File size: 3,725 Bytes
ec35bc2
 
d2c04b5
c80215f
d2c04b5
 
ec35bc2
d2c04b5
 
 
 
 
 
ec35bc2
 
d2c04b5
 
e11702e
71dc1e0
99406cd
0f75465
99406cd
 
d2c04b5
 
 
 
7c406ab
 
d2c04b5
 
 
 
 
ec35bc2
d2c04b5
e11702e
d2c04b5
e11702e
d2c04b5
e11702e
d2c04b5
 
 
 
ec35bc2
 
a697abc
 
d2514bc
 
 
 
ec35bc2
d2514bc
e11702e
ec35bc2
0939854
 
 
 
e11702e
 
 
0939854
3e056de
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ec35bc2
d2514bc
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
---
language:
- en
license: cc-by-4.0
configs:
- config_name: default
  data_files:
  - split: train
    path: train/*
  - split: dev
    path: dev/*
  - split: test
    path: test/*
dataset_info:
  features:
  - name: video_path
    dtype: string
  - name: audio
    dtype: audio
  - name: sr
    dtype: int64
  - name: abstract
    dtype: string
  - name: language
    dtype: string
  - name: split
    dtype: string
  - name: duration
    dtype: float64
  - name: conference
    dtype: string
  - name: year
    dtype: string
  config_name: default
  splits:
  - name: train
    num_examples: 4000
  - name: dev
    num_examples: 885
  - name: test
    num_examples: 1431
tags:
- text
- audio
- video
---

# NUTSHELL: A Dataset for Abstract Generation from Scientific Talks

Scientific communication is receiving increasing attention in natural language processing, especially to help researches access, summarize, and generate content. 
One emerging application in this area is Speech-to-Abstract Generation (SAG), which aims to automatically generate abstracts from recorded scientific presentations. 
SAG enables researchers to efficiently engage with conference talks, but progress has been limited by a lack of large-scale datasets. 
To address this gap, we introduce NUTSHELL, a novel multimodal dataset of *ACL conference talks paired with their corresponding abstracts. 

More informatation can be found in our paper [NUTSHELL: A Dataset for Abstract Generation from Scientific Talks](https://arxiv.org/abs/2502.16942).
 

## Dataset Splits

| Split | Number of Examples |
|-------|--------------------|
| train | 4000               |
| dev   | 885                |
| test  | 1431               |


## Dataset Fields

| **Field**       | **Type**        | **Description**                                                                  |
|------------------|-----------------|---------------------------------------------------------------------------------|
| `video_path`     | `string`        | The video URL to the ACL talk.                                                  |
| `audio`          |                 |                                                                                 |
|                  | - `array`       | A `numpy.ndarray` representing the audio signal.                                |
|                  | - `sampling_rate` | The sampling rate of the audio.                                               |
| `sr`             | `int`           | The sampling rate of the audio.                                                 |
| `abstract`       | `string`        | The abstract of the ACL paper corresponding to the talk.                        |
| `language`       | `string`        | The language of the videos and audios: English.                                 |
| `split`          | `string`        | The data split to which the entry belongs, such as "train," "dev," or "test."   |
| `duration`       | `float`         | The duration of the video/audio content in seconds.                             |
| `conference`     | `string`        | The name of the conference associated with the dataset entry.                   |
| `year`           | `string`        | The year of the conference.                                                     |


## Citation
```
@misc{züfle2025nutshelldatasetabstractgeneration,
      title={NUTSHELL: A Dataset for Abstract Generation from Scientific Talks}, 
      author={Maike Züfle and Sara Papi and Beatrice Savoldi and Marco Gaido and Luisa Bentivogli and Jan Niehues},
      year={2025},
      eprint={2502.16942},
      archivePrefix={arXiv},
      primaryClass={cs.CL},
      url={https://arxiv.org/abs/2502.16942}, 
}
```