (['"""Monospace"""', '(15)'], {}), "('Monospace', 15)\n", (2022, 2039), False, 'import pygame\n'), ((2280, 2303), 'pygame.display.update', 'pygame.display.update', ([], {}), '()\n', (2301, 2303), False, 'import pygame\n'), ((2491, 2509), 'pygame.event.get', 'pygame.event.get', ([], {}), '()\n', (2507, 2509), False, 'import pygame\n'), ((2806, 2819), 'pygame.quit', 'pygame.quit', ([], {}), '()\n', (2817, 2819), False, 'import pygame\n'), ((2836, 2846), 'sys.exit', 'sys.exit', ([], {}), '()\n', (2844, 2846), False, 'import sys\n')]
"""plerr entrypoint""" from plerr import cli if __name__ == '__main__': cli.main()
[ "plerr.cli.main" ]
[((77, 87), 'plerr.cli.main', 'cli.main', ([], {}), '()\n', (85, 87), False, 'from plerr import cli\n')]
# Licensed under the Apache License, Version 2.0 (the "License"); you may # not use this file except in compliance with the License. You may obtain # a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, WITHOUT # WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the # License for the specific language governing permissions and limitations # under the License. from tempest.lib import decorators from tempest.lib import exceptions from senlin_tempest_plugin.api import base from senlin_tempest_plugin.common import utils class TestPolicyUpdateNegativeNotFound(base.BaseSenlinAPITest): @decorators.attr(type=['negative']) @decorators.idempotent_id('5df90d82-9889-4c6f-824c-30272bcfa767') def test_policy_update_policy_not_found(self): ex = self.assertRaises(exceptions.NotFound, self.client.update_obj, 'policies', '5df90d82-9889-4c6f-824c-30272bcfa767', {'policy': {'name': 'new-name'}}) message = ex.resp_body['error']['message'] self.assertEqual( "The policy '5df90d82-9889-4c6f-824c-30272bcfa767' " "could not be found.", str(message)) @decorators.attr(type=['negative']) @decorators.idempotent_id('29414add-9cba-4b72-a7bb-36718671dcab') def test_policy_update_policy_invalid_param(self): ex = self.assertRaises(exceptions.BadRequest, self.client.update_obj, 'policies', '5df90d82-9889-4c6f-824c-30272bcfa767', {'policy': {'boo': 'foo'}}) message = ex.resp_body['error']['message'] self.assertEqual( "Additional properties are not allowed (u'boo' was " "unexpected)", str(message)) @decorators.attr(type=['negative']) @decorators.idempotent_id('bf26ed1e-1d26-4472-b4c8-0bcca1c0a838') def test_policy_update_policy_empty_param(self): ex = self.assertRaises(exceptions.BadRequest, self.client.update_obj, 'policies', '5df90d82-9889-4c6f-824c-30272bcfa767', {}) message = ex.resp_body['error']['message'] self.assertEqual( "Malformed request data, missing 'policy' key in " "request body.", str(message)) class TestPolicyUpdateNegativeBadRequest(base.BaseSenlinAPITest): def setUp(self): super(TestPolicyUpdateNegativeBadRequest, self).setUp() # Create a policy policy_id = utils.create_a_policy(self) self.addCleanup(utils.delete_a_policy, self, policy_id) self.policy_id = policy_id @decorators.attr(type=['negative']) @decorators.idempotent_id('31242de5-55ac-4589-87a1-a9940e4beca2') def test_policy_update_no_property_updated(self): # No property is updated. params = { 'policy': {} } # Verify badrequest exception(400) is raised. ex = self.assertRaises(exceptions.BadRequest, self.client.update_obj, 'policies', self.policy_id, params) message = ex.resp_body['error']['message'] self.assertEqual( "'name' is a required property", str(message)) @decorators.attr(type=['negative']) @decorators.idempotent_id('d2ca7de6-0069-48c9-b3de-ee975a2428dc') def test_policy_update_spec_not_updatable(self): # Try to update spec of policy. # Note: name is the only property that can be updated # after policy is created. params = { 'policy': { 'name': 'new-name', 'spec': {'k1': 'v1'} } } # Verify badrequest exception(400) is raised. ex = self.assertRaises(exceptions.BadRequest, self.client.update_obj, 'policies', self.policy_id, params) message = ex.resp_body['error']['message'] self.assertEqual( "Additional properties are not allowed (u'spec' was " "unexpected)", str(message))
[ "tempest.lib.decorators.attr", "tempest.lib.decorators.idempotent_id", "senlin_tempest_plugin.common.utils.create_a_policy" ]
[((779, 813), 'tempest.lib.decorators.attr', 'decorators.attr', ([], {'type': "['negative']"}), "(type=['negative'])\n", (794, 813), False, 'from tempest.lib import decorators\n'), ((819, 883), 'tempest.lib.decorators.idempotent_id', 'decorators.idempotent_id', (['"""5df90d82-9889-4c6f-824c-30272bcfa767"""'], {}), "('5df90d82-9889-4c6f-824c-30272bcfa767')\n", (843, 883), False, 'from tempest.lib import decorators\n'), ((1388, 1422), 'tempest.lib.decorators.attr', 'decorators.attr', ([], {'type': "['negative']"}), "(type=['negative'])\n", (1403, 1422), False, 'from tempest.lib import decorators\n'), ((1428, 1492), 'tempest.lib.decorators.idempotent_id', 'decorators.idempotent_id', (['"""29414add-9cba-4b72-a7bb-36718671dcab"""'], {}), "('29414add-9cba-4b72-a7bb-36718671dcab')\n", (1452, 1492), False, 'from tempest.lib import decorators\n'), ((1989, 2023), 'tempest.lib.decorators.attr', 'decorators.attr', ([], {'type': "['negative']"}), "(type=['negative'])\n", (2004, 2023), False, 'from tempest.lib import decorators\n'), ((2029, 2093), 'tempest.lib.decorators.idempotent_id', 'decorators.idempotent_id', (['"""bf26ed1e-1d26-4472-b4c8-0bcca1c0a838"""'], {}), "('bf26ed1e-1d26-4472-b4c8-0bcca1c0a838')\n", (2053, 2093), False, 'from tempest.lib import decorators\n'), ((2891, 2925), 'tempest.lib.decorators.attr', 'decorators.attr', ([], {'type': "['negative']"}), "(type=['negative'])\n", (2906, 2925), False, 'from tempest.lib import decorators\n'), ((2931, 2995), 'tempest.lib.decorators.idempotent_id', 'decorators.idempotent_id', (['"""31242de5-55ac-4589-87a1-a9940e4beca2"""'], {}), "('31242de5-55ac-4589-87a1-a9940e4beca2')\n", (2955, 2995), False, 'from tempest.lib import decorators\n'), ((3511, 3545), 'tempest.lib.decorators.attr', 'decorators.attr', ([], {'type': "['negative']"}), "(type=['negative'])\n", (3526, 3545), False, 'from tempest.lib import decorators\n'), ((3551, 3615), 'tempest.lib.decorators.idempotent_id', 'decorators.idempotent_id', (['"""d2ca7de6-0069-48c9-b3de-ee975a2428dc"""'], {}), "('d2ca7de6-0069-48c9-b3de-ee975a2428dc')\n", (3575, 3615), False, 'from tempest.lib import decorators\n'), ((2758, 2785), 'senlin_tempest_plugin.common.utils.create_a_policy', 'utils.create_a_policy', (['self'], {}), '(self)\n', (2779, 2785), False, 'from senlin_tempest_plugin.common import utils\n')]
from datasette import hookimpl from datasette.utils import detect_spatialite from shapely import wkt def get_spatial_tables(conn): if not detect_spatialite(conn): return {} spatial_tables = {} c = conn.cursor() c.execute( """SELECT f_table_name, f_geometry_column, srid, spatial_index_enabled FROM geometry_columns""" ) for row in c.fetchall(): if row[3] != 1: print( "Column {column} in table {table} has no spatial index; datasette-geo will ignore it.".format( column=row[1], table=row[0] ) ) continue spatial_tables[row[0]] = row[1] return spatial_tables def get_bounds(conn, spatial_tables): c = conn.cursor() res = {} for table, column in spatial_tables.items(): c.execute( "SELECT AsText(Envelope(GUnion({column}))) FROM {table}".format( table=table, column=column ) ) data = c.fetchone()[0] if data is None: continue bbox = wkt.loads(data) res[table] = bbox.bounds return res
[ "shapely.wkt.loads", "datasette.utils.detect_spatialite" ]
[((144, 167), 'datasette.utils.detect_spatialite', 'detect_spatialite', (['conn'], {}), '(conn)\n', (161, 167), False, 'from datasette.utils import detect_spatialite\n'), ((1106, 1121), 'shapely.wkt.loads', 'wkt.loads', (['data'], {}), '(data)\n', (1115, 1121), False, 'from shapely import wkt\n')]
""" Message context. """ from typing import Dict from microcosm.api import defaults, typed from microcosm.config.types import boolean from microcosm_logging.decorators import logger from microcosm_pubsub.constants import TTL_KEY, URI_KEY from microcosm_pubsub.message import SQSMessage @defaults( enable_ttl=typed(boolean, default_value=True), initial_ttl=typed(int, default_value=32), ) @logger class SQSMessageContext: """ Factory for per-message contexts. """ def __init__(self, graph): self.enable_ttl = graph.config.sqs_message_context.enable_ttl self.initial_ttl = graph.config.sqs_message_context.initial_ttl def __call__(self, context: SQSMessage, **kwargs) -> Dict[str, str]: """ Create a new context from a message. """ return self.from_sqs_message(context, **kwargs) def from_sqs_message(self, message: SQSMessage, **kwargs): context: Dict = dict(message.opaque_data) context.update( # include the message id message_id=message.message_id, **kwargs, ) # include the TTL (if enabled) if self.enable_ttl: ttl = message.ttl if message.ttl is not None else self.initial_ttl context[TTL_KEY] = str(ttl - 1) # include the URI (if there is one) if message.uri: context[URI_KEY] = message.uri return context
[ "microcosm.api.typed" ]
[((317, 351), 'microcosm.api.typed', 'typed', (['boolean'], {'default_value': '(True)'}), '(boolean, default_value=True)\n', (322, 351), False, 'from microcosm.api import defaults, typed\n'), ((369, 397), 'microcosm.api.typed', 'typed', (['int'], {'default_value': '(32)'}), '(int, default_value=32)\n', (374, 397), False, 'from microcosm.api import defaults, typed\n')]
import pytest from app.db import session_scope pytestmark = pytest.mark.asyncio async def test_engine_configured(env): async with session_scope() as session: assert str(session.bind.engine.url) == env("SQLALCHEMY_DATABASE_URI")
[ "app.db.session_scope" ]
[((138, 153), 'app.db.session_scope', 'session_scope', ([], {}), '()\n', (151, 153), False, 'from app.db import session_scope\n')]
#!/usr/bin/env python3 """ Description: Python script to append the common columns in one sheet from another sheet using fuzzy matching. """ import pip def import_or_install(package): try: __import__(package) except ImportError: pip.main(['install', package]) import os import sys import argparse import_or_install('numpy') import_or_install('pandas') import_or_install('fuzzywuzzy') import numpy as np import pandas as pd from fuzzywuzzy import process, fuzz class FuzzyMatcher: """ FuzzyMatcher class to perform the fuzzy matching. """ def __init__(self, df_1, df_2, columns_1, columns_2, append_in='second'): """ The constructor takes five arguments. The last argument 'append_in' is optional. Parameters: df_1: the first table in pandas.DataFrame format or the name of the CSV file for the first table df_2: the second table in pandas.DataFrame format or the name of the CSV file for the second table columns_1: list of common columns in the first table columns_2: list of common columns in the second table append_in (optional): 'first' if the common columns are to be appended in the first table 'second' if the common columns are to be appended in the second table """ if type(df_1) == str: df_1 = pd.read_csv(df_1) if type(df_2) == str: df_2 = pd.read_csv(df_2) df_1.columns = df_1.columns.str.lower().str.strip() df_2.columns = df_2.columns.str.lower().str.strip() columns_1 = [i.lower().strip() for i in columns_1] columns_2 = [i.lower().strip() for i in columns_2] if append_in == 'first': temp = df_1 df_1 = df_2 df_2 = temp temp = columns_1 columns_1 = columns_2 columns_2 = temp self.df_1 = df_1.rename(columns=dict(zip(columns_1, columns_2))) self.columns = columns_2 self.df_2 = self._fuzzy_match(self.df_1, df_2, self.columns[0]) @staticmethod def _string_matching(name, collection, mapping_): """ Returns similar name using fuzzy matching. """ if name in collection: return name if name in mapping_: return mapping_[name] similar = process.extractOne(name, collection, scorer=fuzz.ratio)[0] mapping_[name] = similar return similar def _fuzzy_match(self, df_1_t, df_2_t, common_column_t): """ Returns dataframe with the common column appended. Notice that the appended columns end with '_t'. """ collection = set(df_1_t[common_column_t]) mapping_ = {} df_2_t[common_column_t + '_t'] = df_2_t[common_column_t].apply(self._string_matching, args=(collection, mapping_)) return df_2_t @property def fuzzy_match(self): """ Returns the dataframe consisting of all the appended columns. """ for i_t, common_column in enumerate(self.columns[1:], start=1): self.df_2[common_column + '_t'] = np.nan group_1 = self.df_1.groupby(self.columns[:i_t]) group_2 = self.df_2.groupby([i + '_t' for i in self.columns[:i_t]]) for key, df_slice_2 in group_2: df_slice_1 = group_1.get_group(key) df_slice_2 = self._fuzzy_match(df_slice_1, df_slice_2, common_column) self.df_2.loc[df_slice_2.index, common_column + '_t'] = df_slice_2.loc[:, common_column + '_t'] return self.df_2 def save(self, filename): """ Saves the result dataframe to a CSV file, filename. """ self.df_2.to_csv(filename) def parse_args(parser): """ Parsing and configuration of the command line arguments. """ parser = argparse.ArgumentParser() parser.add_argument('--firstcsv', type=str, required=True, help='CSV file for first table.') parser.add_argument('--secondcsv', type=str, required=True, help='CSV file for second table.') parser.add_argument('--destination', type=str, default='output.csv', help='Destination filename.') parser.add_argument('--commoncolumns1', type=str, required=True, help='Common columns for first table.') parser.add_argument('--commoncolumns2', type=str, required=True, help='Common columns for second table in the same order.') parser.add_argument("--in", dest="_in", default='second', choices=['second', 'first'], help='Table to append the columns. ') return check_args(parser.parse_args()) def check_args(args): """ Checking the arguments if they are entered properly. Validations performed: 1. Compulsory arguments are entered. 2. The entered filenames are present in the current folder. 3. The entered column names are present in the corresponding files. 4. If the destination filename is already present in the directory, ask the user if it can be overwritten. """ # for --firstcsv and --secondcsv for filename in [args.firstcsv, args.secondcsv]: if not os.path.isfile(filename): raise Exception("File {} is not present in the currrent folder.".format(filename)) # --commoncolumns1 commoncolumns1 = [i.strip().lower() for i in args.commoncolumns1.split(',')] temp = set(commoncolumns1) - set(pd.read_csv(args.firstcsv, nrows=1).columns.str.lower().str.strip()) if temp: raise Exception("The following columns are not present in the file, {}:\n{}".format(args.firstcsv, temp)) # --commoncolumns2 commoncolumns2 = [i.strip().lower() for i in args.commoncolumns2.split(',')] temp = set(commoncolumns2) - set(pd.read_csv(args.secondcsv, nrows=1).columns.str.lower().str.strip()) if temp: raise Exception("The following columns are not present in the file, {}:\n{}".format(args.secondcsv, temp)) # --destination if os.path.isfile(args.destination): print("The file {} already exists. Do you want to overwrite it? y/n".format(args.destination)) ans = input().strip().lower() if ans == 'n': print("Please enter different destination filename and run the script again.") sys.exit() return args if __name__ == "__main__": # instantiate the ArgumentParser class and parse the arguments parser = argparse.ArgumentParser() arguments = parse_args(parser) # save the arguments as some variables which later would be passed to FuzzyMatcher class filename_1 = arguments.firstcsv filename_2 = arguments.secondcsv result_filename = arguments.destination # clean and lowercase-ize the columns names common_columns_1 = [i.strip().lower() for i in arguments.commoncolumns1.split(',')] common_columns_2 = [i.strip().lower() for i in arguments.commoncolumns2.split(',')] # instantiate the FuzzyMatcher object, perform the fuzzy match, and save the result to the destination CSV file fuzzy_matcher = FuzzyMatcher(filename_1, filename_2, common_columns_1, common_columns_2, append_in=arguments._in) fuzzy_matcher.fuzzy_match fuzzy_matcher.save(result_filename)
[ "argparse.ArgumentParser", "pandas.read_csv", "os.path.isfile", "fuzzywuzzy.process.extractOne", "sys.exit", "pip.main" ]
[((4202, 4227), 'argparse.ArgumentParser', 'argparse.ArgumentParser', ([], {}), '()\n', (4225, 4227), False, 'import argparse\n'), ((6315, 6347), 'os.path.isfile', 'os.path.isfile', (['args.destination'], {}), '(args.destination)\n', (6329, 6347), False, 'import os\n'), ((6779, 6804), 'argparse.ArgumentParser', 'argparse.ArgumentParser', ([], {}), '()\n', (6802, 6804), False, 'import argparse\n'), ((255, 285), 'pip.main', 'pip.main', (["['install', package]"], {}), "(['install', package])\n", (263, 285), False, 'import pip\n'), ((1402, 1419), 'pandas.read_csv', 'pd.read_csv', (['df_1'], {}), '(df_1)\n', (1413, 1419), True, 'import pandas as pd\n'), ((1482, 1499), 'pandas.read_csv', 'pd.read_csv', (['df_2'], {}), '(df_2)\n', (1493, 1499), True, 'import pandas as pd\n'), ((2509, 2564), 'fuzzywuzzy.process.extractOne', 'process.extractOne', (['name', 'collection'], {'scorer': 'fuzz.ratio'}), '(name, collection, scorer=fuzz.ratio)\n', (2527, 2564), False, 'from fuzzywuzzy import process, fuzz\n'), ((5480, 5504), 'os.path.isfile', 'os.path.isfile', (['filename'], {}), '(filename)\n', (5494, 5504), False, 'import os\n'), ((6625, 6635), 'sys.exit', 'sys.exit', ([], {}), '()\n', (6633, 6635), False, 'import sys\n'), ((5743, 5778), 'pandas.read_csv', 'pd.read_csv', (['args.firstcsv'], {'nrows': '(1)'}), '(args.firstcsv, nrows=1)\n', (5754, 5778), True, 'import pandas as pd\n'), ((6085, 6121), 'pandas.read_csv', 'pd.read_csv', (['args.secondcsv'], {'nrows': '(1)'}), '(args.secondcsv, nrows=1)\n', (6096, 6121), True, 'import pandas as pd\n')]
import os from twisted.internet.defer import succeed class Load(object): def register(self, sysinfo): self._sysinfo = sysinfo def run(self): self._sysinfo.add_header("System load", str(os.getloadavg()[0])) return succeed(None)
[ "os.getloadavg", "twisted.internet.defer.succeed" ]
[((250, 263), 'twisted.internet.defer.succeed', 'succeed', (['None'], {}), '(None)\n', (257, 263), False, 'from twisted.internet.defer import succeed\n'), ((214, 229), 'os.getloadavg', 'os.getloadavg', ([], {}), '()\n', (227, 229), False, 'import os\n')]
import matplotlib matplotlib.use('TkAgg') import matplotlib.pyplot import agentframework import csv import matplotlib.animation #create environment in which agents will operate environment=[] #read csv downloaded file f = open('in.txt', newline='') reader = csv.reader(f, quoting=csv.QUOTE_NONNUMERIC) for row in reader: rowlist=[] # A list of rows environment.append(rowlist) for value in row: # A list of value #print(value) # Floats rowlist.append(value) f.close() # Don't close until you are done with the reader; # the data is read on request. #def distance_between(agents_row_a, agents_row_b): # return (((agents_row_a.x - agents_row_b.x)**2) + # ((agents_row_a.y - agents_row_b.y)**2))**0.5 num_of_agents = 10 num_of_iterations = 10 neighbourhood = 20 fig = matplotlib.pyplot.figure(figsize=(7, 7)) ax = fig.add_axes([0, 0, 1, 1]) # Make the agents and connecting with the environment. agents = [] def update(frame_number): fig.clear() for i in range(num_of_agents): agents.append(agentframework.Agent(environment,agents)) # Move and eat agents with every move or iteration. for j in range(num_of_iterations): for i in range(num_of_agents): agents[i].move() agents[i].eat() agents[i].share_with_neighbours(neighbourhood) # Loop through the agents in self.agents . # Calculate the distance between self and the current other agent: # distance = self.distance_between(agent) # If distance is less than or equal to the neighbourhood # Sum self.store and agent.store . # Divide sum by two to calculate average. # self.store = average # agent.store = average # End if # End loop # plot matplotlib.pyplot.xlim(0, 299) matplotlib.pyplot.ylim(0, 299) for i in range(num_of_agents): matplotlib.pyplot.scatter(agents[i].x,agents[i].y) matplotlib.pyplot.imshow(environment) animation = matplotlib.animation.FuncAnimation(fig, update, interval=1) matplotlib.pyplot.show()
[ "matplotlib.pyplot.imshow", "matplotlib.use", "matplotlib.animation.FuncAnimation", "agentframework.Agent", "matplotlib.pyplot.figure", "matplotlib.pyplot.scatter", "matplotlib.pyplot.ylim", "matplotlib.pyplot.xlim", "csv.reader", "matplotlib.pyplot.show" ]
[((18, 41), 'matplotlib.use', 'matplotlib.use', (['"""TkAgg"""'], {}), "('TkAgg')\n", (32, 41), False, 'import matplotlib\n'), ((265, 308), 'csv.reader', 'csv.reader', (['f'], {'quoting': 'csv.QUOTE_NONNUMERIC'}), '(f, quoting=csv.QUOTE_NONNUMERIC)\n', (275, 308), False, 'import csv\n'), ((837, 877), 'matplotlib.pyplot.figure', 'matplotlib.pyplot.figure', ([], {'figsize': '(7, 7)'}), '(figsize=(7, 7))\n', (861, 877), False, 'import matplotlib\n'), ((2119, 2178), 'matplotlib.animation.FuncAnimation', 'matplotlib.animation.FuncAnimation', (['fig', 'update'], {'interval': '(1)'}), '(fig, update, interval=1)\n', (2153, 2178), False, 'import matplotlib\n'), ((2179, 2203), 'matplotlib.pyplot.show', 'matplotlib.pyplot.show', ([], {}), '()\n', (2201, 2203), False, 'import matplotlib\n'), ((1892, 1922), 'matplotlib.pyplot.xlim', 'matplotlib.pyplot.xlim', (['(0)', '(299)'], {}), '(0, 299)\n', (1914, 1922), False, 'import matplotlib\n'), ((1927, 1957), 'matplotlib.pyplot.ylim', 'matplotlib.pyplot.ylim', (['(0)', '(299)'], {}), '(0, 299)\n', (1949, 1957), False, 'import matplotlib\n'), ((2060, 2097), 'matplotlib.pyplot.imshow', 'matplotlib.pyplot.imshow', (['environment'], {}), '(environment)\n', (2084, 2097), False, 'import matplotlib\n'), ((2001, 2052), 'matplotlib.pyplot.scatter', 'matplotlib.pyplot.scatter', (['agents[i].x', 'agents[i].y'], {}), '(agents[i].x, agents[i].y)\n', (2026, 2052), False, 'import matplotlib\n'), ((1091, 1132), 'agentframework.Agent', 'agentframework.Agent', (['environment', 'agents'], {}), '(environment, agents)\n', (1111, 1132), False, 'import agentframework\n')]
"""Validation for UDFs. Warning: This is an experimental module and API here can change without notice. DO NOT USE DIRECTLY. """ from inspect import Parameter, Signature, signature from typing import Any, Callable, List import ibis.common.exceptions as com from ibis.expr.datatypes import DataType def _parameter_count(funcsig: Signature) -> int: """Get the number of positional-or-keyword or position-only parameters in a function signature. Parameters ---------- funcsig : inspect.Signature A UDF signature Returns ------- int The number of parameters """ return sum( param.kind in {param.POSITIONAL_OR_KEYWORD, param.POSITIONAL_ONLY} for param in funcsig.parameters.values() if param.default is Parameter.empty ) def validate_input_type( input_type: List[DataType], func: Callable ) -> Signature: """Check that the declared number of inputs (the length of `input_type`) and the number of inputs to `func` are equal. If the signature of `func` uses *args, then no check is done (since no check can be done). Parameters ---------- input_type : List[DataType] func : callable Returns ------- inspect.Signature """ funcsig = signature(func) params = funcsig.parameters.values() # We can only do validation if all the positional arguments are explicit # (i.e. no *args) if not any(param.kind is Parameter.VAR_POSITIONAL for param in params): declared_parameter_count = len(input_type) function_parameter_count = _parameter_count(funcsig) if declared_parameter_count != function_parameter_count: raise TypeError( 'Function signature {!r} has {:d} parameters, ' 'input_type has {:d}. These must match. Non-column ' 'parameters must be defined as keyword only, i.e., ' 'def foo(col, *, function_param).'.format( func.__name__, function_parameter_count, declared_parameter_count, ) ) return funcsig def validate_output_type(output_type: Any) -> None: """Check that the output type is a single datatype.""" if isinstance(output_type, list): raise com.IbisTypeError( 'The output type of a UDF must be a single datatype.' )
[ "ibis.common.exceptions.IbisTypeError", "inspect.signature" ]
[((1277, 1292), 'inspect.signature', 'signature', (['func'], {}), '(func)\n', (1286, 1292), False, 'from inspect import Parameter, Signature, signature\n'), ((2323, 2395), 'ibis.common.exceptions.IbisTypeError', 'com.IbisTypeError', (['"""The output type of a UDF must be a single datatype."""'], {}), "('The output type of a UDF must be a single datatype.')\n", (2340, 2395), True, 'import ibis.common.exceptions as com\n')]
import inspect from ariadne import make_executable_schema, QueryType, MutationType, SubscriptionType from .resolver import * # # Schema # class GrammarError(Exception): pass keywords = ['query', 'mutation', 'subscription', 'source'] class SchemaMetaDict(dict): ''' Dictionary that allows decorated schema entry functions to be overloaded ''' def __setitem__(self, key, value): if key in self and callable(value) and hasattr(value, 'name'): value.next_func = self[key] if not hasattr(value.next_func, 'name'): raise GrammarError(f'Redefinition of {key}. Perhaps an earlier {key} is missing @_') super().__setitem__(key, value) def __getitem__(self, key): #if key not in self and key.isupper() and key[:1] != '_': if key not in self and key.isupper() and not key[:1] in keywords: return key.upper() else: return super().__getitem__(key) def _query_decorator(name): def decorate(func): func.tag = 'query' func.name = name return func return decorate def _mutation_decorator(name): def decorate(func): func.tag = 'mutation' func.name = name return func return decorate def _subscription_decorator(name): def decorate(func): func.tag = 'subscription' func.name = name return func return decorate def _source_decorator(name): def decorate(func): func.tag = 'source' func.name = name return func return decorate class SchemaMeta(type): @classmethod def __prepare__(meta, *args, **kwargs): d = SchemaMetaDict() d['query'] = _query_decorator d['mutation'] = _mutation_decorator d['subscription'] = _subscription_decorator d['source'] = _source_decorator return d def __new__(meta, selfname, bases, attributes): #del attributes['_'] for key in keywords: del attributes[key] self = super().__new__(meta, selfname, bases, attributes) self._build(list(attributes.items())) return self class Schema(metaclass=SchemaMeta): def __init__(self, parent=None): self.parent = parent self.children = [] if parent: parent.add_child(self) self.db = parent.db else: self.db = self self.entries = self.__class__.entries @classmethod def produce(self, parent=None): schema = self(parent) return schema def add_child(self, schema): self.children.append(schema) def get_gql(self): gql = [inspect.getdoc(self)] for child in self.children: gql.append(child.get_gql()) return "\n".join(gql) def register(self): for entry in self.entries: entry.register(self) for child in self.children: child.register() def add(self, r): self.entries.append(r) @classmethod def __collect_functions(self, definitions): ''' Collect all of the tagged grammar entries ''' entries = [ (name, value) for name, value in definitions if callable(value) and hasattr(value, 'name') ] return entries @classmethod def _build(self, definitions): if vars(self).get('_build', False): return # Collect all of the entry functions from the class definition functions = self.__collect_functions(definitions) self.entries = self.__build_entries(functions) @classmethod def __build_entries(self, functions): entries = [] errors = '' for name, func in functions: entry = self._build_entry(func) entries.append(entry) return entries @classmethod def _build_entry(self, func): tag = func.tag name = func.name prodname = func.__name__ unwrapped = inspect.unwrap(func) filename = unwrapped.__code__.co_filename lineno = unwrapped.__code__.co_firstlineno logger.debug(f"_build_entry:tag: {tag}") logger.debug(f"_build_entry:name: {name}") logger.debug(f"_build_entry:prodname: {prodname}") logger.debug(f"_build_entry:unwrapped: {unwrapped}") #entry = Resolver(name, func, prodname=prodname, filename=filename, lineno=lineno) entry = entry_factories[tag](self, name, func, prodname=prodname, filename=filename, lineno=lineno) logger.debug(f"_build_entry:entry: {entry}") return entry # This is for testing or in case you don't want a database as the root schema class RootSchema(Schema): """ type Query { dummy: Int! } type Mutation { setDummy(val: Int!): Int } type Subscription { dummy: Int } """ instance = None def __init__(self, parent=None): super().__init__(parent) Schema.instance = self self.query_type = QueryType() self.mutation_type = MutationType() self.subscription_type = SubscriptionType() @classmethod def produce(self): if self.instance: return self.instance self.instance = schema = self() return schema def make_executable(self): self.register() #return make_executable_schema(type_defs, self.query) return make_executable_schema( self.get_gql(), self.query_type, self.mutation_type, self.subscription_type )
[ "ariadne.SubscriptionType", "ariadne.QueryType", "ariadne.MutationType", "inspect.unwrap", "inspect.getdoc" ]
[((4025, 4045), 'inspect.unwrap', 'inspect.unwrap', (['func'], {}), '(func)\n', (4039, 4045), False, 'import inspect\n'), ((5069, 5080), 'ariadne.QueryType', 'QueryType', ([], {}), '()\n', (5078, 5080), False, 'from ariadne import make_executable_schema, QueryType, MutationType, SubscriptionType\n'), ((5110, 5124), 'ariadne.MutationType', 'MutationType', ([], {}), '()\n', (5122, 5124), False, 'from ariadne import make_executable_schema, QueryType, MutationType, SubscriptionType\n'), ((5158, 5176), 'ariadne.SubscriptionType', 'SubscriptionType', ([], {}), '()\n', (5174, 5176), False, 'from ariadne import make_executable_schema, QueryType, MutationType, SubscriptionType\n'), ((2697, 2717), 'inspect.getdoc', 'inspect.getdoc', (['self'], {}), '(self)\n', (2711, 2717), False, 'import inspect\n')]
