Datasets:
Modalities:
Text
Size:
10K - 100K
# coding=utf-8 | |
# Copyright 2022 The HuggingFace Datasets Authors and the current dataset script contributor. | |
# | |
# Licensed under the Apache License, Version 2.0 (the "License"); | |
# you may not use this file except in compliance with the License. | |
# You may obtain a copy of the License at | |
# | |
# http://www.apache.org/licenses/LICENSE-2.0 | |
# | |
# Unless required by applicable law or agreed to in writing, software | |
# distributed under the License is distributed on an "AS IS" BASIS, | |
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
# See the License for the specific language governing permissions and | |
# limitations under the License. | |
""" Common Voice Dataset""" | |
import csv | |
import os | |
import json | |
import datasets | |
from datasets.utils.py_utils import size_str | |
from tqdm import tqdm | |
from .languages import LANGUAGES | |
from .release_stats import STATS | |
_CITATION = """\ | |
@inproceedings{commonvoice:2020, | |
author = {Ardila, R. and Branson, M. and Davis, K. and Henretty, M. and Kohler, M. and Meyer, J. and Morais, R. and Saunders, L. and Tyers, F. M. and Weber, G.}, | |
title = {Common Voice: A Massively-Multilingual Speech Corpus}, | |
booktitle = {Proceedings of the 12th Conference on Language Resources and Evaluation (LREC 2020)}, | |
pages = {4211--4215}, | |
year = 2020 | |
} | |
""" | |
_HOMEPAGE = "https://commonvoice.mozilla.org/en/datasets" | |
_LICENSE = "https://creativecommons.org/publicdomain/zero/1.0/" | |
# TODO: change "streaming" to "main" after merge! | |
_BASE_URL = "https://huggingface.co/datasets/makiour/dvoice-Darija/tree/main" | |
_AUDIO_URL = _BASE_URL + "audio/{lang}/{split}/{lang}_{split}_{shard_idx}.tar" | |
_TRANSCRIPT_URL = _BASE_URL + "transcript/{lang}/{split}.csv" | |
_N_SHARDS_URL = "https://huggingface.co/datasets/makiour/dvoice-Darija/blob/main/n_shards.json" | |
class CommonVoiceConfig(datasets.BuilderConfig): | |
"""BuilderConfig for CommonVoice.""" | |
def __init__(self, name, version, **kwargs): | |
self.language = kwargs.pop("language", None) | |
self.release_date = kwargs.pop("release_date", None) | |
self.num_clips = kwargs.pop("num_clips", None) | |
self.num_speakers = kwargs.pop("num_speakers", None) | |
self.validated_hr = kwargs.pop("validated_hr", None) | |
self.total_hr = kwargs.pop("total_hr", None) | |
self.size_bytes = kwargs.pop("size_bytes", None) | |
self.size_human = size_str(self.size_bytes) | |
description = ( | |
f"Common Voice speech to text dataset in {self.language} released on {self.release_date}. " | |
f"The dataset comprises {self.validated_hr} hours of validated transcribed speech data " | |
f"out of {self.total_hr} hours in total from {self.num_speakers} speakers. " | |
f"The dataset contains {self.num_clips} audio clips and has a size of {self.size_human}." | |
) | |
super(CommonVoiceConfig, self).__init__( | |
name=name, | |
version=datasets.Version(version), | |
description=description, | |
**kwargs, | |
) | |
class CommonVoice(datasets.GeneratorBasedBuilder): | |
DEFAULT_WRITER_BATCH_SIZE = 1000 | |
BUILDER_CONFIGS = [ | |
CommonVoiceConfig( | |
name=lang, | |
version=STATS["version"], | |
language=LANGUAGES[lang], | |
release_date=STATS["date"], | |
num_clips=lang_stats["clips"], | |
num_speakers=lang_stats["users"], | |
validated_hr=float(lang_stats["validHrs"]) if lang_stats["validHrs"] else None, | |
total_hr=float(lang_stats["totalHrs"]) if lang_stats["totalHrs"] else None, | |
