File size: 4,020 Bytes
1ee787d
 
 
 
 
 
 
 
 
 
 
 
51b173f
1ee787d
 
 
51b173f
1ee787d
 
 
 
51b173f
 
 
 
 
 
 
 
 
 
 
1ee787d
 
 
 
51b173f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
77868da
 
 
 
 
 
1ee787d
 
 
 
51b173f
 
 
 
1ee787d
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
---
# pretty_name: "" # Example: "MS MARCO Terrier Index"
tags:
- pyterrier
- pyterrier-artifact
- pyterrier-artifact.sparse_index
- pyterrier-artifact.sparse_index.pisa
task_categories:
- text-retrieval
viewer: false
---

# MS MARCO PISA Index

## Description

This is an index of the MS MARCO passage (v1) dataset with PISA. It can be used for passage retrieval using lexical methods.

## Usage

```python
>>> from pyterrier_pisa import PisaIndex
>>> index = PisaIndex.from_hf('macavaney/msmarco-passage.pisa')
>>> bm25 = index.bm25()
>>> bm25.search('terrier breeds')
    qid           query    docno      score  rank
0     1  terrier breeds  1406578  22.686367     0
1     1  terrier breeds  5785957  22.611134     1
2     1  terrier breeds  7455374  22.592781     2
3     1  terrier breeds  3984886  22.242958     3
4     1  terrier breeds  3984893  22.009525     4
...
```

## Benchmarks

**TREC DL 2019**

<details>
  <summary>Code</summary>

```python
from ir_measures import nDCG, RR, MAP, R
import pyterrier as pt
from pyterrier_pisa import PisaIndex
index = PisaIndex.from_hf('macavaney/msmarco-passage.pisa')
dataset = pt.get_dataset('irds:msmarco-passage/trec-dl-2019/judged')
pt.Experiment(
  [index.bm25(), index.qld(), index.dph(), index.pl2()],
  dataset.get_topics(),
  dataset.get_qrels(),
  [nDCG@10, nDCG, RR(rel=2), MAP(rel=2), R(rel=2)@1000],
  ['BM25', 'QLD', 'DPH', 'PL2'],
  round=4,
)
```
</details>

|    | name   |   nDCG@10 |   nDCG |   RR(rel=2) |   AP(rel=2) |   R(rel=2)@1000 |
|---:|:-------|----------:|-------:|------------:|------------:|----------------:|
|  0 | BM25   |    0.4989 | 0.6023 |      0.6804 |      0.3031 |          0.7555 |
|  1 | QLD    |    0.468  | 0.5984 |      0.6047 |      0.3037 |          0.7601 |
|  2 | DPH    |    0.4975 | 0.5907 |      0.6674 |      0.3009 |          0.7436 |
|  3 | PL2    |    0.4503 | 0.5681 |      0.6495 |      0.2679 |          0.7304 |

**TREC DL 2020**

<details>
  <summary>Code</summary>

```python
from ir_measures import nDCG, RR, MAP, R
import pyterrier as pt
from pyterrier_pisa import PisaIndex
index = PisaIndex.from_hf('macavaney/msmarco-passage.pisa')
dataset = pt.get_dataset('irds:msmarco-passage/trec-dl-2020/judged')
pt.Experiment(
  [index.bm25(), index.qld(), index.dph(), index.pl2()],
  dataset.get_topics(),
  dataset.get_qrels(),
  [nDCG@10, nDCG, RR(rel=2), MAP(rel=2), R(rel=2)@1000],
  ['BM25', 'QLD', 'DPH', 'PL2'],
  round=4,
)
```
</details>

|    | name   |   nDCG@10 |   nDCG |   RR(rel=2) |   AP(rel=2) |   R(rel=2)@1000 |
|---:|:-------|----------:|-------:|------------:|------------:|----------------:|
|  0 | BM25   |    0.4793 | 0.5963 |      0.6529 |      0.2974 |          0.8048 |
|  1 | QLD    |    0.4511 | 0.587  |      0.5812 |      0.2879 |          0.8125 |
|  2 | DPH    |    0.4586 | 0.5704 |      0.6123 |      0.2779 |          0.798  |
|  3 | PL2    |    0.4552 | 0.5609 |      0.5788 |      0.2666 |          0.7772 |

**MS MARCO Dev (small)**

<details>
  <summary>Code</summary>

```python
from ir_measures import RR, R
import pyterrier as pt
from pyterrier_pisa import PisaIndex
index = PisaIndex.from_hf('macavaney/msmarco-passage.pisa')
dataset = pt.get_dataset('irds:msmarco-passage/dev/small')
pt.Experiment(
  [index.bm25(), index.qld(), index.dph(), index.pl2()],
  dataset.get_topics(),
  dataset.get_qrels(),
  [RR@10, R@1000],
  ['BM25', 'QLD', 'DPH', 'PL2'],
  round=4,
)
```
</details>

|    | name   |   RR@10 |   R@1000 |
|---:|:-------|--------:|---------:|
|  0 | BM25   |  0.185  |   0.8677 |
|  1 | QLD    |  0.1683 |   0.8542 |
|  2 | DPH    |  0.1782 |   0.8605 |
|  3 | PL2    |  0.1741 |   0.8607 |

## Reproduction

```python
>>> import pyterrier_pisa
>>> import pyterrier as pt
>>> idx = pyterrier_pisa.PisaIndex('msmarco-passage.pisa')
>>> idx.indexer().index(pt.get_dataset('irds:msmarco-passage').get_corpus_iter())
```

## Metadata

```
{
  "type": "sparse_index",
  "format": "pisa",
  "package_hint": "pyterrier-pisa",
  "stemmer": "porter2"
}
```