Datasets:
Update MSTI Thiol Interference_preprocessing script.py
Browse files
MSTI Thiol Interference_preprocessing script.py
CHANGED
@@ -1,3 +1,5 @@
|
|
|
|
|
|
1 |
pip install rdkit
|
2 |
pip install molvs
|
3 |
import pandas as pd
|
@@ -9,17 +11,21 @@ from rdkit import Chem
|
|
9 |
standardizer = molvs.Standardizer()
|
10 |
fragment_remover = molvs.fragment.FragmentRemover()
|
11 |
|
|
|
|
|
|
|
|
|
|
|
12 |
from rdkit.Chem import PandasTools
|
13 |
sdfFile = 'Thiol_training_set_curated.sdf'
|
14 |
dataframe = PandasTools.LoadSDF(sdfFile)
|
15 |
-
|
16 |
dataframe.to_csv('thiol.csv', index=False)
|
17 |
-
|
18 |
df = pd.read_csv('thiol.csv')
|
19 |
|
20 |
-
|
21 |
-
#
|
22 |
-
#
|
|
|
23 |
|
24 |
df.rename(columns = {'PUBCHEM_EXT_DATASOURCE_REGID': 'REGID_1'}, inplace = True)
|
25 |
df.rename(columns = {'Other REGIDs': 'REGID_2'}, inplace = True)
|
@@ -36,6 +42,9 @@ df[['Raw_SMILES', 'SMILES_2', 'SMILES_3']] = df['Raw_SMILES'].str.split(';', exp
|
|
36 |
|
37 |
df.rename(columns= {'Raw_SMILES' : 'SMILES_1'}, inplace = True)
|
38 |
|
|
|
|
|
|
|
39 |
df['X_1'] = [ \
|
40 |
rdkit.Chem.MolToSmiles(
|
41 |
fragment_remover.remove(
|
@@ -72,8 +81,14 @@ def process_smiles(smiles):
|
|
72 |
|
73 |
df['X_3'] = df['SMILES_3'].apply(process_smiles)
|
74 |
|
|
|
|
|
|
|
75 |
df.rename(columns={'X_1' : 'newSMILES_1', 'X_2' : 'newSMILES_2', 'X_3' : 'newSMILES_3'}, inplace = True)
|
76 |
|
|
|
|
|
|
|
77 |
df[['REGID_1',
|
78 |
'REGID_2',
|
79 |
'REGID_3',
|
|
|
1 |
+
# 1. Load Modules
|
2 |
+
|
3 |
pip install rdkit
|
4 |
pip install molvs
|
5 |
import pandas as pd
|
|
|
11 |
standardizer = molvs.Standardizer()
|
12 |
fragment_remover = molvs.fragment.FragmentRemover()
|
13 |
|
14 |
+
|
15 |
+
# 2. Convert the SDF file from the original paper into data frame
|
16 |
+
# Before running the code, please download SDF files from the original paper
|
17 |
+
# https://pubs.acs.org/doi/10.1021/acs.jmedchem.3c00482
|
18 |
+
|
19 |
from rdkit.Chem import PandasTools
|
20 |
sdfFile = 'Thiol_training_set_curated.sdf'
|
21 |
dataframe = PandasTools.LoadSDF(sdfFile)
|
|
|
22 |
dataframe.to_csv('thiol.csv', index=False)
|
|
|
23 |
df = pd.read_csv('thiol.csv')
|
24 |
|
25 |
+
|
26 |
+
# 3. Resolve SMILES parse error
|
27 |
+
# Some of the 'Raw_SMILES' rows contain TWO SMILES separated by ';'' and, they cause SMILES parse error (which means they cannot be read)
|
28 |
+
# So we separated the SMILES and renamed the columns
|
29 |
|
30 |
df.rename(columns = {'PUBCHEM_EXT_DATASOURCE_REGID': 'REGID_1'}, inplace = True)
|
31 |
df.rename(columns = {'Other REGIDs': 'REGID_2'}, inplace = True)
|
|
|
42 |
|
43 |
df.rename(columns= {'Raw_SMILES' : 'SMILES_1'}, inplace = True)
|
44 |
|
45 |
+
|
46 |
+
# 4. Sanitize with MolVS and print problems
|
47 |
+
|
48 |
df['X_1'] = [ \
|
49 |
rdkit.Chem.MolToSmiles(
|
50 |
fragment_remover.remove(
|
|
|
81 |
|
82 |
df['X_3'] = df['SMILES_3'].apply(process_smiles)
|
83 |
|
84 |
+
|
85 |
+
# 5. Rename the columns
|
86 |
+
|
87 |
df.rename(columns={'X_1' : 'newSMILES_1', 'X_2' : 'newSMILES_2', 'X_3' : 'newSMILES_3'}, inplace = True)
|
88 |
|
89 |
+
|
90 |
+
# 6. Create a file with sanitized SMILES
|
91 |
+
|
92 |
df[['REGID_1',
|
93 |
'REGID_2',
|
94 |
'REGID_3',
|