import random from otp.ai.AIBase import * from direct.distributed.ClockDelta import * from toontown.battle.BattleBase import * from toontown.battle.BattleCalculatorAI import * from toontown.toonbase.ToontownBattleGlobals import * from toontown.battle.SuitBattleGlobals import * from pandac.PandaModules import * from toontown.battle import BattleExperienceAI from direct.distributed import DistributedObjectAI from direct.fsm import ClassicFSM, State from direct.fsm import State from direct.task import Task from direct.directnotify import DirectNotifyGlobal from toontown.ai import DatabaseObject from toontown.toon import DistributedToonAI from toontown.toon import InventoryBase from toontown.toonbase import ToontownGlobals from toontown.toon import NPCToons from otp.ai.MagicWordGlobal import * from toontown.pets import DistributedPetProxyAI class DistributedBattleBaseAI(DistributedObjectAI.DistributedObjectAI, BattleBase): notify = DirectNotifyGlobal.directNotify.newCategory('DistributedBattleBaseAI') def __init__(self, air, zoneId, finishCallback = None, maxSuits = 4, bossBattle = 0, tutorialFlag = 0, interactivePropTrackBonus = -1): DistributedObjectAI.DistributedObjectAI.__init__(self, air) self.serialNum = 0 self.zoneId = zoneId self.maxSuits = maxSuits self.setBossBattle(bossBattle) self.tutorialFlag = tutorialFlag self.interactivePropTrackBonus = interactivePropTrackBonus self.finishCallback = finishCallback self.avatarExitEvents = [] self.responses = {} self.adjustingResponses = {} self.joinResponses = {} self.adjustingSuits = [] self.adjustingToons = [] self.numSuitsEver = 0 BattleBase.__init__(self) self.streetBattle = 1 self.pos = Point3(0, 0, 0) self.initialSuitPos = Point3(0, 0, 0) self.toonExp = {} self.toonOrigQuests = {} self.toonItems = {} self.toonOrigMerits = {} self.toonMerits = {} self.toonParts = {} self.battleCalc = BattleCalculatorAI(self, tutorialFlag) if self.air.suitInvasionManager.getInvading(): mult = getInvasionMultiplier() self.battleCalc.setSkillCreditMultiplier(mult) if self.air.holidayManager.isMoreXpHolidayRunning(): mult = getMoreXpHolidayMultiplier() self.battleCalc.setSkillCreditMultiplier(mult) self.fsm = None self.clearAttacks() self.ignoreFaceOffDone = 0 self.needAdjust = 0 self.movieHasBeenMade = 0 self.movieHasPlayed = 0 self.rewardHasPlayed = 0 self.movieRequested = 0 self.ignoreResponses = 0 self.ignoreAdjustingResponses = 0 self.taskNames = [] self.exitedToons = [] self.suitsKilled = [] self.suitsKilledThisBattle = [] self.suitsKilledPerFloor = [] self.suitsEncountered = [] self.newToons = [] self.newSuits = [] self.numNPCAttacks = 0 self.npcAttacks = {} self.pets = {} self.fireCount = 0 self.fsm = ClassicFSM.ClassicFSM('DistributedBattleAI', [State.State('FaceOff', self.enterFaceOff, self.exitFaceOff, ['WaitForInput', 'Resume']), State.State('WaitForJoin', self.enterWaitForJoin, self.exitWaitForJoin, ['WaitForInput', 'Resume']), State.State('WaitForInput', self.enterWaitForInput, self.exitWaitForInput, ['MakeMovie', 'Resume']), State.State('MakeMovie', self.enterMakeMovie, self.exitMakeMovie, ['PlayMovie', 'Resume']), State.State('PlayMovie', self.enterPlayMovie, self.exitPlayMovie, ['WaitForJoin', 'Reward', 'Resume']), State.State('Reward', self.enterReward, self.exitReward, ['Resume']), State.State('Resume', self.enterResume, self.exitResume, []), State.State('Off', self.enterOff, self.exitOff, ['FaceOff', 'WaitForJoin'])], 'Off', 'Off') self.joinableFsm = ClassicFSM.ClassicFSM('Joinable', [State.State('Joinable', self.enterJoinable, self.exitJoinable, ['Unjoinable']), State.State('Unjoinable', self.enterUnjoinable, self.exitUnjoinable, ['Joinable'])], 'Unjoinable', 'Unjoinable') self.joinableFsm.enterInitialState() self.runableFsm = ClassicFSM.ClassicFSM('Runable', [State.State('Runable', self.enterRunable, self.exitRunable, ['Unrunable']), State.State('Unrunable', self.enterUnrunable, self.exitUnrunable, ['Runable'])], 'Unrunable', 'Unrunable') self.runableFsm.enterInitialState() self.adjustFsm = ClassicFSM.ClassicFSM('Adjust', [State.State('Adjusting', self.enterAdjusting, self.exitAdjusting, ['NotAdjusting', 'Adjusting']), State.State('NotAdjusting', self.enterNotAdjusting, self.exitNotAdjusting, ['Adjusting'])], 'NotAdjusting', 'NotAdjusting') self.adjustFsm.enterInitialState() self.fsm.enterInitialState() self.startTime = globalClock.getRealTime() self.adjustingTimer = Timer() def clearAttacks(self): self.toonAttacks = {} self.suitAttacks = getDefaultSuitAttacks() def requestDelete(self): if hasattr(self, 'fsm'): self.fsm.request('Off') self.__removeTaskName(self.uniqueName('make-movie')) DistributedObjectAI.DistributedObjectAI.requestDelete(self) def delete(self): self.notify.debug('deleting battle') self.fsm.request('Off') self.ignoreAll() self.__removeAllTasks() del self.fsm del self.joinableFsm del self.runableFsm del self.adjustFsm self.__cleanupJoinResponses() self.timer.stop() del self.timer self.adjustingTimer.stop() del self.adjustingTimer self.battleCalc.cleanup() del self.battleCalc for suit in self.suits: del suit.battleTrap del self.finishCallback for petProxy in self.pets.values(): petProxy.requestDelete() DistributedObjectAI.DistributedObjectAI.delete(self) def pause(self): self.timer.stop() self.adjustingTimer.stop() def unpause(self): self.timer.resume() self.adjustingTimer.resume() def abortBattle(self): self.notify.debug('%s.abortBattle() called.' % self.doId) toonsCopy = self.toons[:] for toonId in toonsCopy: self.__removeToon(toonId) if self.fsm.getCurrentState().getName() == 'PlayMovie' or self.fsm.getCurrentState().getName() == 'MakeMovie': self.exitedToons.append(toonId) self.d_setMembers() self.b_setState('Resume') self.__removeAllTasks() self.timer.stop() self.adjustingTimer.stop() def __removeSuit(self, suit): self.notify.debug('__removeSuit(%d)' % suit.doId) self.suits.remove(suit) self.activeSuits.remove(suit) if self.luredSuits.count(suit) == 1: self.luredSuits.remove(suit) self.suitGone = 1 del suit.battleTrap def findSuit(self, id): for s in self.suits: if s.doId == id: return s return None def __removeTaskName(self, name): if self.taskNames.count(name): self.taskNames.remove(name) self.notify.debug('removeTaskName() - %s' % name) taskMgr.remove(name) def __removeAllTasks(self): for n in self.taskNames: self.notify.debug('removeAllTasks() - %s' % n) taskMgr.remove(n) self.taskNames = [] def __removeToonTasks(self, toonId): name = self.taskName('running-toon-%d' % toonId) self.__removeTaskName(name) name = self.taskName('to-pending-av-%d' % toonId) self.__removeTaskName(name) def getLevelDoId(self): return 0 def getBattleCellId(self): return 0 def getPosition(self): self.notify.debug('getPosition() - %s' % self.pos) return [self.pos[0], self.pos[1], self.pos[2]] def getInitialSuitPos(self): p = [] p.append(self.initialSuitPos[0]) p.append(self.initialSuitPos[1]) p.append(self.initialSuitPos[2]) return p def setBossBattle(self, bossBattle): self.bossBattle = bossBattle def getBossBattle(self): return self.bossBattle def b_setState(self, state): self.notify.debug('network:setState(%s)' % state) stime = globalClock.getRealTime() + SERVER_BUFFER_TIME self.sendUpdate('setState', [state, globalClockDelta.localToNetworkTime(stime)]) self.setState(state) def setState(self, state): self.fsm.request(state) def getState(self): return [self.fsm.getCurrentState().getName(), globalClockDelta.getRealNetworkTime()] def d_setMembers(self): self.notify.debug('network:setMembers()') self.sendUpdate('setMembers', self.getMembers()) def getMembers(self): suits = [] for s in self.suits: suits.append(s.doId) joiningSuits = '' for s in self.joiningSuits: joiningSuits += str(suits.index(s.doId)) pendingSuits = '' for s in self.pendingSuits: pendingSuits += str(suits.index(s.doId)) activeSuits = '' for s in self.activeSuits: activeSuits += str(suits.index(s.doId)) luredSuits = '' for s in self.luredSuits: luredSuits += str(suits.index(s.doId)) suitTraps = '' for s in self.suits: if s.battleTrap == NO_TRAP: suitTraps += '9' elif s.battleTrap == BattleCalculatorAI.TRAP_CONFLICT: suitTraps += '9' else: suitTraps += str(s.battleTrap) toons = [] for t in self.toons: toons.append(t) joiningToons = '' for t in self.joiningToons: joiningToons += str(toons.index(t)) pendingToons = '' for t in self.pendingToons: pendingToons += str(toons.index(t)) activeToons = '' for t in self.activeToons: activeToons += str(toons.index(t)) runningToons = '' for t in self.runningToons: runningToons += str(toons.index(t)) self.notify.debug('getMembers() - suits: %s joiningSuits: %s pendingSuits: %s activeSuits: %s luredSuits: %s suitTraps: %s toons: %s joiningToons: %s pendingToons: %s activeToons: %s runningToons: %s' % (suits, joiningSuits, pendingSuits, activeSuits, luredSuits, suitTraps, toons, joiningToons, pendingToons, activeToons, runningToons)) return [suits, joiningSuits, pendingSuits, activeSuits, luredSuits, suitTraps, toons, joiningToons, pendingToons, activeToons, runningToons, globalClockDelta.getRealNetworkTime()] def d_adjust(self): self.notify.debug('network:adjust()') self.sendUpdate('adjust', [globalClockDelta.getRealNetworkTime()]) def getInteractivePropTrackBonus(self): return self.interactivePropTrackBonus def getZoneId(self): return self.zoneId def getTaskZoneId(self): return self.zoneId def d_setMovie(self): self.notify.debug('network:setMovie()') self.sendUpdate('setMovie', self.getMovie()) self.__updateEncounteredCogs() def getMovie(self): suitIds = [] for s in self.activeSuits: suitIds.append(s.doId) p = [self.movieHasBeenMade] p.append(self.activeToons) p.append(suitIds) for t in self.activeToons: if t in self.toonAttacks: ta = self.toonAttacks[t] index = -1 id = ta[TOON_ID_COL] if id != -1: index = self.activeToons.index(id) track = ta[TOON_TRACK_COL] if (track == NO_ATTACK or attackAffectsGroup(track, ta[TOON_LVL_COL])) and track != NPCSOS and track != PETSOS: target = -1 if track == HEAL: if ta[TOON_LVL_COL] == 1: ta[TOON_HPBONUS_COL] = random.randint(0, 10000) elif track == SOS or track == NPCSOS or track == PETSOS: target = ta[TOON_TGT_COL] elif track == HEAL: if self.activeToons.count(ta[TOON_TGT_COL]) != 0: target = self.activeToons.index(ta[TOON_TGT_COL]) else: target = -1 elif suitIds.count(ta[TOON_TGT_COL]) != 0: target = suitIds.index(ta[TOON_TGT_COL]) else: target = -1 p = p + [index, track, ta[TOON_LVL_COL], target] p = p + ta[4:] else: index = self.activeToons.index(t) attack = getToonAttack(index) p = p + attack for i in range(4 - len(self.activeToons)): p = p + getToonAttack(-1) for sa in self.suitAttacks: index = -1 id = sa[SUIT_ID_COL] if id != -1: index = suitIds.index(id) if sa[SUIT_ATK_COL] == -1: targetIndex = -1 else: targetIndex = sa[SUIT_TGT_COL] if targetIndex == -1: self.notify.debug('suit attack: %d must be group' % sa[SUIT_ATK_COL]) else: toonId = self.activeToons[targetIndex] p = p + [index, sa[SUIT_ATK_COL], targetIndex] sa[SUIT_TAUNT_COL] = 0 if sa[SUIT_ATK_COL] != -1: suit = self.findSuit(id) sa[SUIT_TAUNT_COL] = getAttackTauntIndexFromIndex(suit, sa[SUIT_ATK_COL]) p = p + sa[3:] return p def d_setChosenToonAttacks(self): self.notify.debug('network:setChosenToonAttacks()') self.sendUpdate('setChosenToonAttacks', self.getChosenToonAttacks()) def getChosenToonAttacks(self): ids = [] tracks = [] levels = [] targets = [] for t in self.activeToons: if t in self.toonAttacks: ta = self.toonAttacks[t] else: ta = getToonAttack(t) ids.append(t) tracks.append(ta[TOON_TRACK_COL]) levels.append(ta[TOON_LVL_COL]) targets.append(ta[TOON_TGT_COL]) return [ids, tracks, levels, targets] def d_setBattleExperience(self): self.notify.debug('network:setBattleExperience()') self.sendUpdate('setBattleExperience', self.getBattleExperience()) def getBattleExperience(self): returnValue = BattleExperienceAI.getBattleExperience(4, self.activeToons, self.toonExp, self.battleCalc.toonSkillPtsGained, self.toonOrigQuests, self.toonItems, self.toonOrigMerits, self.toonMerits, self.toonParts, self.suitsKilled, self.helpfulToons) return returnValue def getToonUberStatus(self): fieldList = [] uberIndex = LAST_REGULAR_GAG_LEVEL + 1 for toon in self.activeToons: toonList = [] for trackIndex in range(MAX_TRACK_INDEX): toonList.append(toon.inventory.numItem(track, uberIndex)) fieldList.append(encodeUber(toonList)) return fieldList def addSuit(self, suit): self.notify.debug('addSuit(%d)' % suit.doId) self.newSuits.append(suit) self.suits.append(suit) suit.battleTrap = NO_TRAP self.numSuitsEver += 1 def __joinSuit(self, suit): self.joiningSuits.append(suit) toPendingTime = MAX_JOIN_T + SERVER_BUFFER_TIME taskName = self.taskName('to-pending-av-%d' % suit.doId) self.__addJoinResponse(suit.doId, taskName) self.taskNames.append(taskName) taskMgr.doMethodLater(toPendingTime, self.__serverJoinDone, taskName, extraArgs=(suit.doId, taskName)) def __serverJoinDone(self, avId, taskName): self.notify.debug('join for av: %d timed out on server' % avId) self.__removeTaskName(taskName) self.__makeAvPending(avId) return Task.done def __makeAvPending(self, avId): self.notify.debug('__makeAvPending(%d)' % avId) self.__removeJoinResponse(avId) self.__removeTaskName(self.taskName('to-pending-av-%d' % avId)) if self.toons.count(avId) > 0: self.joiningToons.remove(avId) self.pendingToons.append(avId) else: suit = self.findSuit(avId) if suit != None: if not suit.isEmpty(): if not self.joiningSuits.count(suit) == 1: self.notify.warning('__makeAvPending(%d) in zone: %d' % (avId, self.zoneId)) self.notify.warning('toons: %s' % self.toons) self.notify.warning('joining toons: %s' % self.joiningToons) self.notify.warning('pending toons: %s' % self.pendingToons) self.notify.warning('suits: %s' % self.suits) self.notify.warning('joining suits: %s' % self.joiningSuits) self.notify.warning('pending suits: %s' % self.pendingSuits) self.joiningSuits.remove(suit) self.pendingSuits.append(suit) else: self.notify.warning('makeAvPending() %d not in toons or suits' % avId) return self.d_setMembers() self.needAdjust = 1 self.__requestAdjust() def suitRequestJoin(self, suit): self.notify.debug('suitRequestJoin(%d)' % suit.getDoId()) if self.suitCanJoin(): self.addSuit(suit) self.__joinSuit(suit) self.d_setMembers() suit.prepareToJoinBattle() return 1 else: self.notify.warning('suitRequestJoin() - not joinable - joinable state: %s max suits: %d' % (self.joinableFsm.getCurrentState().getName(), self.maxSuits)) return 0 def addToon(self, avId): self.notify.debug('addToon(%d)' % avId) toon = self.getToon(avId) if toon == None: return 0 toon.stopToonUp() event = simbase.air.getAvatarExitEvent(avId) self.avatarExitEvents.append(event) self.accept(event, self.__handleUnexpectedExit, extraArgs=[avId]) event = 'inSafezone-%s' % avId self.avatarExitEvents.append(event) self.accept(event, self.__handleSuddenExit, extraArgs=[avId, 0]) self.newToons.append(avId) self.toons.append(avId) toon = simbase.air.doId2do.get(avId) if toon: if hasattr(self, 'doId'): toon.b_setBattleId(self.doId) else: toon.b_setBattleId(-1) messageToonAdded = 'Battle adding toon %s' % avId messenger.send(messageToonAdded, [avId]) if self.fsm != None and self.fsm.getCurrentState().getName() == 'PlayMovie': self.responses[avId] = 1 else: self.responses[avId] = 0 self.adjustingResponses[avId] = 0 if avId not in self.toonExp: p = [] for t in Tracks: p.append(toon.experience.getExp(t)) self.toonExp[avId] = p if avId not in self.toonOrigMerits: self.toonOrigMerits[avId] = toon.cogMerits[:] if avId not in self.toonMerits: self.toonMerits[avId] = [0, 0, 0, 0, 0] if avId not in self.toonOrigQuests: flattenedQuests = [] for quest in toon.quests: flattenedQuests.extend(quest) self.toonOrigQuests[avId] = flattenedQuests if avId not in self.toonItems: self.toonItems[avId] = ([], []) return 1 def __joinToon(self, avId, pos): self.joiningToons.append(avId) toPendingTime = MAX_JOIN_T + SERVER_BUFFER_TIME taskName = self.taskName('to-pending-av-%d' % avId) self.__addJoinResponse(avId, taskName, toon=1) taskMgr.doMethodLater(toPendingTime, self.__serverJoinDone, taskName, extraArgs=(avId, taskName)) self.taskNames.append(taskName) def __updateEncounteredCogs(self): for toon in self.activeToons: if toon in self.newToons: for suit in self.activeSuits: if hasattr(suit, 'dna'): self.suitsEncountered.append({'type': suit.dna.name, 'activeToons': self.activeToons[:]}) else: self.notify.warning('Suit has no DNA in zone %s: toons involved = %s' % (self.zoneId, self.activeToons)) return self.newToons.remove(toon) for suit in self.activeSuits: if suit in self.newSuits: if hasattr(suit, 'dna'): self.suitsEncountered.append({'type': suit.dna.name, 'activeToons': self.activeToons[:]}) else: self.notify.warning('Suit has no DNA in zone %s: toons involved = %s' % (self.zoneId, self.activeToons)) return self.newSuits.remove(suit) def __makeToonRun(self, toonId, updateAttacks): self.activeToons.remove(toonId) self.toonGone = 1 self.runningToons.append(toonId) taskName = self.taskName('running-toon-%d' % toonId) taskMgr.doMethodLater(TOON_RUN_T, self.__serverRunDone, taskName, extraArgs=(toonId, updateAttacks, taskName)) self.taskNames.append(taskName) def __serverRunDone(self, toonId, updateAttacks, taskName): self.notify.debug('run for toon: %d timed out on server' % toonId) self.__removeTaskName(taskName) self.__removeToon(toonId) self.d_setMembers() if len(self.toons) == 0: self.notify.debug('last toon is gone - battle is finished') self.b_setState('Resume') else: if updateAttacks == 1: self.d_setChosenToonAttacks() self.needAdjust = 1 self.__requestAdjust() return Task.done def __requestAdjust(self): if not self.fsm: return cstate = self.fsm.getCurrentState().getName() if cstate == 'WaitForInput' or cstate == 'WaitForJoin': if self.adjustFsm.getCurrentState().getName() == 'NotAdjusting': if self.needAdjust == 1: self.d_adjust() self.adjustingSuits = [] for s in self.pendingSuits: self.adjustingSuits.append(s) self.adjustingToons = [] for t in self.pendingToons: self.adjustingToons.append(t) self.adjustFsm.request('Adjusting') else: self.notify.debug('requestAdjust() - dont need to') else: self.notify.debug('requestAdjust() - already adjusting') else: self.notify.debug('requestAdjust() - in state: %s' % cstate) def __handleUnexpectedExit(self, avId): #TODO: fixme #disconnectCode = self.air.getAvatarDisconnectReason(avId) disconnectCode = "placeHolder dc code, need self.air.getAvatarDisconnectReason(avId)" self.notify.warning('toon: %d exited unexpectedly, reason %s' % (avId, disconnectCode)) #userAborted = disconnectCode == ToontownGlobals.DisconnectCloseWindow #TODO: fixme userAborted = False self.__handleSuddenExit(avId, userAborted) def __handleSuddenExit(self, avId, userAborted): self.__removeToon(avId, userAborted=userAborted) if self.fsm.getCurrentState().getName() == 'PlayMovie' or self.fsm.getCurrentState().getName() == 'MakeMovie': self.exitedToons.append(avId) self.d_setMembers() if len(self.toons) == 0: self.notify.debug('last toon is gone - battle is finished') self.__removeAllTasks() self.timer.stop() self.adjustingTimer.stop() self.b_setState('Resume') else: self.needAdjust = 1 self.__requestAdjust() def __removeSuit(self, suit): self.notify.debug('__removeSuit(%d)' % suit.doId) self.suits.remove(suit) self.activeSuits.remove(suit) if self.luredSuits.count(suit) == 1: self.luredSuits.remove(suit) self.suitGone = 1 del suit.battleTrap def __removeToon(self, toonId, userAborted = 0): self.notify.debug('__removeToon(%d)' % toonId) if self.toons.count(toonId) == 0: return self.battleCalc.toonLeftBattle(toonId) self.__removeToonTasks(toonId) self.toons.remove(toonId) if self.joiningToons.count(toonId) == 1: self.joiningToons.remove(toonId) if self.pendingToons.count(toonId) == 1: self.pendingToons.remove(toonId) if self.activeToons.count(toonId) == 1: activeToonIdx = self.activeToons.index(toonId) self.notify.debug('removing activeToons[%d], updating suitAttacks SUIT_HP_COL to match' % activeToonIdx) for i in range(len(self.suitAttacks)): if activeToonIdx < len(self.suitAttacks[i][SUIT_HP_COL]): del self.suitAttacks[i][SUIT_HP_COL][activeToonIdx] else: self.notify.warning("suitAttacks %d doesn't have an HP column for active toon index %d" % (i, activeToonIdx)) self.activeToons.remove(toonId) if self.runningToons.count(toonId) == 1: self.runningToons.remove(toonId) if self.adjustingToons.count(toonId) == 1: self.notify.warning('removeToon() - toon: %d was adjusting!' % toonId) self.adjustingToons.remove(toonId) self.toonGone = 1 if toonId in self.pets: self.pets[toonId].requestDelete() del self.pets[toonId] self.__removeResponse(toonId) self.__removeAdjustingResponse(toonId) self.__removeJoinResponses(toonId) event = simbase.air.getAvatarExitEvent(toonId) self.avatarExitEvents.remove(event) self.ignore(event) event = 'inSafezone-%s' % toonId self.avatarExitEvents.remove(event) self.ignore(event) toon = simbase.air.doId2do.get(toonId) if toon: toon.b_setBattleId(0) messageToonReleased = 'Battle releasing toon %s' % toon.doId messenger.send(messageToonReleased, [toon.doId]) if not userAborted: toon = self.getToon(toonId) if toon != None: toon.hpOwnedByBattle = 0 toon.d_setHp(toon.hp) toon.d_setInventory(toon.inventory.makeNetString()) self.air.cogPageManager.toonEncounteredCogs(toon, self.suitsEncountered, self.getTaskZoneId()) elif len(self.suits) > 0 and not self.streetBattle: self.notify.info('toon %d aborted non-street battle; clearing inventory and hp.' % toonId) toon = DistributedToonAI.DistributedToonAI(self.air) toon.doId = toonId empty = InventoryBase.InventoryBase(toon) toon.b_setInventory(empty.makeNetString()) toon.b_setHp(0) db = DatabaseObject.DatabaseObject(self.air, toonId) db.storeObject(toon, ['setInventory', 'setHp']) self.notify.info('killing mem leak from temporary DistributedToonAI %d' % toonId) toon.deleteDummy() def getToon(self, toonId): if toonId in self.air.doId2do: return self.air.doId2do[toonId] else: self.notify.warning('getToon() - toon: %d not in repository!' % toonId) return def toonRequestRun(self): toonId = self.air.getAvatarIdFromSender() if self.ignoreResponses == 1: self.notify.debug('ignoring response from toon: %d' % toonId) return self.notify.debug('toonRequestRun(%d)' % toonId) if not self.isRunable(): self.notify.warning('toonRequestRun() - not runable') return updateAttacks = 0 if self.activeToons.count(toonId) == 0: self.notify.warning('toon tried to run, but not found in activeToons: %d' % toonId) return for toon in self.activeToons: if toon in self.toonAttacks: ta = self.toonAttacks[toon] track = ta[TOON_TRACK_COL] level = ta[TOON_LVL_COL] if ta[TOON_TGT_COL] == toonId or track == HEAL and attackAffectsGroup(track, level) and len(self.activeToons) <= 2: healerId = ta[TOON_ID_COL] self.notify.debug('resetting toon: %ds attack' % healerId) self.toonAttacks[toon] = getToonAttack(toon, track=UN_ATTACK) self.responses[healerId] = 0 updateAttacks = 1 self.__makeToonRun(toonId, updateAttacks) self.d_setMembers() self.needAdjust = 1 self.__requestAdjust() def toonRequestJoin(self, x, y, z): toonId = self.air.getAvatarIdFromSender() self.notify.debug('toonRequestJoin(%d)' % toonId) self.signupToon(toonId, x, y, z) def toonDied(self): toonId = self.air.getAvatarIdFromSender() self.notify.debug('toonDied(%d)' % toonId) if toonId in self.toons: toon = self.getToon(toonId) if toon: toon.hp = -1 toon.inventory.zeroInv(1) self.__handleSuddenExit(toonId, 0) def signupToon(self, toonId, x, y, z): if self.toons.count(toonId): return if self.toonCanJoin(): if self.addToon(toonId): self.__joinToon(toonId, Point3(x, y, z)) self.d_setMembers() else: self.notify.warning('toonRequestJoin() - not joinable') self.d_denyLocalToonJoin(toonId) def d_denyLocalToonJoin(self, toonId): self.notify.debug('network: denyLocalToonJoin(%d)' % toonId) self.sendUpdateToAvatarId(toonId, 'denyLocalToonJoin', []) def resetResponses(self): self.responses = {} for t in self.toons: self.responses[t] = 0 self.ignoreResponses = 0 def allToonsResponded(self): for t in self.toons: if self.responses[t] == 0: return 0 self.ignoreResponses = 1 return 1 def __allPendingActiveToonsResponded(self): for t in self.pendingToons + self.activeToons: if self.responses[t] == 0: return 0 self.ignoreResponses = 1 return 1 def __allActiveToonsResponded(self): for t in self.activeToons: if self.responses[t] == 0: return 0 self.ignoreResponses = 1 return 1 def __removeResponse(self, toonId): del self.responses[toonId] if self.ignoreResponses == 0 and len(self.toons) > 0: currStateName = self.fsm.getCurrentState().getName() if currStateName == 'WaitForInput': if self.__allActiveToonsResponded(): self.notify.debug('removeResponse() - dont wait for movie') self.__requestMovie() elif currStateName == 'PlayMovie': if self.__allPendingActiveToonsResponded(): self.notify.debug('removeResponse() - surprise movie done') self.__movieDone() elif currStateName == 'Reward' or currStateName == 'BuildingReward': if self.__allActiveToonsResponded(): self.notify.debug('removeResponse() - surprise reward done') self.handleRewardDone() def __resetAdjustingResponses(self): self.adjustingResponses = {} for t in self.toons: self.adjustingResponses[t] = 0 self.ignoreAdjustingResponses = 0 def __allAdjustingToonsResponded(self): for t in self.toons: if self.adjustingResponses[t] == 0: return 0 self.ignoreAdjustingResponses = 1 return 1 def __removeAdjustingResponse(self, toonId): if toonId in self.adjustingResponses: del self.adjustingResponses[toonId] if self.ignoreAdjustingResponses == 0 and len(self.toons) > 0: if self.__allAdjustingToonsResponded(): self.__adjustDone() def __addJoinResponse(self, avId, taskName, toon = 0): if toon == 1: for jr in self.joinResponses.values(): jr[avId] = 0 self.joinResponses[avId] = {} for t in self.toons: self.joinResponses[avId][t] = 0 self.joinResponses[avId]['taskName'] = taskName def __removeJoinResponses(self, avId): self.__removeJoinResponse(avId) removedOne = 0 for j in self.joinResponses.values(): if avId in j: del j[avId] removedOne = 1 if removedOne == 1: for t in self.joiningToons: if self.__allToonsRespondedJoin(t): self.__makeAvPending(t) def __removeJoinResponse(self, avId): if avId in self.joinResponses: taskMgr.remove(self.joinResponses[avId]['taskName']) del self.joinResponses[avId] def __allToonsRespondedJoin(self, avId): jr = self.joinResponses[avId] for t in self.toons: if jr[t] == 0: return 0 return 1 def __cleanupJoinResponses(self): for jr in self.joinResponses.values(): taskMgr.remove(jr['taskName']) del jr def adjustDone(self): toonId = self.air.getAvatarIdFromSender() if self.ignoreAdjustingResponses == 1: self.notify.debug('adjustDone() - ignoring toon: %d' % toonId) return elif self.adjustFsm.getCurrentState().getName() != 'Adjusting': self.notify.warning('adjustDone() - in state %s' % self.fsm.getCurrentState().getName()) return elif self.toons.count(toonId) == 0: self.notify.warning('adjustDone() - toon: %d not in toon list' % toonId) return self.adjustingResponses[toonId] += 1 self.notify.debug('toon: %d done adjusting' % toonId) if self.__allAdjustingToonsResponded(): self.__adjustDone() def timeout(self): toonId = self.air.getAvatarIdFromSender() if self.ignoreResponses == 1: self.notify.debug('timeout() - ignoring toon: %d' % toonId) return elif self.fsm.getCurrentState().getName() != 'WaitForInput': self.notify.warning('timeout() - in state: %s' % self.fsm.getCurrentState().getName()) return elif self.toons.count(toonId) == 0: self.notify.warning('timeout() - toon: %d not in toon list' % toonId) return self.toonAttacks[toonId] = getToonAttack(toonId) self.d_setChosenToonAttacks() self.responses[toonId] += 1 self.notify.debug('toon: %d timed out' % toonId) if self.__allActiveToonsResponded(): self.__requestMovie(timeout=1) def movieDone(self): toonId = self.air.getAvatarIdFromSender() if self.ignoreResponses == 1: self.notify.debug('movieDone() - ignoring toon: %d' % toonId) return elif self.fsm.getCurrentState().getName() != 'PlayMovie': self.notify.warning('movieDone() - in state %s' % self.fsm.getCurrentState().getName()) return elif self.toons.count(toonId) == 0: self.notify.warning('movieDone() - toon: %d not in toon list' % toonId) return self.responses[toonId] += 1 self.notify.debug('toon: %d done with movie' % toonId) if self.__allPendingActiveToonsResponded(): self.__movieDone() else: self.timer.stop() self.timer.startCallback(TIMEOUT_PER_USER, self.__serverMovieDone) def rewardDone(self): toonId = self.air.getAvatarIdFromSender() stateName = self.fsm.getCurrentState().getName() if self.ignoreResponses == 1: self.notify.debug('rewardDone() - ignoring toon: %d' % toonId) return elif stateName not in ('Reward', 'BuildingReward', 'FactoryReward', 'MintReward', 'StageReward', 'CountryClubReward'): self.notify.warning('rewardDone() - in state %s' % stateName) return elif self.toons.count(toonId) == 0: self.notify.warning('rewardDone() - toon: %d not in toon list' % toonId) return self.responses[toonId] += 1 self.notify.debug('toon: %d done with reward' % toonId) if self.__allActiveToonsResponded(): self.handleRewardDone() else: self.timer.stop() self.timer.startCallback(TIMEOUT_PER_USER, self.serverRewardDone) def assignRewards(self): if self.rewardHasPlayed == 1: self.notify.debug('handleRewardDone() - reward has already played') return self.rewardHasPlayed = 1 BattleExperienceAI.assignRewards(self.activeToons, self.battleCalc.toonSkillPtsGained, self.suitsKilled, self.getTaskZoneId(), self.helpfulToons) def joinDone(self, avId): toonId = self.air.getAvatarIdFromSender() if self.toons.count(toonId) == 0: self.notify.warning('joinDone() - toon: %d not in toon list' % toonId) return if avId not in self.joinResponses: self.notify.debug('joinDone() - no entry for: %d - ignoring: %d' % (avId, toonId)) return jr = self.joinResponses[avId] if toonId in jr: jr[toonId] += 1 self.notify.debug('client with localToon: %d done joining av: %d' % (toonId, avId)) if self.__allToonsRespondedJoin(avId): self.__makeAvPending(avId) def requestAttack(self, track, level, av): toonId = self.air.getAvatarIdFromSender() if self.ignoreResponses == 1: self.notify.debug('requestAttack() - ignoring toon: %d' % toonId) return elif self.fsm.getCurrentState().getName() != 'WaitForInput': self.notify.warning('requestAttack() - in state: %s' % self.fsm.getCurrentState().getName()) return elif self.activeToons.count(toonId) == 0: self.notify.warning('requestAttack() - toon: %d not in toon list' % toonId) return self.notify.debug('requestAttack(%d, %d, %d, %d)' % (toonId, track, level, av)) toon = self.getToon(toonId) if toon == None: self.notify.warning('requestAttack() - no toon: %d' % toonId) return validResponse = 1 if track == SOS: self.notify.debug('toon: %d calls for help' % toonId) self.air.writeServerEvent('friendSOS', toonId, '%s' % av) self.toonAttacks[toonId] = getToonAttack(toonId, track=SOS, target=av) elif track == NPCSOS: self.notify.debug('toon: %d calls for help' % toonId) self.air.writeServerEvent('NPCSOS', toonId, '%s' % av) toon = self.getToon(toonId) if toon == None: return if av in toon.NPCFriendsDict: npcCollision = 0 if av in self.npcAttacks: callingToon = self.npcAttacks[av] if self.activeToons.count(callingToon) == 1: self.toonAttacks[toonId] = getToonAttack(toonId, track=PASS) npcCollision = 1 if npcCollision == 0: self.toonAttacks[toonId] = getToonAttack(toonId, track=NPCSOS, level=5, target=av) self.numNPCAttacks += 1 self.npcAttacks[av] = toonId elif track == PETSOS: self.notify.debug('toon: %d calls for pet: %d' % (toonId, av)) self.air.writeServerEvent('PETSOS', toonId, '%s' % av) toon = self.getToon(toonId) if toon == None: return if not self.validate(toonId, level in toon.petTrickPhrases, 'requestAttack: invalid pet trickId: %s' % level): return self.toonAttacks[toonId] = getToonAttack(toonId, track=PETSOS, level=level, target=av) elif track == UN_ATTACK: self.notify.debug('toon: %d changed its mind' % toonId) self.toonAttacks[toonId] = getToonAttack(toonId, track=UN_ATTACK) if toonId in self.responses: self.responses[toonId] = 0 validResponse = 0 elif track == PASS: self.toonAttacks[toonId] = getToonAttack(toonId, track=PASS) elif track == FIRE: if simbase.air.doId2do[toonId].getPinkSlips() < self.getFireCount() + 1: #Not allowed to fire, force them to pass >:D self.toonAttacks[toonId] = getToonAttack(toonId, track=PASS) else: #Allowed to fire self.setFireCount(self.fireCount + 1) self.toonAttacks[toonId] = getToonAttack(toonId, track=FIRE, target=av) else: if not self.validate(toonId, track >= 0 and track <= MAX_TRACK_INDEX, 'requestAttack: invalid track %s' % track): return if not self.validate(toonId, level >= 0 and level <= MAX_LEVEL_INDEX, 'requestAttack: invalid level %s' % level): return if toon.inventory.numItem(track, level) == 0: self.notify.warning('requestAttack() - toon has no item track: %d level: %d' % (track, level)) self.toonAttacks[toonId] = getToonAttack(toonId) return if track == HEAL: if self.runningToons.count(av) == 1 or attackAffectsGroup(track, level) and len(self.activeToons) < 2: self.toonAttacks[toonId] = getToonAttack(toonId, track=UN_ATTACK) validResponse = 0 else: self.toonAttacks[toonId] = getToonAttack(toonId, track=track, level=level, target=av) else: self.toonAttacks[toonId] = getToonAttack(toonId, track=track, level=level, target=av) if av == -1 and not attackAffectsGroup(track, level): validResponse = 0 self.d_setChosenToonAttacks() if validResponse == 1: self.responses[toonId] += 1 self.notify.debug('toon: %d chose an attack' % toonId) if self.__allActiveToonsResponded(): self.__requestMovie() def requestPetProxy(self, av): toonId = self.air.getAvatarIdFromSender() if self.ignoreResponses == 1: self.notify.debug('requestPetProxy() - ignoring toon: %d' % toonId) return elif self.fsm.getCurrentState().getName() != 'WaitForInput': self.notify.warning('requestPetProxy() - in state: %s' % self.fsm.getCurrentState().getName()) return elif self.activeToons.count(toonId) == 0: self.notify.warning('requestPetProxy() - toon: %d not in toon list' % toonId) return self.notify.debug('requestPetProxy(%s, %s)' % (toonId, av)) toon = self.getToon(toonId) if toon == None: self.notify.warning('requestPetProxy() - no toon: %d' % toonId) return petId = toon.getPetId() zoneId = self.zoneId if petId == av: if not toonId in self.pets: def handleGetPetProxy(success, pet, petId = petId, zoneId = zoneId, toonId = toonId): if success: petProxy = DistributedPetProxyAI.DistributedPetProxyAI(self.air) petProxy.setOwnerId(pet.getOwnerId()) petProxy.setPetName(pet.getPetName()) petProxy.setTraitSeed(pet.getTraitSeed()) petProxy.setSafeZone(pet.getSafeZone()) petProxy.setForgetfulness(pet.getForgetfulness()) petProxy.setBoredomThreshold(pet.getBoredomThreshold()) petProxy.setRestlessnessThreshold(pet.getRestlessnessThreshold()) petProxy.setPlayfulnessThreshold(pet.getPlayfulnessThreshold()) petProxy.setLonelinessThreshold(pet.getLonelinessThreshold()) petProxy.setSadnessThreshold(pet.getSadnessThreshold()) petProxy.setFatigueThreshold(pet.getFatigueThreshold()) petProxy.setHungerThreshold(pet.getHungerThreshold()) petProxy.setConfusionThreshold(pet.getConfusionThreshold()) petProxy.setExcitementThreshold(pet.getExcitementThreshold()) petProxy.setAngerThreshold(pet.getAngerThreshold()) petProxy.setSurpriseThreshold(pet.getSurpriseThreshold()) petProxy.setAffectionThreshold(pet.getAffectionThreshold()) petProxy.setHead(pet.getHead()) petProxy.setEars(pet.getEars()) petProxy.setNose(pet.getNose()) petProxy.setTail(pet.getTail()) petProxy.setBodyTexture(pet.getBodyTexture()) petProxy.setColor(pet.getColor()) petProxy.setColorScale(pet.getColorScale()) petProxy.setEyeColor(pet.getEyeColor()) petProxy.setGender(pet.getGender()) petProxy.setLastSeenTimestamp(pet.getLastSeenTimestamp()) petProxy.setBoredom(pet.getBoredom()) petProxy.setRestlessness(pet.getRestlessness()) petProxy.setPlayfulness(pet.getPlayfulness()) petProxy.setLoneliness(pet.getLoneliness()) petProxy.setSadness(pet.getSadness()) petProxy.setAffection(pet.getAffection()) petProxy.setHunger(pet.getHunger()) petProxy.setConfusion(pet.getConfusion()) petProxy.setExcitement(pet.getExcitement()) petProxy.setFatigue(pet.getFatigue()) petProxy.setAnger(pet.getAnger()) petProxy.setSurprise(pet.getSurprise()) petProxy.setTrickAptitudes(pet.getTrickAptitudes()) pet.requestDelete() def deleted(task): petProxy.doNotDeallocateChannel = True petProxy.generateWithRequiredAndId(petId, self.air.districtId, self.zoneId) petProxy.broadcastDominantMood() self.pets[toonId] = petProxy return task.done self.acceptOnce(self.air.getAvatarExitEvent(petId), lambda: taskMgr.doMethodLater(0, deleted, self.uniqueName('petdel-%d' % petId))) else: self.notify.warning('error generating petProxy: %s' % petId) self.getPetProxyObject(petId, handleGetPetProxy) def suitCanJoin(self): return len(self.suits) < self.maxSuits and self.isJoinable() def toonCanJoin(self): return len(self.toons) < 4 and self.isJoinable() def __requestMovie(self, timeout = 0): if self.adjustFsm.getCurrentState().getName() == 'Adjusting': self.notify.debug('__requestMovie() - in Adjusting') self.movieRequested = 1 else: movieDelay = 0 if len(self.activeToons) == 0: self.notify.warning('only pending toons left in battle %s, toons = %s' % (self.doId, self.toons)) elif len(self.activeSuits) == 0: self.notify.warning('only pending suits left in battle %s, suits = %s' % (self.doId, self.suits)) elif len(self.activeToons) > 1 and not timeout: movieDelay = 1 self.fsm.request('MakeMovie') if movieDelay: taskMgr.doMethodLater(0.8, self.