--- language: en license: mit source_datasets: curated task_categories: - tabular-regression tags: - chemistry - cheminformatics pretty_name: Aqueous Solubility Database (AqSolDB) dataset_summary: >- AqsolDB contains solubility data for 9,982 unique compounds, curated from nine publicly available aqueous solubility datasets. citation: >- @article{ author = {Murat Cihan Sorkun, Abhishek Khetan \& Süleyman Er}, title = {AqSolDB, a curated reference set of aqueous solubility and 2D descriptors for a diverse set of compounds}, journal = {Scientific Data}, year = {2019}, volume = {6}, number = {143}, month = {aug}, url = {https://www.nature.com/articles/s41597-019-0151-1}, publisher = {Springer Nature} size_categories: - 1K>> import datasets and load one of the `AqSolDB` datasets, e.g., >>> AqSolDB = datasets.load_dataset("maomlab/AqSolDB", name = "AqSolDB") Downloading readme: 100%|████████████████████| 10.2k/10.2k [00:00<00:00, 4.41MB/s] Downloading data: 100%|█████████████████████████| 972k/972k [00:02<00:00, 432kB/s] Downloading data: 100%|██████████████████████| 2.88M/2.88M [00:01<00:00, 1.92MB/s] Generating test split: 100%|████████| 2494/2494 [00:00<00:00, 44727.48 examples/s] Generating train split: 100%|██████| 7488/7488 [00:00<00:00, 144316.82 examples/s] and inspecting the loaded dataset >>> AqSolDB AqSolDB DatasetDict({ test: Dataset({ features: ['ID', 'Name', 'InChI', 'InChIKey', 'SMILES', 'Y', 'SD', 'Ocurrences', 'Group', 'MolWt', 'MolLogP', 'MolMR', 'HeavyAtomCount', 'NumHAcceptors', 'NumHDonors', 'NumHeteroatoms', 'NumRotatableBonds', 'NumValenceEl\ ectrons', 'NumAromaticRings', 'NumSaturatedRings', 'NumAliphaticRings', 'RingCount', 'TPSA', 'LabuteASA', 'BalabanJ', 'BertzCT', 'ClusterNo', 'MolCount', 'group'], num_rows: 2494 }) train: Dataset({ features: ['ID', 'Name', 'InChI', 'InChIKey', 'SMILES', 'Y', 'SD', 'Ocurrences', 'Group', 'MolWt', 'MolLogP', 'MolMR', 'HeavyAtomCount', 'NumHAcceptors', 'NumHDonors', 'NumHeteroatoms', 'NumRotatableBonds', 'NumValenceEl\ ectrons', 'NumAromaticRings', 'NumSaturatedRings', 'NumAliphaticRings', 'RingCount', 'TPSA', 'LabuteASA', 'BalabanJ', 'BertzCT', 'ClusterNo', 'MolCount', 'group'], num_rows: 7488 }) }) ### Use a dataset to train a model One way to use the dataset is through the [MolFlux](https://exscientia.github.io/molflux/) package developed by Exscientia. First, from the command line, install `MolFlux` library with `catboost` and `rdkit` support pip install 'molflux[catboost,rdkit]' then load, featurize, split, fit, and evaluate the catboost model import json from datasets import load_dataset from molflux.datasets import featurise_dataset from molflux.features import load_from_dicts as load_representations_from_dicts from molflux.splits import load_from_dict as load_split_from_dict from molflux.modelzoo import load_from_dict as load_model_from_dict from molflux.metrics import load_suite split_dataset = load_dataset('maomlab/AqSolDB') split_featurised_dataset = featurise_dataset( split_dataset, column = "SMILES", representations = load_representations_from_dicts([{"name": "morgan"}, {"name": "maccs_rdkit"}])) model = load_model_from_dict({ "name": "cat_boost_regressor", "config": { "x_features": ['SMILES::morgan', 'SMILES::maccs_rdkit'], "y_features": ['Y']}}) model.train(split_featurised_dataset["train"]) preds = model.predict(split_featurised_dataset["test"]) regression_suite = load_suite("regression") scores = regression_suite.compute( references=split_featurised_dataset["test"]['Y'], predictions=preds["cat_boost_regressor::Y"]) ## Aqueous Solubility Database ### Data splits The original AqSoDB dataset does not define splits, so here we have used the `Realistic Split` method described in [(Martin et al., 2018)](https://doi.org/10.1021/acs.jcim.7b00166). ### Citation TY  - JOUR AU  - Sorkun, Murat Cihan AU  - Khetan, Abhishek AU  - Er, S√ºleyman PY  - 2019 DA  - 2019/08/08 TI  - AqSolDB, a curated reference set of aqueous solubility and 2D descriptors for a diverse set of compounds JO  - Scientific Data SP  - 143 VL  - 6 IS  - 1 AB  - Water is a ubiquitous solvent in chemistry and life. It is therefore no surprise that the aqueous solubility of compounds has a key role in various domains, including but not limited to drug discovery, paint, coating, and battery materials design. Measurement and prediction of aqueous solubility is a complex and prevailing challenge in chemistry. For the latter, different data-driven prediction models have recently been developed to augment the physics-based modeling approaches. To construct accurate data-driven estimation models, it is essential that the underlying experimental calibration data used by these models is of high fidelity and quality. Existing solubility datasets show variance in the chemical space of compounds covered, measurement methods, experimental conditions, but also in the non-standard representations, size, and accessibility of data. To address this problem, we generated a new database of compounds, AqSolDB, by merging a total of nine different aqueous solubility datasets, curating the merged data, standardizing and validating the compound representation formats, marking with reliability labels, and providing 2D descriptors of compounds as a Supplementary Resource. SN  - 2052-4463 UR  - https://doi.org/10.1038/s41597-019-0151-1 DO  - 10.1038/s41597-019-0151-1 ID  - Sorkun2019 ER  - ```