id
stringlengths 1
265
| text
stringlengths 6
5.19M
| dataset_id
stringclasses 7
values |
---|---|---|
182835 | # Copyright (C) 2015-2016 The bitcoin-blockchain-parser developers
#
# This file is part of bitcoin-blockchain-parser.
#
# It is subject to the license terms in the LICENSE file found in the top-level
# directory of this distribution.
#
# No part of bitcoin-blockchain-parser, including this file, may be copied,
# modified, propagated, or distributed except according to the terms contained
# in the LICENSE file.
import os
import unittest
from binascii import a2b_hex, b2a_hex
from blockchain_parser.transaction import Transaction
from .utils import read_test_data
class TestTransaction(unittest.TestCase):
def test_rbf(self):
data = a2b_hex("01000000019222bbb054bb9f94571dfe769af5866835f2a97e8839"
"59fa757de4064bed8bca01000000035101b1000000000100000000"
"00000000016a01000000")
tx = Transaction(data)
self.assertTrue(tx.uses_replace_by_fee())
coinbase = a2b_hex("01000000010000000000000000000000000000000000000000"
"000000000000000000000000ffffffff4203c8e405fabe6d6d"
"98b0e98e3809941f1fd8cafe7c8236e27b8d1a776b1835aa54"
"8bb84fe5b5f3d7010000000000000002650300aaa757eb0000"
"002f736c7573682f0000000001baa98396000000001976a914"
"7c154ed1dc59609e3d26abb2df2ea3d587cd8c4188ac000000"
"00")
tx = Transaction(coinbase)
self.assertTrue(tx.is_coinbase())
self.assertFalse(tx.uses_replace_by_fee())
def test_bip69(self):
non_compliant = read_test_data("bip69_false.txt")
tx = Transaction(non_compliant)
self.assertFalse(tx.uses_bip69())
compliant = read_test_data("bip69_true.txt")
tx = Transaction(compliant)
self.assertTrue(tx.uses_bip69())
def test_bech32_p2wpkh(self):
tx = Transaction(read_test_data("bech32_p2wpkh.txt"))
self.assertEqual(["3BBqfnaPbgi5KWECWdFpvryUfw7QatWy37"], [a.address for a in tx.outputs[0].addresses])
self.assertEqual(["bc1q4z0874xmfxe3xeqknulgnqhukhfjwh5tvjrr2x"], [a.address for a in tx.outputs[1].addresses])
def test_bech32_p2wsh(self):
tx = Transaction(read_test_data("bech32_p2wsh.txt"))
self.assertEqual(["3GMKKFPNUg13VktgihUD8QfXVQRBdoDNDf"], [a.address for a in tx.outputs[0].addresses])
self.assertEqual(["bc1qday7wsftyv4r6qkpn8907s8fy3kexkny0xwrd8d4wlk06zffzyuqpp629n"], [a.address for a in tx.outputs[1].addresses])
def test_segwit(self):
tx = Transaction(read_test_data("segwit.txt"))
self.assertTrue(tx.is_segwit)
id = "22116f1d76ab425ddc6d10d184331e70e080dd6275d7aa90237ceb648dc38224"
self.assertTrue(tx.txid == id)
h = "1eac09f372a8c13bb7dea6bd66ee71a6bcc469b57b35c1e394ad7eb7c107c507"
self.assertTrue(tx.hash == h)
segwit_input = tx.inputs[0]
self.assertTrue(len(segwit_input.witnesses) == 4)
self.assertTrue(len(segwit_input.witnesses[0]) == 0)
wit_1 = "3045022100bc2ba8808127f8a74beed6dfa1b9fe54675c55aab85a61d7" \
"a74c15b993e67e5f02204dada4e15f0b4e659dae7bf0d0f648010d1f2b" \
"665f587a35eb6f22e44194952301"
wit_2 = "3045022100f4c7ec7c2064fe2cc4389733ac0a57d8080a62180a004b02" \
"a19b89267113a17f022004ee9fdb081359c549ee42ffb58279363563ea" \
"f0191cd8b2b0ceebf62146b50b01"
wit_3 = "5221022b003d276bce58bef509bdcd9cf7e156f0eae18e1175815282e6" \
"5e7da788bb5b21035c58f2f60ecf38c9c8b9d1316b662627ec672f5fd9" \
"12b1a2cc28d0b9b00575fd2103c96d495bfdd5ba4145e3e046fee45e84" \
"a8a48ad05bd8dbb395c011a32cf9f88053ae"
parsed_1 = b2a_hex(segwit_input.witnesses[1]).decode("utf-8")
parsed_2 = b2a_hex(segwit_input.witnesses[2]).decode("utf-8")
parsed_3 = b2a_hex(segwit_input.witnesses[3]).decode("utf-8")
self.assertEqual(parsed_1, wit_1)
self.assertEqual(parsed_2, wit_2)
self.assertEqual(parsed_3, wit_3)
def test_vsize(self):
segwit_tx = Transaction(read_test_data("size_segwit.txt"))
non_segwit_tx = Transaction(read_test_data("size_non_segwit.txt"))
self.assertEqual(non_segwit_tx.vsize, non_segwit_tx.size)
self.assertEqual(non_segwit_tx.vsize, 189)
self.assertNotEqual(segwit_tx.vsize, segwit_tx.size)
self.assertEqual(segwit_tx.vsize, 208)
self.assertEqual(segwit_tx.size, 373)
def test_large(self):
data = read_test_data("large_tx.txt")
tx = Transaction(data)
self.assertTrue(
tx.hash == "29a3efd3ef04f9153d47a990bd7b048a4b2d213daa"
"a5fb8ed670fb85f13bdbcf")
self.assertTrue(tx.size == len(tx.hex))
def test_incomplete(self):
data = read_test_data("invalid_tx.txt")
self.assertRaises(Exception, Transaction, data)
def test_unknown_scripts(self):
data = read_test_data("scripts_invalid.txt")
tx = Transaction(data)
for output in tx.outputs:
self.assertEqual([], output.addresses) | StarcoderdataPython |
1661952 | from can_tools.scrapers.official.AZ.counties.maricopa_vaccine import (
ArizonaMaricopaVaccine,
)
| StarcoderdataPython |
56703 | <reponame>MyDataShare/access-gateway<gh_stars>1-10
from unittest import main
from .helpers import api, test_base
text = """
Nocturne
Ruislinnun laulu korvissani,
tähkäpäiden päällä täysi kuu;
kesä-yön on onni omanani,
kaskisavuun laaksot verhouu.
En ma iloitse, en sure, huokaa;
mutta metsän tummuus mulle tuokaa,
puunto pilven, johon päivä hukkuu,
siinto vaaran tuulisen, mi nukkuu,
tuoksut vanamon ja varjot veen;
niistä sydämeni laulun teen.
Sulle laulan neiti, kesäheinä,
sydämeni suuri hiljaisuus,
uskontoni, soipa säveleinä,
tammenlehvä-seppel vehryt, uus.
En ma enää aja virvatulta,
onpa kädessäni onnen kulta;
pienentyy mun ympär’ elon piiri;
aika seisoo, nukkuu tuuliviiri;
edessäni hämäräinen tie
tuntemattomahan tupaan vie.
<NAME>
"""
class RouteTextPayloadCases:
class RouteTextPayloadBase(test_base.TestBase):
def test_text_in_json(self):
json = self.res.json()
arg = 'text'
self.assertIn(arg, json)
self.assertEqual(json[arg], text)
class TestRouteTextPayloadPost(RouteTextPayloadCases.RouteTextPayloadBase, test_base.TestBase, api.APITests):
@classmethod
def setup(cls):
cls.res = api.post(
cls.v['AGW'] + '/test_route_text_payload_post',
text=text
)
class TestRouteTextPayloadPut(RouteTextPayloadCases.RouteTextPayloadBase, test_base.TestBase, api.APITests):
@classmethod
def setup(cls):
cls.res = api.put(
cls.v['AGW'] + '/test_route_text_payload_put',
text=text
)
class TestRouteTextPayloadPatch(RouteTextPayloadCases.RouteTextPayloadBase, test_base.TestBase, api.APITests):
@classmethod
def setup(cls):
cls.res = api.patch(
cls.v['AGW'] + '/test_route_text_payload_patch',
text=text
)
if __name__ == '__main__':
main()
| StarcoderdataPython |
97880 | from collections import Counter
def day6(n_days: int) -> int:
with open("input.txt") as f:
fishes = map(int, f.readline().split(","))
n_fish_per_day = Counter()
for f in fishes:
n_fish_per_day[f] += 1
# simulate days
for _ in range(n_days):
new_n_fish_per_day = {}
for i in range(1, 9):
new_n_fish_per_day[i - 1] = n_fish_per_day[i]
n_new_fish = n_fish_per_day[0]
new_n_fish_per_day[6] += n_new_fish
new_n_fish_per_day[8] = n_new_fish
n_fish_per_day = new_n_fish_per_day
# count
return sum(n_fish_per_day[i] for i in range(0, 9))
print("part1:", day6(80))
print("part2:", day6(256))
| StarcoderdataPython |
42394 | <filename>configs/_base_/explain/count_concepts.py
concept_detector_cfg = dict(
quantile_threshold=0.99,
with_bboxes=True,
count_disjoint=True,
)
target_layer = 'layer3.5'
| StarcoderdataPython |
3320769 | <gh_stars>10-100
# coding: utf-8
"""json读写插件
"""
import re
import types
import ujson
import requests
from girlfriend.util.lang import args2fields
from girlfriend.util.resource import HTTP_SCHEMA
from girlfriend.plugin.data import (
AbstractDataReader,
AbstractDataWriter
)
from girlfriend.exception import InvalidArgumentException
class JSONReaderPlugin(object):
"""可以从文件或者Web URL中加载json对象,并进行格式转换
支持常见的json文件格式
"""
name = "read_json"
def execute(self, context, *json_readers):
return [reader(context) for reader in json_readers]
JSON_REGEX = re.compile(r"\{.*?\}")
class JSONR(AbstractDataReader):
@args2fields()
def __init__(self, path, style,
record_handler=None, record_filter=None, result_wrapper=None,
variable=None):
"""
:param context 上下文对象
:param path 加载路径,可以是文件路径,也可以是web url
:param style json数据格式,允许三种格式:
1. line: 文件每行是一个json对象
2. array: 文件内容是一个json数组
3. extract:property 文件是一个json对象,但是只提取某一部分进行处理
4. block: 区块,不在同一行
:param record_handler 行处理器,返回的每行都是字典对象,通过该函数可以进行包装
如果返回None,那么将对该行忽略
:param record_filter 行过滤器
:param result_wrapper 对最终结果进行包装
:param variable 结果写入上下文的变量名,如果为None,那么将返回值交给框架自身来保存
"""
pass
def __call__(self, context):
result = []
# 基于文件的逐行加载
if self._style == "line" and not self._path.startswith(HTTP_SCHEMA):
with open(self._path, "r") as f:
for line in f:
line = line.strip()
if not line or line.startswith(("#", "//", ";")):
continue
record = ujson.loads(line)
self._handle_record(record, result.append)
else:
json_content = None
# 从不同的来源加载json对象
if self._path.startswith(HTTP_SCHEMA):
json_content = requests.get(self._path).text
else:
with open(self._path, "r") as f:
json_content = f.read()
json_content = json_content.strip()
# 按行读取
if self._style == "line":
for line in json_content.splitlines():
line = line.strip()
if not line:
continue
record = ujson.loads(line)
self._handle_record(record, result.append)
# 按块读取
if self._style == "block":
json_buffer = []
in_block = False
for char in json_content:
if char == "{":
in_block = True
json_buffer.append(char)
elif char == "}" and in_block:
json_buffer.append(char)
try:
record = ujson.loads("".join(json_buffer))
except ValueError:
continue
else:
self._handle_record(record, result.append)
json_buffer = []
in_block = False
elif in_block:
json_buffer.append(char)
# 按数组读取
elif self._style == "array":
json_array = ujson.loads(json_content)
for record in json_array:
self._handle_record(record, result.append)
# 使用属性提取器
elif self._style.startswith("extract:"):
json_obj = ujson.loads(json_content)
keys = self._style[len("extract:"):].split(".")
for key in keys:
json_obj = json_obj[key]
for record in json_obj:
self._handle_record(record, result.append)
return self._handle_result(context, result)
class JSONWriterPlugin(object):
name = "write_json"
def execute(self, context, *json_writers):
for json_writer in json_writers:
json_writer(context)
class JSONW(AbstractDataWriter):
@args2fields()
def __init__(self, path, style, object,
record_handler=None, record_filter=None,
http_method="post", http_field=None, variable=None):
"""
:param path 写入路径,默认为文件路径,如果是HTTP或者HTTPS开头,那么将会POST到对应的地址
:param style 写入格式,line - 按行写入 array - 作为json数组写入 object - 作为单独对象写入
:param table 要操作的对象,可以是具体的对象,也可以是context中的变量名
:param record_handler 行处理器,可以在此进行格式转换,比如把时间对象转换为字符串
:param record_filter 行过滤器
:param http_method http写入方法,默认为POST,可以指定PUT
:param variable 将json写入上下文变量
"""
pass
def __call__(self, context):
if (self._style == "line" and self._path and
not self._path.startswith(HTTP_SCHEMA)):
with open(self._path, "w") as f:
for row in self._object:
row = self._handle_record(row)
f.write(ujson.dumps(row) + "\n")
return
# json文本
json_text = ""
if isinstance(self._object, types.FunctionType):
self._object = self._object(context)
elif isinstance(self._object, types.StringTypes):
self._object = context[self._object]
if self._style == "object":
json_text = ujson.dumps(self._object)
result = []
for row in self._object:
row = self._handle_record(row, result.append)
# 数组格式直接dump
if self._style == "array":
json_text = ujson.dumps(result)
# line格式
if self._style == "line":
string_buffer = []
for row in self._object:
row = self._handle_record(row)
string_buffer.append(ujson.dumps(row))
json_text = "\n".join(string_buffer)
if self._path is None:
if self._variable:
context[self._variable] = json_text
return
else:
raise InvalidArgumentException(
u"当path为None时,必须指定一个有效的variable")
if self._path.startswith(HTTP_SCHEMA):
if self._http_method.lower() == "post":
if self._http_field:
requests.post(
self._path, data={self._http_field: json_text})
elif self._style == "line":
requests.post(self._path, data=json_text)
else:
requests.post(self._path, json=json_text)
elif self._http_method.lower() == "put":
requests.put(self._path, json=json_text)
else:
with open(self._path, "w") as f:
f.write(json_text)
if self._variable:
context[self._variable] = json_text
| StarcoderdataPython |
107071 | <gh_stars>0
# Generated by Django 3.0.6 on 2020-06-03 08:23
from django.conf import settings
from django.db import migrations, models
class Migration(migrations.Migration):
dependencies = [
migrations.swappable_dependency(settings.AUTH_USER_MODEL),
('course', '0006_auto_20200601_1325'),
]
operations = [
migrations.RemoveField(
model_name='course',
name='subscribed_users',
),
migrations.RemoveField(
model_name='course',
name='tutor',
),
migrations.AddField(
model_name='course',
name='tutor',
field=models.ManyToManyField(related_name='courses_asigned', to=settings.AUTH_USER_MODEL),
),
]
| StarcoderdataPython |
3243855 | <gh_stars>10-100
# -*- coding: utf-8 -*-
"""Module containing the logic for the lambda nuke entry-points."""
| StarcoderdataPython |
115644 | <reponame>siemens/python-cybox
# Copyright (c) 2014, The MITRE Corporation. All rights reserved.
# See LICENSE.txt for complete terms.
import cybox
import cybox.bindings.cybox_core as core_binding
from cybox.common import VocabString
from cybox.core import Object
class AssociationType(VocabString):
_XSI_TYPE = 'cyboxVocabs:ActionObjectAssociationTypeVocab-1.0'
class AssociatedObject(Object):
"""The CybOX Associated Object element.
Currently only supports the id, association_type and ObjectProperties properties
"""
superclass = Object
def __init__(self, defined_object=None, type_=None, association_type=None):
super(AssociatedObject, self).__init__(defined_object, type_)
self.association_type = association_type
def to_obj(self, return_obj=None, ns_info=None):
self._collect_ns_info(ns_info)
obj = super(AssociatedObject, self).to_obj(return_obj=core_binding.AssociatedObjectType(), ns_info=ns_info)
if self.association_type is not None:
obj.Association_Type = self.association_type.to_obj(ns_info=ns_info)
return obj
def to_dict(self):
object_dict = super(AssociatedObject, self).to_dict()
if self.association_type is not None:
object_dict['association_type'] = self.association_type.to_dict()
return object_dict
@staticmethod
def from_obj(object_obj):
if not object_obj:
return None
obj = Object.from_obj(object_obj, AssociatedObject())
obj.association_type = AssociationType.from_obj(object_obj.Association_Type)
return obj
@staticmethod
def from_dict(object_dict):
if not object_dict:
return None
obj = Object.from_dict(object_dict, AssociatedObject())
obj.association_type = AssociationType.from_dict(object_dict.get('association_type', None))
return obj
| StarcoderdataPython |
3354700 | #!/usr/bin/env python3
# -*- coding: utf-8 -*-
"""
Created on Fri Nov 3 19:37:10 2017
@author: dalonlobo
"""
import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
dataset = pd.read_csv('50_Startups.csv')
X = dataset.iloc[:, :-1].values
y = dataset.iloc[:, -1].values
from sklearn.preprocessing import LabelEncoder, OneHotEncoder
labelencoder = LabelEncoder()
X[:, 3] = labelencoder.fit_transform(X[:, 3])
onehotencoder = OneHotEncoder(categorical_features=[3])
X = onehotencoder.fit_transform(X).toarray()
X = X[:, 1:]
from sklearn.model_selection import train_test_split
X_train, X_test, y_train, y_test = train_test_split(X, y,
test_size=0.2, random_state=0)
from sklearn.linear_model import LinearRegression
regressor = LinearRegression()
regressor.fit(X_train, y_train)
y_pred = regressor.predict(X_test)
regressor.score(X_test, y_test) | StarcoderdataPython |
3310483 | <reponame>gustavs408650/looker_sdk_30
from __future__ import absolute_import
# flake8: noqa
# import apis into api package
from looker_client_30.api.api_auth_api import ApiAuthApi
from looker_client_30.api.auth_api import AuthApi
from looker_client_30.api.config_api import ConfigApi
from looker_client_30.api.connection_api import ConnectionApi
from looker_client_30.api.content_api import ContentApi
from looker_client_30.api.dashboard_api import DashboardApi
from looker_client_30.api.data_action_api import DataActionApi
from looker_client_30.api.datagroup_api import DatagroupApi
from looker_client_30.api.group_api import GroupApi
from looker_client_30.api.homepage_api import HomepageApi
from looker_client_30.api.integration_api import IntegrationApi
from looker_client_30.api.look_api import LookApi
from looker_client_30.api.lookml_model_api import LookmlModelApi
from looker_client_30.api.project_api import ProjectApi
from looker_client_30.api.query_api import QueryApi
from looker_client_30.api.render_task_api import RenderTaskApi
from looker_client_30.api.role_api import RoleApi
from looker_client_30.api.running_queries_api import RunningQueriesApi
from looker_client_30.api.scheduled_plan_api import ScheduledPlanApi
from looker_client_30.api.session_api import SessionApi
from looker_client_30.api.space_api import SpaceApi
from looker_client_30.api.sql_query_api import SqlQueryApi
from looker_client_30.api.user_api import UserApi
from looker_client_30.api.user_attribute_api import UserAttributeApi
from looker_client_30.api.workspace_api import WorkspaceApi
| StarcoderdataPython |
38068 | import requests
import functools
from django.shortcuts import get_object_or_404
from db_query.models import PersistentQuery
def apply_middleware(raw_data, exec_sql_fn, *args, **kw_args):
return adapt_bundle(raw_data[0], exec_sql_fn)
def adapt_bundle(raw_data, exec_sql_fn):
return {
"id": raw_data.get("id"),
"form-title": raw_data.get("titulo_do_form"),
"bundled-tables": adapt_bundled_tables(raw_data.get("bundled-tables"), exec_sql_fn),
}
def adapt_bundled_tables(bundled_tables, exec_sql_fn):
return [adapt_bundled_table(table, exec_sql_fn) for table in bundled_tables]
def adapt_bundled_table(table, exec_sql_fn):
raw_params = params_to_dict(table.get("parametros").split("\n"))
return {
"tab-title": raw_params.get("TITULO_ABA"),
"master": raw_params.get("PAINEL_MASTER") == "S",
"complex-id": raw_params.get("COMPLEXA_ID"),
"detail": raw_params.get("DETAIL") == "S",
"related-fields": [c.strip() for c in raw_params.get("COLUNAS_DETAIL", "").split(",")],
"master-fields": [c.strip() for c in raw_params.get("COLUNAS_MASTER", "").split(",")],
"bundle-actions": parse_bundle_actions(raw_params.get("BUNDLE_ACTIONS", "")),
"definition": fix_none_results(get_child_definition(raw_params.get("COMPLEXA_ID"))),
}
def parse_bundle_actions(raw_actions):
try:
return [parse_bundle_action(raw_action) for raw_action in raw_actions.split("~")]
except (IndexError, AttributeError):
return []
def parse_bundle_action(raw_action):
"""
Parse action attributes such as
caption:Recalcular;type:primary;action:reglass_cotacoes.recalcular;enabled-states:@view,pending
"""
def parse_array_attr(attr):
print(attr)
if attr[0] != "@":
return attr
return attr[1:].split(",")
def parse_attr(attrs, attr):
attr_parts = attr.split(":")
return dict(attrs, **{attr_parts[0]: parse_array_attr(attr_parts[1])})
return functools.reduce(
parse_attr,
[action_attrs for action_attrs in raw_action.split(";")],
{}
)
def get_complex_definition(raw_params):
if raw_params.get("DETAIL") != "S":
return None
complex_id = raw_params.get("COMPLEXA_ID")
related_fields = [c.strip() for c in raw_params.get("COLUNAS_DETAIL", "").split(",")]
master_fields = [c.strip() for c in raw_params.get("COLUNAS_MASTER", "").split(",")]
# TODO: do this in a better way
HOST = "http://localhost:8000"
PATH = "/api/query/persistent/complex-tables/?id={id}&middleware=complex_forms&depth=1"
BASE_URL = HOST + PATH
def get_child_definition(complex_id):
r = requests.get(BASE_URL.format(id=complex_id))
if r.status_code == 200:
return r.json().get("data")
return {}
def fix_none_results(data):
if isinstance(data, dict):
return {k: fix_none_results(v) for k, v in data.items()}
if isinstance(data, list):
return [fix_none_results(v) for v in data]
if data == "None":
return None
return data
def params_to_dict(params):
def split_param(param):
p = param.split("=")
if len(p) < 2:
return [param, None]
return p[0], p[1].strip()
return {p[0]: p[1] for p in map(split_param, params)}
# "COMPLEXA_ID": None,
# "TITULO_ABA": "tab-title",
# "PAINEL_MASTER": "master",
# "DETAIL": None,
# "COLUNAS_DETAIL": "related-columns",
# "COLUNAS_MASTER": "master-columns",
# "DETAIL_PAGINA_MASTER": ,
| StarcoderdataPython |
57051 | import gtfs_kit
from representation.gtfs_metadata import GtfsMetadata
from representation.gtfs_representation import GtfsRepresentation
from representation.dataset_infos import DatasetInfos
from requests.exceptions import MissingSchema
from pandas.errors import ParserError
GTFS_TYPE = "GTFS"
GBFS_TYPE = "GBFS"
def build_representation(dataset_type, dataset_infos):
"""Dataset representation builder function.
The factory builds and return a dataset representation according to the dataset type.
:param dataset_type: The type of the dataset, either GTFS or GBFS.
:param dataset_infos: The processing infos of the dataset.
"""
if not isinstance(dataset_infos, DatasetInfos):
raise TypeError("Dataset infos must be a valid DatasetInfos.")
representation = None
if dataset_type == GTFS_TYPE:
representation = build_gtfs_representation(dataset_infos)
elif dataset_type == GBFS_TYPE:
representation = build_gbfs_representation(dataset_infos)
return representation
def build_gtfs_representation(dataset_infos):
try:
dataset = gtfs_kit.read_feed(dataset_infos.zip_path, dist_units="km")
except TypeError as te:
raise TypeError(
f"Exception '{te}' occurred while reading the GTFS dataset with the GTFS kit library."
f"The dataset must be a valid GTFS zip file or URL.\n"
)
except MissingSchema as ms:
raise MissingSchema(
f"Exception '{ms}' occurred while opening the GTFS dataset with the GTFS kit library."
f"The dataset must be a valid GTFS zip file or URL.\n"
)
except ParserError as pe:
print(
f"Exception {pe} found while reading the dataset. "
f"Continuing adding dataset infos to database without metadata"
)
return None
metadata = GtfsMetadata(dataset_infos)
representation = GtfsRepresentation(
dataset_infos.source_entity_code, dataset, metadata
)
return representation
def build_gbfs_representation(dataset_infos):
raise NotImplementedError
| StarcoderdataPython |
3378994 | <filename>homeworks/aleksey_gukov/lesson13/level01.py<gh_stars>0
def get_headers(http_resp):
spisok = http_resp.split("\n")
del spisok[0]
del spisok[spisok.index("") :]
slovar = {}
for chast in spisok:
head = chast.split(": ")
slovar[head[0]] = head[1]
return slovar
| StarcoderdataPython |
50430 | <filename>koapy/cli/utils/credential.py
import os
import click
from koapy.config import (
config,
config_from_dict,
default_user_config_path,
save_config,
user_config,
)
def prompt_credential():
credential = config.get("koapy.backend.kiwoom_open_api_plus.credential")
default_user_id = credential["user_id"]
default_user_password = credential["user_password"]
default_server = "simulation" if credential["is_simulation"] else "real"
default_cert_password = credential["cert_password"]
user_id = click.prompt("User ID", default=default_user_id)
user_password = click.prompt(
"User Password",
hide_input=True,
default=default_user_password,
show_default=False,
)
is_simulation = (
click.prompt(
"Server Type",
type=click.Choice(["real", "simulation"], case_sensitive=False),
default=default_server,
)
== "simulation"
)
if is_simulation:
cert_password = <PASSWORD>
else:
cert_password = click.prompt(
"Cert Password",
hide_input=True,
default=default_cert_password,
show_default=False,
)
account_count = click.prompt("Account Count", type=int, default=1)
account_passwords = {}
for _ in range(account_count):
account_number = click.prompt("Account Number", default="0000000000")
account_password = click.prompt(
"Account Password",
hide_input=True,
default="<PASSWORD>",
show_default=False,
)
account_passwords[account_number] = account_password
credential = {
"user_id": user_id,
"user_password": <PASSWORD>,
"cert_password": <PASSWORD>_password,
"is_simulation": is_simulation,
"account_passwords": account_passwords,
}
credential = config_from_dict(credential)
return credential
def get_credential(interactive=False):
if not interactive:
credential = config.get("koapy.backend.kiwoom_open_api_plus.credential")
else:
credential = prompt_credential()
save_credential = (
click.prompt(
"Save credential info into a config file?",
type=click.Choice(["y", "n"], case_sensitive=False),
default="n",
)
== "y"
)
if save_credential:
config_path = click.prompt(
"Path to save config file", default=default_user_config_path
)
if os.path.exists(config_path):
should_write = (
click.prompt(
"The file already exists, overwrite?",
type=click.Choice(["y", "n"], case_sensitive=False),
default="n",
)
== "y"
)
else:
should_write = True
if should_write:
user_config.put(
"koapy.backend.kiwoom_open_api_plus.credential", credential
)
save_config(config_path, user_config)
return credential
| StarcoderdataPython |
3237994 | <filename>hydrus/client/gui/search/ClientGUIPredicatesOR.py
import typing
from qtpy import QtWidgets as QW
from hydrus.core import HydrusData
from hydrus.core import HydrusExceptions
from hydrus.client import ClientConstants as CC
from hydrus.client import ClientSearch
from hydrus.client.gui import QtPorting as QP
# ultimately, rewrite acread to be two classes, acread and acreadthatsupportsor
# and then this guy only imports the base class, and only the supportsor will know about this
# otherwise we have jank imports, and also nested OR lmao
# also this should take file and tag domain
class ORPredicateControl( QW.QWidget ):
def __init__( self, parent: QW.QWidget, predicate: ClientSearch.Predicate ):
QW.QWidget.__init__( self, parent )
from hydrus.client.gui.search import ClientGUIACDropdown
if predicate.GetType() != ClientSearch.PREDICATE_TYPE_OR_CONTAINER:
raise Exception( 'Launched an ORPredicateControl without an OR Pred!' )
predicates = predicate.GetValue()
page_key = HydrusData.GenerateKey()
file_search_context = ClientSearch.FileSearchContext( file_service_key = CC.LOCAL_FILE_SERVICE_KEY, predicates = predicates )
self._search_control = ClientGUIACDropdown.AutoCompleteDropdownTagsRead( self, page_key, file_search_context, hide_favourites_edit_actions = True )
vbox = QP.VBoxLayout()
QP.AddToLayout( vbox, self._search_control, CC.FLAGS_CENTER_PERPENDICULAR )
self.setLayout( vbox )
def CheckValid( self ):
try:
predicates = self.GetPredicates()
except Exception as e:
raise HydrusExceptions.VetoException( str( e ) )
def GetPredicates( self ):
or_sub_predicates = self._search_control.GetPredicates()
if len( or_sub_predicates ) == 0:
return []
elif len( or_sub_predicates ) == 1:
return or_sub_predicates
or_predicate = ClientSearch.Predicate( ClientSearch.PREDICATE_TYPE_OR_CONTAINER, or_sub_predicates )
return [ or_predicate ]
| StarcoderdataPython |
1719872 | <filename>optapy-core/tests/test_user_error.py<gh_stars>10-100
import optapy
import optapy.score
import optapy.config
import optapy.constraint
from optapy.types import Duration
import pytest
import re
@optapy.planning_entity
class Entity:
def __init__(self, value=None):
self.value = value
@optapy.planning_variable(str, value_range_provider_refs=['value_range'])
def get_value(self):
return self.value
def set_value(self, value):
self.value = value
@optapy.planning_solution
class Solution:
def __init__(self, entity_list, value_list, score=None):
self.entity_list = entity_list
self.value_list = value_list
self.score = score
@optapy.planning_entity_collection_property(Entity)
def get_entity_list(self):
return self.entity_list
@optapy.problem_fact_collection_property(str)
@optapy.value_range_provider(range_id='value_range')
def get_value_list(self):
return self.value_list
@optapy.planning_score(optapy.score.SimpleScore)
def get_score(self):
return self.score
def set_score(self, score):
self.score = score
@optapy.constraint_provider
def my_constraints(constraint_factory):
return [
constraint_factory.forEach(optapy.get_class(Entity))
.penalize('Penalize each entity', optapy.score.SimpleScore.ONE, lambda entity: 'TEN')
]
def test_non_planning_solution_being_passed_to_solve():
solver_config = optapy.config.solver.SolverConfig()
solver_config.withSolutionClass(optapy.get_class(Solution)).withEntityClasses(optapy.get_class(Entity)) \
.withConstraintProviderClass(optapy.get_class(my_constraints))
solver = optapy.solver_factory_create(solver_config).buildSolver()
with pytest.raises(ValueError, match=re.escape(
f'A problem was not passed to solve (parameter problem was ({None})). Maybe '
f'pass an instance of a class annotated with @planning_solution to solve?'
)):
solver.solve(None)
def test_none_passed_to_solve():
solver_config = optapy.config.solver.SolverConfig()
solver_config.withSolutionClass(optapy.get_class(Solution)).withEntityClasses(optapy.get_class(Entity)) \
.withConstraintProviderClass(optapy.get_class(my_constraints))
problem = 10
solver = optapy.solver_factory_create(solver_config).buildSolver()
with pytest.raises(ValueError, match=re.escape(
f'The problem ({problem}) is not an instance of a @planning_solution class. '
f'Maybe decorate the problem class ({type(problem)}) with @planning_solution?'
)):
solver.solve(10)
def test_bad_return_type():
solver_config = optapy.config.solver.SolverConfig()
solver_config.withSolutionClass(optapy.get_class(Solution)) \
.withEntityClasses([optapy.get_class(Entity)]) \
.withConstraintProviderClass(optapy.get_class(my_constraints)) \
.withTerminationSpentLimit(optapy.types.Duration.ofSeconds(1))
problem = Solution([Entity()], ['1', '2', '3'])
solver = optapy.solver_factory_create(solver_config).buildSolver()
with pytest.raises(RuntimeError, match=r'An error occurred during solving. This can occur when.*'):
solver.solve(problem)
| StarcoderdataPython |
151464 | import argparse
import logging
import os
import copy
from collections import defaultdict
from typing import List
import numpy as np
import torch
from sklearn import metrics
from torch.nn.utils.rnn import pad_sequence
from torch.utils.data.dataloader import DataLoader
from training.models import RNNClassifier
from operator import add
import json
class NumpyEncoder(json.JSONEncoder):
def default(self, obj):
if isinstance(obj, np.ndarray):
return obj.tolist()
elif isinstance(obj, np.float32):
return obj.item()
return json.JSONEncoder.default(self, obj)
class ArgsStruct:
def __init__(self, **entries):
self.__dict__.update(entries)
def load_architecture(device: torch.device, args: argparse.Namespace):
model = RNNClassifier(arch=args.arch, static_input_size=args.static_input_size,
dynamic_input_size=args.dynamic_input_size,
static_embedding_size=args.static_embedding_size,
hidden_size=args.hidden_size, dropout=args.dropout, rnn_layers=args.rnn_layers,
bidirectional=args.bidirectional, use_attention=args.use_attention,
attention_type=args.attention_type, attention_fields=args.attention_fields,
device=device, fc_layers=args.fc_layers, use_prior_prob_label=args.use_prior_prob_label)
model.to(device)
return model
def deterministic(seed):
torch.manual_seed(seed)
torch.backends.cudnn.deterministic = True
torch.backends.cudnn.benchmark = False
np.random.seed(seed)
def evaluate(data_loader: DataLoader, models: List[torch.nn.Module], device: torch.device,
subset_name: str, criterion, logistic_threshold: float,
exp_dir: str, metric='accuracy', max_seq: int = -1, aggregate: str = 'add', aggregate_or_th: float = 0.5):
assert aggregate in ['add', 'or']
assert aggregate_or_th > 0 and aggregate_or_th <= 1
assert metric in ['accuracy', 'f1']
metric_name = metric
if metric == 'accuracy':
metric_score = metrics.accuracy_score
metric_args = {}
metric_other_name, metric_other_args, metric_other_score = 'f1', {'average': 'macro'}, metrics.f1_score
else:
metric_score = metrics.f1_score
metric_args = {'average': 'macro'}
metric_other_name, metric_other_args, metric_other_score = 'accuracy', {}, metrics.accuracy_score
# deterministic(seed)
# seed should NOT be used here (TODO review)
total = 0
loss_total = 0
[model.eval() for model in models]
with torch.no_grad():
predictions = [defaultdict(list) for _ in range(len(models))]
patient_ids_from_start = defaultdict(list)
corrects = defaultdict(list)
first = True
for model_idx, model in enumerate(models):
for data in data_loader:
patient_ids, static_data, dynamic_data, lengths, labels = data[0], data[1].to(device), \
data[2], data[3].to(device), \
data[4].to(device)
if max_seq != -1:
new_dynamic_data = []
for data in dynamic_data:
new_dynamic_data.append(data[len(data) - max_seq:] if len(data) > max_seq else data)
dynamic_data = new_dynamic_data
# TO FIX: the padding remove one sequence from the list!
dynamic_data_padded = pad_sequence(dynamic_data, batch_first=True, padding_value=0).to(device)
effective_lengths = torch.ones(dynamic_data_padded.shape[0]).long().to(device)
c_lengths = torch.tensor(list(range(dynamic_data_padded.shape[1]))).long().to(device)
outputs = torch.zeros(dynamic_data_padded.shape[0]).to(device)
hidden = model.init_hidden(dynamic_data_padded.shape[0])
max_seq_step = dynamic_data_padded.shape[1]
dynamic_data_history = torch.zeros(len(data[0]), dynamic_data_padded.shape[1],
model.hidden_size).to(device)
for seq_step in range(max_seq_step):
events = dynamic_data_padded[:, seq_step, :]
non_zero = (effective_lengths != 0).nonzero().squeeze()
static = static_data[non_zero]
lens = effective_lengths[non_zero]
evs = events[non_zero]
if len(lens.shape) != 1:
static = static.unsqueeze(dim=0)
lens = lens.unsqueeze(dim=0)
evs = evs.unsqueeze(dim=0)
evs = evs.unsqueeze(dim=1)
if model.arch != 'lstm':
if len(non_zero.shape) == 0:
outputs[non_zero], hidden[:, non_zero:non_zero + 1, :], dynamic_data_event, _, _ = model(
(static, evs,
lens, hidden, dynamic_data_history), seq_step)
else:
outputs[non_zero], hidden[:, non_zero, :], dynamic_data_event, _, _ = model(
(static, evs, lens,
hidden, dynamic_data_history), seq_step)
else:
outputs[non_zero], h, dynamic_data_event, _, _ = model(
(static, evs, lens, hidden, dynamic_data_history), seq_step)
if len(non_zero.shape) == 0:
hidden[0][:, non_zero:non_zero + 1, :] = h[0]
hidden[1][:, non_zero:non_zero + 1, :] = h[1]
else:
hidden[0][:, non_zero, :] = h[0]
hidden[1][:, non_zero, :] = h[1]
# append predictions
non_zero_indexes = non_zero.tolist() if isinstance(non_zero.tolist(), list) else [non_zero.tolist()]
# append predictions and patient ids from start (left-aligned sequences)
for pred_idx in non_zero_indexes:
pred = torch.sigmoid(outputs[pred_idx]).clone().data
pred_seq_len = lengths.tolist()[pred_idx] - 1
predictions[model_idx][seq_step].append(pred)
# furthermore, store the patient_ids for each step
pid = patient_ids[pred_idx]
patient_ids_from_start[seq_step].append(int(pid))
dynamic_data_history[:, seq_step, :] = dynamic_data_event
if first:
outs = labels[non_zero].clone().data.tolist()
outs = outs if isinstance(outs, list) else [outs]
for label in outs:
corrects[seq_step].append(label)
total += 1 if len(non_zero.shape) == 0 else len(non_zero)
if outputs[non_zero].size():
if criterion.__class__.__name__ == 'BCEWithLogitsLoss':
loss_total += criterion(outputs[non_zero].clone(), labels[non_zero].float())
else:
loss_total += criterion(torch.sigmoid(outputs[non_zero]).clone(), labels[non_zero].float())
effective_lengths = (c_lengths[seq_step] < lengths - 1).long()
first = False
loss_total /= len(models)
# compute predictions and from end (right-aligned sequences) using the sequence length for each prediction
max_steps = len(predictions[0].keys())
# Compute voted predictions
def aggregate_or(votes):
return (1 if len(list(filter(lambda x: x == 1, votes)))/len(votes) >= aggregate_or_th else 0,
sum(votes)/len(votes))
predicted = defaultdict(list)
predicted_probs = defaultdict(list)
for step in range(max_steps):
# for each step, sum the prediction of each model in the ensemble
preds_votes = []
if aggregate == 'add':
for model_idx in range(len(predictions)):
if len(preds_votes) == 0:
preds_votes = [pred.tolist() for pred in predictions[model_idx][step]]
else:
preds_votes = list(map(add, preds_votes, [pred.tolist() for pred in predictions[model_idx][step]]))
predicted[step] = [1 if pred >= logistic_threshold * len(models) else 0 for pred in preds_votes]
predicted_probs[step] = preds_votes
else:
preds_votes_to_aggregate = []
for model_idx in range(len(predictions)):
if len(preds_votes_to_aggregate) == 0:
preds_votes_to_aggregate = [pred.tolist() for pred in predictions[model_idx][step]]
preds_votes_to_aggregate = [[1 if pred >= logistic_threshold else 0 for pred in
preds_votes_to_aggregate]]
else:
new_votes = [pred.tolist() for pred in predictions[model_idx][step]]
new_votes = [1 if pred >= logistic_threshold else 0 for pred in new_votes]
preds_votes_to_aggregate.append(new_votes)
pred_probs_or = []
for idx_pred_ in range(len(preds_votes_to_aggregate[0])):
preds_votes.append(aggregate_or([preds[idx_pred_] for preds in preds_votes_to_aggregate]))
for idx_pred_vote, pred_vote in enumerate(preds_votes):
decision, probs = pred_vote
preds_votes[idx_pred_vote] = decision
pred_probs_or.append(probs)
predicted[step] = preds_votes
predicted_probs[step] = pred_probs_or
predictions = dict()
prediction_probs = dict()
labels = dict()
for step in predicted.keys():
lista_ids = patient_ids_from_start[step]
lista_labels = corrects[step]
lista_predicciones = predicted[step]
lista_probs = predicted_probs[step]
for id, label, prediction, prob in zip(lista_ids, lista_labels, lista_predicciones, lista_probs):
if step == 0:
predictions[id] = []
prediction_probs[id] = []
labels[id] = label
predictions[id].append(prediction)
prediction_probs[id].append(prob)
predicted_from_end = defaultdict(list)
predicted_probs_from_end = defaultdict(list)
patient_ids_from_end = defaultdict(list)
corrects_from_end = defaultdict(list)
predictions_copy = copy.deepcopy(predictions)
predictions_probs_copy = copy.deepcopy(prediction_probs)
for step in range(max_steps):
y_pred = []
y_pred_probs = []
y_true = []
patient_ids_step = []
for id in predictions_copy:
if len(predictions_copy[id]) > 0:
last_prediction = predictions_copy[id].pop()
y_pred.append(last_prediction)
y_pred_probs.append(predictions_probs_copy[id].pop())
y_true.append(labels[id])
patient_ids_step.append(id)
patient_ids_from_end[step] = patient_ids_step
predicted_from_end[step] = y_pred
predicted_probs_from_end[step] = y_pred_probs
corrects_from_end[step] = y_true
# write to disk predictions and corrects labels
eval_preds = {"predictions_from_start": predicted,
"predictions_from_end": predicted_from_end,
"patient_ids_from_start": patient_ids_from_start,
"patient_ids_from_end": patient_ids_from_end,
"predicted_probs_from_start": predicted_probs,
"predicted_probs_from_end": predicted_probs_from_end,
"labels": corrects,
"labels_from_end": corrects_from_end}
with open(os.path.join(exp_dir, 'eval_preds_' + subset_name + '.json'), 'w') as pn:
json.dump(eval_preds, pn, cls=NumpyEncoder)
# Compute evaluations metrics and write report
eval_metrics = {"from_start": defaultdict(), "from_end": defaultdict(),
f"{metric_name}_avg_weighted": defaultdict()}
for step in range(max_steps):
# mean over all the correct predictions at given step
assert (len(predicted[step]) == len(corrects[step]) and len(predicted_from_end[step]) == len(
corrects_from_end[step])), \
'number of labels different from number of predictions'
eval_metrics["from_start"][step] = {metric_name: metric_score(corrects[step], predicted[step], **metric_args),
metric_other_name: metric_other_score(corrects[step], predicted[step],
**metric_other_args),
"sensitivity": metrics.recall_score(corrects[step], predicted[step]),
"corrects":
f'{metrics.accuracy_score(corrects[step], predicted[step], normalize=False)}',
"examples":
f'{len(predicted[step])}'}
eval_metrics["from_end"][step] = {
metric_name: metric_score(corrects_from_end[step], predicted_from_end[step], **metric_args),
metric_other_name: metric_other_score(corrects_from_end[step], predicted_from_end[step],
**metric_other_args),
"sensitivity": metrics.recall_score(corrects_from_end[step], predicted_from_end[step]),
"corrects":
f'{metrics.accuracy_score(corrects_from_end[step], predicted_from_end[step], normalize=False)}',
"examples": f'{len(predicted_from_end[step])}'}
predicted_all_scores = []
for step in range(max_steps):
predicted_all_scores.extend(predicted_probs[step])
predicted_all = []
for step in range(max_steps):
predicted_all.extend(predicted[step])
predicted_all_from_end = []
for step in range(max_steps):
predicted_all_from_end.extend(predicted_from_end[step])
corrects_all = []
for step in range(max_steps):
corrects_all.extend(corrects[step])
corrects_all_from_end = []
for step in range(max_steps):
corrects_all_from_end.extend(corrects_from_end[step])
eval_metrics[f"{metric_name}_avg_weighted"] = metric_score(corrects_all, predicted_all, **metric_args)
eval_metrics[f"{metric_name}_avg_weighted_from_end"] = metric_score(corrects_all_from_end, predicted_all_from_end,
**metric_args)
eval_metrics[f"{metric_other_name}_avg_weighted"] = metric_other_score(corrects_all, predicted_all,
**metric_other_args)
eval_metrics[f"{metric_other_name}_avg_weighted_from_end"] = metric_other_score(corrects_all_from_end,
predicted_all_from_end,
**metric_other_args)
eval_metrics["auc"] = metrics.roc_auc_score(corrects_all, predicted_all_scores)
tn, fp, fn, tp = metrics.confusion_matrix(corrects_all, predicted_all).ravel()
specificity = tn / (tn + fp)
eval_metrics["sensitivity"] = metrics.recall_score(corrects_all, predicted_all)
eval_metrics["sensitivity_from_end"] = metrics.recall_score(corrects_all_from_end, predicted_all_from_end)
eval_metrics["specificity"] = specificity
# TODO: encapsulate the evaluation report in a function
eval_report = '\t'.join(['days from hospitalization',
'corrects',
'examples',
f'{metric_name} per day',
f'{metric_name} average weighted',
f'{metric_other_name} per day',
f'{metric_other_name} average weighted',
'sensitivity per day',
'sensitivity average'
])
for step in range(max_steps):
eval_report += '\t'.join([f'\n{step}',
f'{eval_metrics["from_start"][step]["corrects"]}',
f'{eval_metrics["from_start"][step]["examples"]}',
f'{eval_metrics["from_start"][step][f"{metric_name}"] * 100:.2f}%',
f'{eval_metrics[f"{metric_name}_avg_weighted"] * 100:.2f}%',
f'{eval_metrics["from_start"][step][f"{metric_other_name}"] * 100:.2f}%',
f'{eval_metrics[f"{metric_other_name}_avg_weighted"] * 100:.2f}%',
f'{eval_metrics["from_start"][step]["sensitivity"] * 100:.2f}%',
f'{eval_metrics["sensitivity"] * 100:.2f}%'
])
eval_report += '\n'
eval_report += '\t'.join(['days before discharge',
'corrects',
'examples',
f'{metric_name} per day',
f'{metric_name} average weighted',
f'{metric_other_name} per day',
f'{metric_other_name} average weighted',
'sensitivity per day',
'sensitivity average'])
for step in range(max_steps):
eval_report += '\t'.join([f'\n{step}',
f'{eval_metrics["from_end"][step]["corrects"]}',
f'{eval_metrics["from_end"][step]["examples"]}',
f'{eval_metrics["from_end"][step][f"{metric_name}"] * 100:.2f}%',
f'{eval_metrics[f"{metric_name}_avg_weighted_from_end"] * 100:.2f}%',
f'{eval_metrics["from_end"][step][f"{metric_other_name}"] * 100:.2f}%',
f'{eval_metrics[f"{metric_other_name}_avg_weighted_from_end"] * 100:.2f}%',
f'{eval_metrics["from_end"][step]["sensitivity"] * 100:.2f}%',
f'{eval_metrics["sensitivity_from_end"] * 100:.2f}%'])
logging.info(eval_report)
with open(os.path.join(exp_dir, 'eval_report_' + subset_name + '.csv'), 'w') as fn:
fn.writelines(eval_report)
logging.info(
f"{metric_name.upper()} GLOBAL {subset_name}: " + f'{eval_metrics[f"{metric_name}_avg_weighted"] * 100:.4f}%')
output_table = {
f'{metric_name}_avg_weighted': eval_metrics[f'{metric_name}_avg_weighted'],
f'{metric_other_name}_avg_weighted': eval_metrics[f'{metric_other_name}_avg_weighted'],
'sensitivity': eval_metrics['sensitivity'],
'specificity': eval_metrics['specificity'],
'auc': eval_metrics['auc']
}
return float(loss_total), output_table
| StarcoderdataPython |
111532 | <filename>crawler_from_scratch/start.py
# AUTOGENERATED! DO NOT EDIT! File to edit: 00_Getting_Started.ipynb (unless otherwise specified).
__all__ = [] | StarcoderdataPython |
1770421 | import numpy as np
from thyme import *
from thyme.parsers.extxyz import write
import sys
if __name__ == "__main__":
# trjs = from_file(sys.argv[1])
# trjs.save(sys.argv[2]+".pickle")
# trjs.save(sys.argv[2]+"_padded_mat.npz")
trj = Trajectory.from_file(
sys.argv[1],
update_dict={
CELL: [12.817769235175424, 24.094028158633765, 122.0],
FIXED_ATTRS: [CELL],
PER_FRAME_ATTRS: [POSITION, TOTAL_ENERGY, "label"],
SPECIES: ["Au"] * 144,
},
mapping={
POSITION: "xyz",
TOTAL_ENERGY: "pe",
},
)
trj.include_frames(np.arange(0, len(trj), 100))
# print(trj)
# write(sys.argv[2], trj, append=False)
trj.save(sys.argv[2])
| StarcoderdataPython |
25192 | <filename>tests/fdb.py<gh_stars>0
import RPi.GPIO as GPIO # Import Raspberry Pi GPIO library
from datetime import datetime
import time
import paho.mqtt.client as mqtt
def button_callback(channel):
print(str(datetime.now()) + "Button was pushed!")
trigger()
time.sleep(2)
# The callback for when the client receives a CONNACK response from the server.
def on_connect(client, userdata, flags, rc):
print("Connected with result code "+str(rc))
# Subscribing in on_connect() means that if we lose the connection and
# reconnect then subscriptions will be renewed.
client.subscribe("$SYS/#")
# The callback for when a PUBLISH message is received from the server.
def on_message(client, userdata, msg):
print(msg.topic+" "+str(msg.payload))
def trigger():
client = mqtt.Client()
client.on_connect = on_connect
client.on_message = on_message
client.connect("mqtt.iglor.es", 8080, 60)
payload = {
"data": "bomb"
}
print("lalas")
client.publish("3522109c644e08605c46308a880dcb7d/smartphone", payload=bytes(payload), qos=0, retain=False)
time.sleep(0.5)
GPIO.setwarnings(False) # Ignore warning for now
GPIO.setmode(GPIO.BOARD) # Use physical pin numbering
GPIO.setup(10, GPIO.IN, pull_up_down=GPIO.PUD_DOWN) # Set pin 10 to be an input pin and set initial value to be pulled low (off)
GPIO.add_event_detect(10,GPIO.RISING,callback=button_callback) # Setup event on pin 10 rising edge
message = input("Press enter to quit\n\n") # Run until someone presses enter
GPIO.cleanup() # Clean up
| StarcoderdataPython |
155871 | from __future__ import division
from scipy.stats import norm
from pandas import read_excel
import numpy as np
# Transform to normal distribution #
def allnorm(x, y):
sample = len(x)
# Estimate norm parameters #
phat1 = norm.fit(x, loc=0, scale=1)
meanx = phat1[0]
sigmax = phat1[1]
phat2 = norm.fit(y, loc=0, scale=1)
meany = phat2[0]
sigmay = phat2[1]
# Save frequent calculations #
x_minus_mean_x = x - meanx
y_minus_mean_y = y - meany
sigmax_pow_3 = sigmax ** 3
sigmax_pow_2 = sigmax ** 2
sigmay_pow_3 = sigmay ** 3
sigmay_pow_2 = sigmay ** 2
minus_sample = -sample
# Calculate hessian matrix of log-likelihood #
hes_normx = np.array([[minus_sample / (sigmax_pow_2), -2*np.sum(x_minus_mean_x) / (sigmax_pow_3)],
[-2*np.sum(x_minus_mean_x) / (sigmax_pow_3), (sample / (sigmax_pow_2)) - (3*np.sum((x_minus_mean_x)**2) / (sigmax**4))]
])
hes_normy = np.array([[minus_sample / (sigmay_pow_2), -2*np.sum(y_minus_mean_y) / (sigmay_pow_3)],
[-2*np.sum(x - meany) / (sigmay_pow_3), (sample / (sigmay_pow_2)) - (3*np.sum((y_minus_mean_y)**2) / sigmay**4)]
])
# Calculate cumulative of x and y #
u = norm.cdf(x_minus_mean_x / sigmax, loc=0, scale=1)
v = norm.cdf(y_minus_mean_y / sigmay, loc=0, scale=1)
# Fix output #
zeros_tmp = np.zeros((2, 2))
new_hes_normx = np.concatenate((hes_normx, zeros_tmp), axis=1)
new_hes_normy = np.concatenate((zeros_tmp, hes_normy), axis=1)
hes_norm = np.concatenate((new_hes_normx, new_hes_normy), axis=0)
sigma = [sigmax, sigmay, meanx, meany]
# Fix overflow #
for i in range(len(u)):
if u[i] == 1:
u[i] = 0.99999999
if v[i] == 1:
v[i] = 0.99999999
result = {"sigma": sigma,
"hes_norm": hes_norm,
"u": u, "v": v
}
return result
# Test #
if __name__ == "__main__":
df = read_excel("/home/petropoulakis/Desktop/artificial_data.xlsx", sheet_name='Sheet1')
x = []
y = []
for index, row in df.iterrows():
x.append([float(row['x'])])
y.append([float(row['y'])])
result = allnorm(x, y)
print(result['sigma'])
print(result['hes_norm'])
print(result['u'][:5])
print(result['v'][:5])
| StarcoderdataPython |
3397124 | <reponame>sns-sdks/python-twitter-premium
from dataclasses import dataclass, field
from typing import Optional, List
from .base import BaseModel
@dataclass
class Hashtag(BaseModel):
"""
A class representing hashtag object.
