--- # pretty_name: "" # Example: "MS MARCO Terrier Index" tags: - pyterrier - pyterrier-artifact - pyterrier-artifact.sparse_index - pyterrier-artifact.sparse_index.pisa task_categories: - text-retrieval viewer: false --- # MS MARCO PISA Index ## Description This is an index of the MS MARCO passage (v1) dataset with PISA. It can be used for passage retrieval using lexical methods. ## Usage ```python >>> from pyterrier_pisa import PisaIndex >>> index = PisaIndex.from_hf('macavaney/msmarco-passage.pisa') >>> bm25 = index.bm25() >>> bm25.search('terrier breeds') qid query docno score rank 0 1 terrier breeds 1406578 22.686367 0 1 1 terrier breeds 5785957 22.611134 1 2 1 terrier breeds 7455374 22.592781 2 3 1 terrier breeds 3984886 22.242958 3 4 1 terrier breeds 3984893 22.009525 4 ... ``` ## Benchmarks **TREC DL 2019**
Code ```python from ir_measures import nDCG, RR, MAP, R import pyterrier as pt from pyterrier_pisa import PisaIndex index = PisaIndex.from_hf('macavaney/msmarco-passage.pisa') dataset = pt.get_dataset('irds:msmarco-passage/trec-dl-2019/judged') pt.Experiment( [index.bm25(), index.qld(), index.dph(), index.pl2()], dataset.get_topics(), dataset.get_qrels(), [nDCG@10, nDCG, RR(rel=2), MAP(rel=2), R(rel=2)@1000], ['BM25', 'QLD', 'DPH', 'PL2'], round=4, ) ```
| | name | nDCG@10 | nDCG | RR(rel=2) | AP(rel=2) | R(rel=2)@1000 | |---:|:-------|----------:|-------:|------------:|------------:|----------------:| | 0 | BM25 | 0.4989 | 0.6023 | 0.6804 | 0.3031 | 0.7555 | | 1 | QLD | 0.468 | 0.5984 | 0.6047 | 0.3037 | 0.7601 | | 2 | DPH | 0.4975 | 0.5907 | 0.6674 | 0.3009 | 0.7436 | | 3 | PL2 | 0.4503 | 0.5681 | 0.6495 | 0.2679 | 0.7304 | **TREC DL 2020**
Code ```python from ir_measures import nDCG, RR, MAP, R import pyterrier as pt from pyterrier_pisa import PisaIndex index = PisaIndex.from_hf('macavaney/msmarco-passage.pisa') dataset = pt.get_dataset('irds:msmarco-passage/trec-dl-2020/judged') pt.Experiment( [index.bm25(), index.qld(), index.dph(), index.pl2()], dataset.get_topics(), dataset.get_qrels(), [nDCG@10, nDCG, RR(rel=2), MAP(rel=2), R(rel=2)@1000], ['BM25', 'QLD', 'DPH', 'PL2'], round=4, ) ```
| | name | nDCG@10 | nDCG | RR(rel=2) | AP(rel=2) | R(rel=2)@1000 | |---:|:-------|----------:|-------:|------------:|------------:|----------------:| | 0 | BM25 | 0.4793 | 0.5963 | 0.6529 | 0.2974 | 0.8048 | | 1 | QLD | 0.4511 | 0.587 | 0.5812 | 0.2879 | 0.8125 | | 2 | DPH | 0.4586 | 0.5704 | 0.6123 | 0.2779 | 0.798 | | 3 | PL2 | 0.4552 | 0.5609 | 0.5788 | 0.2666 | 0.7772 | **MS MARCO Dev (small)**
Code ```python from ir_measures import RR, R import pyterrier as pt from pyterrier_pisa import PisaIndex index = PisaIndex.from_hf('macavaney/msmarco-passage.pisa') dataset = pt.get_dataset('irds:msmarco-passage/dev/small') pt.Experiment( [index.bm25(), index.qld(), index.dph(), index.pl2()], dataset.get_topics(), dataset.get_qrels(), [RR@10, R@1000], ['BM25', 'QLD', 'DPH', 'PL2'], round=4, ) ```
## Reproduction ```python >>> import pyterrier_pisa >>> import pyterrier as pt >>> idx = pyterrier_pisa.PisaIndex('msmarco-passage.pisa') >>> idx.indexer().index(pt.get_dataset('irds:msmarco-passage').get_corpus_iter()) ``` ## Metadata ``` { "type": "sparse_index", "format": "pisa", "package_hint": "pyterrier-pisa", "stemmer": "porter2" } ```