__makeMovie, self.uniqueName('make-movie')) self.taskNames.append(self.uniqueName('make-movie')) else: self.__makeMovie() def __makeMovie(self, task = None): self.notify.debug('makeMovie()') if self._DOAI_requestedDelete: self.notify.warning('battle %s requested delete, then __makeMovie was called!' % self.doId) if hasattr(self, 'levelDoId'): self.notify.warning('battle %s in level %s' % (self.doId, self.levelDoId)) return self.__removeTaskName(self.uniqueName('make-movie')) if self.movieHasBeenMade == 1: self.notify.debug('__makeMovie() - movie has already been made') return self.movieRequested = 0 self.movieHasBeenMade = 1 self.movieHasPlayed = 0 self.rewardHasPlayed = 0 for t in self.activeToons: if t not in self.toonAttacks: self.toonAttacks[t] = getToonAttack(t) attack = self.toonAttacks[t] if attack[TOON_TRACK_COL] == PASS or attack[TOON_TRACK_COL] == UN_ATTACK: self.toonAttacks[t] = getToonAttack(t) if self.toonAttacks[t][TOON_TRACK_COL] != NO_ATTACK: self.addHelpfulToon(t) self.battleCalc.calculateRound() for t in self.activeToons: self.sendEarnedExperience(t) toon = self.getToon(t) if toon != None: toon.hpOwnedByBattle = 1 if toon.immortalMode: toon.toonUp(toon.maxHp) self.d_setMovie() self.b_setState('PlayMovie') return Task.done def sendEarnedExperience(self, toonId): toon = self.getToon(toonId) if toon != None: expList = self.battleCalc.toonSkillPtsGained.get(toonId, None) if expList == None: toon.d_setEarnedExperience([]) else: roundList = [] for exp in expList: roundList.append(int(exp + 0.5)) toon.d_setEarnedExperience(roundList) def enterOff(self): return def exitOff(self): return def enterFaceOff(self): return def exitFaceOff(self): return def enterWaitForJoin(self): self.notify.debug('enterWaitForJoin()') if len(self.activeSuits) > 0: self.b_setState('WaitForInput') else: self.notify.debug('enterWaitForJoin() - no active suits') self.runableFsm.request('Runable') self.resetResponses() self.__requestAdjust() def exitWaitForJoin(self): pass def enterWaitForInput(self): self.notify.debug('enterWaitForInput()') self.joinableFsm.request('Joinable') self.runableFsm.request('Runable') self.resetResponses() self.__requestAdjust() if not self.tutorialFlag: self.timer.startCallback(SERVER_INPUT_TIMEOUT, self.__serverTimedOut) self.npcAttacks = {} for toonId in self.toons: if bboard.get('autoRestock-%s' % toonId, False): toon = self.air.doId2do.get(toonId) if toon is not None: toon.doRestock(0) def exitWaitForInput(self): self.npcAttacks = {} self.timer.stop() def __serverTimedOut(self): self.notify.debug('wait for input timed out on server') self.ignoreResponses = 1 self.__requestMovie(timeout=1) def enterMakeMovie(self): self.notify.debug('enterMakeMovie()') self.runableFsm.request('Unrunable') self.resetResponses() def exitMakeMovie(self): pass def enterPlayMovie(self): self.notify.debug('enterPlayMovie()') self.joinableFsm.request('Joinable') self.runableFsm.request('Unrunable') self.resetResponses() movieTime = TOON_ATTACK_TIME * (len(self.activeToons) + self.numNPCAttacks) + SUIT_ATTACK_TIME * len(self.activeSuits) + SERVER_BUFFER_TIME self.numNPCAttacks = 0 self.notify.debug('estimated upper bound of movie time: %f' % movieTime) self.timer.startCallback(movieTime, self.__serverMovieDone) def __serverMovieDone(self): self.notify.debug('movie timed out on server') self.ignoreResponses = 1 self.__movieDone() def serverRewardDone(self): self.notify.debug('reward timed out on server') self.ignoreResponses = 1 self.handleRewardDone() def handleRewardDone(self): self.b_setState('Resume') def exitPlayMovie(self): self.timer.stop() def __movieDone(self): self.notify.debug('__movieDone() - movie is finished') if self.movieHasPlayed == 1: self.notify.debug('__movieDone() - movie had already finished') return self.movieHasBeenMade = 0 self.movieHasPlayed = 1 self.ignoreResponses = 1 needUpdate = 0 toonHpDict = {} for toon in self.activeToons: toonHpDict[toon] = [0, 0, 0] actualToon = self.getToon(toon) self.notify.debug('BEFORE ROUND: toon: %d hp: %d' % (toon, actualToon.hp)) deadSuits = [] trapDict = {} suitsLuredOntoTraps = [] npcTrapAttacks = [] for activeToon in self.activeToons + self.exitedToons: if activeToon in self.toonAttacks: attack = self.toonAttacks[activeToon] track = attack[TOON_TRACK_COL] npc_level = None if track == NPCSOS: track, npc_level, npc_hp = NPCToons.getNPCTrackLevelHp(attack[TOON_TGT_COL]) if track == None: track = NPCSOS elif track == TRAP: npcTrapAttacks.append(attack) toon = self.getToon(attack[TOON_ID_COL]) av = attack[TOON_TGT_COL] if toon != None and av in toon.NPCFriendsDict: toon.NPCFriendsDict[av] -= 1 if toon.NPCFriendsDict[av] <= 0: del toon.NPCFriendsDict[av] toon.d_setNPCFriendsDict(toon.NPCFriendsDict) continue if track != NO_ATTACK: toonId = attack[TOON_ID_COL] level = attack[TOON_LVL_COL] if npc_level != None: level = npc_level if attack[TOON_TRACK_COL] == NPCSOS: toon = self.getToon(toonId) av = attack[TOON_TGT_COL] if toon != None and av in toon.NPCFriendsDict: toon.NPCFriendsDict[av] -= 1 if toon.NPCFriendsDict[av] <= 0: del toon.NPCFriendsDict[av] toon.d_setNPCFriendsDict(toon.NPCFriendsDict) elif track == PETSOS: pass elif track == FIRE: pass elif track != SOS: toon = self.getToon(toonId) if toon != None: check = toon.inventory.useItem(track, level) if check == -1: self.air.writeServerEvent('suspicious', toonId, 'Toon generating movie for non-existant gag track %s level %s' % (track, level)) self.notify.warning('generating movie for non-existant gag track %s level %s! avId: %s' % (track, level, toonId)) toon.d_setInventory(toon.inventory.makeNetString()) hps = attack[TOON_HP_COL] if track == SOS: self.notify.debug('toon: %d called for help' % toonId) elif track == NPCSOS: self.notify.debug('toon: %d called for help' % toonId) elif track == PETSOS: self.notify.debug('toon: %d called for pet' % toonId) for i in range(len(self.activeToons)): toon = self.getToon(self.activeToons[i]) if toon != None: if i < len(hps): hp = hps[i] if hp > 0: toonHpDict[toon.doId][0] += hp self.notify.debug('pet heal: toon: %d healed for hp: %d' % (toon.doId, hp)) else: self.notify.warning('Invalid targetIndex %s in hps %s.' % (i, hps)) elif track == NPC_RESTOCK_GAGS: for at in self.activeToons: toon = self.getToon(at) if toon != None: toon.inventory.NPCMaxOutInv(npc_level) toon.d_setInventory(toon.inventory.makeNetString()) elif track == HEAL: if levelAffectsGroup(HEAL, level): for i in range(len(self.activeToons)): at = self.activeToons[i] if at != toonId or attack[TOON_TRACK_COL] == NPCSOS: toon = self.getToon(at) if toon != None: if i < len(hps): hp = hps[i] else: self.notify.warning('Invalid targetIndex %s in hps %s.' % (i, hps)) hp = 0 toonHpDict[toon.doId][0] += hp self.notify.debug('HEAL: toon: %d healed for hp: %d' % (toon.doId, hp)) else: targetId = attack[TOON_TGT_COL] toon = self.getToon(targetId) if toon != None and targetId in self.activeToons: targetIndex = self.activeToons.index(targetId) if targetIndex < len(hps): hp = hps[targetIndex] else: self.notify.warning('Invalid targetIndex %s in hps %s.' % (targetIndex, hps)) hp = 0 toonHpDict[toon.doId][0] += hp elif attackAffectsGroup(track, level, attack[TOON_TRACK_COL]): for suit in self.activeSuits: targetIndex = self.activeSuits.index(suit) if targetIndex < 0 or targetIndex >= len(hps): self.notify.warning('Got attack (%s, %s) on target suit %s, but hps has only %s entries: %s' % (track, level, targetIndex, len(hps), hps)) else: hp = hps[targetIndex] if hp > 0 and track == LURE: if suit.battleTrap == UBER_GAG_LEVEL_INDEX: pass suit.battleTrap = NO_TRAP needUpdate = 1 if suit.doId in trapDict: del trapDict[suit.doId] if suitsLuredOntoTraps.count(suit) == 0: suitsLuredOntoTraps.append(suit) if track == TRAP: targetId = suit.doId if targetId in trapDict: trapDict[targetId].append(attack) else: trapDict[targetId] = [attack] needUpdate = 1 died = attack[SUIT_DIED_COL] & 1 << targetIndex if died != 0: if deadSuits.count(suit) == 0: deadSuits.append(suit) else: targetId = attack[TOON_TGT_COL] target = self.findSuit(targetId) if target != None: targetIndex = self.activeSuits.index(target) if targetIndex < 0 or targetIndex >= len(hps): self.notify.warning('Got attack (%s, %s) on target suit %s, but hps has only %s entries: %s' % (track, level, targetIndex, len(hps), hps)) else: hp = hps[targetIndex] if track == TRAP: if targetId in trapDict: trapDict[targetId].append(attack) else: trapDict[targetId] = [attack] if hp > 0 and track == LURE: oldBattleTrap = target.battleTrap if oldBattleTrap == UBER_GAG_LEVEL_INDEX: pass target.battleTrap = NO_TRAP needUpdate = 1 if target.doId in trapDict: del trapDict[target.doId] if suitsLuredOntoTraps.count(target) == 0: suitsLuredOntoTraps.append(target) if oldBattleTrap == UBER_GAG_LEVEL_INDEX: for otherSuit in self.activeSuits: if not otherSuit == target: otherSuit.battleTrap = NO_TRAP if otherSuit.doId in trapDict: del trapDict[otherSuit.doId] died = attack[SUIT_DIED_COL] & 1 << targetIndex if died != 0: if deadSuits.count(target) == 0: deadSuits.append(target) self.exitedToons = [] for suitKey in trapDict.keys(): attackList = trapDict[suitKey] attack = attackList[0] target = self.findSuit(attack[TOON_TGT_COL]) if attack[TOON_LVL_COL] == UBER_GAG_LEVEL_INDEX: targetId = suitKey target = self.findSuit(targetId) if len(attackList) == 1: if suitsLuredOntoTraps.count(target) == 0: self.notify.debug('movieDone() - trap set') target.battleTrap = attack[TOON_LVL_COL] needUpdate = 1 else: target.battleTrap = NO_TRAP else: self.notify.debug('movieDone() - traps collided') if target != None: target.battleTrap = NO_TRAP if self.battleCalc.trainTrapTriggered: self.notify.debug('Train trap triggered, clearing all traps') for otherSuit in self.activeSuits: self.notify.debug('suit =%d, oldBattleTrap=%d' % (otherSuit.doId, otherSuit.battleTrap)) otherSuit.battleTrap = NO_TRAP currLuredSuits = self.battleCalc.getLuredSuits() if len(self.luredSuits) == len(currLuredSuits): for suit in self.luredSuits: if currLuredSuits.count(suit.doId) == 0: needUpdate = 1 break else: needUpdate = 1 self.luredSuits = [] for i in currLuredSuits: suit = self.air.doId2do[i] self.luredSuits.append(suit) self.notify.debug('movieDone() - suit: %d is lured' % i) for attack in npcTrapAttacks: track, level, hp = NPCToons.getNPCTrackLevelHp(attack[TOON_TGT_COL]) for suit in self.activeSuits: if self.luredSuits.count(suit) == 0 and suit.battleTrap == NO_TRAP: suit.battleTrap = level needUpdate = 1 for suit in deadSuits: self.notify.debug('removing dead suit: %d' % suit.doId) if suit.isDeleted(): self.notify.debug('whoops, suit %d is deleted.' % suit.doId) else: self.notify.debug('suit had revives? %d' % suit.getMaxSkeleRevives()) encounter = {'type': suit.dna.name, 'level': suit.getActualLevel(), 'track': suit.dna.dept, 'isSkelecog': suit.getSkelecog(), 'isForeman': suit.isForeman(), 'isVP': 0, 'isCFO': 0, 'isSupervisor': suit.isSupervisor(), 'isVirtual': suit.isVirtual(), 'hasRevives': suit.getMaxSkeleRevives(), 'activeToons': self.activeToons[:]} self.suitsKilled.append(encounter) self.suitsKilledThisBattle.append(encounter) self.air.suitInvasionManager.handleSuitDefeated() self.__removeSuit(suit) needUpdate = 1 suit.resume() lastActiveSuitDied = 0 if len(self.activeSuits) == 0 and len(self.pendingSuits) == 0: lastActiveSuitDied = 1 for i in range(4): attack = self.suitAttacks[i][SUIT_ATK_COL] if attack != NO_ATTACK: suitId = self.suitAttacks[i][SUIT_ID_COL] suit = self.findSuit(suitId) if suit == None: self.notify.warning('movieDone() - suit: %d is gone!' % suitId) continue if not (hasattr(suit, 'dna') and suit.dna): toonId = self.air.getAvatarIdFromSender() self.notify.warning('_movieDone avoiding crash, sender=%s but suit has no dna' % toonId) self.air.writeServerEvent('suspicious', toonId, '_movieDone avoiding crash, suit has no dna') continue adict = getSuitAttack(suit.getStyleName(), suit.getLevel(), attack) hps = self.suitAttacks[i][SUIT_HP_COL] if adict['group'] == ATK_TGT_GROUP: for activeToon in self.activeToons: toon = self.getToon(activeToon) if toon != None: targetIndex = self.activeToons.index(activeToon) toonDied = self.suitAttacks[i][TOON_DIED_COL] & 1 << targetIndex if targetIndex >= len(hps): self.notify.warning('DAMAGE: toon %s is no longer in battle!' % activeToon) else: hp = hps[targetIndex] if hp > 0: self.notify.debug('DAMAGE: toon: %d hit for dmg: %d' % (activeToon, hp)) if toonDied != 0: toonHpDict[toon.doId][2] = 1 toonHpDict[toon.doId][1] += hp elif adict['group'] == ATK_TGT_SINGLE: targetIndex = self.suitAttacks[i][SUIT_TGT_COL] if targetIndex >= len(self.activeToons): self.notify.warning('movieDone() - toon: %d gone!' % targetIndex) break toonId = self.activeToons[targetIndex] toon = self.getToon(toonId) toonDied = self.suitAttacks[i][TOON_DIED_COL] & 1 << targetIndex if targetIndex >= len(hps): self.notify.warning('DAMAGE: toon %s is no longer in battle!' % toonId) else: hp = hps[targetIndex] if hp > 0: self.notify.debug('DAMAGE: toon: %d hit for dmg: %d' % (toonId, hp)) if toonDied != 0: toonHpDict[toon.doId][2] = 1 toonHpDict[toon.doId][1] += hp deadToons = [] for activeToon in self.activeToons: hp = toonHpDict[activeToon] toon = self.getToon(activeToon) if toon != None: self.notify.debug('AFTER ROUND: currtoonHP: %d toonMAX: %d hheal: %d damage: %d' % (toon.hp, toon.maxHp, hp[0], hp[1])) toon.hpOwnedByBattle = 0 hpDelta = hp[0] - hp[1] if hpDelta >= 0: toon.toonUp(hpDelta, quietly=1) else: toon.takeDamage(-hpDelta, quietly=1) if toon.hp <= 0: self.notify.debug('movieDone() - toon: %d was killed' % activeToon) toon.inventory.zeroInv(1) deadToons.append(activeToon) self.notify.debug('AFTER ROUND: toon: %d setHp: %d' % (toon.doId, toon.hp)) if toon.unlimitedGags: toon.doRestock(noUber=0, noPaid=0) for deadToon in deadToons: self.__removeToon(deadToon) needUpdate = 1 self.clearAttacks() self.d_setMovie() self.d_setChosenToonAttacks() self.localMovieDone(needUpdate, deadToons, deadSuits, lastActiveSuitDied) def enterResume(self): for suit in self.suits: self.notify.info('battle done, resuming suit: %d' % suit.doId) if suit.isDeleted(): self.notify.info('whoops, suit %d is deleted.' % suit.doId) else: suit.resume() self.suits = [] self.joiningSuits = [] self.pendingSuits = [] self.adjustingSuits = [] self.activeSuits = [] self.luredSuits = [] for toonId in self.toons: toon = simbase.air.doId2do.get(toonId) if toon: toon.b_setBattleId(0) messageToonReleased = 'Battle releasing toon %s' % toon.doId messenger.send(messageToonReleased, [toon.doId]) for exitEvent in self.avatarExitEvents: self.ignore(exitEvent) eventMsg = {} for encounter in self.suitsKilledThisBattle: cog = encounter['type'] level = encounter['level'] msgName = '%s%s' % (cog, level) if encounter['isSkelecog']: msgName += '+' if msgName in eventMsg: eventMsg[msgName] += 1 else: eventMsg[msgName] = 1 msgText = '' for msgName, count in eventMsg.items(): if msgText != '': msgText += ',' msgText += '%s%s' % (count, msgName) self.air.writeServerEvent('battleCogsDefeated', self.doId, '%s|%s' % (msgText, self.getTaskZoneId())) def exitResume(self): pass def isJoinable(self): return self.joinableFsm.getCurrentState().getName() == 'Joinable' def enterJoinable(self): self.notify.debug('enterJoinable()') def exitJoinable(self): pass def enterUnjoinable(self): self.notify.debug('enterUnjoinable()') def exitUnjoinable(self): pass def isRunable(self): return self.runableFsm.getCurrentState().getName() == 'Runable' def enterRunable(self): self.notify.debug('enterRunable()') def exitRunable(self): pass def enterUnrunable(self): self.notify.debug('enterUnrunable()') def exitUnrunable(self): pass def __estimateAdjustTime(self): self.needAdjust = 0 adjustTime = 0 if len(self.pendingSuits) > 0 or self.suitGone == 1: self.suitGone = 0 pos0 = self.suitPendingPoints[0][0] pos1 = self.suitPoints[0][0][0] adjustTime = self.calcSuitMoveTime(pos0, pos1) if len(self.pendingToons) > 0 or self.toonGone == 1: self.toonGone = 0 if adjustTime == 0: pos0 = self.toonPendingPoints[0][0] pos1 = self.toonPoints[0][0][0] adjustTime = self.calcToonMoveTime(pos0, pos1) return adjustTime def enterAdjusting(self): self.notify.debug('enterAdjusting()') self.timer.stop() self.__resetAdjustingResponses() self.adjustingTimer.startCallback(self.__estimateAdjustTime() + SERVER_BUFFER_TIME, self.__serverAdjustingDone) def __serverAdjustingDone(self): if self.needAdjust == 1: self.adjustFsm.request('NotAdjusting') self.__requestAdjust() else: self.notify.debug('adjusting timed out on the server') self.ignoreAdjustingResponses = 1 self.__adjustDone() def exitAdjusting(self): currStateName = self.fsm.getCurrentState().getName() if currStateName == 'WaitForInput': self.timer.restart() elif currStateName == 'WaitForJoin': self.b_setState('WaitForInput') self.adjustingTimer.stop() def __addTrainTrapForNewSuits(self): hasTrainTrap = False trapInfo = None for otherSuit in self.activeSuits: if otherSuit.battleTrap == UBER_GAG_LEVEL_INDEX: hasTrainTrap = True if hasTrainTrap: for curSuit in self.activeSuits: if not curSuit.battleTrap == UBER_GAG_LEVEL_INDEX: oldBattleTrap = curSuit.battleTrap curSuit.battleTrap = UBER_GAG_LEVEL_INDEX self.battleCalc.addTrainTrapForJoiningSuit(curSuit.doId) self.notify.debug('setting traintrack trap for joining suit %d oldTrap=%s' % (curSuit.doId, oldBattleTrap)) def __adjustDone(self): for s in self.adjustingSuits: self.pendingSuits.remove(s) self.activeSuits.append(s) self.adjustingSuits = [] for toon in self.adjustingToons: if self.pendingToons.count(toon) == 1: self.pendingToons.remove(toon) else: self.notify.warning('adjustDone() - toon: %d not pending!' % toon.doId) if self.activeToons.count(toon) == 0: self.activeToons.append(toon) self.ignoreResponses = 0 self.sendEarnedExperience(toon) else: self.notify.warning('adjustDone() - toon: %d already active!' % toon.doId) self.adjustingToons = [] self.__addTrainTrapForNewSuits() self.d_setMembers() self.adjustFsm.request('NotAdjusting') if self.needAdjust == 1: self.notify.debug('__adjustDone() - need to adjust again') self.__requestAdjust() def enterNotAdjusting(self): self.notify.debug('enterNotAdjusting()') if self.movieRequested == 1: if len(self.activeToons) > 0 and self.__allActiveToonsResponded(): self.__requestMovie() def exitNotAdjusting(self): pass def getPetProxyObject(self, petId, callback): doneEvent = 'generate-%d' % petId def handlePetProxyRead(pet): callback(1, pet) self.air.sendActivate(petId, self.air.districtId, 0) self.acceptOnce(doneEvent, handlePetProxyRead) def _getNextSerialNum(self): num = self.serialNum self.serialNum += 1 return num def setFireCount(self, amount): self.fireCount = amount def getFireCount(self): return self.fireCount @magicWord(category=CATEGORY_PROGRAMMER) def skipMovie(): invoker = spellbook.getInvoker() battleId = invoker.getBattleId() if not battleId: return 'You are not currently in a battle!' battle = simbase.air.doId2do.get(battleId) battle._DistributedBattleBaseAI__movieDone() return 'Battle movie skipped.'
[ "toontown.pets.DistributedPetProxyAI.DistributedPetProxyAI", "direct.distributed.DistributedObjectAI.DistributedObjectAI.requestDelete", "direct.fsm.State.State", "toontown.ai.DatabaseObject.DatabaseObject", "direct.distributed.DistributedObjectAI.DistributedObjectAI.delete", "toontown.toon.DistributedToonAI.DistributedToonAI", "toontown.battle.BattleExperienceAI.getBattleExperience", "toontown.toon.InventoryBase.InventoryBase", "toontown.toon.NPCToons.getNPCTrackLevelHp", "direct.directnotify.DirectNotifyGlobal.directNotify.newCategory", "direct.distributed.DistributedObjectAI.DistributedObjectAI.__init__", "random.randint" ]
[((947, 1017), 'direct.directnotify.DirectNotifyGlobal.directNotify.newCategory', 'DirectNotifyGlobal.directNotify.newCategory', (['"""DistributedBattleBaseAI"""'], {}), "('DistributedBattleBaseAI')\n", (990, 1017), False, 'from direct.directnotify import DirectNotifyGlobal\n'), ((1167, 1226), 'direct.distributed.DistributedObjectAI.DistributedObjectAI.__init__', 'DistributedObjectAI.DistributedObjectAI.__init__', (['self', 'air'], {}), '(self, air)\n', (1215, 1226), False, 'from direct.distributed import DistributedObjectAI\n'), ((5287, 5346), 'direct.distributed.DistributedObjectAI.DistributedObjectAI.requestDelete', 'DistributedObjectAI.DistributedObjectAI.requestDelete', (['self'], {}), '(self)\n', (5340, 5346), False, 'from direct.distributed import DistributedObjectAI\n'), ((6012, 6064), 'direct.distributed.DistributedObjectAI.DistributedObjectAI.delete', 'DistributedObjectAI.DistributedObjectAI.delete', (['self'], {}), '(self)\n', (6058, 6064), False, 'from direct.distributed import DistributedObjectAI\n'), ((15093, 15342), 'toontown.battle.BattleExperienceAI.getBattleExperience', 'BattleExperienceAI.getBattleExperience', (['(4)', 'self.activeToons', 'self.toonExp', 'self.battleCalc.toonSkillPtsGained', 'self.toonOrigQuests', 'self.toonItems', 'self.toonOrigMerits', 'self.toonMerits', 'self.toonParts', 'self.suitsKilled', 'self.helpfulToons'], {}), '(4, self.activeToons, self.toonExp,\n self.battleCalc.toonSkillPtsGained, self.toonOrigQuests, self.toonItems,\n self.toonOrigMerits, self.toonMerits, self.toonParts, self.suitsKilled,\n self.helpfulToons)\n', (15131, 15342), False, 'from toontown.battle import BattleExperienceAI\n'), ((66394, 66443), 'toontown.toon.NPCToons.getNPCTrackLevelHp', 'NPCToons.getNPCTrackLevelHp', (['attack[TOON_TGT_COL]'], {}), '(attack[TOON_TGT_COL])\n', (66421, 66443), False, 'from toontown.toon import NPCToons\n'), ((3199, 3290), 'direct.fsm.State.State', 'State.State', (['"""FaceOff"""', 'self.enterFaceOff', 'self.exitFaceOff', "['WaitForInput', 'Resume']"], {}), "('FaceOff', self.enterFaceOff, self.exitFaceOff, ['WaitForInput',\n 'Resume'])\n", (3210, 3290), False, 'from direct.fsm import State\n'), ((3297, 3401), 'direct.fsm.State.State', 'State.State', (['"""WaitForJoin"""', 'self.enterWaitForJoin', 'self.exitWaitForJoin', "['WaitForInput', 'Resume']"], {}), "('WaitForJoin', self.enterWaitForJoin, self.exitWaitForJoin, [\n 'WaitForInput', 'Resume'])\n", (3308, 3401), False, 'from direct.fsm import State\n'), ((3407, 3510), 'direct.fsm.State.State', 'State.State', (['"""WaitForInput"""', 'self.enterWaitForInput', 'self.exitWaitForInput', "['MakeMovie', 'Resume']"], {}), "('WaitForInput', self.enterWaitForInput, self.exitWaitForInput,\n ['MakeMovie', 'Resume'])\n", (3418, 3510), False, 'from direct.fsm import State\n'), ((3517, 3612), 'direct.fsm.State.State', 'State.State', (['"""MakeMovie"""', 'self.enterMakeMovie', 'self.exitMakeMovie', "['PlayMovie', 'Resume']"], {}), "('MakeMovie', self.enterMakeMovie, self.exitMakeMovie, [\n 'PlayMovie', 'Resume'])\n", (3528, 3612), False, 'from direct.fsm import State\n'), ((3618, 3725), 'direct.fsm.State.State', 'State.State', (['"""PlayMovie"""', 'self.enterPlayMovie', 'self.exitPlayMovie', "['WaitForJoin', 'Reward', 'Resume']"], {}), "('PlayMovie', self.enterPlayMovie, self.exitPlayMovie, [\n 'WaitForJoin', 'Reward', 'Resume'])\n", (3629, 3725), False, 'from direct.fsm import State\n'), ((3731, 3799), 'direct.fsm.State.State', 'State.State', (['"""Reward"""', 'self.enterReward', 'self.exitReward', "['Resume']"], {}), "('Reward', self.enterReward, self.exitReward, ['Resume'])\n", (3742, 3799), False, 'from direct.fsm import State\n'), ((3810, 3870), 'direct.fsm.State.State', 'State.State', (['"""Resume"""', 'self.enterResume', 'self.exitResume', '[]'], {}), "('Resume', self.enterResume, self.exitResume, [])\n", (3821, 3870), False, 'from direct.fsm import State\n'), ((3881, 3956), 'direct.fsm.State.State', 'State.State', (['"""Off"""', 'self.enterOff', 'self.exitOff', "['FaceOff', 'WaitForJoin']"], {}), "('Off', self.enterOff, self.exitOff, ['FaceOff', 'WaitForJoin'])\n", (3892, 3956), False, 'from direct.fsm import State\n'), ((4035, 4113), 'direct.fsm.State.State', 'State.State', (['"""Joinable"""', 'self.enterJoinable', 'self.exitJoinable', "['Unjoinable']"], {}), "('Joinable', self.enterJoinable, self.exitJoinable, ['Unjoinable'])\n", (4046, 4113), False, 'from direct.fsm import State\n'), ((4115, 4202), 'direct.fsm.State.State', 'State.State', (['"""Unjoinable"""', 'self.enterUnjoinable', 'self.exitUnjoinable', "['Joinable']"], {}), "('Unjoinable', self.enterUnjoinable, self.exitUnjoinable, [\n 'Joinable'])\n", (4126, 4202), False, 'from direct.fsm import State\n'), ((4333, 4407), 'direct.fsm.State.State', 'State.State', (['"""Runable"""', 'self.enterRunable', 'self.exitRunable', "['Unrunable']"], {}), "('Runable', self.enterRunable, self.exitRunable, ['Unrunable'])\n", (4344, 4407), False, 'from direct.fsm import State\n'), ((4409, 4487), 'direct.fsm.State.State', 'State.State', (['"""Unrunable"""', 'self.enterUnrunable', 'self.exitUnrunable', "['Runable']"], {}), "('Unrunable', self.enterUnrunable, self.exitUnrunable, ['Runable'])\n", (4420, 4487), False, 'from direct.fsm import State\n'), ((4618, 4719), 'direct.fsm.State.State', 'State.State', (['"""Adjusting"""', 'self.enterAdjusting', 'self.exitAdjusting', "['NotAdjusting', 'Adjusting']"], {}), "('Adjusting', self.enterAdjusting, self.exitAdjusting, [\n 'NotAdjusting', 'Adjusting'])\n", (4629, 4719), False, 'from direct.fsm import State\n'), ((4716, 4809), 'direct.fsm.State.State', 'State.State', (['"""NotAdjusting"""', 'self.enterNotAdjusting', 'self.exitNotAdjusting', "['Adjusting']"], {}), "('NotAdjusting', self.enterNotAdjusting, self.exitNotAdjusting,\n ['Adjusting'])\n", (4727, 4809), False, 'from direct.fsm import State\n'), ((27757, 27802), 'toontown.toon.DistributedToonAI.DistributedToonAI', 'DistributedToonAI.DistributedToonAI', (['self.air'], {}), '(self.air)\n', (27792, 27802), False, 'from toontown.toon import DistributedToonAI\n'), ((27854, 27887), 'toontown.toon.InventoryBase.InventoryBase', 'InventoryBase.InventoryBase', (['toon'], {}), '(toon)\n', (27881, 27887), False, 'from toontown.toon import InventoryBase\n'), ((27988, 28035), 'toontown.ai.DatabaseObject.DatabaseObject', 'DatabaseObject.DatabaseObject', (['self.air', 'toonId'], {}), '(self.air, toonId)\n', (28017, 28035), False, 'from toontown.ai import DatabaseObject\n'), ((55141, 55190), 'toontown.toon.NPCToons.getNPCTrackLevelHp', 'NPCToons.getNPCTrackLevelHp', (['attack[TOON_TGT_COL]'], {}), '(attack[TOON_TGT_COL])\n', (55168, 55190), False, 'from toontown.toon import NPCToons\n'), ((44749, 44802), 'toontown.pets.DistributedPetProxyAI.DistributedPetProxyAI', 'DistributedPetProxyAI.DistributedPetProxyAI', (['self.air'], {}), '(self.air)\n', (44792, 44802), False, 'from toontown.pets import DistributedPetProxyAI\n'), ((12410, 12434), 'random.randint', 'random.randint', (['(0)', '(10000)'], {}), '(0, 10000)\n', (12424, 12434), False, 'import random\n')]
import gym from gym import spaces, error, utils from gym.utils import seeding import numpy as np from scipy.spatial.distance import pdist, squareform import configparser from os import path import matplotlib.pyplot as plt from matplotlib.pyplot import gca font = {'family' : 'sans-serif', 'weight' : 'bold', 'size' : 14} class FlockingEnv(gym.Env): def __init__(self): config_file = path.join(path.dirname(__file__), "params_flock.cfg") config = configparser.ConfigParser() config.read(config_file) config = config['flock'] self.fig = None self.line1 = None self.filter_len = int(config['filter_length']) self.nx_system = 4 self.n_nodes = int(config['network_size']) self.comm_radius = float(config['comm_radius']) self.dt = float(config['system_dt']) self.v_max = float(config['max_vel_init']) self.v_bias = self.v_max # 0.5 * self.v_max self.r_max = float(config['max_rad_init']) self.std_dev = float(config['std_dev']) * self.dt self.pooling = [] if config.getboolean('sum_pooling'): self.pooling.append(np.nansum) if config.getboolean('min_pooling'): self.pooling.append(np.nanmin) if config.getboolean('max_pooling'): self.pooling.append(np.nanmax) self.n_pools = len(self.pooling) # number of features and outputs self.n_features = int(config['N_features']) self.nx = int(self.n_features / self.n_pools / self.filter_len) self.nu = int(config['N_outputs']) # outputs self.x_agg = np.zeros((self.n_nodes, self.nx * self.filter_len, self.n_pools)) self.x = np.zeros((self.n_nodes, self.nx_system)) self.u = np.zeros((self.n_nodes, self.nu)) self.mean_vel = np.zeros((self.n_nodes, self.nu)) # TODO self.max_accel = 40 self.max_z = 200 # self.b = np.ones((self.n_nodes,1)) # self.action_space = spaces.Box(low=-self.max_accel, high=self.max_accel, shape=(self.n_nodes, 2), dtype=np.float32 ) # self.observation_space = spaces.Box(low=-self.max_z, high=self.max_z, shape=( # self.n_nodes, self.nx * self.filter_len * self.n_pools) , dtype=np.float32) self.action_space = spaces.Box(low=-self.max_accel, high=self.max_accel, shape=(2,) , dtype=np.float32 ) self.observation_space = spaces.Box(low=-self.max_z, high=self.max_z, shape=(self.n_features, ), dtype=np.float32) self.seed() def render(self, mode='human'): if self.fig is None: plt.ion() fig = plt.figure() ax = fig.add_subplot(111) line1, = ax.plot(self.x[:, 0], self.x[:, 1], 'bo') # Returns a tuple of line objects, thus the comma ax.plot([0], [0], 'kx') plt.ylim(-1.0 * self.r_max, 1.0 * self.r_max) plt.xlim(-1.0 * self.r_max, 1.0 * self.r_max) a = gca() a.set_xticklabels(a.get_xticks(), font) a.set_yticklabels(a.get_yticks(), font) plt.title('GNN Controller') self.fig = fig self.line1 = line1 self.line1.set_xdata(self.x[:, 0]) self.line1.set_ydata(self.x[:, 1]) self.fig.canvas.draw() self.fig.canvas.flush_events() def seed(self, seed=None): self.np_random, seed = seeding.np_random(seed) return [seed] def step(self, u): x = self.x x_ = np.zeros((self.n_nodes, self.nx_system)) #u = np.vstack((np.zeros((self.n_leaders, 2)), u)) # x position x_[:, 0] = x[:, 0] + x[:, 2] * self.dt # y position x_[:, 1] = x[:, 1] + x[:, 3] * self.dt # x velocity x_[:, 2] = x[:, 2] + 0.1 * u[:, 0] * self.dt + np.random.normal(0, self.std_dev,(self.n_nodes,)) # y velocity x_[:, 3] = x[:, 3] + 0.1 * u[:, 1] * self.dt + np.random.normal(0, self.std_dev,(self.n_nodes,)) # TODO - check the 0.1 self.x = x_ self.x_agg = self.aggregate(self.x, self.x_agg) self.u = u return self._get_obs(), -self.instant_cost(), False, {} def instant_cost(self): # sum of differences in velocities return np.sum(np.var(self.x[:, 2:4], axis=0)) #+ np.sum(np.square(self.u)) * 0.00001 #return np.sum(np.square(self.x[:,2:4] - self.mean_vel)) def _get_obs(self): reshaped = self.x_agg.reshape((self.n_nodes, self.n_features)) clipped = np.clip(reshaped, a_min=-self.max_z, a_max=self.max_z) return clipped #[self.n_leaders:, :] def reset(self): x = np.zeros((self.n_nodes, self.nx_system)) degree = 0 min_dist = 0 while degree < 2 or min_dist < 0.1: # < 0.25: # 0.25: #0.5: #min_dist < 0.25: # randomly initialize the state of all agents length = np.sqrt(np.random.uniform(0, self.r_max, size=(self.n_nodes,))) angle = np.pi * np.random.uniform(0, 2, size=(self.n_nodes,)) x[:, 0] = length * np.cos(angle) x[:, 1] = length * np.sin(angle) bias = np.random.uniform(low=-self.v_bias, high=self.v_bias, size=(2,)) x[:, 2] = np.random.uniform(low=-self.v_max, high=self.v_max, size=(self.n_nodes,)) + bias[0] x[:, 3] = np.random.uniform(low=-self.v_max, high=self.v_max, size=(self.n_nodes,)) + bias[1] # compute distances between agents x_t_loc = x[:, 0:2] # x,y location determines connectivity a_net = squareform(pdist(x_t_loc.reshape((self.n_nodes, 2)), 'euclidean')) # no self loops a_net = a_net + 2 * self.comm_radius * np.eye(self.n_nodes) # compute minimum distance between agents and degree of network min_dist = np.min(np.min(a_net)) a_net = a_net < self.comm_radius degree = np.min(np.sum(a_net.astype(int), axis=1)) self.mean_vel = np.mean(x[:,2:4],axis=0) self.x = x self.x_agg = np.zeros((self.n_nodes, self.nx * self.filter_len, self.n_pools)) self.x_agg = self.aggregate(self.x, self.x_agg) return self._get_obs() # def render(self, mode='human'): # pass def close(self): pass def aggregate(self, xt, x_agg): """ Perform aggegration operation for all possible pooling operations using helper functions get_pool and get_comms Args: x_agg (): Last time step's aggregated info xt (): Current state of all agents Returns: Aggregated state values """ x_features = self.get_x_features(xt) a_net = self.get_connectivity(xt) for k in range(0, self.n_pools): comm_data = self.get_comms(np.dstack((x_features, self.get_features(x_agg[:, :, k]))), a_net) x_agg[:, :, k] = self.get_pool(comm_data, self.pooling[k]) return x_agg def get_connectivity(self, x): """ Get the adjacency matrix of the network based on agent locations by computing pairwise distances using pdist Args: x (): current states of all agents Returns: adjacency matrix of network """ x_t_loc = x[:, 0:2] # x,y location determines connectivity a_net = squareform(pdist(x_t_loc.reshape((self.n_nodes, 2)), 'euclidean')) a_net = (a_net < self.comm_radius).astype(float) np.fill_diagonal(a_net, 0) return a_net def get_x_features(self, xt): # TODO """ Compute the non-linear features necessary for implementing Turner 2003 Args: xt (): current state of all agents Returns: matrix of features for each agent """ diff = xt.reshape((self.n_nodes, 1, self.nx_system)) - xt.reshape((1, self.n_nodes, self.nx_system)) r2 = np.multiply(diff[:, :, 0], diff[:, :, 0]) + np.multiply(diff[:, :, 1], diff[:, :, 1]) + np.eye( self.n_nodes) return np.dstack((diff[:, :, 2], np.divide(diff[:, :, 0], np.multiply(r2, r2)), np.divide(diff[:, :, 0], r2), diff[:, :, 3], np.divide(diff[:, :, 1], np.multiply(r2, r2)), np.divide(diff[:, :, 1], r2))) def get_features(self, agg): """ Matrix of Args: agg (): the aggregated matrix from the last time step Returns: matrix of aggregated features from all nodes at current time """ return np.tile(agg[:, :-self.nx].reshape((self.n_nodes, 1, -1)), (1, self.n_nodes, 1)) # TODO check indexing def get_comms(self, mat, a_net): """ Enforces that agents who are not connected in the network cannot observe each others' states Args: mat (): matrix of state information for the whole graph a_net (): adjacency matrix for flock network (weighted networks unsupported for now) Returns: mat (): sparse matrix with NaN values where agents can't communicate """ a_net[a_net == 0] = np.nan return mat * a_net.reshape(self.n_nodes, self.n_nodes, 1) def get_pool(self, mat, func): """ Perform pooling operations on the matrix of state information. The replacement of values with NaNs for agents who can't communicate must already be enforced. Args: mat (): matrix of state information func (): pooling function (np.nansum(), np.nanmin() or np.nanmax()). Must ignore NaNs. Returns: information pooled from neighbors for each agent """ return func(mat, axis=1).reshape((self.n_nodes, self.n_features)) # TODO check this axis = 1 def controller(self): """ The controller for flocking from Turner 2003. Args: x (): the current state Returns: the optimal action """ x = self.x s_diff = x.reshape((self.n_nodes, 1, self.nx_system)) - x.reshape((1, self.n_nodes, self.nx_system)) r2 = np.multiply(s_diff[:, :, 0], s_diff[:, :, 0]) + np.multiply(s_diff[:, :, 1], s_diff[:, :, 1]) + np.eye( self.n_nodes) p = np.dstack((s_diff, self.potential_grad(s_diff[:, :, 0], r2), self.potential_grad(s_diff[:, :, 1], r2))) p_sum = np.nansum(p, axis=1).reshape((self.n_nodes, self.nx_system + 2)) return np.hstack(((- p_sum[:, 4] - p_sum[:, 2]).reshape((-1, 1)), (- p_sum[:, 3] - p_sum[:, 5]).reshape(-1, 1))) def potential_grad(self, pos_diff, r2): """ Computes the gradient of the potential function for flocking proposed in Turner 2003. Args: pos_diff (): difference in a component of position among all agents r2 (): distance squared between agents Returns: corresponding component of the gradient of the potential """ grad = -2.0 * np.divide(pos_diff, np.multiply(r2, r2)) + 2 * np.divide(pos_diff, r2) grad[r2 > self.comm_radius] = 0 return grad