Refer: https://developer.twitter.com/en/docs/tweets/data-dictionary/overview/entities-object#hashtags
"""
text: Optional[str] = field(default=None)
indices: Optional[List[int]] = field(default=None, repr=False)
@dataclass
class Size(BaseModel):
"""
A class representing size object.
Refer: https://developer.twitter.com/en/docs/tweets/data-dictionary/overview/entities-object#size
"""
w: Optional[int] = field(default=None)
h: Optional[int] = field(default=None)
resize: Optional[str] = field(default=None)
@dataclass
class Sizes(BaseModel):
"""
A class representing sizes object.
Refer: https://developer.twitter.com/en/docs/tweets/data-dictionary/overview/entities-object#media-size
"""
thumb: Optional[Size] = field(default=None)
small: Optional[Size] = field(default=None, repr=False)
medium: Optional[Size] = field(default=None, repr=False)
large: Optional[Size] = field(default=None, repr=False)
@dataclass
class Variant(BaseModel):
bitrate: Optional[int] = field(default=None, repr=False)
content_type: Optional[str] = field(default=None, repr=False)
url: Optional[str] = field(default=None, repr=False)
@dataclass
class VideoInfo(BaseModel):
"""
A class representing video object.
Refer: https://developer.twitter.com/en/docs/tweets/data-dictionary/overview/extended-entities-object
"""
aspect_ratio: Optional[List[int]] = field(default=None, repr=False)
duration_millis: Optional[int] = field(default=None, repr=False)
variants: Optional[List[Variant]] = field(default=None, repr=False)
@dataclass
class AdditionalMediaInfo(BaseModel):
"""
A class representing additional media object.
Refer: https://developer.twitter.com/en/docs/tweets/data-dictionary/overview/extended-entities-object
"""
title: Optional[str] = field(default=None, repr=False)
description: Optional[str] = field(default=None, repr=False)
embeddable: Optional[bool] = field(default=None, repr=False)
monetizable: Optional[bool] = field(default=None, repr=False)
@dataclass
class Media(BaseModel):
"""
A class representing media object.
Refer: https://developer.twitter.com/en/docs/tweets/data-dictionary/overview/entities-object#media
"""
display_url: Optional[str] = field(default=None, repr=False)
expanded_url: Optional[str] = field(default=None, repr=False)
id: Optional[int] = field(default=None, repr=False)
id_str: Optional[str] = field(default=None)
indices: Optional[List[int]] = field(default=None, repr=False)
media_url: Optional[str] = field(default=None, repr=False)
media_url_https: Optional[str] = field(default=None, repr=False)
type: Optional[str] = field(default=None)
url: Optional[str] = field(default=None, repr=False)
sizes: Optional[Sizes] = field(default=None, repr=False)
source_status_id: Optional[int] = field(default=None, repr=False)
source_status_id_str: Optional[str] = field(default=None, repr=False)
video_info: Optional[VideoInfo] = field(default=None, repr=False)
additional_media_info: Optional[AdditionalMediaInfo] = field(default=None, repr=False)
@dataclass
class Url(BaseModel):
"""
A class representing media object.
Refer: https://developer.twitter.com/en/docs/tweets/data-dictionary/overview/entities-object#urls
"""
display_url: Optional[str] = field(default=None, repr=False)
expanded_url: Optional[str] = field(default=None, repr=False)
url: Optional[str] = field(default=None)
indices: Optional[List[int]] = field(default=None, repr=False)
# Extends fields
status: Optional[int] = field(default=None, repr=False)
title: Optional[str] = field(default=None, repr=False)
description: Optional[str] = field(default=None, repr=False)
@dataclass
class UserMention(BaseModel):
"""
A class representing user mention object.
Refer: https://developer.twitter.com/en/docs/tweets/data-dictionary/overview/entities-object#mentions
"""
id: Optional[int] = field(default=None, repr=False)
id_str: Optional[str] = field(default=None)
indices: Optional[List[int]] = field(default=None, repr=False)
name: Optional[str] = field(default=None)
screen_name: Optional[str] = field(default=None)
@dataclass
class Symbol(BaseModel):
"""
A class representing symbol object.
Refer: https://developer.twitter.com/en/docs/tweets/data-dictionary/overview/entities-object#symbols
"""
indices: Optional[List[int]] = field(default=None, repr=False)
text: Optional[str] = field(default=None)
@dataclass
class PollOption(BaseModel):
position: Optional[int] = field(default=None)
text: Optional[str] = field(default=None)
@dataclass
class Poll(BaseModel):
"""
A class representing poll object.
Refer: https://developer.twitter.com/en/docs/tweets/data-dictionary/overview/entities-object#polls
"""
options: Optional[List[PollOption]] = field(default=None, repr=False)
end_datetime: Optional[str] = field(default=None)
duration_minutes: Optional[int] = field(default=None)
@dataclass
class Entities(BaseModel):
"""
A class representing entities object.
Refer: https://developer.twitter.com/en/docs/tweets/data-dictionary/overview/entities-object
"""
hashtags: Optional[List[Hashtag]] = field(default=None, repr=False)
media: Optional[List[Media]] = field(default=None, repr=False)
urls: Optional[List[Url]] = field(default=None, repr=False)
user_mentions: Optional[List[UserMention]] = field(default=None, repr=False)
symbols: Optional[List[Symbol]] = field(default=None, repr=False)
polls: Optional[List[Poll]] = field(default=None, repr=False)
@dataclass
class ExtendedEntities(Entities):
"""
extended entities has same struct as entities.
Refer: https://developer.twitter.com/en/docs/tweets/data-dictionary/overview/extended-entities-object
"""
...
@dataclass
class UserEntitiesUrl(BaseModel):
urls: Optional[List[Url]] = field(default=None, repr=False)
@dataclass
class UserEntitiesDescription(BaseModel):
description: Optional[List[Url]] = field(default=None, repr=False)
@dataclass
class UserEntities(BaseModel):
"""
A class representing user entities object. It has a bit different for tweet entities.
Refer: https://developer.twitter.com/en/docs/tweets/data-dictionary/overview/entities-object#entities-user
"""
url: Optional[UserEntitiesUrl] = field(default=None, repr=False)
description: Optional[UserEntitiesDescription] = field(default=None, repr=False)
| StarcoderdataPython |
1770223 | <gh_stars>0
# Copyright (c) 2019 SAP SE or an SAP affiliate company. All rights reserved. This file is licensed
# under the Apache Software License, v. 2 except as noted otherwise in the LICENSE file
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from util import not_none
from concourse.model.base import (
AttributeSpec,
Trait,
TraitTransformer,
)
ATTRIBUTES = (
AttributeSpec.optional(
name='suppress_parallel_execution',
default=None,
doc='whether parallel executions of the same job should be prevented',
type=bool,
),
)
class SchedulingTrait(Trait):
def _attribute_specs(self):
return ATTRIBUTES
def _defaults_dict(self):
return AttributeSpec.defaults_dict(ATTRIBUTES)
def _optional_attributes(self):
return set(AttributeSpec.optional_attr_names(ATTRIBUTES))
# XXX: merge this with cron-trait
def transformer(self):
return SchedulingTraitTransformer()
def suppress_parallel_execution(self):
return self.raw.get('suppress_parallel_execution', None)
class SchedulingTraitTransformer(TraitTransformer):
name = 'scheduling'
def process_pipeline_args(self, pipeline_args: 'JobVariant'):
# no-op
pass
| StarcoderdataPython |
3392585 | <filename>datetime2/modern.py
# ISO calendar and Internet time
# Copyright (c) 2013-2022 <NAME>
#
# All rights reserved.
#
# Redistribution and use in source and binary forms, with or without
# modification, are permitted provided that the following conditions are met:
#
# * Redistributions of source code must retain the above copyright notice,
# this list of conditions and the following disclaimer.
# * Redistributions in binary form must reproduce the above copyright notice,
# this list of conditions and the following disclaimer in the documentation
# and/or other materials provided with the distribution.
# * Neither the name(s) of the copyright holders nor the names of its
# contributors may be used to endorse or promote products derived from this
# software without specific prior written permission.
#
# THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AS IS AND ANY EXPRESS OR
# IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
# MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO
# EVENT SHALL THE COPYRIGHT HOLDERS BE LIABLE FOR ANY DIRECT, INDIRECT,
# INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
# LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA,
# OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
# LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
# NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE,
# EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
__author__ = "<NAME> <francescor2010 at yahoo.it>"
__all__ = ["IsoCalendar"]
import bisect
from fractions import Fraction
from math import floor
from datetime2 import verify_fractional_value
_long_years = frozenset(
[
4,
9,
15,
20,
26,
32,
37,
43,
48,
54,
60,
65,
71,
76,
82,
88,
93,
99,
105,
111,
116,
122,
128,
133,
139,
144,
150,
156,
161,
167,
172,
178,
184,
189,
195,
201,
207,
212,
218,
224,
229,
235,
240,
246,
252,
257,
263,
268,
274,
280,
285,
291,
296,
303,
308,
314,
320,
325,
331,
336,
342,
348,
353,
359,
364,
370,
376,
381,
387,
392,
398,
]
)
_weeks_in_previous_years = [0]
for year_index in range(1, 400):
_weeks_in_previous_years.append(_weeks_in_previous_years[-1] + (52 if year_index not in _long_years else 53))
# This code pretty prints the week-in-previous-years list
# for row in range (20):
# print('{:3d}: {}'.format(row * 20, " ".join(['{:5d}'.format(_weeks_in_previous_years[y + row * 20]) for y in range(20)])))
##############################################################################
# Iso calendar
#
class IsoCalendar:
def __init__(self, year, week, day):
if not isinstance(year, int) or not isinstance(week, int) or not isinstance(day, int):
raise TypeError("integer argument expected")
if week < 1 or week > IsoCalendar.weeks_in_year(year):
raise ValueError(f"Week must be between 1 and number of weeks in year, while it is {week}.")
if day < 1 or day > 7:
raise ValueError(f"Day must be between 1 and 7, while it is {day}.")
self._year = year
self._week = week
self._day = day
self._rata_die = None
@property
def year(self):
return self._year
@property
def week(self):
return self._week
@property
def day(self):
return self._day
@classmethod
def from_rata_die(cls, day_count):
if not isinstance(day_count, int):
raise TypeError("integer argument expected")
week_no_less_1, day_less_1 = divmod(day_count - 1, 7) # ranges: week_no_less_1: free, day_less_1: 0..6
four_hundred_years, no_of_weeks_in_400 = divmod(week_no_less_1, 20871) # ranges: four_hundred_years: free, no_of_weeks_in_400: 0..20870
year_in_400 = bisect.bisect_right(_weeks_in_previous_years, no_of_weeks_in_400) # range: year_in_400: 1..400
year = year_in_400 + four_hundred_years * 400
week = no_of_weeks_in_400 - _weeks_in_previous_years[year_in_400 - 1] + 1
day = day_less_1 + 1
iso_day = cls(year, week, day)
iso_day._rata_die = day_count
return iso_day
@staticmethod
def is_long_year(year):
return year % 400 in _long_years
@staticmethod
def weeks_in_year(year):
return 52 if year % 400 not in _long_years else 53
def to_rata_die(self):
if self._rata_die is None:
y400, year_in_400 = divmod(self.year - 1, 400)
self._rata_die = (y400 * 146097 + 7 * (_weeks_in_previous_years[year_in_400] + self.week - 1) + self.day)
return self._rata_die
def day_of_year(self):
return 7 * (self.week - 1) + self.day
def replace(self, *, year=None, week=None, day=None):
if year is None:
year = self.year
if week is None:
week = self.week
if day is None:
day = self.day
return type(self)(year, week, day)
def __repr__(self):
return f"datetime2.modern.{type(self).__name__}({self.year}, {self.week}, {self.day})"
def __str__(self):
if self.year >= 0:
return f"{self.year:04d}-W{self.week:02d}-{self.day:1d}"
else:
return f"{self.year:05d}-W{self.week:02d}-{self.day:1d}"
name_weekdays = [
"Monday",
"Tuesday",
"Wednesday",
"Thursday",
"Friday",
"Saturday",
"Sunday",
]
format_functions = {
"a": lambda self: IsoCalendar.name_weekdays[self.day - 1][:3],
"A": lambda self: IsoCalendar.name_weekdays[self.day - 1],
"j": lambda self: f"{self.day_of_year():03d}",
"w": lambda self: f"{self.day:1d}",
"W": lambda self: f"{(self.day_of_year() + 7 - self.day) // 7:02d}",
"y": lambda self: f"{self.year:03d}"[-2:],
"Y": lambda self: f"{self.year:04d}" if self.year >= 0 else f"-{-self.year:04d}"
}
def cformat(self, format_string):
if not isinstance(format_string, str):
raise TypeError("Format must be specified with string.")
output_pieces = []
for format_chunk in format_string.split("%%"):
format_parts = format_chunk.split("%")
chunk_pieces = [format_parts[0]]
for part in format_parts[1:]:
if part == "": # special case: last char is '%'
value = "%"
else:
try:
value = self.format_functions[part[0]](self)
except KeyError:
value = "%" + part[0]
chunk_pieces.append(value)
chunk_pieces.append(part[1:])
output_pieces.append("".join(chunk_pieces))
return "%".join(output_pieces)
##############################################################################
# Internet time representation
#
class InternetTime:
def __init__(self, beat):
try:
beat_fraction = verify_fractional_value(beat, min=0, max_excl=1000)
except TypeError as exc:
raise TypeError("beat is not a valid fractional value") from exc
except ValueError as exc:
raise ValueError("beat must be equal or greater than 0 and less than 1000.") from exc
self._beat = beat_fraction
@property
def beat(self):
return self._beat
@classmethod
def from_time_pair(cls, day_frac, utcoffset):
day_frac_valid = verify_fractional_value(day_frac, min=0, max_excl=1, strict=True)
if utcoffset is None:
raise TypeError("Internet time can only be used for aware Time instances.")
utcoffset_valid = verify_fractional_value(utcoffset, min=-1, max=1, strict=True)
utc_time = day_frac_valid - utcoffset_valid
beat = (utc_time - floor(utc_time)) * 1000
internet = cls(beat)
return internet
def to_time_pair(self):
return self._beat / 1000, Fraction(-1, 24)
def __repr__(self):
return f"datetime2.modern.{type(self).__name__}({self.beat!r})"
def __str__(self):
return f"@{int(self.beat):03d}"
format_functions = {
"b": lambda self: f"{int(self.beat):03d}",
"f": lambda self: f"{int((self.beat - int(self.beat)) * 1000):03d}"
}
def cformat(self, format_string):
if not isinstance(format_string, str):
raise TypeError("Format must be specified with string.")
output_pieces = []
for format_chunk in format_string.split("%%"):
format_parts = format_chunk.split("%")
chunk_pieces = [format_parts[0]]
for part in format_parts[1:]:
if part == "": # special case: last char is '%'
value = "%"
else:
try:
value = self.format_functions[part[0]](self)
except KeyError:
value = "%" + part[0]
chunk_pieces.append(value)
chunk_pieces.append(part[1:])
output_pieces.append("".join(chunk_pieces))
return "%".join(output_pieces)
| StarcoderdataPython |
1687466 | from django.contrib import admin
from spinach import Batch
from . import models
from .tasks import tasks
@admin.register(models.Feed)
class FeedAdmin(admin.ModelAdmin):
list_display = ('name', 'domain', 'last_fetched_at', 'last_failure')
actions = ['sync']
def sync(self, request, queryset):
batch = Batch()
for feed in queryset:
batch.schedule('synchronize_feed', feed.id, force=True)
tasks.schedule_batch(batch)
sync.short_description = 'Synchronize feed'
@admin.register(models.Article)
class ArticleAdmin(admin.ModelAdmin):
pass
@admin.register(models.Attachment)
class AttachmentAdmin(admin.ModelAdmin):
list_display = ('id', 'title', 'size_in_bytes', 'duration')
readonly_fields = ('article',)
@admin.register(models.ReaderProfile)
class ProfileAdmin(admin.ModelAdmin):
pass
@admin.register(models.Subscription)
class SubscriptionAdmin(admin.ModelAdmin):
pass
@admin.register(models.Board)
class BoardAdmin(admin.ModelAdmin):
pass
@admin.register(models.CachedImage)
class CachedImageAdmin(admin.ModelAdmin):
list_display = ('id', 'uri', 'format', 'resolution', 'is_tracking_pixel',
'created_at')
readonly_fields = ('id', 'uri', 'format', 'resolution',
'size_in_bytes', 'failure_reason',
'created_at', 'image_tag')
| StarcoderdataPython |
175721 | # -*- coding: utf-8 -*-
# Spider for 91 buddha
#
# See documentation in:
# https://doc.scrapy.org/en/latest/topics/spiders.html
import scrapy
import logging
import random
from buddha_item import BuddhaItem
from utils.data_store import DataStore
import math
import time
date_string = time.strftime("%Y_%m_%d", time.localtime())
logging.basicConfig(
filename=('buddha_%s.log' % (date_string)),
level=logging.DEBUG, filemode='w')
logger = logging.getLogger(__name__)
class BuddhaSpider(scrapy.Spider):
# BuddhaSpider
name = "buddha"
start_urls = [
'http://91porn.com/v.php?next=watch', # 全部视频
'http://91porn.com/v.php?category=rf' # 最近加精
]
# start_urls = ['https://www.zhihu.com/signin']
# start_urls = ['https://twitter.com/']
headers = {
"Accept": "*/*",
"Accept-Encoding": "gzip,deflate",
"Accept-Language": "zh-CN,zh;q=0.8",
"Connection": "keep-alive",
"Content-Type": " application/x-www-form-urlencoded; charset=UTF-8",
"User-Agent": "Mozilla/5.0 (Macintosh; Intel Mac OS X 10_10_1) \
AppleWebKit/537.36 (KHTML, like Gecko) Chrome/38.0.2125.111 \
Safari/537.36"
}
cookies = {
"watch_times": "1"
}
def __init__(self, type):
self.type = type
super(BuddhaSpider, self).__init__()
def start_requests(self):
logger.info("Buddha - Start, Type: %s" % self.type)
if self.type == 0:
url = self.start_urls[0]
elif self.type == 1:
url = self.start_urls[1]
return [
scrapy.Request(
url=url,
callback=self.parse_last_page),
]
def parse_last_page(self, response):
xpath_str = '//*[@class="videopaging"]/text()'
item = response.xpath(xpath_str).extract()[0]
total_count = item.split(' ')[-1]
last_page_num = math.ceil(int(total_count) / 20)
logger.info("Videos Total Count: %s,\
Pages Total Count: %s" % (total_count, last_page_num))
url = response.url + '&page=%s' % last_page_num
yield scrapy.Request(
url=url,
callback=self.parse,
dont_filter=True)
yield scrapy.Request(
url=url,
callback=self.parse_previous_page,
dont_filter=True)
def parse(self, response):
logger.info("Buddha - Parse : %s" % (response.url))
xpath_str = '//*[@class="listchannel"]/a[@target="blank"]/@href'
for href in response.xpath(xpath_str).extract():
logger.info("Request Detail: %s" % (href))
# 查询是否重复
viewkey = self._viewkey_from_url(href)
ds = DataStore()
(exists, rf) = ds.buddha_exists(viewkey)
ds.close()
if self.type == 0 and exists: # 全部抓取且存在,跳过
logger.warning("Ignore, View: %s exits" % (viewkey))
continue
elif self.type == 1 and exists and rf == 1:
# 精华且存在且已经为精华,跳过
logger.warning("Ignore, View: %s exits" % (viewkey))
continue
random_ip = str(random.randint(0, 255)) + "." + \
str(random.randint(0, 255)) + "." + \
str(random.randint(0, 255)) + "." + \
str(random.randint(0, 255))
self.headers["X-Forwarded-For"] = random_ip
yield scrapy.Request(
url=href,
headers=self.headers,
cookies=self.cookies,
callback=self.parse_detail)
# filename = 'buddha.html'
# with open(filename, 'wb') as response_file:
# response_file.write(response.body)
def parse_detail(self, response):
buddha = BuddhaItem()
try:
name = response.xpath(
'//div[@id="viewvideo-title"]/text()').extract()[0]
name = "".join(name.split())
logger.info("Buddha - Parse Detail: %s" % (name))
except (ValueError, IndexError):
logger.error(
"Buddha - Parse Detail Error: %s,\n\
name parse error" % (response.url))
name = ''
buddha["name"] = name
buddha["url"] = response.url
viewkey = self._viewkey_from_url(response.url)
buddha["viewkey"] = viewkey
try:
download_url = response.xpath(
'//video[@id="vid"]/source/@src').extract()[0]
download_url = "".join(download_url.split())
logger.info("Buddha - Parse Detail: %s" % (download_url))
except (ValueError, IndexError):
logger.error(
"Buddha - Parse Detail Error: %s,\n\
download_url parse error" % (response.url))
download_url = ''
buddha["download_url"] = download_url
try:
image_url = response.xpath(
'//div[@class="example-video-container"]/\
video/@poster').extract()[0]
logger.info("Buddha - Parse Detail: %s" % (image_url))
except (ValueError, IndexError):
logger.error(
"Buddha - Parse Detail Error: %s,\n\
image_url parse error" % (response.url))
image_url = ''
buddha["image_url"] = image_url
try:
duration = response.xpath(
'//div[@class="boxPart"]/text()').extract()[1]
duration = "".join(duration.split())
logger.info("Buddha - Parse Detail: %s" % (duration))
except (ValueError, IndexError):
logger.error(
"Buddha - Parse Detail Error: %s,\n\
duration parse error" % (response.url))
duration = ''
buddha["duration"] = duration
try:
points = response.xpath(
'//div[@class="boxPart"]/text()').extract()[-1]
points = "".join(points.split())
logger.info("Buddha - Parse Detail: %s" % (points))
except (ValueError, IndexError):
logger.error(
"Buddha - Parse Detail Error: %s,\n\
points parse error" % (response.url))
points = ''
buddha["points"] = points
try:
add_time = response.xpath(
'//div[@id="videodetails-content"]/\
span[@class="title"]/text()').extract()[0]
add_time = "".join(add_time.split())
logger.info("Buddha - Parse Detail: %s" % (add_time))
except (ValueError, IndexError):
logger.error(
"Buddha - Parse Detail Error: %s,\n\
add_time parse error" % (response.url))
add_time = ''
buddha["add_time"] = add_time
try:
author = response.xpath(
'//div[@id="videodetails-content"]/a/\
span[@class="title"]/text()').extract()[0]
author = "".join(author.split())
logger.info("Buddha - Parse Detail: %s" % (author))
except (ValueError, IndexError):
logger.error(
"Buddha - Parse Detail Error: %s,\n\
author parse error" % (response.url))
author = ''
buddha["author"] = author
try:
more = response.xpath(
'//span[@class="more"]/text()').extract()[0]
more = "".join("".join(more).split())
# logger.info("Buddha - Parse Detail: %s" % (
# more))
except (ValueError, IndexError):
logger.error(
"Buddha - Parse Detail Error: %s,\n\
more parse error" % (response.url))
more = ''
desc = more
logger.info("Buddha - Parse Detail: %s" % (
desc))
buddha["desc"] = desc
buddha["rf"] = 0
if self.type == 1:
logger.info("Buddha - Parse Detail rf : %s" % (buddha["rf"]))
buddha["rf"] = 1
# logger.info("Buddha - Parse Detail: %s" % (buddha))
yield buddha
# filename = 'buddha_detail_%s.html' % int(time.time())
# with open(filename, 'wb') as response_file:
# response_file.write(response.body)
def parse_previous_page(self, response):
xpath_str = '//*[@id="paging"]/div/form/a/@href'
next_url = response.urljoin(
response.xpath(xpath_str).extract()[0])
logger.info("Buddha - Parse Previous Page : %s" % (next_url))
yield scrapy.Request(
url=next_url,
callback=self.parse,
dont_filter=True)
pagingnav = response.xpath(
'//*[@id="paging"]/div/form/\
span[@class="pagingnav"]/text()').extract()[0]
if pagingnav != '1': # 已经解析到第一页了,停止
yield scrapy.Request(
url=next_url,
callback=self.parse_previous_page,
dont_filter=True)
else:
logger.info("Buddha - End With Page : %s " % (pagingnav))
def _viewkey_from_url(self, url):
key = 'viewkey='
viewkey = ''
if key in url:
start = url.index(key) + len(key)
end = start + 20
viewkey = url[start:end]
return viewkey
def closed(self, spider):
# second param is instance of spder about to be closed.
logger.info("Buddha - Closed")
| StarcoderdataPython |
185765 | <gh_stars>1-10
import pathlib
import shutil
import tempfile
from pymongo import MongoClient
from ted_sws import config
from ted_sws.core.model.manifestation import XMLManifestation
from ted_sws.core.model.notice import Notice
from ted_sws.data_manager.adapters.mapping_suite_repository import TRANSFORM_PACKAGE_NAME, VALIDATE_PACKAGE_NAME, \
SPARQL_PACKAGE_NAME, METADATA_FILE_NAME, RESOURCES_PACKAGE_NAME, SHACL_PACKAGE_NAME, TEST_DATA_PACKAGE_NAME, \
MAPPINGS_PACKAGE_NAME, MappingSuiteRepositoryInFileSystem, MappingSuiteRepositoryMongoDB
from ted_sws.data_manager.adapters.notice_repository import NoticeRepository
from ted_sws.mapping_suite_processor.adapters.github_package_downloader import GitHubMappingSuitePackageDownloader
from ted_sws.mapping_suite_processor.services.conceptual_mapping_files_injection import \
mapping_suite_processor_inject_resources, mapping_suite_processor_inject_rml_modules, \
mapping_suite_processor_inject_shacl_shapes, \
mapping_suite_processor_inject_sparql_queries
from ted_sws.mapping_suite_processor.services.conceptual_mapping_generate_metadata import \
mapping_suite_processor_generate_metadata
from ted_sws.mapping_suite_processor.services.conceptual_mapping_generate_sparql_queries import \
mapping_suite_processor_generate_sparql_queries
from ted_sws.resources import RESOURCES_PATH
CONCEPTUAL_MAPPINGS_FILE_NAME = "conceptual_mappings.xlsx"
CONCEPTUAL_MAPPINGS_ASSERTIONS = "cm_assertions"
SHACL_SHAPE_INJECTION_FOLDER = "ap_data_shape"
SHACL_SHAPE_RESOURCES_FOLDER = "shacl_shapes"
SHACL_SHAPE_FILE_NAME = "ePO_shacl_shapes.rdf"
MAPPING_FILES_RESOURCES_FOLDER = "mapping_files"
RML_MODULES_FOLDER = "rml_modules"
SPARQL_QUERIES_RESOURCES_FOLDER = "queries"
SPARQL_QUERIES_INJECTION_FOLDER = "business_queries"
PROD_ARCHIVE_SUFFIX = "prod"
DEMO_ARCHIVE_SUFFIX = "demo"
def mapping_suite_processor_zip_package(mapping_suite_package_path: pathlib.Path,
prod_version: bool = False):
"""
This function archives a package and puts a suffix in the name of the archive.
:param mapping_suite_package_path:
:param prod_version:
:return:
"""
archive_name_suffix = PROD_ARCHIVE_SUFFIX if prod_version else DEMO_ARCHIVE_SUFFIX
tmp_folder_path = mapping_suite_package_path.parent / f"{mapping_suite_package_path.stem}-{archive_name_suffix}"
output_archive_file_name = mapping_suite_package_path.parent / f"{mapping_suite_package_path.stem}-{archive_name_suffix}"
shutil.copytree(mapping_suite_package_path, tmp_folder_path, dirs_exist_ok=True)
if prod_version:
shutil.rmtree(tmp_folder_path / TEST_DATA_PACKAGE_NAME)
shutil.make_archive(str(output_archive_file_name), 'zip', tmp_folder_path)
shutil.rmtree(tmp_folder_path)
def mapping_suite_processor_expand_package(mapping_suite_package_path: pathlib.Path):
"""
This function reads data from conceptual_mappings.xlsx and expand provided package.
:param mapping_suite_package_path:
:return:
"""
conceptual_mappings_file_path = mapping_suite_package_path / TRANSFORM_PACKAGE_NAME / CONCEPTUAL_MAPPINGS_FILE_NAME
cm_sparql_folder_path = mapping_suite_package_path / VALIDATE_PACKAGE_NAME / SPARQL_PACKAGE_NAME / CONCEPTUAL_MAPPINGS_ASSERTIONS
metadata_file_path = mapping_suite_package_path / METADATA_FILE_NAME
resources_folder_path = mapping_suite_package_path / TRANSFORM_PACKAGE_NAME / RESOURCES_PACKAGE_NAME
mapping_files_resources_folder_path = RESOURCES_PATH / MAPPING_FILES_RESOURCES_FOLDER
rml_modules_folder_path = mapping_suite_package_path / TRANSFORM_PACKAGE_NAME / MAPPINGS_PACKAGE_NAME
mapping_files_rml_modules_folder_path = RESOURCES_PATH / RML_MODULES_FOLDER
shacl_shape_file_path = RESOURCES_PATH / SHACL_SHAPE_RESOURCES_FOLDER / SHACL_SHAPE_FILE_NAME
shacl_shape_injection_folder = mapping_suite_package_path / VALIDATE_PACKAGE_NAME / SHACL_PACKAGE_NAME / SHACL_SHAPE_INJECTION_FOLDER
sparql_queries_resources_folder_path = RESOURCES_PATH / SPARQL_QUERIES_RESOURCES_FOLDER
sparql_queries_injection_folder = mapping_suite_package_path / VALIDATE_PACKAGE_NAME / SPARQL_PACKAGE_NAME / SPARQL_QUERIES_INJECTION_FOLDER
shacl_shape_injection_folder.mkdir(parents=True, exist_ok=True)
cm_sparql_folder_path.mkdir(parents=True, exist_ok=True)
resources_folder_path.mkdir(parents=True, exist_ok=True)
rml_modules_folder_path.mkdir(parents=True, exist_ok=True)
mapping_suite_processor_generate_sparql_queries(conceptual_mappings_file_path=conceptual_mappings_file_path,
output_sparql_queries_folder_path=cm_sparql_folder_path
)
mapping_suite_processor_generate_metadata(conceptual_mappings_file_path=conceptual_mappings_file_path,
output_metadata_file_path=metadata_file_path
)
mapping_suite_processor_inject_resources(conceptual_mappings_file_path=conceptual_mappings_file_path,
resources_folder_path=mapping_files_resources_folder_path,
output_resources_folder_path=resources_folder_path
)
mapping_suite_processor_inject_rml_modules(conceptual_mappings_file_path=conceptual_mappings_file_path,
rml_modules_folder_path=mapping_files_rml_modules_folder_path,
output_rml_modules_folder_path=rml_modules_folder_path
)
mapping_suite_processor_inject_shacl_shapes(shacl_shape_file_path=shacl_shape_file_path,
output_shacl_shape_folder_path=shacl_shape_injection_folder
)
mapping_suite_processor_inject_sparql_queries(sparql_queries_folder_path=sparql_queries_resources_folder_path,
output_sparql_queries_folder_path=sparql_queries_injection_folder
)
mapping_suite_processor_zip_package(mapping_suite_package_path=mapping_suite_package_path)
mapping_suite_processor_zip_package(mapping_suite_package_path=mapping_suite_package_path, prod_version=True)
def mapping_suite_processor_load_package_in_mongo_db(mapping_suite_package_path: pathlib.Path,
mongodb_client: MongoClient,
load_test_data: bool = False
):
"""
This feature allows you to upload a mapping suite package to MongoDB.
:param mapping_suite_package_path:
:param mongodb_client:
:param load_test_data:
:return:
"""
mapping_suite_repository_path = mapping_suite_package_path.parent
mapping_suite_package_name = mapping_suite_package_path.name
mapping_suite_repository_in_file_system = MappingSuiteRepositoryInFileSystem(
repository_path=mapping_suite_repository_path)
mapping_suite_in_memory = mapping_suite_repository_in_file_system.get(reference=mapping_suite_package_name)
if load_test_data:
tests_data = mapping_suite_in_memory.transformation_test_data.test_data
notice_repository = NoticeRepository(mongodb_client=mongodb_client)
for test_data in tests_data:
notice_repository.add(notice=Notice(ted_id=test_data.file_name.split(".")[0],
xml_manifestation=XMLManifestation(object_data=test_data.file_content)))
mapping_suite_repository_mongo_db = MappingSuiteRepositoryMongoDB(mongodb_client=mongodb_client)
mapping_suite_repository_mongo_db.add(mapping_suite=mapping_suite_in_memory)
def mapping_suite_processor_from_github_expand_and_load_package_in_mongo_db(mapping_suite_package_name: str,
mongodb_client: MongoClient,
load_test_data: bool = False
):
"""
This feature is intended to download a mapping_suite_package from GitHub and process it for upload to MongoDB.
:param mapping_suite_package_name:
:param mongodb_client:
:param load_test_data:
:return:
"""
mapping_suite_package_downloader = GitHubMappingSuitePackageDownloader(
github_repository_url=config.GITHUB_TED_SWS_ARTEFACTS_URL)
with tempfile.TemporaryDirectory() as tmp_dir:
tmp_dir_path = pathlib.Path(tmp_dir)
mapping_suite_package_downloader.download(mapping_suite_package_name=mapping_suite_package_name,
output_mapping_suite_package_path=tmp_dir_path)
mapping_suite_package_path = tmp_dir_path / mapping_suite_package_name
mapping_suite_processor_expand_package(mapping_suite_package_path=mapping_suite_package_path)
mapping_suite_processor_load_package_in_mongo_db(mapping_suite_package_path=mapping_suite_package_path,
mongodb_client=mongodb_client,
load_test_data=load_test_data
)
| StarcoderdataPython |
1749399 | <reponame>tirkarthi/odin-ai
from __future__ import absolute_import, division, print_function
import os
import time
import numpy as np
import seaborn as sns
import tensorflow as tf
import tensorflow_probability as tfp
from matplotlib import pyplot as plt
from tensorflow import keras
from odin import visual as vs
from odin.bay import kl_divergence
os.environ['TF_CPP_MIN_LOG_LEVEL'] = '3'
os.environ['TF_FORCE_GPU_ALLOW_GROWTH'] = 'true'
tf.random.set_seed(8)
np.random.seed(8)
sns.set()
# ===========================================================================
# Helper functions
# ===========================================================================
def minimize(loss_func,
params,
verbose=False,
print_params=True,
learning_rate=0.1,
epochs=500):
opt = tf.optimizers.Adam(learning_rate=learning_rate)
benchmark = []
history = []
for i in range(epochs):
start_time = time.time()
with tf.GradientTape() as tape:
tape.watch(params)
loss = tf.reduce_mean(loss_func())
grad = tape.gradient(loss, params)
benchmark.append(time.time() - start_time)
if verbose and (i + 1) % (epochs // 2) == 0:
print("#%-4d Loss:%.4f (%.2f sec/100)" %
(i + 1, loss, np.mean(benchmark) * 100))
if print_params:
for p in params:
print(' * %s: %s' % (p.name, str(p.numpy())))
history.append([loss.numpy()] + [p.numpy() for p in params])
opt.apply_gradients(grads_and_vars=zip(grad, params))
return history
create_posterior = lambda: tfp.distributions.Normal(
loc=tf.Variable(0., dtype='float32', trainable=True, name='loc'),
scale=tf.Variable(1., dtype='float32', trainable=True, name='scale'),
name='Normal')
# NOTE: it important to get the loc spread wide enough to prevent mode collapse
# however, the scale must be small enough for not exploding the gradients
create_mixture_posterior = lambda n, loc_min=0, loc_max=100: \
tfp.distributions.MixtureSameFamily(
mixture_distribution=tfp.distributions.Categorical(probs=[1. / n] * n),
components_distribution=tfp.distributions.Normal(
loc=tf.Variable(
np.linspace(loc_min, loc_max, n),
dtype='float32', trainable=True, name='loc'),
scale=tf.Variable(
[1.] * n, dtype='float32', trainable=True, name='scale')))
def plot_posteriors(posterior, prior, n=1000):
# this is very hard-coded function
plt.figure(figsize=(12, 8))
sns.kdeplot(prior.sample(int(n)).numpy(), label="Prior")
for post, analytic, reverse, sample_shape in posterior:
sns.kdeplot(post.sample(int(n)).numpy(),
linestyle='-' if reverse else '--',
label='%s-%s mcmc:%d' % ('KL(q||p)' if reverse else 'KL(p||q)',
'A' if analytic else 'S', sample_shape))
def plot_histories(posterior, histories):
plt.figure(figsize=(24, 5))
for idx, (post, analytic, reverse, sample_shape) in enumerate(posterior):
ax = plt.subplot(1, len(posterior), idx + 1)
hist = histories[idx]
name = '%s-%s mcmc:%d' % \
('KL(q||p)' if reverse else 'KL(p||q)', 'A' if analytic else 'S', sample_shape)
loc = np.asarray([i[1] for i in hist])
plt.plot(loc, label='loc', linestyle='-' if reverse else '--')
scale = np.asarray([i[2] for i in hist])
plt.plot(scale, label='scale', linestyle='-' if reverse else '--')
plt.legend()
ax = ax.twinx()
plt.plot([i[0] for i in hist], label='loss', color='r')
plt.title(name)
plt.tight_layout()
# ===========================================================================
# Can deep network fix posterior mode collapse due to loc initialization
# * Appropriate learning rate is essential
# * High amount of components help, but not too high
# * Too deep network will make overfitting to the first components.
# * If input features are useless, deep network cannot help
# * maximum likelihood might end up with more modes
# ===========================================================================
prior = tfp.distributions.MixtureSameFamily(
mixture_distribution=tfp.distributions.Categorical(probs=[1.0 / 3] * 3),
components_distribution=tfp.distributions.Normal(loc=[0, 25, 80],
scale=[1, 12, 4]))
n_components = 3
X = np.zeros(shape=(1, n_components)).astype('float32')
X = np.linspace(0, 80, num=n_components, dtype='float32')[None, :]
# X = np.random.rand(1, 3).astype('float32')
outputs = {}
for reverse in (True, False):
loc = keras.Sequential([
keras.layers.Dense(16, activation='relu', input_shape=(n_components,)),
keras.layers.Dense(n_components,
activation='linear',
input_shape=(n_components,)),
])
scale = tf.Variable([1.] * n_components,
dtype='float32',
trainable=True,
name='scale')
history = minimize(lambda: kl_divergence(tfp.distributions.MixtureSameFamily(
mixture_distribution=tfp.distributions.Categorical(
probs=[1. / n_components] * n_components),
components_distribution=tfp.distributions.Normal(loc=loc(X), scale=scale
)),
prior,
reverse=reverse,
q_sample=100),
params=loc.trainable_variables + [scale],
verbose=True,
print_params=False,
learning_rate=0.01,
epochs=1200)
posterior = tfp.distributions.MixtureSameFamily(
mixture_distribution=tfp.distributions.Categorical(
probs=[1. / n_components] * n_components),
components_distribution=tfp.distributions.Normal(loc=loc(X), scale=scale))
outputs[reverse] = [posterior, history]
plt.figure(figsize=(18, 8))
plt.subplot(1, 2, 1)
sns.kdeplot(prior.sample(10000).numpy(), label='Prior')
sns.kdeplot(outputs[True][0].sample(10000).numpy().ravel(),
label='Posterior-KL(q||p)')
sns.kdeplot(outputs[False][0].sample(10000).numpy().ravel(),
label='Posterior-KL(p||q)',
linestyle='--')
plt.legend()
ax = plt.subplot(1, 2, 2)
l1 = plt.plot([i[0] for i in outputs[True][1]], label='KL(q||p)')
ax.twinx()
l2 = plt.plot([i[0] for i in outputs[False][1]],
label='KL(p||q)',
linestyle='--')
plt.title("KL loss")
plt.legend(handles=[l1[0], l2[0]])
# ===========================================================================
# Mixture with Mixture Posterior
# ===========================================================================
prior = tfp.distributions.MixtureSameFamily(
mixture_distribution=tfp.distributions.Categorical(probs=[1.0 / 3] * 3),
components_distribution=tfp.distributions.Normal(loc=[0, 32, 80],
scale=[1, 12, 4]))
for n in [2, 3, 5]:
# analytic, reverse, nmcmc
posterior = [
(create_mixture_posterior(n=n), False, True, 1),
(create_mixture_posterior(n=n), False, False, 1),
(create_mixture_posterior(n=n), False, True, 100),
(create_mixture_posterior(n=n), False, False, 100),
]
histories = []
for post, analytic, reverse, sample_shape in posterior:
print("Training:", analytic, reverse, sample_shape)
h = minimize(lambda: kl_divergence(
q=post, p=prior, analytic=analytic, reverse=reverse, q_sample=sample_shape), [
post.components_distribution.loc, post.components_distribution.scale
],
verbose=False)
histories.append(h)
# for more complicated distribution, need more samples
plot_posteriors(posterior, prior, n=10000)
plt.title("Prior:3-mixture Posterior:%d-mixture" % n)
plot_histories(posterior, histories)
vs.plot_save()
exit()
# ===========================================================================
# Mixture with Normal Posterior
# ===========================================================================
prior = tfp.distributions.MixtureSameFamily(
mixture_distribution=tfp.distributions.Categorical(probs=[0.5, 0.5]),
components_distribution=tfp.distributions.Normal(loc=[2, 20], scale=[1, 4]))
posterior = [
(create_posterior(), False, True, 1), # analytic, reverse, nmcmc
(create_posterior(), False, False, 1),
(create_posterior(), False, True, 100),
(create_posterior(), False, False, 100),
]
histories = []
for post, analytic, reverse, sample_shape in posterior:
print("Training:", analytic, reverse, sample_shape)
h = minimize(lambda: kl_divergence(
q=post, p=prior, analytic=analytic, reverse=reverse, q_sample=sample_shape),
[post.loc, post.scale],
verbose=False)
histories.append(h)
plot_posteriors(posterior, prior)
plt.title("Prior:2-mixture Posterior:Normal")
plot_histories(posterior, histories)
# ===========================================================================
# Simple distribution
# ===========================================================================
prior = tfp.distributions.Normal(loc=8, scale=12)
posterior = [
(create_posterior(), True, True, 1), # analytic, reverse, nmcmc
(create_posterior(), True, False, 1),
(create_posterior(), False, True, 1),
(create_posterior(), False, True, 100),
(create_posterior(), False, False, 1),
(create_posterior(), False, False, 100)
]
histories = []
for post, analytic, reverse, sample_shape in posterior:
print("Training:", analytic, reverse, sample_shape)
h = minimize(lambda: kl_divergence(
q=post, p=prior, analytic=analytic, reverse=reverse, q_sample=sample_shape),
[post.loc, post.scale],
verbose=False)
histories.append(h)
plot_posteriors(posterior, prior)
plt.title("Prior:Normal Posterior:Normal")
plot_histories(posterior, histories)
| StarcoderdataPython |
3274539 | # coding: utf-8
from __future__ import unicode_literals
import unittest
import responses
from admitad.items import Coupons, CouponsForWebsite, CouponsCategories
from admitad.tests.base import BaseTestCase
class CouponsTestCase(BaseTestCase):
def test_get_coupons_request(self):
with responses.RequestsMock() as resp:
resp.add(
resp.GET,
self.prepare_url(Coupons.URL, params={
'campaign': [1, 5, 6],
'campaign_category': [11, 12],
'category': [22, 23],
'type': 'some',
'limit': 10,
'offset': 0,
'order_by': ['name', '-rating']
}),
match_querystring=True,
json={'status': 'ok'},
status=200
)
result = self.client.Coupons.get(
campaign=[1, 5, 6], campaign_category=[11, 12],
category=[22, 23], type='some', limit=10, offset=0,
order_by=['name', '-rating'])
self.assertIn('status', result)
def test_get_coupons_request_with_id(self):
with responses.RequestsMock() as resp:
resp.add(
resp.GET,
self.prepare_url(Coupons.SINGLE_URL, coupon_id=42),
match_querystring=True,
json={'status': 'ok'},
status=200
)
result = self.client.Coupons.getOne(42)
self.assertIn('status', result)
class CouponsForWebsiteTestCase(BaseTestCase):
def test_get_coupons_for_website_request(self):
with responses.RequestsMock() as resp:
resp.add(
resp.GET,
self.prepare_url(CouponsForWebsite.URL, website_id=1, params={
'campaign': [1, 5, 6],
'campaign_category': [11, 12],
'category': [22, 23],
'type': 'some',
'limit': 10,
'offset': 0,
'order_by': ['name', '-rating']
}),
match_querystring=True,
json={'status': 'ok'},
status=200
)
result = self.client.CouponsForWebsite.get(
1, campaign=[1, 5, 6], campaign_category=[11, 12],
category=[22, 23], type='some', limit=10, offset=0,
order_by=['name', '-rating'])
self.assertIn('status', result)
def test_get_coupons_for_website_request_with_id(self):
with responses.RequestsMock() as resp:
resp.add(
resp.GET,
self.prepare_url(CouponsForWebsite.SINGLE_URL, website_id=10, campaign_id=20),
match_querystring=True,
json={'status': 'ok'},
status=200
)
result = self.client.CouponsForWebsite.getOne(10, 20)
self.assertIn('status', result)
class CouponsCategoriesTestCase(BaseTestCase):
def test_get_categories_request(self):
with responses.RequestsMock() as resp:
resp.add(
resp.GET,
self.prepare_url(CouponsCategories.URL, params={
'limit': 10,
'offset': 0
}),
match_querystring=True,
json={'status': 'ok'},
status=200
)
result = self.client.CouponsCategories.get(limit=10, offset=0)
self.assertIn('status', result)
def test_get_categorty_with_id_request(self):
with responses.RequestsMock() as resp:
resp.add(
resp.GET,
self.prepare_url(CouponsCategories.SINGLE_URL, coupon_category_id=200),
match_querystring=True,
json={'status': 'ok'},
status=200
)
result = self.client.CouponsCategories.getOne(200)
self.assertIn('status', result)
if __name__ == '__main__':
unittest.main()
| StarcoderdataPython |
3256127 | #!/usr/bin/env python
import optparse
from rq import use_connection, Queue
from rq import dummy
def parse_args():
parser = optparse.OptionParser()
parser.add_option('-n', '--count', type='int', dest='count', default=1)
opts, args = parser.parse_args()
return (opts, args, parser)
def main():
import sys
sys.path.insert(0, '.')