size_bytes=int(lang_stats["size"]) if lang_stats["size"] else None, | |
) | |
for lang, lang_stats in STATS["locales"].items() | |
] | |
def _info(self): | |
total_languages = len(STATS["locales"]) | |
total_valid_hours = STATS["totalValidHrs"] | |
description = ( | |
"Common Voice is Mozilla's initiative to help teach machines how real people speak. " | |
f"The dataset currently consists of {total_valid_hours} validated hours of speech " | |
f" in {total_languages} languages, but more voices and languages are always added." | |
) | |
features = datasets.Features( | |
{ | |
"path": datasets.Value("string"), | |
"audio": datasets.features.Audio(sampling_rate=48_000), | |
"words": datasets.Value("string"), | |
"duration": datasets.Value("int64"), | |
} | |
) | |
return datasets.DatasetInfo( | |
description=description, | |
features=features, | |
supervised_keys=None, | |
homepage=_HOMEPAGE, | |
license=_LICENSE, | |
citation=_CITATION, | |
version=self.config.version, | |
) | |
def _split_generators(self, dl_manager): | |
lang = self.config.name | |
n_shards_path = dl_manager.download_and_extract(_N_SHARDS_URL) | |
with open(n_shards_path, encoding="utf-8") as f: | |
n_shards = json.load(f) | |
audio_urls = {} | |
splits = ("train", "dev", "test", "other", "invalidated") | |
for split in splits: | |
audio_urls[split] = [ | |
_AUDIO_URL.format(lang=lang, split=split, shard_idx=i) for i in range(n_shards[lang][split]) | |
] | |
archive_paths = dl_manager.download(audio_urls) | |
local_extracted_archive_paths = dl_manager.extract(archive_paths) if not dl_manager.is_streaming else {} | |
meta_urls = {split: _TRANSCRIPT_URL.format(lang=lang, split=split) for split in splits} | |
meta_paths = dl_manager.download_and_extract(meta_urls) | |
split_generators = [] | |
split_names = { | |
"train": datasets.Split.TRAIN, | |
"dev": datasets.Split.VALIDATION, | |
"test": datasets.Split.TEST, | |
} | |
for split in splits: | |
split_generators.append( | |
datasets.SplitGenerator( | |
name=split_names.get(split, split), | |
gen_kwargs={ | |
"local_extracted_archive_paths": local_extracted_archive_paths.get(split), | |
"archives": [dl_manager.iter_archive(path) for path in archive_paths.get(split)], | |
"meta_path": meta_paths[split], | |
}, | |
), | |
) | |
return split_generators | |
def _generate_examples(self, local_extracted_archive_paths, archives, meta_path): | |
data_fields = list(self._info().features.keys()) | |
metadata = {} | |
with open(meta_path, encoding="utf-8") as f: | |
reader = csv.DictReader(f, delimiter="\t", quoting=csv.QUOTE_NONE) | |
for row in tqdm(reader, desc="Reading metadata..."): | |
# accent -> accents in CV 8.0 | |
# if data is incomplete, fill with empty values | |
for field in data_fields: | |
if field not in row: | |
row[field] = "" | |
metadata[row["path"]] = row | |
for i, audio_archive in enumerate(archives): | |
for filename, file in audio_archive: | |
_, filename = os.path.split(filename) | |
if filename in metadata: | |
result = dict(metadata[filename]) | |
# set the audio feature and the path to the extracted file | |
path = os.path.join(local_extracted_archive_paths[i], filename) if local_extracted_archive_paths else filename | |
result["audio"] = {"path": path, "bytes": file.read()} | |
# set path to None if the audio file doesn't exist locally (i.e. in streaming mode) | |
result["path"] = path if local_extracted_archive_paths else filename | |
yield path, result | |