[ "numpy.clip", "configparser.ConfigParser", "numpy.sin", "numpy.divide", "gym.utils.seeding.np_random", "numpy.mean", "numpy.multiply", "numpy.min", "matplotlib.pyplot.ylim", "numpy.random.normal", "numpy.eye", "matplotlib.pyplot.gca", "numpy.fill_diagonal", "os.path.dirname", "numpy.cos", "matplotlib.pyplot.ion", "matplotlib.pyplot.title", "matplotlib.pyplot.xlim", "numpy.nansum", "gym.spaces.Box", "numpy.zeros", "matplotlib.pyplot.figure", "numpy.random.uniform", "numpy.var" ]
[((488, 515), 'configparser.ConfigParser', 'configparser.ConfigParser', ([], {}), '()\n', (513, 515), False, 'import configparser\n'), ((1655, 1720), 'numpy.zeros', 'np.zeros', (['(self.n_nodes, self.nx * self.filter_len, self.n_pools)'], {}), '((self.n_nodes, self.nx * self.filter_len, self.n_pools))\n', (1663, 1720), True, 'import numpy as np\n'), ((1738, 1778), 'numpy.zeros', 'np.zeros', (['(self.n_nodes, self.nx_system)'], {}), '((self.n_nodes, self.nx_system))\n', (1746, 1778), True, 'import numpy as np\n'), ((1796, 1829), 'numpy.zeros', 'np.zeros', (['(self.n_nodes, self.nu)'], {}), '((self.n_nodes, self.nu))\n', (1804, 1829), True, 'import numpy as np\n'), ((1854, 1887), 'numpy.zeros', 'np.zeros', (['(self.n_nodes, self.nu)'], {}), '((self.n_nodes, self.nu))\n', (1862, 1887), True, 'import numpy as np\n'), ((2336, 2423), 'gym.spaces.Box', 'spaces.Box', ([], {'low': '(-self.max_accel)', 'high': 'self.max_accel', 'shape': '(2,)', 'dtype': 'np.float32'}), '(low=-self.max_accel, high=self.max_accel, shape=(2,), dtype=np.\n float32)\n', (2346, 2423), False, 'from gym import spaces, error, utils\n'), ((2454, 2546), 'gym.spaces.Box', 'spaces.Box', ([], {'low': '(-self.max_z)', 'high': 'self.max_z', 'shape': '(self.n_features,)', 'dtype': 'np.float32'}), '(low=-self.max_z, high=self.max_z, shape=(self.n_features,),\n dtype=np.float32)\n', (2464, 2546), False, 'from gym import spaces, error, utils\n'), ((3434, 3457), 'gym.utils.seeding.np_random', 'seeding.np_random', (['seed'], {}), '(seed)\n', (3451, 3457), False, 'from gym.utils import seeding\n'), ((3536, 3576), 'numpy.zeros', 'np.zeros', (['(self.n_nodes, self.nx_system)'], {}), '((self.n_nodes, self.nx_system))\n', (3544, 3576), True, 'import numpy as np\n'), ((4556, 4610), 'numpy.clip', 'np.clip', (['reshaped'], {'a_min': '(-self.max_z)', 'a_max': 'self.max_z'}), '(reshaped, a_min=-self.max_z, a_max=self.max_z)\n', (4563, 4610), True, 'import numpy as np\n'), ((4690, 4730), 'numpy.zeros', 'np.zeros', (['(self.n_nodes, self.nx_system)'], {}), '((self.n_nodes, self.nx_system))\n', (4698, 4730), True, 'import numpy as np\n'), ((6098, 6163), 'numpy.zeros', 'np.zeros', (['(self.n_nodes, self.nx * self.filter_len, self.n_pools)'], {}), '((self.n_nodes, self.nx * self.filter_len, self.n_pools))\n', (6106, 6163), True, 'import numpy as np\n'), ((7520, 7546), 'numpy.fill_diagonal', 'np.fill_diagonal', (['a_net', '(0)'], {}), '(a_net, 0)\n', (7536, 7546), True, 'import numpy as np\n'), ((427, 449), 'os.path.dirname', 'path.dirname', (['__file__'], {}), '(__file__)\n', (439, 449), False, 'from os import path\n'), ((2644, 2653), 'matplotlib.pyplot.ion', 'plt.ion', ([], {}), '()\n', (2651, 2653), True, 'import matplotlib.pyplot as plt\n'), ((2672, 2684), 'matplotlib.pyplot.figure', 'plt.figure', ([], {}), '()\n', (2682, 2684), True, 'import matplotlib.pyplot as plt\n'), ((2885, 2930), 'matplotlib.pyplot.ylim', 'plt.ylim', (['(-1.0 * self.r_max)', '(1.0 * self.r_max)'], {}), '(-1.0 * self.r_max, 1.0 * self.r_max)\n', (2893, 2930), True, 'import matplotlib.pyplot as plt\n'), ((2943, 2988), 'matplotlib.pyplot.xlim', 'plt.xlim', (['(-1.0 * self.r_max)', '(1.0 * self.r_max)'], {}), '(-1.0 * self.r_max, 1.0 * self.r_max)\n', (2951, 2988), True, 'import matplotlib.pyplot as plt\n'), ((3005, 3010), 'matplotlib.pyplot.gca', 'gca', ([], {}), '()\n', (3008, 3010), False, 'from matplotlib.pyplot import gca\n'), ((3127, 3154), 'matplotlib.pyplot.title', 'plt.title', (['"""GNN Controller"""'], {}), "('GNN Controller')\n", (3136, 3154), True, 'import matplotlib.pyplot as plt\n'), ((3850, 3900), 'numpy.random.normal', 'np.random.normal', (['(0)', 'self.std_dev', '(self.n_nodes,)'], {}), '(0, self.std_dev, (self.n_nodes,))\n', (3866, 3900), True, 'import numpy as np\n'), ((3977, 4027), 'numpy.random.normal', 'np.random.normal', (['(0)', 'self.std_dev', '(self.n_nodes,)'], {}), '(0, self.std_dev, (self.n_nodes,))\n', (3993, 4027), True, 'import numpy as np\n'), ((4306, 4336), 'numpy.var', 'np.var', (['self.x[:, 2:4]'], {'axis': '(0)'}), '(self.x[:, 2:4], axis=0)\n', (4312, 4336), True, 'import numpy as np\n'), ((5188, 5252), 'numpy.random.uniform', 'np.random.uniform', ([], {'low': '(-self.v_bias)', 'high': 'self.v_bias', 'size': '(2,)'}), '(low=-self.v_bias, high=self.v_bias, size=(2,))\n', (5205, 5252), True, 'import numpy as np\n'), ((6032, 6058), 'numpy.mean', 'np.mean', (['x[:, 2:4]'], {'axis': '(0)'}), '(x[:, 2:4], axis=0)\n', (6039, 6058), True, 'import numpy as np\n'), ((8038, 8058), 'numpy.eye', 'np.eye', (['self.n_nodes'], {}), '(self.n_nodes)\n', (8044, 8058), True, 'import numpy as np\n'), ((10212, 10232), 'numpy.eye', 'np.eye', (['self.n_nodes'], {}), '(self.n_nodes)\n', (10218, 10232), True, 'import numpy as np\n'), ((4948, 5002), 'numpy.random.uniform', 'np.random.uniform', (['(0)', 'self.r_max'], {'size': '(self.n_nodes,)'}), '(0, self.r_max, size=(self.n_nodes,))\n', (4965, 5002), True, 'import numpy as np\n'), ((5032, 5077), 'numpy.random.uniform', 'np.random.uniform', (['(0)', '(2)'], {'size': '(self.n_nodes,)'}), '(0, 2, size=(self.n_nodes,))\n', (5049, 5077), True, 'import numpy as np\n'), ((5109, 5122), 'numpy.cos', 'np.cos', (['angle'], {}), '(angle)\n', (5115, 5122), True, 'import numpy as np\n'), ((5154, 5167), 'numpy.sin', 'np.sin', (['angle'], {}), '(angle)\n', (5160, 5167), True, 'import numpy as np\n'), ((5275, 5348), 'numpy.random.uniform', 'np.random.uniform', ([], {'low': '(-self.v_max)', 'high': 'self.v_max', 'size': '(self.n_nodes,)'}), '(low=-self.v_max, high=self.v_max, size=(self.n_nodes,))\n', (5292, 5348), True, 'import numpy as np\n'), ((5381, 5454), 'numpy.random.uniform', 'np.random.uniform', ([], {'low': '(-self.v_max)', 'high': 'self.v_max', 'size': '(self.n_nodes,)'}), '(low=-self.v_max, high=self.v_max, size=(self.n_nodes,))\n', (5398, 5454), True, 'import numpy as np\n'), ((5880, 5893), 'numpy.min', 'np.min', (['a_net'], {}), '(a_net)\n', (5886, 5893), True, 'import numpy as np\n'), ((7950, 7991), 'numpy.multiply', 'np.multiply', (['diff[:, :, 0]', 'diff[:, :, 0]'], {}), '(diff[:, :, 0], diff[:, :, 0])\n', (7961, 7991), True, 'import numpy as np\n'), ((7994, 8035), 'numpy.multiply', 'np.multiply', (['diff[:, :, 1]', 'diff[:, :, 1]'], {}), '(diff[:, :, 1], diff[:, :, 1])\n', (8005, 8035), True, 'import numpy as np\n'), ((8160, 8188), 'numpy.divide', 'np.divide', (['diff[:, :, 0]', 'r2'], {}), '(diff[:, :, 0], r2)\n', (8169, 8188), True, 'import numpy as np\n'), ((8278, 8306), 'numpy.divide', 'np.divide', (['diff[:, :, 1]', 'r2'], {}), '(diff[:, :, 1], r2)\n', (8287, 8306), True, 'import numpy as np\n'), ((10116, 10161), 'numpy.multiply', 'np.multiply', (['s_diff[:, :, 0]', 's_diff[:, :, 0]'], {}), '(s_diff[:, :, 0], s_diff[:, :, 0])\n', (10127, 10161), True, 'import numpy as np\n'), ((10164, 10209), 'numpy.multiply', 'np.multiply', (['s_diff[:, :, 1]', 's_diff[:, :, 1]'], {}), '(s_diff[:, :, 1], s_diff[:, :, 1])\n', (10175, 10209), True, 'import numpy as np\n'), ((10378, 10398), 'numpy.nansum', 'np.nansum', (['p'], {'axis': '(1)'}), '(p, axis=1)\n', (10387, 10398), True, 'import numpy as np\n'), ((11017, 11040), 'numpy.divide', 'np.divide', (['pos_diff', 'r2'], {}), '(pos_diff, r2)\n', (11026, 11040), True, 'import numpy as np\n'), ((5752, 5772), 'numpy.eye', 'np.eye', (['self.n_nodes'], {}), '(self.n_nodes)\n', (5758, 5772), True, 'import numpy as np\n'), ((8138, 8157), 'numpy.multiply', 'np.multiply', (['r2', 'r2'], {}), '(r2, r2)\n', (8149, 8157), True, 'import numpy as np\n'), ((8256, 8275), 'numpy.multiply', 'np.multiply', (['r2', 'r2'], {}), '(r2, r2)\n', (8267, 8275), True, 'import numpy as np\n'), ((10990, 11009), 'numpy.multiply', 'np.multiply', (['r2', 'r2'], {}), '(r2, r2)\n', (11001, 11009), True, 'import numpy as np\n')]
# -*-coding:utf-8-*- # from functools import reduce from functools import reduce SANCAI_jixiang = [1, 3, 5, 7, 8, 11, 13, 15, 16, 18, 21, 23, 24, 25, 31, 32, 33, 35, 37, 39, 41, 45, 47, 48, 52, 57, 61, 63, 65, 67, 68, 81] # 吉祥运暗示数(代表健全,幸福,名誉等) SANCAI_xiaoji = [6, 17, 26, 27, 29, 30, 38, 49, 51, 55, 58, 71, 73, 75] # 次吉祥运暗示数(代表多少有些障碍,但能获得吉运) SANCAI_xiong = [2, 4, 9, 10, 12, 14, 19, 20, 22, 28, 34, 36, 40, 42, 43, 44, 46, 50, 53, 54, 56, 59, 60, 62, 64, 66, 69, 70, 72, 74, 76, 77, 78, 79, 80] # 凶数运暗示数(代表逆境,沉浮,薄弱,病难,困难,多灾等) SANCAI_wise = [3, 13, 16, 21, 23, 29, 31, 37, 39, 41, 45, 47] # 首领运暗示数(智慧 )仁勇全备,立上位,能领导众人) SANCAI_wealth = [15, 16, 24, 29, 32, 33, 41, 52] # 财富运暗示数(多钱财,富贵,白手可获巨财) SANCAI_artist = [13, 14, 18, 26, 29, 33, 35, 38, 48] # 艺能运暗示数(富有艺术天才,对审美,艺术,演艺,体育有通达之能) SANCAI_goodwife = [5, 6, 11, 13, 15, 16, 24, 32, 35] # 女德运暗示数(具有妇德,品性温良,助夫爱子) SANCAI_death = [21, 23, 26, 28, 29, 33, 39] # 女性孤寡运暗示数(难觅夫君,家庭不和,夫妻两虎相斗,离婚,严重者夫妻一方早亡) SANCAI_alone = [4, 10, 12, 14, 22, 28, 34] # 孤独运暗示数(妻凌夫或夫克妻) SANCAI_merry = [5, 6, 15, 16, 32, 39, 41] # 双妻运暗示数 SANCAI_stubbon = [7, 17, 18, 25, 27, 28, 37, 47] # 刚情运暗示数(性刚固执,意气用事) SANCAI_gentle = [5, 6, 11, 15, 16, 24, 31, 32, 35] # 温和运暗示数(性情平和,能得上下信望) # 可以自己配置觉得好的数字 # 参考好的搭配 refer_good_num_list = [SANCAI_jixiang, SANCAI_xiaoji, SANCAI_wise, SANCAI_wealth, SANCAI_artist, SANCAI_goodwife, SANCAI_merry, SANCAI_gentle] # 自己设定的好的搭配 good_num_list = [SANCAI_jixiang, SANCAI_xiaoji, SANCAI_wise, SANCAI_wealth, SANCAI_artist, SANCAI_goodwife, SANCAI_merry, SANCAI_gentle] # 参考坏的搭配 refer_bad_num_list = [SANCAI_xiong, SANCAI_death, SANCAI_alone, SANCAI_stubbon] # 自己设定的坏的搭配 bad_num_list = [SANCAI_xiong, SANCAI_death, SANCAI_alone] good_num_set = set(reduce((lambda x, y: x + y), good_num_list, [])) bad_num_set = set(reduce((lambda x, y: x + y), bad_num_list, [])) print('五格好分值:', good_num_set) print('五格差分值:', bad_num_set) # 筛选出有好没坏的三才五格 best_num_set = [x for x in good_num_set if x not in bad_num_set] print('想要的三才五格数字:', best_num_set) RESULT_UNKNOWN = '结果未知'
[ "functools.reduce" ]
[((1814, 1859), 'functools.reduce', 'reduce', (['(lambda x, y: x + y)', 'good_num_list', '[]'], {}), '(lambda x, y: x + y, good_num_list, [])\n', (1820, 1859), False, 'from functools import reduce\n'), ((1881, 1925), 'functools.reduce', 'reduce', (['(lambda x, y: x + y)', 'bad_num_list', '[]'], {}), '(lambda x, y: x + y, bad_num_list, [])\n', (1887, 1925), False, 'from functools import reduce\n')]
""" Losses that assume an underlying spatial organization (gradients, curvature, etc.) """ import torch import torch.nn as tnn from nitorch.core.pyutils import make_list, prod from nitorch.core.utils import slice_tensor from nitorch.spatial import diff1d from ._base import Loss class LocalFeatures(tnn.Module): """Base class for feature extractors. Is it really useful? """ def __init__(self, bound='dct2', voxel_size=1, *args, **kwargs): """ Parameters ---------- bound : BoundType, default='dct2' Boundary conditions, used to compute derivatives at the edges. voxel_size : float or list[float], default=1 Voxel size """ super().__init__(*args, **kwargs) self.bound = bound self.voxel_size = voxel_size class Diff(LocalFeatures): """Finite differences.""" def __init__(self, order=1, side='c', dim=None, *args, **kwargs): """ Parameters ---------- order : int, default=1 Finite differences order side : {'c', 'f', 'b'} or list[{'c', 'f', 'b'}], default='c' Type of finite-differencesto extract about each voxel: * 'c' : central -> `g[i] = (x[i+1] - x[i-1])/2` * 'f' : forward -> `g[i] = (x[i+1] - x[i])` * 'b' : backward -> `g[i] = (x[i] - x[i-1])` dim : int or list[int], optional Dimensions along which to compute the finite differences. By default, all except the first two (batch and channel). bound : BoundType or list[BoundType], default='dct2' Boundary conditions, used to compute derivatives at the edges. voxel_size : float or list[float], default=1 Voxel size reduction : {'mean', 'sum'} or callable, default='mean' Type of reduction to apply. """ super().__init__(*args, **kwargs) self.order = order self.side = side self.dim = dim def forward(self, x, **overload): """ Parameters ---------- x : tensor Input tensor with shape (batch, channel, *spatial) overload : dict All parameters defined at build time can be overridden at call time. Returns ------- g : tensor Finite differences with shape (batch, channel, *spatial, len(dim), len(side)) If `dim` or `side` are scalars, not lists, their respective dimension is dropped in the output tensor. E.g., if `side='c'`, the output shape is (batch, channel, *spatial, len(dim)) """ order = overload.get('order', self.order) side = make_list(overload.get('side', self.side)) drop_side_dim = not isinstance(side, (tuple, list)) side = make_list(side) dim = overload.get('dim', self.dim) dim = list(range(2, x.dim())) if dim is None else dim drop_dim_dim = not isinstance(dim, (tuple, list)) dim = make_list(dim) nb_dim = len(dim) voxel_size = overload.get('voxel_size', self.voxel_size) voxel_size = make_list(voxel_size, nb_dim) bound = make_list(overload.get('bound', self.bound), nb_dim) diffs = [] for d, vx, bnd in zip(dim, voxel_size, bound): sides = [] for s in side: grad = diff1d(x, order=order, dim=d, voxel_size=vx, side=s, bound=bnd) sides.append(grad) sides = torch.stack(sides, dim=-1) diffs.append(sides) diffs = torch.stack(diffs, dim=-2) if drop_dim_dim: diffs = slice_tensor(diffs, 0, dim=-2) if drop_side_dim: diffs = slice_tensor(diffs, 0, dim=-1) return diffs class MembraneLoss(Loss): """Compute the membrane energy (squared gradients) of a tensor. The membrane energy of a field is the integral of its squared gradient magnitude (l2 norm). This class extends this concept to other norms of the gradient (l1, l{1,2}). In the l2 case, if we name "f" the unit of the field and "m" the spatial unit of a voxel, the output loss has unit `(f/m)**2`. If `factor` is used to weight each voxel by its volume (as should be done in a proper integration) the unit becomes `(f/m)**2 * m**d = f**2 * m**(d-2)`. In the l1 case, it is `f/m` in the absence of weighting and `f * m**(d-1)` with volume weighting. """ def __init__(self, voxel_size=1, factor=1, bound='dct2', l1=None, *args, **kwargs): """ Parameters ---------- voxel_size : float or list[float], default=1 Voxel size. Useful for anisotropic tensors (where the sampling rate is higher in some directions than others). factor : float or list[float], default=1 Scale the loss by a per-dimension factor. Useful when working with resized tensor to compensate for different number of voxels. bound : BoundType, default='dct2' Boundary conditions, used to compute derivatives at the edges. l1 : bool or int or list[int], default=None Dimensions along which to apply a square root reduction ('l1 norm'), after taking the square. Dimensions are those of the gradient map with shape (batch, channel, *spatial, direction, side) * False: nowhere == (squared) l2 norm * True: everywhere == l1 norm * Otherwise: l_{1,2} norm (group sparsity) """ super().__init__(*args, **kwargs) self.voxel_size = voxel_size self.factor = factor self.bound = bound self.l1 = l1 def forward(self, x, **overload): """ Parameters ---------- x : tensor Input tensor overload : dict All parameters defined at build time can be overridden at call time. Returns ------- loss : scalar or tensor The output shape depends on the type of reduction used. If 'mean' or 'sum', this function returns a scalar. """ nb_dim = x.dim() - 2 voxel_size = make_list(overload.get('voxel_size', self.voxel_size), nb_dim) factor = make_list(overload.get('factor', self.factor), nb_dim) bound = make_list(overload.get('bound', self.bound), nb_dim) l1 = overload.get('l1', self.l1) # Compute spatial gradients # # TODO: when penalty == 'l2', for some boundary conditions, there's no # need to compute both forward and backward gradients as they are # the same (but shifted). For now, to avoid having to detect which # cases can be accelerated, I always compute both (more general). loss = Diff(side=['f', 'b'], bound=bound, voxel_size=voxel_size)(x) loss = loss.square() # Apply l1 if l1 not in (None, False): if l1 is True: loss = loss.sqrt() else: l1 = make_list(l1) loss = loss.sum(dim=l1).sqrt() # TODO: use self.reduction instead of sum? # Reduce loss = super().forward(loss) # Scale factor = prod(factor) if factor != 1: loss = loss * factor return loss class BendingLoss(Loss): """Compute the bending energy (squared gradients) of a tensor. The bending energy of a field is the integral of its squared second-order derivatives magnitude (l2 norm). This class extends this concept to other norms of the gradient (l1, l{1,2}). In the l2 case, if we name "f" the unit of the field and "m" the spatial unit of a voxel, the output loss has unit `(f/m**2)**2`. If `factor` is used to weight each voxel by its volume (as should be done in a proper integration) the unit becomes `(f/m**2)**2 * m**d = f**2 * m**(d-4)`. In the l1 case, it is `f/m**2` in the absence of weighting and `f * m**(d-2)` with volume weighting. """ def __init__(self, voxel_size=1, factor=1, bound='dct2', l1=None, *args, **kwargs): """ Parameters ---------- voxel_size : float or list[float], default=1 Voxel size. Useful for anisotropic tensors (where the sampling rate is higher in some directions than others). factor : float or list[float], default=1 Scale the loss by a per-dimension factor. Useful when working with resized tensor to compensate for different number of voxels. bound : BoundType, default='dct2' Boundary conditions, used to compute derivatives at the edges. l1 : bool or int or list[int], default=None Dimensions along which to apply a square root reduction ('l1 norm'), after taking the square. Dimensions are those of the gradient map with shape (batch, channel, *spatial, direction) * False: nowhere == (squared) l2 norm * True: everywhere == l1 norm * Otherwise: l_{1,2} norm (group sparsity) """ super().__init__(*args, **kwargs) self.voxel_size = voxel_size self.factor = factor self.bound = bound self.l1 = l1 def forward(self, x, **overload): """ Parameters ---------- x : tensor Input tensor overload : dict All parameters defined at build time can be overridden at call time. Returns ------- loss : scalar or tensor The output shape depends on the type of reduction used. If 'mean' or 'sum', this function returns a scalar. """ nb_dim = x.dim() - 2 voxel_size = make_list(overload.get('voxel_size', self.voxel_size), nb_dim) factor = make_list(overload.get('factor', self.factor), nb_dim) bound = make_list(overload.get('bound', self.bound), nb_dim) l1 = overload.get('l1', self.l1) # Compute spatial gradients loss = Diff(order=2, side='c', bound=bound, voxel_size=voxel_size)(x) loss = loss.square() # Apply l1 if l1 not in (None, False): if l1 is True: loss = loss.sqrt() else: l1 = make_list(l1) loss = loss.sum(dim=l1).sqrt() # Reduce loss = super().forward(loss) # Scale factor = prod(factor) if factor != 1: loss = loss * factor return loss class LameShearLoss(Loss): """Strain-part of the (Linear)-Elastic energy (penalty on shears). = second Lame constant = shear modulus The shear energy of a deformation field is the integral of the square magnitude (l2 norm) of the symetric part diagonal terms of its Jacobian. This class extends this concept to other norms of the gradient (l1, l{1,2}). In the l2 case, E = sum_{i != j} (dv[i]/dx[j]) ** 2. """ def __init__(self, voxel_size=1, factor=1, bound='dct2', l1=None, exclude_zooms=False, *args, **kwargs): """ Parameters ---------- voxel_size : float or list[float], default=1 Voxel size. Useful for anisotropic tensors (where the sampling rate is higher in some directions than others). factor : float or list[float], default=1 Scale the loss by a per-dimension factor. Useful when working with resized tensor to compensate for different number of voxels. bound : BoundType, default='dct2' Boundary conditions, used to compute derivatives at the edges. l1 : bool or int or list[int], default=None Dimensions along which to apply a square root reduction ('l1 norm'), after taking the square. Dimensions are those of the gradient map with shape (batch, channel, *spatial, side) * False: nowhere == (squared) l2 norm * True: everywhere == l1 norm * Otherwise: l_{1,2} norm (group sparsity) Here, `channel` map to elements of the Jacobian matrix, while `side` map to the combination of sides (forward/backward) used when extracting finite differences. Therefore, the number of channels is dim*(dim+1)//2 and the number of sides is 4. exclude_zooms : bool, default=False Do not include diagonal elements of the Jacobian in the penalty (i.e., penalize only shears) """ super().__init__(*args, **kwargs) self.voxel_size = voxel_size self.factor = factor self.bound = bound self.l1 = l1 self.exclude_zooms = exclude_zooms def forward(self, x, **overload): """ Parameters ---------- x : (batch, ndim, *spatial) tensor Input displacement tensor (in channel first order) overload : dict All parameters defined at build time can be overridden at call time. Returns ------- loss : scalar or tensor The output shape depends on the type of reduction used. If 'mean' or 'sum', this function returns a scalar. """ nb_dim = x.dim() - 2 voxel_size = make_list(overload.get('voxel_size', self.voxel_size), nb_dim) factor = make_list(overload.get('factor', self.factor), nb_dim) bound = make_list(overload.get('bound', self.bound), nb_dim) l1 = overload.get('l1', self.l1) exclude_zooms = overload.get('exclude_zooms', self.exclude_zooms) # Compute spatial gradients loss_diag = [] # diagonal elements of the Jacobian loss_offdiag = [] # off-diagonal elements of hte (symmetric) Jacobian for i in range(nb_dim): # symmetric part x_i = x[:, i:i+1, ...] subloss_diag = [] subloss_offdiag = [] for j in range(nb_dim): for side_i in ('f', 'b'): diff = Diff(dim=[j+2], side=side_i, bound=bound, voxel_size=voxel_size) diff_ij = diff(x_i) if i == j: # diagonal elements if not exclude_zooms: subloss_diag.append(diff_ij) else: # off diagonal elements x_j = x[:, j:j+1, ...] for side_j in ('f', 'b'): diff = Diff(dim=[i+2], side=side_j, bound=bound, voxel_size=voxel_size) diff_ji = diff(x_j) subloss_offdiag.append((diff_ij + diff_ji)/2) if not exclude_zooms: loss_diag.append(torch.stack(subloss_diag, dim=-1)) loss_offdiag.append(torch.stack(subloss_offdiag, dim=-1)) if not exclude_zooms: loss_diag = torch.cat(loss_diag, dim=1) loss_offdiag = torch.cat(loss_offdiag, dim=1) if l1 not in (None, False): # Apply l1 reduction if l1 is True: if not exclude_zooms: loss_diag = loss_diag.abs() loss_offdiag = loss_offdiag.abs() else: l1 = make_list(l1) if not exclude_zooms: loss_diag = loss_diag.square().sum(dim=l1, keepdim=True).sqrt() loss_offdiag = loss_offdiag.square().sum(dim=l1, keepdim=True).sqrt() else: # Apply l2 reduction if not exclude_zooms: loss_diag = loss_diag.square() loss_offdiag = loss_offdiag.square() # Mean reduction across sides if not exclude_zooms: loss_diag = loss_diag.mean(dim=-1) loss_offdiag = loss_offdiag.mean(dim=-1) # Weighted reduction across elements if not exclude_zooms: if loss_diag.shape[1] == 1: # element dimension already reduced -> we need a small hack loss = (loss_diag.square() + 2*loss_offdiag.square()) / (nb_dim**2) loss = loss.sum(dim=1, keepdim=True).sqrt() else: # simple weighted average loss = (loss_diag.sum(dim=1, keepdim=True) + loss_offdiag.sum(dim=1, keepdim=True)*2) / (nb_dim**2) else: loss = loss_offdiag.sum(dim=1, keepdim=True)*2 / (nb_dim**2) # Reduce loss = super().forward(loss) # Scale factor = prod(factor) if factor != 1: loss = loss * factor return loss class LameZoomLoss(Loss): """Compression-part of the (Linear)-Elastic energy (penalty on volume change). = first Lame constant The compression energy of a deformation field is the integral of the square magnitude (l2 norm) of the trace its Jacobian. This class extends this concept to other norms of the gradient (l1, l{1,2}). In the l2 case, E = sum_{ij} (dv[i]/dx[j] + dv[j]/dx[i]) ** 2. """ def __init__(self, voxel_size=1, factor=1, bound='dct2', l1=None, *args, **kwargs): """ Parameters ---------- voxel_size : float or list[float], default=1 Voxel size. Useful for anisotropic tensors (where the sampling rate is higher in some directions than others). factor : float or list[float], default=1 Scale the loss by a per-dimension factor. Useful when working with resized tensor to compensate for different number of voxels. bound : BoundType, default='dct2' Boundary conditions, used to compute derivatives at the edges. l1 : bool or int or list[int], default=None Dimensions along which to apply a square root reduction ('l1 norm'), after taking the square. Dimensions are those of the gradient map with shape (batch, channel, *spatial, direction, side) * False: nowhere == (squared) l2 norm * True: everywhere == l1 norm * Otherwise: l_{1,2} norm (group sparsity) """ super().__init__(*args, **kwargs) self.voxel_size = voxel_size self.factor = factor self.bound = bound self.l1 = l1 def forward(self, x, **overload): """ Parameters ---------- x : tensor Input tensor overload : dict All parameters defined at build time can be overridden at call time. Returns ------- loss : scalar or tensor The output shape depends on the type of reduction used. If 'mean' or 'sum', this function returns a scalar. """ nb_dim = x.dim() - 2 voxel_size = make_list(overload.get('voxel_size', self.voxel_size), nb_dim) factor = make_list(overload.get('factor', self.factor), nb_dim) bound = make_list(overload.get('bound', self.bound), nb_dim) l1 = overload.get('l1', self.l1) # Compute spatial gradients loss = [] for i in range(nb_dim): x_i = x[:, i:i+1, ...] diff = Diff(dim=[i], side=['f', 'b'], bound=bound, voxel_size=voxel_size) loss.append(diff(x_i)) loss = torch.cat(loss, dim=1) loss = loss.square() # Apply l1 if l1 not in (None, False): if l1 is True: loss = loss.sqrt() else: l1 = make_list(l1) loss = loss.sum(dim=l1, keepdim=True).sqrt() # Mean reduction across sides loss = loss.mean(dim=-1) # Reduce loss = super().forward(loss) # Scale factor = prod(factor) if factor != 1: loss = loss * factor return loss
[ "nitorch.core.utils.slice_tensor", "torch.stack", "nitorch.core.pyutils.make_list", "nitorch.spatial.diff1d", "nitorch.core.pyutils.prod", "torch.cat" ]
[((2889, 2904), 'nitorch.core.pyutils.make_list', 'make_list', (['side'], {}), '(side)\n', (2898, 2904), False, 'from nitorch.core.pyutils import make_list, prod\n'), ((3083, 3097), 'nitorch.core.pyutils.make_list', 'make_list', (['dim'], {}), '(dim)\n', (3092, 3097), False, 'from nitorch.core.pyutils import make_list, prod\n'), ((3211, 3240), 'nitorch.core.pyutils.make_list', 'make_list', (['voxel_size', 'nb_dim'], {}), '(voxel_size, nb_dim)\n', (3220, 3240), False, 'from nitorch.core.pyutils import make_list, prod\n'), ((3682, 3708), 'torch.stack', 'torch.stack', (['diffs'], {'dim': '(-2)'}), '(diffs, dim=-2)\n', (3693, 3708), False, 'import torch\n'), ((7441, 7453), 'nitorch.core.pyutils.prod', 'prod', (['factor'], {}), '(factor)\n', (7445, 7453), False, 'from nitorch.core.pyutils import make_list, prod\n'), ((10749, 10761), 'nitorch.core.pyutils.prod', 'prod', (['factor'], {}), '(factor)\n', (10753, 10761), False, 'from nitorch.core.pyutils import make_list, prod\n'), ((15463, 15493), 'torch.cat', 'torch.cat', (['loss_offdiag'], {'dim': '(1)'}), '(loss_offdiag, dim=1)\n', (15472, 15493), False, 'import torch\n'), ((17042, 17054), 'nitorch.core.pyutils.prod', 'prod', (['factor'], {}), '(factor)\n', (17046, 17054), False, 'from nitorch.core.pyutils import make_list, prod\n'), ((19898, 19920), 'torch.cat', 'torch.cat', (['loss'], {'dim': '(1)'}), '(loss, dim=1)\n', (19907, 19920), False, 'import torch\n'), ((20343, 20355), 'nitorch.core.pyutils.prod', 'prod', (['factor'], {}), '(factor)\n', (20347, 20355), False, 'from nitorch.core.pyutils import make_list, prod\n'), ((3607, 3633), 'torch.stack', 'torch.stack', (['sides'], {'dim': '(-1)'}), '(sides, dim=-1)\n', (3618, 3633), False, 'import torch\n'), ((3755, 3785), 'nitorch.core.utils.slice_tensor', 'slice_tensor', (['diffs', '(0)'], {'dim': '(-2)'}), '(diffs, 0, dim=-2)\n', (3767, 3785), False, 'from nitorch.core.utils import slice_tensor\n'), ((3832, 3862), 'nitorch.core.utils.slice_tensor', 'slice_tensor', (['diffs', '(0)'], {'dim': '(-1)'}), '(diffs, 0, dim=-1)\n', (3844, 3862), False, 'from nitorch.core.utils import slice_tensor\n'), ((15412, 15439), 'torch.cat', 'torch.cat', (['loss_diag'], {'dim': '(1)'}), '(loss_diag, dim=1)\n', (15421, 15439), False, 'import torch\n'), ((3458, 3521), 'nitorch.spatial.diff1d', 'diff1d', (['x'], {'order': 'order', 'dim': 'd', 'voxel_size': 'vx', 'side': 's', 'bound': 'bnd'}), '(x, order=order, dim=d, voxel_size=vx, side=s, bound=bnd)\n', (3464, 3521), False, 'from nitorch.spatial import diff1d\n'), ((7247, 7260), 'nitorch.core.pyutils.make_list', 'make_list', (['l1'], {}), '(l1)\n', (7256, 7260), False, 'from nitorch.core.pyutils import make_list, prod\n'), ((10599, 10612), 'nitorch.core.pyutils.make_list', 'make_list', (['l1'], {}), '(l1)\n', (10608, 10612), False, 'from nitorch.core.pyutils import make_list, prod\n'), ((15320, 15356), 'torch.stack', 'torch.stack', (['subloss_offdiag'], {'dim': '(-1)'}), '(subloss_offdiag, dim=-1)\n', (15331, 15356), False, 'import torch\n'), ((15766, 15779), 'nitorch.core.pyutils.make_list', 'make_list', (['l1'], {}), '(l1)\n', (15775, 15779), False, 'from nitorch.core.pyutils import make_list, prod\n'), ((20107, 20120), 'nitorch.core.pyutils.make_list', 'make_list', (['l1'], {}), '(l1)\n', (20116, 20120), False, 'from nitorch.core.pyutils import make_list, prod\n'), ((15253, 15286), 'torch.stack', 'torch.stack', (['subloss_diag'], {'dim': '(-1)'}), '(subloss_diag, dim=-1)\n', (15264, 15286), False, 'import torch\n')]
#!/usr/bin/env python3 # Copyright 2020 Gaitech Korea Co., Ltd. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # Author: <NAME> import os from ament_index_python.packages import get_package_share_directory from launch import LaunchDescription from launch.actions import DeclareLaunchArgument from launch.substitutions import LaunchConfiguration from launch_ros.actions import Node def generate_launch_description(): default_config_locks = os.path.join(get_package_share_directory('twist_mux'), 'config', 'twist_mux_locks.yaml') default_config_topics = os.path.join(get_package_share_directory('twist_mux'), 'config', 'twist_mux_topics.yaml') default_config_joystick = os.path.join(get_package_share_directory('twist_mux'), 'config', 'joystick.yaml') return LaunchDescription([ DeclareLaunchArgument( 'config_locks', default_value=default_config_locks, description='Default locks config file'), DeclareLaunchArgument( 'config_topics', default_value=default_config_topics, description='Default topics config file'), DeclareLaunchArgument( 'config_joy', default_value=default_config_joystick, description='Default joystick config file'), DeclareLaunchArgument( 'cmd_vel_out', default_value='twist_mux/cmd_vel', description='cmd vel output topic'), Node( package='twist_mux', executable='twist_mux', output='screen', remappings={('/cmd_vel_out', LaunchConfiguration('cmd_vel_out'))}, parameters=[ LaunchConfiguration('config_locks'), LaunchConfiguration('config_topics'), LaunchConfiguration('config_joy')] ), Node( package='twist_mux', executable='twist_marker', output='screen', remappings={('/twist', LaunchConfiguration('cmd_vel_out'))}, parameters=[{ 'frame_id': 'base_link', 'scale': 1.0, 'vertical_position': 2.0}]) ])