opts, args, parser = parse_args()
use_connection()
queues = ('default', 'high', 'low')
sample_calls = [
(dummy.do_nothing, [], {}),
(dummy.sleep, [1], {}),
(dummy.fib, [8], {}), # normal result
(dummy.fib, [24], {}), # takes pretty long
(dummy.div_by_zero, [], {}), # 5 / 0 => div by zero exc
(dummy.random_failure, [], {}), # simulate random failure (handy for requeue testing)
]
for i in range(opts.count):
import random
f, args, kwargs = random.choice(sample_calls)
q = Queue(random.choice(queues))
q.enqueue(f, *args, **kwargs)
#q = Queue('foo')
#q.enqueue(do_nothing)
#q.enqueue(sleep, 3)
#q = Queue('bar')
#q.enqueue(yield_stuff)
#q.enqueue(do_nothing)
#q.enqueue(do_nothing)
#q.enqueue(do_nothing)
#q.enqueue(do_nothing)
#q.enqueue(do_nothing)
#q.enqueue(do_nothing)
#q.enqueue(do_nothing)
#q.enqueue(do_nothing)
#q.enqueue(do_nothing)
#q.enqueue(do_nothing)
#q.enqueue(do_nothing)
#q.enqueue(do_nothing)
#q.enqueue(do_nothing)
#q.enqueue(do_nothing)
#q.enqueue(do_nothing)
#q.enqueue(do_nothing)
if __name__ == '__main__':
main()
| StarcoderdataPython |
1643969 | import json, os, signal, time, traceback,shutil
import curses
import cbpro
import multiprocessing
from pygotrader import arguments,config, order_handler, pygo_order_book, tui, algorithm_handler
from pkg_resources import Requirement, resource_filename
#from profiling.tracing import TracingProfiler
class CustomExit(Exception):
"""Custom class to exit program"""
pass
def signal_handler(signum, frame):
"""Wrapper to handle break signals from the user"""
# print('Caught signal %d' % signum)
raise CustomExit
def pause():
"""Lazy wrapper for a cli pause
¯\_(ツ)_/¯
"""
program_pause = input("Press the <ENTER> key to continue...")
def create_namespace(my_manager):
"""Initialize and construct the shared namespace
As mentioned elsewhere, lists and dicts need to be created from the Manager
class otherwise updates to them won't propagate. Remember, this is more of a
helper class, not one to do serious work with. Operations can be expensive.
And custom classes can't be used.
Order format for placement into the buy and sell order queue lists:
{'order':'buy','type':'market','product':'BTC','size':0.1,'price':1.00}
Order format for placement into the cancel order queue lists:
{'order':'cancel','order_id':1111111}
"""
ns = my_manager.Namespace()
ns.exchange_order_matches = my_manager.list()
ns.buy_order_queue = my_manager.list()
ns.sell_order_queue = my_manager.list()
ns.cancel_order_queue = my_manager.list()
ns.my_orders = my_manager.dict()
ns.last_match = 0.00
ns.highest_bid = 0.00
ns.lowest_ask = 0.00
ns.message = ''
ns.ui_asks = my_manager.list()
ns.ui_bids = my_manager.list()
for x in range(0,10):
ns.ui_asks.insert(x,{'price':0.00,'depth':0.00})
ns.ui_bids.insert(x,{'price':0.00,'depth':0.00})
return ns
def main():
"""Entry point for the program
Create the objects that are going to run the various parts of the programs.
Threads/processes are not directly created here. That's been left for the
individual classes.
Variables of note:
ns - a multiprocessing.Manager.namespace that is for sharing data between
threads and processes
Objects of note:
MyConfig - loads and stores arguments passed in as well as user config
information stored in outside files
PygoOrderBook - the order book that uses a websocket to pull data from the
exchange. Does not actually place orders.
AuthenticatedClient - this has the secrets for the user loaded from the
external config files. This is the class that actually places orders that
organized and called by the OrderHandler class.
OrderHandler - separate-running process to place and cancel orders through
functions in the AuthenticatedClient class.
TODO:
- Add the ability to create external config class via an install function
or some kind of config function within the tui or cli
- Add the ability to export data in real-time to database
"""
signal.signal(signal.SIGTERM, signal_handler)
signal.signal(signal.SIGINT, signal_handler)
"""
The multiprocessing Manager namespace seems like the easiest/least-risky
way of sharing data across processes. However, it requires use of dicts
and lists from the Manager class.
Important notes:
1) Operations on this data structure can be expensive. Reads are cheap, and
simple writes aren't too bad, but for example, deleting a
Manager.list() data structure and creating a new one can take a few
hundredths of a second. Its better to do work on a local data structure
and then copy it over to the shared namespace.
2) Namespaces don't work with deep data structures, i.e. a custom class
You can do a dict inside a list, or vice-versa, but that's about it
"""
my_manager = multiprocessing.Manager()
ns = create_namespace(my_manager)
view_mode = True
try:
# profiler = TracingProfiler()
# profiler.start()
argument_parser = arguments.create_parser()
args = argument_parser.parse_args()
if args.config:
view_mode = False
my_config = config.MyConfig(exchange=args.exchange,product=args.product)
if not view_mode:
my_config.load_config(args.config)
my_authenticated_client = my_config.get_coinbase_authenticated_client()
if not os.path.exists(args.algorithm_file):
filename = resource_filename(Requirement.parse("pygotrader"),"pygotrader/algorithm.py")
print(f"Copying sample algorithm file to ./algorithm.py...")
shutil.copyfile(filename,"./algorithm.py")
time.sleep(2)
my_order_handler = order_handler.OrderHandler(my_authenticated_client,ns)
my_order_handler.start()
else:
my_authenticated_client = None
my_order_handler = None
ns.message = 'Running in view mode'
my_order_book = pygo_order_book.PygoOrderBook(ns,product_id=my_config.product, url=my_config.websocket_url)
my_order_book.start()
while not my_order_book.has_started:
time.sleep(0.1)
mytui = tui.Menu(ns, my_order_book, my_authenticated_client, my_order_handler, algorithm_file=args.algorithm_file)
curses.wrapper(mytui.start)
except CustomExit:
my_order_book.close()
if not view_mode:
my_order_handler.close()
# profiler.stop()
# profiler.run_viewer()
except Exception as e:
print(traceback.format_exc())
if __name__ == "__main__":
main() | StarcoderdataPython |
140106 | """
Encapsulates external dependencies to retrieve hardware metadata
"""
import logging
from abc import ABC, abstractmethod
from dataclasses import dataclass
from typing import Dict, Iterable, List, Optional
from codecarbon.core.gpu import get_gpu_details
from codecarbon.core.units import Power
logger = logging.getLogger(__name__)
@dataclass
class BaseHardware(ABC):
@property
@abstractmethod
def total_power(self) -> Power:
pass
@dataclass
class GPU(BaseHardware):
num_gpus: int
gpu_ids: Optional[List]
def __repr__(self) -> str:
return super().__repr__() + " ({})".format(
", ".join([d["name"] for d in get_gpu_details()])
)
def _get_power_for_gpus(self, gpu_ids: Iterable[int]) -> Power:
"""
Get total power consumed by specific GPUs identified by `gpu_ids`
:param gpu_ids:
:return:
"""
all_gpu_details: List[Dict] = get_gpu_details()
return Power.from_milli_watts(
sum(
[
gpu_details["power_usage"]
for idx, gpu_details in enumerate(all_gpu_details)
if idx in gpu_ids
]
)
)
@property
def total_power(self) -> Power:
if self.gpu_ids is not None:
gpu_ids = self.gpu_ids
assert set(gpu_ids).issubset(
set(range(self.num_gpus))
), f"Unknown GPU ids {gpu_ids}"
else:
gpu_ids = set(range(self.num_gpus))
return self._get_power_for_gpus(gpu_ids=gpu_ids)
@classmethod
def from_utils(cls, gpu_ids: Optional[List] = None) -> "GPU":
return cls(num_gpus=len(get_gpu_details()), gpu_ids=gpu_ids)
@dataclass
class CPU(BaseHardware):
@property
def total_power(self) -> Power:
pass
| StarcoderdataPython |
3282083 | <reponame>Samteymoori/pepper
from build import PEPPER
from collections import defaultdict
def pileup_from_reads(reference, start_pos, end_pos, reads):
longest_insert_count = defaultdict(int)
insert_dict = defaultdict(lambda: defaultdict(int))
base_dict = defaultdict(lambda: defaultdict(int))
read_start_pos = defaultdict(int)
read_end_pos = defaultdict(int)
query_names = list()
for read in reads:
read_start_pos[read.query_name] = read.pos
read_end_pos[read.query_name] = read.pos_end
cigar_tuples = read.cigar_tuples
read_index = 0
reference_position = read.pos
query_names.append(read.query_name)
for cigar_tup in cigar_tuples:
# match
if cigar_tup.cigar_op == 0:
for i in range(cigar_tup.cigar_len):
base_dict[read.query_name][reference_position] = read.sequence[read_index]
read_index += 1
reference_position += 1
# insert
if cigar_tup.cigar_op == 1:
longest_insert_count[reference_position] = max(longest_insert_count[reference_position], cigar_tup.cigar_len)
in_allele = ""
for i in range(cigar_tup.cigar_len):
in_allele += read.sequence[read_index]
read_index += 1
insert_dict[read.query_name][reference_position] = in_allele
# delete
if cigar_tup.cigar_op == 2:
for i in range(cigar_tup.cigar_len):
base_dict[read.query_name][reference_position] = '*'
reference_position += 1
# soft-clip
if cigar_tup.cigar_op == 4:
read_index += cigar_tup.cigar_len
for i in range(start_pos, end_pos):
ref_base = reference[i - start_pos]
print(ref_base, end='')
if longest_insert_count[i]:
print("*" * longest_insert_count[i], end='')
print()
for read_name in query_names:
for i in range(start_pos, end_pos):
# if read_start_pos[read_name] < i:
# print(' ', end='')
# continue
# if read_end_pos[read_name] < i:
# break
if base_dict[read_name][i]:
read_base = base_dict[read_name][i]
else:
read_base = ' '
print(read_base, end='')
if insert_dict[read_name][i] and i < read_end_pos[read_name]:
print(insert_dict[read_name][i], end='')
star_needed = longest_insert_count[i] - int(len(insert_dict[read_name][i]))
if star_needed > 0:
print("*" * star_needed, end='')
elif longest_insert_count[i] and i < read_end_pos[read_name]:
print("*" * longest_insert_count[i], end='')
print(read_name)
| StarcoderdataPython |
3232804 | <reponame>thismachinekillszombies/game_machine
from .vector_sprite import VectorSprite
from pygame import Rect
class Rectangle(VectorSprite) :
def __init__(self, coords, size,
visible = True, interactive = True,
line_colour = (0, 0, 0, 255),
line_width = 1,
fill_colour = (255, 255, 255, 255)):
super(Rectangle, self).__init__(coords, visible, interactive,
line_colour, line_width, fill_colour)
self._size = (size[0] + line_width, size[1] + line_width)
def over(self, coords) :
return self.in_bounds(coords)
def fill_surface(self) :
super(Rectangle, self).fill_surface()
if self._fill_colour != None :
self._surface.fill(self._fill_colour)
if self._line_width > 0 and self._line_colour != None :
self._surface.fill(self._line_colour,
Rect(0, 0, self._size[0], self._line_width))
self._surface.fill(self._line_colour,
Rect(0, 0, self._line_width, self._size[1]))
self._surface.fill(self._line_colour,
Rect(self._size[0] - self._line_width, 0,
self._line_width, self._size[1]))
self._surface.fill(self._line_colour,
Rect(0, self._size[1] - self._line_width,
self._size[0], self._line_width))
@property
def size(self) :
return self._size
@size.setter
def size(self, size) :
if size == None :
self._size = None
else :
self._size = (size[0] + self._line_width, size[1] + self._line_width)
self._surface = None
@property
def height(self) :
return self._size[1]
@height.setter
def height(self, height) :
self.size = [self.width, height]
@property
def width(self) :
return self._size[0]
@width.setter
def width(self, width) :
self.size = [width, self.height]
| StarcoderdataPython |
4821033 | <reponame>IanShoe/serverless-leo<gh_stars>1-10
class Config:
LOG_NAME = 'leosdk'
LOG_LEVEL = 'DEBUG'
LOG_FORMAT = '%(asctime)s %(name)s [%(levelname)s] %(message)s'
BUS_REGION = 'us-west-2'
AWS_PROFILE = 'leo_test'
WRITER = 'STREAM'
# WRITER = 'STORAGE'
# WRITER = 'BATCH'
class DevBus(Config):
REGION = 'us-west-2'
ARCHIVE = 'DevBus-LeoArchive-XYZABC456123'
CRON = 'DevBus-LeoCron-XYZABC456123'
EVENT = 'DevBus-LeoEvent-XYZABC456123'
STREAM = 'DevBus-LeoKinesisStream-XYZABC456123'
STREAM_MAX_RECORD_SIZE = 1024 * 900
STREAM_MAX_BATCH_SIZE = 1024 * 900
STREAM_MAX_BATCH_RECORDS = 1000
STREAM_MAX_BATCH_AGE = 200
STREAM_MAX_UPLOAD_ATTEMPTS = 10
BATCH = 'DevBus-LeoFirehoseStream-XYZABC456123'
BATCH_MAX_RECORD_SIZE = 1024 * 4900
BATCH_MAX_SIZE = 1024 * 3900
BATCH_MAX_RECORDS = 1000
BATCH_MAX_AGE = 60
BATCH_MAX_UPLOAD_ATTEMPTS = 10
STORAGE = 'devbus-leos3-xyzabc456123'
STORAGE_MAX_RECORD_SIZE = 1024 * 4900
STORAGE_MAX_BATCH_SIZE = 1024 * 3900
STORAGE_MAX_BATCH_RECORDS = 4000
STORAGE_MAX_BATCH_AGE = 6000
STORAGE_MAX_UPLOAD_ATTEMPTS = 10
SETTINGS = 'DevBus-LeoSettings-XYZABC456123'
SYSTEM = 'DevBus-LeoSystem-XYZABC456123'
class ProdBus(Config):
REGION = 'us-west-2'
ARCHIVE = 'DevBus-LeoArchive-XYZABC456123'
CRON = 'DevBus-LeoCron-XYZABC456123'
EVENT = 'DevBus-LeoEvent-XYZABC456123'
STREAM = 'DevBus-LeoKinesisStream-XYZABC456123'
STREAM_MAX_RECORD_SIZE = 1024 * 900
STREAM_MAX_BATCH_SIZE = 1024 * 900
STREAM_MAX_BATCH_RECORDS = 1000
STREAM_MAX_BATCH_AGE = 200
STREAM_MAX_UPLOAD_ATTEMPTS = 10
BATCH = 'DevBus-LeoFirehoseStream-XYZABC456123'
BATCH_MAX_RECORD_SIZE = 1024 * 4900
BATCH_MAX_SIZE = 1024 * 3900
BATCH_MAX_RECORDS = 1000
BATCH_MAX_AGE = 600
BATCH_MAX_UPLOAD_ATTEMPTS = 10
STORAGE = 'devbus-leos3-xyzabc456123'
STORAGE_MAX_RECORD_SIZE = 1024 * 4900
STORAGE_MAX_BATCH_SIZE = 1024 * 3900
STORAGE_MAX_BATCH_RECORDS = 4000
STORAGE_MAX_BATCH_AGE = 6000
STORAGE_MAX_UPLOAD_ATTEMPTS = 10
SETTINGS = 'DevBus-LeoSettings-XYZABC456123'
SYSTEM = 'DevBus-LeoSystem-XYZABC456123'
| StarcoderdataPython |
3215911 | <filename>Python/libraries/recognizers-date-time/recognizers_date_time/resources/english_date_time.py
# ------------------------------------------------------------------------------
# <auto-generated>
# This code was generated by a tool.
# Changes to this file may cause incorrect behavior and will be lost if
# the code is regenerated.
# </auto-generated>
#
# Copyright (c) Microsoft Corporation. All rights reserved.
# Licensed under the MIT License.
# ------------------------------------------------------------------------------
from .base_date_time import BaseDateTime
# pylint: disable=line-too-long
class EnglishDateTime:
LangMarker = 'Eng'
CheckBothBeforeAfter = False
TillRegex = f'(?<till>\\b(to|(un)?till?|thru|through)\\b(\\s+the\\b)?|{BaseDateTime.RangeConnectorSymbolRegex})'
RangeConnectorRegex = f'(?<and>\\b(and|through|to)\\b(\\s+the\\b)?|{BaseDateTime.RangeConnectorSymbolRegex})'
LastNegPrefix = f'(?<!(w(ill|ould|on\\s*\'\\s*t)|m(ay|ight|ust)|sh(all|ould(n\\s*\'\\s*t)?)|c(an(\\s*\'\\s*t|not)?|ould(n\\s*\'\\s*t)?))(\\s+not)?\\s+)'
RelativeRegex = f'\\b(?<order>following|next|(up)?coming|this|{LastNegPrefix}last|past|previous|current|the)\\b'
StrictRelativeRegex = f'\\b(?<order>following|next|(up)?coming|this|{LastNegPrefix}last|past|previous|current)\\b'
UpcomingPrefixRegex = f'((this\\s+)?((up)?coming))'
NextPrefixRegex = f'\\b(following|next|{UpcomingPrefixRegex})\\b'
AfterNextSuffixRegex = f'\\b(after\\s+(the\\s+)?next)\\b'
PastPrefixRegex = f'((this\\s+)?past)\\b'
PreviousPrefixRegex = f'({LastNegPrefix}last|previous|{PastPrefixRegex})\\b'
ThisPrefixRegex = f'(this|current)\\b'
RangePrefixRegex = f'(from|between)'
CenturySuffixRegex = f'(^century)\\b'
ReferencePrefixRegex = f'(that|same)\\b'
FutureSuffixRegex = f'\\b(in\\s+the\\s+)?(future|hence)\\b'
DayRegex = f'(the\\s*)?(?<!(\\d+:?|\\$)\\s*)(?<day>(?:3[0-1]|[1-2]\\d|0?[1-9])(?:th|nd|rd|st)?)(?=\\b|t)'
ImplicitDayRegex = f'(the\\s*)?(?<day>(?:3[0-1]|[0-2]?\\d)(?:th|nd|rd|st))\\b'
MonthNumRegex = f'(?<month>1[0-2]|(0)?[1-9])\\b'
WrittenOneToNineRegex = f'(?:one|two|three|four|five|six|seven|eight|nine)'
WrittenElevenToNineteenRegex = f'(?:eleven|twelve|(?:thir|four|fif|six|seven|eigh|nine)teen)'
WrittenTensRegex = f'(?:ten|twenty|thirty|fou?rty|fifty|sixty|seventy|eighty|ninety)'
WrittenNumRegex = f'(?:{WrittenOneToNineRegex}|{WrittenElevenToNineteenRegex}|{WrittenTensRegex}(\\s+{WrittenOneToNineRegex})?)'
WrittenCenturyFullYearRegex = f'(?:(one|two)\\s+thousand(\\s+and)?(\\s+{WrittenOneToNineRegex}\\s+hundred(\\s+and)?)?)'
WrittenCenturyOrdinalYearRegex = f'(?:twenty(\\s+(one|two))?|ten|eleven|twelve|thirteen|fifteen|eigthteen|(?:four|six|seven|nine)(teen)?|one|two|three|five|eight)'
CenturyRegex = f'\\b(?<century>{WrittenCenturyFullYearRegex}|{WrittenCenturyOrdinalYearRegex}(\\s+hundred)?(\\s+and)?)\\b'
LastTwoYearNumRegex = f'(?:zero\\s+{WrittenOneToNineRegex}|{WrittenElevenToNineteenRegex}|{WrittenTensRegex}(\\s+{WrittenOneToNineRegex})?)'
FullTextYearRegex = f'\\b((?<firsttwoyearnum>{CenturyRegex})\\s+(?<lasttwoyearnum>{LastTwoYearNumRegex})\\b|\\b(?<firsttwoyearnum>{WrittenCenturyFullYearRegex}|{WrittenCenturyOrdinalYearRegex}\\s+hundred(\\s+and)?))\\b'
OclockRegex = f'(?<oclock>o\\s*((’|‘|\')\\s*)?clock|sharp)'
SpecialDescRegex = f'((?<ipm>)p\\b)'
AmDescRegex = f'(?:{BaseDateTime.BaseAmDescRegex})'
PmDescRegex = f'(:?{BaseDateTime.BasePmDescRegex})'
AmPmDescRegex = f'(:?{BaseDateTime.BaseAmPmDescRegex})'
DescRegex = f'(:?(:?({OclockRegex}\\s+)?(?<desc>({AmPmDescRegex}|{AmDescRegex}|{PmDescRegex}|{SpecialDescRegex})))|{OclockRegex})'
OfPrepositionRegex = f'(\\bof\\b)'
TwoDigitYearRegex = f'\\b(?<![$])(?<year>([0-9]\\d))(?!(\\s*((\\:\\d)|{AmDescRegex}|{PmDescRegex}|\\.\\d)))\\b'
YearRegex = f'(?:{BaseDateTime.FourDigitYearRegex}|{FullTextYearRegex})'
WeekDayRegex = f'\\b(?<weekday>(?:sun|mon|tues?|thurs?|fri)(day)?|thu|wedn(esday)?|weds?|sat(urday)?)s?\\b'
SingleWeekDayRegex = f'\\b(?<weekday>(?<!(easter|palm)\\s+)sunday|(?<!easter\\s+)saturday|(?<!(easter|cyber)\\s+)monday|mon|(?<!black\\s+)friday|fri|(?:tues?|thurs?)(day)?|thu|wedn(esday)?|weds?|((?<=on\\s+)(sat|sun)))\\b'
RelativeMonthRegex = f'(?<relmonth>((day\\s+)?of\\s+)?{RelativeRegex}\\s+month)\\b'
MonthRegex = f'\\b(?<month>apr(il)?|aug(ust)?|dec(ember)?|feb(ruary)?|jan(uary)?|july?|june?|mar(ch)?|may|nov(ember)?|oct(ober)?|sept(ember)?|sep)(?!\\p{{L}})'
WrittenMonthRegex = f'(((the\\s+)?month of\\s+)?{MonthRegex})'
MonthSuffixRegex = f'(?<msuf>(?:(in|of|on)\\s+)?({RelativeMonthRegex}|{WrittenMonthRegex}))'
DateUnitRegex = f'(?<unit>decades?|years?|months?|weeks?|(?<business>(business\\s+|week\\s*))?days?|fortnights?|weekends?|(?<=\\s+\\d{{1,4}})[ymwd])\\b'
DateTokenPrefix = 'on '
TimeTokenPrefix = 'at '
TokenBeforeDate = 'on '
TokenBeforeTime = 'at '
HalfTokenRegex = f'^(half)'
QuarterTokenRegex = f'^((a\\s+)?quarter)'
ThreeQuarterTokenRegex = f'^(three\\s+quarters?)'
ToTokenRegex = f'\\b(to)$'
FromRegex = f'\\b(from(\\s+the)?)$'
BetweenTokenRegex = f'\\b(between(\\s+the)?)$'
SimpleCasesRegex = f'\\b({RangePrefixRegex}\\s+)?({DayRegex})\\s*{TillRegex}\\s*({DayRegex}\\s+{MonthSuffixRegex}|{MonthSuffixRegex}\\s+{DayRegex})((\\s+|\\s*,\\s*){YearRegex})?\\b'
MonthFrontSimpleCasesRegex = f'\\b({RangePrefixRegex}\\s+)?{MonthSuffixRegex}\\s+((from)\\s+)?({DayRegex})\\s*{TillRegex}\\s*({DayRegex})((\\s+|\\s*,\\s*){YearRegex})?\\b'
MonthFrontBetweenRegex = f'\\b{MonthSuffixRegex}\\s+(between\\s+)({DayRegex})\\s*{RangeConnectorRegex}\\s*({DayRegex})((\\s+|\\s*,\\s*){YearRegex})?\\b'
BetweenRegex = f'\\b(between\\s+)({DayRegex})\\s*{RangeConnectorRegex}\\s*({DayRegex})\\s+{MonthSuffixRegex}((\\s+|\\s*,\\s*){YearRegex})?\\b'
MonthWithYear = f'\\b(({WrittenMonthRegex}[\\.]?(\\s*)[/\\\\\\-\\.,]?(\\s+(of|in))?(\\s*)({YearRegex}|(?<order>following|next|last|this)\\s+year))|(({YearRegex}|(?<order>following|next|last|this)\\s+year)(\\s*),?(\\s*){WrittenMonthRegex}))\\b'
SpecialYearPrefixes = f'(calendar|(?<special>fiscal|school))'
OneWordPeriodRegex = f'\\b((((the\\s+)?month of\\s+)?({StrictRelativeRegex}\\s+)?{MonthRegex})|(month|year) to date|(?<toDate>((un)?till?|to)\\s+date)|({RelativeRegex}\\s+)?(my\\s+)?((?<business>working\\s+week|workweek)|week(end)?|month|fortnight|(({SpecialYearPrefixes}\\s+)?year))(?!((\\s+of)?\\s+\\d+(?!({BaseDateTime.BaseAmDescRegex}|{BaseDateTime.BasePmDescRegex}))|\\s+to\\s+date))(\\s+{AfterNextSuffixRegex})?)\\b'
MonthNumWithYear = f'\\b(({BaseDateTime.FourDigitYearRegex}(\\s*)[/\\-\\.](\\s*){MonthNumRegex})|({MonthNumRegex}(\\s*)[/\\-](\\s*){BaseDateTime.FourDigitYearRegex}))\\b'
WeekOfMonthRegex = f'\\b(?<wom>(the\\s+)?(?<cardinal>first|1st|second|2nd|third|3rd|fourth|4th|fifth|5th|last)\\s+week\\s+{MonthSuffixRegex}(\\s+{BaseDateTime.FourDigitYearRegex}|{RelativeRegex}\\s+year)?)\\b'
WeekOfYearRegex = f'\\b(?<woy>(the\\s+)?(?<cardinal>first|1st|second|2nd|third|3rd|fourth|4th|fifth|5th|last)\\s+week(\\s+of)?\\s+({YearRegex}|{RelativeRegex}\\s+year))\\b'
FollowedDateUnit = f'^\\s*{DateUnitRegex}'
NumberCombinedWithDateUnit = f'\\b(?<num>\\d+(\\.\\d*)?){DateUnitRegex}'
QuarterTermRegex = f'\\b(((?<cardinal>first|1st|second|2nd|third|3rd|fourth|4th)[ -]+quarter)|(q(?<number>[1-4])))\\b'
RelativeQuarterTermRegex = f'\\b(?<orderQuarter>{StrictRelativeRegex})\\s+quarter\\b'
QuarterRegex = f'((the\\s+)?{QuarterTermRegex}(?:((\\s+of)?\\s+|\\s*[,-]\\s*)({YearRegex}|{RelativeRegex}\\s+year))?)|{RelativeQuarterTermRegex}'
QuarterRegexYearFront = f'(?:{YearRegex}|{RelativeRegex}\\s+year)(\'s)?(?:\\s*-\\s*|\\s+(the\\s+)?)?{QuarterTermRegex}'
HalfYearTermRegex = f'(?<cardinal>first|1st|second|2nd)\\s+half'
HalfYearFrontRegex = f'(?<year>((1[5-9]|20)\\d{{2}})|2100)(\\s*-\\s*|\\s+(the\\s+)?)?h(?<number>[1-2])'
HalfYearBackRegex = f'(the\\s+)?(h(?<number>[1-2])|({HalfYearTermRegex}))(\\s+of|\\s*,\\s*)?\\s+({YearRegex})'
HalfYearRelativeRegex = f'(the\\s+)?{HalfYearTermRegex}(\\s+of|\\s*,\\s*)?\\s+({RelativeRegex}\\s+year)'
AllHalfYearRegex = f'({HalfYearFrontRegex})|({HalfYearBackRegex})|({HalfYearRelativeRegex})'
EarlyPrefixRegex = f'\\b(?<EarlyPrefix>early|beginning of|start of|(?<RelEarly>earlier(\\s+in)?))\\b'
MidPrefixRegex = f'\\b(?<MidPrefix>mid-?|middle of)\\b'
LaterPrefixRegex = f'\\b(?<LatePrefix>late|end of|(?<RelLate>later(\\s+in)?))\\b'
PrefixPeriodRegex = f'({EarlyPrefixRegex}|{MidPrefixRegex}|{LaterPrefixRegex})'
PrefixDayRegex = f'\\b((?<EarlyPrefix>earl(y|ier))|(?<MidPrefix>mid(dle)?)|(?<LatePrefix>later?))(\\s+in)?(\\s+the\\s+day)?$'
SeasonDescRegex = f'(?<seas>spring|summer|fall|autumn|winter)'
SeasonRegex = f'\\b(?<season>({PrefixPeriodRegex}\\s+)?({RelativeRegex}\\s+)?{SeasonDescRegex}((\\s+of|\\s*,\\s*)?\\s+({YearRegex}|{RelativeRegex}\\s+year))?)\\b'
WhichWeekRegex = f'\\b(week)(\\s*)(?<number>5[0-3]|[1-4]\\d|0?[1-9])\\b'
WeekOfRegex = f'(the\\s+)?((week)(\\s+(of|(commencing|starting|beginning)(\\s+on)?))|w/c)(\\s+the)?'
MonthOfRegex = f'(month)(\\s*)(of)'
DateYearRegex = f'(?<year>{BaseDateTime.FourDigitYearRegex}|(?<!,\\s?){TwoDigitYearRegex}|{TwoDigitYearRegex}(?=(\\.(?!\\d)|[?!;]|$)))'
YearSuffix = f'((,|\\sof)?\\s*({DateYearRegex}|{FullTextYearRegex}))'
OnRegex = f'(?<=\\bon\\s+)({DayRegex}s?)\\b'
RelaxedOnRegex = f'(?<=\\b(on|at|in)\\s+)((?<day>(3[0-1]|[0-2]?\\d)(?:th|nd|rd|st))s?)\\b'
PrefixWeekDayRegex = f'(\\s*((,?\\s*on)|[-—–]))'
ThisRegex = f'\\b(this(\\s*week{PrefixWeekDayRegex}?)?\\s*{WeekDayRegex})|({WeekDayRegex}((\\s+of)?\\s+this\\s*week))\\b'
LastDateRegex = f'\\b({PreviousPrefixRegex}(\\s*week{PrefixWeekDayRegex}?)?\\s*{WeekDayRegex})|({WeekDayRegex}(\\s+(of\\s+)?last\\s*week))\\b'
NextDateRegex = f'\\b({NextPrefixRegex}(\\s*week{PrefixWeekDayRegex}?)?\\s*{WeekDayRegex})|((on\\s+)?{WeekDayRegex}((\\s+of)?\\s+(the\\s+following|(the\\s+)?next)\\s*week))\\b'
SpecialDayRegex = f'\\b((the\\s+)?day before yesterday|(the\\s+)?day after (tomorrow|tmr)|the\\s+day\\s+(before|after)(?!=\\s+day)|((the\\s+)?({RelativeRegex}|my)\\s+day)|yesterday|tomorrow|tmr|today|otd)\\b'
SpecialDayWithNumRegex = f'\\b((?<number>{WrittenNumRegex})\\s+days?\\s+from\\s+(?<day>yesterday|tomorrow|tmr|today))\\b'
RelativeDayRegex = f'\\b(((the\\s+)?{RelativeRegex}\\s+day))\\b'
SetWeekDayRegex = f'\\b(?<prefix>on\\s+)?(?<weekday>morning|afternoon|evening|night|(sun|mon|tues|wednes|thurs|fri|satur)day)s\\b'
WeekDayOfMonthRegex = f'(?<wom>(the\\s+)?(?<cardinal>first|1st|second|2nd|third|3rd|fourth|4th|fifth|5th|last)\\s+(week\\s+{MonthSuffixRegex}[\\.]?\\s+(on\\s+)?{WeekDayRegex}|{WeekDayRegex}\\s+{MonthSuffixRegex}))'
RelativeWeekDayRegex = f'\\b({WrittenNumRegex}\\s+{WeekDayRegex}\\s+(from\\s+now|later))\\b'
SpecialDate = f'(?=\\b(on|at)\\s+the\\s+){DayRegex}\\b'
DatePreposition = f'\\b(on|in)'
DateExtractorYearTermRegex = f'(\\s+|\\s*[/\\\\.,-]\\s*|\\s+of\\s+){DateYearRegex}'
DayPrefix = f'\\b({WeekDayRegex}|{SpecialDayRegex})\\b'
DateExtractor1 = f'\\b({DayPrefix}\\s*[,-]?\\s*)?(({MonthRegex}[\\.]?\\s*[/\\\\.,-]?\\s*{DayRegex})|(\\({MonthRegex}\\s*[-./]\\s*{DayRegex}\\)))(\\s*\\(\\s*{DayPrefix}\\s*\\))?({DateExtractorYearTermRegex}\\b)?'
DateExtractor3 = f'\\b({DayPrefix}(\\s+|\\s*,\\s*))?({DayRegex}[\\.]?(\\s+|\\s*[-,/]\\s*|\\s+of\\s+){MonthRegex}[\\.]?((\\s+in)?{DateExtractorYearTermRegex})?|{BaseDateTime.FourDigitYearRegex}\\s*[-./]?\\s*(the\\s+)?(?<day>(?:3[0-1]|[1-2]\\d|0?[1-9])(?:th|nd|rd|st)?)[\\.]?(\\s+|\\s*[-,/]\\s*|\\s+of\\s+){MonthRegex}[\\.]?)\\b'
DateExtractor4 = f'\\b{MonthNumRegex}\\s*[/\\\\\\-]\\s*{DayRegex}[\\.]?\\s*[/\\\\\\-]\\s*{DateYearRegex}'
DateExtractor5 = f'\\b({DayPrefix}(\\s*,)?\\s+)?{DayRegex}\\s*[/\\\\\\-\\.]\\s*({MonthNumRegex}|{MonthRegex})\\s*[/\\\\\\-\\.]\\s*{DateYearRegex}(?!\\s*[/\\\\\\-\\.]\\s*\\d+)'
DateExtractor6 = f'(?<={DatePreposition}\\s+)({StrictRelativeRegex}\\s+)?({DayPrefix}\\s+)?{MonthNumRegex}[\\-\\.]{DayRegex}(?![%]){BaseDateTime.CheckDecimalRegex}\\b'
DateExtractor7L = f'\\b({DayPrefix}(\\s*,)?\\s+)?{MonthNumRegex}\\s*/\\s*{DayRegex}{DateExtractorYearTermRegex}(?![%])\\b'
DateExtractor7S = f'\\b({DayPrefix}(\\s*,)?\\s+)?{MonthNumRegex}\\s*/\\s*{DayRegex}(?![%]){BaseDateTime.CheckDecimalRegex}\\b'
DateExtractor8 = f'(?<={DatePreposition}\\s+)({StrictRelativeRegex}\\s+)?({DayPrefix}\\s+)?{DayRegex}[\\\\\\-]{MonthNumRegex}(?![%]){BaseDateTime.CheckDecimalRegex}\\b'
DateExtractor9L = f'\\b({DayPrefix}(\\s*,)?\\s+)?{DayRegex}\\s*/\\s*{MonthNumRegex}{DateExtractorYearTermRegex}(?![%])\\b'
DateExtractor9S = f'\\b({DayPrefix}(\\s*,)?\\s+)?{DayRegex}\\s*/\\s*{MonthNumRegex}{BaseDateTime.CheckDecimalRegex}(?![%])\\b'
DateExtractorA = f'\\b({DayPrefix}(\\s*,)?\\s+)?(({BaseDateTime.FourDigitYearRegex}\\s*[/\\\\\\-\\.]\\s*({MonthNumRegex}|{MonthRegex})\\s*[/\\\\\\-\\.]\\s*{DayRegex})|({MonthRegex}\\s*[/\\\\\\-\\.]\\s*{BaseDateTime.FourDigitYearRegex}\\s*[/\\\\\\-\\.]\\s*(the\\s+)?(?<day>(?:3[0-1]|[1-2]\\d|0?[1-9])(?:th|nd|rd|st)?))|({DayRegex}\\s*[/\\\\\\-\\.]\\s*{BaseDateTime.FourDigitYearRegex}\\s*[/\\\\\\-\\.]\\s*{MonthRegex}))'
OfMonth = f'^\\s*(day\\s+)?of\\s*{MonthRegex}'
MonthEnd = f'{MonthRegex}\\s*(the)?\\s*$'
WeekDayEnd = f'(this\\s+)?{WeekDayRegex}\\s*,?\\s*$'
WeekDayStart = f'^[\\.]'
RangeUnitRegex = f'\\b(?<unit>years?|months?|weeks?|fortnights?)\\b'
HourNumRegex = f'\\b(?<hournum>zero|one|two|three|four|five|six|seven|eight|nine|ten|eleven|twelve)\\b'
MinuteNumRegex = f'(((?<tens>twenty|thirty|fou?rty|fifty)(\\s*-?\\s*))?(?<minnum>one|two|three|four|five|six|seven|eight|nine)|(?<minnum>ten|eleven|twelve|thirteen|fifteen|eighteen|(four|six|seven|nine)(teen)|twenty|thirty|forty|fifty))'
DeltaMinuteNumRegex = f'(((?<tens>twenty|thirty|fou?rty|fifty)(\\s*-?\\s*))?(?<deltaminnum>one|two|three|four|five|six|seven|eight|nine)|(?<deltaminnum>ten|eleven|twelve|thirteen|fifteen|eighteen|(four|six|seven|nine)(teen)|twenty|thirty|forty|fifty))'
PmRegex = f'(?<pm>(((?:at|in|around|circa|on|for)\\s+(the\\s+)?)?(afternoon|evening|midnight|lunchtime))|((at|in|around|on|for)\\s+(the\\s+)?night))'
PmRegexFull = f'(?<pm>((?:at|in|around|circa|on|for)\\s+(the\\s+)?)?(afternoon|evening|(mid)?night|lunchtime))'
AmRegex = f'(?<am>((?:at|in|around|circa|on|for)\\s+(the\\s+)?)?(morning))'
LunchRegex = f'\\blunchtime\\b'
NightRegex = f'\\b(mid)?night\\b'
CommonDatePrefixRegex = f'^[\\.]'
LessThanOneHour = f'(?<lth>(a\\s+)?quarter|three quarter(s)?|half( an hour)?|{BaseDateTime.DeltaMinuteRegex}(\\s+(minutes?|mins?))|{DeltaMinuteNumRegex}(\\s+(minutes?|mins?)))'
WrittenTimeRegex = f'(?<writtentime>{HourNumRegex}\\s+{MinuteNumRegex}(\\s+(minutes?|mins?))?)'
TimePrefix = f'(?<prefix>{LessThanOneHour}\\s+(past|to))'
TimeSuffix = f'(?<suffix>{AmRegex}|{PmRegex}|{OclockRegex})'
TimeSuffixFull = f'(?<suffix>{AmRegex}|{PmRegexFull}|{OclockRegex})'
BasicTime = f'\\b(?<basictime>{WrittenTimeRegex}|{HourNumRegex}|{BaseDateTime.HourRegex}:{BaseDateTime.MinuteRegex}(:{BaseDateTime.SecondRegex})?|{BaseDateTime.HourRegex}(?![%\\d]))'
MidnightRegex = f'(?<midnight>mid\\s*(-\\s*)?night)'
MidmorningRegex = f'(?<midmorning>mid\\s*(-\\s*)?morning)'
MidafternoonRegex = f'(?<midafternoon>mid\\s*(-\\s*)?afternoon)'
MiddayRegex = f'(?<midday>mid\\s*(-\\s*)?day|((12\\s)?noon))'
MidTimeRegex = f'(?<mid>({MidnightRegex}|{MidmorningRegex}|{MidafternoonRegex}|{MiddayRegex}))'
AtRegex = f'\\b(?:(?:(?<=\\b(at|(at)?\\s*around|circa)\\s+)(?:{WrittenTimeRegex}|{HourNumRegex}|{BaseDateTime.HourRegex}(?!\\.\\d)(\\s*((?<iam>a)|(?<ipm>p)))?|{MidTimeRegex}))|{MidTimeRegex})\\b'
IshRegex = f'\\b({BaseDateTime.HourRegex}(-|——)?ish|noon(ish)?)\\b'
TimeUnitRegex = f'([^a-z]{{1,}}|\\b)(?<unit>h(ou)?rs?|h|min(ute)?s?|sec(ond)?s?)\\b'
RestrictedTimeUnitRegex = f'(?<unit>hour|minute)\\b'
FivesRegex = f'(?<tens>(?:fifteen|(?:twen|thir|fou?r|fif)ty(\\s*five)?|ten|five))\\b'
HourRegex = f'\\b{BaseDateTime.HourRegex}'
PeriodHourNumRegex = f'\\b(?<hour>twenty(\\s+(one|two|three|four))?|eleven|twelve|thirteen|fifteen|eighteen|(four|six|seven|nine)(teen)?|zero|one|two|three|five|eight|ten)\\b'
ConnectNumRegex = f'\\b{BaseDateTime.HourRegex}(?<min>[0-5][0-9])\\s*{DescRegex}'
TimeRegexWithDotConnector = f'({BaseDateTime.HourRegex}(\\s*\\.\\s*){BaseDateTime.MinuteRegex})'
TimeRegex1 = f'\\b({TimePrefix}\\s+)?({WrittenTimeRegex}|{HourNumRegex}|{BaseDateTime.HourRegex})(\\s*|[.]){DescRegex}'
TimeRegex2 = f'(\\b{TimePrefix}\\s+)?(t)?{BaseDateTime.HourRegex}(\\s*)?:(\\s*)?{BaseDateTime.MinuteRegex}((\\s*)?:(\\s*)?{BaseDateTime.SecondRegex})?(?<iam>a)?((\\s*{DescRegex})|\\b)'
TimeRegex3 = f'(\\b{TimePrefix}\\s+)?{BaseDateTime.HourRegex}\\.{BaseDateTime.MinuteRegex}(\\s*{DescRegex})'
TimeRegex4 = f'\\b{TimePrefix}\\s+{BasicTime}(\\s*{DescRegex})?\\s+{TimeSuffix}\\b'
TimeRegex5 = f'\\b{TimePrefix}\\s+{BasicTime}((\\s*{DescRegex})|\\b)'
TimeRegex6 = f'({BasicTime})(\\s*{DescRegex})?\\s+{TimeSuffix}\\b'
TimeRegex7 = f'\\b{TimeSuffixFull}\\s+(at\\s+)?{BasicTime}((\\s*{DescRegex})|\\b)'
TimeRegex8 = f'.^'
TimeRegex9 = f'\\b{PeriodHourNumRegex}(\\s+|-){FivesRegex}((\\s*{DescRegex})|\\b)'
TimeRegex10 = f'\\b({TimePrefix}\\s+)?{BaseDateTime.HourRegex}(\\s*h\\s*){BaseDateTime.MinuteRegex}(\\s*{DescRegex})?'
