File size: 2,057 Bytes
40a2a63
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
pip install rdkit
pip install molvs
import pandas as pd
import numpy as np
import rdkit
import molvs
from rdkit import Chem

standardizer = molvs.Standardizer()
fragment_remover = molvs.fragment.FragmentRemover()

from rdkit.Chem import PandasTools
sdfFile = 'Redox_training_set_curated.sdf'
dataframe = PandasTools.LoadSDF(sdfFile)

dataframe.to_csv('Nano Luciferase.csv', index=False)

df = pd.read_csv('redox.csv')

# Some of the 'Raw_SMILES' rows contain TWO smiles separated by ;
# These cause smiles parse error (which means they cannot be read)
# So I separated the smiles

df.rename(columns = {'PUBCHEM_EXT_DATASOURCE_REGID': 'REGID_1'}, inplace = True)
df.rename(columns = {'Other REGIDs': 'REGID_2'}, inplace = True)

df.insert(3, 'SMILES_2', np.NaN)
df['SMILES_2'] = df['Raw_SMILES'].str.split(';').str[1]
df['Raw_SMILES'] = df['Raw_SMILES'].str.split(';').str[0]
df.rename(columns= {'Raw_SMILES' : 'SMILES_1'}, inplace = True)

df.insert(10, 'AC50_uM_2', np.NaN)
df['AC50_uM_2'] = df['AC50_uM'].str.split(';').str[1]
df['AC50_uM'] = df['AC50_uM'].str.split(';').str[0]
df.rename(columns = {'AC50_uM': 'AC50_uM_1'}, inplace = True)

df['X_1'] = [ \
    rdkit.Chem.MolToSmiles(
        fragment_remover.remove(
        standardizer.standardize(
        rdkit.Chem.MolFromSmiles(
        smiles))))
    for smiles in df['SMILES_1']]

def process_smiles(smiles):
    if pd.isna(smiles):
        return None  
    try:
        return rdkit.Chem.MolToSmiles(
            fragment_remover.remove(
                standardizer.standardize(
                    rdkit.Chem.MolFromSmiles(smiles))))
    except Exception as e:
        print(f"Error processing SMILES {smiles}: {e}")
        return None  

df['X_2'] = df['SMILES_2'].apply(process_smiles)

df.rename(columns={'X_1' : 'newSMILES_1', 'X_2' : 'newSMILES_2'}, inplace = True)

df[['REGID_1',
 'REGID_2',
 'newSMILES_1',
 'newSMILES_2',      
 'log_AC50_M',
 'Efficacy',
 'CC-v2',
 'Outcome',
 'InChIKey',
 'AC50_uM_1',
 'AC50_uM_2',
 'ID',
 'ROMol']].to_csv('redox_sanitized.csv', index = False)