[ "ament_index_python.packages.get_package_share_directory", "launch.substitutions.LaunchConfiguration", "launch.actions.DeclareLaunchArgument" ]
[((959, 999), 'ament_index_python.packages.get_package_share_directory', 'get_package_share_directory', (['"""twist_mux"""'], {}), "('twist_mux')\n", (986, 999), False, 'from ament_index_python.packages import get_package_share_directory\n'), ((1116, 1156), 'ament_index_python.packages.get_package_share_directory', 'get_package_share_directory', (['"""twist_mux"""'], {}), "('twist_mux')\n", (1143, 1156), False, 'from ament_index_python.packages import get_package_share_directory\n'), ((1277, 1317), 'ament_index_python.packages.get_package_share_directory', 'get_package_share_directory', (['"""twist_mux"""'], {}), "('twist_mux')\n", (1304, 1317), False, 'from ament_index_python.packages import get_package_share_directory\n'), ((1429, 1547), 'launch.actions.DeclareLaunchArgument', 'DeclareLaunchArgument', (['"""config_locks"""'], {'default_value': 'default_config_locks', 'description': '"""Default locks config file"""'}), "('config_locks', default_value=default_config_locks,\n description='Default locks config file')\n", (1450, 1547), False, 'from launch.actions import DeclareLaunchArgument\n'), ((1590, 1711), 'launch.actions.DeclareLaunchArgument', 'DeclareLaunchArgument', (['"""config_topics"""'], {'default_value': 'default_config_topics', 'description': '"""Default topics config file"""'}), "('config_topics', default_value=default_config_topics,\n description='Default topics config file')\n", (1611, 1711), False, 'from launch.actions import DeclareLaunchArgument\n'), ((1754, 1876), 'launch.actions.DeclareLaunchArgument', 'DeclareLaunchArgument', (['"""config_joy"""'], {'default_value': 'default_config_joystick', 'description': '"""Default joystick config file"""'}), "('config_joy', default_value=default_config_joystick,\n description='Default joystick config file')\n", (1775, 1876), False, 'from launch.actions import DeclareLaunchArgument\n'), ((1919, 2030), 'launch.actions.DeclareLaunchArgument', 'DeclareLaunchArgument', (['"""cmd_vel_out"""'], {'default_value': '"""twist_mux/cmd_vel"""', 'description': '"""cmd vel output topic"""'}), "('cmd_vel_out', default_value='twist_mux/cmd_vel',\n description='cmd vel output topic')\n", (1940, 2030), False, 'from launch.actions import DeclareLaunchArgument\n'), ((2297, 2332), 'launch.substitutions.LaunchConfiguration', 'LaunchConfiguration', (['"""config_locks"""'], {}), "('config_locks')\n", (2316, 2332), False, 'from launch.substitutions import LaunchConfiguration\n'), ((2350, 2386), 'launch.substitutions.LaunchConfiguration', 'LaunchConfiguration', (['"""config_topics"""'], {}), "('config_topics')\n", (2369, 2386), False, 'from launch.substitutions import LaunchConfiguration\n'), ((2404, 2437), 'launch.substitutions.LaunchConfiguration', 'LaunchConfiguration', (['"""config_joy"""'], {}), "('config_joy')\n", (2423, 2437), False, 'from launch.substitutions import LaunchConfiguration\n'), ((2218, 2252), 'launch.substitutions.LaunchConfiguration', 'LaunchConfiguration', (['"""cmd_vel_out"""'], {}), "('cmd_vel_out')\n", (2237, 2252), False, 'from launch.substitutions import LaunchConfiguration\n'), ((2601, 2635), 'launch.substitutions.LaunchConfiguration', 'LaunchConfiguration', (['"""cmd_vel_out"""'], {}), "('cmd_vel_out')\n", (2620, 2635), False, 'from launch.substitutions import LaunchConfiguration\n')]
import sys import unittest import requests_mock from mock import patch sys.path.append('services/LiveService') from LiveService import LiveService L = LiveService() baseURL = "https://yanexx65s8e1.live.elementalclouddev.com/api" class LiveServiceTest(unittest.TestCase): '''@patch('services.LiveService.LiveService.time', return_value=1502345833) def testSetHeaders(self, mock_time): headers = L.setHeaders("/schedules") self.assertEqual(headers, {'X-Auth-Expires': '1502345863', 'X-Auth-Key': '9c9a72cd3a8feec48539f1943afbef8d', 'Content-type': 'application/xml', 'X-Auth-User': '', 'Accept': 'application/xml'})''' @requests_mock.Mocker() def testGetStatus(self, m): m.get(baseURL + "/live_events/150/status", status_code=200) resp = L.getLiveEventStatus(150) self.assertEqual(resp.status_code, 200) @requests_mock.Mocker() def testGetEvents(self, m): m.get(baseURL + "/live_events", status_code=200) m.get(baseURL + "/live_events?filter=running", status_code=200) resp = L.getLiveEvents(None) self.assertEqual(resp.status_code, 200) resp = L.getLiveEvents("running") self.assertEqual(resp.status_code, 200) @requests_mock.Mocker() def testGetEvent(self, m): m.get(baseURL + "/live_events/164", status_code=200) resp = L.getLiveEvent(164) self.assertEqual(resp.status_code, 200) @requests_mock.Mocker() def testGetSchedules(self, m): m.get(baseURL + "/schedules", status_code=200) resp = L.getSchedules() self.assertEqual(resp.status_code, 200) @requests_mock.Mocker() def testGetLiveProfiles(self, m): m.get(baseURL + "/live_event_profiles", status_code=200) resp = L.getLiveProfiles() self.assertEqual(resp.status_code, 200) @requests_mock.Mocker() def testGetLiveProfile(self, m): m.get(baseURL + "/live_event_profiles/11", status_code=200) resp = L.getLiveProfile(11) self.assertEqual(resp.status_code, 200) @requests_mock.Mocker() def testCreateLiveEvent(self, m): with open('Tests/test_XML/live_event.xml', 'r') as infile: xml = infile.read() m.post(baseURL + "/live_events", status_code=201) resp = L.createEvent(xml) self.assertEqual(resp.status_code, 201) @requests_mock.Mocker() def testCreateSchedule(self, m): with open('Tests/test_XML/schedule.xml', 'r') as infile: xml = infile.read() m.post(baseURL + "/schedules", status_code=201) resp = L.createSchedule(xml) self.assertEqual(resp.status_code, 201) @requests_mock.Mocker() def testCreateProfile(self, m): with open('Tests/test_XML/schedule.xml', 'r') as infile: xml = infile.read() m.post(baseURL + "/schedules", status_code=201) resp = L.createSchedule(xml) self.assertEqual(resp.status_code, 201) @requests_mock.Mocker() def testUpdateEvent(self, m): with open('Tests/test_XML/live_event.xml', 'r') as infile: xml = infile.read() m.put(baseURL + "/live_events/50", status_code=200) resp = L.updateLiveEvent(50, xml) self.assertEqual(resp.status_code, 200) @requests_mock.Mocker() def testUpdatePlaylist(self, m): with open('Tests/test_XML/live_event.xml', 'r') as infile: xml = infile.read() m.post(baseURL + "/live_events/92/playlist", status_code=200) resp = L.updatePlaylist(92, xml) self.assertEqual(resp.status_code, 200) @requests_mock.Mocker() def testUpdateSchedule(self, m): with open('Tests/test_XML/schedule.xml', 'r') as infile: xml = infile.read() m.put(baseURL + "/schedules/13", status_code=200) resp = L.updateSchedule(13, xml) self.assertEqual(resp.status_code, 200) @requests_mock.Mocker() def testUpdateProfile(self, m): with open('Tests/test_XML/live_profile.xml', 'r') as infile: xml = infile.read() m.put(baseURL + "/live_event_profiles/33", status_code=200) resp = L.updateProfile(33, xml) self.assertEqual(resp.status_code, 200) @requests_mock.Mocker() def testRemoveLiveEvent(self, m): m.delete(baseURL + "/live_events/191", status_code=200) resp = L.removeEvent(191) self.assertEqual(resp.status_code, 200) @requests_mock.Mocker() def testRemoveSchedule(self, m): m.delete(baseURL + "/schedules/13", status_code=200) resp = L.removeSchedule(13) self.assertEqual(resp.status_code, 200) @requests_mock.Mocker() def testRemoveProfile(self, m): m.delete(baseURL + "/live_event_profiles/33", status_code=200) resp = L.removeProfile(33) self.assertEqual(resp.status_code, 200) @requests_mock.Mocker() def testStartEvent(self, m): m.post(baseURL + "/live_events/50/start", status_code=200) resp = L.startLiveEvent(50) self.assertEqual(resp.status_code, 200) if __name__ == '__main__': unittest.main()
[ "unittest.main", "requests_mock.Mocker", "sys.path.append", "LiveService.LiveService" ]
[((71, 110), 'sys.path.append', 'sys.path.append', (['"""services/LiveService"""'], {}), "('services/LiveService')\n", (86, 110), False, 'import sys\n'), ((154, 167), 'LiveService.LiveService', 'LiveService', ([], {}), '()\n', (165, 167), False, 'from LiveService import LiveService\n'), ((798, 820), 'requests_mock.Mocker', 'requests_mock.Mocker', ([], {}), '()\n', (818, 820), False, 'import requests_mock\n'), ((1016, 1038), 'requests_mock.Mocker', 'requests_mock.Mocker', ([], {}), '()\n', (1036, 1038), False, 'import requests_mock\n'), ((1381, 1403), 'requests_mock.Mocker', 'requests_mock.Mocker', ([], {}), '()\n', (1401, 1403), False, 'import requests_mock\n'), ((1585, 1607), 'requests_mock.Mocker', 'requests_mock.Mocker', ([], {}), '()\n', (1605, 1607), False, 'import requests_mock\n'), ((1784, 1806), 'requests_mock.Mocker', 'requests_mock.Mocker', ([], {}), '()\n', (1804, 1806), False, 'import requests_mock\n'), ((1999, 2021), 'requests_mock.Mocker', 'requests_mock.Mocker', ([], {}), '()\n', (2019, 2021), False, 'import requests_mock\n'), ((2217, 2239), 'requests_mock.Mocker', 'requests_mock.Mocker', ([], {}), '()\n', (2237, 2239), False, 'import requests_mock\n'), ((2523, 2545), 'requests_mock.Mocker', 'requests_mock.Mocker', ([], {}), '()\n', (2543, 2545), False, 'import requests_mock\n'), ((2827, 2849), 'requests_mock.Mocker', 'requests_mock.Mocker', ([], {}), '()\n', (2847, 2849), False, 'import requests_mock\n'), ((3130, 3152), 'requests_mock.Mocker', 'requests_mock.Mocker', ([], {}), '()\n', (3150, 3152), False, 'import requests_mock\n'), ((3442, 3464), 'requests_mock.Mocker', 'requests_mock.Mocker', ([], {}), '()\n', (3462, 3464), False, 'import requests_mock\n'), ((3766, 3788), 'requests_mock.Mocker', 'requests_mock.Mocker', ([], {}), '()\n', (3786, 3788), False, 'import requests_mock\n'), ((4076, 4098), 'requests_mock.Mocker', 'requests_mock.Mocker', ([], {}), '()\n', (4096, 4098), False, 'import requests_mock\n'), ((4398, 4420), 'requests_mock.Mocker', 'requests_mock.Mocker', ([], {}), '()\n', (4418, 4420), False, 'import requests_mock\n'), ((4611, 4633), 'requests_mock.Mocker', 'requests_mock.Mocker', ([], {}), '()\n', (4631, 4633), False, 'import requests_mock\n'), ((4822, 4844), 'requests_mock.Mocker', 'requests_mock.Mocker', ([], {}), '()\n', (4842, 4844), False, 'import requests_mock\n'), ((5041, 5063), 'requests_mock.Mocker', 'requests_mock.Mocker', ([], {}), '()\n', (5061, 5063), False, 'import requests_mock\n'), ((5282, 5297), 'unittest.main', 'unittest.main', ([], {}), '()\n', (5295, 5297), False, 'import unittest\n')]
import pandas as pd import numpy as np import os import logging # suppress warnings import warnings; warnings.filterwarnings('ignore'); from tqdm.autonotebook import tqdm # register `pandas.progress_apply` and `pandas.Series.map_apply` with `tqdm` tqdm.pandas() # https://pandas.pydata.org/pandas-docs/stable/user_guide/options.html#available-options # adjust pandas display pd.options.display.max_columns = 30 # default 20 pd.options.display.max_rows = 200 # default 60 pd.options.display.float_format = '{:.2f}'.format # pd.options.display.precision = 2 pd.options.display.max_colwidth = 200 # default 50; None = all # Number of array items in summary at beginning and end of each dimension # np.set_printoptions(edgeitems=3) # default 3 np.set_printoptions(suppress=True) # no scientific notation for small numbers # IPython (Jupyter) setting: # Print out every value instead of just "last_expr" (default) from IPython.core.interactiveshell import InteractiveShell InteractiveShell.ast_node_interactivity = "all" import matplotlib as mpl from matplotlib import pyplot as plt # defaults: mpl.rcParamsDefault rc_params = {'figure.figsize': (8, 4), 'axes.labelsize': 'large', 'axes.titlesize': 'large', 'xtick.labelsize': 'large', 'ytick.labelsize': 'large', 'savefig.dpi': 100, 'figure.dpi': 100 } # adjust matplotlib defaults mpl.rcParams.update(rc_params) import seaborn as sns sns.set_style("darkgrid") # sns.set()
[ "tqdm.autonotebook.tqdm.pandas", "matplotlib.rcParams.update", "seaborn.set_style", "warnings.filterwarnings", "numpy.set_printoptions" ]
[((103, 136), 'warnings.filterwarnings', 'warnings.filterwarnings', (['"""ignore"""'], {}), "('ignore')\n", (126, 136), False, 'import warnings\n'), ((252, 265), 'tqdm.autonotebook.tqdm.pandas', 'tqdm.pandas', ([], {}), '()\n', (263, 265), False, 'from tqdm.autonotebook import tqdm\n'), ((746, 780), 'numpy.set_printoptions', 'np.set_printoptions', ([], {'suppress': '(True)'}), '(suppress=True)\n', (765, 780), True, 'import numpy as np\n'), ((1429, 1459), 'matplotlib.rcParams.update', 'mpl.rcParams.update', (['rc_params'], {}), '(rc_params)\n', (1448, 1459), True, 'import matplotlib as mpl\n'), ((1483, 1508), 'seaborn.set_style', 'sns.set_style', (['"""darkgrid"""'], {}), "('darkgrid')\n", (1496, 1508), True, 'import seaborn as sns\n')]
import sys import soundcard import numpy import pytest ones = numpy.ones(1024) signal = numpy.concatenate([[ones], [-ones]]).T def test_speakers(): for speaker in soundcard.all_speakers(): assert isinstance(speaker.name, str) assert hasattr(speaker, 'id') assert isinstance(speaker.channels, int) assert speaker.channels > 0 def test_microphones(): for microphone in soundcard.all_microphones(): assert isinstance(microphone.name, str) assert hasattr(microphone, 'id') assert isinstance(microphone.channels, int) assert microphone.channels > 0 def test_default_playback(): soundcard.default_speaker().play(signal, 44100, channels=2) def test_default_record(): recording = soundcard.default_microphone().record(1024, 44100) assert len(recording == 1024) def test_default_blockless_record(): recording = soundcard.default_microphone().record(None, 44100) @pytest.fixture def loopback_speaker(): import sys if sys.platform == 'win32': # must install https://www.vb-audio.com/Cable/index.htm return soundcard.get_speaker('Cable') elif sys.platform == 'darwin': # must install soundflower return soundcard.get_speaker('Soundflower64') elif sys.platform == 'linux': # pacmd load-module module-null-sink channels=6 rate=48000 return soundcard.get_speaker('Null') else: raise RuntimeError('Unknown platform {}'.format(sys.platform)) @pytest.fixture def loopback_player(loopback_speaker): with loopback_speaker.player(48000, channels=2, blocksize=512) as player: yield player @pytest.fixture def loopback_microphone(): if sys.platform == 'win32': # must install https://www.vb-audio.com/Cable/index.htm return soundcard.get_microphone('Cable') elif sys.platform == 'darwin': # must install soundflower return soundcard.get_microphone('Soundflower64') elif sys.platform == 'linux': return soundcard.get_microphone('Null', include_loopback=True) else: raise RuntimeError('Unknown platform {}'.format(sys.platform)) @pytest.fixture def loopback_recorder(loopback_microphone): with loopback_microphone.recorder(48000, channels=2, blocksize=512) as recorder: yield recorder def test_loopback_playback(loopback_player, loopback_recorder): loopback_player.play(signal) recording = loopback_recorder.record(1024*10) assert recording.shape[1] == 2 left, right = recording.T assert left.mean() > 0 assert right.mean() < 0 assert (left > 0.5).sum() == len(signal) assert (right < -0.5).sum() == len(signal) def test_loopback_reverse_recorder_channelmap(loopback_player, loopback_microphone): with loopback_microphone.recorder(48000, channels=[1, 0], blocksize=512) as loopback_recorder: loopback_player.play(signal) recording = loopback_recorder.record(1024*12) assert recording.shape[1] == 2 left, right = recording.T assert right.mean() > 0 assert left.mean() < 0 assert (right > 0.5).sum() == len(signal) assert (left < -0.5).sum() == len(signal) def test_loopback_reverse_player_channelmap(loopback_speaker, loopback_recorder): with loopback_speaker.player(48000, channels=[1, 0], blocksize=512) as loopback_player: loopback_player.play(signal) recording = loopback_recorder.record(1024*12) assert recording.shape[1] == 2 left, right = recording.T assert right.mean() > 0 assert left.mean() < 0 assert (right > 0.5).sum() == len(signal) assert (left < -0.5).sum() == len(signal) def test_loopback_mono_player_channelmap(loopback_speaker, loopback_recorder): with loopback_speaker.player(48000, channels=[0], blocksize=512) as loopback_player: loopback_player.play(signal[:,0]) recording = loopback_recorder.record(1024*12) assert recording.shape[1] == 2 left, right = recording.T assert left.mean() > 0 if sys.platform == 'linux': # unmapped channels on linux are filled with the mean of other channels assert right.mean() < left.mean() else: assert abs(right.mean()) < 0.01 # something like zero assert (left > 0.5).sum() == len(signal) def test_loopback_mono_recorder_channelmap(loopback_player, loopback_microphone): with loopback_microphone.recorder(48000, channels=[0], blocksize=512) as loopback_recorder: loopback_player.play(signal) recording = loopback_recorder.record(1024*12) assert len(recording.shape) == 1 or recording.shape[1] == 1 assert recording.mean() > 0 assert (recording > 0.5).sum() == len(signal) def test_loopback_multichannel_channelmap(loopback_speaker, loopback_microphone): with loopback_speaker.player(48000, channels=[2, 0], blocksize=512) as loopback_player: with loopback_microphone.recorder(48000, channels=[2, 0], blocksize=512) as loopback_recorder: loopback_player.play(signal) recording = loopback_recorder.record(1024*12) assert len(recording.shape) == 2 left, right = recording.T assert left.mean() > 0 assert right.mean() < 0 assert (left > 0.5).sum() == len(signal) assert (right < -0.5).sum() == len(signal)
[ "soundcard.get_microphone", "soundcard.all_speakers", "soundcard.all_microphones", "numpy.ones", "soundcard.default_microphone", "soundcard.default_speaker", "soundcard.get_speaker", "numpy.concatenate" ]
[((63, 79), 'numpy.ones', 'numpy.ones', (['(1024)'], {}), '(1024)\n', (73, 79), False, 'import numpy\n'), ((89, 125), 'numpy.concatenate', 'numpy.concatenate', (['[[ones], [-ones]]'], {}), '([[ones], [-ones]])\n', (106, 125), False, 'import numpy\n'), ((169, 193), 'soundcard.all_speakers', 'soundcard.all_speakers', ([], {}), '()\n', (191, 193), False, 'import soundcard\n'), ((410, 437), 'soundcard.all_microphones', 'soundcard.all_microphones', ([], {}), '()\n', (435, 437), False, 'import soundcard\n'), ((1114, 1144), 'soundcard.get_speaker', 'soundcard.get_speaker', (['"""Cable"""'], {}), "('Cable')\n", (1135, 1144), False, 'import soundcard\n'), ((1806, 1839), 'soundcard.get_microphone', 'soundcard.get_microphone', (['"""Cable"""'], {}), "('Cable')\n", (1830, 1839), False, 'import soundcard\n'), ((653, 680), 'soundcard.default_speaker', 'soundcard.default_speaker', ([], {}), '()\n', (678, 680), False, 'import soundcard\n'), ((757, 787), 'soundcard.default_microphone', 'soundcard.default_microphone', ([], {}), '()\n', (785, 787), False, 'import soundcard\n'), ((896, 926), 'soundcard.default_microphone', 'soundcard.default_microphone', ([], {}), '()\n', (924, 926), False, 'import soundcard\n'), ((1230, 1268), 'soundcard.get_speaker', 'soundcard.get_speaker', (['"""Soundflower64"""'], {}), "('Soundflower64')\n", (1251, 1268), False, 'import soundcard\n'), ((1925, 1966), 'soundcard.get_microphone', 'soundcard.get_microphone', (['"""Soundflower64"""'], {}), "('Soundflower64')\n", (1949, 1966), False, 'import soundcard\n'), ((1385, 1414), 'soundcard.get_speaker', 'soundcard.get_speaker', (['"""Null"""'], {}), "('Null')\n", (1406, 1414), False, 'import soundcard\n'), ((2016, 2071), 'soundcard.get_microphone', 'soundcard.get_microphone', (['"""Null"""'], {'include_loopback': '(True)'}), "('Null', include_loopback=True)\n", (2040, 2071), False, 'import soundcard\n')]
import numpy as np import h5py import os from devito.logger import info from devito import TimeFunction, clear_cache from examples.seismic.acoustic import AcousticWaveSolver from examples.seismic import Model, RickerSource, Receiver, TimeAxis from math import floor from scipy.interpolate import griddata import argparse parser = argparse.ArgumentParser(description='') parser.add_argument('--data_path', dest='data_path', type=str, default='/home/ec2-user/data', help='raw data path') parser.add_argument('--save_dir', dest='save_dir', type=str, default='/home/ec2-user/data', help='saving directory') args = parser.parse_args() data_path = args.data_path save_dir = args.save_dir origin = (0., 0.) spacing=(7.5, 7.5) tn=1100. nbpml=40 # Define your vp in km/sec (x, z) vp = np.fromfile(os.path.join(data_path, 'vp_marmousi_bi'), dtype='float32', sep="") vp = np.reshape(vp, (1601, 401)) # vp = vp[400:1401, 0:401] shape=[401, 301] values = np.zeros([vp.shape[0]*vp.shape[1], ]) points = np.zeros([vp.shape[0]*vp.shape[1], 2]) k = 0 for indx in range(0, vp.shape[0]): for indy in range(0, vp.shape[1]): values[k] = vp[indx, indy] points[k, 0] = indx points[k, 1] = indy k = k + 1 # nx, ny = shape[0], shape[1] X, Y = np.meshgrid(np.array(np.linspace(1000, 1287, shape[0])), np.array(np.linspace(120, 232, shape[1]))) int_vp = griddata(points, values, (X, Y), method='cubic') int_vp = np.transpose(int_vp) vp = int_vp # create model model = Model(origin, spacing, shape, 2, vp, nbpml=nbpml) # Derive timestepping from model spacing dt = model.critical_dt t0 = 0.0 nt = int(1 + (tn-t0) / dt) # Number of timesteps time = np.linspace(t0, tn, nt) # Discretized time axis datasize0 = int(np.shape(range(0, shape[0], 4))[0]) datasize1 = int(np.shape(range(100, nt, 20))[0]) datasize = datasize0*datasize1 strTrainA = os.path.join(save_dir, 'Wavefield_Marmousi_pml_401x301_1000-1287_120-232_4k_20kp100_A_train.hdf5') strTrainB = os.path.join(save_dir, 'Wavefield_Marmousi_pml_401x301_1000-1287_120-232_4k_20kp100_B_train.hdf5') dataset_train = "train_dataset" file_trainA = h5py.File(strTrainA, 'w-') datasetA = file_trainA.create_dataset(dataset_train, (datasize, shape[0]+2*nbpml, shape[1]+2*nbpml)) file_trainB = h5py.File(strTrainB, 'w-') datasetB = file_trainB.create_dataset(dataset_train, (datasize, shape[0]+2*nbpml, shape[1]+2*nbpml)) num_rec = 601 rec_samp = np.linspace(0., model.domain_size[0], num=num_rec); rec_samp = rec_samp[1]-rec_samp[0] time_range = TimeAxis(start=t0, stop=tn, step=dt) src = RickerSource(name='src', grid=model.grid, f0=0.025, time_range=time_range, space_order=1, npoint=1) src.coordinates.data[0, :] = np.array([1*spacing[0], 2*spacing[1]]).astype(np.float32) rec = Receiver(name='rec', grid=model.grid, time_range=time_range, npoint=num_rec) rec.coordinates.data[:, 0] = np.linspace(0., model.domain_size[0], num=num_rec) rec.coordinates.data[:, 1:] = src.coordinates.data[0, 1:] solverbad = AcousticWaveSolver(model, source=src, receiver=rec, kernel='OT2', isic=True, space_order=2, freesurface=False) solvergood = AcousticWaveSolver(model, source=src, receiver=rec, kernel='OT2', isic=True, space_order=20, freesurface=False) ulocgood = TimeFunction(name="u", grid=model.grid, time_order=2, space_order=20, save=nt) ulocbad = TimeFunction(name="u", grid=model.grid, time_order=2, space_order=2, save=nt) kk = 0 for xsrc in range(0, shape[0], 4): clear_cache() ulocgood.data.fill(0.) ulocbad.data.fill(0.) src.coordinates.data[0, :] = np.array([xsrc*spacing[0], 2*spacing[1]]).astype(np.float32) rec.coordinates.data[:, 0] = np.linspace(0., model.domain_size[0], num=num_rec) rec.coordinates.data[:, 1:] = src.coordinates.data[0, 1:] _, ulocgood, _ = solvergood.forward(m=model.m, src=src, time=nt-1, save=True) _, ulocbad, _ = solverbad.forward(m=model.m, src=src, time=nt-1, save=True) datasetA[kk:(kk+datasize1), :, :] = np.array(ulocgood.data[range(100, nt, 20), :, :]) datasetB[kk:(kk+datasize1), :, :] = np.array(ulocbad.data[range(100, nt, 20), :, :]) kk = kk + datasize1 file_trainA.close() file_trainB.close()
[ "examples.seismic.TimeAxis", "numpy.reshape", "argparse.ArgumentParser", "scipy.interpolate.griddata", "devito.TimeFunction", "os.path.join", "h5py.File", "examples.seismic.RickerSource", "numpy.zeros", "examples.seismic.Model", "numpy.linspace", "examples.seismic.Receiver", "devito.clear_cache", "numpy.array", "examples.seismic.acoustic.AcousticWaveSolver", "numpy.transpose" ]
[((331, 370), 'argparse.ArgumentParser', 'argparse.ArgumentParser', ([], {'description': '""""""'}), "(description='')\n", (354, 370), False, 'import argparse\n'), ((877, 904), 'numpy.reshape', 'np.reshape', (['vp', '(1601, 401)'], {}), '(vp, (1601, 401))\n', (887, 904), True, 'import numpy as np\n'), ((959, 996), 'numpy.zeros', 'np.zeros', (['[vp.shape[0] * vp.shape[1]]'], {}), '([vp.shape[0] * vp.shape[1]])\n', (967, 996), True, 'import numpy as np\n'), ((1006, 1046), 'numpy.zeros', 'np.zeros', (['[vp.shape[0] * vp.shape[1], 2]'], {}), '([vp.shape[0] * vp.shape[1], 2])\n', (1014, 1046), True, 'import numpy as np\n'), ((1385, 1433), 'scipy.interpolate.griddata', 'griddata', (['points', 'values', '(X, Y)'], {'method': '"""cubic"""'}), "(points, values, (X, Y), method='cubic')\n", (1393, 1433), False, 'from scipy.interpolate import griddata\n'), ((1443, 1463), 'numpy.transpose', 'np.transpose', (['int_vp'], {}), '(int_vp)\n', (1455, 1463), True, 'import numpy as np\n'), ((1500, 1549), 'examples.seismic.Model', 'Model', (['origin', 'spacing', 'shape', '(2)', 'vp'], {'nbpml': 'nbpml'}), '(origin, spacing, shape, 2, vp, nbpml=nbpml)\n', (1505, 1549), False, 'from examples.seismic import Model, RickerSource, Receiver, TimeAxis\n'), ((1680, 1703), 'numpy.linspace', 'np.linspace', (['t0', 'tn', 'nt'], {}), '(t0, tn, nt)\n', (1691, 1703), True, 'import numpy as np\n'), ((1877, 1979), 'os.path.join', 'os.path.join', (['save_dir', '"""Wavefield_Marmousi_pml_401x301_1000-1287_120-232_4k_20kp100_A_train.hdf5"""'], {}), "(save_dir,\n 'Wavefield_Marmousi_pml_401x301_1000-1287_120-232_4k_20kp100_A_train.hdf5')\n", (1889, 1979), False, 'import os\n'), ((1988, 2090), 'os.path.join', 'os.path.join', (['save_dir', '"""Wavefield_Marmousi_pml_401x301_1000-1287_120-232_4k_20kp100_B_train.hdf5"""'], {}), "(save_dir,\n 'Wavefield_Marmousi_pml_401x301_1000-1287_120-232_4k_20kp100_B_train.hdf5')\n", (2000, 2090), False, 'import os\n'), ((2134, 2160), 'h5py.File', 'h5py.File', (['strTrainA', '"""w-"""'], {}), "(strTrainA, 'w-')\n", (2143, 2160), False, 'import h5py\n'), ((2277, 2303), 'h5py.File', 'h5py.File', (['strTrainB', '"""w-"""'], {}), "(strTrainB, 'w-')\n", (2286, 2303), False, 'import h5py\n'), ((2431, 2482), 'numpy.linspace', 'np.linspace', (['(0.0)', 'model.domain_size[0]'], {'num': 'num_rec'}), '(0.0, model.domain_size[0], num=num_rec)\n', (2442, 2482), True, 'import numpy as np\n'), ((2533, 2569), 'examples.seismic.TimeAxis', 'TimeAxis', ([], {'start': 't0', 'stop': 'tn', 'step': 'dt'}), '(start=t0, stop=tn, step=dt)\n', (2541, 2569), False, 'from examples.seismic import Model, RickerSource, Receiver, TimeAxis\n'), ((2576, 2679), 'examples.seismic.RickerSource', 'RickerSource', ([], {'name': '"""src"""', 'grid': 'model.grid', 'f0': '(0.025)', 'time_range': 'time_range', 'space_order': '(1)', 'npoint': '(1)'}), "(name='src', grid=model.grid, f0=0.025, time_range=time_range,\n space_order=1, npoint=1)\n", (2588, 2679), False, 'from examples.seismic import Model, RickerSource, Receiver, TimeAxis\n'), ((2770, 2846), 'examples.seismic.Receiver', 'Receiver', ([], {'name': '"""rec"""', 'grid': 'model.grid', 'time_range': 'time_range', 'npoint': 'num_rec'}), "(name='rec', grid=model.grid, time_range=time_range, npoint=num_rec)\n", (2778, 2846), False, 'from examples.seismic import Model, RickerSource, Receiver, TimeAxis\n'), ((2876, 2927), 'numpy.linspace', 'np.linspace', (['(0.0)', 'model.domain_size[0]'], {'num': 'num_rec'}), '(0.0, model.domain_size[0], num=num_rec)\n', (2887, 2927), True, 'import numpy as np\n'), ((2998, 3112), 'examples.seismic.acoustic.AcousticWaveSolver', 'AcousticWaveSolver', (['model'], {'source': 'src', 'receiver': 'rec', 'kernel': '"""OT2"""', 'isic': '(True)', 'space_order': '(2)', 'freesurface': '(False)'}), "(model, source=src, receiver=rec, kernel='OT2', isic=True,\n space_order=2, freesurface=False)\n", (3016, 3112), False, 'from examples.seismic.acoustic import AcousticWaveSolver\n'), ((3130, 3245), 'examples.seismic.acoustic.AcousticWaveSolver', 'AcousticWaveSolver', (['model'], {'source': 'src', 'receiver': 'rec', 'kernel': '"""OT2"""', 'isic': '(True)', 'space_order': '(20)', 'freesurface': '(False)'}), "(model, source=src, receiver=rec, kernel='OT2', isic=True,\n space_order=20, freesurface=False)\n", (3148, 3245), False, 'from examples.seismic.acoustic import AcousticWaveSolver\n'), ((3262, 3340), 'devito.TimeFunction', 'TimeFunction', ([], {'name': '"""u"""', 'grid': 'model.grid', 'time_order': '(2)', 'space_order': '(20)', 'save': 'nt'}), "(name='u', grid=model.grid, time_order=2, space_order=20, save=nt)\n", (3274, 3340), False, 'from devito import TimeFunction, clear_cache\n'), ((3351, 3428), 'devito.TimeFunction', 'TimeFunction', ([], {'name': '"""u"""', 'grid': 'model.grid', 'time_order': '(2)', 'space_order': '(2)', 'save': 'nt'}), "(name='u', grid=model.grid, time_order=2, space_order=2, save=nt)\n", (3363, 3428), False, 'from devito import TimeFunction, clear_cache\n'), ((792, 833), 'os.path.join', 'os.path.join', (['data_path', '"""vp_marmousi_bi"""'], {}), "(data_path, 'vp_marmousi_bi')\n", (804, 833), False, 'import os\n'), ((3478, 3491), 'devito.clear_cache', 'clear_cache', ([], {}), '()\n', (3489, 3491), False, 'from devito import TimeFunction, clear_cache\n'), ((3674, 3725), 'numpy.linspace', 'np.linspace', (['(0.0)', 'model.domain_size[0]'], {'num': 'num_rec'}), '(0.0, model.domain_size[0], num=num_rec)\n', (3685, 3725), True, 'import numpy as np\n'), ((1296, 1329), 'numpy.linspace', 'np.linspace', (['(1000)', '(1287)', 'shape[0]'], {}), '(1000, 1287, shape[0])\n', (1307, 1329), True, 'import numpy as np\n'), ((1341, 1372), 'numpy.linspace', 'np.linspace', (['(120)', '(232)', 'shape[1]'], {}), '(120, 232, shape[1])\n', (1352, 1372), True, 'import numpy as np\n'), ((2705, 2747), 'numpy.array', 'np.array', (['[1 * spacing[0], 2 * spacing[1]]'], {}), '([1 * spacing[0], 2 * spacing[1]])\n', (2713, 2747), True, 'import numpy as np\n'), ((3580, 3625), 'numpy.array', 'np.array', (['[xsrc * spacing[0], 2 * spacing[1]]'], {}), '([xsrc * spacing[0], 2 * spacing[1]])\n', (3588, 3625), True, 'import numpy as np\n')]
from setuptools import setup setup(name="pykinematicskineticstoolbox", version="0.0", description="Installable python package which collects useful kinematics and kinetics functions", author="<NAME>", author_email="<EMAIL>", license="MIT", packages=["pykinematicskineticstoolbox"], install_requires=["numpy"], )
[ "setuptools.setup" ]
[((30, 325), 'setuptools.setup', 'setup', ([], {'name': '"""pykinematicskineticstoolbox"""', 'version': '"""0.0"""', 'description': '"""Installable python package which collects useful kinematics and kinetics functions"""', 'author': '"""<NAME>"""', 'author_email': '"""<EMAIL>"""', 'license': '"""MIT"""', 'packages': "['pykinematicskineticstoolbox']", 'install_requires': "['numpy']"}), "(name='pykinematicskineticstoolbox', version='0.0', description=\n 'Installable python package which collects useful kinematics and kinetics functions'\n , author='<NAME>', author_email='<EMAIL>', license='MIT', packages=[\n 'pykinematicskineticstoolbox'], install_requires=['numpy'])\n", (35, 325), False, 'from setuptools import setup\n')]
from datetime import datetime # ensure an rpc peer is added def addpeer(p, rpcpeer): pid = rpcpeer['id'] if pid not in p.persist['peerstate']: p.persist['peerstate'][pid] = { 'connected': rpcpeer['connected'], 'last_seen': datetime.now() if rpcpeer['connected'] else None, 'avail': 1.0 if rpcpeer['connected'] else 0.0 } # exponetially smooth online/offline states of peers def trace_availability(p, rpcpeers): p.persist['availcount'] += 1 leadwin = max(min(p.avail_window, p.persist['availcount'] * p.avail_interval), p.avail_interval) samples = leadwin / p.avail_interval alpha = 1.0 / samples beta = 1.0 - alpha for rpcpeer in rpcpeers['peers']: pid = rpcpeer['id'] addpeer(p, rpcpeer) if rpcpeer['connected']: p.persist['peerstate'][pid]['last_seen'] = datetime.now() p.persist['peerstate'][pid]['connected'] = True p.persist['peerstate'][pid]['avail'] = 1.0 * alpha + p.persist['peerstate'][pid]['avail'] * beta else: p.persist['peerstate'][pid]['connected'] = False p.persist['peerstate'][pid]['avail'] = 0.0 * alpha + p.persist['peerstate'][pid]['avail'] * beta
[ "datetime.datetime.now" ]
[((883, 897), 'datetime.datetime.now', 'datetime.now', ([], {}), '()\n', (895, 897), False, 'from datetime import datetime\n'), ((265, 279), 'datetime.datetime.now', 'datetime.now', ([], {}), '()\n', (277, 279), False, 'from datetime import datetime\n')]