TimeRegex11 = f'\\b((?:({TimeTokenPrefix})?{TimeRegexWithDotConnector}(\\s*{DescRegex}))|(?:(?:{TimeTokenPrefix}{TimeRegexWithDotConnector})(?!\\s*per\\s*cent|%)))'
FirstTimeRegexInTimeRange = f'\\b{TimeRegexWithDotConnector}(\\s*{DescRegex})?'
PureNumFromTo = f'({RangePrefixRegex}\\s+)?({HourRegex}|{PeriodHourNumRegex})(\\s*(?<leftDesc>{DescRegex}))?\\s*{TillRegex}\\s*({HourRegex}|{PeriodHourNumRegex})(?<rightDesc>\\s*({PmRegex}|{AmRegex}|{DescRegex}))?'
PureNumBetweenAnd = f'(between\\s+)(({BaseDateTime.TwoDigitHourRegex}{BaseDateTime.TwoDigitMinuteRegex})|{HourRegex}|{PeriodHourNumRegex})(\\s*(?<leftDesc>{DescRegex}))?\\s*{RangeConnectorRegex}\\s*(({BaseDateTime.TwoDigitHourRegex}{BaseDateTime.TwoDigitMinuteRegex})|{HourRegex}|{PeriodHourNumRegex})(?<rightDesc>\\s*({PmRegex}|{AmRegex}|{DescRegex}))?'
SpecificTimeFromTo = f'({RangePrefixRegex}\\s+)?(?<time1>(({TimeRegex2}|{FirstTimeRegexInTimeRange})|({HourRegex}|{PeriodHourNumRegex})(\\s*(?<leftDesc>{DescRegex}))?))\\s*{TillRegex}\\s*(?<time2>(({TimeRegex2}|{TimeRegexWithDotConnector}(?<rightDesc>\\s*{DescRegex}))|({HourRegex}|{PeriodHourNumRegex})(\\s*(?<rightDesc>{DescRegex}))?))'
SpecificTimeBetweenAnd = f'(between\\s+)(?<time1>(({TimeRegex2}|{FirstTimeRegexInTimeRange})|({HourRegex}|{PeriodHourNumRegex})(\\s*(?<leftDesc>{DescRegex}))?))\\s*{RangeConnectorRegex}\\s*(?<time2>(({TimeRegex2}|{TimeRegexWithDotConnector}(?<rightDesc>\\s*{DescRegex}))|({HourRegex}|{PeriodHourNumRegex})(\\s*(?<rightDesc>{DescRegex}))?))'
SuffixAfterRegex = f'\\b(((at)\\s)?(or|and)\\s+(above|after|later|greater)(?!\\s+than))\\b'
PrepositionRegex = f'(?<prep>^(,\\s*)?(at|on|of)(\\s+the)?$)'
LaterEarlyRegex = f'((?<early>earl(y|ier)(\\s+|-))|(?<late>late(r?\\s+|-)))'
MealTimeRegex = f'\\b(at\\s+)?(?<mealTime>breakfast|brunch|lunch(\\s*time)?|dinner(\\s*time)?|supper)\\b'
UnspecificTimePeriodRegex = f'({MealTimeRegex})'
TimeOfDayRegex = f'\\b(?<timeOfDay>((((in\\s+the\\s+)?{LaterEarlyRegex}?(in(\\s+the)?\\s+)?(morning|afternoon|night|evening)))|{MealTimeRegex}|(((in\\s+(the)?\\s+)?)(daytime|business\\s+hour)))s?)\\b'
SpecificTimeOfDayRegex = f'\\b(({StrictRelativeRegex}\\s+{TimeOfDayRegex})\\b|\\btoni(ght|te))s?\\b'
TimeFollowedUnit = f'^\\s*{TimeUnitRegex}'
TimeNumberCombinedWithUnit = f'\\b(?<num>\\d+(\\.\\d*)?){TimeUnitRegex}'
BusinessHourSplitStrings = [r'business', r'hour']
NowRegex = f'\\b(?<now>(right\\s+)?now|as\\s+soon\\s+as\\s+possible|asap|recently|previously|at\\s+(present|this\\s+time|th(e|is)\\s+minute|the\\s+(moment|present\\s+time)))\\b'
NowParseRegex = f'\\b({NowRegex}|^(date)$)\\b'
SuffixRegex = f'^\\s*(in the\\s+)?(morning|afternoon|evening|night)\\b'
NonTimeContextTokens = f'(building)'
DateTimeTimeOfDayRegex = f'\\b(?<timeOfDay>morning|(?<pm>afternoon|night|evening))\\b'
DateTimeSpecificTimeOfDayRegex = f'\\b(({RelativeRegex}\\s+{DateTimeTimeOfDayRegex})\\b|\\btoni(ght|te))\\b'
TimeOfTodayAfterRegex = f'^\\s*(,\\s*)?(in\\s+)?{DateTimeSpecificTimeOfDayRegex}'
TimeOfTodayBeforeRegex = f'{DateTimeSpecificTimeOfDayRegex}(\\s*,)?(\\s+(at|around|circa|in|on))?\\s*$'
SimpleTimeOfTodayAfterRegex = f'(?<!{NonTimeContextTokens}\\s*)\\b({HourNumRegex}|{BaseDateTime.HourRegex})\\s*(,\\s*)?(in\\s+)?{DateTimeSpecificTimeOfDayRegex}\\b'
SimpleTimeOfTodayBeforeRegex = f'\\b{DateTimeSpecificTimeOfDayRegex}(\\s*,)?(\\s+(at|around|circa))?\\s*({HourNumRegex}|{BaseDateTime.HourRegex})\\b'
SpecificEndOfRegex = f'(the\\s+)?end of(\\s+the)?\\s*$'
UnspecificEndOfRegex = f'\\b(the\\s+)?(eod|(end\\s+of\\s+day))\\b'
UnspecificEndOfRangeRegex = f'\\b(eoy)\\b'
PeriodTimeOfDayRegex = f'\\b((in\\s+(the)?\\s+)?{LaterEarlyRegex}?(this\\s+)?{DateTimeTimeOfDayRegex})\\b'
PeriodSpecificTimeOfDayRegex = f'\\b({LaterEarlyRegex}?this\\s+{DateTimeTimeOfDayRegex}|({StrictRelativeRegex}\\s+{PeriodTimeOfDayRegex})\\b|\\btoni(ght|te))\\b'
PeriodTimeOfDayWithDateRegex = f'\\b(({PeriodTimeOfDayRegex}(\\s+(on|of))?))\\b'
LessThanRegex = f'\\b(less\\s+than)\\b'
MoreThanRegex = f'\\b(more\\s+than)\\b'
DurationUnitRegex = f'(?<unit>{DateUnitRegex}|h(ou)?rs?|h|min(ute)?s?|sec(ond)?s?|nights?)\\b'
SuffixAndRegex = f'(?<suffix>\\s*(and)\\s+(an?\\s+)?(?<suffix_num>half|quarter))'
PeriodicRegex = f'\\b(?<periodic>((?<multiplier>semi|bi|tri)(\\s*|-))?(daily|monthly|weekly|quarterly|yearly|annual(ly)?))\\b'
EachUnitRegex = f'\\b(?<each>(each|every|any|once an?)(?<other>\\s+other)?\\s+({DurationUnitRegex}|(?<specialUnit>quarters?|weekends?)|{WeekDayRegex})|(?<specialUnit>weekends))'
EachPrefixRegex = f'\\b(?<each>(each|every|once an?)\\s*$)'
SetEachRegex = f'\\b(?<each>(each|every)(?<other>\\s+other)?\\s*)(?!the|that)\\b'
SetLastRegex = f'(?<last>following|next|upcoming|this|{LastNegPrefix}last|past|previous|current)'
EachDayRegex = f'^\\s*(each|every)\\s*day\\b'
DurationFollowedUnit = f'(^\\s*{DurationUnitRegex}\\s+{SuffixAndRegex})|(^\\s*{SuffixAndRegex}?(\\s+|-)?{DurationUnitRegex})'
NumberCombinedWithDurationUnit = f'\\b(?<num>\\d+(\\.\\d*)?)(-)?{DurationUnitRegex}'
AnUnitRegex = f'(\\b((?<half>(half)\\s+)?an?|another)|(?<half>(1/2|½|half)))\\s+{DurationUnitRegex}'
DuringRegex = f'\\b(for|during)\\s+the\\s+(?<unit>year|month|week|day|fortnight)\\b'
AllRegex = f'\\b(?<all>(all|full|whole)(\\s+|-)(?<unit>year|month|week|day|fortnight))\\b'
HalfRegex = f'((an?\\s*)|\\b)(?<half>half\\s+(?<unit>year|month|week|fortnight|day|hour))\\b'
ConjunctionRegex = f'\\b((and(\\s+for)?)|with)\\b'
HolidayList1 = f'(?<holiday>mardi gras|(washington|mao)\'s birthday|juneteenth|(jubilee|freedom)(\\s+day)|chinese new year|(new\\s+(years\'|year\\s*\'s|years?)\\s+eve)|(new\\s+(years\'|year\\s*\'s|years?)(\\s+day)?)|may\\s*day|yuan dan|christmas eve|(christmas|xmas)(\\s+day)?|black friday|yuandan|easter(\\s+(sunday|saturday|monday))?|clean monday|ash wednesday|palm sunday|maundy thursday|good friday|white\\s+(sunday|monday)|trinity sunday|pentecost|corpus christi|cyber monday)'
HolidayList2 = f'(?<holiday>(thanks\\s*giving|all saint\'s|white lover|s(?:ain)?t?(\\.)?\\s+(?:patrick|george)(?:\')?(?:s)?|us independence|all hallow|all souls|guy fawkes|cinco de mayo|halloween|qingming|dragon boat|april fools|tomb\\s*sweeping)(\\s+day)?)'
HolidayList3 = f'(?<holiday>(?:independence|presidents(?:\')?|mlk|martin luther king( jr)?|canberra|ascension|columbus|tree( planting)?|arbor|labou?r|((international|int\'?l)\\s+)?workers\'?|mother\'?s?|father\'?s?|female|women(\'s)?|single|teacher\'?s|youth|children|girls|lovers?|earth|inauguration|groundhog|valentine\'?s|baptiste|bastille|veterans(?:\')?|memorial|mid[ \\-]autumn|moon|spring|lantern)\\s+day)'
HolidayRegex = f'\\b(({StrictRelativeRegex}\\s+({HolidayList1}|{HolidayList2}|{HolidayList3}))|(({HolidayList1}|{HolidayList2}|{HolidayList3})(\\s+(of\\s+)?({YearRegex}|{RelativeRegex}\\s+year))?))\\b'
AMTimeRegex = f'(?<am>morning)'
PMTimeRegex = f'\\b(?<pm>afternoon|evening|night)\\b'
NightTimeRegex = f'(night)'
NowTimeRegex = f'(now|at\\s+(present|this\\s+time|th(e|is)\\s+minute|the\\s+(moment|present\\s+time)))'
RecentlyTimeRegex = f'(recently|previously)'
AsapTimeRegex = f'(as soon as possible|asap)'
InclusiveModPrepositions = f'(?<include>((on|in|at)\\s+or\\s+)|(\\s+or\\s+(on|in|at)))'
AroundRegex = f'(?:\\b(?:around|circa)\\s*?\\b)(\\s+the)?'
BeforeRegex = f'((\\b{InclusiveModPrepositions}?(?:before|in\\s+advance\\s+of|prior\\s+to|(no\\s+later|earlier|sooner)\\s+than|ending\\s+(with|on)|by|(un)?till?|(?<include>as\\s+late\\s+as)){InclusiveModPrepositions}?\\b\\s*?)|(?<!\\w|>)((?<include><\\s*=)|<))(\\s+the)?'
AfterRegex = f'((\\b{InclusiveModPrepositions}?((after|(starting|beginning)(\\s+on)?(?!\\sfrom)|(?<!no\\s+)later than)|(year greater than))(?!\\s+or equal to){InclusiveModPrepositions}?\\b\\s*?)|(?<!\\w|<)((?<include>>\\s*=)|>))(\\s+the)?'
SinceRegex = f'(?:(?:\\b(?:since|after\\s+or\\s+equal\\s+to|starting\\s+(?:from|on|with)|as\\s+early\\s+as|(any\\s+time\\s+)from)\\b\\s*?)|(?<!\\w|<)(>=))(\\s+the)?'
SinceRegexExp = f'({SinceRegex}|\\bfrom(\\s+the)?\\b)'
AgoRegex = f'\\b(ago|before\\s+(?<day>yesterday|today))\\b'
LaterRegex = f'\\b(?:later(?!((\\s+in)?\\s*{OneWordPeriodRegex})|(\\s+{TimeOfDayRegex})|\\s+than\\b)|from now|(from|after)\\s+(?<day>tomorrow|tmr|today))\\b'
BeforeAfterRegex = f'\\b((?<before>before)|(?<after>from|after))\\b'
InConnectorRegex = f'\\b(in)\\b'
SinceYearSuffixRegex = f'(^\\s*{SinceRegex}(\\s*(the\\s+)?year\\s*)?{YearSuffix})'
WithinNextPrefixRegex = f'\\b(within(\\s+the)?(\\s+(?<next>{NextPrefixRegex}))?)\\b'
TodayNowRegex = f'\\b(today|now)\\b'
MorningStartEndRegex = f'(^(morning|{AmDescRegex}))|((morning|{AmDescRegex})$)'
AfternoonStartEndRegex = f'(^(afternoon|{PmDescRegex}))|((afternoon|{PmDescRegex})$)'
EveningStartEndRegex = f'(^(evening))|((evening)$)'
NightStartEndRegex = f'(^(over|to)?ni(ght|te))|((over|to)?ni(ght|te)$)'
InexactNumberRegex = f'\\b((a\\s+)?few|some|several|(?<NumTwoTerm>(a\\s+)?couple(\\s+of)?))\\b'
InexactNumberUnitRegex = f'({InexactNumberRegex})\\s+({DurationUnitRegex})'
RelativeTimeUnitRegex = f'(?:(?:(?:{NextPrefixRegex}|{PreviousPrefixRegex}|{ThisPrefixRegex})\\s+({TimeUnitRegex}))|((the|my))\\s+({RestrictedTimeUnitRegex}))'
RelativeDurationUnitRegex = f'(?:(?:(?<=({NextPrefixRegex}|{PreviousPrefixRegex}|{ThisPrefixRegex})\\s+)({DurationUnitRegex}))|((the|my))\\s+({RestrictedTimeUnitRegex}))'
ReferenceDatePeriodRegex = f'\\b{ReferencePrefixRegex}\\s+(?<duration>week(end)?|fortnight|month|year|decade)\\b'
ConnectorRegex = f'^(-|,|for|t|around|circa|@)$'
FromToRegex = f'(\\b(from).+(to|and|or)\\b.+)'
SingleAmbiguousMonthRegex = f'^(the\\s+)?(may|march)$'
SingleAmbiguousTermsRegex = f'^(the\\s+)?(day|week|month|year)$'
UnspecificDatePeriodRegex = f'^(week|fortnight|month|year)$'
PrepositionSuffixRegex = f'\\b(on|in|at|around|circa|from|to)$'
FlexibleDayRegex = f'(?<DayOfMonth>([A-Za-z]+\\s)?[A-Za-z\\d]+)'
ForTheRegex = f'\\b((((?<=for\\s+)the\\s+{FlexibleDayRegex})|((?<=on\\s+)(the\\s+)?{FlexibleDayRegex}(?<=(st|nd|rd|th))))(?<end>\\s*(,|\\.(?!\\d)|!|\\?|$)))'
WeekDayAndDayOfMonthRegex = f'\\b{WeekDayRegex}\\s+(the\\s+{FlexibleDayRegex})\\b'
WeekDayAndDayRegex = f'\\b{WeekDayRegex}\\s+(?!(the)){DayRegex}(?!([-:]|(\\s+({AmDescRegex}|{PmDescRegex}|{OclockRegex}))))\\b'
RestOfDateRegex = f'\\b(rest|remaining)\\s+(of\\s+)?((the|my|this|current)\\s+)?(?<duration>week|fortnight|month|year|decade)\\b'
RestOfDateTimeRegex = f'\\b(rest|remaining)\\s+(of\\s+)?((the|my|this|current)\\s+)?(?<unit>day)\\b'
AmbiguousRangeModifierPrefix = f'(from)'
NumberEndingPattern = f'^(?:\\s+(?<meeting>meeting|appointment|conference|((skype|teams|zoom|facetime)\\s+)?call)\\s+to\\s+(?<newTime>{PeriodHourNumRegex}|{HourRegex})([\\.]?$|(\\.,|,|!|\\?)))'
OneOnOneRegex = f'\\b(1\\s*:\\s*1(?!\\d))|(one (on )?one|one\\s*-\\s*one|one\\s*:\\s*one)\\b'
LaterEarlyPeriodRegex = f'\\b(({PrefixPeriodRegex})\\s*\\b\\s*(?<suffix>{OneWordPeriodRegex}|(?<FourDigitYear>{BaseDateTime.FourDigitYearRegex}))|({UnspecificEndOfRangeRegex}))\\b'
WeekWithWeekDayRangeRegex = f'\\b((?<week>({NextPrefixRegex}|{PreviousPrefixRegex}|this)\\s+week)((\\s+between\\s+{WeekDayRegex}\\s+and\\s+{WeekDayRegex})|(\\s+from\\s+{WeekDayRegex}\\s+to\\s+{WeekDayRegex})))\\b'
GeneralEndingRegex = f'^\\s*((\\.,)|\\.|,|!|\\?)?\\s*$'
MiddlePauseRegex = f'\\s*(,)\\s*'
DurationConnectorRegex = f'^\\s*(?<connector>\\s+|and|,)\\s*$'
PrefixArticleRegex = f'\\bthe\\s+'
OrRegex = f'\\s*((\\b|,\\s*)(or|and)\\b|,)\\s*'
SpecialYearTermsRegex = f'\\b((({SpecialYearPrefixes}\\s+)?year)|(cy|(?<special>fy|sy)))'
YearPlusNumberRegex = f'\\b({SpecialYearTermsRegex}\\s*((?<year>(\\d{{2,4}}))|{FullTextYearRegex}))\\b'
NumberAsTimeRegex = f'\\b({WrittenTimeRegex}|{PeriodHourNumRegex}|{BaseDateTime.HourRegex})\\b'
TimeBeforeAfterRegex = f'\\b(((?<=\\b(before|no later than|by|after)\\s+)({WrittenTimeRegex}|{HourNumRegex}|{BaseDateTime.HourRegex}|{MidTimeRegex}))|{MidTimeRegex})\\b'
DateNumberConnectorRegex = f'^\\s*(?<connector>\\s+at)\\s*$'
DecadeRegex = f'(?<decade>(?:nough|twen|thir|fou?r|fif|six|seven|eigh|nine)ties|two\\s+thousands)'
DecadeWithCenturyRegex = f'(the\\s+)?(((?<century>\\d|1\\d|2\\d)?(\')?(?<decade>\\d0)(\')?(\\s)?s\\b)|(({CenturyRegex}(\\s+|-)(and\\s+)?)?{DecadeRegex})|({CenturyRegex}(\\s+|-)(and\\s+)?(?<decade>tens|hundreds)))'
RelativeDecadeRegex = f'\\b((the\\s+)?{RelativeRegex}\\s+((?<number>[\\w,]+)\\s+)?decades?)\\b'
YearPeriodRegex = f'((((from|during|in)\\s+)?{YearRegex}\\s*({TillRegex})\\s*{YearRegex})|(((between)\\s+){YearRegex}\\s*({RangeConnectorRegex})\\s*{YearRegex}))'
StrictTillRegex = f'(?<till>\\b(to|(un)?till?|thru|through)\\b|{BaseDateTime.RangeConnectorSymbolRegex}(?!\\s*(h[1-2]|q[1-4])(?!(\\s+of|\\s*,\\s*))))'
StrictRangeConnectorRegex = f'(?<and>\\b(and|through|to)\\b|{BaseDateTime.RangeConnectorSymbolRegex}(?!\\s*(h[1-2]|q[1-4])(?!(\\s+of|\\s*,\\s*))))'
StartMiddleEndRegex = f'\\b((?<StartOf>((the\\s+)?(start|beginning)\\s+of\\s+)?)(?<MiddleOf>((the\\s+)?middle\\s+of\\s+)?)(?<EndOf>((the\\s+)?end\\s+of\\s+)?))'
ComplexDatePeriodRegex = f'(?:((from|during|in)\\s+)?{StartMiddleEndRegex}(?<start>.+)\\s*({StrictTillRegex})\\s*{StartMiddleEndRegex}(?<end>.+)|((between)\\s+){StartMiddleEndRegex}(?<start>.+)\\s*({StrictRangeConnectorRegex})\\s*{StartMiddleEndRegex}(?<end>.+))'
FailFastRegex = f'{BaseDateTime.DeltaMinuteRegex}|\\b(?:{BaseDateTime.BaseAmDescRegex}|{BaseDateTime.BasePmDescRegex})|{BaseDateTime.BaseAmPmDescRegex}|\\b(?:zero|{WrittenOneToNineRegex}|{WrittenElevenToNineteenRegex}|{WrittenTensRegex}|{WrittenMonthRegex}|{SeasonDescRegex}|{DecadeRegex}|centur(y|ies)|weekends?|quarters?|hal(f|ves)|yesterday|to(morrow|day|night)|tmr|noonish|\\d(-|——)?ish|((the\\s+\\w*)|\\d)(th|rd|nd|st)|(mid\\s*(-\\s*)?)?(night|morning|afternoon|day)s?|evenings?|noon|lunch(time)?|dinner(time)?|(day|night)time|overnight|dawn|dusk|sunset|hours?|hrs?|h|minutes?|mins?|seconds?|secs?|eo[dmy]|mardi[ -]?gras|birthday|eve|christmas|xmas|thanksgiving|halloween|yuandan|easter|yuan dan|april fools|cinco de mayo|all (hallow|souls)|guy fawkes|(st )?patrick|hundreds?|noughties|aughts|thousands?)\\b|{WeekDayRegex}|{SetWeekDayRegex}|{NowRegex}|{PeriodicRegex}|\\b({DateUnitRegex}|{ImplicitDayRegex})'
UnitMap = dict([("decades", "10Y"),
("decade", "10Y"),
("years", "Y"),
("year", "Y"),
("months", "MON"),
("month", "MON"),
("quarters", "3MON"),
("quarter", "3MON"),
("semesters", "6MON"),
("semestres", "6MON"),
("semester", "6MON"),
("semestre", "6MON"),
("weeks", "W"),
("week", "W"),
("weekends", "WE"),
("weekend", "WE"),
("fortnights", "2W"),
("fortnight", "2W"),
("weekdays", "D"),
("weekday", "D"),
("days", "D"),
("day", "D"),
("nights", "D"),
("night", "D"),
("hours", "H"),
("hour", "H"),
("hrs", "H"),
("hr", "H"),
("h", "H"),
("minutes", "M"),
("minute", "M"),
("mins", "M"),
("min", "M"),
("seconds", "S"),
("second", "S"),
("secs", "S"),
("sec", "S")])
UnitValueMap = dict([("decades", 315360000),
("decade", 315360000),
("years", 31536000),
("year", 31536000),
("months", 2592000),
("month", 2592000),
("fortnights", 1209600),
("fortnight", 1209600),
("weekends", 172800),
("weekend", 172800),
("weeks", 604800),
("week", 604800),
("days", 86400),
("day", 86400),
("nights", 86400),
("night", 86400),
("hours", 3600),
("hour", 3600),
("hrs", 3600),
("hr", 3600),
("h", 3600),
("minutes", 60),
("minute", 60),
("mins", 60),
("min", 60),
("seconds", 1),
("second", 1),
("secs", 1),
("sec", 1)])
SpecialYearPrefixesMap = dict([("fiscal", "FY"),
("school", "SY"),
("fy", "FY"),
("sy", "SY")])
SeasonMap = dict([("spring", "SP"),
("summer", "SU"),
("fall", "FA"),
("autumn", "FA"),
("winter", "WI")])
SeasonValueMap = dict([("SP", 3),
("SU", 6),
("FA", 9),
("WI", 12)])
CardinalMap = dict([("first", 1),
("1st", 1),
("second", 2),
("2nd", 2),
("third", 3),
("3rd", 3),
("fourth", 4),
("4th", 4),
("fifth", 5),
("5th", 5)])
DayOfWeek = dict([("monday", 1),
("tuesday", 2),
("wednesday", 3),
("thursday", 4),
("friday", 5),
("saturday", 6),
("sunday", 0),
("mon", 1),
("tue", 2),
("tues", 2),
("wed", 3),
("wedn", 3),
("weds", 3),
("thu", 4),
("thur", 4),
("thurs", 4),
("fri", 5),
("sat", 6),
("sun", 0)])
MonthOfYear = dict([("january", 1),
("february", 2),
("march", 3),
("april", 4),
("may", 5),
("june", 6),
("july", 7),
("august", 8),
("september", 9),
("october", 10),
("november", 11),
("december", 12),
("jan", 1),
("feb", 2),
("mar", 3),
("apr", 4),
("jun", 6),
("jul", 7),
("aug", 8),
("sep", 9),
("sept", 9),
("oct", 10),
("nov", 11),
("dec", 12),
("1", 1),
("2", 2),
("3", 3),
("4", 4),
("5", 5),
("6", 6),
("7", 7),
("8", 8),
("9", 9),
("10", 10),
("11", 11),
("12", 12),
("01", 1),
("02", 2),
("03", 3),
("04", 4),
("05", 5),
("06", 6),
("07", 7),
("08", 8),
("09", 9)])
Numbers = dict([("zero", 0),
("one", 1),
("a", 1),
("an", 1),
("two", 2),
("three", 3),
("four", 4),
("five", 5),
("six", 6),
("seven", 7),
("eight", 8),
("nine", 9),
("ten", 10),
("eleven", 11),
("twelve", 12),
("thirteen", 13),
("fourteen", 14),
("fifteen", 15),
("sixteen", 16),
("seventeen", 17),
("eighteen", 18),
("nineteen", 19),
("twenty", 20),
("twenty one", 21),
("twenty two", 22),
("twenty three", 23),
("twenty four", 24),
("twenty five", 25),
("twenty six", 26),
("twenty seven", 27),
("twenty eight", 28),
("twenty nine", 29),
("thirty", 30),
("thirty one", 31),
("thirty two", 32),
("thirty three", 33),
("thirty four", 34),
("thirty five", 35),
("thirty six", 36),
("thirty seven", 37),
("thirty eight", 38),
("thirty nine", 39),
("forty", 40),
("forty one", 41),
("forty two", 42),
("forty three", 43),
("forty four", 44),
("forty five", 45),
("forty six", 46),
("forty seven", 47),
("forty eight", 48),
("forty nine", 49),
("fifty", 50),
("fifty one", 51),
("fifty two", 52),
("fifty three", 53),
("fifty four", 54),
("fifty five", 55),
("fifty six", 56),
("fifty seven", 57),
("fifty eight", 58),
("fifty nine", 59),
("sixty", 60),
("sixty one", 61),
("sixty two", 62),
("sixty three", 63),
("sixty four", 64),
("sixty five", 65),
("sixty six", 66),
("sixty seven", 67),
("sixty eight", 68),
("sixty nine", 69),
("seventy", 70),
("seventy one", 71),
("seventy two", 72),
("seventy three", 73),
("seventy four", 74),
("seventy five", 75),
("seventy six", 76),
("seventy seven", 77),
("seventy eight", 78),
("seventy nine", 79),
("eighty", 80),
("eighty one", 81),
("eighty two", 82),
("eighty three", 83),
("eighty four", 84),
("eighty five", 85),
("eighty six", 86),
("eighty seven", 87),
("eighty eight", 88),
("eighty nine", 89),
("ninety", 90),
("ninety one", 91),
("ninety two", 92),
("ninety three", 93),
("ninety four", 94),
("ninety five", 95),
("ninety six", 96),
("ninety seven", 97),
("ninety eight", 98),
("ninety nine", 99),
("one hundred", 100)])
DayOfMonth = dict([("1st", 1),
("1th", 1),
("2nd", 2),
("2th", 2),
("3rd", 3),
("3th", 3),
("4th", 4),
("5th", 5),
("6th", 6),
("7th", 7),
("8th", 8),
("9th", 9),
("10th", 10),
("11th", 11),
("11st", 11),
("12th", 12),
("12nd", 12),
("13th", 13),
("13rd", 13),
("14th", 14),
("15th", 15),
("16th", 16),
("17th", 17),
("18th", 18),
("19th", 19),
("20th", 20),
("21st", 21),
("21th", 21),
("22nd", 22),
("22th", 22),
("23rd", 23),
("23th", 23),
("24th", 24),
("25th", 25),
("26th", 26),
("27th", 27),
("28th", 28),
("29th", 29),
("30th", 30),
("31st", 31),
("01st", 1),
("01th", 1),
("02nd", 2),
("02th", 2),
("03rd", 3),
("03th", 3),
("04th", 4),
("05th", 5),
("06th", 6),
("07th", 7),
("08th", 8),
("09th", 9)])
DoubleNumbers = dict([("half", 0.5),
("quarter", 0.25)])
HolidayNames = dict([("easterday", ["easterday", "easter", "eastersunday"]),
("ashwednesday", ["ashwednesday"]),
("palmsunday", ["palmsunday"]),
("maundythursday", ["maundythursday"]),
("goodfriday", ["goodfriday"]),
("eastersaturday", ["eastersaturday"]),
("eastermonday", ["eastermonday"]),
("ascensionday", ["ascensionday"]),
("whitesunday", ["whitesunday", "pentecost", "pentecostday"]),
("whitemonday", ["whitemonday"]),
("trinitysunday", ["trinitysunday"]),
("corpuschristi", ["corpuschristi"]),
("earthday", ["earthday"]),
("fathers", ["fatherday", "fathersday"]),
("mothers", ["motherday", "mothersday"]),
("thanksgiving", ["thanksgivingday", "thanksgiving"]),
("blackfriday", ["blackfriday"]),
("cybermonday", ["cybermonday"]),
("martinlutherking", ["mlkday", "martinlutherkingday", "martinlutherkingjrday"]),
("washingtonsbirthday", ["washingtonsbirthday", "washingtonbirthday", "presidentsday"]),
("canberra", ["canberraday"]),
("labour", ["labourday", "laborday"]),
("columbus", ["columbusday"]),
("memorial", ["memorialday"]),
("yuandan", ["yuandan"]),
("maosbirthday", ["maosbirthday"]),
("teachersday", ["teachersday", "teacherday"]),
("singleday", ["singleday"]),
("allsaintsday", ["allsaintsday"]),
("youthday", ["youthday"]),
("childrenday", ["childrenday", "childday"]),
("femaleday", ["femaleday"]),
("treeplantingday", ["treeplantingday"]),
("arborday", ["arborday"]),
("girlsday", ["girlsday"]),
("whiteloverday", ["whiteloverday"]),
("loverday", ["loverday", "loversday"]),
("christmas", ["christmasday", "christmas"]),
("xmas", ["xmasday", "xmas"]),
("newyear", ["newyear"]),
("newyearday", ["newyearday"]),
("newyearsday", ["newyearsday"]),
("inaugurationday", ["inaugurationday"]),
("groundhougday", ["groundhougday"]),
("valentinesday", ["valentinesday"]),
("stpatrickday", ["stpatrickday", "stpatricksday", "stpatrick"]),
("aprilfools", ["aprilfools"]),
("stgeorgeday", ["stgeorgeday"]),
("mayday", ["mayday", "intlworkersday", "internationalworkersday", "workersday"]),
("cincodemayoday", ["cincodemayoday"]),
("baptisteday", ["baptisteday"]),
("usindependenceday", ["usindependenceday"]),
("independenceday", ["independenceday"]),
("bastilleday", ["bastilleday"]),
("halloweenday", ["halloweenday", "halloween"]),
("allhallowday", ["allhallowday"]),
("allsoulsday", ["allsoulsday"]),
("guyfawkesday", ["guyfawkesday"]),
("veteransday", ["veteransday"]),
("christmaseve", ["christmaseve"]),
("newyeareve", ["newyearseve", "newyeareve"]),
("juneteenth", ["juneteenth", "freedomday", "jubileeday"])])
WrittenDecades = dict([("hundreds", 0),
("tens", 10),
("twenties", 20),
("thirties", 30),
("forties", 40),
("fifties", 50),
("sixties", 60),
("seventies", 70),
("eighties", 80),
("nineties", 90)])
SpecialDecadeCases = dict([("noughties", 2000),
("aughts", 2000),
("two thousands", 2000)])
DefaultLanguageFallback = 'MDY'
SuperfluousWordList = [r'preferably', r'how about', r'maybe', r'perhaps', r'say', r'like']
DurationDateRestrictions = [r'today', r'now']
AmbiguityFiltersDict = dict([("^\\d{4}$", "(\\d\\.\\d{4}|\\d{4}\\.\\d)"),
("^(morning|afternoon|evening|night|day)\\b", "\\b(good\\s+(morning|afternoon|evening|night|day))|(nighty\\s+night)\\b"),
("\\bnow\\b", "\\b(^now,)|\\b((is|are)\\s+now\\s+for|for\\s+now)\\b"),
("\\bmay\\b", "\\b((((!|\\.|\\?|,|;|)\\s+|^)may i)|(i|you|he|she|we|they)\\s+may|(may\\s+((((also|not|(also not)|well)\\s+)?(be|ask|contain|constitute|e-?mail|take|have|result|involve|get|work|reply|differ))|(or may not))))\\b"),
("\\b(a|one) second\\b", "\\b(?<!an?\\s+)(a|one) second (round|time)\\b"),
("\\b(breakfast|brunch|lunch(time)?|dinner(time)?|supper)$", "(?<!\\b(at|before|after|around|circa)\\b\\s)(breakfast|brunch|lunch|dinner|supper)(?!\\s*time)"),
("^\\d+m$", "^\\d+m$"),
("^(apr|aug|dec|feb|jan|jul|jun|mar|may|nov|oct|sept?)$", "([$%£&!?@#])(apr|aug|dec|feb|jan|jul|jun|mar|may|nov|oct|sept?)|(apr|aug|dec|feb|jan|jul|jun|mar|may|nov|oct|sept?)([$%£&@#])")])
MorningTermList = [r'morning']
AfternoonTermList = [r'afternoon']
EveningTermList = [r'evening']
MealtimeBreakfastTermList = [r'breakfast']
MealtimeBrunchTermList = [r'brunch']
MealtimeLunchTermList = [r'lunch', r'lunchtime']
MealtimeDinnerTermList = [r'dinner', r'dinnertime', r'supper']
DaytimeTermList = [r'daytime']
NightTermList = [r'night']
SameDayTerms = [r'today', r'otd']
PlusOneDayTerms = [r'tomorrow', r'tmr', r'day after']
MinusOneDayTerms = [r'yesterday', r'day before']
PlusTwoDayTerms = [r'day after tomorrow', r'day after tmr']
MinusTwoDayTerms = [r'day before yesterday']
FutureTerms = [r'this', r'next']
LastCardinalTerms = [r'last']
MonthTerms = [r'month']
MonthToDateTerms = [r'month to date']
WeekendTerms = [r'weekend']
WeekTerms = [r'week']
FortnightTerms = [r'fortnight', r'fourtenight']
YearTerms = [r'year']
GenericYearTerms = [r'y']
YearToDateTerms = [r'year to date']
DoubleMultiplierRegex = f'^(bi)(-|\\s)?'
HalfMultiplierRegex = f'^(semi)(-|\\s)?'
DayTypeRegex = f'((week)?da(il)?ys?)$'
WeekTypeRegex = f'(week(s|ly)?)$'
WeekendTypeRegex = f'(weekends?)$'
MonthTypeRegex = f'(month(s|ly)?)$'
QuarterTypeRegex = f'(quarter(s|ly)?)$'
YearTypeRegex = f'((years?|annual)(ly)?)$'
# pylint: enable=line-too-long
| StarcoderdataPython |
1693396 | import bentoml
import pandas as pd
import numpy as np
from bentoml.artifact import PickleArtifact
# from bentoml.adapters import DataframeInput
from bentoml.handlers import DataframeHandler
from bentoml.handlers import JsonHandler
@bentoml.ver(1, 0)
@bentoml.artifacts([
PickleArtifact("knn"),
PickleArtifact("index_map"),
PickleArtifact("cluster_path"),
PickleArtifact("pop_matrix"),
])
class ClusteredKNN(bentoml.BentoService):
def get_index(self, item):
if item in self.artifacts.index_map:
return self.artifacts.index_map[item]
else:
return 0
def setup_scores(self, features, n_neighbors):
neighbors_idxs = self.artifacts.knn.kneighbors(X=features, n_neighbors=n_neighbors, return_distance=False) # get indexes of neighbors
knclusters = self.artifacts.cluster_path.labels_[neighbors_idxs] # get clusters of neighbors
clicks = [self.artifacts.pop_matrix[c] for c in knclusters] # create an array with the number of item iteractions per cluster (per item)
clicks = np.asarray(clicks[0])
self.mean_scores = np.mean(clicks, axis=0) # mean over the number of iteractions to create a weighted score
def get_score(self, index):
if index is 0:
return -1
else:
return self.mean_scores[index]
@bentoml.api(JsonHandler)
def rank(self, sample):
n_neighbors = 10
articles = sample['Article_List']
indexed_articles = [self.get_index(art) for art in articles]
user_features = sample['User_Features']
self.setup_scores(np.asarray([user_features]), n_neighbors)
scores = [self.get_score(idx) for idx in indexed_articles]
output = [item for score, item in sorted(zip(scores, articles),reverse=True)]
return {
"articles": output,
"scores": sorted(scores, reverse=True)
}
| StarcoderdataPython |
3330898 | <filename>random_user_agent.py
from enums import OS, Chipset, Browser, Language
import random
from datetime import date, timedelta, datetime
from copy import deepcopy
def _random_date(start: datetime.date, end: datetime.date):
"""Generate a random datetime between `start` and `end`"""
return start + timedelta(
# Get a random amount of seconds between `start` and `end`
seconds=random.randint(0, int((end - start).total_seconds())),
)
class _State:
os = None
chipset = None
browser = None
language = None
class RandomUserAgent:
"""
Generates a random user agent to be used in HTTP requests as your browser.
Defaults: completely randomized
"""
def __init__(self):
self._state = _State()
##################################################################
# Quick access
##################################################################
@property
def os(self):
return self._state.os
@property
def language(self):
return self._state.language
@property
def browser(self):
return self._state.browser
@property
def chipset(self):
return self._state.chipset
##################################################################
##################################################################
# select OS
##################################################################
def linux(self):
self._state.os = OS.Linux
return self
def windows(self):
self._state.os = OS.Windows
return self
def macosx(self):
self._state.os = OS.MacOSX
return self
def android(self):
self._state.os = OS.Android
return self
def ios(self):
self._state.os = OS.iOS
return self
##################################################################
##################################################################
# select chipset
##################################################################
def x86(self):
self._state.chipset = Chipset.x86
return self
def x64(self):
self._state.chipset = Chipset.x64
return self
def intel(self):
self._state.chipset = Chipset.Intel
return self
def ppc(self):
self._state.chipset = Chipset.PPC
return self
def uintel(self):
self._state.chipset = Chipset.UIntel
return self
def uppc(self):
self._state.chipset = Chipset.UPPC
return self
##################################################################
##################################################################
# Select browser
##################################################################
def firefox(self):
self._state.browser = Browser.Firefox
return self
def safari(self):
self._state.browser = Browser.Safari
return self
def iexplorer(self):
self._state.browser = Browser.IExplorer
return self
def opera(self):
self._state.browser = Browser.Opera
return self
def chrome(self):
self._state.browser = Browser.Chrome
return self
##################################################################
##################################################################
def set_language(self, lang: Language):
self._state.language = lang
return self
##################################################################
def _validate(self):
try:
Chipset.check_if_ok_for_os(self.chipset, self.os)
return True
except ValueError:
pass
return False
def _randomize_os(self):
if self._state.os:
return
while True:
self._state.os = random.choice(list(OS.__members__.values()))
if self._state.chipset and self._validate():
return
def _randomize_chipset(self):
if self._state.chipset:
return
while True:
self._state.chipset = random.choice(list(Chipset.__members__.values()))
if self._validate():
return
def _randomize_browser(self):
if self._state.browser:
return
self._state.browser = random.choice(list(Browser.__members__.values()))
def _randomize_language(self):
if self._state.language:
return
self._state.language = random.choice(list(Language.__members__.values()))
def _randomize_firefox(self):
ua = "Mozilla/5.0 "
random_date = _random_date(date(2011, 1, 1), datetime.now().date()).strftime('%Y%m%d')
ver = [
f'Gecko/{random_date} Firefox/{random.randint(5, 7)}.0',
f'Gecko/{random_date} Firefox/{random.randint(5, 7)}.0.1',
f'Gecko/{random_date} Firefox/3.6.{random.randint(1, 20)}',
f'Gecko/{random_date} Firefox/3.8',
]
if self.os == OS.Windows:
ua += f'(Windows NT {random.randint(5, 6)}.{random.randint(0, 1)}; '
ua += self.language.value + '; '
ua += f'rv:1.9.{random.randint(0, 2)}.20) '
ua += random.choice(ver)
elif self.os == OS.Linux:
ua += f'(X11; Linux {self.chipset.value}; '
ua += f'rv:{random.randint(5, 7)}.0) '
ua += random.choice(ver)
elif self.os == OS.MacOSX:
ua += f'(Macintosh; {self.chipset.value} '
ua += f'Mac OS X 10_{random.randint(5, 7)}_{random.randint(0, 9)} '
ua += f'rv:{random.randint(2, 6)}.0) '
ua += random.choice(ver)
else:
raise NotImplementedError
return ua
def _randomize_safari(self):
ua = 'Mozilla/5.0 '
saf = f'{random.randint(531, 535)}.{random.randint(1, 50)}.{random.randint(1, 7)}'
if random.randint(0, 1) == 0:
ver = f'{random.randint(4, 5)}.{random.randint(0, 1)}'
else:
ver = f'{random.randint(4, 5)}.0.{random.randint(1, 5)}'
if self.os == OS.Windows:
ua += f'(Windows; U; Windows NT {random.randint(5, 6)}.{random.randint(0, 1)}) '
ua += f'AppleWebKit/{saf} (KHTML, like Gecko) '
ua += f'Version/{ver} '
ua += f'Safari/{saf}'
elif self.os == OS.MacOSX:
ua += f'(Macintosh; U; {self.chipset.value} '
ua += f'Mac OS X 10_{random.randint(5, 7)}_{random.randint(0, 9)} '
ua += f'rv:{random.randint(2, 6)}.0; '
ua += f'{self.language.value}) '
ua += f'AppleWebKit/{saf} (KHTML, like Gecko) '
ua += f'Version/{ver} '
ua += f'Safari/{saf}'
else:
raise NotImplementedError
return ua
def _randomize_iexplorer(self):
ua = f'Mozilla/{random.randint(4, 5)}.0 '
ie_extra = [
'',
f'; .NET CLR 1.1.{random.randint(4320, 4325)}',
'; WOW64',
]
if self.os == OS.Windows:
ua += f'(compatible; '
ua += f'MSIE {random.randint(5, 9)}.0; '
ua += f'Windows NT {random.randint(5, 6)}.{random.randint(0, 1)}; '
ua += f'Trident/{random.randint(3, 5)}.{random.randint(0, 1)})'
ua += random.choice(ie_extra)
else:
raise NotImplementedError
return ua
def _randomize_opera(self):
ua = f'Opera/{random.randint(8, 9)}.{random.randint(10, 99)} '
op_extra = [
'',
f'; .NET CLR 1.1.{random.randint(4320, 4325)}',
'; WOW64',
]
if self.os == OS.Linux:
ua += f'(X11; Linux {self.chipset.value}; U; '
ua += f'{self.language.value}) '
ua += f'Presto/2.9.{random.randint(160, 190)} '
ua += f'Version/{random.randint(10, 12)}.00'
ua += random.choice(op_extra)
elif self.os == OS.Windows:
ua += f'(Windows NT {random.randint(5, 6)}.{random.randint(0, 1)}; U; '
ua += f'{self.language.value}) '
ua += f'Presto/2.9.{random.randint(160, 190)} '
ua += f'Version/{random.randint(10, 12)}.00'
ua += random.choice(op_extra)
else:
raise NotImplementedError
return ua
def _randomize_chrome(self):
ua = 'Mozilla/5.0'
saf = f'{random.randint(531, 536)}.{random.randint(0, 2)}'
if self.os == OS.Linux:
ua += f'(X11; Linux {self.chipset.value}) '
ua += f'AppleWebKit/{saf} '
ua += f'(KHTML, like Gecko) Chrome/{random.randint(13, 15)}.0.{random.randint(800, 899)}.0 '
ua += f'Safari/{saf}'
elif self.os == OS.Windows:
ua += f'(Windows NT {random.randint(5, 6)}.{random.randint(0, 1)}) '
ua += f'AppleWebKit/{saf} '
ua += f'(KHTML, like Gecko) '
ua += f'Chrome/{random.randint(13, 15)}.0.{random.randint(800, 899)}.0 '
ua += f'Safari/{saf}'
elif self.os == OS.MacOSX:
ua += f'(Macintosh; U; {self.chipset.value} Mac OS X '
ua += f'10_{random.randint(5, 7)}_{random.randint(0, 9)}) '
ua += f'AppleWebKit/{saf} '
ua += f'(KHTML, like Gecko) '
ua += f'Chrome/{random.randint(13, 15)}.0.{random.randint(800, 899)}.0 '
ua += f'Safari/{saf}'
else:
raise NotImplementedError
return ua
def build(self):
current_state = deepcopy(self._state)
error_counter = 20
while error_counter > 0: # Keep trying until you get a decent combination.
try:
self._randomize_os()
self._randomize_chipset()
self._randomize_browser()
self._randomize_language()
if not self._validate():
error_counter -= 1
# Call it like _randomize_firefox
return getattr(self, f'_randomize_{self._state.browser.name.lower()}')()
except NotImplementedError:
error_counter -= 1
# restore previous state to try something else
self._state = deepcopy(current_state)
pass
raise ValueError("Invalid combination passed. Can't handle this!")
