conll2003-v2 / conll2003-v2.py
lunesco's picture
Update conll2003-v2.py
3c226b5
# coding=utf-8
# Copyright 2020 HuggingFace Datasets Authors.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# Lint as: python3
"""Introduction to the CoNLL-2003 Shared Task: Language-Independent Named Entity Recognition"""
import os
import datasets
from datasets import load_dataset
logger = datasets.logging.get_logger(__name__)
_CITATION = """\
@inproceedings{tjong-kim-sang-de-meulder-2003-introduction,
title = "Introduction to the {C}o{NLL}-2003 Shared Task: Language-Independent Named Entity Recognition",
author = "Tjong Kim Sang, Erik F. and
De Meulder, Fien",
booktitle = "Proceedings of the Seventh Conference on Natural Language Learning at {HLT}-{NAACL} 2003",
year = "2003",
url = "https://www.aclweb.org/anthology/W03-0419",
pages = "142--147",
}
"""
_DESCRIPTION = """\
The shared task of CoNLL-2003 concerns language-independent named entity recognition. We will concentrate on
four types of named entities: persons, locations, organizations and names of miscellaneous entities that do
not belong to the previous three groups.
The CoNLL-2003 shared task data files contain four columns separated by a single space. Each word has been put on
a separate line and there is an empty line after each sentence. The first item on each line is a word, the second
a part-of-speech (POS) tag, the third a syntactic chunk tag and the fourth the named entity tag. The chunk tags
and the named entity tags have the format I-TYPE which means that the word is inside a phrase of type TYPE. Only
if two phrases of the same type immediately follow each other, the first word of the second phrase will have tag
B-TYPE to show that it starts a new phrase. A word with tag O is not part of a phrase. Note the dataset uses IOB2
tagging scheme, whereas the original dataset uses IOB1.
For more details see https://www.clips.uantwerpen.be/conll2003/ner/ and https://www.aclweb.org/anthology/W03-0419
"""
# _URL = "https://github.com/lunesco/conll2003-v2/raw/0f150c8a0c7137def22655f46f5514aed8e09d24/conll2003_v2.zip"
_URL = "https://github.com/lunesco/conll2003-v2/raw/25ff141d9deb913f3c682afff97b789acda0b18b/conll2003_v3.zip"
_TRAINING_FILE = "train.txt"
_DEV_FILE = "valid.txt"
_TEST_FILE = "test.txt"
class Conll2003Config(datasets.BuilderConfig):
"""BuilderConfig for Conll2003"""
def __init__(self, **kwargs):
"""BuilderConfig forConll2003.
Args:
**kwargs: keyword arguments forwarded to super.
"""
super(Conll2003Config, self).__init__(**kwargs)
class Conll2003(datasets.GeneratorBasedBuilder):
"""Conll2003 dataset."""
BUILDER_CONFIGS = [
Conll2003Config(name="conll2003-v2", version=datasets.Version("1.0.0"), description="Conll2003 dataset"),
]
def _info(self): # 49, 23, 42 dlugosc (vs 47, 23, 9)
return datasets.DatasetInfo(
description=_DESCRIPTION,
features=datasets.Features(
{
"id": datasets.Value("string"),
"tokens": datasets.Sequence(datasets.Value("string")),
"pos_tags": datasets.Sequence(
datasets.features.ClassLabel(
names=['VAFIN', 'PPOSAT', 'NN', 'APPR', 'ADV', 'VVINF', '$.', 'NE',
'CARD', 'TRUNC', 'XY', 'ADJA', 'ART', 'VVFIN', 'PPER', 'APPRART',
'$[', 'VVPP', 'KON', '$,', 'PTKVZ', 'ADJD', 'PIAT', 'PRELS',
'PTKNEG', 'VAINF', 'VMFIN', 'PTKZU', 'PROAV', 'PIDAT', 'PDS',
'PWAV', 'PWS', 'KOUS', 'PIS', 'PRF', 'FM', 'ITJ', 'PTKANT', 'PDAT',
'VVIZU', 'PWAT', 'APZR', 'KOKOM', 'VVIMP', 'PTKA', 'KOUI', 'APPO',
'VAPP', 'VMINF'] # 50
)
),
"chunk_tags": datasets.Sequence(
datasets.features.ClassLabel(
names=['I-VA', 'I-PP', 'I-NN', 'I-AP', 'I-AD', 'I-VV', 'I-$.', 'I-NE',
'-X-', 'I-CA', 'I-TR', 'I-XY', 'I-AR', 'I-$[', 'I-KO', 'I-$,',
'I-PT', 'I-PI', 'I-PR', 'I-VM', 'I-PD', 'I-PW', 'I-FM', 'I-IT'] # 24
)
),
"ner_tags": datasets.Sequence(
datasets.features.ClassLabel(
names=['O', 'B-organization-company', 'B-location-route',
'B-trigger', 'B-location-stop', 'B-date', 'B-location-city',
'B-event-cause', 'I-event-cause', 'B-time', 'I-time', 'B-number',
'B-organization', 'I-organization', 'B-location-street',
'I-trigger', 'B-location', 'I-location', 'I-location-city',
'I-organization-company', 'B-duration', 'I-duration',
'I-location-street', 'I-location-stop', 'I-location-route',
'B-person', 'I-date', 'B-set', 'B-money', 'I-person', 'I-money',
'B-distance', 'I-distance', 'I-number', 'B-disaster-type',
'B-org-position', 'I-org-position', 'I-set', 'B-percent',
'I-percent', 'I-disaster-type'] # 41
)
),
}
),
supervised_keys=None,
homepage="https://www.aclweb.org/anthology/W03-0419/",
citation=_CITATION,
)
def _split_generators(self, dl_manager):
"""Returns SplitGenerators."""
downloaded_file = dl_manager.download_and_extract(_URL)
data_files = {
"train": os.path.join(downloaded_file, _TRAINING_FILE),
"dev": os.path.join(downloaded_file, _DEV_FILE),
"test": os.path.join(downloaded_file, _TEST_FILE),
}
return [
datasets.SplitGenerator(name=datasets.Split.TRAIN, gen_kwargs={"filepath": data_files["train"]}),
datasets.SplitGenerator(name=datasets.Split.VALIDATION, gen_kwargs={"filepath": data_files["dev"]}),
datasets.SplitGenerator(name=datasets.Split.TEST, gen_kwargs={"filepath": data_files["test"]}),
]
def _generate_examples(self, filepath):
logger.info("⏳ Generating examples from = %s", filepath)
with open(filepath, encoding="utf-8") as f:
guid = 0
tokens = []
pos_tags = []
chunk_tags = []
ner_tags = []
for line in f:
if line.startswith("-DOCSTART-") or line == "" or line == "\n":
if tokens:
yield guid, {
"id": str(guid),
"tokens": tokens,
"pos_tags": pos_tags,
"chunk_tags": chunk_tags,
"ner_tags": ner_tags,
}
guid += 1
tokens = []
pos_tags = []
chunk_tags = []
ner_tags = []
else:
# conll2003 tokens are space separated
splits = line.split(" ")
tokens.append(splits[0])
pos_tags.append(splits[1])
chunk_tags.append(splits[2])
ner_tags.append(splits[3].rstrip())
# last example
if tokens:
yield guid, {
"id": str(guid),
"tokens": tokens,
"pos_tags": pos_tags,
"chunk_tags": chunk_tags,
"ner_tags": ner_tags,
}