""" Functions for reading Magritek Spinsolve binary (dx/1d) files and parameter (acqu.par/proc.par) files. """ import os from warnings import warn import numpy as np from . import fileiobase from . import jcampdx __developer_info__ = """ Spinsolve is the software used on the Magritek benchtop NMR devices. A spectrum is saved in a folder with several files. The spectral data is stored in these files: 'data.1d' (FID), 'spectrum.1d' (Fourier transformed) and 'spectrum_processed.1d' (FT + processed by spinsolve) Optional spectral data (System->Prefs->Setup->Global data storage): 'nmr_fid.dx' (FID stored in `JCAMP-DX standard <http://www.jcamp-dx.org/>`), 'spectrum.csv' and 'spectrum_processed.csv' (FT + processed by Spinsovle with ppm for each point and intensity delimited by ';') Other files: 'acqu.par' - all parameters that are used for acquisition 'Protocol.par' - text file used to reload data back into the Spinsolve software 'processing.script' - text file to transfer Spinsolve software protocol settings into MNOVA The Spinsolve Expert software has a slightly different output: [Needs to be double checked as I do not have access to this software -LCageman] - Output into JCAMP-DX is not possible - 'spectrum_processed.1d' is not generated - (new) 'fid.1d' - seems to be the same as 'data.1d' - (new) 'proc.par' - contains processing parameters in the same style as 'acqu.par' - (new) .pt1 files - seem to be plot files specific for the expert software, cannot be read by NMRglue """ def read(dir='.', specfile=None, acqupar="acqu.par", procpar="proc.par"): """ Reads spinsolve files from a directory When no spectrum filename is given (specfile), the following list is tried, in that specific order ["nmr_fid.dx", "data.1d", "fid.1d", "spectrum.1d", "spectrum_processed.1d"] To use the resolution enhanced spectrum use the './Enhanced' folder as input. Note that spectrum.1d and spectrum_processed.1d contain only data in the frequency domain, so no Fourier transformation is needed. Also, use dic["spectrum"]["xaxis"] to plot the x-axis Parameters ---------- dir : str Directory to read from specfile : str, optional Filename to import spectral data from. None uses standard filename from: ["nmr_fid.dx", "data.1d", "fid.1d", "spectrum.1d", "spectrum_processed.1d"] acqupar : str, optional Filename for acquisition parameters. None uses standard name. procpar : str, optional Filename for processing parameters. None uses standard name. Returns ------- dic : dict All parameters that can be present in the data folder: dic["spectrum"] - First bytes of spectrum(_processed).1d dic["acqu"] - Parameters present in acqu.par dic["proc"] - Parameters present in proc.par dic["dx"] - - Parameters present in the header of nmr_fid.dx data : ndarray Array of NMR data """ if os.path.isdir(dir) is not True: raise IOError("directory %s does not exist" % (dir)) # Create empty dic dic = {"spectrum": {}, "acqu": {}, "proc":{}, "dx":{}} # Read in acqu.par and write to dic acqupar = os.path.join(dir, acqupar) if os.path.isfile(acqupar): with open(acqupar, "r") as f: info = f.readlines() for line in info: line = line.replace("\n", "") k, v = line.split("=") dic["acqu"][k.strip()] = v.strip() # Read in proc.par and write to dic procpar = os.path.join(dir,procpar) if os.path.isfile(procpar): with open(procpar, "r") as f: info = f.readlines() for line in info: line = line.replace("\n", "") k, v = line.split("=") dic["proc"][k.strip()] = v.strip() # Define which spectrumfile to take, using 'specfile' when defined, otherwise # the files in 'priority_list' are tried, in that particular order priority_list = ["nmr_fid.dx", "data.1d", "fid.1d", "spectrum.1d", "spectrum_processed.1d", None] if specfile: inputfile = os.path.join(dir, specfile) if not os.path.isfile(inputfile): raise IOError("File %s does not exist" % (inputfile)) else: for priority in priority_list: if priority == None: raise IOError("directory %s does not contain spectral data" % (dir)) inputfile = os.path.join(dir, priority) if os.path.isfile(inputfile): break # Detect which file we are dealing with from the extension and read in the spectral data # Reading .dx file using existing nmrglue.fileio.jcampdx module if inputfile.split('.')[-1] == "dx": dic["dx"], raw_data = jcampdx.read(inputfile) data = np.empty((int(dic["dx"]["$TD"][0]), ), dtype='complex128') data = raw_data[0][:] + 1j * raw_data[1][:] # Reading .1d files elif inputfile.split('.')[-1] == "1d": with open(inputfile, "rb") as f: raw_data = f.read() # Write out parameters from the first 32 bytes into dic["spectrum"] keys = ["owner", "format", "version", "dataType", "xDim", "yDim", "zDim", "qDim"] for i, k in enumerate(keys): start = i * 4 end = start + 4 value = int.from_bytes( raw_data[start:end], "little") dic["spectrum"][k] = value data = np.frombuffer(raw_data[end:], "<f") # The first 1/3 of the file is xaxis data (s or ppm) split = data.shape[-1] // 3 xscale = data[0 : split] dic["spectrum"]["xaxis"] = xscale # The rest is real and imaginary data points interleaved data = data[split : : 2] + 1j * data[split + 1 : : 2] else: raise IOError("File %s cannot be interpreted, use .dx or .1d instead" % (inputfile)) return dic,data def guess_udic(dic,data): """ Guess parameters of universal dictionary from dic, data pair. Parameters ---------- dic : dict Dictionary of JCAMP-DX, acqu, proc and spectrum parameters. data : ndarray Array of NMR data. Returns ------- udic : dict Universal dictionary of spectral parameters. """ # Create an empty universal dictionary udic = fileiobase.create_blank_udic(1) # Update defalt parameters, first acqu.par parameters in dic are tried, then JCAMP-DX header parameters # size if data is not None: udic[0]["size"] = len(data) else: warn('No data, cannot set udic size') # sw try: udic[0]['sw'] = float(dic['acqu']['bandwidth']) * 1000 except KeyError: try: udic[0]['sw'] = float(dic['dx']['$SW'][0]) * float(dic['dx']['$BF1'][0]) except KeyError: try: if dic["spectrum"]["freqdata"]: udic[0]['sw'] = dic["spectrum"]["xaxis"][-1] - dic["spectrum"]["xaxis"][0] elif data is not None: udic[0]['sw'] = len(data) / dic["spectrum"]["xaxis"][-1] else: warn("Cannot set spectral width - set manually using: 'udic[0]['sw'] = x' where x is the spectral width in Hz") except KeyError: warn("Cannot set spectral width - set manually using: 'udic[0]['sw'] = x' where x is the spectral width in Hz") # obs try: udic[0]['obs'] = float(dic['acqu']['b1Freq']) except KeyError: try: udic[0]['obs'] = float(dic['dx']['$BF1'][0]) except KeyError: warn("Cannot set observe frequency - set manually using: 'udic[0]['obs'] = x' where x is magnetic field in MHz") # car try: udic[0]['car'] = float(dic['acqu']['lowestFrequency']) + (float(dic['acqu']['bandwidth']) * 1000 / 2) except KeyError: try: udic[0]['car'] = (float(dic['dx']['$REFERENCEPOINT'][0]) * -1 ) + (float(dic['dx']['$SW'][0]) * udic[0]['obs'] / 2) except KeyError: try: udic[0]['car'] = (float(dic['dx']['$BF1'][0]) - float(dic['dx']['$SF'][0])) * 1000000 except KeyError: warn("Cannot set carrier - try: 'udic[0]['car'] = x * udic[0]['obs']' where x is the center of the spectrum in ppm") # label try: udic[0]['label'] = dic['acqu']['rxChannel'] except KeyError: try: label_value = dic['dx'][".OBSERVENUCLEUS"][0].replace("^", "") udic[0]["label"] = label_value except KeyError: warn("Cannot set observed nucleus label") #keys left to default # udic[0]['complex'] # udic[0]['encoding'] # udic[0]['time'] = True # udic[0]['freq'] = False return udic
[ "os.path.join", "os.path.isfile", "os.path.isdir", "warnings.warn", "numpy.frombuffer" ]
[((3216, 3242), 'os.path.join', 'os.path.join', (['dir', 'acqupar'], {}), '(dir, acqupar)\n', (3228, 3242), False, 'import os\n'), ((3250, 3273), 'os.path.isfile', 'os.path.isfile', (['acqupar'], {}), '(acqupar)\n', (3264, 3273), False, 'import os\n'), ((3551, 3577), 'os.path.join', 'os.path.join', (['dir', 'procpar'], {}), '(dir, procpar)\n', (3563, 3577), False, 'import os\n'), ((3584, 3607), 'os.path.isfile', 'os.path.isfile', (['procpar'], {}), '(procpar)\n', (3598, 3607), False, 'import os\n'), ((2980, 2998), 'os.path.isdir', 'os.path.isdir', (['dir'], {}), '(dir)\n', (2993, 2998), False, 'import os\n'), ((4125, 4152), 'os.path.join', 'os.path.join', (['dir', 'specfile'], {}), '(dir, specfile)\n', (4137, 4152), False, 'import os\n'), ((6583, 6620), 'warnings.warn', 'warn', (['"""No data, cannot set udic size"""'], {}), "('No data, cannot set udic size')\n", (6587, 6620), False, 'from warnings import warn\n'), ((4168, 4193), 'os.path.isfile', 'os.path.isfile', (['inputfile'], {}), '(inputfile)\n', (4182, 4193), False, 'import os\n'), ((4452, 4479), 'os.path.join', 'os.path.join', (['dir', 'priority'], {}), '(dir, priority)\n', (4464, 4479), False, 'import os\n'), ((4495, 4520), 'os.path.isfile', 'os.path.isfile', (['inputfile'], {}), '(inputfile)\n', (4509, 4520), False, 'import os\n'), ((5466, 5501), 'numpy.frombuffer', 'np.frombuffer', (['raw_data[end:]', '"""<f"""'], {}), "(raw_data[end:], '<f')\n", (5479, 5501), True, 'import numpy as np\n'), ((7644, 7766), 'warnings.warn', 'warn', (['"""Cannot set observe frequency - set manually using: \'udic[0][\'obs\'] = x\' where x is magnetic field in MHz"""'], {}), '(\n "Cannot set observe frequency - set manually using: \'udic[0][\'obs\'] = x\' where x is magnetic field in MHz"\n )\n', (7648, 7766), False, 'from warnings import warn\n'), ((8622, 8663), 'warnings.warn', 'warn', (['"""Cannot set observed nucleus label"""'], {}), "('Cannot set observed nucleus label')\n", (8626, 8663), False, 'from warnings import warn\n'), ((7326, 7447), 'warnings.warn', 'warn', (['"""Cannot set spectral width - set manually using: \'udic[0][\'sw\'] = x\' where x is the spectral width in Hz"""'], {}), '(\n "Cannot set spectral width - set manually using: \'udic[0][\'sw\'] = x\' where x is the spectral width in Hz"\n )\n', (7330, 7447), False, 'from warnings import warn\n'), ((8242, 8368), 'warnings.warn', 'warn', (['"""Cannot set carrier - try: \'udic[0][\'car\'] = x * udic[0][\'obs\']\' where x is the center of the spectrum in ppm"""'], {}), '(\n "Cannot set carrier - try: \'udic[0][\'car\'] = x * udic[0][\'obs\']\' where x is the center of the spectrum in ppm"\n )\n', (8246, 8368), False, 'from warnings import warn\n'), ((7169, 7290), 'warnings.warn', 'warn', (['"""Cannot set spectral width - set manually using: \'udic[0][\'sw\'] = x\' where x is the spectral width in Hz"""'], {}), '(\n "Cannot set spectral width - set manually using: \'udic[0][\'sw\'] = x\' where x is the spectral width in Hz"\n )\n', (7173, 7290), False, 'from warnings import warn\n')]
# -*- coding: utf-8 -*- # # Graph : graph package # # Copyright or Copr. 2006 INRIA - CIRAD - INRA # # File author(s): <NAME> <<EMAIL>> # # Distributed under the Cecill-C License. # See accompanying file LICENSE.txt or copy at # http://www.cecill.info/licences/Licence_CeCILL-C_V1-en.html # # VPlants WebSite : https://gforge.inria.fr/projects/vplants/ # """This module provide a simple pure python implementation for a graph interface does not implement copy concept """ from id_dict import IdDict class GraphError(Exception): """ base class of all graph exceptions """ class InvalidEdge(GraphError, KeyError): """ exception raised when a wrong edge id is provided """ class InvalidVertex(GraphError, KeyError): """ exception raised when a wrong vertex id is provided """ class Graph(object): """Directed graph with multiple links in this implementation : - vertices are tuple of edge_in,edge_out - edges are tuple of source,target """ def __init__(self, graph=None, idgenerator="set"): """constructor if graph is not none make a copy of the topological structure of graph (i.e. don't use the same id) args: - graph (Graph): the graph to copy, default=None - idgenerator (str): type of idgenerator to use, default 'set' """ self._vertices = IdDict(idgenerator=idgenerator) self._edges = IdDict(idgenerator=idgenerator) if graph is not None: self.extend(graph) # ########################################################## # # Graph concept # # ########################################################## def source(self, eid): """Retrieve the source vertex of an edge args: - eid (int): edge id return: - (int): vertex id """ try: return self._edges[eid][0] except KeyError: raise InvalidEdge(eid) def target(self, eid): """Retrieve the target vertex of an edge args: - eid (int): edge id return: - (int): vertex id """ try: return self._edges[eid][1] except KeyError: raise InvalidEdge(eid) def edge_vertices(self, eid): """Retrieve both source and target vertex of an edge args: - eid (int): edge id return: - (int, int): source id, target id """ try: return self._edges[eid] except KeyError: raise InvalidEdge(eid) def edge(self, source, target): """Find the matching edge with same source and same target return None if it don't succeed args: - source (int): source vertex - target (int): target vertex return: - (int): edge id with same source and target - (None): if search is unsuccessful """ if target not in self: raise InvalidVertex(target) for eid in self.out_edges(source): if self.target(eid) == target: return eid return None def __contains__(self, vid): """magic alias for `has_vertex` """ return self.has_vertex(vid) def has_vertex(self, vid): """test whether a vertex belong to the graph args: - vid (int): id of vertex return: - (bool) """ return vid in self._vertices def has_edge(self, eid): """test whether an edge belong to the graph args: - eid (int): id of edge return: - (bool) """ return eid in self._edges def is_valid(self): """Test the validity of the graph return: - (bool) """ return True # ########################################################## # # Vertex List Graph Concept # # ########################################################## def vertices(self): """Iterator on all vertices return: - (iter of int) """ return iter(self._vertices) def __iter__(self): """Magic alias for `vertices` """ return iter(self._vertices) def nb_vertices(self): """Total number of vertices in the graph return: - (int) """ return len(self._vertices) def __len__(self): """Magic alias for `nb_vertices` """ return self.nb_vertices() def in_neighbors(self, vid): """Iterator on the neighbors of vid where edges are directed from neighbor to vid args: - vid (int): vertex id return: - (iter of int): iter of vertex id """ if vid not in self: raise InvalidVertex(vid) neighbors_list = [self.source(eid) for eid in self._vertices[vid][0]] return iter(set(neighbors_list)) def out_neighbors(self, vid): """Iterator on the neighbors of vid where edges are directed from vid to neighbor args: - vid (int): vertex id return: - (iter of int): iter of vertex id """ if vid not in self: raise InvalidVertex(vid) neighbors_list = [self.target(eid) for eid in self._vertices[vid][1]] return iter(set(neighbors_list)) def neighbors(self, vid): """Iterator on all neighbors of vid both in and out args: - vid (int): vertex id return: - (iter of int): iter of vertex id """ neighbors_list = list(self.in_neighbors(vid)) neighbors_list.extend(self.out_neighbors(vid)) return iter(set(neighbors_list)) def nb_in_neighbors(self, vid): """Number of in neighbors of vid where edges are directed from neighbor to vid args: - vid (int): vertex id return: - (int) """ neighbors_set = list(self.in_neighbors(vid)) return len(neighbors_set) def nb_out_neighbors(self, vid): """Number of out neighbors of vid where edges are directed from vid to neighbor args: - vid (int): vertex id return: - (int) """ neighbors_set = list(self.out_neighbors(vid)) return len(neighbors_set) def nb_neighbors(self, vid): """Total number of both in and out neighbors of vid args: - vid (int): vertex id return: - (int) """ neighbors_set = list(self.neighbors(vid)) return len(neighbors_set) # ########################################################## # # Edge List Graph Concept # # ########################################################## def _iter_edges(self, vid): """ internal function that perform 'edges' with vid not None """ link_in, link_out = self._vertices[vid] for eid in link_in: yield eid for eid in link_out: yield eid def edges(self, vid=None): """Iterate on all edges connected to a given vertex. If vid is None (default), iterate on all edges in the graph args: - vid (int): vertex holdings edges, default (None) return: - (iter of int): iterator on edge ids """ if vid is None: return iter(self._edges) if vid not in self: raise InvalidVertex(vid) return self._iter_edges(vid) def nb_edges(self, vid=None): """Number of edges connected to a given vertex. If vid is None (default), total number of edges in the graph args: - vid (int): vertex holdings edges, default (None) return: - (int) """ if vid is None: return len(self._edges) if vid not in self: raise InvalidVertex(vid) return len(self._vertices[vid][0]) + len(self._vertices[vid][1]) def in_edges(self, vid): """Iterate on all edges pointing to a given vertex. args: - vid (int): vertex target of edges return: - (iter of int): iterator on edge ids """ if vid not in self: raise InvalidVertex(vid) for eid in self._vertices[vid][0]: yield eid def out_edges(self, vid): """Iterate on all edges away from a given vertex. args: - vid (int): vertex source of edges return: - (iter of int): iterator on edge ids """ if vid not in self: raise InvalidVertex(vid) for eid in self._vertices[vid][1]: yield eid def nb_in_edges(self, vid): """Number of edges pointing to a given vertex. args: - vid (int): vertex target of edges return: - (int) """ if vid not in self: raise InvalidVertex(vid) return len(self._vertices[vid][0]) def nb_out_edges(self, vid): """Number of edges away from a given vertex. args: - vid (int): vertex source of edges return: - (int) """ if vid not in self: raise InvalidVertex(vid) return len(self._vertices[vid][1]) # ########################################################## # # Mutable Vertex Graph concept # # ########################################################## def add_vertex(self, vid=None): """Add a vertex to the graph. If vid is not provided create a new vid args: - vid (int): id to use. If None (default) will generate a new one return: - vid (int): id used for the new vertex """ try: return self._vertices.add((set(), set()), vid) except KeyError: raise InvalidVertex(vid) def remove_vertex(self, vid): """Remove a specified vertex of the graph. Also remove all edge attached to it. args: - vid (int): id of vertex to remove """ if vid not in self: raise InvalidVertex(vid) link_in, link_out = self._vertices[vid] for edge in list(link_in): self.remove_edge(edge) for edge in list(link_out): self.remove_edge(edge) del self._vertices[vid] def clear(self): """Remove all vertices and edges don't change references to objects """ self._edges.clear() self._vertices.clear() # ########################################################## # # Mutable Edge Graph concept # # ########################################################## def add_edge(self, sid, tid, eid=None): """Add an edge to the graph. If eid is not provided generate a new one. args: - sid (int): id of source vertex - tid (int): id of target vertex - eid (int): id to use. If None (default) will generate a new one return: - eid (int): id used for new edge """ if sid not in self: raise InvalidVertex(sid) if tid not in self: raise InvalidVertex(tid) try: eid = self._edges.add((sid, tid), eid) except KeyError: raise InvalidEdge(eid) self._vertices[sid][1].add(eid) self._vertices[tid][0].add(eid) return eid def remove_edge(self, eid): """Remove a specified edge from the graph. args: - eid (int): id of edge to remove """ if not self.has_edge(eid): raise InvalidEdge(eid) sid, tid = self._edges[eid] self._vertices[sid][1].remove(eid) self._vertices[tid][0].remove(eid) del self._edges[eid] def clear_edges(self): """Remove all the edges of the graph don't change references to objects """ self._edges.clear() for vid, (in_set, out_set) in self._vertices.iteritems(): in_set.clear() out_set.clear() # ########################################################## # # Extend Graph concept # # ########################################################## def extend(self, graph): """Add the specified graph to self, create new vid and eid args: - graph (Graph): the graph to add return: - (dict of (int, int)): mapping between vertex id in graph and vertex id in extended self - (dict of (int, int)): mapping between edge id in graph and edge id in extended self """ # vertex adding trans_vid = {} for vid in list(graph.vertices()): trans_vid[vid] = self.add_vertex() # edge adding trans_eid = {} for eid in list(graph.edges()): sid = trans_vid[graph.source(eid)] tid = trans_vid[graph.target(eid)] trans_eid[eid] = self.add_edge(sid, tid) return trans_vid, trans_eid def sub_graph(self, vids): """ """ raise NotImplemented # from copy import deepcopy # vids = set(vids) # # result = deepcopy(self) # result._vertices.clear() # result._edges.clear() # # for key, edges in self._vertices.items(): # if key in vids: # inedges, outedges = edges # sortedinedges = set( # [eid for eid in inedges if self.source(eid) in vids]) # sortedoutedges = set( # [eid for eid in outedges if self.target(eid) in vids]) # result._vertices.add((sortedinedges, sortedoutedges), key) # for eid in sortedoutedges: # result._edges.add(self._edges[eid], eid) # # return result
[ "id_dict.IdDict" ]
[((1438, 1469), 'id_dict.IdDict', 'IdDict', ([], {'idgenerator': 'idgenerator'}), '(idgenerator=idgenerator)\n', (1444, 1469), False, 'from id_dict import IdDict\n'), ((1492, 1523), 'id_dict.IdDict', 'IdDict', ([], {'idgenerator': 'idgenerator'}), '(idgenerator=idgenerator)\n', (1498, 1523), False, 'from id_dict import IdDict\n')]
import paddle.fluid as fluid from paddle.fluid.initializer import MSRA from paddle.fluid.param_attr import ParamAttr class MobileNetV2SSD: def __init__(self, img, num_classes, img_shape): self.img = img self.num_classes = num_classes self.img_shape = img_shape def ssd_net(self, scale=1.0): # 300x300 bottleneck_params_list = [(1, 16, 1, 1), (6, 24, 2, 2), (6, 32, 3, 2), (6, 64, 4, 2), (6, 96, 3, 1)] # conv1 input = self.conv_bn_layer(input=self.img, num_filters=int(32 * scale), filter_size=3, stride=2, padding=1, if_act=True) # bottleneck sequences in_c = int(32 * scale) for layer_setting in bottleneck_params_list: t, c, n, s = layer_setting input = self.invresi_blocks(input=input, in_c=in_c, t=t, c=int(c * scale), n=n, s=s) in_c = int(c * scale) # 19x19 module11 = input tmp = self.invresi_blocks(input=input, in_c=in_c, t=6, c=int(160 * scale), n=3, s=2) # 10x10 module13 = self.invresi_blocks(input=tmp, in_c=int(160 * scale), t=6, c=int(320 * scale), n=1, s=1) module14 = self.extra_block(module13, 256, 512, 1) # 5x5 module15 = self.extra_block(module14, 128, 256, 1) # 3x3 module16 = self.extra_block(module15, 128, 256, 1) # 2x2 module17 = self.extra_block(module16, 64, 128, 1) mbox_locs, mbox_confs, box, box_var = fluid.layers.multi_box_head( inputs=[module11, module13, module14, module15, module16, module17], image=self.img, num_classes=self.num_classes, min_ratio=20, max_ratio=90, min_sizes=[60.0, 105.0, 150.0, 195.0, 240.0, 285.0], max_sizes=[[], 150.0, 195.0, 240.0, 285.0, 300.0], aspect_ratios=[[2.], [2., 3.], [2., 3.], [2., 3.], [2., 3.], [2., 3.]], base_size=self.img_shape[2], offset=0.5, flip=True) return mbox_locs, mbox_confs, box, box_var def conv_bn_layer(self, input, filter_size, num_filters, stride, padding, num_groups=1, if_act=True, use_cudnn=True): parameter_attr = ParamAttr(learning_rate=0.1, initializer=MSRA()) conv = fluid.layers.conv2d(input=input, num_filters=num_filters, filter_size=filter_size, stride=stride, padding=padding, groups=num_groups, use_cudnn=use_cudnn, param_attr=parameter_attr, bias_attr=False) bn = fluid.layers.batch_norm(input=conv) if if_act: return fluid.layers.relu6(bn) else: return bn def shortcut(self, input, data_residual): return fluid.layers.elementwise_add(input, data_residual) def inverted_residual_unit(self, input, num_in_filter, num_filters, ifshortcut, stride, filter_size, padding, expansion_factor): num_expfilter = int(round(num_in_filter * expansion_factor)) channel_expand = self.conv_bn_layer(input=input, num_filters=num_expfilter, filter_size=1, stride=1, padding=0, num_groups=1, if_act=True) bottleneck_conv = self.conv_bn_layer(input=channel_expand, num_filters=num_expfilter, filter_size=filter_size, stride=stride, padding=padding, num_groups=num_expfilter, if_act=True, use_cudnn=False) linear_out = self.conv_bn_layer(input=bottleneck_conv, num_filters=num_filters, filter_size=1, stride=1, padding=0, num_groups=1, if_act=False) if ifshortcut: out = self.shortcut(input=input, data_residual=linear_out) return out else: return linear_out def invresi_blocks(self, input, in_c, t, c, n, s): first_block = self.inverted_residual_unit(input=input, num_in_filter=in_c, num_filters=c, ifshortcut=False, stride=s, filter_size=3, padding=1, expansion_factor=t) last_residual_block = first_block last_c = c for i in range(1, n): last_residual_block = self.inverted_residual_unit(input=last_residual_block, num_in_filter=last_c, num_filters=c, ifshortcut=True, stride=1, filter_size=3, padding=1, expansion_factor=t) return last_residual_block def conv_bn(self, input, filter_size, num_filters, stride, padding, num_groups=1, act='relu', use_cudnn=True): parameter_attr = ParamAttr(learning_rate=0.1, initializer=MSRA()) conv = fluid.layers.conv2d(input=input, num_filters=num_filters, filter_size=filter_size, stride=stride, padding=padding, groups=num_groups, use_cudnn=use_cudnn, param_attr=parameter_attr, bias_attr=False) return fluid.layers.batch_norm(input=conv, act=act) def extra_block(self, input, num_filters1, num_filters2, num_groups): # 1x1 conv pointwise_conv = self.conv_bn(input=input, filter_size=1, num_filters=int(num_filters1), stride=1, num_groups=int(num_groups), padding=0) # 3x3 conv normal_conv = self.conv_bn(input=pointwise_conv, filter_size=3, num_filters=int(num_filters2), stride=2, num_groups=int(num_groups), padding=1) return normal_conv def build_ssd(img, num_classes, img_shape): ssd_model = MobileNetV2SSD(img, num_classes, img_shape) return ssd_model.ssd_net() if __name__ == '__main__': data = fluid.data(name='data', shape=[None, 3, 300, 300]) build_ssd(data, 21, img_shape=[3, 300, 300])
[ "paddle.fluid.data", "paddle.fluid.layers.relu6", "paddle.fluid.initializer.MSRA", "paddle.fluid.layers.conv2d", "paddle.fluid.layers.batch_norm", "paddle.fluid.layers.multi_box_head", "paddle.fluid.layers.elementwise_add" ]
[((8339, 8389), 'paddle.fluid.data', 'fluid.data', ([], {'name': '"""data"""', 'shape': '[None, 3, 300, 300]'}), "(name='data', shape=[None, 3, 300, 300])\n", (8349, 8389), True, 'import paddle.fluid as fluid\n'), ((1779, 2209), 'paddle.fluid.layers.multi_box_head', 'fluid.layers.multi_box_head', ([], {'inputs': '[module11, module13, module14, module15, module16, module17]', 'image': 'self.img', 'num_classes': 'self.num_classes', 'min_ratio': '(20)', 'max_ratio': '(90)', 'min_sizes': '[60.0, 105.0, 150.0, 195.0, 240.0, 285.0]', 'max_sizes': '[[], 150.0, 195.0, 240.0, 285.0, 300.0]', 'aspect_ratios': '[[2.0], [2.0, 3.0], [2.0, 3.0], [2.0, 3.0], [2.0, 3.0], [2.0, 3.0]]', 'base_size': 'self.img_shape[2]', 'offset': '(0.5)', 'flip': '(True)'}), '(inputs=[module11, module13, module14, module15,\n module16, module17], image=self.img, num_classes=self.num_classes,\n min_ratio=20, max_ratio=90, min_sizes=[60.0, 105.0, 150.0, 195.0, 240.0,\n 285.0], max_sizes=[[], 150.0, 195.0, 240.0, 285.0, 300.0],\n aspect_ratios=[[2.0], [2.0, 3.0], [2.0, 3.0], [2.0, 3.0], [2.0, 3.0], [\n 2.0, 3.0]], base_size=self.img_shape[2], offset=0.5, flip=True)\n', (1806, 2209), True, 'import paddle.fluid as fluid\n'), ((2597, 2804), 'paddle.fluid.layers.conv2d', 'fluid.layers.conv2d', ([], {'input': 'input', 'num_filters': 'num_filters', 'filter_size': 'filter_size', 'stride': 'stride', 'padding': 'padding', 'groups': 'num_groups', 'use_cudnn': 'use_cudnn', 'param_attr': 'parameter_attr', 'bias_attr': '(False)'}), '(input=input, num_filters=num_filters, filter_size=\n filter_size, stride=stride, padding=padding, groups=num_groups,\n use_cudnn=use_cudnn, param_attr=parameter_attr, bias_attr=False)\n', (2616, 2804), True, 'import paddle.fluid as fluid\n'), ((3089, 3124), 'paddle.fluid.layers.batch_norm', 'fluid.layers.batch_norm', ([], {'input': 'conv'}), '(input=conv)\n', (3112, 3124), True, 'import paddle.fluid as fluid\n'), ((3284, 3334), 'paddle.fluid.layers.elementwise_add', 'fluid.layers.elementwise_add', (['input', 'data_residual'], {}), '(input, data_residual)\n', (3312, 3334), True, 'import paddle.fluid as fluid\n'), ((6819, 7026), 'paddle.fluid.layers.conv2d', 'fluid.layers.conv2d', ([], {'input': 'input', 'num_filters': 'num_filters', 'filter_size': 'filter_size', 'stride': 'stride', 'padding': 'padding', 'groups': 'num_groups', 'use_cudnn': 'use_cudnn', 'param_attr': 'parameter_attr', 'bias_attr': '(False)'}), '(input=input, num_filters=num_filters, filter_size=\n filter_size, stride=stride, padding=padding, groups=num_groups,\n use_cudnn=use_cudnn, param_attr=parameter_attr, bias_attr=False)\n', (6838, 7026), True, 'import paddle.fluid as fluid\n'), ((7313, 7357), 'paddle.fluid.layers.batch_norm', 'fluid.layers.batch_norm', ([], {'input': 'conv', 'act': 'act'}), '(input=conv, act=act)\n', (7336, 7357), True, 'import paddle.fluid as fluid\n'), ((3163, 3185), 'paddle.fluid.layers.relu6', 'fluid.layers.relu6', (['bn'], {}), '(bn)\n', (3181, 3185), True, 'import paddle.fluid as fluid\n'), ((2574, 2580), 'paddle.fluid.initializer.MSRA', 'MSRA', ([], {}), '()\n', (2578, 2580), False, 'from paddle.fluid.initializer import MSRA\n'), ((6796, 6802), 'paddle.fluid.initializer.MSRA', 'MSRA', ([], {}), '()\n', (6800, 6802), False, 'from paddle.fluid.initializer import MSRA\n')]
#! /usr/bin/env python3 import json import os.path import jinja2 DEFAULT_PARAMS = { "ansible_user": "vagrant" } if __name__ == "__main__": # Reading configuration here = os.path.dirname(os.path.realpath(__file__ + "/../")) with open(here + "/config.json", "r") as rf: config = json.load(rf) print(json.dumps(config, sort_keys=True, indent=4)) # Generating an inventory file with open(here + "/playbook/inventory/hosts", "w") as inventory: inventory.write("[kafka]\n") for host in config["hosts"]: # Setting default values and updating them when more specific. params = dict() params.update(DEFAULT_PARAMS) params.update(config["params"]) params.update(config["hosts"][host]) # Setting some extra ansible paramters. params["ansible_ssh_host"] = params["ip"] inventory.write("%s\t%s\n" % (host, " ".join(("%s=%s" % (k,v) for k,v in params.items())))) # Generating the Vagrantfile env = jinja2.Environment(loader=jinja2.FileSystemLoader(here + "/templates/")) template = env.get_template('Vagrantfile.j2') template.stream(**config).dump(here + '/vagrant/Vagrantfile') # Generating group vars for kafka with open(here + "/playbook/group_vars/kafka.yml", "w") as gv: gv.write("---\n") gv.write("hosts:\n") for (host, params) in config["hosts"].items(): gv.write(" %s: '%s.%s'\n" % (params["ip"], params["hostname"], config["params"]["domain" ])) gv.write("kafka:\n") gv.write(" hosts:\n") for (host, params) in config["hosts"].items(): gv.write(" - %s.%s\n" % (params["hostname"], config["params"]["domain" ]))
[ "json.load", "jinja2.FileSystemLoader", "json.dumps" ]
[((308, 321), 'json.load', 'json.load', (['rf'], {}), '(rf)\n', (317, 321), False, 'import json\n'), ((332, 376), 'json.dumps', 'json.dumps', (['config'], {'sort_keys': '(True)', 'indent': '(4)'}), '(config, sort_keys=True, indent=4)\n', (342, 376), False, 'import json\n'), ((1075, 1120), 'jinja2.FileSystemLoader', 'jinja2.FileSystemLoader', (["(here + '/templates/')"], {}), "(here + '/templates/')\n", (1098, 1120), False, 'import jinja2\n')]
# pylint: skip-file import os from assimilator import * from Boinc import boinc_project_path class SlimeClustersAssimilator(Assimilator): def __init__(self): Assimilator.__init__(self) def assimilate_handler(self, wu, results, canonical_result): if canonical_result == None: return src_file = self.get_file_path(canonical_result) dst_dir = boinc_project_path.project_path('slime-clusters') dst_file = os.path.join(dst_dir, 'results.txt') if not os.path.exists(dst_dir): os.makedirs(dst_dir) with open(src_file, 'r') as src, open(dst_file, 'a') as dst: dst.writelines(src.readlines()) if __name__ == "__main__": SlimeClustersAssimilator().run()
[ "Boinc.boinc_project_path.project_path", "os.path.exists", "os.path.join", "os.makedirs" ]
[((404, 453), 'Boinc.boinc_project_path.project_path', 'boinc_project_path.project_path', (['"""slime-clusters"""'], {}), "('slime-clusters')\n", (435, 453), False, 'from Boinc import boinc_project_path\n'), ((473, 509), 'os.path.join', 'os.path.join', (['dst_dir', '"""results.txt"""'], {}), "(dst_dir, 'results.txt')\n", (485, 509), False, 'import os\n'), ((526, 549), 'os.path.exists', 'os.path.exists', (['dst_dir'], {}), '(dst_dir)\n', (540, 549), False, 'import os\n'), ((563, 583), 'os.makedirs', 'os.makedirs', (['dst_dir'], {}), '(dst_dir)\n', (574, 583), False, 'import os\n')]