if __name__ == '__main__':
rua = RandomUserAgent()
print(
rua.linux().firefox().build()
)
| StarcoderdataPython |
3370016 |
from foundations_spec import *
class DockerTestMixin(object):
@let
def docker_client(self):
import docker
return docker.from_env()
def _create_temp_directories(self, *directory_names):
import tempfile
self._temp_directories = {}
for directory_name in directory_names:
self._temp_directories[directory_name] = tempfile.mkdtemp()
def _cleanup_temp_directories(self):
import shutil
for directory_name in self._temp_directories:
shutil.rmtree(self._temp_directories[directory_name], ignore_errors=True)
| StarcoderdataPython |
3279943 | from dataclasses import asdict
from aiohttp import web
from schematics.exceptions import DataError
from asyncpg.exceptions import UniqueViolationError
from src import db
from src.models.user import User
from src.models.paginator import Paginator
from src.models.game import State
from src.encrypt import encrypt_jwt, is_same_messages
from src.decorators import auth_required
async def ping(request: web.Request) -> web.Response:
return web.json_response({'message': 'pong'})
async def registration(request: web.Request) -> web.Response:
data = await request.json()
user = User(data)
try:
user.validate()
await db.create_user(request.app['pool'], user)
except DataError as e:
return web.json_response(e.to_primitive(), status=400)
except UniqueViolationError:
return web.json_response({'message': 'user with that name already exists'}, status=409)
return web.json_response({'message': 'OK'}, status=201)
async def login(request: web.Request) -> web.Response:
data = await request.json()
remember = data.pop('remember', False)
user = User(data)
try:
user.validate()
except DataError as e:
return web.json_response(e.to_primitive(), status=400)
stored_user = await db.get_user(request.app['pool'], user)
if stored_user is None:
return web.json_response({'message': 'user don\'t exists'}, status=404)
if not is_same_messages(stored_user.password, user.password):
return web.json_response({'message': 'wrong password'}, status=400)
response = web.json_response({'message': 'OK'}, status=200)
response.set_cookie(
name='token',
value=encrypt_jwt(id=stored_user.id, username=stored_user.username),
httponly=True,
max_age=None if remember else 3600 * 24 * 7
)
return response
async def logout(request: web.Request) -> web.Response:
response = web.json_response({'message': 'OK'})
response.del_cookie(name='token')
return response
@auth_required
async def create_game(request: web.Request) -> web.Response:
game = await db.create_game(request.app['pool'], request.user)
return web.json_response(asdict(game), status=201)
@auth_required
async def login_game(request: web.Request) -> web.Response:
game = await db.get_game(request.app['pool'], int(request.match_info['_id']))
if game is None:
return web.json_response({'message': 'game not found'}, status=404)
if game.current_state != State.PENDING.value:
return web.json_response({'message': 'invalid state'}, status=400)
game.set_opponent(request.user)
await db.update_game(request.app['pool'], game)
return web.json_response(asdict(game), status=200)
async def get_game(request: web.Request) -> web.Response:
game = await db.get_game(request.app['pool'], int(request.match_info['_id']))
if game is None:
return web.json_response({'message': 'game not found'}, status=404)
return web.json_response(asdict(game), status=200)
async def get_games(request: web.Request) -> web.Response:
count_games = await db.get_total_games(request.app['pool'])
paginator = Paginator(
count_games,
request.query.get('page', '1'),
request.query.get('limit', '10')
)
games = await db.get_game_list(request.app['pool'], paginator.page, paginator.limit)
return web.json_response(
{
'games': [game.to_json() for game in games],
'paginator': paginator.to_json()
},
status=200
)
| StarcoderdataPython |
1765494 |
def error(text):
print("\033[31m" + text + "\033[0m")
def warning(text):
print("\033[33m" + text + "\033[0m")
def info(text):
print("\033[32m" + text + "\033[0m") | StarcoderdataPython |
3376513 | <gh_stars>1-10
from sqlalchemy import Column, String
from app.db.base_class import Base
class User(Base):
username = Column(String, primary_key=True, index=True)
full_name = Column(String)
hashed_password = Column(String)
| StarcoderdataPython |
1699172 | #!/usr/bin/env python
# Copyright 2014 The Chromium Authors. All rights reserved.
# Use of this source code is governed by a BSD-style license that can be
# found in the LICENSE file.
"""Tests for scripts/master/master_gen.py."""
import os
import tempfile
import unittest
# This adjusts sys.path, so it must be imported before the other modules.
import test_env # pylint: disable=W0403
from master import master_gen
SAMPLE_WATERFALL_PYL = """\
{
"master_base_class": "_FakeMasterBase",
"master_port": 20999,
"master_port_alt": 40999,
"bot_port": 30999,
"templates": ["templates"],
"builders": {
"Test Linux": {
"properties": {
"config": "Release"
},
"recipe": "test_recipe",
"scheduler": "test_repo",
"bot_pools": ["main"],
"botbuilddir": "test"
},
"Test Linux Timeouts": {
"properties": {
"config": "Release"
},
"recipe": "test_recipe",
"scheduler": "test_repo",
"bot_pools": ["main"],
"botbuilddir": "test",
"builder_timeout_s": 7200,
"no_output_timeout_s": 3600,
},
"Test Linux Remote Run": {
"properties": {
"config": "Release"
},
"recipe": "test_recipe",
"scheduler": "test_repo",
"bot_pools": ["main"],
"botbuilddir": "test",
"use_remote_run": True,
},
"Test Linux Nightly": {
"properties": {
"config": "Release"
},
"recipe": "test_nightly_recipe",
"scheduler": "nightly",
"bot_pools": ["main"],
"botbuilddir": "test",
"category": "0nightly"
}
},
"schedulers": {
"nightly": {
"type": "cron",
"hour": 4,
"minute": 15,
},
"test_repo": {
"type": "git_poller",
"git_repo_url": "https://chromium.googlesource.com/test/test.git",
},
},
"bot_pools": {
"main": {
"bot_data": {
"bits": 64,
"os": "linux",
"version": "precise"
},
"bots": ["vm9999-m1"],
},
},
}
"""
SAMPLE_TRYSERVER_PYL = """\
{
"master_base_class": "_FakeMasterBase",
"master_port": 20999,
"master_port_alt": 40999,
"bot_port": 30999,
"buildbucket_bucket": "fake_bucket",
"service_account_file": "fake_service_account",
"templates": ["templates"],
"builders": {
"Test Linux": {
"properties": {
"config": "Release"
},
"recipe": "test_recipe",
"scheduler": None,
"bot_pools": ["main"],
"botbuilddir": "test"
}
},
"schedulers": {},
"bot_pools": {
"main": {
"bot_data": {
"bits": 64,
"os": "linux",
"version": "precise"
},
"bots": ["vm{9998..9999}-m1"],
},
},
}
"""
# This class fakes the base class from master_site_config.py.
class _FakeMasterBase(object):
in_production = False
is_production_host = False
# This class fakes the actual master class in master_site_config.py.
class _FakeMaster(_FakeMasterBase):
project_name = 'test'
master_port = '20999'
slave_port = '30999'
master_port_alt = '40999'
buildbot_url = 'https://build.chromium.org/p/test'
buildbucket_bucket = None
service_account_file = None
class PopulateBuildmasterConfigTest(unittest.TestCase):
def verify_timeouts(self, builder, expected_builder_timeout=None,
expected_no_output_timeout=2400):
steps = builder['factory'].steps
self.assertEqual(1, len(steps))
step_dict = steps[0][1]
self.assertEqual(step_dict['maxTime'], expected_builder_timeout)
self.assertEqual(step_dict['timeout'], expected_no_output_timeout)
def test_waterfall(self):
try:
fp = tempfile.NamedTemporaryFile(delete=False)
fp.write(SAMPLE_WATERFALL_PYL)
fp.close()
c = {}
master_gen.PopulateBuildmasterConfig(c, fp.name, _FakeMaster)
c['builders'] = sorted(c['builders'])
self.assertEqual(len(c['builders']), 4)
self.assertEqual(c['builders'][0]['name'], 'Test Linux')
self.verify_timeouts(c['builders'][0])
self.assertEqual(c['builders'][1]['name'], 'Test Linux Timeouts')
self.verify_timeouts(c['builders'][1], 7200, 3600)
self.assertEqual(c['builders'][2]['name'], 'Test Linux Remote Run')
self.verify_timeouts(c['builders'][2])
self.assertEqual(len(c['change_source']), 1)
self.assertEqual(len(c['schedulers']), 2)
finally:
os.remove(fp.name)
def test_tryservers(self):
try:
fp = tempfile.NamedTemporaryFile(delete=False)
fp.write(SAMPLE_TRYSERVER_PYL)
fp.close()
c = {}
master_gen.PopulateBuildmasterConfig(c, fp.name, _FakeMaster)
self.assertEqual(len(c['builders']), 1)
self.assertEqual(c['builders'][0]['name'], 'Test Linux')
self.assertEqual(set(s.slavename for s in c['slaves']),
set(['vm9998-m1', 'vm9999-m1']))
self.assertEqual(len(c['change_source']), 0)
self.assertEqual(len(c['schedulers']), 0)
finally:
os.remove(fp.name)
# TODO: Remove this code once all of the builders.pyl formats have
# been upgraded to the new nomenclature.
OLD_TRYSERVER_PYL = """\
{
"master_base_class": "_FakeMasterBase",
"master_port": 20999,
"master_port_alt": 40999,
"slave_port": 30999,
"buildbucket_bucket": "fake_bucket",
"service_account_file": "fake_service_account",
"templates": ["templates"],
"builders": {
"Test Linux": {
"properties": {
"config": "Release"
},
"recipe": "test_recipe",
"scheduler": None,
"slave_pools": ["main"],
"slavebuilddir": "test"
}
},
"schedulers": {},
"slave_pools": {
"main": {
"slave_data": {
"bits": 64,
"os": "linux",
"version": "precise"
},
"slaves": ["vm9999-m1"],
},
},
}
"""
class OldNomenclature(unittest.TestCase):
def test_old_nomenclature(self):
try:
fp = tempfile.NamedTemporaryFile(delete=False)
fp.write(OLD_TRYSERVER_PYL)
fp.close()
c = {}
master_gen.PopulateBuildmasterConfig(c, fp.name, _FakeMaster)
self.assertEqual(len(c['builders']), 1)
self.assertEqual(c['builders'][0]['name'], 'Test Linux')
self.assertEqual(len(c['change_source']), 0)
self.assertEqual(len(c['schedulers']), 0)
finally:
os.remove(fp.name)
if __name__ == '__main__':
unittest.TestCase.maxDiff = None
unittest.main()
| StarcoderdataPython |
168925 | # --*-- coding : utf-8 --*--
"""Author: Trinity Core Team
MIT License
Copyright (c) 2018 Trinity
Permission is hereby granted, free of charge, to any person obtaining a copy
of this software and associated documentation files (the "Software"), to deal
in the Software without restriction, including without limitation the rights
to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
copies of the Software, and to permit persons to whom the Software is
furnished to do so, subject to the following conditions:
The above copyright notice and this permission notice shall be included in all
copies or substantial portions of the Software.
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
SOFTWARE."""
import unittest
class Web3ClientTestFactory(unittest.TestCase):
"""
Test Suite for Web3 Client methods
"""
def setUp(self):
self.ta_wallet_1 = ''
self.ta_wallet_key_1 = ''
self.ta_wallet_2 = ''
self.ta_wallet_key_2 = ''
pass
def tearDown(self):
pass
def test_estimate_gas_for_increaseApproval(self):
pass
def test_estimate_gas_for_setSettleTimeout(self, ):
pass
def test_estimate_gas_for_setToken(self):
pass
def test_estimate_gas_for_deposit(self):
pass
def test_estimate_gas_for_updateDeposit(self):
pass
def test_estimate_gas_for_quickCloseChannel(self):
pass
def test_estimate_gas_for_withdrawBalance(self):
pass
def test_estimate_gas_for_closeChannel(self):
pass
def test_estimate_gas_for_updateTransaction(self):
pass
def test_estimate_gas_for_settleTransaction(self):
pass
def test_estimate_gas_for_withdraw(self):
pass
def test_estimate_gas_for_withdrawSettle(self):
pass
| StarcoderdataPython |
1621542 | <filename>crisiscleanup/calls/migrations/0017_AdditionalModelUpdates.py
# -*- coding: utf-8 -*-
# Generated by Django 1.11.6 on 2018-03-07 04:23
from __future__ import unicode_literals
from django.db import migrations, models
import django.utils.timezone
class Migration(migrations.Migration):
dependencies = [
('calls', '0016_FleshOutModels'),
]
operations = [
migrations.AlterField(
model_name='call',
name='call_start',
field=models.DateTimeField(default=django.utils.timezone.now),
preserve_default=False,
),
migrations.AlterField(
model_name='call',
name='duration',
field=models.PositiveIntegerField(default=0),
preserve_default=False,
),
migrations.AlterField(
model_name='user',
name='last_used_state',
field=models.CharField(blank=True, max_length=50, null=True),
),
]
| StarcoderdataPython |
1670605 | #!/usr/bin/env python 3
############################################################################################
# #
# Program purpose: Select the odd items of a list. #
# Program Author : <NAME> <<EMAIL>> #
# Creation Date : November 18, 2019 #
# #
############################################################################################
import random
def random_int_list(low: int, high: int, list_size: int) -> list:
if list_size < 0:
raise ValueError('Invalid list size')
return [random.randint(low, high) for _ in range(list_size)]
def get_odd_items(some_list: list) -> list:
return some_list[::2]
if __name__ == "__main__":
new_list_data = random_int_list(low=0, high=15, list_size=10)
print(f'Generated list data: {new_list_data}')
print(f' Odd items in list: {get_odd_items(some_list=new_list_data)}') | StarcoderdataPython |
1765170 | <reponame>jensgk/optbinning
"""
Optimal binning algorithm 2D.
"""
# <NAME> <<EMAIL>>
# Copyright (C) 2021
import matplotlib.pyplot as plt
import numpy as np
import pandas as pd
from mpl_toolkits.axes_grid1 import make_axes_locatable
from ...formatting import dataframe_to_string
from ..binning_statistics import _check_build_parameters
from ..binning_statistics import _check_is_built
from ..binning_statistics import BinningTable
from ..metrics import bayesian_probability
from ..metrics import binning_quality_score
from ..metrics import chi2_cramer_v
from ..metrics import frequentist_pvalue
from ..metrics import hhi
from ..metrics import gini
from ..metrics import hellinger
from ..metrics import jeffrey
from ..metrics import jensen_shannon
from ..metrics import triangular
def _bin_fmt(bin, show_digits):
if np.isinf(bin[0]):
return "({0:.{2}f}, {1:.{2}f})".format(bin[0], bin[1], show_digits)
else:
return "[{0:.{2}f}, {1:.{2}f})".format(bin[0], bin[1], show_digits)
def bin_xy_str_format(bins_x, bins_y, show_digits):
show_digits = 2 if show_digits is None else show_digits
bins_xy = []
for bx, by in zip(bins_x, bins_y):
_bx = _bin_fmt(bx, show_digits)
_by = _bin_fmt(by, show_digits)
bins_xy.append(r"{} $\cup$ {}".format(_bx, _by))
return bins_xy
def bin_str_format(bins, show_digits):
show_digits = 2 if show_digits is None else show_digits
bin_str = []
for bin in bins:
bin_str.append(_bin_fmt(bin, show_digits))
return bin_str
class BinningTable2D(BinningTable):
"""Binning table to summarize optimal binning of two numerical variables
with respect to a binary target.
Parameters
----------
name_x : str, optional (default="")
The name of variable x.
name_y : str, optional (default="")
The name of variable y.
dtype_x : str, optional (default="numerical")
The data type of variable x. Supported data type is "numerical" for
continuous and ordinal variables.
dtype_y : str, optional (default="numerical")
The data type of variable y. Supported data type is "numerical" for
continuous and ordinal variables.
splits_x : numpy.ndarray
List of split points for variable x.
splits_y : numpy.ndarray
List of split points for variable y.
m : int
Number of rows of the 2D array.
n : int
Number of columns of the 2D array.
n_nonevent : numpy.ndarray
Number of non-events.
n_event : numpy.ndarray
Number of events.
D : numpy.ndarray
Event rate 2D array.
P : numpy-ndarray
Records 2D array.
Warning
-------
This class is not intended to be instantiated by the user. It is
preferable to use the class returned by the property ``binning_table``
available in all optimal binning classes.
"""
def __init__(self, name_x, name_y, dtype_x, dtype_y, splits_x, splits_y,
m, n, n_nonevent, n_event, D, P):
self.name_x = name_x
self.name_y = name_y
self.dtype_x = dtype_x
self.dtype_y = dtype_y
self.splits_x = splits_x
self.splits_y = splits_y
self.m = m
self.n = n
self.n_nonevent = n_nonevent
self.n_event = n_event
self.D = D
self.P = P
self._is_built = False
self._is_analyzed = False
def build(self, show_digits=2, show_bin_xy=False, add_totals=True):
"""Build the binning table.
Parameters
----------
show_digits : int, optional (default=2)
The number of significant digits of the bin column.
show_bin_xy: bool (default=False)
Whether to show a single bin column with x and y.
add_totals : bool (default=True)
Whether to add a last row with totals.
Returns
-------
binning_table : pandas.DataFrame
"""
_check_build_parameters(show_digits, add_totals)
if not isinstance(show_bin_xy, bool):
raise TypeError("show_bin_xy must be a boolean; got {}."
.format(show_bin_xy))
n_nonevent = self.n_nonevent
n_event = self.n_event
n_records = n_event + n_nonevent
t_n_nonevent = n_nonevent.sum()
t_n_event = n_event.sum()
t_n_records = t_n_nonevent + t_n_event
t_event_rate = t_n_event / t_n_records
p_records = n_records / t_n_records
p_event = n_event / t_n_event
p_nonevent = n_nonevent / t_n_nonevent
mask = (n_event > 0) & (n_nonevent > 0)
event_rate = np.zeros(len(n_records))
woe = np.zeros(len(n_records))
iv = np.zeros(len(n_records))
js = np.zeros(len(n_records))
# Compute weight of evidence and event rate
event_rate[mask] = n_event[mask] / n_records[mask]
constant = np.log(t_n_event / t_n_nonevent)
woe[mask] = np.log(1 / event_rate[mask] - 1) + constant
W = np.log(1 / self.D - 1) + constant
# Compute Gini
self._gini = gini(self.n_event, self.n_nonevent)
# Compute divergence measures
p_ev = p_event[mask]
p_nev = p_nonevent[mask]
iv[mask] = jeffrey(p_ev, p_nev, return_sum=False)
js[mask] = jensen_shannon(p_ev, p_nev, return_sum=False)
t_iv = iv.sum()
t_js = js.sum()
self._iv = t_iv
self._js = t_js
self._hellinger = hellinger(p_ev, p_nev, return_sum=True)
self._triangular = triangular(p_ev, p_nev, return_sum=True)
# Keep data for plotting
self._n_records = n_records
self._event_rate = event_rate
self._woe = woe
self._W = W
# Compute KS
self._ks = np.abs(p_event.cumsum() - p_nonevent.cumsum()).max()
# Compute HHI
self._hhi = hhi(p_records)
self._hhi_norm = hhi(p_records, normalized=True)
# Compute paths. This is required for both plot and analysis
# paths x: horizontal
self._paths_x = []
for i in range(self.m):
path = tuple(dict.fromkeys(self.P[i, :]))
if path not in self._paths_x:
self._paths_x.append(path)
# paths y: vertical
self._paths_y = []
for j in range(self.n):
path = tuple(dict.fromkeys(self.P[:, j]))
if path not in self._paths_y:
self._paths_y.append(path)
if show_bin_xy:
bin_xy_str = bin_xy_str_format(self.splits_x, self.splits_y,
show_digits)
bin_xy_str.extend(["Special", "Missing"])
df = pd.DataFrame({
"Bin": bin_xy_str,
"Count": n_records,
"Count (%)": p_records,
"Non-event": n_nonevent,
"Event": n_event,
"Event rate": event_rate,
"WoE": woe,
"IV": iv,
"JS": js
})
else:
bin_x_str = bin_str_format(self.splits_x, show_digits)
bin_y_str = bin_str_format(self.splits_y, show_digits)
bin_x_str.extend(["Special", "Missing"])
bin_y_str.extend(["Special", "Missing"])
df = pd.DataFrame({
"Bin x": bin_x_str,
"Bin y": bin_y_str,
"Count": n_records,
"Count (%)": p_records,
"Non-event": n_nonevent,
"Event": n_event,
"Event rate": event_rate,
"WoE": woe,
"IV": iv,
"JS": js
})
if add_totals:
if show_bin_xy:
totals = ["", t_n_records, 1, t_n_nonevent, t_n_event,
t_event_rate, "", t_iv, t_js]
else:
totals = ["", "", t_n_records, 1, t_n_nonevent, t_n_event,
t_event_rate, "", t_iv, t_js]
df.loc["Totals"] = totals
self._is_built = True
return df
def plot(self, metric="woe", savefig=None):
"""Plot the binning table.
Visualize the non-event and event count, and the Weight of Evidence or
the event rate for each bin.
Parameters
----------
metric : str, optional (default="woe")
Supported metrics are "woe" to show the Weight of Evidence (WoE)
measure and "event_rate" to show the event rate.
savefig : str or None (default=None)
Path to save the plot figure.
"""
_check_is_built(self)
if metric not in ("event_rate", "woe"):
raise ValueError('Invalid value for metric. Allowed string '
'values are "event_rate" and "woe".')
if metric == "woe":
metric_values = self._woe
metric_matrix = self._W
metric_label = "WoE"
elif metric == "event_rate":
metric_values = self._event_rate
metric_matrix = self.D
metric_label = "Event rate"
fig, ax = plt.subplots(figsize=(7, 7))
divider = make_axes_locatable(ax)
axtop = divider.append_axes("top", size=2.5, pad=0.1, sharex=ax)
axright = divider.append_axes("right", size=2.5, pad=0.1, sharey=ax)
# Hide x labels and tick labels for top plots and y ticks for
# right plots.
# Position [0, 0]
for path in self._paths_x:
er = sum([
[metric_values[p]] * np.count_nonzero(
self.P == p, axis=1).max() for p in path], [])
er = er + [er[-1]]
axtop.step(np.arange(self.n + 1) - 0.5, er,
label=path, where="post")
for i in range(self.n):
axtop.axvline(i + 0.5, color="grey", linestyle="--", alpha=0.5)
axtop.get_xaxis().set_visible(False)
axtop.set_ylabel(metric_label, fontsize=12)
# Position [1, 0]
pos = ax.matshow(metric_matrix, cmap=plt.cm.bwr)
for j in range(self.n):
for i in range(self.m):
c = int(self.P[i, j])
ax.text(j, i, str(c), va='center', ha='center')
fig.colorbar(pos, ax=ax, orientation="horizontal",
fraction=0.025, pad=0.125)
ax.xaxis.set_label_position("bottom")
ax.xaxis.tick_bottom()
ax.set_ylabel("Bin ID - y ({})".format(self.name_x), fontsize=12)
ax.set_xlabel("Bin ID - x ({})".format(self.name_y), fontsize=12)
# Position [1, 1]
for path in self._paths_y:
er = sum([
[metric_values[p]] * (np.count_nonzero(
self.P == p, axis=0).max()) for p in path], [])
er = er + [er[-1]]
axright.step(er, np.arange(self.m + 1) - 0.5, label=path,
where="pre")
for j in range(self.m):
axright.axhline(j - 0.5, color="grey", linestyle="--", alpha=0.5)
axright.get_yaxis().set_visible(False)
axright.set_xlabel(metric_label, fontsize=12)
# adjust margins
axright.margins(y=0)
axtop.margins(x=0)
plt.tight_layout()
axtop.legend(bbox_to_anchor=(1, 1))
axright.legend(bbox_to_anchor=(1, 1))
if savefig is None:
plt.show()
else:
if not isinstance(savefig, str):
raise TypeError("savefig must be a string path; got {}."
.format(savefig))
plt.savefig(savefig)
plt.close()
def analysis(self, pvalue_test="chi2", n_samples=100, print_output=True):
"""Binning table analysis.
Statistical analysis of the binning table, computing the statistics
Gini index, Information Value (IV), Jensen-Shannon divergence, and
the quality score. Additionally, several statistical significance tests
between consecutive bins of the contingency table are performed: a
frequentist test using the Chi-square test or the Fisher's exact test,
and a Bayesian A/B test using the beta distribution as a conjugate
prior of the Bernoulli distribution.
Parameters
----------
pvalue_test : str, optional (default="chi2")
The statistical test. Supported test are "chi2" to choose the
Chi-square test and "fisher" to choose the Fisher exact test.
n_samples : int, optional (default=100)
The number of samples to run the Bayesian A/B testing between
consecutive bins to compute the probability of the event rate of
bin A being greater than the event rate of bin B.
print_output : bool (default=True)
Whether to print analysis information.
Notes
-----
The Chi-square test uses `scipy.stats.chi2_contingency
<https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.
chi2_contingency.html>`_, and the Fisher exact test uses
`scipy.stats.fisher_exact <https://docs.scipy.org/doc/scipy/reference/
generated/scipy.stats.fisher_exact.html>`_.
"""
pairs = set()
for path in self._paths_x:
tpairs = tuple(zip(path[:-1], path[1:]))
for tp in tpairs:
pairs.add(tp)
for path in self._paths_y:
tpairs = tuple(zip(path[:-1], path[1:]))
for tp in tpairs:
pairs.add(tp)
pairs = sorted(pairs)
# Significance tests
n_bins = len(self._n_records)
n_metric = n_bins - 2
n_nev = self.n_nonevent[:n_metric]
n_ev = self.n_event[:n_metric]
if len(n_nev) >= 2:
chi2, cramer_v = chi2_cramer_v(n_nev, n_ev)
else:
cramer_v = 0
t_statistics = []
p_values = []
p_a_b = []
p_b_a = []
for pair in pairs:
obs = np.array([n_nev[list(pair)], n_ev[list(pair)]])
t_statistic, p_value = frequentist_pvalue(obs, pvalue_test)
pab, pba = bayesian_probability(obs, n_samples)
p_a_b.append(pab)
p_b_a.append(pba)
t_statistics.append(t_statistic)
p_values.append(p_value)
df_tests = pd.DataFrame({
"Bin A": np.array([p[0] for p in pairs]),
"Bin B": np.array([p[1] for p in pairs]),
"t-statistic": t_statistics,
"p-value": p_values,
"P[A > B]": p_a_b,
"P[B > A]": p_b_a
})
if pvalue_test == "fisher":
df_tests.rename(columns={"t-statistic": "odd ratio"}, inplace=True)
tab = 4
if len(df_tests):
df_tests_string = dataframe_to_string(df_tests, tab)
else:
df_tests_string = " " * tab + "None"
# Quality score
self._quality_score = binning_quality_score(self._iv, p_values,
self._hhi_norm)
report = (
"------------------------------------------------\n"
"OptimalBinning: Binary Binning Table 2D Analysis\n"
"------------------------------------------------\n"
"\n"
" General metrics"
"\n\n"
" Gini index {:>15.8f}\n"
" IV (Jeffrey) {:>15.8f}\n"
" JS (Jensen-Shannon) {:>15.8f}\n"
" Hellinger {:>15.8f}\n"
" Triangular {:>15.8f}\n"
" KS {:>15.8f}\n"
" HHI {:>15.8f}\n"
" HHI (normalized) {:>15.8f}\n"
" Cramer's V {:>15.8f}\n"
" Quality score {:>15.8f}\n"
"\n"
" Significance tests\n\n{}\n"
).format(self._gini, self._iv, self._js, self._hellinger,
self._triangular, self._ks, self._hhi, self._hhi_norm,
cramer_v, self._quality_score, df_tests_string)
if print_output:
print(report)
self._is_analyzed = True
| StarcoderdataPython |
180766 | from collections import namedtuple
from collections import defaultdict
from biicode.common.model.brl.cell_name import CellName
from biicode.common.model.symbolic.block_version import BlockVersion
from biicode.common.utils.serializer import DictDeserializer, SetDeserializer
from biicode.common.model.brl.block_cell_name import BlockCellName
from biicode.common.model.resource import ResourceDeserializer
from biicode.common.model.cells import CellDeserializer
from biicode.common.model.content import ContentDeserializer
from biicode.common.model.id import ID
from biicode.common.model.declare.declaration import Declaration
import copy
class VersionDict(defaultdict):
def __init__(self, items_type):
super(VersionDict, self).__init__(items_type)
def explode(self):
items_type = self.default_factory()
if isinstance(items_type, (set, list, tuple)):
result = []
for k, v in self.iteritems():
result.extend([Reference(k, x) for x in v])
return result
elif isinstance(items_type, dict):
result = {}
for k, v in self.iteritems():
for k2, v2 in v.iteritems():
result[Reference(k, k2)] = v2
return result
raise ValueError('This type of VersionDict cannot be exploded')
def __repr__(self):
result = [str(self.__class__.__name__)]
for k, v in self.iteritems():
result.append('%s: %s' % (k, v))
return ', '.join(result)
class AbsoluteReferences(VersionDict):
"""{block_version: set(BlockCellName)}
"""
def __init__(self):
super(AbsoluteReferences, self).__init__(set)
class References(VersionDict):
'''Dict of block_version -> Set[CellName]. It can also be
{block_version: Set of BlockCellName}, for Dependencies translating with DependencyTranslator
'''
def __init__(self):
super(References, self).__init__(set)
def add(self, reference):
self[reference.block_version].add(reference.ref)
def __deepcopy__(self, memo):
'''this method is necessary for deepcopy in memory caches, defaultdict
deepcopy __init__ signature is incompatible with current'''
r = References()
for key, values in self.iteritems():
r[key] = copy.deepcopy(values)
return r
@staticmethod
def deserialize(data):
if data is None:
return None
d = DictDeserializer(BlockVersion, SetDeserializer(CellName)).deserialize(data)
result = References()
result.update(d)
return result
class ReferencedResources(VersionDict):
'''The dict items are dict {CellName: Resource(Cell, Content)}'''
def __init__(self):
super(ReferencedResources, self).__init__(dict)
@staticmethod
def deserialize(data):
d = DictDeserializer(BlockVersion,
DictDeserializer(CellName,
ResourceDeserializer(CellDeserializer(ID),
ContentDeserializer(ID)))).deserialize(data)
result = ReferencedResources()
result.update(d)
return result
def __add__(self, other):
'''adds two referencedResources, for example localDb+remotes for building Snapshot of
dependencies'''
result = ReferencedResources()
for version, deps in self.iteritems():
result[version].update(deps)
for version, deps in other.iteritems():
result[version].update(deps)
return result
class ReferencedDependencies(VersionDict):
'''The dict items are dict{Declaration: set(BlockCellName)}'''
def __init__(self):
super(ReferencedDependencies, self).__init__(lambda: defaultdict(set))
@staticmethod
def deserialize(data):
d = DictDeserializer(BlockVersion,
DictDeserializer(Declaration,
SetDeserializer(BlockCellName))).deserialize(data)
result = ReferencedDependencies()
result.update(d)
return result
class Reference(namedtuple('Reference', ['block_version', 'ref'])):
'''Ref can only be a single ref
'''
def __repr__(self):
return "%s/%s" % (self[0], self[1])
@staticmethod
def deserialize(data):
return Reference(BlockVersion.deserialize(data[0]), CellName.deserialize(data[1]))
def serialize(self):
return (self.block_version.serialize(), self.ref)
def block_cell_name(self):
'''assuming that ref is a single CellName'''
return self.block_version.block_name + self.ref
| StarcoderdataPython |
1647115 | import os
from gppylib.commands.base import Command, REMOTE
from gppylib.commands.unix import getLocalHostname
gphome = os.environ.get('GPHOME')
def get_command(local, command, hostname):
if local:
cmd = Command(hostname, cmdStr=command)
else:
cmd = Command(hostname, cmdStr=command, ctxt=REMOTE, remoteHost=hostname)
return cmd
def get_host_for_command(local, cmd):
if local:
cmd = Command(name='get the hostname', cmdStr='hostname')
cmd.run(validateAfter=True)
results = cmd.get_results()
return results.stdout.strip()
else:
return cmd.remoteHost
def get_copy_command(local, host, datafile, tmpdir):
if local:
cmd_str = 'mv -f %s %s/%s.data' % (datafile, tmpdir, host)
else:
cmd_str = 'scp %s:%s %s/%s.data' % (host, datafile, tmpdir, host)
return Command(host, cmd_str)
| StarcoderdataPython |
41450 | """
________ ___ __ ________ ________ ___ ___ ________ _______ ________
|\ ____\|\ \ |\ \|\ __ \|\ __ \ |\ \|\ \|\ ____\|\ ___ \ |\ __ \
\ \ \___|\ \ \ \ \ \ \ \|\ \ \ \|\ \ \ \ \\\ \ \ \___|\ \ __/|\ \ \|\ \
\ \_____ \ \ \ __\ \ \ \ __ \ \ ____\ \ \ \\\ \ \_____ \ \ \_|/_\ \ _ _\
\|____|\ \ \ \|\__\_\ \ \ \ \ \ \ \___| \ \ \\\ \|____|\ \ \ \_|\ \ \ \\ \|
____\_\ \ \____________\ \__\ \__\ \__\ \ \_______\____\_\ \ \_______\ \__\\ _\
|\_________\|____________|\|__|\|__|\|__| \|_______|\_________\|_______|\|__|\|__|
\|_________| \|_________|
"""
__title__ = "Django Swap User"
__version__ = "0.9.8"
__author__ = "<NAME>"
__license__ = "MIT"
__copyright__ = "Copyright 2022 © <NAME>"
VERSION = __version__
default_app_config = "swap_user.apps.DjangoSwapUser"
| StarcoderdataPython |
196696 | <reponame>acyrl/edward2
# coding=utf-8
# Copyright 2020 The Edward2 Authors.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""Uncertainty-based convolutional layers."""
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
import functools
from edward2.tensorflow import constraints
from edward2.tensorflow import generated_random_variables
from edward2.tensorflow import initializers
from edward2.tensorflow import random_variable
from edward2.tensorflow import regularizers
from edward2.tensorflow.layers import utils
import tensorflow.compat.v2 as tf
@utils.add_weight
class Conv2DReparameterization(tf.keras.layers.Conv2D):
"""2D convolution layer (e.g. spatial convolution over images).
The layer computes a variational Bayesian approximation to the distribution
over convolutional layers,
```
p(outputs | inputs) = int conv2d(inputs; weights, bias) p(weights, bias)
dweights dbias.
```
It does this with a stochastic forward pass, sampling from learnable
distributions on the kernel and bias. Gradients with respect to the
distributions' learnable parameters backpropagate via reparameterization.
Minimizing cross-entropy plus the layer's losses performs variational
minimum description length, i.e., it minimizes an upper bound to the negative
marginal likelihood.
"""
def __init__(self,
filters,
kernel_size,
strides=(1, 1),
padding='valid',
data_format=None,
dilation_rate=(1, 1),
activation=None,
use_bias=True,
kernel_initializer='trainable_normal',
bias_initializer='zeros',
kernel_regularizer='normal_kl_divergence',
bias_regularizer=None,
activity_regularizer=None,
kernel_constraint=None,
bias_constraint=None,
**kwargs):
super(Conv2DReparameterization, self).__init__(
filters=filters,
kernel_size=kernel_size,
strides=strides,
padding=padding,
data_format=data_format,
dilation_rate=dilation_rate,
activation=activation,
use_bias=use_bias,
kernel_initializer=initializers.get(kernel_initializer),
bias_initializer=initializers.get(bias_initializer),
kernel_regularizer=regularizers.get(kernel_regularizer),
bias_regularizer=regularizers.get(bias_regularizer),
activity_regularizer=regularizers.get(activity_regularizer),
kernel_constraint=constraints.get(kernel_constraint),
bias_constraint=constraints.get(bias_constraint),
**kwargs)
def call_weights(self):
"""Calls any weights if the initializer is itself a layer."""
if isinstance(self.kernel_initializer, tf.keras.layers.Layer):
self.kernel = self.kernel_initializer(self.kernel.shape, self.dtype)
if isinstance(self.bias_initializer, tf.keras.layers.Layer):
self.bias = self.bias_initializer(self.bias.shape, self.dtype)
def call(self, *args, **kwargs):
self.call_weights()
kwargs.pop('training', None)
return super(Conv2DReparameterization, self).call(*args, **kwargs)
class Conv2DFlipout(Conv2DReparameterization):
"""2D convolution layer (e.g. spatial convolution over images).
The layer computes a variational Bayesian approximation to the distribution
over convolutional layers,
```
p(outputs | inputs) = int conv2d(inputs; weights, bias) p(weights, bias)
dweights dbias.
```
It does this with a stochastic forward pass, sampling from learnable
distributions on the kernel and bias. Gradients with respect to the
distributions' learnable parameters backpropagate via reparameterization.
Minimizing cross-entropy plus the layer's losses performs variational
minimum description length, i.e., it minimizes an upper bound to the negative
marginal likelihood.
This layer uses the Flipout estimator (Wen et al., 2018) for integrating with
respect to the `kernel`. Namely, it applies
pseudo-independent weight perturbations via independent sign flips for each
example, enabling variance reduction over independent weight perturbations.
For this estimator to work, the `kernel` random variable must be able
to decompose as a sum of its mean and a perturbation distribution; the
perturbation distribution must be independent across weight elements and
symmetric around zero (for example, a fully factorized Gaussian).
"""
def call(self, inputs):
if not isinstance(self.kernel, random_variable.RandomVariable):
return super(Conv2DFlipout, self).call(inputs)
self.call_weights()
outputs = self._apply_kernel(inputs)
if self.use_bias:
if self.data_format == 'channels_first':
outputs = tf.nn.bias_add(outputs, self.bias, data_format='NCHW')
else:
outputs = tf.nn.bias_add(outputs, self.bias, data_format='NHWC')
if self.activation is not None:
outputs = self.activation(outputs)
return outputs
def _apply_kernel(self, inputs):
input_shape = tf.shape(inputs)
batch_dim = input_shape[0]
if self._convolution_op is None:
padding = self.padding
if self.padding == 'causal':
padding = 'valid'
if not isinstance(padding, (list, tuple)):
padding = padding.upper()
self._convolution_op = functools.partial(
tf.nn.convolution,
strides=self.strides,
padding=padding,
data_format='NHWC' if self.data_format == 'channels_last' else 'NCHW',
dilations=self.dilation_rate)
if self.data_format == 'channels_first':
channels = input_shape[1]
sign_input_shape = [batch_dim, channels, 1, 1]
sign_output_shape = [batch_dim, self.filters, 1, 1]
else:
channels = input_shape[-1]
sign_input_shape = [batch_dim, 1, 1, channels]
sign_output_shape = [batch_dim, 1, 1, self.filters]
sign_input = tf.cast(2 * tf.random.uniform(sign_input_shape,
minval=0,
maxval=2,
dtype=tf.int32) - 1,
inputs.dtype)
sign_output = tf.cast(2 * tf.random.uniform(sign_output_shape,
minval=0,
maxval=2,
dtype=tf.int32) - 1,
inputs.dtype)
kernel_mean = self.kernel.distribution.mean()
perturbation = self.kernel - kernel_mean
outputs = self._convolution_op(inputs, kernel_mean)
outputs += self._convolution_op(inputs * sign_input,
perturbation) * sign_output
return outputs
class Conv2DHierarchical(Conv2DFlipout):
"""2D convolution layer with hierarchical distributions.
The layer computes a variational Bayesian approximation to the distribution
over convolutional layers, and where the distribution over weights
involves a hierarchical distribution with hidden unit noise coupling vectors
of the kernel weight matrix (Louizos et al., 2017),
```
p(outputs | inputs) = int conv2d(inputs; new_kernel, bias) p(kernel,
local_scales, global_scale, bias) dkernel dlocal_scales dglobal_scale dbias.
```
It does this with a stochastic forward pass, sampling from learnable
distributions on the kernel and bias. The kernel is written in non-centered
parameterization where
```
new_kernel[i, j] = kernel[i, j] * local_scale[j] * global_scale.
```
That is, there is "local" multiplicative noise which couples weights for each
output filter. There is also a "global" multiplicative noise which couples the
entire weight matrix. By default, the weights are normally distributed and the
local and global noises are half-Cauchy distributed; this makes the kernel a
horseshoe distribution (Carvalho et al., 2009; <NAME> Scott, 2012).
The estimation uses Flipout for variance reduction with respect to sampling
the full weights. Gradients with respect to the distributions' learnable
parameters backpropagate via reparameterization. Minimizing cross-entropy
plus the layer's losses performs variational minimum description length,
i.e., it minimizes an upper bound to the negative marginal likelihood.
"""
def __init__(self,
filters,
kernel_size,
strides=(1, 1),
padding='valid',
data_format=None,
dilation_rate=(1, 1),
activation=None,
use_bias=True,
kernel_initializer='trainable_normal',
bias_initializer='zeros',
local_scale_initializer='trainable_half_cauchy',
global_scale_initializer='trainable_half_cauchy',
kernel_regularizer='normal_kl_divergence',
bias_regularizer=None,
local_scale_regularizer='half_cauchy_kl_divergence',
global_scale_regularizer=regularizers.HalfCauchyKLDivergence(
scale=1e-5),
activity_regularizer=None,
kernel_constraint=None,
bias_constraint=None,
local_scale_constraint='softplus',
global_scale_constraint='softplus',
**kwargs):
self.local_scale_initializer = initializers.get(local_scale_initializer)
self.global_scale_initializer = initializers.get(global_scale_initializer)
self.local_scale_regularizer = regularizers.get(local_scale_regularizer)
self.global_scale_regularizer = regularizers.get(global_scale_regularizer)
self.local_scale_constraint = constraints.get(local_scale_constraint)
self.global_scale_constraint = constraints.get(global_scale_constraint)
super(Conv2DHierarchical, self).__init__(
filters=filters,
kernel_size=kernel_size,
strides=strides,
padding=padding,
data_format=data_format,
dilation_rate=dilation_rate,
activation=activation,
use_bias=use_bias,
kernel_initializer=initializers.get(kernel_initializer),
bias_initializer=initializers.get(bias_initializer),
kernel_regularizer=regularizers.get(kernel_regularizer),
bias_regularizer=regularizers.get(bias_regularizer),
activity_regularizer=regularizers.get(activity_regularizer),
kernel_constraint=constraints.get(kernel_constraint),
bias_constraint=constraints.get(bias_constraint),
**kwargs)
def build(self, input_shape):
self.local_scale = self.add_weight(
shape=(self.filters,),
name='local_scale',
initializer=self.local_scale_initializer,
regularizer=self.local_scale_regularizer,
constraint=self.local_scale_constraint)
self.global_scale = self.add_weight(
shape=(),
name='global_scale',
initializer=self.global_scale_initializer,
regularizer=self.global_scale_regularizer,
constraint=self.global_scale_constraint)
super(Conv2DHierarchical, self).build(input_shape)
def call_weights(self):
"""Calls any weights if the initializer is itself a layer."""
if isinstance(self.local_scale_initializer, tf.keras.layers.Layer):
self.local_scale = self.local_scale_initializer(self.local_scale.shape,
self.dtype)
if isinstance(self.global_scale_initializer, tf.keras.layers.Layer):
self.global_scale = self.global_scale_initializer(self.global_scale.shape,
self.dtype)
super(Conv2DHierarchical, self).call_weights()
def _apply_kernel(self, inputs):
outputs = super(Conv2DHierarchical, self)._apply_kernel(inputs)
if self.data_format == 'channels_first':
local_scale = tf.reshape(self.local_scale, [1, -1, 1, 1])
else:
local_scale = tf.reshape(self.local_scale, [1, 1, 1, -1])
# TODO(trandustin): Figure out what to set local/global scales to at test
# time. Means don't exist for Half-Cauchy approximate posteriors.
outputs *= local_scale * self.global_scale
return outputs
class Conv2DVariationalDropout(Conv2DReparameterization):
"""2D convolution layer with variational dropout (Kingma et al., 2015).
Implementation follows the additive parameterization of
Molchanov et al. (2017).
"""
def __init__(self,
filters,
kernel_size,
strides=(1, 1),
padding='valid',
data_format=None,
dilation_rate=(1, 1),
activation=None,
use_bias=True,
kernel_initializer='trainable_normal',
bias_initializer='zeros',
kernel_regularizer='log_uniform_kl_divergence',
bias_regularizer=None,
activity_regularizer=None,
kernel_constraint=None,
bias_constraint=None,
**kwargs):
super(Conv2DVariationalDropout, self).__init__(
filters=filters,
kernel_size=kernel_size,
strides=strides,
padding=padding,
data_format=data_format,
dilation_rate=dilation_rate,
activation=activation,
use_bias=use_bias,
kernel_initializer=initializers.get(kernel_initializer),
bias_initializer=initializers.get(bias_initializer),
kernel_regularizer=regularizers.get(kernel_regularizer),
bias_regularizer=regularizers.get(bias_regularizer),
activity_regularizer=regularizers.get(activity_regularizer),
kernel_constraint=constraints.get(kernel_constraint),
bias_constraint=constraints.get(bias_constraint),
**kwargs)
def call(self, inputs, training=None):
if not isinstance(self.kernel, random_variable.RandomVariable):
return super(Conv2DVariationalDropout, self).call(inputs)
self.call_weights()
if training is None:
training = tf.keras.backend.learning_phase()
if self._convolution_op is None:
padding = self.padding
if self.padding == 'causal':
padding = 'valid'
if not isinstance(padding, (list, tuple)):
padding = padding.upper()
self._convolution_op = functools.partial(
tf.nn.convolution,
strides=self.strides,
padding=padding,
data_format='NHWC' if self.data_format == 'channels_last' else 'NCHW',
dilations=self.dilation_rate)
def dropped_inputs():
"""Forward pass with dropout."""
