Datasets:

Modalities:
Text
Formats:
json
Libraries:
Datasets
Dask
License:
dododododo commited on
Commit
c13c43b
·
verified ·
1 Parent(s): df44222

Delete Matrix.py

Browse files
Files changed (1) hide show
  1. Matrix.py +0 -121
Matrix.py DELETED
@@ -1,121 +0,0 @@
1
- # -*- coding: utf-8 -*-
2
-
3
- import glob
4
- import orjson
5
- import os
6
-
7
- import datasets
8
- from itertools import islice
9
-
10
- _DESCRIPTION = """
11
- An open-source pretraining dataset containing 4690 billion tokens,
12
- this bilingual dataset with both English and Chinese texts is used for training neo models.
13
- """
14
-
15
- _CITATION = """
16
- @article{zhang2024mapneo,
17
- title = {MAP-Neo: Highly Capable and Transparent Bilingual Large Language Model Series},
18
- author = {
19
- Ge Zhang and
20
- Scott Qu and
21
- Jiaheng Liu and
22
- Chenchen Zhang and
23
- Chenghua Lin and
24
- Chou Leuang Yu and
25
- Danny Pan and
26
- Esther Cheng and
27
- Jie Liu and
28
- Qunshu Lin and
29
- Raven Yuan and
30
- Tuney Zheng and
31
- Wei Pang and
32
- Xinrun Du and
33
- Yiming Liang and
34
- Yinghao Ma and
35
- Yizhi Li and
36
- Ziyang Ma and
37
- Bill Lin and
38
- Emmanouil Benetos and
39
- Huan Yang and
40
- Junting Zhou and
41
- Kaijing Ma and
42
- Minghao Liu and
43
- Morry Niu and
44
- Noah Wang and
45
- Quehry Que and
46
- Ruibo Liu and
47
- Sine Liu and
48
- Shawn Guo and
49
- Soren Gao and
50
- Wangchunshu Zhou and
51
- Xinyue Zhang and
52
- Yizhi Zhou and
53
- Yubo Wang and
54
- Yuelin Bai and
55
- Yuhan Zhang and
56
- Yuxiang Zhang and
57
- Zenith Wang and
58
- Zhenzhu Yang and
59
- Zijian Zhao and
60
- Jiajun Zhang and
61
- Wanli Ouyang and
62
- Wenhao Huang and
63
- Wenhu Chen
64
- },
65
- year = {2024},
66
- journal = {arXiv preprint arXiv: 2405.19327}
67
- }
68
- """
69
-
70
- _HOMEPAGE = "https://huggingface.co/datasets/m-a-p/Matrix"
71
-
72
-
73
- class MatrixDataset(datasets.GeneratorBasedBuilder):
74
- """Custom dataset for JSON files with filtering capabilities."""
75
-
76
- VERSION = datasets.Version("1.0.0")
77
-
78
- def _info(self):
79
- return datasets.DatasetInfo(
80
- description=_DESCRIPTION,
81
- features=datasets.Features({
82
- "id": datasets.Value("string"),
83
- "text": datasets.Value("string"),
84
- }),
85
- homepage=_HOMEPAGE,
86
- citation=_CITATION,
87
- )
88
-
89
- def _split_generators(self, dl_manager):
90
- """Returns SplitGenerators."""
91
- import random
92
-
93
- data_files = glob.glob("*/*.jsonl")
94
- data_shards = []
95
- for filepath in data_files:
96
- # max size of each shard is 1GB
97
- num_shards = -os.path.getsize(filepath) // -1024**3
98
- for i in range(num_shards):
99
- data_shards.append((filepath, i, num_shards))
100
- random.Random(42).shuffle(data_shards)
101
-
102
- return [
103
- datasets.SplitGenerator(
104
- name=datasets.Split.TRAIN,
105
- gen_kwargs={
106
- "data_shards": data_shards,
107
- },
108
- ),
109
- ]
110
-
111
- def _generate_examples(self, data_shards):
112
- for file, split, num_shards in data_shards:
113
- with open(file, "r") as f:
114
- for i, line in islice(enumerate(f), split, None, num_shards):
115
- data = orjson.loads(line)
116
- if 'id' not in data:
117
- data['id'] = f"{file}_{i}"
118
- if 'content' in data and 'text' not in data:
119
- data['text'] = data.pop('content')
120
- if data['text'] is not None:
121
- yield data["id"], data