# Licensed to Modin Development Team under one or more contributor license agreements. # See the NOTICE file distributed with this work for additional information regarding # copyright ownership. The Modin Development Team licenses this file to you under the # Apache License, Version 2.0 (the "License"); you may not use this file except in # compliance with the License. You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software distributed under # the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF # ANY KIND, either express or implied. See the License for the specific language # governing permissions and limitations under the License. """Module houses class that implements ``PandasOnRayDataframe`` class using cuDF.""" import numpy as np import ray from ..partitioning.partition import cuDFOnRayDataframePartition from ..partitioning.partition_manager import cuDFOnRayDataframePartitionManager from modin.core.execution.ray.implementations.pandas_on_ray.dataframe.dataframe import ( PandasOnRayDataframe, ) from modin.error_message import ErrorMessage class cuDFOnRayDataframe(PandasOnRayDataframe): """ The class implements the interface in ``PandasOnRayDataframe`` using cuDF. Parameters ---------- partitions : np.ndarray A 2D NumPy array of partitions. index : sequence The index for the dataframe. Converted to a ``pandas.Index``. columns : sequence The columns object for the dataframe. Converted to a ``pandas.Index``. row_lengths : list, optional The length of each partition in the rows. The "height" of each of the block partitions. Is computed if not provided. column_widths : list, optional The width of each partition in the columns. The "width" of each of the block partitions. Is computed if not provided. dtypes : pandas.Series, optional The data types for the dataframe columns. """ _partition_mgr_cls = cuDFOnRayDataframePartitionManager def synchronize_labels(self, axis=None): """ Synchronize labels by applying the index object (Index or Columns) to the partitions eagerly. Parameters ---------- axis : {0, 1, None}, default: None The axis to apply to. If None, it applies to both axes. """ ErrorMessage.catch_bugs_and_request_email( axis is not None and axis not in [0, 1] ) cum_row_lengths = np.cumsum([0] + self._row_lengths) cum_col_widths = np.cumsum([0] + self._column_widths) def apply_idx_objs(df, idx, cols, axis): # cudf does not support set_axis. It only supports rename with 1-to-1 mapping. # Therefore, we need to create the dictionary that have the relationship between # current index and new ones. idx = {df.index[i]: idx[i] for i in range(len(idx))} cols = {df.index[i]: cols[i] for i in range(len(cols))} if axis == 0: return df.rename(index=idx) elif axis == 1: return df.rename(columns=cols) else: return df.rename(index=idx, columns=cols) keys = np.array( [ [ self._partitions[i][j].apply( apply_idx_objs, idx=self.index[ slice(cum_row_lengths[i], cum_row_lengths[i + 1]) ], cols=self.columns[ slice(cum_col_widths[j], cum_col_widths[j + 1]) ], axis=axis, ) for j in range(len(self._partitions[i])) ] for i in range(len(self._partitions)) ] ) self._partitions = np.array( [ [ cuDFOnRayDataframePartition( self._partitions[i][j].get_gpu_manager(), keys[i][j], self._partitions[i][j]._length_cache, self._partitions[i][j]._width_cache, ) for j in range(len(keys[i])) ] for i in range(len(keys)) ] ) def mask( self, row_indices=None, row_numeric_idx=None, col_indices=None, col_numeric_idx=None, ): """ Lazily select columns or rows from given indices. Parameters ---------- row_indices : list of hashable, optional The row labels to extract. row_numeric_idx : list of int, optional The row indices to extract. col_indices : list of hashable, optional The column labels to extract. col_numeric_idx : list of int, optional The column indices to extract. Returns ------- cuDFOnRayDataframe A new ``cuDFOnRayDataframe`` from the mask provided. Notes ----- If both `row_indices` and `row_numeric_idx` are set, `row_indices` will be used. The same rule applied to `col_indices` and `col_numeric_idx`. """ if isinstance(row_numeric_idx, slice) and ( row_numeric_idx == slice(None) or row_numeric_idx == slice(0, None) ): row_numeric_idx = None if isinstance(col_numeric_idx, slice) and ( col_numeric_idx == slice(None) or col_numeric_idx == slice(0, None) ): col_numeric_idx = None if ( row_indices is None and row_numeric_idx is None and col_indices is None and col_numeric_idx is None ): return self.copy() if row_indices is not None: row_numeric_idx = self.index.get_indexer_for(row_indices) if row_numeric_idx is not None: row_partitions_list = self._get_dict_of_block_index(0, row_numeric_idx) if isinstance(row_numeric_idx, slice): # Row lengths for slice are calculated as the length of the slice # on the partition. Often this will be the same length as the current # length, but sometimes it is different, thus the extra calculation. new_row_lengths = [ len(range(*idx.indices(self._row_lengths[p]))) for p, idx in row_partitions_list.items() ] # Use the slice to calculate the new row index new_index = self.index[row_numeric_idx] else: new_row_lengths = [len(idx) for _, idx in row_partitions_list.items()] new_index = self.index[sorted(row_numeric_idx)] else: row_partitions_list = { i: slice(None) for i in range(len(self._row_lengths)) } new_row_lengths = self._row_lengths new_index = self.index if col_indices is not None: col_numeric_idx = self.columns.get_indexer_for(col_indices) if col_numeric_idx is not None: col_partitions_list = self._get_dict_of_block_index(1, col_numeric_idx) if isinstance(col_numeric_idx, slice): # Column widths for slice are calculated as the length of the slice # on the partition. Often this will be the same length as the current # length, but sometimes it is different, thus the extra calculation. new_col_widths = [ len(range(*idx.indices(self._column_widths[p]))) for p, idx in col_partitions_list.items() ] # Use the slice to calculate the new columns new_columns = self.columns[col_numeric_idx] assert sum(new_col_widths) == len( new_columns ), "{} != {}.\n{}\n{}\n{}".format( sum(new_col_widths), len(new_columns), col_numeric_idx, self._column_widths, col_partitions_list, ) if self._dtypes is not None: new_dtypes = self.dtypes[col_numeric_idx] else: new_dtypes = None else: new_col_widths = [len(idx) for _, idx in col_partitions_list.items()] new_columns = self.columns[sorted(col_numeric_idx)] if self._dtypes is not None: new_dtypes = self.dtypes.iloc[sorted(col_numeric_idx)] else: new_dtypes = None else: col_partitions_list = { i: slice(None) for i in range(len(self._column_widths)) } new_col_widths = self._column_widths new_columns = self.columns if self._dtypes is not None: new_dtypes = self.dtypes else: new_dtypes = None key_and_gpus = np.array( [ [ [ self._partitions[row_idx][col_idx].mask( row_internal_indices, col_internal_indices ), self._partitions[row_idx][col_idx].get_gpu_manager(), ] for col_idx, col_internal_indices in col_partitions_list.items() if isinstance(col_internal_indices, slice) or len(col_internal_indices) > 0 ] for row_idx, row_internal_indices in row_partitions_list.items() if isinstance(row_internal_indices, slice) or len(row_internal_indices) > 0 ] ) shape = key_and_gpus.shape[:2] keys = ray.get(key_and_gpus[:, :, 0].flatten().tolist()) gpu_managers = key_and_gpus[:, :, 1].flatten().tolist() new_partitions = self._partition_mgr_cls._create_partitions( keys, gpu_managers ).reshape(shape) intermediate = self.__constructor__( new_partitions, new_index, new_columns, new_row_lengths, new_col_widths, new_dtypes, ) # Check if monotonically increasing, return if it is. Fast track code path for # common case to keep it fast. if ( row_numeric_idx is None or isinstance(row_numeric_idx, slice) or len(row_numeric_idx) == 1 or np.all(row_numeric_idx[1:] >= row_numeric_idx[:-1]) ) and ( col_numeric_idx is None or isinstance(col_numeric_idx, slice) or len(col_numeric_idx) == 1 or np.all(col_numeric_idx[1:] >= col_numeric_idx[:-1]) ): return intermediate # The new labels are often smaller than the old labels, so we can't reuse the # original order values because those were mapped to the original data. We have # to reorder here based on the expected order from within the data. # We create a dictionary mapping the position of the numeric index with respect # to all others, then recreate that order by mapping the new order values from # the old. This information is sent to `_reorder_labels`. if row_numeric_idx is not None: row_order_mapping = dict( zip(sorted(row_numeric_idx), range(len(row_numeric_idx))) ) new_row_order = [row_order_mapping[idx] for idx in row_numeric_idx] else: new_row_order = None if col_numeric_idx is not None: col_order_mapping = dict( zip(sorted(col_numeric_idx), range(len(col_numeric_idx))) ) new_col_order = [col_order_mapping[idx] for idx in col_numeric_idx] else: new_col_order = None return intermediate._reorder_labels( row_numeric_idx=new_row_order, col_numeric_idx=new_col_order )
[ "numpy.cumsum", "modin.error_message.ErrorMessage.catch_bugs_and_request_email", "numpy.all" ]
[((2458, 2544), 'modin.error_message.ErrorMessage.catch_bugs_and_request_email', 'ErrorMessage.catch_bugs_and_request_email', (['(axis is not None and axis not in [0, 1])'], {}), '(axis is not None and axis not in\n [0, 1])\n', (2499, 2544), False, 'from modin.error_message import ErrorMessage\n'), ((2590, 2624), 'numpy.cumsum', 'np.cumsum', (['([0] + self._row_lengths)'], {}), '([0] + self._row_lengths)\n', (2599, 2624), True, 'import numpy as np\n'), ((2650, 2686), 'numpy.cumsum', 'np.cumsum', (['([0] + self._column_widths)'], {}), '([0] + self._column_widths)\n', (2659, 2686), True, 'import numpy as np\n'), ((10833, 10884), 'numpy.all', 'np.all', (['(row_numeric_idx[1:] >= row_numeric_idx[:-1])'], {}), '(row_numeric_idx[1:] >= row_numeric_idx[:-1])\n', (10839, 10884), True, 'import numpy as np\n'), ((11043, 11094), 'numpy.all', 'np.all', (['(col_numeric_idx[1:] >= col_numeric_idx[:-1])'], {}), '(col_numeric_idx[1:] >= col_numeric_idx[:-1])\n', (11049, 11094), True, 'import numpy as np\n')]
from astropy.table import Table, Column import matplotlib.pyplot as plt #url = "https://exoplanetarchive.ipac.caltech.edu/cgi-bin/nstedAPI/nph-nstedAPI?table=exoplanets&select=pl_hostname,ra,dec&order=dec&format=csv" url = "https://exoplanetarchive.ipac.caltech.edu/cgi-bin/nstedAPI/nph-nstedAPI?table=exoplanets" # This API returns Hostname, RA and Dec t = Table.read(url, format="csv") t_b = t[t["pl_letter"] == "b"] t_c = t[t["pl_letter"] == "c"] t_d = t[t["pl_letter"] == "d"] t_e = t[t["pl_letter"] == "e"] t_f = t[t["pl_letter"] == "f"] t_g = t[t["pl_letter"] == "g"] t_h = t[t["pl_letter"] == "h"] t_i = t[t["pl_letter"] == "i"] fig = plt.figure() ax = fig.add_subplot(1,1,1,aspect="equal") ax.scatter(t_b["ra"],t_b["dec"],color="Black",label = "2 Planets") ax.scatter(t_c["ra"],t_c["dec"],color="red", label = "3 Planets") ax.scatter(t_d["ra"],t_d["dec"],color="blue", label = "4 Planets") ax.scatter(t_e["ra"],t_e["dec"],color="green", label = "5 Planets") ax.scatter(t_f["ra"],t_f["dec"],color="yellow", label = "6 Planets") ax.scatter(t_g["ra"],t_g["dec"],color="purple", label = "7 Planets") ax.scatter(t_h["ra"],t_h["dec"],color="orange", label = "8 Planets") ax.scatter(t_i["ra"],t_i["dec"],color="cyan", label = "9 Planets") ax.legend(bbox_to_anchor=(1.05, 1), loc=2, borderaxespad=0.) ax.set_xlim(360,0) ax.set_ylim(-90,90) ax.set_ylabel("DEC") ax.set_xlabel("RA") ax.set_title("Positions of Explanets by number of planets in system") plt.legend(bbox_to_anchor=(1.05, 1), loc=2, borderaxespad=0.) plt.show()
[ "matplotlib.pyplot.show", "matplotlib.pyplot.figure", "matplotlib.pyplot.legend", "astropy.table.Table.read" ]
[((359, 388), 'astropy.table.Table.read', 'Table.read', (['url'], {'format': '"""csv"""'}), "(url, format='csv')\n", (369, 388), False, 'from astropy.table import Table, Column\n'), ((645, 657), 'matplotlib.pyplot.figure', 'plt.figure', ([], {}), '()\n', (655, 657), True, 'import matplotlib.pyplot as plt\n'), ((1455, 1517), 'matplotlib.pyplot.legend', 'plt.legend', ([], {'bbox_to_anchor': '(1.05, 1)', 'loc': '(2)', 'borderaxespad': '(0.0)'}), '(bbox_to_anchor=(1.05, 1), loc=2, borderaxespad=0.0)\n', (1465, 1517), True, 'import matplotlib.pyplot as plt\n'), ((1517, 1527), 'matplotlib.pyplot.show', 'plt.show', ([], {}), '()\n', (1525, 1527), True, 'import matplotlib.pyplot as plt\n')]
# Copyright (C) 2019 Cancer Care Associates # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # http://www.apache.org/licenses/LICENSE-2.0 # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import os import subprocess import uuid import numpy as np import pydicom from pymedphys._dicom.create import dicom_dataset_from_dict from pymedphys._dicom.header import ( RED_adjustment_map_from_structure_names, adjust_machine_name, adjust_RED_by_structure_name, adjust_rel_elec_density, ) from pymedphys._dicom.utilities import remove_file HERE = os.path.dirname(__file__) ORIGINAL_DICOM_FILENAME = os.path.join( HERE, "scratch", "original-{}.dcm".format(str(uuid.uuid4())) ) ADJUSTED_DICOM_FILENAME = os.path.join( HERE, "scratch", "adjusted-{}.dcm".format(str(uuid.uuid4())) ) def compare_dicom_cli(command, original, expected): pydicom.write_file(ORIGINAL_DICOM_FILENAME, original) try: subprocess.check_call(command) cli_adjusted_ds = pydicom.read_file(ADJUSTED_DICOM_FILENAME, force=True) assert str(cli_adjusted_ds) == str(expected) finally: remove_file(ORIGINAL_DICOM_FILENAME) remove_file(ADJUSTED_DICOM_FILENAME) def test_adjust_machine_name(): new_name = "new_name" original_ds = dicom_dataset_from_dict( { "BeamSequence": [ {"TreatmentMachineName": "hello"}, {"TreatmentMachineName": "george"}, ] } ) expected_ds = dicom_dataset_from_dict( { "BeamSequence": [ {"TreatmentMachineName": new_name}, {"TreatmentMachineName": new_name}, ] } ) adjusted_ds = adjust_machine_name(original_ds, new_name) assert adjusted_ds != original_ds assert adjusted_ds == expected_ds command = "pymedphys dicom adjust-machine-name".split() + [ ORIGINAL_DICOM_FILENAME, ADJUSTED_DICOM_FILENAME, new_name, ] compare_dicom_cli(command, original_ds, expected_ds) def test_electron_density_append(): adjustment_map = { "to_be_changed 1": 1.0, "to_be_changed 2": 0.5, "to_be_changed 3": 1.5, } excess_adjustment_map = {**adjustment_map, **{"this_structure_doesnt_exist": 1.0}} original_ds = dicom_dataset_from_dict( { "StructureSetROISequence": [ {"ROINumber": 1, "ROIName": "to_be_changed 1"}, {"ROINumber": 2, "ROIName": "dont_change_me"}, {"ROINumber": 10, "ROIName": "to_be_changed 2"}, {"ROINumber": 99, "ROIName": "to_be_changed 3"}, ], "RTROIObservationsSequence": [ { "ReferencedROINumber": 1, "ROIPhysicalPropertiesSequence": [ { "ROIPhysicalProperty": "EFFECTIVE_Z", "ROIPhysicalPropertyValue": 6, } ], }, {"ReferencedROINumber": 2}, {"ReferencedROINumber": 10}, { "ReferencedROINumber": 99, "ROIPhysicalPropertiesSequence": [ { "ROIPhysicalProperty": "REL_ELEC_DENSITY", "ROIPhysicalPropertyValue": 0, } ], }, ], } ) expected_ds = dicom_dataset_from_dict( { "RTROIObservationsSequence": [ { "ReferencedROINumber": 1, "ROIPhysicalPropertiesSequence": [ { "ROIPhysicalProperty": "EFFECTIVE_Z", "ROIPhysicalPropertyValue": 6, }, { "ROIPhysicalProperty": "REL_ELEC_DENSITY", "ROIPhysicalPropertyValue": adjustment_map[ "to_be_changed 1" ], }, ], }, {"ReferencedROINumber": 2}, { "ReferencedROINumber": 10, "ROIPhysicalPropertiesSequence": [ { "ROIPhysicalProperty": "REL_ELEC_DENSITY", "ROIPhysicalPropertyValue": adjustment_map[ "to_be_changed 2" ], } ], }, { "ReferencedROINumber": 99, "ROIPhysicalPropertiesSequence": [ { "ROIPhysicalProperty": "REL_ELEC_DENSITY", "ROIPhysicalPropertyValue": adjustment_map[ "to_be_changed 3" ], } ], }, ] }, template_ds=original_ds, ) adjusted_ds = adjust_rel_elec_density(original_ds, adjustment_map) assert adjusted_ds != original_ds assert str(expected_ds) == str(adjusted_ds) adjusted_with_excess_ds = adjust_rel_elec_density( original_ds, excess_adjustment_map, ignore_missing_structure=True ) assert adjusted_with_excess_ds != original_ds assert str(expected_ds) == str(adjusted_with_excess_ds) excess_adjustment_map_as_list = [ ["{}".format(key), item] for key, item in excess_adjustment_map.items() ] excess_adjustment_map_flat = np.concatenate(excess_adjustment_map_as_list).tolist() command = ( "pymedphys dicom adjust-RED -i ".split() + [ORIGINAL_DICOM_FILENAME, ADJUSTED_DICOM_FILENAME] + excess_adjustment_map_flat ) compare_dicom_cli(command, original_ds, expected_ds) def test_structure_name_parse(): structure_names = [ "a RED=1", "b", "c", "d RED=2.2", "e red = 3", "f", "g Red: 4.7", "h RED=0.5 ", ] expected_adjustment_map = { "a RED=1": 1, "d RED=2.2": 2.2, "e red = 3": 3, "g Red: 4.7": 4.7, "h RED=0.5 ": 0.5, } adjustment_map = RED_adjustment_map_from_structure_names(structure_names) assert expected_adjustment_map == adjustment_map def test_structure_name_based_RED_append(): electron_density_to_use = 0.5 original_ds = dicom_dataset_from_dict( { "StructureSetROISequence": [ { "ROINumber": 1, "ROIName": "a_structure RED={}".format(electron_density_to_use), }, {"ROINumber": 2, "ROIName": "dont_change_me"}, ], "RTROIObservationsSequence": [ {"ReferencedROINumber": 1}, {"ReferencedROINumber": 2}, ], } ) expected_ds = dicom_dataset_from_dict( { "RTROIObservationsSequence": [ { "ReferencedROINumber": 1, "ROIPhysicalPropertiesSequence": [ { "ROIPhysicalProperty": "REL_ELEC_DENSITY", "ROIPhysicalPropertyValue": electron_density_to_use, } ], }, {"ReferencedROINumber": 2}, ] }, template_ds=original_ds, ) adjusted_ds = adjust_RED_by_structure_name(original_ds) assert adjusted_ds != original_ds assert str(expected_ds) == str(adjusted_ds) command = "pymedphys dicom adjust-RED-by-structure-name".split() + [ ORIGINAL_DICOM_FILENAME, ADJUSTED_DICOM_FILENAME, ] compare_dicom_cli(command, original_ds, expected_ds)
[ "pymedphys._dicom.header.adjust_RED_by_structure_name", "pymedphys._dicom.header.adjust_machine_name", "pymedphys._dicom.header.RED_adjustment_map_from_structure_names", "subprocess.check_call", "pymedphys._dicom.utilities.remove_file", "uuid.uuid4", "os.path.dirname", "pymedphys._dicom.create.dicom_dataset_from_dict", "pydicom.read_file", "numpy.concatenate", "pydicom.write_file", "pymedphys._dicom.header.adjust_rel_elec_density" ]
[((958, 983), 'os.path.dirname', 'os.path.dirname', (['__file__'], {}), '(__file__)\n', (973, 983), False, 'import os\n'), ((1256, 1309), 'pydicom.write_file', 'pydicom.write_file', (['ORIGINAL_DICOM_FILENAME', 'original'], {}), '(ORIGINAL_DICOM_FILENAME, original)\n', (1274, 1309), False, 'import pydicom\n'), ((1676, 1794), 'pymedphys._dicom.create.dicom_dataset_from_dict', 'dicom_dataset_from_dict', (["{'BeamSequence': [{'TreatmentMachineName': 'hello'}, {\n 'TreatmentMachineName': 'george'}]}"], {}), "({'BeamSequence': [{'TreatmentMachineName': 'hello'},\n {'TreatmentMachineName': 'george'}]})\n", (1699, 1794), False, 'from pymedphys._dicom.create import dicom_dataset_from_dict\n'), ((1893, 2013), 'pymedphys._dicom.create.dicom_dataset_from_dict', 'dicom_dataset_from_dict', (["{'BeamSequence': [{'TreatmentMachineName': new_name}, {\n 'TreatmentMachineName': new_name}]}"], {}), "({'BeamSequence': [{'TreatmentMachineName': new_name\n }, {'TreatmentMachineName': new_name}]})\n", (1916, 2013), False, 'from pymedphys._dicom.create import dicom_dataset_from_dict\n'), ((2111, 2153), 'pymedphys._dicom.header.adjust_machine_name', 'adjust_machine_name', (['original_ds', 'new_name'], {}), '(original_ds, new_name)\n', (2130, 2153), False, 'from pymedphys._dicom.header import RED_adjustment_map_from_structure_names, adjust_machine_name, adjust_RED_by_structure_name, adjust_rel_elec_density\n'), ((2714, 3361), 'pymedphys._dicom.create.dicom_dataset_from_dict', 'dicom_dataset_from_dict', (["{'StructureSetROISequence': [{'ROINumber': 1, 'ROIName': 'to_be_changed 1'},\n {'ROINumber': 2, 'ROIName': 'dont_change_me'}, {'ROINumber': 10,\n 'ROIName': 'to_be_changed 2'}, {'ROINumber': 99, 'ROIName':\n 'to_be_changed 3'}], 'RTROIObservationsSequence': [{\n 'ReferencedROINumber': 1, 'ROIPhysicalPropertiesSequence': [{\n 'ROIPhysicalProperty': 'EFFECTIVE_Z', 'ROIPhysicalPropertyValue': 6}]},\n {'ReferencedROINumber': 2}, {'ReferencedROINumber': 10}, {\n 'ReferencedROINumber': 99, 'ROIPhysicalPropertiesSequence': [{\n 'ROIPhysicalProperty': 'REL_ELEC_DENSITY', 'ROIPhysicalPropertyValue': \n 0}]}]}"], {}), "({'StructureSetROISequence': [{'ROINumber': 1,\n 'ROIName': 'to_be_changed 1'}, {'ROINumber': 2, 'ROIName':\n 'dont_change_me'}, {'ROINumber': 10, 'ROIName': 'to_be_changed 2'}, {\n 'ROINumber': 99, 'ROIName': 'to_be_changed 3'}],\n 'RTROIObservationsSequence': [{'ReferencedROINumber': 1,\n 'ROIPhysicalPropertiesSequence': [{'ROIPhysicalProperty': 'EFFECTIVE_Z',\n 'ROIPhysicalPropertyValue': 6}]}, {'ReferencedROINumber': 2}, {\n 'ReferencedROINumber': 10}, {'ReferencedROINumber': 99,\n 'ROIPhysicalPropertiesSequence': [{'ROIPhysicalProperty':\n 'REL_ELEC_DENSITY', 'ROIPhysicalPropertyValue': 0}]}]})\n", (2737, 3361), False, 'from pymedphys._dicom.create import dicom_dataset_from_dict\n'), ((3926, 4667), 'pymedphys._dicom.create.dicom_dataset_from_dict', 'dicom_dataset_from_dict', (["{'RTROIObservationsSequence': [{'ReferencedROINumber': 1,\n 'ROIPhysicalPropertiesSequence': [{'ROIPhysicalProperty': 'EFFECTIVE_Z',\n 'ROIPhysicalPropertyValue': 6}, {'ROIPhysicalProperty':\n 'REL_ELEC_DENSITY', 'ROIPhysicalPropertyValue': adjustment_map[\n 'to_be_changed 1']}]}, {'ReferencedROINumber': 2}, {\n 'ReferencedROINumber': 10, 'ROIPhysicalPropertiesSequence': [{\n 'ROIPhysicalProperty': 'REL_ELEC_DENSITY', 'ROIPhysicalPropertyValue':\n adjustment_map['to_be_changed 2']}]}, {'ReferencedROINumber': 99,\n 'ROIPhysicalPropertiesSequence': [{'ROIPhysicalProperty':\n 'REL_ELEC_DENSITY', 'ROIPhysicalPropertyValue': adjustment_map[\n 'to_be_changed 3']}]}]}"], {'template_ds': 'original_ds'}), "({'RTROIObservationsSequence': [{\n 'ReferencedROINumber': 1, 'ROIPhysicalPropertiesSequence': [{\n 'ROIPhysicalProperty': 'EFFECTIVE_Z', 'ROIPhysicalPropertyValue': 6}, {\n 'ROIPhysicalProperty': 'REL_ELEC_DENSITY', 'ROIPhysicalPropertyValue':\n adjustment_map['to_be_changed 1']}]}, {'ReferencedROINumber': 2}, {\n 'ReferencedROINumber': 10, 'ROIPhysicalPropertiesSequence': [{\n 'ROIPhysicalProperty': 'REL_ELEC_DENSITY', 'ROIPhysicalPropertyValue':\n adjustment_map['to_be_changed 2']}]}, {'ReferencedROINumber': 99,\n 'ROIPhysicalPropertiesSequence': [{'ROIPhysicalProperty':\n 'REL_ELEC_DENSITY', 'ROIPhysicalPropertyValue': adjustment_map[\n 'to_be_changed 3']}]}]}, template_ds=original_ds)\n", (3949, 4667), False, 'from pymedphys._dicom.create import dicom_dataset_from_dict\n'), ((5623, 5675), 'pymedphys._dicom.header.adjust_rel_elec_density', 'adjust_rel_elec_density', (['original_ds', 'adjustment_map'], {}), '(original_ds, adjustment_map)\n', (5646, 5675), False, 'from pymedphys._dicom.header import RED_adjustment_map_from_structure_names, adjust_machine_name, adjust_RED_by_structure_name, adjust_rel_elec_density\n'), ((5794, 5888), 'pymedphys._dicom.header.adjust_rel_elec_density', 'adjust_rel_elec_density', (['original_ds', 'excess_adjustment_map'], {'ignore_missing_structure': '(True)'}), '(original_ds, excess_adjustment_map,\n ignore_missing_structure=True)\n', (5817, 5888), False, 'from pymedphys._dicom.header import RED_adjustment_map_from_structure_names, adjust_machine_name, adjust_RED_by_structure_name, adjust_rel_elec_density\n'), ((6850, 6906), 'pymedphys._dicom.header.RED_adjustment_map_from_structure_names', 'RED_adjustment_map_from_structure_names', (['structure_names'], {}), '(structure_names)\n', (6889, 6906), False, 'from pymedphys._dicom.header import RED_adjustment_map_from_structure_names, adjust_machine_name, adjust_RED_by_structure_name, adjust_rel_elec_density\n'), ((7553, 7842), 'pymedphys._dicom.create.dicom_dataset_from_dict', 'dicom_dataset_from_dict', (["{'RTROIObservationsSequence': [{'ReferencedROINumber': 1,\n 'ROIPhysicalPropertiesSequence': [{'ROIPhysicalProperty':\n 'REL_ELEC_DENSITY', 'ROIPhysicalPropertyValue': electron_density_to_use\n }]}, {'ReferencedROINumber': 2}]}"], {'template_ds': 'original_ds'}), "({'RTROIObservationsSequence': [{\n 'ReferencedROINumber': 1, 'ROIPhysicalPropertiesSequence': [{\n 'ROIPhysicalProperty': 'REL_ELEC_DENSITY', 'ROIPhysicalPropertyValue':\n electron_density_to_use}]}, {'ReferencedROINumber': 2}]}, template_ds=\n original_ds)\n", (7576, 7842), False, 'from pymedphys._dicom.create import dicom_dataset_from_dict\n'), ((8123, 8164), 'pymedphys._dicom.header.adjust_RED_by_structure_name', 'adjust_RED_by_structure_name', (['original_ds'], {}), '(original_ds)\n', (8151, 8164), False, 'from pymedphys._dicom.header import RED_adjustment_map_from_structure_names, adjust_machine_name, adjust_RED_by_structure_name, adjust_rel_elec_density\n'), ((1328, 1358), 'subprocess.check_call', 'subprocess.check_call', (['command'], {}), '(command)\n', (1349, 1358), False, 'import subprocess\n'), ((1385, 1439), 'pydicom.read_file', 'pydicom.read_file', (['ADJUSTED_DICOM_FILENAME'], {'force': '(True)'}), '(ADJUSTED_DICOM_FILENAME, force=True)\n', (1402, 1439), False, 'import pydicom\n'), ((1515, 1551), 'pymedphys._dicom.utilities.remove_file', 'remove_file', (['ORIGINAL_DICOM_FILENAME'], {}), '(ORIGINAL_DICOM_FILENAME)\n', (1526, 1551), False, 'from pymedphys._dicom.utilities import remove_file\n'), ((1560, 1596), 'pymedphys._dicom.utilities.remove_file', 'remove_file', (['ADJUSTED_DICOM_FILENAME'], {}), '(ADJUSTED_DICOM_FILENAME)\n', (1571, 1596), False, 'from pymedphys._dicom.utilities import remove_file\n'), ((1074, 1086), 'uuid.uuid4', 'uuid.uuid4', ([], {}), '()\n', (1084, 1086), False, 'import uuid\n'), ((1181, 1193), 'uuid.uuid4', 'uuid.uuid4', ([], {}), '()\n', (1191, 1193), False, 'import uuid\n'), ((6168, 6213), 'numpy.concatenate', 'np.concatenate', (['excess_adjustment_map_as_list'], {}), '(excess_adjustment_map_as_list)\n', (6182, 6213), True, 'import numpy as np\n')]
#!/usr/bin/env python3 import os, sys, re, json, requests, datetime, tarfile, argparse from pprint import pprint import numpy as np from utils.UrlUtils import UrlUtils server = 'https://qc.sentinel1.eo.esa.int/' cal_re = re.compile(r'S1\w_AUX_CAL') def cmdLineParse(): ''' Command line parser. ''' parser = argparse.ArgumentParser(description='Fetch calibration auxiliary files ingested into HySDS') parser.add_argument('-o', '--output', dest='outdir', type=str, default='.', help='Path to output directory') parser.add_argument('-d', '--dry-run', dest='dry_run', action='store_true', help="Don't download anything; just output the URLs") return parser.parse_args() def download_file(url, outdir='.', session=None): ''' Download file to specified directory. ''' if session is None: session = requests.session() path = "%s.tgz" % os.path.join(outdir, os.path.basename(url)) print('Downloading URL: ', url) request = session.get(url, stream=True, verify=False) request.raise_for_status() with open(path,'wb') as f: for chunk in request.iter_content(chunk_size=1024): if chunk: f.write(chunk) f.flush() return path def untar_file(path, outdir): ''' Extract aux cal files. ''' if not tarfile.is_tarfile(path): raise RuntimeError("%s is not a tarfile." % path) with tarfile.open(path) as f: f.extractall(outdir) def get_active_ids(es_url): """Query for the active calibration IDs.""" query = { "query":{ "bool":{ "must":[ {"term":{"_id": "S1_AUX_CAL_ACTIVE"}}, ] } }, "sort":[ { "starttime": { "order": "desc" } } ] } es_index = "grq_*_s1-aux_cal_active" if es_url.endswith('/'): search_url = '%s%s/_search' % (es_url, es_index) else: search_url = '%s/%s/_search' % (es_url, es_index) r = requests.post(search_url, data=json.dumps(query)) if r.status_code == 200: result = r.json() #pprint(result) total = result['hits']['total'] if total == 0: raise RuntimeError("Failed to find S1_AUX_CAL_ACTIVE at %s." % search_url) return result['hits']['hits'][0]['_source']['metadata']['active_ids'] else: print("Failed to query %s:\n%s" % (es_url, r.text), file=sys.stderr) print("query: %s" % json.dumps(query, indent=2), file=sys.stderr) print("returned: %s" % r.text, file=sys.stderr) r.raise_for_status() def get_cal_url(id, es_url): """Query for the active calibration url.""" query = { "query":{ "bool":{ "must":[ {"term":{"_id": id}}, ] } }, "fields": ["urls", "metadata.archive_filename"] } es_index = "grq_*_s1-aux_cal" if es_url.endswith('/'): search_url = '%s%s/_search' % (es_url, es_index) else: search_url = '%s/%s/_search' % (es_url, es_index) r = requests.post(search_url, data=json.dumps(query)) if r.status_code == 200: result = r.json() pprint(result) total = result['hits']['total'] if total == 0: raise RuntimeError("Failed to find %s at %s." % (id, search_url)) urls = result['hits']['hits'][0]['fields']['urls'] archive_fname = result['hits']['hits'][0]['fields']['metadata.archive_filename'][0] url = [x for x in urls if x.startswith('http')][0] #print(urls) #print(url) #print(archive_fname) return os.path.join(url, archive_fname) else: print("Failed to query %s:\n%s" % (es_url, r.text), file=sys.stderr) print("query: %s" % json.dumps(query, indent=2), file=sys.stderr) print("returned: %s" % r.text, file=sys.stderr) r.raise_for_status() def fetch(outdir, dry_run): # get endpoint configurations uu = UrlUtils() es_url = uu.rest_url # get active calibration ids active_ids = get_active_ids(es_url) print(active_ids) # get urls for active calibration files cal_urls = [get_cal_url(i, es_url) for i in active_ids] print(cal_urls) if len(cal_urls) == 0: print('Failed to find calibration auxiliary files') if dry_run: print('\n'.join(cal_urls)) else: if not os.path.isdir(outdir): os.makedirs(outdir) for cal_url in cal_urls: try: cal_file = download_file(cal_url, outdir) except: print('Failed to download URL: ', cal_url) raise try: cal_dir = untar_file(cal_file, outdir) except: print('Failed to untar: ', cal_file) raise os.unlink(cal_file) if __name__ == '__main__': inps = cmdLineParse() fetch(inps.outdir, inps.dry_run)
[ "requests.session", "tarfile.open", "argparse.ArgumentParser", "re.compile", "os.makedirs", "json.dumps", "utils.UrlUtils.UrlUtils", "tarfile.is_tarfile", "os.path.join", "os.path.isdir", "os.path.basename", "os.unlink", "pprint.pprint" ]
[((225, 252), 're.compile', 're.compile', (['"""S1\\\\w_AUX_CAL"""'], {}), "('S1\\\\w_AUX_CAL')\n", (235, 252), False, 'import os, sys, re, json, requests, datetime, tarfile, argparse\n'), ((329, 426), 'argparse.ArgumentParser', 'argparse.ArgumentParser', ([], {'description': '"""Fetch calibration auxiliary files ingested into HySDS"""'}), "(description=\n 'Fetch calibration auxiliary files ingested into HySDS')\n", (352, 426), False, 'import os, sys, re, json, requests, datetime, tarfile, argparse\n'), ((4057, 4067), 'utils.UrlUtils.UrlUtils', 'UrlUtils', ([], {}), '()\n', (4065, 4067), False, 'from utils.UrlUtils import UrlUtils\n'), ((878, 896), 'requests.session', 'requests.session', ([], {}), '()\n', (894, 896), False, 'import os, sys, re, json, requests, datetime, tarfile, argparse\n'), ((1362, 1386), 'tarfile.is_tarfile', 'tarfile.is_tarfile', (['path'], {}), '(path)\n', (1380, 1386), False, 'import os, sys, re, json, requests, datetime, tarfile, argparse\n'), ((1455, 1473), 'tarfile.open', 'tarfile.open', (['path'], {}), '(path)\n', (1467, 1473), False, 'import os, sys, re, json, requests, datetime, tarfile, argparse\n'), ((3252, 3266), 'pprint.pprint', 'pprint', (['result'], {}), '(result)\n', (3258, 3266), False, 'from pprint import pprint\n'), ((3704, 3736), 'os.path.join', 'os.path.join', (['url', 'archive_fname'], {}), '(url, archive_fname)\n', (3716, 3736), False, 'import os, sys, re, json, requests, datetime, tarfile, argparse\n'), ((941, 962), 'os.path.basename', 'os.path.basename', (['url'], {}), '(url)\n', (957, 962), False, 'import os, sys, re, json, requests, datetime, tarfile, argparse\n'), ((2065, 2082), 'json.dumps', 'json.dumps', (['query'], {}), '(query)\n', (2075, 2082), False, 'import os, sys, re, json, requests, datetime, tarfile, argparse\n'), ((3170, 3187), 'json.dumps', 'json.dumps', (['query'], {}), '(query)\n', (3180, 3187), False, 'import os, sys, re, json, requests, datetime, tarfile, argparse\n'), ((4473, 4494), 'os.path.isdir', 'os.path.isdir', (['outdir'], {}), '(outdir)\n', (4486, 4494), False, 'import os, sys, re, json, requests, datetime, tarfile, argparse\n'), ((4496, 4515), 'os.makedirs', 'os.makedirs', (['outdir'], {}), '(outdir)\n', (4507, 4515), False, 'import os, sys, re, json, requests, datetime, tarfile, argparse\n'), ((4872, 4891), 'os.unlink', 'os.unlink', (['cal_file'], {}), '(cal_file)\n', (4881, 4891), False, 'import os, sys, re, json, requests, datetime, tarfile, argparse\n'), ((2506, 2533), 'json.dumps', 'json.dumps', (['query'], {'indent': '(2)'}), '(query, indent=2)\n', (2516, 2533), False, 'import os, sys, re, json, requests, datetime, tarfile, argparse\n'), ((3852, 3879), 'json.dumps', 'json.dumps', (['query'], {'indent': '(2)'}), '(query, indent=2)\n', (3862, 3879), False, 'import os, sys, re, json, requests, datetime, tarfile, argparse\n')]
# Copyright 2005-2008, <NAME> # Copyright 2010, 2012 <NAME> # This software's license gives you freedom; you can copy, convey, # propagate, redistribute, modify and/or redistribute modified versions of # this program under the terms of the GNU Affero General Public License # (AGPL) as published by the Free Software Foundation (FSF), either # version 3 of the License, or (at your option) any later version of the # AGPL published by the FSF. # # This program is distributed in the hope that it will be useful, but # WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU Affero # General Public License for more details. # # You should have received a copy of the GNU Affero General Public License # along with this program in a file in the toplevel directory called # "AGPLv3". If not, see <http://www.gnu.org/licenses/>. from django.conf.urls import url, include from django.contrib import admin, admindocs from conservancy import feeds, frontpage, sponsors import conservancy.apps.fundgoal.views as fundgoal_views import conservancy.static.views as static_views admin.autodiscover() urlpatterns = [ url(r'^$', frontpage.view), url(r'^sponsors$', frontpage.view), url(r'^sponsors/$', sponsors.view), url(r'^sponsors/index.html$', sponsors.view), url(r'^admin/doc/', include('django.contrib.admindocs.urls')), url(r'^admin/', admin.site.urls), url(r'^feeds/blog/?$', feeds.BlogFeed()), url(r'^feeds/news/?$', feeds.PressReleaseFeed()), url(r'^feeds/omnibus/?$', feeds.OmnibusFeed()), url(r'^feeds/?$', feeds.view), url(r'^news(/|$)', include('conservancy.apps.news.urls')), url(r'^blog(/|$)', include('conservancy.apps.blog.urls')), # formerly static templated things... (dirs with templates) url(r'^error/(40[134]|500)(?:/index\.html|/|)$', static_views.handler), url(r'^error', static_views.index), url(r'^about', static_views.index), url(r'^donate', static_views.index), url(r'^copyleft-compliance', static_views.index, {'fundraiser_sought' : 'vmware-match-0'}), url(r'^projects', static_views.index), url(r'^npoacct', static_views.index, {'fundraiser_sought' : 'npoacct'}), url(r'^contractpatch', include('conservancy.apps.contractpatch.urls')), url(r'^overview', static_views.index), url(r'^privacy-policy', static_views.index), url(r'^supporter', include('conservancy.apps.supporter.urls')), url(r'^fundraiser_data', fundgoal_views.view), ]
[ "django.conf.urls.url", "conservancy.feeds.BlogFeed", "conservancy.feeds.OmnibusFeed", "conservancy.feeds.PressReleaseFeed", "django.conf.urls.include", "django.contrib.admin.autodiscover" ]