# Clip magnitude of dropout rate, where we get the dropout rate alpha from
# the additive parameterization (Molchanov et al., 2017): for weight ~
# Normal(mu, sigma**2), the variance `sigma**2 = alpha * mu**2`.
mean = self.kernel.distribution.mean()
log_variance = tf.math.log(self.kernel.distribution.variance())
log_alpha = log_variance - tf.math.log(tf.square(mean) +
tf.keras.backend.epsilon())
log_alpha = tf.clip_by_value(log_alpha, -8., 8.)
log_variance = log_alpha + tf.math.log(tf.square(mean) +
tf.keras.backend.epsilon())
means = self._convolution_op(inputs, mean)
stddevs = tf.sqrt(
self._convolution_op(tf.square(inputs), tf.exp(log_variance)) +
tf.keras.backend.epsilon())
if self.use_bias:
if self.data_format == 'channels_first':
means = tf.nn.bias_add(means, self.bias, data_format='NCHW')
else:
means = tf.nn.bias_add(means, self.bias, data_format='NHWC')
outputs = generated_random_variables.Normal(loc=means, scale=stddevs)
if self.activation is not None:
outputs = self.activation(outputs)
return outputs
# Following tf.keras.Dropout, only apply variational dropout if training
# flag is True.
training_value = utils.smart_constant_value(training)
if training_value is not None:
if training_value:
return dropped_inputs()
else:
return super(Conv2DVariationalDropout, self).call(inputs)
return tf.cond(
pred=training,
true_fn=dropped_inputs,
false_fn=lambda: super(Conv2DVariationalDropout, self).call(inputs))
class Conv2DBatchEnsemble(tf.keras.layers.Layer):
"""A batch ensemble convolutional layer."""
def __init__(self,
filters,
kernel_size,
ensemble_size=4,
alpha_initializer=tf.keras.initializers.Ones(),
gamma_initializer=tf.keras.initializers.Ones(),
strides=(1, 1),
padding='valid',
data_format='channels_last',
activation=None,
use_bias=True,
kernel_initializer='glorot_uniform',
bias_initializer='zeros',
kernel_regularizer=None,
bias_regularizer=None,
activity_regularizer=None,
kernel_constraint=None,
bias_constraint=None,
**kwargs):
super(Conv2DBatchEnsemble, self).__init__(**kwargs)
self.filters = filters
self.kernel_size = kernel_size
self.data_format = data_format
self.ensemble_size = ensemble_size
self.alpha_initializer = alpha_initializer
self.gamma_initializer = gamma_initializer
self.use_bias = use_bias
self.activation = tf.keras.activations.get(activation)
self.conv2d = tf.keras.layers.Conv2D(
filters=filters,
kernel_size=kernel_size,
strides=strides,
padding=padding,
data_format=data_format,
activation=None,
use_bias=False,
kernel_initializer=kernel_initializer,
bias_initializer=bias_initializer,
kernel_regularizer=kernel_regularizer,
bias_regularizer=bias_regularizer,
activity_regularizer=activity_regularizer,
kernel_constraint=kernel_constraint,
bias_constraint=bias_constraint)
def build(self, input_shape):
input_shape = tf.TensorShape(input_shape)
if self.data_format == 'channels_first':
input_channel = input_shape[1]
elif self.data_format == 'channels_last':
input_channel = input_shape[-1]
self.alpha = self.add_weight(
'alpha',
shape=[self.ensemble_size, input_channel],
initializer=self.alpha_initializer,
trainable=True,
dtype=self.dtype)
self.gamma = self.add_weight(
'gamma',
shape=[self.ensemble_size, self.filters],
initializer=self.gamma_initializer,
trainable=True,
dtype=self.dtype)
if self.use_bias:
self.bias = self.add_weight(
name='bias',
shape=[self.ensemble_size, self.filters],
initializer=tf.keras.initializers.Zeros(),
trainable=True,
dtype=self.dtype)
else:
self.bias = None
self.built = True
def call(self, inputs):
axis_change = -1 if self.data_format == 'channels_first' else 1
batch_size = tf.shape(inputs)[0]
input_dim = self.alpha.shape[-1]
examples_per_model = batch_size // self.ensemble_size
alpha = tf.reshape(tf.tile(self.alpha, [1, examples_per_model]),
[batch_size, input_dim])
gamma = tf.reshape(tf.tile(self.gamma, [1, examples_per_model]),
[batch_size, self.filters])
alpha = tf.expand_dims(alpha, axis=axis_change)
alpha = tf.expand_dims(alpha, axis=axis_change)
gamma = tf.expand_dims(gamma, axis=axis_change)
gamma = tf.expand_dims(gamma, axis=axis_change)
outputs = self.conv2d(inputs*alpha) * gamma
if self.use_bias:
bias = tf.reshape(tf.tile(self.bias, [1, examples_per_model]),
[batch_size, self.filters])
bias = tf.expand_dims(bias, axis=axis_change)
bias = tf.expand_dims(bias, axis=axis_change)
outputs += bias
if self.activation is not None:
outputs = self.activation(outputs)
return outputs
def get_config(self):
config = {
'ensemble_size': self.ensemble_size,
'random_sign_init': self.random_sign_init,
'alpha_initializer': tf.keras.initializers.serialize(
self.alpha_initializer),
'gamma_initializer': tf.keras.initializers.serialize(
self.gamma_initializer),
'activation': tf.activations.serialize(self.activation),
'use_bias': self.use_bias,
}
base_config = super(Conv2DBatchEnsemble, self).get_config()
conv_config = self.conv2d.get_config()
return dict(
list(base_config.items()) +
list(conv_config.items()) +
list(config.items()))
| StarcoderdataPython |
1675004 | <filename>May 2019/bubble_sort.py
numbers = [2, 4, 9, 1, 7, 6, 5, 8, 3]
def bubble_sort(array):
search_length = len(array)-1
swapped = True
#Keeps iterating, comparing and swapping until a complete loop without swapping is detected
while swapped == True:
swapped = False
for index in range(search_length):
if array[index] > array[index+1]:
array[index+1], array[index] = array[index], array[index+1]
swapped = True
search_length -= 1
return array
print(bubble_sort(numbers))
| StarcoderdataPython |
1606368 | <filename>data/split_coco.py
import json
import numpy as np
with open("data/widgets/annotations/all.json") as f:
all_annotations = json.load(f)
samples_count = len(all_annotations["annotations"])
validation_ids = np.random.choice(samples_count, size=62, replace=False)
valid_dict = all_annotations.copy()
valid_dict["annotations"] = [valid_dict["annotations"][i] for i in validation_ids]
train_dict = all_annotations.copy()
train_dict["annotations"] = [train_dict["annotations"][i] for i in range(samples_count) if i not in validation_ids]
with open("data/widgets/annotations/widgets-train.json", "w") as f:
json.dump(train_dict, f)
with open("data/widgets/annotations/widgets-val.json", "w") as f:
json.dump(valid_dict, f)
| StarcoderdataPython |
1726390 | """
Views (JSON objects) for Annotator storage backend
"""
import datetime
import jwt
import logging
import os
from collections import OrderedDict
import django_filters.rest_framework
from django.http import HttpResponse, JsonResponse
from django.contrib.auth.models import User
from django.contrib.auth.decorators import login_required
from django.shortcuts import render
from rest_framework import viewsets
from rest_framework.response import Response
from rest_framework.pagination import LimitOffsetPagination
from . import settings
from .models import Annotation
from .serializers import UserSerializer, AnnotationSerializer
LOG = logging.getLogger(__name__)
CONSUMER_KEY = os.environ.get('CONSUMER_KEY')
CONSUMER_SECRET = os.environ.get('CONSUMER_SECRET')
CONSUMER_TTL = 86400
def generate_token(user_id):
return jwt.encode({
'consumerKey': CONSUMER_KEY,
'userId': user_id,
'issuedAt': _now().isoformat() + 'Z',
'ttl': CONSUMER_TTL
}, CONSUMER_SECRET)
def _now():
return datetime.datetime.utcnow().replace(microsecond=0)
@login_required
def profile(request):
return HttpResponse('foo')
@login_required
def root(request):
return JsonResponse(settings.ANNOTATOR_API)
@login_required
def token(request):
return(HttpResponse(generate_token(request.user.username)))
def jsfile(request):
return render(request, 'anno2.js', {'url': os.environ.get('DJANGO_HOST')})
class LimitOffsetTotalRowsPagination(LimitOffsetPagination):
def get_paginated_response(self, data):
return Response(OrderedDict([
('total', self.count),
('next', self.get_next_link()),
('previous', self.get_previous_link()),
('rows', data)
]))
class SearchViewSet(viewsets.ModelViewSet):
serializer_class = AnnotationSerializer
filter_backends = (django_filters.rest_framework.DjangoFilterBackend,)
pagination_class = LimitOffsetTotalRowsPagination
def get_queryset(self):
queryset = Annotation.objects.all()
# TODO repeat for all possible queries?
text = self.request.query_params.get('text', None)
if text is not None:
queryset = queryset.filter(text=text)
quote = self.request.query_params.get('quote', None)
if quote is not None:
queryset = queryset.filter(quote=quote)
uri = self.request.query_params.get('uri', None)
if uri is not None:
queryset = queryset.filter(uri=uri)
return queryset
class AnnotationViewSet(viewsets.ModelViewSet):
serializer_class = AnnotationSerializer
queryset = Annotation.objects.all()
class UserViewSet(viewsets.ReadOnlyModelViewSet):
"""
API endpoint that allows users to be viewed or edited.
"""
queryset = User.objects.all().order_by('-date_joined')
serializer_class = UserSerializer
| StarcoderdataPython |
94391 | from django.core.urlresolvers import resolve
from django.test import TestCase
from django.http import HttpRequest, QueryDict
from minimal_django import index, urlpatterns
class HomePageTest(TestCase):
def test_root_url_resolves_to_home_page_view(self):
found = resolve('/', urlconf = urlpatterns)
self.assertEqual(found.func, index)
def test_home_page_returns_correct_html(self):
request = HttpRequest()
response = index(request)
self.assertIn(b'Hello', response.content)
# self.assertTrue(response.content.startswith(b'<html>'))
# self.assertIn(b'<title>Artist Search API</title>', response.content)
# self.assertTrue(response.content.endswith(b'</html>'))
| StarcoderdataPython |
3363204 | <reponame>achimmihca/DedoMouse<filename>src/gui/VideoCaptureThread.py
#!/usr/bin/env python
import time
from typing import Any
import logging
import cv2
from PySide6.QtCore import QThread
from PySide6.QtGui import QImage, QPixmap
from PySide6.QtWidgets import QLabel
from common.Config import Config
from common.Vector import Vector
from common.WebcamControl import WebcamControl
class VideoCaptureThread(QThread):
def __init__(self, config: Config, webcam_control: WebcamControl, video_display_label: QLabel) -> None:
QThread.__init__(self)
self.config = config
self.webcam_control = webcam_control
self.video_display_label = video_display_label
self.log = logging.getLogger(self.__class__.__name__)
def run(self) -> None:
self.log.info("started VideoCaptureThread")
while self.config.running.value:
self.webcam_control.frame_analyzed_callbacks.append(self.display_video_frame)
self.webcam_control.restart_video_capture_callbacks.append(self.on_video_capture_restart)
try:
video_capture_error_message = self.webcam_control.start_video_capture()
if video_capture_error_message is not None:
self.video_display_label.setText(video_capture_error_message)
except Exception:
error_message = ":(\n\nError during video capture or processing.\nCheck log file for further information."
self.log.exception(error_message)
self.video_display_label.setText(error_message)
# Wait until video capture should be restarted
while self.config.running.value and not self.webcam_control.is_restart_video_capture:
time.sleep(0.1)
def display_video_frame(self, frame: Any, frame_size: Vector) -> None:
try:
label_width = self.video_display_label.width()
label_height = self.video_display_label.height()
scale_x = label_width / frame_size.x
scale_y = label_height / frame_size.y
scale = min(scale_x, scale_y)
frame = cv2.resize(frame, None, fx=scale, fy=scale)
image = QImage(frame, frame.shape[1], frame.shape[0],
frame.strides[0], QImage.Format_RGB888)
self.video_display_label.setPixmap(QPixmap.fromImage(image))
except Exception:
self.log.exception(f"Could not display video.")
def on_video_capture_restart(self) -> None:
self.video_display_label.setText("Restarting camera\nwith changed settings...") | StarcoderdataPython |
1778775 | <filename>UML2ER/contracts/HContract06_CompleteLHS.py<gh_stars>1-10
from core.himesis import Himesis, HimesisPreConditionPatternLHS
import uuid
class HContract06_CompleteLHS(HimesisPreConditionPatternLHS):
def __init__(self):
"""
Creates the himesis graph representing the AToM3 model HContract06_CompleteLHS
"""
# Flag this instance as compiled now
self.is_compiled = True
super(HContract06_CompleteLHS, self).__init__(name='HContract06_CompleteLHS', num_nodes=0, edges=[])
# Add the edges
self.add_edges([])
# Set the graph attributes
self["mm__"] = ['MT_pre__FamiliesToPersonsMM', 'MoTifRule']
self["MT_constraint__"] = """return True"""
self["name"] = """"""
self["GUID__"] = uuid.uuid3(uuid.NAMESPACE_DNS,'HContract06_CompleteLHS')
self["equations"] = []
# Set the node attributes
# match class Class(Class) node
self.add_node()
self.vs[0]["MT_pre__attr1"] = """return True"""
self.vs[0]["MT_label__"] = """1"""
self.vs[0]["mm__"] = """MT_pre__Class"""
self.vs[0]["GUID__"] = uuid.uuid3(uuid.NAMESPACE_DNS,'Class')
# apply class EntityType(EntityType) node
self.add_node()
self.vs[1]["MT_pre__attr1"] = """return True"""
self.vs[1]["MT_label__"] = """2"""
self.vs[1]["mm__"] = """MT_pre__EntityType"""
self.vs[1]["GUID__"] = uuid.uuid3(uuid.NAMESPACE_DNS,'EntityType')
# trace association null--trace-->nullnode
self.add_node()
self.vs[2]["MT_label__"] = """3"""
self.vs[2]["mm__"] = """MT_pre__trace_link"""
self.vs[2]["GUID__"] = uuid.uuid3(uuid.NAMESPACE_DNS,'EntityTypeassoc2Class')
# Add the edges
self.add_edges([
(1,2), # apply class null(Class) -> backward_association
(2,0), # backward_associationnull -> match_class null(Class)
])
# define evaluation methods for each match class.
def eval_attr11(self, attr_value, this):
return True
# define evaluation methods for each apply class.
def eval_attr12(self, attr_value, this):
return True
# define evaluation methods for each match association.
# define evaluation methods for each apply association.
def constraint(self, PreNode, graph):
return True
| StarcoderdataPython |
1693575 | from .relationship import Relationship
from .base import BaseRelationship
| StarcoderdataPython |
84145 | <filename>run_in_cron.py
import run
run.job()
| StarcoderdataPython |
3368142 | <reponame>experiencedft/defisaver-sim
from modules.readConfig import readConfig
from modules.optimize import optimizeRatioContinuous
underlying_return, time_period, volatility = readConfig("Continuous limit optimization parameters")
optimal_ratio, optimal_return = optimizeRatioContinuous(underlying_return, time_period, volatility)
print("Optimal leverage ratio = ", optimal_ratio)
print("Optimal return = ", optimal_return)
print("Relative performance to underlying = ", optimal_return/underlying_return)
if optimal_return/underlying_return > 1:
print("BETTER THAN HOLDING \n")
else:
print("WORSE THAN HOLDING \n") | StarcoderdataPython |
1760874 | <reponame>marissawalker/spectre<filename>tests/Unit/Evolution/Systems/RelativisticEuler/Valencia/TestFunctions.py
# Distributed under the MIT License.
# See LICENSE.txt for details.
import numpy as np
# Functions for testing Characteristics.cpp
def characteristic_speeds(lapse, shift, spatial_velocity, spatial_velocity_sqrd,
sound_speed_sqrd, normal_oneform):
normal_velocity = np.dot(spatial_velocity, normal_oneform)
normal_shift = np.dot(shift, normal_oneform)
prefactor = lapse / (1.0 - spatial_velocity_sqrd * sound_speed_sqrd)
first_term = prefactor * normal_velocity * (1.0 - sound_speed_sqrd)
second_term = (prefactor * np.sqrt(sound_speed_sqrd) *
np.sqrt((1.0 - spatial_velocity_sqrd) *
(1.0 - spatial_velocity_sqrd * sound_speed_sqrd
- normal_velocity * normal_velocity *
(1.0 - sound_speed_sqrd))))
result = [first_term - second_term - normal_shift]
for i in range(0, spatial_velocity.size):
result.append(lapse * normal_velocity - normal_shift)
result.append(first_term + second_term - normal_shift)
return result
# End functions for testing Characteristics.cpp
# Functions for testing ConservativeFromPrimitive.cpp
def tilde_d(rest_mass_density, specific_internal_energy,
spatial_velocity_oneform, spatial_velocity_squared, lorentz_factor,
specific_enthalpy, pressure, sqrt_det_spatial_metric):
return lorentz_factor * rest_mass_density * sqrt_det_spatial_metric
def tilde_tau(rest_mass_density, specific_internal_energy,
spatial_velocity_oneform, spatial_velocity_squared,
lorentz_factor, specific_enthalpy, pressure,
sqrt_det_spatial_metric):
return ((pressure * spatial_velocity_squared
+ (lorentz_factor/(1.0 + lorentz_factor) * spatial_velocity_squared
+ specific_internal_energy) * rest_mass_density)
* lorentz_factor**2 * sqrt_det_spatial_metric)
def tilde_s(rest_mass_density, specific_internal_energy,
spatial_velocity_oneform, spatial_velocity_squared, lorentz_factor,
specific_enthalpy, pressure, sqrt_det_spatial_metric):
return (spatial_velocity_oneform * lorentz_factor**2 * specific_enthalpy
* rest_mass_density * sqrt_det_spatial_metric)
# End functions for testing ConservativeFromPrimitive.cpp
# Functions for testing Equations.cpp
def source_tilde_d(tilde_d, tilde_tau, tilde_s, spatial_velocity, pressure,
lapse, d_lapse, d_shift, d_spatial_metric,
inv_spatial_metric, sqrt_det_spatial_metric,
extrinsic_curvature):
return 0.0
def source_tilde_tau(tilde_d, tilde_tau, tilde_s, spatial_velocity, pressure,
lapse, d_lapse, d_shift, d_spatial_metric,
inv_spatial_metric, sqrt_det_spatial_metric,
extrinsic_curvature):
upper_tilde_s = np.einsum("a, ia", tilde_s, inv_spatial_metric)
densitized_stress = (0.5 * np.outer(upper_tilde_s, spatial_velocity)
+ 0.5 * np.outer(spatial_velocity, upper_tilde_s)
+ sqrt_det_spatial_metric * pressure
* inv_spatial_metric)
return (lapse * np.einsum("ab, ab", densitized_stress, extrinsic_curvature)
- np.einsum("ab, ab", inv_spatial_metric,
np.outer(tilde_s, d_lapse)))
def source_tilde_s(tilde_d, tilde_tau, tilde_s, spatial_velocity, pressure,
lapse, d_lapse, d_shift, d_spatial_metric,
inv_spatial_metric, sqrt_det_spatial_metric,
extrinsic_curvature):
upper_tilde_s = np.einsum("a, ia", tilde_s, inv_spatial_metric)
densitized_stress = (np.outer(upper_tilde_s, spatial_velocity)
+ sqrt_det_spatial_metric * pressure
* inv_spatial_metric)
return (np.einsum("a, ia", tilde_s, d_shift)
- d_lapse * (tilde_tau + tilde_d)
+ 0.5 * lapse * np.einsum("ab, iab", densitized_stress,
d_spatial_metric))
# End functions for testing Equations.cpp
# Functions for testing Fluxes.cpp
def tilde_d_flux(tilde_d, tilde_tau, tilde_s, lapse, shift,
sqrt_det_spatial_metric, pressure, spatial_velocity):
return tilde_d * (lapse * spatial_velocity - shift)
def tilde_tau_flux(tilde_d, tilde_tau, tilde_s, lapse, shift,
sqrt_det_spatial_metric, pressure, spatial_velocity):
return (sqrt_det_spatial_metric * lapse * pressure * spatial_velocity
+ tilde_tau * (lapse * spatial_velocity - shift))
def tilde_s_flux(tilde_d, tilde_tau, tilde_s, lapse, shift,
sqrt_det_spatial_metric, pressure, spatial_velocity):
result = np.outer(lapse * spatial_velocity - shift, tilde_s)
result += (sqrt_det_spatial_metric * lapse * pressure
* np.identity(shift.size))
return result
# End functions for testing Fluxes.cpp
| StarcoderdataPython |
176287 | # -*- coding: utf-8 -*-
import sys
from PySide2 import QtWidgets
from PySide2.QtTest import QTest
from numpy import pi
from Tests.GUI import gui_option # Set unit as [m]
from pyleecan.Classes.LamSlotMag import LamSlotMag
from pyleecan.Classes.SlotCirc import SlotCirc
from pyleecan.GUI.Dialog.DMachineSetup.SMSlot.WSlotCirc.WSlotCirc import WSlotCirc
import pytest
class TestPMSlot10(object):
"""Test that the widget PMSlot10 behave like it should"""
def setup_method(self):
self.test_obj = LamSlotMag(Rint=0.1, Rext=0.2)
self.test_obj.slot = SlotCirc(H0=10e-3, W0=45e-3)
self.widget = WSlotCirc(self.test_obj)
@classmethod
def setup_class(cls):
"""Start the app for the test"""
print("\nStart Test TestPMSlot10")
if not QtWidgets.QApplication.instance():
cls.app = QtWidgets.QApplication(sys.argv)
else:
cls.app = QtWidgets.QApplication.instance()
@classmethod
def teardown_class(cls):
"""Exit the app after the test"""
cls.app.quit()
def test_init(self):
"""Check that the Widget spinbox initialise to the lamination value"""
assert self.widget.lf_H0.value() == 0.01
assert self.widget.lf_W0.value() == 0.045
def test_set_W0(self):
"""Check that the Widget allow to update W0"""
# Check Unit
assert self.widget.unit_W0.text() == "[m]"
# Change value in GUI
self.widget.lf_W0.clear()
QTest.keyClicks(self.widget.lf_W0, "0.31")
self.widget.lf_W0.editingFinished.emit() # To trigger the slot
assert self.widget.slot.W0 == 0.31
assert self.test_obj.slot.W0 == 0.31
def test_set_H0(self):
"""Check that the Widget allow to update H0"""
# Check Unit
assert self.widget.unit_H0.text() == "[m]"
# Change value in GUI
self.widget.lf_H0.clear()
QTest.keyClicks(self.widget.lf_H0, "0.34")
self.widget.lf_H0.editingFinished.emit() # To trigger the slot
assert self.widget.slot.H0 == 0.34
assert self.test_obj.slot.H0 == 0.34
def test_output_txt(self):
"""Check that the Output text is computed and correct"""
self.test_obj.slot = SlotCirc(H0=10e-3, W0=45e-3)
self.widget = WSlotCirc(self.test_obj)
assert self.widget.w_out.out_slot_height.text() == "Slot height: 0.01127 [m]"
def test_check(self):
"""Check that the check is working correctly"""
self.test_obj = LamSlotMag(Rint=0.1, Rext=0.2)
# H0
self.test_obj.slot = SlotCirc(H0=None, W0=0.10)
self.widget = WSlotCirc(self.test_obj)
assert self.widget.check(self.test_obj) == "You must set H0 !"
# W0
self.test_obj.slot = SlotCirc(H0=0.10, W0=None)
assert self.widget.check(self.test_obj) == "You must set W0 !"
if __name__ == "__main__":
a = TestPMSlot10()
a.setup_class()
a.setup_method()
a.test_init()
a.test_output_txt()
a.teardown_class()
print("Done")
| StarcoderdataPython |
4819742 | """
Parse Velodyne VLP-16 data
"""
import struct
import math
from osgar.node import Node
LASER_ANGLES = [-15, 1, -13, 3, -11, 5, -9, 7, -7, 9, -5, 11, -3, 13, -1, 15]
NUM_LASERS = 16
def parse_packet(data, offset_step=100):
assert len(data) == 1206, len(data)
assert offset_step % 100 == 0, offset_step # must be divisible by 100
timestamp, factory = struct.unpack_from("<IH", data, offset=1200)
assert factory == 0x2237, hex(factory) # 0x22=VLP-16, 0x37=Strongest Return
# time = timestamp/1000000.0
# if self.time is not None:
# lost_packets = int(round((time - self.time)/EXPECTED_PACKET_TIME)) - 1
# else:
# lost_packets = 0
# self.time = time
# if lost_packets > 0 and (self.last_blocked is None or self.time > self.last_blocked + EXPECTED_SCAN_DURATION):
# self.last_blocked = self.time + EXPECTED_SCAN_DURATION
# self.scan_index += 1
# print("DROPPED index", self.scan_index)
# if self.last_blocked is not None and self.time < self.last_blocked:
# return # to catch up-to-date packets again ...
ret = []
for offset in range(0, 1200, offset_step): # 100 bytes per one reading
flag, azi = struct.unpack_from("<HH", data, offset)
assert flag == 0xEEFF, hex(flag)
azimuth = azi/100.0
# H-distance (2mm step), B-reflectivity (0
arr = struct.unpack_from('<' + "HB"*32, data, offset + 4)
dist = []
for i in range(NUM_LASERS):
dist.append(arr[i*2] * 0.002)
# so now we have azimuth and NUM_LASERS distance readings
for d, beta_deg in zip(dist, LASER_ANGLES):
beta = math.radians(beta_deg)
x = d * math.cos(azimuth) * math.cos(beta)
y = d * math.sin(azimuth) * math.cos(beta)
z = d * math.sin(beta)
ret.append([x, y, z])
return ret
class Velodyne(Node):
def __init__(self, config, bus):
bus.register('raw', 'xyz')
super().__init__(config, bus)
self.offset_step = config.get('offset_step', 200) # skip every second packet (we need 1deg resolution input 0.4)
assert self.offset_step % 100 == 0, self.offset_step # must be divisible by 100
def update(self):
channel = super().update()
assert channel == 'raw', channel
self.publish('xyz', parse_packet(self.raw, offset_step=self.offset_step))
# vim: expandtab sw=4 ts=4
| StarcoderdataPython |
4833081 | <gh_stars>0
import json
from channels.generic.websocket import AsyncWebsocketConsumer
from channels.db import database_sync_to_async
from .models import Chat, ChatRoom
class ChatConsumer(AsyncWebsocketConsumer):
async def connect(self):
self.room_name = self.scope['url_route']['kwargs']['room_name']
self.room_group_name = 'chat_%s' % self.room_name
await self.channel_layer.group_add(
self.room_group_name,
self.channel_name
)
await self.accept()
async def disconnect(self, close_code):
await self.channel_layer.group_discard(
self.room_group_name,
self.channel_name
)
async def receive(self, text_data):
text_data_json = json.loads(text_data)
message = text_data_json['message']
self.user_id = self.scope['user'].id
# Find room object
room = await database_sync_to_async(ChatRoom.objects.get)(name=self.room_name)
# Create new chat object
chat = Chat(
content=message,
user=self.scope['user'],
room=room
)
await database_sync_to_async(chat.save)()
await self.channel_layer.group_send(
self.room_group_name,
{
'type': 'chat_message',
'message': message,
'user_id': self.user_id
})
async def chat_message(self, event):
message = event['message']
user_id = event['user_id']
await self.send(text_data=json.dumps({
'message': message,
'user_id': user_id
})) | StarcoderdataPython |
3338103 | <reponame>AlexScheller/dark-chess
from flask import Blueprint
main = Blueprint('main', __name__)
from dark_chess_app.modules.main import routes | StarcoderdataPython |
4823786 | from django.contrib import admin
from .models import Profile, Tweet, ScheduledTweet
admin.site.register(Profile)
admin.site.register(Tweet)
admin.site.register(ScheduledTweet)
| StarcoderdataPython |
128439 | <filename>models/__init__.py
from .gazeflow import Glow | StarcoderdataPython |
93036 | <gh_stars>0
"""
models.py
"""
import uuid
from django.contrib.auth.models import AbstractUser
from django.db import models
from django.utils.translation import ugettext_lazy as _
from .managers import AppUserManager
def user_directory_path(instance, filename):
# file will be uploaded to MEDIA_ROOT/user_id/<filename>
return '{0}/{1}'.format(instance.username, filename)
class User(AbstractUser):
# fields removed from base user model
first_name = None
last_name = None
SEX_CHOICES = (
('Male', 'Male'),
('Female', 'Female'),
)
slug = models.SlugField(unique=True, default=uuid.uuid1, blank=True)
username = models.CharField(max_length=30, unique=True, blank=True)
email = models.EmailField(_('email address'), unique=True, blank=True)
photo = models.ImageField(
upload_to=user_directory_path, null=True, blank=True)
name = models.CharField('full name', max_length=255, blank=True)
date_of_birth = models.DateField(_('date of birth'), null=True, blank=True)
sex = models.CharField(
max_length=6, choices=SEX_CHOICES, null=True, blank=True)
is_member = models.BooleanField(default=False, blank=True)
# contacts = models.ManyToManyField('self', related_name='contacts', symmetrical=False)
USERNAME_FIELD = 'username'
REQUIRED_FIELDS = ['name', 'email']
objects = AppUserManager()
class Meta:
verbose_name = _('user')
verbose_name_plural = _('users')
def get_full_name(self):
return self.name
def get_short_name(self):
return self.username
def __str__(self):
return self.username
| StarcoderdataPython |
1703030 | <reponame>parikshitgupta1/leetcode
class Solution(object):
def leastInterval(self, tasks, n):
frequencies = {}
output = 0
if n == 0:
return len(tasks)
for k in tasks:
frequencies[k] = frequencies.get(k,0)+1
max_value = max(frequencies.values())
max_value_occurrences = 0
for value in frequencies.values():
if value == max_value:
max_value_occurrences += 1
return max((max_value-1)*(n+1)+max_value_occurrences, len(tasks))
| StarcoderdataPython |
193465 | <gh_stars>0
#!/usr/bin/env python
# -*- coding: utf-8 -*-
import os
import configparser
from oger.ctrl.router import Router, PipelineServer
from oger.ctrl.run import run as og_run
import pandas as pd
SETTINGS_FILENAME = 'settings.ini'
def create_settings_file(path: str, ont: str = 'ALL') -> None:
"""
Creates the settings.ini file for OGER to get parameters.
- Parameters:
- path - path of the 'nlp' folder
- ont - the ontology to be used as dictionary ['ALL', 'ENVO', 'CHEBI']
- The 'Shared' section declares global variables that can be used in other sections
e.g. Data root.
root = location of the working directory
accessed in other sections using => ${Shared:root}/
- Input formats accepted:
txt, txt_json, bioc_xml, bioc_json, conll, pubmed,
pxml, pxml.gz, pmc, nxml, pubtator, pubtator_fbk,
becalmabstracts, becalmpatents
- Two iter-modes available: [collection or document]
document:- 'n' input files = 'n' output files
(provided every file has ontology terms)
collection:- n input files = 1 output file
- Export formats possible:
tsv, txt, text_tsv, xml, text_xml, bioc_xml,
bioc_json, bionlp, bionlp.ann, brat, brat.ann,
conll, pubtator, pubanno_json, pubtator, pubtator_fbk,
europepmc, europepmc.zip, odin, becalm_tsv, becalm_json
These can be passed as a list for multiple outputs too.
- Multiple Termlists can be declared in separate sections
e.g. [Termlist1], [Termlist2] ...[Termlistn] with each having
their own paths
"""
config = configparser.ConfigParser()
config['Section'] = {}
config['Shared'] = {}
# Settings required by OGER
config['Main'] = {
'input-directory' : os.path.join(path,'input'),
'output-directory' : os.path.join(path,'output'),
'pointer-type' : 'glob',
'pointers' : '*.tsv',
'iter-mode' : 'collection',
'article-format' : 'txt_tsv',
'export_format': 'tsv',
'termlist_stopwords': os.path.join(path,'stopwords','stopwords.txt')
}
if ont == 'ENVO':
config.set('Main','termlist_path', os.path.join(path,'terms/envo_termlist.tsv'))
elif ont == 'CHEBI':
config.set('Main','termlist_path', os.path.join(path,'terms/chebi_termlist.tsv'))
else:
config.set('Main', 'termlist1_path', os.path.join(path,'terms/envo_termlist.tsv'))
config.set('Main', 'termlist2_path', os.path.join(path,'terms/chebi_termlist.tsv'))
# This is how OGER prescribes in it's test file but above works too.
'''config['Termlist1'] = {
'path' : os.path.join(path,'terms/envo_termlist.tsv')
}
config['Termlist2'] = {
'path' : os.path.join(path,'terms/chebi_termlist.tsv')
}'''
# Write
with open(os.path.join(path, SETTINGS_FILENAME), 'w') as settings_file:
config.write(settings_file)
def prep_nlp_input(path: str, columns: list)-> str:
'''
Arguments:
path - path to the file which has text to be analyzed
columns - The first column HAS to be an id column.
'''
df = pd.read_csv(path, sep=',', low_memory=False, usecols=columns)
sub_df = df.dropna()
# Hacky way of creating i/p files to run OGER
'''for idx, row in sub_df.T.iteritems():
new_file = 'nlp/input/'+str(row[0])+'.txt'
path_to_new_file = os.path.abspath(os.path.join(os.path.dirname(path),'..',new_file))
if os.path.exists(path_to_new_file):
mode = 'a'
else:
mode = 'w'
with open(path_to_new_file, mode) as txt_file:
txt_file.write(row[1])'''
# New way of doing this : PR submitted to Ontogene for merging code.
fn = 'nlp'
nlp_input = os.path.abspath(os.path.join(os.path.dirname(path),'..','nlp/input/'+fn+'.tsv'))
sub_df.to_csv(nlp_input, sep='\t', index=False)
return fn
def run_oger(path: str , input_file_name: str , n_workers :int = 1 ) -> pd.DataFrame:
config = configparser.ConfigParser()
config.read(os.path.join(path, SETTINGS_FILENAME))
sections = config._sections
settings = sections['Main']
settings['n_workers'] = n_workers
og_run(**settings)
df = process_oger_output(path, input_file_name)
return df
def process_oger_output(path: str, input_file_name: str) -> pd.DataFrame:
"""
The OGER output is a TSV which is imported and only the terms that occurred in the text file
are considered and a dataframe of relevant information is returned
"""
cols = ['TaxId', 'Biolink', 'BeginTerm', 'EndTerm', 'TokenizedTerm', 'PreferredTerm', \
'CURIE', 'NaN1', 'SentenceID', 'NaN2', 'UMLS_CUI']
df = pd.read_csv(os.path.join(path, 'output',input_file_name+'.tsv'), sep='\t', names=cols)
sub_df = df[['TaxId', 'Biolink','TokenizedTerm', 'PreferredTerm', 'CURIE']]
interested_df = sub_df.loc[(df['TokenizedTerm'] == df['PreferredTerm'].str.replace(r"\(.*\)",""))]
interested_df = interested_df.drop(columns = ['PreferredTerm']).drop_duplicates()
interested_df.to_csv(os.path.join(path, 'output',input_file_name +'Filtered.tsv'), sep='\t', index=False)
return interested_df | StarcoderdataPython |
3250191 | # Copyright 2018 The Chromium Authors. All rights reserved.
# Use of this source code is governed by a BSD-style license that can be
# found in the LICENSE file.
from __future__ import print_function
from __future__ import division
from __future__ import absolute_import
import datetime
import httplib
import mock
import unittest
import webapp2
import webtest
from google.appengine.ext import ndb
from dashboard import update_dashboard_stats
from dashboard.common import utils
from dashboard.models import anomaly
from dashboard.services import gerrit_service
from dashboard.pinpoint.models.change import change as change_module
from dashboard.pinpoint.models.change import commit
from dashboard.pinpoint.models import job as job_module
from dashboard.pinpoint.models import job_state
from dashboard.pinpoint.models.quest import execution_test
from dashboard.pinpoint.models.quest import quest
from dashboard.pinpoint import test
_RESULTS_BY_CHANGE = {
'chromium@aaaaaaa': [1, 1, 1, 1],
'chromium@bbbbbbb': [5, 5, 5, 5]
}
class _QuestStub(quest.Quest):
def __str__(self):
return 'Quest'
def Start(self, change):
return ExecutionResults(change)
@classmethod
def FromDict(cls, arguments):
return cls
class ExecutionResults(execution_test._ExecutionStub):
def __init__(self, c):
super(ExecutionResults, self).__init__()
self._result_for_test = _RESULTS_BY_CHANGE[str(c)]
def _Poll(self):
self._Complete(
result_arguments={'arg key': 'arg value'},
result_values=self._result_for_test)
def _StubFunc(*args, **kwargs):
del args
del kwargs
@ndb.tasklet
def _FakeTasklet(*args):
del args
class UpdateDashboardStatsTest(test.TestCase):
def setUp(self):
super(UpdateDashboardStatsTest, self).setUp()
app = webapp2.WSGIApplication([
('/update_dashboard_stats',
update_dashboard_stats.UpdateDashboardStatsHandler)
])
self.testapp = webtest.TestApp(app)
def _CreateJob(self,
hash1,
hash2,
comparison_mode,
created,
bug_id,
exception=None,
arguments=None):
old_commit = commit.Commit('chromium', hash1)
change_a = change_module.Change((old_commit,))
old_commit = commit.Commit('chromium', hash2)
change_b = change_module.Change((old_commit,))
job = job_module.Job.New((_QuestStub(),), (change_a, change_b),
comparison_mode=comparison_mode,
bug_id=bug_id,
arguments=arguments)
job.created = created
job.exception = exception
job.state.ScheduleWork()
job.state.Explore()
job.put()
return job
@mock.patch.object(update_dashboard_stats, '_ProcessPinpointJobs',
mock.MagicMock(side_effect=_FakeTasklet))
@mock.patch.object(update_dashboard_stats.deferred, 'defer')
def testPost_ProcessAlerts_Success(self, mock_defer):
created = datetime.datetime.now() - datetime.timedelta(hours=1)
# sheriff = ndb.Key('Sheriff', 'Chromium Perf Sheriff')
anomaly_entity = anomaly.Anomaly(
test=utils.TestKey('M/B/suite'), timestamp=created) #, sheriff=sheriff)
anomaly_entity.put()
self.testapp.get('/update_dashboard_stats')
self.assertTrue(mock_defer.called)
@mock.patch.object(update_dashboard_stats, '_ProcessPinpointJobs', _StubFunc)
@mock.patch.object(update_dashboard_stats, '_ProcessPinpointStats', _StubFunc)
def testPost_ProcessAlerts_NoAlerts(self):
created = datetime.datetime.now() - datetime.timedelta(days=2)
# sheriff = ndb.Key('Sheriff', 'Chromium Perf Sheriff')
anomaly_entity = anomaly.Anomaly(
test=utils.TestKey('M/B/suite'),
timestamp=created) # , sheriff=sheriff)
anomaly_entity.put()
self.testapp.get('/update_dashboard_stats')
self.ExecuteDeferredTasks('default', recurse=False)
patcher = mock.patch('update_dashboard_stats.deferred.defer')
self.addCleanup(patcher.stop)
mock_defer = patcher.start()
self.assertFalse(mock_defer.called)
@mock.patch.object(update_dashboard_stats, '_ProcessAlerts', _StubFunc)
@mock.patch.object(change_module.Change, 'Midpoint',
mock.MagicMock(side_effect=commit.NonLinearError))
@mock.patch.object(update_dashboard_stats, '_ProcessPinpointJobs', _StubFunc)
def testPost_ProcessPinpointStats_Success(self):
created = datetime.datetime.now() - datetime.timedelta(hours=12)
j = self._CreateJob(
'aaaaaaaa',
'bbbbbbbb',
job_state.PERFORMANCE,
created,
12345,
arguments={
'configuration': 'bot1',
'benchmark': 'suite1'
})
j.updated = created + datetime.timedelta(hours=1)
j.put()
created = datetime.datetime.now() - datetime.timedelta(hours=12)
j = self._CreateJob(
'aaaaaaaa',
'bbbbbbbb',
job_state.PERFORMANCE,
created,
12345,
arguments={
'configuration': 'bot2',
'benchmark': 'suite2'
})
j.updated = created + datetime.timedelta(hours=1)
j.put()
self.testapp.get('/update_dashboard_stats')
patcher = mock.patch('update_dashboard_stats.deferred.defer')
self.addCleanup(patcher.stop)
mock_defer = patcher.start()
self.ExecuteDeferredTasks('default', recurse=False)
self.assertTrue(mock_defer.called)
@mock.patch.object(update_dashboard_stats, '_ProcessAlerts',
mock.MagicMock(side_effect=_FakeTasklet))
@mock.patch.object(update_dashboard_stats, '_ProcessPinpointStats',
mock.MagicMock(side_effect=_FakeTasklet))
@mock.patch.object(change_module.Change, 'Midpoint',
mock.MagicMock(side_effect=commit.NonLinearError))
@mock.patch.object(update_dashboard_stats.deferred, 'defer')
def testPost_ProcessPinpoint_Success(self, mock_defer):
created = datetime.datetime.now() - datetime.timedelta(days=1)
self._CreateJob('aaaaaaaa', 'bbbbbbbb', job_state.PERFORMANCE, created,
12345)
anomaly_entity = anomaly.Anomaly(
test=utils.TestKey('M/B/S'), bug_id=12345, timestamp=created)
anomaly_entity.put()
self.testapp.get('/update_dashboard_stats')
self.assertTrue(mock_defer.called)
@mock.patch.object(gerrit_service, 'GetChange',
mock.MagicMock(side_effect=httplib.HTTPException))
@mock.patch.object(update_dashboard_stats, '_ProcessAlerts', _StubFunc)
@mock.patch.object(update_dashboard_stats, '_ProcessPinpointStats', _StubFunc)
@mock.patch.object(change_module.Change, 'Midpoint',
mock.MagicMock(side_effect=commit.NonLinearError))
def testPost_ProcessPinpoint_NoResults(self):
created = datetime.datetime.now() - datetime.timedelta(days=1)
anomaly_entity = anomaly.Anomaly(
test=utils.TestKey('M/B/S'), bug_id=12345, timestamp=created)
anomaly_entity.put()
self._CreateJob('aaaaaaaa', 'bbbbbbbb', job_state.FUNCTIONAL, created,
12345)
created = datetime.datetime.now() - datetime.timedelta(days=15)
self._CreateJob('aaaaaaaa', 'bbbbbbbb', job_state.PERFORMANCE, created,
12345)
created = datetime.datetime.now() - datetime.timedelta(days=1)
self._CreateJob('aaaaaaaa', 'bbbbbbbb', job_state.PERFORMANCE, created,
None)
created = datetime.datetime.now() - datetime.timedelta(days=1)
self._CreateJob('aaaaaaaa', 'aaaaaaaa', job_state.PERFORMANCE, created,
12345)
created = datetime.datetime.now() - datetime.timedelta(days=1)
self._CreateJob('aaaaaaaa', 'bbbbbbbb', job_state.PERFORMANCE, created,
12345, 'foo')
way_too_old = datetime.datetime(year=2000, month=1, day=1)
anomaly_entity = anomaly.Anomaly(
test=utils.TestKey('M/B/S'), bug_id=1, timestamp=way_too_old)
anomaly_entity.put()
created = datetime.datetime.now() - datetime.timedelta(days=1)
self._CreateJob('aaaaaaaa', 'bbbbbbbb', job_state.PERFORMANCE, created, 1)
self.testapp.get('/update_dashboard_stats')
patcher = mock.patch('update_dashboard_stats.deferred.defer')
self.addCleanup(patcher.stop)
mock_defer = patcher.start()
self.assertFalse(mock_defer.called)
if __name__ == '__main__':
unittest.main()
| StarcoderdataPython |
3360417 | <gh_stars>1-10
from unittest.mock import Mock, patch
from weakref import ref
import pytest
try:
from django.db import models
# from parasolr.django.indexing import ModelIndexable
from parasolr.django.signals import IndexableSignalHandler
from parasolr.django.tests import test_models
except ImportError:
IndexableSignalHandler = None
from parasolr.tests.utils import skipif_django, skipif_no_django
def setup_module():
# connect indexing signal handlers for this test module only
if IndexableSignalHandler:
IndexableSignalHandler.connect()
def teardown_module():
# disconnect indexing signal handlers
if IndexableSignalHandler:
IndexableSignalHandler.disconnect()
@skipif_django
def test_no_django_indexable():
# should not be defined when django is not installed
with pytest.raises(ImportError):
from parasolr.django.signals import IndexableSignalHandler
@skipif_no_django
class TestIndexableSignalHandler:
def test_connect(self):
# check that signal handlers are connected as expected
# - model save and delete
post_save_handlers = [item[1] for item in
models.signals.post_save.receivers]
assert ref(IndexableSignalHandler.handle_save) in post_save_handlers
post_del_handlers = [item[1] for item in
models.signals.post_delete.receivers]
assert ref(IndexableSignalHandler.handle_delete) in post_del_handlers
# many to many
m2m_handlers = [item[1] for item in
models.signals.m2m_changed.receivers]
assert ref(IndexableSignalHandler.handle_relation_change) \
in m2m_handlers
# testing related handlers based on test models
post_save_handlers = [item[1] for item in
models.signals.post_save.receivers]
assert ref(test_models.signal_method) in post_save_handlers
pre_del_handlers = [item[1] for item in
models.signals.pre_delete.receivers]
assert ref(test_models.signal_method) in pre_del_handlers
def test_handle_save(self):
instance = test_models.IndexItem()
with patch.object(instance, 'index') as mockindex:
# call directly
IndexableSignalHandler.handle_save(Mock(), instance)
mockindex.assert_any_call()
# call via signal
mockindex.reset_mock()
models.signals.post_save.send(test_models.IndexItem,
instance=instance)
mockindex.assert_any_call()
# non-indexable object should be ignored
nonindexable = Mock()
IndexableSignalHandler.handle_save(Mock(), nonindexable)
nonindexable.index.assert_not_called()
def test_handle_delete(self):
with patch.object(test_models.IndexItem, 'remove_from_index') as \
mock_rmindex:
instance = test_models.IndexItem()
IndexableSignalHandler.handle_delete(Mock(), instance)
mock_rmindex.assert_called_with()
# non-indexable object should be ignored
nonindexable = Mock()
IndexableSignalHandler.handle_delete(Mock(), nonindexable)
nonindexable.remove_from_index.assert_not_called()
@pytest.mark.django_db
def test_handle_relation_change(self):
instance = test_models.IndexItem()
with patch.object(instance, 'index') as mockindex:
# call directly - supported actions
for action in ['post_add', 'post_remove', 'post_clear']:
mockindex.reset_mock()
IndexableSignalHandler.handle_relation_change(
test_models.IndexItem, instance, action)
mockindex.assert_any_call()
# if action is not one we care about, should be ignored
mockindex.reset_mock()
IndexableSignalHandler.handle_relation_change(
test_models.IndexItem, instance, 'pre_remove')
mockindex.assert_not_called()
# non-indexable object should be ignored
nonindexable = Mock()
IndexableSignalHandler.handle_relation_change(
Mock(), nonindexable, 'post_add')
nonindexable.index.assert_not_called()
| StarcoderdataPython |
1785094 | from flask import Blueprint, request, jsonify, session, render_template
from flask_login import login_required
api = Blueprint('api', __name__)
@api.route('/articles', methods=['GET'])
def get_all_articles():
pass
@api.route('/article', methods=['POST'])
def create_article():
pass
@api.route('/article/<string:article_name>', methods=['GET', 'PUT', 'DELETE'])
def article(article_name):
pass
@login_required
@api.route('/subscribers', methods=['GET'])
def get_subscribers():
pass
@api.route('/subscriber', methods=['POST'])
def add_subscriber():
pass
@api.route('/subscriber/<uuid:id>', methods=['DELETE'])
def delete_subscriber(id):
pass
@login_required
@api.route('/tags', methods=['GET'])
def get_tags():
pass
@login_required
@api.route('/tag', methods=['POST'])
def add_tag():
pass
@api.route('/tag/<uuid:id>', methods=['DELETE'])
def delete_tag(id):
pass
@api.route('/short_url', methods=['POST'])
def create_short_url():
pass
@login_required
@api.route('/config', methods=['GET', 'POST', 'PATCH'])
def config():
pass
| StarcoderdataPython |
133188 | import sys
import ctypes_scanner
pidint = int(sys.argv[1])
toto = ctypes_scanner.GetRegexMatches(pidint,"http://[a-zA-Z_0-9\.]*")
print(toto)
print(len(toto))
| StarcoderdataPython |
1740609 | <reponame>genkosta/social-network
# Generated by Django 2.0.6 on 2018-06-26 08:38
from django.conf import settings
from django.db import migrations, models
import django.db.models.deletion
import social_network.core.models
class Migration(migrations.Migration):
dependencies = [
migrations.swappable_dependency(settings.AUTH_USER_MODEL),
('posts', '0008_post_is_disable'),
]
operations = [
migrations.CreateModel(
name='Profile',
fields=[
('id', models.AutoField(auto_created=True, primary_key=True, serialize=False, verbose_name='ID')),
('image', models.ImageField(blank=True, null=True, upload_to=social_network.core.models.make_upload_path, validators=[social_network.core.models.validate_image], verbose_name='Image')),
('user', models.OneToOneField(on_delete=django.db.models.deletion.CASCADE, to=settings.AUTH_USER_MODEL)),
],
options={
'verbose_name': 'Profile',
'verbose_name_plural': 'Profiles',
'ordering': ('-pk',),
},
),
]
| StarcoderdataPython |
162807 | from ..utils.error import Error
class Validator(object):
def __init__(self):
pass
def validate(self, model):
self.validate_php_functional(model)
@staticmethod
def validate_php_functional(model):
for cls in model.classes:
for member in cls.members:
if member.type == 'map':
key_type = member.template_args[0].type
if model.has_class(key_type) and model.get_class(key_type).type != 'enum':
value_type = member.template_args[1].type
Error.exit(Error.OBJECT_IS_KEY_OF_MAP, cls.name, key_type, value_type, member.name)
if cls.type == 'enum' and member.initial_value is not None:
if '|' in member.initial_value or \
'&' in member.initial_value or \
'^' in member.initial_value or \
'~' in member.initial_value:
Error.exit(Error.ENUM_CANNOT_BE_COMBINATED, cls.name, member.name, member.initial_value)
| StarcoderdataPython |
3272574 | # Methods to help parse like for private keys to servers and safes.
