File size: 3,725 Bytes
ec35bc2 d2c04b5 c80215f d2c04b5 ec35bc2 d2c04b5 ec35bc2 d2c04b5 e11702e 71dc1e0 99406cd 0f75465 99406cd d2c04b5 7c406ab d2c04b5 ec35bc2 d2c04b5 e11702e d2c04b5 e11702e d2c04b5 e11702e d2c04b5 ec35bc2 a697abc d2514bc ec35bc2 d2514bc e11702e ec35bc2 0939854 e11702e 0939854 3e056de ec35bc2 d2514bc |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 |
---
language:
- en
license: cc-by-4.0
configs:
- config_name: default
data_files:
- split: train
path: train/*
- split: dev
path: dev/*
- split: test
path: test/*
dataset_info:
features:
- name: video_path
dtype: string
- name: audio
dtype: audio
- name: sr
dtype: int64
- name: abstract
dtype: string
- name: language
dtype: string
- name: split
dtype: string
- name: duration
dtype: float64
- name: conference
dtype: string
- name: year
dtype: string
config_name: default
splits:
- name: train
num_examples: 4000
- name: dev
num_examples: 885
- name: test
num_examples: 1431
tags:
- text
- audio
- video
---
# NUTSHELL: A Dataset for Abstract Generation from Scientific Talks
Scientific communication is receiving increasing attention in natural language processing, especially to help researches access, summarize, and generate content.
One emerging application in this area is Speech-to-Abstract Generation (SAG), which aims to automatically generate abstracts from recorded scientific presentations.
SAG enables researchers to efficiently engage with conference talks, but progress has been limited by a lack of large-scale datasets.
To address this gap, we introduce NUTSHELL, a novel multimodal dataset of *ACL conference talks paired with their corresponding abstracts.
More informatation can be found in our paper [NUTSHELL: A Dataset for Abstract Generation from Scientific Talks](https://arxiv.org/abs/2502.16942).
## Dataset Splits
| Split | Number of Examples |
|-------|--------------------|
| train | 4000 |
| dev | 885 |
| test | 1431 |
## Dataset Fields
| **Field** | **Type** | **Description** |
|------------------|-----------------|---------------------------------------------------------------------------------|
| `video_path` | `string` | The video URL to the ACL talk. |
| `audio` | | |
| | - `array` | A `numpy.ndarray` representing the audio signal. |
| | - `sampling_rate` | The sampling rate of the audio. |
| `sr` | `int` | The sampling rate of the audio. |
| `abstract` | `string` | The abstract of the ACL paper corresponding to the talk. |
| `language` | `string` | The language of the videos and audios: English. |
| `split` | `string` | The data split to which the entry belongs, such as "train," "dev," or "test." |
| `duration` | `float` | The duration of the video/audio content in seconds. |
| `conference` | `string` | The name of the conference associated with the dataset entry. |
| `year` | `string` | The year of the conference. |
## Citation
```
@misc{züfle2025nutshelldatasetabstractgeneration,
title={NUTSHELL: A Dataset for Abstract Generation from Scientific Talks},
author={Maike Züfle and Sara Papi and Beatrice Savoldi and Marco Gaido and Luisa Bentivogli and Jan Niehues},
year={2025},
eprint={2502.16942},
archivePrefix={arXiv},
primaryClass={cs.CL},
url={https://arxiv.org/abs/2502.16942},
}
``` |