[((1144, 1164), 'django.contrib.admin.autodiscover', 'admin.autodiscover', ([], {}), '()\n', (1162, 1164), False, 'from django.contrib import admin, admindocs\n'), ((1186, 1211), 'django.conf.urls.url', 'url', (['"""^$"""', 'frontpage.view'], {}), "('^$', frontpage.view)\n", (1189, 1211), False, 'from django.conf.urls import url, include\n'), ((1218, 1251), 'django.conf.urls.url', 'url', (['"""^sponsors$"""', 'frontpage.view'], {}), "('^sponsors$', frontpage.view)\n", (1221, 1251), False, 'from django.conf.urls import url, include\n'), ((1258, 1291), 'django.conf.urls.url', 'url', (['"""^sponsors/$"""', 'sponsors.view'], {}), "('^sponsors/$', sponsors.view)\n", (1261, 1291), False, 'from django.conf.urls import url, include\n'), ((1298, 1341), 'django.conf.urls.url', 'url', (['"""^sponsors/index.html$"""', 'sponsors.view'], {}), "('^sponsors/index.html$', sponsors.view)\n", (1301, 1341), False, 'from django.conf.urls import url, include\n'), ((1415, 1446), 'django.conf.urls.url', 'url', (['"""^admin/"""', 'admin.site.urls'], {}), "('^admin/', admin.site.urls)\n", (1418, 1446), False, 'from django.conf.urls import url, include\n'), ((1605, 1633), 'django.conf.urls.url', 'url', (['"""^feeds/?$"""', 'feeds.view'], {}), "('^feeds/?$', feeds.view)\n", (1608, 1633), False, 'from django.conf.urls import url, include\n'), ((1830, 1900), 'django.conf.urls.url', 'url', (['"""^error/(40[134]|500)(?:/index\\\\.html|/|)$"""', 'static_views.handler'], {}), "('^error/(40[134]|500)(?:/index\\\\.html|/|)$', static_views.handler)\n", (1833, 1900), False, 'from django.conf.urls import url, include\n'), ((1906, 1939), 'django.conf.urls.url', 'url', (['"""^error"""', 'static_views.index'], {}), "('^error', static_views.index)\n", (1909, 1939), False, 'from django.conf.urls import url, include\n'), ((1946, 1979), 'django.conf.urls.url', 'url', (['"""^about"""', 'static_views.index'], {}), "('^about', static_views.index)\n", (1949, 1979), False, 'from django.conf.urls import url, include\n'), ((1986, 2020), 'django.conf.urls.url', 'url', (['"""^donate"""', 'static_views.index'], {}), "('^donate', static_views.index)\n", (1989, 2020), False, 'from django.conf.urls import url, include\n'), ((2027, 2119), 'django.conf.urls.url', 'url', (['"""^copyleft-compliance"""', 'static_views.index', "{'fundraiser_sought': 'vmware-match-0'}"], {}), "('^copyleft-compliance', static_views.index, {'fundraiser_sought':\n 'vmware-match-0'})\n", (2030, 2119), False, 'from django.conf.urls import url, include\n'), ((2150, 2186), 'django.conf.urls.url', 'url', (['"""^projects"""', 'static_views.index'], {}), "('^projects', static_views.index)\n", (2153, 2186), False, 'from django.conf.urls import url, include\n'), ((2193, 2262), 'django.conf.urls.url', 'url', (['"""^npoacct"""', 'static_views.index', "{'fundraiser_sought': 'npoacct'}"], {}), "('^npoacct', static_views.index, {'fundraiser_sought': 'npoacct'})\n", (2196, 2262), False, 'from django.conf.urls import url, include\n'), ((2364, 2400), 'django.conf.urls.url', 'url', (['"""^overview"""', 'static_views.index'], {}), "('^overview', static_views.index)\n", (2367, 2400), False, 'from django.conf.urls import url, include\n'), ((2407, 2449), 'django.conf.urls.url', 'url', (['"""^privacy-policy"""', 'static_views.index'], {}), "('^privacy-policy', static_views.index)\n", (2410, 2449), False, 'from django.conf.urls import url, include\n'), ((2524, 2568), 'django.conf.urls.url', 'url', (['"""^fundraiser_data"""', 'fundgoal_views.view'], {}), "('^fundraiser_data', fundgoal_views.view)\n", (2527, 2568), False, 'from django.conf.urls import url, include\n'), ((1368, 1408), 'django.conf.urls.include', 'include', (['"""django.contrib.admindocs.urls"""'], {}), "('django.contrib.admindocs.urls')\n", (1375, 1408), False, 'from django.conf.urls import url, include\n'), ((1476, 1492), 'conservancy.feeds.BlogFeed', 'feeds.BlogFeed', ([], {}), '()\n', (1490, 1492), False, 'from conservancy import feeds, frontpage, sponsors\n'), ((1522, 1546), 'conservancy.feeds.PressReleaseFeed', 'feeds.PressReleaseFeed', ([], {}), '()\n', (1544, 1546), False, 'from conservancy import feeds, frontpage, sponsors\n'), ((1579, 1598), 'conservancy.feeds.OmnibusFeed', 'feeds.OmnibusFeed', ([], {}), '()\n', (1596, 1598), False, 'from conservancy import feeds, frontpage, sponsors\n'), ((1659, 1696), 'django.conf.urls.include', 'include', (['"""conservancy.apps.news.urls"""'], {}), "('conservancy.apps.news.urls')\n", (1666, 1696), False, 'from django.conf.urls import url, include\n'), ((1722, 1759), 'django.conf.urls.include', 'include', (['"""conservancy.apps.blog.urls"""'], {}), "('conservancy.apps.blog.urls')\n", (1729, 1759), False, 'from django.conf.urls import url, include\n'), ((2311, 2357), 'django.conf.urls.include', 'include', (['"""conservancy.apps.contractpatch.urls"""'], {}), "('conservancy.apps.contractpatch.urls')\n", (2318, 2357), False, 'from django.conf.urls import url, include\n'), ((2475, 2517), 'django.conf.urls.include', 'include', (['"""conservancy.apps.supporter.urls"""'], {}), "('conservancy.apps.supporter.urls')\n", (2482, 2517), False, 'from django.conf.urls import url, include\n')]
import unittest from unittest.mock import Mock from graphene import Schema from graphene.test import Client from graphene_spike.query import Query class MainTest(unittest.TestCase): def setUp(self): self.schema = Schema(query=Query) self.client = client = Client(self.schema) def test_hello_should_work_without_argument(self): # Assign query_string = '{ hello }' # Acts executed = self.client.execute(query_string) # Assert self.assertEqual(executed['data'], {"hello": "Hello stranger, you have 18 !"}) def test_hello_should_write_the_giving_name(self): # Assign query_string = '{ hello(name: "Fabien") }' # Acts executed = self.client.execute(query_string) # Assert self.assertEqual(executed['data'], {"hello": "Hello Fabien, you have 18 !"}) def test_hello_should_write_the_giving_age(self): # Assign query_string = '{ hello(age: 24) }' # Acts executed = self.client.execute(query_string) # Assert self.assertEqual(executed['data'], {"hello": "Hello stranger, you have 24 !"}) def test_goodbye_should_giving_a_response(self): # Assign query_string = '{ goodbye }' # Acts executed = self.client.execute(query_string) # Assert self.assertEqual(executed['data'], {"goodbye": "See ya!"})
[ "graphene.Schema", "graphene.test.Client" ]
[((229, 248), 'graphene.Schema', 'Schema', ([], {'query': 'Query'}), '(query=Query)\n', (235, 248), False, 'from graphene import Schema\n'), ((280, 299), 'graphene.test.Client', 'Client', (['self.schema'], {}), '(self.schema)\n', (286, 299), False, 'from graphene.test import Client\n')]
from django.db import models from django.contrib import admin class Provider(models.Model): name = models.CharField(max_length=50) domain = models.CharField(max_length=50) class Meta: ordering = ['name'] app_label = 'api' def __str__(self): return self.domain @admin.register(Provider) class ProviderAdmin(admin.ModelAdmin): list_display = ('name', 'domain')
[ "django.contrib.admin.register", "django.db.models.CharField" ]
[((307, 331), 'django.contrib.admin.register', 'admin.register', (['Provider'], {}), '(Provider)\n', (321, 331), False, 'from django.contrib import admin\n'), ((105, 136), 'django.db.models.CharField', 'models.CharField', ([], {'max_length': '(50)'}), '(max_length=50)\n', (121, 136), False, 'from django.db import models\n'), ((150, 181), 'django.db.models.CharField', 'models.CharField', ([], {'max_length': '(50)'}), '(max_length=50)\n', (166, 181), False, 'from django.db import models\n')]
#!/usr/bin/env python # license removed for brevity import rospy from std_msgs.msg import String from gazebo_msgs.msg import LinkState def talker(): pub = rospy.Publisher('/gazebo/set_link_state', LinkState, queue_size=10) ppp = LinkState() rospy.init_node('talker', anonymous=True) rate = rospy.Rate(100) # 10hz i = 1 while not rospy.is_shutdown(): ppp.link_name = "platform" ppp.pose.position.x = 0.1 ppp.pose.position.y = 0.1 ppp.pose.position.z = 1 ppp.pose.orientation.x = 0 ppp.pose.orientation.y = 0 ppp.pose.orientation.z = 0 ppp.pose.orientation.w = 0 i = i+1 rospy.loginfo(ppp) pub.publish(ppp) rate.sleep() if __name__ == '__main__': try: talker() except rospy.ROSInterruptException: pass
[ "rospy.is_shutdown", "rospy.init_node", "gazebo_msgs.msg.LinkState", "rospy.Rate", "rospy.Publisher", "rospy.loginfo" ]
[((161, 228), 'rospy.Publisher', 'rospy.Publisher', (['"""/gazebo/set_link_state"""', 'LinkState'], {'queue_size': '(10)'}), "('/gazebo/set_link_state', LinkState, queue_size=10)\n", (176, 228), False, 'import rospy\n'), ((239, 250), 'gazebo_msgs.msg.LinkState', 'LinkState', ([], {}), '()\n', (248, 250), False, 'from gazebo_msgs.msg import LinkState\n'), ((255, 296), 'rospy.init_node', 'rospy.init_node', (['"""talker"""'], {'anonymous': '(True)'}), "('talker', anonymous=True)\n", (270, 296), False, 'import rospy\n'), ((313, 328), 'rospy.Rate', 'rospy.Rate', (['(100)'], {}), '(100)\n', (323, 328), False, 'import rospy\n'), ((360, 379), 'rospy.is_shutdown', 'rospy.is_shutdown', ([], {}), '()\n', (377, 379), False, 'import rospy\n'), ((680, 698), 'rospy.loginfo', 'rospy.loginfo', (['ppp'], {}), '(ppp)\n', (693, 698), False, 'import rospy\n')]
import torch from os import listdir, path from PIL import Image import torchvision class DiscriminatorDataset(torch.utils.data.Dataset): def __init__(self): super(DiscriminatorDataset, self).__init__() currentDir = path.dirname(__file__) abstractDir = path.join(currentDir, 'image_data/abstract') realisticDir = path.join(currentDir, 'image_data/realistic') abstractFiles = [path.join(abstractDir, f) for f in listdir( abstractDir) if path.isfile(path.join(abstractDir, f))] realisticFiles = [path.join(realisticDir, f) for f in listdir( realisticDir) if path.isfile(path.join(realisticDir, f))] self.abstractFilesLen = len(abstractFiles) self.allFiles = abstractFiles + realisticFiles def __len__(self): return len(self.allFiles) def __getitem__(self, index): filename = self.allFiles[index] pilImage = Image.open(filename).convert("RGB") return (torchvision.transforms.ToTensor()(pilImage), 1 if index < self.abstractFilesLen else 0)
[ "os.listdir", "PIL.Image.open", "os.path.join", "os.path.dirname", "torchvision.transforms.ToTensor" ]
[((238, 260), 'os.path.dirname', 'path.dirname', (['__file__'], {}), '(__file__)\n', (250, 260), False, 'from os import listdir, path\n'), ((283, 327), 'os.path.join', 'path.join', (['currentDir', '"""image_data/abstract"""'], {}), "(currentDir, 'image_data/abstract')\n", (292, 327), False, 'from os import listdir, path\n'), ((351, 396), 'os.path.join', 'path.join', (['currentDir', '"""image_data/realistic"""'], {}), "(currentDir, 'image_data/realistic')\n", (360, 396), False, 'from os import listdir, path\n'), ((422, 447), 'os.path.join', 'path.join', (['abstractDir', 'f'], {}), '(abstractDir, f)\n', (431, 447), False, 'from os import listdir, path\n'), ((560, 586), 'os.path.join', 'path.join', (['realisticDir', 'f'], {}), '(realisticDir, f)\n', (569, 586), False, 'from os import listdir, path\n'), ((457, 477), 'os.listdir', 'listdir', (['abstractDir'], {}), '(abstractDir)\n', (464, 477), False, 'from os import listdir, path\n'), ((596, 617), 'os.listdir', 'listdir', (['realisticDir'], {}), '(realisticDir)\n', (603, 617), False, 'from os import listdir, path\n'), ((933, 953), 'PIL.Image.open', 'Image.open', (['filename'], {}), '(filename)\n', (943, 953), False, 'from PIL import Image\n'), ((985, 1018), 'torchvision.transforms.ToTensor', 'torchvision.transforms.ToTensor', ([], {}), '()\n', (1016, 1018), False, 'import torchvision\n'), ((506, 531), 'os.path.join', 'path.join', (['abstractDir', 'f'], {}), '(abstractDir, f)\n', (515, 531), False, 'from os import listdir, path\n'), ((646, 672), 'os.path.join', 'path.join', (['realisticDir', 'f'], {}), '(realisticDir, f)\n', (655, 672), False, 'from os import listdir, path\n')]
"""Tests for the HAPServer.""" from socket import timeout from unittest.mock import Mock, MagicMock, patch import pytest from pyhap import hap_server @patch('pyhap.hap_server.HAPServer.server_bind', new=MagicMock()) @patch('pyhap.hap_server.HAPServer.server_activate', new=MagicMock()) def test_finish_request_pops_socket(): """Test that ``finish_request`` always clears the connection after a request.""" amock = Mock() client_addr = ('192.168.1.1', 55555) server_addr = ('', 51826) # Positive case: The request is handled server = hap_server.HAPServer(server_addr, amock, handler_type=lambda *args: MagicMock()) server.connections[client_addr] = amock server.finish_request(amock, client_addr) assert len(server.connections) == 0 # Negative case: The request fails with a timeout def raises(*args): raise timeout() server = hap_server.HAPServer(server_addr, amock, handler_type=raises) server.connections[client_addr] = amock server.finish_request(amock, client_addr) assert len(server.connections) == 0 # Negative case: The request raises some other exception server = hap_server.HAPServer(server_addr, amock, handler_type=lambda *args: 1 / 0) server.connections[client_addr] = amock with pytest.raises(Exception): server.finish_request(amock, client_addr) assert len(server.connections) == 0
[ "pyhap.hap_server.HAPServer", "unittest.mock.Mock", "unittest.mock.MagicMock", "socket.timeout", "pytest.raises" ]
[((426, 432), 'unittest.mock.Mock', 'Mock', ([], {}), '()\n', (430, 432), False, 'from unittest.mock import Mock, MagicMock, patch\n'), ((924, 985), 'pyhap.hap_server.HAPServer', 'hap_server.HAPServer', (['server_addr', 'amock'], {'handler_type': 'raises'}), '(server_addr, amock, handler_type=raises)\n', (944, 985), False, 'from pyhap import hap_server\n'), ((1226, 1300), 'pyhap.hap_server.HAPServer', 'hap_server.HAPServer', (['server_addr', 'amock'], {'handler_type': '(lambda *args: 1 / 0)'}), '(server_addr, amock, handler_type=lambda *args: 1 / 0)\n', (1246, 1300), False, 'from pyhap import hap_server\n'), ((901, 910), 'socket.timeout', 'timeout', ([], {}), '()\n', (908, 910), False, 'from socket import timeout\n'), ((1389, 1413), 'pytest.raises', 'pytest.raises', (['Exception'], {}), '(Exception)\n', (1402, 1413), False, 'import pytest\n'), ((207, 218), 'unittest.mock.MagicMock', 'MagicMock', ([], {}), '()\n', (216, 218), False, 'from unittest.mock import Mock, MagicMock, patch\n'), ((277, 288), 'unittest.mock.MagicMock', 'MagicMock', ([], {}), '()\n', (286, 288), False, 'from unittest.mock import Mock, MagicMock, patch\n'), ((664, 675), 'unittest.mock.MagicMock', 'MagicMock', ([], {}), '()\n', (673, 675), False, 'from unittest.mock import Mock, MagicMock, patch\n')]
import torch from torchaudio_unittest.common_utils import PytorchTestCase from torchaudio_unittest.models.emformer.emformer_test_impl import EmformerTestImpl class EmformerFloat32CPUTest(EmformerTestImpl, PytorchTestCase): dtype = torch.float32 device = torch.device("cpu") class EmformerFloat64CPUTest(EmformerTestImpl, PytorchTestCase): dtype = torch.float64 device = torch.device("cpu")
[ "torch.device" ]
[((264, 283), 'torch.device', 'torch.device', (['"""cpu"""'], {}), "('cpu')\n", (276, 283), False, 'import torch\n'), ((390, 409), 'torch.device', 'torch.device', (['"""cpu"""'], {}), "('cpu')\n", (402, 409), False, 'import torch\n')]
"""This module contains code for parsing RPC responses.""" from dataclasses import dataclass, field from typing import Union, Tuple, Any, Dict, List, Optional, Literal from apischema import alias from apischema.conversions import as_str from solana.publickey import PublicKey from solana.transaction import TransactionSignature as_str(PublicKey) TransactionErrorResult = Optional[dict] @dataclass class TransactionErr: """Container for possible transaction errors.""" err: TransactionErrorResult @dataclass class Context: """RPC result context.""" slot: int @dataclass class WithContext: """Base class for RPC result including context.""" context: Context @dataclass class AccountInfo: """Account information.""" lamports: int owner: PublicKey data: Union[Literal[""], Tuple[str, str], Dict[str, Any]] executable: bool rent_epoch: int = field(metadata=alias("rentEpoch")) @dataclass class AccountInfoAndContext(WithContext): """Account info and RPC result context.""" value: AccountInfo @dataclass class SubscriptionNotificationBase: """Base class for RPC subscription notifications.""" subscription: int result: Any @dataclass class AccountNotification(SubscriptionNotificationBase): """Account subscription notification.""" result: AccountInfoAndContext @dataclass class LogItem(TransactionErr): """Container for logs from logSubscribe.""" signature: TransactionSignature logs: Optional[List[str]] @dataclass class LogItemAndContext(WithContext): """Log item with RPC result context.""" value: LogItem @dataclass class LogsNotification(SubscriptionNotificationBase): """Logs subscription notification.""" result: LogItemAndContext @dataclass class ProgramAccount: """Program account pubkey and account info.""" pubkey: PublicKey account: AccountInfo @dataclass class ProgramAccountAndContext(WithContext): """Program subscription data with RPC result context.""" value: ProgramAccount @dataclass class ProgramNotification(SubscriptionNotificationBase): """Program subscription notification.""" result: ProgramAccountAndContext @dataclass class SignatureErrAndContext(WithContext): """Signature subscription error info with RPC result context.""" value: TransactionErr @dataclass class SignatureNotification(SubscriptionNotificationBase): """Signature subscription notification.""" result: SignatureErrAndContext @dataclass class SlotBase: """Base class for slot container.""" slot: int @dataclass class SlotInfo(SlotBase): """Slot info.""" parent: int root: int @dataclass class SlotNotification(SubscriptionNotificationBase): """Slot subscription notification.""" result: SlotInfo @dataclass class RootNotification(SubscriptionNotificationBase): """Root subscription notification.""" result: int @dataclass class SlotAndTimestampBase(SlotBase): """Base class for a slot with timestamp.""" timestamp: int @dataclass class FirstShredReceived(SlotAndTimestampBase): """First shread received update.""" type: Literal["firstShredReceived"] @dataclass class Completed(SlotAndTimestampBase): """Slot completed update.""" type: Literal["completed"] @dataclass class CreatedBank(SlotAndTimestampBase): """Created bank update.""" parent: int type: Literal["createdBank"] @dataclass class SlotTransactionStats: """Slot transaction stats.""" num_transaction_entries: int = field(metadata=alias("numTransactionEntries")) num_successful_transactions: int = field(metadata=alias("numSuccessfulTransactions")) num_failed_transactions: int = field(metadata=alias("numFailedTransactions")) max_transactions_per_entry: int = field(metadata=alias("maxTransactionsPerEntry")) @dataclass class Frozen(SlotAndTimestampBase): """Slot frozen update.""" stats: SlotTransactionStats type: Literal["frozen"] @dataclass class Dead(SlotAndTimestampBase): """Dead slot update.""" err: str type: Literal["dead"] @dataclass class OptimisticConfirmation(SlotAndTimestampBase): """Optimistic confirmation update.""" type: Literal["optimisticConfirmation"] @dataclass class Root(SlotAndTimestampBase): """Root update.""" type: Literal["root"] SlotsUpdatesItem = Union[FirstShredReceived, Completed, CreatedBank, Frozen, Dead, OptimisticConfirmation, Root] @dataclass class SlotsUpdatesNotification(SubscriptionNotificationBase): """Slots updates notification.""" result: SlotsUpdatesItem @dataclass class VoteItem: """Vote data.""" hash: str slots: List[int] timestamp: Optional[int] @dataclass class VoteNotification(SubscriptionNotificationBase): """Vote update notification.""" result: VoteItem SubscriptionNotification = Union[ AccountNotification, LogsNotification, ProgramNotification, SignatureNotification, SlotNotification, RootNotification, SlotsUpdatesNotification, VoteNotification, ]
[ "apischema.conversions.as_str", "apischema.alias" ]
[((332, 349), 'apischema.conversions.as_str', 'as_str', (['PublicKey'], {}), '(PublicKey)\n', (338, 349), False, 'from apischema.conversions import as_str\n'), ((917, 935), 'apischema.alias', 'alias', (['"""rentEpoch"""'], {}), "('rentEpoch')\n", (922, 935), False, 'from apischema import alias\n'), ((3584, 3614), 'apischema.alias', 'alias', (['"""numTransactionEntries"""'], {}), "('numTransactionEntries')\n", (3589, 3614), False, 'from apischema import alias\n'), ((3670, 3704), 'apischema.alias', 'alias', (['"""numSuccessfulTransactions"""'], {}), "('numSuccessfulTransactions')\n", (3675, 3704), False, 'from apischema import alias\n'), ((3756, 3786), 'apischema.alias', 'alias', (['"""numFailedTransactions"""'], {}), "('numFailedTransactions')\n", (3761, 3786), False, 'from apischema import alias\n'), ((3841, 3873), 'apischema.alias', 'alias', (['"""maxTransactionsPerEntry"""'], {}), "('maxTransactionsPerEntry')\n", (3846, 3873), False, 'from apischema import alias\n')]
""" Vesper archive settings. The Vesper server serves the Vesper archive that is in the directory in which the server starts. The archive settings are the composition of a set of default settings (hard-coded in this module) and settings (optionally) specified in the file "Archive Settings.yaml" in the archive directory. """ from pathlib import Path import os import sys from vesper.util.settings import Settings from vesper.util.settings_type import SettingsType import vesper.archive_paths as archive_paths _DEFAULT_SETTINGS = Settings.create_from_yaml(''' database: engine: SQLite ''') _SETTINGS_TYPE = SettingsType('Archive Settings', _DEFAULT_SETTINGS) _SETTINGS_FILE_NAME = 'Archive Settings.yaml' def _create_settings(): archive_dir_path = Path(os.getcwd()) settings = _load_settings_file(archive_dir_path) archive_paths.initialize(archive_dir_path, settings) return settings def _load_settings_file(archive_dir_path): file_path = archive_dir_path / _SETTINGS_FILE_NAME if not file_path.exists(): # settings file doex not exist return _SETTINGS_TYPE.defaults else: # settings file exists try: return _SETTINGS_TYPE.create_settings_from_yaml_file(file_path) except Exception as e: print(( 'Load failed for settings file "{}". Error message ' 'was: {}').format(file_path, str(e))) sys.exit(1) archive_settings = _create_settings()
[ "vesper.archive_paths.initialize", "vesper.util.settings.Settings.create_from_yaml", "os.getcwd", "sys.exit", "vesper.util.settings_type.SettingsType" ]
[((536, 599), 'vesper.util.settings.Settings.create_from_yaml', 'Settings.create_from_yaml', (['"""\ndatabase:\n engine: SQLite\n"""'], {}), '("""\ndatabase:\n engine: SQLite\n""")\n', (561, 599), False, 'from vesper.util.settings import Settings\n'), ((619, 670), 'vesper.util.settings_type.SettingsType', 'SettingsType', (['"""Archive Settings"""', '_DEFAULT_SETTINGS'], {}), "('Archive Settings', _DEFAULT_SETTINGS)\n", (631, 670), False, 'from vesper.util.settings_type import SettingsType\n'), ((843, 895), 'vesper.archive_paths.initialize', 'archive_paths.initialize', (['archive_dir_path', 'settings'], {}), '(archive_dir_path, settings)\n', (867, 895), True, 'import vesper.archive_paths as archive_paths\n'), ((773, 784), 'os.getcwd', 'os.getcwd', ([], {}), '()\n', (782, 784), False, 'import os\n'), ((1487, 1498), 'sys.exit', 'sys.exit', (['(1)'], {}), '(1)\n', (1495, 1498), False, 'import sys\n')]
import subprocess from LEGEND import tbot as bot from LEGEND import tbot as borg from LEGEND.events import register from LEGEND import OWNER_ID, SUDO_USERS import asyncio import traceback import io import os import sys import time from telethon.tl import functions from telethon.tl import types from telethon.tl.types import * from telethon.errors import * @register(pattern="^/bash (.*)") async def msg(event): if event.sender_id == OWNER_ID: pass else: return PROCESS_RUN_TIME = 100 cmd = event.pattern_match.group(1) reply_to_id = event.message.id if event.reply_to_msg_id: reply_to_id = event.reply_to_msg_id time.time() + PROCESS_RUN_TIME process = await asyncio.create_subprocess_shell( cmd, stdout=asyncio.subprocess.PIPE, stderr=asyncio.subprocess.PIPE ) stdout, stderr = await process.communicate() e = stderr.decode() if not e: e = "No Error" o = stdout.decode() if not o: o = "**Tip**: \n`If you want to see the results of your code, I suggest printing them to stdout.`" else: _o = o.split("\n") o = "`\n".join(_o) await event.reply(f"**QUERY:**\n__Command:__\n`{cmd}` \n__PID:__\n`{process.pid}`\n\n**stderr:** \n`{e}`\n**Output:**\n{o}" ) @register(pattern="^/eval") async def _(event): if event.sender_id == OWNER_ID: pass elif event.sender_id in SUDO_USERS: pass else: return cmd = event.text.split(" ", maxsplit=1)[1] reply_to_id = event.message.id if event.reply_to_msg_id: reply_to_id = event.reply_to_msg_id old_stderr = sys.stderr old_stdout = sys.stdout redirected_output = sys.stdout = io.StringIO() redirected_error = sys.stderr = io.StringIO() stdout, stderr, exc = None, None, None try: await aexec(cmd, event) except Exception: exc = traceback.format_exc() stdout = redirected_output.getvalue() stderr = redirected_error.getvalue() sys.stdout = old_stdout sys.stderr = old_stderr evaluation = "" if exc: evaluation = exc elif stderr: evaluation = stderr elif stdout: evaluation = stdout else: evaluation = "Success" final_output = "**EVAL**: `{}` \n\n **OUTPUT**: \n`{}` \n".format(cmd, evaluation) MAX_MESSAGE_SIZE_LIMIT = 4095 if len(final_output) > MAX_MESSAGE_SIZE_LIMIT: with io.BytesIO(str.encode(final_output)) as out_file: out_file.name = "eval.text" await bot.send_file( event.chat_id, out_file, force_document=True, allow_cache=False, caption=cmd, reply_to=reply_to_id, ) else: await event.reply(final_output) async def aexec(code, smessatatus): message = event = smessatatus def p(_x): return print(slitu.yaml_format(_x)) reply = await event.get_reply_message() exec( "async def __aexec(message, reply, client, p): " + "\n event = smessatatus = message" + "".join(f"\n {l}" for l in code.split("\n")) ) return await locals()["__aexec"](message, reply, bot, p)
[ "traceback.format_exc", "LEGEND.events.register", "LEGEND.tbot.send_file", "io.StringIO", "asyncio.create_subprocess_shell", "time.time" ]
[((360, 391), 'LEGEND.events.register', 'register', ([], {'pattern': '"""^/bash (.*)"""'}), "(pattern='^/bash (.*)')\n", (368, 391), False, 'from LEGEND.events import register\n'), ((1284, 1310), 'LEGEND.events.register', 'register', ([], {'pattern': '"""^/eval"""'}), "(pattern='^/eval')\n", (1292, 1310), False, 'from LEGEND.events import register\n'), ((1708, 1721), 'io.StringIO', 'io.StringIO', ([], {}), '()\n', (1719, 1721), False, 'import io\n'), ((1758, 1771), 'io.StringIO', 'io.StringIO', ([], {}), '()\n', (1769, 1771), False, 'import io\n'), ((667, 678), 'time.time', 'time.time', ([], {}), '()\n', (676, 678), False, 'import time\n'), ((718, 823), 'asyncio.create_subprocess_shell', 'asyncio.create_subprocess_shell', (['cmd'], {'stdout': 'asyncio.subprocess.PIPE', 'stderr': 'asyncio.subprocess.PIPE'}), '(cmd, stdout=asyncio.subprocess.PIPE, stderr\n =asyncio.subprocess.PIPE)\n', (749, 823), False, 'import asyncio\n'), ((1893, 1915), 'traceback.format_exc', 'traceback.format_exc', ([], {}), '()\n', (1913, 1915), False, 'import traceback\n'), ((2539, 2657), 'LEGEND.tbot.send_file', 'bot.send_file', (['event.chat_id', 'out_file'], {'force_document': '(True)', 'allow_cache': '(False)', 'caption': 'cmd', 'reply_to': 'reply_to_id'}), '(event.chat_id, out_file, force_document=True, allow_cache=\n False, caption=cmd, reply_to=reply_to_id)\n', (2552, 2657), True, 'from LEGEND import tbot as bot\n')]
# Status: Being ported by Steven Watanabe # Base revision: 47077 # # Copyright (c) 2005 <NAME>. # Copyright 2006 <NAME> # Copyright (c) 2008 <NAME> # # Use, modification and distribution is subject to the Boost Software # License Version 1.0. (See accompanying file LICENSE_1_0.txt or # http://www.boost.org/LICENSE_1_0.txt) ##### Using Precompiled Headers (Quick Guide) ##### # # Make precompiled mypch.hpp: # # import pch ; # # cpp-pch mypch # : # sources # mypch.hpp # : # requiremnts # <toolset>msvc:<source>mypch.cpp # ; # # Add cpp-pch to sources: # # exe hello # : main.cpp hello.cpp mypch # ; from b2.build import type, feature, generators from b2.tools import builtin type.register('PCH', ['pch']) type.register('C_PCH', [], 'PCH') type.register('CPP_PCH', [], 'PCH') # Control precompiled header (PCH) generation. feature.feature('pch', ['on', 'off'], ['propagated']) feature.feature('pch-header', [], ['free', 'dependency']) feature.feature('pch-file', [], ['free', 'dependency']) class PchGenerator(generators.Generator): """ Base PCH generator. The 'run' method has the logic to prevent this generator from being run unless it's being used for a top-level PCH target. """ def action_class(self): return builtin.CompileAction def run(self, project, name, prop_set, sources): if not name: # Unless this generator is invoked as the top-most generator for a # main target, fail. This allows using 'H' type as input type for # this generator, while preventing Boost.Build to try this generator # when not explicitly asked for. # # One bad example is msvc, where pch generator produces both PCH # target and OBJ target, so if there's any header generated (like by # bison, or by msidl), we'd try to use pch generator to get OBJ from # that H, which is completely wrong. By restricting this generator # only to pch main target, such problem is solved. pass else: r = self.run_pch(project, name, prop_set.add_raw(['<define>BOOST_BUILD_PCH_ENABLED']), sources) return generators.add_usage_requirements( r, ['<define>BOOST_BUILD_PCH_ENABLED']) # This rule must be overridden by the derived classes. def run_pch(self, project, name, prop_set, sources): pass # NOTE: requirements are empty, default pch generator can be applied when # pch=off. generators.register(builtin.DummyGenerator( "pch.default-c-pch-generator", False, [], ['C_PCH'], [])) generators.register(builtin.DummyGenerator( "pch.default-cpp-pch-generator", False, [], ['CPP_PCH'], []))
[ "b2.build.generators.add_usage_requirements", "b2.tools.builtin.DummyGenerator", "b2.build.feature.feature", "b2.build.type.register" ]
[((728, 757), 'b2.build.type.register', 'type.register', (['"""PCH"""', "['pch']"], {}), "('PCH', ['pch'])\n", (741, 757), False, 'from b2.build import type, feature, generators\n'), ((758, 791), 'b2.build.type.register', 'type.register', (['"""C_PCH"""', '[]', '"""PCH"""'], {}), "('C_PCH', [], 'PCH')\n", (771, 791), False, 'from b2.build import type, feature, generators\n'), ((792, 827), 'b2.build.type.register', 'type.register', (['"""CPP_PCH"""', '[]', '"""PCH"""'], {}), "('CPP_PCH', [], 'PCH')\n", (805, 827), False, 'from b2.build import type, feature, generators\n'), ((876, 929), 'b2.build.feature.feature', 'feature.feature', (['"""pch"""', "['on', 'off']", "['propagated']"], {}), "('pch', ['on', 'off'], ['propagated'])\n", (891, 929), False, 'from b2.build import type, feature, generators\n'), ((963, 1020), 'b2.build.feature.feature', 'feature.feature', (['"""pch-header"""', '[]', "['free', 'dependency']"], {}), "('pch-header', [], ['free', 'dependency'])\n", (978, 1020), False, 'from b2.build import type, feature, generators\n'), ((1021, 1076), 'b2.build.feature.feature', 'feature.feature', (['"""pch-file"""', '[]', "['free', 'dependency']"], {}), "('pch-file', [], ['free', 'dependency'])\n", (1036, 1076), False, 'from b2.build import type, feature, generators\n'), ((2632, 2711), 'b2.tools.builtin.DummyGenerator', 'builtin.DummyGenerator', (['"""pch.default-c-pch-generator"""', '(False)', '[]', "['C_PCH']", '[]'], {}), "('pch.default-c-pch-generator', False, [], ['C_PCH'], [])\n", (2654, 2711), False, 'from b2.tools import builtin\n'), ((2738, 2826), 'b2.tools.builtin.DummyGenerator', 'builtin.DummyGenerator', (['"""pch.default-cpp-pch-generator"""', '(False)', '[]', "['CPP_PCH']", '[]'], {}), "('pch.default-cpp-pch-generator', False, [], [\n 'CPP_PCH'], [])\n", (2760, 2826), False, 'from b2.tools import builtin\n'), ((2305, 2378), 'b2.build.generators.add_usage_requirements', 'generators.add_usage_requirements', (['r', "['<define>BOOST_BUILD_PCH_ENABLED']"], {}), "(r, ['<define>BOOST_BUILD_PCH_ENABLED'])\n", (2338, 2378), False, 'from b2.build import type, feature, generators\n')]