# Used in Bot.py files to read in the user's key-values.
from .globals import *
from utils.Keychain import Keychain
def parseKeychainFromFile(filename, folder="keys"):
"""
Parses in the bot's private information into a dictionary of {key:value} pairs.
This is used to return a `Keychain` object.
"""
filepath = folder + "/" + filename
print(f"{CM_UTILS}attempting to read keys from {filepath}...")
# Required bot startup parameters
print(f"{CM_UTILS}required values in expected file format:")
header = f"============> {filepath} <============"
print(header)
for rk in REQUIRED:
print(f'{rk}{KF_SPLIT}"{rk}"')
print('='*len(header))
# File parsing
try:
# Initialize the read keys dictionary
keychain = Keychain()
# Go through keys file line-by-line and add to keysDict.
# Also for each collected key parameter, check it off the required list.
with open(filepath, 'r+') as keyFile:
for line in keyFile.readlines():
ls = line.strip().split(KF_SPLIT)
key = ls[0].strip()
val = ls[1].strip()
keychain.addKeyValue(key, val)
# Not all required
if not keychain.hasAllRequired():
print(f"{CM_UTILS}[ERROR]: Did not read all required parameters.")
print(f">Please double-check your key file and try again.")
print(f">Quitting...")
quit()
# All required parameters met. Lock the keychain and return data for bot.
keychain.lockKeys()
return keychain
# Catch file errors or other strange beasts
except Exception as e:
print(f"{CM_UTILS}[ERROR] - There was an error reading data from the file.")
print(f">Check your file input.")
print(f">{e}")
quit()
| StarcoderdataPython |
4812263 | <gh_stars>0
### HELPERS ###
def to_dec(bin, val=0):
if len(bin) == 0:
return val
return to_dec(bin[1:], val+(int(bin[0])*2**(len(bin)-1)))
#print(to_dec("0")) # 0
#print(to_dec("1")) # 1
#print(to_dec("10110")) # 22
#print(to_dec("01001")) # 9
### SOL ###
f = open("p1.txt", "r")
bits = f.readlines()
f.close()
gamma = ""
epsilon = ""
for i in range(0, len(bits[0])-1):
zeros = 0
ones = 0
for b in bits:
if b[i] == "1":
ones += 1
else: # b[i] == "0"
zeros += 1
if ones > zeros:
gamma += "1"
epsilon += "0"
else: # zeros < ones
gamma += "0"
epsilon += "1"
# Problem does not specify what to do if equal
print("gamma:", gamma, "=", to_dec(gamma))
print("epsilon:", epsilon, "=", to_dec(epsilon))
print("answer:", to_dec(gamma)*to_dec(epsilon))
print("\n\n")
bits = [b.strip("\n") for b in bits]
oxygen = bits.copy()
co2 = bits.copy()
for i in range(0, len(bits[0])):
zeros = []
ones = []
if len(oxygen)> 1:
for b in oxygen:
if b[i] == "1":
ones.append(b)
else: # b[i] == "0"
zeros.append(b)
if len(ones) >= len(zeros):
oxygen = ones.copy()
else: # len(ones) < len(zeros)
oxygen = zeros.copy()
zeros = []
ones = []
if len(co2) > 1:
for b in co2:
if b[i] == "1":
ones.append(b)
else: # b[i] == "0"
zeros.append(b)
if len(zeros) <= len(ones):
co2 = zeros.copy()
else: # len(zeros) > len(ones)
co2 = ones.copy()
print("oxygen:", oxygen[0], "=", to_dec(oxygen[0]))
print("co2:", co2[0], "=", to_dec(co2[0]))
print("answer:", to_dec(oxygen[0])*to_dec(co2[0]))
| StarcoderdataPython |
144524 | # -*- coding: utf-8 -*-
from __future__ import print_function
import torch
import torch.nn.functional as F
import spdnn
torch.manual_seed(7)
input = torch.randn(2,3,3,3, requires_grad=True).cuda()
weight = torch.randn(3,3,2,2, requires_grad=True).cuda()
print('input shape: ', input.shape)
print('weights shape: ', weight.shape)
def test_conv():
output = F.conv2d(input, weight)
print('output shape: ', output.shape)
return output
def test_conv_grad():
grad_output = torch.randn(output.shape).cuda()
print('grad_output: ', grad_output)
grad_weight = F.grad.conv2d_weight(input, weight.shape, grad_output)
print('grad_weight: ', grad_weight)
grad_input = F.grad.conv2d_input(input.shape, weight, grad_output)
print('grad_weight: ', grad_input)
def conv2d(x, w, stride=1, padding=0, dilation=1):
input_size = (x.shape[2], x.shape[3])
kernel_size = (w.shape[2], w.shape[3])
inp_unf = F.unfold(x, kernel_size)
out_unf = w.view(w.size(0), -1).matmul(inp_unf)
height = (input_size[0] + 2*padding- dilation *(kernel_size[0]-1)-1)//stride + 1
width = (input_size[1] + 2*padding- dilation *(kernel_size[1]-1)-1)//stride + 1
output_size = (height, width)
output = out_unf.view(out_unf.shape[0], out_unf.shape[1], output_size[0], output_size[1])
return output
def conv2d_grad_input(input_shape, w, grad, stride=1, padding=0, dilation=1):
input_size = (input_shape[2], input_shape[3])
kernel_size = (w.shape[2], w.shape[3])
return conv2d(grad, w.tranpose(1,2))
def test_conv2gemm():
kernel_size = (weight.shape[2], weight.shape[3])
inp_unf = F.unfold(input, kernel_size)
print('inp_unf shape: ', inp_unf.shape)
#out_unf = inp_unf.transpose(1, 2).matmul(weight.view(weight.size(0), -1).t()).transpose(1, 2)
out_unf = weight.view(weight.size(0), -1).mm(inp_unf)
#w = weight.view(2, -1)
#print('weight shape: ', weight.shape)
#print('w shape: ', w.shape)
#out_unf = w.mm(inp_unf)
print('out_unf shape: ', out_unf.shape)
#output = F.fold(out_unf, (2,2), kernel_size)
output_size = (2, 2)
output = out_unf.view(out_unf.shape[0], out_unf.shape[1], output_size[0], output_size[1])
print('output shape: ', output.shape)
return output
if __name__ == '__main__':
output = test_conv()
output2 = conv2d(input, weight)
print('diff: ', (output-output2).norm())
| StarcoderdataPython |
112657 | '''
https://docs.python.org/3/reference/datamodel.html#object.__getitem__
'''
class XXX(object):
def __init__(self):
self.data = {int(i): str(i) for i in range(3)}
def __len__(self):
return len(self.data)
def __getitem__(self, index):
if index >= len(self): raise IndexError
return self.data[index], index
x = XXX()
for v, i in x:
print(v, i)
| StarcoderdataPython |
47945 | import numpy as np
import scipy as sp
from scipy.sparse.linalg import LinearOperator, lgmres, gmres
import tensornetwork as tn
import jax_vumps.numpy_backend.contractions as ct
# import jax_vumps.numpy_backend.mps_linalg as mps_linalg
def LH_linear_operator(A_L, lR):
"""
Return, as a LinearOperator, the LHS of the equation found by
summing the geometric series for
the left environment Hamiltonian.
"""
chi = A_L.shape[1]
Id = np.eye(chi, dtype=A_L.dtype)
def matvec(v):
v = v.reshape((chi, chi))
Th_v = ct.XopL(A_L, X=v)
vR = ct.proj(v, lR)*Id
v = v - Th_v + vR
v = v.flatten()
return v
op = LinearOperator((chi**2, chi**2), matvec=matvec, dtype=A_L.dtype)
return op
def call_solver(op, hI, params, x0, tol):
"""
Code used by both solve_for_RH and solve_for_LH to call the
sparse solver.
"""
if x0 is not None:
x0 = x0.flatten()
if params["solver"] == "gmres":
x, info = gmres(op,
hI.flatten(),
tol=tol,
restart=params["n_krylov"],
maxiter=params["max_restarts"],
x0=x0)
elif params["solver"] == "lgmres":
x, info = lgmres(op,
hI.flatten(),
tol=tol,
maxiter=params["maxiter"],
inner_m=params["inner_m"],
outer_k=params["outer_k"],
x0=x0)
new_hI = x.reshape(hI.shape)
return (new_hI, info)
def outermat(A, B):
chi = A.shape[0]
contract = [A, B]
idxs = [[-2, -1], [-3, -4]]
return tn.ncon(contract, idxs, backend="numpy").reshape((chi**2, chi**2))
def dense_LH_op(A_L, lR):
chi = A_L.shape[1]
eye = np.eye(chi, dtype=A_L.dtype)
term1 = outermat(eye, eye)
term2 = ct.tmdense(A_L).reshape((chi**2, chi**2))
term3 = outermat(eye, lR)
mat = term1-term2+term3
mat = mat.T
return mat
def prepare_for_LH_solve(A_L, H, lR):
hL_bare = ct.compute_hL(A_L, H)
hL_div = ct.proj(hL_bare, lR)*np.eye(hL_bare.shape[0])
hL = hL_bare - hL_div
return hL
def solve_for_LH(A_L, H, lR, params, delta, oldLH=None,
dense=False):
"""
Find the renormalized left environment Hamiltonian using a sparse
solver.
"""
hL = prepare_for_LH_solve(A_L, H, lR)
chi = hL.shape[0]
tol = params["tol_coef"]*delta
if dense:
mat = dense_LH_op(A_L, lR)
op = LH_linear_operator(A_L, lR)
LH = sp.linalg.solve(mat.T, hL.reshape((chi**2)))
LH = LH.reshape((chi, chi))
else:
op = LH_linear_operator(A_L, lR)
LH, info = call_solver(op, hL, params, oldLH, tol)
if info != 0:
print("Warning: Hleft solution failed with code: "+str(info))
return LH
def RH_linear_operator(A_R, rL):
chi = A_R.shape[1]
"""
Return, as a LinearOperator, the LHS of the equation found by
summing the geometric series for
the right environment Hamiltonian.
"""
Id = np.eye(chi, dtype=A_R.dtype)
def matvec(v):
v = v.reshape((chi, chi))
Th_v = ct.XopR(A_R, X=v)
Lv = ct.proj(rL, v)*Id
v = v - Th_v + Lv
v = v.flatten()
return v
op = LinearOperator((chi**2, chi**2), matvec=matvec, dtype=A_R.dtype)
return op
def solve_for_RH(A_R, H, rL, params, delta,
oldRH=None):
"""
Find the renormalized right environment Hamiltonian using a sparse
solver.
"""
hR_bare = ct.compute_hR(A_R, H)
hR_div = ct.proj(rL, hR_bare)*np.eye(hR_bare.shape[0])
hR = hR_bare - hR_div
op = RH_linear_operator(A_R, rL)
tol = params["tol_coef"]*delta
RH, info = call_solver(op, hR, params, oldRH, tol)
if info != 0:
print("Warning: RH solution failed with code: "+str(info))
# RHL = np.abs(ct.proj(rL, RH))
# if RHL > 1E-6:
# print("Warning: large <L|RH> = ", str(RHL))
return RH
| StarcoderdataPython |
1630145 | """
TIFF image parser.
Authors: <NAME>, <NAME>, <NAME>
Creation date: 30 september 2006
"""
from hachoir.parser import Parser
from hachoir.field import SeekableFieldSet, RootSeekableFieldSet, Bytes
from hachoir.core.endian import LITTLE_ENDIAN, BIG_ENDIAN
from hachoir.parser.image.exif import TIFF, IFD
def getStrips(ifd):
data = {}
for i, entry in enumerate(ifd.array('entry')):
data[entry['tag'].display] = entry
# image data
if "StripOffsets" in data and "StripByteCounts" in data:
offs = ifd.getEntryValues(data["StripOffsets"])
bytes = ifd.getEntryValues(data["StripByteCounts"])
for off, byte in zip(offs, bytes):
yield off.value, byte.value
# image data
if "TileOffsets" in data and "TileByteCounts" in data:
offs = ifd.getEntryValues(data["TileOffsets"])
bytes = ifd.getEntryValues(data["TileByteCounts"])
for off, byte in zip(offs, bytes):
yield off.value, byte.value
class ImageFile(SeekableFieldSet):
def __init__(self, parent, name, description, ifd):
SeekableFieldSet.__init__(self, parent, name, description, None)
self._ifd = ifd
def createFields(self):
for off, byte in getStrips(self._ifd):
self.seekByte(off, relative=False)
field = Bytes(self, "strip[]", byte)
yield field
class TiffFile(RootSeekableFieldSet, Parser):
PARSER_TAGS = {
"id": "tiff",
"category": "image",
"file_ext": ("tif", "tiff"),
"mime": ("image/tiff",),
"min_size": 8 * 8,
"magic": ((b"II\x2A\0", 0), (b"MM\0\x2A", 0)),
"description": "TIFF picture"
}
# Correct endian is set in constructor
endian = LITTLE_ENDIAN
def __init__(self, stream, **args):
RootSeekableFieldSet.__init__(
self, None, "root", stream, None, stream.askSize(self))
if self.stream.readBytes(0, 2) == b"MM":
self.endian = BIG_ENDIAN
Parser.__init__(self, stream, **args)
def validate(self):
endian = self.stream.readBytes(0, 2)
if endian not in (b"MM", b"II"):
return "Invalid endian (%r)" % endian
if self["version"].value != 42:
return "Unknown TIFF version"
return True
def createFields(self):
yield from TIFF(self)
for ifd in self:
if not isinstance(ifd, IFD):
continue
offs = (off for off, byte in getStrips(ifd))
self.seekByte(min(offs), relative=False)
image = ImageFile(self, "image[]", "Image File", ifd)
yield image
| StarcoderdataPython |
183277 | from apiclient.discovery import build
from oauth2client.service_account import ServiceAccountCredentials
execfile("config.py")
# Core Reporting API
def get_core_reporting_api_service():
scope = 'https://www.googleapis.com/auth/analytics.readonly'
key_file_location = config['client_secret_file_name']
# Authenticate and construct service.
service = get_service(
api_name='analytics',
api_version='v3',
scopes=[scope],
key_file_location=key_file_location)
return service
# Common Utilits
def get_service(api_name, api_version, scopes, key_file_location):
"""Get a service that communicates to a Google API.
Args:
api_name: The name of the api to connect to.
api_version: The api version to connect to.
scopes: A list auth scopes to authorize for the application.
key_file_location: The path to a valid service account JSON key file.
Returns:
A service that is connected to the specified API.
"""
credentials = ServiceAccountCredentials.from_json_keyfile_name(
key_file_location, scopes=scopes)
# Build the service object.
service = build(api_name, api_version, credentials=credentials)
return service
def get_the_first_profile_id(service):
accounts = service.management().accounts().list().execute()
if accounts.get('items'):
account = accounts.get('items')[0].get('id')
properties = service.management().webproperties().list(
accountId=account).execute()
if properties.get('items'):
property = properties.get('items')[0].get('id')
profiles = service.management().profiles().list(
accountId=account,
webPropertyId=property).execute()
if profiles.get('items'):
return profiles.get('items')[0].get('id')
return None
| StarcoderdataPython |
87418 | # This file was automatically generated by SWIG (http://www.swig.org).
# Version 2.0.4
#
# Do not make changes to this file unless you know what you are doing--modify
# the SWIG interface file instead.
from sys import version_info
if version_info >= (2,6,0):
def swig_import_helper():
from os.path import dirname
import imp
fp = None
try:
fp, pathname, description = imp.find_module('_cqpid', [dirname(__file__)])
except ImportError:
import _cqpid
return _cqpid
if fp is not None:
try:
_mod = imp.load_module('_cqpid', fp, pathname, description)
finally:
fp.close()
return _mod
_cqpid = swig_import_helper()
del swig_import_helper
else:
import _cqpid
del version_info
try:
_swig_property = property
except NameError:
pass # Python < 2.2 doesn't have 'property'.
def _swig_setattr_nondynamic(self,class_type,name,value,static=1):
if (name == "thisown"): return self.this.own(value)
if (name == "this"):
if type(value).__name__ == 'SwigPyObject':
self.__dict__[name] = value
return
method = class_type.__swig_setmethods__.get(name,None)
if method: return method(self,value)
if (not static):
self.__dict__[name] = value
else:
raise AttributeError("You cannot add attributes to %s" % self)
def _swig_setattr(self,class_type,name,value):
return _swig_setattr_nondynamic(self,class_type,name,value,0)
def _swig_getattr(self,class_type,name):
if (name == "thisown"): return self.this.own()
method = class_type.__swig_getmethods__.get(name,None)
if method: return method(self)
raise AttributeError(name)
def _swig_repr(self):
try: strthis = "proxy of " + self.this.__repr__()
except: strthis = ""
return "<%s.%s; %s >" % (self.__class__.__module__, self.__class__.__name__, strthis,)
try:
_object = object
_newclass = 1
except AttributeError:
class _object : pass
_newclass = 0
MessagingError = _cqpid.MessagingError
LinkError = _cqpid.LinkError
AddressError = _cqpid.AddressError
ResolutionError = _cqpid.ResolutionError
AssertionFailed = _cqpid.AssertionFailed
NotFound = _cqpid.NotFound
InvalidOption = _cqpid.InvalidOption
MalformedAddress = _cqpid.MalformedAddress
ReceiverError = _cqpid.ReceiverError
FetchError = _cqpid.FetchError
Empty = _cqpid.Empty
SenderError = _cqpid.SenderError
SendError = _cqpid.SendError
TargetCapacityExceeded = _cqpid.TargetCapacityExceeded
ConnectionError = _cqpid.ConnectionError
ConnectError = _cqpid.ConnectError
SessionError = _cqpid.SessionError
TransactionError = _cqpid.TransactionError
TransactionAborted = _cqpid.TransactionAborted
UnauthorizedAccess = _cqpid.UnauthorizedAccess
class Address(_object):
__swig_setmethods__ = {}
__setattr__ = lambda self, name, value: _swig_setattr(self, Address, name, value)
__swig_getmethods__ = {}
__getattr__ = lambda self, name: _swig_getattr(self, Address, name)
__repr__ = _swig_repr
def __init__(self, *args):
this = _cqpid.new_Address(*args)
try: self.this.append(this)
except: self.this = this
__swig_destroy__ = _cqpid.delete_Address
__del__ = lambda self : None;
def getName(self): return _cqpid.Address_getName(self)
def setName(self, *args): return _cqpid.Address_setName(self, *args)
def getSubject(self): return _cqpid.Address_getSubject(self)
def setSubject(self, *args): return _cqpid.Address_setSubject(self, *args)
def getOptions(self, *args): return _cqpid.Address_getOptions(self, *args)
def setOptions(self, *args): return _cqpid.Address_setOptions(self, *args)
def getType(self): return _cqpid.Address_getType(self)
def setType(self, *args): return _cqpid.Address_setType(self, *args)
def str(self): return _cqpid.Address_str(self)
def __nonzero__(self):
return _cqpid.Address___nonzero__(self)
__bool__ = __nonzero__
Address_swigregister = _cqpid.Address_swigregister
Address_swigregister(Address)
class Duration(_object):
__swig_setmethods__ = {}
__setattr__ = lambda self, name, value: _swig_setattr(self, Duration, name, value)
__swig_getmethods__ = {}
__getattr__ = lambda self, name: _swig_getattr(self, Duration, name)
__repr__ = _swig_repr
def __init__(self, *args):
this = _cqpid.new_Duration(*args)
try: self.this.append(this)
except: self.this = this
def getMilliseconds(self): return _cqpid.Duration_getMilliseconds(self)
__swig_destroy__ = _cqpid.delete_Duration
__del__ = lambda self : None;
Duration_swigregister = _cqpid.Duration_swigregister
Duration_swigregister(Duration)
cvar = _cqpid.cvar
Duration.FOREVER = _cqpid.cvar.Duration_FOREVER
Duration.IMMEDIATE = _cqpid.cvar.Duration_IMMEDIATE
Duration.SECOND = _cqpid.cvar.Duration_SECOND
Duration.MINUTE = _cqpid.cvar.Duration_MINUTE
def __eq__(*args):
return _cqpid.__eq__(*args)
__eq__ = _cqpid.__eq__
def __ne__(*args):
return _cqpid.__ne__(*args)
__ne__ = _cqpid.__ne__
class Message(_object):
__swig_setmethods__ = {}
__setattr__ = lambda self, name, value: _swig_setattr(self, Message, name, value)
__swig_getmethods__ = {}
__getattr__ = lambda self, name: _swig_getattr(self, Message, name)
__repr__ = _swig_repr
def __init__(self, *args):
this = _cqpid.new_Message(*args)
try: self.this.append(this)
except: self.this = this
__swig_destroy__ = _cqpid.delete_Message
__del__ = lambda self : None;
def _setReplyTo(self, *args): return _cqpid.Message__setReplyTo(self, *args)
def _getReplyTo(self): return _cqpid.Message__getReplyTo(self)
def setSubject(self, *args): return _cqpid.Message_setSubject(self, *args)
def getSubject(self): return _cqpid.Message_getSubject(self)
def setContentType(self, *args): return _cqpid.Message_setContentType(self, *args)
def getContentType(self): return _cqpid.Message_getContentType(self)
def setMessageId(self, *args): return _cqpid.Message_setMessageId(self, *args)
def getMessageId(self): return _cqpid.Message_getMessageId(self)
def setUserId(self, *args): return _cqpid.Message_setUserId(self, *args)
def getUserId(self): return _cqpid.Message_getUserId(self)
def setCorrelationId(self, *args): return _cqpid.Message_setCorrelationId(self, *args)
def getCorrelationId(self): return _cqpid.Message_getCorrelationId(self)
def setPriority(self, *args): return _cqpid.Message_setPriority(self, *args)
def getPriority(self): return _cqpid.Message_getPriority(self)
def _setTtl(self, *args): return _cqpid.Message__setTtl(self, *args)
def _getTtl(self): return _cqpid.Message__getTtl(self)
def setDurable(self, *args): return _cqpid.Message_setDurable(self, *args)
def getDurable(self): return _cqpid.Message_getDurable(self)
def getRedelivered(self): return _cqpid.Message_getRedelivered(self)
def setRedelivered(self, *args): return _cqpid.Message_setRedelivered(self, *args)
def getProperties(self, *args): return _cqpid.Message_getProperties(self, *args)
def setContent(self, *args): return _cqpid.Message_setContent(self, *args)
def getContent(self): return _cqpid.Message_getContent(self)
def getContentPtr(self): return _cqpid.Message_getContentPtr(self)
def getContentSize(self): return _cqpid.Message_getContentSize(self)
def setProperty(self, *args): return _cqpid.Message_setProperty(self, *args)
# UNSPECIFIED was module level before, but I do not
# know how to insert python code at the top of the module.
# (A bare "%pythoncode" inserts at the end.
UNSPECIFIED=object()
def __init__(self, content=None, content_type=UNSPECIFIED, id=None,
subject=None, user_id=None, reply_to=None,
correlation_id=None, durable=None, priority=None,
ttl=None, properties=None):
this = _cqpid.new_Message('')
try: self.this.append(this)
except: self.this = this
if content :
self.content = content
if content_type != UNSPECIFIED :
self.content_type = content_type
if id is not None :
self.id = id
if subject is not None :
self.subject = subject
if user_id is not None :
self.user_id = user_id
if reply_to is not None :
self.reply_to = reply_to
if correlation_id is not None :
self.correlation_id = correlation_id
if durable is not None :
self.durable = durable
if priority is not None :
self.priority = priority
if ttl is not None :
self.ttl = ttl
if properties is not None :
# Can't set properties via (inst).getProperties, because
# the typemaps make a copy of the underlying properties.
# Instead, set via setProperty for the time-being
for k, v in properties.iteritems() :
self.setProperty(k, v)
def _get_content(self) :
if self.content_type == "amqp/list" :
return decodeList(self)
if self.content_type == "amqp/map" :
return decodeMap(self)
return self.getContent()
def _set_content(self, content) :
if isinstance(content, basestring) :
self.setContent(content)
elif isinstance(content, list) or isinstance(content, dict) :
encode(content, self)
else :
# Not a type we can handle. Try setting it anyway,
# although this will probably lead to a swig error
self.setContent(content)
__swig_getmethods__["content"] = _get_content
__swig_setmethods__["content"] = _set_content
if _newclass: content = property(_get_content, _set_content)
__swig_getmethods__["content_type"] = getContentType
__swig_setmethods__["content_type"] = setContentType
if _newclass: content_type = property(getContentType, setContentType)
__swig_getmethods__["id"] = getMessageId
__swig_setmethods__["id"] = setMessageId
if _newclass: id = property(getMessageId, setMessageId)
__swig_getmethods__["subject"] = getSubject
__swig_setmethods__["subject"] = setSubject
if _newclass: subject = property(getSubject, setSubject)
__swig_getmethods__["priority"] = getPriority
__swig_setmethods__["priority"] = setPriority
if _newclass: priority = property(getPriority, setPriority)
def getTtl(self) :
return self._getTtl().getMilliseconds()/1000.0
def setTtl(self, duration) :
self._setTtl(Duration(int(1000*duration)))
__swig_getmethods__["ttl"] = getTtl
__swig_setmethods__["ttl"] = setTtl
if _newclass: ttl = property(getTtl, setTtl)
__swig_getmethods__["user_id"] = getUserId
__swig_setmethods__["user_id"] = setUserId
if _newclass: user_id = property(getUserId, setUserId)
__swig_getmethods__["correlation_id"] = getCorrelationId
__swig_setmethods__["correlation_id"] = setCorrelationId
if _newclass: correlation_id = property(getCorrelationId, setCorrelationId)
__swig_getmethods__["redelivered"] = getRedelivered
__swig_setmethods__["redelivered"] = setRedelivered
if _newclass: redelivered = property(getRedelivered, setRedelivered)
__swig_getmethods__["durable"] = getDurable
__swig_setmethods__["durable"] = setDurable
if _newclass: durable = property(getDurable, setDurable)
__swig_getmethods__["properties"] = getProperties
if _newclass: properties = property(getProperties)
def getReplyTo(self) :
return self._getReplyTo().str()
def setReplyTo(self, address_str) :
self._setReplyTo(Address(address_str))
__swig_getmethods__["reply_to"] = getReplyTo
__swig_setmethods__["reply_to"] = setReplyTo
if _newclass: reply_to = property(getReplyTo, setReplyTo)
def __repr__(self):
args = []
for name in ["id", "subject", "user_id", "reply_to",
"correlation_id", "priority", "ttl",
"durable", "redelivered", "properties",
"content_type"] :
value = getattr(self, name)
if value : args.append("%s=%r" % (name, value))
if self.content is not None:
if args:
args.append("content=%r" % self.content)
else:
args.append(repr(self.content))
return "Message(%s)" % ", ".join(args)
Message_swigregister = _cqpid.Message_swigregister
Message_swigregister(Message)
def __mul__(*args):
return _cqpid.__mul__(*args)
__mul__ = _cqpid.__mul__
class EncodingException(_object):
__swig_setmethods__ = {}
__setattr__ = lambda self, name, value: _swig_setattr(self, EncodingException, name, value)
__swig_getmethods__ = {}
__getattr__ = lambda self, name: _swig_getattr(self, EncodingException, name)
__repr__ = _swig_repr
def __init__(self, *args):
this = _cqpid.new_EncodingException(*args)
try: self.this.append(this)
except: self.this = this
__swig_destroy__ = _cqpid.delete_EncodingException
__del__ = lambda self : None;
EncodingException_swigregister = _cqpid.EncodingException_swigregister
EncodingException_swigregister(EncodingException)
class Receiver(_object):
__swig_setmethods__ = {}
__setattr__ = lambda self, name, value: _swig_setattr(self, Receiver, name, value)
__swig_getmethods__ = {}
__getattr__ = lambda self, name: _swig_getattr(self, Receiver, name)
__repr__ = _swig_repr
def __init__(self, *args):
this = _cqpid.new_Receiver(*args)
try: self.this.append(this)
except: self.this = this
__swig_destroy__ = _cqpid.delete_Receiver
__del__ = lambda self : None;
def get(self, *args): return _cqpid.Receiver_get(self, *args)
def _fetch(self, *args): return _cqpid.Receiver__fetch(self, *args)
def setCapacity(self, *args): return _cqpid.Receiver_setCapacity(self, *args)
def getCapacity(self): return _cqpid.Receiver_getCapacity(self)
def available(self): return _cqpid.Receiver_available(self)
def unsettled(self): return _cqpid.Receiver_unsettled(self)
def close(self): return _cqpid.Receiver_close(self)
def isClosed(self): return _cqpid.Receiver_isClosed(self)
def getName(self): return _cqpid.Receiver_getName(self)
def getSession(self): return _cqpid.Receiver_getSession(self)
__swig_getmethods__["capacity"] = getCapacity
__swig_setmethods__["capacity"] = setCapacity
if _newclass: capacity = property(getCapacity, setCapacity)
__swig_getmethods__["session"] = getSession
if _newclass: session = property(getSession)
def fetch(self, timeout=None) :
if timeout is None :
return self._fetch()
else :
# Python API uses timeouts in seconds,
# but C++ API uses milliseconds
return self._fetch(Duration(int(1000*timeout)))
Receiver_swigregister = _cqpid.Receiver_swigregister
Receiver_swigregister(Receiver)
def decode(*args):
return _cqpid.decode(*args)
decode = _cqpid.decode
def encode(*args):
return _cqpid.encode(*args)
encode = _cqpid.encode
class Sender(_object):
__swig_setmethods__ = {}
__setattr__ = lambda self, name, value: _swig_setattr(self, Sender, name, value)
__swig_getmethods__ = {}
__getattr__ = lambda self, name: _swig_getattr(self, Sender, name)
__repr__ = _swig_repr
def __init__(self, *args):
this = _cqpid.new_Sender(*args)
try: self.this.append(this)
except: self.this = this
__swig_destroy__ = _cqpid.delete_Sender
__del__ = lambda self : None;
def _send(self, *args): return _cqpid.Sender__send(self, *args)
def close(self): return _cqpid.Sender_close(self)
def setCapacity(self, *args): return _cqpid.Sender_setCapacity(self, *args)
def getCapacity(self): return _cqpid.Sender_getCapacity(self)
def unsettled(self): return _cqpid.Sender_unsettled(self)
def available(self): return _cqpid.Sender_available(self)
def getName(self): return _cqpid.Sender_getName(self)
def getSession(self): return _cqpid.Sender_getSession(self)
def send(self, object, sync=True) :
if isinstance(object, Message):
message = object
else:
message = Message(object)
return self._send(message, sync)
__swig_getmethods__["capacity"] = getCapacity
__swig_setmethods__["capacity"] = setCapacity
if _newclass: capacity = property(getCapacity, setCapacity)
__swig_getmethods__["session"] = getSession
if _newclass: session = property(getSession)
Sender_swigregister = _cqpid.Sender_swigregister
Sender_swigregister(Sender)
class Session(_object):
__swig_setmethods__ = {}
__setattr__ = lambda self, name, value: _swig_setattr(self, Session, name, value)
__swig_getmethods__ = {}
__getattr__ = lambda self, name: _swig_getattr(self, Session, name)
__repr__ = _swig_repr
def __init__(self, *args):
this = _cqpid.new_Session(*args)
try: self.this.append(this)
except: self.this = this
__swig_destroy__ = _cqpid.delete_Session
__del__ = lambda self : None;
def close(self): return _cqpid.Session_close(self)
def commit(self): return _cqpid.Session_commit(self)
def rollback(self): return _cqpid.Session_rollback(self)
def _acknowledge_all(self, sync = False): return _cqpid.Session__acknowledge_all(self, sync)
def _acknowledge_msg(self, *args): return _cqpid.Session__acknowledge_msg(self, *args)
def acknowledge(self, *args): return _cqpid.Session_acknowledge(self, *args)
def acknowledgeUpTo(self, *args): return _cqpid.Session_acknowledgeUpTo(self, *args)
def reject(self, *args): return _cqpid.Session_reject(self, *args)
def release(self, *args): return _cqpid.Session_release(self, *args)
def sync(self, block = True): return _cqpid.Session_sync(self, block)
def getReceivable(self): return _cqpid.Session_getReceivable(self)
def getUnsettledAcks(self): return _cqpid.Session_getUnsettledAcks(self)
def nextReceiver(self, *args): return _cqpid.Session_nextReceiver(self, *args)
def sender(self, *args): return _cqpid.Session_sender(self, *args)
def receiver(self, *args): return _cqpid.Session_receiver(self, *args)
def getSender(self, *args): return _cqpid.Session_getSender(self, *args)
def getReceiver(self, *args): return _cqpid.Session_getReceiver(self, *args)
def getConnection(self): return _cqpid.Session_getConnection(self)
def hasError(self): return _cqpid.Session_hasError(self)
def checkError(self): return _cqpid.Session_checkError(self)
def acknowledge(self, message=None, disposition=None, sync=True) :
if disposition :
raise Exception("SWIG does not support dispositions yet. Use "
"Session.reject and Session.release instead")
if message :
self._acknowledge_msg(message, sync)
else :
self._acknowledge_all(sync)
__swig_getmethods__["connection"] = getConnection
if _newclass: connection = property(getConnection)
Session_swigregister = _cqpid.Session_swigregister
Session_swigregister(Session)
class Connection(_object):
__swig_setmethods__ = {}
__setattr__ = lambda self, name, value: _swig_setattr(self, Connection, name, value)
__swig_getmethods__ = {}
__getattr__ = lambda self, name: _swig_getattr(self, Connection, name)
__repr__ = _swig_repr
def __init__(self, *args):
this = _cqpid.new_Connection(*args)
try: self.this.append(this)
except: self.this = this
__swig_destroy__ = _cqpid.delete_Connection
__del__ = lambda self : None;
def setOption(self, *args): return _cqpid.Connection_setOption(self, *args)
def open(self): return _cqpid.Connection_open(self)
def opened(self): return _cqpid.Connection_opened(self)
def isOpen(self): return _cqpid.Connection_isOpen(self)
def close(self): return _cqpid.Connection_close(self)
def createTransactionalSession(self, *args): return _cqpid.Connection_createTransactionalSession(self, *args)
def createSession(self, *args): return _cqpid.Connection_createSession(self, *args)
def getSession(self, *args): return _cqpid.Connection_getSession(self, *args)
def getAuthenticatedUsername(self): return _cqpid.Connection_getAuthenticatedUsername(self)
# Handle the different options by converting underscores to hyphens.
# Also, the sasl_mechanisms option in Python has no direct
# equivalent in C++, so we will translate them to sasl_mechanism
# when possible.
def __init__(self, url=None, **options):
if url:
args = [url]
else:
args = []
if options :
if "sasl_mechanisms" in options :
if ' ' in options.get("sasl_mechanisms",'') :
raise Exception(
"C++ Connection objects are unable to handle "
"multiple sasl-mechanisms")
options["sasl_mechanism"] = options.pop("sasl_mechanisms")
args.append(options)
this = _cqpid.new_Connection(*args)
try: self.this.append(this)
except: self.this = this
def _session(self, *args): return _cqpid.Connection__session(self, *args)
def session(self, name=None, transactional=False) :
if name is None :
name = ''
return self._session(name, transactional)
@staticmethod
def establish(url=None, **options) :
conn = Connection(url, **options)
conn.open()
return conn
Connection_swigregister = _cqpid.Connection_swigregister
Connection_swigregister(Connection)
class FailoverUpdates(_object):
__swig_setmethods__ = {}
__setattr__ = lambda self, name, value: _swig_setattr(self, FailoverUpdates, name, value)
__swig_getmethods__ = {}
__getattr__ = lambda self, name: _swig_getattr(self, FailoverUpdates, name)
__repr__ = _swig_repr
def __init__(self, *args):
this = _cqpid.new_FailoverUpdates(*args)
try: self.this.append(this)
except: self.this = this
__swig_destroy__ = _cqpid.delete_FailoverUpdates
__del__ = lambda self : None;
FailoverUpdates_swigregister = _cqpid.FailoverUpdates_swigregister
FailoverUpdates_swigregister(FailoverUpdates)
def decodeMap(*args):
return _cqpid.decodeMap(*args)
decodeMap = _cqpid.decodeMap
def decodeList(*args):
return _cqpid.decodeList(*args)
decodeList = _cqpid.decodeList
# Bring into module scope
UNSPECIFIED = Message.UNSPECIFIED
# This file is compatible with both classic and new-style classes.
| StarcoderdataPython |
4804249 | <reponame>Mario263/Hacktoberfest_2021
# Python3 code to demonstrate working of
# Maximum and Minimum K elements in Tuple
# Using sorted() + loop
# initializing tuple
test_tup = (5, 20, 3, 7, 6, 8)
# printing original tuple
print("The original tuple is : " + str(test_tup))
# initializing K
K = 2
# Maximum and Minimum K elements in Tuple
# Using sorted() + loop
res = []
test_tup = list(sorted(test_tup))
for idx, val in enumerate(test_tup):
if idx < K or idx >= len(test_tup) - K:
res.append(val)
res = tuple(res)
# printing result
print("The extracted values : " + str(res))
| StarcoderdataPython |
124338 | <reponame>dr-guangtou/asap
#!/usr/bin/env python
"""This script will read the dark matter particle table for the SMDPL
simulation, and downsample it for our model.
"""
import os
import argparse
import numpy as np
import pandas as pd
S18A_RAND_COLS = [
'object_id', 'ra', 'dec', 'coord', 'skymap_id', 'tract', 'patch', 'patch_s', 'parent_id',
'nchild', 'isprimary', 'adjust_density', 'detect_ispatchinner', 'detect_istractinner',
'g_pix_variance', 'g_sky_mean', 'g_sky_std', 'g_inputcount_value', 'g_inputcount_flag',
'g_inputcount_flag_noinputs', 'g_inputcount_flag_badcentroid', 'g_pixelflags',
'g_pixelflags_offimage', 'g_pixelflags_edge', 'g_pixelflags_bad',
'g_pixelflags_interpolatedcenter', 'g_pixelflags_saturatedcenter', 'g_pixelflags_crcenter',
'g_pixelflags_suspectcenter', 'g_pixelflags_bright_objectcenter', 'g_sdssshape_psf_shape11',
'g_sdssshape_psf_shape22', 'g_sdssshape_psf_shape12',
'r_pix_variance', 'r_sky_mean', 'r_sky_std', 'r_inputcount_value', 'r_inputcount_flag',
'r_inputcount_flag_noinputs', 'r_inputcount_flag_badcentroid', 'r_pixelflags',
'r_pixelflags_offimage', 'r_pixelflags_edge', 'r_pixelflags_bad',
'r_pixelflags_interpolatedcenter', 'r_pixelflags_saturatedcenter', 'r_pixelflags_crcenter',
'r_pixelflags_suspectcenter', 'r_pixelflags_bright_objectcenter', 'r_sdssshape_psf_shape11',
'r_sdssshape_psf_shape22', 'r_sdssshape_psf_shape12',
'i_pix_variance', 'i_sky_mean', 'i_sky_std', 'i_inputcount_value', 'i_inputcount_flag',
'i_inputcount_flag_noinputs', 'i_inputcount_flag_badcentroid', 'i_pixelflags',
'i_pixelflags_offimage', 'i_pixelflags_edge', 'i_pixelflags_bad',
'i_pixelflags_interpolatedcenter', 'i_pixelflags_saturatedcenter', 'i_pixelflags_crcenter',
'i_pixelflags_suspectcenter', 'i_pixelflags_bright_objectcenter', 'i_sdssshape_psf_shape11',
'i_sdssshape_psf_shape22', 'i_sdssshape_psf_shape12',
'z_pix_variance', 'z_sky_mean', 'z_sky_std', 'z_inputcount_value', 'z_inputcount_flag',
'z_inputcount_flag_noinputs', 'z_inputcount_flag_badcentroid', 'z_pixelflags',
'z_pixelflags_offimage', 'z_pixelflags_edge', 'z_pixelflags_bad',
'z_pixelflags_interpolatedcenter', 'z_pixelflags_saturatedcenter', 'z_pixelflags_crcenter',
'z_pixelflags_suspectcenter', 'z_pixelflags_bright_objectcenter', 'z_sdssshape_psf_shape11',
'z_sdssshape_psf_shape22', 'z_sdssshape_psf_shape12',
'y_pix_variance', 'y_sky_mean', 'y_sky_std', 'y_inputcount_value', 'y_inputcount_flag',
'y_inputcount_flag_noinputs', 'y_inputcount_flag_badcentroid', 'y_pixelflags',
'y_pixelflags_offimage', 'y_pixelflags_edge', 'y_pixelflags_bad',
'y_pixelflags_interpolatedcenter', 'y_pixelflags_saturatedcenter', 'y_pixelflags_crcenter',
'y_pixelflags_suspectcenter', 'y_pixelflags_bright_objectcenter', 'y_sdssshape_psf_shape11',
'y_sdssshape_psf_shape22', 'y_sdssshape_psf_shape12'
]
S18A_RAND_USE = [0, 1, 2, 5, 6, 10, 11, 17, 36, 55, 74, 93]
S18A_RAND_DTYPE = [
("object_id", "int32"), ("ra", "float64"), ("dec", "float64"),
("tract", "int32"), ("patch", "int32"), ("isprimary", "bool"),
("adjust_density", "float64"), ("g_inputcount_value", "float32"),
("r_inputcount_value", "float32"), ("i_inputcount_value", "float32"),
("z_inputcount_value", "float32"), ("y_inputcount_value", "float32")
]
def downsample_randoms(rand_file, chunksize=1e6, seed=95064, whitespace=False,
downsample=False, verbose=True, gzip=False):
"""Down-sample the random catalogs from the HSC S18A data."""
if not os.path.isfile(rand_file):
raise IOError("# Can not find the particle table : %s" % rand_file)
if gzip:
rand_pre = rand_file.replace('.csv.gz', '')
else:
rand_pre = rand_file.replace('.csv', '')
# Reduce the number of colunms and save as a numpy array
rand_out = rand_pre + ".npy"
rand_out_downsample = rand_pre + "_downsample.npy"
if verbose:
print("# Save the downsampled catalog to : %s" % rand_out)
# Read the data
rand_pchunks = pd.read_csv(
rand_file, usecols=S18A_RAND_USE, delim_whitespace=whitespace,
index_col=False, chunksize=chunksize)
rand_pdframe = pd.concat(rand_pchunks)
rand_pdframe.rename(columns={'# object_id': 'object_id'}, inplace=True)
rand_array = rand_pdframe.to_records(index=False)
# Save the result
if verbose:
print("# There are %d randoms in the file: %s" % (len(rand_array), rand_file))
np.save(rand_out, rand_array)
# Downsample
if downsample:
np.random.seed(seed)
n_rand = int(len(rand_array) / 10)
rand_downsample = np.random.choice(rand_array, n_rand, replace=False)
# Save the result
np.save(rand_out_downsample, rand_downsample)
if __name__ == "__main__":
parser = argparse.ArgumentParser()
parser.add_argument(
'rand_file', type=str,
help=('The particle catalog.'))
parser.add_argument(
'-c', '--chunk', dest='chunksize', type=int, default=1e6,
help=('Size of the chunk when reading in the catalog.'))
parser.add_argument(
'-g', '--gzip', dest='gzip',
help=('Whether the file is in .csv.gz format'),
action="store_true", default=False)
parser.add_argument(
'-s', '--seed', dest='seed', help='Random seed',
type=int, default=95064)
parser.add_argument(
'-v', '--verbose', dest='verbose',
help=('Blah, blah...'),
action="store_true", default=False)
args = parser.parse_args()
downsample_randoms(
args.rand_file, chunksize=args.chunksize,
seed=args.seed, verbose=args.verbose, gzip=args.gzip)
| StarcoderdataPython |
12436 | <reponame>qingyunha/boltdb<gh_stars>1-10
import os
import unittest
import tempfile
from boltdb import BoltDB
class TestFree(unittest.TestCase):
def setUp(self):
self.db = BoltDB(tempfile.mktemp())
def tearDown(self):
os.unlink(self.db.filename)
def test_free(self):
with self.db.update() as tx:
b = tx.bucket()
b.put(b"foo", b"bar")
self.assertEqual(self.db.freelist.ids, [3])
with self.db.update() as tx:
b = tx.bucket()
b.put(b"foo", b"bar")
self.assertEqual(self.db.freelist.ids, [4])
def test_free2(self):
self.assertEqual(self.db.freepages(), [2])
with self.db.update() as tx:
b = tx.bucket()
b.put(b"foo", b"bar")
self.assertEqual(sorted(self.db.freepages()), [2, 3])
with self.db.update() as tx:
b = tx.bucket()
b.put(b"foo", b"bar")
self.assertEqual(sorted(self.db.freepages()), [2, 4])
| StarcoderdataPython |
32291 | from dissononce.dh import private
class PrivateKey(private.PrivateKey):
pass
| StarcoderdataPython |
1706699 | <filename>warehouse/legacy/tables.py
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# Note: Tables that exist here should not be used anywhere, they only exist
# here for migration support with alembic. If any of these tables end up
# being used they should be moved outside of warehouse.legacy. The goal
# is that once the legacy PyPI code base is gone, that these tables
# can just be deleted and a migration made to drop them from the
# database.
from citext import CIText
from sqlalchemy import (
Column,
ForeignKey,
Index,
Table,
UniqueConstraint,
DateTime,
Text,
)
from warehouse import db
# TODO: Once https://github.com/pypa/warehouse/issues/3632 is solved, then we
# should be able to get rid of this table too, however keeping it around
# for now to aid in the resolution of that issue.
rego_otk = Table(
"rego_otk",
db.metadata,
Column("name", CIText(), ForeignKey("accounts_user.username", ondelete="CASCADE")),
Column("otk", Text()),
Column("date", DateTime(timezone=False)),
UniqueConstraint("otk", name="rego_otk_unique"),
)
Index("rego_otk_name_idx", rego_otk.c.name)
Index("rego_otk_otk_idx", rego_otk.c.otk)
| StarcoderdataPython |
1655915 | <gh_stars>0
import os
import glob
import argparse
import zipfile
import imageio
import tqdm
import numpy as np
import tracker
import cv2
def create_gifs(model, anno_path, zip_path, gif_path, dim=(408,360)):
z = zipfile.ZipFile(os.path.join(zip_path))
names = [name for name in z.namelist() if name.endswith('.jpg')]
names.sort(key=lambda s: int(s[:-4]))
image_gen = (cv2.imdecode(np.frombuffer(z.read(name), np.uint8), 1) for name in names)
success_images = []
original_images = []
precision_images = []
with open(anno_path, "r") as f:
first_bbox = tuple(map(float,f.readline().split(",")))
for image, (_, bbox) in tqdm.tqdm(model.predict_frames(image_gen, bbox=first_bbox)):
anno_bbox = tuple(map(float,f.readline().split(",")))
p1 = (int(anno_bbox[0]), int(anno_bbox[1]))
p2 = (int(anno_bbox[0] + anno_bbox[2]), int(anno_bbox[1] + anno_bbox[3]))
m1 = (int(bbox[0]), int(bbox[1]))
m2 = (int(bbox[0] + bbox[2]), int(bbox[1] + bbox[3]))
c1 = (int(anno_bbox[0] + anno_bbox[2] // 2), int(anno_bbox[1] + anno_bbox[3] // 2))
c2 = (int(bbox[0] + bbox[2] // 2), int(bbox[1] + bbox[3] // 2))
original = cv2.cvtColor(image, cv2.COLOR_BGR2RGB)
original_images.append(original)
copy = original.copy()
cv2.rectangle(copy, p1, p2, (0,255,0), 2, 1)
cv2.rectangle(copy, m1, m2, (0,0,255), 2, 1)
# cover success image
success_image = np.zeros(copy.shape, np.uint8)
minx = max(p1[0], m1[0])
miny = max(p1[1], m1[1])
maxx = min(m2[0], p2[0])
maxy = min(m2[1], p2[1])
cv2.rectangle(success_image, p1, p2, (200,200,0), -1)
cv2.rectangle(success_image, m1, m2, (200,200,0), -1)
cv2.rectangle(success_image, (minx, miny), (maxx, maxy), (0,200,200), -1)
cv2.rectangle(success_image, p1, p2, (0,255,0), 2, 1)
cv2.rectangle(success_image, m1, m2, (0,0,255), 2, 1)
alpha = 0.6
overlay = cv2.addWeighted(success_image, alpha, copy, 1-alpha, gamma=0)
success_images.append(success_image)
# precision
precision_image = np.zeros(original.shape, dtype=np.uint8)
prec_copy = original.copy()
cv2.rectangle(precision_image, p1, p2, (0,255,0), 1)
cv2.rectangle(precision_image, m1, m2, (0,0,255), 1)
cv2.line(precision_image, c1, c2, (255,0,0), 5,1)
cv2.rectangle(original, p1, p2, (0,255,0), 2, 1)
cv2.rectangle(original, m1, m2, (0,0,255), 2, 1)
overlay = cv2.addWeighted(precision_image, alpha, prec_copy, 1-alpha, gamma=0)
precision_images.append(precision_image)
imageio.mimsave(gif_path+"_success.gif", success_images)
imageio.mimsave(gif_path+"_precision.gif", precision_images)
imageio.mimsave(gif_path+"_original.gif", original_images)
def create_video(model, anno_path, zip_path, vid_path, dim=(480,360), model_type="CSRT"):
fourcc = cv2.VideoWriter_fourcc('m', 'p', '4', 'v')
out = cv2.VideoWriter(vid_path, fourcc, 20, dim)
z = zipfile.ZipFile(os.path.join(zip_path))
names = [name for name in z.namelist() if name.endswith('.jpg')]
names.sort(key=lambda s: int(s[:-4]))
image_gen = (cv2.imdecode(np.frombuffer(z.read(name), np.uint8), 1) for name in names)
with open(anno_path, "r") as f:
first_bbox = tuple(map(float,f.readline().split(",")))
for image, (_, bbox) in tqdm.tqdm(model.predict_frames(image_gen, bbox=first_bbox)):
anno_bbox = tuple(map(float,f.readline().split(",")))
p1 = (int(anno_bbox[0]), int(anno_bbox[1]))
p2 = (int(anno_bbox[0] + anno_bbox[2]), int(anno_bbox[1] + anno_bbox[3]))
cv2.rectangle(image, p1, p2, (0,255,0), 2, 1)
cv2.putText(image, 'Grnd Truth', (p1[0], p1[1]-10), cv2.FONT_HERSHEY_SIMPLEX, 0.9, (0,255,0), 2)
p1 = (int(bbox[0]), int(bbox[1]))
p2 = (int(bbox[0] + bbox[2]), int(bbox[1] + bbox[3]))
cv2.rectangle(image, p1, p2, (255,0,0), 2, 1)
cv2.putText(image, model_type, (p2[0] - 40, p2[1]-10), cv2.FONT_HERSHEY_SIMPLEX, 0.9, (255,0,0), 2)
out.write(image)
out.release()
if __name__ == "__main__":
parser = argparse.ArgumentParser()
parser.add_argument("-f", "--zippath", help="zipfile of images", type=str, required=True)
parser.add_argument("-a", "--annopath", help="path to annotation file", type=str, required=True)
parser.add_argument("-v", "--vidpath", help="video out filepath", type=str, default="summary.csv")
parser.add_argument("-m", "--model", help="model type ('CSRT', 'KCF', 'GOTURN')", type=str, choices=['CSRT', 'KCF', 'GOTURN'], required=True)
parser.add_argument("-g", "--gif", action='store_true')
args = parser.parse_args()
model = tracker.factory(args.model, timed=True)
if not args.gif:
create_video(model, args.annopath, args.zippath, args.vidpath, model_type=args.model)
else:
create_gifs(model, args.annopath, args.zippath, args.vidpath) | StarcoderdataPython |
1727631 | <gh_stars>0
#Importing modules
import pandas as pd
import json
from datetime import datetime
from kafka import KafkaConsumer
from pyspark.ml.feature import VectorAssembler
from time import sleep
#Declearing consumer connection
try:
consumer = KafkaConsumer('stock_prices',bootstrap_servers=['localhost:9092'])
except:
print('connection error')
#getting data and predicting result using the model
def stock_prediction(sqlContext,load_model):
try:
for msg in consumer:
res = json.loads(msg.value.decode('utf-8'))
dlist = list(res.values())
pd_df = pd.DataFrame([dlist], columns=['Open', 'Close', 'Volume', 'High', 'Low'])
pd_df = pd_df.astype(float)
spark_df = sqlContext.createDataFrame(pd_df)
vectorAssembler = VectorAssembler(inputCols=['Open', 'High', 'Low'], outputCol='features')
df_vect = vectorAssembler.transform(spark_df)
df_vect_features = df_vect.select(['features', 'Close'])
predictions = load_model.transform(df_vect_features)
predictions.select("prediction", "Close", "features").show()
predict_value = predictions.select('prediction').collect()[0].__getitem__("prediction")
close_value = predictions.select('Close').collect()[0].__getitem__('Close')
print(msg.key)
date_time = msg.key.decode('utf-8')
return round(predict_value, 4), close_value, date_time
except:
print('Debug the above lines of code')
| StarcoderdataPython |
92566 | <reponame>Limmen/open_spiel<filename>open_spiel/python/games/optimal_stopping_game_approx_exp.py
import math
from typing import List, Tuple
import gym
import numpy as np
import threading
import time
import torch
from stable_baselines3 import PPO
from stable_baselines3.common.monitor import Monitor
from open_spiel.python.games.optimal_stopping_game_config_sequential import OptimalStoppingGameConfigSequential
from open_spiel.python.games.optimal_stopping_game_util import OptimalStoppingGameUtil
class OptimalStoppingGameApproxExp:
"""
Class for computing exploitability of a strategy profile (pi_1, pi_2)
"""
def __init__(self, pi_1, pi_2, config: OptimalStoppingGameConfigSequential, seed: int,
br_training_timesteps = 30000, br_evaluate_timesteps = 1000,
br_net_num_layers=3, br_net_num_hidden_neurons = 128, br_learning_rate = 3e-4, br_batch_size = 64,
br_steps_between_updates = 2048, br_training_device_str : str = "cpu"):
"""
Initializes the object
:param pi_1: the defender NFSP strategy
:param pi_2: the attacker NFSP strategy
:param config: the game configuration
:param seed: the random seed
:param br_training_timesteps: the number of time-steps to use when approximating best response strategies
:param br_evaluate_timesteps: number of time-steps for evaluating a learned BR policy
:param br_net_num_layers: number of hidden layers of the NN to learn an approximate BR
:param br_net_num_hidden_neurons: number of hidden neurons per layer of the NN to learn an approximate BR
:param br_learning_rate: the learning rate for learning approximate best response strategies
:param br_batch_size: the batch size for learning best response strategies
:param br_steps_between_updates: the number of steps between each update during learning of best response strategies
:param br_training_device_str: the device for the training of BR strategies
"""
self.pi_1 = pi_1
self.pi_2 = pi_2
self.config = config
self.br_training_device_str = br_training_device_str
self.attacker_mdp = self._get_attacker_mdp()
self.defender_pomdp = self._get_defender_pomdp()
self.seed = seed
self.br_timesteps = br_training_timesteps
self.br_evaluate_timesteps = br_evaluate_timesteps
self.br_net_num_layers = br_net_num_layers
self.br_net_num_hidden_neurons = br_net_num_hidden_neurons
self.br_learning_rate = br_learning_rate
self.br_batch_size = br_batch_size
self.br_steps_between_updates = br_steps_between_updates
def _get_attacker_mdp(self) -> gym.Env:
"""
:return: the attacker MDP for calculating a best response strategy
"""
env = StoppingGameAttackerMDPEnv(config=self.config, pi_1=self.pi_1, pi_2=self.pi_2,
device_str=self.br_training_device_str)
return env
def _get_defender_pomdp(self) -> gym.Env:
"""
:return: the defender POMDP for calculating a best response strategy
"""
env = StoppingGameDefenderPOMDPEnv(config=self.config, pi_1=self.pi_1, pi_2=self.pi_2)
return env
def approx_exploitability(self) -> float:
"""
:return: approximate exploitability of pi_1 and pi_2
"""
print("--- Calculating approximate exploitability ---")
avg_attacker_br_R = self.attacker_br_avg_reward()
avg_defender_br_R = self.defender_br_avg_reward()
approx_expl = abs(avg_attacker_br_R + avg_defender_br_R)/2
return approx_expl
def attacker_br_avg_reward(self) -> float:
"""
Learns an approximate best response strategy of the attacker and returns its average reward
:return: the average reward of the approximate best response strategy
"""
policy_kwargs = dict(net_arch=[self.br_net_num_hidden_neurons]*self.br_net_num_layers)
# log_dir = "./"
env = Monitor(self.attacker_mdp)
# env = self.attacker_mdp
model = PPO("MlpPolicy", env, verbose=0,
policy_kwargs=policy_kwargs, n_steps=self.br_steps_between_updates,
batch_size=self.br_batch_size, learning_rate=self.br_learning_rate, seed=self.seed,
device=self.br_training_device_str, gamma=1)
self.attacker_mdp.ppo_pi_2 = model
print(" ** Starting training of an approximate best response strategy of the attacker ** ")
progress_thread = ProgressThread(env=env, max_steps=self.br_timesteps)
progress_thread.start()
model.learn(total_timesteps=self.br_timesteps)
progress_thread.running = False
print("** Training of an approximate best response strategy of the attacker complete **")
obs = env.reset()
r = 0
returns = []
for i in range(self.br_evaluate_timesteps):
action, _states = model.predict(obs, deterministic=True)
obs, reward, done, info = env.step(action)
r += reward
if done:
returns.append(r)
r = 0
obs = env.reset()
avg_R = -np.mean(returns)
print("Attacker approximate best response AVG Return:{}".format(avg_R))
return float(avg_R)
def defender_br_avg_reward(self) -> float:
"""
Learns an approximate best response strategy of the defender and returns its average reward
:return: the average reward of the approximate best response strategy
"""
policy_kwargs = dict(net_arch=[self.br_net_num_hidden_neurons]*self.br_net_num_layers)
# log_dir = "./"
env = Monitor(self.defender_pomdp)
# env = self.defender_pomdp
model = PPO("MlpPolicy", env, verbose=0,
policy_kwargs=policy_kwargs, n_steps=self.br_steps_between_updates,
batch_size=self.br_batch_size, learning_rate=self.br_learning_rate, seed=self.seed,
device=self.br_training_device_str, gamma=1)
print("** Starting training of an approximate best response strategy of the defender **")
progress_thread = ProgressThread(env=env, max_steps=self.br_timesteps)
progress_thread.start()
model.learn(total_timesteps=self.br_timesteps)
progress_thread.running = False
print("** Training of an approximate best response strategy of the defender complete **")
obs = env.reset()
r = 0
returns = []
for i in range(self.br_evaluate_timesteps):
action, _states = model.predict(obs, deterministic=True)
obs, reward, done, info = env.step(action)
r += reward
if done:
returns.append(r)
r = 0
obs = env.reset()
avg_R = np.mean(returns)
print("Defender approximate best response AVG Return:{}".format(avg_R))
return float(avg_R)
class StoppingGameAttackerMDPEnv(gym.Env):
"""
MDP where the attacker faces a static defender policy. The optimal policy in this MDP is a best response strategy
of the attacker
"""
def __init__(self, config: OptimalStoppingGameConfigSequential, pi_1, pi_2, device_str):
"""
Initializes the environment
:param config: the environment configuration
:param pi_1: NFSP policy of the defender
:param pi_2: NFSP policy of the attacker
"""
self.config = config
self.l = config.L
self.s0 = 0
self.b0 = config.initial_belief
self.pi_1 = pi_1
self.pi_2 = pi_2
self.observation_space = gym.spaces.Box(low=np.array([0,0,0]), high=np.array([self.config.L,1,2]), dtype=np.float32,
shape=(3,))
self.action_space = gym.spaces.Discrete(2)
self.num_actions = 2
self.t = 0
self.ppo_pi_2 = None
self.device_str = device_str
self.device = torch.device(self.device_str)
def get_attacker_dist(self, obs):
obs = np.array([obs])
actions, values, log_prob = self.ppo_pi_2.policy.forward(obs=torch.tensor(obs).to(self.device))
action = actions[0]
if action == 1:
stop_prob = math.exp(log_prob)
else:
stop_prob = 1-math.exp(log_prob)
return [1-stop_prob, stop_prob]
def get_attacker_stage_policy_avg(self) -> List:
"""
Extracts the stage policy from pi_2
:return: the attacker's stage policy
"""
pi_2_stage = np.zeros((3, 2)).tolist()
pi_2_stage[-1] = [0.5]*2
for s in range(2):
o = [self.l,self.b[1],s]
# pi_2_stage[s] = self.pi_2._act(o, legal_actions = [0,1])[1]
pi_2_stage[s] = self.get_attacker_dist(obs=o)
return pi_2_stage
def step(self, a2) -> Tuple[np.ndarray, float, bool, dict]:
"""
Takes a step in the environment
:param a2: the attacker's action
:return: o, r, done, info
"""
done = False
a1 = self.defender_action()
r = -self.config.R[self.l-1][a1][a2][self.s]
T = self.config.T[self.l-1]
self.s = self.sample_next_state(a1=a1, a2=a2, T=T)
o = max(self.config.O)
if self.s == 2 or self.t >= self.config.T_max:
done = True
else:
o = self.sample_next_observation(a1=a1, a2=a2)
pi_2_stage = self.get_attacker_stage_policy_avg()
self.b = OptimalStoppingGameUtil.next_belief(o=o, a1=a1, b=self.b, pi_2=pi_2_stage,
config=self.config, l=self.l, a2=a2)
self.l = self.l-a1
info = {"o": o, "s": self.s}
self.t += 1
return np.array([self.l, self.b[1], self.s]), r, done, info
def defender_action(self) -> int:
"""
Samples a defender action from a static policy
:return: the sampled defender action
"""
stop_prob = self.pi_1._act([self.l, self.b[1], self.b[1]], legal_actions = [0, 1])[1][1]
if np.random.rand() <= stop_prob:
return 1
else:
return 0
def sample_next_state(self, a1: int, a2: int, T: np.ndarray) -> int:
"""
Samples the next state
:param a1: action of the defender
:param a2: action of the attacker
:param T: the transition tensor
:return: the next state
"""
state_probs = []
for s_prime in self.config.S:
state_probs.append(T[a1][a2][self.s][s_prime])
s_prime = np.random.choice(np.arange(0, len(self.config.S)), p=state_probs)
return s_prime
def sample_next_observation(self, a1: int, a2: int) -> int:
"""
Samples the next observation
:param a1: the action of the defender
:param a2: the action of the attacker
:return: the next observation
"""
observation_probs = []
for o in self.config.O:
observation_probs.append(self.config.Z[a1][a2][self.s][o])
o = np.random.choice(np.arange(0, len(self.config.O)), p=observation_probs)
return o
def reset(self) -> np.ndarray:
"""
Resets the environment
:return: the initial observation
"""
self.s = 0
self.b = self.config.initial_belief
self.l = self.config.L
self.t = 0
return np.array([self.l, self.b0[1], self.s])
def render(self):
raise NotImplementedError("not supported")
class StoppingGameDefenderPOMDPEnv(gym.Env):
"""
POMDP where the defender faces a static attacker policy. The optimal policy in this POMDP is a
best response strategy of the defender
"""
def __init__(self, config: OptimalStoppingGameConfigSequential, pi_1, pi_2):
"""
Initializes the game
:param config: the game configuration
:param pi_1: the defender NFSP policy
:param pi_2: the attacker NFSP policy
"""
self.config = config
self.l = config.L
self.s0 = 0
self.b0 = config.initial_belief
self.pi_1 = pi_1
self.pi_2 = pi_2
self.t = 0
self.observation_space = gym.spaces.Box(low=np.array([0,0,0]), high=np.array([self.config.L,1,1]), dtype=np.float32,
shape=(3,))
self.action_space = gym.spaces.Discrete(2)
def get_attacker_stage_policy_avg(self):
"""
Extracts the stage policy from pi_2
:return: the attacker's stage policy
"""
pi_2_stage = np.zeros((3, 2)).tolist()
pi_2_stage[-1] = [0.5]*2
for s in range(2):
o = [self.l,self.b[1],s]
pi_2_stage[s] = self.pi_2._act(o, legal_actions = [0,1])[1]
return pi_2_stage
def step(self, a1) -> Tuple[np.ndarray, float, bool, dict]:
"""
Steps the environment
:param a1: the defender action
:return: o, r, done, info
"""
done = False
a2 = self.attacker_action()
r = self.config.R[self.l-1][a1][a2][self.s]
T = self.config.T[self.l-1]
self.s = self.sample_next_state(a1=a1, a2=a2, T=T)
o = max(self.config.O)
if self.s == 2 or self.t >= self.config.T_max:
done = True
else:
o = self.sample_next_observation(a1=a1, a2=a2)
pi_2_stage = self.get_attacker_stage_policy_avg()
self.b = OptimalStoppingGameUtil.next_belief(o=o, a1=a1, b=self.b, pi_2=pi_2_stage,
config=self.config, l=self.l, a2=a2)
self.l = self.l-a1
info = {"o": o, "s": self.s}
self.t += 1
return np.array([self.l, self.b[1], self.b[1]]), r, done, info
def attacker_action(self) -> int:
"""
Samples an attacker action from a static policy
:return: the sampled attacker action
"""
stop_prob = self.pi_2._act([self.l, self.b[1], self.s], legal_actions = [0, 1])[1][1]
if np.random.rand() < stop_prob:
return 1
else:
return 0
def sample_next_state(self, a1: int, a2: int, T: np.ndarray) -> int:
"""
Samples the next state
:param a1: action of the defender
:param a2: action of the attacker
:param T: the transition tensor
:return: the next state
"""
state_probs = []
for s_prime in self.config.S:
state_probs.append(T[a1][a2][self.s][s_prime])
s_prime = np.random.choice(np.arange(0, len(self.config.S)), p=state_probs)
return s_prime
def sample_next_observation(self, a1: int, a2: int) -> int:
"""
Samples the next observation
:param a1: the action of the defender
:param a2: the action of the attacker
:return: the next observation
"""
observation_probs = []
for o in self.config.O:
observation_probs.append(self.config.Z[a1][a2][self.s][o])
o = np.random.choice(np.arange(0, len(self.config.O)), p=observation_probs)
return o
def reset(self) -> np.ndarray:
"""
Resets the environment
:return: the initial observation
"""
self.s = 0
self.b = self.config.initial_belief
self.l = self.config.L
self.t = 0
return np.array([self.l, self.b0[1], self.s])
def render(self):
raise NotImplementedError("not supported")
class ProgressThread(threading.Thread):
def __init__(self, env, max_steps):
threading.Thread.__init__(self)
self.env = env
self.max_steps = max_steps
self.running = True
def run(self) -> None:
while self.running:
time.sleep(5)
if self.running:
print(f"Learning a best response strategy, progress:{int(100*round(self.env.total_steps/self.max_steps,2))}%")
| StarcoderdataPython |
1770777 | class AnalysisType(object):
"""
Base class for the different analysis types
"""
def __init__(self, structure_model, name="DefaultAnalysisType"):
self.name = name
# the structure model - geometry and physics - has the Dirichlet BC
# for the bottom node included
self.structure_model = structure_model
self.displacement = None
self.rotation = None
self.force = None
self.reaction = None
self.moment = None
def solve(self):
"""
Solve for something
"""
print("Solving for something in AnalysisType base class \n")
pass
def postprocess(self):
"""
Postprocess something
"""
print("Postprocessing in AnalysisType base class \n")
pass
| StarcoderdataPython |
3380555 | <gh_stars>0
"""
Copyright (c) 2018-2021 Intel Corporation
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
"""
from pathlib import Path
import pickle
from functools import partial
from collections import OrderedDict
import numpy as np
from ..base_evaluator import BaseEvaluator
from ..quantization_model_evaluator import create_dataset_attributes
from ...adapters import create_adapter
from ...config import ConfigError
from ...launcher import create_launcher
from ...utils import contains_all, contains_any, extract_image_representations, get_path
from ...progress_reporters import ProgressReporter
from ...logging import print_info
def generate_name(prefix, with_prefix, layer_name):
return prefix + layer_name if with_prefix else layer_name.split(prefix)[-1]
class SuperResolutionFeedbackEvaluator(BaseEvaluator):
def __init__(self, dataset_config, launcher, model):
self.dataset_config = dataset_config
self.preprocessing_executor = None
self.preprocessor = None
self.dataset = None
self.postprocessor = None
self.metric_executor = None
self.launcher = launcher
self.srmodel = model
self._metrics_results = []
@classmethod
def from_configs(cls, config, delayed_model_loading=False):
dataset_config = config['datasets']
launcher_config = config['launchers'][0]
if launcher_config['framework'] == 'dlsdk' and 'device' not in launcher_config:
launcher_config['device'] = 'CPU'
launcher = create_launcher(launcher_config, delayed_model_loading=True)
model = SRFModel(
config.get('network_info', {}), launcher, config.get('_models', []), config.get('_model_is_blob'),
delayed_model_loading
)
return cls(dataset_config, launcher, model)
def process_dataset(
self, subset=None,
num_images=None,
check_progress=False,
dataset_tag='',
output_callback=None,
allow_pairwise_subset=False,
dump_prediction_to_annotation=False,
calculate_metrics=True,
**kwargs):
if self.dataset is None or (dataset_tag and self.dataset.tag != dataset_tag):
self.select_dataset(dataset_tag)
self._annotations, self._predictions = [], []
self._create_subset(subset, num_images, allow_pairwise_subset)
metric_config = self.configure_intermediate_metrics_results(kwargs)
compute_intermediate_metric_res, metric_interval, ignore_results_formatting = metric_config
if 'progress_reporter' in kwargs:
_progress_reporter = kwargs['progress_reporter']
_progress_reporter.reset(self.dataset.size)
else:
_progress_reporter = None if not check_progress else self._create_progress_reporter(
check_progress, self.dataset.size
)
self.srmodel.init_feedback(self.dataset.data_reader)
for batch_id, (batch_input_ids, batch_annotation, batch_inputs, batch_identifiers) in enumerate(self.dataset):
self.srmodel.fill_feedback(batch_inputs)
batch_inputs = self.preprocessor.process(batch_inputs, batch_annotation)
batch_inputs_extr, _ = extract_image_representations(batch_inputs)
callback = None
if callback:
callback = partial(output_callback,
metrics_result=None,
element_identifiers=batch_identifiers,
dataset_indices=batch_input_ids)
batch_raw_prediction, batch_prediction = self.srmodel.predict(
batch_identifiers, batch_inputs_extr, callback=callback
)
annotation, prediction = self.postprocessor.process_batch(batch_annotation, batch_prediction)
self.srmodel.feedback(prediction)
metrics_result = None
if self.metric_executor and calculate_metrics:
metrics_result, _ = self.metric_executor.update_metrics_on_batch(
batch_input_ids, annotation, prediction
)
if self.metric_executor.need_store_predictions:
self._annotations.extend(annotation)
self._predictions.extend(prediction)
if output_callback:
output_callback(
batch_raw_prediction[0],
metrics_result=metrics_result,
element_identifiers=batch_identifiers,
dataset_indices=batch_input_ids
)
if _progress_reporter:
_progress_reporter.update(batch_id, len(prediction))
if compute_intermediate_metric_res and _progress_reporter.current % metric_interval == 0:
self.compute_metrics(
print_results=True, ignore_results_formatting=ignore_results_formatting
)
if _progress_reporter:
_progress_reporter.finish()
if self.srmodel.store_predictions:
self.srmodel.save_predictions()
def compute_metrics(self, print_results=True, ignore_results_formatting=False):
if self._metrics_results:
del self._metrics_results
self._metrics_results = []
for result_presenter, evaluated_metric in self.metric_executor.iterate_metrics(
self._annotations, self._predictions):
self._metrics_results.append(evaluated_metric)
if print_results:
result_presenter.write_result(evaluated_metric, ignore_results_formatting)
return self._metrics_results
def extract_metrics_results(self, print_results=True, ignore_results_formatting=False):
if not self._metrics_results:
self.compute_metrics(False, ignore_results_formatting)
result_presenters = self.metric_executor.get_metric_presenters()
extracted_results, extracted_meta = [], []
for presenter, metric_result in zip(result_presenters, self._metrics_results):
result, metadata = presenter.extract_result(metric_result)
if isinstance(result, list):
extracted_results.extend(result)
extracted_meta.extend(metadata)
else:
extracted_results.append(result)
extracted_meta.append(metadata)
if print_results:
presenter.write_result(metric_result, ignore_results_formatting)
return extracted_results, extracted_meta
def print_metrics_results(self, ignore_results_formatting=False):
if not self._metrics_results:
self.compute_metrics(True, ignore_results_formatting)
return
result_presenters = self.metric_executor.get_metric_presenters()
for presenter, metric_result in zip(result_presenters, self._metrics_results):
presenter.write_result(metric_result, ignore_results_formatting)
@property
def dataset_size(self):
return self.dataset.size
def release(self):
self.srmodel.release()
self.launcher.release()
def reset(self):
if self.metric_executor:
self.metric_executor.reset()
if hasattr(self, '_annotations'):
del self._annotations
del self._predictions
del self._input_ids
del self._metrics_results
self._annotations = []
self._predictions = []
self._input_ids = []
self._metrics_results = []
if self.dataset:
self.dataset.reset(self.postprocessor.has_processors)
@staticmethod
def get_processing_info(config):
module_specific_params = config.get('module_config')
model_name = config['name']
dataset_config = module_specific_params['datasets'][0]
launcher_config = module_specific_params['launchers'][0]
return (
model_name, launcher_config['framework'], launcher_config['device'], launcher_config.get('tags'),
dataset_config['name']
)
def _create_subset(self, subset=None, num_images=None, allow_pairwise=False):
if self.dataset.batch is None:
self.dataset.batch = 1
if subset is not None:
self.dataset.make_subset(ids=subset, accept_pairs=allow_pairwise)
elif num_images is not None:
self.dataset.make_subset(end=num_images, accept_pairs=allow_pairwise)
@staticmethod
def configure_intermediate_metrics_results(config):
compute_intermediate_metric_res = config.get('intermediate_metrics_results', False)
metric_interval, ignore_results_formatting = None, None
if compute_intermediate_metric_res:
metric_interval = config.get('metrics_interval', 1000)
ignore_results_formatting = config.get('ignore_results_formatting', False)
return compute_intermediate_metric_res, metric_interval, ignore_results_formatting
def load_network(self, network=None):
self.srmodel.load_network(network, self.launcher)
def load_network_from_ir(self, models_list):
self.srmodel.load_model(models_list, self.launcher)
def get_network(self):
return self.srmodel.get_network()
def get_metrics_attributes(self):
if not self.metric_executor:
return {}
return self.metric_executor.get_metrics_attributes()
def register_metric(self, metric_config):
if isinstance(metric_config, str):
self.metric_executor.register_metric({'type': metric_config})
elif isinstance(metric_config, dict):
self.metric_executor.register_metric(metric_config)
else:
raise ValueError('Unsupported metric configuration type {}'.format(type(metric_config)))
def register_postprocessor(self, postprocessing_config):
pass
def register_dumped_annotations(self):
pass
def select_dataset(self, dataset_tag):
if self.dataset is not None and isinstance(self.dataset_config, list):
return
dataset_attributes = create_dataset_attributes(self.dataset_config, dataset_tag)
self.dataset, self.metric_executor, self.preprocessor, self.postprocessor = dataset_attributes
@staticmethod
def _create_progress_reporter(check_progress, dataset_size):
pr_kwargs = {}
if isinstance(check_progress, int) and not isinstance(check_progress, bool):
pr_kwargs = {"print_interval": check_progress}
return ProgressReporter.provide('print', dataset_size, **pr_kwargs)
class BaseModel:
def __init__(self, network_info, launcher, delayed_model_loading=False):
self.network_info = network_info
self.launcher = launcher
def predict(self, identifiers, input_data):
raise NotImplementedError
def release(self):
pass
# pylint: disable=E0203
class BaseDLSDKModel:
def print_input_output_info(self):
print_info('{} - Input info:'.format(self.default_model_suffix))
has_info = hasattr(self.network if self.network is not None else self.exec_network, 'input_info')
if self.network:
if has_info:
network_inputs = OrderedDict(
[(name, data.input_data) for name, data in self.network.input_info.items()]
)
else:
network_inputs = self.network.inputs
network_outputs = self.network.outputs
else:
if has_info:
network_inputs = OrderedDict([
(name, data.input_data) for name, data in self.exec_network.input_info.items()
])
else:
network_inputs = self.exec_network.inputs
network_outputs = self.exec_network.outputs
for name, input_info in network_inputs.items():
print_info('\tLayer name: {}'.format(name))
print_info('\tprecision: {}'.format(input_info.precision))
print_info('\tshape {}\n'.format(input_info.shape))
print_info('{} - Output info'.format(self.default_model_suffix))
for name, output_info in network_outputs.items():
print_info('\tLayer name: {}'.format(name))
print_info('\tprecision: {}'.format(output_info.precision))
print_info('\tshape: {}\n'.format(output_info.shape))
def automatic_model_search(self, network_info):
model = Path(network_info['srmodel'])
if model.is_dir():
is_blob = network_info.get('_model_is_blob')
if is_blob:
model_list = list(model.glob('*{}.blob'.format(self.default_model_suffix)))
if not model_list:
model_list = list(model.glob('*.blob'))
else:
model_list = list(model.glob('*{}.xml'.format(self.default_model_suffix)))
blob_list = list(model.glob('*{}.blob'.format(self.default_model_suffix)))
if not model_list and not blob_list:
model_list = list(model.glob('*.xml'))
blob_list = list(model.glob('*.blob'))
if not model_list:
model_list = blob_list
if not model_list:
raise ConfigError('Suitable model for {} not found'.format(self.default_model_suffix))
if len(model_list) > 1:
raise ConfigError('Several suitable models for {} found'.format(self.default_model_suffix))
model = model_list[0]
print_info('{} - Found model: {}'.format(self.default_model_suffix, model))
if model.suffix == '.blob':
return model, None
weights = get_path(network_info.get('weights', model.parent / model.name.replace('xml', 'bin')))
print_info('{} - Found weights: {}'.format(self.default_model_suffix, weights))
return model, weights
def load_network(self, network, launcher):
self.network = network
self.exec_network = launcher.ie_core.load_network(network, launcher.device)
def update_inputs_outputs_info(self):
raise NotImplementedError
def load_model(self, network_info, launcher, log=False):
model, weights = self.automatic_model_search(network_info)
if weights is not None:
self.network = launcher.read_network(str(model), str(weights))
self.exec_network = launcher.ie_core.load_network(self.network, launcher.device)
else:
self.exec_network = launcher.ie_core.import_network(str(model))
self.update_inputs_outputs_info()
if log:
self.print_input_output_info()
def create_model(model_config, launcher, delayed_model_loading=False):
launcher_model_mapping = {
'dlsdk': ModelDLSDKModel,
'tf': ModelTFModel,
}
framework = launcher.config['framework']
if 'predictions' in model_config and not model_config.get('store_predictions', False):
framework = 'dummy'
model_class = launcher_model_mapping.get(framework)
if not model_class:
raise ValueError('model for framework {} is not supported'.format(framework))
return model_class(model_config, launcher, delayed_model_loading)
class SRFModel(BaseModel):
def __init__(self, network_info, launcher, models_args, is_blob, delayed_model_loading=False):
super().__init__(network_info, launcher)
if models_args and not delayed_model_loading:
model = network_info.get('srmodel', {})
if not contains_any(model, ['model', 'onnx_model']) and models_args:
model['srmodel'] = models_args[0]
model['_model_is_blob'] = is_blob
network_info.update({'sr_model': model})
if not contains_all(network_info, ['srmodel']) and not delayed_model_loading:
raise ConfigError('network_info should contain srmodel field')
self.srmodel = create_model(network_info['srmodel'], launcher, delayed_model_loading)
self.feedback = self.srmodel.feedback
self.init_feedback = self.srmodel.init_feedback
self.fill_feedback = self.srmodel.fill_feedback
self.store_predictions = network_info['srmodel'].get('store_predictions', False)
self._predictions = [] if self.store_predictions else None
self._part_by_name = {'srmodel': self.srmodel}
self._raw_outs = OrderedDict()
def predict(self, identifiers, input_data, callback=None):
predictions, raw_outputs = [], []
for data in input_data:
output, prediction = self.srmodel.predict(identifiers, data)
if self.store_predictions:
self._predictions.append(prediction)
raw_outputs.append(output)
predictions.append(prediction)
return raw_outputs, predictions
def reset(self):
self.processing_frames_buffer = []
if self._predictions is not None:
self._predictions = []
def release(self):
self.srmodel.release()
def save_predictions(self):
if self._predictions is not None:
prediction_file = Path(self.network_info['srmodel'].get('predictions', 'model_predictions.pickle'))
with prediction_file.open('wb') as file:
pickle.dump(self._predictions, file)
def load_network(self, network_list, launcher):
for network_dict in network_list:
self._part_by_name[network_dict['name']].load_network(network_dict['srmodel'], launcher)
self.update_inputs_outputs_info()
def load_model(self, network_list, launcher):
for network_dict in network_list:
self._part_by_name[network_dict['name']].load_model(network_dict, launcher)
self.update_inputs_outputs_info()
def _add_raw_predictions(self, prediction):
for key, output in prediction.items():
if key not in self._raw_outs:
self._raw_outs[key] = []
self._raw_outs[key].append(output)
def get_network(self):
return [{'name': 'srmodel', 'model': self.srmodel.network}]
class FeedbackMixin:
def configure_feedback(self):
self._idx_to_name = {}
self._name_to_idx = {}
self._feedback_name = self.network_info['feedback_input']
self._feedback_data = {self._feedback_name: None}
self._first_step = True
self._inputs = self.network_info['inputs']
self._feedback_inputs = {self._feedback_name: [t for t in self._inputs if t['name'] == self._feedback_name][0]}
for input_info in self._inputs:
idx = int(input_info['value'])
self._idx_to_name[idx] = input_info['name']
self._name_to_idx[input_info['name']] = idx
self._feedback_idx = self._name_to_idx[self._feedback_name]
def init_feedback(self, reader):
info = self._feedback_inputs[self._feedback_name]
self._feedback_data[self._feedback_name] = reader.read(info['initializer'])
def feedback(self, data):
data = data[0]
self._feedback_data[self._feedback_name] = data[0].value
def fill_feedback(self, data):
data[0].data[self._feedback_idx] = self._feedback_data[self._feedback_name]
return data
class ModelDLSDKModel(BaseModel, BaseDLSDKModel, FeedbackMixin):
default_model_suffix = 'srmodel'
def __init__(self, network_info, launcher, delayed_model_loading=False):
super().__init__(network_info, launcher)
self.input_blob, self.output_blob = None, None
self.with_prefix = None
if not delayed_model_loading:
self.load_model(network_info, launcher, log=True)
self.adapter = create_adapter(network_info.get('adapter', 'super_resolution'))
self.configure_feedback()
def predict(self, identifiers, input_data):
input_data = self.fit_to_input(input_data)
raw_result = self.exec_network.infer(input_data)
result = self.adapter.process([raw_result], identifiers, [{}])
return raw_result, result
def release(self):
del self.exec_network
del self.launcher
def fit_to_input(self, input_data):
has_info = hasattr(self.exec_network, 'input_info')
if has_info:
input_info = self.exec_network.input_info
else:
input_info = self.exec_network.inputs
fitted = {}
for name, info in input_info.items():
data = input_data[self._name_to_idx[name]]
data = np.expand_dims(data, axis=0)
data = np.transpose(data, [0, 3, 1, 2])
assert tuple(info.input_data.shape) == np.shape(data)
fitted[name] = data
return fitted
def update_inputs_outputs_info(self):
has_info = hasattr(self.exec_network, 'input_info')
input_info = self.exec_network.input_info if has_info else self.exec_network.inputs
input_blob = next(iter(input_info))
with_prefix = input_blob.startswith(self.default_model_suffix + '_')
if (with_prefix != self.with_prefix) and with_prefix:
self.network_info['feedback_input'] = '_'.join([self.default_model_suffix,
self.network_info['feedback_input']])
for inp in self.network_info['inputs']:
inp['name'] = '_'.join([self.default_model_suffix, inp['name']])
if 'blob' in inp.keys():
inp['blob'] = '_'.join([self.default_model_suffix, inp['blob']])
self.network_info['adapter']['target_out'] = '_'.join([self.default_model_suffix,
self.network_info['adapter']['target_out']])
self.with_prefix = with_prefix
class ModelTFModel(BaseModel, FeedbackMixin):
default_model_suffix = 'srmodel'
def __init__(self, network_info, launcher, *args, **kwargs):
super().__init__(network_info, launcher)
model = self.automatic_model_search(network_info)
self.inference_session = launcher.create_inference_session(str(model))
self.adapter = create_adapter(network_info.get('adapter', 'super_resolution'))
self.configure_feedback()
def predict(self, identifiers, input_data):
input_data = self.fit_to_input(input_data)
raw_result = self.inference_session.predict([input_data])
result = self.adapter.process(raw_result, identifiers, [{}])
return raw_result, result
def fit_to_input(self, input_data):
fitted = {}
for idx, data in enumerate(input_data):
name = self._idx_to_name[idx]
data = np.expand_dims(data, axis=0)
fitted[name] = data
return fitted
def release(self):
del self.inference_session
@staticmethod
def automatic_model_search(network_info):
model = Path(network_info['model'])
return model
| StarcoderdataPython |
3276640 | from typing import Any
from src.Shared.InterfaceAdapters.IFilter import IFilter
class Filter(IFilter):
_filters: dict
def __init__(self, filter: dict):
self._filters = filter
defaultFilters: Any = self.getDefaultFilters()
for valueKey in defaultFilters:
self._filters.update(valueKey)
def get(self, key: str) -> str:
return self._filters.get(key) if self.has(key) else None
def has(self, key: str) -> bool:
return key in self._filters
def isEmpty(self) -> bool:
return True if self._filters else False
def values(self) -> dict:
return self._filters
| StarcoderdataPython |
180845 | <gh_stars>1-10
#!/home/adam/Documents/revkit-1.3/python
#!/usr/bin/python
# RevKit: A Toolkit for Reversible Circuit Design (www.revkit.org)
# Copyright (C) 2009-2011 The RevKit Developers <<EMAIL>>
#
# This program is free software: you can redistribute it and/or modify
# it under the terms of the GNU General Public License as published by
# the Free Software Foundation, either version 3 of the License, or
# (at your option) any later version.
#
# This program is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
# GNU General Public License for more details.
#
# You should have received a copy of the GNU General Public License
# along with this program. If not, see <http://www.gnu.org/licenses/>.
import sys , os
sys.path.append(os.path.dirname(sys.path[0]))
from revkit import *
opts = program_options()
opts.add_option( "spec", "specification of a circuit" ) \
.add_option( "impl", "implementation of a circuit") \
opts.parse( sys.argv )
if not opts.good() or not opts.is_set ("spec") or not opts.is_set ("impl"):
print opts
exit( 1 )
spec = circuit ()
impl = circuit ()
read_realization (spec, opts["spec"]) or sys.exit ("Cannot read " + opts["spec"])
read_realization (impl, opts["impl"]) or sys.exit ("Cannot read " + opts["impl"])
r = equivalence_check (spec, impl )
length = max ( map (len, r.keys()))
string = '{0:' + str(length + 1) + 's} {1:s} '
for key in r.keys():
print string.format (key + ":", str(r[key]))
#print statistics
| StarcoderdataPython |
3229050 | import argparse
import csv
import functools
import matplotlib.pyplot as plt
import numpy as np
import tensorflow as tf
from tensorflow.keras.layers import Dense, Activation
from tensorflow.keras import regularizers
from config import hidden_layer_size, n_params
def load_dataset(file_path):
print("Loading {}".format(file_path))
with open(file_path, 'r') as csv_file:
reader = csv.reader(csv_file)
csv_data = np.array([list(map(float, line)) for line in reader])
return csv_data
def get_model():
model = tf.keras.Sequential([
Dense(hidden_layer_size, input_shape=(n_params,),
kernel_regularizer=regularizers.l2(0.001)),
Activation('relu'),
Dense(hidden_layer_size, kernel_regularizer=regularizers.l2(0.001)),
Activation('relu'),
Dense(1),
Activation('sigmoid')
])
model.compile(optimizer="rmsprop", loss='mse', metrics=['mse'])
return model
def get_args():
parser = argparse.ArgumentParser(
description='Training or inference using a neural network model.')
parser.add_argument("-p", "--plot", action="store_true",
help="Save training curve in a picture")
parser.add_argument("-w", "--weights", default="weights.h5",
help="File to hold the weights")
parser.add_argument("-i", "--iterations", type=int, default=250,
help="Number of iterations (epochs)")
parser.add_argument("command", choices=["fit", "predict"],
help="Fit the model or predict")
return parser.parse_args()
def main():
args = get_args()
model = get_model()
if args.command == "fit":
training_csv = load_dataset("training_set.csv")
np.random.shuffle(training_csv)
training_data = training_csv[:, :-1]
training_labels = training_csv[:, -1]
history = model.fit(training_data, training_labels, epochs=args.iterations,
verbose=2, validation_split=0.3, shuffle=True)
if args.plot:
plt.plot(history.history['mse'])
plt.plot(history.history['val_mse'])
plt.title('training curve')
plt.ylabel('mean squared error')
plt.xlabel('epoch')
plt.legend(['train', 'test'], loc='upper right')
plt.savefig("training_curve.png")
print("Training curve saved in training_curve.png")
model.save_weights(args.weights)
print("Weights saved in {}".format(args.weights))
elif args.command == "predict":
print("Loading weights from {}".format(args.weights))
model.load_weights(args.weights)
inference_csv = load_dataset("inference_set.csv")
inference_features = inference_csv[:, 1:]
print("Starting inference")
predictions = model.predict_on_batch(inference_features).numpy()
with open('game_list.csv', 'r') as csv_file:
reader = csv.reader(csv_file)
game_list = list(reader)
names_dic = {int(detail[0]): detail[1] for detail in game_list}
del game_list
id_score = sorted(([int(inference_csv[i, 0]), predictions[i, 0]]
for i in range(inference_csv.shape[0])),
key=lambda x: -x[1])
for i in range(len(id_score)):
id_score[i].append(names_dic[id_score[i][0]])
with open("recommended.csv", "w") as csv_file:
writer = csv.writer(csv_file, lineterminator="\n")
writer.writerows(id_score)
print("Results written in recommended.csv")
else:
print("Unrecognized command: {}".format(args.command))
exit(1)
main()
| StarcoderdataPython |
181014 | from django.contrib import admin
from django.urls import reverse
from django.utils.safestring import mark_safe
from .models import *
# Register your models here.
@admin.register(Product)
class ProductAdmin(admin.ModelAdmin):
list_display = [field.name for field in Product._meta.fields]
@admin.register(Review)
class ReviewAdmin(admin.ModelAdmin):
list_display = [field.name for field in Review._meta.fields]
def order_pdf(obj):
url = reverse('orders:admin_order_pdf', args=[obj._id])
return mark_safe(f'<a href="{url}">PDF</a>')
order_pdf.short_description = 'Invoice'
@admin.register(Order)
class OrderAdmin(admin.ModelAdmin):
list_display = [field.name for field in Order._meta.fields]
list_display.append(order_pdf)
@admin.register(OrderItem)
class OrderItemAdmin(admin.ModelAdmin):
list_display = [field.name for field in OrderItem._meta.fields]
# admin.site.register(OrderItem)
@admin.register(ShippingAddress)
class ShippingAddressAdmin(admin.ModelAdmin):
list_display = [field.name for field in ShippingAddress._meta.fields]
# class OrderAdmin(admin.ModelAdmin):
# list_display = ['id',order_pdf]
| StarcoderdataPython |
4837224 | <reponame>saavpedia/python<gh_stars>0
#!/usr/bin/env python
################################################################################
# Copyright 2018 <NAME> <<EMAIL>>
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
################################################################################
import os
import sqlite3
import urllib2, math, shutil
class SQLite3(object) :
def __init__(self):
self.__itsCursor = None
self.__itsVersionList = [
{'date':'2018.05.04', 'size':10753868800, 'folder':'2018.05.04.sqlite.split', 'unit_size':10485760 }
]
pass
def __load(self):
theBasePath = os.path.dirname(os.path.realpath(__file__))
theDBFilePath = theBasePath + '/saavpedia.db'
if os.path.exists(theDBFilePath):
if os.path.isfile(theDBFilePath) and os.path.getsize(theDBFilePath) == self.__itsVersionList[-1]['size']:
self.__itsConnection = sqlite3.connect(theDBFilePath)
self.__itsCursor = self.__itsConnection.cursor()
#print 'Local SAAVpedia DB is loaded.'
return False
pass
self.__saveDB(theDBFilePath)
self.__itsCursor = None
return True
def __saveDB(self, theDBFilePath):
theLastVersionInfo = self.__itsVersionList[-1]
theUnitSize = theLastVersionInfo['unit_size']
theNumOfSplitFiles = int(math.ceil(theLastVersionInfo['size'] / (theUnitSize * 1.0)))
theWriter = open(theDBFilePath, 'wb')
theTempFileList = []
theTempFolder = os.path.dirname(theDBFilePath) + os.sep + 'tmp'
if not os.path.exists(theTempFolder):
os.makedirs(theTempFolder)
for idx in range(theNumOfSplitFiles):
theTempFilePath = '{0}{1}SAAVpedia.sqlite.{2}.db'.format(theTempFolder, os.sep, str(idx))
theTempFileList.append(theTempFilePath)
if (not os.path.exists(theTempFilePath)) or (os.path.getsize(theTempFilePath) != theUnitSize):
print 'Downloading SAAVpedia.sqlite.{0}.db - {1:.2f}%'.format(idx, (idx + 1.0) / theNumOfSplitFiles * 100.0)
theTempWriter = open(theTempFilePath, 'wb')
theURL = 'https://github.com/saavpedia/python/blob/master/SAAVpedia/db/{0}/SAAVpediaData.sqlite.db.{1}.kbsi?raw=true'.format(theLastVersionInfo['folder'], idx)
theData = urllib2.urlopen(theURL).read()
theTempWriter.write(theData)
theTempWriter.close()
pass
print 'Download is completed.'
theCount = 0
for ithDBFile in theTempFileList:
print 'Generating SAAVpedia DB... - {0:.2f}%'.format((theCount+1.0)/theNumOfSplitFiles*100.0)
with open(ithDBFile, 'rb') as theReader:
theWriter.write(theReader.read())
pass
theCount += 1
pass
theWriter.close()
print 'Removing temporary files...'
shutil.rmtree(theTempFolder)
print 'SAAVpedia initilzation is completed.'
def load(self):
try:
self.__load()
return False
except Exception as e:
print str(e)
return True
def open(self, theDBFilePath):
try:
self.__itsConnection = sqlite3.connect(theDBFilePath)
self.__itsCursor = self.__itsConnection.cursor()
return False
except:
return True
def close(self):
if not self.__itsCursor == None:
self.__itsCursor.close()
self.__itsCursor = None
pass
def execute(self, theCommand):
if not self.__itsCursor == None:
return self.__itsCursor.execute(theCommand)
return None
if __name__ == '__main__':
theSQLite = SQLite3()
theSQLite.load()
pass
| StarcoderdataPython |
Subsets and Splits